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Chapter 1

Introduction

1.1 Problem description

Investors seek to maximise returns and to minimise risk. As risk is man-

ageable but returns are not, these objectives can best be achieved through

risk measurement/management techniques. In this regard, the concept of

diversification plays a central role in modern portfolio theory. It follows

that investors’ welfare can be improved by allocating wealth among a large

number of different assets. Ideally, any poorly performing asset can even-

tually be compensated by for positive performance from other assets in the

portfolio. To put it differently, the idiosyncratic risk of a single asset can

be diversified away leading to lower portfolio risk and thus a higher risk

adjusted portfolio return. Obviously, a necessary condition for risk diversi-

fication to work is that asset returns do not depend on each other. Under

the assumption of normally distributed returns, a standard assumption in

finance, risk and dependence can be expressed by volatility and correlation

respectively.

Low volatility and low correlation with other assets offers diversification

benefits to investors. These two features, together with historically good

performance may explain the increasing attractiveness of hedge funds among

institutional and retail investors in recent years. In the last decade the hedge

fund industry has been the fastest growing asset class in the financial sector.

Despite the decade-long bull market in the 1990s and liquidity/credit crises

1
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in the late 1990s, hedge fund investing has been gaining popularity among

various types of investors. HFR (2007) estimates that the total net assets

in hedge funds are approximately USD 1.4 trillion as of the fourth quarter

2006.

As a result of this growth, an increasing number of studies describing

the various hedge fund characteristics, performance comparison with other

asset classes, and their overall contribution in institutional portfolios has

been produced. Some of the early works are the monographs of Lederman

and Klein (1995), Crerend (1998), Jaffer (1998), Lake (1999) as well as the

studies of Ackermann, McEnally, and Ravenscraft (1999) and Fung and

Hsieh (1997). Other monographs such as Jaffer (2003) focus entirely on the

properties of fund of hedge funds.

The risk and diversification benefits of hedge funds have been studied

in many different ways. Two major events at the end of 1990s; the near

collapse of Long-Term Capital Management and the Asian crisis, have led

regulatory authorities to focus more on studying the risk inherent in hedge

fund strategies. Brown, Goetzmann, and Park (1998) examine the involve-

ment of hedge funds in the Asian crisis of 1997-1998, and the Report of the

President’s Working Group on Financial Markets (1999) deals extensively

with the Long-Term Capital Management incident in 1998 and highlights

the potential risks of excessive use of leverage. The general role played by

hedge funds in financial market dynamics has been studied in Eichengreen,

Mathieson, Sharma, Chadha, Kodres, and Jansen (1998).

The investment risk of hedge funds, their unique risk properties stand

alone as well as in portfolio context have been analysed with standard risk

management tools typically assuming implicitly or explicitly normally dis-

tributed returns. For example, Edwards and Liew (1999) show that adding

hedge funds to traditional portfolios increases the Sharpe ratio of those port-

folios. Purcell and Crowley (1999) show that hedge funds outperform tra-

ditional assets in times of down markets. Diversification benefits of adding

hedge funds are also found in Crerend (1998) and Agarwal and Naik (2000)

as well as in Géhin and Vaissié (2005). In these studies a significant upward

shift of efficient frontier and reduction in risk measures is observed.
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However, hedge funds pose a challenge to standard risk measures based

on normally distributed returns. Recent evidence (see e.g. Schmidhuber and

Moix 2001, Brooks and Kat 2002) casts doubt on the validity of volatility

and correlation as appropriate risk measures for hedge funds. Indeed, the

returns of hedge fund indices are not normally distributed and have exhib-

ited unusual levels of skewness and kurtosis. The asymmetric properties of

hedge fund returns are investigated in Anson (2002a), Ineichen and Johansen

(2002), and Ineichen (2002). These characteristics are consistent with the

complex trading strategies used by hedge funds which present option-like

payoffs (see e.g. Fung and Hsieh 1997, Fung and Hsieh 2001, Mitchel and

Pulvino 2001, Fung and Hsieh 2002c, Agarwal, Fung, Loon, and Naik 2004).

Clearly, volatility and correlation do not provide sufficient information

about risk and dependence when the normality assumption is violated. As

a consequence, applying symmetric measures on hedge funds may lead to

erroneous conclusions. One potential solution to overcome the problem of

non-normality in hedge fund returns is to apply methods that take the asym-

metry in return distribution into account. For instance, Bacmann and Pache

(2004) apply downside deviation, Keating and Shadwick (2002) make use of

the Omega function and Favre and Signer (2002) propose the use of a mod-

ified Value-at-Risk based on Cornish-Fisher expansion.

In this thesis, the use of Extreme Value Theory (EVT) is advocated.

This area of statistics enables the estimation of tail probabilities regardless

of the underlying distribution of hedge fund returns. The fact that it focuses

on the tail returns rather than their means, makes modelling of the whole

time series of returns unnecessary. Consequently, the estimation of Value-

at-Risk and Expected Shortfall can be done under fairly general types of

distributions.

This thesis contributes to the growing literature on risk associated with

hedge funds in two main directions. Firstly, it carefully examines the tail

risk of individual hedge fund strategies and of portfolios built with stocks,

bonds and hedge funds using EVT. Consequently, the first objective is to

evaluate the size of return asymmetry in order to quantify a potential ten-

dency for extreme losses among various hedge fund strategies. The second

objective follows the first one as it attempts to quantify eventual benefits
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of the inclusion of hedge funds in a traditional portfolio (stocks and bonds)

depending on the initial composition of the portfolio and on the type of

hedge funds added. Several papers (Lhabitant 2001, Blum, Dacorogna, and

Jaeger 2003, Gupta and Liang 2003) have already used Value-at-Risk derived

from EVT in the context of single funds or hedge fund indices. Bacmann

and Gawron (2005) evaluates portfolio risk by allocating fund of hedge funds

only.

Secondly, the thesis further measures the dependence between hedge

funds and traditional investments in periods of distressed markets. In such

periods, correlation breaks down and investors’ ability to diversify dimin-

ishes because the asset dependence is much higher than in periods of market

quiescence. For this purpose the main objective is to test explicitly the ex-

istence of asymptotic dependence among hedge funds as well as between

hedge funds and traditional investments.

1.2 Disposition

This work is organised as follows: Chapter 2 introduces risk measurement

techniques especially for assessing risks for non-normal return series; Chap-

ter 3 reviews statistical methods (e.g. EVT) for measuring risk and depen-

dence for asymmetric return distributions; Chapter 4 covers specific charac-

teristics of hedge funds that distinguish them from traditional investments

as well as reasons for their asymmetric return distribution; Chapter 5 em-

pirically examines tail properties of hedge funds and compares them with

traditional investments; Chapter 6 analyses how hedge funds, stocks and

bonds fit together with respect to tail risk; Chapter 7 examines dependence

in the tails between hedge funds and traditional investments is examined in

Chapter 7; and finally Chapter 8 summarises the thesis conclusions.



Chapter 2

The notion of risk

Since this chapter is concerned with formal financial theory, a general sum-

mary of some of the basic ideas in risk management is presented. With

this foundation, the discussion of Value-at-Risk and Expected Shortfall in

analysing hedge funds becomes more meaningful and clear.

2.1 Risk measurement

Describing risk is a particularly difficult task as no commonly accepted defi-

nition exists. In the financial community, risk is usually viewed as exposure

to uncertainty or the danger posed to future outcomes by a decision made

today. In order to quantify this uncertainty, the different possible outcomes

are associated to specific probabilities. Analysing the whole range of proba-

bilities, i.e. probability distribution, is not feasible in practice. This is why

simple statistical measures are used to assess the magnitude of risk. The

most widely used measure to achieve this task has been the variance (or

standard deviation) of returns. Variance describes the variability of returns

or dispersion of returns around their mean return. Thus, the higher the

variance, the more uncertain the return, and therefore the greater the risk.

The vast popularity of variance is largely due to the impact of Modern Port-

folio Theory on finance, which dates back to the seminal paper of Markowitz

(1952). This theory explores how risk averse investors construct portfolios

in order to optimise expected returns for a given level of market risk, from

5
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a mean-variance framework. In this regard, this approach views risk as the

uncertainty of an investment decision.1 Nevertheless, the introduction of the

mean-variance approach has had significant implications on the development

of theory and practice in finance, including that on risk measurement related

to the uncertainty of capital requirement decisions. One of these implica-

tions is the consideration of distributional assumptions in measuring risk,

which is briefly presented below.

Let X denote a random variable, which represents a quantity whose

outcome is uncertain. The distribution of X is defined by the probabilities

of all events which depend on X. This probability distribution is uniquely

specified by the (cumulative) probability distribution function.2

F (x) = P (X ≤ x), −∞ < x < ∞. (2.1)

If F (x) is a continuous function of x whose first derivative exists and is

continuous, then F (x) can be written as

F (x) =
∫ x

−∞
f(t)dt (2.2)

where f(x) is called the probability density function of the random variable

X and t is used as the variable of integration. A distribution function F (x)

is often represented by moments that characterise its main features. Thus,

the rth moment of X (or of the distribution of X) is defined by

E[Xr] =
∫ ∞

−∞
xrf(x)dx. (2.3)

The first moment is the mean or expected value which specifies the location

of the centre of the distribution and it is often denoted by µ. Its central

moment of order r is defined as

µr = E[(X − µ)r] =
∫ ∞

−∞
(x− µ)rf(x)dx. (2.4)

Hence, µ2 is the variance which measures the dispersion around the mean of

X. The positive square root of variance is called the standard deviation of
1See for example the monograph of Moix (2001) for a thorough discussion of these

issues.
2See Medenhall, Wackerly, and Scheaffer (1990) or any other standard text on statistics

for the properties of F (x).
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X. Its third and fourth moments are skewness and kurtosis. The former is

a measure of asymmetry in the distribution whereas the latter describes the

shape of the distribution. A useful distribution often applied in finance is

the normal (Gaussian) distribution. It is a bell-shaped distribution which is

symmetric with respect to its mean. As this distribution is fully described

by its first and second moments, its variance is the adequate measure of risk.

Hence, the appropriateness of variance as a risk measure depends strongly

on the degree of non-normality of the returns data.3

A cornerstone in the mean-variance approach is the quantification of

diversification benefits. Markowitz (1952) shows that in attempts to reduce

portfolio risk (variance), investors must avoid investing in securities with

high covariances among themselves. This means that measuring the degree

of dependence between securities is crucial in determining the magnitude of

risk where more than one asset is involved. Consequently, in addition to the

first two moments of each asset, to construct a properly diversified portfolio,

Markowitz’s model also requires the expected correlation of each component

with every other component. Correlation is a standardised covariance that

traditionally has served as a measure of dependence. It is obvious that

correlation is strongly related to the variance of the individual assets. Thus,

its adequacy as a measure of dependence must be evaluated under the same

assumptions as those of variance.

Critics of variance point out that it implies the same sensitivity in both

upside and downside movements in return, while investors only dislike down-

side movements. This very strong assumption has been challenged by the

emergence of the Prospect Theory (Kahnemann and Tversky 1979). In that

framework, the investor is more affected by a drop in his wealth than by an

increase. Moreover, there is strong empirical evidence that asset returns are

not symmetric around the mean which rules out the normality assumption.

This evidence goes back to Mandelbrot (1963), who argued that volatility
3Besides the normality assumption, a second justification for the use of variance as

a risk measure comes from the Markowitz (1952) approach. It is well known that this

approach is appropriate for investors having quadratic preferences. In that case, investors’

expected utility is only a function of the first two moments of the distribution, and thus

the variance is the adequate measure of risk.
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is time varying and large returns are much more frequent than predicted by

the Gaussian distribution.4 Consequently, the variance and correlation of

returns do not provide sufficient information about risk and dependence.

Therefore, risk measures that emphasise the downside risk only have

been proposed. In this regard, one considers the concept of Lower Partial

Moments.5 Within this framework risk is measured in terms of probability

weighted deviations below some specified target rate of returns q while al-

lowing a more general set of assumptions regarding investors’ preferences. A

Lower Partial Moment of order n below a specified target level q is computed

as:

LPMn,q =
∫ q

−∞
(q − x)nf(x)dx (2.5)

where n = 2 refers to target semi-variance. For the purpose of capital

requirements, risk measures that focus solely on the lower tail of the distri-

bution have been designed. In this context, the most widely used measures

are various generalisations of Value-at-Risk and Expected Shortfall (see e.g.

Jorion 1997, Moix 2001). Within this framework, risk is assessed in terms of

predetermined probability of losing a portfolio value over a certain holding

period.6

Given the empirical findings of asymmetric return distributions, the use

of correlation as a measure of dependence has been challenged in a simi-

lar fashion as variance. More general, empirical evidence has shown that

correlation changes dramatically in periods of financial distress, making di-

versification less valuable.7 This has led to a development of correlation

measures either conditional on time or on the size of the returns (Campbell,

Forbes, Koedijk, and Kofman 2003). The former make use of the famil-
4Mandelbrot (1963) advocated the use of Lévy-stable distributions in fitting speculative

price changes. These allow fat tails and imply that the second moment might not be finite.

This family of distributions includes Lévy, Cauchy and Gaussian distribution, for which

closed form formula exist. See Weron (2001) for more details.
5Moix (2001) is a formal treatment of Lower Partial Moments and its relation to other

risk measures, whereas Persson (2000) offers an empirical case study.
6Section 2.4 and Section 2.5 deal with these measures, respectively.
7See for example the work of Longin and Solnik (2001), Karolyi and Stulz (1996),

and Ang and Chen (2002). Zimmermann, Drobetz, and Oertman (2002) offers a compre-

hensive overview on this topic.
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iar (multivariate) GARCH modelling, while the latter approaches focus

on tail correlation by utilising the extreme value approach (Longin and

Solnik 2001, Poon, Rockinger, and Tawn 2003), or the closely related con-

cept of copula (Embrechts, McNeil, and Straumann 2002).8

2.2 Types of financial risks

Financial institutions such as banks, hedge funds, and (re)insurance com-

panies are exposed to several types of financial risks. Generally, they are

classified into market risks, credit risks, liquidity risks, operational risks and

legal risks. In a broader perspective, however, each of these corporations

faces more general risks too, such as business risks and strategic risks. How-

ever, the daily business of financial institutions is concerned with managing

an enormous number and variety of financial transactions and thus the fi-

nancial risks are of key interest to the financial industry. The following

description summarises the characteristics of the various financial risks

Operational risk. This risk results from mistakes or failures in internal

operations. It covers a wide area that can be divided into human/technology

errors such as management failure, fraud, flawed system implementation,

conducting business in an unethical or risky manner, and risks that are

outside the control of the firm such as natural disasters and political or

regulatory regime changes (Allen, Boudoukh, and Saunders 2004).

Credit risk. This risk arises when a counterparty may fail or might be

unwilling to meet its obligations and thus causes the asset holder to suffer

financial loss. This class includes: downgrade risk, which refers to the risk

that a counterparty might be downgraded by a rating agency; sovereign risk,

which refers to the default of a country; and settlement risk, which arises

when there is non-simultaneous exchange of value (Bustany 1998).
8See Mari and Kotz (2001) for a thorough treatment of the various state-of-the-art

dependence measures, including a historical background of the dependence concept. Sec-

tion 3.5 presents extremal dependence.
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Legal risk. This risk is related to the legal uncertainties arising when

a counterparty does not have the regulatory authority to enter financial

transactions. It could also include activities that contravene government

regulations, such as market manipulation and insider trading (Jorion 1997).

Liquidity risk. This risk consists of market/product liquidity risk and

cash flow/funding liquidity risk. The latter relates to the inability to raise

the necessary cash to roll over debt, or to meet the cash, margin, or collateral

requirements of counterparties. Market/product liquidity risk is related to

trading risk and arises when a financial institution is unable to execute

a transaction in the prevailing market conditions. It may occur during

market turmoil when liquidity dries out and the bid-ask spread increases

dramatically. This risk is difficult to quantify and varies across market

conditions (Crouhy, Galai, and Mark 2001).

Market risk. This risk arises from financial transactions and can be de-

fined as the risk resulting from adverse movement in market prices. There

are four major types of market risk (Basle Committee on Banking Supervision

1996):

• Interest rate risk. It is divided into specific risk that refers to an ad-

verse movement in the price of an individual security owing to factors

related to the individual users and general market risk that refers to

the risk of loss arising from changes in market interests rates.

• Equity risk. As with debt securities, it is expressed in specific risk

that refers to characteristics specific to the firm and can be eliminated

through portfolio diversification, and general market risk which can

not be diversified and refers to the sensitivity of an instrument or

portfolio to a change in stock market indices.

• Foreign exchange risk. Due to macroeconomic relations the major

sources of foreign exchange risk are fluctuations in international inter-

est rates and their imperfect correlations with currency prices.

• Commodity price risk. The risks associated when holding or taking

positions in commodities are generally more complex and volatile than
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the previous risks. Changes in spot positions are the major source of

commodity risk. Additional risks such as basis risk, the risk of change

in the cost of carry and forward gap risk may also fit into this type of

risk.

Understanding, identifying and controlling each of the risks above calls for

a measurement system that can quantify the exposure to each type of risk.

The so-called Value-at-Risk (VaR) measure has become a popular frame-

work for this purpose. It calculates the total market risk associated with a

firm’s trading book in terms of a probable loss at a given confidence level

and summarises it in a single monetary figure. In a similar fashion, the VaR

framework has been adopted to quantify the exposure to credit and opera-

tional risks. Liquidity risk is more difficult to quantify in a single number.9

Before formalising the VaR concept, however, it is worthwhile to reflect

upon the general needs for risk management, which lie at the foundation of

developing such a measure as VaR.

2.3 Historical evolution

From a historical point of view, one can distinguish several factors that have

had an influence on the process leading to the introduction of risk manage-

ment systems. Perhaps the starting point of this process is the breakdown

of fixed foreign exchange rates regimes in the early 1970s. As a consequence,

the increased volatility in exchange rates forced financial institutions to look

for instruments that could protect them from the increasing exposure to for-

eign exchange risk. This development led to the introduction of financial

derivative instruments (Jorion 1997). A few years later, the oil-price shocks,

starting in 1973, and the resulting inflationary pressure in major economies

in conjunction with floating exchange rates led to instability in interest rates.

The market response to the increased interest rates volatility was to create

a wide range of new derivative instruments to trade these risks (Crouhy,

Galai, and Mark 2001). Further deregulations and globalisation of financial
9See the monographs of Crouhy, Galai, and Mark (2001) and Allen, Boudoukh, and

Saunders (2004) for a more detailed description on the applications of VaR concept to

these risks.
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markets and changing monetary regimes forced financial institutions to pay

more attention to the financial markets and the linkages between them. The

unpredictability that had arisen by means of volatility increased awareness

of the need to address financial risks.

Moreover, the increased competition among banks and customers’ de-

mands for more sophisticated and complicated solutions to reduce their risk

exposure have, along with technological changes, contributed to the rapid

development of derivative instruments. This growing activity in derivative

markets and the dynamic nature of these instruments, including the poten-

tial for leverage, exposed banks to various risks associated with these trading

activities. Additionally, these instruments did not appear on balance sheets

which precluded the possibility of disclosing the true risk of banks. The

dramatic disasters attributed to derivative losses such as the fall of Bar-

ings bank in 1995 and the near bankruptcy of Metallgesellschaft in 1993

highlighted the needs for a proper risk management tool.10

In such situations, regulatory authorities have been forced to establish a

new safe and sound financial system that will ensure banks remain capable of

meeting their obligations and act as a cushion against potentially disastrous

losses. This would prevent destabilising effects on the economy. The first

attempt in this direction was set up by the Basle Committee on Banking

Supervision (1988), a body of the Bank for International Settlements (BIS).

The co-called 1988 BIS Accord established international minimum capital

guiding principles in order to assess capital required to cover the banks’ risks

and came into force at the end of 1992. The exposure of each asset position

is calculated according to a risk-weighting scheme and then the necessary

capital is set to be equal to at least 8 percent of the total risk-weighted

assets of the bank.

Although this Accord took off-the-balance engagements into account,

it essentially focused on credit risk only and ignored exposure to market

risks. Moreover, it did not acknowledge the effects of diversification across

issuers, industries and geographical locations that may reduce credit risk

substantially. Nevertheless, the Accord and the role of the BIS has been
10See Jorion (1997) for details on these and other disasters.
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seen as important milestone in forcing banks to quantify risks, evaluate

risks and monitor risks.

Aware of these drawbacks and in view of the increasing volume of trade

in derivatives, a new solution had to be sought for the construction of cap-

ital adequacy. In April 1993, the BIS11 came forth with a standard model

approach that extended the initial Accord to incorporate market risks. This

building-block approach required banks to hold additional regulatory capital

against market risk in their trading book. The ongoing industry consulta-

tions led to the introduction of the “1996 Amendment”12 that permits banks

the use of proprietary in-house risk measurement models to determine their

capital charge, as an alternative to the standardised measurement frame-

work. It was implemented at year-end 1997. The foundation of the proposed

alternative is based on the Value-at-Risk framework.

Recently, BIS developed a revised framework, the so called BIS II13 which

is based on three pillars: minimum capital requirement, supervisory review,

and market discipline. It is a result of many consultation proposals and

quantitative impact studies that were circulated to supervisory authorities

worldwide since 1999.14 The main objectives behind this approach were

to further strengthen the safety and soundness of the international banking

system by defining more risk sensitive capital requirements while eliminating

competitive inequalities among internationally active banks. Regarding the

minimum capital requirement, the major changes are related to credit risk

assessment and incorporation of operational risk. There are, however, no

changes in treatment of market risk from the “1996 Amendment”. It is

intended that the BIS II framework will be available for implementation as

of year-end 2006.
11Basle Committee on Banking Supervision (1993)
12Basle Committee on Banking Supervision (1996)
13Basle Committee on Banking Supervision (2004)
14See www.bis.org/publ/bcbs107.htm for a historical overview of the consultative pro-

cess and related literature.
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2.4 Value-at-Risk and internal models

VaR was originally identified by the Group of Thirty (1993), a working group

of academics, end-users, lawyers, dealers and financiers, whose major recom-

mendation was to value positions on mark-to-market principles. It became

popular in 1994 as the US investment bank J.P. Morgan made available

to the public their own risk measurement system, called RiskMetrics (J.P.

Morgan 1996). Jorion (1997, p.19) gives the following definition of VaR:

VaR summarises the expected maximum loss (or worst loss) over

a target horizon within a given confidence interval.

Its great advantage stems from its reporting simplicity, i.e. it can be ex-

pressed in a single monetary number. For example, a one-day VaR with

95% confidence of value $10 means that, the amount we can lose by holding

this asset one day is $10 or more. Equivalently, the probability of losing

more than $10 by holding this asset for one day is 5%.

Using statistical language, it follows naturally that V aRp can be expressed

as the upper quantile p ∈ (0, 1) of the loss distribution F .15 It turns out

that V aRp is defined as

V aRp = xp = F−1(p) (2.6)

where F−1 is the inverse of loss distribution F .

In general, one can distinguish between two types of VaR models: para-

metric and nonparametric VaR. Parametric VaR, also referred to as the

variance/covariance method, assumes that underlying risk factors follow the

normal or some other specified distribution. The RiskMetrics method, for

instance, uses this approach. It assumes that the returns on assets are mul-

tivariate normally distributed. The great advantage of this method is that

VaR can be expressed as a function of the standard deviation (volatility) of

the returns. We are then concerned about calculating the one-sided confi-

dence interval. Hence, VaR can be expressed as

V aRp = µ + σΦ−1(p) (2.7)

15typically the value of p is 0.95 or 0.99 denoting the desired confidence level.
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where Φ−1(p) is the inverse of the standard normal distribution function,

and σ together with µ denote the standard deviation and mean, respectively.

By choosing an appropriate level of confidence we can decide the proportion

of time when VaR will be exceeded. For example, if one wishes to measure

VaR with one-sided 99% confidence interval the Φ−1(0.99) will be equal to

2.33 and the calculation of VaR is reduced to estimating mean and volatility

of the returns. At this point, the volatility can be estimated either using

the unconditional or the conditional approach. The conditional approach, as

used in the RiskMetrics method, recognises that the returns exhibit volatility

clustering phenomenon. However, the simplicity of this approach has its

drawbacks, most notably the distributional assumption of normality that

ignores fat tails, a characteristic common to financial return series. Fat tails

in distribution imply that large losses occur more frequently than the normal

distribution would lead us to believe. Obviously, symmetric risk measures

become inappropriate when used with non-symmetric distributions. As a

consequence, the assumption of normality will typically understate the level

of risk.

As an alternative to the parametric approach, one can apply the histor-

ical simulation method, also called the nonparametric approach. Using this

method we do not need to infer a probability distribution and the only as-

sumption regarding the stochastic nature of the returns is that they should

be independent and identically distributed (iid) (el Jahel, Perraudin, and

Sellin 1998). Hence, at least to some extent it accounts for any non-normal

characteristics of returns such as skewness or fat tails. The current port-

folio is revalued using changes in the risk factors derived from historical

data. Keeping the weights at their current values gives us a set of hypothet-

ical portfolio returns for which the hypothetical distribution is constructed.

VaR is then obtained by simply reading off the sample quantile from the his-

togram at the desired confidence level. However, since only one sample path

is used, it means that the trends of past changes will continue in the future.

Therefore, the number of observations constructing the historical data is a

critical input to this method. It is clear that calculating VaR at high levels

such as 99% is only possibly provided that such an extreme return is present

in our sample length (Ridder 1997). Including or excluding a few observa-
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tions in the beginning of the sample may cause large fluctuations of the VaR

estimate. Consequently, we are faced with a trade-off problem between long

and short sample size (Hendricks 1996). Longer samples might no longer be

relevant to the current market conditions and any regime changes or mean

reversion tendency potentially violates the iid assumption. On the other

hand, due to lack of data short samples reduce the statistical precision of

the VaR estimates. Furthermore, the VaR may change dramatically from

day-to-day.16

Both methods have their strengths and weakness, and their application is

strongly dependent on the specific composition and complexity of the port-

folio and the data bank resources that risk managers possess. For instance,

a great number of derivative instruments in the portfolio would support

the use of the historical method in preference to the variance/covariance

method. Conversely, lack of distributional assumptions make it impossible

to extrapolate beyond the range of the data. This is a significant drawback

since the essential interest for risk managers is to look for the presence of

extreme returns, and hence making predictions regarding tail probabilities.

Large, unpredicted events are relatively common in financial markets. As a

matter of fact, neither method is able to tackle this issue properly.17 This

suggests looking for a semi-parametric approach that addresses fat tail prop-

erties, in the sense that a probabilistic argument concerning the behaviour

of rare events is combined with the historical simulation method.

The so-called extreme value theory (EVT) provides a statistical method-

ology to deal with rare events. One advantage of EVT is the fact that it

focuses on the extreme returns rather than their means. As a consequence,

modelling the whole time series of returns is not necessary. Additionally,

EVT uses limiting distribution for extreme returns, regardless of the original

distribution. This means that one does not have to make any assumptions

about the distribution function of our portfolio returns in order to assess

extreme quantiles and event probabilities.
16Allen (1994) offers a discussion of the advantages of the historical simulation approach

over the parametric approaches
17A comprehensive empirical comparison of the various VaR models can be found

in van den Goorbergh and Vlaar (1999) or Zucchini and Neumann (2001)



Chapter 2. The notion of risk 17

EVT in general and the so-called peak-over-threshold method in partic-

ular have received a great deal of attention in financial applications. Longin

(1996) showed that the tails of stock returns belong to the Fréchet class18 and

he initiated the use of EVT for capital requirements purposes too. Daniels-

son and de Vries (1997) and McNeil (1998), McNeil and Frey (2000) as

well as Longin (2000) give a demonstration of different EVT approaches for

VaR estimation. Embrechts, Resnick, and Samorodnitsky (1999) provide

a summary of general EVT results with applications to finance and insur-

ance. EVT itself, however, is not a recent innovation. For many years,

it has been successfully applied in the area of environmental design. The

estimations of extreme behaviour of sea levels, rainfalls, air pollution etc,

belong to the most important applications (e.g. Smith 1989, Davison and

Smith 1990, Coles 1991). Other fields where EVT plays an important role are

modeling of insurance losses (e.g. Hogg and Klugman 1984, McNeil 1997, Mc-

Neil and Saladin 1997) and teletraffic data (Resnick 1997) as well as survival

analysis. An up to date summary of the EVT theory and various applica-

tions is to be found in Kotz and Nadarajah (2000) and Coles (2001).

2.5 Expected shortfall

One of the shortcomings of VaR as a risk measure, as emphasised by Daniels-

son (2002) and Embrechts, McNeil, and Straumann (2002), is that it only

provides a point estimate of the loss distribution. It does not say anything

about the size of losses given that the loss above VaR has occurred. In other

words, VaR measures the probability of default only, but not the average

loss in case of default. Thus, VaR ignores important information regarding

the tails of the underlying distribution. For example, if the 95% VaR is $10,

we are not able to state whether the maximum possible loss is $15 or $1000.

What one obtains from VaR is that in 5% of worst cases the loss will be

higher than $10. Thus, the definition of VaR as a maximum expected loss

is obviously wrong (see e.g. Acerbi, Nordio, and Sirtori 2001, Jaschke 2001).

According to Acerbi, Nordio, and Sirtori (2001), the correct version of VaR

delivers the answer to the question: what is the minimal expected loss of 5%
18This distribution represents the fat tail family of distributions in EVT
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worst cases? In situations where both the normal and EVT VaR produce

the same number, the information about the shape of the tail beyond that

loss is especially important.

Banking supervision should try to minimise the expected loss in the

event of bankruptcy. However, interpreting the BIS’ three zone approach

it follows that a model that has many small exceedances will be rejected

whereas a model with few very high exceedances will be accepted.19 This

is precisely the opposite of what banking supervision seeks to achieve. Fur-

thermore, Artzner, Delbaen, Eber, and Heath (1999) have shown that a

quantile based risk measure, such as VaR, is not coherent for non-normal

data because it fails to be subadditive. Consistent with the authors a risk

measure ρ(.) is coherent if it satisfies the following properties:

• translation invariance ρ(X + a) = ρ(X) + a

• subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y )

• positive homogeneity ρ(λX) = λρ(X) for all λ ≥ 0

• monotonicity ρ(Y ) ≤ ρ(X) for all X and Y with Y ≤ X

The subadditivity property plays an especially important role in practical

applications. A risk measure is subadditive when the risk of the total po-

sition is less than or equal to the sum of the risk of individual portfolios.

Clearly, subadditivity is a highly desirable property which requires that risk

is reduced due to portfolio diversification effects. Violation of this property

implies that the VaR of a portfolio may be larger than the sum of VaRs

of the individual assets. This would cause a number of problems when ag-

gregation of risks across different units is considered as well as for capital

requirements and portfolio optimisation. The references cited above give

several examples of practical difficulties in cases when subadditivity is not

satisfied.

19This three zone approach serves a test of model accuracy. Depending on the number of

violations a corresponding penalty factor is added, leading to a higher capital requirement.
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There is, however, a measure that is subadditive and considers loss be-

yond VaR level. Artzner, Delbaen, Eber, and Heath (1999) have proposed

the use of expected shortfall (ES) to overcome the problems associated with

VaR. It is defined as

ESp = E[X|X > V aRp]. (2.8)

The relation to VaR can be expressed by (McNeil 1999):

ESp = V aRp + E[X − V aRp|X > V aRp] (2.9)

where the second term is the mean excess function which describes the

fatness of the tail in EVT.20 Consequently, by using EVT we can easily

estimate the ES and the drawbacks of VaR discussed above can simply be

adjusted for by adding an appropriate factor. Hence, ES summarises the

tail of the loss distribution into a single number, conditional on loss being

beyond the VaR level. Clearly, assuming for example a 95% confidence level,

the ES tells us the expected loss given that we actually get a loss in the 5%

tail. Finally, despite VaR’s drawbacks as risk measure, as can be seen from

equation (2.9), a good forecast of ES requires an accurate measure of VaR.

20A detailed description of mean excess function is given in Section 3.3. See also (Moix

2001) for the relation of VaR and ES to Lower Partial Moments.



Chapter 3

Extreme Value Theory

This chapter will give an explanation of the statistical theory that justifies

the use of extreme value theory in calculations of Value-at-Risk and Ex-

pected Shortfall. Besides the derivations forming the peak over threshold

approach, a description of the extremal dependence in the bivariate context

will be provided.

3.1 Classic Extreme Value Theory

Assuming X1, X2, . . . , Xn as a sequence of iid random variables with com-

mon distribution F we are especially interested in a possible distribution or

classes of distributions of the maximum Mn = max{X1, X2, . . . , Xn} as the

sample size n increases to infinity. In other words, we are looking for limiting

forms for the distribution function of Mn given as (Leadbetter, Lindgren,

and Rootzén 1983):

Pr{Mn ≤ x} = Pr{X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x}
= Pr{X1 ≤ x}Pr{X2 ≤ x} . . . Pr{Xn ≤ x}
= Fn(x).

The issue of finding a limiting distribution for the sample maxima is simi-

lar to the concept of central limit theorem when the unknown distribution

of sums leads to the normal distribution (Beirlant, Teugels, and Vynckier

1996). As for the central limit theorem one seeks a sequence of normalising

20
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constants an > 0 and bn such that (Mn−bn
an

) converge in distribution, so that

Pr
{

Mn − bn

an
≤ x

}
= Pr{Mn ≤ anx + bn}
= Fn(anx + bn) ⇒ H(x) (3.1)

where H is a nondegenerate distribution function. Then, as n → ∞, from

the so-called extremal types theorem1 it is known that H must be one of the

three fundamental types of extreme value limit laws:

Type I (Gumbel) : Λ(x) = exp{−e−x}, x ∈ R

Type II (Fréchet) : Φα(x) =





0, x ≤ 0

exp{−x−α}, x > 0
α > 0,

Type III (Weibull) : Ψα(x) =





exp{−(−x)α}, x ≤ 0

1, x > 0.
α < 0,

In other words, the limiting distribution for sample maxima follows one of

the three distributions specified above, whatever the parent distribution F .

The expression (3.1) holds if and only if,

lim
n→∞n(1− F (anx + bn)) = − lnH(x). (3.2)

If the condition (3.2) is satisfied one says that the unknown distribution F is

in the maximum domain of attraction of H, F ∈ MDA(H). The parameter α

is called the shape parameter and gives an indication of the heaviness of the

tails, the lower the α the heavier the tail. The importance of this theorem

for modelling sampling maxima is comparable to that of the central limit

theorem in modelling averages. While the normal distribution is a limit law

for sums of iid random variables the three extreme value limit distributions

are limit laws for maxima of iid random variables.2

Since the Fréchet distribution is the only limit law that reveals the heavy

tail behaviour it is, naturally, of special interest in financial applications.

Heavy tailed distributions are expressed by using the concept of regular
1See e.g. Leadbetter, Lindgren, and Rootzén (1983)
2The domain of attraction problem, i.e. how to find a suitable sequence of an and bn in

order to achieve convergence of F to H is of probabilistic nature and will not be discussed

here. See the monographs of Leadbetter, Lindgren, and Rootzén (1983), Resnick (1987),

and Embrechts, Klüppelberg, and Mikosch (1997) for derivations and proofs.
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variation which means that the tail of the distribution function F decays

like a power function at infinity:

1− F (x) = x−αL(x), (3.3)

where L is slowly varying, that is, limt→∞ L(tx)/L(t) = 1 for x > 0 and

t → ∞. According to Gnedenko (1943), a distribution F having a tail

1 − F (x) which is regularly varying with index −α, α > 0, is the only

necessary and sufficient condition for a distribution function F to belong to

the domain of attraction of the Fréchet distribution.

Consequently, the regular variation defines the tail fatness of a distribu-

tion and any distribution with a tail behaving as that of the Fréchet distri-

bution is called a Fréchet type distribution. The class of distributions of this

type includes the Pareto, Burr, Cauchy, Stable laws with exponent α < 2,

log-gamma, log-hyperbolic, log-logistic and t-distributions. The properties

and the accompanied slowly varied functions of these distributions can be

found in Beirlant, Teugels, and Vynckier (1996). The class of distributions

in the domain of attraction of the Gumbel type characterises an exponen-

tially decreasing tail and includes the normal, exponential, gamma, and

log-normal distributions. Distributions with a finite upper bound, like the

uniform in (0,1) and beta distributions, belong to the domain of attraction

of the Weibull type.3 Figure 3.1 illustrates extreme value distributions with

shape parameter α = 2 for Fréchet and Weibull distributions.

For convenience, the three types of extreme value distribution may be

combined into the single Generalised Extreme Value(GEV) distribution Hξ;µ,σ:

Hξ;µ,σ(x) =





exp
[
−

(
1 + ξ x−µ

σ

)−1/ξ
]
, ξ 6= 0

exp
(
−e−(x−µ)/σ

)
, ξ = 0

(3.4)

with scale, location and shape parameters σ,µ and ξ = 1/α respectively. In

the literature, the shape parameter is also termed tail index. The case ξ > 0
3The necessary and sufficient conditions as well as the choice of norming constants for

the domain of attractions of the two remaining extreme value distributions can be found

in Resnick (1987), Leadbetter, Lindgren, and Rootzén (1983) or Embrechts, Klüppelberg,

and Mikosch (1997).
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Figure 3.1: Extreme value distributions with shape parameter α = 2.

corresponds to the Fréchet distribution with shape parameter α = 1/ξ, the

case ξ < 0 gives the Weibull distribution with shape α = −1/ξ, and finally

ξ = 0 gives the Gumbel distribution. The mean of this distribution exists if

ξ < 1 and the variance if ξ < 1/2, more generally, the k ’th moment exists

for ξ < 1/k.

3.2 Peak over threshold

Modelling extreme events by means of the aforementioned extreme value

distributions requires a sample of maxima collected in certain blocks or

subperiods. A more efficient use of data is offered by the peak over threshold

(POT) method, in which all observations exceeding a (high) pre-specified

threshold are considered. Conditional on the event that the random variable

X is larger than the threshold u and denoting these exceedances by y, one is
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interested in estimating the distribution function Fu called the conditional

excess distribution function:

Fu(y) = P (X − u ≤ y | X > u), 0 ≤ y ≤ xF − u (3.5)

which can be written as

Fu(y) =
F (u + y)− F (u)

1− F (u)
=

F (x)− F (u)
1− F (u)

(3.6)

where xF ≤ ∞ is the right endpoint of F .

Given that the parent distribution F is in the MDA of GEV, Pickands

(1975) has shown that the limiting distribution for the exceedances over

a sufficiently high threshold is well approximated by the generalised Pareto

distribution (GPD), Fu(y) ≈ GPDξ,σ(y), for u →∞. The GPD is expressed

as

GPDξ,σ(x) =





1−
(
1 + ξ

σ y
)−1/ξ

, ξ 6= 0

1− e−y/σ, ξ = 0.
(3.7)

The choice of threshold must be high enough for the limit theorem to be

valid but not too high in order to have efficient estimation. As with the

GEV distribution, the mean exists if ξ < 1, and the variance if ξ < 1/2.

Redefining the GPD as a function of x with x = u + y, i.e. GPDξ,σ(y) =

GPDξ,u,σ(x), and using the expression (3.6) one can derive the model to

build a tail estimate of F (x) (McNeil and Saladin 1997):

F̂ (x) = (1− F (u))GPDξ,u,σ(x) + F (u). (3.8)

Fu now is replaced by GPD and the F (u) can be estimated by (n − k)/n,

where n is the total number of observations and k the number of observations

exceeding the threshold u. This turns to

F̂ (x) =
k

n

(
1−

(
1 + ξ̂

x− u

σ̂

)−1/ξ̂
)

+
(

1− k

n

)
(3.9)

and by inverting for a given probability p > F (u) one obtains the quantile

(VaR) estimation

V̂ aRp = x̂p = u +
σ̂

ξ̂

((
n

k
(1− p)

)−ξ̂

− 1

)
. (3.10)
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Figure 3.2: Pareto and Fréchet density with shape parameter α = 3.

For different values of the shape parameter ξ the parametrisation of GPD,

and likewise GEV, can be outlined within three submodels corresponding to

that of extreme value distributions. Each single GPD is in the MDA of the

comparative extreme value distribution and the density has an upper tail

similar to that of an extreme value density.4 The mathematical relation be-

tween extreme value and generalised Pareto models is: GP = 1 + log(EV ).

Figure 3.2 illustrates the tail equivalence between Pareto and Fréchet dis-

tributions.

3.3 Mean excess function

The concept of mean excess function is a useful tool in implementation

and estimation of EVT as well as in the derivation of the expected short-

fall. It is often handled as a diagnostic tool with the intention of exploring

the heavy-tailedness assumption and to assist in selecting the appropriate

threshold (Davison and Smith 1990). Assuming that E(X) < ∞ the mean
4See e.g. Reiss and Thomas (1997) for broader description.
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excess function e(u) of X is given by

e(u) = E (X − u|X > u) =
∫∞
u (1− F (x))dx

1− F (u)
. (3.11)

It is the mean of the excess distribution function above the threshold u

expressed as a function of u. Investigating the shape of the mean excess

function reveals information about the tail behaviour of the distribution.5

For instance, the theoretical e(u) of the exponential distribution is constant

for all u > 0. For a thinner-tailed distribution one observes a decreasing

function e(u), while a heavier-tailed distribution displays a linearly increas-

ing e(u). Thus plotting the mean excess function against u helps to visually

decide the threshold.6 The slope of the empirical e(u) should change from

horizontal to a positive trend at the level where the Pickands’ theorem comes

to be valid. Following Davison and Smith (1990), it can be shown that the

mean excess function for the GPD takes on the following form

e(u) =
σ + ξu

1− ξ
. (3.12)

As it has already been pointed out, one of the major objectives for risk

management is to obtain a measure that reveals the average expected loss

given that the VaR is exceeded. The linearity of the mean excess function

implies that once we find that GPD is valid at a threshold u, then it should be

valid at all thresholds greater than u with the same shape parameter, but a

different scaling. This property allows us to calculate the losses beyond VaR.

Bearing in mind the definition of expected shortfall and using the expressions

(3.12), one can show that ES for the GPD distribution is (McNeil 1999):

ÊSp =
̂V aRp

1− ξ̂
+

σ̂ − ξ̂u

1− ξ̂
. (3.13)

5Any continuous distribution function is uniquely determined by its mean excess func-

tion; see the monographs of Embrechts, Klüppelberg, and Mikosch (1997) and Beirlant,

Teugels, and Vynckier (1996) for a large sample of mean excess functions and their deriva-

tions.
6That is, one computes en(u) =

∑n

i=1
(Xi − u)+/

∑n

i=1
1{Xi>u} and plots the ex-

ceedances over u against u for X1,n ≤ u ≤ Xn,n.
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3.4 Shape parameter estimation

There are a variety of shape parameter estimators in the literature, each

one with its own drawbacks and advantages depending on the underlying

distribution it aims to fit.7 The fact that financial returns are assumed to be

heavy tailed makes distributions with a Fréchet type tail suitable members

for the modelling of extreme quantiles. However, as the parent distribution

is usually not known prior to estimation, the GPD representation plays an

important role. The estimation procedure in this work will consider the main

two estimators; the Pareto based Hill estimator and the standard maximum

likelihood estimation covering the whole range of ξ in the GPD.8

The most common method in statistical estimations is the maximum

likelihood method. Its asymptotic properties in an extreme value context

has been investigated in Smith (1985, 1987). Assuming that the underlying

data is generated by a GPD, the log-likelihood function is given by

` ((ξ, σ)) = −n ln σ −
(

1
ξ

+ 1
) n∑

i=1

ln
(

1 +
ξ

σ
Xi

)
. (3.14)

For ξ > −1/2, it is shown that the maximum likelihood estimate has stan-

dard asymptotic first order properties, in particular it is asymptotically nor-

mal, unbiased and efficient. Cases for ξ < −1/2 are rarely found in financial

applications. Estimation of the shape parameter for distributions satisfying

the regular variation condition in (3.3) is obtained by means of Hill’s (1975)

estimator. Using the k upper order statistics in the estimation, the Hill

estimator and its scale take on the following form:

ξ̂k = α̂−1
k =

1
k

k∑

i=1

log
Xn−i+1

Xn−k
, (3.15)

and

ĉk =
k

n
X

1/ξ
n−k (3.16)

where Xn−k is the kth order statistic taken as a threshold. Provided that

the sequence k →∞ and k/n → 0 as n →∞ it is shown that this estimator

is a consistent estimator of ξ. As its focus is on the case ξ > 0 only it is
7See e.g. Beirlant, Teugels, and Vynckier (1996) and Reiss and Thomas (1997).
8Pareto distribution belongs to MDA of the Fréchet distribution.
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most effective for distributions having a Fréchet type tail. Extension to Hill’s

estimator that covers the whole range of ξ has been proposed by Pickands

(1975) and Dekkers, Einmahl, and de Haan (1989) but were found to offer

no consistent advantage over the maximum likelihood estimator or the Hill

estimator when GPD or Fréchet distributions were considered.9 Moreover,

both Hill and maximum likelihood estimators are the most frequently used

estimators in financial applications.

3.5 Multivariate Extreme Value Theory

When estimating benefits of diversification in downturn periods, the central

observations are not of much use. For an investor, extreme events that have

the largest economic impact are those events that occur simultaneously on

different markets. To quantify the diversification in the tail of the distribu-

tion one is primarily interested in looking at joint exceedance probabilities

and the respective dependence function. Consequently, a logical approach is

to extend the univariate EVT for applications in the multivariate context.10

In particular, in this work most of the interest concerns the measurement

of extremal dependence for bivariate random variables (X,Y ) by studying

the behaviour of the conditional probabilities of one variable given that the

other is extreme, i.e.

χ = lim
t→∞Pr{X > t | Y > t} (3.17)

where χ measures the degree of dependence. If χ > 0 one says that X and

Y are asymptotically dependent, in which case the largest values of both

variables tend to occur together. In the case χ = 0 the variables are said

to be asymptotically independent (Coles, Heffernan, and Tawn 1999). In

this case the probability that X is large given that Y is large converges

to zero as more extreme levels are considered. Examples of distributions

for which the asymptotic independence holds are provided by Johnson and
9Besides the cited references, a more thorough discussion and comparison of estimators’

performance under different conditions is to be found in Reiss and Thomas (1997) and

Falk, Hüsler, and Reiss (1994).
10Description limits to the case of bivariate only.
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Kotz (1972). One such distribution is the bivariate normal with a correlation

coefficient |ρ| 6= 1. Hence, for a bivariate normal distribution the probability

of observing two extreme observations simultaneously is zero.

There are numerous representations of bivariate extreme value (BEV)

distributions, however the most common and convenient form is due to Pickands

(1981).11 It follows that any BEV distribution G(x, y) may be written as:

G(x, y) = Pr{X ≤ x, Y ≤ y} = exp
{
−(x−1 + y−1)A

(
x

x + y

)}
(3.18)

where A(w) is called Pickands dependence function. Thus, modelling BEV

distributions is achieved by separating G(x, y) into univariate margins rep-

resented by one of the three univariate extreme value distributions and the

dependence function A(w).12 The estimation of G(x, y) is then reduced to

estimating the dependence function A(w). Various parametric and non-

parametric estimation procedures for A(w) have been proposed.13 Due to

its tractability and estimation convenience, by far the most popular model

is the logistic (Gumbel) dependence model (Tawn 1988):

A(w) = [(1− w)1/α + w1/α]α (3.19)

which leads to the bivariate logistic (Gumbel) distribution

G(x, y) = exp
{
−(x−1/α + y−1/α)

}α
(3.20)

where α characterises the strength of the dependence between X and Y . Per-

fect dependence is obtained in the limit as α → 0 and exact independence

is given by α = 1. Exploring the expression (3.17) by making use of the

survivor function Ḡ(x, y), the estimation of χ reduces to χ = 2(1−A(1/2)).

Consequently, for the bivariate logistic distribution χ = 2 − 2α, and this

distribution is therefore asymptotically dependent with α < 1. Further-

more, except for the special case of exact independence χ = 0, all BEV
11See Johnson and Kotz (1972) for an overview of alternative representations

and Resnick (1987) for limiting conditions and introduction to the subject.
12Different marginal distributions have been assumed in the literature. The representa-

tion in (3.18) assumes margins to be Fréchet, i.e. F (z) = exp(−1/z).
13Tawn (1988) provides different parametric models and Smith, Tawn, and Yuen (1990)

and Kotz and Nadarajah (2000) offer an overview of both methods.
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distributions are asymptotically dependent. This implies that asymptoti-

cally independent distributions are not well modelled using this approach.

As noted by Coles, Heffernan, and Tawn (1999), applying models for which

χ > 0 to asymptotically independent data leads to the overestimation of

probabilities of joint extreme events.

Ledford and Tawn (1996, 1997) address the problem by providing a

model that is able to characterise the extremal dependence including the

cases of asymptotic independence and asymptotic dependence. Within this

model one is able to describe the degree of dependence even though the

random variables are asymptotically independent. In their work, they show

that the joint survivor function of a bivariate random pair (X, Y ) with unit

Fréchet margins which satisfies:

Pr{X > t, Y > t} ∼ L(t){Pr(X > t)}−1/η for large t (3.21)

where L(t) is a slowly varying function and η ∈ (0, 1] is the coefficient

of tail dependence. The parameter η characterises the nature of the tail

dependence, and L(t) its relative strength for a given η. Based on this

model Ledford and Tawn (1997) identify four classes (A-D) of joint tail

dependence. Classes B, C, and D each exhibiting asymptotic independence.

Class A: Asymptotic dependence, η = 1 and L(t) → c > 0

Class B: Positive association, 1/2 < η < 1

Class C: Near independence, η = 1/2

Class D: Negative association, 0 < η < 1/2.

When exploring the joint survivor function with a BEV distribution with

Fréchet margins and logistic dependence model as in expression (3.19) it

can be shown that η = 1, and L(t) = 2 − 2α. Hence, χ = limt→∞ L(t) if

η = 1. For a bivariate normal distribution η = 1+ρ
2 which falls into the class

of asymptotically independent distributions.14 Broadly speaking, the higher

the value of the coefficient of tail dependence η the stronger the association
14Heffernan (2000) provides a derivation example of η and L(t) and reports a large

number of distributions with their respective values of η and L(t).
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in the tails between X and Y . Based on these results Coles, Heffernan, and

Tawn (1999) propose the following expression

χ̄ = lim
t→∞

2 log Pr(X > t)
log Pr(X > t, Y > t)

− 1, −1 ≤ χ̄ ≤ 1 (3.22)

as a measure of asymptotic independence. With some calculations and using

the expression (3.21) it can be further simplified so that χ̄ reduces to

χ̄ = 2η − 1. (3.23)

This quantity measures the rate at which Pr(X > t|Y > t) → 0 and is

useful to asses the degree of dependence at finite levels of t. The values

χ̄ > 0, χ̄ = 0, and χ̄ < 0 correspond to the case when the random variables

(X, Y ) are positively associated in the extremes, exactly independent, and

negatively associated, respectively. Additionally, in the context of bivariate

normal, it follows immediately that χ̄ is equal to the correlation coefficient.

Consequently, as noted by Poon, Rockinger, and Tawn (2003) since χ̄ = 1

if η = 1 and χ = limt→∞ L(t), the estimation of η and χ = limt→∞ L(t)

provides the basis for estimating χ and χ̄. In practice, the test of the hy-

pothesis χ̄ = 1 provides a diagnostic check for membership of the bivariate

extreme value class. Rejecting this hypothesis can be interpreted as asymp-

totic independence, (χ = 0, χ̄ < 1), and χ̄ serves as a measure of extremal

dependence within the class. In the contrary, failure to reject the null signi-

fies asymptotic dependence, (χ > 0, χ̄ = 1) in the data and the parameter χ

serves as measure of extremal dependence within the class. In this work, it

is of primary interest to determine if hedge funds and traditional assets are

asymptotically dependent or if their dependencies drop to zero at a certain

rate.15

15If (X, Y ) are transformed to uniform margins on the interval [0, 1], then the expres-

sion (3.20) can be viewed as a Gumbel copula. Thus, extremal dependence can also be

explained as a limiting property of a copula. Then, testing for χ̄ = 1 implies a test

for Gumbel dependence in the tail. See Heffernan (2000) for mathematical link of tail

dependence and copula.
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To carry out the parametric inference of η and limt→∞ L(t), Ledford and

Tawn (1996) note that Pr{X > z, Y > z} = Pr{min(X, Y ) > z} and thus

the estimation of the joint survivor function can be reduced to examining the

survivor function of a univariate variable. Defining Z as a structure variable

Z = min(X, Y ) and treating the slowly varying function as a constant d

over a threshold u, L(z) = d, leads to Pr(Z > z) = dz−1/η. It follows that

the estimation of η is equivalent to ξ of Hill’s estimator in expression (3.15).

Consequently, the estimator χ̄ and its variance is given by

ˆ̄χ = 2ξ̂ − 1 and Var(ˆ̄χ) =
(
ˆ̄χ + 1

)2

2
. (3.24)

Furthermore, if the null, χ̄ = 1, cannot be rejected one estimates χ under the

assumption that χ̄ = η = 1 which follows immediately from the associated

scale parameter d in expression (3.16)

χ̂ =
ku

n
and Var(χ̂) =

u2k(n− k)
n3

. (3.25)
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Hedge funds

4.1 Alternative investment strategies

There are many reasons for the growth of alternative investment strategies,

however, the single unifying element of the strategies has its origin in the

modern portfolio theory. This theory tells us that diversification, i.e. low

correlation to other assets, should improve returns and reduce volatility over

the long term at the total portfolio level. The growing demand for alterna-

tive investments is explained by the fact that alternative investment funds

are assumed to generate absolute returns and maintain low correlation with

traditional asset classes. A fund that targets absolute returns is one that

aims to achieve a positive return in all market environments, irrespective of

movements in the equity and bond markets. Two decades ago, by spreading

risks over different countries or sectors, investors could achieve large diver-

sification benefits. Today, due to different aspects such as increasing glob-

alisation, new technologies and the introduction of the common European

currency an increasing correlation in the financial markets is limiting the

universe for diversification possibilities within the traditional asset classes.

Hedge funds are just one of many types of alternative investment strate-

gies. Despite the large number of heterogeneous strategies, there is no clear

classification of what comprises an alternative investment, as evident by the

diverse definitions found in the literature. Miller (1998) defines alternative

investment strategies to include:

33
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• private, non-traditional, illiquid investments, such as distressed debt,

emerging market equity and debt, international private equity, lever-

aged buy-out funds, mezzanine financing, oil and gas programmes,

real estate, economically targeted investments, timberland, and ven-

ture capital;

• dynamic non-traditional liquid investment strategies involving securi-

ties, derivatives of physicals in liquid markets, such as managed fu-

tures, commodities, currencies or hedge funds; and

• investments involving longs and shorts and leverage.

In the foreword to the above cited monograph, the editor also includes

the following investments: asset backed securities, such as collateralised loan

and bond obligations and insurance,- and credit-derivative linked notes. Al-

ternative investments have typically been private equity and real estate in-

vestments. The key point that distinguishes hedge funds from private equity

and real estate is liquidity. To the greatest extent, private equity and real

estate investments are committed outside the public markets. Hence, the

empirical diversifications benefits are just estimations based on internal opin-

ions of value. In contrast, hedge funds differ from private equity and real

estate by trading in public markets, exploiting inefficiencies and imbalances

in the markets and prices of securities, bonds, currencies and commodi-

ties. However, hedge funds are far from being perfectly liquid. They might

not be publicly traded or might be closed to new investors. Additionally,

most of them actively control risk by hedging via one or more methods and

constantly seek new and alternative market opportunities. For that reason,

hedge funds are often quoted as skill based investment strategies with capital

preservation as a key focus (White 1995).
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4.2 Defining hedge funds

There is no standard legal definition of a hedge fund, and most of them

differ in one way or another. The term hedge fund need not mean that a

particular fund is hedging. It rather refers to the way the fund is organised

and operates. Perhaps the best way to define a hedge fund is to describe

the characteristics that distinguish it from a traditional investment.

Return focus. The key difference between hedge funds and traditional

funds is the return objective. Hedge funds seek to deliver positive returns

regardless of the prevailing market conditions (Fung and Hsieh 1999b). The

focus is on absolute returns and capital preservation. The success in this

regard is dependent on the skill of the manager trying to exploit market

inefficiencies. This contrasts with traditional managers who are seeking

relative returns and their success is measured by how they perform relative

to selected benchmarks regardless of whether these fall or rise. Consequently,

hedge fund managers are less dependent on market performance, whereas

traditional mangers are more dependent on market performance due to their

benchmarking.

Short selling and leverage. A distinguishing features of hedge funds

that is generally not available to traditional funds is the ability to buy on

leverage and to sell short. Short selling is accomplished by selling shares

they do not own in order to buy them back at a lower price in the future.

Leverage allows hedge funds to invest more than the capital of the fund

by borrowing money. These techniques are implemented to control risks

or to enhance returns. The degree to which they are used varies between

strategies and within managers.

Regulation. Hedge funds are commonly organised as limited partnerships

or limited liability companies open to “qualified investors”, meaning those

with substantial assets and sophisticated understanding of financial mar-

kets (Fung and Hsieh 1999b).1 Beyond that restriction and certain disclo-
1This refers to US legislation only. Provided the number of US clients is less than

14, there are no requirements to register with the Securities and Exchange Commission,
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sures and reporting requirements, hedge funds, unlike traditional managers

enjoy freedom from regulatory control. This control may limit fund leverage,

short selling or the concentration of assets. Hence, hedge funds managers

are free to use any strategy a manager chooses. This may account for hedge

funds’ tendency towards exotic securities or derivatives, and holding concen-

trated positions about which the manager has conviction rather than overly

diversified positions often found in long-only portfolios (White 1995).

Transparency. As a result of lesser regulatory control, hedge fund mangers

provide low transparency regarding their trading positions when compared

to traditional funds. The performance of hedge funds is ultimately depen-

dent on the manager’s skills in exploiting market inefficiencies. Disclosure of

positions might result in short squeezes, spread compression or duplication

of trades eliminating the profit opportunities (Ineichen 2000). Therefore,

in order to protect the profitable trading ideas hedge fund managers are

unwilling to share their positions with the public.

Fee structure. In contrast to traditional managers, compensation is re-

lated to investment performance. This compensation encourages managers

to limit assets under management in order to focus on positive returns rather

than on asset growth. Traditional managers, on the other hand, are re-

warded for attracting more clients and more assets. Most frequently, per-

formance fees are 20% of investment profits above a hurdle rate or a high

watermark (Crerend 1998). The hurdle rate might be fixed or variable. The

high watermark means that if a manager loses money in one year the fund

has to make up the losses before it can charge performance fees. Performance

hurdle rate and high watermark are seen as additional incentives that oblige

managers to focus on capital preservation and absolute returns.

regardless of the level of assets under management. In Europe, the regulation with respect

to retail investors is heterogeneous, with some countries allowing direct investment in single

hedge funds (i.e. Sweden, UK), some in fund-of-funds only (i.e. Switzerland, Germany),

and countries where distribution of hedge funds is prohibited (i.e. Belgium, Greece).

Distribution is subject to the granting of a licence by a local regulator and usually linked

to some minimum investment requirement. For a detailed country specific description

see PCW (2005).
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Capital commitment. Most hedge fund managers have a significant por-

tion of their wealth invested in the fund they manage. This commitment

gives investors additional confidence, ensuring that investor’s and manager’s

interests are closely aligned (Lee, Marber, and Willoughby 1999).

Investment lockup. Hedge funds may invest in less liquid securities

which creates the need for longer lock up periods and special requirements on

redemption conditions. Lhabitant (2002) states that an initial lock up period

of one year with a quarterly redemption is typical. In addition, investors

are required to give an advice notice of 30-90 days before redemption.

4.3 Historical evolution

The origin of hedge funds dates back to 1949, when a sociologist and journal-

ist named Alfred Winslow Jones established the first hedge fund in the US.

Jones introduced a new approach to managing an equity portfolio. His ob-

jective was to generate positive returns through superior stock picking while

reducing some of the downside risk by utilising short sales and enhancing

returns through leverage. During bull market periods, the fund made prof-

its higher than the market in long positions and lost less in short positions.

Conversely, in bear market periods, it made profits in short positions and

lost less than the market in long positions. The equity portfolio was thus

more dependent on his ability to select right stocks than on general market

conditions. Reducing market risk in this manner is called “hedging”, which

explains the name hedge fund. A detailed description of Jones’ model is to

be found in Caldwell (1995, p.7) where the following description is given:

He [Jones] took two speculative tools, short sales and leverage,

and merged them into a conservative investing system. His goal

was to shift the burden of performance from market timing to

stock picking (. . . ).

Another unique element of his fund was the incentive fee structure. The

reward to fund manager was based on performance in excess of an agreed

upon benchmark, fixed or variable (such as the Dow Jones). He settled on
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a straight 20% of realised profits (Caldwell 1995). Moreover, by keeping

his own capital in the fund he introduced the concept of managers’ capital

commitment. It means that fund managers contribute with a significant part

of their personal wealth in the fund they manage on the same conditions as

external investors. This alignment of interests adds to credibility and makes

investors and fund managers strive towards the same goal; high return at

low risk regardless of market directions. This set up became a model for the

hedge fund industry and the strategy he employed, has been named equity

long/short.

For almost seventeen years he operated in complete secrecy. In 1966,

an article in Fortune described Jones’ model to have returns that outper-

formed the best mutual funds at that time. This publication created a stir

among money managers and by 1968 approximately 200 new hedge funds

had been started (Tremont Partners/TASS 1999). Two equity bear markets

between, 1969-1970 and 1973-1974, however, put most of the newly founded

hedge funds out of business. It appeared that the majority of them were not

hedging at all. In fact, supported by the bull market of the mid-late 1960s

they were long only, attracted by the lucrative performance fee structure

in combination with leverage. Caldwell (1995) notes that among the pru-

dent managers that survived were Alfred Jones, George Soros and Michael

Steinhardt. The latter two are among the most successful money managers

in history and founders of the well known Quantum Fund and Steinhardt

Partners, respectively.

In the following decade, just a few new hedge funds were established.

Still, most of the funds in existence employed Jones’ classical long/short eq-

uity model. Around this time, another group of skill based strategies called

managed futures or commodity trading advisers (CTA) began to emerge for

the first time.2 Fung and Hsieh (1999b) note that these are structured in

a similar way to hedge funds but operate primarily in commodity markets

utilising futures contracts. Yang and Faux (1999) name the prevailing eco-

nomic conditions and difficulties in equity markets as the major reasons for
2Although most of the literature regarding hedge fund history does not consider man-

aged futures in their description; nowadays it is well accepted to treat managed futures

as a subgroup next to other hedge fund strategies.
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the growth of this industry. The 1970s witnessed high inflation and large

upward price movements in agricultural and metal markets that provided

attractive profit opportunities in commodity futures markets.3

In the 1980s the hedge fund industry became an exclusive club of wealthy

individuals. Since most of them were not regulated by the SEC and were

prohibited from advertising, raising assets under management was based on

a word-of-mouth basis. Moreover, they were organised as limited partner-

ships, allowing only 99 investors. Consequently, the minimum investment

amount was high. Yet, in 1984, when Tremont Partners began to track

hedge fund managers, they were able to identify 68 managers (Tremont

Partners/TASS 1999). Nevertheless, the freedom of hedge fund managers

to operate across all markets, capital markets globalisation and the innova-

tion of new financial instruments, resulted in a heterogeneous development

in trading strategies. Some managers evolved into global macro players.

That is, the long/short strategy was replicated on a worldwide basis with

an occasional use of derivatives to give them more hedging opportunities.

Julian Robertson was one of these money managers. Once again, a cover

story in a financial magazine gave rise to a renewed interest in hedge funds.

In 1986, Institutional Investor described the global trades of Robertson’s

Tiger fund. At the end of the 1980s more than 200 funds were in business.

Another important trend that took place in the 1980s was the expansion

of managed futures managers to other markets. Yang and Faux (1999) note

that the alleviation of inflationary pressure eroded opportunities in com-

modity markets, so managed futures managers sought profit opportunities

in financial futures such as currency and fixed income markets. At this

point they became similar to global macro managers. In due course, how-

ever, they began to diverge as managed futures managers turned to more

systemic trading strategies whereas global macro managers became more

discretionary in their trading strategies.4 The 1990’s are characterised by
3In this section, for historical reasons, we distinguish between hedge funds and managed

futures. However, in the rest of the thesis the term hedge fund refers to both groups.
4This statement is a generalisation. Today, there is still a small percentage of managed

futures managers trading on a discretionary basis and global macro managers trading

systematically.
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a continuously heterogeneous development in hedge fund strategies, giving

rise to a large number of different trading methodologies and various sub-

strategies. In 1995, according to Nicholas and Nicholas (1995) of Hedge

Fund Research these include: convertible arbitrage, distressed securities,

emerging markets, macro funds, market neutral, market timing, merger ar-

bitrage, multistrategies, opportunistic, sector funds, and short selling.5 At

the end of the 20th century Hedge Fund Research estimated there were as

many as 4000 hedge funds with total assets under management of USD 490

billion (HFR 2005).

The new century has seen the continued strong growth of the hedge fund

industry. The dramatic fall in global equity markets between March 2000

and March 2003 together with low interest rates, have provided an addi-

tional catalyst for the soaring interest in alternative investments generally

and hedge funds especially over the last few years. In closing this section,

according to HFR (2007) the current number of hedge funds including funds

of funds is close to 9500 with assets under management around USD 1.4 tril-

lion.6 The growth rate over past five years has averaged 15% a year and

the demand is led by institutions, despite them representing only 30% of the

investor base. A recent report from Goldman Sachs/Russell (2003) based on

a survey of 325 organisations worldwide reveals that roughly 60%-70% of re-

spondents have commitments to private equity and real estate investments.

For hedge funds, this number is around 20% in Europe and North America,

and 40% for Japanese investors. Moreover, the total commitment and aver-

age strategic allocation to hedge funds is expected to grow substantially in

all regions.

4.4 Hedge fund strategies

Hedge funds represent a very heterogeneous asset class that is not open

to a simple generalisation. There is no agreement about the way in which

hedge funds should be classified. The classification and description tend
5Section 4.4 deals with the different strategies and also describes their characteristics.
6Managed futures represent approximately 10% of the hedge fund industry raising total

assets under management to ca. USD 1.5 trillion.
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to vary from manager to manager and among data vendors and academics.

However, the taxonomy below is believed to be a broadly acceptable classifi-

cation. Conventionally, at the lowest integration level, hedge fund managers

are classified into categories according to their trading strategies. Conse-

quently, hedge funds may be grouped into five trading styles that share

similar investment methodologies. Finally, at the highest integration level,

they may be grouped into two sectors, directional and non directional. The

former is characterised by active positions directed to specific movements in

the market, whereas non directional include strategies that are not exposed

to any specific market movements. The following description is limited to

the characteristics of the most important hedge fund strategies, attempting

to emphasise on where and how the returns are generated.7

Equity hedged. This style represents the largest segment of the hedge

fund industry. It includes hedge funds utilising investment strategies that

seek to profit from taking long or short positions in primarily publicly traded

equities they estimate to be respectively under- and over-valued in some re-

spect. Managers may have a purely balanced or net long or short exposure.

The main strategy in this style is Equity long/short. This directional strat-

egy is the most straightforward type of hedge fund techniques. Managers

may shift their positions over time without any restrictions on the degree of

net or long exposure as market conditions change. Investment decisions are

usually made within a discretionary framework based on fundamental quan-

titative and qualitative valuation analysis. Historically, the managers in this

group have a tendency to a net long bias (Ineichen 2000). Most long/short

managers tend to specialise in a particular area, sector or geographic region

where they believe they possess outstanding knowledge or experience. Risk

in this strategy is often attributable to managers’ stock picking decisions as

well as unexpected and rapid directional market shifts, e.g. September 11,

2001 event.
7A summary of these strategies with respect to style and market direction is given in

the Table 4.1. The definition of styles follows RMF’s internal classification, although the

mapping to the strategies is not exactly the same. With exception of managed futures the

reference regarding the strategies is HFR, www.hedgefundresearch.com.
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Market neutral and Statistical arbitrage are non directional strategies

characterised by managers that operate with a consistent zero exposure or

within tight bands of net exposure. Statistical arbitrage mangers perform

their investment decision based on quantitative techniques aiming to profit

from short term pricing anomalies. On the contrary, market neutral man-

agers seek to exploit longer term pricing anomalies usually by executing

investment decisions based on fundamentally driven analysis (Tomlinson

1998). In general, the focus is less on the market direction than on the value

of one stock or group of stocks relative to another. Furthermore, managers

are usually invested in highly liquid markets, and the usage of leverage is low

because there is no market exposure to leverage or magnify (Anson 2002a).

Risks generally arise from model errors and from market periods charac-

terised by low volatility or consistent momentum.

The Short selling strategy includes managers that are directional in na-

ture by constantly keeping net short exposure to the market. Managers

that sell short attempt to profit from quick declines in the stock price by

using either technical or fundamental analysis. Ringoen (1999) lists poten-

tial signals that may generate shorting opportunities, these are: company

is running out of cash, being near bankruptcy, loss of major client, obsolete

product technology, or disclosure of accounting frauds. The risks associated

with this strategy arise predominately from bullish markets, and unexpected

market events.

Relative value. This style includes hedge funds that apply arbitrage

strategies and techniques to take advantage of perceived pricing discrep-

ancies between similar or related securities. Returns are generated by es-

tablishing long positions in undervalued assets and being short in overvalued

assets, based on the premise that the price discrepancy should disappear over

time. Most relative value managers are invested in equities, fixed income

instruments and derivatives. These may be listed or over-the-counter. Moix

and Scholz (2003) note that relative value managers typically have an edge

in pricing contracts and therefore take positions when contract complexity

is high or market liquidity is low. Thus, the direction of bond or equity

markets is less important to the relative value managers, whose only con-
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cern is whether the mispricing or spread between two related securities is

increasing or converging. The leverage used by these managers is the highest

in the hedge fund industry. Jaeger and Rutsch (2003) quote leverage factors

of higher than 10 as not unusual.

The Fixed income arbitrage strategy includes managers that seek to

profit from interest rate spreads between related fixed income instruments by

being long a higher yielding instrument and short another at a lower yield,

while reducing the duration and convexity to zero (Fulenwider 1999). Man-

agers might exploit yield differences between different market sectors, e.g.

corporate-, mortgage-, and municipal bonds versus treasury yield spreads,

or cash versus futures. Some managers specialise in distinct market sectors

forming their own substrategy. For instance, the fixed income: high yield

managers invest in non-investment grade debt and the fixed income: asset

backed managers aim to exploit mispricings in the credit and prepayment

risk. The majority of fixed income managers apply a qualitative analysis in

order to explore the cause of the price divergence and to assess the probabil-

ity of convergence. The risks associated with fixed income include liquidity,

credit spreads and the volatility within the yield curve.

Convertible arbitrage managers are usually involved in taking long posi-

tions in a convertible bond they view as being undervalued and short posi-

tions in an appropriate amount of the underlying equity. Convertible bonds

are hybrid instruments that can be viewed as a combination of a bond with

an embedded call option on the equity of the issuer of the bond. The strat-

egy often involves exploiting this optionality while not taking any market

risk (Tomlinson 1998). For instance, managers may buy low convertible

bond volatility and sell the higher volatility of the underlying stock. To a

great extent the strategy is implemented using over-the-counter contracts

of lower graded companies (Agarwal, Fung, Loon, and Naik 2004). Various

option pricing or cashflow-based models are employed to support managers’

trading decisions. Risk in this strategy often arise from widening credit

spreads, rising interest rates, take-overs and low market volatility.

Event driven. Managers within the event driven style attempt to capi-

talise on anomalies related to corporate events that may cause a significant
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change in the future valuation of the company. These events include the sale

of assets/business lines, market entries and exits, capital structure changes,

acquisitions, mergers, tender offers, liquidations and other corporate reor-

ganisations. Event driven funds profit from an incorrect assessment of the

situation by other investors or the uncertainty surrounding the event. The

main risk factor is the deal itself rather than the market. This means that

performance is largely driven by managers’ ability to identify and analyse

event specific situations. Nevertheless, a rapid change in the direction of

the bond or the stock market may have an influence on the deal outcomes

which places this style at the border of the nondirectional strategies.

Merger arbitrage managers usually engage in a simultaneous purchase

and short sale of shares of target and acquiring companies, respectively, in

anticipation of a merger transaction. Following Paulson (2000), the ma-

jor factors that are fundamental to the success of a merger arbitrage trade

are; assessment of the probability of the transaction, announced conditions

remain in place, and a clear estimation of the period of time until the comple-

tion of the transaction. Leverage is often employed in order to boost returns.

Besides broken deals, risks generally arise from regulatory environment and

from the time until deal completion.

The second major strategy within the event driven style is the Distressed

securities strategy. Managers investing in distressed securities are usually

buying or selling short securities or debt of corporations which are either un-

dergoing or likely to undergo reorganisation, liquidation or other distressed

situations. Usually, the shares and bonds of companies facing such financial

difficulties fall heavily. Ineichen (2000) notes that many traditional investors

are prohibited from owning securities downgraded to non-investment grade

levels or lack skills to properly analyse the value of a distressed company. As

a result, the securities of a distressed company are often traded below its fair

value giving rise to profitable trading opportunities. Managers within this

strategy may be passive, or be involved in taking an active role in a restruc-

turing. The employed leverage is usually very low or not implemented at

all (Jaeger and Rutsch 2003). The risks associated with distressed securities

include liquidity risk, default- and recovery rates and legal environment.
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Global macro. Global macro is the most heterogeneous style of all hedge

funds, including managers that have both directional and/or relative value

elements at a global level. Macro mangers implement a discretionary trading

approach in order to take advantage of broad macroeconomic trends arising

in countries as a result of political or economic changes. Usually, man-

agers employ a top-down analysis and quantitative tools to take views on

how global macroeconomic developments will impact financial markets. To

exploit these anticipated movements, managers may invest in any markets

using any instruments and focusing on any trading strategy (Strome 1999).

Typically, this involves a significant net or short exposure to equities, cur-

rencies, bonds and commodities with various amounts of leverage. Due to

the flexibility of implemented trading strategies, there is generally no dis-

tinction between separate strategies within the global macro style. However,

mangers primarily focused on investment in securities or the sovereign debt

of developing or emerging countries are often grouped into the Emerging

market strategy. Risks in this style vary according to the investment pro-

cess and amount of leverage employed. Still, the main sources are country

specific risks and political conflicts.

Managed futures. Managed futures managers, also known as Commod-

ity Trading Advisers, trade derivative instruments such as futures contracts,

options, forward contracts, and swap contracts, attempting to identify and

profitably exploit trends early on. Depending on the prevailing opportuni-

ties, the underlying markets include bonds, stocks, currencies, short-term

interest rates and commodities. Following Yang and Faux (1999), the main

source of profits in managed futures is the occurrence of lengthy, directional

price trends, either upward or downward. The vast majority of managers

follow a Systematic trading strategy. These strategies include long-term

trend-following and short-term active trading approaches that make use of

historical price data to anticipate future price movements. The trading

systems employed are generally sophisticated computer-driven systems to

maintain a systematic and disciplined approach. A rather small group of

managers follow a Discretionary trading approach. These managers rely on

their experience rather than system and models to make qualitative invest-
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ments decisions. Risk in this style generally arises from model errors and

from trendless market periods. The style and strategy classification with

respect to its market movement is provided in Table 4.1 below.

Table 4.1: Hedge fund classification.

Style Strategy Direction

Equity hedged Equity long/short directional

Equity market neutral nondirectional

Short selling directional

Relative value Fixed income arbitrage nondirectional

Convertible arbitrage nondirectional

Event driven Merger arbitrage nondirectional

Distressed securities nondirectional

Global macro Macro directional

Emerging markets directional

Managed futures Systematic trading directional

Discretionary trading directional

4.5 Hedge fund indices

At present, there are more than a dozen hedge fund index providers. The

lack of standardisation in terms of composition, construction and manage-

ment of indices leads to a significant dispersion in the number of fund con-

stituents, as well as the rebalancing frequency and weighting scheme among

the index providers. Obviously this results in different performance numbers

between the indices. Table 4.2 summarises the main characteristics of the

various index providers. Among these vendors, Hedge Fund Research (HFR)

and Credit Suisse First Boston/Tremont (CSFB/Tremont) index families

emerged to be the most recognised reference for hedge fund investing. The

analysis in this study will be presented with indices constructed by HFR.8

8www.hedgefundresearch.com
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This data vendor tracks over 4000 hedge funds and is one of the most

comprehensive and oldest hedge fund data providers. The indices are equally

weighted, comprising 1600 hedge funds both onshore and offshore, and the

returns are net of all fees on a monthly basis.9 The choice in favour of

HFR is justified by the fact that HFR has a longer history, starting in 1990,

which is an important advantage when applying extreme value theory to

return data. Since HFR does not provide a managed futures index, this

style is represented by the Stark 300 Trader index from the D.B. Stark &

Company.10 This index is an industry-wide and equally weighted managed

futures index containing both systematic and discretionary traders.

In addition to performance differences, hedge fund indices exhibit various

statistical biases such as; selection, survivorship, and backfill bias. These

biases arise because all hedge fund indices are built on underlying databases

that are created on a sample of hedge funds rather than the full universe, and

because of the differences in data collection criteria employed by the data

vendors. Selection bias is created by two different layers. First, in order to

be included in the database, funds must fulfill certain selection requirements

such as minimum track record and assets under management.11 Second, as

there is no requirement for hedge funds to disclose their performance, the

inclusion in the database is voluntary. This may indicate that only those

funds with good performance that want to attract new investors report to a
9Worth mentioning is that these indices are non-investable. This also applies to the

CSFB/Tremont indices as well as the indices of the remaining providers in Table 4.2.

However, the analysis here just aims to show the risk-return profile of a hypothetical

hedge fund investment in combination with traditional assets. In recent years, some

index providers have launched investable indices that do provide more transparency and

liquidity to investors however at the cost of a limited universe. These stringent liquidity

and transparency requirements disqualify many hedge fund mangers to join an index

with the effect that these indices are even less representative than non-investable ones.

Especially illiquid event driven managers are under-represented as well as successful closed

funds. Additionally, the history is too short to perform a meaningful empirical analysis.

See Géhin and Vaissié (2004) for a comprehensive overview of investable and non-investable

indices.
10www.starkonline.com
11These two requirements are not applied by HFR. The only criteria used to include

hedge funds in HFR index is a monthly net of all fees return along with their month-end

fund asst size in US dollars.
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database. Conversely, it is also the case that funds with good track records

are closed since they reached the desired assets under management.12 Fung

and Hsieh (2000) claim that positive and negative selection-related bias

tends to offset each other. Generally, it is difficult to quantify this bias since

the universe of hedge funds is unobservable. Nevertheless, selection bias

undoubtedly exists as manifested by the fact that equally weighted indices

based on different databases perform differently. Survivorship bias arises

when a database only includes information on operating hedge funds at the

end of the sampling period and excludes defunct or closed funds during the

sampling period. Funds that stop reporting due to underperformance, liq-

uidation or bankruptcy generate an upward bias whereas a downward bias

occurs when funds choose to do so because of strong performance or asset

gathering. It is however typically assumed that this bias is positive. Backfill

(or instant history) bias arises when there is a difference between the date

a fund enters the database and the start of its track record. This happens

because hedge fund managers request to be included in databases first when

they have generated a satisfactory track record during an incubation period.

Adding such funds creates an “instant history” of returns overestimating the

performance of the database. Numerous studies have investigated these bi-

ases with the attempt to quantify the size of them. The estimated magnitude

of these biases varies across the studies and majorally depends on the obser-

vation length, database used, and the applied measurement technique. For

instance, Fung and Hsieh (2000) performed their study on TASS database

for the period 1994-1998 and found evidence for survivorship and backfill

bias of the size 3%, and 1.4%, respectively. On the contrary, using HFR

database for the period 1988-1995, Ackermann, McEnally, and Ravenscraft

(1999) estimated the same biases to be 0.16% and 0.05%, respectively. Liang

(2000) compared both databases over the period 1993-1998 with respect to

survivorship bias and found evidence for a bias of the size 0.39% for HFR

and 2.24% for TASS. According to the author, the main reason behind the
12Fung and Hsieh (2000) illustrates that with two examples by citing that Soros’s Quan-

tum Fund stopped reporting in 1992 even though it had performed well, and Long-Term

Capital Management (LTCM) never disclosed their performance. Hence, neither the pos-

itive returns before it collapsed, nor the entire loss were recorded in databases.
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lower survivorship bias found in the literature for HFR database is due to

the relatively low number of dissolved funds collected by HFR database.

Following the overview of Géhin and Vaissié (2004), the average impact on

the performance of hedge fund indices due to survivorship bias could be

assumed to range between 2% and 3%.

A third proxy to asses the performance characteristics of hedge funds is

to evaluate the performance of funds of hedge funds as these are the major

hedge fund investors. There are at least three reasons to choose a fund-

of-funds (FoF) index as a representative for hedge fund universe. Firstly,

more and more institutional investors choose funds of funds as vehicles to

invest in the hedge fund world. These are offered to investors because the

selection process of hedge fund managers requires specialisation, skills and

research capabilities, which may not be available in-house. Secondly, as

argued by Fung and Hsieh (2002b) and Amin and Kat (2003b), a FoF index

is less subject to the aforementioned biases in hedge fund databases. Since

funds of funds invest in hedge funds which are not necessarily listed in any

database, they provide a better and larger coverage of the whole sector, thus

reducing the selection bias. For example, these indices include the impact

of LTCM. Survivorship bias is also mitigated because the track record of

hedge funds that ceased operations remain in the performance of the FoF

index. Consequently, historical returns of a newly added hedge fund are not

included in the track record of a FoF index, thereby reducing the backfill

bias. Finally, funds of funds are well diversified portfolios. This implies that

a FoF index is less sensitive to operational risk.

4.6 Asymmetry in hedge fund return distributions

Given the above characteristics and the differences to traditional managers,

it can be no surprise that hedge funds are not driven by the same factors that

drive the performance of other assets. Consequently, the risk/return profile

is different. To sell securities short and to buy on leverage are two factors

that are common to all hedge fund strategies and have a significant impact

on risk and expected return. To a great extent, the anatomy of asymmetric

return distribution of hedge funds might be attributed to a combination of
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these two factors together with managers’ propensity to dynamically and

rapidly shift trading positions and exposures to risk factors daily or intra-

daily.

Ineichen and Johansen (2002) and Ineichen (2002) argue that having

equally likely observations around the mean is exactly what absolute return

managers want to avoid by design. In contrast to long-only mangers having

a return profile similar to the underlying markets, hedge funds are trying to

manage volatility by means of hedging techniques. It means that to keep the

absolute return focus, hedge funds try to enter strategies and opportunities

where there is a high probability of profit and a lower probability of loss.

By doing so they try shift more of the distribution mass to the right of the

zero return. Such a strategy, when successfully applied, will perform well in

extreme up/down markets but achieve poor returns when assets markets ex-

hibit trendless periods. Hence, when the trading approach limits downside

losses while potentially achieving very large upside returns, the strategy is

sometimes referred to as having a long option profile. Consequently, manag-

ing the volatility with a downside protection implies a positive skewness of

the distribution. With the intention to mimic a perfect trend follower, Fung

and Hsieh (2001) created asset based style factors using lookback options on

underlying asset classes. Their results show that managed futures strategies

are highly correlated with buying straddles on traditional assets, creating

an expected return profile similar to a payout of a long straddle.

While these findings might very well fit the description of the return

distribution of the directional strategies, other strategies are more designed

to have a return distribution that resembles a short option profile. One says

that a strategy exhibits a short option profile if it has a high proportion

of limited upside returns and a low proportion of larger downside returns.

Such strategies are usually exposed to some form of event risk generating fat

tails and negative skewness in the distribution. This is especially the case for

merger arbitrage strategies. A successful deal returns the difference between

the share price of the target company just after the announcement and the

price of it at completion. However, if the take-over fails due to unexpected

events, the share price of the target company drops to the pre-announcement

level causing a loss that is many times higher than the expected profit. With
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leverage this asymmetry is exacerbated. In the spirit of Fung and Hsieh’s

(2001) research, Mitchel and Pulvino (2001) extended the asset based factors

to include the merger arbitrage strategy concluding that the returns of this

strategy are similar to writing naked put options on the market. Banz and

de Planta (2002) provide a detailed example of a payoff from a broken deal

and note that this asymmetric payoff might pertain to other nondirectional

strategies. In particular strategies with significant credit risk exposure in

combination with leverage are considered. Anson (2002a) argues that hedge

funds with credit risk exposure should have a distribution similar to fixed

income instruments that are also exposed to credit risk. Assets with credit

risk are generally characterised by fatness in the left tail as a result of event

risks. For instance, an event risk for a distressed fund reflects downgrades,

defaults and bankruptcies.13 For the convertible arbitrage strategy an ad-

ditional event risk is the redemption risk, i.e. the case when the company

redeems the convertible bonds.

An additional element having an impact on the return distribution of

hedge funds and especially on the nondirectional ones is the flight-to-quality

scenario. In a period of market turmoil, the long term expectations behind

arbitrage deals deteriorates, driving market prices even further from their

fair values. Credit lines are cut quickly forcing managers to liquidate posi-

tions at unfavourable prices in order to meet creditor’s margin requirements.

In such situations managers may run into a liquidity crisis cycle. As stressed

by Bookstaber (2000) a further fall in the fund’s asset value is to be expected

as the forced selling is conducted in too great a quantity or too quickly for

market liquidity to bear. Consequently, the rapid decline in a fund’s value

may lead to yet more liquidations for margin or redemption purposes. Fur-

thermore, this liquidity risk might very well translate into market risk, and

as noted by Moix and Scholz (2003), this effect is even more pronounced

when leverage is used. Although merger arbitrage managers tend to invest

in more liquid positions, the same point can be made for this strategy. Re-

ferring to Banz and de Planta (2002), a market crash would typically lead to

a massive walkout from takeover bids, eliminating any diversification effect
13See Anson (2002b) for a detailed exposition of distressed investing.
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that a merger portfolio may have offered under normal market conditions.

Generally, one can say that the directional strategies are exposed to mar-

ket risk and have a return distribution that resembles a long option profile

while the returns of the nondirectional ones can be seen as a compensation

for taking credit and liquidity risk with return profile similar to a short

option. Two strategies, however, deviate from this generalisation. In con-

trast to other nondirectional strategies, the equity market neutral strategy

attempts to generate positive returns in liquid stock markets by avoiding

market risk. As the only determinant is the stock selection, Anson (2002a)

argues that this strategy should have a symmetric distribution around a

positive mean. An exception from the directional strategies is the emerging

market one. Managers within this group have limited hedging possibilities

as many emerging market countries do not permit shorting or the necessary

instruments do not exist (Goetzmann, Zhu, and Bris 2003). Consequently,

as the ability to actively control downside risk is reduced, this strategy

is more a long only investment with a return distribution resembling the

underlying markets. These markets, as pointed out by Bekaert and Harvey

(1997) are highly non-normal exhibiting higher volatility, lower liquidity and

a substantial downside risk than the developed countries.14 Figure 4.1 shows

histograms of two typical directional and nondirectional strategies. The di-

rectional strategies have larger dispersion of returns and positively skewed

longer tails, whereas the nondirectional ones exhibit lower dispersion with

negative skewness and fatter tails in the left of the distribution.

Finally, since the pioneering work of Fung and Hsieh (1997) showing

that dynamic trading strategies exhibit non linear returns with an option-

like payoff, a great number of studies have extended this option based factor

approach to other strategies.15 The common finding in these studies is that

the dynamic trading strategy with an asymmetric return payout is an im-

portant component in hedge fund performance, in the sense that the option
14See additionally the papers of Harvey (2000) and Harvey, Bekaert, and Lundblad

(2003) for detailed characteristics of asset returns in emerging markets with respect to the

mentioned features.
15See e.g. Fung and Hsieh (2002c) for application to fixed income strategies and Agar-

wal, Fung, Loon, and Naik (2004) for the case of convertible arbitrage. Fung and Hsieh

(2002a) and Agarwal and Naik (2004) offer a summary on that topic.
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based factors contribute with significant betas and dramatically higher R-

squares. This evidence makes two important points that have implications

for the rest of the thesis. First, returns of hedge funds have an option like

payoff inducing asymmetry. Second, the returns of hedge funds are corre-

lated with market returns in a nonlinear way. Both of these issues imply that

the standard mean variance framework is no longer adequate in the context

of hedge funds, be it performance measurement, portfolio optimisation or

risk analysis.
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Figure 4.1: Histograms of selected hedge fund strategies.

Directional: Managed futures = Stark 300 Trader, Macro = HFRI Macro. Nondi-
rectional: Merger arbitrage = HFRI Merger arbitrage, Convertible arbitrage =
HFRI Convertible arbitrage. Sample window (monthly data): Jan 1990–Sep 2004.



Chapter 5

Risk analysis of hedge fund

strategies

In this chapter, we first present the data that will be used throughout the

rest of the thesis and empirically examine the tail properties of hedge fund

strategies. By applying extreme value theory, we calculate the one-month

Value-at-Risk and Expected Shortfall at 95% and 99% confidence levels. For

the purpose of comparison with traditional assets, stock and bond market

data is also analysed.

5.1 Data

To study the risk of the various hedge fund strategies and traditional as-

set classes, several indices are used as proxies for these assets. The data

comprises 10 hedge fund strategy indices and two traditional asset indices.

The MSCI World total return index, and Citigroup Government Bond in-

dex (all maturities) are used as proxies for the stock market and the bond

market, respectively. Hedge funds are represented by the Hedge Fund Re-

search indices (HFRI). The strategies belonging to the equity hedged style

are represented by HFRI Equity Hedge (equity long/short strategies), HFRI

Equity Market Neutral and HFRI Short Selling. Relative value strategies

are proxied by HFRI Fixed Income Arbitrage and HFRI Convertible Arbi-

trage. The event driven style is investigated using HFRI Merger Arbitrage

56
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and HFRI Distressed Securities. As proxies for the global macro strategies,

the HFRI Macro and HFRI Emerging Markets indices are utilised. The

managed futures style is represented by the Stark 300 Trader index. To-

gether, these indices represent about 80% of the hedge fund industry giving

a comprehensive picture of the different characteristics prevailing in hedge

fund strategies.

As the demand from investors in the last years has primarily shifted to-

ward diversified hedge fund products, in further steps of the analysis some

fund of funds indices will be applied. Besides the HFRI Fund of Funds Com-

posite index that comprises all fund of funds mangers, four additional fund

of funds indices provided by HFRI are considered. HFRI offers a classifica-

tion of these fund of fund indices in four different categories. HFRI FOF

Conservative includes funds of funds that exhibit one or more of the follow-

ing characteristics: seeks consistent returns by primarily investing in funds

that generally engage in more conservative strategies such as equity market

neutral, fixed income arbitrage, and convertible arbitrage. HFRI FOF Di-

versified contains funds of funds investing in a variety of strategies among

multiple managers. HFRI FOF Market Defensive consists of funds of funds

that invest in managers that generally engage in short-biased strategies such

as short selling and managed futures. HFRI FOF Strategic includes funds

of funds seeking superior returns by primarily investing in managers that

generally engage in more opportunistic strategies such as emerging markets,

sector specific, and equity long/short.

As the number of monthly returns is rather small when compared to tra-

ditional assets, we use the maximum period available, ranging from January

1990 to September 2004. This gives 177 observations for each time series.

This number is somewhat small when compared to other EVT applications

to financial markets using daily or weekly data. One of the main conse-

quences to expect is large confidence intervals for the different estimates. On

the other hand, this data set is large compared to what has been previously

used in the hedge fund world. Table 5.1 summarises the descriptive statistics

of the data used in the analysis. The descriptive plots in Appendix A display

the historical prices and returns along with the histograms and QQ-plots of

the investigated indices. Additionally, the mean excess function of the left
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tail (losses) and the autocorrelation function are plotted. The reported mea-

sures and the plots present evidence to suspect a non normal behaviour of

hedge fund returns. As expected from the discussion in the previous chap-

ter, the directional strategies are generally positively skewed with a higher

volatility than their non directional counterparts. These, on the contrary,

are mostly negatively skewed exhibiting high kurtosis, a high first autocor-

relation coefficient, and a low volatility. Furthermore, hedge funds tend to

outperform stocks and bonds while usually having a lower volatility. Brooks

and Kat (2002) use data spanning the period January 1995 - April 2001 and

obtain a higher mean return for most of the investigated HFRI indices with

the exception of Distressed and Emerging markets strategies. Similarities

are found for the estimation of standard deviation as well as the shape of

the distribution as indicated by skewness and kurtosis. Finally, the p-values

of Shapiro-Wilk’s test of normality indicate a non normal behaviour for all

funds with the exception of the equity hedged style and the traditional in-

dices.1 For completeness, Table 5.1 also presents the standard statistics of

HFRI funds of funds. These indices show higher mean returns and usually

lower volatility than stocks and bonds. Looking at higher moments and the

p-values of Shapiro-Wilk’s normality test, all fund of funds indices with the

exception of the Market Defensive index exhibit a non normal distribution of

returns. There is, as well, a tendency of autocorrelation in the non normally

distributed fund of funds indices.

5.2 Motivation and methodology

Regardless of the vehicle an investor chooses to invest into hedge funds,

the various risk characteristics of hedge fund strategies have to be identi-

fied before any allocation to hedge funds can take place. The identification

of risks is essential for risk measurement. For a proper risk management,

however, an understanding and explanation of the risk sources is equally

important. Most of the academic research has been focused on finding sta-

tistical evidence of non normality, time dependence or other stylised facts in
1Smaller p-values indicate stronger evidence against the null hypothesis (normality),

and larger p-values indicate stronger evidence in favour of the null.
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Table 5.1: Descriptive statistics of raw data.
Index Mean Std.Dev Skew Kurt Min Max ACF1 S-W test

LS 16.68% 8.99% 0.18 1.22 -7.65% 10.88% 0.16 0.986*

EMN 9.00% 3.21% 0.15 0.19 -1.67% 3.59% 0.08 0.990

SS 4.08% 21.68% 0.13 1.25 -21.21% 22.84% 0.09 0.985*

FI 8.28% 4.37% -1.68 9.53 -6.45% 4.70% 0.39 0.861***

CA 10.44% 3.41% -1.13 2.22 -3.19% 3.33% 0.53 0.931***

MA 10.08% 4.30% -2.63 11.27 -6.46% 2.90% 0.19 0.793***

DS 14.52% 6.15% -0.66 5.28 -8.50% 7.06% 0.49 0.933***

GM 15.48% 8.51% 0.31 0.36 -6.40% 7.88% 0.17 0.980**

EMG 15.24% 15.04% -0.79 3.62 -21.02% 14.80% 0.32 0.956***

MF 9.24% 11.61% 0.81 2.79 -8.45% 17.53% -0.01 0.961***

Stocks 7.32% 14.67% -0.41 0.31 -13.32% 10.55% -0.01 0.987

Bonds 7.80% 6.56% 0.23 0.18 -4.28% 5.94% 0.19 0.992

Comp 9.60% 5.66% -0.24 4.04 -7.47% 6.85% 0.32 0.949***

Cons 8.40% 3.27% -0.47 3.43 -3.88% 3.96% 0.32 0.950***

Diver 8.88% 6.06% -0.07 4.02 -7.75% 7.73% 0.32 0.942***

Defen 9.60% 6.01% 0.17 1.19 -5.42% 7.38% 0.13 0.985*

Strat 12.84% 9.15% -0.36 3.35 -12.11% 9.47% 0.29 0.959***

Mean and standard deviation annualised. Kurt = excess kurtosis, Skew = skewness. Min
and Max represent the lowest and highest monthly return, respectively. ACF1 = first
order autocorrelation coefficient, S-W test = Shapiro-Wilk normality test. Significant
evidence against the null hypothesis that the distribution is normal at 10%/5%/1% level
is found for values labelled by */**/***, respectively. Stocks = MSCI World Total Return,
Bonds = Citigroup Global Gov. Bond (all maturities), LS = HFRI Equity Hedge, EMN
= HFRI Equity Market Neutral, SS = HFRI Short Selling, FI = HFRI Fixed Income
Arbitrage, CA = HFRI Convertible Arbitrage, MA = HFRI Merger Arbitrage, DS =
HFRI Distressed Securities, GM = HFRI Macro, EM = HFRI Emerging Markets, MF
= Stark 300 Trader. Comp = HFRI FOF Composite, Cons = HFRI FOF Conservative,
Diver = HFRI FOF Diversified, Defen = HFRI FOF Market Defensive, Strat = HFRI
FOF Strategic. Sample window (monthly data): Jan 1990–Sep 2004.

finance and their implications on risk measures (see e.g. Schmidhuber and

Moix 2001, Brooks and Kat 2002, Lopez de Prado, M. and Peijan 2004). On

the other hand, the practitioner’s research put more stress on qualitative and

quantitative risk management issues (see e.g. Moix and Scholz 2003, John-

son and Macleod 2003, Banz and de Planta 2002).

Consequently, in order to cope with hedge fund specific return character-

istics in risk measurement and management, researchers have proposed new

measures or made attempts to adjust the standard tools. For example, the

above cited study of Brooks and Kat (2002) recommends an unsmoothing
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of returns to handle the downward biased volatility resulting from auto-

correlation. To capture the risk exposure to systematic risks, Fung and

Hsieh (2002a) and Agarwal and Naik (2004) construct option based indices

that mimic an asymmetric payoff of hedge fund returns. In order to take

the asymmetry of the return distribution into account Bacmann and Pache

(2004) advocate the use of Sortino and Price’s (1994) downside deviation.

However, even though this measure is sensitive to large losses, it does not

provide a full description of losses as defined by the extreme quantiles of

the distribution. Alternatively, Keating and Shadwick (2002) propose the

use of the Omega function when comparing different assets. The Omega

function takes into account the entire return distribution allowing ranking

of performance and risk profiles over a range of threshold returns, without

estimating any moments. Finally, in the spirit of Li’s (1999) work, Favre and

Signer (2002) and Favre and Galeano (2002) advocate the use of modified

VaR based on Cornish-Fisher expansion. However, this kind of approach

suffers from an important drawback. It assumes that the first four mo-

ments do exist.2 As pointed out by Dacorogna, Müller, Pictet, and de Vries

(2001), the convergence of the fourth moment is not guaranteed for finan-

cial data. In other words, a finite variance can be safely assumed but not

much more. Moreover, the expected shortfall cannot be derived within the

Cornish-Fisher expansion framework. As a consequence, VaR and expected

shortfall should be estimated via a more reliable theory, namely extreme

value theory.

A few authors have already explored EVT in applications to hedge funds.

Their application, however, differ somewhat from ours. Gupta and Liang

(2003) study the capital adequacy of almost 1500 single hedge funds con-

cluding that a vast majority of hedge fund managers, 96.3% of the live funds

and 88.1% of dead funds, are adequately capitalised. Lhabitant (2001) esti-

mates VaR of single hedge funds by extending Sharpe’s style analysis model

to include hedge fund strategy indices. A somewhat similar approach to our

analysis has been carried out by Blum, Dacorogna, and Jaeger (2003) where

the VaR measure is applied. Our analysis, however, extends the estima-
2see the discussion on page 23 showing that the k’th moment exist for k < 1/ξ.
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tion of market risks of hedge funds to also include the concept of Expected

Shortfall. It will further attempt to give an explanation of the different

magnitudes of risk and its source.

5.3 Estimation and results

The EVT is derived under the assumption of iid. However, when viewing

the first order autocorrelation coefficients in Table 5.1 and the Ljung-Box

statistics in Table 5.2 one can clearly observe a time dependence structure

for most of the hedge fund strategies. Actually, only the short sellers strat-

egy is independent for all lags investigated. Nondirectional strategies reveal

in general significantly higher autocorrelation numbers than the directional

ones. If extreme observations do cluster at high levels there are fewer ob-

servations for parameter estimations as is the case for independent time

series. Consequently, the presence of autocorrelation can severely bias the

estimation of sample variance. In the case of a positive autocorrelation, the

estimation of standard deviation tend to be biased downwards. Numerous

studies have highlighted the importance of eliminating autocorrelation from

the return time series of hedge funds.3

As noted by Lo (2001) and Getmansky, Lo, and Makarov (2003), the

presence of autocorrelation is a result of managers’ tendency to invest in

securities that are not frequently traded and with less established market

prices. Consequently, the valuation of these positions is complicated and to

some extent arbitrarily decided by the manager. In such situations, Brooks

and Kat (2002) argue that managers either use the last reported transac-

tion price or an estimate of the current market price, employing a smoothed

monthly return time series. This would imply that the location parameter

is responsible for serial dependence. While this might be true for emerg-

ing market, distressed, relative value and to some extent for long/short
3See e.g. Brooks and Kat (2002), Kat and Lu (2002), and Okunev and White (2002).

By calculating the so-called extremal index, EVT offers a methodology to test whether

the observations cluster at high levels. Unfortunately, this methodology requires a block

building of the sample which in the case of hedge funds is not large enough to conduct

such a computation.
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Table 5.2: Ljung-Box statistics of raw data.
Name LB-Q(1) LB-Q(3) LB-Q(6) LB-Q(9)

Equity long/short 4.92** 6.24 9.30 11.77

Equity market neutral 1.08 7.87** 31.06*** 38.44***

Short selling 1.37 2.12 7.44 7.98

Fixed income arbitrage 26.91*** 32.32*** 34.36*** 38.98***

Convertible arbitrage 50.40*** 60.61*** 62.63*** 65.32***

Merger arbitrage 6.62** 9.00** 11.62* 17.55**

Distressed securities 43.99*** 47.65*** 49.83*** 51.72***

Macro 5.27** 5.27 12.33* 14.08

Emerging markets 18.62*** 20.28*** 22.08*** 26.98***

Managed futures 0.02 3.91 12.60* 14.79*

Stocks 0.01 0.71 3.07 5.90

Bonds 6.61** 7.07* 23.71*** 31.45***

FOF Composite 18.61*** 21.33*** 22.31*** 25.50***

FOF Conservative 18.58*** 27.12*** 28.37*** 29.99***

FOF Diversified 18.83*** 20.83*** 24.82*** 27.86***

FOF Market Defensive 3.00* 3.51 5.30 8.89

FOF Strategic 15.14*** 17.51*** 18.83*** 23.53***

All hedge funds are represented by the HFRI indices, and managed futures by
the Stark 300 Trader index. Stocks = MSCI World Total Return, Bonds =
Citigroup Global Gov. Bond (all maturities). Ljung-Box Q test is calculated
for the first order autocorrelation, for a group of the first three autocorrelations,
first six, and first nine, respectively. High values indicate a rejection of the null
hypothesis that the time series is independent. Significant evidence against the
null hypothesis at 10%/5%/1% level is found for values labelled by */**/***,
respectively. Sample window (monthly data): Jan 1990–Sep 2004.

strategies with small cap bias, it is difficult to append this reasoning to the

presence of serial dependence in equity market neutral and merger arbitrage

which are obviously located in liquid markets. Instead, a more plausible

explanation might be that arbitrage based funds are locking in positions

with a consequence that the returns varies in a narrow bound. Statistically,

low variability induces low correlation. This would imply that also the

strategy parameter plays an important role for the determination of serial

dependence. Additionally, since even bonds which are very liquid exhibit a

significant autocorrelation it seems that the location parameter is not solely
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defined by illiquidity itself. Which of these two parameters dominates the

autocorrelation structure and its magnitude is difficult to quantify. How-

ever, the highest autocorrelation coefficients are found for nondirectional

strategies located in less liquid bond markets (distressed and relative value

strategies) indicating that the strategy parameter as well as both compo-

nents of the location parameter are responsible for serial dependence. These

strategies are followed by emerging markets which is exposed to illiquidity

only, and finally merger arbitrage with equity market neutral exposed to

the strategy factor only. Liquidity risk is also one of major sources hav-

ing impact on the tails of a distribution which explains why strategies with

highest serial dependence, presumably due to illiquid location parameter,

also exhibit fat tails.4

In accordance with the suggestions in the above cited literature, the return

time series are unsmoothed by using the following formula:

rt =
r∗t − ρ̂r∗t−1

1− ρ̂
(5.1)

where rt is the unsmoothed return, r∗t the observed return, and ρ̂ the es-

timated first order autocorrelation coefficient.5 After adjusting the data

for the first order serial dependence there is no evidence of autocorrela-

tion for longer horizons in the data.6 Table 5.3 reports the key statistics

of the unsmoothed data. As expected, the standard deviation of the pos-

itive autocorrelated series has increased, while the indices with a negative

autocorrelation coefficient achieved a slightly lower standard deviation. Ac-

cording to the F-test of difference in variance (last column in Table 5.3), this

difference is significant for most of the strategies.7 The effect of unsmooth-

ing on higher moments is neglectful. The signs of third and fourth moments
4See the discussion in Section 3.1 on page 52.
5It is worth noting that the estimation of Ljung-Box statistics is performed under

assumption of normality. Hence, unsmoothing non-normal data with a linear coefficient

should be interpreted with care.
6An alternative method would be to correct the variance only and leave the time series

raw. However, when applying EVT one needs corrected data since the variance itself does

not matter in estimation of the tail.
7Brooks and Kat (2002) do not perform any significance test for difference in standard

deviation. However, with exception of equity market neutral all investigated HFRI indices

exhibit positive first order autocorrelation and thus the standard deviation increased.
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remained the same. The largest changes has been observed for fixed income

and merger arbitrage strategies with the implication that these return series

became less negatively skewed with a lower kurtosis. Thus, the unsmoothed

data is used for the rest of the analysis.

The estimation of VaR and ES based on EVT is conducted by utilising

the peak over threshold approach. This involves fitting a generalised pareto

distribution to excess returns above a certain high threshold. The main

issue in applying this approach is the selection of an appropriate threshold.

An accurate estimation of the considered quantile principally depends on

the estimation of the shape parameter, which in turn is sensitive to the

selected threshold. A threshold too low will lead to biased estimations since

the Pickands’ condition in (3.7) is not satisfied. On the contrary, a too

high threshold leads to a large variance and few observations are left for the

estimation. Among various selection techniques, we follow the mean excess

function advocated by Davison and Smith (1990) and McNeil (1997). The

same authors suggest the use of maximum likelihood in estimations of the

shape parameter. This method permits the shape parameter to take positive

as well as negative values.

To control the accuracy of the estimation, various diagnostic tools such

as QQ-plot, PP-plot, and return level plot of the fitted generalised pareto

distribution have been implemented. Noting the degree of agreement among

them gives more confidence about the threshold selection, and thus the

estimated VaR and ES.8 Table 5.4 reports VaR and ES results for the hedge

fund strategies. This table also contains the 95% confidence intervals for

the VaR and ES estimates as well as the estimated shape parameters.

Beginning with the shape parameter, Table 5.4 reveals that with the

exception of equity market neutral, the nondirectional strategies seem to

be governed by a fat tailed distribution in the left tail. The estimated

shape parameter for these strategies reveal strong positive values. This is

consistent with the short option profile they exhibit. A notable evidence

for a fat tailed distribution is also found for the emerging market strategy.

This should not come as a surprise as this strategy is predominately a long
8The mean excess function of the unsmoothed time series is to be found in Appendix A

together with other descriptive plots.



Chapter 5. Risk analysis of hedge fund strategies 65

Table 5.3: Descriptive statistics of unsmoothed data.
Name Mean Std.Dev Skew Kurt Min Max S-W test F -test

LS 17.04% 10.57% 0.20 0.95 -9.05% 11.95% 0.988 0.72**

EMN 9.00% 3.47% 0.17 0.24 -1.92% 3.82% 0.990 0.85

SS 3.36% 23.61% 0.11 1.34 -23.71% 24.94% 0.984** 0.84

FI 8.04% 6.57% -0.85 5.79 -9.80% 6.76% 0.919*** 0.44***

CA 10.68% 6.15% -0.51 3.66 -7.52% 7.81% 0.950*** 0.31***

MA 10.68% 4.81% -1.90 7.96 -7.09% 3.94% 0.874*** 0.80

DS 14.76% 10.60% -0.68 6.27 -16.45% 13.17% 0.933*** 0.34***

GM 15.72% 10.12% 0.23 0.47 -8.16% 9.52% 0.984** 0.71**

EMG 15.48% 21.06% -0.99 4.41 -30.86% 18.08% 0.942*** 0.51***

MF 9.00% 11.49% 0.84 2.84 -8.20% 17.36% 0.959*** 1.02

Stocks 7.68% 14.52% -0.43 0.35 -13.21% 10.45% 0.986* 1.02

Bonds 7.92% 7.97% 0.16 0.24 -5.65% 7.15% 0.992 0.68**

Comp 9.72% 7.92% -0.29 3.83 -10.91% 7.77% 0.948*** 0.51***

Cons 8.40% 4.57% -0.54 3.52 -5.90% 4.68% 0.952*** 0.51***

Diver 9.00% 8.50% -0.16 3.70 -11.37% 8.87% 0.941*** 0.51***

Defen 9.60% 6.86% 0.04 1.02 -6.28% 7.89% 0.989 0.77*

Strat 13.08% 12.35% -0.31 3.08 -16.68% 11.90% 0.963*** 0.55***

Mean and standard deviation annualised. Kurt = excess kurtosis, Skew = skewness.
Min and Max represent the lowest and highest monthly return, respectively. S-W test
= Shapiro-Wilk normality test. */**/*** indicate a rejection of the null hypothesis that
the distribution is normal at 10%/5%/1%, respectively. F-test = F -test for difference in
variance. Null hypothesis is no difference in variance between the raw and the unsmoothed
data. Significant evidence against the null hypothesis at 10%/5%/1% level is found for
values labelled by */**/***, respectively. Stocks = MSCI World Total Return, Bonds =
Citigroup Global Gov. Bond (all maturities), LS = HFRI Equity Hedge, EMN = HFRI
Equity Market Neutral, SS = HFRI Short Selling, FI = HFRI Fixed Income Arbitrage,
CA = HFRI Convertible Arbitrage, MA = HFRI Merger Arbitrage, DS = HFRI Distressed
Securities, GM = HFRI Macro, EM = HFRI Emerging Markets, MF = Stark 300 Trader.
Comp = HFRI FOF Composite, Cons = HFRI FOF Conservative, Diver = HFRI FOF
Diversified, Defen = HFRI FOF Market Defensive, Strat = HFRI FOF Strategic. Sample
window (monthly data): Jan 1990–Sep 2004.
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only investment on markets with a considerable downside risk. Because the

inverse of the shape parameter defines the number of moments, Table 5.4

further indicates that only the first two moments are defined for the emerging

market and the merger arbitrage strategy. The estimated shape parameter

for theses strategies is 0.45 and 0.37 respectively. For the distressed securities

strategy this is confined to the first three moments (0.27). This implies that

optimisations or VaR estimations with higher moments containing these

strategies will not produce reliable results. The shape parameter estimations

are similar in sign to the results in Blum, Dacorogna, and Jaeger (2003) with

the exception of short selling and global macro which in their study obtain a

high positive, and a slight positive value, respectively. That study, however,

is based on CSFB/Tremont indices which are capital weighted and hence

less comparable to HFRI. Furthermore, their sample window contains 108

observations collected from January 1994 to December 2002. The most likely

reason for the difference in the shape parameter of global macro strategies is

the composition of CSFB/Tremont global macro index which also includes

emerging market hedge funds that exhibit fatter tails.

The lack of liquidity and credit risk exposure is responsible for the fact

that the equity market neutral strategy reveals a more normal behaviour.

The estimated shape parameter is −0.07. In direct contrast to the other

nondirectional strategies, the investments are committed in highly liquid

equity markets. From Table 5.4 one may further discern that the shape

parameter of the remaining directional strategies is generally negative and

close to zero, implying a normal or even a short tailed distribution in the

left tail; −0.05, −0.11, −0.10, and −0.05 for the equity long/short, short

selling, macro, and managed futures, respectively. Here, also, the trades are

mainly committed in liquid equity or futures markets. Sott (2004) points out

that these characteristics allow managed futures mangers to change direction

relatively quickly making them more flexible in market stress periods, and

thus offering a downside hedge. An equivalent statement might be attributed

to the global macro and the long/short equity strategies.

While knowledge of the shape parameter is interesting in itself, the ques-

tion of economic interest is how large extreme returns are. Given the obvious

tail fatness of relative value and event driven strategies one might draw a
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Table 5.4: VaR, ES and shape paramter of hedge fund strategies.
Name 95% 99% Shape

V aR ES V aR ES

LS 3.34 4.83 5.77 7.15 −0.05

(2.78; 4.23) (3.88; 6.34) (4.57; 7.66) (5.60; 9.61)

EMN 0.80 1.29 1.60 2.03 −0.07

(0.61; 1.10) (0.98; 1.77) (1.21; 2.19) (1.54; 2.79)

SS 10.85 14.65 17.08 20.28 −0.11

(9.18; 13.27) (12.22; 18.17) (14.16; 21.29) (16.72; 25.42)

FI 2.24 4.14 5.08 7.87 0.24

(1.71; 3.12) (2.96; 6.10) (3.58; 7.57) (5.40; 11.94)

CA 1.92 3.53 4.38 6.53 0.18

(1.40; 2.71) (2.55; 5.01) (3.15; 6.24) (4.68; 9.31)

MA 1.26 3.23 3.99 7.53 0.37

(0.80; 2.03) (2.05; 5.19) (2.53; 6.42) (4.77; 12.13)

DS 3.13 5.50 6.62 10.29 0.27

(2.46; 4.17) (4.09; 7.71) (4.86; 9.38) (7.37; 14.83)

GM 3.20 4.72 5.69 6.98 −0.10

(2.58; 4.15) (3.76; 6.21) (4.50; 7.51) (5.50; 9.26)

EMG 7.87 14.20 16.06 29.22 0.45

(6.70; 10.00) (10.42; 21.02) (11.52; 24.26) (19.27; 47.16)

MF 3.92 5.36 6.27 7.61 −0.05

(3.30; 4.80) (4.44; 6.68) (5.15; 7.86) (6.20; 9.60)

Stocks 6.87 9.10 10.55 12.20 −0.19

(5.85; 8.36) (7.69; 11.16) (8.89; 12.98) (10.26; 15.04)

Bonds 3.06 4.02 4.65 5.31 −0.24

(2.63; 3.71) (3.43; 4.92) (3.95; 5.71) (4.50; 6.54)

Peak-over-Threshold estimates of Value-at-Risk and Expected Shortfall for hedge fund
strategies and traditional assets, in percent. Shape = the estimated shape parame-
ter ξ from generalised Pareto distribution as defined in equation (3.7). Values in
parentheses represent a 95% confidence interval. LS = HFRI Equity Hedge, EMN =
HFRI Equity Market Neutral, SS = HFRI Short Selling, FI = HFRI Fixed Income
Arbitrage, CA = HFRI Convertible Arbitrage, MA = HFRI Merger Arbitrage, DS
= HFRI Distressed Securities, GM = HFRI Macro, EM = HFRI Emerging Markets,
MF = Stark 300 Trader, Stocks = MSCI World Total Return, Bonds = Citigroup
Global Gov. Bond (all maturities). Sample window (monthly data): Jan 1990–Sep
2004.
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conclusion that these bear the highest risk. Turning the discussion toward

the risk numbers measured by VaR and ES, it is apparent that at 95% level

the lowest values are found among the nondirectional strategies. The risk

of large losses measured by 95% VaR and ES is generally lower than that

of bonds which are proxied by the Citigroup Government Bond index. The

reason is that the low volatility of non directional strategies outweighs the

fat tail effect. A similar result has been observed in Schmidhuber and Moix

(2001), where a hyperbolic distribution has been fitted to hedge fund data.

Ineichen (2004) points out that as actively managed risks result in low

volatility of hedge funds, large losses will have a much higher impact on

higher moments, i.e. fatness of the curve, than for the more normal and

symmetrically distributed high volatility assets. Additionally, in a simula-

tion study Burghardt, Duncan, and Liu (2003) have shown that the size of

the higher moments does not matter for the distribution of drawdowns and

maximum drawdowns. However, they found that the higher the volatility

the higher the likelihood of drawdowns, and the higher the mean the lower

the likelihood of experiencing a drawdown.

In comparison to stocks, represented here by the MSCI World Total Re-

turn index, the estimated 95% VaR and ES values of nondirectional strate-

gies are far lower. In all cases the estimated VaR and ES of stocks is above

the confidence interval of nondirectional strategies. Among all strategies,

the equity market neutral one shows the lowest risk numbers. The direc-

tional strategies reveal a rather mixed though not surprising picture. The

dimension of risk at 95% level of long/short equity, macro and managed

futures is comparable to that of bonds and much lower than stocks. Despite

the directional market exposure of these strategies, the lower risk is a direct

result of active volatility management that reduces the downside risks. The

remaining directional strategies, short sellers and emerging market, reveal

higher risk numbers. It should be mentioned that these strategies differ from

other directional strategies in the sense that they essentially have net expo-

sure in one direction only, short or long respectively. Hence, they exhibit

higher volatility which produces higher risk numbers.

Moving to the higher quantile (99%) the increase of VaR and ES num-

bers in the tail is largest for the relative value, event driven and emerging
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market strategies. This shift is expected given the fatter tail of these strate-

gies. The change in their risk measures is generally twofold. Hedge funds

with a distribution closer to normal face an increase in their risk measures

of roughly 50%. The lowest overall numbers are again obtained for equity

market neutral whereas short sellers and emerging market remain the riski-

est strategies. Compared to bonds, the risk numbers for all strategies are

less attractive as in the 95% case. However, three strategies (equity market

neutral, fixed income arbitrage and convertible bond arbitrage) have lower

VaR numbers, and equity market neutral even shows a lower ES. Neverthe-

less, the overwhelming majority of hedge funds demonstrate a much lower

risk than that of stocks. The estimated VaR and ES of stocks is above the

confidence interval of hedge funds. Short selling and emerging market are,

once again, the exceptions to this.

As a diagnostic check and for the purpose of comparison, Table C in

Appendix C presents VaR and ES estimated with a historical method. The

numbers are within the 95% confidence interval of the EVT based VaR and

ES. The differences are larger for the 99% level and especially for the fat

tailed distributed indices indicating higher risk with EVT estimation.9 Ad-

ditionally, it is important to bear in mind the statistical biases present in

hedge fund indices as described in Section 4.5. Hence, the results should be

interpreted with care as the impact of survivorship bias in addition to perfor-

mance might also be significant for higher moments. Using TASS database

over the period 1994-2001, Amin and Kat (2003b) had investigated this issue

concluding that not taking fund closures into account causes an upward bias

in the skewness and downward bias in the kurtosis estimates and thus under-

estimating the risk. The exact impact on our results is difficult to quantify

as the study of Amin and Kat (2003b) does not distinguish between styles in

bias estimation of higher moments. The impact of survivorship bias on indi-

vidual styles has been investigated by Liang (2000), although not for higher
9This comparison is for illustrative purposes only as the number of observations is

very limited, e.g. only two observations can be used to calculate the 99% ES. Besides

that, Blum, Dacorogna, and Jaeger (2003) note two other benefits with parametric es-

timates over the historical method; estimation of quantiles beyond what is covered by

available data, and smoother tail estimates within covered historical data.
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moments. However, the author could not find a significant bias in HFRI style

indices.10 On the contrary, significant bias has been concluded for most of

the TASS investment styles. As in the study of Amin and Kat (2003b),

directional funds with exception of emerging markets are generally showing

higher survivorship bias than their nondirectional counterparts. Neglecting

for a moment the different windows in investigated periods and assuming

that the characteristics obtained from these studies on TASS database are

applicable to our HFRI indices, one is tempted to conclude that the impact

on strategies exhibiting fat tails is rather negligible. Consequently, a slightly

upward adjustment of risk numbers in more normally distributed strategies

is to be expected.

Another critical point is the investigated period from January 1990 to

September 2004. As with any other statistical analysis, a time window

has to be fixed before conclusions can be drown from. Since the investi-

gated period contains both bull and bear equity markets, credit crises in

late 1990’s, as well as hedge fund debacles it should serve as a reliable and

representative set for comparative analyses. Nevertheless, in times of writ-

ing the thesis, the last two years (2005 and 2006) have been very profitable

for equity investors. Hence, Table B in Appendix B provides descriptive

statistics updated for the months up to December 2006. The general pic-

ture of this data extension is that most of hedge fund strategies exhibit a

lower return and volatility. Strategies with positive skewness and kurtosis

tend to display higher numbers in the third and fourth moment whereas

the nondirectional ones tend to show a lower skewness and an increase in

kurtosis. These changes indicate that in the last two years we have observed

a large number of small positive returns. It also means that most of the

extreme observations needed to calculate the tail risk measures did occur in

the past. Also, the size of maximum and minimum returns remained the

same as well as the size of autocorrelation coefficients. Indeed, the upward

trending stock markets and the absence of large extreme observations in the

left tail for the investigated indices let us believe that the impact of the last

two years is infinitesimal on tail risk estimations conducted in this chapter.
10Again, this might be due to the fact that HFR collects a lower number of dissolved

funds as claimed by Liang (2000). The investigated period over 1993-1998 differs as well.
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Consequently, with an increased data set, this would suggest a more robust

estimation of the risk measures as the standard errors and thus confidence

intervals become smaller.

To sum up, on the basis of VaR and ES estimates hedge funds predomi-

nately demonstrate a lower risk of large losses than traditional investments.

These low risk numbers are mainly a result of active risk management by

implementing dynamic long/short trading strategies that reduce volatility.

Figure 5.1 concludes these findings by displaying on the same return range

the histograms of stocks, bonds and two hedge fund strategies. Given the

smaller dispersion of hedge funds, the extreme losses that generate the fat-

ness in the left tail are rather small in absolute values when compared to

equity markets. Thus, the size of the higher moments is less important when

assessing risk of hedge funds.
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Figure 5.1: Histograms of traditional investments and hedge fund strategies.

All histograms plotted on the same scale [-0.15;0.15]. Stocks = MSCI World Total
Return, Bonds = Citigroup Global Gov. Bond (all maturities), Macro = HFRI
Macro, Merger arbitrage = HFRI Merger arbitrage. Sample window (monthly
data): Jan 1990–Sep 2004.



Chapter 6

Portfolio risk of hedge funds

and traditional assets

In view of the fact that investors’ demand for hedge funds has shifted towards

diversified hedge fund products, in this chapter we will no longer consider

single strategies but concentrate on the HFRI fund of funds indices. To

analyse how hedge funds, stocks and bonds fit together with respect to risk

several portfolios are constructed and their evolution of VaR and ES at the

95% and 99% level is computed.

6.1 Data

The HFRI fund of funds (FOF) indices that are used in this part of the

analysis have been described in Section 5.1 where the standard statistics of

the raw data are also found (Table 5.1). Table 5.3 presents the unsmoothed

results and Appendix A provides a historical time series as well as descriptive

plots. Normality can not be rejected for the HFRI FOF Market Defensive

only. Judging from the skewness and kurtosis, the returns of the remaining

FOF seem to obey a fat tailed distribution with an additionally significant

first order autocorrelation. All FOF indices have higher mean returns than

stocks and bonds. The volatility is lower than stocks whereas two FOF

indices, Diversified and Strategic, have higher volatility than bonds. In view

of the discussion in the previous chapter, Table 6.1 gives the estimated VaR

73
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Table 6.1: VaR, ES and shape parameter of funds of funds.
Name 95% 99% Shape

V aR ES V aR ES

Comp 2.41 4.17 4.88 7.99 0.35

(2.03; 3.10) (3.09; 6.11) (3.52; 7.36) (5.39; 12.63)

Cons 1.36 2.49 3.06 4.71 0.23

(1.03; 1.89) (1.79; 3.65) (2.16; 4.54) (3.25; 7.09)

Diver 2.65 4.70 5.67 8.83 0.27

(2.06; 3.55) (3.49; 6.55) (4.17; 7.97) (6.37; 12.59)

Defen 2.24 3.40 4.08 5.35 0.06

(1.86; 2.87) (2.66; 4.60) (3.13; 5.62) (4.01; 7.54)

Strat 4.25 6.68 8.02 11.03 0.13

(3.42; 5.50) (5.17; 8.94) (6.15; 10.84) (8.32; 15.10)

Stocks 6.87 9.10 10.55 12.20 −0.19

(5.85; 8.36) (7.69; 11.16) (8.89; 12.98) (10.26; 15.04)

Bonds 3.06 4.02 4.65 5.31 −0.24

(2.63; 3.71) (3.43; 4.92) (3.95; 5.71) (4.50; 6.54)

Peak-over-Threshold estimates of Value-at-Risk and Expected Shortfall for fund
of funds and traditional assets. Shape = the estimated shape parameter ξ from
generalised Pareto distribution as defined in equation (3.7). Values in parentheses
represent a 95% confidence interval. Comp = HFRI Composite, Cons = HFRI
Conservative, Diver = HFRI Diversified, Defen = HFRI Market Defensive, Strat
= HFRI Strategic, Stocks = MSCI World Total Return, Bonds = Citigroup Global
Gov. Bond (all maturities). Sample window (monthly data): Jan 1990–Sep 2004.

and ES along with the estimation parameters. The lowest risk numbers

at both confidence levels are found for the Conservative index, whereas

the Strategic one reveals the highest values. With the exception of the

latter index, the FOF disclose risk estimates significantly lower than those

of stocks. At both risk levels, the estimated VaR and ES is below the

confidence interval of stocks. The estimated shape parameters indicate a fat

tailed distribution in the left tail of the return distribution, although this is

less evident for the FOF Market defensive index. It is worth noting that the

third and fourth moments are not defined for the FOF Composite index, as

is the case for the fourth moment of the FOF Diversified one.



Chapter 6. Portfolio risk of hedge funds and traditional assets 75

6.2 Motivation and methodology

Modern financial theory usually suggests the use of the mean-variance ap-

proach when allocating capital into various assets. Fung and Hsieh (1999a)

investigate the appropriateness of this approach in the context of hedge funds

and mutual funds. Their results support the use of mean-variance to rank

funds as the rankings produced are nearly correct. However, they also con-

clude that risk assessment can not be done accurately using this approach

as it is appropriate only for normally distributed returns. Consequently, the

tail risk of negatively skewed assets tends to be underestimated. As shown

in the previous chapter, hedge funds exhibit an asymmetric return distribu-

tion. Brooks and Kat (2002) argue that the mean-variance framework has a

propensity to overestimate the true risk-return profile of hedge funds, which

leads to an over-allocation to this asset class. By constructing option based

risk factors of the underlying hedge fund indices, Agarwal and Naik (2004)

compared the tail losses of portfolios constructed using the mean-variance

approach and the mean-expected shortfall framework. The results show that

the mean-variance approach substantially underestimates the tail losses and

this underestimation is most severe for portfolios with low volatility.

In a recent paper, Amin and Kat (2003a) demonstrate that while hedge

funds combine well with stocks and bonds in the mean-variance framework,

this is no longer the case when skewness is considered. Adding hedge funds to

a portfolio of stocks and bonds improved the mean-variance characteristics

but at a cost of lower skewness and higher kurtosis making hedge funds

less attractive in a portfolio context. Such an approach, however, suffers

from the assumption that the higher moments exist. The shape parameters

in Table 6.1 indicates that this might not be the case. Additionally, as

the results in the previous chapter shows, the presence of fat tails does not

necessary induce higher values of large losses. Thus, the investigation of

risk in portfolios with hedge funds should be conducted in terms of absolute

return rather than solely relying on distributional moments. Furthermore,

contrary to Amin and Kat (2003a), the analysis in this chapter will not

rely on an optimisation for at least three reasons. Firstly, any optimisation

framework relies on the definition of expected returns, which are particulary



Chapter 6. Portfolio risk of hedge funds and traditional assets 76

prone to errors. As a consequence, the choice of expected returns coming

from a model or from a historical perspective influences the optimal weights

of hedge funds, stocks, and bonds in the portfolio. Secondly, optimisation

methods are very sensitive to errors in the different estimates and tend to

exacerbate the impact of the errors on the optimal weights.1 Finally, the

behaviour of institutional investors is not well captured by an optimisation

framework. Indeed, institutional investors tend to favour limited investment

(between 1% and 5%) when considering the inclusion of a new asset class

in their portfolios. Instead, in this chapter, the analysis of risk in portfolios

with hedge funds is conducted by measuring the VaR and ES derived from

EVT for an incremental addition of hedge funds.

6.3 Estimation and results

In order to analyse how hedge funds, stocks, and bonds fit together, several

portfolios are created out of the different asset classes. These different sets

of portfolios are constructed by choosing the initial composition between

stocks and bonds. Eleven sets are defined, where the allocation to stocks

(bonds) ranges from 0% (100%) to 100% (0%) in steps of 10%. In each of

the sets, we add different levels of hedge funds (0%, 1%, 5%, 10%, 15%, 20%

up to 100% in steps of 5%). When hedge funds are added to the portfolio,

the proportion of stocks (or bonds) is kept constant in the traditional part of

the portfolio. For example, if a set is built with 20% stocks and 80% bonds,

adding 20% hedge funds will decrease the weight of stocks to 20% * 80% =

16% and the weight of bonds to 80% * 80% = 64%. In total, we analyse

242 portfolios for a given fund of funds index which corresponds to 1210

portfolios for the five fund of funds indices. This method provides more

information than the standard optimisation framework. As noted in Kat

and Lu (2002), forming portfolios itself tends to create autocorrelation. We

follow the suggestions therein and perform unsmoothing of the time series

after the construction of the portfolios.

In order to simplify the estimations of the large number of portfolios, the

threshold u is parameterised as a product of percentile p and the empirical
1See e.g. Michaud (1998) in the traditional context of mean-variance.
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standard deviation of each portfolio’s returns. The percentile p is determined

by evaluating the mean excess function as suggested by Davison and Smith

(1990). The choice of 70th percentile has been found to be a sound definition

of the threshold for the different time series as it generally gives stable

results.2 On average, one obtains 35 observation points, typically ranging

from 25 to 45.

The analysis of Figures 6.1, 6.2, and 6.3 shows the different behaviours

depending on the composition of the traditional portfolios. The introduc-

tion of hedge funds in a traditional portfolio reduces the risk measured by

95% VaR or 95% ES for all the considered cases. The optimal level depends

strongly on the initial traditional portfolio composition and on the type of

the added fund of funds. For instance, when the traditional portfolios con-

tain mostly stocks, VaR and ES are decreasing to the VaR and the ES of the

individual FOF as expressed by a downward sloping pattern in Figure 6.3.

This behaviour is expected since all FOF indices have much lower risk than

stocks. In other words, these traditional portfolios should contain as much

hedge funds as possible.

On the other hand, when the traditional portfolio contains mostly bonds,

diversification effects can be achieved. This is apparent from the u-shaped

pattern of FOF indices in Figure 6.1. For instance, the FOF Strategic has

much higher risks as measured by VaR and ES and still the portfolio risk

is significantly reduced up to an allocation of approximately 40% in order

to increase again when its addition raises. Looking at all FOF indices, it

appears that an optimal composition is found between 50% and 60% in

hedge funds and between 40% and 50% in bonds for the overall portfolio.

Moreover, the reduction of VaR and ES is statistically significant.3 For

example, the 95% VaR (95% ES) of a bond only portfolio is 3.01% (4.00%).

When 50% FOF Composite is added to this portfolio, VaR (ES) drops to

1.42% (2.34%) and the upper limit of the confidence interval is 1.85% for
2Alternatively one could have fixed the threshold such that the number of exceedances

represents a specified fraction (e.g. 10%) of the data for each portfolio. A graphic eval-

uation of the mean excess plots, however, indicated that this procedure leads to a less

satisfactory choice of threshold.
3At 5% significance level.
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VaR (3.40% for ES). This observation is valid for an inclusion of the FOF

Composite ranging from 25% up to 75%.

For mixed portfolios, in the regions of 40% to 50% stocks, the inclusion

of FOF Strategic does not seem to have significant risk reducing properties,

when measured by ES.4 However, including FOF Strategic might still be

worthwhile due to return enhancement. Still, adding ca 40% of FOF Strate-

gic does not not change the risk magnitude of the mixed portfolio. This is

partially consistent with the evidence from Schneeweis and Spurgin (2000)

that generalises hedge fund strategies into risk reducers, return enhancers,

and pure diversifiers. Their results show that investors adding long/short

equity and global macro strategies into a typical stock/bond portfolio should

rather expect return enhancement than risk reduction or diversification.

In general, the characteristics of the fund of funds index added to the

traditional portfolio have a strong impact on the risk profile of the blended

portfolio. The lowest risk reduction is achieved with the FOF Strategic due

to the high risk behaviour of the index. The most important reduction of

risk is obtained with the FOF Conservative when the traditional portfolio

contains mostly bonds. In the case of the addition of FOF Market Defen-

sive to the traditional portfolio, we find an optimal composition (optimal

level of hedge funds) for each traditional portfolio. The level of hedge funds

to be added is a function of the composition of the traditional benchmark

(between 40% to 70%). In other words, the FOF Market Defensive category

provides a different risk profile presenting diversification effects whatever the

initial traditional portfolio. This FOF index is overweighed toward managed

futures and short sellers. These findings are consistent with Kat’s (2004)

claim that managed futures reduce substantially the risk of traditional port-

folios.5 From a risk perspective, investor should consider managed futures

in their hedge fund portfolio in order to diversify the extreme risk in the

traditional portfolio.

4See the lower panel of Figure 6.2.
5An early application of adding managed futures into traditional portfolios is Lintner

(1983), which concludes that managed futures strongly improve the risk/return tradeoff

of blended portfolios.
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The overall impression gained from the portfolios evaluated at 99% risk

level is very similar to that of the 95%, though, the inclusion of hedge funds

in bond dominated portfolios indicates an optimal allocation of between 30%

and 50%. Stock dominated portfolios benefit most from an allocation to

hedge funds, whereas mixed portfolios are again least affected. The ranking

of the different FOF is preserved, meaning that the FOF Conservative and

FOF Market Defensive contribute with the highest reduction in risk, as

measured by VaR and ES. The FOF Strategic has the lowest, and in most

cases even no risk reduction character. Judging from the ES figures, this

index reduces risk only for stock dominated portfolios. As already pointed

out, this FOF has the highest volatility among all investigated indices.

In contrast to the findings and indications in the literature, the results

in this chapter clearly show that the contribution of hedge funds in a tradi-

tional portfolio has a risk reducing character, and, in most cases, regardless

of the initial composition of the traditional one. The magnitude of this effect

is dependent on the initial composition of the portfolio and the type of added

FOF. There is in general no major difference in VaR and ES with respect

to ranking of the individual FOF indices although the optimal allocation

is lower when measured by ES.6 In contrast to Amin and Kat (2003a), the

risk reduction is achieved despite the less attractive fat tails properties of

the hedge fund indices. Additionally, looking at FOF mean returns, this

improvement in terms of risk control does not necessarily come at the cost

of lower expected returns. The explanation for this behaviour is the lower

volatility of FOF as a result of active risk management. The increased prob-

ability of large losses as indicated by negative skewness/large kurtosis or the

positive shape parameter does not translate into large losses in absolute val-

ues. Finally, there seems to be a diversification benefit in the tail from

adding FOF. This finding is especially apparent for bond dominated portfo-

lios as an addition of hedge funds exhibit a u-shape pattern regardless of the

magnitude of risk of the individual FOF. An optimal allocation is achieved

since hedge fund are exposed to different risk sources than bonds. The issue

of tail diversification is examined in more details in the next chapter.

6Expected shortfall should be more reliable in estimating diversification benefits since

it is a coherent risk measure whereas VaR is not. See the discussion in Section 2.5.
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Figure 6.1: VaR and ES for 0% Stocks and 100% Bonds.

Evolution of 95% VaR (top) and 95% ES (bottom) when adding hedge funds to
traditional portfolios. Horizontal dashed line indicates the initial VaR and ES of
the traditional portfolio without hedge funds.
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Figure 6.2: VaR and ES for 50% Stocks and 50% Bonds.

Evolution of 95% VaR (top) and 95% ES (bottom) when adding hedge funds to
traditional portfolios. Horizontal dashed line indicates the initial VaR and ES of
the traditional portfolio without hedge funds.
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Figure 6.3: VaR and ES for 100% Stocks and 0% Bonds.

Evolution of 95% VaR (top) and 95% ES (bottom) when adding hedge funds to
traditional portfolios. Horizontal dashed line indicates the initial VaR and ES of
the traditional portfolio without hedge funds.



Chapter 7

Extremal dependence

As described in Section 2.1, one of the crucial issues in measuring risks is a

realistic approach to the dependencies between asset classes. The previous

chapter has shown that hedge funds are able to reduce the risk of differ-

ent traditional portfolios. However, when building portfolios, the depen-

dence between hedge funds and other asset classes is treated as endogenous.

Given the nonlinearities of hedge funds to traditional assets and the appar-

ent asymmetric return distribution, correlation as a measure of dependence

is assumed to be of less value. In this chapter, we explicitly evaluate the ex-

treme dependence between the different assets as defined by the multivariate

EVT in Section 3.5.

7.1 Data

This part of the analysis makes use of all hedge fund indices investigated so

far, i.e. the funds of funds as well as the single strategy indices. All hedge

funds are represented by HFRI indices, with the exception of the managed

futures strategy which is proxied by the Stark 300 Trader index. The Cit-

igroup Global Government Bond index (all maturities), and MSCI World

Total Return index are used as proxies for bonds and equities. Usually, in

order to obtain the first impression of diversification potential, the correla-

tion is calculated. Table 7.1 displays the correlation numbers of fund of funds

indices with stocks and bonds. Bond markets seem not to be correlated with

83
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hedge funds while stocks, with the exception of FOF Market Defensive, ap-

pear to have a moderate correlation.1 Furthermore, the correlation numbers

within the fund of funds indices indicate minor diversification benefits. To

some extent, this might be explained by the fact that the same strategies

are present in many fund of fund indices. The only hedge fund index with

moderate correlation is the FOF Market Defensive.

Table 7.1: Correlation coefficient of funds of funds.
Name Stocks Bonds Comp Cons Diver Defen Strategic

Stocks 1.00 0.20*** 0.46*** 0.48*** 0.48*** 0.02 0.48***

Bonds . 1.00 -0.01 0.04 -0.01 0.09 -0.02

Comp . . 1.00 0.85*** 0.96*** 0.66*** 0.92***

Cons . . . 1.00 0.77*** 0.58*** 0.80***

Diver . . . . 1.00 0.58*** 0.83***

Defen . . . . . 1.00 0.52***

Strat . . . . . . 1.00

Estimated correlation between fund of funds indices and traditional assets. Values signifi-

cantly different from 0 at 10%/5%/1% level are marked by */**/***, respectively. Stocks

= MSCI World Total Return, Bonds = Citigroup Global Gov. Bond (all maturities),

Comp = HFRI FOF Composite, Cons = HFRI FOF Conservative, Diver = HFRI FOF

Diversified, Defen = HFRI FOF Market Defensive, Strat = HFRI FOF Strategic. Sample

window (monthly data): Jan 1990–Sep 2004.

Table 7.2 reports the correlation coefficients of individual hedge fund

strategies and traditional investments. With traditional assets and within

hedge funds, the highest diversification benefits are obtained with FOF Mar-

ket Defensive constituents, i.e. short sellers and managed futures, as well

as two strategies that belong to the FOF Conservative, i.e. equity market

neutral and fixed income. The former two are generally negatively corre-

lated. On the contrary, strategies offering smaller diversification benefits

are: macro, long/short equities, distressed, and emerging markets. These

numbers are, however, not as high as those within funds of funds.

1Brooks and Kat (2002) calculate correlation of FOF Composite to various stock indices

and Lehman Gov. Bond index. With S&P500 and DJIA, the correlation is about 0.50

and with bonds slightly negative (-0.05). The effect of unsmoothing on correlation with

stocks is negligible whereas the dependence with bonds turned to a positive number (0.11).

Remaining HFRI indices showed generally an increased correlation with stocks and bonds.
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7.2 Motivation and methodology

Correlation as a measure of dependence in the context of hedge funds has

been one of the most frequently analysed topics in the literature (see e.g.

Lo 2001, Kat and Lu 2002, Amin and Kat 2002). It is often argued that

the greatest advantage of hedge funds is the low correlation to traditional

assets. Having an additional asset with low or negative correlation permits

the diversification of risk in a mean-variance framework. However, the in-

sights gained from Chapter 5 and 6 suggest the need to examine dependence

by other means than correlation. Clearly, the nonlinearities of hedge funds

and the evidence of not normally distributed returns invalidates the use of

correlation as a dependence measure. Numerous authors have already high-

lighted the asymmetry of dependence in hedge funds returns (see e.g. Fung

and Hsieh 1997, Lo 2001, Agarwal and Naik 2004). An often advocated

solution is to examine the correlation separately in upwards/downwards en-

vironments (see e.g. Fung and Hsieh 1997, Schneeweis and Spurgin 2000).

The results usually indicate a higher correlation in turbulent financial mar-

kets than in market quiescence. This means that in periods when diversi-

fication is most needed, investor’s ability to diversify is strongly reduced.

However, linear measures like correlation are not applicable when returns

are not normally distributed. Longin and Solnik (2001) and Kat (2003) give

an illustration of errors that can be made when correlation is conditioned

either on returns or volatility.2 The implication is that one is wrongly con-

cluding higher correlation in down markets than in up markets while by

construction it is the same.

This calls for a measure of dependence that is able to address the asym-

metry adequately. In other words, the dependence should be measured in

such a way that the tail properties of variables are taken into account. In

recent years the concept of extremal (tail) dependence has achieved promi-

nence in financial applications. This measure is derived from multivariate

extreme value theory which aims to describe the joint tails of multivariate

outcomes. The literature on financial applications of multivariate extreme
2A general overview of errors that can be made when correlation is estimated for non-

normal data is given in Embrechts, McNeil, and Straumann (2002).
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value methods has been growing rapidly in recent years. Straetmans (1998)

and Stărică (1999) focus on foreign exchange applications, whereas Longin

and Solnik (2001), Poon, Rockinger, and Tawn (2003) and recently Heffer-

nan (2004) explore the dependence structure in tails for equities. A first

attempt to assess the tail dependence of hedge funds and traditional assets

has been undertaken by Blum, Dacorogna, and Jaeger (2003). This study,

however, assumes that the dependence structure is well described by ellipti-

cal distributions.3 This assumption might be too strong as the distributions

in the hedge fund world are usually asymmetric. As a consequence, in the

next section the quantification of tail dependence is applied following the

results in Ledford and Tawn (1996, 1997), and Coles, Heffernan, and Tawn

(1999). More specifically, the dependence for extreme values is investigated

by testing whether the dependence structure is asymptotically dependent

or asymptotically independent. By doing so, one is able to quantify the

ability to diversify in turbulent market periods, i.e. in periods when large

losses occur. Concluding asymptotic dependence means a larger probability

of observing large losses simultaneously.

7.3 Estimation and results

The estimation of extremal dependence follows the steps outlined in Poon,

Rockinger, and Tawn (2003). It is confined to estimating the pair of de-

pendence measures (χ, χ̄) that provides the necessary information to char-

acterise both the form and the degree of extremal dependence. The first

step is to transform each pair of the original bivariate returns (W,V ) to

unit Fréchet margins (X, Y ). This transformation removes the influence of

the marginal aspects of the initial random variables while keeping the dif-

ferences due to dependence aspects. More specifically, the transformation

can be expressed as:

X = −1/ log F̂W (W ) and Y = −1/ log F̂V (V ), (7.1)
3Elliptical distributions include multivariate normal as well as some fat tailed distri-

butions, e.g. multivariate t-distribution.
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where F̂W and F̂V are the empirical marginal distribution functions of W

and V , respectively. Having transformed the variables, the next step is to

construct the structure variable Z = min(X,Y ) and estimate the parameter

χ̄ for each pair of assets. This reduces to the estimation of the coefficient of

tail dependence η by means of the Hill estimator as described in Section 3.5.

This coefficient measures the association in the tails between X and Y and

χ̄ is a measure of asymptotic independence. By applying the delta method,

the following one-sided test of ˆ̄χ is next performed.

H0 : ˆ̄χ = 1

H1 : ˆ̄χ < 1.

If the parameter ˆ̄χ is not significantly less than 1, one cannot rule out the

possibility of asymptotic dependence. In this case, it is conservative to

examine the tail dependence coefficient χ under the assumption of ˆ̄χ =

1. The parameter χ is then an appropriate measure of the strength of

dependence within the class of asymptotic dependent variables. On the other

hand, if the parameter ˆ̄χ is significantly smaller than 1, then χ̄ measures

the strength of dependence within the class of asymptotically independent

variables. These, in turn, based on the estimated size of the coefficient of

tail dependence η are classified into positive association, near independence,

and negative association, respectively.

Tables 7.3 and 7.4 report the different values for the extremal dependence

measures. Since the data set is rather short, the standard errors are large.

Despite this fact, several conclusions can be drawn. Firstly, there seems to

be no evidence of asymptotic dependence between hedge funds and bonds.

The estimated χ̄ values are all significantly smaller than 1. This means

that large losses in bond markets do not occur simultaneously with large

losses observed in fund of funds indices. These findings are related to the

reduction in VaR and ES in portfolios dominated by bonds and hedge funds.

The optimal composition found in the previous chapter is a consequence

of the absence of extremal dependence between hedge funds and bonds.

Looking at the correlation numbers in Table 7.1 one could have suspected

this behaviour. However, as the χ̄ is now the correct measure of dependence

in the absence of asymptotic dependence, the estimated values of χ̄ indicate
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a higher dependence in the tails than that computed from the correlation.

This means that the association in the tails between bonds and hedge funds

is higher than predicted by correlation but not so strong as to be defined by

the bivariate extreme value distribution.

Secondly, the picture appears to be less clear regarding the dependence

with the stock market. The interpretation of the form of tail dependence

relies on the decision rule one chooses. Thus, there is strong evidence (1%)

against the null hypothesis χ̄ = 1 for the FOF Market Defensive, moderate

(5%) for the FOF Composite and the FOF Diversified and weak evidence

(10%) against the null for the FOF Conservative and the FOF Strategic,

respectively. Setting the significance level to 5% is, however, a well estab-

lished convention used by statisticians. In this regard, one concludes that

the stock market is asymptotically related to the FOF Conservative and the

FOF Strategic only. Under the assumption of null hypothesis, the parame-

ter χ measures the strength of dependence. From Table 7.4, the computed

values reads 0.47 and 0.43, for the FOF Conservative and the FOF Strate-

gic, respectively. These numbers are interpreted as a probability of jointly

negative extreme returns of the stock market and these two funds of funds.

The results also imply that in order to diversify the extreme risks, equity

investors are better off investing in the other funds of funds which do not

exhibit asymptotic dependence. In the context of the FOF Composite and

the FOF Diversified, the constituents are well diversified across the strate-

gies covered by hedge funds. It means that these types of funds of funds are

exposed to a wide range of risk sources which reduces the link to the stock

market. The results obtained with the FOF Market Defensive are consis-

tent with previous findings showing that managed futures provide downside

protection to equity markets (see e.g. Kat 2004). Again, this is consistent

with the strong reduction of VaR and ES when FOF Market Defensive is

added to portfolios containing mainly equities.
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Table 7.3: Estimates of the χ̄ parameters for funds of funds.

Name Stocks Bonds Comp Cons Diver Defen Strat

Stocks 1.00 0.26*** 0.44** 0.57* 0.48** 0.02*** 0.56*

Bonds . 1.00 0.22*** 0.32*** 0.23*** 0.24*** 0.32***

Comp . . 1.00 0.80 0.66 0.37*** 0.75

Cons . . . 1.00 0.86 0.45** 0.57

Diver . . . . 1.00 0.37*** 0.76

Defen . . . . . 1.00 0.33***

Strat . . . . . . 1.00

Estimated χ̄ values of asset pairs. Values significantly smaller than 1 indicate no extremal de-

pendence in large negative returns. One-sided test of χ̄ = 1 is performed. Significant evidence

against the null hypothesis at 10%/5%/1% level is found for values marked by */**/***,

respectively. Stocks = MSCI World Total Return, Bonds = Citigroup Global Gov. Bond

(all maturities), Comp = HFRI FOF Composite, Cons = HFRI FOF Conservative, Diver =

HFRI FOF Diversified, Defen = HFRI FOF Market Defensive, Strat = HFRI FOF Strategic.

Sample window (monthly data): Jan 1990–Sep 2004.

Table 7.4: Estimates of the χ parameters for funds of funds.

Name Stocks Bonds Comp Cons Diver Defen Strat

Stocks . . . 0.47 . . 0.43

Bonds . . . . . . .

Comp . . . 0.58 0.83 . 0.72

Cons . . . . 0.50 . 0.55

Diver . . . . . . 0.65

Defen . . . . . . .

Strat . . . . . . .

The value of the parameter χ is only reported if the corresponding parameter χ̄ was not

statistically smaller than one. In that case there is evidence for asymptotic dependence in the

negative returns and the parameter χ measures the degree of this dependence. Stocks = MSCI

World Total Return, Bonds = Citigroup Global Gov. Bond (all maturities), Comp = HFRI

FOF Composite, Cons = HFRI FOF Conservative, Diver = HFRI FOF Diversified, Defen =

HFRI FOF Market Defensive, Strat = HFRI FOF Strategic. Sample window (monthly data):

Jan 1990–Sep 2004.
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Consequently, asymptotic independence justifies the use of χ̄ as a mea-

sure of dependence. It ought to be noted that although the estimated nu-

merical values of χ for the FOF asymptotically dependent with stocks (FOF

Conservative = 0.47 and FOF Strategic = 0.43) are nearly similar to the χ̄

values observed from asymptotically independent ones (FOF Composite =

0.44 and FOF Diversified = 0.48), the magnitude of their dependence has a

different interpretation. The former ones exhibit a dependence structure as

defined by a bivariate extreme value distribution with a probability of joint

extreme events of ca 0.45, whereas for the latter ones this probability is zero.

Instead, other distributions than bivariate extreme value are better suited

to describe this dependence, e.g. bivariate normal. Indeed, the computed

numerical values of χ̄ for the asymptotically independent fund of funds are

nearly identical to those obtained from the correlation.4

Bacmann and Gawron (2005) investigated the asymptotic dependence

of stocks and fund of hedge funds using data from January 1990 to August

2003. Their results point to a similar conclusion with exception of FOF

Composite which was found to be asymptotically related to stocks. As this

evidence was close to be rejected, the most likely reason for this dissimi-

larity is the shorter data that led to larger standard errors making the null

hypothesis of asymptotic dependence harder to reject. Furthermore, besides

the shorter data frame, the study of Bacmann and Gawron (2005) was based

on data that was not unsmoothed.5

For investors, the knowledge whether two time series exhibit asymp-

totic dependence is of great importance since concluding this relationship

indicates a probability for joint extreme events and thus implying limited

diversification benefits in times of crises. Hence, the estimated χ numbers

have a much stronger interpretation than any numbers calculated from cor-

relation. For instance, despite the lower estimated χ value, the presence of

asymptotic dependence between stocks and FOF Strategic (χ = 0.43) should
4One can easily prove that this might be the case by recalling that the coefficient of tail

dependence for bivariate normal is η = 1+ρ
2

, and since χ̄ = 2η − 1 it follows that χ̄ = ρ,

e.g. χ̄ = ρ = 0.02 for FOF Market Defensive and χ̄ = ρ = 0.48 for FOF Diversified.
5As documented in Chapter 5, unsmoothing the returns led to higher standard devia-

tions among hedge funds. This, together with a larger data set make us believe that the

results in this study are more robust.
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be more worrying than the estimated correlation of stocks with FOF Diver-

sified (ρ = 0.48). Thus, correlation is just a measure of linear dependence

for elliptical distributions which does not assume joint extreme events. As

noted by Embrechts, McNeil, and Straumann (2002), for ρ < 1, regardless of

how high a correlation we choose, if we go far enough into the tail, extreme

events appear to occur independently in each margin.6

Finally, the dependence within hedge funds suggests a strong asymp-

totic dependence, with FOF Market Defensive as an exception again. In

order to get more insights about the constituents that are responsible for

this relationship, the pair (χ, χ̄) is also computed for individual hedge fund

strategies. There is, however, an additional interest in performing this cal-

culation. Many countries put restrictions on individuals willing to invest in

hedge funds. Usually the only allowed channel is through a fund of fund

provider.7 In response to the growing demand for hedge fund products,

many financial institutions have introduced or plan to launch their own

fund of fund products. Hence, to obtain a picture of the diversification po-

tentials needed to construct such a fund it is worthwhile to study the tail

dependence characteristics that single hedge fund strategies offer.

The estimated values of χ̄ and χ for single strategies are to be found in

Table 7.5 and 7.6, respectively. Consistent with the earlier observations,

none of the individual hedge fund strategies exhibit asymptotic dependence

with bonds. Apart from the short selling strategy, the magnitude of the esti-

mated χ̄ parameters for bonds indicate positive association in the tails that

is higher than the correlation coefficients might suggest. This means that the

diversification benefits between bonds and hedge funds are usually overes-

timated when correlation is utilised to measure the dependence. Regarding

the tail dependence of hedge fund strategies and stocks, Table 7.5 shows a

more heterogenous pattern. The null hypothesis of asymptotic dependence

cannot be rejected for long/short equities, merger arbitrage, distressed, and

emerging markets. It appears that this dependence is limited to the direc-

tional equity based strategies as well as the event driven strategies. The
6See also Johnson and Kotz (1972).
7See for instance the discussion in McDonald (2003) about reasons for retail investments

and the regulatory differences in various countries.
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explanation for asymptotic dependence of long/short and emerging market

managers is most likely the net long bias to the stock markets. In the case

of the event driven strategies, it is explained by the fact that in times of

deteriorating market conditions, the debt positions of distressed managers

tend to behave like equity which leads to a stronger stock market exposure.

For the merger arbitrage managers these periods are characterised by in-

creasing number of broken deals. As pointed out by Mitchel and Pulvino

(2001) the returns of this strategy are similar to writing naked put options

on the stock market. In combination with a flight to quality scenario, event

driven managers are left with fewer possibilities to respond to extreme stock

market events. The remaining strategies for which the asymptotic depen-

dence has been rejected show positive association in the tails with exception

of managed futures and short sellers that exhibit a negative association.

With respect to funds of funds, stocks have been found to be asymptoti-

cally dependent with the FOF Conservative and the FOF Strategic. For the

latter, it is now easy to identify the source of this dependence since both

long/short equities and emerging markets are asymptotically dependent.

This link is however not that obvious for the FOF Conservative as none of

its constituents offers evidence of asymptotic dependence with stocks. It ap-

pears that fund of fund providers in the FOF Conservative index do not fully

succeed in selecting the right managers or providing the right composition

of managers in their construction of diversified products.
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Table 7.6: Estimates of the χ parameters for hedge fund strategies.
Name St Bn LS EMN SS FI CA MA DS GM EM MF

Stocks . . 0.54 . . . . 0.38 0.47 . 0.48 .

Bonds . . . . . . . . . . . .

LS . . . 0.34 . . 0.39 0.43 0.54 0.44 0.54 .

EMN . . . . . . . . . . . .

SS . . . . . . . . . . . .

FI . . . . . . . . . . . .

CA . . . . . . . . 0.46 . . .

MA . . . . . . . . 0.39 . 0.37 .

DS . . . . . . . . . 0.44 . .

GM . . . . . . . . . . . .

EM . . . . . . . . . . . .

MF . . . . . . . . . . . .

The value of the parameter χ is only reported if the corresponding parameter χ̄ was not
statistically smaller than one. In that case there is evidence for asymptotic dependence
in the negative returns and the parameter χ measures the degree of this dependence.
Stocks (St) = MSCI World Total Return, Bonds (Bn) = Citigroup Global Gov. Bond
(all maturities), LS = HFRI Equity Hedge, EMN = HFRI Equity Market Neutral, SS
= HFRI Short Selling, FI = HFRI Fixed Income Arbitrage, CA = HFRI Convertible
Arbitrage, MA = HFRI Merger Arbitrage, DS = HFRI Distressed Securities, GM =
HFRI Macro, EM = HFRI Emerging Markets, MF = Stark 300 Trader. Sample window
(monthly data): Jan 1990–Sep 2004.

By far the most asymptotically dependent strategy is long/short equi-

ties (7 times), followed by distressed (5) and merger arbitrage (4). This

means that observing large jointly extreme losses with these strategies is

more likely. A somewhat lower tendency for asymptotic dependence in the

tails is observed for emerging markets (3), macro (2), and convertible arbi-

trage (2). Thus, besides equity market neutral (1), fund of funds providers

should consider managed futures, short sellers and fixed income strategies

in their attempts to construct diversified products as these strategies do not

exhibit any asymptotic dependence either with traditional assets or with the

other hedge fund strategies. Due to its nature, the short seller strategy is

usually negatively associated with the majority of hedge funds. The man-

aged futures strategy is an especially good diversifier when blended with

relative value and event driven strategies. The estimated χ̄ values for these

combinations are nearly independent. Additionally, managed futures are

even negatively associated with stocks and long/short strategies.
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In closing this chapter one may conclude that despite the less attractive

fat tail properties of some hedge funds, the probability of observing large

negative values together with the traditional assets is rather limited. There

is however a significant dependence in the tails but not to such a degree

that extreme negative returns occur together. This means that hedge fund

strategies as well as the fund of fund indices are generally able to provide tail

diversification with traditional assets. This result is somewhat in contrast

to the Fung and Hsieh (1997) study in which the authors recognise some

downside protection from blending hedge funds in traditional portfolios but

also that the tail events in asset markets are not diversifiable. This con-

trasting result could be explained by the difference in methodology and the

strategies investigated by Fung and Hsieh (1997), as well as the time period

considered.8

In this analysis, the tail diversification gains are especially apparent with

bonds. Neither funds of funds nor individual hedge fund strategies exhibit

asymptotic dependence with bonds. Stocks and hedge funds seem to be

asymptotically dependent in the case of equity based strategies only. Apart

from the long/short strategy and the event driven strategies, the majority

of hedge funds seem not to be asymptotically dependent with other hedge

funds. The maximum gains are obtained when managed futures, short sell-

ers, fixed income arbitrage, and equity market neutral are considered. These

findings have an additional implication for investors. Given the low volatil-

ity of hedge funds, it is often advised to replace bonds in portfolios with

hedge funds (see e.g. Lamm 1999). However, as bonds are asymptotically

independent of stocks and to all hedge funds, investors are better off replac-

ing stocks by equity based hedge funds that additionally offer lower risks

and higher mean return than stocks. Thus, an ideal portfolio blended with

bonds aiming to provide the largest diversification benefits could consist of

a mixture of relative value strategies together with managed futures, global

macro, and merger arbitrage.

8The authors applied correlation in their analysis on strategies that according to the

definition in this thesis are most similar to global macro, relative value, event driven and

managed futures strategies. The investigated time period is January 1991 to December

1995.
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Conclusions

The vast bulk of research emphasised the advantages of hedge funds as

they improve the risk return profile of investors’ portfolio. These advan-

tages have usually been examined under implicit or explicit assumption of

normally distributed returns. However, recent evidence has questioned the

normality behaviour of hedge funds. Due to the employment of dynamic

trading strategies in combination with the possibility to sell securities short

and to buy on leverage, hedge funds exhibit an asymmetric return distri-

bution with an option-like payoff. Hence, the usefulness of standard risk

measurement techniques such as volatility and correlation is limited in the

context of hedge funds.

In this thesis, the use of Extreme Value Theory is advocated. This

methodology focuses on the tails only, regardless of the underlying distribu-

tion or returns. The results have shown that even when taking into account

the distributional properties of hedge funds such as fat tails and autocor-

relation, the stand alone investment in hedge funds offers a lower risk of

large losses than traditional investments. Moreover, when blended with tra-

ditional assets, hedge funds are generally able to provide a reduction in

downside risk and thus diversification benefits to traditional portfolios.

Risk as measured by Value-at-Risk and Expected Shortfall at 95% and

99% level is smaller for hedge funds than for stocks and in many cases

also smaller than bonds. The main reason for this is that large losses in

hedge fund indices are rather small in absolute values when compared to

97
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traditional assets. These low risk numbers are mainly a result of active

risk management by implementing dynamic long/short trading strategies

that reduce volatility. It also means that the low volatility of hedge funds

outweighs the fat tail effect.

When adding hedge funds to traditional portfolios a significant reduction

in downside risk has been observed. In most cases, this is achieved regardless

of the initial composition of the traditional portfolios. The highest reduction

is obtained for an inclusion of FOF Conservative and FOF Market Defen-

sive. The addition of the latter one produces an optimal allocation in all

traditional portfolios. This is largely due to the different risk profile that

this index provides. Stock dominated portfolios benefit most from hedge

fund allocation whereas an optimal composition is found for bond domi-

nated portfolios. Moreover, since hedge funds have usually higher mean

returns, the improvement of downside risk is not achieved at a cost of lower

expected returns.

Additionally, hedge funds in general appear to provide tail diversification

benefits with traditional assets as measured by extremal dependence. The

gains are substantial, especially with bonds. In no cases, neither funds of

funds nor single strategies exhibit asymptotic dependence with bond mar-

kets. This means that observing large extreme returns simultaneously in

bond markets and hedge funds is rather improbable. However, hedge funds

appear to have a more heterogenic relationship with stocks. Especially the

equity based strategies show an asymptotic dependence in the tails indicat-

ing that the potential for joint extreme losses is high. For investors, these

findings imply that the greatest benefits of adding hedge funds in traditional

portfolios are achieved by replacing stocks by equity based hedge fund strate-

gies. Among hedge funds, the largest diversification benefits are found for

the FOF Market Defensive and its constituents; managed futures and short

sellers. None of these indices show evidence of extremal dependence to any

other hedge fund strategy or traditional assets.

Further research may extend the tail dependence estimations by applying

multivariate distributions such as the copula methods. Another application

of tail dependence is in the context of style analysis. Traditional style anal-

ysis relies on linear relationship between returns of hedge funds and returns
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of factors that aim to track the exposure of hedge funds. Other non linear

or time varying techniques may bring more insights into the risk character-

istics of hedge funds. Examples are the Kalman/Particle filtering methods

or quantile regressions. Consequently, this knowledge would also add value

to the growing efforts on hedge funds’ replication. Additionally, portfolio

optimisations with hedge funds could be improved by replacing the variance

with Expected Shortfall derived from Extreme Value Theory. The growing

markets of insurance linked securities and credit derivatives, both having fat

tail properties, are another areas where Extreme Value Theory may be of a

useful financial application.
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 HFRI Equity Hedge

Figure A.1: HFRI Equity Hedge index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.2: HFRI Equity Market Neutral index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.3: HFRI Short Selling index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.4: HFRI Fixed Income Arbitrage index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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 HFRI Convertible Arbitrage

Figure A.5: HFRI Convertible Arbitrage index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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 HFRI Merger Arbitrage

Figure A.6: HFRI Merger Arbitrage index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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 HFRI Distressed Securities

Figure A.7: HFRI Distressed Securities index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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 HFRI Macro

Figure A.8: HFRI Macro index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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 HFRI Emerging Markets

Figure A.9: HFRI Emerging Markets index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.10: Stark 300 Trader index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.11: HFRI Fund of Funds Composite index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.



Chapter A. Descriptive graphs 112

Time

P
ri
c
e

1990 1995 2000 2005

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Time

R
e

tu
rn

s

1990 1995 2000 2005

−
0

.1
0

0
.0

0
0

.0
5

0
.1

0

Returns

D
e

n
s
it
y

−0.15 −0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
1

0
1

2

−2 −1 0 1 2

−
0

.1
0

0
.0

0
0

.0
5

0
.1

0

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

Threshold

M
e

a
n

 e
x
c
e

s
s

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

 MSCI World Total Return

Figure A.12: MSCI World Total Return index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.13: Citigroup Global Government index (all maturities).

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.14: HFRI FOF Diversified index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.15: HFRI FOF Conservative index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.16: HFRI FOF Market Defensive index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Figure A.17: HFRI FOF Strategic index.

Top: Price and return index. Geometric return indicated in red. Middle: His-
togram and QQ-plot. Bottom: Mean excess plot and autocorrelation function.
Sample window (monthly data): Jan 1990-Sep 2004.
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Table B.1: Descriptive statistics of raw data extended to Dec 2006.
Index Mean Std.Dev Skew Kurt Min Max ACF1 S-W test

LS 16.03% 8.64% 0.19 1.49 -7.65% 10.88% 0.16 0.984**

EMN 8.73% 3.05% 0.21 0.51 -1.67% 3.59% 0.07 0.987*

SS 3.44% 20.33% 0.16 1.90 -21.21% 22.84% 0.09 0.976***

FI 8.01% 4.08% -1.76 11.58 -6.45% 4.70% 0.39 0.843***

CA 9.71% 3.47% -1.12 2.15 -3.19% 3.33% 0.56 0.932***

MA 10.09% 4.21% -2.52 11.23 -6.46% 3.12% 0.21 0.815***

DS 14.38% 5.86% -0.65 6.03 -8.50% 7.06% 0.49 0.930***

GM 14.57% 8.09% 0.39 0.71 -6.40% 7.88% 0.17 0.975***

EMG 16.15% 14.33% -0.86 4.28 -21.02% 14.80% 0.31 0.950***

MF 8.92% 11.05% 0.84 3.36 -8.45% 17.53% 0.00 0.959***

Stocks 8.71% 13.99% -0.49 0.63 -13.32% 10.55% -0.01 0.984**

Bonds 7.18% 6.47% 0.25 0.15 -4.28% 5.94% 0.19 0.993

Comp 9.65% 5.49% -0.27 4.20 -7.47% 6.85% 0.31 0.953***

Cons 8.34% 3.20% -0.47 3.39 -3.88% 3.96% 0.31 0.955***

Diver 9.07% 5.86% -0.12 4.28 -7.75% 7.73% 0.31 0.948***

Defen 9.39% 5.84% 0.19 1.28 -5.42% 7.38% 0.13 0.985**

Strat 12.76% 8.77% -0.38 3.79 -12.11% 9.47% 0.28 0.958***

Mean and standard deviation annualised. Kurt = excess kurtosis, Skew = skewness. Min
and Max represent the lowest and highest monthly return, respectively. ACF1 = first
order autocorrelation coefficient, S-W test = Shapiro-Wilk normality test. Significant
evidence against the null hypothesis that the distribution is normal at 10%/5%/1% level
is found for values labelled by */**/***, respectively. Stocks = MSCI World Total Return,
Bonds = Citigroup Global Gov. Bond (all maturities), LS = HFRI Equity Hedge, EMN
= HFRI Equity Market Neutral, SS = HFRI Short Selling, FI = HFRI Fixed Income
Arbitrage, CA = HFRI Convertible Arbitrage, MA = HFRI Merger Arbitrage, DS =
HFRI Distressed Securities, GM = HFRI Macro, EM = HFRI Emerging Markets, MF
= Stark 300 Trader. Comp = HFRI FOF Composite, Cons = HFRI FOF Conservative,
Diver = HFRI FOF Diversified, Defen = HFRI FOF Market Defensive, Strat = HFRI
FOF Strategic. Sample window (monthly data): Jan 1990–Dec 2006.
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Table C.1: Historical VaR and ES of hedge fund indices.
Name 95% 99%

V aR ES V aR ES

Equity long/short 2.99 4.62 4.91 7.21

Equity market neutral 0.72 1.37 1.62 1.85

Short selling 9.80 14.56 15.52 20.57

Fixed income arbitrage 1.99 4.13 4.24 7.83

Convertible arbitrage 1.96 3.52 3.91 6.20

Merger arbitrage 1.12 2.98 4.17 6.34

Distressed securities 2.96 5.49 5.36 11.10

Macro 3.18 4.63 5.43 6.90

Emerging markets 7.22 13.60 15.26 25.73

Managed futures 4.24 5.42 6.38 7.42

Stocks 6.21 9.17 10.61 12.05

Bonds 3.16 4.10 4.58 5.21

FOF Composite 2.35 4.11 4.23 8.00

FOF Conservative 1.39 2.48 2.47 4.21

FOF Diversified 2.57 4.53 5.08 8.81

FOF Defensive 2.07 3.31 3.65 5.69

FOF Strategic 4.23 6.37 6.10 12.08

Historical estimates of Value-at-Risk and Expected Shortfall for
hedge fund indices and traditional assets. Hedge fund indices
represented by HFRI indices and managed futures by Stark 300
Trader index. Stocks = MSCI World Total Return, Bonds =
Citigroup Global Gov. Bond (all maturities). Sample window
(monthly data): Jan 1990–Sep 2004.
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