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Abstract

The electron spin for electronics has only recently attracted much interest.
The idea to use spin—as opposed to charge—as the fundamental data car-
rier was motivated by recent experiments that showed unusually long spin-
dephasing times up to microseconds for electrons in semiconductors as well
as phase coherent transport over distances exceeding one hundred microme-
ters. In addition, experiments demonstrated the injection of spin-polarized
carriers—electrons and holes—from a magnetic into a non-magnetic semi-
conductor which opens the door for various applications in spin electronics
(spintronics). Besides the broad use of the electron spin in conventional de-
vices, like in giant magnetoresistance (GMR) based magnetic read-out heads
for computer hard drives or for non-volatile memories, the spin of the elec-
tron confined in nanostructures such as semiconductor quantum dots serves
as a natural realization of a quantum bit (qubit). A quantum computer
uses explicitly the quantum nature of systems where phase coherence and
entanglement play a crucial role which requires a radically new design of
the underlying computer hardware. In particular, entangled spin qubits,
combined with the ability to control them via their charges, can serve as
electronic EPR, (Einstein-Podolsky-Rosen)-pairs in wires, i.e. pairs of elec-
trons which are spatially separated (and uncorrelated) but still correlated
with respect to their spins. Such entangled particles are the resource for
secure quantum communication protocols which have been experimentally
implemented using photons—the quantized units of light. The equivalent
experiments for massive particles like electrons in a solid-state environment
have not yet been performed, although their need cannot be overestimated,
both from a practical point of view and also from a more fundamental one.

In this Thesis, we address the question of creating such nonlocal spin-
entangled electron pairs in a way that is suitable to detect the produced en-
tanglement in transport experiments via their current-noise properties. We
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discuss various setups—entanglers— where Cooper pairs in a superconductor
with spin singlet wave functions act as the source of spin-entanglement. In
the presence of a voltage bias between the superconductor and two spatially
separated normal conducting leads which are weakly tunnel-coupled to the
superconductor, the electrons of a Cooper pair can tunnel coherently—in an
Andreev (pair-)tunneling process—from the superconductor to the normal
leads thereby remaining in the spin singlet state. This produces a current
carried by pairs of spin-entangled electrons in the leads. In these setups,
superconducting pair-correlations and Coulomb interaction between the two
electrons are competing features. On the one hand, the orbital wave function
of a Cooper pair is symmetric which favors the tunneling of both electrons
into the same outgoing arm of the entangler. Such processes are unwanted
since they do not lead to nonlocality. On the other hand, in small low-
dimensional quantum confined nanostructres, electron-electron interaction
becomes sizable and can be used to separate the two electrons of a Cooper
pair. We exploit such strong correlations between the electron charges of
a pair by using either quantum dots in the Coulomb blockade regime, one
dimensional wires with Luttinger liquid properties or resistive outgoing leads
coupled to the superconductor. We calculate the two competing tunneling
currents from the superconductor to different leads (desired pair-split pro-
cess) and to the same lead (unwanted local process) in detail. By comparing
their ratio, we can estimate the efficiency of the entangler and see how it
depends on various system parameters. This then allows us to identify a
regime of experimental accessibility where the pair-split process is dominant.

The ability to have (coherent) control over single electron spins in semi-
conductor nanostructures is crucial in view of quantum computing with elec-
tron spins. In particular, spin-filtering and spin read-out is of great impor-
tance. For this we consider a quantum dot in the Coulomb blockade regime
weakly coupled to current leads and show that in the presence of a magnetic
field the dot acts as an efficient spin filter (at the single-spin level) which
produces a spin-polarized current. Conversely, if the leads are fully spin-
polarized, the magnitude of the transport current through the dot depends
on the spin state of the dot. Quantum dots permit the control of charge
down to single electrons. It is therefore feasible to consider a single spin 1/2
on the dot—a spin qubit—which can be read out by a current. Combined
with electron spin resonance (ESR) techniques this allows one to operate the
quantum dot as a single spin memory with read-in and read-out capabilities.
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Chapter 1

Introduction

1.1 The electron spin for electronics

The ongoing reduction of the size of electronic devices down to length scales
which become comparable to the Fermi wavelength A\ = h/pp of electrons in
the host material, where pr is the Fermi momentum and h = 6.63 x 10734 Js
Planck’s constant, leads to discrete energy levels which requires a quantum
mechanical treatment of transport processes, e.g. to calculate the conduc-
tance of a small quantum wire [1,2]. This wavelength is on the order of
several nanometers in low dimensional semiconductor structures. Further, in
quantum-confined nanostructures, the quantization of charge becomes rele-
vant and allows the control of charge transport down to single electrons [3].
While the charge of the electron is well established in electronics, the idea
to use its spin as the basic unit of information storage has only recently
attracted much interest [4-6]. The suggestion to use spin in electronic de-
vices has received strong experimental support [7-9] showing unusually long
spin dephasing times [7] in semiconductors (~ 150 ns), the injection of spin-
polarized currents from a magnetic- to a non-magnetic semiconductor [8,9],
as well as phase-coherent spin transport over distances exceeding 100 mi-
crometers [7].

The electron spin allows fundamental improvements of conventional de-
vices, e.g. in magnetic read-out heads for computer hard drives based on the
giant magnetoresistance (GMR) effect [10], non-volatile memories, or in spin-
polarized field-effect transistors [11] which are based on injected spin currents
and are controlled via spin orbit interaction—a combination of charge and
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spin control. Further, electron spins in quantum-confined structures such
as semiconductor quantum dots [3], atoms, or molecules can be used as a
quantum bit (qubit) [12] for quantum computing [13-15] and quantum com-
munication [14-16], where a radically new design of the necessary hardware
is required.

A quantum computer processes quantum bits (qubits) rather than classi-
cal bits like 0 and 1. A qubit |¢)) can be in any superposition of its underlying
basis states |0) and |1), i.e.

[¥) = al0) + 5[1), (1.1)

where the complex amplitudes « and [ satisfy the normalization condition
|a|> + |3 = 1. A spin 1/2 of an electron represents a natural realization of
such a two level system since the spin of an electron has only two basis states
|T) and ||) with respect to an arbitrary quantization axis. These states can
then be identified as |0) and |1), respectively. A state of N qubits is a vector
in a space of 2V dimensions with basis [0...00), [0...01), |0...10), ... The
power of a quantum computer comes from the quantum parallelism since a
quantum computer processes coherent superpositions of computational ba-
sis states rather than just binary strings of zeros and ones. The two most
important examples of a quantum algorithm that outperforms any known
classical algorithm for the same problem are Shor’s factoring algorithm [17]
and Grover’s algorithm [18] for searching an unsorted database.

Already a large number of proposals for the implementation of a quantum
computer exist. Among many others, qubits encoded in the internal degrees
of freedom of cold trapped ions [19] or in specific nuclear spins of a molecule
(liquid-state NMR) [20-23] are studied. Very promising systems to search
for implementations of a quantum bit are solid-state systems. They have
the advantage that once the basic building blocks of a quantum computer
are realized, the upscaling to a functional device containing many qubits
seems likely (e.g. on-chip production in semiconductor systems). It was pro-
posed by Loss and DiVincenzo [12] that arrays of semiconducting quantum
dots, each dot containing a single electron spin, can be used for a quan-
tum computer. The coupling between two spins on neighboring quantum
dots is achieved by spin-exchange interaction which is controled by varying
the tunnel barriers between the dots or by external magnetic and/or elec-
tric fields. Realistic ideas for the implementation of this proposal are under
investigation [24]. A subsequent proposal which uses the same principles
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is given by nuclear spins in donor atoms in silicon [25]. In addition, ESR
transistors in SiGe heterostructures [26], electrons trapped by surface ac-
coustic waves [27] and charge degrees of freedom in quantum dots [28-32]
have been considered as potential realizations of a qubit. In superconduct-
ing devices, flux states [33] or charge states [34-36] in coupled Josephson
junctions, and d-wave Josephson junctions [37] have been proposed as the
fundamental building blocks of a quantum computer.

To perform a quantum computation, each qubit should be addressable
individually. During a calculation, the state of a quantum computer is in
general in a complicated quantum superposition which should stay phase co-
herent, i.e. the superposition of computational basis states should remain
unaffected. In this sense, the qubit should be as “microscopic” as possible.
By this we mean that the qubit degrees of freedom should couple only very
weakly to the environment. On the other hand, we want to manipulate a
qubit which requires some coupling to the outside world. In addition, at the
end of every calculation, the qubit has to be read out. This demands mecha-
nisms with control at the level of a single qubit, e.g. a spin 1/2 particle. This
issue we address in Chapter 3 where we show that a single electron spin on
a quantum dot can be read out via (charge) transport measurements. Here,
the basic idea is to measure the spin of an electron via its charge [12]. This
is feasible since the orbital degrees of freedom of an electron are connected
to its spin degrees of freedom via the Pauli principle.

In addition to single-qubit operations, coupling between any two (neigh-
boring) qubits is required. The most important two-qubit quantum gate is
the XOR gate [21] since any quantum algorithm can be decomposed into XOR
gates and single-qubit operations. It has been shown in Ref. [12] that this gate
can be described by a (unitary) quantum operation containing a sequence of
single-qubit rotations and, very essential, the so-called square-root-of-swap
operation ULZ. Tt acts on a two-qubit basis state as follows: E.g. for the |01)
state, Usly |01) = (]01) +4]10))/(1+474). The state (|01) +4]10))/(1+4) is an
entangled state, since it is not separable into a product of single qubit states.

Thus, the creation of entanglement is needed for the explicit construction of
the XOR gate.

These entangled qubits combined with the possibility of transporting
them in wires via their charge then allows the creation of mobile and nonlocal
entangled states which represent the fundamental resource for secure quan-
tum communication [16]. This is particularly interesting for electron spins
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in quantum confined semiconductors with long spin decoherence lengths on
the order of 100 pm [7]. The decoherence length is the transport length
over which a qubit of the form Eq. (1.1) stays phase coherent. It should be
noted that quantum communication protocols, like dense coding or quantum
teleportation [15], only require two or a few qubits. Their implementation
is therefore less demanding than a quantum computer where ~ 10° qubits
should be controled phase coherently.

1.2 Entanglement and nonlocality

Nonlocality and entanglement are two of the most peculiar features of quan-
tum mechanics. We call a quantum state of two particles entangled if it
cannot be written as a product of single-particle wave functions. As an illus-
trative and most simple example we consider the two electrons in a Helium
atom. In the ground state, both electrons occupy the lowest orbital state
|®o) (the ls-state) and therefore the (approximate) wave function is

¢(27101,£E202) = ¢orb(931,$2) X%pm(Ul,UQ)
= o) Bolan) x =Ll a() = (v (o)
(1.2)

where z; and o; denote the position and spin coordinates of particle i = 1, 2.
The orbital wave function ©.,.,(21, x2) is a product of two single-particle wave
functions and therefore is not entangled whereas the spin wave function is
entangled (only the singlet state with total spin zero is allowed by the Pauli
principle). Similar, the ground state of a single quantum dot which contains
two electrons is also a spin singlet [38]. However, this state of the Helium
atom or of the single quantum dot is not yet very interesting in the context of
spin-entanglement, although the spin state is not a product state. The reason
is that we cannot measure each electron individually since they occupy the
same orbital state |®¢). But if we could (somehow!) separate the electrons
in a way that one electron gets transported to a point A and the other to a
point B, we could create a wave function for the two electrons of the form

Yan(e101,7205) = %{mm)%(zg)+<1>B<x1><1>A<x2>}

x %{x«o—l)xlm)—xl<o—1>xT<ag>}7 (1.3)
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where &, and ®p are wave functions which are located at points A and
B, respectively. The spin wave function is assumed to be unaffected by the
transport of electrons to A and B. If the distance between A and B is
large so that the wave functions do not overlap, i.e. [dz ®4(z)P%(z) =0,
one of the two orbital terms in 1 4p is always zero. Therefore, we know for
certain that one electron is always located at A and the other at B. But
what about the spin of the electron at A or B? We do not know! The
wave function in Eq. (1.3) has the form of the groundstate wave function
(in the Heitler-London approximation) for the hydrogen molecule Hy or also
for a tunnel-coupled double quantum dot [39]. Although the dissociation
of the two electrons is not complete—the small wave function overlap is
needed for the exchange splitting favoring the singlet groundstate—the two
wave functions are well separated in space and therefore can be addressed
individually which could be exploited to finally dissociate the two entangled
electrons completely. Exactly this situation we consider in Section 1.4 where
a tunnel-coupled quantum dot is proposed to create mobile spin-entangled
electrons in two spatially separated leads which are coupled to the double
dot.

The state Eq. (1.3) is at first sight not alarming, since in quantum me-
chanics a state can be in a superposition of other states, but here it is more
than just a superposition. It is clearer to write ¢ 4p in second quantized form

1
[Yan) = — (dlyly, — diy by ) 10), (1.4)

where d, (dgv_a) creates a spin o (—o) electron at A (B) and |0) is the
particle vacuum. Since a measurement in quantum mechanics is a filtration
process the spin measurements at A and B are unavoidably correlated even
though A and B can be far apart such that there is no way of transporting
information from A to B during the correlation measurements.

This paradox is known as the EPR paradox after a paper by A. Einstein,
B. Podolsky, and N. Rosen in 1935 [40]. There it was concluded that quan-
tum mechanics must be an incomplete theory where the true microscopic
description can be understood in terms of so-called hidden variables [41] and
has to obey the locality principle. The locality principle states that the out-
come of a measurement of the particle at A should not be influenced by a
measurement of the particle located at B if A and B are far apart, even if
in the distant past the two particles might have interacted—e.g. in the Hy
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molecule. In 1964, J.S. Bell formulated a testable inequality [42] between cor-
relation measurements on two particle systems based on the locality principle
which is in contradiction to quantum mechanics. The violation of the Bell
inequality! could be demonstrated with photons [43] in favor of the quantum
theory?. To date no equivalent experiment exists for massive particles like
electrons in a solid-state environment.

Apart from the philosophical interest in nonlocal quantum correlations,
entanglement is used as a resource for various secure quantum communi-
cation schemes [16,21]. Again such quantum communication protocols like
dense coding [44] or quantum teleportation [45,46] have been successfully
implemented with photons but not yet with massive particles such as elec-
trons.

1.3 Detection of spin-entanglement

In view of the quantum computing proposal by Loss and DiVincenzo [12]
with electron spins in quantum dots it is interesting and desirable to test
the entanglement between two electron spins which are spatially separated
so that each spin can be manipulated independently. It has been shown
in Refs. [12,39] that two electron spins which reside on adjacent quantum
dots can become entangled by lowering the tunneling barrier between the
two dots which leads to an exchange interaction between the two spins on
the dots. By measuring the exchange splitting (singlet-triplet splitting) one
would obtain some information about entanglement in this system. Another
way to test the entanglement between two electron spins is via transport ex-
periments. It has been proposed in Ref. [47] that in a beamsplitter setup (see
Fig. (1.1)) combined with noise measurements (i.e. current-current correla-
tion measurements), entanglement can be detected via an enhancement of
the shot noise (for singlets). A further possibility to measure entanglement
is to measure spin-spin correlations between the two spatially separated elec-
trons and show that the Bell inequality is violated. By using spin filters, the
spin information can be converted into charge information [48], which then

!There are different versions of “Bell inequalities”. In this Thesis, we sometimes refer to
as the Bell inequality to honor Bell’s original idea to formulate such a testable inequality.

2For photons, the qubit basis states are defined as its polarization states, e.g. left
and right circular polarization. The creation of polarization entangled photons is usually
achieved via parametric downconversion processes in optical nonlinear crystals.
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singlet

, 777777777777777777777 Beam splitter, T,

Figure 1.1: Setup to measure noise of spin-entangled electrons [47]: Uncorrelated
electrons are fed into the entangler from leads 1’ and 2’ and transformed into
entangled states, let’s say spin singlets, which are injected into leads 1 and 2, one
electron per lead. The entanglement of the spin singlet can then be detected using
a beam splitter setup. Since the orbital wave function of the singlet is symmetric,
the electrons leave the beamsplitter preferably in the same outgoing arms (3 or 4).
This “bunching” of the electrons then leads to an enhancement of the shot noise
in the outgoing arms compared to uncorrelated electrons.

allows us, to express the Bell inequality in terms of current-current corre-
lation functions [49,50]. This requires that a current of spin-entangled and
spatially separated electrons (e.g. in two wires so that each wire contains
one electron of the entangled pair) is available. In such a current of en-
tangled pairs, the time separation between the arrival (in the measurement
apparatus) of different pairs must be longer than the time delay between
the electrons belonging to the same entangled spin-pair. This is very crucial
for testing entanglement via transport measurements since they should only
detect (cross) correlations between electrons from the same pair.

The major part of this Thesis is devoted to the creation of such currents
carried by spin-entangled electrons in wires suitable for their detection via
noise. We further discuss a possible spin filter which produces (or detects)
spin-polarized currents if a quantum dot in the Coulomb blockade regime, and
coupled to leads, is subjected to a magnetic field. We analyze the possibility
to use such a spin filter for measuring Bell inequalities of spin-entangled
electrons.

1.4 Ways of creating spin-entanglement
Entanglement is the rule rather than the exception in the groundstate of

solid state systems. As we have learned in Section 1.2, the ground state of
the Helium atom or of a single quantum dot is spin-entangled. However,
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to make the entanglement useful for testing nonlocality or as a source for
quantum communication protocols, we require separate control over each
particle which takes part in the entangled state (e.g to transport them to
separate places). Obviously it is hard to have control over entangled states
in a solid-state environment due to other electrons in the device structure that
may interact with the entangled pair as well as coupling to the environment—
the solid-state matrix.

For such a setup—to which we refer to as entangler—various proposals
exist. The probably most natural candidate for such an entangler is a tunnel-
coupled double quantum dot [12,39,51,52] where both dots are initially empty
and coupled to separate outgoing drain leads and to the same source lead.
By lowering the tunnel barrier, uncorrelated electrons from the source can
then enter the dots (one electron in each dot due to Coulomb repulsion be-
tween the electrons) and become entangled via spin exchange interaction.
The tunneling barrier to the source is raised again so that further electrons
are prevented from entering when, in the next step, the barriers to the drain
leads are opened and the entangled pair can leave the double dot to separate
leads. By continuously repeating this procedure, we generate a current of
entangled and nonlocal spin pairs. Although this idea is natural, it requires
precise control of switching parameters [52], e.g. the switching of the tun-
neling barriers connecting the dots to the drains should be fast compared to
the interdot tunneling. Otherwise one cannot assure that the electrons leave
to different leads. This entangler scheme combined with the beamsplitter
setup [47] as an entanglement detector is currently investigated experimen-
tally by the Delft group, see Ref. [53]. Besides the tunneling mechanism to
create spin-entangled electrons in nearby quantum dots there exist different
means to couple two spins, e.g. via interaction to an optically excited virtual
exciton in the host material surrounding the dot [54], by coupling spins in
quantum dots via an optical cavity mode [55], or via coupling two quantum
dots to the same s-wave superconductor. In equilibrium, the coupling to
the superconductor then leads to an effective spin exchange which favors a
spin singlet ground state for the double dot [56]. Therefore, superconductors
provide another source of spin-entanglement (see below).

Single quantum dots can also be used as a spin-entangler. A single quan-
tum dot in the cotunneling regime and coupled to one source and two drains
with narrow energy band configurations was shown to give rise to a cur-
rent of nonlocal spin-entangled electrons if the dot has a finite charging en-
ergy [57]. A further proposal with one quantum dot, contains two additional
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dots tunnel-coupled to the first one, which themselves are coupled to outgoing
leads [58].

In Chapter 2, we consider three setups where a superconductor acts as a
source of mobile spin-entanglement. In an s-wave superconductor the elec-
trons in the vicinity of the Fermi surface form Cooper pairs [59] where elec-
trons of opposite momentum are paired up into a singlet spin-state due to
an effective attractive interaction between electrons mediated by phonons. If
the superconductor is tunnel-coupled to a normal conductor, the two elec-
trons forming the Cooper pair in the superconductor can tunnel by means of
an Andreev (pair)-tunneling [60] event into the normal conductor, thereby
remaining in the spin singlet state. Thus, an applied voltage bias between
the superconductor and the normal region results in a stationary current of
spin-entangled electrons from the superconductor to the normal region. If
two separate outgoing normal leads are tunnel-coupled to the superconductor
the pair can split and each of the two electrons will tunnel into a separate
lead which gives rise to an electronic EPR pair. Several proposals including
Coulomb blockade effects in quantum dots [61], (see Section 2.2), in Luttinger
liquid leads [62,63], (see Section 2.3), or in circuits with resistive leads [64],
(see Section 2.4), were proposed in order to separate the two electrons of a
pair such that they preferably enter separate leads. A related proposal makes
use of energy filters in the normal leads (e.g. produced in quantum dots) [65]
and does not use Coulomb interaction to separate the two electrons of a pair.
In this proposal, the SN-junction is transparent and therefore subsequent
spin-entangled pairs are not separated in time. In addition, the injection
energy predetermined by the filters have to be different.

There exist further means to create spin-entangled electrons, e.g. in
Ref. [66] generic quantum interference effects in a beamsplitter setup are
used. Very recently, entanglement was also considered in the orbital sector of
Cooper pairs [67], and in a degenerate electron gas where entangled electron-
hole pairs are created by a tunneling barrier [68]. The latter proposal does
not require an interaction mechanism to create the entanglement in the first
place. The electron-hole pairs become separated spatially by the propagation
along edge channels in a quantum Hall regime setup and are entangled in the
quantum numbers of two edge channels which can either refer to orbital or to
spin degrees of freedom [68]. In these systems, where orbital entanglement is
created, one can also find a violation of the Bell inequality similar to the case
for spins. Here, the spin filters are replaced by beamsplitters with variable
reflection and transmission amplitudes. The successful detection of a charge
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in a specific outgoing arm of the beamsplitter then depends on the orbital
degree of freedom in which the pair is entangled [67,68].

1.5 Outline

The outline of this Thesis is as follows.

In Chapter 2, we present a detailed description of three setups where an
s-wave superconductor acts as a spin-entangler. In Section 2.2 (Refs. [61,69]),
the superconductor is coupled to two quantum dots each of which is tunnel-
coupled to normal Fermi liquid leads. We show that in the presence of a
voltage bias and in the Coulomb blockade regime two correlated electrons
provided by the Andreev process can coherently tunnel from the supercon-
ductor via different dots into different leads. The spin singlet coming from
the Cooper pair remains preserved in this process, and the setup provides a
source of mobile and nonlocal spin-entangled electrons.

The transport current is calculated and shown to be dominated by a
two-particle Breit-Wigner resonance which allows the injection of two spin-
entangled electrons into different leads at exactly the same orbital energy,
which is a crucial requirement for the detection of spin-entanglement via
noise measurements. The coherent tunneling of both electrons into the same
lead is suppressed by the on-site Coulomb repulsion and/or the supercon-
ducting gap, while the tunneling into different leads is suppressed through
the initial separation of the tunneling electrons. This latter suppression de-
pends crucially on the effective dimensionality of the superconductor and is
characteristic also for the subsequent proposals. In the regime of interest the
particle-hole excitations of the leads are shown to be negligible.

The Aharonov-Bohm oscillations in the current are shown to contain
single- and two-electron periods with amplitudes that both vanish with in-
creasing Coulomb repulsion albeit differently fast. This feature can be used
as a probe of the spatial separation of two spin-entangled electrons. In Sec-
tion 2.3 (Ref. [62]), we consider a superconductor which is tunnel-coupled to
two spatially separated Luttinger liquid leads, i.e. we replace the Coulomb
blockade effects of the quantum dots by strong Luttinger liquid correla-
tions present in one-dimensional quantum wires (e.g. in metallic carbon
nanotubes). Here, the coherent tunneling of two electrons into the same
Luttinger liquid is suppressed compared to single-electron tunneling into a
Luttinger liquid in a characteristic interaction dependent power law if the
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voltage bias between the superconductor and the leads is much smaller than
the superconductor gap.

We further determine the decay of the singlet state of two electrons in-
jected into different Luttinger liquids caused by the Luttinger liquid corre-
lations. Although the electron is not a proper quasiparticle of the Luttinger
liquid, we show that the spin information can still be transported via the
spin-density fluctuations produced by the injected spin-entangled electrons.
In a third proposal presented in Section 2.4 (Ref. [64]), the necessary mech-
anism to separate the two electrons coming from the same Cooper pair is
achieved by coupling the superconductor to leads with a finite resistance.
The resulting dynamical Coulomb blockade effect, which we describe phe-
nomenologically in terms of an electromagnetic environment, is shown to be
enhanced for tunneling of two spin-entangled electrons into the same lead
compared to the process where the pair splits and each electron tunnels into
a different lead.

In Chapter 3, we consider a quantum dot in the Coulomb blockade regime
weakly coupled to current leads and show that in the presence of a magnetic
field the dot acts as an efficient spin filter (at the single-spin level) which
produces a spin-polarized current (Ref. [48]). Conversely, if the leads are
fully spin-polarized the up or down state of the spin on the dot results in a
large sequential or small cotunneling current, and thus, together with ESR
techniques, the setup can be operated as a single-spin memory (Ref. [48]).
The application of a single-wall carbon nanotube as a switchable spin filter
(Ref. [70]) and the ability to use the spin filter effect of quantum dots to
measure Bell inequalities of spin-entangled electrons is discussed.



12

1 Introduction



Chapter 2

Creation of mobile
spin-entangled electrons
using superconductors

2.1 Introduction

In this chapter, we discuss possible setups which create a current of nonlocal
spin-entangled electrons as needed for quantum communication and quantum
computation. We have already given an overview of different proposals for
the creation of such spin-entangled electrons in a solid-state environment in
Section 1.4.

We consider an s-wave superconductor [59] where the electrons form
Cooper pairs with spin singlet wave functions as a source of spin-entanglement.
In a superconductor, the electrons with energies near the Fermi surface and of
opposite momentum pair-up into Cooper pairs and share a spin singlet wave
function. The pairing arises due to a phonon mediated attractive interaction
between electrons. By tunnel-coupling the superconductor to a normal re-
gion, the two electrons of a Cooper pair can tunnel by means of an Andreev
(pair-)tunneling event from the superconductor to the normal region [60]
thereby maintaining their singlet wave function. At low temperature and
voltage bias between the superconductor and the normal region only pair-
tunneling is allowed, while single electron tunneling is strongly suppressed
due to the gapped excitation spectrum of the superconductor. We consider
two outgoing and spatially separated leads coupled to the superconductor

13
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such that the two electrons of a pair can either tunnel as a whole into one
lead or the pair can split and the electrons tunnel to different leads. The
pair-split process leads to the creation of an electronic EPR pair, i.e. the
two electrons are separated in orbital space but still entangled in spin space.
Since we are interested in creating currents of nonlocal singlets, we have to
suppress processes where both electrons enter the same lead. The Cooper
pair wave function is symmetric in orbital space, and consequently the prob-
ability to find the two electrons close to each other is enhanced. This has the
consequence, that the two electrons would rather tunnel both into the same
lead. On the other hand, the electron also has charge, and therefore we can
use the Coulomb repulsion between the electrons of a pair to separate them
spatially. In the following we propose three setups where we exploit, in one
way or the other, the Coulomb repulsion between the two electrons of a pair
so that the residual current is carried by pair-split processes.

Apart from any entanglement properties, the calculations presented in
this chapter give independent insights into correlated two-particle transport
from a superconductor into two spatially separated normal leads where the
combined effect of superconductivity and Coulomb blockade phenomena on
the normal side of the SN-junction gives rise to interesting results in its own
right.

2.2 Andreev Entangler with quantum dots

Here, we propose an electron-spin entangler where the superconductor is
weakly tunnel-coupled to two separate quantum dots which are then weakly
tunnel-coupled to outgoing Fermi liquid leads, see Fig. 2.1. The two elec-
trons are forced to tunnel coherently into separate leads rather than both into
the same, by the two intermediate quantum dots operated in the Coulomb
blockade regime [3] so that the tunneling of two electrons via the same dot
is suppressed by the on site repulsion U of the quantum dots. The current
for tunneling of two electrons via different dots into different leads shows
a two-particle Breit-Wigner resonance peaked at ¢, = pg with ¢ being the
chemical potential of dot [ = 1,2 which allows the injection of the two elec-
trons into the leads at the same orbital energy. This ability was shown to
be crucial if the spin-entanglement is detected via noise in a beamsplitter
setup [47], see also Section 1.3. We start with a qualitative description of
the entangler and its principal mechanism based on Andreev processes and



2.2.1 Qualitative description 15

Figure 2.1: The entangler setup with quantum dots: Two spin-entangled electrons
forming a Cooper pair can tunnel with amplitude T'sp from points ry and rsy of the
superconductor, SC, to two dots, D1 and Dy, by means of Andreev tunneling. The
dots are tunnel-coupled to noninteracting normal leads L.; and Lo, with tunneling
amplitude Tpy. The superconductor and leads are kept at chemical potentials g
and u;, respectively.

Coulomb blockade effects and also specify the necessary parameter regime
for successful transport of the initial spin-entanglement of the Cooper pairs
via the quantum dots to the outgoing leads. In subsequent sections we then
introduce the Hamiltonian and calculate the stationary current for two com-
peting transport channels which is followed by a discussion of the results.
We further discuss an Aharonov-Bohm loop setup where the phase coherent
part of the current contains two oscillation periods which distinguish interef-
erence processes stemming from different paths that the two spin-entangled
electrons can take around the loop.

2.2.1 Qualitative description of the entangler

The s-wave superconductor with chemical potential pg is weakly coupled to
two separate quantum dots D; and D, by tunnel barriers , which themselves
are weakly coupled to Fermi liquid leads L; and Ls, respectively, both held
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at the same chemical potential 1, = ps = p;'. The corresponding tunneling
amplitudes between superconductor and dots, and dot-leads, are denoted
by Tsp and Tpy, respectively which, for simplicity, we assume to be equal
for both dots and leads. By applying a bias voltage du = ps — puy > 0,
transport of entangled electrons occurs from the superconductor via the dots
to the leads. In general, the tunnel-coupling of a superconductor to a normal
region allows for coherent transport of two electrons of opposite spins due to
Andreev tunneling [60], while single-electron tunneling is suppressed in the
regime A > o, kgT, where A is the energy gap in the superconductor and T’
is the temperature. The gap A is the minimum energy to break up a Cooper
pair into a quasiparticle in the superconductor and an electron in the normal
region due to tunneling. According to the energy-time uncertainty relation,
h/A then defines the time delay between the two coherent tunneling steps
in the Andreev process. In the present setup, we envision a situation where
the two electrons are forced to tunnel coherently into different leads rather
than both into the same lead. This situation can be enforced in the presence
of two intermediate quantum dots which are assumed to be in the Coulomb
blockade regime [3] so that the state with the two electrons being on the same
quantum dot is strongly suppressed, and thus the electrons will preferably
tunnel into separate dots and subsequently into separate leads—this will be
quantified in the following.

The chemical potentials €; and €5 of the quantum dots can be tuned by
external gate voltages [3] such that the coherent tunneling of two electrons
into different leads is at resonance if €; + €5 = 2ug, see Fig. 2.2. This current
resonance condition reflects energy conservation in a tunneling process of a
Cooper pair with energy 2ug from the superconductor to the dots 1,2 (one
electron on each dot) with chemical potentials €;, e, and requires that the
resonant dot levels have to be adjusted such that one is above ug and the
other (by the same amount) below pg. This is very similar to the more
familiar picture of Andreev reflection at a superconductor/normal interface.
There, an electron on the normal side of the junction, and with energy e above
is, is back reflected as a hole with energy € below ug by the simultaneous
creation of a Cooper pair in the superconductor [59]. In that sense the empty
dot level below 1 can be considered as the hole and the empty dot level above
its as the empty electron state. In contrast, we will see that the current for

'Tf the chemical potentials of the leads were different, an unentangled single-particle
current could flow from one lead to the other via the superconductor.
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Figure 2.2: The energy situation of the superconductor with chemical potential u g
and the two dots 1,2 with chemical potentials €1, 5. Transport of the two members
of a Cooper pair with energy 2ug from the superconductor to different outgoing
leads with chemical potential p; < € (not drawn) is at resonance if €; + €2 = 2ug.

the coherent tunneling of two electrons via the same dot into the same lead
is suppressed by the on-site Coulomb U repulsion of a quantum dot and/or
by the superconducting gap A.

Next, we introduce the relevant parameters describing the proposed de-
vice and specify their regime of interest. First we note that to avoid unwanted
correlations with electrons already on the quantum dots, one could work in
the cotunneling regime [3] where the number of electrons on the dots are
fixed and the resonant levels ¢;, [ = 1,2 cannot be occupied, see also Chap-
ter 3. However, we prefer to work at the particular resonance ¢; ~ ug, since
then the total current and the desired suppression of tunneling into the same
lead is maximized. Also, the desired injection of the two electrons into dif-
ferent leads but at the same orbital energy is then achieved. In the resonant
regime, we can avoid unwanted correlations between tunneling of subsequent
Cooper pairs if we require that the dot-lead coupling is much stronger than
the superconductor-dot coupling, i.e. |Tsp| < |Tpr|, so that electrons which
enter the dots from the superconductor will leave the quantum dots to the
leads much faster than new electrons can be provided from the superconduc-
tor. In addition, a stationary occupation due to the coupling to the leads is
exponentially small if 6y > kgT', T being the temperature and kg the Boltz-
mann constant. Thus, in this asymmetric barrier case, the resonant dot levels
¢; can be occupied only during a virtual process, see also Subsection 2.2.3.
The quantum dots in the ground state are allowed to contain an arbitrary
but even number of electrons, Np = even, with total spin zero (i.e. antifer-
romagnetic filling of the dots). An odd number Np must be excluded since
a simple spin-flip on the quantum dot would be possible in the transport
process and, as a result, the desired entanglement would be lost. Further,
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we have to make sure that also spin flip processes of the following kind are
excluded. Consider an electron that tunnels from the superconductor into
a given dot. Now, it is possible in principle (e.g. in a sequential tunneling
process [3]) that another electron with the opposite spin leaves the dot and
tunnels into the lead, and, again, the desired entanglement would be lost.
However, such spin flip processes will be excluded if the energy level spacing
of the quantum dots, de, (assumed to be similar for both dots) exceeds both,
temperature kg1 and bias voltage du. A serious source of entanglement-loss
is given by electron hole-pair excitations out of the Fermi sea of the leads
during the resonant tunneling events. Since then a simple spin flip on the dot
would be possible due to the coupling to the leads. However, we will show in
Appendix B that such many-particle contributions can be suppressed if the
resonance width v; = 27| T |? is smaller than du (for ¢ ~ pg), where v is
the density of states (DOS) per spin of the leads at the chemical potential
M-

To summarize, the regime of interest where the coherence of an initially en-
tangled Cooper pair (spin singlet) is preserved during the transport to the
leads is given by

AU 0e > 6p >y, kgT, and -~y > vs. (2.1)

As regards possible experimental implementations of the proposed setup and
its parameter regime, we would like to mention that, typically, quantum
dots are made out of semiconducting heterostructures, which satisfy above
inequalities [3]. Furthermore, in recent experiments, it has been shown that
the fabrication of hybrid structures with semiconductor and superconductor
being tunnel-coupled is possible [71,72]. Other candidate materials are e.g.
carbon nanotubes which also show Coulomb blockade behavior with U and
de being in the regime of interest here [73-75], see also Section 3.7. The
present work might provide further motivation to implement the structures
proposed here.

Our goal in the following is to calculate the stationary charge current of
pairwise spin-entangled electrons for two competing transport channels, first
for the desired transport of two entangled electrons into different leads (17)
and second for the unwanted transport of both electrons into the same lead
(I). We compare then the two competing processes and show how their
ratio, I1/1s, depends on the various system parameters and how it can be
made large. An important finding is that when tunneling of two electrons
into different leads occurs, the current is suppressed due to the fact that
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tunneling into the dots will typically take place from different points r; and
ro on the superconductor (see Fig. 1) due to the spatial separation of the
dots Dy and D,. We show that the distance of separation dr = |r; — ry|
leads to an exponential suppression of the current via different dots if ér > &
(see Eq. (2.24)), where £ = vp/mA is the coherence length of a Cooper pair.
In the relevant regime, ér < &, however, the suppression is only polynomial
in the parameter krdr, with kr being the Fermi wavenumber in the super-
conductor, and depends sensitively on the dimension of the superconductor.
We find (see Subsection 2.2.6) that the suppression is less dramatic in lower
dimensional superconductors where we find asymptotically smoother power
law suppressions in kgdr.

On the other hand, tunneling via the same dot implies dr = 0, but suffers
a suppression due to U and/or A. The suppression of this current is given
by the small parameter (v;/U)? in the case U < A, or by (y;/A)?, if U > A
as will be derived in the following. Thus, to maximize the efficiency of the
entangler, we also require kpor < A/, U/v;.

Finally, we will discuss the effect of a magnetic flux on the entangled
current in an Aharonov-Bohm loop, and we will see that this current con-
tains both, single- and two-particle Aharonov-Bohm periods whose ampli-
tudes have different parameter dependences. This allows us to distinguish
processes where two electrons travel through the same arm of the loop from
the desired processes where two electrons travel through different arms. The
relative weight of the amplitudes of the two Aharonov-Bohm periods are di-
rectly accessible by flux-dependent current measurements which are then a
direct probe of the desired nonlocality of the entangled electrons.

2.2.2 Hamiltonian

We use a tunneling Hamiltonian description [76] of the system, H = Ho+ Hr,
where

Hy=Hs+>» Hp+» Hy, —1=12 (2.2)
l !
Here, the superconductor is described by the BCS-Hamiltonian [59]

Hg = Z By Vo (2.3)

k,o

where o =T, |, and the quasiparticle operators 7y, describe excitations out
of the BCS-ground state |0)s defined by 7,|0)s = 0. They are related to
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the electron annihilation and creation operators ¢y, and cLU through the
Bogoliubov transformation

Ckp = ukaTJFUkWT_kl (2.4)

Cx| = UxY-k| — Uk’)/chT )

where u, = (1/v2)(1 4+ &/E)Y? and v = (1/v/2)(1 — &/ Ey)Y? are the
usual BCS coherence factors [59], and & = €, — s is the normal state single-
electron energy counted from the Fermi level ug, and Ex = /& + A? is the
quasiparticle energy. We choose energies such that pug = 0 in this section.
Both dots are represented as one localized (spin-degenerate) level with energy
¢; and is modeled by an Anderson-type Hamiltonian

HDZ =€ Z d;rgdlg + Un”nll, [l = 1, 2. (25)

The resonant dot level ¢ can be tuned by the gate voltage. Other levels of
the dots do not participate in transport if de > o > kT, where du = —py,
and g is the chemical potential of lead [ = 1,2, and Je is the single-particle
energy level spacing of the dots. The leads [ = 1,2 are assumed to be non-
interacting (normal) Fermi liquids, Hp = Y, eka;koalko. Tunneling from
the dot [ to the lead [ or to the point r; in the superconductor is described
by the tunnel Hamiltonian Hyr = Hgp + Hp;, with

Hsp = Z Tsp dj, ¢ (1) + h.c., (2.6)
lo

HDL = ZTDL a}kadla +hC . (27)
lko

Here, 1, (r;) annihilates an electron with spin o at site r;, and leo creates it
again (with the same spin) at dot [ with amplitude Tsp. ¥, (r;) is related
to ¢k, by the Fourier transform ¢,(r;) = Y, €*cy,. Tunneling from the
dot to the state k in the lead is described by the tunnel amplitude Tp;,. We
assume that the k-dependence of Th; can be safely neglected.
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2.2.3 Stationary current and T-matrix

The stationary current of two electrons? passing from the superconductor via
virtual dot states to the leads is given by?®

I=2eY Wyipi, (2.8)
fii

where Wy, is the transition rate from the superconductor to the leads. We
calculate this transition rate in terms of a T-matrix approach [77],

Wy = 2r[(fIT(e:)]i)[*o(es — &3) . (2.9)
Here, T'(g;) = HTﬁ(gi — Hy), is the on-shell transmission or T-matrix,
with n being a small positive real number which we take to zero at the end
of the calculation. Finally, p; is the stationary occupation probability for the

entire system to be in the state |i). The T-matrix T'(¢;) can be written as a
power series in the tunnel Hamiltonian Hr,

[e.e] 1 n

T(e;) = Hr + HT; {mHT] ; (2.10)
where the initial energy is ¢, = 2ug = 0. We work in the regime defined
in Eq. (2.1), i.e. 5 > vs, and A, U,de > opu > v, kgT, and around the
resonance € ~ jug. Further, vg = 27vs|Tsp|? and v = 27| Tpr|* define
the tunneling rates between superconductor and dots, and between dots and
leads, respectively, with vg and v; being the DOS per spin at the chemi-
cal potentials pug and gy, respectively. We will show that the total effective
tunneling rate from the superconductor to the leads is given by 72/, due
to the Andreev process. In the regime Eq. (2.1), the entire tunneling pro-
cess becomes a two-particle problem where the many-particle effect of the
reservoirs (leads) can be safely neglected and the coherence of an initially
entangled Cooper pair (spin singlet) is maintained during the transport into
the leads as we shall show below. Since the superconducting gap satisfies

2The charge q. of an electron is g. = —e where e is the elementary charge e = 1.6 x
1071 C.

3In explicit calculations we set A = 1 in this Thesis but restore % in fundamental
quantities, like in the quantum resistance h/e? if these quantities appear in introductions
or discussions.
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A > u, kT, the superconductor contains no quasiparticle initially. Fur-
ther, in the regime (2.1), the resonant dot levels ¢, are mostly empty, since in
the assumed asymmetric case, |Tpr| > [Tsp| (or v > vs), the electron leaves
the dot to the lead much faster than it can be replaced by another electron
from the superconductor. In addition, we can neglect any stationary occupa-
tion of the dots induced by the coupling of the dots to the leads. Indeed, in
the stationary limit and for given bias du this occupation probability is deter-
mined by the grand canonical distribution function o exp(—du/kgT) < 1,
and thus p; ~ 0 for any initial state where the resonant dot level is occupied.
In this regime, the initial state |i) becomes |i) = |0)s|0)p|u);, where |0)g is
the quasiparticle vacuum for the superconductor, |0) p means that both dot
levels ¢, are unoccupied, and |g;); defines the occupation of the leads which
are filled with electrons up to the chemical potential y;. We remark that
in our regime of interest no Kondo effects appear which could destroy the
spin-entanglement, since our dots contain each an even number of electrons
in the stationary limit.

2.2.4 Current due to tunneling into different leads

We now calculate the current for simultaneous coherent transport of two
electrons into different leads. The final state for two electrons, one of them
being in lead 1 the other in lead 2, can be classified according to their total
spin S. This spin can be either a singlet (in standard notation) |.S) =

(| 1LY = 17))/v2 with S = 0, or a triplet with S = 1. Since the total spin
is conserved, [S?, H] = 0, the singlet state of the initial Cooper pair will be
conserved in the transport process and the final state must also be a singlet.
That this is so can also be seen explicitly when we allow for the possibility
that the final state could be the S, = 0 triplet? |to) = (| T1) + | 11))/v2.
Therefore, we consider final two-particle states of the form

1) = (1/V2)(alyaby, £ alp adg))i), (2.11)

where the — and + signs belong to the singlet |.S) and triplet |¢o), respectively.
Note that this singlet /triplet state is formed out of two electrons, one being
in the p-state in lead 1 and with energy e,, while the other one is in the

4The triplets |t+) = | 71) and |t_) = | ||) can be excluded right away since the
tunnel Hamiltonian Hr conserves the spin-component o and an Andreev process involves
tunneling of two electrons with different spin o.
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g-state in lead 2 with energy €. Thus, the two electrons are entangled in
spin space while separated in orbital space, thereby providing a nonlocal
EPR pair. The tunnel process to different leads appears in the following
order. A Cooper pair breaks up, where one electron with spin ¢ tunnels to
one of the dots (with empty level ¢) from the point of the superconductor
nearest to this dot. This is a virtual state with energy deficit Ey > A. Since
A > ~;, the second electron from the Cooper pair with spin —¢ tunnels to
the other empty dot-level before the electron with spin ¢ escapes to the lead.
Therefore, both electrons tunnel almost simultaneously to the dots (within
the uncertainty time 1/A). Since we work at the resonance ¢ ~ pug = 0,
the energy denominators in (2.10) show divergences o 1/7 indicating that
tunneling between the dots and the leads is resonant and we have to treat
tunneling to all orders in Hpy, in Eq. (2.10), eventually giving a finite result
in which 7 will be replaced by ~;/2. Tunneling back to the superconductor is
unlikely since |Tsp| < |Tpr|. We can therefore write the transition amplitude
between initial and final state as

. 1 ’ "
(f|Toli) = ﬁ(azqialpTT dlydb)) ((daydyy £ doydy) )T | (2.12)

where Ty = T'(¢; = 0), and the partial T-matrices T° and T" are given by

1! 1 1
T = H H 2.13
er] — H() SD ’”7 _ H() SD ( )

and
0 1 2n+1
T =H E— . 2.14
DL nz::() (Wl T DL) ( )

In Eq. (2.12) we used that the matrix element containing 7" is invariant
under spin exchange T+ |, and the abbreviation (...) stands for (i|...|7). The
part containing 7" describes the Andreev process, while the part containing
T’ is the resonant dot < lead tunneling.

We first consider the Andreev process. We insert a complete set of single-
quasiparticle (virtual) states, i.e., 1 = Y, 4 dl__|i)(i|d)_ s, between
the two Hgp in Eq. (2.13) and use that the resulting energy denominator
lin — Ex — ¢| =~ |Ex|, since we work close to the resonance ¢ ~ 0 and
Ex > A. The triplet contribution vanishes since wuyvy = u_yv_x for an
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s-wave superconductor. For the final state being a singlet we then get

((daydvy — doydy))T")
2
__Tsp Z YUk o (k- or), (2.15)

€1 + € — 1 " Kk

where or = r; — ry denotes the distance vector between the points on the
superconductor from which electron 1 and 2 tunnel into the dots. To evaluate
the sum over k we use uxvy = A/(2FE), linearize the spectrum around the
Fermi level with Fermi wavenumber kr, and obtain finally for the Andreev
contribution

" 2mvgTay, sin(kpdr) _sr
— ) = € 2.1
<(d2ld1T dglel) > o & “7 k‘F(S’I“ e m¢ ( 6)

Dominant contribution of resonant tunneling

We turn to the calculation of the matrix element in Eq. (2.12) containing
T’ where tunneling is treated to all orders in Hp;. We introduce the ket
notation |12), and, for simplicity, suppress the spin index o. Here, 1 stands
for quantum numbers of the electron on dot 1/lead 1 and similarly for 2. For
example, |pq) stands for aipoagq_gh), where p is from lead 1 and q from lead

2, or, correspondingly, |[pD) stands for aipad;_aﬁ), etc. We restrict ourselves
to the resummation of the following dot < lead transitions |DD) — |LD) —
|DD) or |DD) — |DL)Y — |DD). In this sequence, |DD) is the state with
one electron on dot 1 and the other one on dot 2, and |LD) denotes a state
where one electron is in lead 1 and the other one on dot 2. We thereby exclude
tunneling sequences of the kind |DD) — |LD) — |LL) — |LD) — |DD)
or |DD) — |LD) — |LL) — |DL) — |DD), where both electrons are
virtually simultaneously in the leads as well as the creation of electron-hole
pair excitations out of the Fermi sea. We show in Appendix A and B that
such contributions are suppressed in the regime Eq. (2.1) considered here by
the small parameter 7;/0u. The dominant contributions are then resummed
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in the following sequence
(pg|T'|DD)

= { (rq|Hp,r,|Dq){Dq| ZO(W_;HOHDlLl)QﬂDq)<DQ|ﬁHD2L2‘DD>

+(pq|Hp, 1, |pD){pD| ZO(M_;HOHDQLQ)%\]?D><pD|ﬁHD1L1\DD> }

= 1
x(DD| Z(m — HOHDL)M\DD). (2.17)
m=0

Since the sums for the transition |DD) — |DD) via the sequences |[DD) —
|LD) — |DD) and |DD) — |DL) — |DD) are independent, we can write
all summations in Eq. (2.17) as geometric series which can be resummed
explicitly. We begin with the two-particle process for which we find

> 1
DD Hp: )™ DD
(DDI 3 (g, Hon) " 1DD)

1
_ , 2.18
T~ (DD 2 Hp)?|DD) (218)
where
(DD( ! Hpp)?*|DD) = = (2.19)
in— Hy °F Cin—e—e '

with ¥ being the self-energy, ¥ = |Tphr|* > (in — € — ex) ' In the presence
of a Fermi sea in the leads, we introduce a cut-off in the sum in ¥ at the Fermi
level ey ~ —dpu and at the edge of the conduction band, ¢.. Then we obtain
Y = ReX — i7/2, where v = v1 4+ 79, and the logarithmic renormalization of
the energy level is small, i.e. [ReX| ~ v, In(e./0p) < dpu and will be neglected.
Finally, we arrive at the following expression

> 1 €1+ € —1in
DD _ Hp)*"|DD) = ——————. 2.20
(DDIS G gy o 10D) = HE S 2a0)
Similar results hold for the one-particle resummations in Eq. (2.17),
= 1 €+ €p — 1M
D H npDY = P , 2.21
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> 1 €1 +€q — 11
D ———Hp,1,)*"|Dq) = B : 2.22
(Dol Yy o 100 = U e
Inserting the preceding results back into Eq. (2.17) we obtain
/ —T3 —1
(pqlT'|DD) = b€ + ez = i) (2.23)

(61 +€q —im/2)(e2 + & —i72/2)

Thus, we see that the resummations cancel all divergences like the (e;+€e2—in)
denominator appearing in Eqgs. (2.15) and (2.16), and that, as expected, the
resummation of divergent terms leads effectively to the replacement in —
i71/2 so that the limit ¢, — 0 is well-behaved. It is interesting to note that the
two-particle resonance (e; + €3 —i7y/2) ! occurring in Eq. (2.20) has canceled
out in Eq. (2.23), and we finally obtain a product of two independent single-
particle Breit-Wigner resonances. Still, we will just see that the two-particle
correlation is reintroduced when we insert Eq. (2.23) into the expression for
the current Eq. (2.8) due to the integrations over p, q, and the fact that
the main contribution comes from the resonances. Indeed, making use of
Egs. (2.8,2.9), and energy conservation e = ¢; = 0, i.e. € = —¢q, and
of Egs. (2.16) and (2.23), we finally obtain for the current (denoted by I;)
where each of the two entangled electrons tunnels into a different lead

2 : 2
B ey sin(kpdr) _ 20r
Il n (61 + 62)2 + ’)/2/4 |: kZF5T P 7T£ 7 (224)

where, 7 = 71 + 2. We note that Eq. (2.24) also holds for the case with
v1 # 7. The current becomes exponentially suppressed with increasing
distance dr between the tunneling points on the superconductor, the scale
given by the Cooper pair coherence length £. This does not pose severe
restrictions for conventional s-wave materials with & typically being on the
order of micrometers. More severe is the restriction that kpdr should not be
too large compared to unity, especially if k;l of the superconductor assumes
a typical value on the order of a few Angstroms. Still, since the suppression
in krdr is only power-law like there is a sufficiently large regime on the
nanometer scale for dr where the current /; can assume a finite measurable
value. The power law suppression of the current in 1/kpdr is very sensitive
to the dimension of the superconductor and we suspect that the suppression
will be softened by going over to lower dimensional superconductors. We
will address this issue in Subsection 2.2.6. The current Eq. (2.24) has a
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two-particle Breit-Wigner resonance form which assumes its maximum value
when €; = —ey (see also Fig. 2.2, and note that pg = 0),

de~? [sin(kpor)]? 20r
I, = - . 2.25
1 ~ [ fepor exXp . ( )
This resonance at €¢; = —ey clearly shows that the current is a correlated

two-particle effect (even apart from any spin correlation) as we should expect
from the Andreev process involving the coherent tunneling of two electrons.
Together with the single-particle resonances in Eq. (2.23) and by using energy
conservation ¢; = €5 = 0, which implies €, = —eq, we thus see that the
current is carried by correlated pairs of electrons whose lead energies satisfy
lep — €] S 7 and |eq — €] S 7o

A particularly interesting case occurs when the energies of the dots, ¢;
and €, are both tuned to zero, i.e. €, = 3 = ug = 0. We stress that in this
case the electron in lead 1 and its spin-entangled partner in lead 2 possess
exactly the same orbital energy. It has been shown previously [47] that this
degeneracy of orbital energies is a crucial requirement for noise measurements
in which the singlets can be detected by an enhanced noise in the current
(bunching) due to a symmetrical orbital wave function of the singlet state,
whereas uncorrelated electrons, or, more generally, electrons in a triplet state,
lead to a suppression of noise (antibunching). Note that not all triplets are
entangled states. Only the triplet with S, = 0 is entangled. Measurement of
noise enhancement is therefore a unique signature of entanglement [47].

We remark again that the current [; is carried by electrons which are
entangled in spin space and spatially separated in orbital space. In other
words, the stationary current [; is a current of nonlocal spin-based EPR
pairs. Finally, we note that due to the singlet character of the EPR pair
we do not know whether the electron in, say, lead 1 carries an up or a
down spin, this can be revealed only by a spin-measurement. Of course, any
measurement of the spin of one (or both) electrons will immediately destroy
the singlet state and thus the entanglement. Such a spin measurement (spin
read-out) can be performed e.g. by making use of the spin filtering effect of
quantum dots [48], explained in detail in Chapter 3. The singlet state will also
be destroyed by spin-dependent scattering (but not by Coulomb exchange
interaction in the Fermi sea [47]). However, it is known experimentally that
electron spins in a semiconductor environment show unusually long dephasing
times approaching microseconds and can be transported phase coherently
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over distances exceeding 100 pm [7]. This distance is sufficiently long for
experiments performed typically on the length scale of quantum confined
nanostructures [3].

Negligible tunnel contributions

We turn now to a discussion of various tunnel processes which we have not
taken into account so far and show that they are negligibly small compared
to the ones we have retained. As we mentioned above we exclude virtual
states where both electrons are simultaneously in the leads. This is justified
in the regime Eq. (2.1) considered here. To show this we consider the process
|DD) — |DD). This transition occurs either in a transition sequence of the
type |DD) — |LD) — |DD), as considered above, leading to the amplitude
Apr = —iyr — (yo/7) In(e./op) (see Eq. (A.1) in Appendix A), or in a
sequence of the type |DD) — |LD) — |LL) — |DL) — |DD), where
both electrons are simultaneously in the leads (|LL)-state), leading to the

amplitude
AL = LA PN (2.26)
2720 o

(see Eq. (A.3) in Appendix A). However, this amplitude Ay, is suppressed
by a factor v /ép < 1 compared to Apr. Above we used v; = o = 7, for
simplicity. Further, a process where we create an electron-hole pair out of
the Fermi sea of the leads could, in principle, destroy the spin-correlation of
the entangled electron pair when an electron with the “wrong” spin (coming
from the Fermi sea) hops on the dot. But such contributions cost additional
energy of at least du, and again such particle-hole processes are suppressed
by a factor (;/du)? as we show in detail in Appendix B.

2.2.5 Tunneling via the same dot

The two electrons of a Cooper pair can also tunnel via the same dot into the
same lead. In this section, we calculate the current induced by this process.
We show that we obtain a suppression of such processes by a factor (v;/U)?
and/or (y;/A)? compared to the process discussed in the preceding section.
However, in contrast to the previous case, we do not get a suppression result-
ing from the spatial separation of the Cooper pair on the superconductor,
since here the two electrons tunnel from the same point either from r; or ro,
see Fig. 2.3). As before, a tunnel process starts by breaking up a Cooper pair
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followed by an Andreev process with two possible sequences, see Fig. 2.3. a)
In a first step, one electron tunnels from the superconductor to, say, dot 1,
and in a second step the second electron also tunnels to dot 1. There are
now two electrons on the same dot which costs additional Coulomb repul-
sion energy U, thus this virtual state is suppressed by 1/U. Finally, the
two electrons leave dot 1 and tunnel into lead 1. b) There is an alternative
competing process which avoids the double occupancy. Here, one electron
tunnels to, say, dot 1, and then the same electron tunnels further into lead
1, leaving an excitation on the superconductor which costs additional gap
energy A (instead of U), before finally the second electron tunnels from the
superconductor via dot 1 into lead 1. We first concentrate on the tunneling
process b), and note that the leading contribution comes from the processes
where both electrons have left the superconductor so that the system has no
energy deficit anymore. We still have to resum the tunnel processes from the
dot to the lead to all orders in the tunnel Hamiltonian Hp;. In what follows
we suppress the label [ = 1, 2 since the setup is assumed to be symmetric and
tunneling into either lead 1 or lead 2 gives the same result. The transition
amplitude (f|7Tp]¢) including only leading terms is

(fIToli) = Z<f|HDL|DP”U>

pllo.

- 1
(D ”U %H 2nD ”O'
(Dp ‘nz:—()(ZU_HO pr)™"|Dp"o)

1 1 1
x (Dp"o|-

H H H ) 2.27
277—H0 SDiﬁ—Ho DLm_HO SD\Z>> ( )

where again |f) = (1/\/5)(6L;[_,TCLL,l + aLlaL’T)‘i>= with + denoting the triplet
(4) and singlet (—), resp., and the intermediate state |Dp”o) = dT_UaL,,Uﬁ).
The index o appearing together with the tunnel Hamiltonians in Eq. (2.27)
determines the spin of the electron that tunnels. There are some remarks in
order regarding Eq. (2.27). The electron which tunnels to the state |p”o)—
via step 1 and 2 in panel b) of Fig. 2.3— has not to be resummed further since
this would lead either to a double occupancy of the dot which is suppressed
by 1/U, or to the state with two electrons simultaneously in the lead with a
virtual summation over the state p”. But we already showed that the latter
process is suppressed by 7;/dpu. Making then use of Eq. (2.22), we obtain for
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b)

Figure 2.3: Two competing virtual processes are shown when the two electrons
tunnel via the same dot: a) Andreev process leading to a double occupancy of the
dot with virtual energy 1/U, and b) the process which differs by the sequence of
tunneling leading to an additional virtual energy 1/A instead of 1/U.

the first factor in Eq. (2.27)

f|HDLZ HDL)2n|Dp” T

_TDL € + €p" — ’L?]
V2 €+ epr —im/2

(5p//p + 5p//p/) , (2.28)
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)2n‘Dp" l)

TDL €+ epr — i
=Rt 2

where again in Egs. (2.28) and (2.29) the upper sign belongs to the triplet
and the lower sign to the singlet. The terms in Eqgs. (2.28) and (2.29) describe
repeated dot < lead tunneling events of the second electron of the pair®which
eventually also tunnels to the lead. For the third line of Eq. (2.27) containing
the superconductor-dot transitions we obtain

1 1 1
Dp” Hqsp H Hgsple
(Dp Hm H 277 H, DLin—HO soli)
1 1
_ 1 H H .
—(Dp” | |”7 H Z.n_ H, DLZ.n_HO sp|?)

(prpr F Oprp) (2.29)

_ __TouTsovs (2.30)
Ae + epr — i) '

Combining the results of Eqgs. (2.28)-(2.30) we obtain for the amplitude in
Eq. (2.27)

25/ 2v5(TspTpr) (e — im/2)
Aler +ep —1m/2) (& + e — im1/2)
for the final state | f) being a singlet, whereas we get again zero for the triplet.

Next we consider the process a) where the tunneling involves a double

occupancy of the dot (see panel a) in Fig. 2.3). In this case the transition
amplitude can be written as

(fIToli) => (fIHpL|Dp"0)

pllo.

{(fITole) = =

(2.31)

Dp”O" )2"\Dp"0>

1 1 1

D i
X pg‘m Hy ’m—HO SDin—Ho

Hspli) . (2.32)

As before, the transition amplitude (f|7]é) is only nonzero for the final lead
state |f) being a singlet state. Repeating a similar calculation as before we

5 the electron that leaves the superconductor as second—
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find that the amplitude is given by Eq. (2.31) but with A being replaced
by U/m. We note that the two amplitudes in Eqs. (2.31) and (2.32) have
the same initial and same final states. Thus, to obtain the total current due
to processes a) and b) we need to add these two amplitudes. Then, using
Eq. (2.8) we find for the total current I in case of tunneling of two electrons
into the same lead,

evsy 1 1 1

p=¢sr L _ 1 .1
2= e T aATT

(2.33)
We see that the effect of the quantum dots consists in the suppression factor
(v/€)? for tunneling into the same lead. We remark that in contrast to the
previous case (tunneling into different leads) the current does not have a
resonant behavior since the virtual dot states are no longer at resonance due
the energy costs U or A in the tunneling process. Our final goal is to compare
I, given in Eq. (2.25) with [5. Thus, forming the ratio of the currents of the
two competing processes, we obtain

L 48 {sin(kpér)rexp <_2i7") _ (2.34)

I, 2 kror €

From this ratio we see that the desired regime with I; dominating I, is
obtained when £/v > kpdr, and or < £&. We would like to emphasize that
the relative suppression of I5 (as well as the absolute value of the current ;)
is maximized by working around the resonances ¢ ~ pug = 0°.

2.2.6 Efficiency and discussion

The current [; and therefore the ratio Eq. (2.34) suffers an exponential sup-
pression on the scale of £ if the tunneling of the two (coherent) electrons takes
place from different points r; and ry of the superconductor. For conventional
s-wave superconductors the coherence length ¢ is typically on the order of
micrometers (see e.g. Ref. [78]) and therefore poses not severe restrictions.
So in the interesting regime, the suppression of the Andreev amplitude is only
polynomial o< 1/krdr. It was predicted theoretically in Ref. [79] and shown
experimentally in Ref. [80] that a superconductor on top of a two-dimensional

SWe remark that incoherent transport (sequential tunneling) is negligible as long as
the scattering rate inside the dots, Iy, is much smaller than ~y;, since Iseq/lcon =~ l"g,/w,
see page 260 in Ref. [2].
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electron gas (2DEG) can induce superconductivity (by the proximity effect)
in the 2DEG with a finite order parameter A. The 2DEG then becomes a
two-dimensional (2D) superconductor. One could then desire to implement
the two quantum dots in the 2DEG directly. More recently, it was suggested
that superconductivity should also be present in ropes of single-walled car-
bon nanotubes [81] which are strictly one-dimensional (1D) systems. It is
therefore interesting to calculate the sum over k-vectors in Eq. (2.15) also in
2D and 1D. In the case of a 2D superconductor we find in leading order in

or/m

Z Uk cos (k- dr)

k(2D) K

= gus <Jo(kF57“) + Qi M) . (2.35)

v=1 v
In the limit of large kpdr, the right-hand side of Eq. (2.35) can be approxi-
mated by (7/2)vsJo(kror)(1 — (2/7)In2) which is exact to leading order in
1/kpdr. For large krdr, the behavior of the zeroth-order Besselfunction is
Jo(kpor) ~ \/2/mkpdr cos(kpdr — (w/4)). So the amplitude decays asymp-
totically only o< 1/4/kpdr, or the current I; by a factor oc 1/kpdr, respec-
tively. In one dimension we obtain

Z YUk o (k-dr) = gl/g cos(kpdr) e~ /™), (2.36)
k(1D) K

where there are only oscillations and no decay of the Andreev amplitude (for
or/m€ < 1). We see that the suppression due to the finite separation of the
tunneling points on the superconductor can be reduced considerably, or even
excluded completely, by going over to lower-dimensional superconductors. By
taking into account the dependence on the dimension of the superconductor
we can relax the condition for the entangler to be efficient to

(E/7)* > (kpor)™, (2.37)

where d is the dimension of the superconductor.

We emphasis that the coherent injection of the two spin-entangled electrons
by an Andreev process via the dots into the leads allows for a time resolved
detection of individual Cooper pairs in the leads since the delay time between
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the two partner electrons of a Cooper pair is given by i/A whereas the aver-
age time separation of subsequent Cooper pairs is given by’ 2e/I; ~ kv, /2.
Since A > ~vg and, in addition, 7; > g the time delay between the two
partners of a Cooper pair is much shorter than the time difference between
subsequent Cooper pairs. It is therefore crucial to have weak coupling to
the superconductor so that subsequent correlation measurements only re-
port correlations within the same (spin-entangled) pair. The detection of
spin-entanglement via noise measurements in a beamsplitter geometry as
discussed in Ref. [47] as well as measuring Bell inequalities requires current-
current correlation measurements [47,49, 50, 67, 68]. We also discuss this
issue in the last section of Chapter 3. In Ref. [67] it was pointed out that
if the injection of electrons into the leads appears with an uncertainty en-
ergy Aeg, the current-current correlation measurements of pairs is in addition
correlated during the correlation time 7. = h/Ae which is larger than /A
but still much shorter than 2e/I; since in our case Ae ~ 7, and 7, > 7s.
To estimate the current amplitudes we use tunneling rates in the range of
rates obtained in tunneling experiments through Coulomb blockaded quan-
tum dots [82]. For vg ~ 7;/10 ~ 1 ueV we get a pair in average every 40 ns,
again neglecting geometrical factors.

2.2.7 Aharonov-Bohm oscillations

In this subsection, we show that the different tunneling paths of the two
electrons from the superconductor to the leads can be detected via the
flux-dependent Aharonov-Bohm oscillations in the current flowing through
a closed loop, see Fig. 2.4. We show that due to the possibility that two
electrons can tunnel either via different dots into different leads (non-local
process) or via the same dot into the same lead (local process), the cur-
rent as a function of magnetic flux ¢ penetrating the loop contains h/e and
h/2e oscillation periods. To be concrete, we consider a setup where the
two leads 1 and 2 are connected such that they form an Aharonov-Bohm
loop, (see Fig. 2.4), where the electrons are injected from the left via the
superconductor, traversing the upper (lead 1) and lower (lead 2) arm of the
loop before they rejoin to interfere and then exit into the same lead, where
the current is then measured as a function of varying magnetic flux ¢. In

"We neglect here the geometrical factor containing ér in I; which would make 2e/I;
even smaller.
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Figure 2.4: The setup where the two outgoing leads 1 (L1) and 2 (L2) are con-
nected to a common lead so that the tunneling path of the electrons can form a
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loop. By applying a magnetic flux ¢ the current shows Aharonov-Bohm oscilla-
tions with periods h/e and h/2e which can be used to identify different tunneling
paths of the two electrons.

the presence of a magnetic flux, each tunneling amplitude obtains a phase
factor, Tp,r, — Tp,r,e?**, and Tp,r, — Tp,r,e "*/*%, where ¢y = h/e
is the single-electron flux quantum. For simplicity of the discussion we as-
sume that the entire phase is acquired when the electron hops from the
dot into the leads, so that the process dot-lead-dot gives basically the full
Aharonov-Bohm phase factor e**¢/#0 of the loop and only a negligible amount
of phase is picked up along the path from the superconductor to the dots.
We stress that there is no loss of generality in this assumption. The transi-
tion amplitude from the initial state to the final state has now the following
structure (f|Toli) ~ Tp,r, Tp,r, + Th, 1, €%/% + T, e~*9/?. Here, the first
term comes from the process via different leads (see Eq. (2.23)), where no
Aharonov-Bohm phase is picked up. The Aharonov-Bohm phase appears
in the remaining two terms, which come from processes via the same leads,
either via lead 1 or lead 2 (see Egs. (2.31) and (2.32)). The total current
I is now obtained from |{f|Tp|i)|? together with a summation over the final
states, giving I = I; + Iy + I4p, and the flux-dependent Aharonov-Bohm
current [4p is given by

[AB = \/ 8[1]2F(61) COS (¢/¢0) + IQ COS (2¢/¢0), (238)
€

Fle) = , (2.39)

Ve + (7w/2)?

where, for simplicity, we have assumed that ¢; = e = ¢, and v, = v = 7.

Here, the first term (different leads) is periodic in ¢q like for single-electron
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Aharonov-Bohm interference effects, while the second one (same leads) is
periodic in half the flux quantum ¢q/2, describing thus the interference of
two coherent electrons travelling the upper or the lower arm of the loop®.
It is clear from Eq. (2.38) that the h/e oscillation comes from the interfer-
ence between a contribution where the two electrons travel through different
arms with contributions where the two electrons travel through the same
arm. Both Aharonov-Bohm oscillations with period h/e, and h/2e, vanish
with decreasing Is, i.e. with increasing on-site repulsion U and/or gap A.
However, their relative weight is given by /I /I3, implying that the h/2e os-
cillations vanish faster than the h/e ones. This behavior is quite remarkable
since it opens up the possibility to tune down the unwanted leakage process
~ I cos(2¢/¢pg) where two electrons proceed via the same dot/lead by in-
creasing U with a gate voltage applied to the dots. The dominant current
contribution with period h/e comes then from the desired entangled electrons
proceeding via different leads. On the other hand, if \/I;/I, < 1, which
could become the case e.g. for krpdr > & /v, we are left with h/2e oscillations
only. Besides the fact that the Aharonov-Bohm oscillations are interesting
in their own right, the Aharonov-Bohm oscillations further provide an exper-
imental probe of the nonlocality of the two spin-entangled electrons. Note
that dephasing processes which affect the orbital part suppress [ 45. Still, the
flux-independent current I;+ 5 can remain finite and contain electrons which
are entangled in spin-space, provided that there is only negligible spin-orbit
coupling so that the spin is still a good quantum number.

We would like to mention another important feature of the Aharonov-
Bohm effect under discussion, namely the relative phase shift between the
amplitudes of tunneling to the same lead and to different leads, resulting
in the additional prefactor F(¢) in the first term of the right-hand side of
Eq. (2.38). This phase shift is due to the fact that there is a two-particle
resonance in the amplitude Eq. (2.23), while there is only a single-particle
resonance in the amplitudes Eqs. (2.31) and (2.32)°. Thus, when the chem-
ical potential ug of the superconductor crosses the resonance, |¢| < g,
the amplitude Eq. (2.23) acquires an extra phase factor e, where ¢, =
arg[1l/(e; — iyr/2)]. Then the interference of the two amplitudes leads to the
prefactor F'(€;) = cos ¢, in the first term on the right-hand side of Eq. (2.38).

8Similar single- and two-particle Aharonov-Bohm effects occur in the Josephson current
through an Aharonov-Bohm loop [56]
9We recall that the second resonance is suppressed by the Coulomb blockade effect.
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In particular, exactly at the middle of the resonance, ¢, = 0, the phase shift
is ¢, = m/2, and thus the h/e oscillations vanish, since F'(0) = cos(m/2) = 0.
Note however, that although F' = £1 away from the resonance (|¢;| > v1) the
h/e oscillations vanish again, now because the current I; ~ ev%yy /€’ van-
ishes. Thus, the optimal regime for the observation of the Aharonov-Bohm
effect is |¢| ~ L.

Finally, the preceding discussion shows that even if the spins of two elec-
trons are entangled their associated charge current does not reveal this spin-
correlation in a simple Aharonov-Bohm interference experiment!?. Only if
we consider the current-current correlations (noise) in a beam splitter setup,
can we detect also this spin-correlation in the transport current via its charge
properties [47].

2.2.8 Conclusion

In this section, we proposed an entangler device that can create pairwise
spin-entangled electrons and provide coherent injection by an Andreev pro-
cess into different dots which are tunnel-coupled to leads. The unwanted
process of both electrons tunneling into the same lead can be suppressed by
increasing the Coulomb repulsion on the quantum dot. We have calculated
the ratio of currents of these two competing processes and shown that there
exists a regime of experimental interest where the entangled current shows a
resonance and assumes a finite value with both partners of the singlet being
in different leads but having the same orbital energy!'! . This entangler then
satisfies the necessary requirements needed to detect the spin-entanglement
via transport and noise measurements. We also discussed the flux-dependent
oscillations of the current in an Aharonov-Bohm loop.

10We note, however, that the Aharonov-Bohm current can be used as a probe to detect
localized spin singlets in coupled double-dots [83].

' More generally, the two electrons of a pair are injected into different leads within the
lifetime broadenings 7y; and - of the dot levels ¢; and €3, respectively. The resonance
condition for the current is 2ugs = €1 + €2 where pg ~ €1 >~ €5 is a special case— interesting
for measuring noise of spin-entangled electrons.
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2.3 Andreev Entangler
with Luttinger liquid leads

In this section, we propose to use Luttinger liquid correlations present in
one-dimensional quantum wires to separate the two spin-entangled electrons
which originate from an Andreev process. Such a setup could be implemented
if a superconductor is brought into contact with metallic carbon nanotubes
or semiconducting cleaved edge quantum wires which show evidence of Lut-
tinger liquid physics.

2.3.1 About Fermi liquids and Luttinger liquids

In three dimensional metals, Fermi liquid theory [84] is based on the exis-
tence of quasiparticles evolving out of electrons (holes) of a Fermi gas upon
adiabatically switching on interactions. These quasiparticles resemble essen-
tially free electrons with remormalized masses and a lifetime which, however,
diverges as 7 ~ (¢ — ep) 72 so that these states are very long-lived close to
the Fermi energy er. The existence of low-lying quasiparticle states is also
visible in a finite step in the momentum distribution function at kp with its
height being directly proportional to the quasiparticle weight factor zg of the
spectral function at the Fermi energy. It is this one-to-one correspondence
which makes the Fermi gas a reasonable description of a three dimensional
interacting metal.

In one dimension the effects of electron-electron interactions are far more
dramatic since it leads to the complete breakdown of the quasiparticle picture
even for an arbitrarily weak interaction strength.

In this subsection, we will discuss some important features and predic-
tions of the so-called Luttinger liquid model [85] which describes interacting
electrons in one dimension and close to the Fermi energy. Here, we consider
spinless electrons and will generalize to the case with spin in the main part of
the section. The basic assumption of the model is that the underlying non-
interacting theory has a linear energy dispersion relation e(p) = vp(£p—pr)
counted from the chemical potential. This is a reasonable assumption if we
are only concerned with properties around the Fermi energy. The second
assumption is that this linear spectrum can be extended to negative infinity,
see Fig. 2.5. This should not affect the low energy physics since all states



2.3.1 Fermi liquid vs Luttinger liquid 39

— branch + branch

. “-Ep=p

Pr

’ A

Figure 2.5: Energy dispersion relation of the Luttinger liquid model: There are
two linear branches 4+ and - which extend to negative infinity. The addition of
extra states (dark grey) makes the model exactly solvable and should not influence
the low energy physics. At zero temperature and without interaction, the states
are filled up to the chemical potential .

well below the Fermi energy are filled. The free Hamiltonian is then given as

Hy = vp Z (rp—pr) < clyer (2.40)

p,r==+

where cip, and ¢, create and annihilate electrons with wave number p in

the left (r = —) and the right (r = +) branches of the spectrum and
are completely uncorrelated, i.e. {c,p, ci,p,} = 0pp/0py. The Fermi normal
ordering : : measures the quantity with respect to the ground state, i.e.

: cipcrp = cipcrp — (cipcrp)o. The subtraction of the ground state energy in
Eq. (2.40) is necessary to compensate for the divergence due to the inclusion
of negative energy states. It can be shown (see e.g. Ch. 4 in Ref. [76]) that
in this model the exact commutation relation holds

/ L
[pr(Q), Pr! (q )] = _T(srr’(sqq’g_/]_ru (241)

where we have introduced the density operator p.(q) = >_, : cip wgCrp - It
is then straightforward to prove the commutation relation

[Ho, pr(Q)] = TUFQPT(Q)? (242)
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by using Eq. (2.41) and the linearity of the spectrum. This shows that the
electron hole pairs created by p,(¢q) correspond to eigenstates of the Hamil-
tonian Hy with energies rvpg. This then leads to the bosonized form of the
Hamiltonian

XY
Hyo=—="| > pl@o(-a)+ D N7 (2.43)
q#0,r=+ r==%

Here, N, = p,(q = 0) is the number of particles added to the ground state into
branch r. The Hamiltonian in the fermionic representation (Eq. (2.40)) and
in the bosonic representation (Eq. (2.43)) are completely equivalent, since
they have the same spectrum and degeneracy of the energy levels [86,87]. To
calculate Green’s functions in the bosonic representation we have to write
the electron operator in terms of the bosons. This is achieved via ¥, (z) ~
ePrey), (x) 4+ e PP (x) with the slowly-varying components given by

() = el @=0@)], (2.44)

The phase fields ¢ and 6 are linear combinations of the density operators
pr(q) and satisfy the commutation relation [¢(z), 8(z')] = —i(7/2)sgn(x—a").
From Eq. (2.44), we sce that : ¢! ()¢ (z) : + : ¢! (2)¢_(z) : = 9,¢/7 and
Yl (@) (2) - — 2 Yl (@)Y (x) == —0,0/7 which will be derived in more
detail in Appendix C. We can then write the Hamiltonian also in the phase
field representation

v
Hy = i / dz [(0,0)% + (0:9)°] - (2.45)
Up to now we did not gain any advantage over the fermionic representation.

Now let’s consider interactions. Whereas interaction terms are fourth
order in the electron field operators ¢ (x), they are only quadratic in the
phase fields. To show this we consider the interaction term

Hin = %/dx/dx'p(x)‘/(x —a")p(z'), (2.46)

with V(2 — 2’) being the interaction potential. The density operator p(z) ~
; ¢1(93)¢+(93) c 4+ Yl (@)Y () = 9,¢/m where we neglect rapidly os-
cillating terms (on the scale of 1/2pr) coming from cross products like
@bi (z)1_(x). The inclusion of such terms would lead to backscattering terms
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in H;,; with large momentum transfers of order 2pp. If the Fourier trans-
form V(q) of the potential is small at ¢ ~ 2pr compared to V(g ~ 0) these
rapidly oscillating terms can be neglected in H;,; and we obtain H;, =
o [dx [ da’ 9,¢(x)V (x — 2") 0y ¢(2’). If we restrict ourselves to low energy
excitations with wavelengths much larger than the range of the interaction
potential, we can use a local potential V(x) = V;d(x) with Vy = V(¢ ~ 0).
We then obtain the interaction term Hyy = 55 Vo [ dx (0,¢(x))?. In Fourier
space this Hamiltonian describes forward scattering events where electrons
stay in the same branch of left and right movers, see Fig. 2.6. With this

— branch + branch — branch + branch

Figure 2.6: Forward scattering events included in the Luttinger model where
electrons stay in the same branch of left (-) and right (+) movers.

interaction term we obtain the Luttinger liquid Hamiltonian

1

1= [ do[Ku(@07 + 10,07, (2.47)

The velocity of the collective charge modes is given by v = vp/K where
K=(1+;2)"12<1.

Next, we want to discuss briefly some very peculiar consequences of the
Luttinger model for spectral properties. The tunneling into a Luttinger liquid
at position z and energy E counted from the Fermi energy is given by the
tunneling-DOS

p(E,7) = 2Re S / dt B, (2, ) (i, 0)). (2.48)

™
0
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In an infinite system and at zero temperature the single-particle correlation
function is approximately, see Subsection 2.3.6

1 6z'pprm

(¥ (z, 1)9](0,0)) = o A+ i(ut —rx) {

A2
22 + (ut + A

)2r/2, (2.49)

where o = (1/2)[K + K~'] — 1 depends on interaction and determines the
power law decay of correlations at long times or distances, and A is a large
momentum cut-off on the order of 1/pp. Evaluating the Fourier integral in
Eq. (2.48) leads to

p(E)  O(E) (?) | (2.50)

0

with g = A/u. This result is in stark contrast to Fermi liquid theory which
predicts a finite density of states at the Fermi energy F = 0. The tunneling
into a Luttinger liquid is therefore strongly suppressed at low energies since
the absorption of an electron requires the rearrangement of all the electrons
in the bulk of the Luttinger liquid system. As a further example we examine
the momentum distribution function n, = (cfc,). Going over to position
space we can write the momentum distribution function as

m= 3 [ et iy o), (251)

with the result

—_

Np = - — C1Sgﬂ(p - pF)\p - pF\a - Cz(p - pF)u (2‘52)

N}

which is valid for p near pp. This result shows that there is no jump in the
momentum distribution function at pp, but rather a continuous power-law
variation. This again is in contrast to the higher dimensional Fermi liquid
case where there is a finite jump at pr due to a nonvanishing quasiparticle
weight factor zp. The absence of (low-lying) quasiparticles in a Luttinger
liquid is therefore evident in view of Eq. (2.52).

Experimentally accessible systems that show strong evidence of Luttinger
liquid properties are, e.g., carbon nanotubes in the metallic regime [88] or
cleaved edge GaAs quantum wires [89].
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2.3.2 Setup of entangler

We have shown above that the low energy excitations of Luttinger liquids are
collective modes rather than quasiparticles which resemble free electrons like
they exist in a Fermi liquid. As a consequence, the single-electron tunneling
into a Luttinger liquid is suppressed by strong correlations. The question
then arises quite naturally whether these strong correlations can even further
suppress the coherent tunneling of two electrons into the same Luttinger
liquid, as provided by a correlated two-particle tunneling event (Andreev
tunneling), so that the two electrons preferably separate and tunnel into
different Luttinger liquid leads. We show in the following that the answer is
positive.

To address this question we introduce a setup consisting of an s-wave
superconductor which is weakly tunnel-coupled to the center (bulk) of two
spatially separated one-dimensional wires 1,2 described as Luttinger liquids,
see Figs. 2.7 and 2.8. In this model we calculate the stationary current gen-
erated by the tunneling of a singlet, transferred from the superconductor
into two separate leads (nonlocal process) or into the same lead (local pro-
cess), 1 or 2. We show that there exists a regime of experimental interest
where the desired injection of the two electrons into two separate leads is
favored. We remark again that in this case the two spins, forming a singlet,
are entangled in spin space while separated in orbital space and therefore
represent an electronic EPR pair. In addition to the familiar suppression of
single-electron tunneling into a Luttinger liquid, we find now that the subse-
quent tunneling of a second electron into the same Luttinger liquid is further
suppressed, again in a characteristic interaction dependent power law, pro-
vided the applied voltage bias between the superconductor and the Luttinger
liquid is much smaller than the energy gap A in the superconductor so that
single-electron tunneling is suppressed. The two-particle tunneling event is
strongly correlated within the uncertainty time i/A, characterizing the time-
delay between subsequent tunneling events of the two electrons of the same
Cooper pair. In other words, the second electron of a Cooper pair is influ-
enced by the existence of its preceding partner electron already present in the
Luttinger liquid. This effect can also be interpreted as a Coulomb blockade
effect, in analogy to what occurs in quantum dots attached to a superconduc-
tor as discussed in Section 2.2. Similar Coulomb blockade effects were also
found in a mesoscopic chiral Luttinger liquid within a quantum dot coupled
to macroscopic chiral Luttinger liquid edge-states in the fractional quantum
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Figure 2.7: A possible implementation of the entangler setup: Two quantum wires
1,2 with chemical potential u;, described as infinitely long Luttinger liquids (LL),
are deposited on top of an s-wave superconductor (SC) with chemical potential
pns. The electrons of a Cooper pair can tunnel by means of an Andreev process
from two points ry and rs on the superconductor to the center (bulk) of the two
quantum wires 1 and 2, respectively with tunneling amplitude 3. The interaction
between the wires 1,2 is assumed to be negligible.

Hall regime [90]. There, the Coulomb blockade-like energy gap is quantized
in units of the non-interacting energy level spacing of the quantum dot and
its existence is therefore a finite size effect, whereas in the present case, we
will see that the suppression comes from strong correlations in a two-particle
tunneling event which is present even in an infinitely long Luttinger liquid
as considered here. On the other hand, if the two electrons of a Cooper pair
tunnel to different leads, they will preferably do this from different points
r; and ry from the superconductor, with distance r = |r; — ro| due to the
spatial separation of the leads, see Figs. 2.7 and 2.8. We again find, in com-
plete analogy to Section 2.2, that the current is exponentially suppressed if
the distance dr exceeds the coherence length ¢ of a Cooper pair in the su-
perconductor. This limitation poses no severe experimental restriction since
¢ is on the order of micrometers for usual s-wave materials and dr can be
assumed to be on the order of nanometers. Still, a power law suppression
o 1/(kpér)4=1, with kp being the Fermi wavenumber of the superconduc-
tor and d its effective dimension, remains and is more relevant. Next, we
discuss the decay in time of an electronic spin singlet injected into two Lut-
tinger liquids, one electron into each lead, due to the interaction present in
the Luttinger liquid and find a characteristic power law decay in time at zero
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Figure 2.8: An alternative implementation of the proposed entangler setup: The
two quantum wires 1,2 with chemical potential p;, described as infinitely long Lut-
tinger liquids (LL), are tunnel-coupled with amplitude ¢y from two points z; and
x9 to two points r; and ry of a superconducting (SC) tip with chemical potential

s

temperature. Despite this decay of the singlet state, the spin information can
still be transported through the Luttinger liquid wires via the spin-density
fluctuations (collective spin modes) created by the injected electrons. These
collective excitations are shown to be well localized in space and therefore
locally accessible for measurements.

2.3.3 Hamiltonian

The Hamiltonian of this system is represented as H = Hy + Hr with Hy =
H 5+Zn:1’2 Hj,, describing the isolated superconductor and Luttinger liquid
leads 1,2, respectively. Tunneling between the superconductor and the leads
is governed by the tunneling Hamiltonian Hp [76]. Each part of the system
will be described in the following.

The s-wave superconductor with chemical potential pg is described by
the BCS-Hamiltonian [59]

Hg — psNg = Z By s, (2.53)
k,s

where s = (1,]) and Ng = >, , cLSckS is the number operator for electrons
in the superconductor. The quasiparticle operators 7y, describe excitations
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out of the BCS-ground state |0)g defined by 7xs|0)s = 0. They are related
to the electron annihilation and creation operators cys and CLS through the
Bogoliubov transformation

Ckp = uk7kT+Uk7T—ki
Cokl = UKY-k| — Vi (2.54)

where Uk = (1/\/5)(1 + fk/E'k)l/2 and Vk = (1/\/5)(1 - £1</E'k)l/2 are the
standard BCS coherence factors [59], and &, = €x — ug is the normal state
single-electron energy counted from the Fermi level ug, and Ey = /& + A?
is the quasiparticle energy. The field operator for an electron with spin s is
U, (r) = V-23 e*rey,, where V is the volume of the superconductor.
The two leads 1,2 are supposed to be infinite one dimensional interacting
electron systems described by Luttinger liquid theory as discussed briefly in
Subsection 2.3.1. To treat the Luttinger liquid with spin we introduce phase
fields @ and ¢ for each spin projection separately, and then perform the
transformation to charge and spin bosons via 0,, = (6; £60,)/v2 and ¢,, =
(61 £ ¢,)/V/2. We only include forward scattering processes which describe
scattering events in which electrons stay in the same branch of left and right
movers, see Fig. 2.6. We neglect backscattering interactions which involve
large momentum transfers of order 2pr with pr the Fermi wavenumber in
the Luttinger liquid (see also Subsection 2.3.1). In context with carbon
nanotubes we remark that it was pointed out in Refs. [91,92] that for the
(metallic) armchair nanotubes (N, N) with N 2 10 it is appropriate to use a
Luttinger liquid model where backscattering and umklapp scattering can be
neglected. This is so because for large N, the probability for two electrons to
be near each other is small (~ 1/N) and therefore one can neglect the short
range part r ~ a, with a the lattice spacing, of the Coulomb potential which
corresponds to large momentum transfers ~ 2pp at which backscattering and
Umklapp scattering takes place.
The Hamiltonian for the low energy excitations of lead n = 1,2 can then be
written in a bosonized form as [93]

Hyp— N, = 3 & / 0z (K (b)? + K (Ou6u)?),  (2.55)

where the phase fields 6, (z) and ¢,(z) satisfy bosonic commutation rela-
tions [pny (), Omp(2')] = —i(7/2)0pmouusgn(z — 2’), and gy is the chemi-
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cal potential of the leads (assumed to be identical for both leads), and
N, = Y, [dxf (2)ns(z) is the number operator for electrons in lead
n. The Hamﬂtoman Eq. (2.55) describes long-wavelength charge (v = p)
and spin (v = o) density oscillations propagating with velocities u, and u,,
respectively. The velocities u, and the stiffness parameters K, depend on
the interactions between the electrons in the Luttinger liquid. In the limit of
vanishing backscattering, we have u, = vp and K, = 1, and the Luttinger
liquid is described by only two parameters K, < 1 and u,. In a system with
full translational invariance we have further u, = vp/K,. We decompose the
field operator describing electrons with spin s into a right and left moving
part, P,s(xr) = ePri,ey () + e PP, (x). The right (left) moving field
operator Yy () (Yns—(x)) is then expressed as an exponential of bosonic
fields as [86,87]

V(1) = lim LI xp { - (00, (2) 4 50,0 (2) F (00 (0) + 500 (2)) }.
(2.56)

The operators 7 ,s are needed to ensure the correct fermionic anticom-
mutation relations. In the thermodynamic limit (L — 00), ni,s can be
presented by Hermitian operators satisfying the anticommutation relation
{Nryne} = 26,7, with 7 = +,ns [93]. We adopt the convention throughout
this section that s = +1 for s =7, and s = —1 for s =|, if s has not the
meaning of an operator index.

Transfer of electrons from the superconductor to the leads is described
by the tunneling Hamiltonian Hy = ) Hp, + h.c., where Hyp, is defined as

— 1 Z Yh (). (2.57)

The field operator W4(r,) annihilates an electron with spin s at point r,, on
the superconductor, and [ creates it again with amplitude to at point z,
in the Luttinger liquid n which is nearest to r,, see Figs. 2.7 and 2.8. We
assume that the spin is conserved during the tunneling process, and thus the
tunneling amplitudes ¢, do not depend on spin, and, for simplicity, are the
same for both leads n = 1,2. We remark that our point-contact approach
for describing the electron transfer from the superconductor to the leads is
the simplest possible description but it captures presumably the relevant
features of a real device. The scheme shown in Fig. 2.8 has a geometry
which suggests that electrons tunnel from point r,, — z,, which are closest
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to each other, due to the fact that ¢y depends exponentially on the tunneling
distance. In the setup shown in Fig. 2.7, a point-like tunnel contact between
the superconductor and the Luttinger liquids might be induced by slightly
bending the quantum wires (e.g. nanotubes). If the contact area has a finite
extension, we note that the two electrons preferably tunnel from the same
point on the superconductor, when they tunnel into the same lead, since
the two-particle tunneling event is coherent and shows a suppression in the
probability already on a length scale given by 1/kp, as we discuss in more
detail below.

2.3.4 Stationary current

We now calculate the current of singlets, i.e. pairwise spin-entangled elec-
trons (Cooper pairs), from the superconductor to the Luttinger liquid leads
due to Andreev tunneling [60,94] in first non-vanishing order, starting from a
general T-matrix approach [77]. We thereby distinguish two transport chan-
nels. First we calculate the current when two electrons tunnel from different
points r; and ry, of the superconductor into different interacting Luttinger
liquid leads which are separated in space such that there is no inter-lead
interaction. In this case the only correlation in the tunneling process is due
to the superconducting pairing of electrons which results in a coherent two-
electron tunneling process of opposite spins from different points r; and ry
of the superconductor, and with a delay time ~ h/A between the two tun-
neling events. Since the total spin is a conserved quantity [H,S?] = 0, the
spin entanglement of a Cooper pair is transported to different leads, thus
leading to nonlocal spin-entanglement. On the other hand, if two electrons
tunnel from the same point of the superconductor into the same lead there
is an additional correlation in the Luttinger liquid itself due to the intra-lead
interaction. It is the goal of this section to investigate how the transport
current for tunneling of two electrons from the superconductor into the same
Luttinger liquid lead is affected by this additional correlation.

2.3.5 T-matrix

We again apply a T-matrix (transmission matrix) approach [77] to calcu-
late the current which we have introduced already in Subsection 2.2.3. For
completeness, we also explain this approach here in detail. The stationary
current of two electrons passing from the superconductor to the leads is then
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given by

I=2eY Wy, (2.58)
fii

where W; is the transition rate from the superconductor to the leads, given
by

Wy = 2 [(f|T ()]0} [*0(es — &) (2.59)
Here, T'(¢;) = HTﬁ(gi — Hy) is the on-shell transmission or T-matrix,
with 7 being a positive infinitesimal which we set to zero at the end of the
calculation. The T-matrix can be expanded in a power series in the tunneling
Hamiltonian Hrp,

[e.e] 1 n

T(e;) = Hy + Hy ; [mm] , (2.60)
where ¢; is the energy of the initial state |¢), which, in our case, is the energy
of a Cooper pair at the Fermi surface of the superconductor, ¢; = 2ug.
Finally, p; = (i|p|é) is the stationary occupation probability for the entire
system to be in the state |i). We work in the regime A > du > kgT', where
o = pg — py is the applied voltage bias between the superconductor and the
leads, and T' the temperature with kg the Boltzmann constant. The regime
A > dp ensures that single electron tunneling from the superconductor to
the leads is excluded and only tunneling of two coherent electrons of opposite
spins is allowed. In the regime dp > kgT we only have transport from
the superconductor to the leads, and not in the opposite direction. Since
temperature is assumed to be the smallest energy scale in the system, we
assume kg1 = 0 in the calculation.

The set of initial states |i), virtual states |v) and final states |f) consists
of the BCS ground state |0)g and excitations 4, _|0) for the superconductor
and a complete set [86,87] of energy eigenstates | N, {bn, }) of the Luttinger
liquid Hamiltonian Hp, given in Eq. (2.55). N, is the number of excess
spin (v = o) and charge (v = p) in branch r relative to the ground state.
The Bose operators b,, form a continuous spectrum describing collective
spin and charge modes and will be introduced in Egs. (2.64) and (2.65). The
ground state of the Luttinger liquid is then |0, 0), which means that we have
no integral excess charge and spin and no bosonic excitations. The energy
contribution of the excess charge and spin is included in the so-called zero
mode (p = 0) terms in the diagonalized Hamiltonian K, [Eq. (2.66)] and
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are of no importance in the thermodynamic limit (L — oo) considered here,
since the contribution of these terms due to an additional electron on top
of the ground state is O(1/L) and is neglected in Eq. (2.66). For a detailed
description of the Luttinger liquid Hamiltonian Eq. (2.55) including the zero-
modes we refer to Appendix C. Since we want to calculate the transition rate
for transport of a Cooper pair to the leads, the final states |f) of interest
contain two additional electrons of opposite spins in the leads compared to
the initial state |i).

2.3.6 Current for tunneling into different leads

We first calculate the current for tunneling of two spin-entangled electrons
into different leads. Here, we are not facing a resonance as appeared in the
last section with quantum dots. We therefore are allowed to treat tunneling
to lowest possible order in the tunneling Hamiltonian Hr. We expand the
T-matrix to second order in Hp [the term with n = 1 in Eq. (2.60)] and
go over to the interaction representation by using d(e) = (1/2m) [ o dt et
and (v|(e; — Ho +in) o) = —i [;° dt e'“i=«+ By transforming the time
dependent phases into a time dependence of the tunneling Hamiltonian we
can integrate out all final and virtual states. The forward current I; for
tunneling of two electrons into different leads can then be written as

]1 = 2e lim / t/dt’/d " —77 (' ") +i(2t—t —t" S
77—>0+
0 0

n#n!
m#m/ —o0

X (Hp, (t —t"YHL. (t)Hpy(t") Hrp (0)) (2.61)

where (---) denotes Trp{---}. The bias has been introduced in a stan-
dard way [76], and the time dependence of the operators in Eq. (2.61) is
then governed by Hrp,(t) = it Kl [l e=i(KintKs)t with K, + Kg =
Hp, + Hs — iyuN,, — usNg. The interaction representation Eq. (2.61) has
the advantage that we only have to calculate statistical averages of (time-
dependent) correlation functions. No explicit summation over final states is
needed here which would be particularly tedious for the Luttinger liquid part.
The transport process involves two electrons with different spins which sug-
gests that the average in Eq. (2.61) is of the form (suppressing time variables),
(«-) = ZSS,<H:Tpm_S,H:Tpm,S,HTn_SHTn/5>, where Hrp,, describes tunneling of
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spin s governed by Hrp,,. The time sequence in Eq. (2.61) contains the dynam-
ics of the hopping of a Cooper pair from the superconductor to the Luttinger
liquid leads (one electron per lead) and back. The times ¢ and " are delay
times between subsequent hoppings of two electrons from the same Cooper
pair, whereas ¢ is the time between injecting and taking out a Cooper pair.
We evaluate the thermal average in Eq. (2.61) at zero temperature where the
expectation value is to be taken in the ground state of Ko =) K, + Kg
which is the BCS ground state of the superconductor and the bosonic vac-
uum of the Luttinger liquid leads. We remark that since the interaction
between the different subsystems (SC, Ly, Ly) is included in the tunneling-
perturbation, the expectation value factorizes into a superconductor part
times a Luttinger liquid part. In addition, the Luttinger liquid correlation
function factorizes into two single-particle correlation functions due to the
negligible interaction between the leads 1,2 (this will be not the case if two
electrons tunnel into the same lead). Note that in the thermodynamic limit
the time dynamics of all Luttinger liquid correlation functions is goverened
by a Hamiltonian that depends only on Bose operators [see Eq. (2.66)]. The
operators 74 ,s commute with all Bose operators, and as a consequence 74
are time independent. Therefore, interaction terms of the form %%;bwg
can be written as 1,737,715 X (Bose operators), where a, 3,7, 0 are composite
indices containing r = £, ns. The correlation function in Eq. (2.61) is then
of the form

> (Hipy(t —t")H, () Hra(t) Hrow (0))

n#n’

m#m/

= lol* D (balt = 0L (0) (oot = )0 0))

n#m

) {Wh(r,, t —t")UT (1, )V (T, ') Wy(r,, 0))

—[to]* > (st =t = 1")eb}—(0)) (ns (£)15],,(0) )
nem
><<lI/_s Tyt — )WL (1, )0 (T, ) Uy (T,, 0)) . (2.62)

The four-point correlation functions of the superconductor are calculated by

Fourier decomposing ¥, (r,,t) = V~1/2 Zk(uksvkse_iEkt—l—vksvT_k_seiEkt)eikr”,
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with uyxs = uk, and vk = —vk| = vx. For the first correlation function in
Eq. (2.62) we then obtain

V(W (v, t — T (00, )W (1,0, )Ty (r,, 0))

- Z UV U Vg € Bt =Byt = (kK )or)
kk’
1"
+Z UkUk/ 6 i(Ex (t—t")+Ey (t— t))7 (263)
kk’

where 0r = r; — ry is the distance vector between the two tunneling points
in the superconductor. The first sum in Eq. (2.63) describes the (time-
dependent) correlation of creating and annihilating a quasiparticle (with
same spin), whereas the second term in Eq. (2.63) describes correlation of
creating two quasiparticles (with different spin). It is obvious that the sec-
ond term describes processes which involve final states |f) in the T-matrix
element (f|7'(g;)|é) that contain two excitations in the superconductor and,
therefore, does not describe an Andreev process. In the regime A > du
such a process is not allowed by energy conservation. We will see this ex-
plicitly by calculating the integral over ¢ which originates from the Fourier
representation of the d-function present in the rate Wy;. Similarly, for the
correlator (U1 (v, t — t")Ul(r,, t)U_ (v, ') ¥, (r,, 0)) in Bq. (2.62) we ob-
tain Eq. (2.63) with a minus sign, and we have to replace t —t” by t —t' — ",
and ¢t — ¢’ by ¢, in the second term of Eq. (2.63).

To evaluate the Luttinger liquid correlation functions in Eq. (2.62), we
decompose the phase fields ¢, (x,t) and 6,,(z,t) into a sum over the spin
and charge bosons (see also Appendix C),

_ ipr ,—alp|/2
Onv(z,t) = ngn ’/2LK |p‘e e

x (bmp O A (2.64)

nv—p

and

nlet) = 3 TP g e

X (bnyp e bl 4 plemminlty, (2.65)
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The spin and charge bosons satisfy Bose commutation relations, in particular
[brup, bL,V,p,] = 0,7, where r = nvp, and the ground state of the Luttinger
liquid is defined as b,,,|0), = 0. The Hamiltonian Eq. (2.55) can then be
written in terms of the b-operators as (see Appendix C)

KLn = Z uu‘p| bjwpbm/p 5 (266)

vp

where we have subtracted the zero-point energy coming from the filled Dirac
sea of negative-energy particle states. In all p-sums we will explicitly ex-
clude p = 0 as discussed in Subsection 2.3.5 and explained in more detail
in Appendix C. To account for the p-dependence of the interaction, we
apply a high momentum-transfer cut-off A on the order of 1/pr so that
K,(p) = K,, u,(p) = u, for |p| < 1/A, and K,(p) = 1, u,(p) = vp for
Ip| > 1/A. By writing ¥, (7,1) = (27a) V210, s €7@ with » = + and
®,,,, defined according to Eq. (2.56), we can represent the single-particle Lut-
tinger liquid correlation function as (¢, (x,t)1]..(0,0)) = GL (x,t) with

nsr nrs

G}ﬂ”s (x) t) = (27ra)_le<q>"5T (x7t)q>"57"(070)_(‘szsr(z?t)—i_q)gws (070))/2> . (267)
This follows from the fact that ®,.(z,t) is a linear combination of creation
and annihilation operators bjwp and by,,, respectively'?. By evaluating the
averages in the exponent as outlined in Appendix D we obtain [95-98]

1 . A+i(vpt —rzx)

1 no—
Gnrs('ru ) 21 Q{I(l) o+ ’L(Upt _ 7’(13)
1 A2 Y /2
X : { — } , (2.68)
v=p,0 \/A + Z(uyt - 7’(13) (A + Zuyt) + 22

where 7, = (K, + K, ')/4 —1/2 > 0 is an interaction dependent parameter
which describes the power law decay of the long time and long distance cor-
relations. The factor containing the Fermi velocity vg in Eq. (2.68) is only
important if one is interested in x, ¢ satisfying |vpt — rz| < A and is a result
of including the p-dependence of the interaction parameters K, and u, (see
Appendix D). The Luttinger liquid correlation function Eq. (2.68) has sin-
gular points as a function of time in the upper complex plane. It is now clear

12Eq. (2.67) is obtained by using the identities ete? = eAtBelABl/2 and (e4) = e(4)/2
for A and B linear in Bose creation and annihilation operators.
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that the integration over ¢ is only nonzero if the phase of ¢ in Eq. (2.61)
is positive, i.e. w > 0. Since the phases of the terms containing (vy)? in
Eq. (2.63) depend also on t, the requirement for a nonzero contribution to
the current from these terms requires 26 — Fy — Ey > 0. This, however, is
excluded in our regime of interest, since Ey + Ey > 24, and therefore, we
will not consider these terms any further in what follows!3. In our model the
electrons tunnel into the same point x,, in Luttinger liquid n, i.e. x = 0 in
Eq. (2.68). In addition, Luttinger liquid 1 and 2 are assumed to be similar.
In this case the single-particle correlation function does not depend on n and

r,ie G (x=0,t) = G(t), and the current I; can then be written as

I = (32e [to|*/V?)

n—0+

x lim [ dt / dt’ / dt" e )it =)o
—00 0 0

X § Uk VUK’ Vg’ e_i(Ekt/_Ek/t//—(k-i-k/)ér)

kk’

x {G't—t")G'(t—t)+ G (t—t' —t")G'(t)}. (2.69)

We evaluate Eq. (2.69) in leading order in the small parameter du/A, and
remark that the delay times ¢’ and ¢” are restricted to ¢, ¢" < 1/A. This
becomes clear if we set or = 0 and express the contribution in Eq. (2.69)
containing the dynamics of the superconductor as

i r_ 7
E U ViU Vie! € i(Ext' —Eyt”)

kk’
= (nvgA/2)2HP (A HP (EA), (2.70)

where Ho(l) and H(()Q) are Hankel functions of the first and second kind, and
vg is the energy DOS per spin in the superconductor at pg. For times
t';t" > 1/A, the Hankel functions are rapidly oscillating, since for large
x we have Hy /2 (2) ~ /2/mx exp(£(ixz — (7/4))). In contrast, the time-
dependent phase in Eq. (2.69) containing the bias du suppresses the integrand
in Eq. (2.69) only for times |2t —t' —¢"| > 1/éu > 1/A. Being interested only

BWe remark that for r # 7/, the correlation function (¢ (z,t)i! ,(0,0)) gives a
negligible contribution in the thermodynamic limit. This statement is also true for a finite
size Luttinger liquid as long as the interaction preserves the total number of right- and

left-movers.



2.3.6.0 Noninteracting limit for current I 55

in the leading order in du/A, we can assume that [t| > ¢/,t” in the current
formula Eq. (2.69), since the Luttinger liquid correlation functions are slowly
decaying in time with the main contribution (in the integral) coming from
large times |t|. In addition, since 1/du > A/vp, we can neglect the term
containing the Fermi velocity vr in Eq. (2.68).

To test the validity of our approximations we first consider the non-
interacting limit with K, = 1 and u, = vg, for which an analytic expression
is also available for higher order terms in du/A.

Noninteracting limit for current [,

Let us first consider a one-dimensional (1D) Fermi gas (i.e. K, =1 and u, =
vr), and evaluate the integral over ¢ in Eq. (2.69) in the non-interacting limit.
The Luttinger liquid-correlation functions simplify to G*(¢) = (1/27) lim,_.q
1/(a+ivpt), and we are left with the integral

/ dt e Gt — "G (t —t)+ Gt —t —t")G'(t)}

— o0

_ (%)2 ]odt ei2out { (@ + dop(t — t'/))l(a +ivp(t —1t))

— 00

(2.71)

1
+ - ;
(a+ivp(t —t' —t") (a +ivpt) }
which can be evaluated by closing the integration contour in the upper com-

plex plane. Inserting then the result into Eq. (2.69) we obtain for the non-
interacting limit 19

a—0

]? = (326|t0‘4/v2) lim dt//dt// 6_77(tI+t/’)
0

n—07"
0

X E U U Vg € Bt = Byt = (kK )or)

kk’
1 (sin[(#" —t)ou] sin[(t' +t")du]
X 71.2)2 { " — + t + " : (2'72)
F

The sine-functions in Eq. (2.72) can be expanded in powers of du, and for
op < A it is sufficient to keep just the leading order term in du since the
integrals over ¢',t” have the form
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o0

—(nEiEx)t yn __ n!

/dte t" = —(Ui B (2.73)

0
where n = 1,2,3---. Since Ey > A, higher powers in t',t” produce higher
powers in du/ A, and, as expected, we can therefore ignore the dependence on
t’,t" in the Luttinger liquid-correlation functions. In contrast to this, when
we consider the current for tunneling of two electrons into the same (inter-
acting) Luttinger liquid-lead, we will see that the two-particle correlation
function will not allow for such a simplification. In leading order in du/A,
the integrals over t',t" are evaluated according to Eq. (2.73) with n = 0,
and we get an (effective) momentum-sum for the superconductor-correlations
(> "y (uvi/ Ex) cos (k - 0r))?, which we also found in the quantum dot entan-
gler setup. There we found (see Eq. (2.16))

Uk Uk m  sin(kpor) — (61 /€)
Z . cos (k-5r):§y57kF6T e . (2.74)

In Eq. (2.74) we have introduced the coherence length of a Cooper pair in
the superconductor, ¢ = vp/7A and 6r = |dr|. We finally obtain I?, the
current /; in the non-interacting limit,

in(kpor)]” 20r
19 = eyt |SEE0T) - ). 2.
L = emy pu { Ty exp p (2.75)

Here, we have defined v = 4wvsy|to|?/LV, which is the dimensionless con-
ductance per spin in a tunneling event from the superconductor to the Lut-
tinger liquid leads. The non-interacting DOS of the Luttinger liquid per
spin v, is given by v, = L/mvp. We remark in passing that the result
Eq. (2.75) agrees with a T-matrix calculation in the energy domain [99].
In this case we sum explicitly over the final states, given by a singlet |f) =
(1/x/§)(ch)Ta$ql — aipla;ﬂ)h’), where the a-operators describe electrons in a
(non-interacting) 1D Fermi gas. Note that triplet states are excluded as final
states since our Hamiltonian H does not change the total spin which can
be checked explicitly in analogy to Section 2.2. We see that the current I?
gets exponentially suppressed on the scale of £, if the tunneling of the two
(coherent) electrons takes place from different points r; and ry of the super-
conductor. For conventional s-wave superconductors the coherence length &
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is typically on the order of micrometers (see e.g. Ref. [78]) and therefore this
poses not severe experimental restrictions. This suppression of I{ caused by
the superconductor correlations is the same as appears in the entangler with
quantum dots, see formula Eq. (2.24). We therefore refer to Subsection 2.2.6
for further details and remark here only that the power-law suppression in
krdr is crucially dependent on the effective dimension of the superconductor
with smoother powers in lower dimensions. Approximately we obtain that
I? < (1/kpdr)®! for large kpdr where d is the effective dimension of the
superconductor, see Eqs. (2.35) and (2.36).

Current /; including interaction

We now are ready to treat the interacting case. Having obtained confidence
in our approximation schemes from the non-interacting case above, we can
neglect now the ¢, t” dependence of the Luttinger liquid correlation function
appearing in Eq. (2.69), valid in leading order in du/A. In this limit the
t-integral considerably simplifies to

(277')2/ dt ez’(2t—t’—t”)6,u {Gl (t . t//)Gl (t i t/)
+GHt =t —t"G'(t)}

A2('YP +70) Zz&ﬂt

ypcr Vpa

(2.76)

An analytical expression for this integral is available [100], and given in
Appendix E. The treatment of the remaining integrals over t',¢” and the
calculation of the Andreev contribution is the same as in the non-interacting
case and we obtain for the current [, in leading order in du/A and in the
small parameters 2Adu/u,,

9 wp [ 260 1%
I, = ! — . 2.77
! F(Q'Vp +2) Up L%/A} ( )

In Eq. (2.77) we used K, = 1 and u, = vp. The interaction suppresses the
current considerably and the bias dependence has its characteristic nonlinear
form, I; oc (6p)®» !, with an interaction dependent exponent 27, + 1. The
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parameter 7, is the exponent for tunneling into the bulk of a single Luttinger
liquid [93], i.e. p(e) ~ &%, where p(e) is the single-particle tunneling-DOS,
defined in Subsection 2.3.1. Note that the current I; does not show a de-
pendence on the correlation time 1/A, which is a measure for the time sep-
aration between the two electron tunneling-events. This is so since the two
partners of a Cooper pair tunnel to different Luttinger liquid leads with no
interaction-induced correlations between the leads.

2.3.7 Current for tunneling into the same lead

The main new feature for the case where two electrons, originating from
an Andreev process, tunnel into the same lead, is that now the four-point
correlation function of the Luttinger liquid no longer factorizes as was the
case before when the two electrons tunnel into different leads [see Eq. (2.62)].
In addition, the two electrons will tunnel into the lead preferably from the
same spatial point on the superconductor, i.e. o = 0. We denote by I5 the
current for coherent transport of two electrons into the same lead, either lead
1 orlead 2. It can be written in a similar way as I; given in Eq. (2.61) with
the difference that now we consider final states with two additional electrons
(of opposite spin) in the same lead (either 1 or 2) compared to the initial
state. We then obtain for I,

I, = 4e lim Z / dt / dt / At e+t Fi(2t—t'—t")op
n—0t —
58" "o 0 0
X <H}n—s/(t - t”)H’;r“ns/ (t)HTn—s(t/)HTnS(O)>, (278)

where we have used that the leads 1 and 2 are identical which results in an
additional factor of two. Again, the thermal average is to be taken at T' = 0,
and this ground state expectation value factorizes into a superconductor
part times a Luttinger liquid part. However, the Luttinger liquid part does
not factorize anymore due to strong correlations between the two tunneling
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electrons. In this case we obtain

Z <H}n—s’(t - t”)H}ns'(t)HTn—S(t,)HTHS(O»

s,s’

= [to]* > (st — ") ns ()] (#)0],,(0))

s

X (Wl(r,, t —t")UT (1, ) T_ (1, 1)U, (r,,0))

Htol* > (Wt — ) ns (D)) (#)1],,(0))

s

X (U1 (v, t — )Wl (r,, )T _(r,, )T, (x,, 0)). (2.79)

The four-point correlation functions for the superconductor in Eq. (2.79) are
the same as in Eq. (2.62) for the case when the two electrons tunnel into
different leads, except that now dr = 0. The four-point correlation functions
in Eq. (2.79) for the Luttinger liquid, normalized to the product of two single-
particle correlation functions (given in Eq. (2.68)), are

Gir’l(t> t,> t”) = <wnrs(t - t”)wnr’—s(t)'l/};rw’—s(t,)wirs(o»/
<¢nrs(t - t”)wirs(o)><wnr’—s(t - t/)lbjw_s(o)% (280)

which can be calculated using similar methods as described above for the
single-particle correlation function. After some calculation outlined in Ap-
pendix D we obtain

G? (1) =

1 A—iut” O\ A+ it \
A +iu,(t =t —t") A+ du,t )

v=p,0

(2.81)

where A\, = &, (r' K, + (1/K,))/4 with £,/ = £1. For the other sequence

G?”r’2 = <¢TLT’—S(t - t”)wnrs (t)wlr’—s(t/>wirs(0)>/
<¢m“/—8(t —t' - t”)wlr’—s(()»<wm“8(t)w7trs(0)>7 (2'82)
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we obtain

G2 5t t”) =

H —qu,t” Avrr! A +u,t Avrr!
A+zu (t—1t") A+ iu, (t —t) ‘

(2.83)

We remark that contributions from other combinations of left- and right-
movers, as indicated in Egs. (2. 81) and (2.83), are negligible. A contribu-
tion like (tnprs(t — ") hnr_s ()T ,_ ()] (0)),s is only non-zero if spin
exchange between right- and left-movers is possible, but this is a backscat-
tering process which we explicitly exclude. Using Eqs. (2.78)-(2.83), together
with Eq. (2.70) we obtain a formal expression for Iy (with ér = 0):

o0 o0

WVSA |t0‘ / / // "o~ ' +t")
I, =4 li dt [ dt’ [ dt”e™"
s = () iy 3

b==+1_" 0 0

> ez’(2t—t’—t”)6,u Hél) (t”A)Hg (t,A)

x [Gh(t, U, ") Gt — "Gt —t') — Gt ¢ ") G (t =t —t")G' (V)] .
(2.84)

In Eq. (2.84) the meaning of the summation index is b = +1 for r’ = +1,
and b = —1 for rr’ = —1. We proceed to evaluate the current I, with K, =1
and u, = vp. To calculate the current I, we assume that the time scales A/u,
and A/vp are the smallest ones in the problem. These time scales are both on
the order of the inverse Fermi energy in the Luttinger liquid, which is larger
than the energy gap A and the bias du. By applying the same arguments
as in Subsection 2.3.6 for the current [;, we approximate the current I,
assuming |t| > t/,t" > A/vp, A/u,, which is accurate in leading order in the
small parameters du/A, AA/u, and Adpu/u,. In this limit we obtain for the
two-particle correlation functions

B (t,t”)’y/?”’
2 (AJu,) + it) 2o (N Jvp) 4 it)=Frr)/2?

where v, = ((1/K,)+rr'K,—(14+7r"))/4 > 0. The exponent 7, is related
to 7,, introduced in the single-particle correlation function [Eq. (2.68)] via

2 _ 2
Grr/l - _Grr’

(2.85)
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Yorrr = 7, for r =71’ and vy = 7, + (1 — K,)/2 for r # r’. The current I,
for tunneling of two electrons into the same lead 1 or 2 then becomes (with
or =0)

2nvsAlte|2\* A2
I2 = 26( ﬂ—VSV |t0| )

2'Yp+l

x lim )~ / dt’ / dt" e M+ (/7)o
0

et 9
(D) (1 ANT(2) (0 1
<« HY @ AMHP # A —— [ dt
NN
61’26;115
X It 2t =02
<u%+it> <%+it>

(2.86)

Again, the integrals appearing in Eq. (2.86) can be evaluated analytically [100]

with the results given in Appendix E.

Note that according to the two-particle Luttinger liquid-correlation functions

[Egs. (2.81) and (2.83)], we find that the dynamics coming from the delay

times ¢’ and " cannot be neglected anymore, as was done e.g. in Ref. [94].
We evaluate Eq. (2.86) in leading order in 26uA /u, and finally obtain for

the current I, ,
25\ 277
L=01Y 4 <TM) . (2.87)

b==%1

The interaction dependent constant A, in Eq. (2.87) is given by

22wl (29,4 2) o (et 1
) 7

A, = 2.88
" T2+ 29, + 2 2 (2.88)

which is decreasing when interactions in the leads are increased, see Fig. 2.9.
The function I'(z) is the Gamma function. We remark that in Eq. (2.87)
the current [; is given by Eq. (2.77) with dr = 0. The non-interacting limit,
I, = I, = 17, is recovered by putting v, = 7, = 0, and u, = vp. The result
for I, shows that the unwanted injection of two electrons into the same lead
is suppressed compared to I; by a factor of A, (2§u/A)*%+ if both electrons
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are injected into the same branch (left or right movers), or by A_(26u/A)?7-
if the two electrons travel in different directions. Since it holds that v, =
Yot + (1 —K,)/2 > 7,4, it is more favorable that two electrons travel in the
same direction than in opposite directions. The suppression of the current I

Ap 0.5

0.4
0.3
0.2
0.1

0

0 025 05 075 1Kp

Figure 2.9: The interaction dependent constants A, and A_ as given in Eq. (2.88)
plottet against the interaction strength K,. For a strong interaction parameter
K, < 1 we obtain a sizable suppression of I3 also due to this prefactor A4. Note
that Ay > A_.

by 1/A shows very nicely the two-particle correlation effect for the coherent
tunneling of two electrons into the same lead. The larger A is, the shorter
the delay time between the arrivals of the two partner electrons of a given
Cooper pair, and, in turn, the more the second electron will be influenced by
the presence of the first one already in the Luttinger liquid. By increasing
the bias du the electrons can tunnel faster through the barrier due to more
channels becoming available into which the electron can tunnel, and therefore
the suppression effect of A is less pronounced. Also note that this correlation
effect disappears when interactions are absent in the Luttinger liquid (v, =

'Ypb = O)

2.3.8 Efficiency and discussion

We have established that there indeed exists a suppression for tunneling of
two spin-entangled electrons into the same Luttinger liquid lead compared
to the desired process where the two electrons tunnel into different leads.
However, we have to take into account that the process into different leads
suffers a suppression due to a finite distance separation dr between the two
tunneling points on the superconductor. As already discussed earlier in this
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Thesis (see Subsection 2.2.6) this suppression can be considerably reduced
if one uses effectively low-dimensional superconductors. To estimate the
efficiency of the entangler we form the ratio [;/I; and demand that it is
larger than one. This requirement is fulfilled if approximately

2 27p+
Ay (%) < 1/(kpér)*t, (2.89)

where d is the dimension of the superconductor, and it is assumed that
the coherence length £ of the superconductor is large compared to dr. The
leading term of I is proportional to (26u/A)*#+ describing the power-law
suppression, with exponent 27,, = 2v,, of the process where two electrons,
entering the same lead, will propagate in the same direction. The exponent
Vp+ is the exponent for the single-particle tunneling-DOS from a metal into
the center (bulk) of a Luttinger liquid.

Experimentally accessible systems which exhibit Luttinger liquid-behavior
are e.g. metallic carbon nanotubes. It was pointed out in Refs. [91,92] that
the long range part of the Coulomb interaction, which is dominated by for-
ward scattering events with small momentum transfer, can lead to Luttinger
liquid behavior in carbon nanotubes with very small values of K, ~ 0.2—0.3,
as measured experimentally in Refs. [88,101] and predicted theoretically in
Ref. [92]. This would correspond to an exponent 27y, ~ 0.8 — 1.6, which
seems very promising. We also remark that in this scenario of small K, the
interaction dependent constants A, also become much smaller than unity, see
Fig. 2.9. For K, = 0.3 we obtain from Eq. (2.88) that A, ~ 0.11 and for
K, =10.2 we get Ay ~0.02 (note that A_ < A, ).

In addition, single-wall carbon nanotubes show similar tunneling expo-
nents as derived here. The tunneling-DOS for a single-wall carbon nanotube
is predicted [91,92] to be p(e) o< €7 with n = (K ' + K, — 2)/8, which is
half of 7,, and was measured [88,101] to be =~ 0.3 — 0.4. Similar values were
found also in multiwall carbon nanotubes [102]. More recently, Luttinger
liquid behavior was found also in GaAs quantum wires [89] with Luttinger
liquid parameter K, ~ 0.66 — 0.82.

The results presented in this section show again that the delay time be-
tween the two electrons of the same pair ~ h/A is much shorter than the
average time between subsequent pairs ~ 2e/[;. The correlation time 7.
of a pair (introduced in Subsection 2.2.6) which is important for current-
current correlation measurements to detect entanglement, is given here by
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h/du, since the bias voltage determines the energy range within the electrons
are injected into the Luttinger liquids. The requirement 2e/I; > 7. is there-
fore also satisfied here due to weak tunneling and strong correlations, see
Eq. (2.77).

2.3.9 Decay of the electron-singlet due to interactions

We have shown in the preceding subsections that interaction in a Luttinger
liquid lead can help to separate two spin-entangled electrons so that the
two electrons enter different leads. A natural question then arises: what is
the lifetime of a (nonlocal) spin-singlet state formed of two electrons which
are injected into different Luttinger liquid leads, one electron per lead? To
address this issue we introduce the following correlation function

P(r,t) = (S(r,1)|S(0,0)) . (2.90)

This function is the probability density that an electronic singlet state, in-
jected at point r = (z1,22) = 0 and at time ¢t = 0, is found at some later
time ¢ and at point r. Therefore, P(r,t) is a measure of how much of the
initial singlet state remains after the two injected electrons have interacted
with all the other electrons in the Luttinger liquid during the time interval
t. Here,

[S(r,8)) = Vma (] (wn, O8] (22, 8) — o] (21, )k (22, 4))[0)  (2.91)

is the electron singlet state created on top of the Luttinger liquid ground
states. The extra normalization factor v/2ma is introduced to guarantee
[ dr P(r,t) =1 in the non-interacting limit and corresponds to the replace-
ment of v, by (27a)/*1),,,. The singlet-singlet correlation function factorizes
into two single-particle Green’s functions due to negligible interaction be-
tween the leads 1 and 2. Therefore, we have P(r,t) = (2ra)? [, |(¥ns(xn, t)
x Ph.(0,0)) |2, with (Pns(za, 1)00](0,0)) = 35, e*rmen Gy (25, 1). For sim-
plicity we just study the slow spatial variations of }wns(asn,t)zﬂis((),()))}z.
Using Eq. (2.68) together with 7d(x) = lim, .o a/(a? + 2%) we can then
write the remaining probability of the singlet as

Pt =] % " F(t) 6, — rort) (2.92)
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with a time decaying weight factor of the d-function

A2
|

v=p,0

V)2
X k

X 3 5 .
<(A2 + (vE — u2)t?)” + (2Au,t) )

(2.93)

From Egs. (2.92) and (2.93) we see that charge and spin of an electron prop-
agate with velocity vg, whereas charge (spin) excitations of the Luttinger
liquid propagate with u, (u,). Without interaction, i.e. u, = vp and K, =1,
we have F(t) = 1 which means that there is no decay of the singlet state.
Using again u, = v, K, = 1 and u, = vp/K, we see from Eq. (2.93) that as
interactions are turned on, the singlet state starts to decay on a time scale
given by A/u,. For long times ¢t and for u, = vp, K, =1 and u, = vp/K,,
we find the asymptotic behavior F(t) ~ — (ﬁK )[uQ(f\_QKQ)]VP[%]QWH which for
P p) U b
very strong interactions in the Luttinger liquid leads, i.e. K, much smaller

than one, becomes
A 27p+1
F(t) ~ (—) ) (2.94)

Uyt

We will show in the next section that although the probability to recover the
electron singlet decays in time due to interactions, we still can observe charge
and spin of the initial singlet via the spin and charge density fluctuations
of the Luttinger liquid, since the spin of the injected electron cannot be
destroyed by Coulomb interaction.

2.3.10 Propagation of charge and spin

The propagation of charge and spin in a state |¥) as a function of time
can be described by the correlation function (V|p(x,t)|¥) for the charge,
and (U|o,(x,t)| V) for the spin. The normal-ordered charge density oper-
ator for Luttinger liquid n is p,(z,) = >°, @ ) (2,)0ns(zn) = Y.,
Ul () ner (1) 1, if we only consider the slow spatial variations of the
density operator. Similarly, the normal-ordered spin density operator in z-
direction is o7 (z,) = >, 8 : ¥l (€0)¥nsr (2,) :. These density fluctuations
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can be expressed in a bosonic form (see Appendix C) as

) = L2 0,0,,(a2). 2.9

and for the spin

05 (2n) = g OxPno(Tn) - (2.96)

We now consider a state |¥) = I (x,)]0) where we inject an electron
with spin s at time ¢ = 0 into branch r on top of the Luttinger liquid ground
state in lead n'* and calculate the time dependent charge and spin density
fluctuations according to (0|t (2,)pn (2], )01 . (2,)|0) for the charge and

nsr

similar for the spin (0|t (2,)0Z (2], )1 . (2,)|0). If we express the bosonic

nsr

phase fields ¢, and 0,, in terms of the Boson modes shown in Eqs. (2.64)
and (2.65) and the Fermi operators according to the bosonization dictionary
[Eq. (2.56)] we obtain for the charge fluctuations

(270) (O nr(n) pu (), 1)) o (20)]0)
_ %(1 4 K)S (& — i — )

1
+§(1 —1K,)0 (z,, — zp + upt) , (2.97)
and for the spin fluctuations

(27) (Othnsr (2) 0 (20, )] o () |0)

= 2(1 +rK,)d (z), — x, — ugt)

+§(1 — K6 (2 — @n + ugt) . (2.98)

The results Egs. (2.97) and (2.98) are obtained by sending A — 0. We see
that in contrast to the singlet, the charge and spin density fluctuations in the
Luttinger liquid created by the injected electron do not decay and show a
pulse shape (d-function) with no dispersion in time. This is due to the linear
energy dispersion relation of the Luttinger liquid model. In carbon nanotubes

14This describes the interesting case where the two electrons of a Cooper pair tunnel to
different leads.
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such a highly linear dispersion relation is indeed realized, and, therefore, nan-
otubes should be well suited for spin transport!®. Another interesting effect
that shows up in Eq. (2.97) and Eq. (2.98) is the different velocities of spin
and charge, which is known as spin-charge separation. It would be interesting
to test Bell inequalities [42] via spin-spin correlation measurements between
the two Luttinger liquid leads and see if the initial entanglement of the spin
singlet is still observable in the spin density-fluctuations which are well lo-
calized in space according to Egs. (2.97) and (2.98). Although detection of
spin-densities with magnitudes on the order of a single electron spin has still
not been achieved, magnetic resonance force microscopy (MFRM) seems to
be very promising in doing so [103].

Another scenario is to use the Luttinger liquid just as an intermediate
medium which is needed to first separate the two electrons of a Cooper pair
and then to take them (in general other electrons) out again (via another
tunnel junction) into two (spatially separated) Fermi liquid leads where the
(possibly reduced) spin entanglement could be measured via the current noise
in a beamsplitter experiment [47]. Similarly, to test Bell inequalities one can
make then use of measuring spin via the charge of the electron [12,48, 104,
105], see Section 3.8 in this Thesis. In this context we remark that in order to
have exclusively singlet states as an input for the beamsplitter setup or the
quantum dot spin filters, it is important that the Luttinger liquid leads return
to their spin ground state after the injected electrons have tunneled out again
into the Fermi liquid leads in which the detection of spin-entanglement takes
place. For an infinite Luttinger liquid, the spin-excitations are gapless and
therefore an arbitrary small bias voltage du between the superconductor and
the Fermi liquids would allow for spin-excitations in the Luttinger liquids.
However, if we consider a finite size Luttinger liquid (e.g. a nanotube), spin
excitations are gapped on an energy scale ~ hvg /L where L is the length of
the Luttinger liquid, see Appendix C. Therefore, if kgT,dp < hvp/L, only
singlets can leave the Luttinger liquid again to the Fermi leads since the total
spin of the system has to be conserved. For the metallic carbon nanotubes
L is on the order of micrometers and the Fermi velocity is ~ 10° m/s which
gives an excitation gap on the order of a few meV which is large enough for
our regime of interest. We finally note that the decay of the singlet state
given by Eq. (2.92) sets in almost immediately after the injection into the

15We also note that if K, = 1, the spin of the injected electron is detectable locally
since then only one peak is present in Eq. (2.98).
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Luttinger liquids (the time scale is approximately the inverse of the Fermi
energy), but at least at zero temperature, the suppression is only polynomial
in time, which suggests that some fraction of the electron singlet state can
still be recovered, but, as discussed above, this does not mean that the spin-
entanglement is destroyed by interactions.

2.3.11 Conclusion and outlook

We proposed an s-wave superconductor, coupled to two spatially separated
Luttinger liquid leads, as an entangler for electron spins. We showed that the
strong correlations present in the Luttinger liquid can be used to separate
two electrons, forming a spin singlet state, which originate from an Andreev
tunneling process of a Cooper pair from the superconductor to the leads. We
have calculated that the coherent tunneling of two electrons into the same
lead is suppressed by a characteristic power law in the small parameter du /A,
where du is the applied bias between the superconductor and the Luttinger
liquid leads, and A is the gap of the superconductor. On the other hand,
when the two electrons tunnel into different leads, the current is suppressed
by the initial separation of the two electrons. This suppression, however,
can be considerably reduced by going over to effective lower-dimensional
superconductors. We also addressed the question of how much of the electron
singlet initially injected into the Luttinger liquid can be recovered at some
later time, and we found that the probability decreases with time, again with
a power-law at zero temperature. Nevertheless, the spin information can still
be transported through the wires by means of the (proper) spin excitations
of the Luttinger liquid which show a pulse shape in space with no dispersion.
Therefore, the spin information is locally accessible in an experiment.
There still remain interesting open questions which could be investigated
in future works. One obvious extension of this work is to consider tunneling
into the end of a Luttinger liquid (instead of the bulk). It is known that the
power-law suppression of the single-particle DOS is larger if one considers
tunneling into the end of a Luttinger liquid. For single-wall carbon nanotubes
one finds [91,92] 7enqg = (K, ' —1)/4 > n, or for conventional Luttinger liquid-
theory again an enhancement by a factor of two [106]. We therefore expect to
get an even stronger suppression if the Cooper pairs tunnel into the end of the
Luttinger liquids. This scenario of end-tunneling was investigated in Ref. [63]
also in the context of entanglement creation with the help of a superconductor
weakly coupled to two semi-infinite metallic carbon nanotubes, but within a
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different theoretical model where the time delay between the tunneling events
of the two electrons of the same Cooper pair is neglected, as in Ref. [94]. As
a consequence, the entangler efficiency Ip/I; oc (2511/g)*"end where €9 ~ 1eV
is the bandwidth in the nanotube [63], and not, as in our result Eq. (2.87),
the energy gap A of the superconductor. With a ratio A/eq ~ 1073 this
difference is sizable.

We remark that the nonlocality of the two electrons could be probed
via the Aharonov-Bohm oscillations in the current, when the leads 1,2 are
formed into a loop enclosing a magnetic lux. We have discussed such a setup
in detail for the entangler with quantum dots in Subsection 2.2.7. Here, we
expect that the h/e oscillation contribution should be o< (I113)%, and the h/2e
oscillation contribution should be oc I2%, with an exponent « that has to be
determined by explicit calculations. In the non-interacting limit « should
be 1/2, as found in Subsection 2.2.7. The different periods then allow for
an experimental test of how successful the separation of the two electrons is.
For instance, if the two electrons only can tunnel into the same lead, e.g. if
kror is too large or the interaction in the leads too weak, then I; ~ 0 and we
would only see the h/2e oscillations in the current. The determination of the
precise value of the exponent « requires a separate calculation including finite
size properties of the Luttinger liquid along the lines discussed in Ref. [107].

2.4 Andreev Entangler
with high-resistance leads

Here, we investigate a dynamical Coulomb blockade effect caused by leads
with a finite resistance. In contrast to the proposal with quantum dots, the
Coulomb blockade effect here is caused by non-ballistic motion in the leads
with the consequence that the charge fluctuations at the tunnel-junctions
induced by the tunneling electrons cannot relax sufficiently fast due to the
resistance of the leads. We describe this dynamical Coulomb blockade effect
phenomenologically in terms of an electromagnetic environment and show
that it can lead to currents of nonlocal and pairwise spin-entangled electrons
when the leads are coupled to a superconductor.
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2.4.1 Introduction

The Coulomb blockade effect in transport through a quantum dot attached
to leads and possibly to a gate voltage, see Chapter 3, is based on a gapped
energy spectrum of the quantum dot as a function of the number of electrons
added to it. By sweeping the gate voltage, one is able to change the number
of electrons on the dot one by one.

In a single tunnel-junction, charging effects can also show up as we will
explain here in terms of qualitative arguments which will be confirmed in
subsequent subsections. A tunnel-junction that couples two conductors pos-
sesses a capacitance C' with an associated charging energy Q?/2C where the
continuous influence charge () = V(' is determined by the voltage V' across
the junction. If an electron succeeds in tunneling from the conductor with
higher electrostatic potential (chemical potential) to the side with the lower
potential, the charging energy is changed from Q?/2C to (Q — €)?/2C since
the tunneled charge —e is the charge of an electron. At zero temperature
this process can occur only if we can lower the charging energy due to this
tunneling process. This is possible only for a voltage V' > e/2C. So we
conclude that there is a Coulomb gap in the current voltage characteristic
for V' < e/2C. This effect is based mainly on the fact that the tunneling
charge —e is discrete, whereas the junction charge () is continuous. Usually,
this Coulomb blockade effect is not seen in a transport experiment since the
tunnel junction is biased by a voltage source so that the non-equilibrium situ-
ation after the tunneling event is immediately removed. This relaxation time,
however, depends on the environment which surrounds the tunnel-junction.
If the conductors have a resistance R, then the relaxation time of a classical
circuit is given by 74, = RC. If this time is short, quantum fluctuations
will wash out the charging effects due to the energy-time uncertainty rela-
tion AEAt ~ h. Therefore, we can expect to see charging effects only if
e?/2C > h/RC, which is equivalent to

R > RQ, (2'99)

where Rg = h/e? is the quantum resistance.

We show in this section that these dynamical Coulomb blockade effects
can produce nonlocal and mobile spin-entangled electrons in two spatially
separated leads if they are weakly coupled to an s-wave superconductor. In-
deed, if the normal leads are resistive the second electron of a pair tunneling
event into the same lead still experiences the presence of the first one which
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has not yet diffused away from the tunnel-junction due to the resistance. The
advantage of this proposal is that it only requires existing technologies. No
quantum dots nor strong correlations are necessary. Natural existing candi-
dates with long spin decoherence lengths (2 100 pm [7]) for such a setup are
e.g. semiconductor systems tunnel-coupled to a superconductor, as experi-
mentally implemented in InAs [71,108], InGaAs [72] or GaAs/AlGaAs [109].
Recently, two dimensional electron gases (2DEGs) with a resistance per
square approaching the quantum resistance Rg = h/e* ~ 25.8 kQ could
be achieved by depleting the 2DEG with a voltage applied between a back
gate and the 2DEG [110]. In metallic normal NiCr leads of width ~ 100 nm
and length ~ 10 pm, resistances of R = 22 — 24 k() have been produced
at low temperatures. Even larger resistances R = 200 — 250 k€2 have been
measured in Cr leads [111].

We use a phenomenological approach to describe charge dynamics in the
electromagnetic circuit which is described in terms of normal-lead impedances
and junction capacitances, see Fig. 2.10. The subgap transport of a single
SN- junction under the influence of an electromagnetic environment has been
studied in detail [112,113]. In order to create nonlocal entangled states in
the leads we have to go beyond previous work to investigate the physics
of two tunnel junctions in parallel with two distinct transport channels for
singlets. A Cooper pair can tunnel as a whole into one lead, or the pair can
split and the two electrons tunnel to separate leads, leading to a nonlocal
entangled spin-pair in the leads. In the case where the pair splits we find that
the Coulomb blockade effect provided by the electromagnetic environment is
uncorrelated for the two electron charges. In contrast, if the two electrons
tunnel into the same lead we find a dynamical Coulomb blockade consistent
with a charge ¢ = 2e. Thus, the Coulomb blockade effect is twice as large for
the unsplit process which enhances the probability for a nonlocal (pair-split)
process. Again we have to compare the effect of the Coulomb blockade to the
suppression for tunneling into different leads due to the spatial correlation of
a Cooper pair.

2.4.2 Setup and formalism

The setup is sketched in Fig. 2.10. The superconductor is held at the

(electro-)chemical potential ug by a voltage source V. The two electrons of
a Cooper pair can tunnel via two junctions placed at points r; and ry on the
superconductor to two separate normal leads 1 and 2 which have resistances
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Ry and R, respectively. They are kept at the same chemical potential
so that a bias voltage o = pug — p; is applied between superconductor and
leads. The system Hamiltonian decomposes into three parts

eV=9u

Figure 2.10: Entangler setup: A bulk superconductor (SC) with chemical poten-
tial pg is tunnel-coupled (amplitude tp) via two points r; and ry of the super-
conductor to two Fermi liquid leads 1,2 with resistance R12. The two leads are
held at the same chemical potential y; such that a bias voltage dpu = pug — py is
applied between the superconductor and the two leads. The tunnel-junctions 1,2
have capacitances C1 2.

H = H°+ H,,, + Hr. (2.100)

Here, H® = Hg + >, _, 5 Hin describes the electronic parts of the isolated
subsystems consisting of the superconductor and Fermi liquid leads n =1, 2,
with
Hy = €p ChpsCopo. (2.101)
po
where o = (T, ]). The s-wave bulk superconductor is described by the BCS-
Hamiltonian [59]
HS — ,USNS == Z Ek ’y;rw’yka (2102)
ko

with the quasiparticle spectrum Ey = (£2 + A?)Y/2 where & = e — pg. The

electron creation (¢} ) and annihilation (c,) operators are related to the
quasiparticle operators by the Bogoliubov transformation
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Ck(1/]) = UKVk(1/]) :I:vkvik(m), where uy and vy are the usual BCS coherence
factors [59].

To describe resistance and dissipation in the normal leads we use a phe-
nomenological approach [114], where the electromagnetic fluctuations in the
circuit (being bosonic excitations) due to electron-electron interaction and
the lead resistances are modeled by a bath of harmonic oscillators which
is linearly coupled to the charge fluctuation @, of the junction capacitor n
(induced by the tunneling electron). This physics is described by [114,115]
Qn2 + al |: C.Iij + (¢n - Qonj)2

j=1

Hepyn = (2.103)

2C, 2C,,; 2€2 Ly,

The phase ¢,, of junction n is the conjugate variable to the charge satisfying
[0, Qm] = i€8,.m- As a consequence e " reduces @, by one elemantary
charge e. Any lead impedance Z,(w) can be modeled with Eq. (2.103) via
Z- N w) = fj;o dt exp(—iwt)Y, (t) where the admittance is given as Y, (t) =
Z;V:l(@(t)/[/nj) cos(t/+/Ln;Crj). For a more detailed investigation of the
Hamiltonian Eq. (2.103) we refer to Appendix F. We remark that in our
setup the superconductor is held at the constant chemical potential pug by
the voltage source, see Fig. 2.10. Therefore, the charge relaxation of a non-
equilibrium charge on one of the capacitors described by Eq. (2.103) does not
influence the charge dynamics of the other junction and, as a consequence,
H,.,., = Zn:1,2 Heppn. A correction to this decoupling assumption is deter-
mined by the cross-capacitance C'yy < C,, n = 1,2 between the leads 1,2
and is therefore of no significance.

Electron tunneling through junctions 1,2 located at points ry,ro of the
superconductor nearest to the leads 1,2 is described by the tunneling Hamil-

tonian Hy = Zn:1,2 Hr,, + h.c. where
Hryy =19 » 5, Wq(ry) e . (2.104)

Here, t( is the bare electron tunneling amplitude which we assume to be spin-
independent and the same for both leads. Since Hr conserves spin we have
[H,S%,] = 0, and thus the two electrons from a given Cooper pair singlet
which have tunneled to the lead(s) remain in the singlet state. We assume
that tunneling is weak such that the relaxation processes described by H.,,,
are faster than the appearance of pair-tunneling events. It is then allowed to
calculate the tunneling currents to lowest possible order in Hr.
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2.4.3 Current for tunneling into different leads

We again use a T-matrix approach [77] to calculate tunneling currents. At
zero temperature the current I; for tunneling of two electrons coming from
the same Cooper pair into different leads is given to lowest order in ty by

I = 2 Z /dt/dt//dt//e—n(t’+t”)+i(2t—t’—t”)éu
0

n#n'

m #m'

X (HY,,(t = t")HY,, (t) Hro (') Hrw (0)), (2.105)

—00 0

where n — 07, and the expectation value is to be taken in the ground state
of the unperturbed system. The physical interpretation of Eq. (2.105) is a
hopping process of two electrons with opposite spins from two spatial points
r; and ry of the superconductor to the two leads 1,2, thereby removing a
Cooper pair in the superconductor, and back again. The delay times between
the two tunneling processes of the electrons within a pair is given by ¢’ and
t”, resp., whereas the time between destroying and creating a Cooper pair is
given by t. This process is contained in the correlation function

> (HE,(t =) H, (1) Hoo(t) Hrw(0))

n#n'

m #m’

= ftol" Y {Gno(t =) G (t =) Frmo (t') Frio (1)

o, n#Em

X <el¢n (t_t”) 6_i¢n (O)> <€7'¢m (t_tl) e_i(bm (0)>

— Gt =t —1") Gpo (t) Frimo (t') Frior _ o (")

mn,—o

(¢ (=t =t") o=i6m(0)) (idn(t) o=idn (D)) (2.106)

The lead Green’s functions are G, (t) = (U, ()] (0)) =~ (v,/2)/it, with v,
being the DOS per volume at the Fermi level p; of the leads. The anomalous
Green’s function of the superconductor is Frms(t) = (V4 (v, 1)V, (1,,0))
= (sgn(0)/Vs) >y urvy exp(—iEyt 4 ik - or) with o0r = ry —ry, and Vg is the
volume of the superconductor. The bath correlator can be expressed as

{exp(idn(t)) exp(=idn(0))) = exp {{[¢n(t) = ¢n(0)]¢n(0))}.  (2.107)
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The relation in Eq. (2.107) holds since the Hamiltonian Eq. (2.103) can in
principle be diagonalized in new Bose operators and the junction charge @,
and ¢, are then linear combinations of them. The thermal average in the
exponent on the right hand side of Eq. (2.107), J(t) = ([¢n(t) — ¢1(0)]0,(0)),
can be calculated via the susceptibility x4,¢,(w). Its explicit calculation we
defer to Appendix F. Then using the fluctuation dissipation theorem we
obtain -

() =2 / dwRe Zr(w) (o on(—iwt) — 1), (2.108)

o W Rq

Here, we introduced the total impedance Zr = (iwC'+ R™')~!, with a purely
Ohmic lead impedance Z,,(w) = R, which we assume to be the same for both
tunnel-junctions and leads. The bath correlation function can be evaluated
analytically in terms of exponential integrals. For small times, wg|t| < 1, we
can approximate J(t) ~ —iE.t where E, = ¢?/2C is the charging energy and
wgr = 1/RC is the bath frequency cut-off which is the inverse classical charge
relaxation time 7 of an RC-circuit. For the long-time behavior, wg|t| > 1,
we get J(t) ~ —(2/g)[In(iwgt)+~v] with v = 0.5772 the Euler number and g =
R /R is the dimensionless lead conductance which determines the power-law
decay of the bath correlator at long times, since exp[J(t)] oc (1/t)%9.

We first consider the low bias regime du < A,wg. In this limit the
delay times ¢ and t” < 1/A can be neglected compared to ¢t < 1/6u in
all correlators in Eq. (2.106) and the bath correlators are dominated by the
long-time behavior of J(t). To calculate I} we come across similar integrals
as discussed in detail in Section 2.3. We then obtain for the current

e—1/9 25\ V9
I = eﬂ5MF2Fd2(57’)F(2+4/g) (wﬁ) . (2.109)

The geometrical factor coming from the spatial correlation of a Cooper pair
is Fy—_3(dr) = [sin(kgor)/kpor] exp(—dr/m&) with dr = |dr|. The exponential
decay of the correlation sets in on the length scale of the coherence length
¢. It is on the order of micrometers for usual s-wave materials (see e.g.
Ref. [78]) and can be assumed to be larger than dr which is assumed to be
in the range of nanometers. More severe is the power-law decay o< 1/(kpor)?
with kp the Fermi wavenumber in the superconductor. This power-law is
sensitive to the effective dimensionality d of the superconductor with weaker
decay in lower dimensions as we have shown already in Subsection 2.2.6. For
completeness, we again summarize the findings: In two dimensions and for
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krpdr > 1, but still or < &, we get F7_, o< 1/(krdr) and in one dimension there
is no power-law decay as a function of kpdr. In Eq. (2.109) we introduced
the Gamma function I'(z) and the dimensionless tunnel-conductance I' =
nvsy|to]? with vg being the DOS per volume of the superconductor at the
Fermi level pg. The result shows the well known power-law decay at low bias
op characteristic of dynamical CB [114]. The exponent 4/g in Eq. (2.109) is
two times the power for single electron tunneling via one junction. This is
so, because the two tunneling events are not correlated since each electron
tunnels to a different lead and the charge relaxation process for each circuit
is independent.

We consider now the large bias regime A,y > wg. In the regime A, [§p—
E.| > wg we can use the short time expansion for J(¢) in Eq. (2.106). As long
as |dp — E.| < A we can again neglect the delay times ¢’ and t” compared to
t in all correlation functions in Eq. (2.106) and obtain the current I; in the
large bias limit and up to small contributions ~ erT?F2(dr)wr[O(wr/du) +
O(wn/ |y — El)

Iy = enT*F3(0r)0(0p — E.)(6p — E,). (2.110)

This shows the development of a gap in I for o < E. and R — oo which is
the hallmark of dynamical CB.

2.4.4 Current for tunneling into the same lead

We turn now to the calculation of the current Iy carried by spin-entangled
electrons that tunnel both into the same lead either 1 or 2. The current
formula for I, is given by Eq. (2.105) but with n = n’ and m = m’ = n,
and we assume that the two electrons tunnel off the superconductor from the
same point and therefore or = 0 here. Since both electrons tunnel into the
same lead the bath correlation functions do not separate anymore as was the
case in Eq. (2.106). Instead we have to look at the full four-point correlator

<ei¢n (t_t”) ei(bn (t) €_i¢n (t/) e_i¢n (0) >
€J(t—t’—t”)+J(t—t’)+J(t—t”)+J(t)

= T . (2.111)

The lead correlators again factorize into a product of two single-particle
Green’s functions since they are assumed to be Fermi liquids and in ad-
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dition there appear no spin correlations due to tunneling of two electrons
with opposite spins.

We first consider the low bias regime du < wg, A. Here again, we can
assume that |¢| is large compared to the delay times ¢’ and t”, but it turns
out to be crucial to distinguish carefully between A > wgi and A < wg.
We first treat the case A > wp and approximate exp[—(J(t') + J(—t"))] ~
exp[—iE.(t" — t')] in Eq. (2.111). In this limit, and for A — E, > 0, the
current I becomes

- /9
_ 2 (40 /)? o [ATE )\ e (25p\"
I, = eméul’ AT L2 arctan A—FE (T2+5/9) \on . (2.112)

The exponent 8/g in Eq. (2.112) we would also obtain in a first-order tun-
neling event if the operator e~ is replaced by e~®?" in Eq. (2.104) which
changes the charge of the tunnel junction capacitor n by 2e. In addition
to this double charging effect we see from Eq. (2.112) that an enhancement
of E, gives not only rise to a suppression of I, via the term (26u/wg)®9 =
(2mdu/gE.)*9 but also to an increase due to the A-dependent prefactor.
This enhancement can be interpreted as a relaxation of the charge imbalance
created by the first tunneling event for times much smaller than the classical
relaxation time 7. The result Eq. (2.112) is valid if /(A — E,) /(A + E,) >
Vwgr/A. In the interesting case A > E., we expand Eq. (2.112) to leading
order in the parameter E./A with the result

—-8v/9 261 8/9
I, = endpl?—o . 211
= e i () i

In the other limit where A < wg, e.g. for small R, we can assume that
wrt’ and wgt” > 1 and therefore we approximate exp[—(J(t') + J(—t"))] ~
exp(4y/g) wi? (#'”)?/9. In this limit, the four-point correlator Eq. (2.111)
has the same form as the corresponding two-particle correlation function of
a Luttinger liquid, see Eq. (2.85). In this regime we obtain for the current

4/9 4/g9
I, = emdul* A(g) <2j—“) (2%“) : (2.114)
R

with A(g) = (2e7)Y9T*(1/g + 1/2)/7*T(2 + 8/g). Here, the relative sup-
pression of the current I compared to I; is given essentially by (20u/A)*9
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and not by (20u/wg)¥/9 as in the case of an infinite A. This is because the
virtual state with a quasiparticle in the superconductor can last much longer
than the classical relaxation time 7., and, as a consequence, the power law
suppression of the current is weakened since A < wpg here. To our knowl-
edge, the result Eq. (2.114) was not discussed in the literature so far®, but
a similar result is obtained when a superconductor is coupled to a Luttinger
liquid, see Subsection 2.3.7. It is important to note that a large gap A is
therefore crucial to suppress Is.

In the large voltage regime A, du > wgi we expect a Coulomb gap due to
a charge ¢ = 2e. Indeed, in the parameter range |0u — 2E,.| > wg and A >
|61 — E,| we obtain I, again up to small contributions ~ erT?wr[O(wr/dp) +
O(wr/|op — 2E¢])]

I, = en?0(6p — 2E,) (6p — 2E,). (2.115)

This shows that I, is small (< w%/|0p — 2E,|) in the regime E, < du < 2E.,
whereas [ is finite (oc F2(6r)(du — E.)).

2.4.5 Discussion and conclusion

We now provide numerical values for the current magnitudes and efficiencies
of the entangler. We first discuss the low bias regime ou < A,wg. In
Fig. 2.11 we show the ratio I5/I; (efficiency of entangler) and I; for A >
E.,wr [Eq. (2.113)] as a function of 4/g for realistic system parameters (see
figure caption). The plots show that a very efficient entangler can be expected
for lead resistances R < Rg. The total current is then on the order of I; 2 10
fA. In the large bias regime du > wgr and for E. < du < 2E,. we obtain

L)1 o< (kpdr)®~tw /(2E, — §u) (6 — E.), (2.116)

where we assume that 2F, — oy and ou — E. > wg. For op ~ 1.5E,. and
using wp = gE./m we obtain approximately I/, « (kpdr)?tg®. To have
I,/I; < 1 we require g% < 0.01 for d = 3, and ¢g? < 0.1 for d = 2. Such small
values of g have been produced approximately in Cr leads [111]. For I; we
obtain I} ~ e(kpdr)=4(6u — E)T? ~ e(kpdr)'=@EJL? ~ 2.5 pA for d = 3
and for the same parameters as used in Fig. 2.11. This shows that here I, is
much larger than for low bias voltages, but to have an efficient entangler very

16The result Eq. (2.114) is in contrast to predictions made in Ref. [112].
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Figure 2.11: Current ratio I5/I; (entangler efficiency) and current I; in the low
bias regime, épu < A,wpg and for A > E.,wg, as a function of 4/g = 4R/Rg. We
have chosen realistic parameters: E. = 0.1 meV, kpdr = 10, I' = 0.1. The left
plot is for du = 5 peV and the right one for du = 15 peV. In the case of a 2D
superconductor, I; and I /I, can be multiplied by 10.

high lead resistances R 2 10R¢ should be used. Our discussion shows that it
should be possible to implement the proposed device within state-of-the-art
techniques.

We finally remark that the resistance in the leads is caused by elastic
and/or inelastic scatterings of electrons by impurities. As long as only mo-
mentum scattering is present, the spin is unaffected and the spin-entanglement
between the two electrons of the pair is still present.
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Chapter 3

Quantum dot as spin filter and
spin memory

3.1 Introduction

An increasing number of spin-related experiments [4,7-9,116-119] show that
the spin of the electron offers unique possibilities to find novel mechanisms
for information processing—most notably in quantum-confined semiconduc-
tors with unusually long spin dephasing times approaching microseconds [7],
and where spins can be transported coherently over distances of up to 100
micrometers [7]. Besides the intrinsic interest in spin-related phenomena,
spin-based devices hold promise for future applications in conventional [4] as
well as in quantum computer hardware [12]. A few examples were mentioned
in Section 1.1. One of the challenging problems for such applications is to
obtain sufficient control over the spin dynamics in nanostructures. In the
following we address this issue and propose a quantum-dot setup which can
be either operated as a spin filter (spin diode) to produce spin polarized cur-
rents or as a device to detect (“read-out”) and manipulate single-spin states
(single-spin memory). Both effects occur at the single spin level and thus
represent the ultimate quantum limit of a spin filter and spin memory!.
Quantum dots are structures where charge carriers are confined in all
three spatial dimensions, usually achieved by electrical gating of a two-
dimensional electron gas (2DEG), possibly combined with etching techniques.

'For a review of earlier spin filter/memory devices operating on a many-spin level we
refer to the articles in [4].
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Semiconductor quantum dots are typically sized between 10nm and 1 pm [3],
which is on the order of the Fermi wavelength in the host material, leading
to a discrete energy spectrum. Such small dots have a charging energy in the
meV-range, resulting in quantization of charge on the dot (Coulomb block-
ade) for temperatures in the sub-Kelvin range. This allows precise control
of the number of electrons on the dot, which has been achieved in GaAs
heterostructures—starting from zero electrons [82,120]. Quantum dots open
up many possibilities in spintronics by providing a versatile system for ma-
nipulation of electronic degrees of freedom, in particular the spin, with many
tunable parameters such as geometry, energy spectrum, coupling to leads,
etc. Electronic properties prominent for atoms like a shell structure or Hund’s
rule? have been observed in quantum dots via transport experiments [82,121].
Consequently, quantum dots are sometimes referred to as artificial atoms.

In both operation regimes of the proposed device, we will work in the
Coulomb blockade regime [3] and consider sequential and cotunneling pro-
cesses. A new feature of our proposal is that the spin-degeneracy is lifted?
with different Zeeman splittings in the dot and in the leads which then results
in Coulomb blockade peaks which are uniquely associated with a definite spin
state on the dot. The effectiveness of such a spin filter has been demonstrated
experimentally in a GaAs lateral quantum dot subjected to an in-plane mag-
netic field containing just a few electrons (from 0-2) [122]. The resulting
spin-filter efficiency was measured to be nearly 100%.

The creation of spin-polarized currents in semiconductor structures have
been considered also in tunable ZnSe/Zn;_,Mn,Se heterostructures where
the s-d exchange in the paramagnetic layer gives rise to a spin-dependent
potential [123], in ballistic mesoscopic ring systems in the presence of an
inhomogeneous magnetic field [124], in a chaotic open quantum dot in the
presence of an in-plane magnetic field within a pumping configuration [125]
and in tunneling devices where Rashba spin-orbit coupling produces a spin-
polarized current [126,127]. A spin filter consisting of an open quantum dot
in an in-plane magnetic field has been implemented experimentally. The in-
plane magnetic field gives the two spin directions different Fermi wavelengths
which results in a spin-dependent interference of transport channels through
the dot. Polarization of up to 70 % have been achieved [128].

2Hund’s rule describes the successive filling of an atomic shell with respect to the spin
of the added electrons, see e.g. Ref. [78].
3We remark that by breaking the spin-degeneracy Kondo effects are excluded.
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The outline of this chapter is as follows. We first describe the proposed
setup in terms of detailed calculations and show that a quantum dot in
a magnetic field and attached to Fermi liquid leads can work as an efficient
spin filter, or when the leads are spin-polarized, as a single spin memory with
read-in and read-out capabilities. In single-wall carbon nanotubes quantum
dots, the dependence on a magnetic field is mainly given by Zeeman energy,
and orbital effects are suppressed since the tube diameter is much smaller
than the magnetic length [p = (hc/eB)'/? for usual laboratory magnetic field
strengths B ~ 1 — 2 T. This allows for interesting applications in terms of a
switchable spin filter with high control. We further discuss how we could use
in principle the quantum dot spin filter for spin correlation measurements as
needed to measure Bell inequalities.

3.2 Hamiltonian and formalism

Our system consists of a quantum dot (QD) connected to two Fermi-liquid
leads which are in equilibrium with reservoirs kept at the chemical potentials
i, I = 1,2, where outgoing currents can be measured, see Fig. 3.1. Using
a standard tunneling Hamiltonian approach [76], we write the full Hamilto-
nian as Hy + Hp, where Hy = Hy + Hp describes the leads and the dot,
with Hp including the charging and interaction energies of the dot electrons
as well as the Zeeman energy gugB of their spins in the presence of an ex-
ternal magnetic field B = (0,0, B), where g is the effective g-factor. We
concentrate first on unpolarized leads and assume that its Zeeman splitting
A! is negligibly small compared to the one in the quantum dot. This can be
achieved e.g. by using InAs for the dot (¢ = 15) attached to GaAs 2DEG
leads (¢ = —0.44), or by implanting a magnetic impurity (say Mn) inside a
GaAs dot (again attached to GaAs 2DEG leads) with a strongly enhanced
electron g-factor due to exchange splitting with the magnetic impurity [129].

In Section 3.6, we will consider the opposite situation with a fully spin
polarized lead current, and a much smaller Zeeman splitting on the dot. The
tunneling between leads and the quantum dot is described by the perturba-
tion

HT = Z tlpC;rkadpa + h.C., (31)

l7k7p7a

where d,,, and ¢y, annihilate electrons with spin ¢ in the dot and in the
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Figure 3.1: The energy diagram of a quantum dot (QD) attached to two leads
is shown in the regime where the quantum dot contains an odd number N of
electrons with a top-most single electron in the ground state (7 filled circle, and
E; = 0). A cotunneling process is depicted (arrows) where two possible virtual
states, singlet Fg and triplet E7, , are shown. The parameter Eg — uj can be
tuned by the gate voltage to get into the sequential tunneling regime, defined by
w1 > Eg > po, where N on the QD fluctuates between odd and even. For N even,
the ground state contains a top-most singlet state with Fg < 1, po.

Ith lead, respectively. While the orbital k-dependence of the tunneling ampli-
tude t;, can be safely neglected, this is not the case in general for the quantum
dot orbital states p. From now on we concentrate on the Coulomb blockade
(CB) regime [3], where the charge in the quantum dot, N = Y po Al dpe, is
quantized, i.e. (N ) = N. Next, turning to the dynamics induced by Hr,
we introduce the reduced density matrix for the dot, pp = Trpp, where p is
the full stationary density matrix, and Try is the trace over the leads. To
describe the stationary limit, we use a master equation approach [130] for-
mulated in terms of the dot eigenstates and eigenenergies, Hp|n) = E,|n),
where n = (n, N). Denoting with p(n) = (n|pp|n) the stationary proba-
bility for the dot to be in the state |n), and with W(n',n) the transition
rates between n and n’, the stationary master equation to be solved reads
20 (W', n)p(n) = W (n,n)p(n')] = 0.

The rates W can be calculated in a standard “golden rule” approach [131]
where we go up to 2nd order in Hrp, ie. W = Y7 Wi+ >, Wi, where
W; o t? is the rate for a tunneling process of an electron from the /th lead
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to the dot and vice versa and given as

Wi(n',n) =21 Y pu(in)[(fo ! | Hp i, n) P6(25 — £5)6 30w, (3.2)
i1, f1

while Wy, oc t* describes the simultaneous tunneling of two electrons from
the lead [ to the dot and from the dot to the lead I’. The rate for such a
higher-order process is given by

Wyi(n',n) = 2r Z pur (i)

ill’vfll’

'(fll', n'

2
(S(Ei — Ef)(SN,N"

X

Hr

Hrp|idy,n)

g; — Hy

We have introduced the equilibrium density matrix for the leads, p;(i;) =
(ir]pi]1), and the eigenstates |i;,n) and |f;,n) of Hy in the initial and final
states which are just product states of the leads and the quantum dot. Con-
sequently, |y, n) = |ig, iy, n), |fur,n) = | fi, fr,n) and p;, (ir) = pi(i0) pi (e ).
So two regimes of transport through the quantum dot can be distinguished:
Sequential tunneling (ST) and cotunneling (CT) [3,132]. The ST regime is
at the degeneracy point, where N fluctuates between N and N’ = N =+ 1,
and 1st order transitions are allowed by energy conservation. By using
Trr(mchen) = filer) = (14 expl(ex — w)/ksT))™", and 3, — v [de
we obtain explicit ST rates

VVl(?’L,,n) = 2mv [fl(Aﬂ'n”A?nn’PéN/,N-i-l
+ (1= filQua)l| ATy P8 n-1] (3.3)

where v = ), 0(ep — ¢;) is the lead density-of-states per spin at the Fermi
energy €p, Ay, = B — E, is the level distance, and we have introduced the
matrix elements A7, =3 t,(n'|dy|n) (note that n and n' in Eq. (3.3) fix
the spin index o). We remark that the role of the leads is revealed mainly
through the lead density-of-states v at the Fermi energy . Therefore, the
effect of the lead Zeeman energy Al on the tunneling rates is small as long
as Al < ep. In the ST regime the current through the quantum dot can be
written as

I, = ieZWQ(n’,n)p(n), (3.4)

n,n’
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where + stands for N’ = N F 1. We emphasize that the rates W(n,n’) and
thus the current depend on the spin state of the dot electrons via n,n’. The
ST current takes a particularly simple form if the voltage bias oy = pg —po >
0 and the temperature 1" are small compared to the level distance on the dot
(the case of interest here), op, kT < |Apnl, Vi, n, and, thus only the lowest
energy levels n, n’ participate in the transport [3]. We consider first the case
where N’ = N + 1 with the ST current I, = e [Wa(n,n')p, — Wa(n',n)py).
The master equation then becomes

W' n)pn = W(n,n')pw

with rates W(n,n') = >, Wi(n,n’'), since in the ST regime the solution of
the master equation is dominated by the ST rates only, and CT rates can be
neglected. In the regime of interest, du, kT < |Aun|, Vm, n, the omission of
the CT processes in the master equation is even exact since the state of the
quantum dot can not be changed by these processes (see below). We then
obtain for the occupation probability p, = W(n,n’)/[W(n/,n) + W (n,n')]
and p,y = W(n',n)/[W(n',n)+W(n,n’)]. By using Wi(n,n’) = v —W,(n',n)
we obtain the ST current

I = -2 (£(Awn) = folAwn)], N' =N +1. (3.6)
Y1+ Y2

We have defined v; = 27| A9 ,|* which is the tunneling rate through the Ith
barrier. For N' = N — 1, we get again Eq. (3.6) but with n < n'.
In the CT regime the only allowed processes are 2nd order transitions

with initial and final electron number on the quantum dot being equal, i.e.
N = N’, and with the rate

Wi(n' ) — 2m? / de &)1 = fr(e — Apn)] Gorn(E)

’ / 2
Al AT Ag AT
G — Un’ni<"inny Ungn*tngn 3.7
(¢) E > o — > vl (3.7)
0,0 ng

ni

where Ny = N + 1, and Ny = N — 1, and thus the two terms in Eq. (3.7)
differ by the sequence of tunneling. Our regime of interest here is elastic C'T
where E,, = E,, which holds for |A,,,,| > du, kgT,¥m # n. That means the
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system is always in the ground state with p(n) = 1, and thus the CT current
is given by

I. = eWy(n,n)—eWis(n,n)
— o / de Gon()f1(8) — Fole)]. (3.8)

We proceed by expanding G,,,, around p = (1 +p9)/2 as G(e) = G(u) + (e —
)G () + (e — 11)*G® () + - - - where we have dropped the state index n
and introduced GV (g) = ?G(g)/07. This expansion is valid as long as we
are in the CT regime, i.e. |+ Ay, | > dp, kT, since fi — fo is only finite
for energies € within a region where |e — pu| < du, kgT'. Integrating by parts
and using €™ f(™ = 0 at infinity for n > 1, and fdgf(”) () =—1lforn=1
and 0 for n > 2, we only have to retain terms up to f in an expansion of
f1 — fo around p. We then obtain the CT current

1= 2w |Gunly) + 5 (0T + 16007 ) G20 9

In particular, close to a ST resonance (but still in the CT regime) only one
virtual state n; in Gy, (1) contributes and for o, kT < | 4+ Ay, |, we only
keep the leading order term in Eq. (3.9) and obtain

€ Y1Y20 14

c= gm, (3.10)

where + stands for i = 1, and — for ¢ = 2. From Eqgs. (3.6) and (3.10) it
follows that I, ~ ~y;, while I, ~ 42, and therefore I. < I,. Thus, in the CB
regime the current as a function of y (or gate voltage) consists of resonant ST
peaks, where N on the quantum dot fluctuates between N and N 4 1. The
peaks are separated by plateaus, where N is fixed, and where the (residual)
current is due to CT.

We note that the tunneling rates v; depend on the tunneling path through
the matrix elements A7 . In general, this can lead to a spin-dependence of
the current, which, however, is difficult to measure [133]. In contrast to this,
we will show now that a much stronger spin dependence can come from the
resonance character of the currents I, and I, when the position of a resonance
(as function of gate voltage) depends on the spin orientation of the tunneling
electron. To proceed we first specify the energy spectrum of the quantum dot
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more precisely. In general, the determination of the spectrum of a quantum
dot is a complicated many-electron problem [38]. However, it is known from
experiment [82,121,134] that especially away from orbital degeneracy points
(which can be easily achieved by applying magnetic fields [82,121,134]) the
spectrum is formed mainly by single-particle levels, possibly slightly renor-
malized by exchange interaction. When exchange interactions become dom-
inant (e.g. for N very small), our analysis of course still applies, since all
we require is a sufficiently large energy splitting A, between singlet and
triplet.

For a quantum dot with N odd there is one unpaired electron in one of
the two lowest energy states, | 1) and | |), with energies £y and E|, which
become Zeeman split due to a magnetic field B, A, = |E; — E|| = pp|gB].
Let us assume that | T) is the ground state, and set E} = 0 for convenience.
For N even, the two topmost electrons (with the same orbital wave function),
form a spin singlet, (| T1) — | 11))/v/2, with energy Eg. This is the ground
state, while the other states, such as three triplets |7%) = |11), |T-) = | | 1),
and |Tp) = (| T1) + | LT))/V2 with energies Er, and Er, are excited states,
because of higher (mostly) single-particle orbital energy.

3.3 Spin filter in the ST regime

First, we consider the ST peak, which separates two plateaus with N and
N + 1 electrons on the dot, where N is odd (odd-to-even transition). In the
regime By, — Eg, A, > dp, kT, only ground-state transitions are allowed by
energy conservation. The tunneling of spin-up electrons is blocked by energy
conservation, i.e. I4(T) =0, because it involves excited states |T) and | |).
The only possible process is tunneling of spin-down electrons as shown in
Fig. 3.2, which leads to a spin-polarized ST current, I4(]), given by Eq. (3.6),
where A/, = Eg > 0 (since E; = 0). Thus, we have

I(1)/Io = O(11 — Es) = O(p2 — Es),  kgT <ip, (3.11)

Op o | Es—p
I,(]) /Iy = h , kT >dpu, 3.12
W/t = gptpoost? (2] s (312
where Iy = ey172/(71 + 72). Hence, in the specified regime the dot acts as
spin filter through which only spin-down electrons can pass. We mention that
“spin-blockade” effects based on spin-selection rules have been considered
before [135]. However, these effects are different from the ones found here, in
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Figure 3.2: The only allowed processes for charge transport through the dot in the
ST regime at the odd-to-even transition. A spin-down electron tunnels from lead 1
to the dot forming a singlet and tunnels out again into lead 2. Tunneling of spin-up
electrons into (and out-off) the dot is forbidden by energy conservation since this
process involves excited states. The resulting current, I5(|), is spin-polarized.

particular, they do not lead to spin-polarized currents, they appear only in
the non-linear voltage regime for AS = 1/2, and they vanish with increasing
magnetic field [135]—all in contrast to the case considered here.

Now we consider the ST peak at the transition from even to odd, i.e. when
N is even. Then the current is given by Eq. (3.6) with A,,, = —Eg > 0. The
spin-down current is now blocked, I,(]) = 0, while spin-up electrons can pass
through the dot, with the current I5(1) given by (3.11) and (3.12), where Eg
has to be replaced by —FEgs. Because this case is very similar to the previous
one with | replaced by T, we shall concentrate on the odd-to-even transition
only.

Next, we will demonstrate that although CT processes can in general lead
to a leakage of unwanted current, this turns out to be a minor effect, and
spin filtering works also in the CT regime.

3.4 Spin filter in the CT regime

Above or below a ST resonance, i.e. when Eg > 19 or Eg < py9, the
system is in the CT regime. Close to this peak the main contribution to the
transport is due to two processes (a) and (c), see Fig. 3.3, where the energy
cost of the virtual states, | — Eg|, is minimal. According to Eq. (3.10) we
have

_ e mMedp
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Thus, we expect the spin filtering of down electrons to work even in the CT
regime close to the resonance. However, there are additional CT processes,

J O] O |
(D] O D
|l (DI COH D |
at 4D D HAD !

Figure 3.3: (a) and (b) are the main processes in the cotunneling regime with N
odd if inelastic processes and processes where the dot is not in the ground state
are suppressed by the Zeeman energy A,. Only the leading virtual transitions are
shown. (c) and (d) visualize the leading cotunneling processes for N even. Here,
other processes are suppressed by the energy difference between singlet and triplet,
Er, —Eg .

(b) and (d), which involve tunneling of spin-up electrons and lead to a leakage
of up-spin. If N is odd (below the resonance), the dot is initially in its ground
state (1), and an incoming spin-up electron can only form a virtual triplet
state |T%) (process (b) in Fig. 3.3). This process contributes to the rate
(3.7) with an energy deficit By, — 1, so that for the efficiency of spin filtering
[defined as I(])/I(])] we obtain in this regime,

Er, — Es\”
L/I(T)~|1+—/———) , N odd (3.14)
Es—p

Above the resonance, i.e. when N is even and the ground state is the spin-
singlet |.S), the tunneling of spin-up electrons occurs via the virtual spin-down
state (process (d) in Fig. 3.3) with an energy deficit A, + u — Eg, which has
to be compared to the energy deficit y — Eg of the main process (c). Thus,
we obtain for the efficiency of the spin filtering in the CT regime

A,
p— Es

LO)/L(1) ~ <1 + )2, N even. (3.15)
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We see that in both cases, above and below the resonance, the efficiency can
be made large by tuning the gate voltage to the resonance, i.e. |u—Eg| — 0.
Eventually, the system goes to the ST regime, | — Es| < kT, dp.

3.5 Efficiency of spin filter in the ST regime

As we have seen in Section 3.3, the ST current is completely spin-polarized
in the parameter range of interest, thus the leakage of spin filtering in the
ST regime is due to CT processes via the excited states triplet |1%) (if N is
odd) and | |) (if N is even). Using Egs. (3.10), (3.11), and (3.12) we can
estimate this efficiency of spin filtering in the ST regime,

L1 = e =B, (3.16)

where we assumed ~; ~ 75 ~ 7 for simplicity. In the ST regime considered
here we have ~; < kgT,0u [3]. Therefore, if the requirement kgT,du <
A., Ep, — Eg is satisfied, filtering of spin-down electrons in the ST regime
is very efficient, i.e. I4(|)/1.(T) > 1. In the quantum regime, ; > kgT, du,
tunneling occurs as a Breit-Wigner resonance [3], and max{kgT, dp} in Eq.
(3.16) has to be replaced by 7;. Finally, we note that the spin polarization
of the transmitted current oscillates between up and down as we change the
number of dot electrons N one by one.

The functionality of the spin filter can be tested e.g. with the use of a
p-i-n diode [8,9] which is placed in the outgoing lead 2. Via excitonic pho-
toluminescence, the diode transforms the spin polarized electrons (entering
lead 2) into correspondingly circularly polarized photons which can then be
detected.

3.6 Spin read-out and spin memory

We consider now the opposite case where the current in the leads is fully spin
polarized. Recent experiments have demonstrated that fully spin-polarized
carriers can be tunnel-injected from a spin-polarized magnetic semiconductor
(ITI-V or II-VI materials) with large effective g-factor into an unpolarized
GaAs system [8,9]. Another possibility would be to work in the quantum Hall
regime where spin-polarized edge states are coupled to a quantum dot [120].
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To be specific, we consider the case where Er, — Eg+ A, > o, kgT with
Er. > Es (A, > kgT is not necessary as long as the spin relaxation time
is longer than the measurement time, see below). We assume that the spin
polarization of both leads is, say, up and N is odd, see Fig. 3.4. To have only
one spin component available in the leads we require that Al > ep > A,.
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Figure 3.4: The quantum dot as a single-spin memory: The dot is attached to
spin-polarized leads where only one spin direction is available at the Fermi energy,
say |T). The quantum dot in its ground state, |T) and E; = 0, cannot transport a
ST current, i.e. Il = 0, since the triplet energy E7, > i~ Es— A and only small
CT processes are allowed. By applying a transverse magnetic field B)|(w = A;)
we can flip the spin from | 1) to | |) thereby allowing a finite ST current I} > 0
to flow via the singlet . Therefore, the spin state of the dot is detected by the
magnitude of the charge current flowing through the dot.

There are now two cases for the current, I or I', corresponding to a
spin up or down on the quantum dot. First, we assume the dot to be in
the ground state with its topmost electron-spin pointing up. According to
previous analysis [see paragraph before Eqs. (3.11,3.12)], the ST current van-
ishes, i.e. I] = 0, since the tunneling into the level B, (and higher levels)
is blocked by energy conservation, while the tunneling into Eg is blocked by
spin conservation because the leads can provide and take up only electrons
with spin up. However, there is again a small CT current, I, which is given
by Eq. (3.13) if Eg is replaced by Er,. Now we compare this to the sec-
ond case where the topmost dot-spin is down with additional Zeeman energy
A, > 0. Here, the ST current I} is finite, and given by Egs. (3.11) and (3.12)
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with Eg replaced by Eg — A.. Therefore, the ratio I}/I! is given by Eq.
(3.16) but with the numerator replaced by (Er, — Es+ A,)? since here only
the CT-process with an intermediate triplet state is possible. Hence, we see
that the dot with its spin up transmits a much smaller current than the
dot with spin down. This fact allows the read-out of the spin-state of the
(topmost) dot-electron by comparing the measured currents. Furthermore,
the spin state of the quantum dot can be changed (“read-in”) by electron
spin resonance (ESR) techniques, i.e. by applying a pulse of an ac magnetic
field (perpendicular to B) with resonance frequency w = A, [39]*. Thus, the
proposed setup functions as a single-spin memory with read-in and read-out
capabilities. The relaxation time of the memory is given by the spin relax-
ation time 7g¢ on the quantum dot. This time can be expected to exceed
100’s of nanoseconds [7]. We note that this 75 can be easily measured since
it is the time during which I} is finite before it strongly reduces to I. Fi-
nally, this scheme can be upscaled: In an array of such quantum dots where
each dot separately is attached to in- and outgoing leads (for read-out) we
can switch the spin-state of each dot individually by locally controlling the
Zeeman splitting A,. This can be done [12] e.g. by applying a gate voltage
on a particular dot that pushes the wave function of the dot-electrons into a
region of, say, higher effective g-factor®.

A detailed analysis of the read-out procedure allows to quantify the mea-
surement efficiency [104]. If the spin on the dot is | |), then the probablity
for no electron being transmitted after time ¢ is P (t) = exp(=Wt)(1 + Wt),
where W = 2 /e is the rate of tunneling from one of the leads to the dot.
For example, after time 2e/I the spin state can be determined with more
than 90% probability. For a typical sequential tunneling current on the or-
der of 0.1 — 1nA [3], this measuring time is 0.3 —3ns. This is well below the
expected relaxation time of the dot spin [7].

4Recently it was demonstrated that the same effect can be achieved via a voltage
controled time-dependent g-factor in a GaAs/Al _Gaj_;As parabolic quantum well [118],
which does not need local oscillating magnetic fields.

5The induced level shift in the dot can be compensated for by tuning the chemical
potentials accordingly.



94 3 QD as spin filter and memory

3.7 Switchable spin filter in carbon nanotubes

Recently, transport measurements on single-wall carbon nanotubes (SWNT)
quantum dots [73, 74, 136], multiwall carbon nanotubes quantum dots [75]
and in ropes of SWNT quantum dots [137] have demonstrated Coulomb
blockade behavior [74,75,136,137], level quantization [73-75,136,137] and
spin-pairing [74, 75] leading to shell-structure—all very similar to conven-
tional quantum dots in quantum confined 2DEG structures [3,120, 121].

However, in the two dimensional quantum dots the magnetic length g =
(he/eB)'? can be on the order of the dot diameter for usual laboratory
magnetic fields B ~ 1 — 2 T. Therefore, the dot orbitals are affected quite
sensibly by a B-field, in particular the singlet-triplet splitting J = Ep, —
Eg [121,134]. In a SWNT quantum dot a magnetic field along the tube axis
has almost no influence on the electronic orbitals since the diameter d; of a
tube is typically 1-3 nm [101] and therefore d; < lg. As a consequence, the
level distance Er, — Eg is determined solely by the Zeeman energy A, =
gupB (for given J(B = 0) = Jy > 0)5 and therefore is a linear function of
B. We work around the degeneracy point B = B, with B. = Jy/gup where
we have Er, = Eg. The SWNT quantum dot then can act as a switchable
spin filter since the degree of spin polarization can be tuned by the B-field
very sensitively or can even be reversed completely when we change the two-
particle ground state from the singlet |\S) (B < B.) where spin down is filtered
to the triplet |T'y) (B > B.) where spin up is filtered. The resulting change
in the chemical potential of the dot can be compensated for by changing the
gate voltage so that the dot is always in the ST-regime p; > E°(2) > puso.
Here, p11 9 are the chemical potentials of the contacts and E°(2) denotes the
ground state energy for an even number of electrons on the dot (either Eg or
Er, ) counted from E(T). The ideal working regime for the switchable spin
filter is

Jo— gupAB/2, gupAB/2 > op, kgT. (3.17)

This inequality defines the “switching field” AB needed to switch from the
J-filter to the T-filter regime. This requirement guarantees that only ground
states can participate in the transport which leads to effective spin filtering,

5In SWNT the two-fold subband degeneracy is usually broken [74] with the result that
the singlet state is the ground state for an even number of electrons in the SWNT quantum

dot [74]. This is also the case for multiwall carbon nanotubes [75] and most probably in
ropes of SWNT [137].
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see Eq. (3.16). To estimate AB we use op ~ kg1 = 10 peV and g = 2 [101]
and therefore demand AB > 0.2 T in view of Eq. (3.17). It was found
experimentally [101] that Jy ~ 0.1 meV which corresponds to B, ~ 1T. This
is compatible with the requirement 2B, — AB > 0.2 T.

3.8 Using the spin filter to measure
Bell inequalities

One way to detect entanglement is to perform an experiment in which the
so-called Bell inequality [42] is violated. The Bell inequality describes corre-

Bl

ENTANGLER
Ky

singlet

D2

B2

Figure 3.5: The setup for measuring Bell inequalities: The entangler delivers a
current of nonlocal singlet spin-pairs due to a bias voltage du = pg — p;. Sub-
sequently, the two electrons in leads 1 and 2 pass two quantum dots D1 and D2,
respectively, which only allow one spin direction, e.g. spin down, to pass the dots.
The quantization axes for the spins are defined by the magnetic fields applied to
the dots, which are in general different for D1 and D2. Since the quantum dot
spin filters act as a spin-to-charge converter, spin correlation measurements as re-
quired for measuring Bell inequalities can be reduced to measure current-current
fluctuation correlators (d15(t) 61;(0)) in reservoirs R1 and R2 [49, 50].

lations between spin-measurements of pairs of particles within the framework
of a local theory. The Bell inequality measurement requires that a nonlocal
singlet pair, e.g., produced by the spin-entanglers, can be measured along
three different, not mutually orthogonal, axes defined by unit vectors a, b
and ¢. We present now briefly the derivation and the philosophy of the Bell
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inequality for spin-1/2 particles following Sakurai [131] and will then show
how, in qualitative arguments, the quantum dot spin filter combined with
noise measurements could be used to measure the Bell inequality.

We consider a large number of particle pairs. In a classical local theory
we can associate a state with every particle, e.g. of the kind |a+, B—, CH+).
This particle has the property that the measurement of the observable S - a
yields the result spin up with certainty and similar results for the other axes
b and ¢é. Note that we do not demand that the spin in the a direction and,
let’s say, in the b direction can be measured simultaneously with definite
values, which would violate quantum mechanics even on a local basis. If we
measure S - 4, we do not measure S - b and vice versa. The second particle
of the pair must be chosen so that the total spin is always zero as in a
singlet. Therefore, we describe the pair by the state |a+, b—, ¢+) for particle
one and |a—, b+, ¢—) for particle two. An important point to note is that
locality is explicitly included in the sense that a measurement of particle
one does not influence the measurement of particle two. This statement
indeed makes sense if particles one and two are far apart, e.g. separated
by the distance between the two leads 1 and 2 in our setup, see Fig. 3.5.
The measurement outcome of S - b of particle two (located in lead 2) is not
influenced by whether particle one (located in lead 1) is measured along
axes a, b or ¢. This is in stark contrast to the singlet state. It can be
shown straightforwardly [131] that such a classical local theory leads to the
following inequality—known as the Bell inequality

P(a+,b+) < P(a+,¢+) + P(e+,b+). (3.18)

Here, P(1,j) is the probability that under a random selection of a pair,
particle one has property ¢ and particle two has property j.

In quantum mechanics we describe all pairs by the same singlet state
1S) = (1/vV2)(I| )1] D)2 — | L)1] T)2) which is entangled. The states | 1) and
| [) can be chosen to be eigenstates of S in any direction (|S) is isotropic).
For the singlet state, the probability P(a+,b+) becomes P(a+,b+) =
(1/2) sin®(64/2), where 1/2 is just the probability to find particle one in
the a, + state, and 0, denotes the angle between axis a and b. Therefore,
the Bell inequality for the singlet (quantum state) reads

0 0 0
202 ab : 2 ac 2 cb
Sin ( ) Sin < ) Sin ( ) (3 1 )



3.8 Measuring Bell inequalities using the spin filter 97

For a suitable choice of axes &, b and ¢ and range of angles 0;;, this inequality
is violated. For simplicity, we choose &, b and ¢ to lie in a plane such that ¢
bisects the two directions defined by a and b:

Gab = 29, (9,16 = ‘961, =40. (320)
The Bell inequality Eq. (3.19) is then violated for

0<0< g (3.21)
The violation of the Bell inequality constitutes the most direct proof of a
nonlocal quantum characteristic, namely entanglement.

We now show that, in principle, the quantum dot spin filters can be used
for the necessary spin measurements. We have seen that all we require are the
probabilities P(i,7). Again, e.g. P(é+,f)+) is the probability that a mea-
surement of S - & of the particle in lead 1 yields spin up and the measurement
of the particle in lead 2 yields also spin up when measured along S - b. The
directions a, b and ¢ are defined with a magnetic field along these axes”
applied to the dots 1 and 2, see Fig. 3.5. The principle of spin-measurement
can be formulated in the following way.

Let us suppose we inject electrons into Fermi liquid leads via the en-
tangler. We have shown in Section 2.2 that quantum dots can be used to
resonantly inject electrons within some level width 7, around the energies € 5
for leads 1,2. Therefore, the energies of electrons injected into leads 1,2 are
well defined. In the case where the entangler is based on the Luttinger liquid
or the finite resistance setup, the injection is not resonant and therefore not
peaked in energy around some level ¢; above the Fermi energy. In this case,
the quantum dot spin filters in the leads themselves produce a resonance
with width vp, where vp is the level broadening of the dot levels due to the
coupling to the leads.

The quantum dot in lead ¢ = 1, 2 is in the CT regime (Es— ) > kgT,vp.
Note that no voltage bias is applied to the quantum dot filters, see Fig. 3.6.
The quantum dot contains an odd number of electrons with a spin up ground
state®. The injected electron has energy ¢; that coincides with the singlet

"In our case, see Fig. 3.6, spin down is filtered by the quantum dots. Therefore, if
we want to measure the spin e.g. along a+, we should apply the magnetic field in —a
direction.

8 According to Section 3.3, an even number of electrons could also be considered for the
spin filter.
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Figure 3.6: The quantum dot as a spin to charge converter: The electrons are
injected with energy ¢; in lead i = 1,2 above the chemical potential y;. Since these
energies can be tuned, with the entanglers or with the filters itself (see text), such
that €;= Fg the transmission amplitude is very close to one if the spin is down
(resonant transmission) with respect to direction n and strongly suppressed if the
spin is up (CT process). Therefore, the dot can act as a spin to charge converter
where the spin information is converted to the possibility for the electron to pass
the dot.

energy Fg (counted from E; = 0). The electron can now tunnel coherently
through the dot (resonant tunneling), but only if its spin is down. If the
electron spin is up, it can only pass through the dot via the virtual triplet
state |T) which is strongly suppressed by energy conservation if Ep, — Eg >
vp and v, < vp. In addition, the Zeeman splitting A, should be larger than
Eg — 1y in order to prevent excitations (spin down state, see Section 3.3) on
the dot induced by the tunnel-injected electron. To repeat, the regime of
efficient spin-filtering is

Ye <vp < (Es — ), Er, — Es, and kT < (Eg — ) < A, (3.22)

In general, the incoming spin is in some state |«) and will not point along
the quantization axis given by the magnetic field direction, i.e. |a) = A|T)
+A_|]). This means that by measuring many electrons, all in the same state
|}, only a fraction |A_|? will be in the down state and [A,|* =1 — |A_|? in
the up state. To be specific: The probability that an electron passes through
the filter is |A_|?, provided that the transmission probability for a spin down
electron is one (and zero for spin up), which is the case exactly at resonance
e; = Eg and for equal tunneling barriers on both sides of the dot [2]. So
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in principle, we have to repeat this experiment many times, i.e. with many
singlets to get |A|?> or |A_|%2. But this is automatically provided by our
entangler which exclusively delivers (pure) singlet states, one by one and such
that there is a well defined (average) time between subsequent pairs which is
much larger than the delay time within one pair, see Chapter 2. Therefore,
we can resolve single singlet pairs. The spin filter acts as a spin to charge
converter where the spin information is transferred into the information of
the possibility that the electron charge passes through the quantum dot.
But how do we measure the successful passing of the electron through
the dot? The joint probability P(i,j) quantifies correlations between spin
measurements in lead 1 and 2 of the same entangled pair. Thus, this quan-
tity should be directly related to the current-current fluctuation correlator
fj;o dt (01(t) 61,(0)) measured in the reservoirs R; and Ry if the filters are
operated in the regime where only the spin direction to be measured can pass
the dot. The current fluctuation operator in reservoir i = 1,2 is defined as
01;(t) = L;(t) — (I;). This quantitiy can be measured via the power spectrum
of the shot noise S(w) = [°7dte™* (51(t) 61,(0)) at zero frequency w. In-

deed, it was shown in Ref. [67] that P(an, by/) « Sy (&, b) where the zero
frequency cross correlator is

o0
Spr(a,b) = 2/ dt <5In/6(t)5lné(0)>. (3.23)
With 7 and 7" we denote the spin directions (n,n" =T, |) with respect to
the chosen axes a and 13, respectively. The proportionality factor between
P(an,byy') (the quantity of interest) and the cross correlator S, ,/(a, b) can
be eliminated by deviding S,, (&, b) with >y Suar (&, b) [67]. It was further
pointed out in Ref. [67] that the correlator (01,,4(¢)01,a(0)) is only finite
within the correlation time? 7. = h/~., i.e. for |¢t| < 7.. This sets some
additional requirements to our entangler setups. The average time between
subsequent arrivals of entangled pairs should be larger than this correlation
time. This leads to the constraint

2e/I > h/~e., (3.24)

where I denotes the current of entangled pairs, i.e. the pair-split current Iy
calculated for various entangler systems in Chapter 2. The requirement Eq.

9In Ref. [67], 7. is replaced by the voltage bias §u since no resonant injection, i.e. no
quantum dots, are considered.
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(3.24) can always be satisfied in our superconductor entanglers due to the
weak tunneling regime.

We conclude that the zero frequency correlator S, ,(a, B), which is di-
rectly related to P(an, b1 ), needed as the input to the Bell inequality Eq.
(3.18), combined with the spin filter, can be measured by a coincidence count-
ing measurement of charges in the reservoirs Ry and Ry that collects statistics
over a large number of pairs, all in the same singlet spin-state.

3.9 Conclusion

In conclusion, we have shown that a quantum dot in the Coulomb blockade
regime and attached to leads can be operated as an efficient spin filter at
the single-spin level. Conversely, if the leads are spin-polarized, the spin
state of the quantum dot can be read-out by a traversing current which is
(nearly) blocked for one spin state while it is unblocked for the opposite spin
state. We pointed out that carbon nanotubes could be used as switchable
spin filters with good control. In the last section of this Thesis, we discussed
the possibility to use the spin filter as a spin to charge converter useful
for measuring spin-spin correlation functions (Bell inequalities) via charge
currents.



Appendix A

Suppression of virtual states
with both electrons in the leads

We have stated in Section 2.2 that the contributions of virtual states where
two electrons are simultaneously in the leads are negligible. Here, we estimate
this contribution and show that indeed it is suppressed by 75 /dpu < 1 (here
the spin of the electrons is not important, and we set v; = v, = 7 for
simplicity). First we consider the dominant transition from |DD) back to
|DD) with the tunneling of only one electron to the lead, i.e. a sequence of
the type |DD) — |LD) — |DD). From now on we impose the resonance
condition ¢ = 0, and we find for the amplitude [cf. Egs. (2.18,2.19)]

1 . YL €c
i?] — HOHDL|DD> = UYL . In ((5#) . (Al)

ADL = <DD|HDL

We compare this amplitude Ap; with the amplitude Ay, of the lowest-order
process of tunneling of two electrons via the virtual state |LL), where both
electrons are simultaneously in the leads, i.e. the sequence |DD) — |LD) —
|LL) — |DL) — |DD) We find for the amplitude of this process

1 3
H DD
Fi DL) |DD)

1 — Hy

:Z( Tpr|* { 1 + 1 ]’ (A.2)

KK/ i?? — €k — Ek/)(in — Ek) i77 — €k i77 — €k’

ALL = <DD‘HDL <

where the first term in the bracket results from the sequence of, say, electron
1 tunneling into lead 1, then electron 2 tunneling into lead 2, then electron
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2 tunneling back into dot 2, and finally electron 1 tunneling back into dot
1. While the second term in the bracket results from the sequence where the
order of tunneling back to the dots is reversed, i.e. electron 1 tunnels back
to its dot before electron 2 does. Note that due to this two terms in the
bracket the two-particle pole in Eq. (A.2) cancels. Replacing ), (...) with
vy, 75, de(...), we can write

€ €c

4 1 / de' / de
e T en? ) in—¢ ) (in—e)?

—ou —ou
2
L . €c
= 32 {fm +1In (_5M)] . (A.3)

Thus, comparing Apy with A7 r, we see that indeed a virtual state involving
two electrons simultaneously in the leads is suppressed by a factor of v /dpu
compared to the one with only one electron in the leads.




Appendix B

Electron hole pair excitation

In this appendix, we consider a tunnel process where the two electrons start-
ing from the superconductor tunnel over different dots but during the process
of repeated tunneling from the dots to the leads and back to the dots an elec-
tron from the Fermi sea hops on one of the dots (say dot 1) when this dot is
empty. In principle, such contributions could destroy the desired entangle-
ment since then a “wrong” spin can hop on the dot and the electron on the
other dot (dot 2) would no longer be entangled with this electron (while the
original partner electron disappears in the reservoir provided by the Fermi
sea). We show now that in the regime du > 7; such electron-hole pair pro-
cesses due to the Fermi sea are suppressed. We start with our consideration
when the two electrons, after the Andreev process, are each on a different dot
forming the |DD)-state (we neglect spin and set v; = 75 = 1 in this con-
sideration for simplicity). Instead of the amplitude (pq|T’|DD) calculated in
Eq. (2.17) we consider now the following process

Aen = (pg|T'[DD)
y (DD|3 g Hp, 1, EO(ﬁHDsz)%
“7 H HD1L1‘DD>
)*™|DD) . (B.1)

The new sequence of interest in Eq. (B.1) is the amplitude containing the sum

over n. For instance, let us consider the n = 0 term, (DD|(s—=5-Hp,1,)*|DD),
n—110

where we assume that the electron-hole excitation occurs in, say, lead 1. From
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|DD), the tunnel Hamiltonian Hp,, takes the electron from dot 1 to the
state k in lead 1. Instead of tunneling back of this electron to dot 1, an elec-
tron from the state k’ with energy v < —du from the Fermi sea of lead 1
hops on dot 1. Now the dot-lead system is in the state [DD) = d{dbayal,|i).
The sum over n resums the hoping back and forth of electron 2 from D, to
D,, resulting in the replacement of n in Hp, 1, (in— Hy) " Hp,r, by v1/2. We
perform the further resummation in Eq. (B.1) with this Fermi sea electron
on dot 1 and the other electron still on dot 2, assuming that electron 1 in the
state k in lead 1 is in its final state (and not a virtual state). All the resum-
mation processes in Eq. (B.1) are similar to the ones already explained in the
main text, except for having now an excitation with energy €, — e > 0. The
final state |pg) consists of two electrons in the lead states p and q (their mul-
tiple tunneling is resummed in 7”) and of the excitation with energy e, — €,
so [pg) = aipagqalk/aikﬁ). The normalized correction to the current, I.;/1I4,
can be obtained by summing |A.;|?/I; over the final states |pg), and thus
we arrive at the following integral for ¢, = 0, retaining only leading terms in
vr/0p, and using energy conservation, ex — ey + €p + €q = 0,

+o00o
I (70\?
[—1 = <§> /// dexdepdeq

—Su
" 1 —O(ex+€p+€q + 1)
ek + (ve/2)%leg + (vo/2)%[ed + (02/2)7]

We evaluate the integral in leading order and find

Iy, 3 (7 2 op
S O (DR () B.
I 272 (‘M) ! (7L (B-3)

We see now that the current involving an electron-hole pair, ., is suppressed
compared to the main contribution I (see Eq. (2.24)) by a factor of (v, /du)?.

(B.2)



Appendix C

Finite size diagonalization of
the LL-Hamiltonian

Here, we derive the diagonalized form of the Luttinger liquid Hamiltonian
[Eq. (2.55)] including terms of order 1/L, which describe integer charge and
spin excitations. For simplicity, we consider only one Luttinger liquid and
will therefore suppress the subscript n for the leads. We start with the
exact bosonization dictionary for the Fermi-operator for electrons on branch
r =+ [86,87],

UTS . .
Unsle) = lim 2 exp {ir(pr — w/ Lo+ =5 (6,(2)

+ 565(2) — r(8,(z) + 890(33))) } (C.1)

The U, s-operator (often denoted as Klein factor) is unitary and decreases the
number of electrons with spin s on branch r by one. This operator also en-
sures the correct anticommutation relations for ¢,s(z). The normal ordered
charge density operator is p(z) = Y. : ¥l (2)1,s(x) :, where : : measures
the corresponding quantity relative to the ground state . The normal or-
dered spin density operator is defined by o*(z) = >__ s : ¢l (z)¢ys(z) : . In
addition, one can define (bare) current densitiy operators for charge j,(z) =
., Tl (2)es(x), and for the spin j,(z) = >, rsl (x),s(z), respec-
tively. Note that the current density has not to be normal ordered since
its ground state expectation value vanishes. The normal ordered product
8 (2)rs(2) ¢ is calculated according to

Pl (@) () = lim ol (@4 Az)g(2) - (C2)
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By expanding the operator product in Eq. (C.2) within the normal-order sign,
the right-hand side of Eq. (C.2) equals (1/27)0,(d,(x) + sy (x) — r(0,(z) +
s6,(x)))/v/2, from which one easily finds

o) = Loo,@), 0*(@) = Los00(a). ©3

and for the current densities
.]p(x> = —\/§HP(]}), ja(‘r) = —\/51_[0(1’) (C4>

The field I1,(x) is related to 0, (z) by 0,0, (x) = 7 I1,(x). We decompose the
phase fields into ¢, (x) = ¢F'(x) + ¢°(x) and 11, (z) = I (x) + [Y(x), where
the part with non-zero momentum ¢2 and IIZ’ can be expanded in a series
of normal modes

o Z Pz gmalbl/2 (4 b1 ), (C.5)

2wp,,

and for the canonical momentum

- % 3/ %eim e (1, — b ). (C.6)
p#0

These fields have to satisfy bosonic commutation relations (¢} (z), I} (2')] =
10y, (0(x—2")—1/L), which in turn demands [b,,, pr,] = 0y, 0pp and [byyp, by ] =
[bip,pr,] = 0. The zero mode parts ¢ and II® can be found by con-
sidering the integrated charge (spin) and charge- (spin)-currents, respec-
tively. For instance the integrated charge density >. N, = [dzp(x) =
(V2 (60(L/2) — 60~ L/2)) = (V3/m)(@UL/2) — GU(—L/2)). Similar re-
sults are obtained for the other density operators, which then implies the
zero modes to be ¢%(z) = (7/L)(Ny, + N_,)z and 1I% = —(1/L)(N,, —
N_,), where N,,/; = (N;y = er)/\/i The Luttinger liquid-Hamiltonian
[Eq. (2.55)] is then diagonalized by the following expansion of the bosonic
fields

—alp|/2 b, —i—bT
Z 2|p\L (B 2

+E(N+V +N—,V)x> (C7)
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and for the canonical conjugate momentum operator,

. p| pT —Q
II,(z) = —i Z ;7 P emelel’2 (p, — bl—p)
p# v
1
_Z(N—i-u - N—,I/)7 (CS)

where we have used wy, = |p|/K, 7. For the operator
K; = Hp — iy N we then obtain

2T [ Uy
Kp = Z { Z Uy |p| b:r/pbl/p + T [?(NW +N_,)?
v=p,0o p#0 v

T u Ky (N = N2} (C.9)

In Eq. (C.9) we have subtracted the zero point energy (1/2) > ., u.|pl,
which originates from an infinite filled Dirac sea of negative energy particle
states in the Luttinger liquid-model. The zero modes in Egs. (C.7) and (C.8)
give rise to contributions of order 1/L in the Hamiltonian (C.9), and they
are also responsible for a shift of the Fermi wavenumber pg, appearing in the
Fermionic field operator ¢,s(z), by a contribution of the same order. Since
we are only interested in the thermodynamic limit, we have neglected the
zero mode contributions in explicit calculations in the main text.
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Appendix D

Two-particle correlation
function for a LL

In this appendix, we outline the calculation of the two-particle correlation
functions appearing in Egs. (2.81) and (2.83). We start by writing the Lut-
tinger liquid electron operator for an electron at position x at time ¢ and in
branch r» = + with spin s as!

T Mlrs  id(x,t)
rs(x, 1) = lim e ) D.1
Urs(z,1) = lim, —o— (D.1)
Since ®(x,t) is linear in Bose operators (see Egs. (2.56), (2.64) and (2.65))

we can use the following properties: For operators A and B linear in Bose
creation and annihilation operators we have

€A€B _ eA-l—Be%[A,B] (D2)

and the relation [78]
() = e2t4%), (D.3)

From these two properties it is easily seen that

<€A€B> _ <€A+B>€%[A,B]

_ e%((A+B)2>+%[A,B]

(BT A (D.4)

!The lead index n = 1,2 is not necessary here.
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The last line in (D.4) follows from the fact that [A, B] is a C-number and
therefore [A, B] = ([A, B]) = (AB) — (BA). Similar, for a four-point corre-
lation function we can write

<€A€B€ce[)> _ <6A+BeC+D> e%[A,BH%[C,D} (D.5)

and we can again perform the average in the exponent, i.e. <6A+B eCtP > =

e<ZQ+%> since Z = A+ B and (Q = C' + D are still linear in Bose cre-
ation and annihilation operators. We can use these results to calculate the
two-particle Luttinger liquid correlation functions appearing in Eqgs. (2.80)
and (2.82). For a general correlator of the form as presented in Eq. (2.80)
we then obtain

<¢rs(£f4> ta) (s, t3)¢l/_8($2, A NE t1)>

2, (v3,t3)+®2,_ (29,t2)
1 <q>r’—s(x37t3)¢r/—s(z27t2)_< e 2 s

- (27?04)6
1 O (wa,00) O (1,41) — [ Prs(Parta) +0Ts(a1.t1)
B )
w e{Prs (@a,ta) Brr_ (22,02)+ P (23,83) Prs (21,81) = Prs (T4,84)Ppr s (23,83) =P (22,82) rs (21,81))
(D.6)
In the correlator Eq. (2.80) we use #7 = xy = 23 = 24 = 0 and t4 =

t —t" t3 = t,tg = t',t; = 0. The first two lines in Eq. (D.6) are the
single-particle correlation functions presented in Eq. (2.67) with the result
Eq. (2.68).

We continue the calculation for the general case Eq. (D.6). All we need are
correlation functions of the form (®,(x,t)®, o (2’,t")). Using the bosoniza-
tion dictionary Eq. (2.56) and the Fourier decomposition of the phase fields
Egs. (2.64) and (2.65) we obtain for zero temperature

(D s(x, )Py (2, 1))

SuS Ky, sgn(p) sgn(p)
_ vy Ty —alp| ip(a—a)—iu, |p|(t—t') sentp) ;. Senp)
Z AL]p) e e (r—i— K, T+ K, .
p#0

vV=p,0

(D.7)
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In Eq. (D.7), p=2mn/L, n = +1,42, ... with L the length of the Luttinger
liquid and s, = 1 for v = p and s, = s for v = ¢ with s = 4+, — corresponding
to spin T, |. To account for the p-dependence of the interaction parameters
K, we introduce a cut-off A which is finite and on the order of the Fermi
wavelength in the Luttinger liquid, i.e. A ~ 1/pr. We then assume that
K,(p) = K,,u,(p) = u, for |p| < 1/A and K,(p) = 1,u,(p) = vp for
Ip| > 1/A. Accordingly, we split the sum over wavenumbers p in Eq. (D.7)
into terms which are weighted either at small or at large wavenumbers. For
instance the term (K, '+rr'K,) we write as (K, ' +r"'K,) = (K, '+r" K, —
(L+77")) 4+ (L +rr"). The first bracket will only be finite for [p| < 1/A and
we therefore can apply a cut-off function e=*P! in the addend containing this
term. The remaining part (1+77’) is treated in a similar fashion: Adding and
subtracting e APl we can write (14 7r7") = (14 r7')(1 — e APl 4 e=AlPl) The
term (1477")(1—e *P!) is then weighted at large wavenumbers |p| > 1/A and
we will replace u,, by vg in the corresponding p-sum whereas (1 + rr’ e Alpl
is weighted at small wavenumbers [p| < 1/A and we replace u,(p) by u, in
the sum involving that term. By applying this cut-off procedure and using
the identities (for L — 00)

Z e el etp(@—a")—iuy |p|(t—t')
= Ivl
_ Ly (21 I Va+itw(t—#) —R(x_x,») o)
T L Y ‘
R=+,—
and
e—alpl

ipla—a)—iun pl(—) g, (1)

>

|p|

Ll(a+u%a—ﬂ%%x—fﬂ)7 (D.9)

o T \ati(u(t—t) + (z — 1))

true for any cut-off & > 0, we obtain for the average
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o(@ra (@)@, (2,1)
—%SVS,//(KV 1+rr’KV)
:H ( H VA Fi(u,(t—t) — R(x—x)))
v=p,0 R=+,—
y H H (A+Z UF t— t/) _ R(LE . x/)))ésysfj(l+r7«')
V= R a—l—zvpt—t’)—R(x—x’))
T (A= 0=
e A+Z(:E—:E’—|—UF —t))
T (2t =) = @ = a)) T
oo \ i(x —a' +op(t—1))
A+ i(uy(t —t) — (x — ')\ 5t
D.10
8 H (A—Fi(x—x’—i—uy( t')) ( )

v=p,0

From this general formula we can obtain the two-particle Luttinger liquid
correlation function Eq. (D.6) and, as a special case, the Egs. (2.81), (2.83)
and (2.68) in the main text.

The distinction between the cut-off a used in the definition of the field
operator Eq. (D.1) and the cut-off A used for the interaction dependent
parameters K, and wu, is only essential at high energies corresponding to
small distances and/or small times |vpt, z| < A (see Eq. (2.68)). Since the
relevant energies kgT, oy and A are much smaller than vp/A ~ ep, our final
results Eqs. (2.77) and (2.87) could also be obtained by using a single (and
finite) cut-off A.



Appendix E

Exact results for time integrals

In this appendix, we give the exact results for the time integrals in Eqgs. (2.76)
and (2.86). The integrals over the time variable ¢ appearing in Eqgs. (2.76)
and (2.86) have the form

oo

6i25ut
/ dt
0 I
. (ﬁu+u> Q%+4Q
Cosu _
ome XM (25,LL)Q+R !

— NOES] 1P (R Q@+ R; 2A (u, ' —ug ' )op) .

(E.1)

This integral formula is valid for @, R satisfying Re(Q+ R) > 1 (see Ref. [100]
p.345) which is in the range of our interest since we have @Q + R > 2. The
function I'(z) in Eq. (E.1) is the Gammafunction and ;Fi(o; 7; 2) is the
confluent hypergeometric function given by

az  ala+1)2?
1Fi(a; v 2) =1+ —— + ( )

ala+ 1)z .2
M TRETeEE T (E.2)

In the main text we considered only the leading order term of |F; since
higher order terms are smaller by the parameters 20puA/u, and 25pA/u,.
The integrals over the delay times ¢ and ¢” in Eq. (2.86) contain Hankel
functions of the first and second kind which are linear combinations of Bessel
functions of the first and second kind, i.e. H(()l/z) (tA) = Jo(tA) £iYs(tA).
The integrals over " and t” in Eq. (2.86) are therefore linear combinations of
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integrals of the form

[e.e]

lim /dt e MYy (tA)
n—0+
0

= lim [—gr(5+1)(A2+n2)—%<5+” Qs (n/\/m)}, (E.3)

n—0+ ™

and

o0

lim /dt e Jo(tA) ¢
n—0+
0

~ lim, [r(a +1)(A2 +p2) 20D py (n/\/n2 ¥ A2>] . (E4)
77—)

This result is valid for § > —1 (see Ref. [100] p. 691). The functions Q and

P are Legendre functions. The limit n — 07 for Qs(n/v/n? + A?) is (see

Ref. [100] p. 959)

541
Qs(0) = —% = sin(07/2) % (E.5)
and the limit n — 07 for Ps(n//n? + A2?) is
_ VT _ ! r(*3)
Ps(0) = T 1) (5 = ﬁCOS((Sﬂ'/2) m. (E.6)



Appendix F

Response function y,(w)

Here, we calculate the equation of motion for the junction phase fluctuation
¢ and the charge fluctuation @) of the tunnel-junction in the Caldeira Leggett
model

Q&R (o)
Heny = 2wt ; 20, + 2e2L, | (F.1)

The operators of the system and bath satisfy Bose commutation relations
(6, Q] = ie and [¢,, ¢,] = i€d,,, with other commutators vanishing!. In the
Heisenberg picture, an operator A evolves according to A= i[Heny, A]. For
the system variables () and ¢ we obtain the equations of motion

Q=37 (p—0), b= (F2)

= (¢ — ¢n), bn=cg (F.3)

To derive an equation of motion for ¢,, in terms of the system variables only,
we use the equation of motion for ¢, in the equation for ¢,,, and obtain

B+ W, oo = wy &, (F4)

1We use the convention A = 1 like in the main text.
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with w? = 1/L,,C,. This inhomogeneous differential equation can be solved
with the method of Green’s function

t
oult) = 22(0) + [t Gult = )1, (¢, (F.5)
to

where we have defined the force f,(t') = w? ¢(t') and the solution ©?(t) of
the problem without the force, which depends on the initial conditions at .
The Green’s function G, (t — t') is the solution of @, + w? ¢, = 0 for t > t'
and is 0 for t < ¢’ with the boundary condition G, (¢ + 0 —t') = 0, and
LGt —1)|s=p+0 = 1. We find for G, (t —t)

sinfwy, (t — t')]

Wn

Gt —t) = ot —t), (F.6)

which in turn leads to the result for ¢, after performing a partial integration

%MW%wammww—/Wmmwwww<m>

to

Now we use this form of ¢,, in Eq. (F.2) for Q and, by further using ¢ =
e@/C, we obtain the equation of motion for ¢ which can be found in the
literature, e.g. in the book of Ref. [114]

s 1 ! / / /
Q(t)+5/ at'y(t—t)Q(t") = In(t). (F.8)
to
Here, we have introduced the admittance
N
Y(t) = ; @L(j) cos(wnt) (F.9)

and the quantum mechanical noise current

It =3 eén [(n(to) — B(t0)) cos(wat) + ew? gulte) sin(wit)] ,  (F.10)

n=1

where we have used the solution for the homogeneous problem ¢° (t) = ¢, (to)
cos(wpt) + e w? g, (to) sin(w,t). The current Iy depends on the initial condi-
tions of the bath and system. If we take the ensemble average of Eq. (F.8)
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we obtain the classical equation of motion for the charge fluctuation @) on a
capacitor with capacitance C' which is connected in series to an impedance
Z(w)"' = [T exp(—iwt)Y (t) [114]. Since the admittance can be written in
its Fourier representation via Eq. (F.9) we can model any impedance Z(w)
(including dissipation) with a suitable choice of the bath spectrum (L,,, Cy,).
Note that the ensemble average is taken with respect to H,,, only and there-
fore (In(t)) = 0 since In(t) is linear in the coordinates at time ¢, where we
assume that the system (including the bath) is in equilibrium. We can also
write down the equation of motion for the phase ¢

Co(t) + /t dt'Y (t —t") (') = eln(t). (F.11)

to

To calculate the response function x,(w) we have to disturb the system
with an external current /(t) which is done by the perturbation Hamiltonian

H = —%¢[(t). (F.12)

The effect of this additional Hamiltonian changes the equation of motion in
the sense that the noise current Iy (t) — In(t)+1(t). We now assume that in
the distant past tg — —oo the system and bath are in equilibrium described
by the Hamiltonian H,,, only. We then take the expectation value of Eq.
(F.11) and obtain

+oo .

cti) + [t Y- o) (o) = el (F.13)

—00

since (In(t)) = 0. The susceptibility (or response function) is defined via

<wm=3[mﬁwwvwﬂw. (F.14)

(e e}

By going over to Fourier space we obtain xs¢(w) = ep(w)/I(w). By
comparison with the Fourier transformed equation (F.13), the susceptibility
in terms of the impedance Z(w) = Y ~!(w) becomes

)

Xoos(w) = €7 (F.15)
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Here, we used the total impedance Zr = (iwC + Z 1 (w))~!. We have
succeeded in relating the microscopic quantity ygss(w) to the phenomeno-
logical impedance Z(w). We are mostly interested in the correlation func-
tion (p(t)p(0)) with ¢(t) = exp(iHenyt)d(0) exp(—iHenyt). This connec-
tion is achieved by relating the correlation function to the dissipative part
X4o(w) = —Im(xge(w)) of the susceptibility via the fluctuation dissipation
theorem

+oo ) 2
[t 000(0) = o (), (F.16)
— 00 1 —e kT
We then obtain our desired relation between the fluctuation correlator (¢(t)¢(0))
and the impedance of the electrical circuit [114]

ww@pﬁ/”%k%w ™ (F17)

0 W RQ 1 —6_@%.

The quantum resistance R is given here as Rg = 27 /e? (h = 1).
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