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Summary

Every year malaria causes an estimated 1.3–3 million deaths and around half a billion

clinical episodes. The majority of deaths occur in children under the age of 5 years.

Malaria today occurs mostly in tropical and subtropical countries, particularly in sub-

Saharan Africa and Southeast Asia. In developing countries malaria may account for as

much as 40% of public health expenditure, 30-50% of hospital admissions, and up to 50%

of outpatient visits to health facilities.

Malaria is a vector borne disease caused by the protozoan parasites of the genus Plasmo-

dium. Plasmodium falciparum causes the most severe form of the disease, and is responsible

for half of the clinical cases and 90% of the deaths from malaria.

Malaria control interventions in countries where the disease is endemic currently include

personal protection against mosquito bites, vector control, and prophylactic drugs. There

is currently no registered malaria vaccine, but this is an active field of research. The vaccine

that is furthest advanced in clinical development is called RTS,S/AS02A. This is a pre-

erythrocytic vaccine, which aims to kill the parasites before they enter the red blood cells.

Predictive models can provide a rational basis for decisions on how to allocate resources for

malaria control. Mathematical modeling of malaria has a long history, starting with the

first models of malaria transmission dynamics by Ross a century ago. At the Swiss Tropical

Institute, a malaria modeling project has generated algorithms for rational planning of

malaria control. This model is implemented as an individual-based discrete-time simulation

model. The behaviors and state changes of simulated human individuals are governed by a

minimal set of sub-models that are considered crucial for making quantitative predictions

of the impact of malaria control interventions.
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The integrated model includes components that capture relevant aspects of malaria trans-

mission and epidemiology in the absence of control: the relationship between the entomo-

logic inoculation rate and the force of infection; epidemiologic models for acute illness, se-

vere morbidity, and mortality; infectiousness of human population. Another central model

component, for natural immunity to asexual blood stages of P. falciparum, is described in

this thesis. The use of the model for making quantitative predictions requires reliable esti-

mates of the values of the parameters of the mathematical functions. The different model

components were therefore fitted to a number of datasets from studies in various ecological

settings and for various epidemiologic outcomes using a simulated annealing algorithm.

Comparison of the model predictions with field data show that the model appears to re-

produce reasonably well the parasitologic patterns seen in malariologic surveys in endemic

areas.

Epidemiologic patterns can be modified by control interventions. Because of the individual-

based approach chosen, a number of different simulated interventions can be introduced

by making assumptions on how they modify the processes described above. This thesis

describes a model for case management to predict the impact of improved case management

on incidence of clinical episodes and mortality while incorporating effects on persistence of

parasites and transmission. It allows the simulation of different rates of treatment coverage

and parasitologic cure rates, and makes it possible to look at how variations in transmission

intensity might affect the impact of changes in the health system. It also defines a baseline

environment that can be used the predict the impact of other control interventions.

The second part of the thesis focuses on the prediction of the impact of a pre-erythrocytic

stage vaccine. Different assumptions about how such a vaccine may lead to a measured

reduction in the incidence of new infections in vaccinated individuals are discussed. The

vaccine profile was chosen to match data from clinical trials of RTS,S/AS02A. The results

demonstrate that an adequate simulation of the first two RTS,S/AS02A trials published can

be achieved by assuming that vaccination completely blocks a certain fraction of infections

that would otherwise reach the erythrocytic stages.

The impact that such a vaccine would have on the epidemiology if introduced via the

Expanded Program on Immunization (EPI) is then predicted. This is the first major

attempt to combine dynamic modeling of malaria transmission and control with predictions

of parasitologic and clinical outcome. The results suggest a significant impact on morbidity

and mortality for a range of assumptions about the vaccine characteristics, but only small
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effects on transmission intensities.

To make predictions of the cost-effectiveness of such a vaccination program, costing data

are incorporated into a model of a health system that is currently in place in a low-income

country context, based largely on data from Tanzania. Depending on the assumed vaccine

characteristics and cost, the predicted cost-effectiveness ratios would make vaccination

campaigns an attractive choice for health planners compared with other malaria control

interventions.

In addition to making quantitative predictions, the model points to data that may be

important to make accurate predictions. In order to make mid- to longterm predictions,

more data on the clinical epidemiology of malaria in adolescents and adults would be

desirable.

The work reported here creates a sound foundation for measuring the effects of introducing

new antimalarial interventions, or scaling-up those that are already known to be efficacious

and cost-effective. A challenge that remains is to make a comprehensive set of model

predictions available to a non-modeler audience so it can be valuable both for informing

malaria control strategies and research funding policy.
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Zusammenfassung

Malaria verursacht jedes Jahr schätzungsweise 1.3–3 Millionen Todesfälle und etwa eine

halbe Milliarde Neuerkrankungen. Der Grossteil der Todesfälle betrifft Kinder unter fünf

Jahren. Malaria kommt heute vor allem in tropischen und subtropischen Ländern vor,

am stärksten betroffen sind Südostasien und Afrika südlich der Sahara. In Entwick-

lungsländern ist Malaria für bis zu 40% der Gesundheitskosten, 30-50% der Einweisungen

in ein Krankenhaus, und 50% der Arztbesuche verantwortlich.

Malaria wird durch Parasiten der Gattung Plasmodium verursacht, welche von Stechmücken

übertragen werden. Plasmodium falciparum verursacht die schwerste Form der Krankheit,

und ist für die Hälfte der Neuerkrankungen und 90% aller Todesfälle verantwortlich.

Die Bekämpfung der Krankheit in malariaendemischen Gebieten umfasst den Schutz von

Individuen gegen Mückenstiche (z.B. mit Hilfe von Moskitonetzen), die Bekämpfung des

übertragenden Vektors, sowie die medikametöse Prophylaxe. Bis heute ist kein Malaria-

Impstoff zugelassen, aber die Impstoff-Entwicklung ist ein aktives Forschungsfeld. Der in

der Entwicklung am weitesten fortgeschrittene Impfstoff heisst RTS,S/AS02A. Es handelt

sich dabei um eine prä-erythrozytische Impfung, welche die Bekämpfung des Erregers vor

dessen Eintritt in die roten Blutkörperchen zum Ziel hat.

Mathematische Modelle können eine Basis für die Planung von Programmen zur Malaria-

Bekämpfung und die Priorisierung der eingesetzen Mittel darstellen.

Mathematische Modelle der Malaria-Übertragung sind seit langem etabliert. Ronald Ross

publizierte das erste Model im Jahr 1911. Am Schweizerischen Tropeninstitut wurde

ein integriertes Model der Malaria-Übertragung zur Evaluation verschiedener möglicher

Bekämpfungsstrategien entwickelt. Das Modell ist als individuen-basierte Computersimu-

lation implementiert. Dabei werden eine Anzahl von Prozessen simuliert, die als für das
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Verständnis der Malaria-Epidemiologie und die quantitative Voraussage des Effekts von

Bekämpfungsstrategien als zentral angesehen werden.

Das integrierte Modell umfasst Komponenten, welche alle wichtigen Aspekte der Malaria-

Übertragung und Epidemiologie beschreiben: Der Zusammenhang zwischen der Infektion-

srate (Entomologic Inoculation Rate) und der Übertragungsintensität (Force of Infection),

ein epidemiologisches Modell für den Zusammenhang zwischen Infektion und Erkrankung,

schwerer Erkrankung und Todesfolge, sowie die Infektivität des menschlichen Wirtes. Eine

weitere zentrale Komponente, die sich mit der natürlich erworbenen Immunität gegen die

asexuellen Blutstadien des Parasiten befasst, wird in dieser Arbeit vorgestellt.

Um ein mathematisches Modell für quantitative Voraussagen benutzen zu können, muss

eine zuverlässige Schätzung der Parameter der dem Modell zu Grunde liegenden math-

ematischen Funktionen erfolgen. Die Parameter der verschiedenen Modell-Komponenten

wurden deshalb mit Hilfe eines Optimierungs-Algorithmus basierend auf Daten aus einer

Reihe von verschiedenen Feldstudien geschätzt. Ein Vergleich der Modell-Voraussagen mit

Daten aus weiteren Feldstudien bestätigt, dass das Modell die parasitologischen Muster in

malariaendemischen Gebieten zufriedenstellend reproduzieren kann.

Die Epidemiolgie der Malaria kann durch deren Bekämpfung verändert werden. Auf-

grund des in dieser Studie gewählten individuen-basierten Ansatzes können der Effekt

einer Reihe verschiedener möglicher Bekämpfungsstrategien untersucht werden. Diese Ar-

beit beschreibt ein Modell für die medizinische Versorgung von an Malaria erkrankten

Patienten. Das Modell erlaubt die Simulation verschiedener Annahmen über die Wirk-

samkeit der Behandlung und deren Zugänglichkeit für Malaria-Patienten. So kann vo-

rausgesagt werden, wie sich Investitionen in eine verbesserte medizinische Versorgung

von Malaria-Patienten abhängig von der Übertragungsintensität auswirkt. Das Modell

definiert damit auch eine Referenz-Umgebung, welche für Studien der Auswirkungen an-

derer Bekämpfungsstrategien dienen kann.

Der zweite Teil dieser Arbeit befasst sich mit der Voraussage der Auswirkungen eines

prä-erythrozytischen Impfstoffs.

Es werden verschiedene Hypothesen besprochen, welche den beobachteten Effekt eines

solchen Impfstoffs auf die Inzidenz von Neuinfektionen zu erkären versuchen. Die Comput-

ersimulationen stützen sich dabei auf Daten aus klinischen Studien des Impstoffs RTS,S/
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AS02A. Die Resultate zeigen, dass ein einfaches Modell der Interaktion zwischen erwor-

bener und Impfstoff-induzierter Immunität genügt, um die aus den klinischen Studien

publizierten Erkenntnisse zufriedenstellend zu erklären.

Als nächstes wird untersucht, welche Auswirkung die Einführung eines solchen Impstoffs

mittels eines bestehenden Impfprogramms für Kleinkinder (das Expanded Program on Im-

munization) haben könnte. Damit wurden zum ersten Mal die potentiellen Auswirkungen

eines Impfprogramms mit Hilfe eines dynamischen Modells der Malaria-Übertragung vo-

rausgesagt. Die Resultate zeigen eine deutliche Reduktion der Morbidität und Mortalität

als Folge des Programms, aber nur einen kleinen Effekt auf die Intensität der Malaria-

Übertragung. Um Voraussagen über die Kosteneffizienz eines solchen Impfprogramms

machen zu können, wurden ein Modell des Gesundheitssystems in einem Entwicklungs-

land und dessen Kosten ins Modell integriert. Als Datenbasis diente Tansania. Abhängig

davon, welche Annahmen über die Eigenschaften und Kosten getroffen werden, kann die

Einführung eines Malaria-Impfstoffs in ein bestehendes Impfprogramm im Vergleich mit

anderen Bekämpfungsstrategien als kosteneffizient gelten.

Das Modell kann auch zur Identifizierung von Daten dienen, welche zur Planung effek-

tiver und kosteneffizienter Bekämpfungsstrategien hilfreich wären. Die Analyse der Mod-

ellvorhersagen zeigt, dass verlässliche Voraussagen über einen weiteren Zeithorizont zu-

verlässige Daten zur klinischen Epidemiologie der Malaria bei Jugendlichen und Erwachse-

nen voraussetzen. Das vorgestellte Modell bietet eine solide Basis, um den Effekt und die

Kosteneffizienz zukünftiger Möglichkeiten zur Malariabekämpfung mit bestehenden Meth-

oden zu vergleichen. Eine verbleibende Herausforderung stellt die Aufgabe dar, die Resulte

und Voraussagen der Modelierungs-Studie für die Verantwortlichen von Programmen zur

Malaria-Bekämfung zugänglich zu machen.
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Chapter 1

The use of mathematical models to

predict the impact of malaria

interventions

This chapter is based on the book chapter: Using volunteer computing to simulate the

epidemiology and control of malaria: malariacontrol.net. Nicolas Maire.

In press: Distributed & Grid Computing. Principles, Applications and Supporting Com-

munities, Tectum Verlag, Marburg
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Figure 1.1: Map of malaria risk areas. Source: World Health Organization, 2005.
http://www.who.int/mediacentre/events/2006/g8summit/malaria_large.gif

1.1 Malaria

Some of the most challenging problems requiring urgent solution in the contemporary world

are those of infectious diseases in the developing world. These problems primarily result

from lack of resources, from poverty per se. One of the most pervasive diseases of poverty

is malaria. Every year malaria causes an estimated 1.3–3 million deaths and around half

a billion clinical episodes [Breman et al., 2001]. The majority of deaths occur in children

under the age of 5 years. There are no accurate statistics available, as most cases occur in

rural areas, where a large proportion of the population does not have access to hospitals or

health care in general. Malaria today occurs mostly in tropical and subtropical countries,

particularly in sub-Saharan Africa and Southeast Asia (Figure 1.1).

Malaria is a vector borne disease caused by the protozoan parasites of the genus Plasmo-

dium. There are four species that can infect humans, of which Plasmodium falciparum

causes the most severe form of the disease. It is responsible for half of the clinical cases
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and 90% of the deaths from malaria. [Gilles and Warrell, 1993]. Figure 1.2 shows the life

cycle of the parasite.

P.falciparum is transmitted from person to person by female mosquitoes of the genus

Anopheles. Inside the human host the parasite undergoes a series of changes. Within half

an hour of inoculation of the parasites, the sporozoites infect the liver via the blood stream

(Figure 1.2 (a)). Here they divide repeatedly into about 30,000-40,000 merozoites over

the course of one or two weeks. Merozoites are released into the blood stream where they

invade red blood cells. Inside these blood cells they grow and divide, eventually causing

the rupture of the cell and the release of more merozoites, which can go on to invade new

blood cells (Figure 1.2 (b)). A small proportion of merozoites develop into gametocytes,

and can be taken up by a subsequent mosquito bite. Inside the mosquito the parasite

undergoes sexual reproduction and then invades the salivary gland (Figure 1.2 (c)). The

cycle completes when the infected mosquito bites another human.

Typically, malaria produces fever, headache, vomiting and other flu-like symptoms. If

effective drugs are not available for treatment, the infection can progress rapidly to be-

come life-threatening. Residents of malaria-endemic regions acquire immunity to malaria

through natural exposure to malaria parasites. After continued exposure from multiple

infections immunity generally provides protection against severe effects of malaria but fails

to provide strong protection against infection with malaria parasites.

In developing countries malaria may account for as much as 40% of public health expendi-

ture, 30-50% of hospital admissions, and up to 50% of outpatient visits to health facilities

[RBM WHO, 2006]. Critically, malaria is not just caused by poverty; the burden of ma-

laria disease is also an important factor contributing to that poverty. Economic growth

in countries with high malaria transmission has historically been lower than in countries

without malaria. Some economists believe that malaria is responsible for a growth penalty

of up to 1.3% per year in some African countries [Gallup and Sachs, 2001]. Not only does

malaria result in lost life, and lost productivity due to illness and premature death, malaria

also hampers children’s schooling and social development through both absenteeism and

permanent neurologic damage [Holding and Snow, 2001].
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Figure 1.2: The life cycle of P. falciparum. A detailed description of the different stages is
in the text.
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1.2 Malaria control interventions.

Malaria control interventions in countries where the disease is endemic currently include

personal protection against mosquito bites, vector control, and prophylactic drugs. There

is currently no registered malaria vaccine, but this is an active field of research.

Vector control and protection against mosquito bites. Very soon after the discov-

ery in 1897 that malaria is transmitted by mosquitoes [Gilles and Warrell, 1993], attempts

to prevent malaria by killing the mosquitoes vector began. Source reduction is the method

of choice for mosquito control when the mosquito species targeted are concentrated in a

small number of discrete habitats. Larval habitats can be destroyed by filling depressions

that collect water or by draining swamps to remove standing water [Gilles and Warrell,

1993]. Another approach is to cover the walls and other surfaces of a house with a residual

insecticide. This method does not prevent people being bitten, but can prevent transmis-

sion of infections to another person, as mosquitoes often rest inside houses after taking

a blood meal [World Health Organization, 2006]. Mosquito nets help prevent mosquitoes

reaching people when they are sleeping, because A. gambiae, the most important vec-

tor species, mainly bite humans at night [Gillies, 1988, Geissbuehler et al., 2007]. Thus,

mosquito nets can greatly reduce the transmission of malaria. The nets are not a perfect

barrier, so they are often treated with an insecticide designed to kill the mosquito before

it can find a way past the net. These nets have the advantage of also providing some

protection to others, including people sleeping in the same room but not under the net.

The distribution of mosquito nets impregnated with insecticide has been shown to be an

extremely effective method of malaria prevention [Lengeler, 2004, World Health Organiza-

tion, 2006].

Case management. Improving the management of acute malaria can reduce the malaria-

induced burden because infections are cleared before they can cause severe malaria and

potentially lead to death. There is also an indirect protective effect as infections are cleared

and therefore there is a reduction of the infectious reservoir of people who may transmit

to mosquitoes. The management of acute malaria cases can be improved in a number of

ways, for example by using more effective drugs or combinations of different drugs, improv-

ing access to health facilities, patient compliance to treatment schedules, or strengthening

diagnosis [Goodman et al., 1999].
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Prophylactic drugs. Several drugs, most of which are also used for treatment of malaria,

can be taken preventively. Use of prophylactic drugs is seldom practical for full-time

residents of malaria-endemic areas, and their use is usually restricted to short-term visitors

and travelers to malarial regions. As opposed to continuous chemoprophylaxis, Intermittent

Preventive Treatment (IPT) reduces the number of times an individual has to be given

the antimalarial and circumvents the problem of delivery as it is given at routine health

visits or times of vaccination. In addition, this intervention can easily be targeted to the

most vulnerable population groups. Such an approach has been shown to yield benefits

for malaria prevention in pregnant women and infants living in endemic areas [Greenwood,

2006, Meremikwu et al., 2006].

Vaccination. At present, vaccines for malaria are under development, with no com-

pletely effective vaccine yet available. The vaccine that is currently furthest advanced in

clinical development is RTS,S/AS02A . This is a pre-erythrocytic vaccine, which aims to

kill the parasites before they enter the red blood cells. A recent study that looked at over

2000 Mozambican children and demonstrated reduction in the infection risk of approxi-

mately 45% [Alonso et al., 2004]. The vaccine has also been shown to be safe and partially

effective in infants [Aponte et al., 2007], the age group that will most likely be targeted by

a vaccine campaign. Other vaccines currently under development target either the blood

stages of the parasite or the stages that are transmitted to the next host by a mosquito

[Ballou et al., 2004].

1.3 Mathematical models for decision making in ma-

laria control

Recently, governments in industrialized countries, international agencies, and philanthropic

bodies like the Bill & Melinda Gates foundation, have begun to take seriously the need to

invest in malaria control, but where should they be putting their resources? To decide on

how to allocate resources for malaria control, predictive models are needed to infer what is

likely to happen if any of a large array of possible malaria control strategies is adopted. The

problem is a similar to that of predicting climate change. Although the dynamics of ma-

laria are qualitatively well understood, and mathematical models of malaria epidemiology

have been around for a century [Ross, 1911], the science of quantitatively predicting what
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will happen when we intervene against malaria is not well established. While there are

many different kinds of interventions possible, their likely effects are difficult to quantify,

especially when they are combined. These effects are difficult to quantify for short time

scales and even more difficult for longer time-spans of interest, which may be up to decades

in length. The likely impact of malaria control interventions has generally been inferred

from intervention trial results, which assess only short-term effects using well controlled

delivery systems. The long term effectiveness in programs will be reduced because of less

than perfect access, compliance, targeting accuracy, and consumer adherence. There will

also be longer term dynamic effects due to changes in the immune status of the population,

and benefits due to herd immunity (in the case of vaccines) and community effects of vector

control.

It seems unlikely that any of the strategies listed above will prove to be a magic bullet

that will solve the problem of malaria for good, but well-planned integrated control may

be able to capitalize on the advantages of each individual intervention. Since Plasmodium

falciparum malaria is one of the most frequent causes of morbidity and mortality in areas

where it is endemic [Breman et al., 2001, Greenwood et al., 2005, Snow et al., 2005], even

a partially protective intervention may be a critically important public health tool.

Mathematical modeling of malaria has a long history, starting with the first models of

malaria transmission dynamics by Ross [1911]. Macdonald [1957] built on Ross’ work and

identified the importance of mosquito longevity for the basic reproductive number (R0).

R0 is the number of secondary cases following the introduction of a single infected individ-

ual into a susceptible population, an important measure in studies of infection dynamics.

Macdonald was also among the first to recognize the potential of using computers in the

study of malaria transmission models [Macdonald et al., 1968]. They also included the

first stochastic malaria simulation model published. Dietz and Molineaux extended on

these compartmental models by adding immunity, and emphasized the need of estimating

model parameters from field data [Dietz et al., 1974, Molineaux and Gramiccia, 1980].

Up to that point, malaria eradication was at the focus of interest in malaria modeling.

After the realization in the 1970s that global malaria eradication was an unrealistic goal

[Gilles and Warrell, 1993], the focus of malaria models shifted towards control, and as a

consequence models of clinical epidemiology [Rowe et al., 2007] and models of comparative

cost-effectiveness [Goodman et al., 2000]. In terms of the methodology, the limitations of
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continuous-time compartmental methods became apparent [Saul, 1998, Molineaux and Di-

etz, 1999, Paget-McNicol et al., 2002, Gatton and Cheng, 2004]. Models were extended to

include discrete time steps, and complemented with individual-based approaches [McKen-

zie, 2000], which at that point had gained popularity in ecology and other research fields

[Grimm and Railsback, 2005].

1.4 Overview of the modeling strategy

At the Swiss Tropical Institute (STI), a malaria modeling project has generated algorithms

for rational planning of malaria control [Smith et al., 2006a]. This integrated model is im-

plemented as an individual-based discrete-time simulation model [Grimm and Railsback,

2005], where the predictions result from the overall consequences of processes involving

individuals of a population. Individuals are characterized by a set of properties and be-

haviors. This allows for an intuitive translation of reality into the implementation domain

by mapping real world entities onto abstract datatypes (or programming objects). The

simulated population consists of a collection of these objects. Individuals are updated over

time, using discrete time steps with intervals appropriate to capture the dynamics of the

system. Currently, a temporal resolution of five days per simulated interval is used. Char-

acteristics of each individual are tracked through time, and relevant events recorded. The

behavior is determined by mathematical description to specify functional relationships be-

tween the variables of the system. A summary of the simulated events of interest is output

at the end of a simulation run.

1.4.1 Model components

The behaviors and state changes of simulated human individuals are governed by a minimal

set of sub-models that are considered crucial for making quantitative predictions. All

relevant modules are briefly discussed in the following section, and later chapters contain

full descriptions of some of the model components.

Relationship between the entomologic inoculation rate and the force of infec-

tion. The process of infection of human individuals through bites of infected mosquitoes

is considered the most upstream component of the model framework. The seasonal pattern
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and magnitude of the entomologic inoculation rate (EIR) is the main simulation input and

in the absence of simulated interventions determines the epidemiologic predictions. Un-

derlying the simulation of the infection process is a stochastic model for the relationship

between the EIR for P. falciparum malaria and the force of infection in endemic areas

[Smith et al., 2006b]. The model incorporates effects of increased exposure to mosquito

bites as a result of the growth in body surface area with the age of the host. The number

of new infections in a human host at any simulated time interval is drawn from a Poisson

distribution, where the mean is the age-adjusted EIR corrected for the survival probability

of the inoculum as a consequence of naturally acquired pre-erythrocytic immunity and the

reduction in the proportion of entomologically assessed inoculations leading to infection,

as the EIR increases.

A model for natural immunity to asexual blood stages of P. falciparum. Suc-

cessful inoculations pass into blood-stage infections after a fixed pre-patent period of 3

five-day intervals. Asexual blood-stage infections are characterized by hypothesized traces

of parasite densities of individual infections over time. The densities are based on a de-

scription of the time courses of parasite densities in immuno-näıve, untreated patients who

received therapeutic P. falciparum infections [Eyles and Young, 1951]. While most math-

ematical models for acquired immunity to P. falciparum consider effects of immunity on

duration of infection and infectiousness, the most evident effect of immunity is to reduce

parasite densities. Chapter 2 describes a stochastic simulation model to predict the dis-

tributions of P. falciparum parasite densities in endemic areas, with the parasite densities

modified depending on immunity parameters determined from the individual’s history of

infection. The model for asexual blood-stage parasite densities is a central link between

the different sub-models. Downstream components like the models for morbidity, mortal-

ity, and the infectiousness of humans to mosquitoes all directly depend on the predicted

parasite densities.

An epidemiologic model for acute illness. Whereas most previous malaria models

were concerned with threshold analyses of the conditions necessary for the interruption

of malaria transmission, predictions of the clinical epidemiology of malaria are crucial for

models which look at malaria control. Here, the probability of a clinical attack of malaria

is assumed to be a function of the peripheral parasite densities. A pyrogenic threshold

that responds dynamically to the parasite load determines how likely a certain parasite



10 Chapter 1. Prediction of the impact of malaria interventions

load is to lead to a clinical episode at any simulated time interval. The pyrogenic threshold

increases with exposure and decays in the absence of parasites [Smith et al., 2006c]. The

severity of the episode and the clinical outcome as well as the probability of the episode

being treated depend on the model components described below.

An epidemiologic model for severe morbidity and mortality. Severe malaria epi-

sodes are defined as events that would have been diagnosed as severe malaria, had the

patient presented to a health facility [Ross et al., 2006b]. The model considers two sub-

categories of severe malaria episodes. These comprise episodes with extremely high parasite

densities in hosts with little previous exposure, and acute malaria episodes accompanied

by co-morbidity or other risk factors enhancing susceptibility. In addition to direct malaria

mortality from severe malaria episodes, the model also considers the enhanced risk of in-

direct mortality following acute episodes accompanied by co-morbidity after the parasites

have been cleared. Due to the limited availability of data on severe malaria in adults, the

model predictions for children are likely to be more reliable than those for older people.

Infectiousness of human population. Models of infectious diseases need to consider

the interdependence of hosts, which is what distinguishes them from models of non-

infectious diseases. Control interventions against infectious diseases can benefit individuals

even if they are not covered by the intervention itself through the indirect effect on trans-

mission intensity. In the current model, the indirect effect depends on the nature of the

simulated intervention. In the case of interventions that have a vector control component,

the effect on vectorial capacity must be considered. Such entomologic models are currently

being developed (Chitnis et al, in preparation). Predictions of the impact of interventions

that do not affect the vector population, such as vaccines, can make simplifying assump-

tions that allow the simulation of indirect intervention effects without the need to explicitly

model the vector population [Killeen et al., 2006]. Assuming constant vectorial capacity,

the effect of the intervention is captured by scaling the EIR by the relative infectious-

ness of the human population. Relative infectiousness here means the probability of a

mosquito biting human to become infected during the intervention period compared with

this probability at the same point in the year in a non-intervention scenario.

The transmission cycle is therefore closed using a statistical model for the relationship
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between asexual parasite densities of P. falciparum and the infectivity of the host to mos-

quitoes [Ross et al., 2006a]. This model takes into account the delay between asexual

parasitemia and infectivity resulting from the time course of gametocytemia. It also allows

for the need for the blood meal to contain gametocytes of both sexes if infection is to take

place.

Predictions of the impact of control interventions. The model components de-

scribed so far provide a framework for simulations of malaria transmission in the absence

of control. Epidemiologic patterns can be modified by control interventions. Because of

the individual-based approach chosen, a number of different simulated interventions can

be introduced by making assumptions on how they modify the processes described above.

Among the possible interventions, the first that is discussed in this thesis is case manage-

ment (Chapter 3), which has implications on disease outcomes, and potentially indirect

effects by reducing the infectiousness of humans if treatment drugs have a gametocytocidal

effect, treatment is prompt and coverage is high [Butcher, 1997]. The integration of a

model for case management into the stochastic simulation framework allows us to predict

the impact of improved case management on incidence of clinical episodes and mortality

while incorporating effects on persistence of parasites and transmission.

Figure 1.3 shows the points at which different malaria vaccine types act. The predictions

Vectorial
capacity

Entomologic
inoculation rate

High parasite
densities 

Infection of
vectors

Morbidity and
mortality

Infection of
humans

Transmission
blocking vaccine

Asexual blood-
stage vaccine

Pre-erythrocytic
vaccine

Figure 1.3: Vaccine points of action. Modified from Smith et al. [2006a]



12 Chapter 1. Prediction of the impact of malaria interventions

of the impact of vaccines discussed in this thesis are all based on the assumption that the

vaccine acts on the pre-erythrocytic stages of the parasite. Chapter 4 discusses different

assumptions on how such a vaccine may lead to a measured reduction in the incidence of

new infections in vaccinated individuals. The vaccine profile was chosen to match data from

clinical trials of RTS,S/AS02A [Alonso et al., 2004]. Chapter 5 predicts the impact that

such a vaccine would have on the epidemiology if introduced via the Expanded Program

on Immunization (EPI). To make predictions of cost-effectiveness, costing data on the

vaccine is incorporated into the model, together with a description of a health system

that is currently in place in a low-income country context, based largely on data from

Tanzania (Chapter 6). The cost-effectiveness of such a vaccination program results from

the epidemiologic impact and the net cost of the intervention.

The standard outcome of all predictive scenarios presented are predictions of three-monthly

patterns of parasitemia, age-incidence of clinical episodes, severe malaria, and death over

a 20-year time horizon, so as to cover a period at least as long as those that might usually

be considered by health planners.

1.4.2 Estimation of model parameters

The use of the model for making quantitative predictions requires reliable estimates of the

values of the parameters of the mathematical functions. The different model components

were therefore fitted to a number of datasets from studies in various ecological settings

and for various epidemiologic outcomes using a simulated annealing algorithm [Kirkpatrick

et al., 1983, Press et al., 1988]. Even though the simulations could be distributed over STI’s

local network the computing resources were limiting the optimization process because of

the high dimensionality of the parameter space and the stochastic nature of the model

predictions. For this reason, downstream model components were fitted conditional on

upstream parameters. Table 1 in [Smith et al., 2006a] lists all model parameters, together

with the values estimated from fitting to field data.
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1.5 Goals and objectives

In summary, the goals of this research project are

• the development of models for the natural history and epidemiology of P. falciparum

malaria.

• the development of models for malaria control interventions.

• the prediction of the epidemiologic impact and cost-effectiveness of control interven-

tions.

The specific objectives addressed in this thesis are

• a model for natural immunity to asexual blood stages of P. falciparum malaria (Chap-

ter 2).

• a model for the case management of P. falciparum malaria in sub-Saharan Africa

(Chapter 3).

• a model for a pre-erythrocytic vaccine, and estimates of the vaccine characteristics

of a real vaccine (Chapter 4).

• predictions of the epidemiologic impact of introducing a pre-erythrocytic vaccine into

the Expanded Program on Immunization in sub-Saharan Africa (Chapter 5).

• predictions of the cost-effectiveness of introducing a pre-erythrocytic vaccine into the

Expanded Program on Immunization in Tanzania (Chapter 6).
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4World Health Organization, Geneva, Switzerland



16 Chapter 2. A model for natural immunity to asexual blood stages

Abstract

Most mathematical models for acquired immunity to Plasmodium falciparum consider ef-

fects of immunity on duration of infection and infectiousness, but do not consider the most

evident effect of immunity, which is to reduce parasite densities. Few attempts have been

made to fit such models to field data. We propose a stochastic simulation model to predict

the distributions of P. falciparum parasite densities in endemic areas, in which acquired

immunity acts by reducing parasite densities. We have fitted this model to age-specific pre-

valence and geometric mean densities from settings in Ghana, Nigeria, and Tanzania. The

model appears to reproduce reasonably well the parasitologic patterns seen in malariologic

surveys in endemic areas and is appropriate for predicting the impact of interventions such

as vaccination in the context of continual exposure to P. falciparum.

2.1 Introduction

In areas endemic for Plasmodium falciparum malaria, many people are subjected to fre-

quent re-infection; thus they develop partial immunity that leads to control of parasite

densities and to reduction in the frequency of clinical episodes [Molineaux et al., 1988].

However the level of acquired immunity does not reach a state of absolute resistance to in-

fection. Mathematical models that capture these effects of immunity are needed to predict

the potential epidemiologic impact of partially effective interventions against the parasite,

such as current formulations of malaria vaccines [Alonso et al., 2004].

Within-host models for individual P. falciparum infections have considered how partial

immunity affects parasite densities as an explicit consequence of differential survival of

the circulating asexual parasites as the infection develops [Molineaux et al., 2001, Paget-

McNicol et al., 2002]. However, models for the dynamics of P. falciparum in populations,

including those modeling acquired immunity [Aron, 1988, Dietz et al., 1974, Struchiner

et al., 1989], have generally not considered the densities of asexual parasites. We are aware

of only one population model for P. falciparum malaria that explicitly considered the effects

of immunity on parasite densities [Elderkin et al., 1977]. The lack of models of parasite

density is surprising because effects on densities are the clearest evidence for an effect of

naturally acquired immunity. The existence of such natural immunity represents some of

the strongest evidence that development of an efficacious malaria vaccine is possible.

One of the major effects of immunity in most epidemiologic models of malaria [Aron,



2.1 Introduction 17

1988, Molineaux and Gramiccia, 1980, Struchiner et al., 1989] is to reduce the duration of

infections and consequently the number of infections of the vector resulting from one human

infection. This quantity, following the report of Macdonald [Macdonald, 1957], is generally

assumed to be proportional to infection duration, which leads to a formula that makes

the basic reproductive number proportional to the infection duration. However, there is

little empirical evidence on the effect of acquired immunity on duration of infection [Sama

et al., 2004]. Some models [Gupta and Day, 1994] and empirical studies [Smith et al., 1999,

Smith and Vounatsou, 2003] have even suggested that in the semi-immune host, chronic

malaria infection may persist longer than in näıve hosts.

We now propose a new model for natural immunity to the asexual blood stages of P. falci-

parum that specifically focuses on the effect on parasite densities, since it is undoubtedly

the case that the major impact of acquired immunity is to reduce the overall parasite load

in infected individuals. This model makes predictions of the age patterns of patent par-

asitemia and of the geometric mean parasite density. Infections in näıve hosts mimic the

levels of parasitemia reached by P. falciparum infections induced to treat neurosyphilis in

the United States (Milledgeville Hospital, GA and National Institutes of Health Laborato-

ries, Columbia, SC during 1940-1963, Figure 2.1) [Collins and Jeffery, 1999b]. In previously

exposed hosts, we model a reduction in the densities that depends on the host’s history of

infection. This simulated acquired immunity does not affect the duration of the infections

although it can reduce the period for which parasite density is above the detection limits

used in field malariology.

We implement the model by stochastic simulation of each individual infection in a human

population using a five-day time-step, and introduce infections by a process dependent on

the temporal pattern of the entomologic inoculation rate (EIR) modulated as described in

[Smith et al., 2006b].

Here, we present how the model has been fitted to prevalence, density, and multiplicity

data of P. falciparum obtained from different epidemiologic settings in Ghana, Nigeria,

and Tanzania, and show that it gives realistic predictions of age-prevalence and age-density

relationships across a range of transmission intensities. This model forms one component

of a comprehensive dynamic model for the transmission cycle of the P. falciparum parasite,

and of malaria morbidity, and mortality, as well as of cost-effectiveness of control strategies.
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Figure 2.1: Parasite density as a function of time since infection in malaria-näıve indi-
viduals. Geometric mean parasite density as a function of time since start of patency
and depending on the duration of patent infection. The figure shows examples from five
individual patients.

2.2 Methods

Epidemiologic data. The model was fitted simultaneously to six datasets of pre-inter-

vention cross-sectional malariologic surveys from four different field studies of P. falciparum

malaria in Africa (Tables 2.1 and 2.2), that were chosen to represent a range of transmission

intensities. In addition, datasets from Saradidi, Kenya and from interventions carried out

in Matsari village (Garki project, Nigeria), were used to fit the model for the incidence of

infection, as described in the accompanying paper [Smith et al., 2006b]. Data from the pre-

intervention phase of the Garki project collected in Rafin Marke, Matsari, and Sugungum

villages, and from Navrongo, Idete, and Namawala were used to fit the model for three

distinct cross-sectional outcomes in the absence of intervention; 1) age-specific prevalence

of patent parasitemia, 2) age-specific geometric mean density of parasitemia in positive

individuals, and 3) age-specific multiplicity measured by polymerase chain reaction-re-

striction fragment length polymorphisms (PCR-RFLP) of the merozoite surface protein 2

gene [Smith et al., 2006b] (data from Navrongo only).

In all of these field-studies, entomologic surveys had been carried out to determine the

annual cycle of the inoculation rate (Figure 2.2; Table 2.1) and these entomologic data

were used as input to the simulation model.
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In all sites except Idete, the health system at the time of the surveys treated only a

small proportion of the clinical malaria episodes; in the Idete study, we calculate from the

published results [Kitua et al., 1996, Vounatsou et al., 2000] that the village dispensary

treated approximately 64% of clinical malaria attacks and our simulations assume this

coverage of effective treatment. Parasite densities in the Garki dataset were recorded by

scanning a predetermined number of microscope fields on the thick film and recording how

many had one or more asexual parasites visible. We converted these values to numbers of

parasites/µl by assuming a Poisson distribution for the number of parasites per field and a

blood volume of 0.5 mm3 per 200 fields [Molineaux and Gramiccia, 1980]. In the other field

studies, parasites were counted against leukocytes and converted to nominal parasites/µl

assuming the usual (though biased) standard of 8,000 leukocytes/µl [Shute, 1988].

The biases in density estimates resulting from these different techniques was accounted for

by multiplying the observed parasite densities with constant values estimated for Garki

(ν0) and non-Garki (ν1) field studies to rescale them to the values in the malariatherapy

patients (determined using the methods of Earle and Perez [1932]).

Hypothesized set of processes controlling asexual parasitemia. For every indi-

vidual in the simulated population each discrete infection is characterized by simulated

duration and densities at each five-day time point. The host acquires immunity as a func-

tion of exposure and this in turn modifies the density of subsequent infections.

Durations of infection. We treat each infection as monoclonal, but note that the infec-

tion process allows multiple infections during the same time interval. Each new infection

j, initiated in individual i at time t0, is assigned a duration, i.e. tmax(i, j). The dura-

tion is defined as the time interval between the first and last days of patent parasitemia

that would be observed in the absence of adjustments to allow for host immunity. The

present model does not allow the immune status of the host to affect the simulated period

for which the infection persists, although the immune status does affect the duration of

patent infection by modifying the proportion of time points for which the parasites are at

detectable densities.

The simulated infection starts after the pre-erythrocytic latent period lp, set to three time

intervals, i.e. 15 days which correspond to the hepatic stage of the life cycle plus the

pre-patent blood stage infection. We use the index τ to denote the time since the start
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of patent infection, i.e. τ = 1 corresponds to the first five-day interval when the infection

becomes patent, three time units after the infection event.

The duration of infection is randomly sampled from a distribution equivalent to that of

malariatherapy patients treated in Milledgeville, Georgia [Collins and Jeffery, 1999b]. In-

fections in patients from this hospital persisted for longer than those in South Carolina and

this appears to reflect more conservative policies (more treatment) in the latter hospital.

We therefore assume that the Georgia infections were more similar to untreated natural

infections in a typical malaria-endemic setting of Africa. The period of follow-up after

the last positive slide also varied. Thus, confidence that an infection was spontaneously

cleared also varied. We considered only patients who did not receive any anti-malarial

treatment on their last day of positivity, and for each of these determined t1(i), the du-

ration of follow-up after the last recorded day of positivity. For a series of cutoffs, t1∗,

we considered that subset of patients for whom t1(i) > t1∗, and calculated the mean of

the logarithm of the observed durations for those patients who were included. We surmise

that the subset giving the highest value of this mean best approximates the behavior of

untreated natural infections. The maximum value of this mean was 5.13 (corresponding

to a geometric mean of 169.0 days), which was computed from a subset comprising those

47 patients for whom t1(i) > 2 months. In this set of patients, the standard deviation of

the natural log of the duration was 0.80, and the distribution of durations in this subset

of patients was approximately log normal. In the simulations we therefore sampled the

durations of untreated infections using

ln(tmax(i, j)) ∼ Normal(5.13, 0.80) (2.1)

Expected densities of single infections. At each time point, τ = 0, 1, ..., tmax(i, j),

the density, y(i, j, τ), of the infection j in host i, is set by first determining the expected

log density, E(ln(y0(i, j, τ))), that would apply in the absence of previous exposure. To

determine E(ln(y0(i, j, τ))) we first determine the mean logarithm of the densities of malar-

iatherapy patients in the Georgia hospital, specific for the age of the infection (τ) and for

the pre-defined duration (tmax). The distributions of densities for the Georgia patients were

summarized by grouping the data into five-day categories according to the time since the

first day of patent asexual parasitemia and according to durations, and then using mov-

ing average smoothing of the logarithmically transformed densities to obtain a function,

yG(τ, tmax) (Figure 2.1), which is a simple description of average densities experienced in
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the course of a single malaria infection of a previously näıve host.

The actual densities experienced by different malariatherapy patients varied widely even

when the inocula were of the same strain, and were not greatly affected by the size of the

inoculum [Glynn and Bradley, 1995]. In our model this between-host variation is captured

by assigning to each individual i in the simulated population a value, (d(i)), drawn from a

log-normal distribution (geometric mean 1, variance σ2
i ), which multiplies the densities so

that

E(ln(y0(i, j, τ))) = ln d(i) + ln(yG(τ, tmax)) (2.2)

This empirically determined function provides a description of single infections that thus

captures the effects of blood-stage immunity that the infection stimulates against itself.

This includes effects of innate immunity, antigenic variation, and variant independent anti-

merozoite immunity [Molineaux et al., 2001].

Adjustments are then applied to E(ln(y0(i, j, τ))) to allow for immunity acquired as a result

of exposure to previous infections and for co-infection in hosts with multiple infections.

These determine the adjusted expected value, E(ln(y(i, j, τ))). The simulated density

y(i, j, τ) is then determined by sampling its logarithm using normal distributions centered

on E(ln(y(i, j, τ))).

Effects of acquired immunity on the expected parasite density. Acquired im-

munity to erythrocytic stages of the parasite is related to cumulative exposure to asexual

parasites. In our model the extent of acquired immunity depends both on the diversity

of the parasites to which the host has been exposed and on the cumulative density of to-

tal parasitemia. In the current version we assume no decay of this component of natural

immunity in the absence of infections.

The first trigger function is the cumulative density (parasites/µl of blood × days) of asexual

parasitemia since birth up to time t for individual i, i.e.

Xy(i, j, t) =

∫ t

t−a

Y (i, τ)dτ −

∫ t

t0,j

y(i, j, τ)dτ (2.3)

where Y (i, τ) is the total parasite density of individual i at time τ , and a is the age at

time t. Xy(i, j, t) measures the total antigenic stimulus to which the host has been exposed

less the exposure due to infection j, which is measured by the term
∫ t

t0,j
y(i, j, τ)dτ . The
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latter term must be subtracted to avoid allowing twice for acquired immunity stimulated

by infection j itself.

We parameterize the effect Dy of this exposure on parasite densities with a Hill function

of the form:

Dy =
1

1 + Xy

X∗

y

(2.4)

where we omit the indices from Xy(i, j, t) to simplify the notation, and where X∗
y is a

parameter to be estimated, which takes a real positive value, and where Dy consequently

takes a value 1 when Xy = 0, and is small but positive when Xy is large.

The second trigger function is the cumulative number of prior infections that the host has

experienced, i.e.

Xh(i, t) =

∫ t

t−a

h(i, τ)dτ−1 (2.5)

This term monotonically increases with the size of the repertoire of non-variant polymor-

phic antigens to which the host has been exposed, and therefore provides a measure of the

antigenic stimulus that they provide. We assume that the effect of this on parasite den-

sities can be measured by a further, one-parameter sigmoidal function where the further

parameter X∗
h is constrained to take a positive value, i.e.

Dh =
1

1 + Xh

X∗

h

(2.6)

The third trigger function is the age of the host a, which is inversely related to the extent of

maternally derived protection. We treat the level of maternal protection as independent of

maternal exposure. In case of a low transmission level, few infants will be exposed during

the first few months of life, so maternal immunity is irrelevant. If transmission is frequent,

then all mothers will have similar immune status [Ross and Smith, 2006].

We parameterize the multiplication factor that models the effect of maternal immunity

Dm, with a decay function that lies between 0 (maximal effect, corresponding to the status

at birth), and 1 (no reduction in density), such that

Dm = 1 − αm exp(−
0.693a

a∗
m

) (2.7)

where a∗
m, the half-life of the maternal immunity, and αm, the maternal protection at
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birth, are additional parameters to be estimated. We then compute the expected density

for single infections as

E(ln(y(i, j, τ))) = DyDhDm · ln(y0(i, j, τ)) (2.8)

Effects of concurrent infections. When the host is infected with more than one

infection at the same time, innate immunologic responses, together with other density-

dependent regulatory mechanisms, lead to a reduction in the overall density to below that

expected if the infections did not interact. We estimate this effect by assuming the density

of each component infection to be multiplied by a term constrained to take a value between

1 (no interaction between co-infections) and 1/M(t), where M(t) is the total multiplicity

of concurrent infections at time t. The value 1/M(t) corresponds to reduction of the total

density to that expected if there was only a single infection. To achieve this we define a

further parameter Dx, constrained to be between 0 and 1 and set

E(ln(y(i, j, τ))) = DyDhDm · ln(y0(i, j, τ)) + ln(
Dx

M(t)
+ 1 − Dx) (2.9)

Distributions of parasite densities and determination of expected prevalence.

The predicted densities for each individual in the simulated population, y(i, j, τ), are sam-

pled around the expectations of their logarithms, using log-normal distributions. The

variance of these log-normal distributions, which is estimated from the field data during

the fitting process, comprises both variation between hosts, and variation within individual

hosts.

Variation between hosts is quantified by the term σ2
i , while variation within individual

hosts is quantified by a term σ2
y(i, j, τ), which includes an effect of the cumulative exposure

of the host, and is necessary to obtain a good fit. Thus,

σ2
y(i, j, τ) =

σ2
0

1 + Xh(i,t)
X∗

v

(2.10)

where the parameters σ2
0 and X∗

v need to be estimated.

It follows that the simulated densities are distributed as

ln(y(i, j, τ)) ∼ Normal(E(ln(y(i, j, τ))), σ2
y(i, j, τ)) (2.11)
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The total density at time t in host i is then the sum of the densities of the various co-

infections j.

Y (i, t) =
∑

j

y(i, j, τ(i, j)) (2.12)

Entomologic inoculation rate. The input to the model is the annual cycle of the EIR.

In the case of the Garki sites in Nigeria, the EIR was assessed using human night bait

collections and dissections of the salivary glands of the Anopheles mosquitoes to give the

sporozoite rate. A random effects logistic model was used to give season- and village-

specific estimates of the sporozoite rate. The EIR values were then rescaled so the annual

totals corresponded to the published values of 18, 68, and 132 for the villages of Rafin

Marke, Matsari, and Sugungum respectively [Molineaux and Gramiccia, 1980]).

In the cases of Idete (annual EIR = 584) and Namawala (annual EIR = 329) in Tanzania

and Navrongo in Ghana (annual EIR = 418), the human biting rate was calculated using

light trap collections, with adjustment for the relative numbers of mosquitoes caught by

human landing and light traps [Charlwood et al., 1998, Smith et al., 1993]. The sporozoite

rates were estimated by using an enzyme-linked immunosorbent assay (ELISA) to test the

heads and thoraces of the captured anophelines for sporozoites.

For each of the sites, which were assumed to be at equilibrium, an estimate of the daily

inoculation rate was assigned to each five-day period, based on re-analysis of the original

data, and averaging estimates for the same season, where data were available from multiple

years. Where the observed dry season biting rate was too low for an estimate of the EIR

to be made, a value was assigned equal to 1% of the average rate for the rest of the year.

The inoculation rate estimates for Saradidi in Kenya, based on human landing collections

and sporozoite ELISA techniques, were taken directly from the report by Beier and others

[1994].

Implementation and fitting of the model. Since the model parameters are not iden-

tifiable from the data from single transmission settings or from single outcome measures,

estimates were made by maximizing the joint likelihood for all of the quantities listed in

Table 2.1. Each likelihood evaluation required a stochastic individual-based simulation of a

human population comprising 10,000 individuals for each of the 6 datasets (corresponding
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to the malariologic patterns in 6 different African villages). These simulations were imple-

mented in Fortran 95 using five-day time steps, with as input the EIR for each five-day

period. Each simulation began by simulating the exposure of the population over a whole

lifetime prior to the period for which the data applied (to ensure the correct values of the

cumulative exposure variables at the start of the monitoring period). For this warm-up

period the same average annual cycle of the EIR (estimated from the available entomologic

data) was assumed to have recurred since the birth of the oldest member of the simulated

population. A demographic model was used that ensured that the simulated population

remained stable with the same age-distribution throughout (see 2.5 Appendix).

The actual surveys carried out in the six villages were simulated, and predictions thus

made for the distribution of parasite densities in each age group at each survey. Simulated

prevalence was defined by comparing each predicted parasite density with the limit of

detection used in the actual field study. By comparing observed and simulated geometric

mean densities we were able to optimize the parameters of our model for immunologic

control of parasite densities. The comparison of the observed with simulated prevalence

allowed us at the same time to estimate the variances of the parasite density distributions.

The likelihood was computed for each of the outcomes listed in Table 2.1 separately for

each age group and each survey. Binomial likelihoods were used for the prevalence of

patent parasitemia, and a normal likelihood for the mean log parasite density among slides

positive by microscopy. For the Navrongo dataset Poisson likelihoods were calculated for

the total numbers of distinct parasite infections detected by polymerase chain reaction-

restriction fragment length polymorphism in the sampled individuals in each age group,

and at each survey.

The overall loss function was computed as a weighted sum of the negative log likelihoods

for each of these components across all age-groups, surveys, and sites (Table 2.1; Table

2.2). Each age-specific prevalence or multiplicity assessment was given unit weight, but we

weighted the log likelihoods for parasite densities by a factor of 10 (so that the prevalence

and density had roughly equal weight in the final loss function). We also included in the

fitting process simulation of the infection process during the intervention phase in Matsari

village [Smith et al., 2006b] (Model B). The log-likelihood for the prevalence data from this

simulation was also subtracted from the overall loss function (Table 2.2). The goodness of

fit of the model to the data was assessed graphically.

Simulated annealing [Kirkpatrick et al., 1983, Press et al., 1988] was used to identify
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the values of the parameters that minimized the loss function (Table 2.3). Approximate

confidence intervals were obtained by estimating the Fisher information for the parameters.

This was done by least squares fitting of local quadratic approximations to the (stochastic)

log likelihood surface.
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Validation of model for age-prevalence. In addition to fitting the model to data we

compared the predicted relationship between prevalence in children less than five years of

age and EIR with the meta-analysis of Beier and others [1999].

2.3 Results

We optimized our model for the control of asexual blood stages of P. falciparum in terms

of the biologic plausibility of the mechanisms for the control of parasites, the agreement

with gross features of the actual field data, and the fit to six datasets across a range of

transmission intensities as measured by the joint log likelihood.

The final model that we propose incorporates most of the processes that we initially en-

visaged. In particular, it includes stochastic variation in the duration of infections, and in

the densities that they achieve at each time point. These densities decrease in general as a

sigmoidal function of the cumulative density experienced by the host (Equation 2.4, Figure

2.3a), with the critical value of the curve, X∗
y , which correspond to a mean age of 7.1 years

(SD=10.1) in the lowest EIR setting (Rafin Marke) and to 5.3 years (SD=8.5) in Navrongo.

The densities also decrease with the cumulative numbers of infections experienced (Equa-

tion 2.6, Figure 2.3b) with the critical value of this curve, X∗
h, which corresponded to a

mean age of 27.5 years (SD=2.5) in Rafin Marke and 11.4 years (SD=1.2) in Navrongo.

The predicted age-pattern of the effects of maternal immunity on the densities (Equation

2.7, Figure 2.3c) shows the expected decay of this component of immunity in the first few

months of life. The distributions of the densities vary by individual host (Equation 2.2),

and there is also stochastic within-host variation in the densities by exposure (Equation

2.10, Figure 2.3d).

The model did not include any explicit effect of parasite density on the infections emerging

from the liver (see Smith and others [2006b]), and the best fitting value of Dx, explicitly

quantifying interactions between co-infections (Equation 2.9), was 0, which limited the

interactions between concurrent infections to those induced by acquired immunity. We

explored several different parameterizations to try to capture interactions between co-

infections, but we were not able to improve the fit of our models.

The model also assumed that each inoculation behaves as a single parasite clone. This

is a simplification since many oocysts in the field are heterozygous [Babiker et al., 1994,
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Paul et al., 1995], and result in mixed populations of sporozoites (Ranford-Cartwright L,

unpublished data). However, we were not able to improve the fit of the model by allowing

for diversity in the inoculum.

A good fit of the model to the parasite densities could only be achieved by including

parameters to allow for biases introduced by different methods for quantifying parasite

densities. We aimed to adjust all the modeled densities to the same scale as that in the

malariatherapy studies by introducing two parameters ν, one for the Garki dataset (where

the nominal densities were much lower than our model predicted), and one for the other

field studies, where the nominal densities were higher than our predictions (Table 2.3).

These adjustments ensured that our predicted densities in näıve individuals corresponded

on average to those in malariatherapy patients but do not allow us to separate ethnic

variations from effects of differences among study sites in the quantification of parasitemia.

In all settings, P. falciparum showed the characteristic age-prevalence pattern found in

malaria-endemic areas, with the highest prevalence in young children, reaching almost

100% in those sites with EIRs>200 infectious bites per person per year (Figure 2.4).

The age of peak prevalence was younger in the highest transmission sites and moves to

older ages in lower transmission settings, but there is little difference between sites in

the prevalence in older children and adults. These patterns were well reproduced by our

model, with clear separation between the sites in the predicted age-prevalence curves in

young children at all except the highest transmission rates, with peak prevalence at the age

of one year in the highest transmission sites and in adolescents in the lowest transmission

site of Rafin Marke.

Despite the highest recorded EIR in Navrongo, the prevalence of P. falciparum was rela-

tively low in the young children; thus, this setting had an anomalously high age of peak

prevalence (Figure 2.4) [Owusu-Agyei et al., 2002]. The age at which the multiplicity

reaches a peak is also anomalously high in Navrongo, in comparison to other sites that

have been studied (Figure 2.5) [Owusu-Agyei et al., 2002, Smith et al., 1999].

The highest geometric mean parasite densities rather than the peaks in prevalence were

found in younger children, with gradual decreases with age in the geometric mean densities

among the infected individuals (Figure 2.6). There was little peak shift in the geometric

mean densities in either the data or the model predictions, which suggested that the highest

densities should be found in the 1-2-year-old children.
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Comparison of the model predictions with the summary of field studies of prevalence in

children less than five years found a good fit, with only a small tendency for the predicted

prevalence to be below that observed (Figure 2.7).
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Figure 2.7: Comparison of model predictions with observed prevalence in children under
five years of age in 31 sites across Africa. ◦ = field data reported by Beier and others
[1999]. The line corresponds to predictions of our model made using the seasonal pattern
of inoculations in Namawala scaled to different values of the annual entomologic inoculation
rate.

Since the model was fitted only to cross-sectional data, it was not expected to give good

predictions of longitudinal patterns within individual hosts. Comparison of individual

parasitologic profiles with the patterns observed in malariatherapy patients confirmed that

within host variation was less than that observed in actual infections of näıve hosts.
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2.4 Discussion

The model we present for the processes involved in controlling the asexual blood stages of

P. falciparum infections provides a foundation for estimating the likely impact of variations

in malaria transmission and of control of parasite densities on the parasitologic burden in

endemic areas. It forms a central component of a comprehensive model to assess and

quantify the epidemiologic and economic effects of introducing malaria vaccines [Smith

et al., 2006a]. In addition to these applications, our analyses of models for the control

of asexual blood stages can also be used to test hypotheses about the nature of acquired

immunity and malaria transmission dynamics.

The realism of the model presented here is limited by a number of gaps in our current

knowledge of malaria. For example, no attempt has been made to simulate detailed im-

munologic processes. This is justified by the lack of agreed immunologic proxy markers for

protection in malaria. Thus, models of malaria immunity that aim to predict morbidity

and mortality cannot be validated against immunologic data. Modeling T-cell dynamics

or antibody levels would thus serve only to increase the complexity of the models without

adding to the validity. Our model assumed that the main mechanisms controlling parasite

densities do not decay in the absence of stimulation because we have no comprehensive

database from which to estimate rates of decay. It would be possible to analyze predic-

tions from sets of models fitted to the same data, assuming different rates of decay, but

this would require substantially more computing power than the analysis of a single model.

Inhabitants of endemic areas who temporarily move away are more vulnerable to malaria

when they return, but it is unclear whether this results from loss of anti-parasite immunity

or of parasitologic tolerance. Some specific immune responses against P. falciparum have

been shown to be highly labile (e.g. Kinyanjui and others [2003]), but the epidemiologic

consequences of this are yet to be elucidated. Even after several decades free of malaria,

people in the central highlands of Madagascar retained some protective immunity to P.

falciparum [Deloron and Chougnet, 1992].

To reproduce realistic age-prevalence and age-density curves, we required only to simulate

effects of acquired immunity on parasite densities, without any decay in immunity over

time or any explicit effect on duration of infection. In common with many other diseases

with acquired immunity, [Anderson and May, 1991, Woolhouse, 1998] as P. falciparum

transmission increases, there is a characteristic decrease in the age at which the maximum



2.4 Discussion 41

prevalence is reached and increases in the actual peak prevalence. Our model was also able

to reproduce these shifts.

Terms both in the cumulative parasite load, Xy, and cumulative number of infections, Xh,

were needed, which confirmed that models are inadequate in which acquired immunity

is a simple function only of the number of strains to which the host has been exposed.

The quantitative load of parasites resulting from repeated inoculations is also important

in our proposed model. This could reflect effects of the repertoire of antigen variants that

have been expressed in the host, as well as undifferentiated effects of the actual number

of parasites. Our formulation differs from models that assume the parasite population to

comprise a limited number of strains, or that strain-specific immunity can lead to complete

protection.

As with all mathematical models for infectious diseases, we made a number of simplifica-

tions. First, we assumed that ethnic differences in the response to P. falciparum malaria

between sites are small, although such differences are known to occur in sub-Saharan Africa

[Greenwood et al., 1987, Modiano et al., 1996].

Although our model showed satisfactory overall fits to the various datasets across a wide

range of transmission intensities, a somewhat poorer fit was observed with the Navrongo

data. A likely explanation for this relatively poor fit to this more recently collected dataset

is that we assumed that the impact of anti-malaria treatment was negligible. This assump-

tion is clearly appropriate in the case of the historical data from sites where there was little

or no effective treatment, and enabled us to avoid the need to model treatment effects.

However, in sub-Saharan Africa early diagnosis and treatment is currently the backbone

of malaria control [World Health Organization, 1993]. We needed to use recent data to fit

the model to age-multiplicity patterns because genotyping techniques have only recently

become available. The data from Navrongo that we used for this come from an area with

generally poor access to primary health services, although there are four health centers and

a hospital. A fraction of the population sleeps under mosquito nets after a successful trial

carried out a decade ago [Binka et al., 1996], and a pilot community health program has

treated many of the acute illnesses, including fever episodes in young children [Binka et al.,

1995]. The poorer fit of our model to the Navrongo data than to the other datasets sug-

gests that these interventions have reduced levels of malaria infection in Navrongo below

those to be expected at the high inoculation rates observed there.

Other limitations arise because our model was fitted to cross-sectional data, rather than
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to patterns of variation in parasitemia within individuals, and therefore it is more success-

ful in reproducing the former than the latter. Longitudinal patterns within individuals

might be better reproduced by fitting within-host models explicitly incorporating effects

of antigenic variation to repeated assessments of parasitemia with short time-intervals.

Such models have been fitted to data from malariatherapy patients [Molineaux et al.,

2001, Paget-McNicol et al., 2002, Recker et al., 2004] but there is no agreement that any

particular such model is appropriate. By basing the time-course of parasitemia on an em-

pirical description of the malariatherapy data, we attempted to incorporate the dynamics

of antigenic variation without explicitly modeling the processes that lead to it. Because

our model is individual-based and therefore makes predictions of sequential patterns of

parasitemia within simulated hosts, it would be possible to amend it to include a more

realistic model of within-host dynamics but there are few datasets from endemic areas to

which longitudinal patterns of parasitemia with short time-intervals can be fitted.

We conclude that this model appears to reproduce reasonably well the parasitologic pat-

terns seen in malariologic surveys in endemic areas. Development of improved models will

require fitting to data on longitudinal patterns of parasitemia in semi-immune individuals,

in particular to data from people whose exposure is interrupted by well-documented peri-

ods of protection from infection. Such models are needed to understand the consequences

of malaria interventions in areas of infrequent or unstable transmission. The present model

is appropriate for predicting the impact of interventions such as vaccination in the context

of continual exposure to P. falciparum.

2.5 Appendix

The simulation requires a demographic model for the human population in which the

following are needed:

1. Population size is held constant (this ensures that the computational effort and de-

nominators remain similar throughout the simulation. In some applications we do not

know at the outset how much time we must simulate; we do not want the simulated

population to be continuously growing).

2. The age-distribution remains approximately constant, so that models for parasite dy-

namics can reach equilibrium (assuming constant host/vector ratios). The infectious
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reservoir depends on the age distribution of the human population so a stable age

distribution is required for parasitologic equilibrium.

3. The age distribution reflects that of actual contemporary populations, to ensure

correct overall measures of disease burden and transmissibility.

Real populations are created by processes which vary over time, and in sub-Saharan Africa

they are growing [United Nations, 2002]. In a simulated population it is not in general

possible to keep the age distribution stable by applying current birth and death rates.

Usually a stable age distribution can only be maintained by removing more simulated

individuals at each age and time point than the deaths predicted by a realistic mortality

model. We separate processes maintaining the age-distribution of the human population

from the demographic effects of malaria, which we do not aim to model, by simulating out-

migration. We use age-specific out-migration rates to those needed to maintain a stable

population. In fitting our parasitologic model we do not simulate any mortality. The same

approach is used in models that do simulate mortality, in which the out-migration rates

are reduced to compensate for the deaths.

Age-distribution of the simulated human population. We simulate age-distribu-

tions based on the those recorded for African demographic surveillance sites [INDEPTH

Network, 2002]. Stable life tables cannot be constructed for these age distributions without

including age-specific immigration. We avoid simulating immigration because this would

require us to clone simulated individuals, altering the variance structure. We fit a continu-

ous parametric curve to smooth the age distribution because the distributions summarized

in published data are themselves smooth, and fewer in-migrations are needed. A bath-

tub function for mortality rates (higher in infants and older people) gives a good fit to

historical European data (M. Safan, unpublished data) and separates parameters of the

age-distribution from those of population growth.

If ρ is the Malthusian parameter, corresponding to the exponent of an exponential growth

model, then a stationary age-distribution is given by f(a) where:

f(a) = e−ρa−M(a)∫
∞

0 e−ρa−M(a)da
and M(a) = µ0

1−e−α0a

α0
+ µ1

eα1a−1
α1

Fitting the parameters of the age distribution. We set ρ, the population growth

rate, to 0 and estimate the parameters µ0, µ1, α0 and α1 and by least-squares fitting of
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the logarithmically transformed percentages of the population in each age group to those

of real African populations. Because the observed age distribution is aggregated into a

limited number of groups, the parameters µ0 and α0 are difficult to fit. We require a high

number of removals in the first year of life, so models with high infant mortality do not

require immigration of infants. We specify a high removal rate of infants and constrain the

age-specific removal rates in the first year of life so that there are four neonatal removals

for every six post-neonatal one. The age-specific removal rates of the simulated population

are then:

µ(a) = µ0e
−α0a + µ1e

α1a

At each five-day time point, we compare the age-specific cumulative numbers of individuals

to that of the target population, and excess individuals are out-migrated. After a run-in

period, the age distribution based on Tanzanian data (Figure 2.8a) is approximately stable

(Figure 2.8b).
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Figure 2.8: Age distributions of the population. a) Field data from Ifakara, Tanzania
[INDEPTH Network, 2002]. b) Simulated population distributions of 1,000 individuals at
3 cross-sectional time points (t=10,000, 50,000 and 100,000).
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Abstract

An important shortcoming of existing methods for estimating the cost-effectiveness of

malaria control interventions is that the incidence of illness and transmission dynamics

are assumed to be independent of the case management system. We have developed a

model for case management and integrated it into a stochastic simulation of Plasmodium

falciparum malaria dynamics. This allows us to predict the incidence of clinical episodes

and of mortality while incorporating effects of case management on persistence of parasites

and transmission. We make predictions for a range of different transmission intensities

in sub-Saharan Africa and simulate a range of case management scenarios with different

coverage rates. The model predicts that high treatment rates have a proportionately greater

epidemiologic impact at low transmission levels. Further development is needed for models

for health-seeking behavior and referral patterns. The current model is a first step towards

useful predictions of the epidemiologic and economic consequences of introducing and/or

scaling-up of malaria control interventions.

3.1 Introduction

Models for the cost-effectiveness of different disease control strategies generally, and malaria

control interventions in particular, usually assume the incidence of illness and transmis-

sion dynamics to be independent of the prevailing case management system [Drummond

et al., 1997, Gold et al., 1996]. Decision trees typically start with the observation of an

illness episode and consider how the episode is managed subsequently, but do not consider

whether management itself affects the incidence of the disease. With infectious diseases

such as malaria, this approach ignores the feedback that may arise from an effective case

management system, which in turn reduces the frequency of infection, and thus impacts

transmission dynamics.

Models for nosocomial infections and those recently developed to simulate the severe acute

respiratory syndrome epidemic [Cooper and Lipsitch, 2004, Lipsitch et al., 2003] provide

examples of approaches in which the operation of the health system interacts in a dynamic

fashion with the biology of the infecting organism. In these models, prompt treatment of

infections reduces epidemic spread, and thus results in both reductions in the subsequent

burden of disease and in the requirements for treatment of secondary cases.

When the infection has a long time course, which may encompass several illness episodes,
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treatment may also reduce the subsequent burden of disease independently of its effect

on transmission. In malaria, untreated Plasmodium falciparum infections can persist for

many months, during which clinical attacks recur at irregular intervals [Collins and Jeffery,

1999a]. One of the current mainstays of malaria control is access to early diagnosis and

effective treatment [World Health Organization, 1993]. Prompt and effective treatment

not only reduces the reservoir hosts who are infective to mosquitoes, but also prevents

recurrences. Longitudinal studies of malaria in endemic populations frequently record de-

clines in incidence over time. A major reason for this is likely to be that study participants

receive more frequent treatment and this reduces the incidence of subsequent malaria fever

attacks, irrespective of any effect on transmission. Conventional cost-effectiveness analysis

of treatment does not consider these effects.

Malaria control interventions, such as source reduction by means of environmental manage-

ment, increasing the coverage of insecticide-treated nets (ITNs), indoor residual spraying,

and (potentially) the introduction of a malaria vaccine, modify the demands on the health

system, and thus affect both immediate direct impact and longer-term indirect effects of

case management. This applies even when the intervention, such as vaccination, does not

directly modify case management. It follows that prediction of the impact of preventative

and curative interventions against malaria must take into account these dynamic effects.

This report presents a first attempt to develop a dynamic model including case management

of P. falciparum malaria in a typical setting of sub-Saharan Africa. It has been integrated

into a model for the clinical epidemiology and natural history of P. falciparum malaria

[Smith et al., 2006a]. We compare the outcomes of different case management regimens in

settings of different transmission intensities.

3.2 Materials and Methods

Epidemiologic model. The epidemiologic model is a stochastic individual-based sim-

ulation of P. falciparum malaria in endemic settings that uses a five-day time step. The

primary input is the pattern of the entomologic inoculation rate (EIR) in the absence of

malaria control interventions, with separate values of the EIR specified for each of the 73

five-day periods during the year [Smith et al., 2006b,a]. For the present analyses, we simu-

late populations of 100,000 individuals, with an approximately stationary age distribution

matching that of the demographic surveillance site in Kilombero, Tanzania in 1997-1999
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(Chapter 2).

For every individual in the simulated population, each discrete P. falciparum infection

is characterized by a simulated duration and parasite density at each five-day time point

(Chapter 2). The host acquires immunity as a function of exposure and this in turn modifies

the parasite density, and infectivity to mosquitoes [Killeen et al., 2006, Ross et al., 2006a]

at subsequent time-points. At each time point, a clinical event, either uncomplicated

clinical malaria, severe malaria, or death from either malaria or other causes, may occur.

Probabilities for occurrence of these events depend on the parasite density, recent exposure,

and age-dependent co-morbidity. They have been determined by functions that have been

fitted to field data across a wide range of transmission settings [Ross et al., 2006b, Ross

and Smith, 2006, Smith et al., 2006c]. In addition, the prevalence of anemia (hemoglobin

levels less than 8 g/dL) is assigned at the population rather than the individual level, as a

function of simulated age and parasite prevalence [Carneiro et al., 2006].

Clinical events. There are five different entry points into the case management tree:

no event, uncomplicated malaria, severe malaria, indirect malaria death, and non-malaria

death or out-migration. They are defined as follows.

No event, includes asymptomatic malaria infections. In this case, the simulated individual

continues to the next time point, with the natural history of P. falciparum infections

unmodified by the case management model.

Uncomplicated clinical malaria comprises P. falciparum infections that may be treated

either at home or in peripheral health facilities. The model assumes that the risk of un-

complicated clinical malaria depends on whether the parasite density exceeds a critical

threshold, which in turn is a function of past exposure [Smith et al., 2006c]. The case

management implications of uncomplicated clinical malaria further depend on whether the

host has recently been treated for malaria. Two possibilities were considered, as follows.

The first is uncomplicated clinical malaria in the absence of recent treatment. This is

defined by no treatment over the previous 30 days (6 time points). The decision tree

pathways for this scenario are shown in Figure 3.1a. They include entry into the formal

health care system and receiving the first-line drug, self-treatment at home with the rec-

ommended first-line drug, or absence of seeking of malaria treatment. The second is an

uncomplicated clinical malaria episode that occurs despite recent treatment history. Fig-

ure 3.1b shows the decision tree pathways for this scenario. An uncomplicated malaria
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case that was treated in the past 30 days is assumed to either seek care or not. If care is

sought, it is assumed to take place in the formal health care system, with treatment being

based on the second-line drug. We do not consider the possibility that patients self-treat

after drug failure because this would very likely involve ineffective re-treatment with the

first-line drug, with no epidemiologic consequences.
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Severe malaria episodes are those clinical malaria episodes that are life-threatening if they

are left untreated. We consider these as equivalent as those events that would have led

to an admission diagnosis of severe malaria, had the patient presented to a health facility

[Ross et al., 2006b]. The current model assumes that a severe malaria case can either be

treated as an in-patient or not be treated at all. In the former case it is assumed that

compliance is 100%. There are three possible clinical outcomes for treatment of a severe

malaria episode, namely, death, recovery with neurologic sequelae, or full recovery (Figure

3.1c).

Indirect malaria death considers those deaths that would not have occurred in the absence

of prior malaria exposure but which do not meet the criteria for severe malaria [Ross et al.,

2006b].

Non-malaria death and out-migration correspond to events that occur independently of

the parasitologic status of the host. These events are simulated to maintain the correct

age-structure of the simulated population.

When more than one simulated clinical attack occurs within 30 days of another attack,

these are counted as the same episode. Thus, there can be several treatments for one

episode. The severity assigned to the episode is assigned to that of the most severe malaria

attack within the 30-day period.

Each decision tree pathway predicts the outcome in terms of whether the parasites are

cleared, and the clinical outcome (i.e. death, recovery with long-term sequelae or full

recovery). The epidemiologic effects of the case management depend stochastically on

the values of the joint probabilities of the clinical and parasitologic outcomes, conditional

on the clinical event. These conditional probabilities are computed by calculating the

probabilities for each branch of the decision tree pathways (Figure 3.1). For the model of

uncomplicated malaria, the probabilities associated with each branch in the decision tree

were obtained from the literature (Table 3.1).
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For the severe malaria model, we used in-patient case fatality rates, Qh(a), from a recent

study in Tanzania [Reyburn et al., 2004], and estimated corresponding community case

fatality rates, Qc(a). Qh(a) varies with age a, taking values from 3% to 13%. Qc(a) takes

values estimated previously using our model for severe malaria and mortality assuming the

two risks to be related via a constant odds ratio, ϕ1, taking a value of 2.09 [Ross et al.,

2006b], i.e.

Qc(a) = ϕ1Qh(a)
1 − Qc(a)

1 − Qh(a)
(3.1)

We assume negligible drug-resistance to quinine, so that parasites are cleared in all hospi-

talized cases who survive. We assign a probability of sequelae, Rx, with a value independent

of treatment (Table 3.1).

Disability adjusted life-years (DALYs). Years of life lived with disability are cal-

culated using standard methods [Murray and Lopez, 1996b] on the basis of the duration

of disability, and respective disability weights (Table 3.2). These weights for different

malaria-attributable disease conditions have been obtained from the Global Burden of

Disease (GBD) study [Murray and Lopez, 1996a].

Table 3.2: Disability weights and duration of disability used to calculate
YLDs∗

Disease condition Disability weight Duration (years)

Untreated neurologic sequelae 0.473 35.4
Neurologic sequelae (treated) 0.436 35.4
Uncomplicated malaria episode 0.211 0.01
Anemia 0.012 ND
Low birth weight ND ND
Others ND ND

∗YLDs = years of life with disability; ND = not defined

Years of life lost (YLLs) and DALYs (age-weighted) are calculated assuming age-specific

life expectancies based on the life-table from Butajira, Ethiopia, with an average life ex-

pectancy of 46.6 years at birth [INDEPTH Network, 2004]. This life-table represents that

of an east African setting, but is characterized by low malaria transmission. For exam-

ple, it is very similar to that for Hai district, a high-altitude site in Tanzania [INDEPTH

Network, 2002].
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In a first step, YLLs and DALYs are presented with no discounting. Subsequently we

compare the results with those obtained using a 3% discount rate, which is the one most

commonly used in cost-effectiveness analyses [Drummond et al., 1997, Gold et al., 1996].

Malaria transmission intensity. The introduction of changes in case management (or

of other interventions) leads to transient behavior, which may in principle modify the level

of P. falciparum transmission. These effects on transmission are captured in the model

by the effects on infectiousness of the human population resulting from clearing parasites.

The simulation model predicts for time point t the proportion κ̄m(t) of vectors that become

infected at each feed on a human host [Killeen et al., 2006] [Ross et al., 2006a]. We adjust

this to give κu(t) = 0.56κ̄m(t) to allow for the bias arising because κ̄m(t) is estimated from

artificial feed data [Killeen et al., 2006]. We record the value κ
(0)
u (t) that κu(t) takes in

the simulation of the reference scenario to which a change in the case management model

has been applied, and compare this value to κ
(1)
u (t), the prediction of κu(t) for the same

time-point in the simulation with a change in case management. The effect of the change

in case management on transmission is then modeled by a change in the EIR in adults at

lv time units later (Emax(t + lv)), such that

E(1)
max(t + lv) =

E
(0)
max(t + lv) κ

(1)
u (t)

κ
(0)
u (t)

(3.2)

where lv corresponds to the duration of the sporogonic cycle in the vector, and where

E
(0)
max(t + lv)/κ

(0)
u (t) is the overall vectorial capacity. The consequences for the infection

rates follow from details of the epidemiologic model [Smith et al., 2006b].

We considered four different intensities of transmission, each with the same seasonal pattern

as that in Namawala, Tanzania [Smith et al., 1993] (Table 3.3). For the reference scenario,

we used an overall annual EIR of 21 infectious bites per year which represents a typical

level of transmission for a mesoendemic setting [Hay et al., 2000, Robert et al., 2003].

Health systems. Uncomplicated malaria patients seeking formal health care in Tanza-

nia are usually diagnosed during an out-patient visit either in a health center, a dispensary,

or a hospital. A diagnostic test (normally light microscopy of finger prick blood smears)

is performed on less than 10% of treated cases (National Malaria Control Program, 2004,

unpublished data). Current Tanzanian national treatment guidelines recommend that an
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Table 3.3: Scenarios modeled: health sys-
tems and transmission intensities∗

Scenario Annual EIR

Very low 1.3
Low 5.2
Reference 21
High 83
Very high 329

Health system

No treatment
Reference
Moderate coverage
60% Abuja target coverage
Full coverage
Effective treatment
Antipyretic treatment

∗EIR = entomologic inoculation rate.
EIR changes over time in these scenar-
ios.

uncomplicated malaria episode be treated with sulfadoxine-pyrimethamine (SP) as the

first-line drug. Amodiaquine serves as the second-line drug, and quinine is used for treat-

ment of severe malaria [Ministry of Health, Tanzania, 2000]. Our models assume that

formal-sector treatment adheres to these practices (Tables 3.4 and 3.5). We also assume

that SP is used as the drug of choice for self-treatment, but the efficacy is assumed lower to

account for lower quality of drugs purchased in the private sector. The levels of compliance

and of drug resistance that we assume are given in Table 3.1.
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We evaluate the effects of different case management in our model by varying either malaria

treatment seeking-behavior or availability of treatment. Table 3.3 summarizes the set

of scenarios considered that include seven different sets of assumptions for the level of

treatment.

No treatment. In this model, we assume no access to antimalarial treatments.

Reference case management. In this model, we took the same probability of seeking treat-

ment of uncomplicated malaria as in our recent simulation of a malaria vaccine trial (Chap-

ter 4), but assume 20% of treatments to be self-treatment and 80% to use formal care. We

use a value of 48% for the probability of seeking treatment of severe malaria (Table 3.1)

[McCombie, 1996, 2002]. The treatment rates for uncomplicated episodes are low because

the model for clinical episodes was fitted to very intensive surveillance data from Senegal,

which included minor fevers that would be very unlikely to lead to treatment seeking [Smith

et al., 2006c]. The treatment rates were estimated by triangulating the predictions of this

model for clinical episodes with health system attendance data from Manhiça, Mozambique

(Chapter 4).

Moderate coverage. In this model, we use recent data from the Tanzanian National Malaria

Control Program of the Ministry of Health [NMCP, 2003]. This report states that 27% of

children less than five years of age were treated within 24 hours in health facilities, 13%

at home, and 2% at traditional healers. The remaining 58% received no treatment within

24 hours from the onset of disease [NMCP, 2004]. We use these percentages of 27% of

children receiving formal care, and 13% self-treatment of uncomplicated malaria episodes

(Table 3.1). We use the same coverage of formal care for severe malaria as in the reference

model. In the context of our five-day time-step we do not distinguish in our simulations

whether treatment is within 24 hours or not.

Abuja target coverage. Sixty percent of uncomplicated episodes are treated with the ap-

propriate drug. The simulated coverage of hospital treatment of severe episodes remains

at 48%.

Complete coverage. We assume that 100% of uncomplicated clinical episodes are treated

with formal-sector care. We also assume that 100% of severe malaria episodes are treated.

Effective treatment. We assume that 100% of clinical episodes are treated with formal-

sector care and that there are no treatment failures. Moreover, we assume that all severe

episodes receive in-patient treatment.
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Anti-pyretic treatment. We assume the same anti-malarial treatment coverage as in the

reference scenario, but in addition we assume that 50% of episodes are treated at home by

paracetamol. The paracetamol is assumed to provide only symptomatic relief and thus to

have no effect on the epidemiologic outcomes.

This defined the baseline status of the simulated populations. We ran simulations over

a 90-year period at different transmission intensities under the assumptions of the ref-

erence case management scenario. The rather low level of treatment in this scenario is

intended to approximate conditions prevailing in many areas studied in Africa of limited

drug availability, drug resistance, and non-treatment or undertreatment of minor febrile

attacks.

To explore the dynamic impact of different case management options, we then simulated the

transient behavior over the next 5-, 10-, and 20-year periods for different case management

scenarios, assuming the vectorial capacity for P. falciparum transmission to follow the

same seasonal pattern as during the baseline period. We compared outcomes with those

of scenarios in which the reference case management regimen continued.

Costing. Both marginal and average costs of health care were computed. The marginal

cost of treatment is the additional financial or opportunity costs that is incurred when

treating each additional case, but does not include the fixed cost of the infrastructure. The

average costs include all those costs involved in delivering the intervention, including the

use of spare capacity, and those health care resources diverted from other uses [Hutton and

Tediosi, 2006].

Uncomplicated malaria. Direct costs of an uncomplicated malaria case seeking care at

formal-sector facilities, Cdo, comprise the cost of an out-patient visit, the cost of drug

treatment, and other costs incurred by the patients, i.e.

Cdo = Do + Vo + Ho (3.3)

where Ho is the patient (household) cost when visiting formal-sector outpatient facilities

(excluding fees), and Do is the cost of out-patient drug treatment, and Vo is the non-drug

costs of an out-patient visit. Do is computed as

Do = DodLd(1 + W ) (3.4)
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where Dod is the cost of drug per day and Ld is the number of days of therapy. The drug

regimens and hence price depend on patient age and weight (Table 3.4), with the prices,

which include distribution costs to districts, corresponding to those in the medical store

department catalog [MSD, 2004] of the Tanzanian Ministry of Health. W , the % additional

cost of drug wastage, takes a value of 25% throughout [Goodman et al., 2000].

The non-drug cost of an outpatient visit is computed from published data on proportions

of out-patients reporting at different levels of the health system, on the proportion, pt, of

cases undergoing diagnostic tests, and on unit costs after exclusion of drug costs (Table

3.6). In the average analysis, the non-drug cost, Vao, is thus given by

Vao = phcVhc + phVh + pdVd + ptT. (3.5)

In the case of marginal costs there is an adjustment for the proportion of recurrent non-fixed

costs, i.e.

Vmo = Vaopro(1 − prfo). (3.6)

The patient (household) costs per outpatient visit, Ho, comprise travel expenses, expenses

related to medical supplies, Hm, and non-medical supplies, Hn, such as the purchases of

food and drinks or costs of spending the night away from home while seeking care [Adam

et al., 2004] (Table 3.6), so that

Ho = Ht + Hm + Hn (3.7)

In case of self-treatment it is assumed that patients do not incur in any additional costs to

purchase the drug because the drugs are likely to be purchased from a private shop close

to the patient’s home.
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Severe malaria. The direct health care costs of a severe malaria case Cdi are given by

Cdi = Di + Vi + Hi (3.8)

where Vi is the non-drug cost of in-patient care, Di is the cost of drug treatment, and

Hi is the patient (household) cost when visiting formal-sector in-patient facilities. Di is

computed by multiplying the costs by the duration for which they are incurred. During the

first day of treatment the drug dosage and consequently the costs are different, so overall

Di is given by

Di = (Di1 + Di2(Li − 1))(1 + W ) (3.9)

where Di1 is the cost for the first day, Di2 is the cost per day thereafter, and Lt is the

length of treatment (in days) (Table 3.6). The non-drug cost of in-patient care in the

average analysis is given by

Vi = Vai = NiLi(o) (3.10)

where Li(o) is the average length of stay, which varies depending on the outcome o, and

Ni is the in-patient cost (see Table 3.6). Correspondingly, in the marginal analysis the non

drug cost is

Vi = Vmi = NiLi(o) pri(1 − pfi). (3.11)

The costs incurred by patients are the same as for an outpatient visit for the first day. For

the subsequent days of stay, we include only the costs of medical and non-medical supplies

(Hm and Hn respectively) so that

Hi = Ht + (Hm + Hn)Li(o). (3.12)

3.3 Results

The reference scenario simulation. Simulated patterns of age-prevalence and age-

incidence for the reference scenario (Figure 3.2) are similar to those for typical mesoendemic

settings in Africa to which the models were fitted (Chapter 2, Ross et al. [2006b], Smith

et al. [2006c]). The direct cost per capita is stable over time. The predicted infectiousness

of the host population, κ̄u(t), fluctuates seasonally around a value of approximately 3%

(Figure 3.3a). Since the reference scenario uses the same transmission pattern and health

system to construct the baseline population as are applied during the follow-up, there
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is no trend over the 20-year simulation period in these epidemiologic variables or in the

treatment costs. Over the 20-year simulation period, the total number of undiscounted

Years since start of intervention

b

0.01

0.02

0.03

a
In

fe
c
ti

v
it

y
, 
κ

u
(t

)

0 5 10 15 20 0 5 10 15 20

Figure 3.3: Infectivity of the human population. a) Reference scenario. b) Scenario as-
suming full treatment coverage.

DALYs lost due to malaria in our population of 100,000 people is approximately 481,000,

which corresponds to a rate of 0.24 DALYs per capita per year. Since most of these DALYs

are due to mortality, the total number of YLLs is very close to that of DALYs (Table 3.7).

If YLLs and DALYs are discounted at a standard rate of 3%, the total number of DALYs

is considerably lower.
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The total undiscounted direct average costs to treat malaria episodes with the reference

case management model amounts to US$ 485,793 over the 20-year simulation period. This

corresponds to US$ 4.86 per capita and, on average, US$ 0.24 per capita per year (Table

3.7). Out-patient visits account for 32% of total direct costs, drug treatments of both

uncomplicated and severe episodes for 7%, hospital admissions of severe episodes for 40%,

and patient costs for 22%. The marginal cost, i.e. additional financial or opportunity costs

that would be incurred when introducing a new control intervention, is approximately 58%

of the average cost.

Effect of changing levels of access to case management. Comparison of the ref-

erence scenario with the extreme scenario with no treatment of malaria episodes (either

uncomplicated or severe) showed noticeable epidemiologic effects of treatment despite the

low attendance rates for uncomplicated episodes in the reference health system. In children

less than 10 years of age, the no treatment scenario predicted higher prevalence of infection

(Figure 3.4), a higher anemia prevalence (Figure 3.5) and a slight increase in the incidence

of clinical episodes, with age patterns as shown in Figure 3.6a,b and c.
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Figure 3.4: Age-prevalence curves of parasitemia under different case management scenar-
ios during a simulated 20-year follow-up period. � = no treatment; △ = reference; N

= moderate coverage (1st year of follow-up); ⋆ = complete coverage (1st year of follow-
up); ◦ = complete coverage (10th year of follow-up); • = complete coverage (20th year of
follow-up);

There was only a small effect on the incidence of severe malaria (Figure 3.6d, e and f). Since
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Figure 3.5: Age-prevalence curves of anemia (hemoglobin level < 8g/dL).

the reference health system includes a relatively high treatment rate of severe episodes, the

largest differences between the no treatment and reference scenarios were in the mortality

rates, with a substantially higher mortality rate predicted with no treatment, especially in

the second half of the first year of life (Figure 3.6g, h and i).

The reference scenario is in a state of equilibrium throughout the simulation, although

there is stochastic variation over time in the outputs. The no treatment scenario quickly

reaches a new equilibrium. Therefore, only the average prevalence over 20 years is shown

for this scenario (Figure 3.4), and the effects on incidence of morbidity and mortality do

not change much during the follow-up period (Figure 3.6). The total number of DALYs

lost over the simulated 20-year period was 13% higher with the no treatment regimen than

with the reference. The effect on transmission, as measured by κ̄u(t), is negligible.

The complete coverage scenario for treatment leads to a rapid decrease in transmission,

as measured by κ̄u(t) (Figure 3.3b). This stabilizes quickly at a value approximately 60%

of that in the reference scenario, implying that treatment of all the clinical episodes (in-

cluding minor episodes) can reduce the inoculation rate by about 40%. Complete coverage

predicted very substantial decreases in prevalence of parasitemia (Figure 3.4), anemia (Fig-

ure 3.5), and incidence of uncomplicated episodes (Figure 3.6), but these outcomes, which
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reflect the dynamics of immunity, required an extended period to reach equilibrium. Al-

though treatment of severe episodes in the complete coverage health system is no different

from the reference, the effects on transmission and persistence of parasites result in sub-

stantial reductions in incidence of severe morbidity and mortality (Figure 3.6), leading to

a total number of DALYs lost over 20 years of only approximately 45% of those in the

reference scenario (Table 3.7).

The epidemiologic effects of high treatment coverage were concentrated in the youngest

age groups, resulting in a substantial shift in the age of peak incidence of uncomplicated

episodes (to older ages) and of mortality (to younger ages, in which a greater proportion of

the mortality is contributed by indirect deaths). Since the changes in the age-prevalence

and age-incidence curves caused by complete coverage were also time-dependent, the tran-

sient effects can be seen throughout the 20-year follow-up period. As a result of the shifts

in age-incidence, 10 years into the simulation an increase in incidence of clinical episodes

above baseline levels is evident in individuals more than 10 years of age (Figure 3.6b).

Since the shifts in the peak of the incidence curves to older age-groups accumulates over

time, the benefit of the intensive treatment regimen decreases with time.

The distribution of direct costs is also changed as a function of treating all malaria episodes

with a first-line drug. In the scenarios that we simulated, there would then be little need

for second-line treatment; thus, many severe episodes could be prevented, which in turn

reduces in-patient costs. Our model predicts that if all uncomplicated episodes were treated

with the first-line drug, out-patient visit costs would account for 61% of total direct costs,

drug treatments for 7%, in-patients admissions for 3%, and patient costs for 30%. The

total direct costs to treat all malaria episodes would be approximately 7.4-times those of

the reference scenario.

The moderate coverage scenario predicts effects on prevalence and on the clinical outcomes

(Figures 3.4, 3.5 and 3.6) more similar to those for complete coverage than to those for

no treatment. This is despite the assumption in the moderate coverage health system of

treatment rates for uncomplicated episodes much less than 50% and thus much closer to

those for no treatment than those for complete coverage. This implies that within our

models, there is a highly non-linear relationship between health outcomes and treatment

coverage for uncomplicated malaria, with a very high marginal impact of increases in

coverage when it starts from a low level. This conclusion is supported by the simulation of

effective treatment, which gave very similar results to that of complete coverage for all the
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outcomes except mortality. Mortality rates and thus DALYs lost (Table 3.7) were reduced

by the effective treatment health system to substantially below those with the complete

coverage health system because all severe cases were assumed to be treated as in-patients.

The Abuja target coverage simulation is intended to simulate the impact of achievement

of the coverage of 60% targeted in the Abuja Declaration on Roll Back Malaria in Africa,

signed by African Heads of State and Government in April 2000. The YLLs, DALYs, and

costs are intermediate between those predicted for the reference and those for full coverage.

The antipyretic treatment simulation is intended to indicate the sensitivity of the costs

to allowance for the large number of people who self-treat with anti-pyretics, in addition

to those who use anti-malarials. Unfortunately, it is difficult to obtain good estimates for

actual levels of self-treatment in sub-Saharan Africa. The coverage of 50% for self-treating

with anti-pyretics that we use is associated with an increase in drug costs of between

9% and 16% Table 3.7), which indicates that although this is not likely to be a factor

dominating costs, it could be of some importance because these are out-of-pocket expenses

paid predominantly by poor patients. It would be important to include better estimates

of drug choice and coverage for self-treatment.

Effect of transmission intensity. In higher transmission settings, simulated parasite

prevalence was higher, and peaked at a younger age (Figure 3.2a). The incidence of un-

complicated malaria episodes also increased with transmission intensity in young children,

but the reverse pattern was observed in older individuals (Figure 3.2b), matching the pat-

tern to which the model was fitted [Smith et al., 2006c]. The incidence of severe episodes

showed a similar pattern, but with a steeper decline in incidence with age at high transmis-

sion, and consequently a crossing of the age-incidence curves at younger age (Figure 3.2c).

The pattern for mortality was similar, with the mortality rate independent of transmission

intensity at the age of approximately 3-4 years.

The average level of transmission to the vector, κ̄u(t), was similar to that for the reference

scenario for all values of EIR investigated, but the amplitude of the seasonal variation in

κ̄u(t) increased with the transmission intensity.

The total number of YLLs and DALYs lost over the simulated 20-year period are only

slightly higher in the high transmission settings compared with areas of lower transmission

intensity. The total direct costs are determined by the number of uncomplicated and severe
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episodes treated, which are higher than in the reference scenario in the low transmission

setting and lower in the high transmission setting (Figure 3.7). However, these figures

depend strongly on the model predictions for rates of severe malaria in adults, of which we

are highly uncertain [Ross et al., 2006b].

1 10 100 500

0.00

0.05

0.10

0.15

0.20

0.25

0.30
A

ve
ra

g
e
 d

ir
e
c
t 
c
o
s
ts

 p
e
r 

c
a
p
it
a
 p

e
r 

ye
a
r 

(U
S

$
)

Infectious bites per person per year

Direct costs (undiscounted)

Direct costs (disounted 3%)

Figure 3.7: Direct costs in relation to transmission intensity. Upper line = undiscounted;
lower line = discounted.

Changing access to case management in different malaria transmission intensity

settings. The effects of an increased or decreased level of access to case management also

vary according to the prevailing malaria transmission intensity (Figure 3.8). In a setting

of moderate malaria transmission, treating all uncomplicated episodes over 20 years would

lead to only a small difference in the total number of uncomplicated episodes, but reduces

incidence of severe episodes by 49%, and the number of deaths and DALYs lost by 57%

(Table 3.7).

In the low transmission setting, treating all uncomplicated cases over 20 years reduces

incidence of uncomplicated episodes by 71%, severe episodes by 88%, and the number of

deaths and DALYs lost by 83%. In the high transmission setting, complete treatment

coverage would increase the total number of uncomplicated episodes over time, and would
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lead to a reduction of only 31% of severe episodes and DALYs lost and 34% of the number

of deaths.

Treating everyone has a much greater effect on incidence at low transmission intensities.

At high transmission, a high level of coverage always appears to be beneficial in terms of

reducing incidence of severe episodes and of mortality, but may even lead to an increase

in incidence of uncomplicated episodes. Within the model, this is because a very high

treatment rate is associated with a reduction in exposure to asexual blood stage parasites

and thus in acquired blood-stage immunity.

The economic implications of changing levels of access to case-management also differ

according to the malaria transmission intensity. Simulation over a 20-year period under

the assumption of complete treatment coverage of uncomplicated malaria episodes would

increase direct costs by a factor of almost 10 in a highly endemic setting, but the increase

would be only 92% in low transmission settings (Table 3.7).
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Figure 3.8: The effect of changing case management in different transmission settings.
The status of the population at baseline was defined by simulating the reference health
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severe morbidity and mortality in adults, the predictions only for children less than 10
years of age are shown. � = no treatment; △ = reference case management; x = full
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3.4 Discussion

We present a first attempt to use a dynamic model for case management of malaria in sub-

Saharan Africa. For prediction of the effects of the case management, we considered a range

of different transmission intensities characteristic for large parts of malaria-endemic Africa,

and our simulations are thus likely to be of broad applicability. Lower EIRs than considered

here (i.e. less than five infectious bites per person per year) are characteristic of highly

urbanized settings, the African highlands, and areas located at the current distribution

edges of P. falciparum transmission [Keiser et al., 2004, Zhou et al., 2004]. Our model

needs further development and validation to make meaningful predictions for such settings.

Our modeling approach expands the scope for predictions of the epidemiologic and eco-

nomic consequences of malaria interventions as a direct function of the case management.

In a first step, we have simulated different rates of treatment coverage, including the most

extreme scenarios of either complete lack of treatment or full coverage. These two scenar-

ios, together with a reference scenario largely constructed from real data obtained from

Tanzania, were used for simulations up to 20 years. Costs were also built into our dynamic

models, which will ultimately make it possible to predict the cost-effectiveness of the case

management.

Our immediate purpose is to integrate effects of case management into our dynamic models

of the clinical epidemiology and natural history of P. falciparum malaria in a typical setting

of sub-Saharan Africa. This approach could readily be adapted to assess the costs of scaling

up malaria treatment but this would entail more detailed analysis of the activities involved

in changing treatment practices.

Our model can be used to make predictions of the effect of introducing a new malaria control

intervention (e.g. malaria vaccine) or scaling-up of existing control measures (e.g. ITNs).

The former motivated the development of our modeling approach. The current model is

probably better at fulfilling this objective than in capturing the impact of changes in case

management, including different levels of treatment and changes in national antimalarial

drug policies. This is justified because the epidemiologic model was fitted mainly to cross-

sectional data from various settings across sub-Saharan Africa. Since it is less able to cap-

ture longitudinal patterns within hosts, it does not claim to incorporate realistic patterns

of treatment-seeking behavior or of referral patterns. In African settings where patients

have limited resources, care-seeking patterns in general and malaria treatment-seeking be-

havior in particular are complex [de Savigny et al., 2004, Muela et al., 2002, Tanner and
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Vlassoff, 1998].

There is a need to build on simple models of the referral system [Goodman et al., 2000],

so that we become more confident of the likely impacts of changes in national antimalarial

drug policies. For example, parasite resistance to SP has reached critical levels in many

parts of central and east Africa, including Tanzania [Mugittu et al., 2004, Talisuna et al.,

2004] and this places a question mark against our longer-term predictions of cost-effec-

tiveness which assume that treatment with SP remains efficacious. In view of the public

health, social, and economic significance of SP resistance, efforts are underway in Tan-

zania and elsewhere to change national policies towards artemisinin-based combination

therapy (ACT). The Global Fund to Fight AIDS, Tuberculosis, and Malaria has recently

approved a project to switch from SP (and amodiaquine) to ACT [GFATM, 2004]. Such

a shift in drug policy is of considerable public health significance and will directly affect

the case management of P. falciparum malaria. There is a need to adapt our model to

field data from a range of different settings, and that will make it possible to explore the

epidemiologic and economic consequences of the case management system under different

scenarios. These should include simulation of the shift from SP to ACT conditional on

various levels of SP resistance. All of these simulations need to take into account patterns

of self-treatment, for which we currently have only weak data.

Regarding the epidemiologic model, we chose to define the seasonal pattern of P. falciparum

transmission by using data from the village of Namawala in Tanzania. The high level of

transmission measured there, even in comparison to other sites in Tanzania [Drakeley et al.,

2003, Hay et al., 2000] , made it possible to measure the intensity of transmission during

the dry season. Multiplication of the Namawala rate by a constant therefore provides us

with a reasonable estimate of the seasonal pattern, even for lower transmission areas where

dry season transmission usually cannot be measured.

The national malaria control program of Tanzania reports that 75% of people live in

areas of stable malaria transmission, 17% in areas of unstable transmission (duration of

transmission less than one month per year), and the remaining 8% in areas of unstable

transmission (highly seasonal) [NMCP, 2004]. However, historic and contemporary maps of

malaria endemicity for Tanzania [Clyde, 1967, Craig et al., 1999] do not provide estimates

of the inoculation rate with which to determine the distribution of EIR levels among the

people within areas of stable transmission.

Our approach makes it possible to look at how such variations in transmission intensity
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might affect the impact of changes in the health system. However, our confidence in the

present results is limited by uncertainties in our epidemiologic models (especially that for

severe malaria and mortality, for which we had no data for older age groups [Ross et al.,

2006b]).

Increasing levels of treatment generally shift the age-prevalence and age-incidence curves so

that the peaks are in older age-groups. We developed our parasitologic model mainly using

archive data that predated the widespread use of anti-malarial chemotherapy. A delayed

peak in the age-prevalence curve that we attribute to this effect was already apparent in

the dataset from Navrongo, Ghana [Owusu-Agyei et al., 2002] which was from a more

recent period than the other studies (Chapter 2). The effect of treatment on reducing

acquired blood-stage immunity is very uncertain because asexual blood stage immunity

is modeled as a function of both the number of distinct infections and of the cumulative

parasite load, and we do not know what should be the relative contributions of these two

different components of acquired immunity. The effects of cumulative parasite load are

intended to simulate acquisition of immunity to antigenic variants that arise during the

course of the infection.

We agree with other models for cost-effectiveness of malaria interventions in attributing

most of the burden of disease to mortality rather than to disability associated with acute

illness, sequelae, or anemia. Important methodologic issues requiring further investigation

arise in the computation of the DALYs. In African populations with high infant mortality,

there is generally an increase in life expectancy during the first few years of life, and this

leads to perverse outcomes in the computation of DALYs if the effect of an intervention is

partly to shift mortality to older ages in childhood. For example, if life expectancy at one

year of age is 64 years, and life expectancy at five years of age is 72 years, then the number

of life years gained by shifting age at death would be negative: 64-72= -8. This effect is

accentuated by discounting or age-weighting of the DALYs, but does not arise with the

Japanese life tables used to compute DALYs in the GBD calculations used by the World

Health Organization [Murray and Lopez, 1996b]. We did not use these life tables because

it is generally considered that local life tables should be used to compute DALYs in cost-

effectiveness analyses [Fox-Rushby and Hanson, 2001], but there is a strong case for using

death rates that exclude the health effect under investigation. For the present analyses, we

used a life table from an east African site with low malaria incidence. In these life tables,

where malaria plays only a small role, there is an increase in life expectancy over the first
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few years of life.

In conclusion, we have made a first attempt to develop a modeling framework to simulate

the dynamic effects of the case management of P. falciparum malaria across a wide range

of transmission intensities in sub-Saharan Africa. We discovered several deficiencies in

our understanding of the relevant health systems. Our simulations of a range of scenarios

indicate which of these uncertainties are most likely to be important for the prediction of

cost-effectiveness of malaria interventions. Further development of our modeling approach

offers more realistic evaluation of the epidemiologic and economic consequences of malaria

interventions. This in turn will create a sound foundation for measuring the effects of

introducing new antimalarial interventions (e.g. malaria vaccines), or scaling up those

that are already known to be efficacious and cost-effective.
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Abstract

A double-blind, phase IIb, randomized controlled trial of the malaria vaccine RTS,S/AS02A

showed an efficacy of 45.0% in reducing the force of infection for Plasmodium falcipa-

rum and of 29.9% in reducing incidence of clinical malaria in children 1-4 years of age

in Manhiça, Mozambique. We simulate this trial using a stochastic model of P. falcipa-

rum epidemiology, and the setting-specific seasonal pattern of entomologic inoculations as

input. The simulated incidence curve for the control group was comparable with that ob-

served in the trial. To reproduce the observed efficacy in extending time to first infection,

the model needed to assume an efficacy of 52% in reducing the force of infection. This bias

arises as a result of acquired partial immunity against blood stages, thus suggesting an

explanation for the lower efficacy observed in a previous trial in semi-immune adult men

in The Gambia. The shape of the incidence of infection curve for the vaccine cohort in

Manhiça indicates that the vaccine provides incomplete protection to a large proportion

of the vaccinees, rather than offering complete protection to some recipients and none to

others. This behavior is compatible with a model of no decay in efficacy over the six-month

surveillance period of the trial. The model accurately reproduced the lower efficacy against

clinical disease than against infection. In the simulations this finding resulted from loss

of acquired clinical immunity as a result of a reduction in the force of infection in the

vaccinated cohort. The model also predicted greater efficacy against severe diseases than

against clinical disease. The success of the simulation model in reproducing the results of

the Manhiça trial encourages us to apply the same model to predict the potential pub-

lic health and economic impact if RTS,S/AS02A were to be introduced into the existing

Expanded Program on Immunization.

4.1 Introduction

A double-blind, phase IIb, randomized controlled trial in Manhiça district, Mozambique,

found an estimated 45.0% efficacy of the malaria vaccine RTS,S/AS02A for delaying the

time to first Plasmodium falciparum infection in children 1-4 years of age[Alonso et al.,

2004]. The vaccine efficacy for delaying time to first clinical episodes was 29.9%. In a

previous trial carried out with semi-immune adult men in The Gambia, vaccine efficacy

for extending time to first infection was 34% [Bojang et al., 2001].
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Time to first observed infection is a different outcome from the true proportion of infec-

tions prevented by RTS,S vaccination, and there are a number of reasons why these trial

estimates of efficacy are likely to be lower. They may be diluted by effects of heterogeneity

in vaccine effect between individuals [Halloran et al., 1992]. Pre-existing naturally acquired

pre-erythrocytic immunity could also introduce variations between hosts in susceptibility

to infection, while asexual blood stage immunity means that some hosts are more likely to

appear to be parasite negative, even though they are infected. Such heterogeneities con-

sistently lead to reduction in estimates of efficacy in preventing infection [Halloran et al.,

1996].

The different efficacy values all have wide confidence intervals (Table 4.1), and can therefore

be reconciled with a statistical null hypothesis that the variation between them represents

only a result of chance. However there are good reasons for expecting malaria vaccines to

have different efficacies against different outcomes [Alonso et al., 1995]. Acquired immunity

is potentially an even more important source of bias in analyses of post-infection outcomes

such as incidence of clinical disease, than in those of infection. Post-infection outcomes can

also potentially be a cause of attenuated efficacy estimates. The latter is particularly an

issue with definitions of clinical malaria episodes used in vaccine trials, which are known

to have imperfect specificity [Schellenberg et al., 1994, Smith et al., 1994].

Table 4.1: Efficacy estimates for children 1-4 years of age

Outcome Manhiça trial [Alonso et al., 2004] Simulation∗

Prevention of infection V̂ Ep 0.45 (0.31,0.56) Ṽ Ep 0.45¶ (0.42,0.48)

Prevention of clinical episodes V̂ Ec 0.30 (0.11,0.45) Ṽ Ec 0.33 (0.27,0.38)

Prevention of severe malaria V̂ Es 0.58 (0.16,0.81) Ṽ Es 0.36 (0.26,0.45)

∗Values in parentheses are 95% confidence intervals. Predictions based on 5,400 children per
cohort.
¶This value was constrained to be equal to the that of V̂ Ep. The remaining efficacy values
follow from this constraint, together with the value of 5% for the probability that a malaria
fever is treated.

Many of these phenomena lend themselves to simulation-based analyses. We now simulate

the Manhiça trial. Our main objective was to test a stochastic model of the primary epi-

demiologic effect of RTS,S/AS02A. The model makes use of models of malaria incidence

[Smith et al., 2006b], parasite densities (Chapter 2) and of clinical malaria [Ross et al.,
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2006b, Smith et al., 2006c] to predict the outcomes of the trial. This enabled us to con-

sider the extent to which the trial results can be explained by established features of P.

falciparum epidemiology in the Manhiça setting. The results also suggest that the model

could provide a basis for predicting the potential effects of future malaria vaccine trials

elsewhere, and for estimating their potential public health and economic impact.

4.2 Materials and Methods

Study site and trial procedures. The trial [Alonso et al., 2004] was carried out be-

tween April, 2003 and May, 2004 among 2,022 children 1-4 years of age living in Manhiça

district, Mozambique [Alonso et al., 2002]. Children were randomly allocated three doses

of either the pre-erythrocytic malaria vaccine RTS,S/AS02A or control vaccines. The

primary endpoint was time to first clinical malaria episode of P. falciparum, defined as

axillary temperature > 37.5̊C plus P. falciparum asexual parasite density >2,500 per µL

of blood. Surveillance of this endpoint was in a cohort of 1,605 children recruited from the

area around Manhiça itself (cohort I) who were monitored over a six-month period after

completion of the vaccination schedule. Vaccine efficacy for prevention of new infections

was determined in cohort II, which was composed of 417 children recruited in the area of

Ilha Josina located north of Manhiça.

Entomologic inoculation rate. The monthly average entomologic inoculation rate

(EIR) was determined for the period of the trial only for the zone around Manhiça where

cohort I was recruited. Mosquito densities were determined by sampling the households

of a random sample of individuals drawn from the demographic surveillance population.

The sporozoite rate was determined using a standard enzyme-linked immunosorbent assay

technique, and the EIR was estimated by the product of the human biting rate and the

sporozoite rate as described for other entomologic surveys in the area [Aranda et al., 2005].

Transmission in the area of Ilha Josina, where cohort II was recruited, is thought to be

higher than around Manhiça.

Simulation of P. falciparum incidence and morbidity. We implemented a stochas-

tic simulation model of P. falciparum epidemiology [Smith et al., 2006a], using the monthly
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pattern of EIR for Manhiça as input to the simulation and making predictions for four sim-

ulated cohorts, each of at least 5,000 children 1-4 years of age, the same age-range as in the

Mozambique trial [Alonso et al., 2004]. The four cohorts corresponded to the two control

and two vaccine cohorts in the actual trial. We used the same computer code, written in

FORTRAN, as in our previous simulations [Smith et al., 2006a].

To model the baseline immunologic status of the trial cohorts, we assumed that from birth

until to the beginning of the trial these children had been exposed to the same recurring

annual pattern of inoculations that was measured during the trial period, and to the drug

regimen for treating malaria described previously for the Manhiça district [Saute et al.,

2003]. For the simulation of the trial, we reproduced the drug regimen described by Alonso

and others [2004]. To estimate the proportion of clinical episodes that were treated, we

compared the recorded incidence in the control group with the incidence predicted by the

model. The resulting compliance estimate was then applied uniformly to the simulations of

both pre-trial and trial periods. In the absence of setting-specific data on the proportion of

severe malaria episodes reporting to the formal health sectors, we followed the procedures

of Goodman and others [2000] and McCombie [1996] in assuming that half of the severe

malaria episodes report to a health facility and compared the observed hospital admission

rate with that predicted by this model.

We considered the model predictions of incidence of first P. falciparum infection [Smith

et al., 2006b], the frequencies and densities of patent parasitemia (Chapter 2), the incidence

of acute episodes of clinical malaria [Smith et al., 2006c] and the incidence of severe disease

[Ross et al., 2006b]. Our simulations followed the original trial protocol in considering only

the time at risk for each individual until their first or only episode (analysis of incidence

of acute episodes in cohort I), or first recorded patent infection (cohort II).

Simulation of vaccination. The model for simulation of incidence of first P. falciparum

infection in the control cohorts is described in an accompanying paper [Smith et al., 2006b].

Briefly, new infections in individual i at time t are modeled via a Poisson process where

the force of infection λ(i, t) is the product of three independent terms, Ea(i, t), S1(i, t),

and S2(i, t), where Ea(i, t) is the EIR, adjusted for the expected size of the host, S1(i, t)

captures innate density dependent control, and S2(i, t) measures the effects of acquired
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immunity. In the absence of vaccination, the function for acquired immunity is

S2(i, t) = Simm +
(1 − Simm)

1 +
(

Xp(i,t)
X∗

p

)γp
,

where Xp(i, t) is the level of naturally acquired pre-erythrocytic exposure measured by

the cumulative number of entomologic inoculations, X∗
p is a critical value of the level of

exposure, γp is the steepness of the relationship between exposure and immunity, and Simm

determines the survival of inocula in the most highly immune individuals. The fitted curve

for S2(i, t) as a function of Xp(i, t) is given in Figure 4.1, which shows two alternative

modifications of this model for application in the vaccine cohorts.
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Figure 4.1: Functions used to model acquired immunity. Upper line = value of S2(i, t)
fitted to data from Matsari, Nigeria [Smith et al., 2006b]. Dashed line = S2v(i, t) derived
from model (a); Xv=1,800 inoculations. Lower continuous line = S2v(i, t) derived from
model (b); V E0 = 0.52; EIR = entomologic inoculation rate.
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Model A. Vaccination is equivalent to natural exposure to a cumulative total of Xv ento-

mologic inoculations; thus the function becomes

S2v(i, t) = Simm +
(1 − Simm)

1 +
(

Xv+Xp(i,t)

X∗

p

)γp

We consider briefly the consequences of model A, and conclude that this cannot be distin-

guished from model B below on the basis of the Manhiça trial data alone.

Model B. Vaccination results in reduction in the probability that an inoculum survives by

a proportion that we term the underlying vaccine efficacy in preventing infections, V E0(i),

i.e.

S2v(i, t) = S2(i, t) (1 − V E0(i))

To allow for possible variation in efficacy between individuals, i.e. the extent to which the

vaccine is leaky [Hudgens et al., 2004], we randomly assign values of V E0(i) drawn from

beta-distributions. We define the underlying overall efficacy, V E0, as the mean of V E0(i)

(Figure 4.2). A model with a very low value of the parameter b of the beta distribution

corresponds to an all-or-nothing vaccine (i.e. one that offers complete protection to a

proportion Ē0 of the vaccinated population (E0(i) = 1 for all i in the protected group),

and no protection at all to the others (E0(i) = 0), while a high value of b corresponds to a

leaky vaccine.

In both models, we assume that the vaccine efficacy remained constant throughout the

surveillance period of the trial. In the main simulations patent parasitemia is assumed to

arise at the earliest after a latent period of 15 days (three five-day time units within the

simulation).

Fitting of vaccine efficacy to trial results. The original analyses of the trial [Alonso

et al., 2004] used proportional hazard survival models to obtain empirical estimates, V̂ Ep

and V̂ Ec of the overall vaccine efficacy in preventing infections, VE p, and in preventing

clinical attacks, VE c, respectively. The efficacy in preventing severe malaria was estimated

as:

V̂ Es = 1 −
Psv

Psc

,

where Psv is the proportion of children experiencing severe malaria episodes in the vaccine

arm and Psc is the corresponding proportion in the control arm.
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Figure 4.2: Distributions used for simulating the underlying efficacy, V E0(i).
V E0(i) ∼ beta(a, b), where a and b are two shape parameters, the mean efficacy V E0 = 0.52

and a = b V E0

1−V E0

We use the same statistical methods to compute corresponding estimates Ṽ Ep, Ṽ Ec, Ṽ Es

from our simulated datasets. To determine the best fitting distribution for V E0(i) we

carried out a search using simulations with different efficacy until Ṽ Ep = V̂ Ep. Since the

immune status of each simulated child is known at each time point, we extract summaries

of immune status variables to provide explanations of the patterns observed for the efficacy

variables.

4.3 Results

The EIR estimate of 38 inoculations per person per year was higher than that measured in

the same area in 1997-1998 [Aranda et al., 2005]. Most of the six-month surveillance period

in the Mozambique trial fell during the rainy season, with the peak of malaria transmission

during the first half of the surveillance (Figure 4.3). This was reflected in the shape of

both observed and predicted infection curves, both of which indicated a very high initial

rate of infection, with a tendency to decrease over time. Using this pattern of EIR, we

observed that the predicted incidence of infection for the control cohort II was a little lower

than that observed in the trial (Figure 4.4a). This discrepancy between the observed and

predicted incidence was to be expected because of the higher transmission suspected in the
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Ilha Josina zone when compared with Manhiça.
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Figure 4.3: Seasonal pattern of the entomologic inoculation rate in Manhiça, Mozambique.

In the control arm of cohort I, the model predicted an overall incidence of malaria fevers

that was much higher than the number actually treated during the trial. This is because

the simulation, based on a model [Smith et al., 2006c] fitted to intensive surveillance data

from Senegal [Rogier and Trape, 1995, Trape and Rogier, 1996] includes minor fevers that

would not lead to treatment seeking and would elude detection in all but very active case

detection. We assumed these fevers to be treated with a uniform probability and adjusted

this probability until the incidence of treatment matched that of 0.5 episodes per child-year

recorded in the trial. This was achieved by treating only 5% of the simulated fevers, and

corresponded to an overall incidence of 4.2 episodes per child per year. This gave a similar

time course of incidence of treated clinical episodes in the simulation to that observed in

the trial (Figure 4.4b).

To simulate vaccination, we first considered which version of the model should be used for

the action of the vaccine. All versions of our model predict that the effects of naturally

acquired pre-erythrocytic immunity are negligible in pediatric populations, except in areas

that are very highly endemic for malaria (Smith and others [2006b], Figure 4.1). The

Mozambique trial [Alonso et al., 2004] consequently provides us with no information with
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which to decide between the two models A or B because the predictions for children are the

same, whether the vaccine boosts naturally acquired immunity or acts independently of

it. Whatever value we choose to simulate for Xv in model A, we can find a corresponding

value for V E0 that would enable model B to match the predictions of model A in children.

For instance, Xv=1,800 inoculations in model A has almost exactly the same impact as

V E0 = 0.52 in model B (Figure 4.1).

However, in older people with substantial exposure a vaccine operating by boosting the

effect of natural exposure (model A) would have little or no effect (Figure 4.1), because

the immune response is already saturated. This has the consequence that development of

a malaria vaccine operating as described in model A would very likely be stopped before

it was tested in children.

Model B implies that the underlying efficacy is age-independent. Since the RTS,S/AS02A

vaccine has already shown efficacy in a group of 250 adult men in The Gambia [Bojang

et al., 2001], we argue that model A is a less plausible description of RTS,S/AS02A activity

than is model B.

Using model B, a value of V E0 = 0.52 was needed to give Ṽ Ep=V̂ Ep=0.45 (Figure 4.4).

When the vaccine arm of cohort II was simulated using this efficacy, the predicted incidence

fell just below that observed in the trial vaccine arm. The fit was insensitive to the value

of the parameter b of the beta distribution for V E0(i), providing this was not very low

(Figure 4.5). A model with a very low value of b, corresponding to an all-or-nothing

vaccine, cannot predict the observed incidence curves because it imposes an upper limit

of 1-V E0 on the proportion of vaccinees who can become infected. In the trial cohort

almost all the vaccinees eventually became infected. We consider it very unlikely that

V E0(i) is constant and therefore adopted an intermediate value of b= 10 for all subsequent

simulations.

Using the same model with V E0 = 0.52 and b=10, the simulation of cohort I gave an

estimated efficacy of 33% against clinical episodes of malaria, which is very similar to the

value recorded in the trial, 30% (Table 4.1). The simulated clinical episodes occurred

rather uniformly in time during the surveillance period, again mimicking the data of the

trial.

Our model was less successful in matching the trial results for severe malaria, predicting an

admission rate for severe malaria of 33 per 1,000 child-years in the control arm, compared
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Figure 4.5: Simulated Kaplan-Meier survival analysis of time to first infection for different
distributions. The curves for vaccination correspond to different distributions for V E0(i) (see
Figure 4.2). In each case V E0 = 0.52.

with the actual admission rate of 70 per 1,000 child-years. We therefore conjecture that

almost all severe cases were identified, rather than only approximately half as initially

assumed based on previous literature reviews [Goodman et al., 2000]. Such exceptionally

high coverage, presumably resulting from increased awareness due to the trial, could also

explain why mortality rates in the trial cohorts were very low [Alonso et al., 2004]. As in the

trial, predicted efficacy in preventing severe malaria was higher than that for prevention of

any clinical episode, but was not as high as the actual value of V̂ Es (although this estimate

was imprecise) (Table 4.1).

We examined the reasons for these variations in efficacy in the simulations. In the model,

the lower efficacy against clinical malaria episodes than against incidence of first P. falcipa-

rum infection was a consequence of a higher simulated pyrogenic threshold in the placebo

group (geometric means of 1,617 parasites / µL compared with 1,243 parasites / µL in the

vaccine group in a large simulation). Within our model, the pyrogenic threshold responds

dynamically to P. falciparum, decreasing when individuals are not infected [Smith et al.,

2006c]. This led to a small increase in the risk that an infection translated into a clinical

attack in vaccinees whose exposure was reduced. The higher efficacy against severe malaria
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than against uncomplicated episodes was most obvious in the youngest children in whom

there was the least naturally acquired immunity. We used the estimate of V E0 = 0.52 to

simulate a trial in a cohort of adults and compared the results to those of the Gambian trial

[Bojang et al., 2001] in which protection could only be demonstrated for a short period

(Figure 4.4c). This simulation gave very similar estimates of both Ṽ Ep and Ṽ Ec to those

observed for RTS,S/AS02A among adult men in The Gambia (Table 4.2).

Table 4.2: Efficacy estimates for adults

Outcome The Gambia trial† Simulation∗

Prevention of infection V̂ Ep 0.34 (0.08, 0.53) Ṽ Ep 0.33 (0.29,0.37)

Prevention of clinical episodes V̂ Ec 0.31 (-0.07,0.56) Ṽ Ec 0.27 (-0.05,0.49)

∗Simulation and monitoring based on the Manhiça pattern of transmission and
using the same health system and surveillance patterns as for the simulation
of the Manhiça trial; adults 21-24 years of age. Predictions based on 5,400
individuals per cohort. Values in parentheses are 95% confidence intervals.
†[Bojang et al., 2001]

The simulation of adults using the Manhiça pattern of the EIR as input, and the infection

incidence curves (Figure 4.4c) were a somewhat different shape to those observed in the

Gambian trial, reflecting the different durations and intensity of the transmission seasons

in the two sites. However, as in the Gambian data, the simulated curves for vaccine and

control groups diverged initially, but seemed to indicate little or no efficacy in the second

half of the surveillance period. As in the actual Gambian trial, a large proportion of

both control and vaccine groups failed to show infections at the simulated cross-sectional

surveys.

4.4 Discussion

Simulation of the outcomes of malaria vaccine trials can help in the design of future trials

by indicating which vaccine effects are likely to be measurable with relative ease and

at what level of accuracy. It offers a means of deciding which outcomes are important,

and also provides insights into vaccine action by indicating which results require further

interpretation, and which can be explained by aspects of malaria biology included in the

simulations. Such models can be used to predict population effects of a malaria vaccine,

taking into account factors such as stage specificity, duration of effectiveness, effect of
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natural immunologic boosting, proportion of the population vaccinated, and prevailing

entomologic conditions [Halloran et al., 1992]. In addition, models have a role in assessment

and quantification of the impact of an efficacious malaria vaccine on public health and on

the social and economic development of endemic areas [McKenzie and Samba, 2004].

An important issue for the design of pre-erythrocytic vaccines is whether delays in patency

are of consequence even when the host eventually has a blood stage infection. Analyses of

malariatherapy data indicate that the infecting dose has little or no impact on the severity

of a P. falciparum infection [Glynn and Bradley, 1995], but in many infectious diseases the

duration of latent periods are of importance for transmission dynamics.

RTS,S/AS02A must reduce the number of infected hepatocytes by a much higher percent-

age than its efficacy in blocking infections because even a single infected hepatocyte is

sufficient to cause a blood stage infection. In RTS,S/AS02A vaccinees given an artificial

challenge, many infections that are not blocked completely take a few days longer to be-

come patent than do infections in unvaccinated individuals [Kester et al., 2001] suggesting

that they arise from a reduced number of infected hepatocytes. Our simulation of the effect

of a five-day extension of the latent period in the vaccine group shows that such delays had

a negligible impact on the results of the Mozambique field trial. It follows that an adequate

simulation of this trial can be achieved by assuming that vaccination completely blocks a

certain fraction, V E0, of infections that would otherwise reach the erythrocytic stages, and

that no additional terms need to be added to the model to allow for the reduced infectious

load in those infections that survive.

We propose that the different efficacy estimates against the different outcomes and in the

two field trials carried out thus far in The Gambia and in Mozambique can all be reconciled

with the same underlying efficacy of about V E0 = 0.52. The extent of variation between

individuals in this efficacy is unclear because RTS,S/AS02A protects very few individu-

als completely. Nearly all vaccine recipients will probably become infected if exposed to

sufficient challenge.

To simulate the two efficacy estimates currently available for the randomized controlled

trials done in adult men in The Gambia (34%) [Bojang et al., 2001] and children in Mozam-

bique (45%) [Alonso et al., 2004], our model needed to assume a somewhat higher vaccine

efficacy (of 52%) for extending time to first P. falciparum infection. In the model this

difference is an effect of naturally acquired blood-stage immunity. This introduces to both

arms of the trial heterogeneity in the probability that an infection will be patent at the



4.4 Discussion 95

time of a cross-sectional survey, and consequently [Halloran et al., 1996] leads to a small

downward bias in V̂ Ep. This bias is greater in adults than in children and can thus explain

the higher efficacy observed in Mozambique than in the Gambian trial. Similarly, the se-

vere episodes generally occur in the youngest children, who have less acquired blood stage

immunity, and this explains the higher efficacy against severe episodes than uncomplicated

ones.

The simulations also suggest that the difference observed between V̂ Ep and V̂ Ec are to be

accounted for mainly by simulated episodes of clinical malaria occurring at lower parasite

densities in the vaccine cohort. This follows from the lower incidence of infection dynamics

of our model for clinical episodes [Smith et al., 2006c].

This match between the trial and our predictions both supports the use of the model

and demonstrates that the shapes of the incidence curves over time (Figure 4.4) can be

explained in the context of our model by the pattern of surveys and the seasonality of the

entomologic input. All models agree that the measured efficacy in preventing infections at

the start of the follow-up should be equal to V E0. We obtained an excellent fit to the time

course of efficacy during the trial with a version of our model that assumed no true decay

in protection, although the field estimates of efficacy decreased. We conclude that there

was no evidence for any decay in underlying efficacy over the six-month surveillance period

in the Mozambique trial. Had there been any substantial decay in efficacy, this would have

led to a steeper decrease over time in the efficacy measurable in the field. Our simulation

of a cohort of semi-immune adult men indicates that the apparently short-term duration

of protection in The Gambia could also have arisen as a result of the pattern of seasonality

of the inoculations, together with the effects of naturally acquired immunity.

Within the simulations there are no selection biases in the comparison between control

and vaccine. This is because we allocate vaccine efficacy, V E0(i), to individuals indepen-

dently of their age, previous history of exposure, or of the parameter quantifying individual

variation in the ability to control blood-stage parasites.

The close match of the model with the data therefore suggests that the interplay of vaccine-

induced and naturally acquired immunity are the main causes of the variations in efficacy

between the different outcomes and trials, and that neither selection biases nor random

variation need be invoked to account for the differences. The simulation supports the use of

our epidemiologic model to make predictions of the potential impact of introducing malaria

vaccines into public health programs, but information about the duration of protection will
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be important in reducing the uncertainty in these predictions. Longer-term follow-up of

trial participants is needed to evaluate the duration of protection. This information can

be integrated into the models to simulate the public health and economic implications of

malaria vaccine programs implemented together with other control strategies.
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Abstract

We predict the effects of introduction of a pre-erythrocytic vaccine against Plasmodium

falciparum into a malaria-endemic population in Africa. We use a stochastic simulation

model that includes components of transmission, parasitology, and clinical epidemiology

of malaria and was validated using the results of field trials of the RTS,S/AS02A vaccine.

The results suggest that vaccines with efficacy similar to that of RTS,S/AS02A have a

substantial impact on malaria morbidity and mortality during the first decade after their

introduction, but have negligible effects on malaria transmission at levels of endemicity

typical for sub-Saharan Africa. The main benefits result from prevention of morbidity and

mortality in the first years of life. Vaccines with very short half-life or low efficacy may

have little overall effect on incidence of severe malaria. A similar approach can be used to

make predictions for other strategies for deployment of the vaccine and to other types of

malaria vaccines and interventions.

5.1 Introduction

The development of a safe and effective vaccine against Plasmodium falciparum is recog-

nized as one of the major unmet medical needs in non-industrialized countries [Ballou et al.,

2004, World Health Organization, 1996]. As a result of recent funding initiatives, various

candidate vaccines targeting different stages of the parasite are in pre-clinical and clinical

development [Ballou et al., 2004]. The most advanced vaccine development program is cur-

rently that of the pre-erythrocytic vaccine, RTS,S/AS02A, which recently demonstrated

an efficacy of 45% in preventing P. falciparum infection in children in Mozambique [Alonso

et al., 2004].

Partially protective vaccines have complex effects on the dynamic interactions between the

host and an infectious agent [Halloran et al., 1994]. It is generally acknowledged that a

malaria vaccine is unlikely to be 100% effective and the effects of imperfectly protective

malaria vaccines may be particularly complex. To make predictions of the likely public

health impact of a range of malaria vaccines, we have developed a stochastic simulation

model of the epidemiology of P. falciparum in endemic areas [Smith et al., 2006a]. We

have now used this model to simulate the likely health impact of introducing the RTS,S/

AS02A into malaria-endemic populations via the Expanded Program on Immunization

(EPI). The model considers both the short- and long term effects of a vaccination program
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on the burden of disease, allowing for the temporal dynamics of effects on immunity and

transmission.

5.2 Materials and Methods

Epidemiologic model. The epidemiologic model is a stochastic individual-based sim-

ulation of P. falciparum malaria in endemic settings that uses a five-day time step with

the pattern of transmission as the input. For every individual in the simulated population,

each discrete P. falciparum infection is characterized by simulated duration, parasite den-

sities (Chapter 2), infectivity [Ross et al., 2006a] and anemia risk [Carneiro et al., 2006].

At each time point, clinical episodes of malaria or malaria attributable mortality may oc-

cur with probabilities depending on the simulated parasite density and recent exposure

[Ross et al., 2006b, Ross and Smith, 2006, Smith et al., 2006c]. For the present analy-

ses we simulate populations of 100,000 individuals, with an approximately stationary age

distribution matching that of the demographic surveillance site in Ifakara, southeastern

Tanzania, 1997-1999 [INDEPTH Network, 2002].

We run the model under a series of assumed transmission patterns (Table 5.1). Each

simulation assumes a recurring annual pattern of the vectorial capacity. The simulated

population has been subjected to this pattern for a lifetime at the start of the vaccination

program to ensure that the level of acquired immunity is correct for all ages. We then

consider the transient behavior of the model during a follow-up period of 20 years. We

simulate case-management and the effects on malaria transmission using a reference sce-

nario as described in an accompanying paper (Chapter 3). This reflects a typical rural

setting in Tanzania with mesoendemic malaria transmission.

Reference vaccine scenario. The simulated vaccine is a pre-erythrocytic vaccine that

protects vaccinated individual by reducing the force of infection. Relevant characteristics

of the simulated vaccine were chosen to match the data from a phase 2b clinical trial

in children 1-4 years of age in Mozambique [Alonso et al., 2004]. We have simulated the

action of the vaccine in this trial and fitted the efficacy to the trial data (Chapter 4). These

simulations suggested that pre-existing semi-immunity leads to a slight underestimation of

the underlying efficacy of the vaccine in such a trial. After this, we therefore assume that

the vaccine provides an initial reduction in the force of infection of 52% corresponding to
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Table 5.1: Variables that vary between scenarios∗

Variable Description Levels

Coverage Proportion of eligible individuals who
receive all 3 vaccine doses. (coverage
with 1st 2nd and 3rd dose).

50% (70%, 85%,85%)
89% (95%, 95%, 99%)
100% (100%, 100%, 100%)

Initial efficacy of
the vaccine

Efficacy in fully vaccinated individuals
immediately after 3rd dose. Numbers in
brackets show efficacy after 1st and 2nd

dose.

0.3 (0.2, 0.25)
0.52 (0.4, 0.46)
0.8 (0.6,0.7)
1.0 (1.0, 1.0)

Decay of the
efficacy of the
vaccine

Time after vaccination at which the
vaccine efficacy is 50% of initial value,
assuming exponential decay of
protection.

6 months
1 year
2 years
5 years
10 years
No decay

Variation in
vaccine efficacy
between hosts
(Chapter 4)

b is the parameter of the beta
distribution used to describe inter-host
variation

All or nothing (b=0.01)
Intermediate(b=10)
Homogeneity(b=100000)

Intensity of
transmission

Infectious bites per annum prior to the
introduction of the vaccine

High Transmission: 82
Reference : 21
Low Transmission: 5.1

Seasonality Source of data for seasonal distribution
of inoculations

Namawala, Tanzania
[Smith et al., 1993],
No seasonality

∗Each level of each variable defines a scenario that was compared with the reference. In
each scenario, the variables not being evaluated were fixed at the reference levels (indicated
in bold).
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the 45% efficacy in extending time to first infection after three doses. There are no data

available on the efficacy after one or two doses of RTS,S/AS02A. We assume a reduction

in the force of infection of 40% and 46% after the first and the second dose. The Manhiça

trial did not demonstrate any decay of the efficacy against infection. However, decay

in protection is possible when longer time periods are considered and is likely to have

important implications for vaccine effectiveness. We assume an exponential decay of the

primary efficacy of the vaccine and set the half-life to 10 years for the reference vaccine.

We expect that the protection provided by the vaccine is not homogenously distributed

among the vaccinated individuals. We assign initial values for the efficacy of the vaccine

that are drawn from a beta distribution with parameter b = 10 (a justification is given in

an accompanying paper (Chapter 4).

Simulation approach. We simulate the introduction of vaccination at the target ages

of one, two and three months in a random sample of infants. A total of 95% of the infants

receiving the first dose, 95% of those receiving the second dose, and 99% of those receiving

the first two doses complete the course of vaccination. We assume all vaccines to be

delivered at the target age, and that no infant received dose 2 without receiving dose 1, or

dose 3 without receiving dose 2. This results in a cohort effect because the proportion of the

population who have received the full vaccination course gradually increases throughout

the 20 year follow-up (Figure 5.1). Since by the end of this period vaccination coverage in

older age groups is still zero, we do not consider the equilibrium that would eventually be

reached if vaccination continued indefinitely.

The introduction of vaccination leads to transient behavior that may in principle modify

the level of P. falciparum transmission. We consider the effects after periods of 5, 10, and 20

years after initiation of the vaccination program. We plot the cumulative numbers of events

averted. Where the cumulative number of episodes averted increases approximately linearly

over time, (indicating constant effectiveness), we compute the effectiveness of vaccination

over the whole 20 year follow-up as

Ecumul = 1 -
Cumulative number of events in vaccine scenario

Cumulative number of events in comparison scenario

where the comparison scenario is identical to the vaccination scenario in all respects other

than the inclusion of vaccination. In addition, we present age-prevalence of parasitemia
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Figure 5.1: Proportion of the age-group that received three doses of vaccination by age
and time since start of program.

and anemia as well as age-incidence of different clinical outcomes averaged over one year

of simulated follow-up starting 4, 9, and 19 years into the follow-up period.

Effects of vaccine characteristics. We expect the predictions about the effectiveness

of the vaccine to depend on assumptions about the key properties of the vaccine. In addi-

tion, effectiveness depends on the proportion of the population that has been vaccinated.

Effectiveness may be an accelerating function of coverage if vaccination has a community

effect through reduction of the infectivity of the human hosts. We therefore modeled a

range of different assumptions about the proportion of infections that are prevented after

an individual has received one, two, or three doses of the vaccine, the rate of decay of

protection against infection, and the variation in efficacy between individuals. To keep the

number of simulated scenarios manageable we start from the reference scenario described

above and vary one assumption at a time (Table 5.1).

Effects of transmission intensity and seasonality. In addition to the reference sce-

nario we also generate simulation results corresponding to a range of transmission in-

tensities. There are characteristic shifts in the ages distributions of clinical events in P.
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falciparum at different transmission intensities [Ross et al., 2006b, Smith et al., 2006c] and

we wanted to explore how these would modify vaccine effectiveness. Starting from the ref-

erence scenario described above, we explore the effect of increasing or decreasing the annual

entomologic inoculation rate (EIR) prior to the introduction of the vaccine within a range

found in areas of stable endemic malaria. In addition, we study the impact of different

seasonal patterns of EIR by simulating the case of a completely non-seasonal environment

with the same yearly average EIR as in the reference scenario.

5.3 Results

Reference vaccination scenario. In the reference vaccination scenario the introduction

of vaccine leads to lower parasite prevalence for all age groups that had received the vaccine,

resulting in a cohort effect with the effect gradually moving into older age groups (Figure

5.2a). Corresponding to the reduction in parasite prevalence, anemia prevalence is also

reduced but because the anemia is concentrated in the first few years of life [Carneiro

et al., 2006], anemia prevalence becomes stable within the first few years of vaccination

(Figure 5.2b).

The incidence of malaria episodes and mortality decrease for children less than five years

of age within the first few years of vaccination and remain reduced over the 20-year time

span (Figure 5.3). These dynamic effects resulted almost entirely from the cohort effect of

introducing vaccination gradually into the population and hardly at all from community

effects due to reduction in transmission. The level of transmission was reduced only very

slightly in the vaccine scenario compared with the reference. None of the scenarios we

studied resulted in major effects on transmission to the vector within the 20-year time

span. After 10 years of vaccination, the incidence of uncomplicated episodes in 5-9-year-old

children remains lower than in unvaccinated children, while severe episodes and mortality

incidence have slightly increased in incidence in this age group (Figure 5.3). This is because

the prevention of infections reduces the acquisition of asexual blood stage immunity. By

the end of the 20-year follow-up period, all incidence measures are somewhat higher in the

10-19-year-old age group of the vaccinated population, although the cumulative number of

events they have experienced over the whole 20-year period is reduced.

The approximately linear increase in cumulative numbers of deaths averted (Figure 5.4c)

indicates that the vaccine reduces mortality by a more or less constant amount throughout
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Figure 5.2: Effect of the reference vaccine on prevalence of parasitemia and anemia over
time. a) Age-prevalence of parasitemia. b) Age-prevalence of anemia. The data are
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the 20-year intervention period. Overall, vaccination also leads to substantial reductions in

the incidence of uncomplicated episodes of malaria over the 20-year follow-up (Figure 5.4)

but the benefit of the vaccination program in preventing uncomplicated episodes decreases

over time, as indicated by a reduction in the gradient of the curve over time (Figure 5.4a).

The decay in the benefit was even more marked when assessed in terms of numbers of

severe episodes (Figure 5.4b). After 10 years of vaccination the overall incidence of severe

episodes returns to a level similar to that in the absence of vaccination. This is due to the

shift in incidence to older ages (Figure 5.3b).

The average effectiveness of the vaccine over the 20-year follow-up period differed for the

different clinical outcomes. The average effectiveness in preventing uncomplicated episodes

and death were 0.067, and 0.12, respectively (Figure 5.5). The overall effectiveness in

preventing severe episodes of 0.052 is difficult to interpret because of the heterogeneity in

the effect over time.

Effect of vaccine efficacy. We considered four different values for the initial efficacy

of the vaccine (Table 5.1). An efficacy of 30% corresponds approximately to the lower

limit that phase IIb clinical trials have so far been powered to detect. Vaccines with lower

efficacy than this are unlikely to be considered for further development. An efficacy of 52%

corresponds to our best estimate of the initial efficacy of the RTS,S/AS02A vaccine in a

recent trial in Mozambique (Chapter 4, this is higher than the average efficacy measured

during the trial [Alonso et al., 2004]). An efficacy of 80% corresponds to a rule of thumb

often used to evaluate partially efficacious vaccines, while an efficacy of 100% corresponds

to a perfect vaccine, and thus allows us to assess the maximum possible effect achievable

by our model of vaccine delivery.

An increase in the vaccine efficacy (defined as the proportion of infections averted) results

in a near-proportional increase in effectiveness over the whole 20-year follow-up, whether

this is measured in terms of prevention of uncomplicated, severe, or fatal episodes (Figure

5.4 and Figure 5.5a). The cumulative number of events averted is highest for the most

efficacious vaccine with effects on uncomplicated episodes and mortality approximately

proportional to the initial efficacy, but only a vaccine with a very high efficacy remains

effective in reducing the incidence of severe episodes in the latter part of the 20-year follow-

up period (Figure 5.4). The effects of changes in efficacy on age-prevalence of parasitemia
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Figure 5.4: Effect of the reference vaccine over time under different assumptions about the
initial efficacy of the vaccine (30%, 52%, 80%, and 100% protection against infection after
third dose). a) Uncomplicated episodes averted. b) Severe episodes averted. c) Deaths
averted.
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or anemia or in the age-incidence of clinical events in the low and high-efficacy scenarios

are similar to those in the reference scenario.

Effects of waning of the protective effect of the vaccine. Assuming a faster decay

of the vaccine effect leads to a reduction in all effectiveness measures, and the converse

is observed when the rate of decay is decreased. The effectiveness against uncomplicated

episodes is roughly proportional to the half-life (Figure 5.5b; Figure 5.6a). However, effec-

tiveness for the other clinical outcomes does not increase linearly with half-life (Figure 5.5).

An increase of the half-life from six months to one year has little effect on the effectiveness

against severe episodes or mortality, but there is a marked increase in effectiveness if the

half-life increases to two years (Figure 5.6bc). There is only a small further improvement

in increasing half-life from 2 to 5 or 10 years.

Effect of vaccination coverage. The effect of varying the values of coverage is similar

to the effect of varying the initial efficacy, with a low coverage resulting in similar epidemi-

ologic patterns to that of a reduced vaccine efficacy. Although increasing coverage to high

levels can be of crucial importance with fully protective vaccines when the objective is to

eliminate transmission, the impact of 100% coverage is more or less proportional to that

of the 89% coverage in our reference scenario (Figure 5.7).

Effect of variation in efficacy between individuals. An all-or-nothing response to

the vaccine (b=0.01) results in a higher number of illness episodes and deaths averted

than are found in a scenario with the same mean efficacy, but less variation between

individuals. With such a vaccine, the population is equivalent to a mixture of individuals

vaccinated with a 100% effective vaccine, together with unvaccinated individuals. As with

the simulation of the 100% effective vaccine, however, the number of severe episodes averted

decreases over time. This is due to the decay in the efficacy (simulated with a half-life of

10 years). If there is no decay in efficacy we expect the effectiveness of such a vaccine to

increase with the coverage throughout the follow-up period.

When there is no heterogeneity in vaccine efficacy (b=100,000), (Figure 5.8), the pattern

is very similar to that of the reference vaccine (b=10), in which the degree of heterogeneity

was chosen to match the data of the RTS,S/AS02A vaccine trial in Mozambique (Chapter

4).
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Figure 5.7: Effect of the reference vaccine over time under different assumptions about the
proportion of the population covered (50%, 89%, and 100% received all three doses). a)
Uncomplicated episodes averted. b) Severe episodes averted. c) Deaths averted.
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Figure 5.8: Effect of the reference vaccine over time under different assumptions about the
distribution of the protective effect of the vaccine among vaccinated individuals (b = 0.01,
b=10, b =100,000). a) Uncomplicated episodes averted. b) Severe episodes averted. c)
Deaths averted.
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Effect of transmission intensity and seasonality. The absolute number of clinical

episodes and deaths averted by a vaccine is affected by the transmission intensity in ways

that changed over the course of the simulated vaccination program (Figure 5.9). For the
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Figure 5.9: Effect of the reference vaccine over time in different transmission intensities.
a) Uncomplicated episodes averted. b) Severe episodes averted. c) Deaths averted.

first few years of follow-up the number of events averted was lowest at low transmission

intensity due to the lower numbers of events in the vaccinated age group. Protection

against uncomplicated episodes increased over time, the effect on mortality remained ap-

proximately constant, and that on severe morbidity decayed at a much slower rate than in
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the reference scenario. A net reduction in incidence of severe episodes was consequently

still evident after 20 years of follow-up, while the total number of deaths averted over the

20-year period was lower than in the reference scenario.

At high transmission the initial gains were similar to those seen for the reference scenario,

but the overall incidence of uncomplicated episodes became higher than that in the un-

vaccinated scenario after about 10 years of the vaccination program (Figure 5.9ab). There

was no such adverse effect on mortality rates, but the initial gain seen during the first 10

years of the program did not continue (Figure 5.9c).

Although the degree of seasonality hardly affects the cumulative number of deaths averted,

the number of uncomplicated episodes averted is lower in the absence of seasonality than in

the reference scenario. The cumulative efficacy against uncomplicated episodes is reduced

from 0.067 to 0.050 in the absence of seasonality.

5.4 Discussion

We use a stochastic simulation model of the transmission dynamics and epidemiology of P.

falciparum malaria in endemic areas to assess the likely impact of a pre-erythrocytic vaccine

introduced via the EPI. This is the first major attempt to combine dynamic modeling of

malaria transmission with predictions of parasitologic and clinical outcome, using models

that have been fitted to field epidemiology data from a range of sites across Africa.

We have based our simulations as much as possible on field data, but many uncertainties

and approximations remain, both in our epidemiologic models and our model of vaccina-

tion. The uncertainty in the field estimate of efficacy of RTS,S/AS02A is substantial; the

efficacy of incomplete courses of vaccination is unknown, as is the rate of waning of vaccine

efficacy.

We agree with previous dynamic models of the impact of malaria vaccination [Anderson

et al., 1989, Halloran et al., 1989, Koella, 1991, Struchiner et al., 1989] that a leaky anti-

infection vaccine will have little effect on transmission in endemic areas. Our estimates

of transmission effects are even smaller than those in most previous models because we

predict that reduction in human infection will have little effect on infectiousness to vectors

(except in the case of complete protection of a sub-set of the population). We nevertheless

identify substantial potential public health benefits of vaccination because severe disease
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is largely concentrated in the first years of life (in our model this arises largely because of

age-dependent cofactors [Ross et al., 2006b]) and can be averted by delaying exposure to

blood-stage parasites.

We would expect a pre-erythrocytic vaccine to have much more effect on transmission

in areas of unstable malaria such as highland areas of east Africa [Abeku et al., 2004],

KwaZulu-Natal [Kleinschmidt et al., 2002], or areas of low transmission outside Africa.

This raises the issue of whether the best delivery strategy in such areas might then be

a mass vaccination campaign, contributing to local elimination. Mathematical models of

the impact of such a vaccination program need not consider the complexities of acquired

clinical immunity, and so might reasonably be based on conventional compartment models

[Koella, 1991]. Extension of these models to allow appropriately for heterogeneities in

transmission [Dye and Hasibeder, 1986] would be of critical importance.

In our model, the dynamics result mainly from a cohort effect on coverage and from

the dynamics of immunity, rather than from effects on transmission. The effectiveness

of vaccination (the proportion averted of all the events in the population) cannot reach

equilibrium until after the oldest people are vaccinated, even 20-year simulations do not

approach equilibrium. Effectiveness in the initial years of a program is likely to be much

lower than vaccine efficacy because only a small proportion of the people will be vaccinated.

The 20-year time horizon allows us to see that the effect of a vaccine program on illness

incidence will change over time, although we predict a roughly constant reduction in the

crude mortality rate throughout the follow-up. After approximately 10 years, there is a net

reduction in cumulative numbers of clinical episodes only in low transmission scenarios,

with a predicted increase in high transmission. This is due to an increase in severe malaria

incidence in children greater than five years of age who have accrued less immunity to

asexual blood stage parasites during their childhood. This partly results from the models

used for predicting uncomplicated episodes [Smith et al., 2006c] and severe malaria [Ross

et al., 2006b], which are fitted to data that suggest the lifetime number of clinical episodes

[Trape and Rogier, 1996] and the incidence of hospital admissions for severe malaria [Marsh

and Snow, 1999] are highest at intermediate levels of transmission.

With a vaccine with high efficacy in a proportion of the population (i.e. with a low value

of b), effectiveness continues to increase as the vaccinated proportion increases, although in

our simulations this effect is gradually lost due to decay in vaccine efficacy. With vaccines

with partial efficacy in all individuals (the model we propose for RTS,S/AS02A, Chapter
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4), the factors attenuating the efficacy such as interactions with the epidemiologic effects of

acquired immunity become more important as the vaccination program proceeds. In very

low-transmission settings, we predict initial increases in effectiveness because the propor-

tion vaccinated increases before the first vaccinees leave the age range of high vulnerability.

At higher transmission, there is little evident increase in effectiveness as the number of fully

vaccinated individuals increases.

Since no vaccinated child reached more than 20 years of age in our simulations, very long-

term effects of vaccination are not captured. This is important when comparing different

decays or initial efficacies because the relationship between the duration during protection

and the life expectancy of the vaccinated individual may be important in determining

the effectiveness. However, we are very uncertain about the risk of severe malaria that

such adults would experience. There are few data available from which to estimate severe

malaria risk in adolescents or adults with limited previous exposure [Ross et al., 2006b].

Vaccination reduces the incidence of uncomplicated episodes because it leads to fewer

successful infections. The reduced exposure to parasites leads to less acquired asexual stage

immunity; thus, the longer-term level of clinical protection is lower than the initial efficacy.

In our models, the pyrogenic threshold, which determines the parasite density that leads

to acute illness, also depends on the recent exposure to parasites and is therefore lower in

vaccinated individuals (Chapter 4). Vaccination can also modify the proportion of acute

episodes that are severe by leading to a shift in clinical episodes to an older age, when

the host is protected from co-morbidity and from other age-dependent factors enhancing

susceptibility. With an efficacious vaccine, efficacy against severe malaria may be greater

than that against infection. Conversely, if the vaccine does not offer a sufficiently high

level of protection for a long enough time, the lower level of asexual stage immunity means

that an increased proportion of clinical attacks result in severe malaria.

The application of our models can be extended not only to include other means of de-

ployment (including regimens with booster doses of vaccines), to other types of vaccines

(asexual blood stage and transmission blocking), and to consider the inclusion of vaccina-

tion within integrated control programs. We have seen that a pre-erythrocytic vaccine will

be most effective at low transmission intensities, but that on its own it is unlikely to reduce

transmission very much except possibly when this is already low. It may be that such a

vaccine will be most effective if deployed in conjunction with vector control measures that

reduce the vectorial capacity at the same time.
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Abstract

We model the cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine

into the Expanded Program on Immunization. We use a dynamic stochastic simulation

model of the epidemiology of Plasmodium falciparum in malaria-endemic areas and of case

management in Tanzania. We consider a range of vaccine characteristics and a range of

transmission settings. At low vaccine prices, the cost-effectiveness of such vaccines may be

similar to that of other established preventative and curative interventions against malaria.

The cost-effectiveness ratio increases rapidly and approximately linearly with vaccine cost

per dose. The approach can be adopted for comparative analyses of the cost effectiveness

of different vaccines and other intervention strategies.

6.1 Introduction

The goal of economic evaluation of healthcare interventions in general, and malaria con-

trol measures in particular, is to provide policy makers with guidance about how scarce

resources can be allocated so that the social and economic benefits are maximized [Drum-

mond et al., 1997, Gold et al., 1996]. Economic evaluation not only shows how efficient

it is to spend resources on existing interventions available, but also predicts how efficient

new interventions could be if they were to be developed, or if existing interventions had

different characteristics. Thus, economic evaluation is an essential part of the appraisal of

candidate malaria vaccines. For example, policy makers may wish to know how efficacious

a vaccine would need to be to be cost-effective.

Cost-effectiveness analysis (CEA) usually is the method of choice in evaluating alternative

health interventions because health decision makers are primarily interested to know what

health improvements can be bought with a given budget, and not the overall economic

impact per se. [Drummond et al., 1997, Gold et al., 1996]. The present paper models

the cost-effectiveness of a pre-erythrocytic malaria vaccine, using a dynamic stochastic

simulation model of the epidemiology of Plasmodium falciparum in malaria-endemic areas

and of case management in Tanzania (Chapter 3, Hutton and Tediosi [2006]). Our objective

is to assess the potential cost-effectiveness of introducing this malaria vaccine into the

Expanded Program on Immunization (EPI) under a range of scenarios, conditions, and

assumptions.

We present the vaccine cost-effectiveness for one country, Tanzania. This first stage enables
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us to specify model inputs without having to consider simultaneously many heterogeneous

settings, as would be the case for sub-Saharan Africa. Even one country does not present a

single uniform context for ecologic, epidemiologic, socioeconomic and health system inputs,

but there is less heterogeneity than at the multi-country level.

6.2 Materials and Methods

Perspective and boundary. The study is a CEA adopting a societal perspective for

both costs and effects, and thus considers all relevant resource inputs to the intervention,

and resource consequences and health impacts resulting from the intervention.

The costs of vaccine delivery [Hutton and Tediosi, 2006] include all resource inputs irre-

spective of whether these costs are borne by government, donors, the patient, the wider

community, or a mixture of these. Case management costs (Chapter 3) likewise include

all resource inputs irrespective of whether these are borne by government, the patient, or

both. Vaccine delivery costs and case management costs include both the direct costs of

service provision and costs directly associated with the service, which essentially means the

costs for the patient(s) accessing the services, covering additional transport and sustenance

costs.

A societal perspective in CEA also requires that direct economic impacts of the intervention

should be taken into account. In the case of a vaccine that reduces morbidity episodes as

well as mortality, there is a clear impact on productive time either leading to higher income

(in the case of market work) or higher unsold production (in the case of non-market work).

This can either be through a gain in production of the averted malaria case, or where the

patient is a child, the production gained of the care giver who would have cared for the

averted malaria case. Therefore, the results include these hypothesized economic impacts.

Given the dynamic nature of the epidemiologic model, and the lower transmission rates to

other non-vaccinated individuals associated with an effective vaccine, the health effects of

the intervention can also include changes in morbidity and mortality of the non-vaccinated

population as a result of reduced transmission. However, our epidemiologic analysis implies

that these impacts will be minimal in the epidemiologic settings that we have analyzed

(Chapter 5).
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Model overview. To predict the cost-effectiveness of the malaria vaccine, we use a

stochastic simulation model of the epidemiology of P. falciparum in malaria-endemic areas

of Africa [Smith et al., 2006a]. This includes a sub-model for the case management of

malaria in Tanzania (Chapter 3). We link these elements with costing of vaccine delivery

in the Tanzania setting [Hutton and Tediosi, 2006].

The epidemiologic model is a stochastic individual-based simulation of malaria infection in

disease-endemic areas that uses a five-day time step. It takes as its input the pattern of the

entomologic inoculation rate (EIR) in the absence of interventions, with separate values

of the EIR specified for each of the 73 five-day periods during the year. We simulate the

reference case management scenario in Tanzania (Chapter 3) to provide a baseline with

which to compare simulations where a vaccine is introduced.

The simulated population is maintained as a steady state, and includes individuals of all

ages, with immune status depending on their simulated exposure. The denominators for

calculation of overall health impacts include individuals who were too old to be vaccinated,

and 20-year simulation is thus influenced by cohort effects due to gradual increase in the

proportion of the population vaccinated, and by dynamic effects of reduction in exposure

on acquisition of natural immunity to asexual parasites.

Alternatives being compared. We compare health outcomes, direct costs, and pro-

ductivity gains of a combined strategy of a new malaria vaccine delivered through EPI

in combination with the reference case management scenario for Tanzania with only the

reference case management scenario (Chapter 3).

The EPI was chosen as the channel for vaccine delivery because in most African countries

EPI is well established and achieves reasonably high levels of coverage amongst the target

population group. Therefore, it is the only reliable mechanism to deliver a vaccine to a

high proportion of infants less than one year of age [Edmunds et al., 2000, Griffiths et al.,

2005, Hall et al., 1993].

The vaccine modeled is a pre-erythrocytic stage vaccine requiring three doses to fully

immunize a child. These doses are administered when infants are one, two, and three

months of age, at the same time as the hepatitis B vaccine. Many of the inputs for the

CEA are based on data from the case management model (Chapter 3) and epidemiologic

scenarios (Chapter 5).
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The cost-effectiveness model simulates the health system typical for a rural area of Tan-

zania (Chapter 3). A set of different scenarios were constructed to reflect different ma-

laria transmission intensities representing the stable, annually recurring pattern of malaria

transmission. In all simulations, the seasonal pattern of transmission was assumed to be

that recorded in the village of Namawala, Tanzania, during 1989-1991 where exceptionally

precise estimates of dry season transmission were made [Smith et al., 1993]. The annual

EIR for this site was 329 infectious bites per year. For the reference scenario, we use a

seasonal pattern of transmission for a mesoendemic site, which was obtained by dividing

the EIR from Namawala for each five-day period by 16. Direct measurement of dry-season

transmission in meso-endemic areas is impracticable because of low mosquito densities. To

simulate a high-transmission area, we use an EIR of four times that of the reference sce-

nario. This is probably more typical of high-transmission sites in Africa than the extremely

high transmission in Namawala. This gives an overall annual EIR of 21 infectious bites

per year, which is typical for a mesoendemic area in sub-Saharan Africa [Hay et al., 2000].

The simulations were first run for a warm-up period of 90 years of exposure to define the

baseline immune status of the simulated populations, which is highly age-dependent. For

the present analyses, the simulations are run in populations of 100,000 individuals, with an

approximately stationary age distribution matching that of the demographic surveillance

site in Ifakara [INDEPTH Network, 2002].

Measuring health gains. To estimate the number of disability-adjusted life years (DALYs),

years of life lived with disability are calculated on the basis of the duration of disability,

and respective disability weights (Chapter 3, Murray and Lopez [1996b]). Weights for dif-

ferent malaria attributable disease conditions have been obtained from the global burden

of disease (GBD) study [Murray and Lopez, 1996a], and age-weighting is applied as in the

GBD method. However, to assess how sensitive results are to the life table used, DALYs

are also computed assuming a zero age weighting. The disability associated with anemia

is assigned to the same time period as the malaria infections causing it.

Years of life lost (YLLs) and DALYs are calculated assuming age-specific life expectancies

based on the life table from Butajira, Ethiopia, with an average life expectancy of 46.6

years at birth [INDEPTH Network, 2004]. This life table represents that of an east African

setting with low malaria transmission and is very similar to that for Hai District, a high

altitude and low malaria prevalence site in Tanzania [INDEPTH Network, 2002]. We thus

compute YLLs for each simulated death under the assumption that this life table would



122 Chapter 6. Cost-effectiveness of a pre-erythrocytic vaccine

apply in the absence of malaria.

Assumptions on vaccine efficacy. In the reference scenario, the efficacy of this hypo-

thetical pre-erythrocytic malaria vaccine is assumed to be 52% reduction in infections in

näıve individuals (Chapter 4), decaying exponentially with a half-life of 10 years. Since it

is likely that the degree of protection provided varies between individuals, in the reference

scenario, a value for the initial efficacy is drawn from a beta distribution with parameter

b=10 and assigned to each vaccinated individual (Chapter 5).

Coverage. In the reference scenario, it is assumed that the coverage rate is the same as

that reported in Tanzania for three doses of diphtheria tetanus pertussis-hepatitis B virus

(DTP-HBV) vaccine in the year 2003, which stood at 89%. Given that the coverage for

the first dose of DTP-HBV was 95%, the dropout rate from the first to the third dose is

6% [Hutton and Tediosi, 2006].

Case management. The case management model, including both formal and informal

treatment, is described elsewhere (Chapter 3). It has implications for health outcomes,

both in terms of the potential to reduce rates of severe disease, sequelae and death, but also

in the impact on transmission intensity and therefore the potential for new infections in the

entire population. The rate of treatment seeking among uncomplicated malaria episodes

was assumed to be 5%, which although apparently low, is justified due to the very sensitive

definition of clinical episodes used. The clinical episodes simulated thus include very mild

fevers that would be unlikely to elicit attendance at a health facility. The model assumes

in the reference case a cure rate of 93% for the first-line drug sulfadoxine-pyrimethamine

(SP) for uncomplicated malaria (Chapter 5).

Costs presented. We considered both marginal and average costs. The marginal cost

reflects most closely the additional financial costs that would be incurred when introducing

a new intervention. The average cost includes all those costs involved in delivering a health

intervention, including the use of spare capacity or slack in the system, those health care

resources diverted from other uses, and existing health sector resources that are shared

with other health programs. All cost data are expressed in US$ 2004.
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Vaccine delivery costs. The costs of introducing a malaria vaccine into the EPI in

Tanzania include those related to an assumed range of vaccine purchase costs, and data

collected from Tanzania on likely distribution and cold chain storage costs, management

costs, vaccine delivery costs at health facility level, training costs, and social mobilization

costs. A detailed description of the methodology used to estimate vaccine delivery costs

can be found in an accompanying paper [Hutton and Tediosi, 2006].

The CEA is run under various vaccine price hypotheses ranging from US $1.0 to US $20

per dose. The vaccine delivery cost estimates according to the different price hypotheses

are shown in Table 6.1.

Table 6.1: Incremental delivery cost per fully immunized child (FIC) for the vaccine

Vaccine price Vaccine delivery cost per FIC in US$

(US$ per dose) Average cost Marginal cost

1 4.43 4.24
2 7.43 7.24
4 13.43 13.24
6 19.43 19.24
8 25.43 25.24
10 31.43 31.24
20 61.43 61.24

Case management costs. The costs of treating those seeking health care for malaria

episodes are calculated under the two scenarios being modeled: case management alone

and vaccine with case management, which allow us to calculate expected cost savings

associated with the introduction of an efficacious malaria vaccine.

The direct costs of care seeking for an uncomplicated malaria episode at official facilities

include the cost of an outpatient visit (US $1.02 dispensary; US $1.27 health center), a

diagnostic test in a proportion of outpatient cases (US $0.30), the cost of a course of SP

treatment (varying from US $0.012 to US $0.071, depending on age and weight), the cost

of a course of amodiaquine treatment (varying from US $0.018 to US $0.114, depending

on age and weight), and other costs incurred by patients when visiting an official health

facility (US $0.30).

The direct costs of a severe malaria patient include in-patient hotel costs per day (US$ 7.8),
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drug treatment cost during hospitalization (varying from US$ 0.56 to US$ 3.74, depending

on age and weight), average length of stay (4.5 days with full recovery), and the costs that

patients incur when visiting an official in-patient facility (US$ 1.29 for the average length

of stay). The case management cost inputs are presented in detail elsewhere (Chapter 3).

Measuring productivity gains. The productivity costs of malaria relate to the pro-

ductive time lost due to illness, whether it is the patient or the patient care giver (especially

if a child or elderly patient). In this analysis, productivity costs included are those related

to time spent by adults seeking official care for their children, time spent by adults caring

for children at home, and the time forgone by sick adults due to malaria episodes. Given

that inclusion of productivity gains in CEA remains controversial, the reference case results

do not include these hypothetical productivity gains.

To measure the value of productive time lost, we use the wage rate method that involves

multiplying the time lost per episode (for adults only) by the average daily wage in Tan-

zania. These estimates are adjusted downwards by an estimate of the unemployment rate

in Tanzania, thus taking into account that not all those sick or those caring for the sick

would have been working.

The time lost per malaria episode is expected to be highly variable. For example, a recent

review of the literature available found that for a sick adult the time off work ranges from

one to five days, depending most importantly on severity of disease [Chima et al., 2003].

For this study, uncomplicated adult malaria cases are assumed to lose two working days,

while a care taker of a sick child loses one working day. Adults with a severe malaria

episode are assumed to lose 4.5 days if not hospitalized, or if hospitalized, 1 day more than

their length of stay in hospital. A care giver of a child with severe malaria is assumed not

to be able to work during the hospitalization period.

For uncomplicated episodes, productivity costs are computed under two scenarios. In the

first scenario, a productivity cost is attached to only those uncomplicated episodes that

get treated, presumed to correspond in general to the more severe episodes. In the second

scenario, a productivity cost is attached to all malaria episodes. These two scenarios rep-

resent the likely upper and lower bounds on the true productivity costs avertable through

the introduction of an efficacious vaccine.

The formulae for calculating productivity costs are presented below, and the data inputs
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are provided in Table 6.2.

Icu = Tcu w (1 − U) (6.1)

Ics = Tcs w (1 − U) (6.2)

Iau = Tau w (1 − U) (6.3)

Ias = Tas w (1 − U) (6.4)

where Icu and Ics are the productivity costs of the care taker for uncomplicated and severe

malaria, respectively; Iau and Ias are the productivity costs of sick adults with uncompli-

cated and severe malaria, respectively; Tcu and Tcs are the time lost in days per episode by

care taker of sick child for uncomplicated and severe malaria, respectively; Tau and Tas are

the time lost in days for sick adults for uncomplicated and severe malaria, respectively; w is

the minimum gross daily wage in Tanzania (US $3); and U is the assumed unemployment

rate in Tanzania (40%).

Table 6.2: Data inputs for calculation of productivity costs∗

Item Value
(US$ 2004)

Care taker UM 1.8
Care taker SM if patient dies 3.6
Care taker SM if patient fully recovers 8.1
Care taker SM if patient recovers with sequelae 18.0
Sick adult UM 3.6
Sick adult SM if patient dies 5.4
Sick adult SM if patient fully recovers 9.9
Sick adult SM if patient recovers with sequelae 18.0

∗UM = uncomplicated malaria; SM = severe malaria.

Net cost calculations. The net costs associated with current case management and

adding the vaccine to case management is computed over time as follows:

NC =

n∑

t=1

[
DC(cmv + v)t − DC(cmnv)t

(1 + r)t

]
(6.5)
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where NC is net costs including only direct costs; DC (cmv+v) is the direct costs in the

case of the vaccine plus case management; DC (cmnv) is the direct costs of current case

management under a no vaccine scenario; n is the time period of intervention (20 years);

and r is the annual discount rate for future costs and health effects.

Reference scenario. In the reference case, results are presented to show cost-effective-

ness at four different five-year time periods during the 20-year follow-up period (1-5 years,

6-10 years, 11-15 years, and 16-20 years) to reflect the possible fact that cost-effectiveness

changes depending on time after vaccine introduction. The cost-effectiveness ratios (CERs)

are presented under seven vaccine price assumptions (in US$): 1, 2, 4, 6, 8, 10, and 20.

Incremental CERs are presented using two different definitions of cost: marginal cost to

reflect the likely short-term financial impact of the intervention, and average cost to reflect

the long-term and full opportunity cost associated with the intervention. In the reference

case, only direct costs are included.

Incremental cost-effectiveness ratios are calculated under four health outcomes relevant for

decision making: cost per episode averted, cost per DALY averted, cost per YLL, and cost

per death averted. Future costs and benefits are presented both undiscounted and at a

discount rate of 3% to reflect time preference [Tan-Torres Edejer et al., 2003].

Sensitivity analysis. In addition to the reference case data assumptions and scenar-

ios, the sensitivity analysis runs these same simulations under different assumptions. The

rationales for these scenarios and the epidemiologic patterns associated with them are de-

scribed in Chapter 5. The different transmission intensity patterns used are low stable

transmission (Namawala/64, equivalent to 5.2 infectious bites per year and high transmis-

sion (Namawala/4, equivalent to 83 infectious bites per year). The reference case is an

EIR of 21 infectious bites per year, corresponding to Namawala/16. The different levels

of vaccine efficacy are 30%, 80%, and 100%. The reference case is 52% entered in the

model. Different decay rates for the efficacy are half-lives of 6 months, 1 year, 2 years, 5

years, and 10,000 years. The reference case is 10 years. Different distributions of vaccine

effect in the population are b equals 0.01 and 100,000. The reference case is 10. Different

vaccine coverage rates are a low coverage rate, with 70% of the infants receiving their first

dose, and 50% receiving their third dose and complete coverage, with 100% of the infants

receiving three doses. The reference cases were 89% for the third dose and 95% for the first
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dose. Inclusion of productivity cost savings were low productivity costs, where those with

uncomplicated episodes who do not seek care are assumed not to lose productive time and

high productivity costs, where all those predicted by the model to have a malaria episode

are assumed to lose productive time.

6.3 Results

Reference case presentation. Health effects. Over 20 years, the number of uncompli-

cated episodes averted due to the introduction of the vaccine, in the simulated reference

population of 100,000 people, is close to 192,485, which corresponds to a rate of 0.1 per

capita per year, while the total number of severe episodes averted is 1,697, or 0.0008 per

capita per year (Chapter 5). These health effects represent only a small fraction of the

total burden of disease because vaccinated children represent only a small proportion of

the total population in the early years of the simulation. Since the reference scenario also

assumes waning of vaccine-induced immunity, the protected proportion of the population

is never very high and increases only gradually. Furthermore, vaccination with a pre-ery-

throcytic vaccine effectively postpones many illness episodes because it reduces acquisition

of asexual stage immunity.

The number of deaths prevented over 20 years is 942. The number of undiscounted DALYs

averted over 20 years is 58,579, which corresponds to a rate of 0.029 per capita per year.

When DALYs are discounted at 3%, the number of DALY averted is 26,892, or 0.013 per

capita per year. The total number of undiscounted DALYs with no age weighting applied

is 48,299 DALYs averted, or 0.024 per capita per year. Since most of these DALYs are due

to the mortality effects, the number of YLL is very close to that of DALYs. Figure 6.1

presents the distribution of DALYs averted over the 20-year model period, indicating that

the health effects of introducing the vaccine vary over time.

Table 6.3 shows that the number of uncomplicated episodes averted is higher in the second

and third five-year time periods and lower in the first and fourth five-year time periods

since the start of vaccination. Most of the severe episodes averted occur in the first 10 years

of the intervention, with a sharp decrease in the third five-year period, even registering a

higher number of severe episodes under vaccination scenario in the fourth five-year period.

Also, a higher proportion of deaths prevented are concentrated in the first 10 years after

vaccine introduction. When health outcomes are discounted, this effect is stronger.
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Figure 6.1: Total number of disability-adjusted life years (DALYs) averted after introducing
the vaccine (reference case scenario).

Table 6.3: Comparison of discounted and undiscounted health outcomes over the
four five-year time period after the vaccine introduction∗

Time period (years)

1-5 6-10 11-15 16-20

Uncomplicated episodes averted 31,289 65,810 59,187 36,199
Severe episodes averted 979 867 96 -245
Deaths averted 275 292 193 182
Deaths averted (discounted) 256 236 134 110
YLL averted 16,731 18,454 12,035 11,655
DALYs averted (undiscounted) 17,083 18,426 11,699 11,370
DALYs averted (discounted) 8,507 8,741 5,036 4,608
DALYs averted (unweighted, undiscounted) 13,657 14,953 9,933 9,755

∗YLL = Years of life lost; DALY = Disability Adjusted Life Years.
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Net costs. The net cost of vaccine introduction for the 20-year period and at a vaccine price

of US $1 per dose, is US $447,391, or US $0.22 per capita per year (direct, undiscounted

average costs). In the marginal cost analysis, these costs are 3% less at US $433,890. The

reference case results are shown in Table 6.4, for discounted and undiscounted costs and

at different vaccine price assumptions.

Table 6.4: Net costs in thousand US$, reference case (year 2004)∗

Vaccine price Discounting Period

per dose Years 1-5 Years 6-10 Years 11-15 Years 16-20

AC MC AC MC AC MC AC MC

1 Undiscounted 104 104 211 210 327 320 447 434
Discounted 97 48 183 182 263 259 336 327

2 Undiscounted 186 182 Neg 366 575 734 779 749
Discounted 173 121 Neg 318 464 593 586 565

4 Undiscounted 350 337 706 680 1,072 1,028 1,441 1,378
Discounted 326 265 612 590 866 832 1,088 1,041

6 Undiscounted 513 492 1,035 993 1,568 1,500 2,104 2,008
Discounted 478 410 899 862 1,268 1,214 1,589 1,518

8 Undiscounted 677 648 1,365 1,307 2,065 1,971 2,767 2,637
Discounted 630 555 1,185 1,134 1,670 1,595 2,091 1,994

10 Undiscounted 840 803 1,695 1,620 2,561 2,443 3,429 3,267
Discounted 783 700 1,471 1,406 2,072 1,977 2,592 2,471

20 Undiscounted 1,658 1,580 3,345 3,187 5,044 4,802 6,742 6,414
Discounted 1,545 1,423 2,903 2,766 4,083 3,887 5,100 4,853

∗AC = average cost; MC = marginal cost; Neg = negative. Each figure is the predicted
cost for a total population of 100,000 people over the five-year period.

Figure 6.2 shows that the contribution of different cost components remains stable over the

20-year time period after introduction of the vaccine, comprising in-patient costs, outpa-

tient costs, drug costs and patient costs. Before introduction of the vaccine, approximately

30% of direct costs are due to outpatient visits, approximately 10% to drugs, 40% to hos-

pital care, and 20% to patient costs. After the introduction of the vaccine, more than 50%

of total direct costs, at a vaccine price of US $1 per dose, would be due to the vaccine

delivery costs. This proportion increases significantly as the vaccine price increases.

The number of first-, second-, and third-line drug treatments over time is lower after the

introduction of the vaccine (Figure 6.3). The total number of first-line drug treatments

averted by the vaccine reaches a maximum in the second five-year interval, then decreases.

The number of second- and third-line treatments averted is high in the first five-year
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Figure 6.2: Direct cost structure (vaccine price per dose = US $1).

period, after which it decreases to close to zero after 15 years. In the last five-year period

the number of first-, second- and third-line drug treatment is higher when the vaccine is

introduced. This is due to the fact that in the last five-year period the vaccine does not

prevent any severe episodes. There is also a shift in uncomplicated episodes to older ages,

where higher drug costs are incurred due to the requirement for a greater dose.

Cost-effectiveness. Cost-effectiveness ratios using undiscounted average cost are presented

for the vaccine in Table 6.5 over the entire 20-year intervention period and by vaccine

price. The cost per death averted by introducing the vaccine is US $475, under a vaccine

price assumption of US $1 per dose, increasing to US $7,158 per death averted at a vaccine

dose price of US $20. The cost-effectiveness ratios using the marginal cost are generally

between 97% and 99% of the CERs at average cost. Furthermore, discounting costs and

health effects makes only a marginal difference to the CER, as shown in Table 6.5.

The undiscounted cost per DALY averted by introducing the vaccine is US $8 under a

vaccine price assumption of US $1 per dose, increasing to US$ 115 per death averted at a

vaccine dose price of US $20. The effect of discounting increases the cost per DALY averted

by around 50% to US$12 per DALY averted at a vaccine price of US$1 per dose. The effect

of taking out the age weighting in the DALY calculation reduces the cost per DALY averted

back towards undiscounted levels. Figure 6.4 shows the relationship between CERs (for

deaths averted and DALYs averted) and vaccine price.

However, the presentation of CERs over the entire 20-year intervention period hides some



6.3 Results 131

2
4
6
8

10
12
14
16
18

1 5 10 15 20
Years of follow-up

1

2

3

4

5

6

50

100

150

200

250

300

350

T
o
ta

l 
n
u
m

b
e
r 

o
f 
 t
re

a
tm

e
n
ts

 p
e
r 

1
0
0
 p

o
p
u
la

ti
o
n
 (

2
0
 y

e
a

rs
)

Vaccine
Reference

Figure 6.3: Total number of drug treatments under different interventions.



132 Chapter 6. Cost-effectiveness of a pre-erythrocytic vaccine

Table 6.5: Cost-effectiveness (average cost) of the vaccine over 20 year intervention period,
by vaccine price

Outcome
Vaccine price per dose, in US$ (year 2004)

1 2 4 6 8 10 20

Cost per death averted
Undiscounted 475 827 1,530 2,234 2,937 3,640 7,158
Discounted 456 796 1,477 2,158 2,840 3,521 6,926
Cost per DALY averted
Undiscounted 8 13 25 36 47 59 115
Discounted 12 22 40 59 78 96 190
Undiscounted, unweighted 9 16 30 44 57 71 140
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Figure 6.4: Relationship between cost-effectiveness ratios and vaccine price over the entire
20-year intervention period. DALY = disability-adjusted life year.
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important variations across five-year time intervals. Furthermore, variations in cost-effec-

tiveness between the four different periods do not show a similar pattern across health

outcome measures. Table 6.6 shows CERs for selected health outcomes over the four time

intervals, and at different vaccine price assumptions.
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Figure 6.5: Cost-effectiveness ratios for different time periods and vaccine prices. DALY
= disability-adjusted life year.

The CERs for cost per death averted are similar in the first two five-year intervals, but

considerably higher in the second two five-year intervals. At a vaccine price of US $1 per

dose, the cost per death averted ranges between US $364 and US $601 over the four time

intervals (Figure 6.5). The cost per death increases almost linearly with the vaccine price

and at US $20 per dose it ranges between US $6,028 and US $9,332 per death averted at

different time periods.

The undiscounted cost per DALY averted follows the same pattern over time as the cost

per death averted, with a substantial difference between the first two five-year periods and

the second two five-year periods (Figure 6.5). At vaccine price of US $1 the cost per DALY

averted varied between US $6 and US $11 over time, but it increases with the vaccine price

up to a range of US $92 to US $149 at US $20 per dose.

The discounted cost per DALY averted is higher, ranging between US $11 and US $16

at US $1 per dose (Figure 6.5). When DALYs are computed undiscounted and assuming

zero age weighting, the average direct cost per DALY averted over the four time intervals

ranges between US $7 and US $12 at this vaccine price. The cost per DALY averted by

the vaccination program is thus lower in the first two five-year time periods than in the

latter. The CER is much higher if both costs and DALYs are discounted at 3% while

excluding the age weighting from the DALY calculation leads to a CER that is somewhere

in between.
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Figure 6.6: Number of disability-adjusted life years (DALYs) averted due to vaccine intro-
duction in different transmission settings.

Cost-effectiveness ratios for cost per episode averted demonstrate yet another pattern. As

most uncomplicated episodes are prevented after a few years from vaccine introduction and

before the end of the third five-year interval, the cost per uncomplicated episode averted

is higher in the first and last five years (US $3 at a vaccine price of US $1 per dose) and

lower in the second and third five-year periods (US $2 at a vaccine price of US $1 per

dose). This finding is even stronger for the severe episodes, since most of them are averted

in the first 10 years, and in the last five years the number of severe episodes is higher in

the vaccination scenario than under no vaccination. The cost per severe episode averted

is US $106 in the first five-year period, US $123 in the second five-year period, and US

$1209 in the third. In the fourth five-year period, the health effect is negative, thus giving

a negative CER.

Effect of transmission intensity. The number of deaths and DALYs averted in the

first 10 years of the simulation is lower in a low-transmission setting (5.2 infectious bites

per year) than in the reference scenario, while in a high-transmission setting (83 infectious

bites per year) is close to the number reported in the reference scenario (Figure 6.6).

However, in a high-transmission setting, almost all deaths prevented (approximately 90%)

and DALYs averted (approximately 93%) occur in the first 10 years.

The cost per death averted and per DALY averted in a high-transmission setting is thus
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equal to that in the reference scenario in the first five-year period, but it is almost twice

the cost per death averted in the second five-year period, and then the CER increases

dramatically in the following years (Table 6.7). In a low-transmission setting, the cost per

death prevented and per DALY (both undiscounted and discounted) averted are twice as

high as those in the reference scenario in the first five years, and lower in the following

years (Table 6.7).
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Effects of different vaccine efficacy. The cost-effectiveness simulations in the refer-

ence scenario assume that vaccination reduces the force of infection by 52%. Figure 6.7

shows the number of DALYs averted over the 20-year period at different levels of vaccine

efficacy. The impact on deaths averted shows a similar pattern.
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Figure 6.7: Total number of disability-adjusted life years (DALYs) averted at different
levels of vaccine efficacy.

Table 6.7 shows the cost-effectiveness results under different efficacy assumptions. If the

efficacy of the vaccine is 30% instead of 52%, the direct costs per death prevented and

per DALY averted would be considerably higher, with the highest difference being in the

second and third five-year periods where it is over 200%. Increasing the efficacy to 80%

would reduce the CERs by approximately 50% to between US $3 and US $6 per DALY

averted and to between US $200 and US $400 per death averted. The cost-effectiveness of

a completely efficacious vaccine would result in a considerable further improvement in the

CER to US $1.4-$3.2 per DALY averted.

Effects of decay of efficacy. The reference scenario assumes a half-life of protection

against infection of 10 years. The cost-effectiveness simulations are run assuming different

duration of vaccine protection from six months up to 10,000 years, approximating a non-

decaying efficacy. The impact on DALYs averted is shown in Figure 6.8.

As expected, the longer the duration of efficacy the lower the CERs (Table 6.7). However,

the improvements in cost effectiveness ratios are not linear. Improving the half-life from

six months to five years leads to substantial improvements in the CER, but the differences

in cost-effectiveness between five and 10 years efficacy duration are slightly smaller.
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Figure 6.8: Total disability-adjusted life years (DALYs) averted at different levels of vaccine
efficacy decay (half-life).

Effects of variation in vaccine efficacy between individuals. The distribution of

vaccine efficacy among the vaccinated infants has a moderate effect on the number of deaths

and DALYs that can be averted introducing the vaccine. The two alternative scenarios

modeled, assuming either an all-or-nothing response or complete heterogeneity, show that

the more the efficacy is concentrated in a few vaccinated subjects, the more deaths and

DALYs can be prevented.

This finding is also reflected in the CERs that are more favorable than the reference case if

b=0.01 (i.e. efficacy concentrated among fewer individuals), and less favorable if the effect

was completely dispersed (Figure 6.9).

Effects of the coverage rate. The reference scenario assumes a fairly high vaccine

coverage rate (89%) as reported in Tanzania for DTP-HBV vaccine in year 2003 [Hutton

and Tediosi, 2006]. We also simulate a coverage rate of 50%, which is likely to be closer to

that in many malaria-endemic countries, and coverage of 100%, which allows us to analyze

which effects are due to incomplete coverage. The cost-effectiveness simulations are thus

run assuming a low coverage rate (50%) and complete coverage (100%). A lower coverage

rate leads to significant reduction in the total number of deaths and of DALYs averted

over the 20-year simulation (Figure 6.10).

The cost per death prevented and per DALY averted assuming a coverage rate of 50%
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Figure 6.9: Total disability-adjusted life years (DALYs) averted under different assump-
tions about heterogeneity in initial efficacy.

5,000

10,000

15,000

20,000

25,000

30,000

35,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 5 10 15 20

Coverage 50%

Reference

Coverage 100%

N
u
m

b
e
r 

o
f 

D
A

L
Y

s
a
ve

rt
e
d

DiscountedUndiscounted

1 5 10 15 20

Year of follow-up

Figure 6.10: Disability-adjusted life years (DALYs) averted under different assumptions
about vaccine coverage.
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is between 20% and 50% higher than in the reference scenario in the central 10 years of

simulation, and is slightly lower in the first and last five years (Table 6.7). A complete

coverage would increase slightly the number of deaths prevented and more significantly the

number of DALY averted compared to the reference scenario, while the cost per deaths

and DALY averted would be slightly lower.

Inclusion of productivity costs. The economic implications of reducing the burden of

malaria go beyond the direct costs due to health care treatment. In the sensitivity analysis,

we model the cost-effectiveness results including the productivity costs of productive time

lost due to the disease. Results are presented for two assumptions of the proportion of

malaria episodes where there is a productivity cost associated with the disease: the high

productivity cost case where productivity costs are incurred by all episodes predicted by the

epidemiologic model, and the low productivity cost case where there are no productivity

costs associated with uncomplicated episodes unless the patient seeks treatment.

Over the entire 20-year follow-up period, introducing the vaccine would lead to savings

in productivity costs of approximately US $263,634 in the high productivity cost scenario

and US $28,443 in the low productivity cost scenario. However, since effects of the vaccine

vary over time, the savings in productivity costs also vary over time (Table 6.8). Under the

high productivity cost scenario, the savings in productivity costs reduce the total net cost

of introducing the vaccine by between 49% and 90% in different time periods at a vaccine

price of US $1 per dose. The savings are significantly reduced to an impact on total net

cost of 3% to 4% when the vaccine price increases to US $20 per dose.

Table 6.8: Hypothetical value of production time gained due to less time spent ill after
vaccine introduction (US $, year 2004)

Time period (years)
High productivity cost scenario Low productivity cost scenario

Undiscounted Discounted Undiscounted Discounted

1-5 63,478 57,173 15,260 14,074
6-10 124,743 98,807 18,603 15,114
11-15 105,779 72,440 6,238 4,407
16-20 59,366 35,214 -8,771 -5,153

Under the low productivity cost scenario, the reductions in the net cost of introducing the

vaccine are significantly lower than under the high productivity cost scenario. Total net
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cost reductions would occur only in the first three five-year periods, giving reductions of

5% to 7% and 5% at US $1 per dose and under 1% at US $20 per dose. In the fourth

five-year period productivity costs would be higher with the vaccine. This leads to an

increase in the net cost of introducing the vaccine in the last 10 year of follow-up.

As a consequence, the cost per DALY averted (discounted) is lower when productivity

costs are included, as shown in Table 6.9. Under the high productivity cost scenario, the

total cost per DALY averted would be between US $1.7 and US $8.1 at a vaccine price of

US $1 per dose. These figures represent a reduction in cost per DALY averted of between

63% and 89% when compared to the CER containing only direct costs. However, since the

vaccine price increases, the cost per DALY becomes closer to the reference case analysis

CER. For example, at US $20 per dose, the cost per DALY averted would be between US

$148 and US $227 in different time periods, which is similar to that including only direct

costs.



6.3 Results 147

Table 6.9: Cost per DALY averted including direct and productivity costs
(US $, year 2004)∗

Cost per discounted DALY averted

Vaccine price
per dose

Time period
(years)

High productivity
cost scenario

Low productivity
cost scenario

1

1-5 3.98 9.76
6-10 Neg 8.07
11-15 1.66 15.12
16-20 8.12 16.80

2

1-5 13.50 18.72
6-10 6.15 15.73
11-15 13.88 26.61
16-20 19.60 27.59

4

1-5 32.55 36.63
6-10 22.44 31.05
11-15 38.31 49.59
16-20 42.56 49.18

6

1-5 51.60 54.54
6-10 38.73 46.37
11-15 62.75 72.56
16-20 65.51 70.77

8

1-5 70.65 72.46
6-10 55.02 61.69
11-15 87.18 95.54
16-20 88.47 92.36

10

1-5 89.70 90.37
6-10 71.32 77.01
11-15 111.61 118.52
16-20 111.43 113.95

20

1-5 180.41 179.93
6-10 148.91 153.62
11-15 227.97 233.40
16-20 220.77 221.91

∗DALY = disability-adjusted life year; Neg = cost saving and a health benefit.
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6.4 Discussion

We have used a stochastic simulation of P. falciparum epidemiology combined with a case

management model for a Tanzanian setting (Chapter 3) to explore the potential cost-

effectiveness of a pre-erythrocytic malaria vaccine. To our knowledge, this is the first time

that dynamic models of malaria transmission and disease have been used to evaluate the

cost-effectiveness of malaria vaccines. We have used vaccines with different characteristics

introduced by the EPI in Tanzania to illustrate the approach. The models can readily

be extended to other types of vaccine and to different epidemiologic and socioeconomic

settings.

Over the vaccine price range of US $1.0 to US $20 per dose, the CER is almost proportional

to the price per dose, ranging (in the reference analyses) between US $12 and US $190

per (discounted) DALY averted. In the sub-Saharan African context, CERs towards the

lower end of this range would be very attractive for health ministries [Goodman et al.,

1999, Tan-Torres Edejer et al., 2003]. Up to a vaccine price per dose of almost US $10, the

cost per discounted DALY averted remains under US $100. When productivity costs due

to morbidity are included, our CERs are even lower than those estimated including only

direct costs. However, this difference decreases with the increase of vaccine price. There is

little difference between marginal and average costs, which means that substantial savings

cannot be achieved by taking up spare capacity in the health system; thus, the cost of the

vaccine is the major determinant of costs.

These results should be interpreted in the context of CEA of other malaria control strate-

gies. At vaccine price towards the lower end of the range used, our cost-effectiveness

estimates of vaccination compare favorably with those of several other malaria control in-

terventions estimated for the Global Forum for Health Research (GFHR) [Goodman et al.,

2000], but these comparisons are problematical because of differences in the methodology.

Although the GFHR study used DALY calculations based on an African life table with

similar life expectancies to those that we use, our models differ by including dynamic effects

that result in age and time shifts in the burden of disease.

The indirect economic impact of malaria is clearly important and we aimed to capture these

effects by including productivity costs in some analyses. However, there are many pitfalls in

measuring potential or actual economic impact in the context of rural Africa where most of

the population is subsistence farmers, child care is often performed by older siblings, work

is seasonal, and work inputs may be shifted over time and between household members.
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We had no empirical studies available for our estimates of time use or on the impact of

malaria episodes on productive capacity. Concerns about equity effects, inadequate data,

or methods for estimating economic benefits mean that indirect costs are often excluded

from CEA [Chima et al., 2003, Gold et al., 1996]. Indirect costs were not included in

the GFHR study [Goodman et al., 2000], or in any other cost-effectiveness studies to

date of malaria interventions, and were not included in the analyses underpinning World

Health Organization guidelines for CER thresholds for considering health interventions as

attractive or very attractive [Tan-Torres Edejer et al., 2003]. Our analyses that include

productivity costs are thus even less comparable with those of other studies.

A major impact of malaria on productivity is likely to be by the effects on premature

mortality, but it is inappropriate to include in a CEA the costs of mortality, as available

from estimates of life-time earnings forgone or willingness to pay studies, since this would

result in double counting of the benefits of averting deaths [Drummond et al., 1997, Gold

et al., 1996, Weinstein et al., 1996]. Among the microeconomic studies on the economic

consequences of malaria published, only one [Shepard et al., 1991] has included productivity

costs due to premature mortality. That study estimated the economic burden of malaria

and not the cost-effectiveness of interventions.

A malaria vaccine may also have positive impacts on social and economic development

that are not captured by the productivity cost savings. Endemic malaria is associated

with substantially lower indices of economic development at the national level [Malaney

et al., 2004, Sachs and Malaney, 2002], and reducing the burden of malaria might have

macroeconomic benefits that are not captured in micro-economic analyses. However the

epidemiologic analyses (Chapter 5) clearly indicate that on their own vaccine programs with

profiles like those we investigated will avert a proportion of illness events that is much lower

than the primary vaccine efficacy, and will have little or no effect on malaria endemicity. In

this context, it would be surprising if they had substantial effects on economic development.

We obtain only modest estimates of the wider economic benefits of a vaccination program

if we apply the recently suggested approach [Sachs, 2001] of estimating these benefits by

multiplying the number of DALYs averted by the average GDP per capita. Using our

prediction that a pre-erythrocytic malaria vaccine would avert between 0.013 and 0.029

DALYs per capita per year and the GDP per capita of Tanzania (US $322 in 2005), the

annual per capita economic benefits would be between US $4.2 and US $9.3 (according to

whether DALYs are discounted and aged weighted).
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These conclusions reflect the reference case, but the CER is highly sensitive to assumptions

about the epidemiologic setting and vaccine characteristics including the transmission in-

tensity, the efficacy, and duration of protection (Table 6.7). The CER varied with the

time since the start of the vaccination program because the epidemiologic model does not

reach equilibrium within the time scale of the simulation (Chapter 5). In general, the

cost per DALY averted is lower in the first phase of the vaccination program than later,

with the highest cost per DALY in the third five-year time period after the start of the

program. Extending the duration of protection increases the CERs in the third and fourth

five-year time periods. A vaccine boost at some specified time point may have a similar

effect, although this would involve additional costs that would be included in calculation

of the CER. We have not addressed the emerging problem of drug resistance, which could

be included in the case management model and would presumably increase the cost per

DALY averted.

Our simulations considered only a limited set of sources of heterogeneity. In particular, we

assumed that each person in the simulation was exposed to the same entomologic challenge,

and that the chances of being vaccinated were independent of individual susceptibility to

disease. We also assumed homogeneous probabilities of accessing health care. Over a

period of 20 years, the introduction of a new malaria vaccine would have an impact on the

health system and on the case management of malaria. It would be possible to simulate

more realistic patterns of heterogeneity but the field data on which to base such models

are very limited.

Some counter-intuitive behavior in CERs corresponds to health effects in the model. When

episodes are delayed rather than averted, they occur in older individuals who may require

larger drug dosages. Thus, the health benefit of delaying illness may be partially offset

by increased costs. Since the epidemiologic model also corresponds with field data that

suggests a maximum incidence of clinical episodes (though not mortality) at intermediate

transmission intensities [Marsh and Snow, 1999, Ross et al., 2006b, Smith et al., 2006c,

Trape and Rogier, 1996], it is possible for reductions in malaria transmission to lead to

increased case loads.

The proportion of clinical episodes averted varies by transmission intensity (Chapter 5),

as do the numbers of DALYs averted. The numbers of clinical episodes continues to

decrease after 10 years of the vaccine introduction only in low-transmission scenarios.

This is explained by the fact that in high-transmission settings there is an increase in



6.4 Discussion 151

severe malaria incidence in children more than five years of age, due to reduced accrual

of immunity to asexual blood stage parasites during early childhood. In addition, the

pyrogenic threshold, which determines the parasite density that leads to acute illness,

depends on the recent exposure to parasite and can be lower in vaccinated individuals

(Chapter 4). In the model, the lower level of acquired immunity in vaccinated individuals

and the resulting inability to effectively control parasite densities also leads to higher

proportion of the acute episodes being severe.

An extension to the current work will be to carry out a full probabilistic sensitivity analysis.

This will enable us to present acceptability curves in addition to the presentation of CERs in

this report. However, the present analyses already indicate that a pre-erythrocytic malaria

vaccine, even one with moderate efficacy and minimal effectiveness in reducing transmission

to the vector, could be a cost-effective intervention in reducing the intolerable burden of

malaria in sub-Saharan Africa.





Chapter 7

Discussion

This thesis discusses some components of an integrated mathematical model for predicting

the epidemiologic effects of malaria control interventions. The model provides a unique

platform for predicting both the short- and long-term effects of malaria control interven-

tions on the burden of disease, allowing for the temporal dynamics of effects on immunity

and transmission.

Chapters 3, 5, and 6 illustrate the application of the integrated set of models. Chapter

3 describes an attempt to use a dynamic model for case management of malaria in sub-

Saharan Africa. This model allows the simulation of different rates of treatment coverage

and parasitologic cure rates, and makes it possible to look at how variations in transmission

intensity might affect the impact of changes in the health system. The case management

model also is an important part of simulations that predict the consequences of other

control interventions. The epidemiologic impact of an intervention depends on the health

system in place, and the net cost of the intervention can be affected by possible savings in

health system expenditures due to a reduction in the case load.

Chapter 5 reports the first major attempt to combine dynamic modeling of malaria trans-

mission and control with predictions of parasitologic and clinical outcome. The predictions

of the impact of control interventions presented in this chapter focus on malaria control

using a pre-erythrocytic vaccine delivered via the Expanded Program on Immunization

(EPI). The results suggest a significant impact on morbidity and mortality for a range

of assumptions about the vaccine characteristics, but only small effects on transmission

intensities.
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Chapter 6 explores the potential cost-effectiveness of a pre-erythrocytic malaria vaccine.

Depending on the assumed vaccine characteristics and cost, the predicted cost-effectiveness

ratios would make vaccination campaigns an attractive choice for health planners compared

with other malaria control interventions [Goodman et al., 1999, Tan-Torres Edejer et al.,

2003]. These conclusions reflect the reference case, but the cost-effectiveness ratio is sensi-

tive to assumptions about the epidemiologic setting and vaccine characteristics including

the transmission intensity, the efficacy and duration of protection (Table 6.7).

Chapters 2 and 4 discuss two components that are important building blocks of the com-

prehensive model. In addition, the analysis of some of their predictions can also provide

insights into the epidemiology and control of malaria. Chapter 2 presents a model for

the processes involved in controlling the asexual blood stages of P. falciparum infections.

This is a central component of the comprehensive model as the densities of asexual blood

parasites in part determine the clinical outcomes predicted. In addition, the infectivity of

humans to mosquitoes and therefore the modeled effect of an intervention on transmission

intensity follows from the simulated blood stage parasite densities (gametocytogenesis is

not explicitly modeled [Ross et al., 2006a]). The analysis of models for the control of asex-

ual blood stages can also be used to test hypotheses about the nature of acquired immunity

and malaria transmission dynamics. As an example, the model is able to reproduce the

shift in peak prevalence as a function of age as transmission intensity increases which is

characteristic for diseases with acquired immunity. A good fit to the data requires the con-

sideration of the cumulative parasite densities to which a human host had been exposed.

This suggests that the number of parasite strains a host has encountered alone is a poor

predictor of acquired immunity. In general, the model appears to reproduce reasonably

well the parasitologic patterns seen in malariologic surveys in endemic areas.

Chapter 4 demonstrates that an adequate simulation of the first two RTS,S/AS02A trials

published (Bojang et al. [2001], Alonso et al. [2004]) can be achieved by assuming that

vaccination completely blocks a certain fraction of infections that would otherwise reach

the erythrocytic stages. No additional terms need to be added to modify those infections

that survive. The different efficacy estimates against the different outcomes in the two field

trials can all be reconciled with the same efficacy in terms of the relative reduction of the

force of infection. The close match of the model with the data suggests that the interplay

of vaccine-induced and naturally acquired immunity are the main causes of the variations

in efficacy between the different outcomes and trials.
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The integrated model creates a sound foundation for measuring the effects of introducing

new antimalarial interventions (e.g. malaria vaccines), or scaling-up those that are already

known to be efficacious and cost-effective. The remainder of this chapter discusses some

limitations of the model, and proposes alternatives and extensions of both the model and

the analysis of the predictions.

So far, no attempt has been made to simulate immunologic processes in more detail than

via the proposed proxies. The longitudinal patterns of blood-stage parasites might be

better reproduced by fitting within-host models explicitly incorporating effects of anti-

genic variation to repeated assessments of parasitemia with short time-intervals. This may

be important if interventions that affect the blood stages of the parasite are to be mod-

eled, such as blood stage vaccines or Intermittent Preventive Treatment. Such within-host

models have been fitted to data from malariatherapy patients [Molineaux et al., 2001,

Paget-McNicol et al., 2002, Recker et al., 2004] but so far there is no agreement that any

particular such model is appropriate. Because the modeling approach of the present model

is individual-based, it would be possible to amend it to include a more realistic model

of within-host dynamics. However, there are few datasets from endemic areas to which

longitudinal patterns of parasitemia with short time-intervals can be fitted.

The model for immunity against asexual blood stages assumes that the main mechanisms

controlling parasite densities do not decay in the absence of a stimulus. Some immune

responses are known to be short lived [Kinyanjui et al., 2003], but it is not obvious which

of the immune proxies in the model would correspond to these effectors. The best way to

get an estimate of such a decay would be to attempt to fit models with a decay parameter

of immunity. It is not clear whether this parameter would be identifiable when fitting such

models to the datasets used so far. Such an improved model would have to be validated

against longitudinal patterns of parasitemia in semi-immune individuals. In particular,

data from people whose exposure is interrupted by well-documented periods of protection

from infection would be important to consider if the model is to be applied for predicting

the impact of interventions such as vaccination in the context of non-continual exposure

to P. falciparum. An example of such a dataset is the study of the malaria epidemic in the

Madagascar Highlands in the years 1986-1988 [Mouchet et al., 1997].

So far the possibilities for the development and fitting of alternative models have been

limited by the need to re-estimate model parameters as a consequence of the modifications.

Fitting models to data in these models requires massive computational power, for the
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following reasons:

1. The simulations use short time steps of five days because relatively short term fluc-

tuations, for instance in mosquito densities, are very important in driving the epi-

demiology of malaria, and because the parasite life cycle involves time delays of the

order of five days.

2. It is assumed that the simulated populations are in an (immunologic) equilibrium

state at the outset of a simulated parasitologic or epidemiologic survey. This requires

long warm-up periods prior to the start of the actual simulation.

3. Many of the relevant predictions depend on relatively rare events. A key epidemio-

logic outcome is the number of malaria-related deaths. Simulations of large numbers

of individuals are required to obtain precise predictions of the frequency at which

these events would occur.

4. The dimensionality of the parameter-space is relatively high, and therefore requires

a large number of iterations of the optimization algorithm for convergence. This

can be improved by sequentially fitting parameters of different model components.

Parameters of more downstream components are fitted conditional on parameter

estimates of upstream modules. Still the process of fitting a single complete model

can require several months.

This leads to the need for many millions of individual-based simulation runs, each of which

requires in the order of a few hours of CPU time on current mid-range PC. The project

has now started using a Volunteer Computing approach to access the necessary computing

power. The model implementation was adapted to the Berkeley Open Infrastructure for

Network Computing [BOINC]. This platform for Volunteer Computing allows to make use

of many thousands of privately owned PCs to run simulations. The first phase of the project

had demonstrated the feasibility of such a distributed approach. At that time a desktop

grid infrastructure was used to harness the idle time of a few dozen office PCs connected

through the intranet at the Swiss Tropical Institute. This showed that the problem lent

itself to easy parallelization and distribution.

The tasks can easily be distributed over the internet because the data for individual simu-

lation runs is mostly independent. Moreover the data-to-compute ratio is not limiting: the

input data for a single simulation is in the order of just a few kilobytes, and the same is true

for the results that are sent back from the clients which run the simulations. Bandwidth is



157

therefore not limiting even under the assumption that some of the volunteer users connect

to the project server over a slow dial-up line. While the turnaround time for results is

preferably short, the usual period of a few days to get back most of the results is sufficient

for the modeling study.

The port of the simulation software to make use of the virtually unlimited computing power

donated by volunteers has removed one limiting factor, and will allow the exploration of a

whole ensemble of alternative models in the future. There still remain challenges in effi-

ciently exploiting this resource. Due to the high parallelity of the system, the performance

of the process of fitting model parameters to field data is very sensitive to the choice of the

underlying optimization algorithm. While the prospect of unlimited computer power can

inspire new modeling approaches and allows the study of a number of alternative model

specifications, one has to be careful to avoid the pitfalls of overparameterized models with

very limited predictive power.

The model for case management presented in Chapter 3 has some limitations because its

temporal resolution is the five-day time steps underlying all other model components. How-

ever, prompt treatment of malaria episodes is an important determinant of their clinical

outcome. Therefore, the case management model is currently being amended to explicitly

model case referral, and allow for a more finegrained classification of treatment histories.

The main predictions in Chapter 3 assume that sulfadoxine-pyrimethamine (SP) is used as

the first-line drug to treat uncomplicated malaria. Parasite resistance to SP has reached

critical levels in many parts of Central and East Africa, including Tanzania [Mugittu et al.,

2004, Talisuna et al., 2004] and this places a question mark against some of the longer-term

predictions of cost-effectiveness, which assume that treatment using SP remains efficacious.

By now, many African countries including Tanzania have replaced SP with artemisinin-

based combination therapy (ACT) as the first line treatment for uncomplicated malaria

[World Health Organization, 2004]. This change to a highly efficacious drug has implica-

tions for both the epidemiologic predictions of the model (Chapter 3, Effective treatment

scenario), and more importantly on the cost of treatment and therefore the predicted cost-

effectiveness of control interventions if they result in a lower number of treatments. Fu-

ture predictions will therefore be based on case management with ACT as the first line

treatment of malaria as the default.

With the renewed interest in malaria elimination, the question arises whether the model-

ing approach chosen can go beyond its original goal of predicting the comparative cost-
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effectiveness of malaria control interventions in endemic settings. The models described in

this thesis should not be used in this context, for at least two reasons. One reason why one

should have more confidence in predictions in intermediate or high transmission settings is

that most of the data used for the parameter estimation comes from locations with these

transmission characteristics. In addition, it is likely that heterogeneity in transmission is

an important aspect in marginal settings, i.e. that transmission is focal, and differentially

affects humans. Alternative models for the infection of human hosts that address this issue

are currently being developed (Smith, in preparation).

While the model parameters were estimated from field data where this was possible, many

uncertainties and approximations regarding the vaccine characteristics remain. The as-

sumptions about the profile of the reference vaccine scenario in the previous chapters were

based on the data from clinical trials of RTS,S/AS02A that were available at that time

(Bojang et al. [2001], Alonso et al. [2004]). New data from vaccine trials has since then

become available, and should be taken into account when discussing the simulation predic-

tions. The half life of the protective efficacy of the vaccine was identified as an important

driver of the cumulative effectiveness. Alonso and colleagues [2005] report that there was

no significant reduction in the protective effect when they followed the cohorts from the

RTS,S/AS02A trial in Manhiça [Alonso et al., 2004] for a total of 21 months. The power

of this analysis is relatively small, but at least the data does not indicate that there is

substantial waning of the protective efficacy within the first 21 months. The predictions in

Chapter 5 suggest that a pre-erythrocytic vaccine with a half life of less than 2 years shows

relatively little effectiveness. A recent analysis of simulation results with a bigger sample

size and refitted parameters (see below) confirm these predictions (data not shown). The

uncertainty in the field estimate of the initial efficacy of RTS,S/AS02A remains substan-

tial. In addition, the efficacy of incomplete courses of vaccination are unknown. This may

be a critical factor if there is a high drop out rate, for example if the vaccine is delivered

outside the EPI. The best one can do here is to explore and document the sensitivity of

the model predictions to a range of input values.

The latest results from a clinical trial of RTS,S/AS02A show that the vaccine is safe and

efficacious in infants [Aponte et al., 2007]. This is important because all current predictions

of the epidemiologic impact and cost-effectiveness assume that the vaccine will be delivered

through the EPI, and therefore that the vaccine will be administered to children during

the first months of their life.
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Since no vaccinated child reached more than 20 years of age in the simulations which predict

the impact of introducing a vaccine into the EPI, very long-term effects of vaccination are

not captured. This is important when comparing different decays or initial efficacies, as

the relationship between the duration during of protection and the life-expectancy of the

vaccinated individual may be important in determining the effectiveness. However, we are

very uncertain about the risk of severe malaria that such adults would experience. There

are few data available from which to estimate severe malaria risk in adolescents or adults

with limited previous exposure [Ross et al., 2006b].

All the predictions presented in Chapter 5 are point estimates. This presentation is ap-

propriate as the model, despite its stochastic nature, should deliver predictions with an

arbitrary precision for any scenario for a given set of input parameters. Given the simu-

lations assume a homogenous population of human individuals, the simulated population

size can in principle be as large as necessary, thus removing any noise that will affect the

predictions due to stochasticity. However, at the time of publication of the predictions of

the impact of improved case management (Chapter 3) and the impact of a pre-erythrocytic

vaccine (Chapters 5,6), the computing resources for running simulations and analyzing the

results were limiting. Therefore all these predictions were based on single runs of any

scenario with a population size of 100,000 simulated individuals. While this is likely to

be appropriate for the prediction of frequent events like uncomplicated malaria episodes,

some of the result indicate that the simulation of larger populations may be appropriate

for prediction rare outcomes like mortality (see Figures 5.5, 5.6).

The predictive simulations of the impact of a pre-erythrocytic vaccine have now been

rerun for the reference vaccine case (Table 5.1). These new predictions are based on 100

simulation runs with a simulated human population of 100,000 individuals each. All model

parameters were previously re-estimated by simultaneously fitting all model components

to the 61 parasitologic and epidemiologic datasets available. In general, the results (data

not shown) confirm the results reported in Chapter 5.

As the cost-effectiveness analysis of the vaccine (Chapter 6) was based on the predictions

of the epidemiologic impact of the vaccine, there are also only point estimates available.

Table 6.7 suggests considerable stochastic variation in the prediction of the cost per death

averted. Using the same set of predictions as above, this analysis has been repeated.

Again, the result (not shown) confirms that the estimates presented in Chapter 6 are in

the correct range for most outcomes. This indicates that the simulated population sizes
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are appropriate for most outcomes, but reveals that accurate predictions of mortality may

need bigger sample sizes. The predictions of neurologic sequelae are very noisy even with a

simulated population size of 10 million individuals. Point estimates may not be appropriate

when simulating scenarios where stochasticity is important, i.e. very low transmission

settings where elimination is likely (the limitations of the model under these circumstances

were discussed previously).

That these results more or less confirm the earlier findings is reassuring for a number of

reasons. First, the point estimates in Chapters 5 and 6, in most cases, do not seem to be

too noisy. Second, the simulation software has undergone significant changes during the

port to the BOINC volunteer computing platform. This did not seem to affect the results.

The same is true for the software that is now in use to allow a more automated analysis

of simulation predictions. Finally, the predictions are not substantially affected by the

refitting of the model parameters using a different approach.

These new predictions using bigger sample sizes also provide an opportunity for a more

detailed analysis of some of the epidemiologic outcomes. Chapter 5 reports only the total

number of deaths, or deaths averted by the vaccine. This includes both direct and indirect

deaths averted [Ross et al., 2006b]. The disaggregation into the two components reveals

that the evaluation of a real world vaccine intervention will miss an important effect of the

vaccine if only malaria-specific mortality is considered (data not shown). The simulations

suggest that the effectiveness due the prevention of indirect deaths may be much more

important. Indirect deaths will, by definition, not be included in malaria-specific mortality

statistics [Ross et al., 2006b]. At the end of the 20-year intervention period, a rebound

of direct mortality is observed, while the predicted incidence of the all malaria-related

deaths (direct plus indirect) is still lower in the vaccine scenario. However, one should

be cautious in interpreting this prediction. The 20-year time span, chosen to cover the

maximum planning phase a policy maker would reasonably consider, means that some of

the vaccinated children reach an age for which data to appropriately fit the relevant model

parameters is rare, and may not be as reliable as the data for young children [Ross et al.,

2006b].

Most results in previous chapters that were presented over time used a temporal resolution

of one or more years. This is useful for readability, but ignores the fact that the trans-

mission intensity or potential is usually seasonal. A higher temporal resolution brings up

an interesting prediction of potential importance if the simulation model is to be used for
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health planning. By analyzing the number of events averted in quarterly intervals (data

not shown) the impact of the seasonal changes in transmission intensity becomes apparent.

During the second half of the 20-year intervention period, the number of events averted is

negative for some time during each year. This could be either because the annual peak in-

cidence is shifted to another time of the year, or because the incidence becomes either more

or less seasonal. This observation merits closer investigation, as it may have important

implications for the accuracy of malaria diagnosis. It has been suggested that algorithms

for clinical diagnosis of malaria should take seasonality into account in low endemicity

settings [Breman, 2001].

One factor that is a potential driver of the cost-effectiveness of a vaccine was not taken

into account in the previous analysis. In order to maintain a stable age-distribution in

the simulated population, the demographic model (Chapter 2) relies on out-migration

of human individuals. Note, that while the process of removing individuals from the

population is called out-migration here, this simply implies that individuals are removed

from the population due to events that are not related to malaria. The cost of a vaccination

program, and therefore its cost-effectiveness, depends on the number of vaccine doses

delivered. Out-migration may cause the observed cost-effectiveness ratio for a vaccine to

appear less favorable if some of the protective effect is lost to out-migrating individuals.

Because out-migration in this demographic model mostly affects young individuals, and

the vaccine is assumed to be delivered via the EPI in the simulations discussed here, a

significant proportion of vaccinees is removed from the population shortly after receiving

the vaccine. With the current model and associated parameters for demography, more

than half of the vaccine doses remain in the population for less than one year (data not

shown). The effect of this on cost-effectiveness is difficult to quantify, and will vary for

different epidemiologic outcomes. On one hand, there are a number of vaccine doses lost

before the full potential benefit is reached, on the other hand the outmigrated individuals

are part of the predictions while the vaccine still has a high level of efficacy and at the

same time do not contribute to the observed rebound. In addition, the simulated out-

migrations include non-malaria specific deaths as well as migration events. The two would

need to be separated in order to predict the proportion of vaccine doses that are lost versus

the vaccine benefits that would simply be missed when locally evaluating the impact of a

vaccine program. Further analysis is needed to learn more about the dependence of the

cost-effectiveness on the details of the demographic model. It may be necessary to more

explicitly distinguish between different demographic processes in order to separate births
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and deaths from migration.

The main objective of the malaria model described here is to make quantitative predictions.

In addition to that, a good model should provide a means of identifying current gaps in

knowledge that need to be filled for rational planning of malaria control strategies by

identifying the most important drivers of the predicted outcomes. Sensitivity analysis of

the predictions due to input data is a powerful tool to identify potential weaknesses in

the data required to make accurate predictions. While confidence intervals for the fitted

parameters of the mathematical model have been calculated (Table 2.3), this information

has not been used to do a sensitivity analysis of the predictions reported in previous

chapters. A thorough sensitivity analysis is still outstanding, but preliminary results of

a probabilistic sensitivity analysis suggest that some of the epidemiologic outcomes are

sensitive to parameters that define age-specific effects (e.g. the risk of severe malaria or

indirect mortality due to co-morbidity). All such parameters, as well as non-parametric

age-specific functions like the case-fatality rate, are potentially important because the main

effect of an intervention like a pre-erythrocytic vaccine is to reduce the force of infection in

vaccinated individuals, and therefore to shift malaria-related events to a later age. These

findings emphasize the importance of good data on malaria of adolescents and adults.

The focus of this thesis is on the predictions of the impact and cost-effectiveness of pre-

erythrocytic vaccines delivered via the EPI. The application of the models described can

be extended to include other means of deployment (including regimens with booster doses

of vaccines or mass-vaccination campaigns), to other types of vaccines (asexual blood stage

and transmission blocking), and other control interventions listed in Chapter 1. It will be

interesting to evaluate and compare different interventions, but also to investigate the effect

of combining several interventions into an integrated control program. The predictions of

the impact of a pre-erythrocytic vaccine have shown that such a vaccine will be most

effective at low transmission intensities, but that on its own it is unlikely to significantly

reduce transmission except, possibly, when this is already low. In areas with moderate to

high transmission, it may be that such a vaccine will be most effective if it is deployed in

conjunction with measures that reduce the vectorial capacity at the same time.

As a consequence of the computational demands and the resulting complexity of the soft-

ware environment, the integrated model does not allow for real-time exploratory analysis.

The process of preparing input data for simulation runs, running the simulations, and
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analyzing the results can take several days depending on the nature and scope of the de-

sired predictions. Enabling health planners and decision makers to effectively work with

the products of the simulation models despite these constraints remains one of the great

challenges. The project is therefore developing a web-based computer platform that will

enable stakeholder groups to prioritize both strategies to be simulated and the outputs

generated. This will complement the planned publication of future model predictions in

the peer-reviewed literature, which will always be restricted to a subset of the findings

that can be of interest to the scientific community. The epidemiologic predictions will be

linked with estimated intervention and case management costs for these scenarios to gen-

erate comparative analyzes of the cost-effectiveness of all the interventions, when delivered

via different plausible delivery strategies. Summaries of the organizational, financial, and

economic implications of implementing and/or scaling them up will be derived, as well

as approximate estimates of populations at risk at different levels of endemicity. These

will together make it possible to predict the disease burden likely to be averted by any

particular intervention strategy. Predictions will be made with as many different validated

models as are available, eventually leading to ensembles of predictions for each scenario.

The web-interface to a comprehensive set of model predictions can be valuable both for

informing malaria control strategies and research funding policy. The acceptability among

decision makers will depend on more than the scientific quality of the data made available.

This point is reinforced by a statement of Habbema and colleagues [1992], who empha-

size that usability and adaptability are central if models are to be an integral part of a

disease control program. The authors were responsible for the modeling part of the On-

chocerciasis Control Program in West Africa. Mathematical modeling made a significant

contribution to the success of that program. Usability of the interface and high-level doc-

umentation accessible to a non-modeler audience will be important success factors for the

model predictions to make a contribution to the control of malaria.
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