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i) Summary 

 
 
Studies from our lab recently led to the discovery of Memo (mediator of ErbB2-driven 

cell motility), a novel 297 amino acid protein shown to be required for ErbB2- and 

other receptor tyrosine kinase-driven cell motility in breast tumor cells. Inhibition of 

Memo expression had consequences on the microtubule network which could not 

grow towards the periphery of the cells upon heregulin (a ligand activating 

ErbB2/ErbB3 and ErbB2/ErB4 heterodimers) stimulation. It also had consequences 

on the actin cytoskeleton, since more actin stress fibers were seen. 

To explore the biological function of Memo, and in order to check if Memo also plays 

a role in in vivo cell migration events, we generated animal models deficient for 

Memo. We found that Memo is expressed ubiquitously in adult organs as well as in 

organs of the developing embryo. Unexpectedly, we did not see any defect in 

migration in vivo, despite the presence of a lot of migrating events during 

development like gastrulation or migration of the neural crest derivatives or of the 

somitomeres. Instead, we found that Memo seems to play a role in vascular integrity, 

as demonstrated by the presence of hemorrhages and the dilated small vessels in 

the Memo deficient embryos. This leads to the death of Memo deficient embryos after 

13 days of embryonic development. 

To study the in vivo role of Memo in the lactating mammary gland, we generated 

mice deficient for Memo in luminal alveolar epithelial cells (the cells that produce and 

secrete milk during lactation). We measured a decrease in the weight of pups from 

Memo deficient mothers, indicating that they were unable to correctly nurse them. 

The weight of the mammary gland itself was smaller in the Memo deficient females 

compared to control females. By histological analyis we saw the abnormal presence 

of shed cells in the lumen of Memo deficient glands in the first days of lactation. We 

saw a progressive loss of alveoli (formed by epithelium) which were replaced by 

adipocytes. Increased apoptosis (controlled cell death) was measured in the Memo 

deficient glands. Consistent with this apoptosis seen at the histological level, we 

could see an increase in the levels of pro-apoptotic P-Stat3 and Bax at protein level. 

We also could see improper localization of the adherens junction proteins E-cadherin 



and ß-catenin in the Memo deficient mammary glands. We therefore propose that in 

the mammary gland Memo plays a role in epithelial cell-cell adhesion, and that if this 

role is not properly achieved, the cells undergo apoptosis and are shed in the lumen 

of alveoli which progressively disappear. This leads to improper feeding of the pups.  

 
 
 



ii) Abbreviations 

ATP adenosine triphosphate 

Bcl-2 B-cell lymphoma gene-2 

BH3 Bcl-2 homologous domain 3 

BrdU bromo deoxy uridine 

CD31 cluster of differentiation 31 

CEBP CCAAT/enhancer binding protein 

CKO conditional knockout 

CMV cytomegalovirus 

DNA deoxyribonucleic acid 

ECM extracellular matrix 

Edg-1 endothelial differentiation G-protein coupled receptor 1 (= S1P receptor) 

EPO erythropoietin 

ErbB2 the name derives from the virus causing erythroblastosis in avian 

Erk extracellular-signal regulated kinase 

ES cell embryonic stem cell 

FGF fibroblast growth factor 

Flk-1 fetal liver kinase-1 (also named VEGFR2) 

Flt-1 Fms-like tyrosine kinase 

HIF hypoxia inducible factor 

IGFBP insulin-like growth factor binding protein 

IL-6 interleukin-6 

KO knockout 

LIF leukemia inducible factor 

LYVE lymphatic vessel endothelial hyaluronan receptor 

MEMO mediator of ErbB2-driven cell motility 

MMP matrix metalloproteinase 

MMTV mouse mammary tumor virus 

PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PECAM platelet endothelial cell adhesion molecule 

PKB protein kinase B 

RNA ribonucleic acid 

S1P sphingosine 1 phosphate 

Shc src homology 2 domain-containing (protein) 

SMA smooth muscle actin 

Stat signal transductor and activator of transcription 

TGF-β transforming growth factor-β 

Tie-2 tyrosin kinases that contain the Ig and EGF domain 



TIMP tissue inhibitor of metalloproteinase 

TNF-α tumor necrosis factor-α 

uPA urokinase plasminogen activator 

VE-cadherin vascular endothelial cadherin 

VEGF vascular endothelial growth factor 

VHL von Hippel-Lindau  

VSMC vascular smooth muscle cell 

WAP whey acidic protein 

WT wild-type 

ZO-1 zonula occludens-1 (protein) 

 



1 Introduction 

1.1 Part I: Cardiovascular development 
 
The general pattern of embryonic vascular system is highly conserved between 

vertebrates (Fig.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Circulatory system 
of a 4-week human embryo. 
Although at this stage all the 
major blood vessels are 
paired left and right, only the 
right vessels are shown. 
Arteries are shown in red, 
veins in blue. (After Carlson, 
1981) 

 

 

The morphogenesis of the embryonic vasculature begins with the appearance of 

angioblasts in mesodermal tissues. Angioblasts are defined as endothelial precursor 

cells which have not yet incorporated into the endothelial tissue of the vessels. After 

their specification, the angioblasts associate into vascular cords. The assembly of 

angioblasts to form a blood vessel is termed vasculogenesis. After the initial 

vasculature is established, it is extended throughout the embryo as a result of a 

process termed angiogenesis. Still later, the embryonic vascular system is 

extensively modified by endothelial remodeling, which involves the enlargement and 

splitting of existing vessels and extension of new vessels. Remodeling can also 

include the regression or complete disappearance of existing vessels. The final stage 

of vascular development is maturation, which involves a reduction in the proliferation 

of endothelial cells, their morphological change and the recruitment of vascular wall 

components (Fig.2).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Schematic representation of the major processes involved in vascular development. 
Initially, (A) angioblasts differentiate from the mesoderm and then form cords either at the 
location where they emerge or at distant location, following migration (B). (C) The 
endothelial cells in the cords now differentiate and form tubes. (D) The primary vascular 
plexus is then extended and elaborated by angiogenesis. (E) Vascular remodeling occurs, 
resulting in the formation of large and small vessels. Finally, the endothelium matures and 
mesenchymal cells are recruited to become components of the vascular wall. 

 

 

 

 

 

Despite rapid progress, the molecular mechanisms underlying many aspects of 

embryonic vascular development remain unclear. For example, very little is known 

concerning the precise origin of angioblast precursors in the embryo.  



Early studies suggested that the embryonic vasculature might originate from invasion 

of the embryos by vessels from extraembryonic tissues. However subsequent studies 

have demonstrated that the intraembryonic vasculature develops in situ from 

intraembryonic precursors.  

 

1.1.1 Molecules involved in early mesodermal differentiation 
of endothelial cells 

1.1.1.1 Flk-1/VEGF 
Angioblast differentiation in the mesoderm requires the activity of vascular 

endothelial growth factor (VEGF) and its receptor, Flk-1. They act in a paracrine 

way, VEGF expression being restricted to the endoderm and ectoderm and Flk-1 

in the mesodermal endothelial cells. Heterozygous mice carrying a single copy of 

the VEGF die on E10.5 from severe perturbation of vessel development, including 

the disruption of dorsal aorta formation (Carmeliet et al., 1996). Differentiation of 

endothelial cells, growth of existing vessels, lumen formation and spatial 

organization of vessels are also significantly impaired. Homozygous mutant mice 

die at the same developmental stage but show more severe vascular 

abnormalities and tissue necrosis (Carmeliet et al., 1996) suggesting that the 

threshold levels of VEGF are critical for most steps of vascular development. At 

E8.5, mutant mice lack the dorsal aorta over its entire length. They also show 

reduced expression of endothelial markers (flk-1, flt-1, tie-2 and PECAM/CD31) 

suggesting that endothelial development is delayed but not completely eliminated. 

 

Ablation of Flk-1 function in mice leads to a total absence of blood vessel 

formation (Shalaby et al., 1995). These embryos also lack the hemangioblastic 

cell lineage and do not develop blood. The difference between the VEGF and Flk-

1 mutant phenotypes suggests that another Flk-1 ligand may be active during 

early mesoderm induction and could partially rescue the VEGF knockout (Breier 

et al., 1996). It seems that Flk-1 and VEGF are required for angioblast 

differentiation, but that the amounts of VEGF ligands determine angioblast 

survival (Risau, 1997). 



 

1.1.1.2  Fibroblast growth factor 
Members of the FGF family, especially bFGF, play a critical role in the induction of 

the mesodermal germ layer during the earliest stages of embryogenesis. In 

Xenopus laevis, they are potent inducers of ventral mesoderm, which will form the 

blood islands and some muscle tissue (Godsave et al., 1988; Isaacs et al., 1992; 

Slack et al., 1987; Tannahill et al., 1992). Experiments using in vitro avian epiblast 

cell culture have shown that FGF induces expression of the receptor tyrosine 

kinase gene flk-1(Flamme et al., 1995a) also known as VEGFR2, which is a 

marker of the endothelial cell lineage. It has also been shown that the 

vasculogenic mesoderm and endothelial cells fail to develop in Xenopus embryos 

lacking the FGF-receptor 1 activity (Flamme et al., 1995a). More recently, 

experiments using delivery of FGF-2 from beads have shown that FGF-2 could 

induce cells from the epithelial quail somite to differerentiate into angioblasts 

(Poole et al., 2001). 

 

 

1.1.2  The blood islands  
Blood islands have been observed in the mesodermal layer of the murine yolk sac. 

The blood island anlagen give rise to hemangioblastic focal aggregations, in which 

the peripheral cells differentiate into endothelial cells and the inner cells become 

blood cells (Ferkowicz and Yoder, 2005; Pardanaud et al., 1987; Wilt, 1974). 

Experiments in which the inner cells are removed show that blood formation is 

precluded without affecting the development of vascular structures. Later in 

development, after the blood islands have formed in the splanchnopleura, they 

anastomose to form a continuous primary vascular network (Haar and Ackerman, 

1971; Houser et al., 1961). 

 

1.1.3  The hemangioblast 
 



The intimate temporal and spatial association of hematopoietic and endothelial cell 

development has led to the hypothesis that both lineages arise from a common 

precursor. This putative precursor cell has been called the hemangioblast. 

Experiments with embryoid bodies confirm the existence of such a hemangioblast 

with both endothelial and hematopoietic potential (Baron, 2003). But different studies 

suggest that the hemangioblast exists: Flk-1 is expressed in the extraembryonic yolk 

sac blood islands that contain both hematopoietic and endothelial lineages. However, 

this expression is only maintained in the endothelial precursors (Dumont et al., 1995). 

Studies showed that mice mutant in the flk-1 gene develop neither blood nor vascular 

tissue (Shalaby et al., 1995), suggesting that a single cell type may be affected early 

during development.  

In addition to Flk-1, the hematopoietic and endothelial cell lineages express other 

genes in common during early embryogenesis. These include the Tie  and Tek (Tie-

2) receptor tyosine kinases (Dumont et al., 1992; Korhonen et al., 1994), the QH1 

and MB1 antigens (Pardanaud et al., 1987), TGF-β1 (Akhurst et al., 1990), the 

transcription factor c-ets-1 (Pardanaud and Dieterlen-Lievre, 1993), the cell adhesion 

molecules PECAM-1 (Baldwin et al., 1994; Newman et al., 1990) and CD34 (Fina et 

al., 1990), the angiotensin-converting enzyme (ACE) (Caldwell et al., 1976), the von 

Willebrand factor (Hormia et al., 1984), the cell adhesion glycoproteins P-selectin and 

E-selectin (Gotsch et al., 1994), and the transcription factor SCL/TAL-1 (Kallianpur et 

al., 1994). In many cases, expression of these molecules is maintained in only one 

lineage.  

 

1.1.4  Endothelial proliferation 
 
Once endothelial cells differentiate in the embryo, they proliferate and migrate before 

assembling into blood vessels. They become quiescent only when the vascular 

network has matured in the adult, where their turnover is extremely slow. There are 

different factors regulating endothelial cell proliferation. Both FGF and VEGF are 

mitogens of capillary endothelial cells in culture (Folkman and Shing, 1992). But only 

VEGF is specific for endothelial cells (Ferrara et al., 1992). Ectopic VEGF in quail, 

chick and frog leads to dramatic alterations of vascular structures (Cleaver et al., 

1997; Drake and Little, 1995; Flamme et al., 1995a; Wilting and Christ, 1996). 



Platelet-derived growth factor (PDGF) is also implicated in endothelial proliferation. In 

vivo it acts as an inducer of angiogenesis and is chemotactic for endothelial cells 

(Battegay et al., 1994). The endothelial cells of capillaries express both PDGF-B and 

its receptor PDGF-β, suggesting an autocrine stimulatory system (Holmgren et al., 

1991). In vitro experiments also indicate that PDGF influences the angiogenic 

proliferation of endothelial cells in an autocrine fashion (Battegay et al., 1994).  

Certain factors inhibit the angiogenic proliferation of endothelial cells (Klagsbrun, 

1991). These include thrombospondin (Good et al., 1990), platelet factor IV (Taylor 

and Folkman, 1982), γ-interferon (Friesel et al., 1987), protamine (Taylor and 

Folkman, 1982), angiostatin (O'Reilly et al., 1994), and TNF-α (Folkman and Shing, 

1992). TGF- β inhibits both endothelial cell proliferation (Antonelli-Orlidge et al., 

1989) and migration  (Sato and Rifkin, 1989). Hyaluronic acid (HA) also 

downregulates endothelial cell proliferation.  

 

1.1.5  Assembly of blood vessels 
 

The formation of the mature vascular system is achieved by a coordination of 

vasculogenesis and angiogenesis (Pardanaud et al., 1989; Risau and Lemmon, 

1988). Vasculogenesis is almost exclusively limited to the establishment of the 

primary vascular plexus in the embryo, whereas angiogenesis extends and remodels 

the primitive embryonic vasculature. Vasculogenesis and angiogenesis are two 

different cellular mechanisms and are regulated by different molecular mechanisms.  

 

1.1.5.1 Vasculogenesis 
 
As mentioned, the earliest step in the development of the vascular system is the 

specification of mesodermal cells to become endothelial cells. These cells soon 

organize into a primitive vascular plexus via vasculogenesis (Fig. 3a). 

Vasculogenesis is defined as the coalescence of free angioblasts into loose cords or 

the fusion of blood islands (Poole and Coffin, 1989). Some definitions state that this 

assembly of angioblasts must occur in situ in absence of significant cell migration, but 

this is not always the case, as will be explained later. Vasculogenesis is therefore 



responsible for the formation of the primordia of the major blood vessels and of a 

homogenous capillary network.  

Formation of the blood islands, the dorsal aortae, the endocardium, and the cardinal 

and vitelline veins is accomplished by vasculogenesis (Coffin and Poole, 1991; 

Kadokawa et al., 1990; Pardanaud et al., 1987; Pardanaud et al., 1989; Poole and 

Coffin, 1988; Poole and Coffin, 1989; Risau and Flamme, 1995). Establishment of the 

vasculature of most organs occurs by angiogenesis, but the vascular network of 

certain endodermal organs, including liver, lung, pancreas, stomach, intestine and 

spleen occurs by vasculogenesis (Pardanaud et al., 1989). Vasculogenesis involves 

a coordinated and sequential series of steps, including differentiation, migration, 

adhesion and maturation, that results in the coalescence of individual migratory 

angioblasts into a continuous tubular endothelium (Coffin and Poole, 1988). 

The development of the endocardium by vasculogenesis has been described in the 

mouse embryo. An extensive vascular plexus, lying adjacent to the promyocardial 

layer, undergoes remodeling to form a single endothelial tube. 

The fusion of blood islands into a capillary plexus via vasculogenesis seems to 

require additional vasculogenic factors present in the embryo. The formation of a 

capillary plexus will not occur in embryoid bodies derived from mouse embryonic 

stem cells unless they are implanted in the peritoneum of host mice, which suggests 

that factors are required for vasculogenesis which are not present in the embryoid 

bodies. 

Based on experiments in quail, Pool and Coffin (1991) distinguished two types of 

vasculogenesis. In vasculogenesis type I, the angioblasts associate to form a mature 

vessel in situ at the location where they differentiate in the mesoderm. There is no 

significant migration of angioblasts. In vasculogenesis type II, angioblasts may 

migrate significant distance from their original location and then associate into a 

vessel at a distant location.  

 

1.1.5.2 Angiogenesis 
 
Once the primitive vascular plexus is formed, vascular structures are extended and 

propagated into avascular tissues via a process called sprouting angiogenesis. In 

addition, the structure of the primitive vascular plexus is modified by the splitting or 



fusion of established vessels via a process called nonsprouting angiogenesis or 

intussusception (Folkman and Klagsbrun, 1987; Klagsbrun, 1991; Patan et al., 

1996b). The mechanisms for these 2 types of angiogenesis are different.  

 

1.1.5.2.1 Sprouting angiogenesis 
Sprouting angiogenesis involves true sprouting of capillaries from preexisting blood 

vessels of the primary vascular plexus (Fig.3b). Proteolytic degradation of the 

extracellular matrix is coupled with mitotic proliferation of the sprouting endothelial 

cells. These endothelial cells exhibit extensive migratory ability. In angiogenic 

extensions in the brain, the endothelial cells at the tip exhibit filiform processes which 

may represent pathfinding mechanisms (Wilting and Christ, 1996). As the new vessel 

extends and takes shape, endothelial cells begin to differentiate and the basement 

membrane forms along the newly sprouting structure (Ausprunk and Folkman, 1977). 

This differentiation involves the formation of a lumen and functional maturation. 

Sprouting angiogenesis is found for vascularization of the yolk sac, embryonic 

kidney, thymus, brain, limb bud and choroid plexus (Ekblom et al., 1982; Jotereau 

and Le Douarin, 1978; Le Lievre and Le Douarin, 1975; Stewart and Wiley, 1981). 

Brain is a typical organ where sprouting angiogenesis occurs. Intersomitic veins and 

arteries are also formed by sprouting angiogenesis (Coffin and Poole, 1988). 

Sometimes, angiogenesis can occur simultaneously with vasculogenesis (Fig. 3c), for 

example during vascularization of the lung (Baldwin, 1996). Sprouting angiogenesis 

is the predominant mechanism later in development, during somatic growth, corpus 

luteum formation, placental formation and tissue regeneration (Augustin et al., 1995; 

Demir et al., 2006; Folkman and Klagsbrun, 1987; Kadokawa et al., 1990; Klagsbrun, 

1991; Sariola et al., 1983). In adults, sprouting angiogenesis is linked to pathological 

processes such as tumor growth, inflammatory reaction, wound healing and diabetic 

retinopathies (Ferrara, 1995; Folkman, 1995; Folkman and Shing, 1992; Hanahan 

and Folkman, 1996; Sholley et al., 1984).  

 

 

 

 

 

Figure 3: Schematic representation of 
the basic mechanisms of vascular 
development. (A) Vasculogenesis is 
the aggregation of angioblasts in the 
mesoderm to form blood vessels. 
Angioblasts either coalesce at the 
location where they emerge from the 
mesoderm or they migrate through 
tissues and form blood vessels at a 
distant site. (B) Angiogenesis involves 
the formation of new vessels from 
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1.1.5.2.2 Non-sprouting angiogenesis or intussusception 
This second mechanism of angiogenesis involves the splitting of preexisting vessels 

(Burri and Tarek, 1990; Caduff et al., 1986; Patan et al., 1993; Patan et al., 1996a). 

Non-sprouting angiogenesis occurs by proliferation of endothelial cells within a 

vessel. It results in the formation of a large lumen. If the lumen is so large that there 

is disk-like zone of contact between opposite walls of a vessel, intercellular junctions 

are formed between the endothelial cells. This contact zone forms a column or pillar 

which then becomes perforated centrally, forming a canal within the pillar. This canal 

becomes invaded by pericytes and is eventually stabilized by the deposition of 

connective tissue fibers as collagen. The pillar then enlarges along the length of the 

vessel, fully splitting a vessel into 2 (Fig.4). In some organs, non-sprouting 

angiogenesis can occur together with sprouting angiogenesis. This is the case in the 

developing lung (Patan et al., 1993; Risau, 1997). Non sprouting angiogenesis also 

occurs in the avian yolk sac (Flamme and Risau, 1992). 

 

 

 

 

 

 



 
 

 

 

 Figure 4: Left: In capillary networks, sprouting angiogenesis and nonsprouting angiogenesis, or 
intussusception, can occur simultaneously. Intussusception involves the formation of transcapillary 
pillars which split a capillary blood vessel into two. Initially, the pillar creates a small intervascular 
space (A), but the space subsequently enlarges (B and C) and forms a much larger intervascular region. 
After they have formed, the resulting intervascular spaces cannot be distinguished from those created by 
sprouting angiogenesis. 
Right: Sprouting and non-sprouting angiogenesis in the 3-day-old quail yolk sac. Black arrows point to 
the intussusceptive pillars and white arrows indicate the long tips of sprouts. (From Risau, 1997) 

 

 

 

 

 
 

1.1.5.3 Molecules involved in vasculogenesis and 
angiogenesis 

 
A large number of molecules can modulate vasculogenic and angiogenic activity 

(Folkman and Klagsbrun, 1987). They can be soluble, associated with the cell 

membrane or with the extracellular matrix. Examples include angiogenin (Fett et al., 

1985), angiotropin (Hockel et al., 1988), FGFs (Montesano et al., 1986), PDGFs 

(Holmgren et al., 1991) and TGF-α (Heimark et al., 1986). Some of their receptors 

are endothelial-specific markers, for example Flk-1, Flt-1, Tie-1 and Tie-2. Fibronectin 

has been implicated in endothelial cell proliferation and laminin in their subsequent 

maturation. Cell adhesion molecules such as certain integrins and cadherins also 

play an important role in vascular development.  

 

1.1.5.3.1 Growth factors and their receptors 
 



VEGF  
VEGF is known to be mitogenic for endothelial cells and may be chemotactic for 

endothelial precursors (Breier et al., 1996). 

In the embryo VEGF is expressed in regions undergoing both vasculogenesis and 

angiogenesis (Breier et al., 1992; Ferrara, 2001). In principle, VEGF is expressed in 

endodermal or ectoderamal tissues and flk-1 in the adjacent mesoderm (Cleaver et 

al., 1997; Dumont et al., 1995; Flamme et al., 1995a). Mice lacking a single allele of 

VEGF die around E10.5. They show abnormalities in vascular development, including 

defects in the in situ differentiation of endothelial cells, sprouting angiogenesis, lumen 

formation, formation of large vessels and spatial organization of the vasculature 

(Carmeliet et al., 1996; Ferrara et al., 1996). The heterozygous lethal phenotype 

implies that regulation of VEGF levels is essential for correct vascular 

morphogenesis. As said, VEGF also plays a role in angiogenesis. It is found in 

organs which are not juxtaposed to Flk-1 expressing endothelial cells and which are 

vascularized by angiogenesis, for example the kidney (Dumont et al., 1995). VEGF 

causes blood vessels to grow into the developing kidney from adjacent vascular 

structures. Also, VEGF spatio-temporal expression correlates with the ingrowth of 

blood vessels in the ventricular neurectodermal layer (Breier et al., 1992; Breier et al., 

1996; Millauer et al., 1993). VEGF has also been shown to play a role in hypoxia-

induced angiogenesis (Plate et al., 1993; Shweiki et al., 1992). In experiments using 

murine retina, hypoxia upregulates VEGF levels in migrating astrocytes (Stone et al., 

1995). This upregulation is due to the increased transcription of VEGF by hypoxia-

inducible factor-1 (Liu et al., 1995). But VEGF expression is also modulated by 

stabilization of VEGF mRNA (Ikeda et al., 1995). 

 

PDGF 
PDGF occurs as a homodimer or heterodimer of two isoforms, PDGF-A and PDGF-B 

(Beck and D'Amore, 1997). PDGF-B is involved in the autocrine stimulation of 

endothelial cells and angiogenesis. Transcripts for PDGF-B and its receptor PDGF-β 

are both present in the capillary endothelial cells of the human placenta, implying an 

autocrine signaling system (Holmgren et al., 1991). The endothelium of larger 

vessels maintains PDGF-B expression but does not express PDGF-β receptor, 



suggesting a switch from autocrine to paracrine signaling when the endothelium 

recruits mesenchymal cells into the developing vascular wall. Capillary endothelial 

cells however are able to respond to PDGF, presumably due to the presence of 

PDGF-β receptor. Indeed, capillary density increases when PDGF-B is added to 

dermal wounds or to the chick chorioallantoic membrane (Pierce et al., 1992; Risau 

et al., 1992). PDGF-B was shown to be necessary for cord and tube formation of 

bovine aortic endothelial cells in vitro (Battegay et al., 1994). Expression of PDGF-β 

receptor was found only on the extending sprouts and forming endothelial tubes but 

not on the surrounding endothelial cells in the culture. Antibodies blocking PDGF-B 

activity reduced angiogenic activity, but antibodies against PDGF-A had no effect. 

Other studies suggest an indirect role of PDGF on endothelial cells. When 

myofibroblasts and endothelial cells are cultured together in vitro, PDGF stimulates 

the myofibroblasts to secrete a factor which causes vasculogenic aggregation of the 

endothelial cells into cords (Sato et al., 1993). 

In contrast to the specific role of PDGF-B in angiogenesis, both PDGF-A and PDGF-

B are implicated in vascular maturation and vascular wall development.  

 

FGFs 
Among the 23 FGFs, FGF-1 (aFGF) and FGF-2 (b-FGF) are both modifiers of 

angiogenesis (Fernig and Gallagher, 1994). aFGF promotes angiogenesis both in 

vitro and in vivo (Jouanneau et al., 1995). aFGF and bFGF show proliferative activity 

in vitro (D'Amore and Smith, 1993). FGF1 KO or FGF2 KO mice (single or double 

KO) do not show a defective vascular phenotype during development (Miller et al., 

2000). This suggests functional redundancy or a non-essential role of FGFs in 

developmental vsculogenesis and angiogenesis. Mice knockout for FGFR1 and 

FGFR2 yield embryos that are arrested in their development before the onset of 

vascularization, because of the lack of mesoderm-inducing signals (Arman et al., 

1998; Deng et al., 1994). Thus, these experiments of disruption of FGF/FGFR genes 

have not been very informative. Studies with explant or embryonic cultures have 

been more informative. Injection of a dominant negative FGFR into cultured day-9 

mouse embryos induces incomplete branching of the yolk sac vasculature and 

intersomitic vessels, heart septation defects, and aangiogenesis defects in organs 

such as the brain (Lee et al., 2000). Endogenous FGF also induces vessel outgrowth 



from embryonic heart explants (Tomanek et al., 2001). A proangiogenic phenotypes 

is observed in mice that overexpress FGF2 ubiquitously (Fulgham et al., 1999) or in 

the retina (Yamada et al., 2000). Overexpression of FGF2 (Sheikh et al., 2001) or 

FGF1 (Fernandez et al., 2000) in the heart leads to an increase in vessel density and 

arborescence. Mice that overexpress a dominant negative FGFR1 specifically in the 

retinal pigmented epithelium in the developing eye show branching defects in the 

choroid and and an avascular neonatal retina (Rousseau et al., 2003). This role for 

FGF (Branchless) in the branching process has also been observed in the Drosophila 

tracheal system (Affolter et al., 2003). 
 

Flt-1 or VEGFR1  
This receptor tyrosine kinase shows similarities to Flk-1 in overall structure and 

expression distribution (de Vries et al., 1992; Shibuya et al., 1990). It has a high 

affinity for VEGF and for placental growth factor (de Vries et al., 1992; Shibuya et al., 

1990; Waltenberger et al., 1994). Its expression is associated with vascular 

development in mouse embryos and with neovascularization in wound healing 

(Peters et al., 1993). But Flt-1 is still expressed in the differentiated endothelium of 

adult vascular tissues, suggesting that it has a function in the quiescent endothelia of 

mature vessels. Targeted mutation of the flt-1 gene suggests that it is vasculogenesis 

rather than endothelial cell specification which is impaired. Indeed, such KO embryos 

develop endothelial cells in both intra- and extraembryonic tissues, but these 

endothelial cells do not properly assemble and organize into vessels (Fong et al., 

1995). All vascular structures, including the major embryonic vessels, extraembryonic 

vessels, endocardium and capillary networks are disrupted. An increase in the 

endothelial cell number has been reported in the yolk sac and the endocardium 

which may result from a failure in contact inhibition. Thus, it has been suggested that 

Flt-1 signaling pathway may be involved in regulating the adhesion of endothelial 

cells to each other or to the extracellular matrix (Fong et al., 1995).  

Flk-1 or VEGFR2 
This receptor tyrosine kinase has a high-affinity for VEGF and is critical for both 

vasculogenesis and angiogenesis. As already mentioned, Flk-1 is initially present in 

precursors to both blood and endothelium, but it becomes restricted to endothelial 



precursor cells. The expression of Flk-1 is particularly high during embryonic 

neovascularization and during tumor angiogenesis (Cleaver et al., 1997; Dumont et 

al., 1995; Flamme et al., 1995b; Fouquet et al., 1997; Liao et al., 1997; Millauer et al., 

1993; Plate et al., 1993; Sumoy et al., 1997; Yamaguchi et al., 1993). Mice which 

lack the function of Flk-1 die between E8.5 and E9.5 due to defects in the 

development of both endothelial and hematopoietic cell lineages (Shalaby et al., 

1995). Endothelial precursor cells do not coalesce into blood vessels by vasculogenic 

aggregation. In another experiment, glioblastoma cells having a dominant-negative 

construct of Flk-1 have been implanted into nude mice (Millauer et al., 1994). The 

angiogenic growth of vascular tissue in these tumors is significantly inhibited. These 

2 experiments demonstrate the importance of Flk-1 in angiogenesis during 

development and during tumor growth.  

 

  

Tie-2 (receptor for angiopoietin-1 and angiopoietin-2) 
This tyrosine kinase is important for both vasculogenesis and angiogenesis. In the 

mouse, Tie-2 is expressed in endothelial precursors shortly after the onset of flk-1 

expression (Dumont et al., 1995; Dumont et al., 1992). Mice lacking Tie-2 function die 

at E10.5, with defects in the integrity of the endothelium and defects in cardiac 

development (Dumont et al., 1994). They show vascular hemorrhage, possibly due to 

failure of endothelial proliferation or survival; indeed they show a decrease in the 

relative number of endothelial cells as development proceeds. They have distended 

yolk sac vessels and a ruptured and disorganized dorsal aorta. These experiments 

suggest that Tie-2 is not required for the differentiation of the endothelial cells, but is 

necessary for the expansion and maintenance of the lineage as vessels form by 

vasculogenesis.  

Independent experiments have demonstrated that Tie-2 is also necessary for 

sprouting angiogenesis (Sato et al., 1995). Indeed its inactivation leads to an 

absence of capillary angiogenesis in the neurectoderm. The mutant mice have 

uniformly dilated vessels in the perineural plexus, abnormal and dilated vascular 

network in the yolk sac and a failure of branching of vessels in the myocardium. 

Because of these abnormalities in lumen diameter, it has been suggested that Tie-2 

either modulates the activity of VEGF, which then regulates both sprouting and non-



sprouting angiogenesis, or is involved in recruitment of the vascular cell wall 

components which play a role in endothelial integrity. 

Two ligands have been found for Tie-2 and are called angiopoietins (Davis et al., 

1996). Angiopoietin-1 is expressed in proximity to developing blood vessels in the 

embryo, but it does not directly promote the proliferation of endothelial cells or tube 

formation in vitro. Targeted mutation of the angiopoietin-1 gene results in a 

phenotype similar to Tie-2 mutant mice: a vascular network lacking complexity of 

branching and heterogeneity of vessel size. These mice also show failure in the 

recruitment of vascular cell wall components, implying a role not only in initial 

vasculogenesis, but also in subsequent vessel maturation. 

Angiopoietin-2 is a second ligand for Tie-2, but it does not activate it. Hence, it acts 

as an antagonist to Tie-2 function (Maisonpierre et al., 1997). It is expressed in the 

smooth muscle layer underlying the endothelium, in the dorsal aorta and the major 

aortic arches.  

 

1.1.5.3.2 Extracellular matrix 
ECM can modulate growth, differentiation and migration of endothelial cells in vitro 

(Risau and Lemmon, 1988). Extracellular matrix components such as fibronectin, 

laminin, vitronectin, collagens type I, II, IV and V comprise the environment in which 

angioblasts migrate and organize into cords which will form the primary vascular 

plexus. Some studies have analyzed the distribution of extracellular matrix molecules 

to determine the correlation with vascular development (Drake et al., 1990; Little et 

al., 1989; Risau and Lemmon, 1988). Other in vitro studies have directly assayed 

their ability to stimulate endothelial cell proliferation, migration, differentiation or 

vascular wall cell recruitment. They were done in two-dimensional assays, three-

dimensional collagen gel assays and serum-free explant cultures of rat aorta 

(Bischoff, 1995; Grant et al., 1990). 

 

Fibronectin 
Vasculogenesis, the assembly of vessels from free angioblasts, takes place in a 

fibronectin-rich extracellular matrix (Mayer et al., 1981; Risau and Lemmon, 1988). In 

chick yolk sac, neighboring blood islands approach each other using fibronectin-rich 



extensions (Mayer et al., 1981). As soon as the basic vascular network is 

established, fibronectin decreases and endothelial cells produce lamin and collagen 

IV. This dynamism was shown in avian blood vessel development in general (Risau 

and Lemmon, 1988), during the development of the endocardium (Drake et al., 1990) 

and the chick chorioallantoic membrane. Mice lacking a functional fibronectin gene 

have severe defects in blood vessel and heart development and in some cases a 

complete absence of the endocardium and the dorsal aorta (George et al., 1993). 

The extraembryonic vasculature does not develop and blood island development is 

disrupted. This shows the important role of fibronectin in the proliferative and 

migratory events of early vasculogenesis and angiogenesis. 

  

Collagens 
Different members of the collagen family possess different regulatory activities during 

vascular development. Endothelial tube formation in vitro is associated with the 

deposition of collagens type I and III-V (Iruela-Arispe et al., 1991). Endothelial cells 

cultured on interstitial collagens type I and III proliferate in all directions (Madri and 

Williams, 1983). However, endothelial cells cultured on basement membrane 

collagen type IV form highly organized tube-like structures. Endothelial cells grown in 

three-dimensional collagen type I matrix also organize into branching and 

anastomosing tubes (Montesano et al., 1983). Inhibition of collagen deposition or 

collagen cross-linking prevents angiogenesis (Ingber, 1991). Loss of collagen type I 

α-chain gene function results in the rupture of blood vessels in the developing 

embryonic vasculature (Lohler et al., 1984).  

 

1.1.5.3.3 Cell adhesion molecules 
Just as the dynamic changes in the composition of the extracellular matrix are 

important for endothelial behavior, so are the adhesive receptors that regulate the 

interactions of endothelial cells with their environment.  

 

Vascular endothelial cadherin 



VE-cadherin or cadherin-5 mediates calcium-dependent homophilic binding at 

adherens junctions between endothelial cells and is associated with catenins and the 

actin cytoskeleton (Breier et al., 1996). Agents that increase monolayer permeability 

(such as thrombin and elastase) cause a significant decrease in VE-cadherin at cell 

boundaries, suggesting a specific role in the control of endothelium permeability 

(Lampugnani et al., 1992). VE-cadherin is expressed from early on in blood islands 

and later in the vasculature of all organs, including the endocardium, the dorsal aorta, 

the intersomitic vessels and the brain capillaries (Breier et al., 1996). Cells 

transfected with the VE-cadherin gene in vitro are inhibited for proliferating (Caveda 

et al., 1996). Disruption of VE-cadherin in mouse ES-derived embryoid bodies by 

gene targeting experiments reveal that endothelial cells remain dispersed and fail to 

organize into vascular structures (Vittet et al., 1997). 

 

Integrins (α5β1 and αvβ3) 
The role of integrins during vascular development is well characterized (Luscinskas 

and Lawler, 1994; Stromblad and Cheresh, 1996). Integrins generally mediate cell-

ECM and occasionally cell-cell adhesion. They are heterodimers consisting of an α 

subunit and a noncovalently associated β subunit. Both are integral membrane 

proteins. Many different α and β subunits exist and many of these can associate to 

form different functional receptors (Baldwin, 1996). Endothelial cells from large 

vessels express α2β1 α3β1 α5β1 and αvβ3. Endothelial cells from microvasculature 

express α1β1 α6β1 α6β4 and αvβ5  (Luscinskas and Lawler, 1994). These vascular 

integrins serve as receptors for collagen, laminin, fibronectin and thrombospondin. 

Integrin α5β1 is the receptor for fibronectin. The blocking of either subunit’s function 

results in major defects in early vasculogenesis. Mouse embryos in which integrin α5 

function has been ablated are defective in blood vessel and blood island formation 

(Yang et al., 1993). The phenotype is similar to that of fibronectin loss of function 

experiments. Embryos then die on E10 or 11 due to numerous morphological 

defects. In quail embryos, the blocking of the binding of β1 to its ligands with an anti-

integrin antibody results in vasculogenic defects, including failure of lumen formation 

in the dorsal aorta (Drake et al., 1992). In summary, loss of α5β1 integrin function 

causes vasculogenesis to be arrested after the stage when angioblasts form cords 

but before they have organized into tubes.  



The β3 family of integrins is essential for normal angiogenesis and vascular cell 

survival. For example integrin αvβ3, which interacts with vitronectin, fibrin and 

fibronectin, is expressed at the tips of newly formed sprouting blood vessels in 

human wounds but is absent from normal skin (Brooks et al., 1994; Clark et al., 

1996). As the vessels mature, its expression declines. During angiogenesis in the 

chick chorioallantoic membrane, αvβ3 expression increases. When antibodies are 

used to block its function, neovascularization is impaired, whereas preexisting 

vessels are unaffected (Brooks et al., 1994). As a control, antibodies against the 

related αvβ5 integrin had no effect. It was also shown that apoptosis of proliferative 

angiogenic endothelial cells occurs when the interaction of αvβ3 integrin with its 

substrates is disrupted (Brooks et al., 1994).  

 

 

1.1.5.4 Endothelial cell migration 
 
Endothelial cell migration is required during both vasculogenesis and angiogenesis 

(Christ et al., 1990; Noden, 1988; Noden, 1990; Poole and Coffin, 1989; Wilting et al., 

1995). Experiments using quail-chick chimeras show that transplanted angioblasts 

are highly invasive and may migrate quickly over long distances (Noden, 1988; 

Noden, 1990). They invade the surrounding mesenchyme and contribute to the 

formation of veins, arteries and capillaries. Migratory distances of up to 400um have 

been observed (Klessinger and Christ, 1996). Despite the invasive character of 

angioblasts, they never cross the midline of the embryo (Wilting and Christ, 1996). 

Similar transplantation experiments showed that the notochord is the source of 

signals which create this barrier (Klessinger and Christ, 1996). The migration of 

angioblasts immediately precedes the formation of the endocardium, the ventral 

aortae and the cardinal and intersomitic veins in the avian embryo (Coffin and Poole, 

1991). Blockage experiments which interrupt the path of migration show the 

importance of the migration for the formation of these structures.  

 



1.1.5.5 Molecules involved in endothelial cell migration 

1.1.5.5.1 VEGF/Flk-1 
In frog embryos, the hypochord expresses diffusible VEGF and thus creates a signal 

gradient which may explain the directed migration of flk-1 expressing endothelial cells 

from the lateral mesoderm to the midline of the frog embryo. Moreover, exogenous 

VEGF can cause aberrant migration and proliferation of endothelial cells in the frog 

embryo (Cleaver et al., 1997). In homozygous flk-1 mutant mice, no mature 

endothelial or hematopoietic cells are present (Shalaby et al., 1995). However, the 

construct allows expression of β-galactosidase and it is detected at high levels in the 

region of the connecting stalk and in an aortic arch. It is thus possible that 

angioblasts cannot migrate from these sites to locations where the elements of the 

primary vasculature would normally differentiate. 

 

1.1.5.5.2 Fibronectin 
Fibronectin is involved in endothelial cell motility during vascular development. In 

vitro experiments have demonstrated that fibronectin can stimulate the migration of 

vascular endothelial cells. Moreover, the distribution of fibronectin in the chick 

embryo is associated with both migrating angioblasts prior to their coalescence into 

vessels, and with early steps of angiogenesis, when capillaries are extending and 

invading avascular tissue (Risau et al., 1988). Also, application of a pentapeptide 

which blocks the fibronectin receptor on endothelial cells results in the inhibition of 

endothelial cell migration both in vitro and in-vivo (Christ et al., 1990; Nicosia and 

Bonanno, 1991). For example, this blocking reagent impairs the migration of 

precardiac mesoderm (Linask and Lash, 1988). 

 

1.1.5.5.3 Integrin αvβ3 
In addition to its role in maintaining and stabilizing early vascular structure (discussed 

previously), integrin αvβ3 is also implicated in endothelial cell migration and in 

proteolytic modification of the extracellular matrix. Integrin αvβ3 colocalizes with active 

matrix metalloproteinase-2 in growing blood vessels and the two bind to each other in 



vitro (Brooks et al., 1996). The degradation of the underlying basement membrane is 

a prerequisite for invasive angiogenic cells to extend new sprouts into adjacent 

tissues.  

Vitronectin has binding sites for integrin αvβ3 and for the plasminogen activator 

inhibitor-1 (PAI-1). These two binding sites overlap and it has been suggested that 

plasminogen activator may bind to PAI-1, displacing it from vitronectin and thus 

inducing cell migration by allowing the receptor-ligand interaction. It has been shown 

that VEGF can upregulate the expression of integrin αvβ3 and PAI-1, and that both 

plasminogen activator and PAI-1 are upregulated in migrating endothelial cells 

(Pepper et al., 1991; Pepper and Montesano, 1990). These interactions provide a 

molecular basis for the coordination of cell migration and matrix degradation.  

 

1.1.6  Vascular remodeling 
 

Once the primary capillary plexus is established in the embryo, it is remodeled and 

matures into larger and smaller blood vessels. One of the processes by which this 

architecture is acquired has been called pruning, by analogy to trimming a tree 

(Risau, 1997). Pruning was first described in the embryonic retina and involves the 

removal of excess endothelial cells which form redundant channels (Ashton, 1966). 

In these excess capillaries blood flow ceases, the lumens are obliterated, and the 

endothelial cells retract towards adjacent capillaries. They don’t die by apoptosis 

(Augustin et al., 1995). They may dedifferentiate to become either muscular or 

supportive elements of the vascular cell wall (Ashton, 1966; Risau, 1997).  

In addition to the trimming of excess endothelial cells, the embryonic vasculature 

undergoes dynamic changes in morphology, called remodeling (Beck and D'Amore, 

1997; Risau, 1997). Remodeling involves the growth of new vessels and the 

regression of others as well as changes in the diameter of vessel lumens and 

vascular wall thickness. Blood flow as well as tissue demand are key regulators of 

vessel maintenance (Ashton, 1966; Risau, 1997). It seems that only a few numbers 

of embryonic blood vessels persist into adulthood (Risau and Flamme, 1995). 

 



1.1.7  Remodeling, patterning and maturation 
 
Dramatic changes occur after the circulation of blood cells has been established. 

Usually the larger vessels such as arteries or veins develop from the fusion of 

capillaries after the formation of the primary vascular plexus. Early vessels have thick 

endothelial cells with weak adherence and incomplete basement membrane 

formation, but it changes as blood flow increases and endothelial cells mature. 

Anastomoses disappear, capillaries may split by intussusception, the direction of 

blood flow may change many times and adherence between endothelial cells 

increases dramatically. With vessel maturation, a basement membrane forms, 

gradually thickens and becomes less heterogeneous (Wolff and Bar, 1972). Vessels 

become shaped by mechanical forces generated by the circulation (Resnick and 

Gimbrone, 1995). Hemodynamic forces can cause the changes in the expression of 

PDGF, FGF, TGF-β and tissue factor from endothelial cells. These factors can also 

modify endothelial cell adherence (Griendling and Alexander, 1996; Resnick and 

Gimbrone, 1995). But the determination and pattern of the vasculature does not only 

depend on blood pressure since growth and formation of blood vessels proceeds in 

the absence of a heart. The final maturation of the vasculature requires interaction of 

endothelial cells with each other, with the surrounding extracellular matrix and with 

adjacent mesenchymal support cells such as pericytes and smooth muscle cells.  

The initial plexus becomes remodeled into larger veins and arteries and smaller 

venules, arterioles and capillaries. The endothelia lining these different vessels have 

different properties (Kumar et al., 1987). The endothelium of large vessels controls 

blood pressure through vasoconstriction and vasodilatation. The endothelium of small 

vessels plays a role in the exchange of gas and nutrients with the tissues (Risau and 

Flamme, 1995). The capillary endothelium is divided into 3 different subtypes: 

continuous, discontinuous and fenestrated (Bennett et al., 1959; Risau and Flamme, 

1995). These morphological differences reflect different permeability of the vessels in 

different tissues. Continuous capillaries are found in the central nervous system, the 

lymph nodes and muscle. They are composed of endothelial cells perforated by the 

vessel lumen (intraendothelial canalization) and have been called seamless 

endothelia (Wolff and Bar, 1972). The lumen formation has been postulated to result 

from vacuolization and fusion of vacuoles. Discontinuous capillaries are found in the 



liver, bone marrow and spleen. They have clustered pores of 80-200um diameter, 

located at each end of the endothelial cell. Fenestred capillaries are found in the 

kidney glomeruli, the choroid plexus, the endocrine glands and the gastrointestinal 

tract. They have large pores and are more permeable to to low-molecular-weight 

hydrophilic molecules. This is consistent with their presence in tissues involved in 

secretion, filtration and absorption (Levick and Smaje, 1987). VEGF is a permeability 

factor which has been shown increase permeability and fenestration (Roberts and 

Palade, 1995).  

As the vascular endothelium begins to mature, endothelial cells synthesize multiple 

proteins of extracellular matrix which form a basement membrane. It is composed of 

fibronectin, laminin, entactin/nidogen, collagen and a heparin sulfate proteoglycan 

(Grant et al., 1990). This extracellular matrix maintains cell polarity and regulates 

proliferation, adhesion and differentiation of endothelial cells (Grant et al., 1990). The 

deposition of extracellular matrix helps to establish the patterning of the primary 

vascular plexus and is an early indication of blood vessel maturation.  

After the morphological changes associated with pruning and remodeling of the 

vascular plexus, mesenchymal cells are recruited to give mechanical and 

physiological support to the endothelium. Pericytes are recruited to the small 

capillaries, and smooth muscle cells and adventitial fibroblasts are recruited to larger 

vessel to form their vascular wall (Le Lievre and Le Douarin, 1975; Schwartz and 

Liaw, 1993). Pericytes cover only a fraction of the surface of capillaries. They might 

regulate the permeability, proliferation and integrity of endothelial cells (Crocker et al., 

1970; de Oliveira, 1966; Rhodin, 1968). Only pericytes and endothelial cells are 

included in the mature capillaries (Orlidge and D'Amore, 1987). In vitro, pericytes can 

inhibit capillary endothelial cell growth and this is mediated by TGF-β (Antonelli-

Orlidge et al., 1989). 

Larger vessels recruit a different type of vascular supportive cells, called the smooth 

muscle cells (SMC) which is essential for the physiological properties of these 

vessels. Early SMCs express α-actinin (Gabbiani et al., 1981; Owens and Thompson, 

1986) and later express additional differentiation genes, such as SM22 and calponin 

(Duband et al., 1993).  

These processes finally give a vast repertoire of specialized blood vessels. Three 

main layers have been identified in the major blood vessels. The tunica intima is the 

innermost layer. It is composed of the endothelium, the basement membrane and 



internal elastic tissue. The tunica media surrounds the tunica intima. It is composed 

of SMCs with elastic tissue. The tunica adventitia surrounds the inner layers with 

fibrous connective tissue, elastic tissue and mesenchymal cells. Arteries are 

surrounded with a thick smooth muscle cell layer. Veins, which face a lower pressure, 

have less smooth muscle in their walls. They can stretch to become a temporary 

reservoir of blood. 

1.1.7.1 Molecules involved in vessel maturation and 
patterning 

1.1.7.1.1 PDGF 
In addition to playing a role in angiogenesis, PDGF is important for the recruitment of 

vascular wall components (Beck and D'Amore, 1997). PDGF is expressed in the 

endothelial cells, whereas its receptor, PDGF-β, is found in adjacent mesenchyme 

(Holmgren et al., 1991). The model is that the endothelium secretes PDGF to recruit 

and stimulate the proliferation of mesenchymal cells in the vicinity. Experiments 

involving the targeted mutation of the PDGF-B and PDGF-β genes support a role for 

this signaling system in vascular wall cell recruitment (Leveen et al., 1994; Soriano, 

1994). Mice mutant for either gene display a range of anatomical and histological 

abnormalities, including dilatation of the heart and blood vessels. Mutant mice die at 

about the time of birth from fatal hemorrhages, when embryonic blood pressure 

increases. The hemorrhages and vessel dilatation are attributed to a lack of pericytes 

throughout the capillary network. Other experiments suggest that PDGF-B secreted 

form endothelial cells recruit and stimulate proliferation of SMCs (Beck and D'Amore, 

1997). 

 

1.1.7.1.2 TGF-β 
Contact between endothelial cells and SMCs or pericytes leads to the activation of 

TGF-β expression (Antonelli-Orlidge et al., 1989). TGF-β then leads to the inhibition 

of proliferation and migration of endothelial cells (Orlidge and D'Amore, 1987; Sato 

and Rifkin, 1989), the induction of SMC and pericyte differentiation, and the 

stimulation of extracellular matrix deposition (Basson et al., 1992). These effects lead 



to the differentiation and maturation of the developing blood vessels. When the 

function of TGF-β is disrupted in mice, mutant mice show defects in both 

vasculogenesis and hematopoiesis (Dickson et al., 1995). Endothelial proliferation, 

however, is not affected, suggesting that the defects lie in the terminal differentiation. 

Similar defects are observed in mice lacking the TGF-β receptor type II (Oshima et 

al., 1996). 

 

1.1.7.1.3 Tie-2, angiopoietin-1 and angiopoietin-2 
Tie-2 is a receptor tyrosine kinase expressed in the vascular endothelium. In addition 

to being important in the early events of vasculogenesis and angiogenesis (Dumont 

et al., 1994), it is also required for vascular remodeling (Sato et al., 1995). Targeted 

mutation of the Tie-2 gene results in a disorganized vasculature and the absence of 

angiogenic sprouting. There is also little distinction between the large and the small 

blood vessels in the head and in the yolk sac (Sato et al., 1995). The ligands for Tie-2 

are angiopoietin-1 (Davis et al., 1996) and angiopoietin-2 (Maisonpierre et al., 1997). 

Mice lacking functional angiopoietin-1 have defects similar to mice lacking functional 

Tie-2 receptor. Moreover, their endothelial cells are poorly associated with smooth 

muscle cells or pericytes, which are present in reduced numbers. Their endothelial 

cells are abnormally rounded, indicating that they have not acquired polarity. 

Angiopoietin-2 is an antagonist to angiopoietin-1 and Tie-2 (Maisonpierre et al., 

1997). It is expressed only at sites of vascular remodeling, such as the dorsal aorta 

and the aortic branches. Overexpression of angiopoietin-2 results in defects similar to 

those seen in angiopoietin-1 or Tie-2 deficient embryos. 

A model has been developed which proposes a role for a number of these molecules 

in the maturation of blood vessels (Armulik et al., 2005; Folkman and D'Amore, 

1996). Mesenchymal cells produce angiopoietin-1, which activates the Tie-2 receptor 

on nearby endothelial cells. In response to the Tie-2 activation, the endothelial cells 

release a PDGF signal which acts to recruit nearby mesenchymal cells. In the case of 

pericytes, this signal is PDGF-B and in the case of SMCs, the signal is PDGF-A. 

Once the mesenchymal cells have contacted the endothelium, TGF-β is activated. 

The presence of TGF-β serves to reduce the proliferation of both endothelial and 

vascular wall cells, to induce their differentiation and to stimulate extracellular matrix 

deposition (Fig.5). 



 

Figure 5: Model for the recruitment of the cellular vascular 
wall components. Angiopoietin-1 is secreted by mesenchymal 
cells and binds to the Tie-2 receptor located on the endothelial 
cells. This receptor activation triggers the release of factors 
from the endothelium which cause a chemotactic attraction of 
mesenchymal cells. These factors include PDGF-A or HB-EGF 
for the recruitment of smooth muscle cells to large vessels, or 
PDGF-B for the recruitment of pericytes to the capillaries. 
When these mesenchymal cells contact the endothelium, TGF-
β is activated and causes vessel maturation. 
From Folkman and D’Amore, 1996) 

 
 

 

1.1.7.1.4 Tie-1 
Expression of Tie-1 in the embryo is specific to endothelial cells. Mouse embryos 

homozygous for a disrupted Tie-1 gene die at about E13.0, when the mutant mice 

begin to die as a result of multiple vascular defects (Puri et al., 1995; Sato et al., 

1995). Mutant embryos show edema and localized hemorrhaging and die due to the 

loss of integrity of the microvasculature. Thus Tie-1 is not necessary for the early 

steps of endothelial cell differentiation or vasculogenesis, but is required for later 

aspects of endothelial cell survival, maintenance, or proliferation.  

 

1.1.7.1.5 Extracellular matrix molecules 
A clear correlation between dynamic changes in extracellular matrix composition and 

endothelial cell maturation has been established. Fibronectin around endothelial cells 

is associated with their proliferation and migration. But as endothelial cells mature, 

levels of fibronectin gradually decrease whereas there is a corresponding increase in 

the levels of surrounding laminin and type IV collagen (Risau and Lemmon, 1988). 

Fibronectin thus appears to be associated with the early steps of endothelial 

development, whereas laminin may be an early marker for vascular maturation 

(Risau, 1991). Collagen IV might be even better than laminin to stabilize vessel walls 



during vessel maturation, since cultured endothelial cells are more adhesive to a 

substrate composed of collagen IV than to one composed of laminin (Herbst et al., 

1988). 

 

A summary of the molecules involved in the assembly of blood vessels is shown in 

Fig. 6. 

 

 

 

 
 

 
Figure 6: The processes (red labels), molecules (green labels) and appearances (black labels) 
involved in vascular development.  
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1.2 Part II: Apoptosis and involution of the mammary gland 
 

1.2.1  Generalities 

1.2.1.1 History of apoptosis: p53, Bcl-2, apoptosis in 
C.elegans 

In mammals, p53 represents an emergency molecule which enables tissues to 

eliminate aberrantly functioning or irreparably damaged cells. But apoptosis (in greek: 

falling leaves) can also happen through a variety of signaling channels that do not 

depend on p53, for example when apoptosis happens when a cell looses its 

anchorage to extracellular matrix. This special form of apoptosis is called anoikis and 

occurs without p53 activity.  



The first indication of contributions of other proteins to the regulation of apoptosis 

came from studies on the function of Bcl-2 (B-cell lymphoma gene-2) oncogene. In 

genomes of human lymphatic tumors, the bcl-2 gene becomes an oncogene through 

chromosal translocation, which places it under the control of a promoter with high 

constitutive expression (Tsujimoto et al., 1984). When a construct harbouring this 

Bcl-2 oncogene was inserted into the germ-line of mice so that it was expressed in 

lymphocyte precursor cells, there was no effect on the long-term survival of these 

mice (Fig.1). But expression of an oncogenic myc transgene led to lymphomas and 

the death of a large number of mice. The concomitant expression of the two 

transgenes led to offsprings having a more rapid death rate.  

 

Fig.1: Mice bearing the IgG-bcl-2 transgene don’t 
experience more mortality than WT mice. The Myc 
transgene leads to a greatly increased mortality of mice 
from lymphoma. However, when both Bcl-2 and Myc 
transgene are present in the germ line, the mortality is 
greatly increased. 

The fact that Bcl-2 alone could not trigger tumor formation indicated that it does not 

act as a typical oncogene like myc or ras which alone emits growth-promoting 

signals. In fact careful study of the lymphocyte population indicated that Bcl-2 

oncogene prolonged the life of lymphocytes, although they were not actively 

proliferating. Hence it promoted cellular survival (Vaux et al., 1988). This discovery 

introduced the concept that impaired apoptosis is central to tumour development 

(Hanahan and Weinberg, 2000). The Myc oncogene on its own acted as a potent 

mitogen. However, when myc and bcl-2 were acting together, the malignancy of the 

B-cell lymphocytes was more aggressive; this is because Myc drives rapid 

proliferation, and its death-inducing effects are neutralized by the life-prolonging 

actions of Bcl-2. . 

In the late 1980s, apoptosis was widely studied in C.elegans, where 131 cells out of 

1090 die to create the 959 nematode. This work led the 2002 Nobel Prize to Brenner, 

Holvitz and Sulston.  



They saw that apoptosis needs CED-4 and CED-3 in order to happen. CED-9 on 

opposite has been shown to be anti-apoptotic, and to be negatively regulated by 

EGL-1 (Ellis et al., 1991; Hengartner et al., 1992). Convergence between the two 

fields revealed that CED-9 was the worm counterpart of the mammalian Bcl-2 

(Hengartner and Horvitz, 1994) and CED-3 was shown to be the counterpart of 

caspase -1, the mammalian cysteine protease that cleaves interleukin-1β (Yuan et 

al., 1993). See Figure 2. 

Figure 2: Pathways to apoptosis in C. elegans and 
mammalian cells. The pathway for programmed cell 
death in C. elegans (left panel) is compared with the 
two distinct pathways in mammals (right panel): the 
stress pathway (A), triggered by diverse cytotoxic 
conditions such as cytokine deprivation, DNA 
damage and anoikis, leads to activation of initiator 
caspase-9, whereas the death receptor pathway (B), 
triggered by aggregation on the plasma membrane 
of receptors of the tumour necrosis factor (TNF) 
family (here typified by Fas), leads to activation of 
initiator caspase-8. The stress and death receptor 
pathways are largely independent but may be linked 
via activation of the BH3-only protein Bid in certain 
cell types (see text). This model of the stress 
pathway now appears to be too simplistic (see text 
and Figure 4) 

 

 

1.2.1.2 Apoptosis vs necrosis 

Prior to the discovery of apoptosis, cells in metazoan tissues were thought to be 

eliminated solely by necrosis. But unlike necrosis, apoptosis is a genetically 

programmed cell death, and as indicated in Table 1, these two processes are quite 

different:  

The stimulus provoking apoptosis can be a programmed tissue remodeling in the 

organism, for example during development. The reason can also be maintenance of 

cell pool size, genomic damage, metabolic rearrangement, hypoxia or imbalances in 

signaling pathways. On opposite, necrosis can be provoked by metabolic stresses, 

absence of nutrients, changes in pH, temperature, hypoxia or anoxia. 

There is also a morphological difference between cells undergoing apoptosis or 

necrosis. In apoptosis, individual cells are affected, the cell volume is decreased, 

chromatin is condensed, lysosomes are unaffected and mitochondria are initially 



morphologically normal. There is no inflammatory response and the apoptotic bodies 

are consumed by neighboring cells. In opposite necrosis affects groups of cells, the 

cell volume is increased, chromatin is fragmented, lysosomes are abnormal and 

mitochondria are morphologically aberrant. There is a marked inflammatory response 

and the cell is lysed. 

The difference is also seen molecularly: apoptosis requires gene activity for the 

program to take place. The DNA is cleaved at specific sites. Intracellular calcium is 

increased and the ion pumps continue to function. In opposite, necrosis doesn’t need 

any gene activity, the DNA is randomly cleaved, intracellular calcium is unaffected 

and ion pumps function is lost. 

Table1: Apoptosis vs necrosis 

 

 Apoptosis Necrosis 

Provoking stimuli   
 programmed tissue remodeling metabolic stresses 

 maintenance of cell pool size absence of nutrients 

 genomic damage changes in pH, 

temperature 

 metabolic derangement, hypoxia hypoxia, anoxia 

 imbalances in signaling pathways  

Morphological changes   

Affected cells individual cells group of cells 

Cell volume decreased increased 

Chromatin condensed fragmented 

Lysosomes unaffected abnormal 

Mitochondria morphologically normal initially morphologically aberrant 

Inflammatory response none marked 

Cell fate apoptotic bodies consumed by neighboring 

cells 

lysis 

Molecular changes   

Gene activity required program not needed 

Chromosomal DNA cleaved at specific sites random cleavage 

Intracellular calcium increased unaffected 

Ion pumps continue to function lost 

 



1.2.1.3 Apoptosis is required for development and 
homeostasis 

Cell death during embryonic development is essential for successful organogenesis 

and the crafting of complex multicellular tissues. The evolutionary advent of 

differentiated cell types may have necessitated controlling death as well as division in 

order to keep neighboring cells interdependent and insure the proper balance of each 

cell lineage. Apoptosis also operates in adult organisms to maintain normal cellular 

homeostasis. This is especially critical in long-lived mammals that must integrate 

multiple physiological as well as pathological death signals, which for example 

includes regulating the response to infectious agents. Gain- and loss-of-function 

models of genes in the core apoptotic pathway indicate that the violation of cellular 

homeostasis can be a primary pathogenic event that results in disease. In addition to 

its role in embryonic development, evidence indicates that insufficient apoptosis can 

manifest as cancer or autoimmunity, while accelerated cell death is evident in acute 

and chronic degenerative diseases, immunodeficiency, and infertility. Huntington 

disease or Alzheimer are examples of such degenerative diseases, where unproper 

folding of proteins activates the unproper folding response (UPR), which leads to 

apoptosis (Danial and Korsmeyer, 2004). 

1.2.1.4 Different forms of apoptosis 

It is now clear that there are variations in the morphological events associated with 

cell death and these probably reflect distinct molecular mechanisms. At least 10 

genetically programmed cell death pathways have been defined which occur in 

different situations and in response to diverse stimuli (Melino et al., 2005).  

1.2.2  Intrinsic apoptosis pathway: role of the 
mitochondrion 

Bcl-2 was then found to operate at the outer membrane of the mitochondrion. This 

was at first surprising since mitochondria were thought to be specialized only for the 

generation of ATP. Soon the role of mitochondria in the apoptotic program was 

clarified. Cytochrome c, key player in the apoptosis, normally resides between the 



inner and outer mitochondrial membranes, where it transfers electrons as part of 

oxidative phosphorylation. But upon triggering of apoptosis by certain signals, the 

outer membrane becomes depolarized and cytochrome c spills out of the 

mitochondrion into the cytosol. Once present in the cytosol, cytochrome c associates 

with Apaf proteins to form the apoptosome and trigger a cascade of events that yield 

apoptotic death. Therefore, evolution chose the mitochondrion as a site of energy 

production and release of a messenger, cytochrome c, which is responsible for cell 

death. 

1.2.2.1 The Bcl-2 family and its 3 subfamilies 

In fact the Bcl-2 protein is a member of a large family of proteins: the Bcl-2 protein 

family, which is complex and involves at least 24 Bcl-2 related proteins. Some like 

Bcl-2 are anti-apoptotic, but majority are pro-apoptotic. We distinguish 3 sub-families 

(Fig. 3): 

 

Fig.3: Structure of the Bcl-2 family and its 
3 subfamily members: the Bcl-2, Bax and 
BH3-only subfamilies. 

The Bax subfamily includes Bax, Bak and Bok. They normally reside inactive in the 

outer mitochondrial membrane or in the cytosol.  If activated, these molecules act at 



the surface of the outer mitochondrial membrane. Inactivation of either Bax or Bak 

alone has little consequence in mice, but elimination of both genes dramatically 

impairs developmental apoptosis in many tissues, resulting in perinatal death 

(Lindsten et al., 2000). This suggests that Bax and Bak have functional redundancy. 

Simultaneous lack of Bax and Bak, like loss of Bim (Bouillet et al., 1999; Bouillet et 

al., 2002), also perturbs thymic selection and lymphoid homeostasis (Rathmell et al., 

2002). 

In response to cytotoxic signals, Bax and Bak undergo conformational change and 

form oligomers associated to the membrane (Nechushtan et al., 2001). All these 

events can be blocked by Bcl-2 overexpression, since it acts upstream of Bax/Bak. It 

is not clear how the oligomer forms. Perhaps some Bax/Bak molecules assume a 

BH3 donor-like conformation while others retain their BH3 groove and behave as 

'receptors'.  

In healthy but not apoptotic cells, a small proportion of Bak is found in association 

with VDAC2 in the mitochondrial outer membrane (Cheng et al., 2003). It is thus not 

clear yet if Bax and Bak form themselves pores or if they act on voltage-dependant 

activated channels, but the result is damage to the outer membrane of mitochondria, 

which causes the release of apoptotic mediators into the cytosol:  

-cytochrome c, which activates Apaf-1 to form the so-called apoptosome or wheel of 

death (Liu et al., 1996). The apoptosome cleaves procaspase 9 into caspase 9. 

Caspase stands for cysteine aspartyl-specific protease. Caspase 9 then cleaves 

procaspase 3. Then a serie of cleavages ensues in which one protease activates the 

next one by cleaving it. 

-Smac/Diablo and Omi, which antagonize the function of the anti-apoptotic lAPs 

(Inhibitors of Apoptosis Proteins) (Suzuki et al., 2001). Theses IAPs normally block 

caspase action. 

-endonuclease G, which helps CAD (caspase-activated DNAse) in DNA 

fragmentation (Parrish et al., 2001).  

 



The Bcl-2 subfamily includes Bcl-2 itself, its close relatives Bcl-XL, Bcl-w, and the 

more divergent Mcl-1 and A1. These molecules are anti-apoptotic or pro-survival and 

when they are active they bind to Bax or Bak and thus inhibit the release of 

cytochrom c from the mitochondrion to the cytosol. All antiapoptotic Bcl-2 family 

members have oncogenic potential. However in the totality of malignancies, 

mutations that directly affect antiapoptotic Bcl-2 family members appear to be 

surprisingly rare. However, certain oncogenic mutations probably act indirectly to 

increase their expression levels. In any case high levels of expression in tumors must 

be interpreted with caution, because a tumor is often less differentiated than the 

surrounding normal tissue and expression levels of Bcl-2 family members often 

change markedly during differentiation. 

The BH3-only subfamily includes Bim, Bik, Bad, Bmf, Hrk, Noxa and Puma. The 

members of this family are pro-apoptotic. In their inactive state, they are limited to the 

cytosol, but upon activation by pro-apoptotic signals, they are translocated to the 

mitochondria (Puthalakath and Strasser, 2002). The multiplicity of mammalian BH3-

only proteins allows sophisticated control over the initiation of cell death (Figure 4). 

Individual BH3-only proteins are expressed only in certain cell types, and some 

appear to monitor particular subcellular compartments for stress or damage, and to 

respond to specific cytotoxic signals. For example, Bim is required for deletion of 

autoreactive lymphocytes in vivo (Bouillet et al., 2002) and for apoptosis of T cells in 

vitro following cytokine deprivation, calcium flux or treatment with Taxol (paclitaxel) 

but not markedly for apoptosis induced by γ-irradiation (Bouillet et al., 1999). Bad is 

required for the death that follows deprivation of glucose (Danial et al., 2003) or of 

epidermal growth factor (Ranger et al., 2003). Bmf is required for anoikis, the 

apoptosis that epithelial cells undergo following their detachment from the 

extracellular matrix (Puthalakath et al., 2001); interestingly, anoikis is thought to limit 

metastasis. In another link to tumorigenesis, Noxa (Oda et al., 2000) and Puma 

(Nakano and Vousden, 2001) are both induced by the tumour suppressor p53. 

Importantly, they have now been shown to be critical for apoptosis following 

genotoxic damage and Puma also for the death induced by several drugs (Villunger 

et al., 2003).  



  

Fig.4: Various stresses seem to operate 
through different BH3-only pro-
apoptotic proteins 

Besides the fact that the individual pro-apoptotic BH3-only members can be activated 

by different signals, the way how individual BH3-only proteins are recruited to induce 

apoptosis is also different (Puthalakath and Strasser, 2002). Hrk/DP5 are regulated 

primarily at the transcriptional level, as well as Noxa and Puma (Harris and Johnson, 

2001; Imaizumi et al., 1999). The BH3-only proteins that are produced constitutively 

are maintained in a latent form until activation by diverse mechanisms. For example, 

Bad is sequestered by 14-3-3 scaffold proteins after phosphorylation by kinases such 

as Akt/PKB and protein kinase A (Zha et al., 1996), and its activation requires 

dephosphorylation, for example by calcineurin (Wang et al., 1999). Conversely, 

Bik/Nbk activation requires phosphorylation, possibly by casein kinase II (Verma et 

al., 2001). Bid instead undergoes cleavage by caspases or granzyme B, perhaps 

regulated by phosphorylation (Desagher et al., 2001).  

Bim and Bmf seem to be sentinels that check the cytoskeleton state (Puthalakath et 

al., 1999; Puthalakath et al., 2001). In healthy cells, both predominant forms of Bim 

(the splice variants BimEL and BimL) are sequestered to the dynein motor complex on 

microtubules via the dynein light-chain DLC1 (also known as LC8) (Puthalakath et al., 

1999). Sucrose gradient experiments show that upon stress such as cytokine 

deprivation or UV treatment, Bim relocates from high sedimentation coefficient 

fractions (containing the microtubules) to low sedimentation coefficient fractions. 

More detailed experiments showed that Bim relocalized to fractions corresponding to 

mitochondria, where apoptosis procedes. In an analogous way, Bmf is bound to the 

myosin V motor complex through interaction with DLC2 (Puthalakath et al., 2001). 

Intriguingly, Taxol, which affects microtubules, promotes release of Bim but not Bmf, 



whereas anoikis frees Bmf but not Bim. In contrast, UV irradiation of cells releases 

both Bim and Bmf (Lei and Davis, 2003).  

Bim can also be trancriptionally regulated. In the case of cytokine-deprived cells, 

upregulation of Bim is seen. In hematopoietic cells, this happens through the 

transcription factor FKHR-L1 (Dijkers et al., 2002); in neuronal cells, it happens 

through JNK activation (Harris and Johnson, 2001). Certain Bim transcripts, 

generated by alternative splicing, encode smaller proteins, for example BimS that lack 

the restraining DCL1-binding motif and are therefore very potent death inducers 

(Marani et al., 2002), but their low abundance makes their physiological relevance 

unclear. 

For several BH3-only proteins, optimal docking on their prosurvival relatives probably 

requires not only their BH3 domain but also a membrane targeting function. With 

Bim, for example, that domain is required both for mitochondrial targeting and 

proapoptotic activity (Yamaguchi and Wang, 2002). 

At first it has been thought that all the BH3-only proteins bind to all Bcl-2 subfamiliy 

members, but quantitative analysis could reveal if there are some significant 

preferences. There might be more specialization among the pro-survival relatives that 

presently envisioned (Nijhawan et al., 2003). 

Bid seems to be exceptional among the BH3-only proteins. Although it can bind to 

both Bcl-2- and Bax-like proteins in vitro, mutagenesis studies have suggested that 

the latter are the functionally relevant targets (Wang et al., 1996). Incubation of 

activated (cleaved) Bid with mitochondria was shown to promote oligomerization of 

membrane-bound Bak and rapid cytochrome c release but Bid was not detectable 

within cross-linked Bak oligomers, leading to the suggestion that Bid activates Bax 

and Bak by a 'hit-and-run' mechanism (Korsmeyer et al., 2000).  

Mouse genetic studies (Ranger et al., 2001) suggest that the survival of every cell 

type requires protection by at least one Bcl-2 homolog. Despite overlapping 

expression patterns, inactivation of individual genes leads to diverse phenotypes, 

presumably because the different proteins are more abundant in particular tissues. 

Bcl-2 is essential for the survival of kidney and melanocyte stem cells, as well as 



mature lymphoid cells (Kamada et al., 1995; Nakayama et al., 1993; Veis et al., 

1993); Bcl-xL for neuronal and erythroid precursor cells (Motoyama et al., 1995; 

Wagner et al., 2000); Bcl-w for sperm cell progenitors in adults (but not juveniles) 

(Meehan et al., 2001; Print et al., 1998); Al for neutrophils (Hamasaki et al., 1998); 

and Mcl-1 for successful implantation of the zygote (Rinkenberger et al., 2000). 

Other genetic studies clearly indicate that homeostasis requires an appropriate 

balance between the level of prosurvival proteins and that of their BH3-only 

antagonists. Overexpression of the former provokes an abnormal accumulation of 

cells within the haematopoietic compartment (Ogilvy et al., 1999) and neuronal 

lineage (Farlie et al., 1995), presumably by impairing physiologically important death 

signals delivered through upregulation of BH3-only proteins. Conversely, the 

consequences of inadequate levels of prosurvival proteins can be suppressed by 

also reducing the level of BH3-only killers: loss of just a single allele of Bim is 

sufficient to prevent the kidney failure of Bcl-2-null mice (Bouillet et al., 2001). 

1.2.2.2 Model for the mode of action between Bcl-2 family 
members 

All members of the Bcl-2 family share in common at least one BH3 domain. This 

domain corresponds to an α-helix. It constitutes the way how different members of 

the family bind to each others to interact and eventually inhibit opposite family 

members to determine if the caspase proteolytic cascade should be activated or not. 

The α-helix of a BH3 domain of pro-apoptotic BH3-only members binds into the 

hydrophobic groove formed by the BH1 and BH3 domain of the anti-apoptotic Bcl-2 

subfamily members (Hinds et al., 2003). See figure 5. Some of the family members 

have a hydrophobic sequence which has the feature of a transmembrane domain. It 

is important for their targeting to intracellular membranes. 



 

Fig.5: Binding of an α-helix from a BH3 
domain into the groove formed by the 
domains of Bcl-2 subfamily members 

1.2.3  Extrinsic or receptor-activated apoptotic pathway 

If signals triggering apoptosis don’t originate from within the cell, we speak about 

extrinsic apoptotic pathway. In this case the pro-apoptotic signal is initiated outside 

the cell and activates pro-apoptotic cell surface receptors. They are transmembranic 

and are called death receptors. Once they bind their ligands in the extracellular 

space, the death receptors activate a cytoplasmic caspase cascade which converges 

on the intrinsic apoptotic pathway. 

The ligands of the death receptors are members of the tumor necrosis factor (TNF) 

family, which includes TNF-α, TRAIL, Fas Ligand (FasL), APO3L. Originally, TNF-α 

was found to cause the death of cancer cells. But later these ligands were also found 

to cause the death of normal cell types that display appropriate receptor on their 

surface. There are numerous cognate receptors. The mostly known are Fas, TNFR1, 

DR3, DR4 and DR5. They all share in common a cytoplasmic death domain. When 

activated by ligand binding, the death domains of the receptors bind and activate the 

protein FADD (Fas-associated death domain protein) in the cytoplasm. The resulting 

complex is termed DISC (death-inducing signaling complex). The DISC then triggers 

self-cleavage of procaspases 8 and 10, which then activate the executioner 

caspases 3, 6 and 7. This converges to the signaling of the intrinsic pathway. In 

addition, caspase 3 can cleave the BH3-only protein Bid, which act on Bak and Bax 

to leave the mitochondrial channels open.  

Some cell types in the body rely only on an intrinsic or extrinsic apoptotic pathway to 

trigger their own cell death, while others can use both. Suicide of a cell by the 

extrinsic pathway can happen if it secretes a ligand for one of the death receptors 

that is displayed on its cell surface. This would be an autocrine fashion to initiate 

apoptosis. The choice between intrinsic and extrinsic pathway has some 



consequence regarding the anti-apoptotic proteins of the Bcl-2 subfamily. In cells 

which can activate the extrinsic program, the overexpression of Bcl-2 is not of great 

help, since the death receptors can circumvent the mitochondrion-based program by 

acting directly on the caspase cascade. Figure 6 depicts a summary of the intrinsic 

and extrinsic apoptotic pathway and the communication from extrinsic to intrinsic 

through Bid. 

Fig.6: A summary of the intrinsic and 
extrinsic pathway and the 
communication from extrinsic to 
intrinsic through Bid. 

 

 

1.2.4  Bcl-2 family and the cell cycle 

Intriguingly, in addition to its central role in regulating apoptosis, the Bcl-2 family 

influences the transition between quiescence and proliferation. High levels of Bcl-2 

do not affect the proliferation rate of continuously cycling cells (O'Reilly et al., 1996). 

Significantly, however, G0 cells overexpressing Bcl-2 (or Bcl-xL, Bcl-w) are slow to 

enter the S phase when stimulated with growth factors (O'Reilly et al., 1996). 

Consistent with these in vitro studies, B and T cells in Bcl-2 transgenic mice turn over 

more slowly. Conversely, overexpression of Bax (O'Reilly et al., 1996) and Bad 

(Chattopadhyay et al., 2001) neutralizes the cell-cycle barrier imposed by Bcl-2, and 

T cells from bax transgenic mice enter into cycle more rapidly in response to IL-2 

stimulation than normal T cells (Brady et al., 1996). 



Importantly, the antiapoptotic and cell-cycle aspects of Bcl-2 function are separable, 

since mutation of a conserved tyrosine abrogates the cell-cycle constraint but not the 

survival benefit (Huang et al., 1997).  

1.2.5  Role of BH3-only subfamily members in oncogenesis 

The oncogenic potential of antiapoptotic Bcl-2 subfamily members suggests that 

proapoptotic relatives could be tumour suppressors. But since there is redundancy 

within both the BH3-only group and the Bax-like family, their tumour suppressor 

function may only arise in specific cell types or in specific situations. Indeed, although 

loss of Bim alone elevates tumour incidence in mice within the first 12 months of life, 

loss of even a single allele of Bim dramatically accelerates leukemogenesis in mice 

expressing a myc transgene during B lymphopoiesis (Egle et al., 2004). Thus, Bim is 

indeed a potent tumour suppressor, at least in B cells. Although inactivation of Bid 

does not perturb homeostasis during development (Yin et al., 1999), 50% of Bid-

deficient mice develop chronic myelomonocytic leukaemia by two years of age 

(Zinkel et al., 2003). Noxa and Puma are particularly attractive candidate tumour 

suppressors, because both are transcriptionally induced by the tumour suppressor 

p53 (Oda et al., 2000). 

Since Bax and Bak have largely redundant function (Lindsten et al., 2000), it is 

certainly necessary to inactivate both genes (and perhaps also Bok in tissues 

expressing this Bax-like protein) in order to get tumour promotion. Indeed Bax-null 

mice acquire few spontaneous tumours (Knudson et al., 2001). Nonetheless, loss of 

Bax has enhanced transformation by potent oncogenes in several cell types, for 

example by  myc in B-lymphoid cells (Eischen et al., 2001). Furthermore, some 

human colorectal and haematopoietic tumours exhibit mutated Bax or Bak (Kondo et 

al., 2000; Meijerink et al., 1998; Rampino et al., 1997). Finally, loss of Bax in the 

HCT116 colorectal cell line abolishes the (p53-independent) apoptotic response to 

nonsteroidal anti-inflammatory drugs but only partially reduces the p53-dependent 

response to the chemotherapeutic agent 5-fluorouracil (Zhang et al., 2000). These 

observations suggest that certain cytotoxic signals are Bax-specific in their action 

and/or that Bak expression in certain cell types is insufficient to mediate apoptosis in 

the absence of Bax.  



 

1.2.6  Therapeutic modulators of apoptosis 

Since impaired apoptosis plays a central role in the pathogenesis of many diseases, 

research is trying to find novel agents that engage the cell death machinery (Reed, 

2002; Reed, 2003). The goals are either to preserve cell viability after acute injury 

(e.g. to limit tissue damage from myocardial infarction) or to delete malignant or 

autoreactive cells. Promising attempts to minimize cell death are focused on caspase 

inhibitors (Nicholson, 2000). Strategies to enhance cell death include targeting either 

Bcl-2 or the IAPs, or engaging the death receptor pathway (Ashkenazi, 2002).  

The rational for the use of Bcl-2 as a target is the following: conventional therapies 

that damage DNA or perturb microtubules work by indirectly activating the cell death 

program (Brown and Wouters, 1999). Hence, direct activation of the cell suicide 

machinery should be advantageous (Reed, 2003). First evidence is that 

overexpression of Bcl-2 contributes to oncogenesis in a number of mouse tumour 

models. Second, Bcl-2 overexpression renders many cultured cell lines refractory to 

chemotherapeutic drugs and radiation (Huang et al., 1997). Finally, Bcl-2 is known to 

function downstream of the p53 tumour suppressor (Strasser et al., 1994), the 

function of which is lost in most tumours (Sherr, 2001). Hence, the diminished 

apoptosis in the tumour cell due to that loss might be overcome by directly targeting 

Bcl-2. Diverse strategies are being developed: antisense oligonucleotides (Banerjee, 

2001), RNA interference (Hannon, 2002) and delivery of BH3-like peptides which 

target the deep groove of Bcl-xL, Bcl-2 and Bcl-w (Vieira et al., 2002).  

 

1.2.7  Involution in the mammary gland: a 2-phase process 

Apoptosis can be easily studied in the mouse mammary gland at the physiological 

and genetic level. Within 6 days of weaning in the mouse, most of the secretory 

epithelium is removed and the gland is then remodeled to a pre-pregnant state. 

During involution a coordinated process of alveolar programmed cell death (PCD) 

and lobular-alveolar remodeling restructures the mammary gland. Simple removal of 



the suckling stimulus triggers this process. With loss of suckling, milk accumulates 

within alveolar lumens, and levels of systemic lactogenic hormones fall. Apoptosis is 

easily studied in the mouse mammary gland by using a forced weaning protocol in 

which the pups are removed at the peak of lactation (10 days) before they naturally 

wean. This brings the mammary gland to a synchronous involution and allows the 

study of morphological events and their associated molecular mechanisms.  

Analysis of the involution and glucocorticoid administration has revealed two distinct 

phases of postlactational involution. The first stage is reversible and involves 

programmed cell death of the alveolar cells, which are shed into the lumen. In Balb/c 

mice, the peak of apoptotic cells is seen at day 2 of involution. Apoptotic cells are 

seen up to 8 days of involution (Lund et al., 1996). There is no rearrangement of the 

lobulo-alveolar structure. The second stage is irreversible and involves the activity of 

proteinases which degrade the extracellular matrix and basement membrane on 

which the epithelial cells are lying. Hence, there is remodeling of the lobulo-alveolar 

structure.  

 

The two stages exhibit characteristic changes in gene expression or activity. First-

stage changes include up-regulated expression of sulfated glycoprotein-2 (SGP-2), 

tissue inhibitor of metalloproteinases-1 (TIMP-1), interleukin-1β converting enzyme, 

cell cycle control proteins (c-Jun, JunB, JunD, c-Fos, and c-Myc), and decreased 

expression levels of milk protein genes (Lund et al., 1996). Second-stage changes 

include increased expression levels of matrix metalloproteinases gelatinase A and 

stromelysin-1 and serine protease urokinase-type plasminogen activator (Lund et al., 

1996). The level of proteinases increases particularly at 4 days of involution. 

Expression of TIMP-1 was downregulated.  

In-situ hybridization revealed that the proteinases are secreted by stromal cells, and 

not by myoepithelial cells, neither by apoptotic cells nor by invading macrophages. 

The immunohistochemistry on the other hand reveals that the proteins are located 

close to the myoepithelail cells. This difference between in-situ and 

immunohistochemistry apparently indicates that fibroblasts synthesize and secrete 

the MMPs, which are then bound to ECM close to the myoepithelial cells. This role 



played by stroma cells indicates that involution requires the collaboration between 

epithelial and stromal mesenchymal cells.  

Teat-sealing experiments or the use of transplanted mammary gland which is not 

connected to the tit, as well as the use of oxytocin KO mice demonstrated that the 

first phase, illustrated by programmed cell death, is regulated by local factors within 

the individual gland and not by circulating hormones. Indeed the other mammary 

glands were left intact in the two first models and the pups could suck the milk, but 

this was not sufficient to prevent programmed cell death (Li et al., 1997). 

In opposite, the second phase is dependent on the decrease of circulating hormones 

and can be delayed by the administration of glucocorticoid. In the teat-sealing 

experiment, the second phase of involution did not occur. Moreover, pellet 

implantation in a single tit followed by involution revealed that the cells closer from 

the pellet had a lactation-like morphology, whereas the cells distant from the pellet 

were normally undergoing involution (Feng et al., 1995).  

The use of genetically modified mice has revealed a number of factors that either 

promote, or delay, involution and apoptosis. These include members of the Bcl-2 

family. Deletion of the anti-apoptotic Bcl-X gene does not affect lactation or the first 

day of involution, but it accelerates apoptosis at the second day of involution 

(Hennighausen and Robinson, 2001). Bax KO or the gain-of function of Bcl-2 

obtained by transgenic overexpression delay the first phase of involution when 

examined after 48 hours (Schorr et al., 1999). As demonstrated by the number of 

apoptotic cells, Bcl-2 gain-of-function seems to be a more potent inhibitor of 

apoptosis than Bax KO. Examination of later stage indicated that gain-of-function of 

Bcl-2 delayed the second phase of involution, but this was not the case for Bax KO, 

as measured by the percentage of surface covered by epithelial cells. This difference 

indicates that also there is redundancy between the different Bcl-2 family members, 

in vivo each member has specific nonredundant role in fine-tuning the propensity of a 

cell to undergo apoptosis.  

1.2.7.1 The first phase of involution 

1.2.7.1.1 LIF-Stat3-cEBP-IGFBP-5 axis 



However, because of redundancy or because they are not essential components of 

the primary regulatory pathways, many of the Bcl-2 regulatory factors make only 

minor contribution to the involution process. One of the primary pathways is the 

Jak/Stat pathway, which is activated by cytokines and growth factors, resulting in 

phosphorylation and specific dimerisation, translocation into the nucleus and 

activation of transcription of target genes. While Stat5 is important for lobuloalveolar 

development (Teglund et al., 1998), Stat3 is necessary for the initiation of apoptosis 

and involution (Chapman et al., 1999; Humphreys et al., 2002). The activation of 

apoptosis by Stats has been investigated in a number of in vitro systems. In myeloid 

leukemia cells, Stat3 seems to induce apoptosis since its overexpression accelerated 

interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)-induced apoptosis and a 

dominant negative blocked apoptosis induced by these cytokines (Minami et al., 

1996). Conversely, in a pro-B cell line Stat3 seems to suppress apoptosis after 

induction of gp-130 receptor (Fukada et al., 1996). In T cells as well, Stat3 is required 

for the survival in response to IL-6 (Takeda et al., 1998). Hence, the role of Stat3 in 

apoptosis is cell-type specific. In the mammary gland, Stat 5 is activated during 

pregnancy and lactation but is rapidly down regulated in involution, whereas Stat 3 is 

specifically activated at the start of involution (Liu et al., 1997; Philp et al., 1996). The 

reciprocal activation of Stat 5 and 3 at the onset of apoptosis suggests opposing 

roles for these Stats in the regulation of apoptosis in the mammary gland. It should 

be mentioned that Stat5a-deficient mice do not undergo precocious involution, 

suggesting that Stat3 can induce apoptosis through alternative mechanisms than 

inactivating Stat5a (Liu et al., 1997). Conditional KO of Stat 3 by deletion of the exon 

containing its important tyrosine does not impair lactation. However, it results in 

delayed involution in the mammary gland when examined at I2, I3 and I6 (Chapman 

et al., 1999). At I2 and I3, although there were some shed apoptotic cells, the 

morphological structure of the gland remained intact. At I6, there was some 

remodeling but it looked like at I3 in the control. In Stat3 CKO glands, Stat5a level 

remains high longer. Insulin growth factor binding protein-5 (IGFBP-5), a target of 

Stat3, was also downregulated in Stat3 CKO mammary glands. Similar but more 

extensive mutation of Stat3 but with a more extensive exon deletion including 

removal of exons 15-22 including the DNA binding and SH2 domain reveals a delay 

in the in the initiation of the irreversible phase of involution. This was also seen by 

zymography, where MMP9 (gelatinase B) but not MMP2 (gelatinase A) activity was 



delayed in the CKO mammary glands (Humphreys et al., 2002). So apparently both 

phases are delayed in the Stat3 CKO.  

The cytokine leukemia inhibitory factor (LIF) is the principal activator of Stat3 in vivo. 

The cytokine IL-6, which also acts through gp130, is not the principal activator of 

Stat3 in vivo, since in KO of IL-6, Stat3 phosphorylation status does not change 

(Humphreys et al., 2002). The KO of LIF results in diminished apoptosis, delayed 

involution, lack of P-Stat3, reduction in cleaved caspase-3 and in C/ebpδ levels at 

involution (Kritikou et al., 2003). These mammary glands did not present any 

difference in the level of Bax or Bcl-X. They had a decreased level of P-Erk, 

suggesting that LIF, in addition to increasing P-Stat3 dependant apoptotic stimuli, 

also decreases P-Erk dependant survival stimuli. Experiments on cell culture argue 

for this: cells treated with LIF or with U0126 (the inhibitor of MEK) showed a modest 

increase in apoptosis, whereas cells treated with both simultaneously showed a 

dramatic potentiation of apoptosis.  

IGF-BP-5 overexpression at a level similar to the one measured at apoptosis induces 

premature cell death at the beginning of lactation (L2), but the effect was transient 

and not present any more later in lactation (L10). These mammary glands showed 

elevated levels of cleaved caspase-3 and plasmin, as well as decreased level of the 

anti-apoptotic Bcl-2 and Bcl-XL.  

1.2.7.1.2 C/EBPδ  

CCAAT/enhancer binding protein delta (C/EBPδ) is a crucial mediator of pro-

apoptotic gene expression events in mammary epithelial cells. In mammary glands 

knock-out for C/EBPδ, involution is delayed as seen morphologically, the pro-

apoptotic genes encoding p53, BAK, IGFBP5 and SGP2/clusterin are not activated, 

while the anti-apoptotic genes coding for BFL1 and Cyclin D1 are not repressed 

(Thangaraju et al., 2005). Consequently, p53 targets such as survivin, BRCA1, 

BRCA2 and BAX are not regulated appropriately and protease activation is delayed. 

Furthermore, expression of MMP3 during the second phase of involution is perturbed 

in the absence of C/EBPδ.  

1.2.7.1.3 Akt 



In mammary glands from wild-type animals, the level of Akt decreases at involution 

day 2 and remains lower later in involution. The phosphorylation of a known substrate 

of Akt, GSK-3β, follows the same pattern. This suggests a potential role for Akt, 

which is known as a survival factor, in involution of the mammary gland. Transgenic 

mice having a constitutively active form of Akt (myristoylated) under activation of the 

MMTV promoter show delayed involution (Schwertfeger et al., 2001) as seen 

morphologically. In the mammary gland from these mice, the number of apoptotic 

cells at involution is decreased, and peaks at I6 or I8 instead of I4 in the wild-type 

controls (FVB background). In these mice, the decrease in β-casein and WAP 

expression normally seen during the five first days of involution occurs only after 5 

days of involution. Interestingly in these glands, the levels of P-Stat3 did not 

decrease as compared to control glands. Although MMP-3 level increased, TIMP-1 

levels increased as well and remained high until I10, probably accounting for the 

delay in apoptosis. Confirmation that Akt is critical for regulation of mammary gland 

involution still requires the analysis of KO or CKO animals. 

Recently, it has been shown that Stat3 induces the expression of negative regulatory 

subunits of PI(3) kinase, resulting in diminished levels of P-Akt (Abell et al., 2005). 

During involution, level of P-Akt is decreased; this is not due to PTEN, since it is also 

decreased, but rather to PI3kinase, which looses its activity. PI3 kinase has 

regulatory and catalytic subunit. Interestingly, a change in the regulatory subunit 

composition is seen at involution: regulatory p55α and p50α subunit are up regulated, 

whereas p85 α and β are downregulated. Regulatory p55 γ as well as catalytic 

subunits level do not change during involution. These changes were seen at the 

protein and RNA level, indicating that they are transcriptionally regulated. In Stat3 KO 

glands, the levels of p55α and p50α subunit are reduced compared to WT at 

involution. There was no change in the level of p85 in Stat3 KO compared to WT 

glands. Thus Stat3 selectively upregulates p55α and p50α during involution. This 

represents a new mechanism by which the LIF-Stat3 axis may act to downregulate 

the survival factor PKB during involution. 

1.2.7.1.4 Death receptor pathway 



Fas (Apo-1/CD95) is a 45-kDa cell-surface receptor of the TNF/nerve growth factor 

receptor family whose signal transduction pathway mediates apoptosis of Fas-

bearing cells after binding with FasL. Although the Fas/FasL system was originally 

described in the context of lymphocyte-mediated apoptosis, new data have shown 

that Fas and FasL are widely expressed and function in many tissues outside the 

immune system. 

It has been shown that the protein levels of Fas and FasL increase during involution. 

However, this pattern of expression does not reflect the mRNA level, which is present 

as the same level through the pregnancy, lactation and involution (illegitimate 

transcription). Immunohistochemistry revealed that they were expressed by glandular 

epithelial cells. Mice deficient for Fas had reduced apoptosis as seen with TUNEL 

staining (Song et al., 2000). 

Microarray data from a study focused at the transition lactation/involution indicate that 

there is a difference in the expression profile of genes belonging to the extrinsic and 

intrinsic pathway of apoptosis (Clarkson et al., 2004). Four death receptor ligands, 

Tnf (TNFα), Tnfsf6 (Fas ligand), Tnfsf10 (TRAIL) and Tnfsf 12 (TWEAK) had a pic of 

expression after 1 day of involution, and then returned back to normal levels.  These 

receptors bind to the death receptors Fas, TNFR-1, TNFR-2, DR3 and DR4. In 

contrast to this transient expression of death receptor ligands, components of the 

mitochondrial (intrinsic) pathway exhibited delayed but sustained induction, often 

starting after 2 days of involution. This was the case for some caspases, IGFBP-5, 

Apaf, Bax. 

So apparently during involution the death receptor pathway would be activated 

before the intrinsic mitochondrial pathway. 

1.2.7.1.5 TGF-β3 

It is known that TGF-β superfamily members are involved in apoptosis. Mullerian 

inhibiting substance causes regression of the Mullerian ducts during the male sexual 

development. BMP signals to induce apoptosis in the rhombomeres 3 and 5 and in 

the interdigit field of the chick limb. In the mammary gland, TGF-β3 is upregulated at 

very beginning of involution although there is no change in the transcript of TGF-β1 



and 2 (Nguyen and Pollard, 2000). In-situ hybridization shows that it is expressed by 

lobuloalveolar cells. Immunohistochemistry shows that it is expressed in 

lobuloalveolar cells, as well as in the extracellular matrix, indicating that it can be 

secreted. Injection of physiological levels of pituitary hormones prolactin and oxytocin 

at weaning do not suppress TGF-β3 expression, indicating that TGF-β3 is an actor of 

the first phase. Sealing one mammary gland also shows increased TGF-β3 

expression, although the rest of the glands are accessible to the pups and the level 

of circulating hormones are thus normal. TGF-β3 can be the cause of cell death. 

Indeed, transgenic mice expressing TGF-β3 upon betalactoglobulin gene promoter 

show nuclear localization of SMAD 4 and apoptotic cells at 1-3 days lactation. 

Immunohistochemistry revealed that P-Stat3 was found in the nucleus of the mice 

having a sealed tit and also in mice expressing TGF-β3. So P-Stat3 might be a 

downstream target of TGF-β3. Transplantation of mammary glands from TGF-β3 WT 

or KO animals show less apoptotic cells in the TGFb3 KO transplanted mammary 

glands compared to WT transplanted mammary glands. For a reminder, the 

transplanted mammary glands are not connected to tits, and so will undergo 

apoptosis due to the accumulation of local factors. It is possible that TGF-β3 act in 

the mammary gland trough disrupting the matrix attachment of the lobuloalveolar 

epithelial cells, causing anoikis. This is consistent with the role of TGF-b in matrix 

remodeling in other organs.  

A summary of the various pathways which converge to apoptosis in the mammary 

gland is shown in fig.7. 



 

Fig. 7: Summary of the various apoptotic pathways leading to 
apoptosis in the first phase of mammary gland involution. Several 
pathways are activated and required for apoptosis during 
involution, but the mechanisms for triggering them are not always 
known (question marks). Some are pro-apoptotic pathways (black 
arrows), while others inhibit survival pathways that would 
otherwise be operational during lactation (grey arrows). 

 

 

 

1.2.7.2 The second phase of involution 

1.2.7.2.1 A process dependant on proteases 

48 hours after the start of involution, the transition to the second phase occurs: 

alveoli start to collapse and adipocytes begin to re-fill. Two main families of matrix 

degrading proteases are activated during mammary gland remodeling, the matrix 

metalloproteases (MMPs) and serine proteases uPA and tPA involved in the 

activation of plasminogen to plasmin. These families share similar matrix substrates. 

Plasmin directly degrades matrix proteins such as fibrin and lamin, and also activates 

MMP precursors like pro-MMP3, MMP-9 and MMP-13. uPA is the plasminogen 



activator involved in tissue remodeling events, whereas tPA acts primarily on the 

circulatory system.  

MMP3 is expessed in the mammary stroma. Mice expressing a mammary targeted 

autoactivating MMP3 display accelerated involution through basement membrane 

degradation and epithelial apoptosis late in pregnancy (Sympson et al., 1994). 

However removal of MMP3 from the mammary gland has no effect on mammary 

apoptosis but rather has an effect on adipocyte maturation (Alexander et al., 2001). 

MMP11 is expressed by fibroblasts surrounding degenerating ducts. MMP7 is 

detected in the mammary gland during lactation and involution by RT-PCR. MMP 14 

is expressed in the stroma and its mRNA levels do not change through lactation and 

involution. MMP2 levels increase during involution. In situ hybridization show that it is 

expressed by the stroma (Wiseman et al., 2003). Immunohistochemistry show that it 

is secreted to the mammary epithelial and myoepithelial cells (Dickson and 

Warburton, 1992). MMP9 was not detected by in situ hybridization but is upregulated 

at involution as seen by zymography (Lund et al., 2000). It is produced by 

macrophages in the mammary gland.  

Plasminogen activation pathway is also involved in mammary gland involution. This 

happens through upregulation of the mRNA of uPA (Lund et al., 1996). Fibroblasts 

and macrophages express uPA during involution. Mice deficent for plasminogen 

display impaired involution (Lund et al., 2000). The requirement for plasmin during 

involution is likely due to its direct action on the ECM rather than its MMP activating 

function, since MMP2 and MMP9 are still activated in its absence.  

The cysteine proteases cathepsins B and L are lysosomal enzymes that can be 

secreted and active in the extracellular environment. At least cathepsin L plays a role 

in involution, since its mRNA level is increased and a cathepsin-L specific inhibitor 

delays involution and a cathepsin-L specific inhibitor delays involution.  

The activity of MMPs is prevented trough expression of their inhibitors, the TIMPs 

(tissue inhibitor of metalloproteinases). Implantation of a TIMP-1 release pellet delays 

alveolar regression through involution (Talhouk et al., 1992). TIMP-2 and 3 levels 

decrease during lactation, but there is no change at the transition to involution. 



However, TIMP-3 deficient mice show accelerated involution with premature 

epithelial apoptosis and MMP2 activation compared to the wild type glands (Fata et 

al., 2001). In addition, the reversibility after pup removal was lost in these TIMP3 KO 

mice, as evidenced by the loss of pup weight, suggesting a role for TIMP3 in the re-

initiation of lactation after pups removal. This gives unique functions to TIMP-3, since 

other TIMP family members were not able to compensate. It has been shown that 

nidogen, an ECM molecule which binds integrin, is cleaved by plasmin and MMP3 

during mammary gland involution (Alexander et al., 1996). Moreover, the 

transmembrane protein E-cadherin, which is involved in cell-cell adhesion, is also 

cleaved during involution (Vallorosi et al., 2000). Therefore proteases can also 

disrupt cell-ECM and cell-cell contact during involution. MMP3 and MMP7 also have 

the potential to cleave Fas ligand from the cell surface to generate apoptosis (Vargo-

Gogola et al., 2002). Indeed, Fas ligands have a MMP-7 cleavage site in their 

sequence. Table 1 summarizes the proteases involved during involution of the 

mammary gland.  

Protease Alternative name Expressed in mammary gland by: 

MMP2 Gelatinase A stroma 

MMP3 Sromelysin-1 stroma 

MMP7 Matrilysin epithelium 

MMP9 Gelatinase B Stroma (macrophages) 

MMP11 Stromelysin-3 Stroma (fibroblasts) 

MMP14 MT1-MMP stroma 

Plasmin(ogen) PLG Produced in liver as plasminogen 

uPA PLAU stroma 

tPA PLAT  

Cathepsin B CTSB Secretory epithelium 

Cathepsin L CTSL Secretory epithelium 

Table 1: ECM-degrading proteases in the 
mammary gland involution 

  

 

1.2.7.2.2 Adipocyte differentiation 

A third phase during mammary gland involution can be distinguished, which is the re-

differentiation of adipocytes. MMPs don’t only play a role in ECM protein degradation, 

they are also important for adipocyte differentiation. Both plasmin and MMP3 play a 

role in this process (Selvarajan et al., 2001). MMP3 KO mice have the same level of 



apoptosis than their wild.type control mice. However, they display accelerated 

adipocyte differentiation during involution (Alexander et al., 2001).  

1.2.7.2.3 Phagocytosis 

Phagocytosis of a large number of cells and debris is an important constituent of the 

remodeling process. Inflammatory mediators like Il-6 and Lif, which are activated 

earlier in involution, probably attract macrophages, since they can be seen in big 

number at day 4 involution (Stein et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.8  References 
 

Abell, K., Bilancio, A., Clarkson, R. W., Tiffen, P. G., Altaparmakov, A. I., Burdon, T. 

G., Asano, T., Vanhaesebroeck, B. and Watson, C. J. (2005). Stat3-induced apoptosis 

requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol 7, 392-8. 



Alexander, C. M., Howard, E. W., Bissell, M. J. and Werb, Z. (1996). Rescue of 

mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of 

metalloproteinases-1 transgene. J Cell Biol 135, 1669-77. 

Alexander, C. M., Selvarajan, S., Mudgett, J. and Werb, Z. (2001). Stromelysin-1 

regulates adipogenesis during mammary gland involution. J Cell Biol 152, 693-703. 

Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor 

superfamily. Nat Rev Cancer 2, 420-30. 

Banerjee, D. (2001). Genasense (Genta Inc). Curr Opin Investig Drugs 2, 574-80. 

Bouillet, P., Cory, S., Zhang, L. C., Strasser, A. and Adams, J. M. (2001). Degenerative 

disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev 

Cell 1, 645-53. 

Bouillet, P., Metcalf, D., Huang, D. C., Tarlinton, D. M., Kay, T. W., Kontgen, F., 

Adams, J. M. and Strasser, A. (1999). Proapoptotic Bcl-2 relative Bim required for certain 

apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 

1735-8. 

Bouillet, P., Purton, J. F., Godfrey, D. I., Zhang, L. C., Coultas, L., Puthalakath, H., 

Pellegrini, M., Cory, S., Adams, J. M. and Strasser, A. (2002). BH3-only Bcl-2 family 

member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922-6. 

Brady, H. J., Gil-Gomez, G., Kirberg, J. and Berns, A. J. (1996). Bax alpha perturbs T cell 

development and affects cell cycle entry of T cells. Embo J 15, 6991-7001. 

Brown, J. M. and Wouters, B. G. (1999). Apoptosis, p53, and tumor cell sensitivity to 

anticancer agents. Cancer Res 59, 1391-9. 

Chapman, R. S., Lourenco, P. C., Tonner, E., Flint, D. J., Selbert, S., Takeda, K., Akira, 

S., Clarke, A. R. and Watson, C. J. (1999). Suppression of epithelial apoptosis and delayed 

mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13, 

2604-16. 

Chattopadhyay, A., Chiang, C. W. and Yang, E. (2001). BAD/BCL-[X(L)] 

heterodimerization leads to bypass of G0/G1 arrest. Oncogene 20, 4507-18. 

Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. and Korsmeyer, S. J. (2003). 

VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-7. 

Clarkson, R. W., Wayland, M. T., Lee, J., Freeman, T. and Watson, C. J. (2004). Gene 

expression profiling of mammary gland development reveals putative roles for death receptors 

and immune mediators in post-lactational regression. Breast Cancer Res 6, R92-109. 



Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., 

Datta, S. R., Greenberg, M. E., Licklider, L. J., Lowell, B. B. et al. (2003). BAD and 

glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. 

Nature 424, 952-6. 

Danial, N. N. and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205-

19. 

Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., 

Journot, L., Antonsson, B. and Martinou, J. C. (2001). Phosphorylation of bid by casein 

kinases I and II regulates its cleavage by caspase 8. Mol Cell 8, 601-11. 

Dickson, S. R. and Warburton, M. J. (1992). Enhanced synthesis of gelatinase and 

stromelysin by myoepithelial cells during involution of the rat mammary gland. J Histochem 

Cytochem 40, 697-703. 

Dijkers, P. F., Birkenkamp, K. U., Lam, E. W., Thomas, N. S., Lammers, J. W., 

Koenderman, L. and Coffer, P. J. (2002). FKHR-L1 can act as a critical effector of cell 

death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through 

maintenance of mitochondrial integrity. J Cell Biol 156, 531-42. 

Egle, A., Harris, A. W., Bouillet, P. and Cory, S. (2004). Bim is a suppressor of Myc-

induced mouse B cell leukemia. Proc Natl Acad Sci U S A 101, 6164-9. 

Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. and Cleveland, J. L. (2001). Bax loss 

impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-

mediated lymphomagenesis. Mol Cell Biol 21, 7653-62. 

Ellis, R. E., Jacobson, D. M. and Horvitz, H. R. (1991). Genes required for the engulfment 

of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94. 

Farlie, P. G., Dringen, R., Rees, S. M., Kannourakis, G. and Bernard, O. (1995). bcl-2 

transgene expression can protect neurons against developmental and induced cell death. Proc 

Natl Acad Sci U S A 92, 4397-401. 

Fata, J. E., Leco, K. J., Voura, E. B., Yu, H. Y., Waterhouse, P., Murphy, G., 

Moorehead, R. A. and Khokha, R. (2001). Accelerated apoptosis in the Timp-3-deficient 

mammary gland. J Clin Invest 108, 831-41. 

Feng, Z., Marti, A., Jehn, B., Altermatt, H. J., Chicaiza, G. and Jaggi, R. (1995). 

Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse 

mammary gland. J Cell Biol 131, 1095-103. 

Fukada, T., Hibi, M., Yamanaka, Y., Takahashi-Tezuka, M., Fujitani, Y., Yamaguchi, 

T., Nakajima, K. and Hirano, T. (1996). Two signals are necessary for cell proliferation 



induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5, 

449-60. 

Hamasaki, A., Sendo, F., Nakayama, K., Ishida, N., Negishi, I., Nakayama, K. and 

Hatakeyama, S. (1998). Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of 

the bcl-2-related A1 gene. J Exp Med 188, 1985-92. 

Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70. 

Hannon, G. J. (2002). RNA interference. Nature 418, 244-51. 

Harris, C. A. and Johnson, E. M., Jr. (2001). BH3-only Bcl-2 family members are 

coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J 

Biol Chem 276, 37754-60. 

Hengartner, M. O., Ellis, R. E. and Horvitz, H. R. (1992). Caenorhabditis elegans gene 

ced-9 protects cells from programmed cell death. Nature 356, 494-9. 

Hengartner, M. O. and Horvitz, H. R. (1994). C. elegans cell survival gene ced-9 encodes a 

functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-76. 

Hennighausen, L. and Robinson, G. W. (2001). Signaling pathways in mammary gland 

development. Dev Cell 1, 467-75. 

Hinds, M. G., Lackmann, M., Skea, G. L., Harrison, P. J., Huang, D. C. and Day, C. L. 

(2003). The structure of Bcl-w reveals a role for the C-terminal residues in modulating 

biological activity. Embo J 22, 1497-507. 

Huang, D. C., O'Reilly, L. A., Strasser, A. and Cory, S. (1997). The anti-apoptosis function 

of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. Embo J 16, 

4628-38. 

Humphreys, R. C., Bierie, B., Zhao, L., Raz, R., Levy, D. and Hennighausen, L. (2002). 

Deletion of Stat3 blocks mammary gland involution and extends functional competence of the 

secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143, 3641-50. 

Imaizumi, K., Morihara, T., Mori, Y., Katayama, T., Tsuda, M., Furuyama, T., 

Wanaka, A., Takeda, M. and Tohyama, M. (1999). The cell death-promoting gene DP5, 

which interacts with the BCL2 family, is induced during neuronal apoptosis following 

exposure to amyloid beta protein. J Biol Chem 274, 7975-81. 

Kamada, S., Shimono, A., Shinto, Y., Tsujimura, T., Takahashi, T., Noda, T., Kitamura, 

Y., Kondoh, H. and Tsujimoto, Y. (1995). bcl-2 deficiency in mice leads to pleiotropic 

abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair 

hypopigmentation, and distorted small intestine. Cancer Res 55, 354-9. 



Knudson, C. M., Johnson, G. M., Lin, Y. and Korsmeyer, S. J. (2001). Bax accelerates 

tumorigenesis in p53-deficient mice. Cancer Res 61, 659-65. 

Kondo, S., Shinomura, Y., Miyazaki, Y., Kiyohara, T., Tsutsui, S., Kitamura, S., 

Nagasawa, Y., Nakahara, M., Kanayama, S. and Matsuzawa, Y. (2000). Mutations of the 

bak gene in human gastric and colorectal cancers. Cancer Res 60, 4328-30. 

Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J. and Schlesinger, P. H. 

(2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores 

that result in the release of cytochrome c. Cell Death Differ 7, 1166-73. 

Kritikou, E. A., Sharkey, A., Abell, K., Came, P. J., Anderson, E., Clarkson, R. W. and 

Watson, C. J. (2003). A dual, non-redundant, role for LIF as a regulator of development and 

STAT3-mediated cell death in mammary gland. Development 130, 3459-68. 

Lei, K. and Davis, R. J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 

family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100, 2432-7. 

Li, M., Liu, X., Robinson, G., Bar-Peled, U., Wagner, K. U., Young, W. S., 

Hennighausen, L. and Furth, P. A. (1997). Mammary-derived signals activate programmed 

cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A 94, 

3425-30. 

Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, E., 

Waymire, K. G., Mahar, P., Frauwirth, K. et al. (2000). The combined functions of 

proapoptotic Bcl-2 family members bak and bax are essential for normal development of 

multiple tissues. Mol Cell 6, 1389-99. 

Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. (1996). Induction of apoptotic 

program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-57. 

Liu, X., Robinson, G. W., Wagner, K. U., Garrett, L., Wynshaw-Boris, A. and 

Hennighausen, L. (1997). Stat5a is mandatory for adult mammary gland development and 

lactogenesis. Genes Dev 11, 179-86. 

Lund, L. R., Bjorn, S. F., Sternlicht, M. D., Nielsen, B. S., Solberg, H., Usher, P. A., 

Osterby, R., Christensen, I. J., Stephens, R. W., Bugge, T. H. et al. (2000). Lactational 

competence and involution of the mouse mammary gland require plasminogen. Development 

127, 4481-92. 

Lund, L. R., Romer, J., Thomasset, N., Solberg, H., Pyke, C., Bissell, M. J., Dano, K. and 

Werb, Z. (1996). Two distinct phases of apoptosis in mammary gland involution: proteinase-

independent and -dependent pathways. Development 122, 181-93. 



Marani, M., Tenev, T., Hancock, D., Downward, J. and Lemoine, N. R. (2002). 

Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax 

to trigger apoptosis. Mol Cell Biol 22, 3577-89. 

Meehan, T., Loveland, K. L., de Kretser, D., Cory, S. and Print, C. G. (2001). 

Developmental regulation of the bcl-2 family during spermatogenesis: insights into the 

sterility of bcl-w-/- male mice. Cell Death Differ 8, 225-33. 

Meijerink, J. P., Mensink, E. J., Wang, K., Sedlak, T. W., Sloetjes, A. W., de Witte, T., 

Waksman, G. and Korsmeyer, S. J. (1998). Hematopoietic malignancies demonstrate loss-

of-function mutations of BAX. Blood 91, 2991-7. 

Melino, G., Knight, R. A. and Nicotera, P. (2005). How many ways to die? How many 

different models of cell death? Cell Death Differ 12 Suppl 2, 1457-62. 

Minami, M., Inoue, M., Wei, S., Takeda, K., Matsumoto, M., Kishimoto, T. and Akira, 

S. (1996). STAT3 activation is a critical step in gp130-mediated terminal differentiation and 

growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A 93, 3963-6. 

Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K., Nakayama, K., Negishi, 

I., Senju, S., Zhang, Q., Fujii, S. et al. (1995). Massive cell death of immature 

hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506-10. 

Nakano, K. and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by 

p53. Mol Cell 7, 683-94. 

Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M. C., Fields, 

L. E., Lucas, P. J., Stewart, V., Alt, F. W. et al. (1993). Disappearance of the lymphoid 

system in Bcl-2 homozygous mutant chimeric mice. Science 261, 1584-8. 

Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H. and Youle, R. J. (2001). Bax 

and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 

153, 1265-76. 

Nguyen, A. V. and Pollard, J. W. (2000). Transforming growth factor beta3 induces cell 

death during the first stage of mammary gland involution. Development 127, 3107-18. 

Nicholson, D. W. (2000). From bench to clinic with apoptosis-based therapeutic agents. 

Nature 407, 810-6. 

Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F. and Wang, X. (2003). 

Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet 

irradiation. Genes Dev 17, 1475-86. 

O'Reilly, L. A., Huang, D. C. and Strasser, A. (1996). The cell death inhibitor Bcl-2 and its 

homologues influence control of cell cycle entry. Embo J 15, 6979-90. 



Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., 

Taniguchi, T. and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and 

candidate mediator of p53-induced apoptosis. Science 288, 1053-8. 

Ogilvy, S., Metcalf, D., Print, C. G., Bath, M. L., Harris, A. W. and Adams, J. M. (1999). 

Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple 

lineages and enhances progenitor cell survival. Proc Natl Acad Sci U S A 96, 14943-8. 

Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X. and Xue, D. (2001). Mitochondrial 

endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-4. 

Philp, J. A., Burdon, T. G. and Watson, C. J. (1996). Differential activation of STATs 3 

and 5 during mammary gland development. FEBS Lett 396, 77-80. 

Print, C. G., Loveland, K. L., Gibson, L., Meehan, T., Stylianou, A., Wreford, N., de 

Kretser, D., Metcalf, D., Kontgen, F., Adams, J. M. et al. (1998). Apoptosis regulator bcl-

w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 

95, 12424-31. 

Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. and Strasser, A. (1999). The 

proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the 

dynein motor complex. Mol Cell 3, 287-96. 

Puthalakath, H. and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and 

post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 

9, 505-12. 

Puthalakath, H., Villunger, A., O'Reilly, L. A., Beaumont, J. G., Coultas, L., Cheney, R. 

E., Huang, D. C. and Strasser, A. (2001). Bmf: a proapoptotic BH3-only protein regulated 

by interaction with the myosin V actin motor complex, activated by anoikis. Science 293, 

1829-32. 

Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J. C. and Perucho, M. 

(1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite 

mutator phenotype. Science 275, 967-9. 

Ranger, A. M., Malynn, B. A. and Korsmeyer, S. J. (2001). Mouse models of cell death. 

Nat Genet 28, 113-8. 

Ranger, A. M., Zha, J., Harada, H., Datta, S. R., Danial, N. N., Gilmore, A. P., Kutok, J. 

L., Le Beau, M. M., Greenberg, M. E. and Korsmeyer, S. J. (2003). Bad-deficient mice 

develop diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100, 9324-9. 



Rathmell, J. C., Lindsten, T., Zong, W. X., Cinalli, R. M. and Thompson, C. B. (2002). 

Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat 

Immunol 3, 932-9. 

Reed, J. C. (2002). Apoptosis-based therapies. Nat Rev Drug Discov 1, 111-21. 

Reed, J. C. (2003). Apoptosis-targeted therapies for cancer. Cancer Cell 3, 17-22. 

Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K. and Korsmeyer, S. J. (2000). Mcl-

1 deficiency results in peri-implantation embryonic lethality. Genes Dev 14, 23-7. 

Schorr, K., Li, M., Bar-Peled, U., Lewis, A., Heredia, A., Lewis, B., Knudson, C. M., 

Korsmeyer, S. J., Jager, R., Weiher, H. et al. (1999). Gain of Bcl-2 is more potent than bax 

loss in regulating mammary epithelial cell survival in vivo. Cancer Res 59, 2541-5. 

Schwertfeger, K. L., Richert, M. M. and Anderson, S. M. (2001). Mammary gland 

involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 15, 867-81. 

Selvarajan, S., Lund, L. R., Takeuchi, T., Craik, C. S. and Werb, Z. (2001). A plasma 

kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell 

Biol 3, 267-75. 

Sherr, C. J. (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 

2, 731-7. 

Song, J., Sapi, E., Brown, W., Nilsen, J., Tartaro, K., Kacinski, B. M., Craft, J., Naftolin, 

F. and Mor, G. (2000). Roles of Fas and Fas ligand during mammary gland remodeling. J 

Clin Invest 106, 1209-20. 

Stein, T., Morris, J. S., Davies, C. R., Weber-Hall, S. J., Duffy, M. A., Heath, V. J., Bell, 

A. K., Ferrier, R. K., Sandilands, G. P. and Gusterson, B. A. (2004). Involution of the 

mouse mammary gland is associated with an immune cascade and an acute-phase response, 

involving LBP, CD14 and STAT3. Breast Cancer Res 6, R75-91. 

Strasser, A., Harris, A. W., Jacks, T. and Cory, S. (1994). DNA damage can induce 

apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-

2. Cell 79, 329-39. 

Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J. C. and Takahashi, R. (2001). X-linked 

inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 

276, 27058-63. 

Sympson, C. J., Talhouk, R. S., Alexander, C. M., Chin, J. R., Clift, S. M., Bissell, M. J. 

and Werb, Z. (1994). Targeted expression of stromelysin-1 in mammary gland provides 

evidence for a role of proteinases in branching morphogenesis and the requirement for an 

intact basement membrane for tissue-specific gene expression. J Cell Biol 125, 681-93. 



Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T. and Akira, S. (1998). 

Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing 

apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 

161, 4652-60. 

Talhouk, R. S., Bissell, M. J. and Werb, Z. (1992). Coordinated expression of extracellular 

matrix-degrading proteinases and their inhibitors regulates mammary epithelial function 

during involution. J Cell Biol 118, 1271-82. 

Teglund, S., McKay, C., Schuetz, E., van Deursen, J. M., Stravopodis, D., Wang, D., 

Brown, M., Bodner, S., Grosveld, G. and Ihle, J. N. (1998). Stat5a and Stat5b proteins have 

essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841-50. 

Thangaraju, M., Rudelius, M., Bierie, B., Raffeld, M., Sharan, S., Hennighausen, L., 

Huang, A. M. and Sterneck, E. (2005). C/EBPdelta is a crucial regulator of pro-apoptotic 

gene expression during mammary gland involution. Development 132, 4675-85. 

Tsujimoto, Y., Yunis, J., Onorato-Showe, L., Erikson, J., Nowell, P. C. and Croce, C. M. 

(1984). Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and 

leukemias with the t(11;14) chromosome translocation. Science 224, 1403-6. 

Vallorosi, C. J., Day, K. C., Zhao, X., Rashid, M. G., Rubin, M. A., Johnson, K. R., 

Wheelock, M. J. and Day, M. L. (2000). Truncation of the beta-catenin binding domain of 

E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol 

Chem 275, 3328-34. 

Vargo-Gogola, T., Crawford, H. C., Fingleton, B. and Matrisian, L. M. (2002). 

Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and 

human Fas ligand. Arch Biochem Biophys 408, 155-61. 

Vaux, D. L., Cory, S. and Adams, J. M. (1988). Bcl-2 gene promotes haemopoietic cell 

survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-2. 

Veis, D. J., Sorenson, C. M., Shutter, J. R. and Korsmeyer, S. J. (1993). Bcl-2-deficient 

mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. 

Cell 75, 229-40. 

Verma, S., Zhao, L. J. and Chinnadurai, G. (2001). Phosphorylation of the pro-apoptotic 

protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem 276, 

4671-6. 

Vieira, H. L., Boya, P., Cohen, I., El Hamel, C., Haouzi, D., Druillenec, S., Belzacq, A. S., 

Brenner, C., Roques, B. and Kroemer, G. (2002). Cell permeable BH3-peptides overcome 

the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21, 1963-77. 



Villunger, A., Michalak, E. M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M. J., 

Adams, J. M. and Strasser, A. (2003). p53- and drug-induced apoptotic responses mediated 

by BH3-only proteins puma and noxa. Science 302, 1036-8. 

Wagner, K. U., Claudio, E., Rucker, E. B., 3rd, Riedlinger, G., Broussard, C., 

Schwartzberg, P. L., Siebenlist, U. and Hennighausen, L. (2000). Conditional deletion of 

the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. 

Development 127, 4949-58. 

Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., 

McKeon, F., Bobo, T., Franke, T. F. and Reed, J. C. (1999). Ca2+-induced apoptosis 

through calcineurin dephosphorylation of BAD. Science 284, 339-43. 

Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. and Korsmeyer, S. J. (1996). BID: a 

novel BH3 domain-only death agonist. Genes Dev 10, 2859-69. 

Wiseman, B. S., Sternlicht, M. D., Lund, L. R., Alexander, C. M., Mott, J., Bissell, M. J., 

Soloway, P., Itohara, S. and Werb, Z. (2003). Site-specific inductive and inhibitory 

activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J 

Cell Biol 162, 1123-33. 

Yamaguchi, H. and Wang, H. G. (2002). Bcl-XL protects BimEL-induced Bax 

conformational change and cytochrome C release independent of interacting with Bax or 

BimEL. J Biol Chem 277, 41604-12. 

Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A. and 

Korsmeyer, S. J. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular 

apoptosis. Nature 400, 886-91. 

Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. and Horvitz, H. R. (1993). The C. elegans 

cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting 

enzyme. Cell 75, 641-52. 

Zha, J., Harada, H., Yang, E., Jockel, J. and Korsmeyer, S. J. (1996). Serine 

phosphorylation of death agonist BAD in response to survival factor results in binding to 14-

3-3 not BCL-X(L). Cell 87, 619-28. 

Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. and Vogelstein, B. (2000). Role of BAX in 

the apoptotic response to anticancer agents. Science 290, 989-92. 

Zinkel, S. S., Ong, C. C., Ferguson, D. O., Iwasaki, H., Akashi, K., Bronson, R. T., 

Kutok, J. L., Alt, F. W. and Korsmeyer, S. J. (2003). Proapoptotic BID is required for 

myeloid homeostasis and tumor suppression. Genes Dev 17, 229-39. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 

2 Aim of this thesis 
 

So far Memo was known to be expressed in breast cancer cell lines and to be 

involved in in-vitro cell migration. The goal of this thesis is to analyze the role of 

Memo in in vivo processes. For this, we wanted to: 

 

- study the expression pattern of Memo in adult and in embryonic development. See 

if it is expressed more in epithelium than mesenchymal cells or if it is expressed more 

in migrating cells. 

- generate a knockout mouse and analyze its phenotype: identify if any organ 

presents any defect, and if yes which one. 

- generate a conditional knockout mouse in case the knockout mouse was lethal (this 

was the case) and cross it with a transgenic mouse expressing Cre in the organ of 

choice (we chose the WAPiCre mouse, since the mammary gland is an organ well 

studied in the lab and since it allows deletion of the gene of interest in the luminal 

epithelial cells of the mammary gland in late gestation and lactation).  

- analyze if Memo plays a role in the organ of choice (since we chose the mammary 

gland, analyze if the major events occurring during lactation and involution 

(morphology, proliferation, differentiation or apoptosis) are affected upon Memo 

deletion. 

 

 

 
 
 
 
 



3 Results 
 
 
 
 

3.1 Part I: Memo is required for vascular integrity during 
mouse embryonic development as shown by knockout 
study 

 
Patrick Kaeser, Régis Masson, Francisca Maurer, Jean-François Spetz, Bernard 

Kuchemann, Patrick Kopp and Nancy Hynes 

 

3.1.1  Abstract 
 

 

Studies from our lab recently led to the discovery of Memo (mediator of ErbB2-driven 

cell motility), a novel 297 amino acid protein shown to be required for ErbB2- and 

other receptor tyrosine kinase-driven cell motility. Inhibition of Memo expression had 

consequences on the microtubule network which could not grow towards the 

periphery of the cells upon heregulin stimulation. It also had consequences on the 

actin cytoskeleton, since more actin stress fibers were seen. Here we show the 

physiological function of Memo by disruption of the Memo gene in mice. Memo was 

expressed ubiquitously in adult organs and during embryogenesis. Memo knockout 

embryos showed hemorrhages and died at about embryonic day 13.5. Memo 

knockout embryos had a malformed neural tube. By morphological study and by 

using various markers, we show that deficiency in Memo had no significant effect on 

vasculogenesis, but had consequences on vascular integrity.  

 

3.1.2 Introduction 
 



Memo (mediator of ErbB2-driven cell motility) is a novel molecule identified in our lab 

as a protein binding to the phospho-Tyr 1227 of the ErbB2 receptor (Marone et al., 

2004). A single Memo protein is encoded in the human and mouse genome, but 

Memo homologs are found in all branches of life including in C.elegans (Gerlai et al., 

2000). 

With the help of transwell chamber assay, it has been shown that in vitro Memo is 

required for efficient heregulin-driven motility of breast carcinoma cells (Marone et al., 

2004), hence its name Memo. It has also been shown that in vitro Memo is required 

for efficient FGF2- and EGF- induced cell migration, indicative of a widespread role 

for Memo in receptor tyrosine kinase-induced cell motility.  

Inhibition of Memo expression markedly reduced the network of microtubules growing 

to the periphery. It has also been shown that the actin stress fibres appeared to be 

increased and it has been hypothesized that this effect is a consequence of an 

improper microtubule network.  

 

To explore the biological function of Memo, and in order to check if Memo also plays 

a role in in vivo cell migration events, we generated a mouse knockout for Memo. 

This was achieved by targeting the exon 2 of Memo. We found that Memo is 

expressed ubiquitously in adult organs as well as in organs of the developing 

embryo. Unexpectedly, we did not see any defect in migration in vivo, despite the 

presence of a lot of migrating events during development. Instead, we found that 

Memo is essential for embryonic development, and specifically for vascular integrity.  

 
 

3.1.3  Results 
 
Mouse Memo gene characterization 

 
A blast of the human nucleotide sequence of Memo AF132961 was performed using 

NCBI. Among the sequences producing significant alignments, we took the ref. 

NM_133771 as corresponding to Memo transcript in mouse. 

We searched for mouse Memo genomic localization and organization through the 

Ensembl Mouse Genome Browser (http://www.ensembl.org/) (Hubbard et al., 2002). 



It revealed that in mouse, Memo transcript is on genomic location 72760268-

72817650 bp on chromosome 17. Real comparison with Ensembl data and NCBI 

transcript revealed that the first exon could not be localized in the genome, probably 

because it is surrounded by a region difficult to sequence. 

Since exon 1 could not be located, exon 2 is recognized and named as exon 1 in 

Ensembl.  

It should be mentioned that the exon/intron structure given by Ensembl was not 

correct for exon 2 (exon 1 in Ensembl): indeed Ensembl gave a G as the first 

nucleotide of this exon. In fact this G is still belonging to the acceptor site of the 

intron-exon boundary. Indeed, an intron starts with a GT donor site and an AG 

acceptor site, giving the following sequence: exon-GTintronAG-exon. 

 

The blast of transcript NM_133771 with Ensembl revealed that mouse Memo 

contains 9 exons. 

 

Theoretical considerations for the targeting vector 

 

Both Cre and Flp are site-specific recombinases that cleave DNA at a distinct target 

sequence and then ligate it to the cleaved DNA of a second identical site to generate 

a contiguous strand. This recombination reaction is carried out with absolute fidelity, 

such that no single nucleotide is gained or lost overall. The Cre-lox system comes 

from the bacteriophage P1 and the Flp-FRT system from the budding yeast 

Saccharomyces cerevisiae.  

The strategy to knock-out Memo gene consisted in replacing an exon of the gene of 

interest by a sequence of this exon flanked by loxP sites (Figure 1). The presence of 

loxP sites allows the removal of the exon upon the Cre enzyme activation. This 

replacement was achieved by electroporating the targeting vector in ES cells from the 

129/Ola strain. The targeting vector also contains a neo cassette for resistance upon 

G418 treatment. This allowed selection of ES cell clones where recombination of the 

targeting vector occurred.  

Based on the fact that exon 1 (which contains the start codon ATG) could not be 

localized in the mouse genome we decided to choose exon 2 as the targeted exon 

for our construct. The number of nucleotides contained in exon 2 is not a multiple of 3 

and so, any potential transcript which would go from exon 1 directly to exon 3 would 



generate a potential protein which would share only the first 20 amino acids with wild-

type Memo (figure 2). According to bioinformatical predictions, any change in the 

protein structure of Memo would lead to a complete change in the conformation of 

the protein. This comforted us in choosing exon 2 for the targeting, although the ATG 

start codon is located in exon 1. 

 

PCR screening for ES clones that underwent homologous recombination in 5’ and 3’ 

of targeted Memo locus 

 

In order to select for ES cell clones that underwent not only recombination but as well 

homologous recombination of the targeting vector, PCR was performed using a 

forward primer in 5’ external to the vector and a reverse internal primer specific to the 

construction. PCR was as well performed using a forward primer specific to the 

construction and a reverse 3’ external primer. Figure 3A shows that ES clones # 116, 

159, 194 and 109 underwent correct homologous recombination. Sequence analysis 

of the PCR products was also performed in order to verify that the loxP and exon 2 

sequence was correct (not shown). Southern blot analysis was also performed on 

these clones in order to verify that they recombined only 1 copy of the vector. Results 

indicate that they indeed recombined only 1 copy (figure 3B).  ES clone 109 was 

used for mice generation. 

 

Generation of MEMO KO  mice 

 

To obtain mice harboring one Memo knockout allele, ES clone 109, containing one 

recombined Memo allele, was transiently transfected with pCMV-Cre plasmid (gift 

from Prof. Patrick Matthias) in order to induce Cre-mediated removal of the 3-lox 

sites. The 240 resulting clones were screened by PCR. The figure 4 shows that 

clones 185 and 202 contained the KO allele of 1.5 kb in addition to the WT allele of 

1.8 kb. ES clone 202 was used for aggregation experiment and to generate 

chimeras. The chimeras giving germ line transmission (GLT) were used to generate 

heterozygous knockout mice (Figure 5). Mice heterozygous knockout appeared 

normal and did not display any overt anatomical or behavioral abnormalities. Memo 

heterozygous knockout mice were interbred to generate full knockout mice. No mice 



homozygous for the mutation were detected among >150 weaned progeny from 

heterozygous intercrosses (Table 1). Therefore, the mutation is recessive lethal.  

 

Analysis of Memo RNA and protein localization  

 

So far we knew that Memo is expressed in breast cancer cell lines (data not shown). 

To get an idea in which organ or at which time point during development Memo could 

play an important role, we studied its pattern of expression in adult organs. This was 

first done by Northern blotting, since no antibody for Memo was available at that time. 

RNA from a total of 32 organs were harvested and analyzed. Northern blotting 

revealed only one band, suggesting that only one isoform is transcribed. It also 

revealed that Memo transcript (1555 bp) is ubiquitously expressed, and is particularly 

abundant in brown adipose tissue, thymus and testis (Figure 6A, lanes 5, 14 and 24). 

Once we got the polyclonal antibody for the protein, we checked at the protein level 

through Western blotting. It revealed that Memo protein is also ubiquitously 

expressed in all 23 adult tissues examined, particularly in the skin (lane 1) and testis 

(lane 4) (Figure 6B). 

In order to check if Memo was more expressed at a particular stage of embryonic 

development, Western blotting was performed in embryos from E10.5 to E18.5 using 

the polyclonal antibody. It revealed a constant expression of Memo in the examined 

stages (Figure 6C). 

The results obtained by Northern and Western blotting on adult organs suggest that 

Memo is expressed in every organ, or that it is strongly expressed in a type of cells 

which is present in every organ, for example in the blood vessels.  

To know if Memo was expressed in every cell type of the organs, we performed in-

situ hybridization using an antisense probe and a sense probe as control. It revealed 

that in the embryo, Memo RNA is ubiquitously expressed (Figure 7). Expression of 

Memo was seen in epithelial but as well in mesenchymal cells. High magnification 

reveals abundant staining in the endocardiac cells of the heart and endothelial cells 

of blood vessels (Figure 7 G and I).  

Immunohistochemistry using the polyclonal antibody did not show any difference in 

staining between wild-type and knock-out embryo, indicating that the polyclonal 

antibody is not suitable for immunohistochemistry (data not shown). We therefore 

developed a monoclonal antibody. Specificity of the staining for Memo using the 



monoclonal antibody was assessed by comparing the staining in a wild-type embryo 

with the staining of a KO embryo (Figure 8A and B). Evident difference was seen in 

the liver (Figure 8C and D) and in the dorsal root ganglia (Figure 8E and F). Some 

background staining is seen in the KO embryo in the nerve fibers and in the 

conjunctive tissue. 

Immunohistochemistry using this monoclonal antibody was established and was 

performed on embryos from E10.5 to E16.5. It revealed that Memo protein is 

ubiquitously expressed (Figure 9). However at E10.5, it is detected more abundantly 

in the somites. At E12.5-E13.0, it is mostly detected in dorsal ganglia, liver and 

cranial ganglia. There is strong staining in all the blood vessels, but this might be non 

specific since vessels are known to give some background. Later on, the staining is 

homogenous and ubiquitous. The only tissue which does not seem to express Memo 

is bone (E14.5-E16.5). Despite the fact that the monoclonal antibody also stains 

some organs in the knockout embryos, the monoclonal antibody can be used to 

distinguish wild-type and knockout embryos on sections. Results from the in-situ and 

immunohistochemistry taken together suggest that Memo is expressed in a 

ubiquitous manner. 

 
Mice homozygous for the mutant allele die around E12.5 and E13.5 and show 

hemorrhages, edema as well as malformed neural tube 

 
To determine when the homozygous die, embryos were examined from E10.5 to 

E14.5 (see Table2). Between E10.5 and E12.5 postcoitum, wild-type, heterozygous 

and homozygous mutant embryos were represented in a normal Mendelian ratio of 

1:2:1 (Table 2). Memo null embryos at E10.5 and E11.5 were indistinguishable from 

wild-type and heterozygous littermates. Therefore, development to day 11.5 of 

gestation is largely independent of Memo.  

Figure 10A shows a PCR analysis of gDNA from wild-type, heterozygous and 

knockout embryos. Figure 10B shows a Western blot analysis using the polyclonal 

antibody from protein extracts coming from the same embros. Both techniques are 

able to distinguish the genotypes of the embryos.  

By E12.5, defects began to appear in Memo-null embryos. Although they were still 

present in the expected proportions (Table 2) and all were alive as demonstrated by 

beating hearts, many showed hemorrhages in the heart, liver, brain and cardinal vein 



(Figure 11B and H). Some Memo-null embryos also exhibited malformation of the 

neural tube, which appeared bent instead of being straight (Figure 11B). 

Memo knockout embryos had a pale yolk sac when compared to wild-type embryos 

(Figure 12). However, whole-mount immunohistochemistry with anti-CD31/PECAM 

antibody of yolk sacs of embryos revealed that the vasculature was still present as 

late as in E14.5 knockout embryos (Figure 11G and H).  

 

By E13.5, the number of living Memo-null embryos is not found in the normal 

Mendelian ratio any more. Indeed the majority of knockout embryos did not show any 

beating of the heart. The phenotype of these knockout embryos is the same as the 

knockout embryos of E12.5. Hemorrhages were seen around the heart, liver, brain 

and cardinal vein but as well in the intersomitic blood vessels (Figure 11H). Some 

Memo-null embryos also exhibited pericardial edema at this stage. The edema was 

also evident in the space between the embryo and the yolk sac (Figure 12E and F). 

The neural tube was still malformed (Figure 10F). Yolk sac from knockout embryos of 

E13.0 and E13.5 showed a less complex vascular network than the one from wild-

type embryos (Figure 12C, D, E, F).  

In order to check if the vasculature in the placenta of KO embryos cannot be seen 

because of absence of vessels or because the vessels don’t contain any blood, CD-

31/PECAM whole-mount staining was performed on placenta from dead KO E14.5 

embryos. It revealed that there were still vessels present in the placenta KO embryo 

(figure 12G and H). So the vasculature of the placenta was only apparently absent 

when examined macroscopically, probably due to lack of blood flow. 

Later on at E14.5 and E15.5, no living knockout embryos were detected. Instead, 

they were deteriorating.  

Therefore, homozygosity for Memo-null mutation leads to death between E12.5 and 

E13.5. This change in time of death might be due to incomplete phenotype 

penetrance or to the mixed background of the mice.  

 

No morphological defect was detected in other organs 

 

Histological examination confirmed the results obtained from macroscopic 

examination. H&E staining of sagittal cross-sections showed abnormal blood 

presence in the heart, aorta, cardinal vein and liver (Figure 13). No overt 



abnormalities were observed in the skin, skeletal muscle, lung, kidney, pancreas, 

liver and heart of Memo knockout embryos until E13.5. Particular attention was given 

to the heart due to the phenotype of ErbB2 KO embryos (Lee et al., 1995); see 

discussion. But the endocardial cushions, trabeculae of the ventricles and valves 

were normal in the KO embryo, indicating that the hemorrhages were probably not 

due to an improper morphology of the heart.  

 

Analysis of the vasculature in Memo knockout embryos  

 
To analyze potential effects of the Memo knockout on overall vascularization, blood 

vessels of Memo wild-type and Memo knock-out embryos at stages E10.5 and E11.5 

were visualized by whole mount staining with anti CD-31/PECAM (platelet endothelial 

cell adhesion molecule) antibody. CD-31 is a surface membrane glycoprotein of 

130000 daltons found on platelets, endothelial cells, and certain white blood cell 

subtypes. It is thus mainly found in the vasculature (Newman and Albelda, 1992).  

Only embryos of the same litter were compared. As shown in figure 13, Memo 

knockout embryos showed a well-developed peripheral vascular system at E10.5 

with no obvious differences compared to wild-type embryos. At E10.5, side view and 

dorsal view did not present any difference between control and KO embryos (Figure 

14A-F). Higher magnification in the cranial region showed a well developed network 

of the primary head veins and a normal vessel branch from anterior carotid arteries 

(Figure 14G and H). Higher magnification of the dorsal region also showed a well-

developed vasculature with good ramifications at the surface of the skin (Figure 14I 

and J). 

Closer view at the region surrounding the heart revealed that the transitional 

branchial system was correctly established in the KO embryos. Ventricle and atrium 

also looked similar to the control embryos (Figure 14 K and L).  

Detailed view at the intersomitic vessels revealed a perfect sprouting of the 

intersomitic vessels from the dorsal aorta (Figure 14 M and N). 

At E11.5, the general vasculature of the KO embryo was well established. Higher 

magnification of the skin showed a well ramified vascular network (data not shown). 

In order to check for the integrity of the vasculature in later stage and to examine 

larger blood vessels in deeper layers of embryonic tissue, CD-31 immunostaining 

was established and performed on paraffin sagittal sections.  



Comparison between wild-type and KO embryos did not show any major difference 

(Figure 15). Closer examination showed a normal aorta, cranial vessels and 

intersomitic vessels. Taken together, the presence of main blood vessels like aorta 

and smaller ones like the intersomitic blood vessels clearly demonstrated that the 

Memo gene is neither required for the formation of the dorsal aortae and primary 

plexus (vasculogenesis) nor for vessel sprouting (angiogenesis). However some 

embryos showed broken vessels (Figure 15D).  

After the initial formation of the vascular plexus, vessels mature by the stabilization of 

the endothelial vascular network through a recruitment and differentiation process 

that ultimately results in the investment of vessel walls with mural cells (Carmeliet, 

2000).Vascular smooth muscle cells (VSMCs) first appear on the ventral side of the 

aorta in E10.5 embryos, followed by migration to the dorsum (Takahashi et al., 1996). 

By E11.5, the aorta is completely enveloped by VSMCs. The knockout of Edg-1, a 

GPCR for sphingosine-1 phosphate, which is involved in cell migration, leads to 

defect in pericyte recruitment due to their loss of migration (Liu et al., 2000). To 

assess this process of vessel development in the Memo knockout embryos, VSMCs 

were identified using an antibody against SMαA. The vascular smooth muscles were 

properly stained in wild-type and knockout embryos (Figure 16A and B). In sagittal 

sections from E13.0 embryos, the dorsal aortae were completely surrounded by 

VSMCs in both wild-type and knockout embryos (Figure 16C and D). Correct pattern 

of VSMCs was also observed in smaller vessels like the intersomitic vessels (Figure 

16 E and F). 

Vessels of the lymphatic system are highly permeable and specialized for the uptake 

of fluid and macromolecules from the interstitium and their return to venous 

circulation. Embryonic development of the lymphatic vessels starts when a subset of 

endothelial cells in the cardinal vein commits to the lymphatic lineage and sprouts to 

form the primary lymph sacs (Alitalo et al., 2005; Oliver, 2004). Recent studies have 

identified specific transcription factors and growth factors required to regulate the 

development of lymphatic vessels (Taniguchi et al., 2007). In mice, the lymphatic 

vasculature starts to develop at embryonic day 10.5 (E10.5), when the cardiovascular 

system is already functioning.  

Due to the presence of edema in the Memo knockout embryos, we checked for a 

marker of lymphatic vessels. LYVE-1 (lymphatic vessel endothelial hyaluronan 

receptor) is a receptor for the glycosaminoglycan hyaluronan (HA) which is 



predominantly expressed in lymphatic vessels. To assess if the edema observed in 

Memo knockout embryos could be due to a problem in lymphatic vessels, we 

performed immunohistochemistry of LYVE-1 on frontal paraffin sections (Figure 17). 

Comparison between wild-type and KO embryos did not reveal any difference 

between the control and KO embryo. 

In order to have a more detailed analysis of blood vessel morphology, 

immunofluorescence on frontal cross-sections of E13.0 was performed using CD-31 

and SMA antibody. Figure 18A and B shows that the heart, liver, intestine, are 

properly vascularized. A higher magnification of the subcutaneous vessels close to 

the neural tube reveals that the vessels in the KO embryo are sparser and less 

regularly aligned (Figure 18D) than in the wild-type embryo (Figure 18C). A higher 

magnification of the dorsal aorta and surrounding vessels shows that the aorta has a 

normal morphology and is properly surrounded by the smooth muscle cells in the KO 

embryos. It also reveals that the smaller vessels in the KO embryos are more dilated 

than in their control counterpart, indicating a problem in the small vessels of the 

Memo KO embryos (Figure 18E and F).  

Because of the hemorrhages seen and the dilated appearance of smaller blood 

vessels, endothelial cell proliferation and differentiation signaling factors, including 

angiopoietin-1 and -2, Flt-1, Flk-1, Tie-1 and-2 were analyzed by RT-PCR (Figure 

19). No difference could be observed between control and KO embryos. RT-PCR of 

EPO, HIF-1α, mouse secretory leucocyte, Edg-1 and VE-cadherin was performed as 

well. No difference could be observed between control and KO embryos. 

Thus the expression of genes required for early differentiation and assembly of 

endothelial cells into the vascular network was not impaired in the Memo KO 

embryos. Our data indicate that in Memo KO embryos, vasculogenesis and the 

phase of angiogenesis that entails vessel sprouting had properly occurred.  

 

3.1.4  Discussion  
Memo is a new protein that has recently been discovered in our lab. It has been 

shown to interact with ErbB2 through the phospho-tyr 1227 of ErbB2. In-vitro, it has 

been shown via the use of siRNA that Memo is playing a role in the migration of 

breast cancer cells upon stimulation by heregulin, a ligand which leads to activation 

of ErbB3/ErbB2 and ErbB4/ErbB2 heterodimers. This role of Memo in cell migration 



has been attributed to a function of Memo in the microtubule outgrowth towards the 

periphery of the cell.  

To get an idea of the in-vivo role of Memo, its pattern of expression was extensively 

analyzed in adult organs as well as in embryos. It revealed ubiquitous expression, 

and Memo was not seen stronger in the migrating cells than in other cells.  

We also generated a conventional KO mouse to see which in-vivo functions could be 

perturbed when Memo is absent. Since Memo has been shown in-vitro to be involved 

in cellular migration and a lot of migration events are going on during embryonic 

development, we hypothesized that Memo KO could be embryonic lethal due to 

impaired migration.  

The gastrulation is a period of development characterized by extensive migration and 

remodeling of the embryo germ layers. Due to the migration, some cells from the 

ectodermal layer become in contact with cells from the endodermal layer, and are 

induced to take new fate. In the mouse, the gastrulation occurs between E6 and 

E7.5. It is followed at E9 by a turning of the embryo, which then adopts a fetal 

position. Memo knockout embryos die between E13.0 and E13.5, a time when the 

complex events of gastrulation have already taken place. This indicates that Memo is 

not necessary for the migration events to occurr at gastrulation.  

The neural crest is also prone to migration. Neural crest cells arise along the lateral 

margins of the neural folds at the boundary between the surface and neural 

ectoderm. During the process of neurulation, these cells detach from the periphery of 

the neural plate and migrate throughout the body, where they differentiate into a 

particular wide range of cell types present in many tissues and structures. 

Interestingly these include non-neural elements as well, such as glial cells, 

angioblasts and cardiac mesenchyme. Components of the aortico-pulmonary spiral 

septum of the outflow tract of the heart seen at E10 also originate from neural crest 

derivatives. Memo knockout embryos presented some defect in the closure of the 

neural tube. However Memo knockout embryos contained dorsal root ganglia as well 

as cranial ganglia, indicating that these derivatives of the neural crest could properly 

migrate. The blood vessels were formed in Memo knockout embryos, and no defect 

could be observed in the heart and its associated vessels, indicating that Memo is 

dispensable for the migration of neural crests components to the heart and vessels. 

At about E7.5 and following gastrulation, the mesoderm on either side of the embryo 

segregates from the rest of the mesoderm in a position lateral to the neural tube. This 



mesoderm then forms so-called somitomeres in the head and somites in the body, 

which develop in a cranio-caudal sequence. This process continues until about E14. 

In the head the somitomeres give rise to the musculature of the head and branchial 

arches. In the body, the somites give rise to the vertebrae, ribs and associated parts 

of the skeleton. They also give rise to the musculature. In the mid-cervical region, 

some somite-derived myoblast cells migrate into the pleuroperitoneal membranes 

which then differentiate into the musculature of the diaphragm. Memo knockout 

embryos don’t show any defect in the branchial arch system, and skeleton as well as 

musculature don’t show any change as compared to control littermates. Hence, 

Memo is not required for somite migration during embryogenesis.  

Since Memo has been shown to interact with ErbB2, and to play a role in heregulin-

induced cell migration, it is of interest to compare the phenotype of Memo knockout 

with ErbB2-, ErbB3-, ErbB4- and neuregulin- knockout embryos.  

ErbB2 knockout embryos die by E10.75. They show a cardiac and a neuronal 

phenotype: they show absence of trabeculae in the heart ventricles and reduced size 

of endocardial cushions. They also have reduced Schwann cell number, abnormal 

cranial ganglia, hypoplasia of primary sympathetic ganglion chain (Lee et al., 1995). 

ErbB3 knockout embryos die by E10.75 and also show cardiac and neuronal 

phenotype. They show thin endocardial cushions, hypoplastic heart valves and poor 

circulation. They also show abnormal neuroepithelial layer differentiation at the fourth 

ventricle and absence of fingerlike projections at the fourth ventricle choroid plexus. 

They have abnormal pancreas and stomach epithelium morphology (Erickson et al., 

1997).  

ErbB4 knockout embryos die by E10.5 and also show a cardiac and neuronal 

phenotype. They show a failure of development of cardiac myocytes as well as 

patterning defects in the cranial nerves (Gassmann et al., 1995). 

Neuregulin knockout embryos die by E11.5. They show failure of endocardial cushion 

closure, poorly developed ventricular trabeculae, enlarged heart, enlarged 

pericardium and irregular heart beat (Meyer and Birchmeier, 1995). 

Memo knockout embryos die later, between E12.5 and E13.5. It is not clear whether 

this time range is due to incomplete penetrance of the phenotype or to the mixed 

background of the mice analyzed. Memo knockout embryos don’t show any defect in 

cardiac morphology. The endocardial cushions are well formed, the trabeculae (the 

finger-like projections of cardiomyocytes) and valves show correct morphology. The 



cranial ganglia were also present in Memo knockout. Instead, Memo knockout 

embryos show hemorrhages and despite the fact that blood vessels are correctly 

formed, the small blood vessels seem less organized and more dilated than in control 

littermates. 

A number of genes are important for vasculogenesis and vessel formation (Argraves 

and Drake, 2005). Their importance has been revealed through targeting deletion. 

The majority are associated with the VEGF pathway: Neuropilin 1 (Kawasaki et al., 

1999), Neuropilin 1&2 (Takashima et al., 2002), VEGFR1 (Fong et al., 1995; Fong et 

al., 1999), VEGFR2 (Shalaby et al., 1995), VEGFR3 (Dumont et al., 1998), VEGFA 

(Carmeliet et al., 1996; Ferrara et al., 1996), some are related to angiopoietins and 

their receptors: angiopoietin 1 (Suri et al., 1996), Tie-2 (Dumont et al., 1994; Sato et 

al., 1995), others are related to cell-cell adhesion: VE-cadherin (Carmeliet et al., 

1999; Crosby et al., 2005), connexin 45 (Kruger et al., 2000), Ephrin B2 (Wang et al., 

1998), beta-catenin (Cattelino et al., 2003) or cell-ECM adhesion: alpha5 integrin 

(Francis et al., 2002; Yang et al., 1993), fibronectin (George et al., 1993), alpha v 

integrin (Bader et al., 1998), alpha 4 integrin (Yang et al., 1995).  

We could not analyze all the genes mentioned here, but it is possible that the 

expression or localization of some of them is different in knockout compared to wild-

type embryos. 

Components of the hypoxia response also play a role in vascular development: HIF-

1alpha (Kotch et al., 1999), VHL (Gnarra et al., 1997). Whether or not Memo plays a 

role in hypoxia response still needs to be analyzed.  

Interestingly, Wave 2, a protein involved in cell migration, is necessary for proper 

angiogenesis in vivo (Yamazaki et al., 2003). Memo also plays a role in migration and 

in the cytoskeleton integrity. However, wave 2 is expressed predominantly in the 

vascular endothelial cells during embryogenesis, whereas Memo is ubiquitously 

expressed. The mechanisms how Memo influences the integrity of smaller blood 

vessels still need to be investigated. 

Memo has been shown to interact with Shc (Marone et al., 2004). Interestingly, the 

knockout of ShcA shows enlarged pericardium and abnormal cardiac contractions. 

By E11.5, they have pale yolk sacs and their heart and cardiac outflow tracts are 

congested with blood (Lai and Pawson, 2000). Memo knockout embryos die later 

though. If Memo phenotype is dependant on Shc remains to be elucidated. 



Here we have shown that Memo is essential for proper vascular maintenance in the 

embryo. However, we do not know yet the physiological function of Memo in other 

tissues or organs. Production of a conditional knockout of Memo will be helpful in 

solving this issue.  

 

 

3.1.5  Materials and methods 
 
Northern blotting  and RT-PCR analysis  

RNA was prepared by the Trizol method (GiBCO). For synthesis of the Memo probe, 

full length Memo cDNA was synthesized by using the forward primer 5’- 

CCCATCTTCCGGCGGCCGGCGGAG-3’ and the reverse primer 5’- 

GAGTTGTGTAGCCCTTTATTAGC -3’. The PCR fragment was extracted and cloned 

in pGEM-T easy Vector System 1 (Promega, A1360). After digestion of the fragment, 

synthesis of the radiolabeled 32P probe was performed using the random prime 

labeling kit from Roche 

For RT-PCR analyses, purified RNA was reverse transcribed and PCR amplified by 

standard procedures.  

 

Lysate preparation and Western blot analysis of Memo 

To prepare lysates from organs and embryos, the frozen tissue was ground to a powder in 

liquid nitrogen and homogenized in lysis NP40 buffer containing 1% Nonidet P-40, 50mM 

Tris (pH7.5), 120mM NaCl, 5mM EDTA, 1mM EGTA, 2mM Na-vanadate, 20mM ß-

glycerophosphate, 10µM/ml aprotinin, 10µM/ml leupeptin, 0.5mM PMSF, 50mM NaF and 

1mM DTT. Cell lysates were subjected to SDS-PAGE, transferred to PVDF membranes, 

which were blocked in 5% nonfat milk for 30 minutes and incubated overnight at 4°C with 

the Memo polyclonal antibody. Membranes were then incubated with the specific secondary 

antibody (Amersham) coupled to horseradish peroxidase. Signals were detected by 

enhanced chemiluminescence (ECL; Amersham) and recorded by Kodak LS-OMAT film. 

 

 

Targeted disruption of Memo 

 



PCR synthesis of homology arms and loxP-exon2 were performed on 15ng/µl gDNA 

extracted from ES cells (129/OLA), 1.5mM MgCl2, 0.2mM dNTP mixture, 0.03 U/µl 

Red Hot Dna polymerase (Abgene, ref. AB-0406/A9), 0.005 U/µl Pwo polymerase 

(Roche diagnostics, ref. 1 644 947), respective primer pair (200nM each) in the 

following cycling conditions: 

Pre-denaturation step 2 min. at 94°C, 14 cycles [15 s at 94°C – 3 min. at 70°C (-

0.5°C per cycle)], 20 cycles [15 s at 94°C – 3 min. (+ 10 s per cycle) at 63°C], post 

elongation step 7 min. at 63°C, storage at 4°C. 

Primer sequences were: 

For synthesizing the 5’ Homology arm (5’HA) of 3535 bp,  

forward primer  

5’- ACATTCATGGCCCTCGAGGCCCATCTTAGAGCAGTCTTTGCATAGG-3’and 

reverse primer  

5’-AAGTATGAGGCCATCCCGGCCGGAGTCAGCAAAGCAACATATTACA-3’ 

were used.  

For 3’ Homology arm (3’HA) of 3458 bp,   

forward primer 

5’-AATTCCTAGCGGGCCAGCTAGGCCGCCTCTGGTTCCAGTTCCAGGGGAT-3’ 

Reverse primer 

TGAAGATTGGCCACTGAGGCCTCAGCTTGCTTAAGTCTCACTTTGC 

 

 

Briefly, each PCR product was purified, SfiI digested and ligated in a vector 

containing a pgk-neomycine cassette flanked with 2 loxP sites and 2 Frt sites. 

Sequencing of the exonic regions, loxP and FRT sites was performed to avoid any 

risk of PCR-induced mutations. 

The targeting construct linearized by SalI restriction and overhanging ends were filled 

by the Klenow fragment. Purification was carried out by two successive rounds of 

phenol/chloroform extractions followed by an ethanol precipitation and two washes 

with 70% ethanol. Pure DNA was air dried and resuspended in sterile deionized 

water. ES cells were electroporated with the targeting construct and selected for 

resistance for G418. ES clones that underwent recombination and were hence 

resistant were initially screened for homologous recombination at Memo locus by 

PCR using 5’ external forward primer 5’- 



ATGGTGTGGCTGTTTTGCCTGGATGTGTGC-3’ combined with a neo cassette 

specific reverse primer 5’-CTAAAGCGCATGCTCCAGACTGCCT-3’as well as with a 

neo cassette forward primer 5’- TCAGCAGCCTCTGTTCCACATACACTTC-3’ 

combined with a 3’ external reverse primer 5’- 

CCTTTACTTCCCCTCCTCAGCCTGACCTTC-3’ using Expand Long Template PCR 

system (Roche # 11 681 834 001), according to manufacturer’s instructions. Single 

integration was confirmed by Southern blotting using a neo specific radiolabeled 

probe. Two ES clones showed specific homologous recombination at Memo locus (3 

lox allele) and were used for aggregation experiment and chimera production. Only 

clone 109 gave chimera with germline transmission. 
 

Generation of mice and tissue preparation for analysis 

ES clone 109, containing one recombined Memo allele, was transiently transfected 

with pCMV-Cre plasmid (gift from Prof. Patrick Matthias) in order to induce Cre-

mediated removal of the 3-lox Memo allele. 240 clones were screened by PCR using 

forward primer 5’-GGCTCAGGGAATTCCTGCTCAGG-3’ and reverse primer 5’-

GGATCGAGAAACTTTCATACTACAGC-3’. Clone 202 was selected for aggregation 

experiment and generation of chimera with germline transmission. Memo 

heterozygous mice were inbred for generation of full knockout.  

For histology, embryos were dissected. For immunohistochemistry on paraffin 

sections, they were fixed 24 hours at 4°C in 4% paraformaldehyde in phosphate-

buffered saline (PBS), pH 7.4 then embedded in paraffin for preparing 5µm sections. 

For immunofluorescence, they were fixed overnight at 4°C in 4% paraformaldehyde 

in phosphate-buffered saline (PBS) and frozen in optimal cutting temperature 

compound (OCT, Tissue Tek) for preparing 10µm sections.  

 

In situ hybridization 

RT-PCR using Fw primer 5’-CTTCCCATCATGTGCCCCTGT-3’ and Rw primer 5’-

GAGTTGTGTAGCCCTTTATTAGC-3’was performed using RNA from WT testis. 

The PCR fragment was extracted and cloned in pGEM-T easy Vector System 1 

(Promega, A1360). Sense and antisense probes were in-vitro transcribed using  the 

DIG RNA Labeling Kit (SP6/T7) (Roche 1 175 025) after linearization of the vector at 

a SalI restriction site which is not present in the construct. 



In situ hybridization on paraffin sections was performed with the Ventana Discovery 

XT system. Sections were pretreated 4 minutes with HCl and 36 minutes with citrate 

buffer pH 6. 30ug of (anti-) sense probe was applied for 6 hours. Anti-DIG antibody 

(1:2000) was applied for 32 minutes. After an amplification step using the 

avidin/biotin system, nitro blue tetrazolium chloride (NBT) and bromo- chloro- indolyl 

phosphate (BCIP) were used to detect the signal. 

 

Immunohistochemistry 

Immunohistochemistry on paraffin sections was performed with the Ventana 

Discovery XT system. Memo monoclonal antibody was used 1/50 from the purified 

fractions of 350ug/ml and sections were pretreated 64 minutes in Tris-EDTA pH 8. 

LYVE-1 antibody (R&D Systems Cat no AF2125) was used 1/200 and sections were 

pretreated 36 minutes in Tris-EDTA pH 8. α-smooth muscle actin antibody (Sigma, 

product no A 5228) was used 1/400 without pretreatment. CD-31 antibody (BD 

Pharmingen cat 550274) was used 1/50 and sections were pretreated 20 minutes 

with protease. Revelation was made using the DAB kit (Ventana), except for CD-31 

which additionally required the TSA amplification kit (Ventana). 

 

Memo monoclonal antibody preparation 

2 Memo-peptides were selected for production of monoclonal antibodies: peptide 

1470 (sequence Cys His Ala Tyr Lys Gln Val Asp Pro Ser Ile Thr Arg Arg) and 

peptide 1471 (sequence Cys Arg Asn Trp Gln Asp Ser Ser Val Ser Tyr Ala Ala Gly 

Ala Leu Thr Val His). The peptides were independently conjugated to keyhole limpet 

hemocyanin (KLH) and BSA using the “Imject Maleimide-activated Imunogen 

Conjugation Kit with mcKLH and BSA” (Pierce, 77607).  

2 female Balb/c mice (age 6-8 weeks) were immunized with 25 ul of KLH-conjugated 

petide-mix (containing 12 ug KLH-peptide 1470 and 8 ug KLH-peptide 1471) which 

was mixed with 25ul of the adjuvant ImmunEasy (Qiagen). The mice were injected 4 

times with adjuvant (s.c, neck) and once without adjuvant (final booster injection, i.p). 

All injections were given with a 2-week interval. Two days after the final injection the 

mice were killed and the spleen was removed. Splenic lymphocytes were fused with 

the myeloma cell line P3xAg8.653 (ATCC) and cultured according to standard 

protocols. Growing hybrids were tested for their ability to secrete antibodies by 

ELISA. ELISA plates were coated with a 1:1 mix of the BSA conjugates of peptide 



1470 and 1471. The hybridoma tissue culture supernatants were used as 1st 

antibody. Hybrids showing the best ELISA signals were further analized by Western 

blot using cell culture extracts of myc-Memo overexpressing cells. Selected 

hybridomas were then subcloned twice and rescreened by ELISA. 

Clone NH3-65J25 (specific for peptide 1471) was identified as most usefull and 

monoclonal antibody secreted by this clone was used in the immunofluorescence 

experiment. 

NH3-65J25 cells were grown in IMDM with 15% FCS to high cell density without 

medium change to allow monoclonal antibody accumulation in the tissue culture 

supernatant. Hybridoma supernatant was then collected and antibodies were purified 

using the HiTrap Protein G HP column (GE Healthcare) according to manufacturer’s 

instructions. An aliquot of the collected fractions was run on a gel and only fractions 

which showed high enrichment after Coomassie staining were pooled and used for 

immunofluorescence. 

 

 

Immunofluorescence 

Cryosections of 10 µm were prepared from overnight 4% Pfa fixed cryosections. 

Immunofluorescence was performed on cryosections postfixed 10 minutes at -20°C in 

acetone-methanol (1:1). Antibodies were used as followed: CD31 1/200 (Pharmingen), SMA 

1/400 (Sigma). Prior to antibody incubation, sections were blocked for 15 minutes with 10% 

goat serum.  

Secondary antibodies were AlexaFluor (from Molecular Probes). They were diluted 1/400. 

 

 

 

 

 

 

 

 

 

 

 



3.1.6  Tables and Figures 
 

 

 

 

 

 

 

 

 

 

 Table 1: Analysis of newborns genotypes resulting from Memo heterozygous knockout matings.
No living or dead Memo knockout (-/-) newborn was obtained. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Analysis of genotypes of living embryos resulting from Memo 
heterozygous knockout matings. 
We observe a decreasing proportion of living Memo KO embryos after 12.5 
dpc indicating the stage of embryonic lethality. No living embryo was detected 
after 14.5 dpc. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Targeting of Memo locus 
The exon-intron structure of the mouse Memo gene shows that Memo 
contains 9 exons. The targeting vector harboring the 5’homology arm, 
the floxed exon 2, the Neo cassette and the 3’ homology arm was 
electroporated into ES cells. This gives rise to the depicted Memo floxed 
allele.  
 

 

 

 

 

 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Protein sequence of mouse Memo and of putative protein after exon 2 deletion. 
Analysis of protein sequence reveals that if any protein is translated from the mRNA after removal of 
exon 2, this protein would share only the first 20 amino acids with the wild-type Memo protein. 
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Figure 3: Screening for ES cells that underwent one homologous 
recombination 
PCR screening for ES clones that underwent homologous recombination 5’ 
and 3’ of targeted Memo locus shows that ES clones #116, 159, 194 and 109 
have done correct homologous recombination (Figure 3A). 
Southern blotting of gDNA from ES cells having the recombined Memo locus 
show that clones #116, 159, 194 and 109 have the correct pattern after NheI 
and XhoI restriction (Figure 3B). Note that the 7kb fragment of clone 116 after 
XhoI restriction is very faint. The upper bands sharing the same size than the 
WT band is a background band corresponding to contamination by G418 
resistant fibroblasts used as feeder cells. 
Clone 109 was used for further experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Screening for ES cells that have one Memo KO allele 
PCR characterization of clones that underwent recombination and generation 
of KO allele after electroporation of the Cre recombinase in ES clone 109 
shows that clones 185 and 202 have the KO allele. Clone 202 was used for 
further experiments. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Generration of Memo KO mice 
After electroporation of the targeting vector, clone ES 109 showed correct 
homologous recombination and was used for further experiments. After Cre 
transfection in clone 109, clone 202 showed a Memo knockout allele and was 
used to generate chimeras. The chimeras which gave germline transmission 
(GLT) were further used to generate Memo heterozygous animals.  

 

 



 



Figure 7: Ubiquitous expression pattern of Memo in embryos E11.5-E13.5  
In-situ hybridization on paraffin sagittal cross-sections of WT embryos using an antisense (A, 
C, E, G, and I) and a sense (B, D, F, H and J) probe for Memo. (G and H) represent a higher 
magnification of the heart.  The zoom shows a particularly strong staining in the endocardiac 
cells (arrowheads). (I and J) represent a higher magnification of the aorta and its valve. Note 
the endothelial cells bordering the aorta (arrows). 
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 Figure 9: Analysis of Memo’s expression pattern in embryos by 
immunohistochemistry  
A: Immunohistochemistry with the monoclonal antibody was performed on 
embryos from stages E10.5-E16.5. At E10.5, the protein is mostly detected in 
the somites (black arrows) but its expression is ubiquitous. At E12.5-E13.0, it 
is detected in the dorsal ganglia (black arrows), liver (black arrowhead) and 
cranial ganglia (white arrowhead). Later on, the protein is ubiquitously 
expressed throughout the embryo.  

 

 

 

 
  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10: No protein is detected in the Memo knockout embryos by the 
plyclonal antibody.   
  A: PCR genotyping of KO E12.5 embryos obtained from matings of 
heterozygous knockout parents shows that pups 1, 2 and 6 are knockout. 3, 4, 
7 and 8 are heterozygous and 6 is wild-type.  

 

 B: Western blot analysis of protein extracts coming from the same embyros as 
in (A) confirms the PCR result: No Memo protein is detected in the knockout 
embryos 1, 2 and 6. 

 

 

 

 

 

 



Figure 11: The Memo knockout embryos have malformed neural tubes and show 
hemorrhages. 
Macroscopic examination of wild-type and K-O E12.5 and E13.5.  
The dorsal view of the embryo shows that the neural tube is not correctly developed but is bent 
in the K-O embryos (dashed white arrows in B and F) compared to wild-type embryos (A and 
E). 
On a left side view of E12.5 embryos, hemorrhages are seen in the heart (black arrowhead), 
cardinal vein (black arrow) and liver (white arrowhead) of the K-O (D). A side view of E13.5 
shows intersomitic hemorrhages (dashed black arrows), as well as abnormal blood presence 
in the cardinal vein (black arrow) and liver (white arrowhead).  
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Figure 12: Abnormal placental vascularization in Memo knockout embryos 
Examination of placenta of wild-type (A,C,E,G) and knockout (B,D,F,H) embryos. 
Macroscopical view of embryos at E12.5 reveals a paler yolk sac in knockout embryos (B) 
compared to wild-type littermates (A).  
Higher magnification of vessels of the placenta  at E13.0 reveals that they slowly disappear in 
the knockout embryos (F). Wild-type littermate placenta is shown in (E). 
At E13.5, a time when the knockout embryos were dead as indicated by non beating heart, 
there is no more trace of placental vascularization in the knockout embryos (left in C and right 
in D). Moreover, the space between the embryo and the placenta has increased, a sign of 
edema. 
Whole-mount CD31 staining of placenta of wild-type (G) and knockout (H) embryos reveals 
that the endothelial cells are still present in the knockout embryos, despite the gradual 
absence of blood seen in (B), (D) and (F). 
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Figure 13: Histological sections confirm the presence of hemorrhages and edema, 
but shows that other organs are intact 
 
H&E staining on paraffin cross-sections reveals the abnormal presence of blood in heart 
(white arrowhead), aorta (black arrow), cardinal vein (white arrow) and liver (black 
arrowhead) in knockout embryos (B and D) compared to wild-type embryos (A and C). No 
other defect could be seen in the morphology of heart, lung, pancreas for example. 
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Figure 14: Memo knockout embryos have a normal network of blood vessels  
CD-31 whole mount staining of E10.5.  
Left (B) and right (D) side view shows that the gross vasculature morphology is intact in the KO 
embryos compared to wild-type embryos (A resp.C). 
Dorsal view shows the normal presence of intersomitic vessels in KO (F) and wild-type (E) 
embryos. 
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Figure 14 (continued): Memo knockout embryos have a normal network of blood 
vessels  
Higher magnification shows a good network of primary head veins (G and H). The vessel 
branch from anterior carotid arteries is also correctly formed (white arrowhead in G and H). 
Vascular network in the back does not show any difference between WT (black arrows in I) 
and KO ( black arrows in J) embryos. The transitional branchial arches have the correct 
morphology in the knockout embryos (white arrow in L) compared to wild-type embryos (white 
arrow in K). The atrium and ventricle are also well vascularized (white circle in K and L). 
Higher magnification of intersomitic vessels shows that their network is not affected in the 
knockout embryos (white arrows in N) compared to wild-type embryos (white arrows in M). 
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Figure 15: The deeper network of vessels is intact in Memo knockout embryos 
CD-31 staining of sagittal cross sections of wild-type and KO E12.5 and E13.0 embryos. 
The atrium and ventricle morphology of the heart is intact in the KO embryos. Cranial 
vessels (black arrow in G and H), aorta (black arrow in E and F) and intersomitic vessels 
(dashed black arrow in G and H) show no abnormality. The arrowhead in (D) points to a 
dilated blood vessel. 

E12.5 

E13.0 

A 

G 

FE 

DC 

B

H

WT KO

 
 

 



WT KO

 

 

Figure 16: The smooth muscle cells are properly recruited to stabilize blood vessels of 
the Memo knockout embryos. 
Smooth muscle actin staining of sagittal cross sections of E13.0 WT (A,C,E) and KO (B,D,F) 
embryos. 
The dorsal aorta, heart and cranial vessels are normally stained in the KO embryo (B) 
compared to wild-type embryo (A). 
Higher magnification shows that the dorsal portion of the dorsal aorta is stained as well (B 
and D). 
Higher magnification shows that even smaller vessels as the intersomitic vessels are 
properly surrounded by smooth muscle cells (black arrows in E and F; L stands for lung). 
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Figure 17: The lymphatic vessels are intact in the Memo knockout embryos. 
 
LYVE-1 staining of sagittal cross sections of E13.0 WT (A) and KO (B) embryos. 
The liver, heart and cranial region are normally stained in both WT and KO embryos. 
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Figure 19: No change in the expression of genes involved in vasculogenesis, 
angiogenesis and maturation of blood vessels 
RT-PCR of RNA extracts from wild-type and knockout embryos did not show any difference in 
the expression of Flt-1, Flk-1, angiopoietin-1 and 2 and their receptors Tie-1 and 2. There was 
also no change in the transcript level of EPO, HIF-1α, Edg-1 and VE-cadherin levels. 
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3.2.1  Abstract 
 

 

Studies from our lab recently led to the discovery of Memo (mediator of ErbB2-driven 

cell motility), a novel 297 amino acid protein shown to be required for ErbB2- and 

other receptor tyrosine kinase-driven cell motility. Inhibition of Memo expression had 

consequences on the microtubule network which could not grow towards the 

periphery of the cells upon heregulin stimulation. It also had consequences on the 

actin cytoskeleton, since more actin stress fibers were seen. To study the in vivo role 

of Memo in the mammary gland, Memofl//fl mice were crossed with WAPiCre 

transgenic mice, which led to specific ablation of Memo in luminal alveolar epithelial 

cells. As shown by pup weight measurement, the conditional knockout mice were 

unable to correctly nurse their pups. During lactation the mammary gland weight was 

smaller in CKO females compared to control females. H&E staining indicated the 

presence of shed cells in the lumen of CKO glands in the first days of lactation. It also 

revealed a progressive loss of alveoli which were replaced by adipocytes. Increased 

apoptosis was measured in the CKO glands by cleaved caspase-3 

immunohistochemistry. Consistent with this apoptosis, an increase in the levels of 

pro-apoptotic P-Stat3 and Bax was seen at protein level. Improper localization of the 

adherens junction proteins E-cadherin and ß-catenin was seen in the conditional 

knockout glands, which probably is the reason for the observed increase of 

apoptosis. 

 

3.2.2  Introduction 
 

The mammary gland represents an attractive organ for developmental studies 

(Hennighausen and Robinson, 2001; Hens and Wysolmerski, 2005; Hinck and 

Silberstein, 2005; Oakes et al., 2006; Sternlicht, 2006; Watson, 2006). While 

pregnancy occurs, the gland begins to form side buds which elongate perpendicular 

to existing ducts. Alveolar growth and proliferation accompanied by migration occurs 

during pregnancy. This is followed by functional differentiation of the alveolar 

epithelium at the end of gestation with the onset of milk secretion at parturition. 



Among other roles, hormones temporally control the tight junction closure during the 

transition from pregnancy to lactation (Nguyen et al., 2001). Some additional alveolar 

proliferation occurs during the first few days of lactation. In the absence of suckling or 

at cessation of nursing, the differentiated mammary epithelial cells are removed by 

apoptosis and by basement membrane degradation and the gland is remodeled to a 

duct system similar to that in the mature virgin. This process, named involution, 

occurs in two phases (Lund et al., 1996). In the first phase, the lack of suckling and 

milk stasis leads to the accumulation of local factors that result in a rapid but 

reversible induction of apoptosis within the differentiated mammary epithelial cells (Li 

et al., 1997; Marti et al., 1997). When the lack of suckling is prolonged, the involution 

goes into its second, irreversible phase. Apoptosis is accompanied by a tissue–

remodeling phase involving the induction of matrix-degrading enzymes (Green and 

Lund, 2005) and inflammatory cell infiltration (Stein et al., 2004). The drop of 

circulating hormones might affect the cell-cell junctions (Zettl et al., 1992) 

 

Memo (mediator of ErbB2-driven cell motility) is a novel molecule identified in our lab 

as a protein binding to the phospho-Tyr 1227 of the ErbB2 receptor (Marone et al., 

2004). A single Memo protein is encoded in the human and mouse genome, but 

Memo homologs are found in all branches of life including in C.elegans (Lai et al., 

2000). 

With the help of transwell chamber assay, it has been shown that in vitro Memo is 

required for efficient heregulin-driven motility of breast carcinoma cells (Marone et al., 

2004), hence its name Memo. It has also been shown that in vitro Memo is required 

for efficient FGF2- and EGF- induced cell migration, indicative of a widespread role 

for Memo in receptor tyrosine kinase-induced cell motility.  

Inhibition of Memo expression markedly reduced the network of microtubules growing 

to the periphery. It has also been shown that the actin stress fibres appeared to be 

increased and it has been hypothesized that this effect is a consequence of an 

improper microtubule network.  

 

To probe the in vivo function of Memo in the mammary gland, it was necessary to 

generate a tissue-specific, conditional knockout of Memo to overcome the embryonic 

lethality of Memo disruption. This result was achieved using the Cre-lox 

recombination system in which expression of  Cre recombinase is directed 



specifically to mammary luminal epithelial cells by the promoter of the milk protein 

gene whey acidic protein (WAP) (Wintermantel et al., 2002). These WAPiCre 

transgenic mice were crossed with mice harboring two floxed Memo alleles in which 

the lox P sites were inserted around exon 2. Without exon 2, any potential protein 

generated would have aberrant amino acid sequence. The mice exhibited epithelial 

apoptosis leading to abnormal morphogenesis and inability to nurse their pups. The 

apoptosis probably results as a consequence from improper adherens junction 

between the luminal epithelial cells.  

 

3.2.3  Results 
 

Analysis of Memo expression at various stages of mammary gland development and 

in the mammary glands of conditional knock out mice 

 

A study of Memo expression in adult organs and in embryos has revealed a 

ubiquitous expression of Memo mRNA and protein. To investigate whether Memo is 

specifically required in mammary gland development, we first performed analysis of 

protein extracts at various stages of mammary gland development. Western blot 

analysis revealed a ubiquitous expression of Memo during gestation, lactation and 

involution (Figure 1A).  

To study the role of Memo during mammary gland development, we conditionally 

knocked out Memo by crossing WAPiCre transgenic mice with mice harboring two 

floxed Memo alleles (Figure 1B). WAP (whey acidic protein) is a milk protein, that’s 

why WAPiCre is specifically expressed in the secretory luminal epithelial cells of the 

gland starting at midpregnancy and reaches a maximum at day 3 of lactation. 

WAPiCre is not expressed in the ductal tree of the virgin gland, nor is it expressed in 

the basal myoepithelial cells of the alveoli. Littermates with the genotype 

Memofl//fl/WAPiCre-/- (referred to as control mice) or Memofl//fl/WAPiCre+/- (referred to 

as conditional knockout mice) were used for all analyses. These mice reached 

adulthood with no apparent abnormalities. Mammary glands from 3-day lactating 

females were used to examine Cre-mediated recombination. Figures 1C and 1D 

show RT-PCR and Western blot at day 3.5 of lactation to characterize the WAPiCre 

recombination occurring at the floxed Memo alleles. Following RT-PCR, the floxed 



Memo allele was detected as a 295 bp fragment (lane 1) and the null Memo allele as 

a 212 bp fragment (lane 2). The residual 295 bp fragment corresponding to the floxed 

Memo allele can result from unrecombined floxed allele of the luminal epithelial cells 

or most probably of the surrounding myoepithelial and stromal cells since WAP is not 

expressed in these cells. 

 

Deletion of Memo in the luminal epithelial cells resulted in severe pup weight 

reduction 

 

During lactation, the luminal epithelial cells of the mammary glands undertake their 

main function which is to produce milk for the pups. An assay to measure if this 

function is altered consists in measuring the body weight of the progeny. For this 

purpose, pups coming from control and CKO females were mixed and 6 pups were 

randomly given to each female. The pup weights were then monitored from day 1 to 

day 15 of lactation (Figure 2A). At all time points, the average weight of the pups 

nursed by CKO females was lower than the one of pups nursed by control females. 

After 6 days of lactation, it represented 83.46% of the weight from control, after 10 

days just before it reached a plateau, 73.79%. After 12 days it started to decrease to 

finally reach only 51.89% after 15 days. The maximum weight of the pups nursed 

from CKO females is after 11 days. It corresponds to the weigh of a pup nursed from 

control females after 7 days. Figure 2B shows a picture from 1 pair of pups coming 

from control and 1 pair of pups coming from conditional knockout mothers after 14 

days of lactation. The latter were visibly smaller. The proportional weight of the 

mammary gland itself compared to the total mouse weight was also measured after 

6, 10, 12 and 15 days of lactation (Figure 2C).  

The proportional weight of the mammary gland was 1.10 to 1.27% in the control 

mice. It was only two third of this range in the conditional knockout mice, reaching 

only 0.78 to 0.84%. 

 

Deletion of Memo results in abnormal mammary gland morphogenesis during 

lactation  

 

Figure 3 shows hematoxylin- and eosin-stained paraffin sections of Memofl//fl 

(A,C,E,G,I) and Memofl//fl/WAPiCre (B,D,F,H,J) mammary glands during lactation. At 



days 3.5 and 6.5 of lactation, there was no significant differences in either the 

development of the lobular-alveolar structures or their density in CKO (B and D small 

panel) compared to control mammary glands (A and C small panel). However, a 

higher magnification revealed a noticeable change in the alveolar integrity of the 

glands from Memo CKO females. Indeed luminally shed cells were detected (black 

arrows in B,D).  

From 10.5 days of lactation, the lobulo-alveolar structure was less dense in the CKO 

mammary glands (E,G,I) compared to the control glands (F,H,J).  

Figure 4 shows a oil red O staining of cryosections of Memofl//fl (A,C,E,G,I) and 

Memofl//fl/WAPiCre (B,D,F,H,J) mammary glands during lactation. The red staining 

reveals that the alveoli continue to secrete milk in Memo CKO glands. But the 

majority of the staining in the Memo CKO glands actually does not stain lipids from 

milk, but lipids from adipocytes surrounding the alveoli. 

The area of the gland occupied by alveoli was manually delimited as shown in figure 

4K using the Image Access software. The area occupied by alveoli was measured 

and the results are shown in Figure 4L. A significantly smaller surface percentage 

was occupied by alveoli in glands from Memofl//fl/WAPiCre mice compared with 

Memofl//fl mice. In the wild-type glands, the surface occupied by alveoli was 68-78%, 

depending from the stage, whereas it continuously decreased in the CKO glands 

during lactation: from 68% after 3 days of lactation, it went down to 53% after 10 days 

and to less than 20% after 15 days. This loss of milk-producing cells likely explains 

the associated pup weight decrease.  

 

Increased epithelial apoptosis in the absence of Memo 

 

The observed shedding of epithelial cells into the lumen at lactation 3.5 and 6.5 is 

likely to be responsible for the loss of alveoli visible from 10.5 days of lactation on. To 

check if the cells which were detached and shed into the lumen were apoptotic, we 

performed immunohistochemistry for cleaved caspase-3, an executioner caspase. 

Immunohistochemistry revealed that that the shed cells in the lumina were apoptotic. 

Some luminal epithelial cells in the lobuloalveolar structure were also positive for 

cleaved caspase-3 (see arrowheads in Figure 5H). 

A significant increase in cleaved caspase-3 positivity was seen at day 3 

(1.66%±0.1%) and 6 (1.69±0.15%) of lactation in the Memofl//fl/WAPiCre mice 



compared to Memofl//fl mice (0.03%±0.012% and 0.04%±0.07% respectively, mean ± 

S.E.M, n=4). A decrease in cleaved caspase-3 positivity was seen at day 10 of 

lactation in the CKO glands when the surface covered by alveoli has started to 

significantly decrease. A gradual increase in the number of cleaved caspase-3 

positive cells was seen in the control glands. 

 

Stage-specific changes of proliferation rates in the CKO mammary glands after 

deletion of Memo 

 

The apoptosis detected in the shed cells and in lobuloalveolar structure could result 

from a proliferation defect. To investigate if there is aberrant proliferation, BrdU was 

injected intraperitoneally for 2 hours before mice were sacrificed and mammary gland 

prepared for sections. The ratio of BrdU-positive/total epithelial cells was determined 

for lactation 3.5, 6.5, 10.5, 12.5 and 15.5 (Figure 6). In the control mammary gland, 

the proliferation index constantly decreases during lactation. It goes from 2.31% at 3 

days of lactation to 0.02% after 15 days of lactation. The proliferation index in the 

CKO mammary gland follows the one of the control gland, except at 6.5 and 15.5 

days of lactation. It reaches a peak of 4.62% proliferation at 6.5 days. This stage-

specific change in proliferation rate might represent a reaction of the mammary gland 

to try to compensate the loss of epithelial cells which undergo apoptosis and are 

shed into the lumen of alveoli. 

 

Molecular analysis of mammary glands in the absence of Memo 

 

The increased apoptosis seen in Memofl//fl/WAPiCre mammary glands prompted us to 

investigate some apoptosis regulatory proteins (Figure 7). Stat-3 protein level is 

increased at the onset of involution. Importantly it is specifically activated at the onset 

of involution through phosphorylation (Philp et al., 1996) and is necessary for the 

initiation of apoptosis and involution (Chapman et al., 1999; Humphreys et al., 2002). 

Western blot analysis of P-Stat3 showed an increase in P-Stat3 in Memo CKO 

mammary glands during lactation from L3.5 to L10.5.  

Bax is an inducer of apoptosis (Adams and Cory, 1998) and KO of Bax delays the 

first phase of mammary gland involution (Schorr et al., 1999). An increase of Bax 

levels could therefore contribute to the increased apoptosis seen in 



Memofl//fl/WAPiCre mice. Indeed, increased levels of Bax were detected throughout 

lactation in Memo CKO mammary glands.  

P-PKB was undetectable in the mammary gland and P-Erk did not show any 

consistent levels. 

 

Changes at the adherens junctions in the absence of Memo 

 

To find the cause of apoptosis and presence of shed cells, we checked the integrity 

of myoepithelial cells by performing immunofluorescence with the smooth muscle 

actin (SMA) antibody. It revealed no change in the shape and distribution of 

myoepithelial cells surrounding the luminal epithelium (Figure 8A and B), indicating 

that knockout of Memo in the luminal epithelial cells does not impair the 

communication between these two types of cells.  

We next looked at adherens junctions by performing immunofluorescence with E-

cadherin and ß-catenin. In the control glands, E-cadherin was distributed 

basolaterally (Figure 8C), consistent with its role at adherens junctions. In the CKO 

glands however, E-cadherin was relocalized to the cytosol at 3.5 and 6.5 days of 

lactation (Figure 8D). ß-catenin is associated with E-cadherin at the cell-cell contacts. 

It was also relocalized from the lateral membrane in the control glands (Figure 8E) to 

the cytoplasm in the CKO (Figure 8F). At lactation 6.5, ß-catenin showed 

mislocalization at the apical membrane (not shown). Later at L10.5, no change in the 

distribution of E-cadherin and ß-catenin was seen (not shown). 
We also examined the distribution of the tight-junction protein ZO-1 during lactation, 

but no major relocalization could be observed (Figure 8G and H). 

We investigated the cell-substrate adhesions by performing immmunofluorescence 

with the α4ß1- (Figure 8I and J) and ß4- (Figure 8K and L) integrin, but no major 

difference in the contacts between the epithelial cells and the basement membrane 

was observed.  

The relocalization of E-cadherin and ß-catenin could be a sign of epithelial-

mesenchymal transition in the luminal epithelial cells. Therefore we performed 

immunofluorescence with the N-cadherin antibody. During epithelial-mesenchymal 

transition, N-cadherin is gradually expressed while E-cadherin levels decrease. 

However N-cadherin was not detected, revealing no sign of epithelial-mesenchymal 

transition (Figure 8M and N).  



 

3.2.4 Discussion 
 
We have generated a conditional knockout of Memo to examine the role of Memo 

during proliferation, differentiation, apoptosis and involution of the mammary gland. In 

agreement with previous data using the WAPiCre transgenic strain (Wintermantel et 

al., 2002), we observed efficient deletion of loxP-flanked sequences in the lactating 

gland. Memofl//fl/WAPiCre mice were unable to feed their pups correctly throughout 

lactation. This effect was accompanied with a progressive reduction of mammary 

gland weight.  

The morphology of the mammary gland was severely affected in the conditional 

knockout gland throughout lactation. It results in the fact that after 2 weeks of 

lactation, only 20% of the mammary gland is covered by alveoli, whereas 78% of it is 

covered by alveoli in the control mice. This decrease in alveolar density is explained 

by the earlier loss during the first week of lactation of luminal epithelial cells which are 

shed into the lumen, a place normally exclusively reserved for milk. 

Apoptosis is revealed by performing immunohistochemistry with cleaved caspase-3 

(Marti et al., 2000; Prince et al., 2002). Immunohistochemistry with cleaved caspase-

3 to detect late apoptosis revealed that apoptosis was occurring in the lobuloalveolar 

structures before the cells were shed into the lumen. 1.69% of the cells were positive 

for cleaved caspase-3 after 6 days of lactation, whereas less than 0.04% was seen in 

the control glands. It has already been shown that apoptosis occurring in 1%-2% of 

cells at any time point can result in a 50% reduction of the total cell population over a 

48-hour period (Howie et al., 1994). 

In agreement with the histological data for apoptosis, molecular alterations in the 

levels of known regulatory apoptotic proteins could be observed by Western blot. The 

role of P-Stat3 in apoptosis has been investigated in a number of in vitro systems. In 

myeloid leukemia cells, Stat3 seems to induce apoptosis since its overexpression 

accelerated interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)-induced apoptosis 

and a dominant negative blocked apoptosis induced by these cytokines (Minami, 

1996). Conversely, in a pro-B cell line Stat3 seems to suppress apoptosis after 

induction of gp-130 receptor (Fukada et al., 1996). In T cells as well, Stat3 is required 

for the survival in response to IL-6 (Takeda et al., 1998). In the mammary gland, Stat 



3 is specifically activated at the start of involution (Philp et al., 1996) and an 

impairment of its function reduces apoptosis and delays involution (Chapman et al., 

1999; Humphreys et al., 2002). Stat3 is part of the primary axis regulating apoptosis 

in the mammary gland (Green and Streuli, 2004). In this study, we could show that 

the deletion of Memo resulted in an increase of P-Stat3 during lactation at levels 

comparable to the ones of the beginning involuting mammary gland. 

Bax is a member of the Bcl-2 family of proteins (Adams and Cory, 1998). It plays a 

role in apoptosis by either forming pores in the mitochondrial outer membrane or by 

acting on voltage-dependant activated channels (Cheng et al., 2003). The result is a 

damage of the outer membrane of mitochondria which causes the release of 

apoptotic mediators in the cytosol. It has been shown that knockout of Bax delays the 

first phase of mammary gland involution (Schorr et al., 1999). Here we report an 

upregulation of Bax in lactating mammary glands from Memofl//fl/WAPiCre mice. This 

is in agreement with the measured increase of apoptosis in histological sections and 

with the increased activation of Stat3.  

Abnormal proliferation can result in apoptosis in the mammary gland (Lam et al., 

2004). Since Memo has been implicating with changes in the microtubule 

cytoskeleton (Marone et al., 2004) and microtubules are necessary for cell division, a 

change in the proliferation index at beginning of WAPiCre activation could be the 

cause of the apoptosis observed in the early lactation time points (3.5 and 6.5). At 

3.5 days however, measurement of BrdU incorporation indicates no change between 

the proliferation index of control compared to CKO glands. There was however a 

significant increase of proliferation observed after 6.5 days of lactation and as well 

after 15.5 days of lactation. But since this increase of proliferation in the CKO 

mammary glands did not happen from the beginning of lactation, when the Wap-Cre 

is mostly active, and is not maintained throughout lactation, it is unlikely that the CKO 

of Memo results in abnormal proliferation causing apoptosis. These bursts of 

proliferation likely are a reaction of the mammary gland to try to compensate the loss 

of epithelial cells which undergo apoptosis and are shed into the lumen of alveoli. 

This reaction of proliferation is in vain though, since at the end the epithelial cells are 

not any more in sufficient quantity to produce enough milk for the pups.  

Evidence points to the important role of ß-integrin mediated cell-extracellular matrix 

adhesion in alveolar integrity (Li et al., 2005; Naylor et al., 2005). However no change 

in α4β1 integrin or in β4 integrin localization could be observed in the lactating 



mammary gland after Memo deletion. Rather, a change in the cellular distribution of 

E-cadherin and ß-catenin could be observed in cryosections from lactating mammary 

glands at 3.5 and 6.5 days of lactation. During lactation, milk accumulates into the 

lumen of the alveoli and proper adhesion between the luminal epithelial cells is 

required to maintain the integrity of alveoli. E-cadherin mediated cell-cell adhesion 

affects the epithelial alveolar formation (Delmas et al., 1999). Moreover, it has been 

shown that E-cadherin gene inactivation under the MMTV promoter in the mammary 

gland results in massive alveolar apoptosis (Boussadia et al., 2002) and that the 

mutant mothers are unable to nurse their pups. In-vitro work also supports a critical 

role for E-cadherin in the function and architecture of the mammary gland (Daniel et 

al., 1995). It has been suggested that reduced cell-cell adhesion is an early event in 

the onset of apoptosis (Vallorosi et al., 2000).  

Problems at the adherens junction can result in relocalization of tight junction proteins 

and occasionally canonical adherens junction proteins can be associated with tight 

junction proteins (Nunes et al., 2006). However we did not see any relocalization of 

ZO-1 in the Memo conditional knockout mammary gland. 

The loss of E-cadherin at the adherens junctions prompted to investigate if N-

cadherin was upregulated, a sign of epithelial-mesenchymal transition. But 

immunofluorescence did not reveal any sign of N-cadherin upregulation. 

 

Here we show that Memo is pivotal for integrity of the alveolar epithelial cells during 

lactation. The mechanism of action of Memo remains unclear, but it has been shown 

in vitro to be implicated in cytoskeleton microtubule stability to the periphery of the 

cell. Knocked-down of Memo has also been associated to altered actin structure 

(Marone et al., 2004). Immunofluorescence of Memo on cryosections revealed a 

staining localized close to the membrane.  

The calcium-dependant cell adhesion molecule E-cadherin has five extracellular 

comains and a conserved intra-cellular domain with motifs binding catenins. The 

resultant complex binds α-catenin and assembles other peripheral cytoplasmic 

proteins to connect E-cadherin to the actin cytoskeleton. We propose that the 

downregulation of Memo results in perturbation of the cytoskeleton, which in turn 

affects the adherens junction of the epithelial cells as seen by improper localization of 

E-cadherin and ß-catenin. This unability to form proper cell-cell contact then finally 

leads to apoptosis of the epithelial cells. 



Further study will focus on in vivo and in vitro models to further unravel the 

mechanism of action of and targets of Memo in this process. 

The improper localization of E-cadherin and ß-catenin suggests an implication of 

Memo in the correct formation of adherens junction. Whether this role is direct or 

indirect through an effect on the cytoskeleton remains to be elucidated. 

All these events happening after birth make the mammary gland an organ of choice 

to study the in vivo role of a newly discovered protein. 

 

3.2.5  Materials and methods 
 

Generation of mice and tissue preparation for analysis 

 

Mice with Memo deleted specifically in the luminal epithelial cells of the mammary 

gland were generated by crossing mice with two floxed Memo alleles with mice 

expressing Cre under the control of the WAP milk gene promoter. Mice were 

maintained in an outbred background. Genotyping was confirmed by tail tipping with 

the primers forward 5’-CCTGCTAGAGCCATTATTGCACC-3’ and reverse 5’- 

GGATCGAGAAACTTTCATACTACAGC-3’to detect wild-type, heterozygous floxed 

and homozygous floxed Memo. WAPiCre expression was confirmed with primers 5’-

GAAAAGCACCAGGAGAAGTCAC-3’ and 5’-GACACAGCATTGGAGTCAGAAG-3’. 

Adult female mice were mated and following parturition, litters were maintained with 6 

pups. Pups were removed after 10 days to initiate involution. The mice were 

maintained and handled according to the Swiss guidelines for animal safety.  

For immunofluorescence, inguinal (fourth) mammary glands were dissected and 

frozen in optimal cutting temperature compound (OCT, Tissue Tek) for preparing 

10um cryosections. 

For immunohistochemistry, inguinal (fourth) mammary glands were dissected, fixed 

in 4% paraformaldehyde in phosphate-buffered saline (PBS), pH 7.4 then embedded 

in paraffin for preparing 5um sections.  

For BrdU labeling, females were intraperitoneally injected with 100 �g BrdU 

(Sigma)/g body weight 2 hr prior to sacrifice.  

For mammary gland whole mounts, inguinal (fourth) mammary glands were 

dissected, spread onto a glass slide and fixed overnight in Tellyesnicky’s fixative. The 



slides were rinsed in water, the tissue was defatted with acetone, hydrated through 

graded alcohol, and stained with Iron-haematoxylin for at least 1.5 h, then washed in 

water, dehydrated, and mounted.  

 

 

Extraction of RNA and RT-PCR analysis of Memo 

RNA was prepared by the Trizol method (GiBCO) and purified using the RNAeasy kit 

(Qiagen). Purified RNA was reverse transcribed and PCR amplified by standard procedures 

using the specific oligonucleotide primer Fw 5’-CATTCATCCTCGTGCACCATAG-3’in 

exon 1 and Rw 5’-ACAGGGGCACATGATGGGAA-3’ in exon 4 of Memo. 

 

Pup Weight Analysis 

The same number of pups (6) was left to each control and CKO mother. The body 

weight increase was documented for each pup from lactation day 2 to 20.  The 

average body weight of the litters was calculated as means±SD. 

 

 

Lysate preparation and Western blot analysis 

To prepare lysates from mammary glands, the frozen tissue was ground to a powder 

in liquid nitrogen and homogenized in lysis buffer containing 1% Nonidet P-40, 50mM 

Tris (pH7.5), 120mM NaCl, 5mM EDTA, 1mM EGTA, 2mM Na-vanadate, 20mM ß-

glycerophosphate, 10µM/ml aprotinin, 10µM/ml leupeptin, 0.5mM PMSF, 50mM NaF 

and 1mM DTT. Cell lysates were prepared in NP40 lysate buffer. Cell lysates were 

subjected to SDS-PAGE, transferred to PVDF membranes, which were blocked in 

10% horse serum (GIBCO) or 5% nonfat milk for 30 minutes and incubated overnight 

at 4°C with specific antibodies. Membranes were then incubated with the specific 

secondary antibody (Amersham) coupled to horseradish peroxidase. Signals were 

detected by enhanced chemiluminescence (ECL; Amersham) and recorded by Kodak 

LS-OMAT film. 

Antibodies used for western analyses were: Memo polyclonal antibody (blocked in 

5% milk), � tubulin (Neomarkers), P-Erk (Cell Signalling), Erk (Cell Signalling), P-PKB 

(Biosource), PKB (Cell Signalling), Bim (Chemicon), Bax (Biosource), P-Tyr705Stat3 

(Cell Signalling), Stat3 (Transduction Labs). 

 



Immunohistochemistry (cleaved caspase-3, BrdU)  

Immunohistochemistry on paraffin sections was performed with the Ventana 

Discovery XT system. BrdU antibody (Roche 376 001), was used 1/50 in combination 

with the MoMap kit (Ventana, 760-137) and sections were deparaffinized and 

subjected to antigen retrieval for 36 minutes in Tris-EDTA pH 8. Cleaved caspase-3 

antibody (Cell Signaling no 9661) was used 1/100 and sections were pretreated 64 

minutes in Tris-EDTA pH 8.  

 

Quantification of proliferation, apoptosis and surface covered by alveoli 

The number of cells positive for BrdU or cleaved caspase-3 was established in a 

minimum of 8 randomly chosen fields per mammary gland taken with the 20x 

objective of the Nikon Eclipse E600 microscope and the Leica DFC 420 camera. All 

counts were calculated as a percentage of the total cell count which was performed 

using the Imaris software. Area occupied by alveoli was scored from hematoxylin and 

eosin-stained slides. The area delimited by alveoli was surrounded manually using 

the Image Access software. Area was measured by the software and calculated as a 

percentage of the total area of the field of view. The average of four representative 

fields was used for each section. 

 

 

Immunofluorescence  

Antibodies used for immunofluorescence on unfixed cryosections, postfixed in 

acetone-methanol (1:1) were: E-cadherin 1/200 (BD Transduction Laboratories), 

�smooth-muscle actin 1/400 (Sigma, product no A 5228), ZO-1 1/200 (Zymed 61-

7300), ß-catenin 1/200 (Transduction Laboratories), α4ß1integrin 1/200 (gift from 

Prof. Charles Streuli), N-cadherin 1/200 (Transduction Laboratories).  

Secondary antibodies were AlexaFluor (all from Molecular Probes). They were 

diluted 1/400. 
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4 Discussion  
 

Memo has been discovered as a protein binding to ErbB2 in breast cancer cells and 

has been shown to play a role in the in vitro cell migration of these cells. This role of 

Memo in cell migration has been attributed to a function of Memo in the microtubule 

outgrowth towards the periphery of the cell. Memo also seems to play a role in the 

actin cytoskeleton, since more actin stress fibers were seen in Memo knock-down 

cancer cells.  

 

In this report we could show that Memo’s expression was neither restricted to cancer 

cells, nor to migrating cells. Indeed Memo’s expression pattern was ubiquitous in 

adult organs as well as in embryos (figure 6 part I). Memo was not seen stronger in 

the migrating cells than in other cells.  

 

We also generated a conventional knockout mouse for Memo. This knockout of 

Memo was lethal, since no living Memo homozygous knockout pup was seen (Table1 

part I). The death of the embryos deficient for Memo occurred at around 13 days of 

embryonic development.  

In vitro Memo has been shown to interact with ErbB2. However the phenotypes of 

ErbB2 and Memo knockout embryos are different. ErbB2 knockout embryos die by 

E10.75. They show a cardiac and a neuronal phenotype: they show absence of 

trabeculae in the heart ventricles and reduced size of endocardial cushions. They 

also have reduced Schwann cell number, abnormal cranial ganglia, hypoplasia of 

primary sympathetic ganglion chain. Memo embryos die by E13.0-E13.5. Their heart 

morphology is correct, but they show a vascular defect with hemorrhages. Some 

neural components also seem affected, since the neural tube is bent in majority of 

Memo knockout embryos. 

Suprisingly, the death of embryos deficient for Memo did not seem to be due to a 

default of cell migration in the embryo. Indeed, cell migration is required for 

gastrulation, a process during which some ectodermal cells enter in contact with 

endodermal cells to give rise to a third germ layer, the mesoderm. Among other cell 

types, the mesoderm gives rise to blood and blood vessels. In the mouse, the 



gastrulation occurs between E6 and E7.5. However Memo knockout embryos die 

between E13.0 and E13.5 (Table 2 Part I). At this time the complex events of 

gastrulation have already taken place and this indicates that Memo is not necessary 

for the migration events to occur at gastrulation. The neural crest is also prone to 

migration. However Memo knockout embryos contained dorsal root ganglia as well 

as cranial ganglia, indicating that these derivatives of the neural crest could properly 

migrate in the absence of Memo. The somitomeres of the head give rise to the 

branchial arches and musculature of the head whereas somites of the body give rise 

to ribs and vertebrae. The formation of these derivatives of the somites and 

somitomeres requires their migration. However Memo knockout embryos don’t show 

any defect in the branchial arch system (Figure 14 K and L, Part I) and ribs and 

vertebrae are properly formed (Figure 13 C and D, Part I), indicating that the 

migration of the somites and somitomeres could take place in Memo knockout 

embryos. 

However, we saw some vascular defects in the Memo knockout embryos, since 

hemorrhages could be observed.  

Vasculogenesis is responsible for the formation of the primordia of the major blood 

vessels as well as of a homogenous capillary network. Formation of the blood islands 

occurr in the yolk sac at E7.5, when the ectoderm migrates through the primitive 

streak during gastrulation. But the formation of the dorsal aortae, the endocardium, 

and the cardinal and vitelline veins is also accomplished by vasculogenesis. Memo 

knockout embryos did not show any defect in the general pattern of the vasculature 

(Figure 14 Part I) and the dorsal aorta was properly formed (Figure 13 C and D, Part 

I). This indicates that the vasculogenesis occurs normally in Memo knockout 

embryos.  

Angiogenesis involves the formation of new vessels from preexisting vessels of the 

primary vascular plexus. It involves both the proliferation and the migration of 

endothelial cells at the tips of the angiogenic sprouts. It is responsible for the growth 

of blood vessels into most developing organs. The intersomitic vessels for example 

are formed from the dorsal aorta via sprouting angiogenesis. The blood vessels in the 

head are also formed by angiogenesis. However Memo knockout embryos did not 

show any defect in the formation of intersomitic vessels, or of vessels of the head. 

Overall no sign of defective angiogenesis could be observed in Memo knockout 

embryos.  



After remodeling of the vascular plexus, mesenchymal cells are recruited to give 

mechanical and physiological support to the endothelium. Pericytes are recruited to 

the small capillaries, and smooth muscle cells and adventitial fibroblasts are recruited 

to larger vessel to form their vascular wall. It is known that the smooth muscle cells 

migrate from ventral to dorsal when they surround the aorta. In Memo knockout 

embryos, the smooth muscle cells were properly recruited around the aorta though 

(Figure 16, Part I).  

Hence, the hemorrhages observed in the Memo knockout embryos don’t seem to 

originate from a misformation of the vascular plexus or from impairment in its stability. 

It is possible that they originate from a defective permeability between the endothelial 

cells. It is also possible that the cell-cell adhesion between endothelial cells is 

defective. 

 

We also generated a conditional knockout (CKO) mouse where Memo disruption was 

restricted to the mammary luminal epithelium. We observed efficient deletion of 

Memo in the lactating gland (Figure 1 C and D, Part II). CKO mice were unable to 

feed their pups correctly throughout lactation as indicated by pup weight reduction 

(Figure 2 A, Part II). We saw severe defects in the morphology of the mammary 

gland in the conditional knockout gland throughout lactation. We observed a loss of 

luminal epithelial cells which are shed in the lumen (Figure 3 K, Pat II). This led to a 

progressive decrease in alveolar density (Figure 4L, Part II). Indeed, the epithelium is 

almost completely absent after two weeks of lactation, and the mammary gland 

becomes mostly filled with adipocytes. This explains why the pups are not correctly 

fed. Through immunohistochemistry with cleaved caspase-3 to detect late apoptosis 

we could see that apoptosis was occurring in the lobuloalveolar structures before the 

cells were shed into the lumen (Figure 5 H, Part II). In agreement with the histological 

data for apoptosis, we observed molecular alterations in the levels of known 

regulatory apoptotic proteins by Western blot. We observed an increase of P-Stat3 

and of Bax levels during lactation in the Memo CKO as compared to the control 

glands (Figure 7, Part II).  

 

We observed a change in the cellular distribution of E-cadherin and ß-catenin in 

cryosections from lactating mammary glands at 3.5 and 6.5 days of lactation (Figure 

8 C,D,E,F, Part II). E-cadherin and ß-catenin are part of the adherens junctions, 



which maintain cell-cell adhesion. During lactation, milk accumulates into the lumen 

of the alveoli and proper adhesion between the luminal epithelial cells is required to 

maintain the integrity of alveoli. It is probable that the shedding of cells in the lumen 

of alveoli is due to improper cell-cell adhesion in the Memo deficient mammary 

glands.  

 

It is probable that the observed apoptosis is a consequence of improper adhesion 

between the epithelial cells of the mammary gland.  

It is also possible that the apoptosis causes the mislocalization of E-cadherin and ß-

catenin. However, other proteins such as ZO-1 seemed to be properly localized 

(Figure 8 G and H, Part II). Moreover, the mislocalzation of E-cadherin and ß-catenin 

was present in most of the cells of the mammary gland, whereas the apoptosis 

occurred in about 1.7% of the mammary gland. Even if this rate is high for apoptosis, 

it suggests that improper localization of E-cadherin and ß-catenin occurs before the 

cells undergo apoptosis. 

 

The hypothesis of improper cell-cell adhesion is interesting. It could not only explain 

the phenotype of the shed cells in the mammary gland, but as well the hemorrhages 

observed in the knockout Memo embryos. The bending of the neural tube observed 

in the Memo knockout embryos could also be due to improper cell-cell adhesion. 

Indeed, adhesion is necessary for closure of the neural tube. Interestingly, both the 

epithelial cells of the mammary alveoli and the endothelial cells of the blood vessels 

are submitted to pressure, by milk and blood respectively. This pressure might be 

sufficient to reveal phenotypes due to a fragile adhesion between the cells knockout 

for Memo.  
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