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Chapter 1

Introduction

In this thesis we investigate several problems that are relevant for the coherent
manipulation of electron spins in semiconductor quantum dots. The require-
ments for quantum computing with electron spins in semiconductor quantum
dots are the subject of Sec. 1.1. The primary barrier to coherent manipulation
is decoherence due to coupling of the spins with fluctuations in the environment.
The primary source of decoherence for electron spins in GaAs quantum dots is
now recognized to be the hyperfine coupling between electrons and nuclei in the
surrounding lattice, the subject of Sec. 1.2. Two-spin operations (a require-
ment of quantum computing) require some form of coupling between electron
spins. In quantum dots, the strongest and simplest form of spin-spin coupling is
the Heisenberg exchange coupling that occurs naturally for two-electron states
in double quantum dots with a finite wave function overlap. Sec. 1.3 below
presents a basic model used to understand the energy spectrum and eigenstates
of double quantum dots, and illustrates the use of double dots for the purpose
of two-qubit gating.

1.1 Quantum computing with quantum dots

The qubits of the Loss-DiVincenzo proposal for quantum computing [1] are
formed from the two spin states (|↑〉 , |↓〉) of a confined electron. The consid-
erations discussed in this proposal are generally applicable to electrons con-
fined to any structure, such as atoms, molecules, etc., although the original
proposal focuses on electrons localized in quantum dots. These dots are typi-
cally generated from a two-dimensional electron gas (2DEG), in which the elec-
trons are strongly confined in the vertical direction. Lateral confinement is
provided by electrostatic top gates, which push the electrons into small local-
ized regions of the 2DEG. Alternative quantum-dot structures include vertical
quantum dots, self-assembled dots, and dots formed in nanowires [2] or carbon
nanotubes [3,4,5,6,7]. Initialization of the quantum computer could be achieved
by allowing all spins to reach their thermodynamic ground state at low temper-
ature T in an applied magnetic field B (i.e., virtually all spins will be aligned
if the condition |gµBB| ≫ kBT is satisfied, with g-factor g, Bohr magneton µB,
and Boltzmann’s constant kB). Several alternative initialization schemes have
been investigated (see, e.g., Chapter 7 for an adiabatic initialization scheme).

9
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Single-qubit operations can be performed, in principle, by changing the local ef-
fective Zeeman interaction at each dot individually. To do this may require large
magnetic field gradients [8], g-factor engineering [9], magnetic layers, the inclu-
sion of nearby ferromagnetic dots [1], polarized nuclear spins, or optical schemes.
Alternatively, a recent proposal suggests a way to perform single-qubit rotations
on three-spin encoded qubits through the gate voltage in a few-electron quan-
tum dot without changing the local Zeeman energy [10] (see Chapter 7 for a
proposal to do this with single-spin physical qubits). In the original proposal [1],
two-qubit operations are performed by pulsing the electrostatic barrier between
neighbouring spins. When the barrier is high, the spins are decoupled. When
the inter-dot barrier is pulsed low, an appreciable overlap develops between
the two electron wave functions, resulting in a non-zero Heisenberg exchange
coupling J (for an alternative method of tuning the exchange, see Sec. 1.3.3,
below). The Hamiltonian describing this time-dependent process is given by

H(t) = J(t)SL · SR. (1.1)

This Hamiltonian induces a unitary evolution given by the operator

U = T exp

{
−i

∫
H(t)dt/~

}
, (1.2)

where T is the time-ordering operator. If the exchange is pulsed on for a time
τs such that

∫
J(t)dt/~ = J0τs/~ = π, the states of the two spins, with asso-

ciated operators SL and SR, will be exchanged. This is the swap operation.
Pulsing the exchange for the shorter time τs/2 generates the “square-root of
swap” operation, which can be used in conjunction with single-qubit opera-
tions to generate the controlled-not (quantum xor) gate [1]. In addition to
the time scale τs, which gives the time to perform a two-qubit operation, there
is a time scale associated with the rise/fall-time of the exchange J(t). This is
the switching time τsw. When the relevant two-spin Hamiltonian takes the form
of an ideal (isotropic) exchange, as given in (1.1), the total spin is conserved
while switching. However, to avoid leakage to higher orbital states during gate
operation, the exchange coupling must be switched adiabatically. More pre-
cisely, τsw ≫ 1/ω0 ≈ 10−12 s, where ~ω0 ≈ 1 meV is the energy gap to the
next orbital state [1, 11, 12, 13]. We stress that this time scale is valid only for
the ideal case of a purely isotropic exchange interaction. When the exchange
interaction is anisotropic, different spin states may mix and the relevant time
scale for adiabatic switching may be significantly longer. For scalability, and
application of quantum error correction procedures in any quantum computing
proposal, it is important to turn off inter-qubit interactions in the idle state. In
the Loss-DiVincenzo proposal, this is achieved with exponential accuracy since
the overlap of neighbouring electron wave functions is exponentially suppressed
with increasing separation. A detailed investigation of decoherence during gat-
ing due to a bosonic environment was performed in early work [1]. Since then,
there have been many studies of leakage and decoherence in the context of the
quantum-dot quantum computing proposal.

The most important source of decoherence for electrons confined to GaAs
quantum dots is the contact hyperfine interaction between electron spins and
nuclei in the host material. Some consequences of this interaction were recog-
nized and studied theoretically several years ago [14,15,16,17,18,19], although
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conclusive experiments that show clear hyperfine effects for single quantum dots
have only appeared very recently [20, 21, 22, 23, 24]. Much of this thesis deals
with hyperfine-related effects, so the next section deals with the nature of this
interaction in the context of quantum-dot-confined electrons.

1.2 Hyperfine interactions in quantum dots

In this section we derive effective Hamiltonians for the microscopic hyperfine
interactions (isotropic and anisotropic). Some details of this derivation can also
be found in Ref. [25] and in very early papers [26]. This section is directly
relevant to Chapters 2, 3, 4, and 5, all of which deal with hyperfine-induced
electron spin dynamics.

We begin from the Dirac Hamiltonian for a relativistic electron

H = ααα · πππ + βmc2 − |e|V (r) (1.3)

where V (r) is the electric potential at the position of the electron, m is the
electron rest mass, −|e| is the electron charge, πππ = pc + |e|A, and

ααα =

(
0 σσσ
σσσ 0

)
, β =

(
1 0
0 −1

)
, (1.4)

are a set of 4 × 4 Dirac matrices (σσσ is the vector of Pauli matrices and 1 is the
2×2 identity matrix). The Dirac Hamiltonian acts on a 4-component spinor Ψ,
which we write as a vector of two two-component spinors χ1 and χ2:

Ψ =

(
χ1

χ2

)
. (1.5)

The Dirac equation
HΨ = EΨ, (1.6)

with energy E = mc2 + ǫ then results in the pair of coupled linear equations

(ǫ + |e|V (r)) χ1 − σσσ · πππχ2 = 0, (1.7)

−σσσ · πππχ1 +
(
ǫ + 2mc2 + |e|V (r)

)
χ2 = 0. (1.8)

Solving for χ2 alone gives:
H2χ2 = ǫχ2, (1.9)

where H2 contains three terms that depend explicitly on the electron spin σσσ:

hihf =
e2

~c

(ǫ + 2mc2 + |e|V (r))
2 (E × A) · σσσ (isotropic hyperfine) (1.10)

hahf =
|e|~c

ǫ + 2mc2 + |e|V (r)
(∇∇∇× A) · σσσ (anisotropic hyperfine) (1.11)

hso =
~|e|c2

(ǫ + 2mc2 + |e|V (r))
2 (E × p) · σσσ (spin − orbit). (1.12)

In the above, the electric field E = −∇∇∇V (rrr) is that due to the electric potential
of the nucleus:

V (r) =
kZ|e|

r
, (1.13)
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where k = 1/4πǫ0 ≈ 9.0×109 Nm2C−2 in SI units and Z|e| is the nuclear charge,
so that1

E = −∇∇∇V (r) =
kZ|e|r

r3
, (1.14)

and the vector potential is due to the nuclear magnetic moment µµµ (again, in SI
units):

A =
µ0

4π

µµµ × r

r3
. (1.15)

1.2.1 Fermi contact interaction

Using the vector triple-product formula

r × (µµµ × r) = µµµ(r · r) − r(µµµ · r) (1.16)

and the above expressions for V (r), E, and A gives

hihf =
µ0

4π

kZ|e|3~c

(ǫ + 2mc2 + kZe2/r)
2

(
σσσ ·µµµ − (σσσ · r̂) (µµµ · r̂)

r4

)
. (1.17)

Defining the nuclear length scale d:

d =
kZe2

2mc2
≃ 1.5 × 10−15Z m (1.18)

and neglecting relativistic corrections to the electron rest energy ǫ ≪ mc2 gives

hihf =
µ0µB

4π

d
(
1 + d

r

)2

(
σσσ ·µµµ − (σσσ · r̂) (µµµ · r̂)

r4

)
. (1.19)

Evaluating the matrix elements of hihf with respect to the wave functions φi(r)
and φj(r) gives

〈φi|hihf |φj〉 =
µ0µB

4π

∫ ∞

0

dr
d

(r + d)
2 f(r), (1.20)

f(r) =

∫
dΩφ∗

i (r) {σσσ ·µµµ − (σσσ · r̂) (µµµ · r̂)}φj(r). (1.21)

The radial integral is dominated by the region r . d, so that we can approximate
f(r) by its value at the origin:

∫ ∞

0

dr
d

(r + d)
2 f(r) ≃ f(r)|r=0

∫ ∞

0

d

(r + d)
2 dr = f(0). (1.22)

The angular integrals give

∫
dΩ = 4π,

∫
dΩ(σσσ · r̂) (µµµ · r̂) =

4π

3
σσσ ·µµµ. (1.23)

1There are two sign errors in the derivation of Stoneham [25], one associated with the sign
of the isotropic term, Eq. (1.10), and one associated with the electric field due to the nucleus,
Eq. (1.14). These two errors cancel to give the correct final result, but we have corrected
them here.
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We insert µµµ = gIµNI (where µN = e~/2mp = 5.05 × 10−27 J/T = 3.15 ×
10−8 eV/T is the nuclear magneton) and recast the contact interaction in a
simplified form that has the same matrix elements as Eq. (1.19) within the
range of validity of Eq. (1.22):

hihf =
2µ0

3
gIµNµBδ(r)σσσ · I. (1.24)

In the more general case, where there may be many electrons interacting
with many nuclei at positions rk, we write

hihf =
4µ0

3
gIµNµB

∑

k

S(rk) · Ik, S(r) =
1

2

∑

s,s′={↑,↓}
ψ†

s(r)σσσss′ψs′(r), (1.25)

where the field operators are defined by ψσ(r) =
∑

n φn(r)cnσ and cnσ annihi-
lates an electron in the state with spin σ and orbital wave function φn(r). The
wave functions φn(r) form a complete set:

∫
d3rφ∗

n(r)φm(r) = δnm,
∑

n

φ∗
n(r′)φn(r) = δ(r − r′). (1.26)

For most of this thesis, we will be concerned with the dynamics of a single
electron in the ground orbital state of a quantum dot φ0(r), with single-particle
orbital level spacing much larger than the typical hyperfine energy scale. In
this case, it is appropriate to derive an effective hyperfine spin Hamiltonian
projected in the subspace of the orbital ground state:

Heff = 〈φ0|hihf |φ0〉 =
4µ0

3
gIµNµB

∑

k

|φ0(rk)|2 S · Ik. (1.27)

If we write the wavefunction φ0(r) in terms of the k = 0 Bloch amplitude u0

(which is invariant for all equivalent crystal lattice sites rk) and a slowly-varying
envelope part F (r):

φ0(ri) ≈ u0F (ri), (1.28)

and enforce the normalization
∫

d3r |F (r)|2 = 1, (1.29)

we find the effective Hamiltonian and coupling constants are given by

Heff = S ·
∑

k

AkIk, Ak = Av0 |F (rk)|2 , (1.30)

where v0 is the volume of a primitive crystal unit cell and

A =
4µ0

3
gIµNµB |u0|2 . (1.31)

We define the effective nuclear magnetic field by

BN =
A

g∗µB
Ī, (1.32)
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where the quantity Ī, which gives an effective average nuclear spin, is

Ī = v0

∑

k

|F (rk)|2 〈Ik〉 . (1.33)

For GaAs, there are three isotopic species of significant abundance. Paget et
al. report values for bα [27], the effective nuclear field due to isotopic species α.
The effective fields bα are related to the total effective nuclear field by:

BN =
∑

α

bαĪα, (1.34)

where Īα is the effective average over spins for the nucleus of species α. The
values reported are [27]

b(75As) = −18.4 kG, (1.35)

b(69Ga) = −9.1 kG, (1.36)

b(71Ga) = −7.8 kG, (1.37)

which gives an effective hyperfine coupling constant, using g∗ = −0.44 for bulk
GaAs, and assuming Īα ≃ Ī (independent of α):

A ≃ g∗µB

∑

α

bα = 9.0 × 10−5eV (1.38)

or
A

~
= 1.4 × 1011s−1. (1.39)

1.2.2 Anisotropic hyperfine interaction

Following the same procedure above for hahf , the anisotropic contribution, gives

hahf =
µ0

4π

µB(
1 + d

r

) 1

r3
(3 (σσσ · r̂) (µµµN · r̂) − σσσ ·µµµN ) . (1.40)

In the limit where the electron and nuclear spin are widely separated, this term
reduces to the classical dipole-dipole interaction between the magnetic moments
of the electron and nuclear spin. However, this is typically not the case in a
quantum dot; the form and magnitude of the effective spin-spin interaction de-
pends strongly on the symmetry of the electron wave function. This dependence
can be investigated by projecting onto an electronic orbital wave function φ0(r):

〈hahf〉 =
µ0µB

4π

∫
dr

1

(r + d)

∫
dΩφ∗

0(r) (3 (~σ · r̂) (~µN · r̂) − ~σ · ~µN ) φ0(r).

(1.41)
For s-states, the angular integral vanishes identically (see Eq. 1.23) and the
radial integral is well-behaved at the origin due to the finite size d of the nucleus.
For states of higher angular momentum (p,d,f , etc.), the angular integral does
not vanish and we can take d = 0 since these states vanish at r = 0. In this
case, after rotating to principal axes (which depend on the nuclear spin site k)
hahf results in an effective spin Hamiltonian with an anisotropic (XYZ-type)
exchange between the electron and nucleus:

heff
ahf =

∑

k

bxx
k SxIx

k + byy
k SyIy

k + bzz
k SzIz

k , (1.42)
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where

bxx
k =

µ0

4π
gIµNgsµB

〈
3(x − xk)2 − |r − rk|2

|r − rk|5
〉

, (1.43)

byy
k =

µ0

4π
gIµNgsµB

〈
3(y − yk)2 − |r − rk|2

|r − rk|5
〉

, (1.44)

bzz
k =

µ0

4π
gIµNgsµB

〈
3(z − zk)2 − |r − rk|2

|r − rk|5
〉

. (1.45)

(1.46)

In the above, gs ≈ 2 is the free electron g-factor.
The anisotropic term is small relative to the isotropic (contact) term for

electrons in GaAs quantum dots due to the s-type nature of the conduction band
[28]. In contrast, the anisotropic interaction may be important for quantum-
dot-confined hole spins, since the p-type valence band has the dual effects of
reducing the contact term, while enhancing the anisotropic interaction.

1.3 Double quantum dots: stability diagram and

transport

In this section we discuss characterization and manipulation techniques that
are commonly used to extract microscopic parameters of double quantum dots.
This section is directly relevant to Chapters 4, 5, 6, and 7, all of which relate to
double quantum dots. In Sec. 1.3.1 we review the charge stability diagram, and
illustrate its connection to a commonly used microscopic model Hamiltonian.
Sec. 1.3.2 gives a review of sequential tunneling transport through hybridized
(molecular) double-dot states. In Sec. 1.3.3 we discuss the use of double quan-
tum dots as two-qubit gates.

1.3.1 The double-dot charge stability diagram

Just as transport through a single quantum dot and Coulomb blockade phenom-
ena give information about the orbital level spacing, charging energy, and spin
states of single quantum dots [29], similar studies can be carried out on double
quantum dots. Whereas for single dots, transport phenomena are typically un-
derstood in terms of one-dimensional plots of conductance versus gate voltage,
the primary tool used to understand double quantum dots is the double-dot
charge stability diagram. The stability diagram is a two-dimensional plot of
current or differential conductance through the double dot or through a neigh-
boring QPC, given as a function of two independent back-gate voltages (one
applied locally to each dot). The plot differentiates regions where the double-
dot ground state has a charge configuration (N1, N2), for various N1, N2, where
N1 is the number of charges on the left dot and N2 is the number of charges
on the right. Transport through double quantum dots and the relevant charge
stability diagram has been discussed thoroughly in [30]. In the rest of this
section, we review some features of the double-dot stability diagram with an
emphasis on the connection to a model Hamiltonian that is commonly used in
the literature [31,32,33,34].
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An isolated double quantum dot is described by the Hamiltonian

Hdd = HC + HT + HS, (1.47)

where HC gives the single-particle and inter-particle charging energies as well
as the orbital energy, HT is the inter-dot tunneling term due to a finite over-
lap of dot-localized single-particle wavefunctions, which ultimately gives rise to
exchange, and HS contains explicitly spin-dependent terms, which may include
spin-orbit interaction, dipole-dipole interaction, and the contact hyperfine inter-
action between the confined electron spins and nuclear spins in the surrounding
lattice (see Sec. 1.2 above).

There are several approaches that can be taken to writing the various com-
ponents of the double-dot Hamiltonian Hdd, corresponding to several degrees
of microscopic detail. In the simplest form, the Hubbard model, details of the
electron wavefunctions are neglected and the Coulomb interaction is given only
in terms of on-site and nearest-neighbor coupling. Since this description relies
only on very few parameters, it is the most commonly used in the literature
on transport phenomena through quantum dots. The shape of the confining
potential, quantum-dot localized wavefunctions, and form of the Coulomb in-
teraction may become important in certain circumstances, in which case it is
more appropriate to apply either the Heitler-London method (which neglects
doubly-occupied dot levels), or the Hund-Mulliken method, which includes the
effects of double-occupancy. These methods predict, for instance, a variation
of the interdot exchange interaction through zero with increasing out-of-plane
magnetic field [14]. Experimentally, it has been confirmed that the exchange
coupling can be tuned with an out-of-plane magnetic field in single vertical [35]
and single lateral quantum dots [36], which behave effectively as double-dot
structures. Here we ignore these effects and focus on the simplest Hubbard
model that reproduces much of the double-dot physics that can be seen in
transport phenomena.

We model the Coulomb interaction with simple on-site (U1(2) for the left
(right) dot) and nearest-neighbor (U ′) repulsion. The single-particle charging
energy is given in terms of a local dot potential V1(2). The charging Hamiltonian
is then

HC =
1

2

∑

l

UlNl (Nl − 1) + U ′N1N2 − |e|
∑

l

VlNl +
∑

kl

ǫlknlk, (1.48)

where Nl =
∑

k nlk counts the total number of electrons in dot l, with nlk =∑
σ d†lkσdlkσ, and here dlkσ annihilates an electron on dot l, in orbital k, with

spin σ. ǫlk is the energy of single-particle orbital level k in dot l, which gives
rise to the typical orbital level spacing ǫlk+1 − ǫlk ≈ ~ω0 (see Fig. 1.1).

Within the capacitive charging model described by the equivalent circuit
in the inset of Fig. 1.2(a), the microscopic charging energies are related to
capacitances by [34,30]

Ul =
C1C2

C1C2 − C2
m

e2

Cl
, U ′ =

2e2Cm

C1C2 − C2
m

, (1.49)

where C1 = Cs + Cm + Cg1, C2 = Cd + Cm + Cg2, and all capacitances are
defined in the inset of Fig. 1.2(a). In experiments, the local quantum dot
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V1

h̄ω0

V2

Figure 1.1: Ground-state configuration for a double quantum dot with large
orbital and charging energies, and negligible dot-lead and interdot coupling.
µs(d) is the source (drain) chemical potential, V1(2) is the left (right) local dot
potential, which is related to applied gate potentials by a linear transformation
(see Eq. (1.50), below), and both dots are assumed to have the same uniform
level spacing ~ω0.
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Figure 1.2: Stability diagram plotted in terms of (a) local dot potentials V1,2 and
(b) applied gate potentials Vg1,2, with on-site charging energies Ul = U, l = 1, 2,
nearest-neighbor charging energy U ′, and dot orbital level spacing ~ω0 satisfying
U : ~ω0 : U ′ = 3 : 2 : 1. In addition, for (b) we have assumed the voltage scaling
factors are the same for both dots, and are given by α1 = α2 = α = 1/2.
(a) inset: capacitive charging model for a double quantum dot, indicating the
source (drain) chemical potential µs(d), the charge on the left (right) dot Q1(2),
the capacitances to source (drain) Cs(d), the mutual capacitance Cm, and gate
capacitances Cg1,2. (b) Horizontal lines in the |e|V1(2) plane become skewed
with slope δVg1/δVg2 = −CmCg2/C2Cg1 when plotted versus |e|Vg1(2).
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potentials V1,2 are controlled indirectly in terms of gate voltages Vg1,2, which
are capacitively coupled to the dots through gate capacitances Cg1,2. For fixed
quantum-dot charges (Q1, Q2) = − |e| (N1, N2) = const., differences in the dot
voltages ∆V1 and ∆V2 are related to differences in the gate voltages ∆Vg1 and
∆Vg2 through [34,30]

(
C1 −Cm

−Cm C2

) (
∆V1

∆V2

)
=

(
Cg1∆Vg1

Cg2∆Vg2

)
. (1.50)

The double-dot stability diagram can then be given equivalently as a two-
dimensional plot with energy axes |e|V1, |e|V2, or with axes |e|Vg1, |e|Vg2,
which are skewed and stretched with respect to the original axes according to
the transformation given in Eq. (1.50). The end effect is that parallel horizontal
(vertical) lines in the |e|V1(2) plane separated by a distance dV2(1) transform to
skewed parallel lines, separated by dVg2(1) = dV2(1)/α2(1) along the horizontal
(vertical) of the new coordinate system, where (see Fig. 1.2):

αl =
Cgl

Cl
, l = 1, 2. (1.51)

Additionally, horizontal lines in the |e|V1(2) plane become skewed with a slope
δVg1/δVg2 = −CmCg2/C2Cg1 (see Fig. 1.2(b)), and vertical lines are skewed
with slope δVg1/δVg2 = −C1Cg2/CmCg1.

The Hamiltonian in Eq. (1.48) conserves the number of electrons on each
dot: [HC, Nl] = 0, so we label the ground state by the two dot occupation
numbers, (N1, N2), and indicate where each configuration is the ground state
in Fig. 1.2 for equivalent quantum dots that satisfy α1 = α2 = α = 1/2,
U1 = U2 = U , ǫlk+1 − ǫlk = ~ω0 for all k, l, and U : ~ω0 : U ′ = 3 : 2 : 1. The
charge stability diagram produces a “honeycomb” of hexagons with dimensions
that are determined by three typical energy scales: (1) The on-site replusion U ,
(2) the nearest-neighbor repulsion U ′, and (3) the typical orbital energy ~ω0.
Fig. 1.2 assumes a ground-state electron filling as shown in Fig. 1.1, with
constant orbital energy ~ω0. In this case, the orbital energy appears in the
dimensions of only every second honeycomb cell of the stability diagram, along
the horizontal or vertical direction, since the spin-degenerate orbital states fill
with two electrons at a time according to the Pauli principle. This even-odd
behavior may not be visible in dots of high symmetry, where the orbital levels
are manifold degenerate. Alternatively, the absence of an even-odd effect in
low-symmetry single dots has previously been attributed to the absence of spin
degeneracy due to many-body effects [37,38,30].

Each vertex of a honeycomb cell corresponds to a triple-point, where three
double-dot charge states are simultaneously degenerate. For a double dot con-
nected to source and drain leads at low temperature, and in the absence of
relaxation or photo-assisted tunneling processes, it is only at these points where
resonant sequential transport can occur, through shuttling processes of the form
(0, 0) → (1, 0) → (0, 1) → (0, 0). This picture changes when a strong inter-dot
tunnel coupling HT is considered in addition.

1.3.2 Transport through double quantum dots

Molecule-like states have been observed and studied in detail in two-electron
single vertical [35] and lateral quantum dots [36] (the latter behave as an effective
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Figure 1.3: (a) A tunnel-coupled double quantum dot, with tunneling amplitude
t12. The source and drain leads, at chemical potentials µs and µd, are connected
to the left and right dots through tunnel barriers with tunneling amplitudes ts
and td, respectively. The left and right dots are set to local potentials V1 and
V2. (b) Modification of the stability diagram in the case of a significant tunnel
coupling t12. To generate this figure we have chosen the ratio of tunnel coupling
to the mutual (nearest-neighbor) charging energy to be t12/U ′ ≈ 1/5. At solid
lines, transport occurs via the double-dot ground state |E+〉 and at dashed
lines, additional transport can occur through the first excited state |E−〉 (see
Eqs. (1.54) and (1.55) below).

double-dot structure, showing good agreement with theory [39]). Evidence of
molecular states forming in double quantum dots due to a strong inter-dot
tunnel-coupling has also been found in a variety of systems [40, 41, 42, 43, 44,
45, 46, 2, 3, 4, 5]. For example, molecular states have been observed in many-
electron gated quantum dots in linear transport [42] (solid lines of Fig. 1.3(b))
and transport through excited states [46] (dashed lines in Fig. 1.3(b)). In
addition, molecular states have been observed in vertical-lateral gated double
quantum dots [47], gated dots formed in quantum wires [2] and gated carbon-
nanotube double dots [3, 4, 5]. A large inter-dot tunnel coupling is essential for
generating a large exchange interaction J , and is therefore very important for
the implementation of fast two-qubit gates.

In this section, we analyze changes to the double-dot stability diagram that
occur due to the inter-dot tunneling term HT. We focus on the relevant regime
for quantum computing, where only a single orbital state is available for occu-
pation on each quantum dot (the lower-left region of Figs. 1.2(a,b)). In the
subspace of these lowest dot orbital states, HT is given by:

HT =
∑

σ

t12d
†
1σd2σ + H.c., (1.52)

where t12 is the tunneling amplitude between the two dots, and dlσ, l = 1, 2,
annihilates an electron in the lowest single-particle orbital state localized on
quantum dot l with spin σ.

When the double dot is occupied by only N = 0, 1 electrons and is coupled
weakly to leads, an explicit expression can be found for the current passing
through a serially-coupled double dot, as shown in Fig. 1.3(a) [34, 5]. It is
straightforward to diagonalize HC + HT in the subspace of N = 1 electrons
on the quantum dot. This gives the (spin-degenerate) eigenenergies and corre-
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sponding eigenvectors:

E±(∆, ǫ) = − 1√
2

(
∆ ±

√
ǫ2 + 2t212

)
, (1.53)

|E±〉 = cos

(
θ±
2

)
|1, 0〉 + sin

(
θ±
2

)
|0, 1〉 , (1.54)

tan

(
θ±
2

)
=

ǫ√
2t12

±

√

1 +

(
ǫ√
2t12

)2

. (1.55)

Here, E±(∆, ǫ) is written in terms of new energy coordinates ǫ, ∆, which are
related to the old (voltage) coordinates through a rotation of the axes by 45◦

(see also Fig. 1.3(b)):

(
∆
ǫ

)
=

1√
2

(
1 1
−1 1

)(
|e|V1

|e|V2

)
. (1.56)

We then define double-dot chemical potentials:

µ±(∆, ǫ) = E±(∆, ǫ) − E0, (1.57)

where E0 = 0 is the energy of the (0, 0) charge configuration. In the presence
of a strong tunnel coupling, the eigenstates of the double dot are no longer
labeled separately by the quantum numbers N1, N2. Instead, the sum N =
N1+N2 is conserved. If we add to Hdd the double-dot-lead coupling Hamiltonian
Hdd−L =

∑
kσ tsc

†
skσd1σ + tdc†dkσd2σ + H.c., where c†s(d)kσ creates an electron

in the source (drain), in orbital k with spin σ, then N can fluctuate between
1 and 0 if the double-dot and lead chemical potentials are equal. We identify
double-dot sequential tunneling processes as those that change the total charge
on the double dot by one: N → N ± 1 [39]. One can evaluate golden-rule rates
for all sequential-tunneling processes, taking the dot-lead coupling Hdd−L as
a perturbation to obtain the stationary current from a standard Pauli master
equation (the Pauli master equation is valid for sufficiently high temperature,
kBT > Γs(d), so that off-diagonal elements can be ignored in the double-dot
density matrix). For weak dot-lead coupling, at low temperature kBT < ~ω0,
and at zero bias (µ = µs = µd + ∆µ, with ∆µ → 0), transport occurs only
through the N = 1 ground state, with chemical potential µ+. The differential
conductance near the N = 0, 1 boundary is then given by

dI

d (∆µ)
= |e|Γ

(−2f ′(µ+)

1 + f(µ+)

)
, Γ =

sin2 (θ+) ΓsΓd

4
(
cos2

(
θ+

2

)
Γs + sin2

(
θ+

2

)
Γd

) , (1.58)

where f(E) = 1/
[
1 + exp

(
E−µ
kBT

)]
is the Fermi function at chemical potential

µ and temperature T , f ′(E) = df(E)/dE, and Γs(d) = 2πν
~

∣∣ts(d)

∣∣2 is the tun-
neling rate to the source (drain) with a lead density of states per spin ν at
the Fermi energy. If spin degeneracy is lifted, the quantity in brackets in Eq.

(1.58) is replaced by the familiar term −f ′(µ+) = 1/
[
4kBT cosh2

(
µ+−µ
2kBT

)]
[48].

The differential conductance (Eq. (1.58)) reaches a maximum near the point
where the double-dot chemical potential matches the lead chemical potential,
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Figure 1.4: Energy-level spectrum for two electrons in a double quantum dot.

µ+(∆, ǫ) = µ, which we indicate with a solid line in Fig. 1.3(b). Transport
through the excited state can occur where µ−(∆, ǫ) = µ, and when the bias
∆µ = µs − µd or temperature T are sufficiently large to generate a significant
population in the excited state |E−〉. Dashed lines indicate where µ−(∆, ǫ) = µ
in Fig. 1.3(b).

There are several qualitative changes to the double-dot stability diagram
that take place in the presence of strong tunnel coupling. First, the number
of electrons on each dot is not conserved individually. Instead, the sum N =
N1 + N2 is conserved, which means that there are no longer lines separating,
for example, the (1,0) and (0,1) states in Fig. 1.3(b). Second, sequential-
tunneling processes allow current to be transported through the double-dot
along the length of the “wings” that define the boundaries between N and
N ± 1-electron ground states. This is in contrast to the case where t12 is weak,
in which resonant sequential transport can only occur at triple points, where
the shuttling processes of the type (0, 0) → (1, 0) → (0, 1) → (0, 0) are allowed
by energy conservation.

1.3.3 Double dots for two-qubit gates

The
√

swap operation described in Sec. 1.1 requires significant control of the
exchange coupling J . The value of J can be controlled by raising/lowering the
inter-dot barrier, thus changing the tunnel coupling t12 [1], or with an out-of-
plane magnetic field or weak in-plane electric field [14]. More recently, experi-
ments have controlled J by varying the back-gate voltages on two neighboring
quantum dots through a large parameter regime, independently [21]. Here we
discuss this last method to control J , which has been analyzed in several recent
papers [49,50,51,52].

We consider a double quantum dot in the region of the charge stability
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diagram indicated in the lower inset of Fig. 1.4. Specifically, we consider the
regime of gate voltages where the double dot contains N = 2 electrons near the
degeneracy point of the (1, 1) and (0, 2) charge states, and aim to diagonalize
the Hamiltonian HC + HT in the basis of three spin triplets and two relevant
singlets:

|S(0, 2)〉 = d†2↓d
†
2↑ |vac.〉 , (1.59)

|S(1, 1)〉 =
1√
2

(
d†2↓d

†
1↑ − d†2↑d

†
1↓

)
|vac.〉 , (1.60)

|T0〉 =
1√
2

(
d†2↓d

†
1↑ + d†2↑d

†
1↓

)
|vac.〉 , (1.61)

|T+〉 = d†2↑d
†
1↑ |vac.〉 , (1.62)

|T−〉 = d†2↓d
†
1↓ |vac.〉 . (1.63)

In the absence of additional spin-dependent terms, the triplets are degenerate,
with energy ETriplet = E(1,1) = −

√
2∆′, whereas the two singlet states have

energies and associated eigenvectors

E±
Singlet = ETriplet −

1√
2

(
ǫ′ ±

√
(ǫ′)2 + 4t212

)
, (1.64)

∣∣∣E±
Singlet

〉
= cos

(
θS
±
2

)
|S(1, 1)〉 + sin

(
θS
±
2

)
|S(0, 2)〉 , (1.65)

tan

(
θS
±
2

)
=

ǫ′

2t12
±

√

1 +

(
ǫ′

2t12

)2

. (1.66)

Here, ∆′ and ǫ′ are related to the previous coordinates (∆, ǫ) through a simple
translation of the origin:

(
∆′

ǫ′

)
=

(
∆
ǫ

)
+

1√
2

(
−U ′

U ′ − U

)
. (1.67)

This gives rise to the Heisenberg exchange for large negative ǫ′ (from Eq. (1.64)):

J(ǫ′) = ETriplet − E+
Singlet ≈

√
2t212
|ǫ′| , ǫ′ < 0, |ǫ′| ≫ 2t12. (1.68)

By pulsing ǫ′ = ǫ′(t), the exchange J(ǫ′(t)) can be pulsed on and off again in
order to implement the

√
swap operation, as described in Sec. 1.1 (see the inset

of Fig. 1.4). This operation has now been achieved experimentally with a gating
time on the order of 180 ps [21], in good agreement with the predictions in [14]
for an achievable switching time.

1.4 Outline

This thesis is organized as follows: Chapter 2 provides an exact solution for
single-electron-spin dynamics due to the hyperfine interaction for the special
case of uniform coupling constants, and analyzes the range of validity of a com-
mon semiclassical approximation. Chapter 3 includes a detailed analysis of the
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non-Markovian (memory-dependent) dynamics for a localized electron spin in
the presence of the contact hyperfine interaction with a bath of nuclear spins,
including the effects of non-uniform hyperfine coupling constants. Chapter 4 de-
scribes the hyperfine-induced dynamics of two-electron spin states in terms of a
singlet-triplet correlator. Chapter 5 completes our analysis of two-electron spin
state decay with a description of all possible correlation functions, exchange-
induced Rabi oscillations, and “spin-state narrowing” of the nuclear spin sys-
tem, which could extend the lifetime of electron spin states if implemented.
Chapter 6 describes an experiment on transport through a carbon-nanotube
double quantum dot, from which information about the strong tunnel coupling
can be obtained. In Chapter 7 we describe a method that could be used to per-
form high-fidelity coherent single-spin rotations by pulsing only the exchange
interaction in the presence of fixed static magnetic fields.

Each chapter is based on a separate published or submitted work, with the
relevant reference given following each chapter title.
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Chapter 2

Quantum vs. classical

hyperfine-induced spin

dynamics

[W. A. Coish, E. A. Yuzbashyan, B. L. Altshuler, and D. Loss, arXiv:cond-
mat/0610633, to appear in J. Appl. Phys.]

In this chapter we analyze spin dynamics for electrons confined to semiconductor
quantum dots due to the contact hyperfine interaction. We compare mean-field
(classical) evolution of an electron spin in the presence of a nuclear field with
the exact quantum evolution for the special case of uniform hyperfine coupling
constants. We find that (in this special case) the zero-magnetic-field dynamics
due to the mean-field approximation and quantum evolution are similar. How-
ever, in a finite magnetic field, the quantum and classical solutions agree only
up to a certain time scale t < τc, after which they differ markedly.

2.1 Introduction

Prospects for future quantum information processing with quantum-dot-confined
electron spins [1] have encouraged a series of recent experimental efforts. These
efforts have resulted in several very significant achievements, including single-
electron confinement in vertical [53] and lateral single [54] and double [55, 56]
gated quantum dots, the demonstration of spin-dependent transport in double
dots, [57,20,22] and exciting effects arising from the contact hyperfine interaction
with nuclear spins in the host material, including coherent undriven oscillations
in spin-dependent transport [20], lifting of the spin-blockade [22], enhancement
of the nuclear spin decay rate near sequential-tunneling peaks [19, 58], and no-
tably, decay of coherent oscillations between singlet and triplet states as well
as the demonstration of two-qubit gates in double quantum dots [21, 23]. Very
recently, the hyperfine interaction has also been identified as the source of decay
for driven single-spin Rabi oscillations in quantum dots [24].

In spite of rapid progress, there are still many obstacles to quantum comput-

25
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ing with quantum dots. In particular, the inevitable loss of qubit coherence due
to fluctuations in the environment is acceptable in a quantum computer only
if the error rates due to this loss are kept below 10−3 − 10−4 errors per opera-
tion [59]. This requirement is particularly difficult to achieve since it means that
interactions must be strong while switching so that operations can be performed
rapidly, but still very weak in the idle state, to preserve coherence.

For an electron spin confined to a quantum dot, decoherence can proceed
through fluctuations in the electromagnetic environment and spin-orbit inter-
action [60, 61, 62, 63, 64] or through the hyperfine interaction with nuclei in
the surrounding host material, which has been shown extensively in theory
[14, 65, 15, 17, 66, 16, 18, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 51, 77, 78, 50, 79, 80]
and experiment [81, 82, 83, 84, 21, 49, 23]. Due to the primarily p-type nature
of the valence band in GaAs, hole spins (unlike electron spins) do not couple
to the nuclear spin environment via the contact hyperfine interaction, although
they can still undergo decay due to spin-orbit coupling. The decay may still
occur on an even longer time scale than for electrons [85], which suggests the
dot-confined hole spin may be another good candidate for quantum comput-
ing. Alternatively, quantum dots fabricated in isotopically purified 28Si [86] or
12C nanotubes [3, 6, 5] would be free of nuclei with spin, and therefore free of
hyperfine-induced decoherence.

While the field of quantum-dot spin decoherence has been very active in the
last few years, there still remain significant misconceptions regarding the nature
of the most relevant (hyperfine) coupling, particularly, the range of validity of
semiclassical spin models and traditional decoherence methods involving ensem-
ble averaging have been called into question for a single isolated quantum dot
with a potentially controllable environment. We address these issues in Section
2.2.

2.2 Hyperfine interaction: quantum and classi-

cal dynamics

Exponential decay of the longitudinal and transverse components of spin is
typically measured by the decay time scales T1 and T2, respectively [87]. The
longitudinal spin relaxation rate 1/T1 due to spin-orbit interaction and phonon
emission is significantly reduced in quantum dots relative to the bulk in the
presence of a weak Zeeman splitting B = |B| and large orbital level spacing ~ω0

(1/T1 ∝ B5/(~ω0)
4) [61,62]. This decay time has been shown to be on the order

of T1 ∼ 1ms in gated GaAs quantum dots at B ≈ 8T, [88] and to reach a value
as large as T1 = 170ms at low magnetic fields (B = 1.75T) [89]. Furthermore,
since dephasing is absent at leading order for fluctuations that couple through
the spin-orbit interaction, the T2 time due to this mechanism is limited by
the T1 time (T2 = 2T1) [62] (we note that corrections at higher order in the
spin-orbit interaction can lead to pure dephasing, although these corrections
are only relevant at very low magnetic fields [90, 91]). Unlike the spin-orbit
interaction, the hyperfine interaction can lead to pure dephasing of electron spin
states at leading order, resulting in a relatively very short decoherence time τc ≈
1−10 ns due to non-exponential (Gaussian) decay [15,16]. To perform quantum-
dot computations, this and any additional decay must be fully understood and
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reduced, if possible.
The Hamiltonian for an electron spin S in the lowest orbital level of a quan-

tum dot containing nuclear spins is

Hhf = S · (B + h) ; h =
∑

i

AiIi, (2.1)

where Ai = Av0 |ψ0(ri)|2 is the contact hyperfine coupling constant to the
nuclear spin at site i, v0 is the volume of a crystal unit cell containing one
nuclear spin, and A ≈ 90µeV is the weighted average hyperfine coupling con-
stant in GaAs, averaged over the coupling constants for the three naturally
occurring radioisotopes 69Ga,71 Ga, and 75As (weighted by their natural abun-
dances) [27], all with total nuclear spin I = 3/2. The nuclear field in Hhf

is given by the quantum “Overhauser operator” h. Although an exact Bethe
Ansatz solution exists for Hhf [92], using this solution to perform calculations
for the full coupled quantum system of N ≈ 104 − 106 nuclei and one elec-
tron in a quantum dot can be prohibitively difficult [67]. Since the Overhauser
operator h is a sum of a large number N of spin-I operators, one expects
that under certain conditions its quantum fluctuations can be neglected and
the operator h can be replaced with a classical Overhauser field h → BN

[93,15,16,94,72,95,81,96,82,97,76,98,99,51,21,22,100]. However, this approxi-
mation can accurately describe the electron-spin dynamics only at times t < τc,
where τc = Nη/A and η > 0 [97],1 after which effects of quantum fluctuations of
the Overhauser operator set in. The nuclei in GaAs are indeed quantum objects,
which could be verified, in principle, by demonstrating that they can be entan-
gled, as is done in spin-state squeezing experiments that have been performed
on atomic ensembles [101]. The replacement h → BN is therefore not exact
and there are several cases in which the electron-spin dynamics at times t > τc

differ markedly for quantum and classical nuclear fields. In particular, without
performing an ensemble average over initial Overhauser fields, the classical-field
picture predicts no decay of the electron spin. This is in direct contradiction
to analytical [70, 102, 50, 79] and exact numerical [18, 74] studies that show the
quantum nature of the nuclei can lead to complete decay of the transverse elec-
tron spin, even in the presence of a static environment (fixed initial conditions).
Additionally, quantum “flip-flop” processes can lead to dynamics and decay of
the electron spin in the quantum problem, even for initial conditions (e.g., a
fully-polarized nuclear spin system) that correspond to a fixed-point of the clas-
sical equations of motion [15,70,75]. In fact, it can be shown that any decay of
the electron spin for pure-state inital conditions will result in quantum entangle-
ment between the electron and nuclear spin systems [18,67]. This entanglement
has recently been highlighted as a source of spin-echo envelope decay in the
presence of the hyperfine interaction [80]. Finally, even the ensemble-averaged
standard classical (mean-field) electron-spin dynamics show large quantitative
differences relative to the exact quantum dynamics at times t > τc and in a
very weak magnetic field, although an alternative mean-field theory involving
the P-representation for the density matrix shows promise [103].

While the classical and quantum dynamics diverge in many cases, the classical-
field replacement h → BN will be valid up to some time scale, providing a range

1This expression, of course, assumes an appropriate scaling of coupling constants Ai ∝ 1/N ,
so that the energy of the electron spin scales as N0 in the thermodynamic limit.
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of validity for the classical dynamics. In this chapter, we aim to shed light on this
range of validity of the classical solution. As a test of the classical-dynamics pic-
ture, we can compare quantum and classical dynamics of an electron spin in the
simple case of uniform coupling constants Ai = γ. When the coupling constants
are uniform, an exact solution to the quantum dynamics (see Refs. [17, 104]
for the |B| = 0 case) can be evaluated and used to compare with an inte-
gration of the equivalent classical equations of motion. For uniform coupling
constants, the nuclear Overhauser operator from Eq. (2.1) becomes h = γK,
where Ai = γ = A/N and K =

∑
i Ii is the collective total spin operator for

N ≫ 1 nuclear spins.
The initial state of the system is taken to be an arbitrary product state of

the electron and nuclear system:

|ψ(0)〉 = |ψS(0)〉 ⊗ |ψK(0)〉 , (2.2)

=

K∑

m=−K

(
α↑

m |↑;K,m〉 + α↓
m |↓;K,m〉

)
, (2.3)

where |σ;K,m〉 is a simultaneous eigenstate of Sz, Kz (we take the direction of
the external field B to define the z-axis), and K ·K (with eigenvalues ±1/2 for
σ =↑, ↓, m, and K(K +1), respectively). For comparison with the classical spin
dynamics, we choose the collective nuclear spin to be initially described by a

spin coherent state, given by |ψK(0)〉 = e−iKyθK |K,K〉 =
∑

m d
(K)
mK(θK) |K,m〉,

where d
(K)
mK(θK) is the Wigner rotation matrix [105] and the electron spin is in

an arbitrary initial state |ψS(0)〉 = cos(θS/2) |↑〉+eiφS sin(θS/2) |↓〉. The initial
conditions are then completely determined by the three angles θS , φS , and θK .
These initial conditions allow for an arbitrary relative orientation of the spin
and magnetic-field vectors, since the azimuthal angle for K (φK) can be set to
zero with an appropriate shift in φS : φ′

K = 0, φ′
S = φS −φK . At any later time

t, the wave function is given by

|ψ(t)〉 =

K∑

m=−K

(
α↑

m(t) |↑;K,m〉 + α↓
m(t) |↓;K,m〉

)
. (2.4)

From the time-dependent Schrödinger equation i∂t |ψ(t)〉 = Hhf |ψ(t)〉 (set-
ting ~ = 1), we find the set of coupled differential equations determining the
coefficients

{
α↑

m(t), α↓
m(t)

}
. For m = −K, . . . ,K − 1,

α̇↑
m = − i

2
(B + γm)α↑

m − i
γ

2
C−

Km+1α
↓
m+1, (2.5)

α̇↓
m+1 =

i

2
(B + γ(m + 1))α↓

m+1 − i
γ

2
C+

Kmα↑
m, (2.6)

where C±
Km = 〈Km ± 1|K± |Km〉 =

√
K(K + 1) − m(m ± 1). These equa-

tions are supplemented by two equations for the stationary states |↑;K,K〉 and
|↓;K,−K〉 with dynamics:

α↑
K(t) = exp

{
− i

2
(B + γK)t

}
α↑

K(0), (2.7)

α↓
−K(t) = exp

{
i

2
(B − γK)t

}
α↓
−K(0). (2.8)
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Figure 2.1: (a) Correlation between the mean-field and exact quantum solution
C(t) (defined in Eq. (2.15); C(t) = 1 indicates perfect agreement between
the mean-field and quantum solutions) for evolution of an electron spin in the
presence of a total bath spin K = 50 and magnetic field B = 0 (black dash-
dotted line, showing the weakest decay), B = 5γ (blue dotted line), B = 10γ
(green dashed line) and large magnetic field B = 500γ (red solid line, showing
rapid decay). The inital conditions were θS = π/2, φS = 0, θK = 0.3π (see
the discussion following Eq. (2.3)). We also show the exact quantum evolution
〈Sx〉t (solid line) and mean-field approximation sx(t) (dashed line) for (b) B = 0
and (c) B = 10γ.

The solutions to Eqs. (2.5), (2.6) and the expressions in Eqs. (2.7), (2.8) for the
coefficients {α↑

m(t), α↓
m(t) : m = −K . . . K} constitute a complete exact solution

for the dynamics of the wave function |ψ(t)〉 at any later time t > 0. We solve
Eqs. (2.5) and (2.6) by Laplace transformation to obtain

α↑
m(t) = ei γ

4
t
{
α↑

m(0) cos(ωKmt)

−i

(
α↑

m(0)

[
B + γ(m +

1

2
)

]
+ α↓

m+1(0)γC−
Km+1

)
sin(ωKmt)

2ωKm

}
, (2.9)

α↓
m+1(t) = ei γ

4
t
{

α↓
m+1(0) cos(ωKmt)

+i

(
α↓

m+1(0)

[
B + γ(m +

1

2
)

]
− α↑

m(0)γC+
Km

)
sin(ωKmt)

2ωKm

}
, (2.10)

ωKm =
1

2

[
(B + γm)(B + γ(m + 1)) + γ2

(
C−

Km+1C
+
Km +

1

4

)]1/2

. (2.11)

With the coefficients {α↑
m(t), α↓

m(t) : m = −K, . . . ,K} in hand, we can evaluate
the expectation values of all spin components exactly: 〈S〉t = 〈ψ(t)|S |ψ(t)〉 , 〈K〉t =
〈ψ(t)|K |ψ(t)〉.

To evaluate the classical spin dynamics, we perform a mean-field decompo-
sition of the Hamiltonian given in Eq. (2.1) by rewriting the spin operators as
S = 〈S〉t + δS and K = 〈K〉t + δK. We then neglect the term that is bilinear in
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the spin fluctuations (∝ δS·δK) and approximate the spin expectation values by
their self-consistent mean-field dynamics 〈S〉t ≈ s(t), 〈K〉t ≈ k(t), where s and
k are classical time-dependent vectors of fixed length [97]. Up to a c-number
shift, this gives the (time-dependent) mean-field Hamiltonian

Hmf(t) = (B + γk(t)) · S + γs(t) · K. (2.12)

The mean-field dynamics are now given by the Heisenberg equations of motion
for the spin operators: Ṡ = i [Hmf(t),S], K̇ = i [Hmf(t),K], with the replace-
ments 〈S〉t ≈ s(t), 〈K〉t ≈ k(t):

ṡ(t) = (B + γk(t)) × s(t), (2.13)

k̇(t) = −γk(t) × s(t). (2.14)

An exact analytical solution to Eqs. (2.13, 2.14) is known [97]. However, instead
of repeating this solution here, we solve Eqs. (2.13, 2.14) by numerical integra-
tion for direct comparison with the exact results given above. The mean-field
and quantum dynamics are shown in Fig. 2.1 for four values of the Zeeman
splitting B = |B|. We compare the two solutions using the correlation function

C(t) =
1

T

∫ t+T

t

dt′
2 〈Sx〉t′ sx(t′)

〈Sx〉2t′ + sx(t′)2
, (2.15)

where we average over the time interval T = 0.1~/γ to remove rapid oscilla-
tions. C(t) = 1 if the exact solution and mean-field approximation are identical
(sx(t) = 〈Sx〉t) over the time interval (t, t + T ). C(t) < 1 indicates that the
two solutions differ. While the zero-magnetic-field dynamics appear to be well
reproduced by the mean-field approximation, at least at short time scales, the
high-field solution decays rapidly, which can not appear in the classical dynamics
unless averaging is performed over the initial conditions [70]. There is a partial
recurrence of the correlator at a time scale given by the inverse level spacing for
the quantum problem, τp = 2π~/γ, but the recurrence is only partial since at
this time the quantum and classical solutions have already gone out of phase.

It is relatively straightforward to understand the difference in the high-field
and low-field behavior shown in Fig. 2.1. At zero magnetic field, the total
spin J · J (J = K + S) commutes with the Hamiltonian, so if the nuclear
spin system begins in an eigenstate of K · K, only a single frequency exists in
the quantum dynamics, corresponding to the difference in energies with J =
K ± 1/2 [17, 67]. Thus, in this case the quantum dynamics corresponds to
simple periodic precession, and mimics the classical dynamics for K ≫ 1 (see
Fig. 2.1(b)). However, the states of fixed J are manifold degenerate. If a term
is added to the Hamiltonian which does not commute with J · J (in this case,
the electron Zeeman term BSz), many more frequencies are involved in the
quantum dynamics, which can lead to decay in the quantum solution, while the
classical solution continues to describe simple electron spin precession (see Fig.
2.1(c)). In a large magnetic field (B ≫ γ|K⊥|), it is straightforward to evaluate
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the decay in the quantum mechanical solution [70],2

〈S+〉t ≈ 〈S+〉0 exp

{
− t2

2τ2
c

+ i [B + cos(θK)γK] t

}
, (2.16)

τc =
1

γ

√
2

K [1 − cos2(θK)]
. (2.17)

The x-component of spin is then given by the real part 〈Sx〉t = Re [〈S+〉t]. We
consider the hyperfine problem with I = 1/2. When the initial nuclear-spin
coherent state is generated by rotating the spins from a fully-polarized state
such that K is maximal (as in Ref. [70]), we then have K = N/2. In addition,
γ = A/N and for nuclear spin polarization p = cos(θK) ≪ 1 this gives the decay
time

τc = 2

√
N

A
. (2.18)

Since the classical dynamics at times t < τc describe simple precession for fixed
initial conditions, any decay in the quantum solution signifies a disagreement
between the quantum and classical problems. Thus, the mean-field solution will
give an accurate description of the full quantum dynamics only for times t < τc,
with τc given by Eq. (2.18).

The crossover from precession to decay of the quantum solution with the
addition of a magnetic field suggests that the uniform coupling-constants picture
should only be used with caution, since the Hamiltonian in Eq. (2.1) also does
not commute with J · J when the coupling constants vary from one nuclear-
spin site to the next (as is true in a quantum dot). Indeed, in the presence of
randomly-varying coupling constants, the straightforward mean-field electron-
spin dynamics at times t > τc are quantitatively very different from the exact
quantum dynamics at weak magnetic fields B → 0 [103].

2.3 Conclusions

We have presented an exact solution for the problem of an electron spin in-
teracting with a large bath of spins with uniform Heisenberg coupling. This
exact solution has been compared to the corresponding mean-field (classical
spin) model. We have seen that the mean-field and quantum solutions show
striking agreement at times shorter than the transverse-spin correlation time
τc, which diverges at zero magnetic field. This divergence, however, may only
be due to the assumption of uniform coupling constants, which is unphysical for
a quantum dot with strong confinement.

In this work we have focused on a comparison of dynamics for fixed initial
conditions of the quantum and classical problem. Some of the quantum behav-
ior, including Gaussian decay, can be recovered with an average over classical
solutions [15, 16]. An intriguing question therefore remains: How much of the
quantum dynamics can be obtained by averaging over classical solutions with
different initial conditions?

2The decay formula (Eq. (2.16)) is obtained from Eq. (19) of Ref. [70] by restoring
the formula to dimensionful units and applying the replacements p → cos(θK), A/N → γ,
N/2 → K.
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Chapter 3

Single-spin dynamics

[W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004)]

In this Chapter we perform a systematic calculation for the non-Markovian
dynamics of a localized electron spin interacting with an environment of nuclear
spins via the Fermi contact hyperfine interaction. This work applies to an
electron in the s-type orbital ground state of a quantum dot or bound to a
donor impurity, and is valid for arbitrary polarization p of the nuclear spin
system, and arbitrary nuclear spin I in high magnetic fields. In the limit of
p = 1 and I = 1

2 , the Born approximation of our perturbative theory recovers
the exact electron spin dynamics. We have found the form of the generalized
master equation (GME) for the longitudinal and transverse components of the
electron spin to all orders in the electron spin–nuclear spin flip-flop terms. Our
perturbative expansion is regular, unlike standard time-dependent perturbation
theory, and can be carried-out to higher orders. We show this explicitly with
a fourth-order calculation of the longitudinal spin dynamics. In zero magnetic
field, the fraction of the electron spin that decays is bounded by the smallness
parameter δ = 1/p2N , where N is the number of nuclear spins within the
extent of the electron wave function. However, the form of the decay can only be
determined in a high magnetic field, much larger than the maximum Overhauser
field. In general the electron spin shows rich dynamics, described by a sum of
contributions with non-exponential decay, exponential decay, and undamped
oscillations. There is an abrupt crossover in the electron spin asymptotics at
a critical dimensionality and shape of the electron envelope wave function. We
propose a scheme that could be used to measure the non-Markovian dynamics
using a standard spin-echo technique, even when the fraction that undergoes
non-Markovian dynamics is small.

3.1 Introduction

Prospects for the development of new spintronic devices [106] and the con-
trolled manipulation of electron or nuclear spins for quantum information pro-
cessing [107] have sparked substantial research efforts in recent years. One
of the major obstacles to achieving these goals is decoherence due to the in-

33
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fluence of an uncontrollable environment. For quantum computing tasks, the
strict requirements for error correction [108] put strong limits on the degree of
decoherence allowed in such devices. From this point of view, single-electron
semiconductor quantum dots represent good candidates for spin-based informa-
tion processing since they show particularly long longitudinal relaxation times,
T1 = 1ms [88]. In GaAs quantum wells, the transverse dephasing time T ∗

2 for
an ensemble of electron spins, which typically provides a lower bound for the
intrinsic decoherence time T2 of an isolated spin, has been measured to be in
excess of 100 ns [109].

Possible sources of decoherence for a single electron spin confined to a quan-
tum dot are spin-orbit coupling and the contact hyperfine interaction with the
surrounding nuclear spins [14]. The relaxation rate due to spin-orbit coupling
1
T1

is suppressed for localized electrons at low temperatures [60, 61] and recent
work has shown that T2, due to spin-orbit coupling, can be as long as T1 under
realistic conditions [110]. However, since spin-carrying isotopes are common in
the semiconductor industry, the contact hyperfine interaction (in contrast to
the spin-orbit interaction) is likely an unavoidable source of decoherence, which
does not vanish with decreasing temperature or carefully chosen quantum dot
geometry [67].

In the last few years, a great deal of effort has been focused on a theoretical
description of interesting effects arising from the contact hyperfine interaction
for a localized electron [14,15,17,18,19,111,112,113,114,65,66,68,69,94,16,115].
The predicted effects include a dramatic variation of T1 with gate voltage in a
quantum dot near the Coulomb blockade peaks or valleys [19], all-optical polar-
ization of the nuclear spins [113], use of the nuclear spin system as a quantum
memory [111,112], and several potential spin relaxation and decoherence mech-
anisms [15, 65, 66, 114, 68]. This theoretical work is spurred-on by intriguing
experiments that show localized electrical detection of spin resonance phenom-
ena [116], nuclear spin polarization near quantum point contacts [117], gate-
controlled transfer of polarization between electrons and nuclei [118], nuclear
spin polarization and manipulation due to optical pumping in GaAs quantum
wells [119], and voltage-controlled nuclear spin polarization in a field-effect tran-
sistor [120]. In addition, recent experiments have shown hyperfine induced os-
cillations in transport current through a double quantum dot [20], and long
T2 times for electrons trapped at shallow donor impurities in isotopically puri-
fied 28Si:P [121]. Our system of interest in this chapter is an electron confined
to a single GaAs quantum dot, but this work applies quite generally to other
systems, such as electrons trapped at shallow donor impurities in Si:P [67].

In this chapter, we investigate electron spin dynamics at times shorter than
the nuclear dipole-dipole correlation time τdd (τdd ≈ 10−4 s in GaAs is given di-
rectly by the inverse width of the nuclear magnetic resonance (NMR) line [27]).
At these time scales, the relevant Hamiltonian for a description of the electron
and nuclear spin dynamics is that for the Fermi contact hyperfine interaction
(see Eq. (3.1), below). Dynamics under the action of this Hamiltonian may be of
fundamental interest, since in zero magnetic field, Eq. (3.1) corresponds to the
well-known integrable Gaudin magnet, which is soluble via Bethe ansatz [92,67].
Though the Hamiltonian appears simple, a detailed microscopic description for
the dynamics of a spin coupled to a spin environment remains an open ques-
tion [122,123]. A degree of success has been achieved some time ago in bulk sys-
tems through the development of phenomenological models [124]. These models
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invoke certain approximations, namely, assumptions of Markovian dynamics and
ensemble averaging. Care should therefore be taken in applying the same models
to the problem of single-spin decoherence for an electron spin strongly coupled
to a nuclear spin environment, where they may not apply [15,17].

For nuclear spin I = 1
2 , an exact solution for the electron spin dynamics has

been found in the special case of a fully polarized initial state of the nuclear spin
system [15,17]. This solution shows that the electron spin only decays by a frac-
tion ∝ 1

N of its initial value, where N is the number of nuclear spins within the
extent of the electron wave function. The decaying fraction was shown to have
a non-exponential tail for long times, which suggests non-Markovian (history
dependent) behavior. For an initial nuclear spin configuration that is not fully
polarized, no exact solution is available and standard time-dependent pertur-
bation theory fails [15]. Subsequent exact diagonalization studies on small spin
systems [18] have shown that the electron spin dynamics are highly dependent
on the type of initial nuclear spin configuration, and the dynamics of a randomly
correlated initial nuclear spin configuration are reproduced by an ensemble av-
erage over direct-product initial states. The unusual (non-exponential) form of
decay, and the fraction of the electron spin that undergoes decay may be of in-
terest in quantum error correction (QEC) since QEC schemes typically assume
exponential decay to zero.

In this chapter we formulate a systematic perturbative theory of electron
spin dynamics under the action of the Fermi contact hyperfine interaction. This
theory is valid for arbitrary nuclear spin polarization and arbitrary nuclear spin I
in high magnetic fields. For nuclear spin I = 1

2 and a fully polarized nuclear spin
system, we recover the exact solution for the electron spin dynamics within the
Born approximation of our perturbative theory. Our approach follows a method
recently applied to the spin-boson model [125]. This method does not suffer from
unbounded secular terms that occur in standard perturbation theory [15] and
does not involve Markovian approximations.

This chapter is organized as follows. In Section 3.2 we review the model
Hamiltonian and address the question of realistic initial conditions. In Section
3.3 we derive the form of the exact generalized master equation (GME) for the
electron spin dynamics. In Section 3.4 we consider the leading-order electron
spin dynamics in high magnetic fields. In Section 3.5 we proceed to calculate
the complete non-Markovian dynamics within the Born approximation. We
describe a procedure that could be used to measure the non-Markovian dynamics
in Section 3.6. In Section 3.7 we show that our method can be extended to
higher orders without the problems of standard perturbation theory by explicitly
calculating the corrections to the longitudinal spin self-energy at fourth order in
the nuclear spin-electron spin flip-flop terms. We conclude in Section 3.8 with
a summary of the results. Technical details are deferred to Appendices A–E.

3.2 Model

We consider a localized electron spin interacting with Ntot nuclear spins via the
Fermi contact hyperfine interaction. The Hamiltonian for this system is

H = bSz + ǫnzIz + h · S, (3.1)
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where S = (Sx, Sy, Sz) is the electron spin operator. b = g∗µBBz (ǫnz =
gIµNBz) is the electron (nuclear) Zeeman splitting in a magnetic field Bz, with
effective g-factor g∗ (gI) for the electron (nuclei) and Bohr (nuclear) magne-

ton µB (µN ). Further, h = (hx, hy, hz) =
∑Ntot−1

k=0 AkIk gives the (quantum)
field generated by an environment of nuclear spins. Ik = (Ix

k , Iy
k , Iz

k) is the nu-
clear spin operator at lattice site k and Ak is the associated hyperfine coupling
constant. Iz =

∑
k Iz

k is the total z-component of nuclear spin.
The nuclear Zeeman term can be formally eliminated from the Hamiltonian

H (Eq. (3.1)) by transforming to a rotating reference frame. The z-component
of total angular momentum is Jz = Sz +Iz. Adding and subtracting ǫnzJz gives
H = H′ + ǫnzJz. The Hamiltonian in the rotating frame, H′, is then

H′ = H′
0 + H′

V , (3.2)

H′
0 = b′Sz + hzSz, (3.3)

H′
V =

1

2
(h+S− + h−S+) , (3.4)

where b′ = b−ǫnz and we have introduced h± = hx±ihy. The usual Heisenberg-

picture operators in the rotating frame are S′
X(t) = eiH′tSXe−iH′t, X = z,+,

S± = Sx±iSy. Noting that [Jz,H] = 0, we find they are related to the operators
SX(t) = eiHtSXe−iHt in the rest frame by

S′
z(t) = Sz(t) (3.5)

S′
+(t) = e−iǫnztS+(t). (3.6)

In the following, 〈S′
z〉t and

〈
S′

+

〉
t

will be evaluated in the rotating frame, but
we omit primes on all expectation values.

The hyperfine coupling constants Ak are given by [67]

Ak = Av0|ψ(rk)|2. (3.7)

Here, v0 is the volume of a crystal unit cell containing one nuclear spin, ψ(r) is
the electron envelope wave function, and A is the strength of the hyperfine cou-
pling. In GaAs, all naturally occurring isotopes carry spin I = 3

2 . In bulk GaAs,

A has been estimated [27] to be A = 90µeV
(

A
|g∗|µB

= 3.5T
)
. This estimate is

based on an average over the hyperfine coupling constants for the three nuclear
isotopes 69Ga, 71Ga, and 75As, weighted by their relative abundances. Natural
silicon contains 4.7% 29Si, which carries I = 1

2 , and 95% 28Si, with I = 0. An
electron bound to a phosphorus donor impurity in natural Si:P interacts with
N ≈ 102 surrounding 29Si nuclear spins, in which case the hyperfine coupling
constant is on the order of A ≈ 0.1µeV [67]. We consider a localized electron
in its orbital ground state, described by an isotropic envelope wave function of
the form

ψ(rk) = ψ(0) exp

[
−1

2

(
rk

l0

)m]
. (3.8)

When m = 2, ψ(r) is a Gaussian with Bohr radius l0, and for m = 1, ψ(r)
corresponds to a hydrogen-like s-state with Bohr radius a0 = 2l0. Ntot nuclear
spins are in the system, but the effective number N of spins interacting appre-
ciably with the electron is smaller (see Fig. 3.1). N is defined as the number
of nuclear spins within radius l0 of the origin and the integer index k gives the
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Figure 3.1: Schematic of the square modulus of the electron envelope wave
function |ψ(r)|2 and nuclear spins (arrows). k is the nuclear site index, N is the
number of nuclear spins within radius r = l0, and Ntot is the total number of
nuclear spins in the system.

number of spins within radius rk. In d dimensions,
(

rk

l0

)d

= k
N . It is convenient

to work in energy units such that A0

2 = 1, where A0 is the coupling constant at
the origin (r0 = 0). In these units Ak takes the simple form

Ak = 2 exp

[
−

(
k

N

)m
d

]
. (3.9)

3.2.1 Initial conditions

3.2.1.1 Sudden approximation

The electron spin and nuclear system are decoupled for times t < 0, and pre-
pared independently in states described by the density operators ρS(0) and
ρI(0), respectively. At t = 0, the electron and nuclear spin system are cou-
pled “instantaneously”, i.e., the electron spin and nuclear system are brought
into contact over a switching time scale τsw,1 which is sufficiently small–see Eq.
(3.11), below. The state of the entire system, described by the total density
operator ρ(t) is then continuous at t = 0, and is given by

ρ(0−) = ρ(0+) = ρS(0) ⊗ ρI(0). (3.10)

The evolution of the density operator ρ(t) for t ≥ 0 is governed by the Hamilto-
nian H′ for an electron spin coupled to an environment of nuclear spins. Since
the largest energy scale in this problem is given by |b′ + A|, in general the con-
dition

τsw ≪ 2π~

|b′ + A| (3.11)

1τsw is, e.g., the time taken to inject an electron into a quantum dot.
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should be satisfied for the sudden approximation (Eq. (3.10)) to be valid. In
bulk GaAs, 2π~

A ≃ 50 ps and for an electron bound to a phosphorus donor in

natural silicon, 2π~

A ≃ 10 ns.

3.2.1.2 Dependence on the nuclear state: zeroth order dynamics

Evolution of the electron spin for different initial nuclear configurations has been
addressed previously [17,18]. In Ref. [18] it was found, through numerical study,
that the dynamics of the electron spin were highly dependent on the initial state
of the nuclear system. The goal of this section is to shed more light on the role
of the initial nuclear configuration by evaluating the much simpler zeroth order
dynamics, i.e., the electron spin evolution is evaluated under H′ = H′

0 alone,
neglecting the flip-flop terms H′

V .
Since [H′

0, Sz] = 0, 〈Sz〉t is constant. However, [H′
0, S±] 6= 0, so the trans-

verse components, 〈S+〉t = 〈Sx〉t + i 〈Sy〉t, will have a nontrivial time depen-

dence. We evaluate the expectation value 〈S+〉t = Tr
{

e−iH′
0tS+eiH′

0tρ(0)
}

(setting ~ = 1), with the initial state given in Eq. (3.10). After performing a
partial trace over the electron spin Hilbert space, we obtain an expression in
terms of the initial nuclear spin state:

〈S+〉t = 〈S+〉0 TrI

{
ei(b′+hz)tρI(0)

}
, (3.12)

where TrI is a partial trace over the nuclear spin space alone. For simplicity,
here we consider I = 1

2 , and the coupling constants are taken to be uniform.

After enforcing the normalization
∑

k Ak = 2N in units where A0

2 = A
2N = 1,

the hyperfine coupling constants are

Ak =

{
2, k = 0, 1 · · ·N − 1
0, k ≥ N

. (3.13)

The zeroth-order electron spin dynamics can now be evaluated exactly for three
types of initial nuclear spin configuration:

ρ
(1)
I (0) = |ψI(0)〉 〈ψI(0)| (3.14)

ρ
(2)
I (0) =

N∑

N↑=0

P (N↑;N, f↑) |N↑〉 〈N↑| (3.15)

ρ
(3)
I (0) = |n〉 〈n| . (3.16)

ρ
(1)
I is a pure state, where |ψI(0)〉 =

∏N
k=0

(√
f↑ |↑k〉 + eiφk

√
1 − f↑ |↓k〉

)
is

chosen to render the z-component of nuclear spin translationally invariant:
〈ψI(0)| Iz

k |ψI(0)〉 = 1
2 (2f↑ − 1) = p

2 , and p = 2f↑ − 1 is the polarization
of the nuclear spin system. φk is an arbitrary site-dependent phase factor.

P (x;n, f) =

(
n
x

)
fx(1−f)n−x is a binomial distribution, and |N↑〉 is a prod-

uct state of the form |↑↑↓ · · · 〉 with N↑ spins up and N −N↑ spins down. ρ
(2)
I (0)

then corresponds to a mixed state; this is an ensemble of product states where
the N spins in each product state are selected from a bath of polarization

p = 2f↑ − 1. ρ
(3)
I , like ρ

(1)
I , is a pure state, but for this state |n〉 is chosen to
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be an eigenstate of hz with eigenvalue pN (corresponding to a nuclear system
with polarization p): hz |n〉 = pN |n〉. We insert the initial nuclear spin states

ρ
(i)
I (0) into (3.12) to obtain the associated time evolution 〈S+〉(i)t :

〈S+〉(1,2)
t = 〈S+〉0

N∑

N↑=0

P (N↑;N, f↑)e
i(b′+M(N↑))t, (3.17)

〈S+〉(3)t = 〈S+〉0 ei(b′+pN)t. (3.18)

M(N↑) = 2N↑ −N is the nuclear magnetization on a dot with N↑ nuclear spins
up.

The similarity in dynamics between randomly correlated (entangled) pure
states and mixed states has been demonstrated for evolution under the full
Hamiltonian (H′ = H′

0 + H′
V ) via exact diagonalizations of small (Ntot . 19)

spin systems [18]. Here, the zeroth-order electron spin dynamics are identical

for the pure state ρ
(1)
I (0) and the mixed state ρ

(2)
I (0) even when the initial pure

state |ψI(0)〉 is a direct product. Direct application of the central limit theorem
gives a Gaussian decay for large N :

〈S+〉(1,2)
t ≈ 〈S+〉0 e

− t2

2t2c
+i(b′+pN)t

, tc =
1√

N(1 − p2)
. (3.19)

Returning to dimension-full units (c.f. Table 3.1 below), the time scale for this
decay is given by τc = 2N~

A tc ≈ 5 ns for a GaAs quantum dot with p2 ≪ 1
containing N = 105 nuclei and τc ≈ 100 ns for an electron trapped at a shallow
donor impurity in Si : P, with N = 102. For an ensemble of nuclear spin states,
Gaussian decay with the time scale τc has been found previously [15, 17, 16].
Gaussian decay for a Hamiltonian with an Ising coupling of electron and nuclear
spins has been demonstrated [123] for a more general class of pure initial states
and for coupling constants Ak that may vary from site-to-site.

For the initial states ρ
(1,2)
I (0), precise control over the nuclear spin polariza-

tion between measurements or a spin-echo technique would be needed to reduce
or eliminate the rapid decay described by (3.19). However, the quantum su-
perposition of hz eigenstates can be removed, in principle, from the pure state

ρ
(1)
I (0) by performing a strong (von Neumann) measurement on the nuclear

Overhauser field pN .2 After the nuclear system is prepared in an hz-eigenstate,

to zeroth order the electron spin dynamics will be given by 〈S+〉(3)t , i.e., a simple
precession about the z-axis with no decay.

When higher-order corrections are taken into account, and the coupling con-
stants Ak are allowed to vary from site-to-site, even an initial hz-eigenstate can
lead to decay of the electron spin. This has been shown [15, 17] in an exact
solution for the specific case of a fully-polarized system of nuclear spins-1

2 and
by exact diagonalization on small systems [18]. The goal of the present work

2It may be possible to measure the Overhauser field directly by locating the position of
the electron spin resonance (ESR) line, where the magnetic field compensates the nuclear
Overhauser field. We have confirmed by exact diagonalizations on small (Ntot = 15) spin
systems that the resonance is indeed centered at a magnetic field corresponding to the negative
nuclear Overhauser field, even for a nuclear spin system with p < 1. Alternatively, a state
where all nuclear spins are aligned along the magnetic field can be generated by allowing the
nuclear spins to relax in the presence of the nuclear spin-lattice interaction.
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is to perform an analytical calculation with a larger range of validity (a large
system of nuclear spins with arbitrary polarization and arbitrary nuclear spin I
in a sufficiently strong magnetic field) that recovers previous exact results in the
relevant limiting cases. In the rest of this chapter, the effect of higher- (beyond
zeroth-) order corrections will be considered for a nuclear spin system prepared

in an arbitrary hz eigenstate: ρI(0) = ρ
(3)
I (0), as given in Eq. (3.16). Specifi-

cally, the initial state of the nuclear system |n〉 can be written as an arbitrary
linear combination of gn degenerate product states:

|n〉 =

gn∑

j=1

αj |nj〉 , |nj〉 =

Ntot−1⊗

i=0

∣∣∣I,mj
i

〉
(3.20)

where |I,mi〉 is an eigenstate of the operator Iz
i with eigenvalue mi and hz |nj〉 =

[hz]nn |nj〉 for all j, where we write the matrix elements of any operator O as
〈i| O |j〉 = [O]ij .

3.3 Generalized master equation

To evaluate the dynamics of the reduced (electron spin) density operator, we
introduce a projection superoperator P , defined by its action on an arbitrary
operator O: PO = ρI(0)TrIO. P is chosen to preserve all electron spin expec-
tation values: 〈Sβ〉t = TrSβρ(t) = TrSβPρ(t), β = x, y, z, and satisfies P 2 = P .
For factorized initial conditions (Eq. (3.10)), Pρ(0) = ρ(0), which is a sufficient
condition to rewrite the von Neumann equation ρ̇(t) = −i [H′, ρ(t)] in the form
of the exact Nakajima-Zwanzig generalized master equation (GME) [126]:

P ρ̇(t) = −iPLPρ(t) − i

∫ t

0

dt′Σ(t − t′)ρ(t′), (3.21)

Σ(t) = −iPLQe−iLQtQLP, (3.22)

where Σ(t) is the self-energy superoperator and Q = 1−P is the complement of
P (1 is the identity superoperator). L = L0 + LV is the full Liouvillian, where
Lα (α = V, 0) is defined by LαO = [H′

α,O]. When the initial nuclear state is
of the form ρI(0) = |n〉 〈n|, where |n〉 is an arbitrary eigenstate of hz, as in Eq.
(3.20), P obeys the useful identities

PLV P = 0, (3.23)

PL0P = L0P. (3.24)

We apply Eqs. (3.23) and (3.24), and perform a trace on (3.21) over the nuclear
spins to obtain

ρ̇S(t) = −iLn
0ρS(t) − i

∫ t

0

dt′ΣS(t − t′)ρS(t′), (3.25)

ΣS(t) = −iTrILe−iQLtLV ρI(0), (3.26)

where Ln
0O = [Szωn,O] and ωn = b′ + [hz]nn. ΣS(t) is the reduced self-energy

superoperator. ρS(t) = TrIρ(t) = 1
2σ0 + 〈Sx〉t σx + 〈Sy〉t σy + 〈Sz〉t σz is the

reduced electron spin density operator, where σβ , β = x, y, z, are the usual Pauli
matrices and σ0 is the 2 × 2 identity.
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We iterate the Schwinger-Dyson identity [126]

e−iQ(L0+LV )t = e−iQL0t − i

∫ t

0

dt′e−iQL0(t−t′)QLV e−iQLt′ (3.27)

on (3.26) to generate a systematic expansion of the reduced self-energy in terms
of the perturbation Liouvillian LV :

ΣS(t) = Σ
(2)
S (t) + Σ

(4)
S (t) + · · · , (3.28)

where the superscript indicates the number of occurrences of LV . Quite remark-
ably, to all orders in LV , the equations for the longitudinal (〈Sz〉t) and transverse(
〈S+〉t = 〈Sx〉t + i 〈Sy〉t

)
electron spin components are decoupled and take the

form:

˙〈Sz〉t = Nz(t) − i

∫ t

0

dt′Σzz(t − t′) 〈Sz〉t′ (3.29)

˙〈S+〉t = iωn 〈S+〉t − i

∫ t

0

dt′Σ++(t − t′) 〈S+〉t′ . (3.30)

Details of the expansion (Eq. (3.28)) are given in Appendix A. It is most
convenient to evaluate the inhomogeneous term Nz(t) and the memory kernels
Σzz(t), Σ++(t) in terms of their Laplace transforms: f(s) =

∫ ∞
0

dte−stf(t),Re[s] >
0. Nz(s) and Σzz(s) are given in terms of matrix elements of the reduced self-
energy by

Nz(s) = − i

2s
(Σ↑↑(s) + Σ↑↓(s)) , (3.31)

Σzz(s) = Σ↑↑(s) − Σ↑↓(s). (3.32)

Explicit expressions for the matrix elements Σ++(s), Σ↑↑(s), and Σ↑↓(s) are
given in Appendix A. We find that the self-energy at (2k)th order is suppressed
by the factor ∆k, where

∆ =
N

ωn
. (3.33)

The parameter ∆ and some other commonly used symbols are given in dimen-
sionless and dimension-full units in Table 3.1 below. For high magnetic fields

|b′| ≫ N
(
|Bz| ≫

∣∣∣ A
g∗µB

∣∣∣
)
, we have |∆| ≃

∣∣N
b′

∣∣ ≪ 1, and the expansion is

well-controlled. The non-perturbative regime is given by |∆| ≥ 1, and the per-
turbative regime by |∆| < 1. Thus, a perturbative expansion is possible when
the electron Zeeman energy produced by the magnetic and/or Overhauser field
(provided by N nuclear spins) is larger than the single maximum hyperfine cou-
pling constant A. In the rest of this section we apply the Born approximation

ΣS ≃ Σ
(2)
S to the reduced self-energy, and perform the continuum limit for a

large uniformly polarized nuclear spin system. Later, we also consider higher
orders.

3.3.1 Born approximation

In the Born approximation, the memory kernels Σzz(t), Σ++(t) and inhomoge-
neous term Nz(t) in (3.29) and (3.30) are replaced by the forms obtained from
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the lowest-order self-energy, i.e., Nz(t) → N
(2)
z (t), Σzz(t) → Σ

(2)
zz (t), Σ++(t) →

Σ
(2)
++(t). In Laplace space, Σ

(2)
↑↑ (s), Σ

(2)
↑↓ (s), and Σ

(2)
++(s) are given for an ar-

bitrary initial hz eigenstate |n〉 (see Eq. (3.20)) in Appendix A, Eqs. (A.20),
(A.21), and (A.22). Inserting an initial state |n〉 for a large nuclear spin system
with uniform polarization gives (see Appendix B):

Σ
(2)
↑↑ (s) = −iNc+ [I+(s − iωn) + I−(s + iωn)] , (3.34)

Σ
(2)
↑↓ (s) = iNc− [I−(s − iωn) + I+(s + iωn)] , (3.35)

Σ
(2)
++(s) = −iN [c−I+(s) + c+I−(s)] , (3.36)

I±(s) =
1

4N

∑

k

A2
k

s ∓ iAk

2

. (3.37)

In the above, the coefficients

c± = I(I + 1) − 〈〈m(m ± 1)〉〉 (3.38)

have been introduced, where 〈〈F (m)〉〉 =
∑I

m=−I PI(m)F (m) for an arbitrary
function F (m). PI(m) is the probability of finding a nuclear spin I with z-
projection m. The polarization p of the initial nuclear state is defined through
the relation 〈〈m〉〉 = pI. Without loss of generality, in the rest of this chapter
p > 0, but b′ may take on positive or negative values. Assuming a uniform
polarization in the nuclear spin system, we can evaluate the nuclear Overhauser
field in terms of the initial polarization:

[hz]nn =
∑

i

Ai 〈〈m〉〉 = pIA, (3.39)

where we have used
∑

i Ai = A.
The continuum limit is performed by taking Ntot → ∞, while N ≫ 1 is kept

constant. For times t ≪
√

N , this allows the replacement of sums by integrals∑
k →

∫ ∞
0

dk, with small corrections (see Appendix C). We insert the coupling
constants Ak from Eq. (3.9) into Eq. (3.37), perform the continuum limit and
make the change of variables x = Ak

2 to obtain

I±(s) =
d

m

∫ 1

0

dx
x |lnx|ν
s ∓ ix

, ν =
d

m
− 1. (3.40)

We use the relation I±(t = 0) = lims→∞ sI±(s) to obtain the initial amplitude

I0 ≡ I±(t = 0) =
d

m

(
1

2

) d
m

Γ

(
d

m

)
(3.41)

for an arbitrary ratio d
m . For parabolic confinement in two dimensions, m =

d = 2. The integral in (3.40) can then be performed easily, which yields

I±(s) = s [log(s ∓ i) − log(s)] ± i (m = d = 2). (3.42)

In dimensionless units A0

2 = 1, we find A =
∑

k Ak →
∫

dkAk, with the coupling
constants Ak given in Eq. (3.9):

A = A0N
d

m
Γ

(
d

m

)
= 2N

d

m
Γ

(
d

m

)
. (3.43)
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3.4 High field solution

In the next section, we will obtain a complete solution to the GME within
the Born approximation. This complete solution will exhibit non-perturbative
features (which can not be obtained from standard perturbation theory), in the
weakly perturbative regime for the self-energy, which we define by |∆| . 1.
Here, we find the leading behavior in the strongly perturbative (high magnetic
field) limit, defined by |∆| ≪ 1, or equivalently, |b′| ≫ N . We do this in
two ways. First, we apply standard perturbation theory, where we encounter
known difficulties [15] (secular terms that grow unbounded in time). Second,
we extract the leading-order spin dynamics from the non-Markovian remainder
term in a Born-Markov approximation performed directly on the GME. We find
that the secular terms are absent from the GME solution. We then give a brief
description of the dependence of the spin decay on the form and dimensionality
of the electron envelope wave function.

3.4.1 Perturbation theory

Applying standard time-dependent perturbation theory (see Appendix D) to
lowest (second) order in H′

V , performing the continuum limit, and expanding
the result to leading order in 1

ωn
, we find

〈S+〉t = σosc
+ (t) + σdec

+ (t) + σsec
+ (t), (3.44)

〈Sz〉t = 〈Sz〉∞ + σdec
z (t), (3.45)

where

σosc
+ (t) = [1 − δI0 (c+ + c−)] 〈S+〉0 eiωnt, (3.46)

σdec
+ (t) = δ

[
C+

+I−(t) + C+
−I+(t)

]
, (3.47)

σsec
+ (t) = i∆I0 (c+ + c−) 〈S+〉0 t, (3.48)

and

〈Sz〉∞ = [1 − 2δI0 (c+ + c−)] 〈Sz〉0 + 2pIδI0, (3.49)

σdec
z (t) = 2δRe

[
e−iωnt

(
Cz

+I−(t) + Cz
−I+(t)

)]
. (3.50)

We have introduced the smallness parameter δ = N
ω2

n
and the coefficients

CX
± =

{
c±

(
〈Sz〉0 ± 1

2

)
, X = z

c± 〈S+〉0 , X = +.
(3.51)

〈Sz〉t is the sum of a constant contribution 〈Sz〉∞ and a contribution that decays
to zero σdec

z (t) with initial amplitude O(δ). The transverse spin 〈S+〉t is the sum
of an oscillating component σosc

+ (t), a decaying component σdec
+ (t) with initial

amplitude O(δ), and a secular term σsec
+ (t), which grows unbounded (linearly)

in time. At fourth order in H′
V , 〈Sz〉t also contains a secular term. These

difficulties, which have been reported previously [15,17], suggest the need for a
more refined approach. In the next subsection these problems will be resolved
by working directly with the GME (in Born approximation) to find the correct
leading-order spin dynamics for high magnetic fields.
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3.4.2 Non-Markovian corrections

Markovian dynamics are commonly assumed in spin systems [124, 68], often
leading to purely exponential relaxation and decoherence times T1, and T2,
respectively. For this reason, it is important to understand the nature of correc-
tions to the standard Born-Markov approximation, and, as will be demonstrated
in Section 3.6 on measurement, there are situations where the non-Markovian
dynamics are dominant and observable.

To apply the Born-Markov approximation to 〈S+〉t, we change variables〈
S′′

+

〉
t

= e−i(ωn+eω)t 〈S+〉t in (3.30) and substitute Σ++(t) → Σ
(2)
++(t), which

gives:

˙〈
S′′

+

〉
t
= −iω̃

〈
S′′

+

〉
t
− i

∫ t

0

dt′e−iω(t−t′)Σ
(2)
++(t − t′)

〈
S′′

+

〉
t′

, (3.52)

where ω = ωn + ω̃. We define the function ψ(t) =
∫ ∞

t
dt′e−iωt′Σ

(2)
++(t′), so that

ψ(0) = Σ
(2)
++(s = iω). We find [126]

˙〈
S′′

+

〉
t
= −i (ψ(0) + ω̃)

〈
S′′

+

〉
t
+ i

d

dt

∫ t

0

dt′ψ(t − t′)
〈
S′′

+

〉
t′

. (3.53)

The frequency shift ω̃ is chosen to satisfy ω̃=−Re [ψ(0)]=−Re
[
Σ

(2)
++ (s = i (ωn + ω̃))

]

to remove the oscillating part from 〈S′′〉t. When |ω| > 1, and after performing

the continuum limit, we find a vanishing decay rate Γ = −Im
[
Σ

(2)
++ (s = iω)

]
=

0, which shows that there is no decay in the Markovian solution for |ω| > 1.
After integrating the resulting equation, we have

〈
S′′

+

〉
t
=

〈
S′′

+

〉
0

+ R+(t). (3.54)

The Markovian solution is given by
〈
S′′

+

〉
t

=
〈
S′′

+

〉
0
, and the remainder term

R+(t) = i
∫ t

0
dt′ψ(t − t′)

〈
S′′

+

〉
t′

gives the exact correction to the Markovian
dynamics (within the Born approximation). We rewrite the remainder term as

R+(t) = i

∫ t

0

dt′ψ(t − t′)
(〈

S′′
+

〉
0

+ R+(t′)
)
. (3.55)

Within the Born approximation, R+(t) is associated with a smallness O(δ = N
ω2

n
)

(since ψ(t) ∼ Σ
(2)
++(t)), so the above expression can be iterated to evaluate the

leading-order contribution to R+(t) in an asymptotic expansion for large ωn.
This gives

R+(t) ∼ −δI0(c+ + c−) 〈S+〉0 + e−iωntσdec
+ (t), (3.56)

with σdec
+ (t) given in Eq. (3.47).

Due to the inhomogeneous term Nz(t) in (3.29), the 〈Sz〉t equation does not
have a simple convolution form, so it is not clear if a Markov approximation
for 〈Sz〉t is well-defined. However, applying the same procedure that was used
on 〈S+〉t to determine the deviation of 〈Sz〉t from its initial value gives the
remainder Rz(t), to leading order in 1

ωn
,

Rz(t) ∼ −2δI0 (c+ + c−) 〈Sz〉0 + 2pIδI0 + σdec
z (t). (3.57)
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Symbol A0/2 = 1, ~ = 1 A0 = A/N Bz = 0

b′ b − ǫnz g∗µBBz − gIµNBz 0
ωn b′ + 2pIN b′ + pIA pIA
∆ N/ωn A/2ωn 1/2pI
δ N/ω2

n A2/4Nω2
n 1/(2pI)2N

c+ 1 − f↑ – –
c− f↑ – –

Ω0

√
N
2 (c+ + c−) A

~
√

8N
A

~
√

8N

thf/τhf 1 2N~/A 2N~/A

tc/τc
1√

N(1−p2)

2~

A

√
N

1−p2

2~

A

√
N

1−p2

Table 3.1: Some symbols used in the text. The second column gives the value
in dimensionless units, the third column gives the value in dimension-full units
assuming A0 = A

N , and the fourth column gives the value of each symbol in zero
magnetic field. The values shown are: the effective applied field b′, the total
effective field (applied field and Overhauser field) seen by the electron ωn, the
smallness parameter ∆, which determines the perturbative regime for electron
spin dynamics, the smallness parameter δ, which bounds the deviation of the
electron spin from a Markovian solution, the coefficients c+ and c−, in terms
of the fraction of nuclear spins I = 1

2 up in the initial state f↑, the electron
spin precession frequency Ω0 when the resonance condition ωn = 0 is satisfied,
the time scale thf for the decay of the electron spin in the presence of an initial
hz eigenstate of the nuclear system, and the time scale tc for the decay of the
electron spin in the presence of an ensemble of initial nuclear spin states or a
superposition of hz eigenstates at zeroth order in the nuclear spin–electron spin
flip-flop terms.

Here, σdec
z (t) is identical to the result from standard perturbation theory, given

by Eq. (3.50).

Corrections to the Markov approximation can indeed be bounded for all
times to a negligible value by making the parameter δ sufficiently small. How-
ever, the dynamics with amplitude O(δ) are completely neglected within a
Markov approximation.

If we use 〈Sz〉t = 〈Sz〉0 + Rz(t) and Eq. (3.54), and return to the rest frame
for 〈S+〉t, Eqs. (3.56) and (3.57) recover the high-field results from standard
perturbation theory, given in Eqs. (3.44) and (3.45), with one crucial difference.
The result from standard perturbation theory contains a secular term, which is
absent in the current case. Thus, by performing an expansion of the self-energy
instead of the spin operators directly, the contributions that led to an unphysical
divergence in 〈S+〉t have been successfully resummed.

3.4.3 Dependence on the wave function

The purpose of this subsection is to evaluate the dependence of the non-Markovian
dynamics on the form of the electron envelope wave function ψ(r). The high-
field dynamics, described by Eqs. (3.56) and (3.57), depend only on the integrals
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GaAs Si:P

A 90µeV 0.1µeV
N 105 102

Bz 7T 0.1T
p 0 0
∆ 0.25 0.25
δ 10−6 10−3

Ω0 108s−1 107s−1

τhf 1µs 1µs
τc 5 ns 100 ns

Table 3.2: Sample numerical values for the symbols listed in Table 3.1 for a
GaAs quantum dot or an electron trapped at a donor impurity in natural Si:P.

I±(t). From Eq. (3.40) we find

I±(t) =
d

m

∫ 1

0

dx |lnx|ν xe±ixt, ν =
d

m
− 1. (3.58)

The time scale τhf for the initial decay of I±(t) is given by the inverse bandwidth
(range of integration) of the above integral. In dimension-full units, τhf =
2~

A0
. The long-time asymptotic behavior of I±(t) depends sensitively on the

dimensionality d and the form of the envelope wave function through the ratio
d
m . When d

m < 2, the major long time contribution to (3.58) comes from
the upper limit x ≈ 1 corresponding to nuclear spins near the origin, and the
asymptotic form of I±(t) shows slow oscillations with period 4π~

A0
:

I±(t ≫ 1) ∝
(

1

t

) d
m

e±it,
d

m
< 2. (3.59)

When d
m ≥ 2, the major contribution comes from the lower limit x ≈ 0, i.e.,

nuclear spins far from the center, where the wave function is small. The resulting
decay has a slowly-varying (non-oscillatory) envelope:

I±(t ≫ 1) ∝ lnν t

t2
, ν =

d

m
− 1 ≥ 1. (3.60)

Both of the above cases can be realized in physical systems. For an electron
with an s-type hydrogenic wave function bound, e.g., to a phosphorus donor
impurity in Si, m = 1 and d = 3, which corresponds to the case in Eq. (3.60).
For an electron trapped in a parabolic quantum dot, the envelope wave function
is a Gaussian (m = 2) and for d ≤ 3, the asymptotics of I±(t) are described by
Eq. (3.59). These two cases are illustrated in Fig. 3.2, where Re [I+(t)/I0] is
shown for d = m = 2 and d = 3, m = 1.

3.5 Non-Markovian dynamics

In this section we describe a complete calculation for the non-Markovian electron
spin dynamics within the Born approximation. In the limit of a fully polarized
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Figure 3.2: Re [I+(t)/I0] determined numerically from Eq. (3.58). For d = 3,
m = 1 (solid line), this corresponds to a hydrogen-like s-type envelope wave
function, and for d = m = 2 (dashed line), corresponding to a two-dimensional
Gaussian envelope wave function. For the hydrogen-like wave function, nuclear
spins far from the origin, with small coupling constants, are responsible for the
slow (non-oscillatory) asymptotic behavior. In contrast, for the Gaussian enve-
lope wave function nuclear spins near the center, with larger coupling constants,
give rise to oscillations in the asymptotic behavior of I+(t)/I0.

initial state, our Born approximation applied to 〈S+〉t recovers the exact so-
lution of Ref. [15]. All results of this section are, however, valid for arbitrary

polarization in high magnetic fields when the condition |∆| ≪ 1 is satisfied. In
addition, we find that the remainder term is bounded by the small parameter δ,
|RX(t)| ≤ O(δ), and the stationary limit (long-time average) of the spin can be
determined with the much weaker condition δ ≪ 1. In zero magnetic field, and
for nuclear spin I = 1

2 , the relevant smallness parameter is δ = 1
p2N (see Table

3.1).
We evaluate the Laplace transforms of (3.29), (3.30):

SX(s) =

∫ ∞

0

dte−st 〈SX〉t , Re[s] > 0, X = z,+, (3.61)

to convert the integro-differential equations into a pair of linear algebraic equa-
tions which can be solved to obtain

Sz(s) =
〈Sz〉0 + Nz(s)

s + iΣzz(s)
, (3.62)

S+(s) =
〈S+〉0

s − iωn + iΣ++(s)
. (3.63)

When the functions Nz(s), Σzz(s), Σ++(s) are known, the Laplace transforms in
(3.62) and (3.63) can be inverted by evaluating the Bromwich contour integral:

〈SX〉t =
1

2πi

∫ γ+i∞

γ−i∞
ds estSX(s), (3.64)
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where all non-analyticities of SX(s) lie to the left of the line of integration. To
simplify the calculation, here we specialize to the case of an electron confined
to a two-dimensional parabolic quantum dot (d = m = 2), where the coupling
constant integrals can be performed easily to obtain the explicit form for I±(s),
given in Eq. (3.42).

Within the Born approximation, Sz(s) has six branch points, located at
iωn, i (ωn ± 1) , −iωn, −i (ωn ± 1). We choose the principal branch for all log-
arithms, defined by log(z) = ln |z| + i arg(z), where −π < arg(z) ≤ π, in which
case there are five poles in general. Three of these poles are located on the
imaginary axis and two have finite negative real part. S+(s) has three branch
points (at s = 0, ±i), and three poles in general. One pole has finite negative
real part and two are located on the imaginary axis.

Applying the residue theorem to the integral around the closed contour C
shown in Fig. 3.3, 1

2πi

∮
C

dsestSX(s), gives

〈SX〉t + βX(t) =
∑

i

PX
i (t), X = z,+, (3.65)

where the pole contribution PX
i (t) = Res [estSX(s), s = si] is the residue from

the pole at si, and the branch cut contributions are

βz(t) =
∑

α=0,+,−

1

π
Im

[
e−iωntKz

α(t)
]
, (3.66)

β+(t) =
1

2πi

∑

α=0,+,−
K+

α (t), (3.67)

with branch cut integrals given by

Kz
α(t) =

∫

Cα

dsestSz (s − iωn) , (3.68)

K+
α (t) =

∫

Cα

dsestS+ (s) . (3.69)

The contour Cα runs from γα −∞ + iη, around γα, and back to γα −∞− iη,
where η → 0+. The branch points are given by γα = αi, α = 0,+,−, as
illustrated in Fig. 3.3. In (3.66) we have used the fact that the branch cut
integrals for Sz(s) come in complex conjugate pairs, since Sz(s

∗) = [Sz(s)]
∗
.

This relationship follows directly from the definition for the Laplace transform
of the real quantity 〈Sz〉t.

Combining Eqs. (3.32), (3.34), (3.35), and (3.42) to obtain Σ
(2)
zz (s − iωn),

and expanding in 1
ωn

gives

Σ(2)
zz (s − iωn) = Σ

(2)
++(s) +

∆

4
(c+ + c−) + O (δ) , (3.70)

where we recall ∆ = N
ωn

and δ = N
ω2

n
. The term ∆

4 (c+ + c−) gives rise to a small

shift in the effective magnetic field experienced by 〈Sz〉t. To simplify the pre-
sentation, this shift is neglected, but it could easily be included by introducing
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Figure 3.3: The closed contour C used for evaluation of the inverse Laplace
transforms of SX(s), X = z,+. All non-analyticities of 1/D(s) are shown above,
where D(s) is given in Eq. (3.73). Branch cuts are indicated by dashed lines,
branch points by crosses, and open circles mark pole positions. The contour Cα

surrounds the branch cut extending from branch point γα = αi, α = 0,+,−.
When the arc that closes the contour in the negative-real half-plane is extended
to infinity, CB becomes the Bromwich contour. The pole at s2 has finite real
part and is present for b 6= 0. The poles at s1 and s3 are always located on the
imaginary axis.
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a slight difference in the denominators of Sz(s) and S+(s). This gives

Sz(s − iωn) ≃ 〈Sz〉0 + N
(2)
z (s − iωn)

D(s)
, (3.71)

S+(s) =
〈S+〉0
D(s)

. (3.72)

The denominator D(s) = s − iωn + iΣ
(2)
++(s) and numerator N

(2)
z (s − iωn) are

given explicitly by

D(s) = s − ib′ + Ns [c− log(s − i) + c+ log(s + i) − (c+ + c−) log(s)] , (3.73)

N (2)
z (s − iωn) = −∆

2
(c+ + c−)

− i∆
s

2
[c+ log(s + i) − c− log(s − i) + (c− − c+) log(s)] + O (δ) . (3.74)

The branch cuts and poles of Sz(s− iωn) and S+(s), as given in Eqs. (3.71)
and (3.72), are shown in Fig. 3.3. We note that different analytic features
will produce different types of dynamic behavior after the inversion integral
has been evaluated. The branch cut contributions βX(t) have long-time tails
that are non-exponential. Poles with finite negative real part will give rise to
exponential decay. Poles on the imaginary axis away from the origin will lead
to undamped oscillations, and a pole at the origin will give a constant residue,
independent of time. The rest of this section is divided accordingly, describing
each type of contribution to the total time evolution of 〈SX〉t.

3.5.1 Non-exponential decay

The contribution to KX
α (t) circling each branch point γα is zero, so the branch

cut integrals can be rewritten as

KX
α (t) = eγαt

∫ ∞

0

dxe−xtξX(x, γα) (3.75)

where
ξX(x, γα) = lim

η→0+

[
SX(sX

α (x) + iη) − SX(sX
α (x) − iη)

]
, (3.76)

with

sX
α (x) = −x + γα +

{
−iωn, X = z

0, X = +
. (3.77)

The form of KX
α (t) in Eq. (3.75) suggests a direct procedure for evaluating

the long-time asymptotics of the branch cut contributions. For long times,
the integrand of (3.75) is cut off exponentially at x ∼ 1

t → 0. To find the
asymptotic behavior, we find the leading x-dependence of ξX(x, γα) for x → 0+.
We substitute this into (3.75), and find the first term in an asymptotic expansion
of the remaining integral. The leading-order long-time asymptotics obtained in
this way for all branch cut integrals KX

α (t) are given explicitly in Appendix
E. When b′ = 0, the denominator D(s) → 0 when s → 0, and the dominant
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asymptotic behavior comes from KX
0 (t → ∞) ∝ 1

ln t . For b′ 6= 0, D(s) remains
finite at the s = 0 branch point and the dominant long-time contributions come
from KX

± (t → ∞) ∝ 1
t ln2 t

. In zero magnetic field, the leading-order term in
the asymptotic expansion is dominant for times t ≫ 1, but in a finite magnetic

field, the leading term only dominates for times t ≫ e|b′|/N . In summary,

βX(t ≫ 1) ∝ 1

ln t
, b′ = 0, (3.78)

βX(t ≫ e|b′|/N ) ∝ 1

t ln2 t
, b′ 6= 0. (3.79)

This is in agreement with the exact result [17] for a fully-polarized system of
nuclear spins I = 1

2 in a two-dimensional quantum dot. This inverse logarithmic
time dependence cannot be obtained from the high-field solutions of Section 3.4.
The method used here to evaluate the asymptotics of the Born approximation
therefore represents a nontrivial extension of the exact solution to a nuclear spin
system of reduced polarization, but with |∆| < 1 (see Table 3.1).

The branch cut integrals can be evaluated for shorter times in a way that
is asymptotically exact in a high magnetic field. To do this, we expand the
integrand of Eq. (3.75) to leading nontrivial order in 1

ωn
, taking care to account

for any singular contributions. For asymptotically large positive magnetic fields,
we find (see Appendix E):

∑

α

KX
α (t) ∼ −i2πδ

(
CX

− I+(t) + CX
+ I−(t)

)
− CX

−
Nc2

−
e−z0t (3.80)

with coefficients CX
± given in (3.51) and in the above,

z0 = x0 − iǫ(x0), (3.81)

x0 =
ωn

2πNc−
, (3.82)

ǫ(x) =
x

2πc−N
+

c+ + c−
4πc−x

. (3.83)

In high magnetic fields, we will show that the exponential contribution to Eq.
(3.80) cancels with the contribution from the pole at s2, PX

2 (t). We stress that

this result is only true in the high-field limit
|b′|
N ≫ 1, where the asymptotics

are valid.

3.5.2 Exponential decay

When b′ = 0, there are no poles with finite real part. For b′ 6= 0, a pole (at
s2 in Fig. 3.3) emerges from the branch point at s = 0. The pole contribution
PX

2 (t) decays exponentially with rate Γ2 = −Re[s2], and has an envelope that
oscillates at a frequency determined by ω2 = Im[s2]:

P z
2 (t) = e−Γ2te−i(ωn−ω2)tP z

2 (0) (3.84)

P+
2 (t) = e−Γ2teiω2tP+

2 (0). (3.85)

Setting s2 = −Γ2 + iω2, we find the decay rate Γ2, frequency renormalization
ω2, and amplitudes of these pole contributions from asymptotic solutions to the
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Figure 3.4: Top: numerically determined rate Γ2 (solid line) and frequency
renormalization ω2 (dashed line) as a function of magnetic field b′/N . Bottom:
NRe

[
P+

2 (0)
]

(solid line) and N Im
[
P+

2 (0)
]

(dashed line) as a function of mag-
netic field for the initial state 〈S+〉0 = 〈Sx〉0 = 1

2 . The dotted lines give the
asymptotics for high magnetic fields from Eqs. (3.86), (3.87), and (3.88). The
parameters used were p = 0.6, N = 105, I = 1

2 .
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pair of equations Re[D(s2)] = Im[D(s2)] = 0 and PX
2 (0) = Res[SX(s), s = s2]

for high and low magnetic fields b′. Γ2, ω2, and PX
2 (0) have the asymptotic field

dependences (for high magnetic fields b′ ≫ N):

Γ2 ∼ ± ωn

2πNc∓
, ωn ≷ 0, (3.86)

ω2 ∼ ± Γ2

2πc∓N
± c+ + c−

4πc∓Γ2
, ωn ≷ 0, (3.87)

PX
2 (0) ∼ CX

∓ /c∓
1 ∓ i2πNc∓

, ωn ≷ 0. (3.88)

Although it does not correspond to the perturbative regime, it is interesting
to consider the behavior of the exponentially decaying pole contribution PX

2 (t)
in the limit b′ → 0, since the Hamiltonian H in Eq. (3.1) is known to be
integrable for Bz = 0 (b′ = 0) [67]. For vanishing positive magnetic fields

(b′ → 0+), with logarithmic corrections in b′

Eb0
, where b0 = N(c+ + c−) and

E = exp
{
1 + O

(
1
N

)}
:

Γ2 ∼ ζb′/b0

ln2
(

b′

Eb0

) , (3.89)

ω2 ∼ − b′/b0

ln
(

b′

Eb0

) , (3.90)

P+
2 (0) ∼ − 〈S+〉0

N(c+ + c−) ln
(

b′

b0

) , (3.91)

P z
2 (0) ∼ −〈Sz〉0 − (c+ + c−) /2pI

N(c+ + c−) ln
(

b′

b0

) , (3.92)

where ζ = πc−
c++c−

. The exponentially decaying contribution vanishes only when

b′ = 0, and does so in an interval that is logarithmically narrow. We have
determined the rate, frequency renormalization, and amplitude of the pole con-
tribution P+

2 (t) numerically. The results are given in Fig. 3.4 along with the
above asymptotics for high magnetic fields, |b′| ≫ N .

3.5.3 Undamped oscillations

The point s1 in Fig. 3.3 corresponds to s = 0 for Sz(s), so undamped oscillations
in 〈Sz〉t arise only from the pole at s3:

P z
3 (t) = e−i(ωn−ω3)tP z

3 (0). (3.93)

Both poles on the imaginary axis give undamped oscillations in 〈S+〉:

P+
1 (t) + P+

3 (t) = eiω1tP+
1 (0) + eiω3tP+

3 (0). (3.94)

For high magnetic fields, |b′/N | ≫ 1,

ω1/3 ∼ b′ + 2pIN = ωn, b′ ≷ 0, (3.95)

ω3/1 ∼ ∓1 ∓ f± exp

(
− |b′|

c±N

)
, b′ ≷ 0, (3.96)
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Figure 3.5: Contributions to the inverse Laplace transform of 〈Sz〉t. We
show the envelopes of the rapidly oscillating functions 2NRe [P z

3 (t)] + 0.3,
2NRe [P z

2 (t)] + 0.2, and −Nβz(t), determined numerically. The long-time
asymptotics of βz(t) from Appendix E are also shown (dashed line). The
sum of all contributions is used to obtain the population of the spin-up state:
ρ↑(t) = 1

2 + 〈Sz〉t (inset). The electron spin begins down: 〈Sz〉0 = − 1
2 . Other

parameters were I = 1
2 , N = 105, b′ = N

2 (this value of b′ gives, e.g., Bz ≃ 1T

in GaAs), and p = 0.6. The time t is given in units of 2~

A0
= 2N~

A for d = m = 2

in Eq. (3.43) (2N~

A ≃ 1µs in GaAs). These values correspond to the weakly
perturbative regime, with ∆ = 10

11 < 1. Note that ρ↑(t) . 1
N for all times.

where f± =
(

1
2

)“
c∓
c±

” (
1 + O

(
1
N

))
. The frequency in Eq. (3.95) corresponds

to a simple precession of the electron spin in the sum of the magnetic and
Overhauser fields. The second frequency, Eq. (3.96), describes the back-action
of the electron spin, in response to the slow precession of the nuclear spins in
the effective field of the electron.

For large b′, the pole corresponding to simple precession is dominant, while
the other has a residue that vanishes exponentially:

P+
1/3(0) ∼ 〈S+〉0

1 + 1
2 (c+ + c−)δ

, b′ ≷ 0, (3.97)

P+
3/1(0) ∼ 〈S+〉0

Nc±
f± exp

(
− |b′|

c±N

)
, b′ ≷ 0, (3.98)

P z
3 (0) ∼ b′

2c+N
f+ exp

(
− |b′|

c+N

)
, b′ > 0. (3.99)

When the magnetic field b′ compensates the nuclear Overhauser field [hz]nn

(ωn ≈ 0, the usual ESR resonance condition in the rotating frame), the poles
at points s1 and s3 have equal weight, and are the dominant contribution to
the electron spin dynamics. Since the resonance condition corresponds to the
strongly non-perturbative regime, |∆| ≫ 1, we delay a detailed discussion of the
resonance until Section 3.7.
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3.5.4 Stationary limit

The contribution to 〈Sz〉t from the pole at s = 0 gives the long-time average

value 〈Sz〉∞, which we define as the stationary limit:

〈Sz〉∞ = lim
T→∞

1

T

∫ T

0

〈Sz〉t dt = lim
s→0

sSz(s). (3.100)

Within the Born approximation, we find

〈Sz〉∞ =
〈Sz〉0 + pIδ + O

(
N
ω4

n

)

1 + (c+ + c−)δ + O
(

N
ω4

n

) . (3.101)

The result in Eq. (3.101) follows from Eqs. (3.62), (3.31), (3.32), (3.34), (3.35),
and (3.37) by expanding the numerator and denominator in 1

ωn
, using the cou-

pling constants Ak = 2e−k/N and performing the continuum limit. 〈Sz〉∞ gives

the stationary level populations for spin-up and spin-down: ρ̄↑/↓ = 1
2 ± 〈Sz〉∞,

which would be fixed by the initial conditions in the absence of the hyperfine
interaction. This difference in ρ̄↑/↓ from the initial values can be regarded as
leakage due to the nuclear spin environment. We note that the stationary value
depends on the initial value 〈Sz〉0, from which it deviates only by a small amount
of order δ. This means, in particular, that the system is non-ergodic. We will
find that corrections to 〈Sz〉∞ at fourth order in the flip-flop terms will be of
order δ2, so that the stationary limit can be determined even outside of the
perturbative regime |∆| < 1, in zero magnetic field, where δ = 1

p2N for I = 1
2 ,

provided p ≫ 1√
N

.

3.5.5 Summary

The results of this section for low magnetic fields are summarized in Fig. 3.5,
which corresponds to the weakly perturbative case, |∆| . 1, and displays all of
the dynamical features outlined here.

In very high magnetic fields (b′ ≫ N), corresponding to the strongly pertur-
bative case, we combine Eqs. (3.80), (3.95), (3.97), and (3.101) to obtain the
asymptotic forms to leading order in 1

ωn
:

〈S+〉t ∼ σosc
+ (t) + σdec

+ (t), (3.102)

〈Sz〉t ∼ 〈Sz〉∞ + σdec
z (t), (3.103)

where the functions σosc
+ (t), σdec

+ (t), 〈Sz〉∞, σdec
z (t), given in Eqs. (3.46), (3.47),

(3.49), and (3.50) are evaluated for d = m = 2. We stress that σdec
X (t) ∝ δ ≪ 1

is a small fraction of the total spin. The exponentially decaying contribution
from PX

2 (t) is canceled by the exponential part of the high-field branch cut,
given in Eq. (3.80). This result is in agreement with the high-field asymptotic
forms found earlier in Section 3.4. Numerical results for the level populations
ρ↑/↓(t) = 1

2 ±〈Sz〉t are given in Fig. 3.6 along with the above asymptotic forms.
The secular term that appeared at lowest order in the standard perturbation
expansion of 〈S+〉t is again absent from the result obtained here via the GME. At
fourth order, t-linear terms also appear in the standard perturbation expansion
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Figure 3.6: Envelope of the time-dependent spin level populations in high mag-
netic fields. We give results from numerical inversion of the Laplace transform
(solid line) and the asymptotic branch cut integral for high magnetic fields com-
bined with numerical results for the pole positions and residues (dashed line).
Top: spin-down level population when the electron begins in the up state, along
the nuclear spin polarization direction (〈Sz〉0 = 1

2 ). Bottom: spin-up popula-
tion for an electron that begins pointing in the opposite direction (〈Sz〉0 = − 1

2 ).
The parameters used were N = 105, p = 0.6, I = 1

2 and b′ = 8N , corresponding
to a field of Bz = 14T in GaAs.

for the longitudinal spin 〈Sz〉t [15, 17]. Due to the numerator term Nz(s) in
the expression for Sz(s) (Eq. (3.62)), it is not clear if all divergences have
been resummed for 〈Sz〉t in the perturbative expansion of the self-energy. This
question is addressed in Sec. 3.7 with an explicit calculation of the fourth-order
spin dynamics.

In the next section we propose a method that could be used to probe the
non-Markovian electron spin dynamics experimentally.

3.6 Measurement

In high magnetic fields (b′ ≫ N), the decaying fraction of the electron spin
is very small

(
O

(
δ ≈ N

b′2

))
. Nevertheless, the large separation between the

hyperfine interaction decay time (τhf = 2~

A0
≈ 1µs) and the dipolar correlation

time (τdd ≈ 100µs in GaAs) of the nuclear spins should allow one to obtain
valuable information about the electron spin decay from a conventional spin
echo technique applied to an ensemble of electron spins.

In principle, the non-Markovian electron spin dynamics should be visible in
the electron spin echo envelope obtained by applying the conventional Hahn echo
sequence [87]: π

2 −τ −πx−τ −ECHO to a large ensemble of electron spins. This
can be done by conventional means for an electron trapped at donor impurities
in a solid [121], or from a measurement of transport current through a quantum
dot [127, 128]. The effect of this echo sequence can be summarized as follows.
The electron spins are initially aligned along the external magnetic field Bz. At
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time t = 0 the spins are tipped into the x−y plane with an initial π
2 -pulse. Each

spin precesses in its own local effective magnetic field ωn. The phase factor eiωnt

winds in the “forward” direction for a time τ . The sign of ωn (direction of the
local magnetic field) is then effectively reversed with a π-pulse along the x-axis:
ωn → −ωn. The phase factor e−iωnt unwinds in the following time interval τ ,
and the electron spin magnetization refocuses to give an echo when the phase
factor e−iωn2τ = 1 simultaneously for all spins in the ensemble. As is usually
assumed, we take the pulse times and measurement time during the echo to be
negligible [87]. The spin echo envelope gives the ensemble magnetization (the
electron spin expectation value) at the time of the echo as a function of the free
evolution time 2τ before the echo. We note that the decaying fraction of 〈Sz〉t,
σdec

z (t), also precesses with the phase factor eiωnt (see Eq. (3.50)), so the same
pulse sequence can also be applied to measure the decay of the longitudinal
spin, omitting the initial π

2 -pulse. The Hahn echo envelope should show a small
initial decay by O(δ) in a time scale τhf due to the contact hyperfine interaction,
followed by a slow decay due to spectral diffusion [68,69,129] with a time scale
τdd ≈ 10−4 s. We note that a rapid initial decay of the Hahn echo envelope has
been measured for natural Si : P, but is absent in isotopically enriched 28Si : P,
in which no nuclei carry spin [130].

The fraction of the spin that decays in the time τhf is small, of order δ, in
the perturbative regime. It may be difficult to detect this small fraction using
the conventional Hahn echo. This problem can be reduced by taking advantage
of the quantum Zeno effect, using the Carr-Purcell-Meiboom-Gill (CPMG) echo
sequence π

2 − (τ − πx − τ − ECHO − τ − π−x − τ − ECHO)repeat. During each
free evolution time between echoes, the electron decays by an amount of order δ.
At each echo, a measurement of the electron spin magnetization is performed.
For a large ensemble of electron spins, this measurement determines the state
ρS of the electron spin ensemble, forcing the total system into a direct product
of electron and nuclear states, as in Eq. (3.10). Repetition of such measurement
cycles will then reveal the spin decay due to the hyperfine interaction (by order δ
after each measurement) until the magnetization envelope reaches its stationary
value. If the electron spin decays during the free evolution time due to spectral

diffusion with a Gaussian envelope, then we require the condition
(

2τ
τdd

)2

≪
δ ≪ 1 for the effect of spectral diffusion to be negligible compared to the effect
of the hyperfine interaction.3 The non-Markovian remainder term gives the
total change in electron spin that has occurred during the free evolution time
2τ : RX(2τ)|e±iωn2τ=1 = 〈SX〉2τ − 〈SX〉0|e±iωn2τ=1

= MX(2τ) − MX(0), where
MX(t) is the CPMG magnetization envelope. In high magnetic fields, and when
there are many echoes before the magnetization envelope decays, the CPMG

3Abe et al. [129] have recently measured a pure Gaussian decay of the Hahn spin echo
envelope with time scale given by the dipolar correlation time τdd ≈ 10−4 s for electrons
trapped at phosphorus donors in isotopically enriched 29Si : P, where all silicon nuclei carry
spin I = 1

2
. In contrast to the CPMG echo sequence, only a single measurement (a single echo)

is made following each preparation in the Hahn technique. We assume the echo envelope is the
product of a Gaussian with time scale τdd and a part f(2τ) = 1−O(δ), 2τ & τhf , that gives the

decay due to the contact hyperfine interaction: exp

»

− 1

2

“

2τ
τdd

”2
–

f(2τ) ≈ 1− 1

2

“

2τ
τdd

”2

−O(δ),

for times τhf . 2τ ≪ τdd. When
“

2τ
τdd

”2

≪ δ, the dominant contribution comes from f(2τ)

at each echo of the CPMG sequence.
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Figure 3.7: Longitudinal decay rate 1
T M

1

of the CPMG echo envelope as a func-

tion of the free evolution time 2τ between π-pulses for an electron trapped at a
phosphorus donor impurity in Si:P (top) and in a two-dimensional GaAs quan-
tum dot (bottom). The free evolution time is given in units of 2~

A0
≈ 2N~

A (the
equality is exact for d = m = 2 in Eq. (3.43)). In a GaAs quantum dot contain-
ing N = 105 nuclei or for an electron trapped at a shallow donor impurity in
Si:P with N = 100 nuclear spins within one Bohr radius, 2N~

A ≈ 1µs. We have
used I = 1

2 , p = 0.6, and magnetic field values from Table 3.2 to determine the
frequency units on the vertical axis.

magnetization envelopes MX(t) will therefore obey the differential equations

d

dt
MX(t) =

RX(2τ)

2τ

∣∣∣∣
〈SX〉

0
=MX(t), e±iωn2τ=1

, X = +, z, (3.104)

where the high-field expressions for RX(t), given in Eqs. (3.56) and (3.57),
should be used. Thus, the decay rate of the CPMG echo envelope MX , as a
function of the free evolution time 2τ , is a direct probe of the non-Markovian
remainder term RX(t).

Since the magnetization envelopes MX(t) are found as the result of an en-
semble measurement, it is necessary to perform an average over different nuclear
initial states |n〉 that may enter into the solutions to Eq. (3.104). The local field-
dependent phase factors have been removed by the echo sequence, so the only
effect of the ensemble average is to average over δ = N

ω2
n

and c±, which appear in

the overall amplitude of d
dtMX(t). The relative fluctuations in these quantities

are always suppressed by the factor 1√
N

for a large nuclear spin system.

In the high-field limit, we find the longitudinal and transverse magnetization
envelopes Mz(t) and M+(t) decay exponentially with time constants TM

1 and
TM

2 = 2TM
1 , respectively. M+(t) decays to zero, and Mz(t) decays to the

limiting value

Mz(∞) =
1

2

c− − c+

c− + c+
=

pI

c− + c+
.

For nuclear spin I = 1
2 , Mz(∞) = p

2 , i.e., the electron magnetization acquires
the polarization of the nuclear spin bath. However, since c± ∝ I2, Mz(∞) → 0
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in the large-spin limit. Thus, a larger fraction of the electron spin decays in the
limit of large nuclear spin. We give plots of the longitudinal spin decay rate for
Mz(t),

1
T M

1

, as a function of the free evolution time 2τ for two types of envelope

wave function in Fig. 3.7. These plots have been determined by integrating
Eq. (3.104) using the high-field expression for Rz(t) given in Eq. (3.57). No
ensemble averaging has been performed to generate these plots. When 2τ ≪ τhf ,
the envelope decay rate increases as a function of 2τ as more of the electron
spin is allowed to decay before each measurement. The rates reach a maximum
at some time 2τ ≈ τhf , and for 2τ ≫ τhf , the electron spin saturates at its
stationary value and the envelope decay rates ∝ 1

2τ are determined only by the
free evolution time. Note that there are slow oscillations in the CPMG decay
rate for an electron in a GaAs quantum dot, with a Gaussian wave function,
but none for an electron trapped at a donor impurity in Si:P.

3.7 Beyond Born

The goal of this section is to address the range of validity of the results obtained
in Sec. 3.5. First, we show that the Born approximation for 〈S+〉t recovers the
exact solution for I = 1

2 , p = 1. We then discuss the behavior of the Born
approximation near the ESR resonance, where ωn ≈ 0. Finally, we consider
the expression for 〈Sz〉t, obtained by including all fourth-order corrections to
the reduced self-energy, and show that our expression is well-behaved in the
continuum limit.

3.7.1 Recovery of the exact solution

When I = 1
2 and p = 1, we have c− = 1 and c+ = 0, which gives Σ

(2)
++(s) =

− i
4

∑
k

A2
k

s−i
Ak
2

from Eq. (A.22). We insert this into (3.63) and use ωn = b′ +

1
2

∑
k Ak = b′ + A

2 to obtain

S+(s) =
〈S+〉0

s − i
(
b′ + A

2

)
+ 1

4

∑
k

A2
k

s−iAk/2

. (3.105)

The Schrödinger equation for a state of the form |ψ(t)〉 = α⇑(t) |⇑↑↑ · · · 〉 +
α⇓(t) |⇓↑↑ · · · 〉+∑

k βk(t) |⇑↑ · · · ↓k↑ · · · 〉, where the large arrow gives the state
of the electron spin and the thin arrows give the states of the nuclear spins,
has been written and solved (for a fully polarized nuclear spin initial state,
βk(t = 0) = 0∀ k) in Laplace space to find the long-time asymptotic electron
spin dynamics previously. In Ref. [17] the symbol α(t) was used in place of
α⇓(t). The fully-polarized state |⇑↑↑ · · · 〉 is an eigenstate of the full Hamiltonian

H′, so α⇑(t) = e−
i
2 (b′+ A

2 )tα⇑(0), which allows us to write S+(s) = α∗
⇑(t =

0)α⇓
(
s − i

2

(
b′ + A

2

))
. We solve the time-dependent Schrödinger equation for

|ψ(t)〉 in Laplace space, giving

α⇓ (s′) =
α⇓(t = 0+)

s − i
(
b′ + A

2

)
+ 1

4

∑
k

A2
k

s−iAk/2

, (3.106)

where s′ = s − i
2

(
b′ + A

2

)
. Thus, in the limit of full polarization of the nu-

clear system, the Born approximation applied to 〈S+〉t becomes exact. For a
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Figure 3.8: 〈Sz〉∞ evaluated within Born approximation near the resonance,

from Eq. (3.101) where B0
z = − pA

2g∗µB
. We have used the value of A for GaAs,

g∗ = −0.44, N = 105, and I = 1
2 . 〈Sz〉0 = − 1

2 for all three curves and results
are given for p = 0 (solid line), p = 6

10 (dotted line), and p = 1 (dashed line).
The vertical dash-dotted lines indicate the magnetic fields where the relevant
smallness parameter is unity: |δ| = 1.

fully polarized nuclear spin system 〈Sz〉t is given by the relationship 〈Sz〉t =

1
2 (1 − 2 |α⇓(t)|) = 1

2

(
1 − 2

∣∣∣ 〈S+〉
t

α∗
⇑(t=0)

∣∣∣
2
)

. Unfortunately, this result is not recov-

ered directly from the Born approximation for 〈Sz〉t, as we will show in the next
subsection.

3.7.2 Resonance

On resonance, ωn = 0, i.e., the external field b′ compensates the Overhauser
field [hz]nn. The resonance is well outside of the perturbative regime, defined

by |∆| =
∣∣∣ N
ωn

∣∣∣ < 1, but we proceed in the hope that the Born approximation

applied to the self-energy captures some of the correct behavior in the non-
perturbative limit. On resonance, the major contributions to 〈Sz〉t come from
three poles, at s = 0, s = s3, and s = s∗3:

〈Sz〉t ≈ 〈Sz〉∞ + 2Re [P z
3 (t)] . (3.107)

Before applying the continuum limit, the stationary limit for 〈Sz〉t is

〈Sz〉∞ =
〈Sz〉0 + 1

4 (c− − c+) Ntot

1 + c++c−
2 N tot

. (3.108)

After applying the continuum limit, Ntot → ∞, we obtain

〈Sz〉∞ =
1

2

c− − c+

c− + c+
=

pI

c− + c+
. (3.109)
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For I = 1
2 , 〈Sz〉∞ = p

2 , which appears to be an intuitive result. However,
evaluating the remaining pole contributions at the resonance, we find, for a
two-dimensional quantum dot,

2Re [P3(t)] =

[
〈Sz〉0 −

2pI

c− + c+

]
cos (Ω0t) + O

(
1

N

)
, (3.110)

where

Ω0 =

√
N

2
(c+ + c−). (3.111)

The results in (3.109) and (3.110) do not reproduce the exact solution in the
limit p = 1, I = 1

2 , and do not recover the correct t = 0 value of 〈Sz〉t. The
Born approximation for 〈Sz〉t, as it has been defined here, breaks down in the
strongly non-perturbative limit, although the transverse components are better
behaved.

On resonance, the poles at s1 and s3 are equidistant from the origin, and the
major contributions to 〈S+〉t come from these two poles: 〈S+〉t ≈ P1(t)+P3(t).
Evaluating the residues at these poles,

〈S+〉t = 〈S+〉0
(

1 − O

(
1

N

))
cos (Ω0t) , (3.112)

which suggests that a fraction O
(

1
N

)
of the spin undergoes decay, and the rest

precesses at a frequency Ω0. When I = 1
2 , and in proper energy units we have

Ω0 = A√
8N

from Eq. (3.111). While it does not violate positivity, as in the case of

〈Sz〉t, this expression should not be taken seriously in general, since this result
has been obtained well outside of the perturbative regime. The above does,
however, recover the exact solution in the limit p = 1. We show the stationary
limit of 〈Sz〉t in Fig. 3.8, using typical values for an electron confined to a GaAs
quantum dot.

3.7.3 Fourth-order corrections

The fourth order expansion of the self-energy for 〈Sz〉t is given in Appendix

A. The discrete expression for the numerator term N
(4)
z (s) contains second

order poles (secular terms). The fourth-order expression for Sz(s) inherits these
second order poles (see Eq. (3.62)). When the Laplace transform is inverted,
this will result in pole contributions that grow linearly in time. However, when
the continuum limit is performed, which is strictly valid for times shorter than

t ≈
√

N (see Appendix C), all poles in N
(4)
z (s) are replaced by branch cuts. The

integrals around the branch cuts can then be performed to obtain a solution for
〈Sz〉t, valid for times t .

√
N .

All relevant non-analytic features (branch points and poles) of Sz(s) occur
in two regions of the complex plane: about the origin s ≈ 0, and at high
frequencies, around s ≈ ±iωn. Inserting an initial nuclear state |n〉 for a large
uniform system (see Appendix B), expanding the fourth-order self-energy to
leading order in 1

ωn
about the points s = 0 and s = −iωn, performing the

continuum limit, and evaluating the integrals over coupling constants, we obtain
(where the overbar and “conj.” indicate complex conjugate for s real):
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N (4)
z (s − iωn) ≃ −∆2

2
{c+c− [L1(s) + L2(s) − L3(s) − conj.]

+c2
+L1(s) − c2

−L̄1(s)
}

(3.113)

Σ(4)
zz (s − iωn) ≃ −N∆ {c+c− [L1(s) + L2(s) − L3(s) + conj.]

+c2
+L1(s) + c2

−L̄1(s)
}

(3.114)

N (4)
z (s) ≃ δ2

2

(
c2
+ − c2

−
) (

3

4
+ s2L4(s)

)
(3.115)

Σ(4)
zz (s) ≃ isδ2

[
3 (pI)

2
+

(
c2
+ + c2

− + 14c+c−
)
s2L4(s)

]
(3.116)

with coupling constant integrals Li(s) given by

L1(s) =
i

2(s + i)
− 1

2
[log(s + i) − log(s)] , (3.117)

L3(s) = [s log(s + i) − s log(s) − i]
2
, (3.118)

(3.119)

L4(s) =
1

6
− 1

6s

[
s3 + 3s + 2i

]
[log(s + i) − log(s)]

− 1

6s

[
s3 + 3s − 2i

]
[log(s − i) − log(s)] , (3.120)

and

L2(s) = log(s + i) − log(s) − i [(s + i) log(s + i) − (s + 2i) log(s + 2i)

+s log(s) − (s − i) log(s − i)] + is

∫ s+i

s

du
log(2u − s − i) − log(2u − s)

u
.

(3.121)

Noting that lims→0 s2L4(s) = 0, we find the corrections to the stationary
limit for 〈Sz〉t. At fourth order in the flip-flop terms, this gives

〈Sz〉∞ =
〈Sz〉0 + pIδ + 3

8

(
c2
+ − c2

−
)
δ2 + O

(
N
ω4

n

)

1 + (c+ + c−)δ − 3(pI)2δ2 + O
(

N
ω4

n

) . (3.122)

The fourth-order corrections to the self-energy at high frequency (s ≈ −iωn)
are suppressed relative to the Born approximation by an additional factor of
the smallness parameter ∆, as expected from the analysis given in Appendix
A. However, the low-frequency (s ≈ 0) part of the fourth-order self-energy is
suppressed by the much smaller parameter δ. This allows us to determine the
stationary limit of 〈Sz〉t with confidence even when the magnetic field is small
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ΣS ≃ Σ
(2)
S ΣS ≃ Σ

(2)
S ΣS ≃ Σ

(2)
S

b′ = 0, b′ 6= 0, b′ 6= 0,
d
m = 1, d

m = 1, d
m = 1,

t ≫ 1 Γ−1
2 & t ≫ 1 t ≫ e|b′|/N ≫ Γ−1

2

RX(t) ∝ 1/ ln t eiω2te−Γ2t 1/t ln2 t

ΣS ≃ Σ
(2)
S + Σ

(4)
S ΣS ≃ Σ

(2)
S ΣS ≃ Σ

(2)
S

p 6= 1, |∆| ≪ 1, |∆| ≪ 1,
d
m = 1, d

m < 2, d
m ≥ 2,

t ≫ e|b′|/N , b′ ≫ 2pIN t ≫ 1 t ≫ 1

RX(t) ∝ 1/t ln3 t, X = z (1/t)
d
m e±it lnν t/t2, ν = d

m − 1

Table 3.3: Results for the decaying fraction of the spin (|RX(t)| < O(δ)∀ t)
in various parameter regimes. Results are given for both remainder terms

RX(t), X = z,+, within the Born approximation for the self-energy ΣS ≃ Σ
(2)
S

and for Rz(t) at fourth order in the nuclear spin–electron spin flip-flop terms

ΣS ≃ Σ
(2)
S + Σ

(4)
S when p 6= 1. The first three columns are exact in the limit

of full polarization (p = 1) of the nuclear spin system, but still may describe
the correct electron spin dynamics in the weakly perturbative regime, |∆| . 1.
The last two columns give the correct electron spin dynamics in the strongly
perturbative regime, |∆| ≪ 1.

or zero, provided the polarization is sufficiently large. When b′ = 0 and I = 1
2 ,

we have δ = 1
p2N , so the stationary limit can be determined whenever p ≫ 1√

N
.

It is relatively straightforward to find the time-dependence as t → ∞ for
the Sz branch cut integrals at fourth order. Neglecting contributions from the
branch cuts near s ≃ 0, which are suppressed by the factor δ2, and when p < 1
so that the coefficient c+ 6= 0 (c.f. Eq. (3.38)), we find the major contributions
at long times come from the branch points at s = ±i, where L2(s) ∝ log2(s+ i).
For any magnetic field, we find:

Rz (t → ∞) ∝ 1

t ln3 t
. (3.123)

For b′ ≫ 2pIN , this time-dependence will be dominant when t ≫ exp

(
|b′|
N

)
.

Thus, we find that the fourth-order result has a faster long-time decay than
the Born approximation, and that the associated asymptotics are valid at the
same times as the Born approximation asymptotics (see Eq. (3.79)). Thus,
higher-order corrections may change the character of the long-time decay in the
weakly perturbative regime, where they are not negligible. In contrast, in the
strongly perturbative regime |∆| ≪ 1, the fourth- and higher-order terms are
negligible, so the Born approximation dominates for all times t < exp (|b′| /N).

3.8 Conclusions

We have given a complete analytical description for the dynamics of an electron
spin interacting with a nuclear spin environment via the Fermi contact hyperfine
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interaction. In a large magnetic field, our calculation applies to a nuclear spin
system of arbitrary polarization p and arbitrary spin I, prepared in an eigen-
state of the total z-component of the (quantum) nuclear Overhauser field. In
the limit of full polarization p = 1 and nuclear spin I = 1

2 , the Born approxima-
tion applied to the self-energy recovers the exact dynamics for 〈S+〉t and 〈Sz〉t,
with all non-perturbative effects. We have shown explicitly that the dynami-
cal behavior we calculate in Born approximation is purely non-Markovian, and
can be obtained in the limit of high magnetic fields directly from the remain-
der term to a Born-Markov approximation. By performing our expansion on
the self-energy superoperator, we have resummed secular divergences that are
present in standard perturbation theory at lowest (second) order for the trans-
verse components 〈S+〉t and at fourth and higher order for the longitudinal spin
〈Sz〉t. For low magnetic fields b′ . N , but still within the perturbative regime
(|∆| < 1), the Born approximation for the electron spin shows rich dynam-
ics including non-exponential (inverse logarithm) decay, exponential decay, and
undamped oscillations. For high magnetic fields b′ ≫ N , and for d

m < 2, the

electron spin shows a power-law decay (∼
(

1
t

) d
m in d-dimensions for an isotropic

envelope wave function of the form ψ(r) ∝ exp
[
− 1

2

(
r
l0

)m]
) to its stationary

value with a time scale τhf ≈ 2N~

A , in agreement with the exact solution for a

fully-polarized nuclear spin system [15, 17]. Above a critical ratio, d
m ≥ 2, the

spin decay asymptotics undergo an abrupt change, signaled by a disappearance
of slow oscillations in the decay envelope. We have summarized these results in
Table 3.3. We have also suggested a method that could be used to probe the
non-Markovian electron spin dynamics directly, using a standard spin-echo tech-
nique. We emphasize that the electron spin only decays by some small fraction
of its initial value, of order δ (see Tables 3.1, 3.2), and the decay is generically
non-exponential at long times (see Table 3.3). The results of this work may
therefore be of central importance to the development of future quantum error
correction schemes, which typically assume an exponential decay to zero. The
fact that the stationary value of the spin depends on the initial value implies
that this system is non-ergodic. Based on this observation, we postulate a gen-
eral principle, that non-ergodic quantum systems can preserve phase-coherence
to a higher degree than systems with ergodic behavior. It would be interesting
to explore this connection further.



Chapter 4

Two-spin dynamics:

Singlet-triplet correlations

[W. A. Coish and D. Loss Phys. Rev. B 72, 125337 (2005)]

In this chapter we evaluate hyperfine-induced electron spin dynamics for two
electrons confined to a double quantum dot. Our quantum solution accounts for
decay of a singlet-triplet correlator even in the presence of a fully static nuclear
spin system, with no ensemble averaging over initial conditions. In contrast to
an earlier semiclassical calculation, which neglects the exchange interaction, we
find that the singlet-triplet correlator shows a long-time saturation value that
differs from 1/2, even in the presence of a strong magnetic field. Furthermore,
we find that the form of the long-time decay undergoes a transition from a
rapid Gaussian to a slow power law (∼ 1/t3/2) when the exchange interaction
becomes nonzero and the singlet-triplet correlator acquires a phase shift given
by a universal (parameter independent) value of 3π/4 at long times. The oscil-
lation frequency and time-dependent phase shift of the singlet-triplet correlator
can be used to perform a precision measurement of the exchange interaction
and Overhauser field fluctuations in an experimentally accessible system. We
also address the effect of orbital dephasing on singlet-triplet decoherence, and
find that there is an optimal operating point where orbital dephasing becomes
negligible.

4.1 Introduction

Decoherence due to the coupling of a qubit to its environment is widely re-
garded as the major obstacle to quantum computing and quantum informa-
tion processing in solid-state systems. Electron spins confined in semiconductor
quantum dots [1] couple to their environments primarily through the spin-orbit
interaction and hyperfine interaction with nuclear spins in the surrounding lat-
tice [14, 28]. To reach the next step in coherent electron spin state manipula-
tion, the strongest decoherence effects in this system must be understood and
reduced, if possible.

The effects of spin-orbit interaction are reduced in confined quantum dots at

65
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low temperatures [60]. Indeed, recent experiments give longitudinal relaxation
times T1 for quantum-dot-confined electrons that reach T1 ≈ 20ms [131] in
self-assembled dots and T1 ≈ 0.85ms in gated dots [88], in agreement with
theory [62]. These times suggest that the spin-orbit interaction is a relatively
weak source of decoherence in these structures since theory predicts that the
transverse spin decay time T2 due to spin-orbit interaction alone (neglecting
other sources of decoherence) would be given by T2 = 2T1 [62]. Other strategies
for reducing the effects of spin-orbit interaction may include using hole (instead
of electron) spin, where a recent study has found that T2 = 2T1 also applies,
and the hole spin relaxation time can be made even longer than that for the
electron spin [132].

Unlike the spin-orbit interaction, the hyperfine interaction of a single elec-
tron spin with a random nuclear spin environment can lead to pure dephasing,
giving a transverse spin decay time on the order of 5 ns [15, 16, 70], six or-
ders of magnitude shorter than the measured longitudinal decay times T1. To
minimize errors during qubit gating operations in these proposed devices, this
decay must be fully understood. The hyperfine interaction in a single quan-
tum dot is described by a Hamiltonian H = h · S, where S is the electron
spin operator and h is a collective quantum nuclear spin operator, which we
will refer to as the “Overhauser operator”. A common assumption in the lit-
erature is to replace the Overhauser operator by a classical effective magnetic
field h → BN [93, 16, 15, 66, 72, 81, 96, 82, 76, 21, 22, 133, 97]. Since a classical
magnetic field only induces precession (not decoherence), the classical-field pic-
ture necessitates an ensemble of nuclear spin configurations to induce decay of
the electron spin expectation value [15, 16]. For experiments performed on a
large bulk sample of electron spins, or experiments performed over timescales
that are longer than the typical timescale for variation of BN , the source of the
ensemble averaging is clear. However, one conclusion of this model is that single-
electron-spin experiments performed over a timescale shorter than the nuclear
spin correlation time should show no decay. This conclusion is contradicted by
numerical [18,74] and analytical [123,70] results, which show that the quantum
nature of the Overhauser operator can lead to rapid decay of a single electron
spin, even for a fully static nuclear spin system. This rapid decay is, however,
reversible with a standard Hahn spin-echo sequence in an applied magnetic field
and the timescale of the decay can be increased by squeezing the nuclear spin
state [70].

Another potential solution to the hyperfine decoherence problem is to polar-
ize the nuclear spins. Polarizing the nuclear spin system in zero applied magnetic
field reduces the longitudinal spin-flip probability by the factor 1/p2N , where p
is the nuclear spin polarization and N is the number of nuclear spins within the
quantum dot [14, 70]. The effect on the transverse components of electron spin
is different. Unless the nuclear spin state is squeezed or a spin-echo sequence
is performed, the transverse components of electron spin will decay to zero in
a time tc ≈ 5 ns in a typical GaAs quantum dot. Polarizing the nuclear spin
system increases tc by reducing the phase-space available for fluctuations in the
Overhauser operator, resulting in tc ≈ 5 ns/

√
1 − p2 [70]. Recent experiments

show that the nuclear spin system can be polarized by as much as 60% [81].
However, to achieve an order-of-magnitude increase in tc, the polarization de-
gree would have to be on the order of 99% [28], for which more ambitious
polarization schemes have been proposed [113].
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If electron spins in quantum dots are to be used as quantum information
processors, the two-electron states of double quantum dots must also be coher-
ent during rapid two-qubit switching times.1 Measurements of singlet-triplet
relaxation times tST in vertical double dots (tST ≈ 200µs) [35], gated lateral
double dots (tST ≈ 70µs) [83], and single dots (tST ≈ 2.58ms) [134] suggest
that these states may be very long-lived. Recent experiments have now probed
the decoherence time of such states, which is believed to be limited by the hy-
perfine interaction with surrounding nuclear spins [21]. The dramatic effect of
the hyperfine interaction on two-electron states in a double quantum dot has
previously been illustrated in experiments that show slow time-dependent cur-
rent oscillations in transport current through a double dot in the spin blockade
regime [20].

It may be possible to circumvent some of the complications associated with
single-spin decoherence by considering an encoded qubit, composed of the two-
dimensional subspace of states with total z-projection of spin equal to zero
for two electrons in a double quantum dot [76]. One potential advantage of
such a setup is that it may be possible to reduce the strength of hyperfine
coupling to the encoded state space for a symmetric double-dot (see Appendix
F). A potential disadvantage of this scheme is that coupling to the orbital
(charge) degree of freedom can then lead to additional decoherence, but we find
that orbital dephasing can be made negligible under appropriate conditions (see
Section 4.4). To achieve control of the singlet-triplet subspace, however, the
decoherence process for the two-electron system should be understood in detail.

In this chapter we give a fully quantum mechanical solution for the spin dy-
namics of a two-electron system coupled to a nuclear-spin environment via the
hyperfine interaction in a double quantum dot. Although we focus our atten-
tion here on quantum dots, decoherence due to a spin bath is also an important
problem for, e.g., proposals to use molecular magnets for quantum information
processing [28,135,136,137]. In fact, the problem of a pair of electrons interact-
ing with a bath of nuclear spins via the contact hyperfine interaction has been
addressed long ago to describe spin-dependent reaction rates in radicals [93,138].
A semiclassical theory has been developed [93], in which electron spins in rad-
icals experience a randomly oriented effective classical magnetic field due to
the contact hyperfine interaction between electron and nuclear spins. In this
semiclassical theory, random hopping events of the electrons were envisioned to
induce a randomly fluctuating local magnetic field at the site of the electron
spin, resulting in decay of a singlet-triplet correlator. Here, we solve a different
problem. Ensemble averaging over nuclear spin configurations is natural for a
large sample of ∼ 1023 radicals. In contrast, we consider the coherent dynamics
of two-electron spin states within a single double quantum dot. More impor-
tantly, the Heisenberg exchange interaction, which was found to be negligible
in Ref. [93], can be any value (large or small) in our system of interest. We find
that a nonzero exchange interaction can lead to a drastic change in the form
and timescale of decoherence. Moreover, this chapter is of direct relevance to
very recent experiments [83,21,22] related to such double-dot systems.

The rest of this chapter is organized as follows. In Section 4.2 we solve the
problem for electron spin dynamics in the subspace of total spin z-component

1For exchange gates with spin-1/2 qubits [1], the relevant requirement is that the qubit
switching time tS should be much smaller than the singlet-triplet decoherence time. [14]
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Sz = 0 with an exact solution for the projected effective Hamiltonian. In Section
4.3 we show that a perturbative solution is possible for electron spin dynamics
in the subspace of singlet and Sz = +1 triplet states. Section 4.4 contains a
discussion of the contributions to singlet-triplet decoherence from orbital de-
phasing. In Section 4.5 we review our most important results. Technical details
are given in Appendices F to H.

4.2 Dynamics in the Sz = 0 subspace

We consider two electrons confined to a double quantum dot, of the type consid-
ered, for example, in Refs. [83,21,22]. Each electron spin experiences a Zeeman
splitting ǫz = gµBB due to an applied magnetic field B = (0, 0, B), B > 0,
defining the spin quantization axis z, which can be along or perpendicular to
the quantum dot axis. In addition, each electron interacts with an indepen-
dent quantum nuclear field hl, l = 1, 2, due to the contact hyperfine interaction
with surrounding nuclear spins. The nuclear field experienced by an electron
in orbital state l is hl =

∑
k Al

kIk, where Ik is the nuclear spin operator for a
nucleus of total spin I at lattice site k, and the hyperfine coupling constants

are given by Al
k = vA

∣∣ψl
0(rk)

∣∣2, with v the volume of a unit cell containing
one nuclear spin, A characterizes the hyperfine coupling strength, and ψl

0(rk)
is the single-particle envelope wavefunction for orbital state l, evaluated at site
k. This problem simplifies considerably in a moderately large magnetic field

(B ≫ max{〈δh〉rms /gµB, 〈h〉rms /gµB}, where 〈O〉rms = 〈ψI | O2 |ψI〉1/2
is the

root-mean-square expectation value of the operator O with respect to the nu-
clear spin state |ψI〉, δh = 1

2 (h1 − h2), and h = 1
2 (h1 + h2)). In a typical unpo-

larized GaAs quantum dot, this condition is B ≫ IA/
√

NgµB ≈ 10mT (see Ap-
pendix F). For this estimate, we have used IA/gµB ≈ 5T, based on a sum over
all three nuclear spin isotopes (all three hyperfine coupling constants) present in
GaAs [27] and N ≈ 105 nuclei within each quantum dot. In this section, we also
require B ≫ J/gµB , where J is the Heisenberg exchange coupling between the
two electron spins. For definiteness we take J > 0, but all results are valid for
either sign of J , with J replaced by its absolute value. In the above limits, the
electron Zeeman energy dominates all other energy scales and the relevant spin
Hamiltonian becomes block-diagonal, with blocks labeled by the total spin pro-
jection along the magnetic field Sz (see Appendix G). In the subspace of Sz = 0
we write the projected two-electron spin Hamiltonian in the subspace of singlet
and Sz = 0 triplet states (|S〉 , |T0〉) to zeroth order in the inverse Zeeman split-
ting 1/ǫz as H0 = J

2 S·S+δhzδSz, where S = S1+S2 is the total spin operator in
the double dot and δS = S1 −S2 is the spin difference operator. In terms of the
vector of Pauli matrices τττ = (τx, τy, τz): |S〉 → |τz = −1〉 , |T0〉 → |τz = +1〉
H0 can be rewritten as:

H0 =
J

2
(1 + τz) + δhzτx. (4.1)

Diagonalizing this two-dimensional Hamiltonian gives eigenvalues and eigenvec-
tors
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E±
n =

J

2
± 1

2

√
J2 + 4 (δhz

n)
2
, (4.2)

∣∣E±
n

〉
=

δhz
n |S〉 + E±

n |T0〉√(
E±

n

)2
+ (δhz

n)
2
⊗ |n〉 , (4.3)

where |n〉 is an eigenstate of the operator δhz with eigenvalue δhz
n. Since the

eigenstates |E±
n 〉 are simultaneous eigenstates of the operator δhz, we note that

there will be no dynamics induced in the nuclear system under the Hamiltonian
H0. In other words, the nuclear system remains static under the influence of
H0 alone, and there is consequently no back action on the electron spin due to
nuclear dynamics.

We fix the electron system in the singlet state |S〉 at time t = 0:

|ψ(t = 0)〉 = |S〉 ⊗ |ψI〉 ; |ψI〉 =
∑

n

an |n〉 , (4.4)

where an is an arbitrary set of (normalized) coefficients (
∑

n |an|2 = 1). The
initial nuclear spin state |ψI〉 is, in general, not an eigenstate |n〉. The proba-
bility to find the electron spins in the state |T0〉 at t > 0 is then given by the
correlation function (setting ~ = 1):

CT0
(t) =

∑

n

ρI(n)
∣∣〈n| ⊗ 〈T0| e−iH0t |S〉 ⊗ |n〉

∣∣2 , (4.5)

where ρI(n) = |an|2 gives the diagonal matrix elements of the nuclear-spin
density operator, which describes a pure (not mixed) state of the nuclear system:
ρI = |ψI〉 〈ψI | =

∑
n ρI(n) |n〉 〈n|+ ∑

n6=n′ a∗
nan′ |n′〉 〈n|. CT0

(t) is the sum of a

time-independent piece Cn and an interference term C int
T0

(t):

CT0
(t) = Cn + C int

T0
(t), (4.6)

Cn =
2 (δhz

n)
2

J2 + 4 (δhz
n)

2 , (4.7)

C int
T0

(t) = −Cn cos
([

E+
n − E−

n

]
t
)
. (4.8)

Here, the overbar is defined by f(n) =
∑

n ρI(n)f(n). Note that Cn depends
only on the exchange and Overhauser field inhomogeneity δhz

n through the ratio
δhz

n/J .
For a large number of nuclear spins N ≫ 1 in a superposition of δhz-

eigenstates |n〉, we assume that ρI(n) describes a continuous Gaussian distri-
bution of δhz

n values, with mean δhz
n = 0 (for the case δhz

n 6= 0, see Section

4.2.1) and variance σ2
0 =

(
δhz

n − δhz
n

)2
= (δhz

n)
2

(i.e. σ0 = 〈δhz〉rms). The
approach to a Gaussian distribution in the limit of large N for a sufficiently
randomized nuclear system is guaranteed by the central limit theorem [70].
The assumption of a continuous distribution of δhz

n precludes any possibility
of recurrence in the correlator we calculate.2 A lower-bound for the Poincaré

2We recall that a superposition f(t) of oscillating functions with different periods leads to
quasiperiodic behavior, i.e., after the so-called Poincaré recurrence time tp, the function f(t)
will return back arbitrarily close to its initial value (see, e.g., Ref. [126]).
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recurrence time in this system is given by the inverse mean level spacing for
the fully-polarized problem [15]: tp & N2/A. In a GaAs double quantum dot
containing N ≃ 105 nuclear spins, this estimate gives trec & 0.1 s. Moreover,
by performing the continuum limit, we restrict ourselves to the free-induction
signal (without spin-echo). In fact, we remark that all decay in the correlator
given by (4.8) can be recovered with a suitable π-pulse, defined by the unitary
operation Uπ |E±

n 〉 = |E∓
n 〉. This statement follows directly from the sequence

e−iJt
∣∣E±

n

〉
= Uπe−iH0tUπe−iH0t

∣∣E±
n

〉
. (4.9)

Thus, under the above sequence of echoes and free induction, all eigenstates are
recovered up to a common phase factor. Only higher-order corrections to the
effective Hamiltonian H0 may induce completely irreversible decay. This irre-
versible decay could be due, for example, to the variation in hyperfine coupling
constants, leading to decay on a timescale t ∼ N/A, as in the case of a single
electron spin in Refs. [15,70]. Another source of decay is orbital dephasing (see
Section 4.4).

We perform the continuum limit for the average of an arbitrary function
f(n) according to the prescription

∑

n

ρI(n)f(n) →
∫

dxPσ;x(x)f(n(x)), (4.10)

Pσ;x(x) =
1√
2πσ

exp

(
− (x − x)

2

2σ2

)
, (4.11)

with x = 0, σ2 = x2, and here we take x = δhz
n, σ = σ0. Using

Cn = C(δhz
n) = C(x) =

2x2

J2 + 4x2
, (4.12)

we evaluate C int
T0

(t) = Re
[
C̃ int

T0
(t)

]
, where the complex interference term is given

by the integral

C̃ int
T0

(t) = −
∫ ∞

−∞
dxC(x)Pσ0;0(x)eit

√
J2+4x2

. (4.13)

In general, the interference term given by Eq. (4.13) will decay to zero after
the singlet-triplet decoherence time. We note that the interference term decays
even for a purely static nuclear spin configuration with no ensemble averaging
performed over initial conditions, as is the case for an isolated electron spin
[18,123,70]. The total z-component of the nuclear spins will be essentially static
in any experiment performed over a timescale less than the nuclear spin diffusion
time (the diffusion time is several seconds for nuclei surrounding donors in GaAs
[139]). We stress that the relevant timescale in the present case is the spin
diffusion time, and not the dipolar correlation time, since nonsecular corrections
to the dipole-dipole interaction are strongly suppressed by the nuclear Zeeman
energy in an applied magnetic field of a few Gauss [87] (as assumed here).
Without preparation of the initial nuclear state or implementation of a spin-
echo technique, this decoherence process therefore cannot be eliminated with
fast measurement, and in general cannot be modeled by a classical nuclear field
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Figure 4.1: Saturation value of the triplet occupation probability CT0
(∞) =

Cn vs. 〈δhz〉rms /J when the nuclear spin system has been squeezed into an
eigenstate of δhz (dashed line) and when the state of the nuclear spin system
describes a Gaussian distribution of eigenvalues δhz

n, with mean δhz
n = 0 and

variance σ2
0 = (δhz

n)
2

(solid line). We also show the analytical asymptotics
for σ0 ≫ J , given by Eq. (4.15) (dotted line) and the semiclassical value
(CT0

(∞) = 1/2) (dash-dotted line).

moving due to slow internal dynamics; a classical nuclear field that does not
move cannot induce decay.

At times longer than the singlet-triplet decoherence time the interference
term vanishes, leaving CT0

(∞) = Cn, which depends only on the ratio δhz
n/J ,

and could therefore be used to trace-out the slow adiabatic dynamics δhz
n(t) of

the nuclear spins, or to measure the exchange coupling J when the size of the
hyperfine field fluctuations is known. We evaluate CT0

(∞) from

CT0
(∞) = Cn =

∫ ∞

−∞
dxC(x)Pσ0;0(x). (4.14)

In two limiting cases, we find the saturation value is given by (see Appendix H)

CT0
(∞) ∼

{
1
2 −

√
π
2

J
4σ0

, σ0 ≫ J,

2
(

σ0

J

)2
, σ0 ≪ J.

(4.15)

We recover the semiclassical high-magnetic-field limit [93] (CT0
(∞) = 1/2) only

when the exchange J is much smaller than σ0. Furthermore, due to the av-
erage over δhz

n eigenstates, the approach to the semiclassical value of 1
2 is a

slowly-varying (linear) function of the ratio J/σ0, in spite of the fact that

Cn ∝ (J/δhz
n)

2
as J → 0. In Figure 4.1 we plot the correlator saturation

value CT0
(∞) as a function of the ratio 〈δhz〉rms /J for a nuclear spin system

described by a fixed eigenstate of δhz (i.e. ρI = |n〉 〈n|), and for a nuclear spin
system that describes a Gaussian distribution of δhz eigenstates with variance

σ2
0 = (δhz

n)
2

= 〈δhz〉2rms. We also show the asymptotic expression for σ0 ≫ J ,
as given in Eq. (4.15).

Now we turn to the interference term C int
T0

(t) given by Eq. (4.13), which can
be evaluated explicitly in several interesting limits. First, in the limiting case of
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Figure 4.2: Decay of the correlator CT0
(t) evaluated by numerical integration

of Eq. (4.13) for three ratios of σ0/J : σ0/J = 2 (dashed-dotted line), σ0/J = 1
(dashed line), and σ0/J = 1/2 (solid line). The analytical long-time asymptotic
expressions from Eq. (4.17) are shown as dotted lines.

vanishing exchange (J = 0), we have C(x) = 1
2 from (4.12). Direct integration

of Eq. (4.13) then gives

C int
T0

(t) = −1

2
exp

(
− t2

2t20

)
, t0 =

1

2σ0
, J = 0. (4.16)

For zero exchange interaction, the correlator decays purely as a Gaussian, with

decoherence time t0 = 1
2σ0

≈
√

N
IA for a typical asymmetric double quantum dot

(see Appendix F). However, for arbitrary nonzero exchange interaction J 6= 0,
we find the asymptotic form of the correlator at long times is given by (see
Appendix H):

C int
T0

(t) ∼ −cos
(
Jt + 3π

4

)

4σ0

√
Jt3/2

, t ≫ max

(
1

J
,

1

2σ0
,

J

4σ2
0

)
. (4.17)

Thus, for arbitrarily small exchange interaction J , the asymptotic decay law of
the correlator is modified from the Gaussian behavior of Eq. (4.16) to a (much
slower) power law (∼ 1/t3/2). We also note that the long-time correlator has a
universal phase shift of 3π

4 , which is independent of any microscopic parameters.
Our calculation therefore provides an example of interesting non-Markovian
decay in an experimentally accessible system. Furthermore, the slow-down of the
asymptotic decay suggests that the exchange interaction can be used to modify
the form of decay, in addition to the decoherence time, through a narrowing of
the distribution of eigenstates (see the discussion following Eq. (4.19) below).
We have evaluated the full correlator CT0

(t) by numerical integration of Eq.
(4.13) and plotted the results in Figure 4.2 along with the analytical asymptotic
forms from (4.17).

We now investigate the relevant singlet-triplet correlator CT0
(t) in the limit

of large exchange J . In this case, we have x . σ0 ≪ J for the typical x
contributing to the integral in Eq. (4.13). Thus, we can expand the prefactor
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C(x) and frequency term in the integrand:

C(x) ≈ 2
x2

J2
, (4.18)

√
J2 + 4x2 ≈ J + 2

x2

J
. (4.19)

From Eq. (4.19) it is evident that the range of frequencies that contribute
to the correlator is suppressed by σ0/J (increasing the exchange narrows the
distribution of eigenenergies that can contribute to decay). This narrowing
of the linewidth will increase the decoherence time. Moreover, the leading-
order x2-dependence in (4.19) collaborates with the Gaussian distribution of
δhz eigenstates to induce a power-law decay. With the approximations in Eqs.
(4.18) and (4.19), we find an expression for the correlator that is valid for all
times in the limit of large exchange J by direct evaluation of the integral in Eq.
(4.13):

C int
T0

(t) = −2
(σ0

J

)2 cos
(
Jt + 3

2 arctan
(

t
t′
0

))

(
1 +

(
t
t′
0

)2
)3/4

, (4.20)

t′0 =
J

4σ2
0

, J ≫ σ0. (4.21)

There is a new timescale (t′0 = J/4σ2
0) that appears for large J due to dy-

namical narrowing; increasing the exchange J results in rapid precession of the
pseudospin τττ about the z-axis, which makes transverse fluctuations along τx due
to δhz progressively unimportant. Explicitly, we have t′0 ≈ JN/4A2 ≫

√
N/A

for J ≫ σ0 ≈ A/
√

N .
Eq. (4.20) provides a potentially useful means of extracting the relevant mi-

croscopic parameters from an experiment. J and σ0 can be determined indepen-
dent of each other exclusively from a measurement of the oscillation frequency
and phase shift of C int

T0
(t). In particular, any loss of oscillation amplitude (visi-

bility) due to systematic error in the experiment can be ignored for the purposes
of finding σ0 and J . The loss in visibility can then be quantified by comparison
with the amplitude expected from Eq. (4.20). We illustrate the two types of
decay that occur for large and small J in Figure 4.3.

4.2.1 Inhomogeneous polarization, δhz
n 6= 0

It is possible that a nonequilibrium inhomogeneous average polarization could
be generated in the nuclear spin system, in which case δhz

n 6= 0. Pumping
of nuclear spin polarization occurs naturally, for example, at donor impurities
in GaAs during electron spin resonance (ESR), resulting in a shift of the ESR
resonance condition [140]. It is therefore important to investigate the effects of a
nonzero average Overhauser field inhomogeneity on the decay law and timescale
of the singlet-triplet correlator. In this subsection we generalize our previous
results for the case δhz

n 6= 0.
We set the mean Overhauser field inhomogeneity to δhz

n = x0, in which case
the complex singlet-triplet interference term is given by

C̃ int
T0

(t) = −
∫ ∞

−∞
dxC(x)Pσ0;x0

(x)eit
√

J2+4x2

. (4.22)
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Figure 4.3: The correlator CT0
(t)/CT0

(∞) shows a rapid Gaussian decay when
J = 0 (solid line, from Eq. (4.16)), but has a much slower power-law decay
∼ 1/t3/2 for large exchange J = 10σ0 ≫ σ0 (dotted line, from Eq. (4.20)).

When the mean value of the Overhauser field inhomogeneity x0 is much larger
than the fluctuations σ0 (x0 ≫ σ0), we approximate C(x) ≈ C(x0) and expand

the frequency term
√

J2 + 4x2 = ω0 + 4x0

ω0
(x − x0) + 2J2

ω3
0

(x − x0)
2 + · · · , where

ω0 =
√

J2 + 4x2
0. We retain only linear order in x− x0 for the frequency term,

which is strictly valid for times t ≪ (J2 + 4x2
0)

3/2/2J2σ2
0 . This time estimate is

found by replacing (x − x0)
2 ≈ σ2

0 in the quadratic term and demanding that
the quadratic term multiplied by time be much less than one. In this limit, the
correlator and range of validity are then

C int
T0

(t) = −2x2
0

ω2
0

e
− 1

2

„
t

t′′
0

«
2

cos (ω0t) , (4.23)

t′′0 =
ω0

4x0σ0
, ω0 =

√
J2 + 4x2

0, (4.24)

x0 ≫ σ0, t ≪
(
J2 + 4x2

0

)3/2

2J2σ2
0

. (4.25)

This expression is valid for any value of the exchange J , up to the timescale
indicated.

In contrast with the previous result for x0 = 0, from Eq. (4.23) we find that
the long-time saturation value of the correlator deviates from the semiclassical
result (CT0

(∞) = −C int
T0

(0) = 1/2) by an amount that is quadratic in the
exchange J for J ≪ x0:

CT0
(∞) = C int

T0
(0) ∼





1
2 − 1

8

(
J
x0

)2

, J ≪ x0,

2
(

x0

J

)2
, J ≫ x0.



 , x0 ≫ σ0. (4.26)

In the limit of large exchange, J ≫ max (σ0, x0), we can once again apply
the approximations given in Eqs. (4.18) and (4.19). Using these approximations
in Eq. (4.22) and integrating then gives
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C̃ int
T0

(t) = −2
(σ0

J

)2

ξ3(t)

(
1 +

(
x0

σ0

)2

ξ2(t)

)

× exp

{
iJt − x2

0

2σ2
0

(
1 − ξ2(t)

)}
, (4.27)

where

ξ(t) =

(
1 − i

t

t′0

)−1/2

, t′0 =
J

4σ2
0

, J ≫ max(x0, σ0), t ≪ J3

2max (x4
0, σ

4
0)

.

(4.28)
We have found the limit on the time range of validity in Eq. (4.27) using the
same estimate that was used for Eqs. (4.23 – 4.25). At short times, t ≪ t′0 =

J/4σ2
0 , we expand ξ2(t) ≈ 1 + i t

t′
0

−
(

t
t′
0

)2

and find that this function decays

initially as a Gaussian with timescale t′′0 ≈ J/4x0σ0:

C int
T0

(t) ∼ −2
σ2

0 + x2
0

J2
e
− 1

2

„
t

t′′
0

«
2

cos (ω′
0t) , (4.29)

t′′0 ≈ J

4x0σ0
, ω′

0 = J +
2x2

0

J
, (4.30)

t ≪ t′0 =
J

4σ2
0

, J ≫ max(x0, σ0). (4.31)

This agrees with the result in Eq. (4.23) when J ≫ x0 ≫ σ0.
For sufficiently large exchange J , the expression given by Eq. (4.27) is

valid for times longer than the previous expression, given by Eq. (4.23). We
perform an asymptotic expansion of Eq. (4.27) for long times using ξ(t ≫ t′0) ∼
eiπ/4

√
t′0/t. This gives

C int
T0

(t) ∼ −e−x2
0/2σ2

0 cos(Jt + 3π
4 )

4σ0

√
Jt3/2

, (4.32)

t ≫ t′0 =
J

4σ2
0

, J ≫ max(x0, σ0). (4.33)

As in the case of x0 = 0, the long-time asymptotics of Eq. (4.27) once again
give a power law ∼ 1/t3/2, although the amplitude of the long-time decay is
exponentially suppressed in the ratio x2

0/σ2
0 . When x0 = 0, Eq. (4.32) recovers

the previous result, given in Eq. (4.17).

4.2.2 Reducing decoherence

The results of this section suggest a general strategy for increasing the amplitude
of coherent oscillations between the singlet |S〉 and triplet |T0〉 states, and for
weakening the form of decay. To avoid a rapid Gaussian decay with a timescale
t′′0 = J/4x0σ0, the mean Overhauser field inhomogeneity should be made smaller
than the fluctuations (δhz

n = x0 . σ0) and the exchange J should be made larger
than x0 and σ0 (J ≫ max(x0, σ0)). Explicitly, the ideal condition for slow and
weak (power-law) decay can be written as

J ≫ σ0 & x0. (4.34)



76 CHAPTER 4. SINGLET-TRIPLET CORRELATIONS

The condition in Eq. (4.34) can be achieved equally well by increasing the ex-
change coupling J for fixed hyperfine fluctuations σ0 or by reducing the fluctua-
tions σ0 through state squeezing or by making the double-dot confining potential
more symmetric (see Appendix F).

4.3 Dynamics in the subspace of |S〉 and |T+〉
We now consider the case when the Zeeman energy of the Sz = 1 triplet state
approximately compensates the exchange (|∆| ≪ J , where ∆ = ǫz + J). In
addition, we assume the exchange is much larger than the nuclear field energy
scales J ≫ max {〈δh〉rms , 〈h〉rms}. Under these conditions, we consider the
dynamics in a subspace formed by the singlet |S〉 → |τz = −1〉 and the Sz = 1
triplet state |T+〉 → |τz = +1〉, governed by the Hamiltonian (to zeroth order
in 1/J , see Appendix G):

H+ =
1

2
(∆ + hz) (1 + τz) − 1√

2

(
δh−τ+ + H.c.

)
. (4.35)

Here, δh± = δhx ± iδhy and τ± = 1
2 (τx ± iτy). The |T+〉 probability at time

t > 0 is

CT+
(t) =

∑

n,n′

ρI(n)
∣∣〈n′| ⊗ 〈T+| e−iH+t |S〉 ⊗ |n〉

∣∣2 . (4.36)

This case is essentially different from the previous one, since the eigenstates of
H+ are no longer simply product states of electron and nuclear spin, imply-
ing a back-action of the electron on the nuclear system. Nevertheless, when
〈hz + ∆〉rms ≫ 〈δh±〉rms, we can evaluate the correlator in standard time-
dependent perturbation theory to leading order in the term

V = − 1√
2

(
τ+δh− + τ−δh+

)
. (4.37)

Neglecting corrections of order hz
n/∆ ≪ 1, this gives

C
(2)
T+

(t) ≈ α2
n

∆2
(1 − cos ([[hz]n + ∆] t)), (4.38)

where αn =
∑

n′ |〈n′| δh− |n〉|2, and |n〉 is now an eigenstate of the opera-
tor hz with eigenvalue [hz]n. To estimate the size of αn, we assume identi-
cal completely decoupled dots and nuclear polarization p ≪ 1, which gives
α2

n ≈ 1
2I(I + 1)

∑
k A2

k, where Ak is the hyperfine coupling constant to the nu-
clear spin at lattice site k (with total nuclear spin I) and the sum

∑
k runs over

all lattice sites in one of the dots. We estimate the typical size of αn with the

replacements Ak → A
N ,

∑
k → N , which gives αn ≈ α/

√
2 =

√
I(I+1)

2N A, where

N characterizes the number of nuclear spins within the dot envelope wavefunc-
tion. If we assume the nuclear spin state is described by a continuous Gaussian
distribution of hz eigenstates with mean hz

n = 0 and variance σ2
+, we find

C
(2)
T+

(t) ≈ 1

2

( α

∆

)2 (
1 − e−t2/2t2+ cos (∆t)

)
, t+ =

1

2σ+
. (4.39)
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Figure 4.4: Decay of the correlator CT+
(t) in two cases. A typical unprepared

initial state, where the nuclear spin system is in a superposition of hz eigenstates,
results in a Gaussian decay (solid line, from Eq. (4.39)). If the nuclear spin state
is squeezed into an hz eigenstate, there is no decay, only coherent oscillations
(dotted line, from Eq. (4.38)). For this plot we have used ∆ = 5α.

Thus, if we ignore any possibility for recurrence, the distribution of hz eigen-
states will lead to Gaussian decay of the two-electron spin state, as is the case
for a single electron [18, 70]. However, as in the case of a single electron, this
decay can be reduced or eliminated altogether by narrowing the distribution of
hz eigenstates |n〉 through measurement (squeezing the nuclear spin state) [70].
We show these two cases (with and without squeezing of the nuclear state) in
Figure 4.4.

4.4 Singlet-triplet decoherence due to orbital de-

phasing

To this point we have neglected dephasing of the singlet |S〉 and triplet |Tj〉
(j = 0,+) states due to coupling in the orbital sector. The effective Hamilto-
nian description ignores the different character of the orbital states for singlet
and triplet, and so it is tempting to assume that orbital dephasing is unimpor-
tant where the effective Hamiltonian is valid. However, the singlet and triplet
do have different orbital states which can, in general, couple differently to the
environment through the charge degree of freedom, and therefore acquire differ-
ent phases. Examples of such environmental influences are charge fluctuators
or measurement devices, such as quantum point contacts used for charge read-
out [141,88]. Here we briefly step away from the effective Hamiltonians derived
in Appendix G to give a physical picture of the effects of orbital dephasing in
terms of the true double-dot wavefunctions. We then return to the effective
Hamiltonian picture in order to give a more general estimate of the effects of
orbital dephasing on singlet-triplet decoherence for a two-electron double dot.

We consider a double quantum dot containing a fixed (quantized) number of
electrons N . Within the far-field approximation, the double-dot charge distri-
bution couples to the environment first through a monopole, and then a dipole
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term. Since the charge on the double dot is quantized, the monopole term
gives an equal contribution for both the singlet and triplet wavefunctions. The
leading interaction that can distinguish singlet from triplet is the electric dipole
term:

Vorb(t) ≈ −pN · E(t). (4.40)

Here, pN is the electric dipole moment operator for the charge distribution in
a double dot containing N electrons and E(t) is a fluctuating electric field due
to the surrounding environment, which we model by a Gaussian random pro-
cess. For a double quantum dot with well-localized single-particle eigenstates
we denote the charge states by |(n,m)〉, indicating that the double-dot has n
electrons in dot 1 and m electrons in dot 2, where n + m = N . If the double
dot contains only a single electron (N = 1), the environment can distinguish
the two localized states through the difference in the dipole moment opera-
tor, which has the size |∆p1| = |〈(1, 0)|p1 |(1, 0)〉 − 〈(0, 1)|p1 |(0, 1)〉| ≈ 2 |e| a,
where e is the electron charge and 2a is the inter-dot spacing. When N =
2, for highly-localized states, only the states with double-occupancy (|(0, 2)〉
and |(2, 0)〉) contribute to the dipole moment. If the typical hyperfine en-
ergy scale is much smaller than the detuning from resonance δ of the |(1, 1)〉
and |(0, 2)〉 states (max (〈δh〉rms , 〈h〉rms) ≪ δ), only the |(1, 1)〉 singlet state
(not the triplets) will mix with the doubly-occupied states, so the singlet and
triplet states will be energetically distinguishable through |∆p2| = |〈S|p2 |S〉| ≈
2 |e| a

∣∣P(0,2) − P(2,0)

∣∣ . 2 |e| aD, where P(0,2)

(
P(2,0)

)
is the probability to find

the singlet |S〉 in the |(0, 2)〉 (|(2, 0)〉) state and D = P(0,2) +P(2,0) is the double
occupancy. In this discussion, we assume that the exchange is much larger than
the hyperfine energy scales, J ≫ max (〈h〉rms , 〈δh〉rms), so that the singlet and
triplet states are good approximates for the true two-electron eigenstates.

For weak coupling to the environment, and assuming the environment cor-

relation time is much less than the orbital dephasing time t
(N)
φ , we can apply

standard techniques to determine the dephasing time for a two-level system
described by the Bloch equations [142]. We find that the fluctuations in E(t)

lead to exponential dephasing with the rate 1/t
(N)
φ = 1

4 |∆pN |2
∫ ∞
−∞ dtE(t)E(0),

where the scalar E(t) is the component of E(t) along ∆pN and we assume

limt→∞
1
t

∫ t

0
dt′E(t′) = 0. Assuming equivalent environments for the single-

particle and two-particle cases, the ratio of the single-particle to two-particle
dephasing times is then

t
(1)
φ

t
(2)
φ

=

∣∣∣∣
∆p2

∆p1

∣∣∣∣
2

. D2. (4.41)

The single-electron orbital dephasing rate has been measured to be t
(1)
φ ≈ 1 ns

[143] and t
(1)
φ ≈ 400 ps [56] in different gated double quantum dots. If the

hyperfine interaction (which becomes important on the timescale t & 5 ns) is
to provide the major source of decoherence in these two-electron structures,

we therefore require t
(2)
φ ≫ t

(1)
φ . This condition can be achieved by ensuring a

small double occupancy D ≪ 1 of the singlet state. When the inter-dot tunnel
coupling t12 is much less than the detuning from resonance δ (t12 ≪ δ ≪ U +U ′,
with on-site and nearest-neighbor charging energies U and U ′, respectively – see
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Appendix G) we find the double-occupancy of |S〉 in perturbation theory is

D ≈ 2

(
t12
δ

)2

≪ 1. (4.42)

Even in this regime, orbital dephasing may become the limiting timescale for
singlet-triplet decoherence after the removal of hyperfine-induced decoherence
by spin echo. A detailed analysis of the double-occupancy and its relation to
the concurrence (an entanglement measure) for a symmetric double dot can be
found in Refs. [110,39].

With this physical picture in mind, we can generalize the above results to
the case when the electrons experience fluctuations due to any time-dependent
classical fields. In particular, if the separation in single-particle energy eigen-
states for N = 1 is ǫ + δǫ(t), where δǫ(t) fluctuates randomly with amplitude
δǫ, and similarly, if for N = 2 the singlet and triplet levels are separated by an
exchange J + δJ(t), where δJ(t) has amplitude δJ , we find

t
(1)
φ

t
(2)
φ

=

∣∣∣∣
δJ

δǫ

∣∣∣∣
2

. (4.43)

From this expression we conclude that the optimal operating point of the double
dot is where the slope of J vs. ǫ vanishes, i.e., δJ/δǫ = 0. At this optimal point,

t
(2)
φ → ∞, within the approximations we have made. Eq. (4.43) is valid for

weak coupling to the environment (i.e. δJ ≪ J and δǫ ≪ ǫ), and when the
environment correlation time is small compared to the dephasing times. If, for
example, we take J ≈ 2t212/δ for U + U ′ ≫ δ ≫ t12 from Eq. (G.11) and if
δǫ corresponds to fluctuations in the single-particle charging energy difference

(ǫ ∼ (Vg1 − Vg2) ∼ δ from Eq. (G.9)), we find t
(1)
φ /t

(2)
φ ≈ 4t412/δ4, in agreement

with Eqs. (4.41) and (4.42). In particular, the hyperfine-dominated singlet-

triplet decoherence becomes visible when t
(2)
φ ≫ t′0, t′′0 ≫ t0, t+. This regime

is achievable by choosing δ ≫ t12, but still J ≈ 2t212/δ ≫ σ0, since t
(2)
φ is a

much stronger function of δ than t′0, t′′0 . That is, the two-particle dephasing

time scales like t
(2)
φ ∼ δ4, but the typical hyperfine-induced decay times scale

like t′0, t
′′
0 ∼ J ∼ 1/δ. On the other hand, when t12 ≈ δ, we have |δJ/δǫ| ∼ O(1),

which gives t
(2)
φ ∼ t

(1)
φ , and thus a very short singlet-triplet decoherence time

(≈ 1 ns), which is dominated by orbital dephasing.

4.5 Conclusions

We have shown that a fully quantum mechanical solution is possible for the
dynamics of a two-electron system interacting with an environment of nuclear
spins under an applied magnetic field. Our solution shows that the singlet-triplet
correlators CT0

(t) and CT+
(t) will decay due to the quantum distribution of the

nuclear spin system, even for a nuclear system that is static. We have found
that the asymptotic behavior of CT0

(t) undergoes a transition from Gaussian
to power-law (∼ 1/t3/2) when the Heisenberg exchange coupling J becomes
nonzero, and acquires a universal phase shift of 3π/4. The oscillation frequency
and phase shift as a function of time can be used to determine the exchange
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and Overhauser field fluctuations. We have also investigated the effects of an
inhomogeneous polarization on CT0

(t), and have suggested a general strategy
for reducing decoherence in this system. Finally, we have discussed orbital
dephasing and its effect on singlet-triplet decoherence.



Chapter 5

Two-spin dynamics: Spin

state narrowing

[D. Klauser, W. A. Coish, and D. Loss, Phys. Rev. B 73, 205302 (2005)]

In this chapter we study spin dynamics for two electrons confined to a double
quantum dot under the influence of an oscillating exchange interaction. This
leads to driven Rabi oscillations between the |↑↓〉–state and the |↓↑〉–state of the
two–electron system. The width of the Rabi resonance is proportional to the
amplitude of the oscillating exchange. A measurement of the Rabi resonance
allows one to narrow the distribution of nuclear spin states and thereby to
prolong the spin decoherence time. Further, we study decoherence of the two-
electron states due to the hyperfine interaction and give requirements on the
parameters of the system in order to initialize in the |↑↓〉–state and to perform
a
√

SWAP operation with unit fidelity.

5.1 Introduction

One of the important proposals for quantum information processing in solid–
state systems is the spin–qubit proposal for quantum computing with electron
spins in quantum dots [1]. Much effort has been put into the realization of this
proposal leading to exciting theoretical [144] and experimental achievements
[28, 57, 20, 83, 47, 22, 21]. Still many challenges remain such as decoherence and
the implementation of single-qubit gates.

A major obstacle to quantum computation with the quantum-dot spin qubit
is decoherence due to the coupling of the qubit to its environment. The hyperfine
interaction between the electron spin and the nuclear spins present in all III-
V semiconductors [67] leads to the strongest decoherence effect [14, 65, 66, 15,
16, 17, 70, 50, 21]. Experiments [81, 82, 22, 21] have yielded values for the free-
induction spin dephasing time T ∗

2 that are consistent with T ∗
2 ∼

√
N/A ∼ 10ns

[15, 16, 17] for N = 106 and A = 90µeV in GaAs, where N is the number of
nuclei within one quantum-dot Bohr radius and A characterizes the hyperfine
coupling strength [27]. This is to be contrasted to potential spin-echo envelope
decay, which may be much larger [69, 74, 77]. With a two-qubit switching time

81
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of τs ∼ 50ps [14] this only allows ∼ 102 gate operations within T ∗
2 , which falls

short (by a factor of 10 to 102) of current requirements for efficient quantum
error correction [59].

There are several ways to overcome the problem of hyperfine-induced deco-
herence, of which measurement and thus projection of the nuclear spin state
seems to be the most promising one [70]. Other methods include polariza-
tion [14, 17, 113, 70] of the nuclear spins and spin echo techniques [70, 74, 21].
However, in order to extend the decay time by an order of magnitude through
polarization of the nuclear spins, a polarization of above 99% is required [70], but
the best result so far reached is only ∼60% in quantum dots [81,28]. With spin-
echo techniques, gate operations still must be performed within the single-spin
free-induction decay time, which requires faster gate operations. A projective
measurement of the nuclear spin state leads to an extension of the free-induction
decay time for the spin. This extension is only limited by the ability to do a
strong measurement since the longitudinal nuclear spin in a quantum dot is ex-
pected to survive up to the spin diffusion time, which is on the order of seconds
for nuclear spins surrounding donors in GaAs [139].

The implementation of quantum computation schemes requires coherent con-
trol of the qubits. Rabi oscillations between the two qubit states are an impor-
tant signature of coherence and thus observation of controlled Rabi oscillations
is an important intermediate step in the experimental implementation of quan-
tum information processors. Despite recent experimental achievements [28,21],
there has still been no experimental observation of driven Rabi oscillations for
a system of two quantum–dot spin qubits. What has been observed is electron
spin resonance via g-tensor modulation in a bulk semiconductor [145].

In the quantum-dot spin qubit proposal, two-qubit gates are realized through
tuning of the exchange coupling J between the two spins [1, 14]. The splitting
between singlet and triplet states of the two-electron system is given by the
exchange coupling J and in devices such as those in Refs. [21] and [22], J can
be controlled through gate voltages. Petta et al. [21] have recently managed to
implement the

√
SWAP-gate in their setup. However, in order to implement

single-qubit gates, control over local magnetic fields or g-factors is required [14].
As we will show in Section 5.2, an oscillating exchange J(t) induces Rabi

oscillations between the states |↑↓〉 and |↓↑〉 of two electron spins (one electron
in each dot). The amplitude of these oscillations is resonant on the splitting
between |↑↓〉 and |↓↑〉 and the width of this resonance is proportional to the
amplitude j of the oscillating component of J(t) = J0 + j cos(ωt), where ω is
the driving frequency. Since the splitting depends on the state of the nuclear
system, a measurement of the resonance is also a measurement of the state of the
nuclear spins and thus provides a way to narrow the quantum distribution of the
nuclear spin states. This narrowing of the spin state is one possible solution to
suppress hyperfine-induced decoherence in quantum-dot spin qubits [70]. It has
been proposed to measure the nuclear spin polarization using a phase estimation
method [146]. In the ideal case, phase estimation yields one bit of information
about the nuclear-spin system for each perfectly measured electron. Optical
methods have also been proposed [147]. The all-electrical method we present
here can be applied with current technology.

The rest of this chapter is organized as follows. In Section 5.2 we show
that an oscillating exchange leads to driven Rabi oscillations and calculate the
resonance linewidth. In Section 5.3 we propose a method to narrow the distribu-
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tion of the nuclear spin states. in Section 5.4 we consider decoherence induced
through the hyperfine interaction for a static exchange coupling J . We use these
results in Section 5.5 to analyze under which conditions we reach unit fidelity
for the initialization to the state |↑↓〉 and a

√
SWAP operation [1]. Section 5.6

contains a summary of our results.

5.2 Oscillating Exchange and ESR

In this section we show that under suitable conditions an oscillating exchange
interaction may be used to induce Rabi oscillations in a system of two electrons
confined to a double quantum dot like those in Refs. [83,21,22,47].

We denote by hi = (hx
i , hy

i , hz
i ), i = 1, 2, the collective quantum nuclear

spin operator, the “Overhauser operator”, in dot one and two, respectively,
and write δhz = 1

2 (hz
1 − hz

2). The collective quantum nuclear spin operator
hi is defined as hi =

∑
k Ai

kIk, where Ik is the nuclear spin operator for a
nucleus of total spin I at lattice site k, and the hyperfine coupling constants
are given by Ai

k = vA|ψi
0(rk)|2, where v is the volume of a unit cell containing

one nuclear spin, A characterizes the hyperfine coupling strength, and ψi
0(rk)

is the single-particle envelope wavefunction of the electron evaluated at site k.

Further, 〈O〉rms = 〈ψI | O2 |ψI〉1/2
is the root–mean–square expectation value of

the operator O with respect to the nuclear spin state |ψI〉. We assume that
the Zeeman splitting ǫz = gµBB induced by a uniform applied magnetic field
B = (0, 0, B), B > 0, is much larger than 〈δh〉rms and 〈hi〉rms. Under these
conditions the relevant spin Hamiltonian becomes block diagonal with blocks
labeled by the total electron spin projection along the magnetic field Sz. In the
subspace of Sz = 0 the Hamiltonian can be written as (~ = 1) [50]

H0 =
J

2
(1 + τz) + δhzτx + δbzτx. (5.1)

Here, J is the Heisenberg exchange coupling between electron spins on the
two dots and δbz the inhomogeneity of an externally applied classical static
magnetic field which we add in addition to the treatment in Ref. [50]. Further,
τττ = (τx, τy, τz) is the vector of Pauli matrices in the basis of Sz = 0 singlet |S〉
and triplet |T0〉 (|S〉 → |τz = −1〉 , |T0〉 → |τz = +1〉). It has been proposed to
use two pseudo-spin states such as |S〉 and |T0〉 as a logical qubit [148].

We assume a time–dependent exchange of the form

J = J(t) = J0 + j cos(ωt). (5.2)

The operator δhz commutes with the Hamiltonian at all times. Thus, if the
nuclear–spin system is in an eigenstate |n〉 of δhz with δhz |n〉 = δhz

n |n〉, we
have H |ψ〉 = Hn |ψe〉 ⊗ |n〉, where in Hn the operator δhz has been replaced
by δhz

n and |ψe〉 is the electron spin part of the wave function. In order to
bring Hn to a form that is very similar to the standard ESR (electron spin
resonance) Hamiltonian [87] (HESR = − 1

2ǫzσz − 1
2∆x cos(ωt)σx) we perform

a unitary transformation U1 = exp(−iπ
4 τy) which is just a rotation about the

y-axis in a Bloch–sphere picture. Also introducing Ωn = 2(δhz
n +δbz), the above

Hamiltonian becomes

H̃n = U1HnU†
1 =

J0

2
τx +

j

2
cos(ωt)τx − 1

2
Ωnτz. (5.3)
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The Pauli matrices are now given in the new basis of |↓↑〉 = |τz = 1〉 = |+〉 and
|↑↓〉 = |τz = −1〉 = |−〉. For J0 = 0 this is just the standard ESR Hamiltonian.
We have evaluated pseudo-spin dynamics under this Hamiltonian in a rotating
wave approximation close to resonance for j ≪ Ωn. When we treat the J0-term
as a perturbation and calculate the transition probability between unperturbed
eigenstates of the Hamiltonian we find that it is proportional to J2

0/Ω2
n and

we may thus neglect this term close to resonance and if J0 ≪ Ωn. Hence, we
are left with the standard ESR Hamiltonian which leads to Rabi oscillations.
Initializing the two-electron system in the state |↓↑〉 = |+〉 (which can be done
as proposed in Section 5.5) we obtain for the expectation value of τz(t):

〈τz(t)〉n = 〈n| ⊗ 〈+| τz(t) |+〉 ⊗ |n〉

=
(Ωn − ω)2 + (j/2)2 cos (ω′t)

(Ωn − ω)2 + (j/2)2
, (5.4)

ω′ = 2

√
(Ωn − ω)2 + (j/2)

2
, (5.5)

j ≪ Ωn, J0 ≪ Ωn, |Ωn − ω| ≪ Ωn. (5.6)

For ω = Ωn the system undergoes coherent Rabi oscillations between the states
|+〉 and |−〉 with a frequency of j. Averaged over time, the expectation value
of τz is

〈〈τz〉n〉 = lim
T→∞

1

T

∫ T

0

〈τz(t)〉ndt =
(Ωn − ω)2

(Ωn − ω)2 + (j/2)2
. (5.7)

In order to measure the time–averaged value 〈〈τz〉n〉 the measurement time must
be much larger than the period of Rabi oscillations (∼ 1/j on resonance). 1 −
〈〈τz〉n〉 has a Lorentzian lineshape with a full width at half maximum (FWHM)
of j. Most importantly, the resonance frequency depends on the nuclear–spin
eigenstate through Ωn = 2(δhz

n + δbz) and thus a measurement of the resonance
will determine δhz

n.

5.2.1 Superposition of nuclear-spin eigenstates

Before a measurement on the nuclear-spin system is performed, there is no rea-
son for the nuclear-spin system to be in an eigenstate of δhz, but it is most
likely in some generic superposition of these eigenstates. Thus, we now investi-
gate how the resonance changes if we consider the nuclear-spin system to be in
a superposition of eigenstates of the collective nuclear spin operator δhz.

At t = 0 we fix the electron system in the state |↓↑〉 = |+〉 while the nuclear-
spin system is in an arbitrary state: ρ(0) = ρe(0) ⊗ ρI(0) with

ρe(0) = |+〉 〈+| , (5.8)

ρI(0) =
∑

i

pi

∣∣ψi
I

〉 〈
ψi

I

∣∣ ;
∣∣ψi

I

〉
=

∑

n

ai
n |n〉 , (5.9)

where the ai
n satisfy the normalization condition

∑
n |ai

n|2 = 1 and
∑

i pi = 1.
Here, ρI(n) =

∑
i pi|ai

n|2 are the diagonal elements of the nuclear–spin density
operator. The Hamiltonian H0 commutes with δhz and thus we find

〈τz(t)〉 =
∑

n

ρI(n)〈τz(t)〉n, (5.10)
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which defines the overbar.
We assume that for a large number of nuclear spins N ≫ 1 which are in

a superposition of δhz-eigenstates |n〉, ρI(n) describes a continuous Gaussian

distribution of δhz
n values, with mean δhz and variance σ2 =

(
δhz − δhz

)2
. In

the limit of large N the approach to a Gaussian distribution for a sufficiently
randomized nuclear system is guaranteed by the central limit theorem [70]. We
perform the continuum limit according to

∑

n

ρI(n)f(n) →
∫

dxρI;x,σ(x)f(x), (5.11)

ρI;x,σ(x) =
1√
2πσ

exp

(
− (x − x)

2

2σ2

)
, (5.12)

where x = δhz
n, x = δhz and σ2 = x2 − x2. The only effect of δbz is to shift the

mean value of the Overhauser field inhomogeneity to x0 = x + δbz, whereas the
width is left unchanged: σ0 = σ. According to this description we obtain

〈τz(t)〉 =

∫ ∞

−∞
dxρI;x0,σ0

(x) (f(x) + g(x, t)) , (5.13)

f(x) =
(2x − ω)2

(2x − ω)2 + (j/2)2
, (5.14)

g(x, t) =
(j/2)2 cos

(
2
√

(2x − ω)2 + (j/2)2t
)

(2x − ω)2 + (j/2)2
. (5.15)

The second term (Eq.(5.15)) vanishes when it is averaged over time and we find

1 −
〈
〈τz〉

〉
=

1

2σ0

√
2π

∫ ∞

−∞
dx exp

(
− (x − 2x0)

2

8σ2
0

)
(j/2)2

(x − ω)2 + (j/2)2
. (5.16)

This integral (a convolution of a Lorentzian and Gaussian) is the well-known
Voigt function, [149] and the resulting lineshape is the so-called “Voigt profile”.
The Voigt function may be expressed as (ω̃ = j + 4ix0 − 2iω)

〈
〈τz〉

〉
= 1 − j

4σ0

√
π

2
Re

[
exp

(
ω̃2

32σ2
0

)
erfc

(
ω̃

4
√

2σ0

)]
, (5.17)

where erfc(z) is the complementary error function. In the regime where σ0 ≪ j
we may approximate the Lorentzian in the convolution (Eq.(5.16))by its value
at x = 2x0 and obtain

〈
〈τz〉

〉
≈ (2x0 − ω)2

(2x0 − ω)2 + (j/2)2
; σ0 ≪ j. (5.18)

In this case the resulting resonance has the same FWHM as the Lorentzian, viz.
j. On the other hand, if σ0 ≫ j, we may approximate the Gaussian with its
value at x = ω and thus obtain

〈
〈τz〉

〉
≈ 1 − j

4σ0

√
π

2
exp

(
− (2x0 − ω)2

8σ2
0

)
; σ0 ≫ j. (5.19)
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In this regime the width is twice the width σ0 of the Gaussian distribution of
the nuclear spin states. In order to make a statement about the width of the
Voigt profile in general we look at the peak–to–peak separation ∆V of the first
derivative of the Voigt profile. For a Gaussian with a standard deviation of 2σ0

we find ∆G = 4σ0 for the peak–to–peak separation of the derivative and for a
Lorentzian with FWHM of j we have ∆L = j/

√
3. A Padé approximant for ∆V

in terms of ∆L and ∆G yields [150]

∆V =
∆2

G + a1∆G∆L + a2∆
2
L

∆G + a2∆L
(5.20)

where a1 = 0.9085, a2 = 0.4621. This approximation is accurate to better than
0.01∆V for all values of ∆L,∆G [150]. A similar formula may also be given for
the half width at half maximum (HWHM) of the Voigt profile [151].

5.3 State narrowing

The general idea behind state narrowing is that the evolution of the two–electron
system is dependent on the nuclear spin state and thus knowing the evolution
of the two–electron system determines the nuclear spin state. Thus, in this sec-
tion we describe how the Gaussian superposition ρI;σ0,x0

(x) of collective nuclear
spin eigenstates |n〉 can be narrowed through a sequence of measurements per-
formed on a double quantum dot on a time scale much less than the timescale
of variation of δhz and for j . σ0. We first give a general description of how a
complete measurement of the lineshape of the Rabi resonance narrows the Gaus-
sian superposition. Such a complete measurement of the lineshape consists of
many single measurements of the operator τz. In Section 5.3.1 we present a de-
tailed analysis of such a complete measurement and in Section 5.3.2 we discuss
different measurement schemes.

The operator δhz was defined in Section 5.2 and it describes the difference in
the z-components of total nuclear field in each of the two dots. The total nuclear
field is the result of N ∼ 106 single nuclear spins and thus the eigenvalues of
δhz will be highly degenerate. In the limit of large N the spectrum of δhz is
quasi-continuous and the probability density of eigenvalues of δhz is given by
a Gaussian distribution, as described in Section 5.2.1. For such a Gaussian
superposition of nuclear spin eigenstates, the lineshape of the Rabi resonance
is given by a Voigt profile, as described in Section 5.2.1. This Voigt profile
can be seen as a superposition of Lorentzian lineshapes, where each Lorentzian
results from a nuclear spin eigenvalue δhz

n and is centered around Ωn = 2(δhz
n +

δbz). In the Voigt profile, these Lorentzian lineshapes are weighted according to
the amplitude of the corresponding eigenvalue δhz

n in the Gaussian-distributed
superposition. Through a perfect complete measurement of the Rabi-resonance
lineshape, the superposition of Lorentzian lineshapes collapses and we are left
with one single Lorentzian (see Figure 5.1). This Lorentzian corresponds to one
single eigenvalue of δhz and thus the Gaussian distribution has been narrowed
to zero width; the nuclear–spin system is in a state with fixed eigenvalue δhz

n.
In principle, we would need to do infinitely many single measurements in

order to completely measure the lineshape of the Rabi resonance with perfect
accuracy, since each point on this resonance curve is a (time-averaged) expec-
tation value of the quantum mechanical operator τz. Still, we may perform a
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Figure 5.1: a) This figure illustrates the projection obtained through an ideal
complete measurement of the Rabi–resonance lineshape. All the different
Lorentzian resonances corresponding to different nuclear spin eigenstates add
up to a Gaussian lineshape. b) Through a perfect complete measurement of
the lineshape of the Rabi resonance, which involves many single measurements
of τz, the superposition collapses and we are left with one single Lorentzian
centered around 2x′

0 = Ωn, which in general is different from 2x0.
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finite number M of single measurements (see Section 5.3.1) for each of a set
of driving frequencies ω and thus obtain the series of expectation values for
different ω up to some error. This error depends on M . There will then in
general be more than one Lorentzian which can be fit (within error) to these
expectation values and thus we would not narrow to zero width. We would still
have a distribution of nuclear spin eigenstates, but one with smaller width than
before the measurements.

For such a narrowing through measurement to be successful, the amplitude
j of the oscillating exchange J(t) which determines the width of the Lorentzian
lineshapes should be smaller than the width σ0 of the Gaussian distribution.
Otherwise, the Rabi resonance would be dominated by the Lorentzian (see
Eq.(5.18)) and the method would not result in narrowing of the nuclear–spin
distribution. The general requirements on the system parameters to narrow the
distribution of nuclear spin eigenvalues are

j, J0, σ0 ≪ x0; j . σ0. (5.21)

We note that, unlike in standard ESR, power absorption is not measured here,
but instead the expectation value of the pseudo-spin τz, for instance via a quan-
tum point contact (QPC) nearby one quantum dot (for a detailed description
of the measurement process via such a QPC we refer the interested reader to
Ref. [141]). To determine the expectation value of the pseudo-spin τz many
single measurements of the pseudo-spin are necessary and we thus proceed to
give a detailed description of the state narrowing by considering the effect of
these single measurements on the nuclear spin state.

5.3.1 Description of state narrowing by consecutive pseudo–

spin measurements

In this subsection we describe in detail how a single measurement of the pseudo-
spin τz of the two–electron system affects the nuclear–spin system. Further, we
give a general formula for the diagonal elements of the nuclear–spin–system
density operator in the continuum limit after M measurements. The sequence
of M measurements is referred to as a “complete measurement”.

At t = 0 the two–electron system is initialized to the state |+〉 = |↓↑〉 and we
assume that the electron and the nuclear system are initially factorized. Thus,
the total system at t = 0 is described generally by the following density operator

ρ(0) = ρe(0) ⊗ ρI(0) = |+〉 〈+| ⊗
∑

i

pi

∣∣ψi
I

〉 〈
ψi

I

∣∣ , (5.22)

with nuclear–spin state
∣∣ψi

I

〉
=

∑
n ai

n |n〉. The diagonal elements of the nuclear–
spin density operator at t = 0 are given by ρI(n) = ρI(n, 0) =

∑
i pi|ai

n|2
and in the continuum limit we obtain the probability density ρI;x,σ(x) for the
eigenvalues δhz

n = x as given in Eq.(5.12). At time tm a measurement of the
two-electron system (at driving frequency ω, where ω is defined in Eq.(5.2))
is performed with two possible outcomes |+〉 and |−〉. The diagonal elements
of the nuclear-spin density operator after the measurement are given by (see
Appendix J)

ρ
(1,±)
I (n, tm) =

ρI(n, 0)

P±(tm)

1

2
(1 ± 〈τz(tm)〉n) , (5.23)
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where 〈τz(t)〉n is given by Eq.(5.4) and the probabilities P±(tm) to measure |±〉
are

P±(tm) =
∑

i

∑

n

1

2
(1 ± 〈τz(tm)〉n) pi|ai

n|2. (5.24)

In the case where a measurement is performed with a low time resolution1

∆t, i.e., if ∆t ≫ 1/j, the density operator after the measurement is the time
average over the time interval ∆t and the cosine term in 〈τz(tm)〉n averages
out (note that in the case of a measurement with low time resolution, tm is
arbitrary, as long as ∆t is chosen to be large enough). For the rest of this
subsection we thus assume2 that measurements are performed with low time
resolution ∆t ≫ 1/j. Further, we perform the continuum limit and obtain
for the probability density of eigenvalues, i.e., the diagonal part of the density
operator in the continuum limit (with x = δhz

n + δbz and ρI(x) ≡ ρI;x0,σ0
(x),

see Eq.(5.12)):

ρ
(1,+,ω)
I (x) = ρI(x)(1 − Lω(x))

1

P+
ω

, (5.25)

ρ
(1,−,ω)
I (x) = ρI(x)Lω(x)

1

P−
ω

, (5.26)

where the probabilities for measuring |+〉 or |−〉 are given by

P+
ω =

∫ ∞

−∞
dxρI(x)(1 − Lω(x)), (5.27)

P−
ω =

∫ ∞

−∞
dxρI(x)Lω(x), (5.28)

with

Lω(x) =
1

2

(j/4)2

(x − ω
2 )2 + (j/4)2

. (5.29)

After the first measurement, the two–electron system is reinitialized to the
state |+〉 if necessary and a second measurement is performed. Since the initial
density matrix factors out in the above results, it is clear how to generalize
Eqs.(5.25) and (5.26) to the case where M consecutive measurements (without
randomization of the nuclear-spin system in between measurements) are per-
formed: every time |+〉 is measured, the diagonal elements ρI(x) of the nuclear
density matrix is multiplied by 1−Lω(x) and every time |−〉 is measured, ρI(x)

is multiplied by Lω(x). Thus, we obtain the diagonal elements ρ
(M,α−,ω)
I (x)

of the nuclear density matrix after M measurements, of which α− times the
measurement outcome was |−〉 (and (M − α−)-times |+〉):

ρ
(M,α−,ω)
I (x) =

ρI(x)

Qω(M,α−)
Wω(M,α−;x). (5.30)

1By ”low time resolution”, we mean that the measurement is performed at an unknown
time tm (giving rise to state ρ(tm)) in the interval ∆t = tb − ta, with a uniform probability

density 1/∆t. The state after the measurement is then 1

∆t

R tb
ta

dtmρ(tm).
2This assumption is not necessary for our narrowing scheme. However, it does allow for

the derivation of the analytical formulas in this section, which give insight into the mechanism
of narrowing. In the case of perfect time resolution, one would have an additional factor of
(1−cos(ω′tm)) in Eq. (5.29) (ω′ is given in Eq.(5.5)) and would also have to take into account
the time tm at which each measurement was performed.
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Here, Wω(M,α−;x) and the normalization factor Qω(M,α−) are given by

Wω(M,α−;x) = Lω(x)α−

(1 − Lω(x))M−α−

, (5.31)

Qω(M,α−) =

∫ ∞

−∞
dxρI(x)Wω(M,α−;x). (5.32)

The normalization factor Qω(M,α−) is related to P±
ω through P−

ω = Qω(1, 1),
P+

ω = Qω(1, 0). In the case where measurements are performed at mf different
frequencies, Eq.(5.30) generalizes to

ρ
({Mi},{α−

i },{ωi})
I (x) = ρI(x)

mf∏

i=1

Wωi
(Mi, α

−
i ;x)

Qωi
(Mi, α

−
i )

. (5.33)

The probability density ρ
({Mi},{α−

i },{ωi})
I (x) after M measurements performed at

mf different driving frequencies depends on the frequencies {ωi} = {ω1, . . . , ωmf
},

the number of measurements at each frequency {Mi} = {M1, . . . ,Mmf
}, and the

number of times |−〉 was measured at each frequency {α−
i } = {α−

1 , . . . , α−
mf

}.
Eq.(5.33) gives the distribution of nuclear spin eigenvalues for any sequence
of M measurements, i.e., without randomization of the nuclear–spin system in
between measurements.

5.3.2 Measurement schemes

In this subsection we describe different measurement schemes. One main char-
acteristic of the schemes is whether we have unconditional evolution of the
nuclear-spin density matrix between measurements (one waits for the nuclear-
spin system to rerandomize between subsequent measurements), or whether we
have conditional evolution, i.e., the nuclear-spin system is assumed to be static
between measurements.

5.3.2.1 Unconditional scheme

The simplest scheme is to measure only once at one single driving frequency
ω. If the outcome is |−〉, the nuclear–spin distribution after the measurement
is given by Eq.(5.26); the FWHM (2σ0

√
2 ln 2 ≈ 2σ0) of the initial distribution

will have been narrowed by a factor ≈ j/4σ0 (the nuclear–spin distribution will
approximately be a Lorentzian with FWHM of j/2). For j ≪ σ0 and ω = 2x0,
the probability P−

ω to measure |−〉 in the first measurement is P−
ω=2x0

≈ j/6σ0

(the exact formula is given in Eq.(5.28)). If the measurement outcome is |−〉, we
stop measuring. Otherwise, we wait for the system to rerandomize (in contrast
to the conditional schemes) and perform another measurement. This is repeated
until |−〉 is measured for the first time. On average one needs to perform M ′ ≈
6σ0/j measurements in order to narrow by a factor of ≈ j/4σ0 (we write M ′

because this number of measurements should not be confused with the number
of measurements M used above in the case of measurements performed without
rerandomization in between). If the driving frequency ω is far from the center
x0 of the initial Gaussian distribution, the number of required measurements
increases by a factor of exp((x0 − ω/2)2/2σ2

0). This always leads to a narrowed
distribution which is centered around ω/2. Thus, with this scheme it is possible
to choose the center of the nuclear–spin distribution after the measurement.
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This unconditional measurement scheme is the one which should be easiest to
implement in an experiment since one only needs to measure once at one single
frequency. However, if measurements at several different frequencies can be
performed, a systematic narrowing of the distribution can be implemented as
we show next.

5.3.2.2 Adaptive conditional scheme

The probability of measuring |−〉 in a measurement is determined by the overlap

of the Lorentzian Lω(x) and the probability density of eigenvalues ρ
(M,α−,ω)
I (x)

(for the first measurement this probability is P−
ω , which is given in Eq.(5.28)).

Then, if we have the outcome |−〉 for a measurement at driving frequency ω,

ρ
(M,α−,ω)
I (x) as a function of x becomes peaked around ω/2 ( since Lω(x) is cen-

tered around x = ω/2), the overlap of the Lorentzian Lω(x) and ρ
(M,α−,ω)
I (x)

increases and therefore the probability to measure |−〉 in a subsequent mea-
surement also grows. If, on the other hand, we have outcome |+〉, the term

1−Lω(x) causes a dip in ρ
(M,α−,ω)
I (x) at x = ω/2, the overlap of the Lorentzian

Lω(x) and ρ
(M,α−,ω)
I (x) decreases and thus the probability to measure |−〉 in

a subsequent measurement with the same driving frequency ω also decreases.
Since it is the measurement outcome |−〉 that primarily leads to narrowing, the
measurement scheme should maximize the probability to measure |−〉. This
can be achieved by changing the driving frequency ω always in such a way that

before each measurement Lω(x) and the nuclear–spin distribution ρ
(M,α−,ω)
I (x)

have their maximum at the same x, i.e., set ω/2 = xmax, where xmax is the x for

which ρ
(M,α−,ω)
I (x) has a maximum. Thanks to the adaptive driving frequency

ω, the probability P−
ω to measure |−〉 is ≈ j/6σ0 in each measurement until |−〉

is measured for the first time. Without adapting, i.e., when measuring always
at the same driving frequency ω, P−

ω decreases, as explained above (as long as
we do not measure |−〉). After measuring |−〉 for the first time, the probability
P−

ω to measure |−〉 increases. Every time the measurement outcome is |−〉, the

distribution ρ
(M,α−,ω)
I (x) is multiplied by Lω(x) and becomes narrower (since

Lω(x)α−

has a FWHM of (j/2)
√

21/α− − 1). However, the measurement out-

come |+〉, for which ρ
(M,α−,ω)
I (x) is multiplied by 1−Lω(x), is still more likely

and leads to a small widening of the distribution. Our simulations of this mea-
surement scheme do, however, show that after |−〉 has been measured several
times, the nuclear spin distribution is narrowed by more than a factor j/4σ0.

This adaptive scheme was first proposed in an optical setup by Stepanenko
et al. in Ref. [147]. This scheme requires that xmax can be calculated (or read
from a table) between subsequent measurements and that the driving frequency
ω can be tuned with a precision that is better than the width of the nuclear–
spin distribution before each measurement. For this adaptive scheme (and other
conditional schemes) to work, it is important that the nuclear–spin system does
not randomize during the course of the complete measurement, i.e., the com-
plete measurement must be carried out within a time that is shorter than the
time scale for nuclear spin dynamics. We thus assume that the nuclear–spin
system (viz. δhz) has no internal dynamics between the single measurements of
τz(t), but only changes due to the measurements performed on the two–electron
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Figure 5.2: In this figure we show a typical sequence of the rescaled probability

density of eigenvalues π(x) = ρ
({Mi},{α−

i },{ωi})
I (x)/max

(
ρ
({Mi},{α−

i },{ωi})
I (x)

)

for the adaptive conditional scheme. Here, ρ
({Mi},{α−

i },{ωi})
I (x) is given in

Eq.(5.33). We have x = δhz
n+δbz, j/σ0 = 1/10 and in a)–c) the initial Gaussian

distribution (with FWHM 2σ0

√
2 ln 2 ≈ 2σ0) is plotted for reference. a) Up to

M = 50 measurements the outcome is never |−〉 and thus each measurement
“burns a hole” into the distribution where it previously had its maximum. b)
In the 51st measurement the outcome is |−〉 which leads to a narrowed distribu-
tion of nuclear spin eigenvalues (peak centered at ≈ 0.5) with a FWHM that is
reduced by a factor ≈ j/4σ0. c) Adapting the driving frequency ω to this peak,
i.e., setting ω/2 = xmax in subsequent measurements, leads to further narrowing
every time |−〉 is measured. In this example the final FWHM is ≈ σ0/100, i.e.,
the distribution has been narrowed by a factor ≈ j/10σ0. d) The probability P−

to measure |−〉 jumps up after the 51st measurement and after |−〉 is measured
several more times, this probability saturates close to 1/2.

system, i.e., due to single measurements of τz(t). We expect δhz to vary on the
time scale of nuclear spin diffusion out of the dot, which is on the order of
seconds for nuclear spins surrounding donor impurities in GaAs. [139] However,
there may be other sources of nuclear spin dynamics (see also Appendix I).

In Figure 5.2 we show a typical3 sequence of nuclear spin distributions for the
adaptive scheme with total number of measurements M = 100 and j/σ0 = 1/10.
We see ( Figure 5.2 (a)) that up to M = 50 the measurement outcome is never
|−〉 and thus each measurement “burns a hole” into the distribution where
it previously had its maximum. In the 51st measurement (Figure 5.2(b)) the
outcome is |−〉, which narrows the distribution by a factor of ≈ j/4σ0. Adapting
the driving frequency ω to this peak, i.e., setting ω/2 = xmax in subsequent
measurements, leads to further narrowing, i.e., to a total narrowing by more
than a factor j/4σ0 (Figure 5.2(c)). In this example we have α− = 22 after
M = 100 measurements and the final FWHM is ≈ σ0/100, i.e., the distribution
has been narrowed by a factor ≈ j/10σ0. In Figure 5.2(d) the probability P−

3We have performed more than 60 runs of the simulation, varying M and j/σ0
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to measure |−〉 before each measurement is shown. After the first time |−〉
is measured, P− jumps up and after several more times |−〉 was measured, it
saturates close to 1/2. P− is a good signature of the distribution’s width. As
the width of the distribution goes to zero, P− approaches 1/2. This adaptive
conditional scheme is more intricate than the unconditional scheme, but allows
one to narrow by more than a factor j/4σ0.

5.3.2.3 Other conditional schemes

Other possible measurement schemes involve measurements at several frequen-
cies, as in the adaptive scheme. One may either choose a fixed number of
frequencies within one or two σ0 and measure several times at each frequency
(without randomization between the measurements) or sweep the frequency,
i.e., measure only once at each frequency but vary the frequency only in small
steps. Based on numerical simulations of these schemes, we find that the typical
number of measurements to narrow by a factor of j/σ0 is greater than in the
adaptive or the unconditional (single–frequency) schemes.

5.3.2.4 Time-domain measurement scheme

We note that when a complete measurement of one of the correlators discussed
in Section 5.4 is performed with perfect resolution in time and perfect accuracy,
this would also determine the state of the nuclear spin system and thus narrow
the distribution of nuclear spin states. This is because the frequency of the
oscillating correlators is given by

√
J2 + 4(δhz

n)2 and thus measuring the fre-
quency of the correlator determines the eigenvalue δhz

n of the nuclear–spin sys-
tem. However, it may be possible to perform a weak measurement of the decay
of the correlators and thus also to see the prolongation of the decay after ap-
plying a narrowing scheme. To understand in detail the effect of measurements
in the time domain, further study is required. Narrowing through measurement
of the correlators is a time-domain measurement. In contrast, the narrowing
schemes we have proposed above are frequency-domain measurements. If the
frequency resolution is better than the time resolution, our method would most
likely be more suitable.

5.4 Correlation Functions in the Sz = 0 Sub-

space

In this section we investigate the Hamiltonian H0 of Eq. (5.1) with static
exchange coupling J . Using this Hamiltonian we wish to calculate correla-
tion functions for several observables in the subspace of zero total spin in the
z–direction. In our previous work [50] we calculated the time evolution of a
particular correlator involving the states |S〉 and |T0〉. However, there are four
additional independent correlators involving the x and y components of pseudo–
spin which require a separate calculation. Quite surprisingly, it will turn out
that these correlators have different decay behavior in time. The correlators we
calculate here show the decoherence properties of the pseudo–spin states un-
der the influence of the hyperfine interaction. There may be additional sources
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of decoherence which we do not consider here, such as orbital dephasing, cor-
rections to the effective Hamiltonian, [50] the coupling of the QPC to the dot
spins, [64] etc. The results of this section will help to give requirements on the
parameters of the system in order to initialize in the state |↑↓〉 and to assess the
fidelity of a

√
SWAP operation with static J (see Section 5.5).

Diagonalizing H0 gives the following eigenvalues and eigenvectors

E±
n =

J

2
± 1

2

√
J2 + Ω2

n, (5.34)

∣∣E±
n

〉
=

(Ωn/2) |S〉 + E±
n |T0〉√(

E±
n

)2
+ (Ωn/2)

2
⊗ |n〉 , (5.35)

where again |n〉 is an eigenstate of the operator δhz with δhz |n〉 = δhz
n |n〉. At

t = 0 we fix the electron system in an arbitrary superposition of |T0〉 and |S〉

|ψe(t = 0)〉 = |A〉 ; |A〉 = cos
θA

2
|S〉 + eiϕA sin

θA

2
|T0〉 . (5.36)

The nuclear-spin system is again in a general state (see Section 5.2.1). As will
be shown in Sec. 5.5, it is possible, in principle, to initialize to an arbitrary state
in the subspace spanned by |T0〉 and |S〉. The probability to find the electron
spins in a state |B〉 at t > 0 is given by the correlation function:

CBA(t) =
∑

n

ρI(n)
∣∣〈n| ⊗ 〈B| e−iH0t |A〉 ⊗ |n〉

∣∣2 , (5.37)

where ρI(n) =
∑

i pi|ai
n|2. The correlation function has the following symme-

try: CBA(t) = CAB(−t), and if |B〉 and |D〉 are orthogonal states we have
CBA(t) = 1 − CDA(t). Further, we may decompose CBA(t) into the sum of a
time-independent term Cn

BA and an interference term C int
BA(t):

CBA(t) = Cn
BA + C int

BA(t), (5.38)

where the overbar is defined in Eq. (5.10).
We have further Cn

BA = CBA(δhz
n) = CBA(x). Performing the continuum

limit as described in Eq. (5.11) we obtain for the correlation function

CBA(t) =

∫ ∞

−∞
dxρI;σ0,x0

(x)
(
CBA(x) + C int

BA(x, t)
)

(5.39)

= C∞
BA + C int

BA(t). (5.40)

Here, C∞
BA is the assymptotic value of the correlator CBA(t) for t → ∞.

We have calculated correlation functions for the following states: |S〉 →
|τz = −1〉 , |T0〉 → |τz = +1〉 , |X〉 → |τx = +1〉 = 1√

2
(|T0〉 + |S〉) , |Y 〉 →

|τy = +1〉 = 1√
2

(|T0〉 + i |S〉). The frequency in the interference term is al-

ways given by s(x) =
√

J2 + 4x2. In Table 5.1 we list the integrands according
to the notation in Eq. (5.39). From the Heisenberg equation of motion we find
dτx

dt = −Jτy, which leads to relations for the correlators. In the notation used

in Table 5.1 we obtain dCXX

dt = −J
(
CY X − 1

2

)
, which is satisfied by the results

shown in Table 5.1. Similar relations can be derived for the other correlators
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CBA(t) CBA(x) C int
BA(x, t)

CT0S(t) 2x2

s(x)2 − 2x2

s(x)2 cos(s(x)t)

CT0X(t) 1
2 + Jx

s(x)2 − Jx
s(x)2 cos(s(x)t)

CT0Y (t) 1
2

x
s(x) sin(s(x)t)

CY X(t) 1
2

J
2s(x) sin(s(x)t)

CY Y (t) 1
2

1
2 cos(s(x)t)

CXX(t) 1
2 + 2x2

s(x)2
J2

2s(x)2 cos(s(x)t)

Table 5.1: Functions CBA(x) and C int
BA(x, t) according to the notation of Eq.

(5.39) for different correlators (with s(x) =
√

J2 + 4x2). CXX(t) is a linear
combination of other correlators.

and used to check the results in Table 5.1. We see that CXX(t) is a linear
combination of other correlators: CXX(t) = CY Y (t) + CT0S(t). For CT0X and
CT0Y the interference term is an odd function in x. Thus, the time dependence
vanishes for x0 = 0 and we have CT0X = CT0Y = 1/2 for all t. In general,
the integral in Eq. (5.39) is difficult to solve exactly. Thus, we concentrate on
several interesting limits. We illustrate this for the case of CY X(t) and give
results for the other correlators. We have

CY X(t) =
1

2
+ Im

[
C̃ int

Y X

]
, (5.41)

C̃ int
Y X =

∫ ∞

−∞
ρI;σ0,x0

(x)
J

2s(x)
eis(x)t. (5.42)

In the regime of |x0| ≫ σ0 the main contribution to the integral comes from a
narrow region around x0 and we may approximate J

2s(x) ≈ J
2ω0

where ω0 = s(x0)

and in the frequency term s(x) ≈ ω0 + 4x0

ω0
(x−x0)+ . . . . For this to be a good

approximation, we require 2J2

w3
0

(x − x0)
2t ≪ 1. We use (x − x0)

2 ≈ σ2
0 and thus

obtain for the correlator and the range of validity in this limit

C int
Y X(t) =

J

2ω0
e
− 1

2

„
t

t′′
0

«
2

sin(ω0t), (5.43)

t′′0 =
ω0

4|x0|σ0
, ω0 =

√
J2 + 4x2

0, (5.44)

|x0| ≫ σ0, t ≪ (J2 + 4x2
0)

3/2

2J2σ2
0

. (5.45)
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The results for the other correlators are (with the same range of validity)

C int
T0S(t) = −2x2

0

ω2
0

e
− 1

2

„
t

t′′
0

«
2

cos(ω0t), (5.46)

C int
T0X(t) = −Jx0

ω2
0

e
− 1

2

„
t

t′′
0

«
2

cos(ω0t), (5.47)

C int
T0Y (t) =

x0

ω0
e
− 1

2

„
t

t′′
0

«
2

sin(ω0t), (5.48)

C int
Y Y (t) =

1

2
e
− 1

2

„
t

t′′
0

«
2

cos(ω0t). (5.49)

In this limit we obtain a Gaussian decay for all correlators on a time scale
t′′0 = ω0

4|x0|σ0
which grows with the absolute value of the exchange coupling |J |

and with 1/σ0. The long–time saturation value is 1/2 for CY X . For some of the
other correlators we find non–trivial parameter–dependent saturation values. In
the limit of |x0| ≫ σ0 we obtain these correlators by the same approximation
as for the interference term, i.e. we set CBA(x) = CBA(x0) and obtain

C∞
T0S =

2x2
0

J2 + 4x2
0

; |x0| ≫ σ0, (5.50)

C∞
T0X =

1

2
+

Jx0

J2 + 4x2
0

; |x0| ≫ σ0, (5.51)

C∞
T0Y = C∞

Y X = C∞
Y Y =

1

2
. (5.52)

For large J the saturation value is quadratic in x0/J for CT0S and linear for
CT0X . The saturation value for CT0S goes to zero for |J | ≫ |x0| and for CT0X

approaches 1/2. C∞
T0X reaches extrema equal to 1

2 + 1
4 sign(Jx0) for |J | = 2|x0|.

Next we consider Eq. (5.39) for |J | ≫ max(|x0|, σ0) and find

s(x) =
√

J2 + 4x2 ≈ |J | + 2x2

|J | , (5.53)

J

2s(x)
=

J

2
√

J2 + 4x2
≈ sign(J)

(
1

2
− x2

J2

)
. (5.54)

For Eq. (5.53) we have the additional requirement that t ≪ |J|3
2max(x4

0
,σ4

0
)
. Under

these approximations we find the following result:

C̃ int
Y X(t) = sign(J)

(
1

2
ξ(t) − σ2

0

J2
ξ3(t) − x2

0

J2
ξ5(t)

)

× exp

(
i|J |t − x2

0

2σ2
0

(
1 − ξ2(t)

))
,

ξ(t) =

(
1 − i

t

t′0

)−1/2

, t′0 =
|J |
4σ2

0

,

|J | ≫ max(|x0|, σ0), t ≪ |J |3
2max(x4

0, σ
4
0)

. (5.55)
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At short times we expand ξ2(t) ∼ 1+ i t
t′
0

−
(

t
t′
0

)2

. Keeping only lowest order

in t/t′0 in the prefactor and second order in the frequency term we obtain

C int
Y X(t) = sign(J)

1

2
e
− 1

2

„
t

t′′
0

«
2

sin (ω′
0t) , (5.56)

t′′0 ≈ |J |
4|x0|σ0

, ω′
0 = |J | + 2(x2

0 + σ2
0)

|J | , (5.57)

t ≪ t′0 =
|J |
4σ2

0

, |J | ≫ max(|x0|, σ0). (5.58)

The |x0| ≫ σ0 limit of this result agrees with the |J | ≫ |x0| limit of Eq. (5.43).
Again, we have a Gaussian decay on the same time scale t′′0 as in Eq. (5.43)
(ω0 =

√
J2 + 4x2

0 ∼ |J | for |J | ≫ |x0|). One interesting feature of this correlator
is the fact that there is a change of phase by π when the sign of the exchange
coupling J changes. This feature offers the possibility of measuring J even for
small values of J through a measurement of this correlator. We also list the
other correlators in this regime:

C int
T0S(t) = −2(x2

0 + σ2
0)

J2
e
− 1

2

„
t

t′′
0

«
2

cos(ω′
0t), (5.59)

C int
T0X(t) = −x0

J
e
− 1

2

„
t

t′′
0

«
2

cos(ω′
0t), (5.60)

C int
T0Y (t) =

x0

|J |e
− 1

2

„
t

t′′
0

«
2

sin(ω′
0t), (5.61)

C int
Y Y (t) =

1

2
e
− 1

2

„
t

t′′
0

«
2

cos(ω′
0t). (5.62)

Finally, we are also interested in the behavior for large t. Thus, we expand Eq.
(5.55) for large times ξ(t ≫ t′0) ∼ eiπ/4

√
t′0/t and obtain

C int
Y X(t) ∼ sign(J)e

− x2
0

2σ2
0

√
|J | sin(|J |t + π

4 )

4σ0t
1
2

, (5.63)

t ≫ t′0 =
|J |
4σ2

0

, |J | ≫ max(|x0|, σ0). (5.64)

For the other correlators we find

C int
T0S(t) ∼ −e

− x2
0

2σ2
0

cos(|J |t + 3π
4 )

4σ0

√
|J | t 3

2

, (5.65)

C int
T0X(t) ∼ −sign(J)e

− x2
0

2σ2
0

x0

√
|J | cos(|J |t + 3π

4 )

8σ3
0t

3
2

, (5.66)

C int
T0Y (t) ∼ e

− x2
0

2σ2
0

x0

√
|J | sin(|J |t + 3π

4 )

8σ3
0t

3
2

, (5.67)

C int
Y Y (t) ∼ e

− x2
0

2σ2
0

√
|J | cos(|J |t + π

4 )

4σ0t
1
2

. (5.68)

(5.69)
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Thus, the transverse components of the pseudo-spin have a slower decay (∼
t−1/2) than the longitudinal component (∼ t−3/2). This results from the fact
that the Hamiltonian only has fluctuations along only one direction.

5.5 Analysis of
√

SWAP

In this section we analyze the
√

SWAP gate using the correlation functions de-
rived in the previous section, i.e., we analyze the

√
SWAP gate taking into ac-

count the hyperfine–induced decoherence. The
√

SWAP gate and single–qubit
operations can be used to perform the quantum XOR gate (CNOT) which,
in combination with single–qubit operations, is sufficient for universal quan-
tum computation [1, 152]. In Ref. [21] implementation of

√
SWAP has been

demonstrated. However, in these experiments there was a contrast reduction of
∼ 40%. Here we show that taking into account hyperfine induced decoherence,
still near–unit fidelity can be obtained for this operation.

The Hamiltonian of Eq. (5.1) induces unitary time evolution on the states of

the system: |ψ(t)〉 = U(t) |ψ(0)〉 with U(t) = T exp(−i
∫ t

0
H(t′)dt′). We assume

that J and x0 can be switched adiabatically [13] on a time scale that is much
shorter than the time required for the gate operation and thus the time evolution
operator at time τs has the form

Us = exp (−iτsH) . (5.70)

In a Bloch–sphere picture this operator induces a rotation about an axis in the
plane spanned by eigenstates of τx and τz, |X〉 = |↑↓〉 and |S〉 = (|↑↓〉−|↓↑〉)/

√
2

[148]. The axis of rotation is determined by the parameters J and x0. Through
such an operation any state may be rotated into any other state on the Bloch
sphere. Thus, it is possible to rotate from |S〉 to any initial state in the subspace
of Sz = 0 by a single operation. This is important since initialization to the
singlet is feasible by preparing a ground–state singlet with both electrons on the
same dot and then changing the bias [21]. We now investigate initialization to
the state |X〉 taking into account hyperfine–induced decoherence. The scheme
we propose here is different from the one used in Ref. [21], where adiabatic
passage from the singlet to the |↑↓〉–state is used. Our scheme requires control
of x0. We assume the system to be in the singlet state |S〉 at t = 0 and then
switch J and x0 such that J = −2x0 and |x0| ≫ σ0. In a Bloch–sphere picture,
this corresponds to a rotation about an axis that halves the angle between |S〉
and |X〉. Since CXS(t) = CSX(−t) = 1 − CT0X(−t) we have, for the above
choice of parameters, according to Eqs. (5.47) and (5.51):

CXS(t) =
1

2
+

1

4

(
1 − cos(

√
2|J |t)e

− 1
2

„
t

t′′
0

«
2)

, (5.71)

J = −2x0, |x0| ≫ σ0, (5.72)

t′′0 =
1√
2σ0

, t ≪ (J2 + 4x2
0)

3/2

2J2x2
0

. (5.73)

This correlator reaches its maximum for
√

2|J |t = π, i.e., at τs = π√
2|J| . The

time scale for the Gaussian decay is t′′ = 1√
2σ0

. To approach unit fidelity
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we therefore require |J | ≫ σ0, which is the case in the range of validity of
the above correlator since |x0| ≫ σ0 and J and x0 are of the same order.
At t = τs we switch J to zero and since |X〉 ⊗ |n〉 is an eigenstate of the
remaining Hamiltonian, the system remains in this product state, untouched by
decoherence induced via the nuclear spins. This scheme thus provides a way to
initialize the double quantum dot system to the state |X〉 = 1√

2
(|T0〉 + |S〉) =

|↑↓〉, where arrows denote the z-component of the electron spin in each dot. In
the same way, it is also possible to initialize in the state |−X〉 = |τx = −1〉 =
1√
2
(|T0〉 − |S〉) = |↓↑〉 by switching to J = 2x0.

It was already proposed in Ref. [1] to implement the
√

SWAP gate by pulsing
the exchange interaction J between the two dots. Here we give a detailed
analysis of the

√
SWAP gate taking into account hyperfine–induced decoherence.

The SWAP operation acts on the basis of the two–electron system as: |↓↓〉 →
|↓↓〉 , |↓↑〉 → |↑↓〉 , |↑↓〉 → |↓↑〉 , |↑↑〉 → |↑↑〉. The SWAP is an operation that acts
only on the subspace of Sz = 0 and leaves the states |↑↑〉 and |↓↓〉 unchanged. In
the system we consider this is naturally implemented through the large Zeeman
splitting that separates |↑↑〉 and |↓↓〉 from the singlet and the Sz = 0 triplet. In
order to analyze the SWAP in the Sz = 0 subspace we consider the regime of
|J | ≫ max(x0, σ0). The correlator C−X,X(t) gives the probability of being in the
state |−X〉 = |↓↑〉 for a system initialized in |X〉 = |↑↓〉. Due to the symmetry
relations for the correlation functions we have C−X,X(t) = 1 − CXX(t) = 1 −
CY Y (t) − CT0S(t) and thus find (using Eqs. (5.59) and (5.62) and neglecting
terms of order (σ2

0 + x2
0)/J2),

C−X,X(t) = 1 − CXX(t) ≈ 1

2
− 1

2
e
− 1

2

„
t

t′′
0

«
2

cos(|J |t),

t′′0 =
|J |

4σ0|x0|
, |J | ≫ max(|x0|, σ0), t ≪ t′0 =

|J |
4σ2

0

. (5.74)

We obtain the maximum value for this correlator when τs = π
|J| . The Gaussian

has a decay time of t′′0 = |J|
4σ0|x0| , so for x0 → 0 the Gaussian decay is negligible

and we obtain unit fidelity for this SWAP operation |↑↓〉 → |↓↑〉 up to a global
phase factor (which is not visible in the correlator).

From the SWAP operation it is only a small step towards the
√

SWAP which
we obtain when we let the system evolve with the same parameter values but
for only half the time. Starting in the state |X〉 we obtain |Y 〉 after applying a√

SWAP. For large |J | we find for the correlator CY X in the limit x0 → 0

CY X(t) =
1

2
+ sign(J)

1

2
e
− 1

2

„
t

t′′
0

«
2

sin(|J |t), (5.75)

t′′0 =
|J |

4σ0|x0|
, |J | ≫ max(|x0|, σ0), t ≪ t′0 =

|J |
4σ2

0

. (5.76)

Here again the time scale of the Gaussian decay is |J|
4σ0|x0| and approaches infinity

for x0 → 0. The time during which we have to operate with these values of the
parameters J and x0 is now τs = π

2|J| . Our calculations show that for the time

during which J is pulsed high there is a regime in which unit fidelity may be
approached. The reduced visibility in the experiment [21] may be due to several
reasons such as reduced visibility in the readout of |↓↑〉 or the initialization of
|↑↓〉.
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5.6 Conclusion

We have developed a method that uses the measurement of a Rabi resonance
in the quantum–dot spin qubit to narrow the distribution of the nuclear spin
states. This method relies on Rabi oscillations induced via an oscillation of the
singlet–triplet splitting J in the subspace Sz = 0 of two electrons in a double
quantum dot forming a two–qubit system. Further, we have calculated several
correlators in the Sz = 0 subspace for static J and found that the transverse
components of pseudo–spin have a slower decay than the longitudinal one. We
have also discussed the implementation and fidelity of the

√
SWAP–gate in this

system and the initialization to the |↑↓〉, |↓↑〉 states.



Chapter 6

Molecular states in

cabon-nanotube double

quantum dots

[M. R. Gräber, W. A. Coish, C. Hoffmann, M. Weiss, J. Furer, S. Oberholzer,
D. Loss, and C. Schönenberger Phys. Rev. B 74, 075427 (2006)]

In this chapter we report electrical transport measurements through a semicon-
ducting single-walled carbon nanotube (SWNT) with three additional top-gates.
At low temperatures the system acts as a double quantum dot with large inter-
dot tunnel coupling allowing for the observation of tunnel-coupled molecular
states extending over the whole double-dot system. We precisely extract the
tunnel coupling and identify the molecular states by the sequential-tunneling
line shape of the resonances in differential conductance.

6.1 Introduction

The interference of quantum states is one of the most striking features of nature
enabling the formation of molecular bonds. This bond formation can be studied
in coupled quantum dots (artificial molecules) in regimes that are not accessible
in true molecules [153, 42, 154, 21, 55]. Additionally, these engineered artificial
molecules have been proposed as logic elements for future applications in spin-
based quantum computing [14]. Whereas most electrical transport experiments
on coupled quantum dots so far have investigated GaAs-based semiconductor
quantum dots (see [30] and references therein), only recently such structures
have been realized in carbon nanotubes and semiconducting nanowires [3, 2].
These materials are attractive not just for the relative ease in production, but
also for the fact that superconducting and ferromagnetic contacts have been
demonstrated [155,156,157], opening up a road for various kinds of novel quan-
tum devices [158]. In addition, large spin dephasing times are expected for
carbon-based quantum dots, since the nuclear spin of the dominant isotope 12C
is zero, yielding a strongly reduced hyperfine interaction.
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In this chapter, we report electrical transport measurements through a semi-
conducting single-walled carbon nanotube (SWNT) with source and drain elec-
trodes and three additional top-gates. In specific gate-voltage ranges the system
acts as a double quantum dot with large inter-dot tunnel coupling t, allowing
for the observation of a quantum-mechanical superposition of |n,m + 1〉 and
|n + 1,m〉 states where n and m denote the number of charges on the left and
right dot, respectively. Using an effective single-particle picture, we precisely
determine the tunnel coupling and identify molecular-like states with wave func-
tions extending over the whole nanotube double dot.

6.2 Experiment

Single-walled carbon nanotubes were grown by means of chemical vapor depo-
sition (for details see Ref. [159]) on a highly-doped Si substrate covered by an
insulating layer of 400 nm SiO2. Single nanotubes were selected using a scanning
electron microscope. Three 200 nm wide local gates equally spaced by 400 nm
were then defined by means of standard electron beam lithography and e-gun
evaporation of SiO2, Ti and Pd. Finally, Pd source and drain contacts were
fabricated. Figure 6.1(a) shows a schematic of the device, the materials used,
and corresponding film thicknesses. A scanning electron micrograph of a device
is shown in Figure 6.1(b).

Room temperature characterization identifies the semiconducting nature and
an intrinsic p-doping state of the nanotube. Figure 6.1(c) shows the linear
conductance through the device as a function of the three top-gate voltages. At
a top-gate voltage of roughly 0.4 V conductance is suppressed indicating that
the chemical potential is shifted into the semiconducting gap of the tube. Five
identically-prepared devices were tested at room temperature and showed the
same behavior.

Low-temperature measurements were performed in a 3He cryostat with a
base temperature of 290 mK. Differential conductance dI/dVsd was measured
using standard lock-in techniques with an excitation voltage of typically 7.5 µV
at a frequency of 327.7 Hz and an I/V converter with a gain of 107 V/A. The
inset of Figure 6.1(c) shows a colorscale plot of the linear conductance versus
voltages applied at gates 1 and 2 for a constant center gate voltage VC = −1 V
at 2.2 K. Again, applying positive voltages of the order 1 V to any of the top-
gates locally shifts the chemical potential into the energy gap of the intrinsically
p-doped SWNT and thus suppresses electrical transport. Additionally, sweep-
ing gate 1 and gate 2 leads to pronounced oscillations of the conductance due to
single-electron charging and finite-size effects of the nanotube, which are acces-
sible at low temperatures. For the measurements presented in the following, the
center and back-gate were kept at constant voltages VC = −0.1 V, VBG = 0 V,
respectively, and no magnetic field was applied.

A magnified colorscale plot of the differential conductance dI/dVsd in a re-
duced gate-voltage range is shown in Figure 6.2(a). The visible high-conductance
ridges define a charge-stability map that is shaped like a honeycomb. This hon-
eycomb pattern is characteristic of a double quantum dot. Within each cell, the
number of holes (n,m) on the two dots is constant. Energizing gate 1 (2) to more
negative voltages successively fills holes into dot 1 (2), whereas a more positive
voltage pushes holes out of the dot. Two identical devices were measured at low
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Figure 6.1: (a) Schematic of the fabricated device, with three top-gates as la-
belled in (b). (b) Scanning electron micrograph of a sample fabricated identi-
cally to the one measured. The distance from source to drain is 2.2 µm. Dashed
circles denote the regions affected by gates 1 and 2. (c) Conductance G through
the device at T = 300 K versus top-gate voltage. All gates not swept are con-
nected to ground. Note: Differences between the individual gate scans at 0 V
arise from slightly hysteretic gate responses. Inset: Colorscale plot of G versus
gate 1 and gate 2 for fixed VC = −1 V at 2.2 K. Bright corresponds to 0.4 e2/h,
dark to 0 e2/ h.
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temperatures and both exhibited a similar honeycomb pattern

Of particular importance for sequential tunneling through the double dot
are the so-called triple points, the two blue points in Figure 6.2(a), for example.
At these points, three charge states are simultaneously degenerate (e.g. (n,m),
(n + 1,m), and (n,m + 1)), enabling the shuttling of a single electron from
source to drain through the two dots. The conductivity in the vicinity of a triple
point strongly depends on the relative magnitude of the electrostatic and tunnel
coupling. For purely electrostatic coupling, the triple points are sharply defined,
while they become blurred, leading to curved edges, if quantum-mechanical
tunneling is turned on.

We will first analyze the honeycomb pattern, assuming purely electrostatic
interaction as illustrated in Figure 6.2(d). Hence, we disregard the tunnel cou-
pling between the dots for the moment. In the quantitative determination of the
dot and gate capacitances, we follow the work of van der Wiel et al [30]. From the
dimensions of a single cell ∆VG1,2 =| e | /CG1,2 as illustrated in Figure 6.2(b),
one obtains the gate capacitances CG1 = 23 aF and CG2 = 21 aF. Applying a
finite source-drain bias voltage Vsd results in a broadening of the triple points
at the honeycomb edges into triangular-shaped regions, see Figure 6.2(c). In
our device the triangles are less clearly defined due to finite temperature and
the strong tunnel coupling between the dots which we will discuss in the follow-
ing paragraphs. Using the relation CG1,2/C1,2 = |Vsd|/δVG1,2, the capacitances
C1 = CS + CG1 + Cm and C2 = CD + CG2 + Cm follow to be 84 aF and 145 aF,
respectively, from which we obtain UC1,2

= e2/C1,2 ≈ 1.9 meV and 1.1 meV for
the on-site charging energies of the dots, in agreement with the dimensions of
the Coulomb blockade diamonds at finite bias (not shown). The mutual capac-
itance Cm between the two dots can now be estimated from the triple-point
spacing ∆V m

G1,2 in Figure 6.2(b) using ∆V m
G1,2 = |e|Cm/CG1,2C2,1. We obtain

Cm ≈ 15 aF.

We emphasize that disregarding tunneling between the dots is a very strong
assumption. The purely electrostatic model, which we have used up to now,
overestimates Cm and can only yield an upper bound. That tunneling is ap-
preciable in this double-dot system is evidenced by the honeycomb borders in
Figure 6.2(a), which are bright over an extended range. In addition, the high-
conductance ridges are curved in the vicinity of the triple points, as expected for
strongly tunnel-coupled dots. Analyzing this curvature allows us to precisely
extract the tunnel coupling amplitude t (see Figure 6.3). To do so, a convenient
description is developed first.

We adopt a model Hamiltonian of the form H = HC + HT + HL, describ-
ing the system depicted in Figure 6.2(e). Here, HC describes the orbital and
Coulomb energies of the double-dot system, HT = t (|n + 1,m〉 〈n,m + 1| + h.c.)
the tunnel-coupling between the two dots, and HL the coupling of each dot to
the leads. In HC , we include on-site (U) and nearest-neighbor (U ′) charging
energies. States with a fixed number of charges on each dot are eigenstates of
HC : HC |n,m〉 = Enm |n,m〉, where Enm = Eorb

nm + U
2 [n(n − 1) + m(m − 1)] +

U ′nm+E1n+E2m. Eorb
nm is the total orbital energy of the |n,m〉 charge config-

uration, and E1(2) is the single-particle energy of the left (right) dot, supplied
by the gate voltages VG1,2. In a simple picture of sequential tunneling1 through

1 We define a sequential-tunneling process for the double dot as a process that changes the
total charge on the double-dot by one, as in Ref. [39].
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Figure 6.2: (a) Colorscale plot of the conductance versus voltage applied
on gate 1 (VG1) and gate 2 (VG2) at a temperature of T = 290 mK and
Vsd = −128 µV. The resulting honeycomb pattern represents the charge sta-
bility diagram of coupled double quantum dots. Two triple points are marked
by blue dots for clarity. Dashed lines are guides to the eye. (b) Close-up of a
single honeycomb cell. (c) Vicinity of the triple points at a source-drain bias
voltage of 391 µV. (d) and (e) Capacitive and molecular model of a double
quantum dot, respectively.
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Figure 6.3: (a) Colorscale plot of the differential conductance (Vsd = 20 µV,
T = 290 mK) in the vicinity of two triple points. Dashed lines are guides to the
eye. (b) Spacing E∆ (see Eq. (6.2)) of the two high conductance wings with
respect to the ∆-direction versus detuning ǫ. Inset: Schematics of sequential
tunnel processes allowed at the triple points (blue dot) and at the honeycomb
edges (red circle) via molecular states.

HC-eigenstates (neglecting HT to leading order), one would expect nonzero
conductance only at the triple points. It is only at these points that energy-
conserving processes of the kind |n,m〉 → |n + 1,m〉 → |n,m + 1〉 → |n,m〉 can
lead to charge transport through the double dot (blue sequence in the inset of
Figure 6.3(b)).

However, if we allow for superposed double-dot states of the form |E〉 =
α |n + 1,m〉+β |n,m + 1〉, sequential transport is possible along the honeycomb
edges as well (red sequence in the inset of Figure 6.3(b)). Such superposed states
are eigenstates of the full double-dot Hamiltonian HC +HT . For spinless holes2

and assuming that only a single eigenstate |E〉 participates in transport, the
stationary sequential-tunneling current is then given by

I = |e|Γ[fs(µ2dot) − fd(µ2dot)]. (6.1)

Here, fl(µ2dot) = 1/ (exp [(µ2dot − µl)/kT ] + 1) is a Fermi function at temper-
ature T , µl (l = s(d)) the chemical potential of the source (drain) lead, and
Γ = |αβ|2ΓsΓd/(α2Γs + β2Γd), with Γs(d) the dot-lead tunneling rate to the
source (drain). The chemical potential of the double dot µ2dot depends on
whether sequential tunneling occurs at |n,m〉 ↔ |E〉 (right branch in the inset
of Figure 6.3(b)), or at |n + 1,m + 1〉 ↔ |E〉 (left branch): µ2dot = E−Enm for
the former and En+1,m+1 − E for the latter.

With the help of Eq. (6.1), the data allow for a precise quantitative analysis of
the tunnel coupling t between the dots. Figure 6.3(a) shows a colorscale plot (lin-
ear scale) of the differential conductance at Vsd = 20µV≈ kT in the vicinity of
a triple point region. As expected in the presence of tunnel-coupled eigenstates,
transport is possible not only at the triple points, but also on the wings extend-
ing from the triple points. The two gate voltages VG1 and VG2 are converted into
energies E1 and E2 by multiplying them with the conversion factors α1 = 0.42e

2Note that in a spinless description we exclude the possibility of e.g. spin-blockade, which,
in our experiment, has not been observed.



6.2. EXPERIMENT 107

and α2 = 0.29e, which we obtain from the splitting of a differential conductance
resonance at finite bias voltage, as will be discussed in the context of Figure 6.4.
We then change variables to ǫ = (E1 − E2)/

√
2 and ∆ = (E1 + E2)/

√
2. In

terms of these new variables, the double-dot molecular eigenenergies are (up
to a constant offset) E±(∆, ǫ) = Emn(∆, ǫ) +

(
∆ ∓

√
ǫ2 + 2t2

)
/
√

2. When
the bias and temperature are smaller than the double-dot level spacing (i.e.,
Vsd, kT < E−−E+), transport occurs only through the ground-state |E+〉. For
small bias, we set µ1 = µ2 = µ, then transport is due to energy-conserving
transitions between the state |E+〉 and either |n,m〉 (when E+ − Enm = µ) or
|n + 1,m + 1〉 (when En+1,m+1 −E+ = µ). These conditions are fulfilled at the
two high-conductance wings. The separation of the wings in the ∆-direction
(E∆) is given by:

E∆ =
√

2U ′ +
√

4ǫ2 + 8t2. (6.2)

In Figure 6.3(b) the spacing of the two wings E∆ is plotted versus the detun-
ing ǫ and fit to Eq. (6.2). Satisfactory fits to the data yield a tunnel coupling
of t = 310 . . . 360 µeV and U ′ < 100µeV . The parameters of the fit shown
are t = 358 µeV and U ′ = 16 µeV . The relative magnitudes are compared as
2t ≈ 0.7 meV ≫ U ′ < 0.1 meV. The fact that the tunnel coupling dominates by
almost an order of magnitude over the electrostatic coupling between the dots
reflects the one-dimensional geometry of a nanotube; electrostatic interactions
are reduced due to the large separation of the ”center of mass” of the charges
(while still allowing a significant overlap of the wavefunctions). Similar molec-
ular states have been analyzed in semiconductor vertical-lateral double dots,
yielding a smaller tunnel coupling t ≈ 80µeV and larger U′ ≈ 175µeV [47]. Us-

ing U ′ < 100 µeV and U ′ = 2e2Cm

C1C2−C2
m

[34], one obtains a mutual capacitance of

Cm . 4 aF, consistent with the previous estimate Cm ≤ 15 aF from the purely
electrostatic model.

Because t ≫ kT at T = 0.3 K, charge transport in the vicinity of the triple
points takes place through a single molecular orbital (the bonding orbital of
the two dots). This can be distinguished from two-stage hopping if dI/dVsd

is further analyzed as a function of bias voltage. More specifically, we demon-
strate next that the finite-bias differential conductance through the double dot
is accurately described by the sequential tunneling through a single molecular
state according to Eq. (6.1).

Figure 6.4 shows a map of the differential conductance in the vicinity of the
two triple points (same region as Figure 6.3) for three different source-drain
voltages. On the right side, traces of the differential conductance with respect
to gate 1 are extracted for fixed voltage applied to gate 2 (dashed line), well
separated from the triple points. In Figure 6.4(a) the conductance trace has a
single peak. In the finite-bias cases (b) and (c) the single peak splits into two
peaks. Because of the linear dependence of the peak splitting on bias (inset
of Figure 6.4(a) for gate 1), the second peak is not due to an additional level
entering the bias window. To understand this feature, we note that the differ-
ential conductance is measured by modulating the source voltage µ1, keeping
the drain voltage µ2 and all other gate voltages fixed. Assuming the double-dot
charge is fixed, capacitive coupling of the source to the double dot induces a si-
multaneous modulation of µ2dot, albeit with an amplitude reduced by the factor
r = ∂µ2dot/∂µ1 = CS/CΣ, where CΣ ≈ CS + CD + CG1 + CG2. From Eq. (6.1)
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Figure 6.4: Colorscale plot of the differential conductance in the vicinity of the
same triple point as in Figure 3 for three different bias voltage: (a) Vsd = 20 µV,
(b) Vsd = 391 µV and (c) Vsd = −647 µV. Dark corresponds to 0 e2/h and bright
to 0.1 e2/h. On the right side, open circles denote traces of the differential
conductance taken at the position of the dashed line. Solid lines represent fits
to the line shape given by Eq. (6.3). Left-hand vertical scale: Voltage applied
to gate 1. Right-hand vertical scale: Voltage applied to gate 1 converted into
energy.
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the differential conductance for our setup is then given by

dI

dµ1
= − |e|Γ[(1 − r) f ′

s(µ2dot) + rf ′
d(µ2dot)] , (6.3)

where f ′
l (x) = d

dxfl(x). Sequential tunneling through a single molecular level
therefore predicts a double-peaked structure with peaks separated by the bias

voltage, as observed in Figure 4. The spacing of the two peaks can thus be used
to convert top-gate voltages into energy and one obtains the conversion factors
given above. For our device, we have CS ≈ 65 aF, CΣ ≈ 230 aF, which yields
r ≈ 0.3. According to this model the relative height of the two differential con-
ductance peaks should be roughly r

1−r ≈ 0.5. This value is consistent with the
data shown in Figure 4 (with ratios of 0.42 in (b) and 0.28 in (c)). Additionally,
we find that the asymmetry of the peaks switches from positive (b) to negative
(c) bias, as is expected from Eq. (6.3).

The data in Figure 4(a) have been fit to Eq. (6.3) yielding a peak width of
49 µeV. Note that in this case Vsd ≈ kT and the peak thus does not split. Sub-
tracting the bias of 20µeV one obtains an effective temperature of the electrons
of 29 µeV ≈ 335 mK. Fitting Figure 4(b) and 4(c) to Eq. (6.3), one obtains
a larger peak width corresponding to temperatures of 785 mK and 1180 mK,
respectively, which we attribute to Joule heating at finite bias.

The excellent agreement of the sequential-tunneling fits demonstrates that
transport occurs through a single level. In this regime of a strongly tunnel-
coupled double dot, transport cannot be captured by dot-to-dot hopping, but
takes root in the formation of coherent molecular states.
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Chapter 7

Exchange-controlled

single-spin rotations in

quantum dots

[W. A. Coish and D. Loss, arXiv:cond-mat/0610443]

In this chapter e show that arbitrary coherent rotations can be performed with
high fidelity on the spin of a single electron confined to a quantum dot using
exchange. These rotations can be performed using electrostatic gating opera-
tions, without the need for spin-orbit interaction or ac electromagnetic fields.
We expect that implementations of this proposal would achieve gate error rates
on the order of η . 10−3, within reach of error-correction schemes.

7.1 Introduction

The elementary building-blocks for universal quantum computing are a two-
qubit entangling operation, such as the cnot-gate or

√
swap-gate and arbi-

trary single-qubit rotations. For qubits based on single electron spins confined
to quantum dots [1], recent experiments have proven that the two-qubit

√
swap-

gate [21] and single-spin coherent rotations [24] can be achieved in practice. If
these operations are to be used in a viable quantum information processor, they
must be performed with a sufficiently small gate error per operation η ≪ 1.
The threshold values of η required for effective quantum error correction de-
pend somewhat on error models and the particular error-correction scheme, but
current estimates range from as low as η < 10−3 − 10−4 [59] to η < 10−2 [160].
In order to achieve these low error rates in the presence of fluctuations in a
solid-state environment, new schemes must be developed which allow gating
operations to be performed quickly and accurately within the relevant decoher-
ence times.

Previous proposals [127] and recent implementations [24] for single-spin rota-
tion in quantum dots have relied on ac magnetic fields to perform electron-spin
resonance (ESR). In ESR, high power requirements for the ac field limit single-

111
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Figure 7.1: Possible setup to implement the scheme proposed here. Ancillary
electron spins at z1 are maintained in a polarized state with a large Zeeman field
bz
1 along z. Qubit spins at z2 are free to precess in a weaker effective Zeeman

field lying in the x-z plane: ∆∆∆ = (bx
2 , 0, bz

2 − J/2). Here, J is the exchange
coupling between the qubit and ancillary spins and b2 is the qubit Zeeman field
in the absence of exchange. When bz

1 ≫ bz
2 ≫ bx

2 , z-rotations are performed if
J ≈ 0 and x-rotations are achieved when J ≈ 2bz

2. An inhomogeneous effective
Zeeman field could be generated using strip lines carrying currents I1 and I2 as
shown, using nanomagnets, by manufacturing dots with different g-factors, or
by selectively polarizing nuclei in one dot relative to the other.

spin Rabi frequencies to values that are much smaller than the operation rates
typically associated with two-qubit operations mediated by exchange [21]. To
circumvent problems associated with high power and to achieve fast coherent
single-qubit rotations, there have been several proposals to use electric-field
(rather than magnetic field) control of electron spin states. These propos-
als aim to perform rotations on multiple-spin encoded qubits [161, 162], re-
quire strong spin-orbit interaction [163, 164, 165, 166], or coupling to excited
orbital states [167]. Qubits encoded in two states having different orbital wave
functions, such as two-spin singlet-triplet qubits [148] or hybridized orbital
states [167] are susceptible to dephasing through fluctuations in the electric
environment, even in the idle state [50, 168, 52]. Proposals that make use of
the spin-orbit interaction [163,164,165,166] are restricted to systems where the
spin-orbit coupling is sufficiently strong, which may exclude promising architec-
tures such as quantum dots made from Si:SiGe [86] and carbon nanotubes [3,5],
where spin-orbit coupling is very weak.

Fortunately, recent groundbreaking experiments have shown that fast sub-
nanosecond control of the exchange interaction can be achieved in quantum
dots, and can be coupled with viable readout schemes [21]. Here we suggest to
perform single-qubit rotations in a way that would marry the benefits of fast
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electrical control of the exchange interaction [21] with the benefits of naturally
long-lived single-electron spin qubits [1]. Our proposal would operate in the
absence of spin-orbit coupling and would act on single electron spins without
ac electromagnetic fields. The trade-offs in this proposal are that we require
a large gradient in the electron Zeeman splitting and each qubit electron spin
must be paired with a polarized ancillary spin (see Fig. 7.1). We have analyzed
our proposal in the presence of the primary sources of error, including hyperfine
interaction, spin-orbit interaction, and orbital dephasing during gating.

7.2 Hamiltonian

We begin from a standard tunneling model for the two lowest orbital levels
of a double quantum dot, including tunnel coupling t12, on-site repulsion U ,
nearest-neighbor repulsion U ′, local electrostatic potentials V1(2) and a local
Zeeman field b1(2) on dot 1(2) (see Refs. [30,169] and references therein):

H = −
∑

lσ

Vlnlσ + U
∑

l

nl↑nl↓ + U ′
∏

l

(nl↑ + nl↓)

+ t12
∑

σ

(
d†1σd2σ + d†2σd1σ

)
−

∑

l

Sl · bl. (7.1)

Here, dlσ annihilates an electron in dot l = 1, 2 with spin σ, nlσ = d†lσdlσ is
the usual number operator, and Sl is the spin density on dot l. We consider a
regime in which the dot potentials V1,2 are tuned to a charge ground state that
lies between (1, 1) and (0, 2) (where (N1, N2) denotes a state with N1(2) electrons
on dot 1(2), see Figs. 7.2(a,b)). Additionally, we require a large Zeeman field
along z in dot 1 (|bz

1| ≫ |bx,y
1 |) so that the spin on dot 1 is frozen into its spin-

up ground state. Finally, we also choose |ǫ ± δbz| ≫ |t12|, |δbz| & |t12|, with
δbz = (bz

1 − bz
2)/2 and ǫ = V2 −V1 −U +U ′, which favors the (1, 1) charge state.

For simplicity, we furthermore choose by
2 = 0. Eq. (7.1) then reduces to the

following low-energy effective Hamiltonian for the spin on dot 2:

Heff = −1

2
∆∆∆ · σσσ; ∆∆∆ = (bx

2 , 0, bz
2 − J(ǫ)/2). (7.2)

When |ǫ| ≫ |δbz|, Eq. (7.1) gives J(ǫ) ≈ −2t212/ǫ. Thus, for a fixed Zeeman
field b2, the direction and magnitude of the effective field ∆∆∆ can be tuned with
gate voltages via its dependence on ǫ (see Fig. 7.2(c)). This can be done in
the absence of spin-orbit coupling and without the application of ac electric
or magnetic fields, which can give rise to “heating” in the electron system.
However, rapid pulsing of J(ǫ) could also be used to drive an electron spin on-
and off-resonance in the presence of a transverse ac magnetic field. We note
that Eq. (7.2) follows directly from a much more general class of Hamiltonians
of the form H = −∑

l bl ·Sl +J(ǫ)S1 ·S2 in the limit where |b1| ≫ |b2|, J , and
so our proposal is not limited to the simplified Hamiltonian given in Eq. (7.1).
Eq. (7.1) neglects the Coulomb exchange energy and excited orbital states. The
Coulomb exchange energy contributes a small fraction to the exchange coupling
compared to the tunneling contribution when the out-of-plane magnetic field is
zero [14] and contributions to J(ǫ) due to excited orbital states [52] are a small
correction when |ǫ| < J(0,2), where J(0,2) is the single-dot exchange coupling on
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dot 2. The model therefore makes quantitatively accurate predictions for J(ǫ)
in this limit. Outside of this range of validity, the functional form J(ǫ) could be
obtained empirically from experiment, as has been done in Ref. [23]. We now
proceed to apply the model in Eq. (1) to describe a complete set of single-qubit
gates and potential sources of gating errors.

7.3 Qubit gates

Arbitrary single-qubit rotations can be achieved with the appropriate composi-
tion of the Hadamard gate (H), π/8 gate (T ), and phase gate (S = T 2) [170]:

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
. (7.3)

T and S are not independent, but both enter naturally in fault-tolerant con-
structions [170]. Up to a global phase, the gates T and S correspond to rotations
about z by an angle φ = π/8 and φ = π/4, respectively. These gates can there-
fore be performed with high fidelity by allowing the electron spin to precess
coherently for a switching time ts = φ/∆z at the operating point ǫA in Figure
7.2(a), where ∆z ≫ ∆x. The H gate can be implemented by pulsing ǫ (see
Fig. 7.2(c)) from ǫA, where ∆z ≈ bz

2 to ǫB = −t212/bz
2, where ∆z ≈ 0. The

pulse is achieved with a characteristic rise time τ , then returns to ǫ = ǫA af-
ter spending the pulse time tp at ǫ = ǫB . The entire switching process (with
total switching time ts = tp + 4τ) is described by a time evolution opearator

U = T ei
R

ts
0

dt∆∆∆(t)·σσσ/2, which, for bx
2 ≪ bz

2 is approximately

U ≈ U(φx, φz) = Rẑ

(
−φz

2

)
Rx̂ (−φx)Rẑ

(
−φz

2

)
, (7.4)

where φx = ∆xtp/~ and φz =
∫ ts
0

dt∆z(t)/~. Here, Rn̂(φ) is a rotation about
the n̂-axis by angle φ. When φx = π/2 and φz = π, Eq. (7.4) gives an H gate,
up to a global phase: U(π/2, π) = iH.

7.4 Errors

We quantify gate errors with the error rate η = 1 − F , where F is the average
gate fidelity, defined by

F =
1

4π

∫
dΩTr

(
Uρin(θ, φ)U†Ũρin(θ, φ)Ũ†

)
. (7.5)

Here, ρin(θ, φ) = |θ, φ〉 〈θ, φ|, where |θ, φ〉 = cos(θ/2) |↑〉 + eiφ sin(θ/2) |↓〉 indi-
cates an inital spin-1/2 coherent state in the qubit basis, U = H,T, or S is the

ideal intended single-qubit gate operation, and Ũ = T exp
[
−i

∫ ts
0

dtH(t)
]

is the

true time evolution of the system under the time-dependent Hamiltonian H(t).
The overbar indicates an isotropic gaussian average over fluctuations in the clas-
sical Zeeman field b2, which we take to model the effects of hyperfine-induced
decoherence. This procedure (an average over classical fields) is an appropriate
model only when the fields have an average magnitude larger than the hyperfine
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Figure 7.2: (a) Charge stability diagram indicating the ground-state charge
configuration (N1, N2) for local dot potentials V1, V2, where N1(2) gives the
number of electrons in dot 1 (2). In the (1, 1) configuration, the exchange
interaction J(ǫ) can be tuned by shifting the double-dot potential difference
ǫ ∼ V2 − V1. (b) When the electron spin in dot 1 is polarized, the qubit
electron acquires a Zeeman shift given by t212/ǫ = −J(ǫ)/2 due to virtual hopping
processes that are allowed for spin-down, but forbidden for spin-up due to the
Pauli principle. (c) Energy spectrum of the Hamiltonian given in Eq. (7.1) for
a strong inhomogeneous magnetic field. At ǫ = ǫA the effective Zeeman field
points along the z-direction for bz

2 ≫ bx
2 and has the size ∆z = bz

2 − J(ǫA)/2.
ǫB is chosen to satisfy J(ǫB) = 2bz

2, in which case the remaining magnetic field
component is oriented along x with size ∆x = bx

2 .
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Figure 7.3: Error rates for the operations described in Figure 7.2. For these plots
we have chosen the parameters t12 = 100µeV, bz

1 = 135µeV (corresponding to
the effective Zeeman splitting for a fully-polarized nuclear spin system in GaAs),
bz
2 = 10µeV, bx

2 = 1µeV , and ǫA = −6meV . For the Hadamard gate, these
values result in ǫB = −t212/bz

2 = −1000µeV , a pulse time tp = π~/2bx
2 = 1ns,

and a rise/fall time τ ≈ π~/4bz
2 = 50ps. Symbols give the results of numerical

integration of the time-dependent Schrödinger equation for the Hadamard gate
(H, circles), phase gate (S, squares), and π/8 gate (T , triangles) where we
include the effect of finite hyperfine fluctuations by averaging the result over
100 Zeeman fields, sampled from an isotropic gaussian distribution of width
σN = 0.03µeV (error bars due to a finite sample of Zeeman fields are smaller
than the symbol size). Solid lines give the estimates for gating error from
Equation (7.9).

fluctuations:
∣∣b2

∣∣2 ≫ σ2
N = b2 · b2 [50]. For a gated GaAs quantum dot, σN

due to hyperfine fluctuations has been measured to be σN = 0.03µeV [22].

Based on the above protocol for gating operations, and assuming that hy-
perfine fluctuations limit the decoherence time of the qubit spins, we find a
suitable parameter regime for high-fidelity single-qubit operations is given by
the following hierarchy:

σN ≪ bx
2 ≪ bz

2 ≪ t12 . bz
1 ≪ |ǫB | < |ǫA|. (7.6)

A set of values for these parameters that satisfies the above inequalities is given
in the caption of Fig. 7.3. We now proceed to evaluate the error in H,T , and S
gates due to the most dominant mechanisms.

The error rate for z-rotations is dominated by the misalignment of the av-
erage field b2 with the z-axis. For a rotation by angle −φ (to leading order in
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bx
2/bz

2), this error rate is

ηz(φ) ≈ 2

3

(
bx
2

bz
2

)2

sin2

(
φ

2

)
. (7.7)

When ∆z = 0, the error rate for x-rotations is dominated by hyperfine fluctu-
ations. We find this error rate, for an x-rotation by angle −φ (to leading order
in σN/bx

2) is

ηx(φ) ≈
(

φ2

18
+

4

9
sin2

(
φ

2

))(
σN

bx
2

)2

. (7.8)

We estimate the error in T and S gates using ηz with φ = π/8 and φ = π/4,
respectively. To estimate the error in the Hadamard gate, we use Eq. (7.4) in
combination with Eqs. (7.7) and (7.8), assuming the errors incurred by each
rotation are independent. These estimates give

η ≈





ηz
(

π
8

)
, (U = T ),

ηz
(

π
4

)
, (U = S),

ηx
(

π
2

)
+ 2ηz

(
π
2

)
, (U = H).

(7.9)

From Eq. (7.9), we find that the error rate for the H gate provides an upper
bound for all error rates, and this rate reaches a minimum at an optimal value
of bx

2 . The optimal value of bx
2 and η at this point are:

bx,opt
2 =

√
C|bz

2|σN , η(bx,opt
2 ) =

4

3
C

σN

|bz
2|

, (7.10)

where C is a numerical prefactor C =
√

1/3 + π2/48 ≃ 0.73. Using the mea-
sured value σN = 0.03µeV and bz

2 = 10µeV , we find an optimized error rate
of η ∼ 10−3. Here we have included the two most dominant error mechanisms.
There are many other potential sources of error, which we discuss in the fol-
lowing paragraph. All numerical estimates are based on the parameter values
given in Fig 7.3.

We estimate error due to leakage to the (0,2) singlet state or hyperfine-

induced spin flips of the ancillary spin to be ∼ max
[
(σN/bz

1)
2
, (t12/ǫA)

2
]
∼

10−4. If switching is done too slowly during the Hadamard gate, the qubit
states will follow the adiabatic eigenbasis, introducing an additional source of
error. We estimate this error to be 1 − P ≈ α, where P = e−α is the Landau-
Zeener tunneling probability, given by [171]

α =
π

~

|bx
2 |2

|dJ(t)/dt| ≈
π|bx

2 |2ǫ2Bτ

2~t212∆ǫ
∼ 10−4. (7.11)

Here, we have used dJ(t)/dt ≈ −2ǫ̇t212/ǫ2B , with ǫ̇ ≈ ∆ǫ/τ , where ∆ǫ = |ǫA−ǫB |.
In the opposite limit, α ≫ 1, the qubit spin could be initialized to |↑〉 with
high probability (as has been done for singlet intialization [21]) by allowing
the system to relax in the (0,2) singlet ground state at large positive ǫ and
then slowly sweeping ǫ to large negative values. In systems with finite spin-
orbit coupling, errors in our scheme could, in principle, arise from spin-orbit
mediated decoherence mechanisms. For these mechanisms, the transverse-spin
decay time T2 is limited by the energy relaxation time T1 (i.e., T2 = 2T1 [62]),
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so it is sufficient to analyze this error in terms of T1, which has been measured
to be T1 & 1ms at magnetic fields of 1 − 10T [88]. This value gives an error
estimate on the order of ts/T1 . 10−6 for a switching time ts ≃ 1 ns. Finally,
rapid voltage-controlled gating in this proposal is made possible only because the
electron spin states are associated with different orbital wave functions during
pulsing, which also makes these states susceptible to orbital dephasing. The
associated dephasing time is, however, strongly suppressed in the limit where
the double occupancy is small: D ≈ (t12/ǫ)2 ≪ 1. In particular, the dephasing

time for the two-electron system is τ
(2)
φ ≈ D−2τ

(1)
φ [50], where τ

(1)
φ ≈ 1 ns [143]

is the single-electron dephasing time in a double quantum dot. This gives an

error estimate of ts/τ
(2)
φ ∼ 10−4, using ts ≈ 1 ns and D ∼ 10−2 at the operating

point ǫ = ǫB . It should be possible to further suppress the error rate due to
orbital dephasing by choosing the operating point ǫB to coincide with a “sweet
spot”, where dJ(ǫB)/dǫ = 0 [50,168,52].

7.5 Numerical analysis

To confirm the validity of the approximations made here and to verify the small-
ness of error mechanisms associated with leakage and finite pulse times, we have
numerically integrated the time-dependent Schrödinger equation for the Hamil-
tonian given in Eq. (7.1) in the basis of the (0,2) singlet state and four (1,1)
states (including spin). We have used the pulse scheme described in Fig. 7.2
and evaluated the gate error rates for T, S, and H from the fidelity in Eq. (7.5).
For the Hadamard gate, we used the symmetric pulse shape

ǫ(t) =





ǫ0 + ∆ǫ
2 tanh

(
2[t−2τ ]

τ

)
, 0 < t < ts

2

ǫ0 + ∆ǫ
2 tanh

(
2[ts−2τ−t]

τ

)
, ts

2 < t < ts
, (7.12)

where ǫ0 = (ǫA + ǫB) /2 and ∆ǫ = ǫB − ǫA. The pulse time tp and rise/fall time
τ = (ts − tp)/4 were fixed using

tp =
π~

2bx
2

; π~ =

∫ ts

0

∆z(t)dt, (7.13)

where the solution to the above integral equation was found numerically. The
results of our numerics are shown in Fig. 7.3. We find good agreement between
the predicted error rates for S and T gates in the limit of large bx

2 (the saturation
values for η at low bx

2 are consistent with our estimates of ∼ 10−4 for error due
to leakage). Additionally, we find reasonable agreement with our estimate for
the H-gate error rate, confirming that we have identified the dominant error
mechanisms, which gives us confidence that an error rate on the order of ∼ 10−3

should be achievable with this proposal.



Appendix A

Self-energy expansion

To expand the self-energy superoperator ΣS in powers of LV , we have found
it convenient to work in terms of a superoperator matrix representation. Here
we give a brief description of its use and apply it to generate the reduced self-
energy at second order in LV for all spin components, and the fourth order for
the longitudinal spin.

Any operator O that acts on both the electron spin and nuclear spin Hilbert
spaces can be written in terms of the 2 × 2 identity, σ0, and the Pauli matrices
σi, i = (x, y, z):

O =
∑

i=(0,x,y,z)

ciσi (A.1)

where the coefficients ci are operators that act only on the nuclear spin space.
Equivalently, O can be written in terms of the operators ρ↑/↓ = 1

2 (σ0 ± σz),

S± = 1
2 (σx ± iσy), i.e.:

O = k↑ρ↑ + k↓ρ↓ + k+S− + k−S+ (A.2)

with operators kj that act on the nuclear spin space. We have labeled the
coefficients kj in this way so that when O = ρS is the electron spin density
operator, k± = 〈S±〉. A superoperator S acting on O maps it to the operator
O′ with new coefficients:

SO = O′ = k′
↑ρ↑ + k′

↓ρ↓ + k′
+S− + k′

−S+. (A.3)

This allows us to write O as a vector and S as a 4 × 4 matrix, the elements of
which are superoperators that act on the nuclear spin space, and are determined
by (A.2) and (A.3):

~O = (k↑, k↓, k+, k−)
T

(A.4)

~O′ =
(
k′
↑, k

′
↓, k

′
+, k′

−
)T

, (A.5)

~O′ = [S] ~O and k′
α =

∑
β Sαβkβ , where α, β =↑, ↓,+,−.

Laplace transforming the reduced self-energy given in (3.26) yields

ΣS(s) = −iTrIL
1

s + iQL
LV ρI(0), (A.6)
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which is expanded in powers of LV

1

s + iQL
=

∞∑

k=0

1

s + iQL0

(
−iQLV

1

s + iQL0

)k

. (A.7)

To obtain these higher order terms in the self-energy, we form products of the
free propagator 1

s+iQL0
and the perturbation QLV . The free propagator is

diagonal in the basis of
{
ρ↑/↓, S±

}
, and is given in terms of 2 × 2 blocks by

[
1

s + iQL0

]
=

(
G0

I(s) 0
0 G0′

I (s)

)
, (A.8)

where

G0
I(s) =

(
G0

↑(s) 0

0 G0
↓(s)

)
, (A.9)

G0′
I (s) =

(
G0

+(s) 0
0 G0

−(s)

)
. (A.10)

In the above,

G0
↑/↓(s) =

1

s ± iQ
2 L−

ω

, (A.11)

G0
±(s) =

1

s ∓ iQ
2 L+

ω

, (A.12)

where we define the new (nuclear spin) Liouvillians by their action on an arbi-
trary operator O: L±

ωO = [ω,O]± , ω = b′+hz. The perturbation term contains
only off-diagonal elements when written in terms of 2 × 2 blocks:

[QLV ] =

(
0 VI

V ′
I 0

)
, (A.13)

where we find

VI =
Q

2

(
hL
− −hR

+

−hR
− hL

+

)
, V ′

I =
Q

2

(
hL

+ −hR
+

−hR
− hL

−

)
. (A.14)

In the above expression, we have introduced superoperators for right and left
multiplication:

ORA = AO (A.15)

OLA = OA. (A.16)

Only even powers of LV can contribute to the final trace over the nuclear
system, so we consider a general term in the expansion of the self-energy

(
[QLV ]

[
1

s + iQL0

])2k

=

(
Σk 0
0 Σ′

k

)
, (A.17)

Σk =
(
VIG

0′
I V ′

I G0
I

)k
, Σ′

k =
(
V ′

I G0
IVIG

0′
I

)k
. (A.18)
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By inspection of the form of VI , V ′
I , we find that the 2×2 matrix TrIΣ

′
kρI(0) is

diagonal when ρI(0) = |n〉 〈n|, and |n〉 is an eigenstate of hz (as in Eq. (3.20)),
since the off-diagonal components always contain terms proportional to h2

+ or
h2
−. Thus, to all orders in the perturbation LV , the reduced self-energy takes

the form

ΣS(s) =




Σ↑↑(s) Σ↑↓(s) 0 0
Σ↓↑(s) Σ↓↓(s) 0 0

0 0 Σ++(s) 0
0 0 0 Σ−−(s)


 . (A.19)

The number of matrix elements left to calculate can be further reduced with the
relationships Σ↑↑(s) = −Σ↓↑(s), Σ↑↓(s) = −Σ↓↓(s), which follow directly from

the condition Trρ̇S = 0 ⇒ ρ̇↑(t) = −ρ̇↓(t) and the GME ρ̇α = −i
∑

β=↑,↓
∫ t

0
dt′Σαβ(t−

t′)ρβ(t′), α =↑, ↓. By direct calculation we find

Σ
(2)
↑↑ (s) = − i

4

∑

k

[h−]nk [h+]kn

(
1

s − iω̄nk
+

1

s + iω̄nk

)
(A.20)

Σ
(2)
↑↓ (s) =

i

4

∑

k

[h+]nk [h−]kn

(
1

s − iω̄nk
+

1

s + iω̄nk

)
(A.21)

Σ
(2)
++(s) = − i

4

∑

k

([h+]nk [h−]kn + [h−]nk [h+]kn)
1

s − iδωnk
. (A.22)

In the above, ω̄nk = 1
2 (ωn + ωk), δωnk = 1

2 (ωn − ωk), and ωj = b′ + [hz]jj . At
fourth order,

Σ
(4)
↑↑ (s) =

i

16

{
∑

k1k2k3

[h−]nk3
[h+]k3k2

[h−]k2k1
[h+]k1n

(
(1 − δnk2

)σk1k2k3

4A (s) + σk1k2k3

4B (s)
)

−1

s

∑

k1k2

[h−]nk2
[h+]k2n [h+]nk1

[h−]k1n σk1k2

4C (s)

}
, (A.23)

Σ
(4)
↑↓ (s) =

− i

16

{
∑

k1k2k3

[h+]nk3
[h−]k3k2

[h+]k2k1
[h−]k1n

(
(1 − δnk2

)σ̄k1k2k3

4A (s) + σ̄k1k2k3

4B (s)
)

−1

s

∑

k1k2

[h+]nk2
[h−]k2n [h−]nk1

[h+]k1n σk1k2

4C (s)

}
, (A.24)

where the overbar indicates complex conjugation for s real and

σk1k2k3

4A (s) =
1

s − iδωnk2

1

s − iω̄nk1

(
1

s − iω̄nk3

+
1

s + iω̄k2k3

)

+
1

s + iδωnk2

1

s + iω̄nk3

(
1

s + iω̄nk1

+
1

s − iω̄k1k2

)
, (A.25)
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σk1k2k3

4B (s) =

1

s − iδωk1k3

(
1

s − iω̄k1k2

+
1

s + iω̄k2k3

) (
1

s + iω̄nk3

+
1

s − iω̄k1n

)
, (A.26)

σk1k2

4C (s) =
4s2

(
s2 + ω̄2

nk1

) (
s2 + ω̄2

nk2

) . (A.27)

Every two powers of the perturbation LV are associated with an additional
sum over ≈ N nuclear spin sites, since every spin flip up must be paired with
a flop down. Non-analyticities (poles) of the self-energy occur in two regions of
the complex plane: at high frequencies, near s ≈ ±iωn, and at low frequency,
around s ≈ 0. Expanding near either of these two points gives an extra factor
1

ωn
for every two orders of QLV

1
s−iQL0

. The self-energy at (2k)
th

order is then

suppressed at least by the factor ∆k, where ∆ = N
ωn

:

Σ
(2k)
S (s) ∝ ∆k, (A.28)

Σ
(2k)
S (s − iωn) ∝ ∆k. (A.29)

Thus, in general, for the perturbation series to be well-controlled, we require
|∆| ≪ 1.



Appendix B

Coefficients c±

We are interested in evaluating the expressions given in Eqs. (A.20), (A.21),
and (A.22). To do this, we investigate objects of the form

∑

k

[h±]nk [h∓]kn f∓(k), (B.1)

where f∓(k) is a function of the state index k. Inserting |n〉, as given in Eq.
(3.20), into (B.1), we find

∑

k

[h±]nk [h∓]kn f∓(k) =
∑

k

A2
kck

∓f∓(k), (B.2)

where the state index k now labels sites at which a nuclear spin has been raised
or lowered, and with the help of the matrix elements: 〈I,m ± 1| I± |I,m〉 =√

(I ∓ m)(I ± m + 1), we have

ck
± =

gn∑

j=1

|αj |2
[
I(I + 1) − mj

k(mj
k ± 1)

]
. (B.3)

We assume the initial nuclear system is uniform, so that ck
± is independent of

the site index k, and for a large number of degenerate states gn ≫ 1 that con-
tribute to |n〉, we replace the sum over weighting factors |αj |2 by an appropriate
probability distribution. This gives ck

± = c± with c± defined in Eq. (3.38) of
the main text.
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Appendix C

Continuum limit

Here, we find a rigorous bound on corrections to the memory kernels, after
we have changed sums to integrals. We consider the real-time version of the
functions I±(s), given in (3.37), with coupling constants for a Gaussian wave
function in two dimensions (m = d = 2 in Eq. (3.9)):

I±(t) =
1

4N

∑

k

A2
ke±iAkt/2, Ak = 2e−k/N . (C.1)

The Euler-MacLauren formula gives an upper bound to the corrections involved
in the transformation of sums to integrals for a summand that is a smooth
monotonic function of its argument. For times t ≫ 1, the summand of I±(t) is
not monotonic on the interval k = 1, . . . , N , where it has appreciable weight.
We divide the sum into t subintervals of width ∆k ≈ N

t . The summand is then
monotonic over each of the t subintervals, and the Euler-MacLauren formula
gives a remainder R ≤ 2

N when the sum over each subinterval is changed to an
integral. Adding the errors incurred for each subinterval, we find (for t ≫ 1):

I±(t) =

[(
e±it − 1

) 1

t2
∓ ie±it

t

]
+ R(t). (C.2)

The remainder term |R(t)| ≤ 2t
N , so the corrections can become comparable to

the amplitude of the integral itself when t ≈
√

N/2. This represents a strict
lower bound to the time scale where the continuum limit is valid for m = d = 2.
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Appendix D

Perturbation theory

In this Appendix we apply standard perturbation theory to the problem of
finding the electron spin dynamics. We do this to illustrate the connection
between our perturbative expansion of the self-energy and the standard one,
and to demonstrate the need for a non-perturbative approach.

We choose the initial state

|i〉 =

(√
ρ↑(0) |↑〉 + eiφ

√
1 − ρ↑(0) |↓〉

)
⊗ |n〉 , (D.1)

where |n〉 is an eigenstate of hz and

〈Sz〉0 =
1

2
(ρ↑(0) − ρ↓(0)) , (D.2)

〈S+〉0 =
√

ρ↑(0) (1 − ρ↓(0))eiφ. (D.3)

We then apply standard interaction picture perturbation theory to evaluate
〈SX〉t , X = +, z. To lowest nontrivial (second) order in the perturbation HV ,
we find

〈S+〉t = eiωnt 〈S+〉0

− 〈S+〉0
4

∑

k

(
[h−]nk [h+]kn g−k (t) + [h+]nk [h−]kn g+

k (t)
)

(D.4)

g±k =
teiωnt

iω̄nk
− 1

ω̄2
nk

(
e±i

Ak
2

t − eiωnt
)

(D.5)

〈Sz〉t = 〈Sz〉0 +
1

2

∑

k

[(1 − ρ↑(0)) [h+]nk [h−]kn

− ρ↑(0) [h−]nk [h+]kn]
[1 − cos (ω̄nkt)]

ω̄2
nk

. (D.6)

The expression for 〈Sz〉t has been given previously, [15,17] where it was noted
that the perturbative expression for the transverse components 〈S+〉t contains a
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term that grows unbounded in time (as above). Inserting an initial nuclear state
|n〉 with uniform polarization, performing the continuum limit, and expanding
to leading order in 1

ωn
gives the final result, presented in Eqs. (3.44) and (3.45).



Appendix E

Branch cut asymptotics

E.1 Long times

Here we give explicit expressions for the leading-order terms in asymptotic ex-
pansions of the branch cut integrals for long times

Kz
0 (t → ∞) = −i

π

(c+ + c−)N
[2 〈Sz〉0 − ∆(c+ + c−)]

1

ln t

+ O

(
1

ln2 t

)
, b′ = 0, (E.1)

Kz
0 (t → ∞) =

iπ

b′

[
N

b′
(c+ + c−) [2 〈Sz〉0 − ∆] − 2pI∆

]
1

t2

+ O

(
1

t3

)
, b′ 6= 0, (E.2)

Kz
±(t → ∞) = ∓πe±it

Nc∓

[
2 〈Sz〉0 ∓ ∆

(
b′

N
± (c+ + c−) ∓ c±2 ln 2

)]
1

t ln2 t

+ O

(
1

t ln3 t

)
, (E.3)

K+
0 (t → ∞) = −i

2π

(c+ + c−)N
〈S+〉0

1

ln t
+ O

(
1

ln2 t

)
, b′ = 0, (E.4)

K+
0 (t → ∞) = i2π(c+ + c−)

N

(b′)2
〈S+〉0

1

t2
+ O

(
1

t3

)
, b′ 6= 0, (E.5)

K+
±(t → ∞) = ∓2πe±it

Nc∓
〈S+〉0

1

t ln2 t
+ O

(
1

t ln3 t

)
. (E.6)

E.2 High fields

For asymptotically large magnetic fields, the x-dependence of the denominator
term D(−x + γα ± iη) that appears in the branch cut integrals (Eq. (3.75)) is
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dominated by the constant contribution ∼ −iωn, except at very large values of x,
where it may be that D(−x+γα±iη) ≈ 0. We expand the numerator Nz(s

X
α (x)±

iη) and denominator in 1
x , retaining terms up to O (1) in the numerator and

O
(

1
x

)
in the denominator. Expanding to leading order in 1

x0
∝ 1

ωn
, except where

there is the possibility of a near-singular contribution (D ≃ 0), and assuming
b′ > 0, we find the branch cut integrals

KX
+ (t) ≃ 2πiδCX

− x0

∫ −i+∞

−i

dz
ze−zt

z − z0
(E.7)

KX
0 (t) ≃ −2πiδ

(
CX

+ + CX
−

)
x0

∫ ∞

0

dz
ze−zt

z − z0
(E.8)

KX
− (t) ≃ −2πiδCX

+

∫ i+∞

i

dzze−zt (E.9)

where z0 and x0 are defined in Eqs. (3.81) and (3.82). The coefficients CX
± are

given by Eq. (3.51). The sum over all three branch cut integrals can now be
written in terms of two contour integrals

∑

α=(0,+,−)

KX
α (t) = −2πiδCX

− x0

∫

C′′

dz
ze−zt

z − z0
− 2πiδCX

+

∫

C′

dzze−zt. (E.10)

C ′′ runs clockwise from the origin to z = ∞ along the real axis, then returns
to z = −i, enclosing the pole at z = z0. C ′ runs from z = i to z = i + ∞,
then returns along the real axis to z = 0. These integrals can be evaluated
immediately by closing the contours along the imaginary axis. The sum of the
contributions along the imaginary axis and from the residue of the pole at z = z0

gives the result in Eq. (3.80).



Appendix F

Estimating the Overhauser

field

In this appendix we estimate the size of the Overhauser field inhomogeneity
for a typical double quantum dot, and show that this quantity depends, in a
sensitive way, on the form of the orbital wavefunctions.

As in the main text, we take the average Overhauser field and the Over-
hauser field inhomogeneity to be h = 1

2 (h1 + h2) and δh = 1
2 (h1 − h2) re-

spectively, where hl = Av
∑

k

∣∣ψl
0(rk)

∣∣2 Ik, and ψl
0(r) is orbital eigenstate l in

the double quantum dot. In the presence of tunneling, the eigenstates of a
symmetric double quantum dot will be well-described [14, 39] by the symmet-
ric and antisymmetric linear combination of dot-localized states φl(r), l = 1, 2:
ψ1,2

0 (r) = 1√
2

(φ1(r) ± φ2(r)). In this case, we find

〈δh〉rms = Av

〈
∑

k

Re [φ∗
1(rk)φ2(rk)] Ik

〉

rms

. (F.1)

We take
〈

1
N

∑
k Ik

〉
rms

≈
√

I(I + 1)/N to be the r.m.s. value for a system of N
nuclear spins with uniform polarization p ≪ 1. Changing the sum to an integral
according to v

∑
k →

∫
d3r then gives

〈δh〉rms ≈ γ

√
I(I + 1)

N
A = γα, (F.2)

where γ =
∫

d3r Re [φ∗
1(r)φ2(r)] is the overlap of the localized orbital dot states

and we have introduced the energy scale α =
√

I(I + 1)A/
√

N . The result in
Eq. (F.2) suggests that the Overhauser field inhomogeneity can be drastically
reduced in a symmetric double quantum dot simply by separating the two dots,
reducing the wavefunction overlap. If, however, the double dot is sufficiently
asymmetric, the correct orbital eigenstates will be well-described by localized
states ψl

0(r) = φl(r), l = 1, 2, (with overlap γ ≪ 1), in which case we find

〈δh〉rms ≈
√

I(I + 1)

N
A = α. (F.3)
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Thus, great care should be taken in determining 〈δh〉rms based on microscopic
parameters. In particular, for a symmetric double quantum dot, the overlap γ
must also be known to determine 〈δh〉rms based on N .

In contrast, for the total Overhauser operator h, in both of the above cases
(ψ1,2

0 (r) = 1√
2

(φ1(r) ± φ2(r)) or ψl
0(r) = φl(r), l = 1, 2), we find

〈h〉rms ≈
√

I(I + 1)

N
A = α. (F.4)



Appendix G

Effective Hamiltonians for

two-electron states in a

double quantum dot

In this appendix we derive effective Hamiltonians for a two-electron system
interacting with nuclear spins in a double quantum dot via the contact hyperfine
interaction.

We begin from the two-electron Hamiltonian in second-quantized form,

H = HSP + HC + HT + HZ + Hhf , (G.1)

where HSP describes the single-particle charging energy, HC models the Coulomb
interaction between electrons in the double dot, HT describes tunneling between
dot orbital states, HZ gives the electron Zeeman energy (we neglect the nuclear
Zeeman energy, which is smaller by the ratio of nuclear to Bohr magneton:
µN/µB ∼ 10−3) and Hhf describes the Fermi contact hyperfine interaction be-
tween electrons on the double dot and nuclei in the surrounding lattice. Explic-
itly, these terms are given by

HSP =
∑

lσ

Vglnlσ; nlσ = d†lσdlσ, (G.2)

HC = U
∑

l

nl↑nl↓ + U ′(n1↑ + n1↓)(n2↑ + n2↓), (G.3)

HT = t12
∑

σ

(
d†1σd2σ + d†2σd1σ

)
, (G.4)

HZ =
ǫz

2

∑

l

(nl↑ − nl↓), (G.5)

Hhf =
∑

l

Sl · hl; Sl =
1

2

∑

σσ′

d†lσσσσσσ′dlσ′ . (G.6)

Here, d†lσ creates an electron with spin σ in orbital state l (l = 1, 2), Vgl is the
single-particle charging energy for orbital state l, U is the two-particle charging
energy for two electrons in the same orbital state, and U ′ is the two-particle
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charging energy when there is one electron in each orbital. When the orbital
eigenstates are localized states in quantum dot l = 1, 2, Vgl is supplied by the
back-gate voltage on dot l and U (U ′) is the on-site (nearest-neighbor) charging
energy. t12 is the hopping matrix element between the two orbital states, ǫz is
the electron Zeeman splitting, hl is the nuclear field (Overhauser operator) for
an electron in orbital l, and σσσσσ′ gives the matrix elements of the vector of Pauli
matrices σσσ = (σx, σy, σz). In the subspace of two electrons occupying two orbital
states, the spectrum of HSP + HC consists of four degenerate “delocalized”
states with one electron in each orbital, all with unperturbed energy E(1,1) (a
singlet |S(1, 1)〉 and three triplets: |Tj(1, 1)〉 ; j = ±, 0), and two non-degenerate
“localized” singlet states |S(2, 0)〉 and |S(0, 2)〉, with two electrons in orbital
l = 1 or l = 2, having energy E(2,0) and E(0,2), respectively.

To derive an effective Hamiltonian Heff from a given Hamiltonian H, which
has a set of nearly degenerate levels {|i〉}, we use the standard procedure [172],

Heff = PHP + PHQ
1

E − QHQ
QHP, (G.7)

where P =
∑

i |i〉 〈i| is a projection operator onto the relevant subspace and
Q = 1 − P is its complement.

We choose the arbitrary zero of energy such that E(1,1) = Vg1 +Vg2 +U ′ = 0
and introduce the detuning parameters

δ1 = E(1,1) − E(2,0) = −2Vg1 − U = −δ − U − U ′, (G.8)

δ2 = E(1,1) − E(0,2) = −2Vg2 − U = δ. (G.9)

We then project onto the four-dimensional subspace formed by the delocalized
singlet |S(1, 1)〉 and three delocalized triplet states |Tj(1, 1)〉 , j = ±, 0. That
is, we choose Q = |S(0, 2)〉 〈S(0, 2)| + |S(2, 0)〉 〈S(2, 0)|, P = 1 − Q. When
δ1, δ2 ≫ t12, we have E ≈ E(1,1) = 0 in the denominator of Eq. (G.7). This
gives an effective spin Hamiltonian in the subspace of one electron in each orbital
state:

Heff = ǫz

∑

l

Sz
l +

∑

l

hl · Sl − J

(
1

4
− S1 · S2

)
, (G.10)

J ≈ −2t212

(
1

δ
− 1

δ + U + U ′

)
. (G.11)

This Hamiltonian is more conveniently rewritten in terms of the sum and differ-
ence vectors of the electron spin and Overhauser operators S = S1 +S2, δS =
S1 − S2 and h = 1

2 (h1 + h2) , δh = 1
2 (h1 − h2):

Heff = ǫzS
z + h · S + δh · δS +

J

2
S · S − J. (G.12)

Neglecting the constant term, in the basis of singlet and three triplet states,
{|S(1, 1)〉 = |S〉 , |Tj(1, 1)〉 = |Tj〉 , j = ±, 0}, the Hamiltonian matrix for Heff

takes the form




0 −δh+/
√

2 δhz δh−/
√

2

−δh−/
√

2 J + ǫz + hz h−/
√

2 0

δhz h+/
√

2 J h−/
√

2

δh+/
√

2 0 h+/
√

2 J − ǫz − hz


 , (G.13)
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where δh± = δhx ± iδhy and h± = hx ± ihy. We are interested in this Hamilto-
nian in two limiting cases, where it becomes block-diagonal in a two-dimensional
subspace.

G.1 Effective Hamiltonian in the |S〉 − |T0〉 sub-

space

Projecting H onto the two-dimensional subspace spanned by |T0〉 → |τz = +1〉
and |S〉 → |τz = −1〉, we find

H0 = N0 +
1

2
v0 · τττ , (G.14)

where τττ = (τx, τy, τz) is a vector of Pauli matrices. The leading and first

subleading corrections to H0 in powers of 1/ǫz are (H0 = H
(0)
0 + H

(1)
0 + · · · ,

H
(i)
0 = N

(i)
0 + v

(i)
0 ):

N
(0)
0 =

J

2
, (G.15)

v
z(0)
0 = J, (G.16)

v
+(0)
0 = 2δhz, (G.17)

N
(1)
0 =

1

4ǫz

([
h−, h+

]
+

[
δh−, δh+

])
, (G.18)

v
z(1)
0 =

1

2ǫz

([
h−, h+

]
−

[
δh−, δh+

])
, (G.19)

v
+(1)
0 =

1

ǫz

(
δh+h− + δh−h+

)
. (G.20)

Here, NX = (Nx
X , Ny

X , Nz
X), vX = (vx

X , vy
X , vz

X), N±
X = Nx

X ± iNy
X , and

v±
X = vx

X ± ivy
X . For a typical unpolarized system, we estimate the size of all

subleading corrections from their r.m.s. expectation values, taken with respect
to an unpolarized nuclear state. This gives

〈
H

(1)
0

〉

rms
= O

(
α2

ǫz

)
, (G.21)

where α is given by α =
√

I(I + 1)A/
√

N (for a GaAs quantum dot containing
N ≈ 105 nuclear spins, 1/α ≈ 5 ns). We therefore expect dynamics calculated

under H
(0)
0 to be valid up to timescales on the order of ǫz/α2 ≫ 1/α, when

ǫz ≫ α.

G.2 Effective Hamiltonian in the |S〉 − |T+〉 sub-

space

When the Zeeman energy of the |T+〉 triplet state approximately compensates
the exchange, max (〈h〉rms , 〈δh〉rms , |∆|) ≪ J (where ∆ = ǫz + J), we find an
effective Hamiltonian in the subspace |T+〉 → |τz = +1〉 , |S〉 → |τz = −1〉:

H+ = N+ +
1

2
v+ · τττ , (G.22)
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where the leading and subleading corrections in powers of 1/J are

N
(0)
+ =

1

2
(∆ + hz) , (G.23)

v
z(0)
+ = ∆ + hz, (G.24)

v
+(0)
+ = −

√
2δh+, (G.25)

N
(1)
+ = − 1

2J

(
(δhz)

2
+

1

4
δh−δh+ +

1

2
h−h+

)
, (G.26)

v
z(1)
+ =

1

J

(
(δhz)

2
+

1

4
δh−δh+ − 1

2
h−h+

)
, (G.27)

v
+(1)
+ = −

√
2
δhzh+

J
. (G.28)

Once again, we estimate the influence of the subleading corrections from their
r.m.s. value with respect to a nuclear spin state of polarization p ≪ 1, giving

〈
H

(1)
+

〉

rms
= O

(
α2

J

)
. (G.29)

We therefore expect the dynamics under H
(0)
+ to be valid up to time scales on

the order of t ∼ J/α2 ≫ 1/α for J ≫ α.



Appendix H

Asymptotics

H.1 CT0
(∞) for J ≫ 2σ0, J ≪ 2σ0

In the limit of J → 0, we perform an asymptotic expansion of the integral in Eq.
(4.14) by separating the prefactor into a constant piece and an unnormalized
Lorentzian of width J/2:

C(x) =
1

2

(
1 − (J/2)2

(J/2)
2

+ x2

)
. (H.1)

The Gaussian average over the constant term gives 1/2 and when J/2 ≪ σ0, the
typical x contributing to the Lorentzian part of Eq. (4.14) is x . J/2 ≪ σ0, so
we approximate exp(− 1

2x2/σ2
0) ≈ 1 in the integrand of this term. Integrating the

Lorentzian then gives the result in Eq. (4.15) for J ≪ 2σ0. In the opposite limit
of J ≫ 2σ0, the Lorentzian is slowly-varying with respect to the Gaussian, and
the prefactor can be expanded within the integrand C(x) ≈ 2x2/J2. Performing
the remaining Gaussian integral gives the result in Eq. (4.15) for J ≫ 2σ0.

H.2 C int
T0

(t) for t → ∞
To evaluate the integral in Eq. (4.13) at long times when J 6= 0, we make the

change of variables u =

√
λ2 + (x/σ0)

2 − λ, λ = J/2σ0, t̃ = 2σ0t, which gives

C̃ int
T0

(t̃/2σ0) = − 1√
2π

∫ ∞

0

du

√
u(u + 2λ)

u + λ
exp

{
−1

2

(
u2 + 2uλ

)
+ i(u + λ)t̃

}
,(H.2)

λ = J/2σ0, t̃ = 2σ0t. (H.3)

At long times, the major contributions to this integral come from a region near
the lower limit, where u . 1/t̃. For t̃ ≫ max(1/λ, 1) (i.e. t ≫ max(1/J, 1/2σ0)),
we approximate the integrand by its form for u ≪ max(λ, 1), retaining the
exponential term as a cutoff. This gives

C̃ int
T0

(t̃/2σ0) ∼ − eiλt̃

√
πλ

∫ ∞

0

du
√

ue−(λ−it̃)u = − eiλt̃

2
√

λ
(
λ − it̃

)3/2
. (H.4)
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When t̃ ≫ λ (i.e. t ≫ J/4σ2
0), we expand the denominator of the above

expression, which gives the result in Eq. (4.17).



Appendix I

Drift in δhz

In addition to spin diffusion, driven by the nuclear dipole-dipole interaction,
there may also be a change in δhz due to corrections to the projected effective
Hamiltonian considered here (see Ref. [50], Appendix B for details). After
tracing out the electron pseudo–spin in state ρS , these correction terms give rise
to an electron-mediated nuclear spin-spin interaction which, in general, takes
the form of an anisotropic (XYZ) Heisenberg interaction

Hnn = TrS{ρSH} =
∑

i,j,α={x,y,z}
Jα

ijI
α
i Iα

j . (I.1)

Here, the indices i and j run over all nuclear spin sites.
We use the corrections to leading order in the inverse Zeeman splitting 1/ǫz

(ǫz = gµBB) given in Ref. [50]. This gives the typical value of the exchange
constants

∣∣Jα
ij

∣∣ ∼ A2/N2ǫz. Assuming an unpolarized nuclear spin state, each
nuclear spin will therefore precess in an effective mean field generated by all
other spins in the dot of typical magnitude

heff ∼
√

N
∣∣Jα

ij

∣∣ ∼ A2/N
3
2 ǫz. (I.2)

This effective field will result in precession of the nuclear spins about an arbitrary
angle (and hence, may change the value of δhz) on a time scale

τp ∼ N
3
2 ǫz/A

2 ∼ 10−2 s, (I.3)

where we have assumed N = 106 nuclear spins within the quantum dot, and
ǫz/gµB = A/gµB ≃ 3.5T for the time estimate. This is only a worst–case
estimate, which neglects the effects, e.g., of a Knight-shift gradient (due to
strong confinement of the electron), which may further weaken the dynamical
effect discussed here. We expect the dipolar nuclear spin diffusion time to be
the limiting time scale for nuclear spin dynamics, in light of experiments on
diffusion near donor impurities in GaAs. [139] If the effect giving rise to τp in
Eq. (I.3) were significant, it could be further suppressed by choosing a larger
quantum dot size or stronger magnetic field, thus allowing many electron spin
measurements on the time scale of variation of δhz.
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Appendix J

Nuclear spin state

measurement

In this appendix we describe how a single measurement of the two–electron
system affects the nuclear spin state. We give the analytical expression for the
diagonal elements of the nuclear spin density operator after a measurement.

At t=0 the system is described by the following density operator

ρ(0) = ρe(0) ⊗ ρI(0) = |+〉 〈+| ⊗
∑

i

pi

∣∣ψi
I

〉 〈
ψi

I

∣∣ , (J.1)

with nuclear spin state
∣∣ψi

I

〉
=

∑
n ai

n |n〉. The Hamiltonian H0 of Eq.(5.1)
acts on the the nuclear–spin system as H0 |n〉 = Hn |n〉, where in Hn the
operator δhz has been replaced by δhz

n (because δhz |n〉 = δhz
n |n〉). Since

[H0, δh
z] = 0, only the diagonal elements of the nuclear density operator ρI

(in the basis of δhz) enter in matrix elements for operators acting only on the
two–electron system. As described in Section 5.2.1, these diagonal elements
ρI(n) = ρI(n, 0) = 〈n|Tre{ρ(0)} |n〉 describe a continuous Gaussian distribu-
tion in the continuum limit. The trace over the electron system is defined as
Treρ(t) = 〈+| ρ(t) |+〉 + 〈−| ρ(t) |−〉 and for ρI(n, 0) we have

ρI(n, 0) =
∑

i

pi|ai
n|2. (J.2)

The time evolution operators U(t) and Un(t) are defined through iU̇(t) =
H0(t)U(t) and iU̇n(t) = Hn(t)Un(t) and thus the density operator ρ(0) evolves
under the Hamiltonian H0 as

ρ(t) = U(t)ρ(0)U†(t)

= U(t)


ρe(0) ⊗

∑

i

∑

n,l

pia
i
nai

l

∗ |n〉 〈l|


 U†(t)

=
∑

n,l

(
Un(t)ρe(0)U†

l (t) ⊗
∑

i

pia
i
nai

l

∗ |n〉 〈l|
)

. (J.3)

At time tm a measurement in the basis of |+〉 and |−〉 is performed on one
single two-electron system coupled to nuclear spins. Since the outcome of this
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measurement is known, the state of the system after the measurement is1 (the
result depends on whether |+〉 or |−〉 was measured)

ρ(1,±)(tm) =
|±〉 〈±| ρ(tm) |±〉 〈±|

P±(tm)

=
∑

n,l

(
|±〉 〈±|Un(tm)ρe(0)U†

l (tm) |±〉 〈±|

⊗
∑

i

pia
i
nai

l

∗ |n〉 〈l|
) 1

P±(tm)
, (J.4)

with

P±(tm) = TrITre{|±〉 〈±| ρ(tm)} (J.5)

=
∑

i

∑

n

1

2
(1 ± 〈τz(tm)〉n) pi|ai

n|2, (J.6)

where TrIA =
∑

n 〈n|A |n〉 and 〈τz(t)〉n is given in Eq.(5.4). Here, P±(tm)
is the probability to measure |±〉 at time tm. We are mainly interested in the
diagonal elements of the nuclear density operator ρI after the measurement.

ρ
(1,±)
I (n, tm) = 〈n|Treρ

(1,±)(tm) |n〉 (J.7)

=
ρI(n, 0)

P±(tm)
〈±|Un(tm)ρe(0)U†

n(tm) |±〉 (J.8)

=
ρI(n, 0)

P±(tm)

1

2
(1 ± 〈τz(tm)〉n) . (J.9)

Using Eq.(5.4) we find

ρ
(1,+)
I (n, tm) =

ρI(n, 0)

P+(tm)

1

2

(
2(Ωn − ω)2

(Ωn − ω)2 + (j/2)2
+

(j/2)2(1 + cos(ω′tm))

(Ωn − ω)2 + (j/2)2

)

(J.10)
and

ρ
(1,−)
I (n, tm) =

ρI(n, 0)

P−(tm)

1

2

(j/2)2(1 − cos(ω′tm))

(Ωn − ω)2 + (j/2)2
, (J.11)

where ω′ is given in Eq.(5.5) and depends on the eigenvalue δhz
n of the nuclear

spin eigenstate through Ωn.
Parenthetically, we note that in the case (not described in this article) where

the measurement is performed on an ensemble of many different double quantum
dots, the state of the ensemble after the measurement is [173]

ρ(1)
ens(tm) =

∑

n,l

(
|+〉 〈+|Un(tm)ρe(0)U†

l (tm) |+〉 〈+|

+ |−〉 〈−|Un(tm)ρe(0)U†
l (tm) |+〉 〈+|

)

⊗
∑

i

pia
i
nai

l

∗ |n〉 〈l| , (J.12)

1The measurement performed at tm is not sufficient to distinguish the different states
˛

˛ψi
I

¸

.
This is because it is a measurement in the two–electron system and it only has an effect on
the nuclear spin system in a way that some eigenstates |n〉 gain weight and some loose. This
happens for all states

˛

˛ψi
I

¸

in the same way and thus from such a measurement we cannot tell

into which of the states
˛

˛ψi
I

¸

the system has collapsed.
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and the nuclear–spin distribution has not changed. If a complete measurement
of the Rabi–resonance lineshape would be performed on an ensemble of double
dots, the result would be the Voigt profile described in Sec. 5.2.1.
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