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1. Introduction 
 

Overview 

Neuroscience aims at understanding how we perceive, move, think, and remember using 

trillions of neurons. Every day our brain receives massive amounts of electrical and 

chemical signals that are processed through connected networks of neurons, which must 

be built with high specificity in order to produce meaningful and predictable information. 

Neurons transmit these signals to one another at specialized sites called synapses. These 

are excitatory or inhibitory, and accordingly increase or decrease neuronal responses. 

Thus, synapse development, maturation and dynamic is crucial in establishing proper 

functional neuronal circuits. In recent years it has become clear that synapses can be 

produced and dismantled even in the adult brain. As a consequence, dendritic spines and 

axonal boutons can appear and disappear throughout life. This neuronal remodeling is 

called “structural plasticity” and might be fundamental to learning, memory and 

cognition.  

 

In this introduction I describe some of the key components that are important to deal with 

structural plasticity of axon terminals in the adult. I will first start by explaining how 

synapses form during development, a process likely to also be relevant to how “mature 

synapses” might form in the adult brain. I will then report on what is known about axonal 

structural plasticity in the adult, and finally introduce the hippocampus as a model system 

to study structural plasticity. 
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1.1 SYNAPSE FORMATION 

 

Synapse formation is a complex process that occurs over a protracted period of 

development. It involves five main stages: target specification, synapse specification, 

maturation, elimination and stabilization. Multiple molecules influence not only when 

and where synapses form, but also synaptic specificity and stability.  

 

Target specification 

The first step in synapse formation is target recognition. Axons from different brain 

regions have to grow into their respective target fields and produce synaptic contacts with 

the correct cell type. For example, retinal ganglion cell axons traverse long distances 

from the eye into the lateral geniculate nucleus of the thalamus before synapsing onto 

thalamic cell dendrites (Schatz 1996 and 1997). Similarly, motor neuron axons from the 

ventral horn of the spinal cord traverse long distances to innervate muscle fibers (Sanes & 

Lichtman 2001). Many studies showed that molecules including netrins, semaphorins, 

and ephrin A are important to guide axons to their target fields. For example, netrins and 

semaphorins affect the orientation of axonal growth cones through local gradients (Bagri 

& Tessier-Lavigne 2002, Tessier-Lavigne 1995). As soon as axons have reached their 

target zones, they can arborize within these regions using members of the Wnt, fibroblast 

growth factor (FGF) and neurotrophin (e.g BDNF) families. Wnt and FGF molecules 

induce axon arborisation and accumulation of recycling synaptic vesicles in innervating 

axons (Scheiffele 2003). BDNF can promote regional axon-and dendrite arborisations by 

regulating directly the density of synaptic innervation (Alsina et al. 2001).  
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Synapse specification 

The second step in synapse formation starts when axons have innervated their target 

fields and need to recognize the correct cell type to synapse with.  In the phase of 

recognition, several classes of Cell-Adhesions Molecules CAMs have been shown to be 

implicated. For example, barrel field pyramidal cells and septal granule cells in the 

somatosensory cortex express N-cadherin and cadherin 8, and their corresponding 

thalamic inputs as well, which lead to a reciprocal recognition (Gil et al. 2002). This 

indicates that functionally connected groups of neurons express molecules that help them 

to come in contact preferentially, and suggests that synapse specification is 

predetermined within neuronal circuits. Once axons have recognized their correct cell 

type, they start to induce synaptic contacts. Different classes of molecules are capable of 

directly induce various aspects of synapse induction. These include Narp and Ephrin B1, 

two secreted proteins that cluster subsets of postsynaptic proteins, and SynCAM and 

Neuroligin, two CAM that can trigger the formation of presynaptic boutons (Biederer et 

al. 2002, Dalva et al. 2000, O´Brien et al. 1999, Scheiffele et al. 2000). The result is the 

molecular assembly of the synaptic junction through the delivery of pre- and postsynaptic 

components, which define a fully functional synapse. In presynaptic assembly, synapse 

assembly involves the appearance of scaffold proteins of the active zone, such as Piccolo, 

Bassoon and RIM, as well as components of the synaptic vesicle exocytotic machinery 

including syntaxin, SNAP25, and N-type voltage-gated calcium channels (Shapira et al. 

2003). In postsynaptic assembly, synapse assembly involves the recruitment of 

scaffolding proteins of the PSD-95 family, as well as NMDA-type and AMPA-type 

glutamate receptors (Sans et al. 2000, Washbourne et al. 2002, Petersen et al. 2003). At 

this point synapses are ready to sense electrical and chemical signals, and can undergo 

maturation (Figure 1). 
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Synapse maturation 

The third step in synapse formation is the maturation of developing synapses by 

expanding their sizes and changing their functional properties. For example, in the first 

month of cortical development terminal enlargements are correlated with a two- to 

threefold increase of synaptic vesicles per terminal (Vaughn 1989). Furthermore, in 

hippocampal neurons, glutamatergic synapses initially form on filopodia or dendritic 

shafts that develop over time into dendritic spines (Fischer et al. 1998). In parallel, as 

hippocampal synapses mature, the probability of transmitter release decreases, and the 

reserve pool of vesicles increases. In addition, the expression of the “adult” NR2A 

subunit of the NMDA receptors replaces the “young” NR2B subunit, mediating a 

decrease in hippocampal NMDA current duration (Sorra & Harris 2000, Bolshakov & 

Siegelbaum 1995). Interestingly, many developing brain regions exhibit “silent 

synapses”, which lack surface AMPA receptors and therefore are characterized by 

functional NMDA but not AMPA currents (Isaac et al. 1997). These synapses can insert 

AMPA receptors due to NMDA activation, increasing their size and synaptic efficacy, 

and can represent a repertoire of activity dependent synapses recruited upon special input.  

 

Synapse elimination 

The fourth step in synapse development is synapse elimination, which runs in parallel to 

synapse maturation. Synapse elimination decreases the initial number of synapses formed 

in early postnatal life, which is far greater than the number retained in adulthood. 

Interestingly, pruning of synapses has been shown to be activity-dependent, and appears 

to be critical in the formation of proper neuronal circuits. A nice example involves the 

climbing fibers that arise from the inferior olivary nucleus, which form multiple synapses 

with a single Purkinje cell. Initially, Purkinje cells are innervated by a nest of climbing 

fibers that contact the soma, and initially synapse onto finger-like perisomatic spines and 

later onto thorns, which are large spines located on the proximal dendrites (Laxson & 

King 1983 and Larramandi & Victor 1967). Soon thereafter, only one climbing fiber 
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remains in contact, and all the others are eliminated. The result is that each Purkinje cell 

is innervated by a single climbing fiber (Crepel et al. 1971). This process of eliminating 

perisomatic spines, supernumary climbing fibers and thorns is thought to be activity 

dependent, and result from a competition between different afferents. A similar process 

occurs during the formation of the neuromuscular junction, where motor neurons from 

the spinal cord innervate muscles (Sanes & Lichtman 1999), and during the formation of 

ocular dominance columns in the visual cortex (LeVay et al. 1980). In the mature brain, 

synapse elimination is also occurring, and probably is an important mechanism for 

removing inappropriate or ineffective connections. Recent studies have shown that 

activity regulates synapse elimination and synapse formation in the mature barrel cortex, 

an area that receives sensory input from the whiskers (Knott et al. 2002, Trachtenberg et 

al. 2002). Taken together, these studies demonstrate that patterned activity plays a 

fundamental role in synapse formation and elimination in both young and adult animals, 

and that activity related synapse turnover is crucial to fine-tune networks. 

 

Synapse stabilization 

The last step in synapse formation involves synapse stabilization, which mainly reflects 

stabilization of synaptic proteins via ubiquitination. Studies at the Drosophila 

neuromuscular junction have shown that local applications of proteasome inhibitors 

induce a rapid strengthening of synaptic transmission owing to a 50 % increase in the 

number of synaptic vesicles released (Aravamudan & Broadie 2003, Speese et al. 2003). 

In addition, in the vertebrate hippocampus, activity-dependent internalization of 

homologous AMPA receptors is regulated by ubiquitination (Colledge et al. 2003). These 

data indicate that ubiquitination of synaptic proteins is activity-dependent and crucial for 

synapse stability. 
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Figure 1. Basic elements of CNS glutamatergic synapses (modified from McAllister et al. 2007) 

 

 

Outlook 

Since “synapse turnover” is happening in the adult, it is plausible that aspects involved in 

developmental synapse formation also regulate structural plasticity. For example, Cell 

Adhesions Molecules might control cell type recognition, molecules of the Wnt and FGF 

families might promote new neuronal growth, and activity might promote the maturation 

of new synapses. However, to understand how structural plasticity leads to new synaptic 

contacts, we first need to understand where and under what circumstances it is occurring. 

For example, not every neuron might undergo structural plasticity, and remodeling might 

preferentially involve neuronal and synapse subtypes. Accordingly, it is important to 

determine whether structural plasticity might preferentially take place at certain neuronal 

subtypes, and whether structural plasticity within the same neuron might also be 

subcompartmentalized. 
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1.2 STRUCTURAL PLASTICITY OF AXONAL TERMINALS IN THE ADULT 

modified from Nadine Gogolla, Ivan Galimberti and Pico Caroni, 

Current Opinion in Neurobiology 2007, 17: 516-524 

 

Structural plasticity of axons beyond developmental circuit assembly processes, and in 

the absence of physical lesions, is a recent discovery, and an exciting addition to the 

plasticity repertoire of mammalian brains. The late discovery reflects the advent of novel 

tools to deal with the overwhelming complexity of axonal arborisation patterns in the 

brain and the need to repeatedly image identified axons in situ over time periods ranging 

from days to months (Caroni 1997, Feng et al. 2000, Brecht et al. 2004 and Svoboda & 

Yasuda 2006). Such repeated live imaging analysis of identified axons has proven 

indispensable in order to adequately document the occurrence of structural plasticity 

processes in axons under physiological conditions. 

Although the surface has just been scratched so far, it is already clear that these novel 

aspects of brain plasticity can potentially match the functional impact of long-term 

plasticity mechanisms at pre-existing synapses. Thus, as we discuss below, structural 

plasticity of axons provides neuronal circuits with plasticity mechanisms that 

complement functional modifications of pre-existing circuitry, and might be qualitatively 

different from them. This is mainly due to the different time scales of the phenomena 

(seconds to hours, versus days to weeks), to the larger spatial scale of the modifications 

(axons can sample synaptic territories ranging in the tens and even hundreds of microns), 

and to the fact that structural plasticity can persistently modify the local architecture of 

microcircuits in both quantitative and qualitative ways (Galimberti et al. 2006) 

Axonal remodeling in the adult 
Direct studies of the structural plasticity of axons in the adult have become possible 

because of the advent of genetic methods to selectively label very few neurons at any 

given time in vivo, achieving what can be viewed as ‘live Golgi stains’(Caroni 1997, 

Feng et al. 2000, Brecht et al. 2004 ) and to microscopy techniques allowing imaging of 

fluorescent samples several hundred microns deep into neural tissue (Svoboda & Yasuda 

2006). In this chapter, we highlight recent live imaging studies of axonal plasticity and 
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mention some of the more compelling evidence from behavior–anatomy correlative 

studies.  

Recent studies have measured structural plasticity of axonal branches and boutons in 

vivo, using two-photon microscopy of GFP-labeled axons in mouse and monkey cortex. 

De Paola et al. (De Paola et al. 2006) found that axons belonging to different types of 

neurons can exhibit distinct structural plasticity properties in adult mouse barrel cortex. 

In thalamocortical afferents the majority of EPBs persisted (5% turnover in one week; 

15% turnover in one month), and remodeling was due to elongation and retraction of 

side-branches (up to 150 μm excursions within four days; comparable total numbers of 

side-branches were stable or dynamic). Layer VI axons were rich in highly plastic TBs 

(20% turnover in one week; 50% turnover in one month; 70% turnover in one and a half 

months). Layer V-II/II neurons had comparatively low contents of TBs and moderately 

plastic EPBs (10% turnover in one week, 20% turnover in one month). 

Appearance/disappearance events for bouton populations were generally matched, 

suggesting that the plasticity led to no significant net changes in total synapse numbers 

(Berardi et al. 2004). Significantly, the boutons could be subdivided into stable and 

dynamic subpopulations, with many stable boutons persisting for at least nine months 

(Berardi, N et al. 2004).  Stettler et al. (Stettler et al. 2006) investigated axon branching 

and bouton dynamics in primary visual cortex of adult Macaque monkeys and found that 

a subset of TBs and EPBs appear and disappear every week. Turnover values for layer 

II/III pyramidal neuron axons were 7% in one week, 14% in two weeks for EPBs, and 

about twice that value for TBs (See also scheme of Figure 2).  
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Figure 2. Sampling scales of axonal structural plasticity. 
Side-branch sprouting mediates sampling of postsynaptic territories ranging tens and hundreds of micrometers away 
from the original axon branch, whereas en-passant bouton (EPB) plasticity is confined to the territory covered by pre-
existing axon branches. Terminal bouton (TB) plasticity can sample many tens of micrometers but might not lead to the 
establishment of stable new circuitry. Stable boutons are in black, dynamic boutons in red. Sprouts are ‘guided’ (i.e. 
stabilized) by new stable boutons. Axonal processes can be stable (thick lines) or dynamic (thin lines). The schematic 
indicates the state of an axonal segment at three successive time points (To, T1, T2), separated by about 10–15 days.  

 

Does presynaptic appearance/disappearance reflect a complete turnover of synapses? If 

dendritic spines and axonal boutons rearrange by producing and dismantling synaptic 

contacts, one would expect that the appearance/disappearance values of new spines and 

boutons would be balanced. Indeed, reported spine and presynaptic bouton turnover 

values in adult neocortex fall within comparable ranges (De Paola et al. 2006, Stettler et 

al. 2006, De Paola et al. 2003, Holtmaat et al. 2006, Lee et al. 2006 and Majewska et al. 

2006); but see reference (Xu et al. 2007), suggesting that entire synaptic structures might 

appear and disappear in many cases. However, balanced presynaptic and postsynaptic 

remodeling is not always the rule, and a recent study has suggested that dendritic spines 
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might turn over more readily than axonal boutons (Majewska et al. 2006). One possible 

interpretation of these findings is that the extra spines might not go on to form functional 

synapses and might be lost within about a day from their initial appearance. On a similar 

vein, recent results in mouse neocortex showed that spine growth can precede synapse 

formation and that an active zone can appear as late as four days after the initial 

outgrowth (Knott et al. 2006). In addition, new spines can contact pre-existing 

presynaptic boutons to form multi-spine boutons. Perhaps not surprisingly, the latter 

process is the predominant pathway when dendrites of new hippocampal granule cells 

form synapses with pre-existing perforant path axons in the adult hippocampus (Toni et 

al. 2007). Besides in such special cases, the particular mechanisms of synapse turnover in 

the adult are in most cases unclear, and simultaneous imaging of presynaptic and 

postsynaptic elements will be necessary in order to investigate the rules leading to 

presynaptic-driven synaptogenesis versus postsynaptic-driven synaptogenesis in the adult 

CNS.  

Learning-dependent axonal rearrangements  

Structural remodeling might underlie aspects of learning and memory by rearranging 

synaptic contacts within local microcircuits, and possibly also through the assembly or 

dismantling of entire parts of local circuits. Although these possibilities have not been 

investigated extensively yet, the available evidence suggests that this might indeed be the 

case. For example, spatial learning was reported to promote an expansion of mossy fibers 

terminals in the CA3 region of the rodent hippocampus (Ramírez-Amaya et al. 1999 and 

Holahan et al. 2006). Furthermore, housing mice in an enriched environment led to an 

increased local complexity of hippocampal mossy fiber terminal complexes in stratum 

lucidum (Galimberti et al. 2006). Parallel pharmacological studies provided evidence that 

similar rearrangements in organotypic slice cultures depend on synaptic activity and 

transmitter release from mossy fiber terminals, suggesting that experience might regulate 

persistent local changes of connectivity in the mossy fiber projection (Galimberti et al. 

2003). As mentioned in the previous chapter, learning of a new skill might produce 

axonal projection shifts, possibly including the assembly of new local circuits. In one 

suggestive example, London taxi drivers were found to have on average larger posterior 
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hippocampi than non-taxi drivers, suggesting that overtraining for a complex spatial task 

can increase neuropil volumes in a brain region specifically involved in navigational 

skills (Maguire et al. 2000). In a further example, monkeys trained for a new complex 

motor behavior involving the hand exhibited substantial rearrangements of receptive 

fields in motor cortex and increased synaptic densities specifically in the expanded areas 

within a time period of four to eight days (Kleim et al. 2002). These observations suggest 

that new experience can produce predictable and persistent alterations in axonal 

connectivity in the adult CNS. However, the mechanisms involved and the functional 

roles of these remodeling processes remain to be determined. For example, it is not clear 

how ‘spontaneous’ presynaptic bouton turnover relates to large scale experience related 

alterations in connectivity, how experience impacts on structural plasticity, and whether 

the structural changes directly encode new information or mainly facilitate its acquisition.  

 

Axonal remodeling and aging 
Axonal remodeling decreases from young adulthood to middle age in mice. Thus, in 

young mice axonal branches in the parasympathetic submandibular ganglion underwent 

significant rearrangements over several weeks, whereas rearrangements were reduced and 

axonal branches were recognizable for many months and up to years in older mice (Gan 

et al. 2003). In addition to a general reduction in structural plasticity, age seems to 

produce gradual and long-lasting alterations in the connectivity of certain circuits. Thus, 

when mice of increasing age were compared, most hippocampal mossy fiber terminals 

shrunk, while 5–8% of them expanded gradually along pyramidal cell dendrites, 

suggesting the existence of sustained age-related shifts in the organization of a major 

axonal projection in the hippocampus (Galimberti et al. 2006). These initial observations 

raise the possibility that, along with a general decrease in plasticity with increasing age, 

life stages might be accompanied by their characteristic local circuit architecture 

properties. 
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1.3 THE HIPPOCAMPUS: A MODEL SYSTEM TO STUDY LEARNING-

RELATED STRUCTURAL PLASTICITY  

Learning is the process by which we acquire knowledge about the world, while memory 

is the process by which that knowledge is encoded, stored and later retrieved. Many 

important behaviors are learned. We learn the motor skills that allow us to master our 

environment, and languages that enable us to communicate what we have learned to other 

generations. Different recruitments of brain regions are important for different 

elaborations of learning and memory. For example the hypothalamus, the amygdala and 

related structures are essential for emotional dependent learning and memory. However, 

neocortical association areas (the prefrontal, limbic, and parieto-occipital-temporal 

cortices), the parahippocampal region (which includes parahippocampal, perirhinal, and 

entorhinal cortices) and the hippocampus are involved in explicit (declarative) learning 

and memory, and systems that include the neostriatum and cerebellum mediate 

procedural learning and memory (the acquisition of motor skills and habits).  

Explicit memory can be classified as episodic (a memory for events and personal 

experience) or semantic (a memory for facts). We use episodic memory when we recall 

that we saw the first snow of winter yesterday or that we heard the Queen’s Show must go 

on several months ago, whereas we use semantic memory to store and recall object 

knowledge. Nevertheless, all explicit memories can be expressed in declarative 

statements, such as “Last spring I visited my grandfather at his country house” (episodic 

knowledge) or “iron is heavier than water” (semantic knowledge). The hippocampus is 

one of the brain regions that plays an important role in episodic learning and memory in 

animals and humans. Electrophysiological recordings and molecular imaging studies in 

animals, as well as MRI imaging studies in humans provided correlative evidence that 

episodic learning and memory involves hippocampal activity (Vazdarjanova et al. 2004, 

Guzowski et al. 2001, Gabrieli et al. 1997 and Henke et al. 1997). In addition, recent data 

revealed that there is structural plasticity in hippocampal principal neurons, and 

suggested that remodeling of hippocampal circuits might underly an important aspect of 

episodic learning and memory (Muller et al. 2002, De Paola et al. 2003 and Galimberti et 
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al. 2006). Therefore, the hippocampus is an attractive system to understand how 

structural plasticity might relate to learning and memory.  

Basic circuits of the hippocampus 

 

Figure 3. Basic anatomy of the hippocampus (modified from Guilherme et al. 2008) 

The major input to the hippocampus is carried by axons of the perforant path, which 

convey polymodal sensory information from neurons in layer II and III of the entorhinal 

cortex. In parallel, afferents of cholinergic and serotonorgic neurons provide a 

modulatory input to different hippocampal cell types. Layer II afferents from the lateral 

and medial enthorhinal cortex make excitatory synaptic contacts with the outer and 

middle third of dentate gyrus granule cells dendritic trees, respectively. Granule cells 

initiate the trisynaptic loop (granule cells-CA3 and-CA1 pyramidal neurons) by 

projecting through the mossy fibers to the proximal apical dendrites of CA3 pyramidal 

cells. CA3 pyramidal cells project to ipsilateral CA1 pyramidal cells through schaffer 

collaterals, and to contralateral CA3 pyramidal cells through commissural connections. 

Other layer II afferents from lateral enthorinal cortex innervate directly the distal apical 

dendrites of CA3 pyramidal cells. Layer III afferents from medial and lateral enthorinal 

cortex innervate the distal apical dendrites of CA1 pyramidal cells. The output of the 

hippocampus are afferents of CA1 pyramidal cells that project to layer V of the 
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enthorinal cortex, which convey this information back to polymodal association areas of 

the neocortex ( Amaral & Lavenex 2007). The three major subfields of the hippocampus 

(DG, CA3 and CA1) have a laminar organization in which the cell bodies are tightly 

packed with afferent fibers terminating on selective regions of the dendritic tree. The 

hippocampus is also home of a rich diversity of inhibitory interneurons (see Figure 3 and 

Amaral & Lavenex 2007 for more details). 

Hippocampal synaptic plasticity 

The most famous example of hippocampal synaptic plasticity is long-term potentiation 

LTP, which was first identified in the hippocampus and is believed to represent an 

important mechanism of learning and memory (Bliss & Lomo 1973 and Bliss & Gardner-

Medwin 1973, Gruart et al. 2006 and Whitlock et al. 2006). For example, in the CA1 area 

of the hippocampus, LTP occurs when schaffer collaterals receive high-frequency 

electrical stimulation that induces an enhancement of synaptic transmission with CA1 

pyramidal cells. The opposing process to LTP is long-term depression LTD, in which 

synaptic transmission is weakened by low-frequency stimulation (Dudek & Bear 1992). 

LTD might serve as a learning mechanism in its own right, or might be a means of 

ensuring homeostatic stability by preventing an increase in overall activity in potentiated 

networks. Other forms of activity-dependent hippocampal plasticity have been found, 

including, EPSP-spike (E-S) potentiation, spike-timing-dependent plasticity STDP, 

depotentiation and de-depression (Dan & Poo 2004, Staubli & Lynch 1990 and 

Montgomery & Madison 2002). In spite of much progress in studying plasticity, we still 

have no clear picture of how synaptic plasticity in extensive networks of cells leads to 

storage and recall of information. In 1949 Donald Hebb proposed the 

“neurophysiological postulate”: 

“When an axon of a cell A excites cell B and repeatedly or persistently takes part in 

firing it, some growth process or metabolic change takes place in one or both cells so 

that A’s efficiency as one of the two cells firing B is increased” 
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This idea, together with the discovery of LTP, led to the synaptic plasticity and memory 

(SPM) hypothesis (Martin et al. 2000), which might currently represent the predominant 

view by a majority of neuroscientists as to the relationship between synaptic plasticity 

and learning: 

Activity-dependent synaptic plasticity is induced at appropriate synapses during memory 

formation, and is both necessary and sufficient for the information storage underlying the 

type of memory mediated by the brain area in which that plasticity is observed. 

Molecular and structural aspects of hippocampal LTP  

In the hippocampus, the mechanisms underlying LTP are not the same in all subfields. 

For example in the mossy fiber pathway LTP is nonassociative and presynaptic, whereas 

in the schaffer collateral pathway it is associative and postsynaptic. The induction of LTP 

in the CA1 region depends on four postsynaptic factors: postsynaptic depolarization, 

activation of NMDA receptors, influx of Ca2+, and activation by Ca2+ of several second-

messenger systems in the postsynaptic cell. Initially, high-frequency stimulation of 

schaffer collaterals leads to glutamate release from presynaptic terminals that bind 

AMPA receptor channels. This triggers the depolarization of the postsynaptic membrane 

and relief from the Mg2+ dependent blockade of the NMDA channels. Ca2+ flow through 

the NMDA channel and the resulting rise of Ca2+ in the dendritic spine triggers Ca2+ 

dependent kinases e.g. αCaMK II and PKA. αCaMKII and PKA phosphorylate AMPA 

receptor-channels and increase their sensitivity to glutamate. In addition, new AMPA 

receptor-channels are added to synaptic junctions and retrograde messegers e.g. NO act 

on protein kinases in the presynaptic terminal to initiate an enhancement of transmitter 

release that contributes to maintain LTP. Therefore, LTP in the schaffer collateral 

pathway is associative and postsynaptic-dependent. This synaptic efficacy over several 

hours is supposed to involve the activation of gene transcription and protein synthesis 

(West et al. 2002). Some of the proteins that are synthesized, e.g. BDNF, can also lead to 

structural changes (Poo 2001). Indeed, there is evidence that induction of LTP leads to 

changes in the number and shape of spines (Nikonenko et al. 2002, Yuste & Bonhoeffer 

2001 and Mueller et al. 2002). For example, induction of LTP in hippocampal slices 

leads to the formation of new spines and its inhibition with an NMDA receptor antagonist 
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(AP5) prevents this structural change (Engert & Bonhoeffer 1999). In contrast to LTP, 

LTD reduces the diameter of spine heads (Zhou et al. 2004). Similar changes in spine and 

bouton morphology and number have also been found in different brain areas after 

learning (Bailey & Kandel 1993 and Geinisman et al. 2001). These results suggest that 

structural plasticity contributes to the modulation of synaptic transmission, and represents 

an anatomical trace of learning-related synaptic plasticity. 

The mossy fiber projection 

When Ramón y Cajal initially observed dentate gyrus granule cells axons at the light 

microscopic level, he saw the appearance of mossy-like structures and therefore called 

them “mossy fibers”. Later it became clear that this mossy appearance was due to the 

existence of giant terminals that were called large mossy fiber terminals (LMTs). Mossy 

fibers project through the dentate hilus and CA3 area of the hippocampus and have more 

than one terminal type: LMTs, small filopodial extensions that emanate from LMTs, and 

en-passant varicosities epVs. Small filopodial extensions and epVs target GABA-

containing interneurons along the entire projection. However, LMTs are specialized to 

target mossy cells and CA3 pyramidal neurons (Acsady et al. 1998 and Henze et al 

2000). Mossy cells are excitatory interneurons of the dentate hilus that project in the 

inner third of the granule cells dendritic tree. This projection is called ipsilateral 

associational-commissural projection and reinforces mossy fibers synaptic plasticity 

providing feed forward excitation. In the CA3 area, mossy fibers run in two main 

bundles, the main projection and the infrapyramidal projection. The main projection runs 

entirely along the stratum lucidum, whereas the infrapyramidal projection runs first 

within the proximal extent of stratum pyramidale, to cross over to stratum lucidum in the 

CA3a region. At the end of CA3, mossy fibers make a turn temporally and project for 1-2 

mm longitudinally towards the temporal pole of the hippocampus (Amaral & Lavenex 

2007). CA3 pyramidal neurons make synaptic contacts with LMTs using specialized 

spine-clusters called “thorny excrescence clusters”, and each CA3 pyramidal cell has 

been estimated to be contacted by 30-50 different LMTs from distinct mossy fibers 

(Henze et al. 2000). 
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The mossy fiber projection represents a particularly advantageous system to study the 

structural plasticity of an axon that is involved in episodic learning and memory. The fact 

that each mossy fiber exhibits a sparse excitatory connectivity along CA3, with 10-15 

LMTs at 80-150 µm intervals, suggests that LMTs might establish contacts with some 

degree of spatial selectivity. In addition, individual LMTs can elicit action potentials in 

postsynaptic pyramidal cells, and they do exhibit structural plasticity (Reid et al. 2001, 

Henze et al. 2002, De Paola et al. 2003 and Galimberti et al. 2006).  
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SUMMARY 

We investigated rearrangements of connectivity between hippocampal mossy fibers and 

CA3 pyramidal neurons. We find that mossy fibers establish 10-15 local terminal 

arborization complexes (LMT-Cs) in CA3 exhibiting major differences in size and 

divergence in adult mice. LMT-Cs exhibited two types of long-term rearrangements in 

connectivity in the adult: progressive expansion of LMT-C subsets along individual 

dendrites throughout life, and pronounced increases in LMT-C complexities in response 

to enriched environment. In organotypic slice cultures, subsets of LMT-Cs also 

rearranged extensively and grew over weeks and months, altering the strength of 

preexisting connectivity, and establishing or dismantling connections with pyramidal 

neurons. Differences in LMT-C plasticity reflected properties of individual LMT-Cs, not 

mossy fibers. LMT-C maintenance and growth were regulated by spiking activity, 

mGluR2-sensitive transmitter release from LMTs, and PKC. Thus, subsets of terminal 

arborization complexes by mossy fibers rearrange their local connectivities in response to 

experience and age throughout life. 

 

INTRODUCTION 

Sustained rearrangements of synaptic connections can provide mechanisms to alter 

connectivity in neuronal circuits, and encode experience in the brain (Lichtman and 

Colman, 2000; Poirazi and Mel, 2001; Chklovskii et al., 2004). It is well established that 

local rearrangements of circuitry driven by experience play prominent roles in the fine-

tuning of neuronal circuits during postnatal development (Lichtman and Colman, 2000; 

Linkenhoker and Knudsen, 2002; Gan et al., 2003; Linkenhoker and Knudsen, 2005). In 

contrast, although there is abundant evidence for pronounced physiological plasticity in 

the adult, evidence that structural rearrangements of circuitry also take place in the adult 

has been scarce (but see Knott et al., 2002). Recent in vivo time-lapse imaging studies in 

neocortex have reported appearance and disappearance of postsynaptic dendritic spine 

subpopulations, and shown that the frequency of these events can be influenced by 

sensory experience (Lendvai et al., 2000; Trachtenberg et al., 2002; Holtmaat et al., 

2005). These remodeling events were more frequent in younger mice, but turnover was 

also detected in older adults (Holtmaat et al., 2005; Lee et al., 2006; but see Zuo et al., 
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2005). In addition, a study using long-term organotypic hippocampal slice cultures 

showed that subsets of presynaptic terminals can undergo comparable balanced turnover, 

and that the extent of this turnover is again enhanced by synaptic activity (De Paola et al., 

2003). Finally, recent studies of adult mouse barrel and visual cortex have provided 

evidence for such structural plasticity of presynaptic terminals in vivo (De Paola et al., 

2006; Stettler et al., 2006). However, these studies imaged groups of either pre- or 

postsynaptic elements within small regions of neuropil, and could thus not assign 

complete sets of synapses by individual identified presynaptic neurons to their 

postsynaptic targets. Consequently, it has remained unclear to what extent synapse 

rearrangement processes in the adult produce net alterations in the numbers of synaptic 

connections between identified synaptic partners. For the same reasons, it has also 

remained unclear whether, and under what circumstances, repeated rearrangement 

processes can lead to incremental shifts of connectivity in the adult. To address these 

questions, we looked for simple and well-characterized circuitry that had been implicated 

in experience-related anatomical plasticity, and which was accessible to large-scale 

repeated imaging during long periods of time. 

 

The mossy fiber projection by dentate gyrus granule cells onto hippocampal pyramidal 

neurons in CA3 (Johnston and Amaral, 1998; Henze et al., 2000) is an attractive system 

to investigate patterns of synaptic connection rearrangements on a comprehensive scale. 

First, most of the mossy fiber projection in CA3 is lamellar with respect to the 

hippocampal long axis, and exhibits stereotype and simple relationships with respect to 

the number of its postsynaptic partners. Each mossy fiber establishes 10-15 large mossy 

fiber terminals (LMTs) at 80-150 µm intervals along its projection in CA3 that can be 

unambiguously identified anatomically (Johnston and Amaral, 1998). The average 

number of distinct mossy fiber inputs per pyramidal neuron in CA3 has been estimated at 

about 30-45 (Henze et al., 2000), suggesting that the probability for random pairs of 

mossy fibers to synapse onto the same pyramidal neuron is very low. These low synapse 

numbers stand in sharp contrast to the very high degree of connectivity among pyramidal 

neurons in CA3, and from CA3 to CA1. Second, mossy fibers in stratum lucidum 

establish well-characterized and powerful excitatory synaptic connections with pyramidal 
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cells through LMTs, and with inhibitory interneurons through en-passant varicosities and 

LMT filopodia (Acsady et al., 1998; Geiger and Jonas, 2000; Reid et al., 2001; Henze et 

al., 2002; Engel and Jonas, 2005; Nicoll and Schmitz, 2005). The latter provide efficient 

feed-forward inhibition, and mediate the predominant outcome of mossy fiber activation 

when these spike at low frequencies (Lawrence and McBain, 2003; Mori et al., 2004). In 

contrast, mossy fibers elicit increasing excitation of CA3 pyramidal neurons when firing 

at higher frequencies (Geiger and Jonas, 2000; Henze et al., 2002; Mori et al., 2004). As a 

consequence, and probably depending on spiking frequency, one or a small number of 

converging LMTs can be sufficient to elicit action potentials in a postsynaptic pyramidal 

cell, assigning a major instructional role to this synapse in triggering network activity in 

the hippocampus (Henze et al., 2002). In addition, postsynaptic spiking induced by LMTs 

also serves as a powerful trigger to induce LTP at co-active weaker associational 

synapses onto the distal sections of the same pyramidal neuron dendrites (Kobayashi and 

Poo, 2004). A third key feature is that individual mossy fibers only fire rarely during 

hippocampal recruitment (sparse code), suggesting that small ensembles of co-active 

granule cells as such convey information to the hippocampal network, and that the 

precise outcome of the firing for each of these cells might be functionally important 

(Johnston and Amaral, 1998; Henze et al., 2002).  

 

Several lines of evidence have implicated the mossy fiber projection in anatomical 

plasticity related to experience. Neuroanatomical analyses using Timm staining in mice 

and rats have suggested that mossy fiber projection sizes are correlated to performance in 

hippocampal-dependent tasks (e.g. Schopke et al., 1991; Pleskacheva et al., 2000), and 

that experience can lead to significant alterations in the size of the mossy fiber projection 

(Schwegler et al., 1991; Ramirez-Amaya et al., 2001). Furthermore, long-term stress can 

lead to reductions in spatial learning performance and in the average density of mossy 

fiber synapses as determined by electron microscopy, and these impairments can be 

reversed through training for spatial tasks (McEwen, 1999; Sandi et al., 2003). Finally, 

independent studies have revealed that the dendrites and dendritic spines of CA3 

pyramidal neurons are particularly sensitive to stress-inducing treatments and stress-

related hormones (e.g. McEwen, 1999), suggesting that both the pre- and postsynaptic 

 27



    

elements of mossy fiber synapses are subject to experience-related anatomical plasticity 

in the adult. Taken together, these findings from distinct species and experimental 

approaches support the notion that the mossy fiber projection and its LMT synapses in 

CA3 provide a promising system to investigate persistent rearrangements of synaptic 

circuitry influenced by experience in the adult brain. 

 

Here we exploited transgenic mice expressing membrane-targeted GFP in only few 

neurons (Thy1-mGFPs) (De Paola et al., 2003), and high-resolution imaging to 

investigate the connectivity of LMTs in fixed mouse tissue and organotypic slice 

cultures. We find that LMTs are highly heterogeneous in vivo and in slice cultures, and 

that many of them are connected through 10-200 µm processes to “satellite LMTs” that 

can contact distinct pyramidal neurons in CA3. LMTs are thus components of local 

presynaptic terminal arborization complexes (LMT-Cs) by mossy fibers, exhibiting 

varying degrees of divergence with respect to their local targets in CA3. We then show 

that LMT-Cs exhibit pronounced long-term rearrangements in the adult. We provide 

evidence for two distinct types of rearrangements: 1) a life-long gradual growth of the 

largest LMT-Cs along pyramidal cell dendrites; 2) a dramatic increase in the complexity 

of many LMT-Cs in mice housed in an enriched environment. We finally show that 

subsets of LMT-Cs exhibit comparable rearrangements and growth over weeks and 

months in slice cultures, that these anatomical rearrangements reflect functional 

rearrangements in the local connectivity of LMT-Cs with pyramidal neurons, that 

heterogeneities in plasticity and growth reflect local properties of individual LMT-Cs, 

and that LMT-C maintenance and growth are regulated by synaptic activity, mGluR2-

sensitive transmitter release from LMTs, and PKC. Taken together, these results 

demonstrate the existence of sustained local rearrangements of connectivity by defined 

terminal arborization structures regulated by activity in the adult.  
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RESULTS 

 

Divergence and convergence of LMT complex connectivities onto pyramidal 

neurons 

As a prerequisite to investigate the anatomical plasticity of LMTs, we analyzed their 

morphologies and connectivities, using Thy1-mGFPs transgenic mouse lines expressing 

membrane-targeted GFP in only few neurons (DePaola et al., 2003), high-resolution light 

microscopy of perfused brain tissue, and 3D image processing. The degree of anatomical 

resolution conferred by the mGFP marker allowed us to provide views of hippocampal 

LMTs at a very high level of overall organization and resolution (Fig. 1). We found that 

in addition to core terminal regions with filopodia adjacent to the main axon, which had 

been described in previous studies, LMTs frequently exhibited processes of 10-200 µm in 

length, which emerged from the core LMT and terminated at “satellite LMTs” (Fig. 1A, 

Suppl. Fig. 1; range of 0-5 satellites per LMT; depending on age, 38% (2.5 months), 58% 

(6 months), and 70% (16 months) of all LMTs exhibited satellites; see Fig. 3C). Like core 

LMTs, satellites were larger than 2.5 µm in diameter, exhibited filopodia, and contacted 

pyramidal neurons (see below). To rule out the possibility that some of the structures 

might be due to the mGFP marker itself, we also acquired images from mice expressing 

cytosolic YFP (Thy1-cYFPs) (Feng et al., 2000). Although the resolution was 

substantially inferior, the cytosolic marker revealed the same types of subcomponents and 

arrangements, including core regions and satellites, as detected with the mGFP marker 

(Suppl. Fig. 1B). For the sake of clarity, we therefore introduce the term “LMT complex” 

(LMT-C) to designate a local presynaptic terminal arborization structure consisting of a 

core LMT, its filopodia, its satellite LMTs, and their filopodia. Accordingly, mossy fibers 

establish 10-15 LMT-Cs in CA3, and some of these LMT-Cs exhibit satellites. 

 

A comparison among large sets of LMT-Cs within small regions of hippocampus 

revealed pronounced variations among these presynaptic terminal complexes, which 

ranged from small core terminal regions to very large and highly complex structures 

consisting of LMTs with multiple subunits, and of several satellites (Fig. 1; see also Figs. 

2A, 2C, 3C). Reconstruction of three LMTs from serial EM sections of non-transgenic 
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hippocampi provided independent evidence that individual LMTs can consist of multiple 

interconnected subunits (Suppl. Fig. 2). The very large sizes of some LMT-Cs, and the 

presence of satellites at many of them suggested that many of these terminal structures 

might establish synaptic contacts with more than one postsynaptic CA3 pyramidal 

neuron. Indeed, a detailed analysis provided clear evidence of individual LMT-Cs in 

contact with more than one CA3 pyramidal neuron (Fig. 1A, Suppl. Videos 1, 2). This 

was not only true for the different LMTs belonging to an LMT-C, but also for large 

individual LMTs (Fig. 1A). In addition to this unexpected local divergence of the outputs 

by one LMT-C onto distinct pyramidal neurons, we also found clear evidence for 

extensive convergence of distinct LMT-C inputs onto individual thorny excrescence 

clusters (Fig. 1B).  

We conclude that LMT-Cs are local terminal arborization structures of mossy fibers 

exhibiting dramatic differences in their sizes, complexities, and divergence onto CA3 

pyramidal neurons in adult mice.  

             

 30



    

 
Figure 1. Divergence and convergence of LMT-C connectivity onto pyramidal neurons in CA3.  
A: Complexity and divergence of LMT-Cs. Individual mossy fibers and pyramidal neurons in CA3a/b (6-months Thy1-
mGFPs mouse); Imaris volume projections (high-intensity mode acquisition). Upper panel, left: cream arrows: LMTs, 
red arrows: one LMT covering a long segment of pyramidal neuron dendrite. Upper panel right: lower magnification 
image of field shown on the left. Green arrows: two examples of thorny excrescence clusters. The inset shows the same 
field, but seen from behind (mirror image to facilitate orientation); proximal sections were excluded to reveal the 
dendrite-facing surface of the elongated LMT (red arrow). Lower panel left: camera lucida drawing of CA3 field shown 
above. LMTs belonging to the same complex (3D-analysis) are in the same color. Lower panels center and right: 
Examples of LMT-Cs (cream arrows) each contacting two distinct pyramidal neurons (green arrows); right: LMT and 
one satellite (to the right). 
B: Convergence of LMT-Cs belonging to distinct mossy fibers at the same thorny excrescence cluster of a pyramidal 
neuron dendrite in CA3 stratum lucidum (2.5-months Thy1-mGFPs mouse). Left: single confocal section (green arrows 
delineate the outline of the thorny excrescence cluster); center: camera lucida drawing, including LMTs from 5 distinct 
mossy fibers converging onto the thorny excrescence cluster; right: MIP of stacks including the cluster and its mGFP-
positive LMT inputs. The LMT-Cs belonging to the dark blue and green mossy fibers both include satellites, and 
converge on a second dendrite on the left. Bars: 5 μm.� 
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Supplementary Figure 1. Comparison of LMT-Cs in vivo, as visualized using Thy1-mGFPs or Thy1-cYFPs mice.  
Image settings (MIP of raw data) comparable to those shown in Fig. 2A for LMT-Cs in slice cultures. Arrows: original 
LMT (green; next to mossy fiber), satellites (red), beady subunits (yellow). A: Examples of LMT-Cs in 15 Mo, Thy1-
mGFPs mice. Note how the LMT structures are comparable to those detected in slice cultures.B: Examples of LMT-Cs 
in 4 Mo, Thy1-cGFPs mice. Note how complex arrangements,including beaded subunits and satellites are also 
visualized with cytosolic YFP. Bar: 5 μm. 
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Supplementary Figure 2. Ultrastructural analysis of complex LMTs.  
Electron micrographs of CA3a LMTs in 3 months wild-type mice. Blue arrows: regions where connection between 
subunits is included in the section. A: A complex LMT consisting of multiple interconnected subunits (cream outlines; 
verified by consecutive sections). Note arrangement of many thorny excrescences (red outlines) around the edge of 
LMT subunits. B: Serial sections of one complex LMT. Outlines: interconnected subunits (cream), base of dendrite 
(violet, left panel) and examples of postsynaptic thorns interconnecting LMT subunits (red); for orientation, a 
myelinated axonal profile is filled in blue. C: Partial reconstruction of LMT complex shown in (B). The schematic is 
based on 65 consecutive sections, and outlines the main topographic relationships included in the sections (axonal 
elements in blue, dendritic elements in yellow); it indicates the arrangement of thorny excrescence main branches 
(three of them), and their secondary branches extending around the edges of LMT subunits, but does not include 
tertiary side-branches into LMT subunits and their synaptic complexes. LMT subunits were interconnected along thorn 
main branches. Bars: 2 μm. 
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Life-long expansion of hippocampal LMT subsets along pyramidal dendrites 

We next wondered whether the dramatic complexities and differences among LMT-Cs 

are present to a similar extent throughout life, or whether LMT-Cs might undergo 

systematic alterations with maturation and during adulthood. A comparison of LMTs 

from the same regions of hippocampal CA3, but from mice of different ages, revealed 

clear differences in the size distributions of these presynaptic terminal structures, and a 

selective shift to larger sizes with increasing age (Fig. 2A-C). The mGFP construct 

labeled mossy fibers and LMT-Cs with remarkable and comparable homogeneity 

throughout life (Suppl. Fig. 3), arguing against the possibility that these LMT size shifts 

might reflect systematic distortions of the imaging data set. Interestingly, the shifts in 

LMT sizes did not affect all LMT size groups equally: while a large fraction (50-80%, 

depending on the age) of LMTs was relatively small (volumes equivalent to 1-3 subunits 

of 3 µm diameter) at any age, the remaining LMTs shifted to larger sizes, and the average 

sizes of the largest 5-10% among them grew dramatically with age (Fig. 2B). 

Remarkably, this gradual age-related growth of larger LMTs was not confined to any 

particular period of life, but instead continued throughout life, including old age (Fig. 

2B). This was not accompanied by a corresponding decrease in the average density of 

LMTs (average densities of LMTs per (92 x 92 x 7.5 µm) volumes of CA3a, normalized 

per mGFP-positive granule cell on the same section were: 1.14 + 0.12 (3 months), 1.18 + 

0.20 (6 months), 1.37 + 0.15 (16 months), 1.34 + 0.18 (22 months); N=8 sections, 16 

volumes, from 2 mice each; range of 21-42 LMTs per volume), arguing against the 

possibility that the higher contribution of the larger LMTs to the total volume of LMTs 

with increasing age was due to a corresponding loss of smaller LMTs.   

 

A detailed comparison of larger LMTs at different ages revealed that the predominant 

contributions to their increase in size were longitudinal extensions, which were oriented 

transversal to the mossy fiber projection (Fig. 2C). This was reflected in a gradual 

increase in LMT long-to-short axis ratio values with increasing age (Fig. 2C). High-

resolution analysis suggested that this reflected an expansion of the stretch of CA3 

pyramidal neuron dendrite occupied by individual larger LMTs (Fig. 2C). Taken 

together, these results provide evidence that, in the mouse, there is a continuous net 
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growth of the largest subpopulations of LMTs throughout life, and that this growth 

mainly involves the expansion of LMT subsets along pyramidal neuron dendrites in CA3. 

This relationship between age and LMT size distributions was detected consistently 

among BalbC x C57/Bl6 mice grown under standard housing conditions, suggesting that 

it reflects the impact of a life-long developmental mechanism in the hippocampus. 
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Figure 2. Life-long expansion of hippocampal LMT subsets along pyramidal dendrites. 
A: Overview of LMT distributions in CA3a in male mice of different ages. Note higher incidence of large and very 
large LMTs in older mice. B: Quantitative analysis of LMT size distributions as a function of age (CA3a). Left: Overall 
contributions of LMTs grouped by volume to the total volume of LMTs in the sample. Note gradually increasing 
contribution of the larger LMTs (150-300, and > 300 μm3) with increasing age. N= 9 cubes (from 3 male mice per age). 
One-way ANOVA: p<0.001 (15-60 μm3), p=0.45 (60-150 μm3), p<0.05 (150-300 μm3), p<0.001 (>300 μm3). Right: 
Relative prevalences of LMTs of different sizes as a function of age. N= 9 cubes (from 3 male mice per age). Post-hoc 
Student’s t-test (left and right): p<0.05 (*), p<0.01 (**), p<0.001 (***). A Tukey HSD post-hoc test confirmed these 
significance relationships. C: LMT arrangements in CA3a as a function of age. Note longitudinal expansions of larger 
LMTs parallel to pyramidal neuron dendrites. Cream arrows delineate the longitudinal extension of some of the largest 
LMTs in each panel (3 Mo: 2 LMTs; 6 and 16 Mo: 3 LMTs each). Quantitative analysis: N= 80 LMTs, 3 mice per age; 
bars: median values; short axis perpendicular to longest axis; one-way ANOVA: p<0.01 (ratio long/short).  Scale bars: 
25 μm.  
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Supplementary Figure 3. Homogeneity of axonal and LMT labeling by mGFP construct.  
Upper six panels: examples of confocal images and corresponding signal intensity plots for the membrane stretches 
indicated by the red lines (6 months mouse). The following positions are indicated along the line, and again along the 
intensity plot: beginning of the trace (asterisk), beginning of LMT (green arrow), end of LMT (blue arrow). Lower nine 
histograms: more examples of membrane stretch intensities (mice: 6 months (first three), 16 months, and 22 months 
(last three)). Note that the signal intensity fluctuations do not change in amplitude or frequency along the membrane of 
axons or within LMTs. LMTs of different sizes, either from the same or distinct mice, and at different ages exhibited 
comparable intensity fluctuations, suggesting that mGFP did not accumulate selectively at LMT subsets. The variations 
in signal intensity appeared on a scale that was substantially smaller than the size of LMTs. Furthermore, changing 
thresholds in the volume rendering software, altered the sizes of individual objects to a comparable extent, without 
modifying the relative size differences of LMTs. Occasional areas of higher signal intensities within LMTs reflect 
highly convoluted membrane formations, which can be revealed by non-saturating imaging conditions (see Fig2A 
lower panels), and were also detected in the electron micrographs. Small areas of high membrane density and high 
signal intensity were detected at comparable frequencies at LMTs of different sizes, and from mice of different ages. 
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Experience-related increase of LMT-C complexities in adult mice 

To investigate the possibility that experience might influence LMT-C size distributions 

and/or complexities, we analyzed LMTs of mice housed under enriched environment 

(EE) conditions known to promote brain and hippocampal plasticity (van Praag et al., 

2000), and compared them to those of littermates kept under standard housing (Ctrl) 

conditions (see Experimental procedures). We carried out three types of EE experiments: 

1) in the main set of experiments, mice were kept in EE from P40 to P80, and analyzed at 

P80 (EE-P40/P80); 2) in a second set of experiments aimed at comparing the effects of 

age and EE on LMT morphologies, mice were kept in EE from 4 months to 15 months, 

and analyzed at 15 months (EE-4Mo/15Mo); 3) the third set of experiments was aimed at 

determining whether changes due to EE (from 1 month to 4.5 months) might be 

maintained when mice were returned to standard conditions (from 4.5 months to 6 

months; EE-1Mo/4.5Mo-Ctrl6Mo). As shown in Fig. 3A, all three experimental 

conditions produced a significant shift in the prevalence of larger LMT sizes compared to 

controls. At first approximation, EE thus appeared to accelerate the effects of age on 

LMT size distributions. However, a more detailed analysis revealed that the effects of EE 

and age on LMT-C morphologies were qualitatively different. Thus, EE conditions did 

not produce a corresponding net elongation of LMTs (Fig. 3B), and specifically induced 

a pronounced increase in the complexity of LMT-Cs, as revealed by the higher incidence 

of LMT-Cs with satellites, and the higher numbers of satellites per LMT-C (Fig. 3C). 

This specific increase in LMT size and satellite numbers was accompanied by a specific 

increase in the length and complexity of postsynaptic thorny excrescences upon EE (Fig. 

3D). Significantly, increasing age did not lead to a comparable increase in postsynaptic 

thorn lengths (Fig. 3D), and LMTs of EE-4Mo/15Mo mice exhibited more satellites and 

complex outlines than those of corresponding Ctrl mice (not shown). Taken together, 

these results provide strong evidence for the existence of experience-related 

rearrangements of LMT-C connectivity in vivo, and suggest that EE conditions and age 

exert distinct influences on LMT-C rearrangement processes. 
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Figure 3. Experience-related increase in the complexity of LMT-Cs. 
A: Quantitative analysis of LMT size distributions in the different EE protocols. Overall contributions of LMTs 
grouped by volume to the total volume of LMTs in the sample. Note how all EE experiments led to size distribution 
shifts resembling those induced by increasing age (compare to Fig. 2B, left). N=6 cubes (from 4 female mice each). 
Post hoc Student’s t-test: p<0.05 (*), p<0.01 (**). 
B: Quantitative analysis of long/short axis ratios in EE-P40/P80 versus control P80 mice. N=80 LMTs, 3 mice per 
condition; bars: median values; one-way ANOVA: non significant (ratio long/short). 
C: Specific increase in the complexity of LMT-Cs induced by EE in vivo. Left: Camera lucida drawings of 
representative LMT-Cs (CA3a) from P80 mice, kept under EE (left) or Ctrl (center) conditions, and comparison to 
LMT-Cs from 6 months control mice. Note higher frequencies of satellites upon EE conditions. Right: Relative 
prevalences of LMT-Cs without and with satellites as a function of enriched environment and age. N=120 LMTs, from 
3 female mice each. 
D: Specific increase in thorny excrescence lengths and complexities upon EE conditions (CA3a). Left: High-
magnification examples of thorny excrescences (mGFP signal; arrows point to some of the thorns). Right: Quantitative 
analysis of dendrite diameters excluding or including thorny excrescences (at clusters) as a function of EE and age. 
N=40 dendrites, from 2 female mice each. Bars: 15 (B), and 2 (C) μm. 
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Long-term rearrangements and growth of LMT-C subsets in slice cultures 

To investigate LMT-C rearrangements and their regulation in a more experimentally 

accessible system, we analyzed organotypic slice cultures from Thy1-mGFPs mice, where 

LMT-Cs can be imaged and treated in situ. The slices also allowed us to analyze entire 

sets of LMTs belonging to individual axons. In these cultures, LMT-Cs exhibited 

subcomponent arrangements, satellites and diversities comparable to those detected in 

vivo (Fig. 4A-C). Since we found that neurogenesis was extremely rare under our culture 

conditions (a total of 2 BrdU/calretinin double-positive cells out of 8 slices; BrdU 

labeling at day in vitro (DIV) 6, analysis at DIV9 or DIV16), age differences among 

individual granule cells could not account for the dramatic differences in LMT-C 

morphologies. Furthermore, comparable LMT-C diversities, including satellites were also 

detected when non-transgenic slice cultures were transfected with a cytosolic RFP 

construct (cRFP, see Fig. 6A), ruling out the possibility that the LMT-C morphologies 

were a property of transgene positive granule cells in Thy1-mGFPs mice, or due to the 

activity of the Thy1 promoter in granule cells.  

 

In order to capture any type of morphological plasticity by mossy fibers, we acquired 

high-resolution images of entire mossy fiber projections in CA3a-c (Fig. 4A) during 

periods ranging from a few days to several  (up to 5) months. We found that when viewed 

at intervals of 3-5 days and more, many LMT-Cs exhibited dramatic alterations in their 

morphology (Fig. 4B, C). In contrast, even when mossy fibers were imaged for up to 3-4 

months, we did not detect new process outgrowths from the mossy fiber axon itself. 

Instead, axonal dynamics was confined to remodeling and outgrowth events from LMT-

Cs (the only exceptions were occasional short filopodial outgrowths from en-passant 

varicosities (De Paola et al., 2003), which are presynaptic terminals by mossy fibers onto 

inhibitory interneurons). In addition to changes in the shape and size of individual LMTs, 

we noticed that a fraction of LMT-Cs exhibited dramatic large-scale structural plasticity 

(Fig. 4B); this plasticity included process outgrowth or retraction events of up to more 

than 120 µm per day, and the rapid formation or loss of satellite LMTs (Fig. 4B). These 

satellite rearrangements frequently led to the establishment or dismantling of contacts 

 40



    

with distinct CA3 pyramidal neurons (Suppl. Fig. 4; in 5/5 investigated cases, the new 

contacts exhibited Bassoon-positive clusters (not shown, but see Fig. 5D)).   

 

To determine whether LMT-C remodeling might lead to sustained changes in the 

arrangement and/or sizes of LMT-Cs in CA3 as a function of time, we repeatedly imaged 

the same mossy fibers and their identified individual LMT-Cs at 20 days intervals for 

periods of up to 4 months. We found that disappearance or appearance events, in which 

an entire LMT-C could either not be detected anymore at two subsequent imaging 

sessions, or appeared after DIV20, were not frequent (disappearances: 76/1500; 

appearances: 58/1500 LMT-Cs). Instead, many preexisting LMT-Cs grew in size during 

many months in slice cultures (Fig. 4C, D). To analyze the growth properties of LMT-Cs, 

we computed size differences for large sets of individual LMT-Cs as a function of time. 

Only LMT-Cs detectable throughout the entire experimental period were included in the 

analysis. Grouping of the results according to the absolute sizes of LMT-Cs at the first 

observation time revealed a net and sustained increase in the average sizes of persisting 

LMT-C over time in the slices, which was much more pronounced for larger LMT-Cs 

(Fig. 4D). A regression analysis revealed that the absolute magnitudes of LMT-C growth 

were strongly correlated to the initial sizes of individual LMT-Cs, but not to the actual 

sizes of LMT-Cs at successive imaging sessions (Fig. 4D). In a way strikingly 

reminiscent to the shifts of LMT sizes in vivo, LMT-C rearrangements in slices led to a 

gradual increase in the contribution by the largest LMT-Cs to total LMT-C volume (Fig. 

4E). In further analogy to LMTs in vivo, LMT growth in slices mainly involved 

elongation, leading to a significant increase in the long-to-short axis ratio of LMTs with 

time in vitro (Fig. 4F). The fastest growing LMT-Cs also remodeled on a larger scale 

than the smaller LMT-Cs (not shown), suggesting that they exhibited stronger anatomical 

plasticity properties. LMT-C growth was not a consequence of the live imaging 

procedure, since slice cultures imaged for the first time at ages ranging from 20 days to 4 

months in vitro exhibited average LMT-C sizes that were comparable to those that had 

been determined when following identified LMT-Cs longitudinally for a corresponding 

period of time in vitro (not shown). In addition to this presynaptic growth, and consistent 

with a net increase in active zone numbers (see Fig. 5D, E), we also detected remodeling, 
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growth and increased complexity of individual thorny excrescences (see Suppl. Fig. 5 for 

an example). We conclude that subsets of LMT-Cs rearrange extensively in organotypic 

slice cultures, altering the sets of pyramidal neurons with which they establish contacts 

through satellites, and consistently growing in size over many months. The arrangements 

and heterogeneities of LMT-Cs in slice cultures thus closely resemble those in vivo, and 

their remodeling and expansion properties exhibit features consistent with those inferred 

from comparing mice of different ages or housing conditions.   
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Figure 4. Rearrangements and growth of LMT-C subsets in organotypic slice cultures.  
A: Left: Overview of an entire mossy fiber projection at DIV20 and DIV40. The dentate gyrus is to the left. Note growth of several 
LMTs. Right: Complexity and diversity of LMT-Cs in slice cultures. The images are maximum intensity projections (MIP), or raw 
data. The two LMTs in the lower left panel (DIV60, arrows) belong to the same complex. B: Large-scale anatomical plasticity at one 
LMT-C in CA3a (cream arrow). Note outgrowth of a long process within one day (DIV52 to DIV53; thin cream arrow), and formation 
of satellite LMTs (red arrows). C: Rearrangements and growth of a large LMT-C (cream arrow) from DIV56 to DIV132. D:  
Quantitative analysis of LMT-C growth in slice cultures. Left, and middle panel: Sizes of individual identified LMT-Cs that persisted 
throughout the analysis were compared at the indicated times, and LMT-Cs were then grouped into small (< 30 μm2), medium (< 60 
μm2) and large (> 60 μm2), according to their sizes at DIV20. N=50 identified LMT-Cs each, from 5 slice cultures. Right: Linear 
regression analysis of identified LMT-C sizes between DIV60 and DIV140. Linear correlation values (R2): 0.95 (DIV80), 0.95 
(DIV100), 0.92 (DIV120), 0.88 (DIV140).E: LMT-C volume distribution as a function of age. Contribution of LMT-C size groups to 
the total volume of LMT-Cs in slice cultures (comparable to the data of Fig. 2B). N=5 cubes, from 5 slices. One-way ANOVA (orange 
asterisk): p<0.05 (*), p<0.01 (**). Post-hoc t-test (blue): p<0.05 (*).F: Quantitative analysis of long/short LMT axis as a function of 
age in vitro. N=20 LMTs, from 5 slices; bars: median values; one-way ANOVA: p<0.001 (ratio long/short).    
Bars: 100 (A, left), 5 (A, right), and 10 μm (B, C). 

 43



    

 
 
Supplementary Figure 4. Examples of LMT-C outgrowths establishing satellites on distinct pyramidal neurons 
in CA3a stratum lucidum.  
Green arrows: main LMT; red arrows: mGFP-positive pyramidal neuron dendrite. Physical contacts were analyzed 
using Imaris (3D) software. A: Example of new contact. This LMT-C did not contact the mGFP positive dendrite at 
DIV37. A contact was detectable at DIV44 (cream arrow), and a distinct LMT subunit (cream arrows) was maintained 
beyond DIV52. This LMT-C is linked to its mossy fiber (short segment just visible at upper left corner, DIV52 panel) 
through a ca. 35 ⎧m side-branch.B: Example of contact loss. The LMT-C contacts the mGFP positive dendrite at two 
positions (cream arrows) through satellites at DIV50. One of the contacts has been lost at DIV54, and the second one is 
lost between DIV67 and DIV70. Bar: 15 µm. 
 

 
 
 
 

 
 
Supplementary Figure 5. Elongation and increased complexity of a large thorny excrescence in slice culture  
(mGFP signal). Note how the thorny excrescence has elongated at DIV46 and DIV66 (arrows). Shorter thorny 
excrescences along this pyramidal neurons dendrite in CA3 exhibit smaller changes. Bar: 10 μm. 
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Larger LMTs produce a stronger excitation of postsynaptic pyramidal neurons 

Do LMT-C rearrangements and growth lead to changes in the functional connectivity of 

individual LMT-Cs? To determine whether larger LMTs might differ from smaller LMTs 

with respect to the strength of their output onto pyramidal neurons in CA3, we carried out 

intracellular pair recording experiments in slice cultures (DIV20-30). One mGFP-positive 

granule cell was recorded and stimulated under current-clamp mode and a second 

electrode filled with sulforhodamine or Lucifer-yellow was used to label CA3 pyramidal 

cell dendrites present in the close vicinity of one of its core LMTs (either its largest core 

LMT, or a smaller core LMT; see Experimental procedures). These CA3 neurons were 

then recorded under voltage clamp, and tested for monosynaptic connectivity to the 

mGFP-positive granule cell. In this way, we achieved intracellular pair-recordings among 

synaptically connected granule cells and pyramidal neurons in about 10% of the attempts 

(Fig. 5A; see Methods). We found that DCG-IV-sensitive (Ishida et al., 1993) excitatory 

postsynaptic responses evoked by granule cell stimulation were substantially stronger at 

larger LMTs than at the smaller LMTs (Fig. 5A). Significantly, the paired-pulse 

facilitation and frequency-dependent facilitation properties of large and small LMTs were 

not detectably different (Fig. 5B, C), suggesting that smaller (weaker) and larger 

(stronger) LMTs exhibit proportional short-term presynaptic plasticity, and that the 

greater synaptic strength might reflect a larger number of active zones in larger LMTs.  

To determine whether and how differences in the sizes of LMTs might reflect differences 

in numbers of synaptic release sites, we analyzed Bassoon-positive active zones (tom 

Dieck et al., 1998) in individual LMTs (Fig. 5D, E). We found that all elements of LMTs 

contained numerous active zones (Fig. 5D, see also Suppl. Fig. 2), and that LMT sizes 

and active zone numbers were closely correlated independent of time in culture (Fig. 5E). 

We found comparable correlations between LMT volumes and active zone numbers for 

LMTs and their satellites in vivo (N.G. and P.C., unpublished results). We conclude that 

the large variations among LMT sizes reflect corresponding variations in active zone 

numbers, that the expansion of LMT-Cs over time reflects an increase in the number of 

release sites at those LMT-Cs, and that the establishment of satellites reflects the addition 

of release sites by the LMT-C onto the same or new postsynaptic pyramidal neurons in 

CA3. Taken together, the results thus suggest that the profound anatomical 
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rearrangements of individual LMT-Cs in slice cultures reflect corresponding 

rearrangements of their local connectivities onto pyramidal neurons in CA3.  

 

 
Figure 5. Larger LMTs elicit stronger postsynaptic responses in pyramidal neurons and have more active zones.  
A: Monosynaptic CNQX-sensitive responses recorded in CA3 pyramidal neurons upon intracellular stimulation of mGFP-positive 
granule cells in DIV20-30 slice cultures. Top: ten superimposed recordings for small and large LMTs. Bottom: Amplitude distribution 
histogram (left) and cumulative plot of evoked amplitudes for the same set of data. Holding potential: -70mV; Bicuculine 10 μM, D-
AP5 80 μM. Small LMTs: 8-25 μm2; large LMTs: 80-150 μm2. Total of evoked currents: 1264 (small LMTs) and 923 (larger LMTs). 
B: Paired-pulse facilitation does not differ when recorded in large or small LMTs. N=5, p>0.1. C: Frequency-dependent facilitation 
does not differ in small and large LMTs. Data normalized to 0.1Hz values. Averages of 15 traces each; N=5, p>0.1. D: Distribution of 
active zones within an LMT-C with a satellite (DIV80); Bassoon immunocytochemistry red; mGFP green. Left: MIP; Bassoon 
labeling outside the LMT was cropped out. Right panels: single confocal planes (33 planes total; plane distance 0.3 μm). Note 
presence of active zones throughout the LMT and in its satellite. Bar: 5 μm. E: Contents of Bassoon-positive structures (active zones) 
as a function LMT volume and age in vitro. Left: regression analysis; the lines are polynomial fits. Note comparable, and near to 
linear relationships between LMT volume and active zone contents at DIV20, 40 and 90. Right: Active zone number/LMT volume 
ratios; bars: median values; N=80 LMTs per condition. One-way ANOVA: p=0.76 (i.e. no differences as a function of age).   
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Different LMT-Cs belonging to the same mossy fiber exhibit distinct plasticity 

properties 

What underlies the dramatic differences in LMT-C arrangements, sizes and anatomical 

plasticity in slice cultures? One possibility was that differences in LMT sizes might 

reflect differences among granule cells and their mossy fibers. Alternatively, LMT-Cs 

belonging to the same mossy fiber might differ among each other. To address this issue, 

we first analyzed a large set of individual mossy fibers, focusing on the relative sizes of 

their LMT-Cs, and on whether or not they established satellites. To our surprise, we 

found that for the majority of mossy fibers (34/40) one LMT-C was at least three times as 

large as any of the remaining LMT-Cs along the same mossy fiber, which tended to 

exhibit more comparable sizes (Fig. 6A-C). These size relationships among the LMT-Cs 

of a given mossy fiber were detectable for slice cultures of any age beyond 5DIV (not 

shown), and were not restricted to granule cells exhibiting Thy1-driven mGFP expression 

(Fig. 6A). 

 

We next reasoned that mossy fibers might exhibit some larger LMT-Cs at any given time, 

but that their position might change with time, in parallel with LMT-C remodeling and 

growth; alternatively, individual “plastic LMT-Cs” might maintain their growth 

properties and augment their relative sizes over time. We therefore carried out 

longitudinal studies, in which we followed all individual LMT-Cs of identified mossy 

fibers over months in slice cultures. We found that individual “plastic LMT-Cs” 

maintained this distinguishing property over months in culture, when they kept growing 

more than the smaller LMT-Cs (Fig. 6B, C). This led to a gradual shift of the total 

presynaptic volume of individual axons towards the largest LMT-C (Fig. 6E). Since 

“plastic LMT-Cs” also recovered more effectively from treatments that reversed LMT-C 

growth (see below; Fig. 6D), we concluded that the large differences in the plasticity and 

growth of LMT-Cs reflect local properties of individual LMT-Cs. 
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Figure 6. Plasticity and growth are specific properties of individual LMT-Cs, not mossy fibers.  
A: Top: Example of mossy fiber from non-transgenic DIV30 slice expressing cRFP (gene-gun transfection); Middle and bottom: 
examples of DIV70 (two of them) and DIV130 (one) slice cultures, each with one well-labeled mGFP-positive granule cell. Cell 
bodies and dendrites are to the left; asterisk: position of the largest LMT-C. The cRFP expressing mossy fiber exhibits its largest 
LMT-C within the infrapyramidal projection; as expected, the largest LMT-C at DIV30 is smaller than those at DIV70, which are 
smaller than that at DIV130. B-C: Growth of individual LMTs between DIV20 and DIV60 (b), or DIV60 and DIV120 (c). Each graph 
represents one mossy fiber and its individual LMTs (CA3c to the left). D: Larger LMTs maintain this distinction when recovering 
from shrinkage induced by TTX, Experimental conditions as described for Fig. 7. E: Redistribution of total LMT volume as a function 
of age in vitro between largest LMT-C, and remaining LMT-Cs belonging to the same axon. Median values from 3 individual axons. 
Bar: 140 μm. 
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Local, activity-dependent regulation of LMT-C maintenance and growth 

To investigate the mechanisms regulating LMT-C remodeling and growth, we carried out 

pharmacological experiments in slice cultures. Experimental conditions consisted of 

acquiring one set of images at DIV20 (control conditions), of including pharmacological 

agents to the culture medium during the next 20 days, of a second imaging session at 

40DIV, followed by returning slices to control medium conditions. Further imaging at 

60DIV and 80DIV was carried out to verify that any drug effect was reversible. In 

additional experiments aiming at excluding effects restricted to comparatively young 

slice cultures, we also carried out treatment experiments starting at 60DIV.  

 

Under control conditions, current-clamp recordings of granule cells in slice cultures 

showed a level of background firing activity in the range of 3-3.5 Hz with occasional 

bursts of action potentials very much consistent with the firing properties reported in vivo 

(e.g. Penttonen et al., 1997). We found that the inclusion of a TTX dose sufficient to 

completely and reversibly block spiking activity in the slices (not shown) not only 

blocked LMT-C growth, but led to a substantial reduction in LMT-C average sizes in 

both, young (DIV20) and more mature (DIV60) slices (Fig. 7A, B). This reduction 

affected both the sizes of individual LMTs and the number of satellites by LMT-Cs (not 

shown). It was accompanied by a corresponding reduction in the number of active zones 

per LMT (i.e. average numbers of active zones per LMT volume were not affected by 

TTX; Fig. 7C), indicating that it reflected a net decrease in the number of release sites in 

the slices. The inhibitory neurotransmitter GABA also induced LMT-C shrinkage (Fig. 

7B). The absolute extent of LMT-C shrinkage in the presence of TTX or GABA (or 

DCG-IV, see below) was closely correlated to LMT-C size (Fig. 7B), suggesting that 

both growth and maintenance of “plastic LMT-Cs” depend on spiking activity. Shrinkage 

of LMT-Cs in the presence of TTX was reversible (Fig. 7B). Significantly, larger LMT-

Cs resumed growth at higher rates than smaller LMT-Cs when recovering from the TTX 

treatment, and this again applied to both populations of identified LMT-Cs (Fig. 7B), and 

the individual LMT-Cs of identified mossy fibers (Fig. 6D).  
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To determine whether transmitter release from LMTs is required to sustain LMT-C 

growth, we carried out experiments in the presence of the mGluR2 agonist DCG-IV 

(Ishida et al., 1993), which produces a specific and complete blockade of evoked 

transmitter release from LMTs in hippocampal slices (Kamiya et al., 1996). We found 

that DCG-IV was as effective as TTX in reversibly suppressing LMT-C growth and 

inducing LMT shrinkage (Fig. 7A, B). Interestingly, and unlike TTX, DCG-IV produced 

an over-proportional decrease in the number of active zones per LMT (Fig. 7C). We 

conclude that LMT-C growth and maintenance depend on spiking activity in the slices, 

and on the local release of transmitter from LMTs. 

Long-term potentiation at mossy fiber to pyramidal neuron synapses in CA3 is NMDA 

receptor independent, PKC dependent, and predominantly controlled presynaptically. To 

determine whether signaling pathways related to the induction of LTP at these synapses 

might influence LMT growth and maintenance in slices, we carried out experiments in 

the presence of the specific inhibitor of PKC Chelerythrine. We found that the PKC 

inhibitor augmented growth at small LMTs, but caused shrinkage at large LMTs (Fig. 

7D). At closer inspection, the growth of small LMTs was not distributed equally among 

many small LMTs, but instead led to the emergence of 1-2 larger LMTs, concomitant 

with shrinkage of the original large LMTs (not shown). In contrast, and in keeping with 

its lack of effect on synaptic plasticity at mossy fiber to pyramidal neuron synapses, the 

NMDA receptor antagonist APV did not significantly affect LMT growth (Fig. 7D). We 

conclude that differences among the growth properties of individual LMT-Cs are 

maintained across conditions allowing or preventing growth at all LMTs, suggesting that 

the relative extent of LMT growth is regulated locally at individual LMTs. However, this 

maintenance of LMT asymmetry depends on PKC activity, suggesting that whether a 

particular LMT grows over-proportionally might be affected by conditions influencing 

functional plasticity at these synapses.  
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Figure 7. Regulation of LMT-Cs maintenance and growth by spiking activity, mGluR2 and PKC.  
A: Reversible shrinkage of LMT-Cs in the presence of either TTX, or the mGluR2 agonist DCG-IV. Drugs were added to the slice 
medium just after the first imaging session at DIV20 (arrows pointing down), and washed out just after the second session at DIV40 
(arrows pointing up). CON: medium change without added drugs. B: Quantitative analysis of LMT growth in the presence or absence 
of TTX, DCG-IV or GABA. Upper row: Shrinkage of LMT-Cs in the presence of drugs. Left and middle: Experimental conditions as 
in (A). Left: grouping of identified LMT-Cs according to sizes as described for Fig. 4. Middle: regression analysis of LMT-C growth 
versus LMT size at DIV20. Linear regression correlations (R2): 0.85 (control), 0.81 (TTX), 0.86 (DCG-IV). Right: Drug-induced 
shrinkage of LMT-Cs in 2-months cultures. TTX or DCG-IV were added at DIV60, and their effects were analyzed at DIV70. 
Grouping of identified LMT-Cs as described for Fig. 4. Lower row: Recovery of LMT-C growth upon washout of TTX. Left and 
middle panel as described above. Linear regression correlations (R2): 0.80 (DIV40, TTX), 0.78 (recovery TTX, DIV60), 0.78 (control 
DIV60). Growth values for control conditions are included for comparison (dark bars). N=50 LMT-Cs per size group, from 5 slice 
cultures. C: Active zone contents of LMTs in the presence of TTX or DCG-IV, as a function of LMT volume and age in vitro. Values 
are for 20 days (DIV40) or 10 days (DIV70) in the presence of drug. Left: regression analysis of LMT volume versus active zone 
numbers for different experimental conditions. The curves are polynomial fits. Right: distribution of active zone per LMT volume 
values. Note how DCG-IV induces an over-proportional reduction in the numbers of active zones per LMT volume. N=50 LMT-Cs 
per size group, from 5 slice cultures. One-way ANOVA for TTX versus DCG-IV: p<0.01.D: Effect of PKC inhibitor Chelerythrine 
and NMDA receptor antagonist APV on LMT maintenance and growth. Experimental conditions and grouping of data as described in 
(B, upper row, left). N=50 LMT-Cs per size group, from 5 slice cultures. The effects of the PKC inhibitor (see text) were significant 
for all LMT size categories: p<0.01 (small), p<0.05 (medium), p<0.001 (large); Student’s t-test. Bar: 10 μm. 
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DISCUSSION       

In this study we provide evidence that functionally important presynaptic complexes in 

the hippocampus rearrange their local connectivities throughout life, and that these 

rearrangements are influenced by experience and age. We first show how LMT-Cs are 

local presynaptic terminal arborizations of mossy fibers, exhibiting large differences in 

the magnitude and divergence of their local connectivities with pyramidal neurons in 

CA3. We then provide two independent lines of evidence that LMT-Cs rearrange their 

connectivities in the adult: we show that subsets of LMT-Cs expand along CA3 dendrites 

throughout life, and that the complexities of LMT-Cs are dramatically enhanced by 

housing mice in an enriched environment. We then analyze identified LMT-Cs 

longitudinally in organotypic slice cultures, and show that: 1) the arrangements and 

heterogeneities of LMT-Cs in slice cultures resemble closely those in vivo; 2) subsets of 

LMT-Cs rearrange their connectivities, and grow over weeks and months in slice cultures 

in patterns resembling those detected in vivo; 3) the anatomical rearrangements reflect 

corresponding rearrangements in functional connectivity; 4) the marked differences with 

respect to plasticity and growth reflect local properties of individual LMT-Cs, not their 

mossy fibers; 5) LMT-C growth and maintenance require spiking activity in the slices, 

and mGluR2-sensitive transmitter release from LMTs; 6) the stable maintenance of 

LMT-C size heterogeneities involves PKC activity. Below, we discuss the implications of 

these findings and their relationship to those from previous studies, focusing on the 

rearrangements of LMT-C connectivity, the regulation of these processes by synaptic 

activity and experience, and their possible impact on hippocampal network activity. 

 

Rearrangements of LMT-C connectivity in the adult 

Our results provide novel insights into the organization of mossy fiber terminals in CA3. 

While the complexity of LMTs had been documented by previous studies (Chicurel and 

Harris, 1992; Danzer and McNamara, 2004; Gonzales et al., 2001), imaging using Thy1-

mGFPs mice has revealed unsuspected further features, including the existence of 

satellite LMTs, a great diversity of sizes and morphologies, and the massive sizes of 

some of these terminals. It does not seem surprising that the satellites have been missed 

by previous studies, as they would have been very difficult to detect using electron 
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microscopy or traditional fill methods. Furthermore, most previous studies have focused 

on LMTs from young animals (ca. 3 weeks), when diversity and complexity are less 

pronounced. In a further departure from the results of previous studies, we provide 

evidence that individual LMT-Cs can contact several distinct pyramidal cells in CA3. 

Based on these results, we propose that instead of terminal boutons, LMTs should be 

considered as local terminal arborization complexes of mossy fibers (LMT-Cs), 

exhibiting great diversity in their sizes, and in their degrees of divergence onto pyramidal 

neurons in CA3. Although the satellites can clearly contact distinct pyramidal neurons, do 

exhibit numerous Bassoon-positive active zones, and are highly enriched in Synapsin I 

and synaptic vesicle markers (not shown), their functional status remains to be 

investigated. The recent demonstration that LMT membranes contain voltage-gated Na-

channels and amplify action potentials (Engel and Jonas, 2005) is certainly consistent 

with the notion that the interconnected compartments of LMT-Cs can be efficiently 

triggered to release transmitter. Detailed functional investigations of these compartments 

should yield valuable novel insights into the function of these complex terminal 

structures. 

 

We provide evidence that subsets of hippocampal LMT-Cs are sites of considerable 

anatomical plasticity in adult mice. This is consistent with results from recent studies, 

which have provided evidence for structural plasticity of presynaptic terminals in 

hippocampal slice cultures (De Paola et al., 2003), and in adult mouse barrel and visual 

cortex in vivo (De Paola et al., 2006; Stettler et al., 2006). A critical advance over 

previous studies is, however, that the structural plasticity of LMT-Cs leads to long-term 

rearrangements of local connectivity, suggesting that it might be an important aspect of 

hippocampal circuit plasticity in the adult. The rearrangements affected LMT-C 

connectivity in two distinct ways: 1) expansions along dendrites from the same pyramidal 

neuron added transmitter release sites, presumably altering the functional impact of 

mossy fiber spiking onto that particular postsynaptic pyramidal neuron in CA3; 2) the 

establishment of satellite LMTs onto distinct pyramidal neurons added and/or removed 

postsynaptic targets to individual LMT-Cs, altering the extent and quality of local 

divergence of pyramidal neuron innervation by individual LMT-Cs (Fig. 8).  
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Figure 8. Schematic of how local anatomical rearrangements can lead to changes in the functional connectivity 
between mossy fiber LMT-Cs and CA3 pyramidal neurons in the adult.  
Grey box: pyramidal neuron dendrite in stratum lucidum; blue and green ovals: individual LMT-Cs. The two blue 
LMT-Cs belong to distinct granule cells that are sometimes active at the same time (blue pattern of activation); green 
and blue are not recruited at the same time. The blue and green traces to the right indicate the postsynaptic excitatory 
responses of this dendrite at equal mossy fiber firing frequencies. Left: blue and green activation patterns elicit 
comparably weak postsynaptic responses. Right, upper part: lower blue LMT-C has expanded along the pyramidal 
dendrite (higher number of active zones), leading to potentiation of the blue postsynaptic response (e.g. age-related 
growth). Right, lower part: both blue LMT-Cs have established satellites onto the pyramidal dendrite (higher 
convergence of active zones), leading to potentiation of the blue postsynaptic response (e.g. enriched environment).   
 

Regulation of LMT-C rearrangements 

Having uncovered evidence for long-term rearrangements of hippocampal LMT-C 

connectivity influenced by experience in adult mice, we turned to organotypic slice 

cultures to investigate mechanisms controlling LMT-C remodeling. As outlined above, 

LMT-Cs in slices exhibited arrangements, heterogeneities, and remodeling properties 

consistent with the notion that regulation of their anatomical plasticity underlies 

principles comparable to those in vivo. Since the functional properties of hippocampal 

slice cultures and resemble those of acute slices (e.g. Gahwiler et al., 1997), it seems 

unlikely that principles underlying LMT-C rearrangements in vivo would be 

fundamentally different from those in slice cultures. On the other hand, slices cultures do 

lack inputs from entorhinal cortex and neuromodulatory systems, suggesting that 

important aspects of connectivity and network activity in slices might be significantly 

different from in vivo. Investigations in slice cultures thus provide valuable insights into 

mechanisms controlling LMT-C rearrangements, but the actual impact of these principles 

for hippocampal plasticity and their age-related properties will eventually need to be 

verified in vivo.                 
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This study provides evidence that anatomical plasticity and rearrangements of 

connectivity by LMT-Cs in slice cultures are controlled by local factors. The results 

suggest that “plastic LMT-Cs” differ stably from less plastic ones with respect to some 

property affecting anatomical growth, either intrinsically, or in response to graded signals 

from their local environment. Interestingly, maintenance of the original set of “plastic 

LMT-Cs” depended on PKC activity, suggesting that synaptic plasticity might have a 

significant impact on the outcome of LMT-C rearrangements. That in the presence of the 

PKC inhibitor new growth and shrinkage of LMT-Cs appeared to be balanced suggest 

that in addition to local factors, LMT-C rearrangements might also be influenced by the 

allocation of synaptic resources within individual axons. The finding that conditions 

affecting synaptic plasticity influenced synaptic turnover is reminiscent of several recent 

studies relating LTP and LTD to spine density and growth (e.g. Muller et al., 2000; 

Nagerl et al., 2004; Zhou et al., 2004). We find that larger LMT-Cs can be detected at all 

positions along individual mossy fibers in slices, and along the mossy fiber projection in 

CA3 in vivo. It is well established, that there is topography with respect to connectivity in 

the hippocampus, and that pyramidal neurons at distinct positions along CA3 project to 

different regions along CA1 (Johnston and Amaral, 1998). Our results thus raise the 

possibility that individual mossy fibers might exhibit topographical preferences with 

respect to the anatomical plasticity and strength of their outputs along CA3 in the adult; 

such preferences might contribute to topography in the flow of information from the 

dentate gyrus to CA1. 

 

In addition to uncovering a requirement for synaptic activity in LMT-C maintenance and 

growth, the pharmacological experiments in slice cultures have provided insights into 

how LMT-C plasticity might be regulated locally. The finding that LMT-C growth was 

reversed by an mGluR2 agonist known to specifically block transmitter release from 

LMTs suggests that local release is important to promote growth. Released transmitter 

might act on presynaptic receptors (Nicoll and Schmitz, 2005), to promote growth. In 

addition, several studies have provided evidence that the thorny excrescences of 

pyramidal cell dendrites in CA3 are particularly sensitive to experience, and can expand 
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or shrink in response to learning, stress and hormones (e.g. McEwen 1999; Kavalali et 

al., 1999; Sandi et al., 2003). A second, non-exclusive possibility is thus that synaptic 

activity might influence LMT growth indirectly, by regulating thorny excrescence 

growth. This might involve activation of AMPA receptors, since their blockade 

counteracts growth by individual LMTs in slices (I.G. and P.C., unpublished results). The 

high affinity of mGluR2 for glutamate, and the peripheral presynaptic distribution of 

mGluR2 at LMT synapses (Nicoll and Schmitz, 2005) suggest a further mechanism 

through which stronger LMTs could destabilize neighboring weaker LMTs via ambient 

glutamate. Such a mechanism might mediate competitive interactions between LMTs 

converging within thorny excrescence clusters in a way reminiscent of the role of activity 

in synapse elimination processes (Lichtman and Colman, 2000). It had long been 

appreciated that in addition to stretches of pyramidal cell dendrite in stratum lucidum 

exhibiting thorny excrescences distributed in a scattered manner, thorny excrescences can 

be clustered locally, and many of these clusters can extend for very long distances (>20-

30 µm) along pyramidal neuron dendrites in CA3 (Gonzales et al., 2001; Qin et al., 2001; 

Kavalali et al., 1999). We find that LMTs from several distinct mossy fibers can 

converge at such clusters (Fig. 1B), and that postsynaptic territories at the clusters expand 

upon enriched environment through elongation and increased complexity of thorny 

excrescences. We further find a great degree of heterogeneity in the density and 

distribution of thorny excrescences among pyramidal neuron dendrites in stratum 

lucidum. The clusters might thus reflect specialized postsynaptic territory sites for 

competitive interactions among convergent LMTs regulated by experience.  

 

Functional significance of LMT-C rearrangements in the adult 

What could be the functional significance of the long-term rearrangements of LMT-C 

connectivity in the adult? Both, the rearrangements related to age and those induced by 

EE conditions led to a net growth in size by the fraction of larger LMTs, and thus to a net 

local increase in the numbers of active zones onto pyramidal neurons in CA3 by “plastic 

LMT-Cs”. Since larger LMTs with higher numbers of active zones elicit stronger 

excitatory responses in postsynaptic pyramidal neurons (Fig. 5), the growth of individual 

LMTs would lead to a greater frequency-dependent impact of their activation onto their 
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postsynaptic pyramidal neurons in CA3. This might, for example, lead to supra-threshold 

activation of pyramidal neurons by individual LMT-Cs at lower spiking frequencies, 

and/or to more effective synergisms by small numbers of synchronously active 

converging LMTs (Fig. 8). Accordingly, the expansion and activity-regulated divergence 

of LMT-C subsets along pyramidal cell dendrites in CA3 throughout life might result in 

an increasing focusing of information flow from individual spiking mossy fibers, 

selectively to a local segment of the associative network in CA3. This focusing might 

mediate the emergence of microcircuits of preferentially interconnected neurons 

(Chklovskii et al., 2004; Ikegawa et al., 2004; Yoshimura et al., 2005; Song et al., 2005). 

In addition to its effects on LMT size distributions, EE specifically increased the 

frequency of satellites by LMT-Cs, and the lengths and complexities of thorny 

excrescences. Since LMTs from several distinct mossy fibers intermingle at thorny 

excrescence clusters (Fig. 1B), the larger and more complex thorns at individual 

pyramidal neuron dendrites likely accommodate terminals and satellites from a larger 

number of distinct mossy fibers under EE conditions, reflecting an increase in local 

divergence and convergence driven by experience. The outcome of LMT rearrangements 

at thorny excrescence clusters might then involve activity-dependent growth, mGluR2-

dependent inhibition of growth, and PKC-mediated competition among LMT-Cs. In this 

way, the increased complexity of LMT-Cs and thorns under enriched environment 

conditions might support hippocampal learning by providing more opportunities for local 

convergence of co-active terminals onto pyramidal neurons in CA3. 
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2.2   SPATIALLY PREDETERMINED STRUCTURAL PLASTICITY 

OF GRANULE CELL SUBTYPES IN THE HIPPOCAMPAL MOSSY 

FIBER PROJECTION 
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SUMMARY 

We investigated morphological properties of hippocampal granule cells in two transgenic 

mouse lines that label subsets of neurons (Thy1-mGFPs (Lsi1) and (Lsi2)). We found that 

Lsi1 and Lsi2-granule cells differed in plastic terminal numbers along CA3, and in 

collateral patterns in the dentate hilus. Their plastic terminals remodeled selectively as a 

function of age and experience. Furthermore, Lsi1 and-Lsi2 granule cells exhibited 

different maturation rates in early postnatal life, and were not produced in the adult. 

Interestingly, Lsi1 and-Lsi2 granule cells produced synaptic contacts preferentially on 

Lsi1 and Lsi2-CA3 pyramidal neurons, respectively. Our results suggest that Lsi1 and 

Lsi2 label two subtypes of granule cells that differ in connectivity properties, and seem to 

belong to distinct microcircuits.  

 

INTRODUCTION 

Neuronal subtypes differ from each other by a combination of morphological and 

electrophysiological properties, and by patterns of gene expression. For example, in the 

mammalian neocortex distinct populations of projection neurons are located in different 

cortical layers and areas, have unique morphological features, express different genes and 

serve different functions (Wonders & Anderson 2006 and Migliore & Shepherd 2005). In 

recent years, tremendous progress has been made in understanding the mechanisms 

underlying the specification of projection neurons within the mammalian brain. Neuronal 

progenitors were identified and revealed to underly the specification of individual 

neuronal subtypes (Wonders & Anderson 2006). To what extent neurons of the same type 

might differ is still poorly understood. One possible scenario is that a large fraction of 

progenitor cells produce different subtypes of the same type of neuron. In fact, it is 

known that some type of neurons, e.g. hippocampal CA1 pyramidal cells or granule cells, 

derive from large progenitor pools (~ 7000 progenitor cells for each side of the 

hippocampus in the case of CA1 pyramidal cells, and ~ 400 in the case of granule cells 

(Loren et al. 2002). Furthermore, it is clear from a recent study in Drosophila that similar 

types of neurons can have quite different axonal patterns and might derive from different 

progenitor cells (Jefferis et al. 2007). But why should the same type of neuron have 

different subtypes? One possibility could be that similar neuronal circuits encode slightly 
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different types of information using distinct microcircuits. In fact, in Drosophila it was 

shown that uniglomerular projection neurons (PNs) relay olfactory information to the 

mushroom body (MB) and lateral horn (LH) in a highly stereotyped manner. In 

particular, PNs from different sensillar groups were clustered in the LH according to 

biological values of olfactory input, indicating that different odors are processed through 

specific microcircuits (Jefferis et al. 2007). This data indicates a new concept of the 

organization of neuronal circuits. The existence of microcircuit elements in higher order 

areas such as neocortex and hippocampus is well established, but the relationship 

between microcircuits based on functional connectivity and the existence of neuronal 

subtypes remains to be determined. 

 

In recent years, the appearance of Thy1-mGFPs transgenic mouse lines that express 

membrane-targeted GFP in only few neurons has provided an enormous progress in 

detecting subset of neurons in the nervous system (De Paola et al. 2003). The study of 

axonal structural plasticity in different Thy1-mGFPs transgenic mouse lines could help to 

understand whether similar type of neurons have internal subtypes that differ in 

morphological properties. Ideally, one should monitor the entire axonal length of a 

neuronal subtype in time-lapse imaging experiments and observe the structural plasticity 

of all its boutons using different Thy1-mGFPs lines. It is difficult to monitor entire axonal 

length, because the majority of axons cover very long distances between different brain 

regions. Nevertheless, hippocampal mossy fibers are organized in a lamellar manner and 

cover relatively short distances that can be monitored entirely in organotypic slice 

cultures over many time points. Moreover it has been shown to exhibit structural 

plasticity at the level of the large mossy fiber terminals (LMTs) (Galimberti et al. 2006) 

and therefore represent a nice system to investigate. 

 

Here, we used two transgenic mouse lines that label subsets of neurons (Thy1-mGFPP

s 

(Lsi1) and (Lsi2)) to image hippocampal mossy fiber projections in time-lapse imaging 

experiments in slice cultures and in sections of mice at different ages. We analyzed our 

data through a detailed 3D reconstruction of the individual mossy fibers with all their 

LMTs. We found that Lsi1 and Lsi2-granule cells differed in plastic-LMT numbers along 
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CA3 and collateral patterns in the dentate hilus. Their plastic-LMTs responded 

selectively to age and experience. Double staining with Doublecortin and NeuN revealed 

that Lsi1 and Lsi2-granule cells had different maturation rates in early postnatal life, and 

were not produced in the adult. Interestingly, Lsi1 and-Lsi2 granule cells produced 

synaptic contacts preferentially on Lsi1 and Lsi2-CA3 pyramidal cells.  Taken together, 

these results indicate that Lsi1 and Lsi2 label two subtypes of granule cells that exhibit 

different numbers of plastic and non-plastic terminals and seem to belong to distinct 

microcircuits.  

 

RESULTS 

  

Remodeling of individual Lsi1 hippocampal mossy fiber projections  

We started our investigation using the transgenic mouse line Lsi1 (Thy1-mGFPs) and 

analyzed whether all LMTs of individual Lsi1 mossy fibers exhibited a similar structural 

plasticity. We reconstructed in 3D individual Lsi1 mossy fibers with all their LMTs along 

CA3 in time-lapse imaging experiments and found that they had one plastic-LMT that 

remodeled extensively and continuously throughout all our time points, whereas the other 

LMTs from the same axon remodeled much less (Figure 1A and 1C). Plastic-LMTs from 

different Lsi1 mossy fibers were found at different locations along CA3 (Figure 1B). We 

quantified plastic-LMT remodeling by counting the number of satellite-LMTs from DIV 

20 to DIV 40 and DIV 60 (N=10 plastic-LMTs, from 5 different slices) and found a 

significant increase (from ~ 4 satellite-LMTs at DIV 20 to ~ 9 satellite-LMTs at DIV 60). 

We then wondered whether individual Lsi1 mossy fibers might also have one plastic-

LMT in vivo. In addition, since LMT-sizes were shown to shift gradually throughout age, 

we also wondered whether existing plastic-LMTs might increase their complexity in 

aging hippocampus (Galimberti et al. 2006). To get maximal 3D resolution in vivo, we 

sliced perfused hippocampi similarly to organotypic slice culture preparations, and in this 

way could trace almost 80 % of individual Lsi1 mossy fiber projections along CA3 

(N=25). We found that one LMT per individual Lsi1 mossy fiber had satellite-LMTs and 

that the number of satellites increased in response to age (from ~2 satellite-LMTs at P30 

to ~6 satellite-LMTs at P720, Figure 2A, 2B and 2D). Satellite-LMTs contained 

 61



    

functional pre-and postsynaptic markers e.g. Bassoon and phospho-GluR1 (Figure 2C), 

indicating that they increased locally functional connectivity with CA3 pyramidal 

neurons. Plastic-LMTs in vivo had less satellite-LMTs than in vitro. This could be due to 

differences in connectivity density between the two systems. In fact, it is known that 

connectivity in slice cultures is much higher than in vivo, and this seems to affect plastic-

LMTs by increasing satellite numbers. Nevertheless, our results suggest that a similar 

remodeling is happening in vitro and in vivo, and that this remodeling might represent an 

important property of the mossy fibers projection. 

 

 

 

 

 

 

 

 

 

 

 

 62



    

 
Figure 1. Individual Lsi1 Mossy Fibers Remodeling in Slice Cultures 
(A) Overview of an entire Lsi1 mossy fiber projection in CA3 at DIV20, DIV40 and DIV60. The dentate gyrus is to the 
left (see scheme top left). Note one individual Lsi1 mossy fibers traced throughout the three time points. (B) Three 
individual Lsi1 mossy fibers traced at DIV60 (the one in (A) + two others). Each of them exhibit one very complex 
LMT (in yellow) at different locations along CA3 (see arrows). (C) Camera lucida of the individual Lsi1 mossy fiber 
traced in panel (A) throughout DIV20, 40 and 60. Note that one plastic-LMT (see arrow to the yellow LMT) exhibits 
structural plasticity by adding and dismantling satellite-LMTs, whereas the other LMTs do not. (D) Three plastic-
LMTs from three individual Lsi1 mossy fibers throughout DIV 20, 40 and 60 (#1 and #2 are from example in (A), #3 is 
from another slice). Note the remodeling of satellite-LMTs (arrows). (E) Quantification of plastic-LMT remodeling. 
Note the increase in the numbers of satellite-LMTs from DIV20 to DIV60 (average values of N=10 plastic-LMTs from 
5 slice cultures). Scale bars, 100 µm (A, B and C), 10 µm (D).  DIV= Days In Vitro 
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Figure 2. Individual Lsi1 Mossy Fibers in Vivo 
(A) Overview of traced Lsi1 mossy fibers in CA3 at P30 (N=25). Note that each mossy fiber has only one LMT 
(arrows on yellow LMTs) with satellite-LMTs. (B) Three different complex-LMTs at P30, P90 and P720. Note how the 
complexity of these terminals appears to increase with age (arrows). (C) Double staining with synaptic markers 
(Bassoon and phospho-GluR1) of one plastic/complex-LMT at P60. Note the presence of two satellite-LMTs (left 
picture large white arrows). Both satellite-LMTs contain synaptic markers at single confocal planes (see zooms of the 
two satellite-LMTs). (D) Quantification of plastic-LMT remodeling. Note the increase of the number of satellite-LMTs 
from P30 to P720 (average values of N=10 plastic-LMTs from 3 animals/age).  
Scale bars, 100 µm (A), 10 µm (B), and 2 µm (C).    
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Remodeling of individual Lsi2 hippocampal mossy fiber projections  

To determine whether Lsi1 remodeling was representative of how all mossy fibers 

remodeled, we performed a similar analysis using the transgenic mouse line Lsi2 (Thy1-

mGFPs), which also labels subsets of neurons in the adult. To our surprise, we found that 

in most cases Lsi2 mossy fibers had two plastic-LMTs along CA3 (Figure 3A, 3B and 

3C). We quantified the plastic-LMT remodeling for Lsi2 in vivo and in vitro by pooling 

the two plastic-LMTs together. In both cases there was a clear increase of satellite-LMTs 

(from ~ 3 satellite-LMTs at DIV 20 to ~ 8 satellite-LMTs at DIV 60 and from ~ 2 

satellite-LMTs at P30 to ~ 6 satellite-LMTs at P720). The most striking result was when 

we compared Lsi2 remodeling with Lsi1. We should keep in mind that we are comparing 

one plastic-LMT (Lsi1) versus two plastic-LMTs that are pooled as one (Lsi2). The 

results indicated that there was a similar net increase of satellite-LMTs between Lsi1 and 

Lsi2-mossy fibers (Figure 3D and 3E). The difference was the strength and location of 

this remodeling. Lsi1 mossy fibers concentrate one plastic-LMT in a specific region 

along CA3, whereas Lsi2 mossy fibers split this remodeling with two weaker plastic 

LMTs. 
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Figure 3. IndividuaLsi2 Mossy Fibers in Slice Culture and in Vivo 
(A) Left panel, camera lucida of a traced individual Lsi2 mossy fiber in CA3 at DIV20, 40 and 60. Note the presence of 
two plastic-LMTs (arrows). Right panel, remodeling of these two plastic-LMTs (arrows indicate new satellite-LMTs). 
(B) Overview of traced Lsi2 mossy fibers in CA3 at P30 (N=20). Note that each mossy fiber has two LMTs (arrows) 
with satellite-LMTs. (C) Three different couples of complex-LMTs of the same Lsi2 mossy fiber at P30, P90 and P720. 
Note that the number of satellite-LMTs increases throughout age (arrows). (D) Quantification of Lsi2 and Lsi1 plastic-
LMT remodeling in vitro. The two Lsi2 plastic-LMTs were pooled as one and compared with the single Lsi1 plastic-
LMT. Note that in both cases there is a similar increase of the number of satellite-LMTs from DIV20 to 60 (average 
values of N=10 plastic-LMTs from 5 slice cultures). (E) Quantification of Lsi2 and Lsi1 plastic-LMT remodeling in 
vivo. Again there is a similar increase of the number of satellite-LMTs from P30 to P720 (average values of N=10 
plastic-LMTs from 3 animals/age). Scale bars, 100 µm (A, left) and 30 µm (A right), 100 µm (B) and 10 µm (C).    
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Collateral patterns of Lsi1 and Lsi2-granule cells in the dentate hilus 

Hippocampal granule cells synapse with different neurons along the mossy fiber 

projection. In the dentate hilus, they produce collaterals with LMTs that synapse on 

mossy cells and in the CA3 region LMTs that synapse on CA3 pyramidal cells. Mossy 

cells are excitatory interneurons that synapse with granule cells through the so called 

ipsilateral associational-commissural projections and provide a feed forward excitation 

to the dentate gyrus granule cells. This means that mossy cells can modulate significantly 

the excitability of the granule cells. Since we knew that Lsi1 and Lsi2-granule cells 

differed in connectivity properties in CA3 (Figure 1, 2 and 3) we wondered whether they 

might also differ in their collateral patterns in the dentate hilus.  We traced entire 

individual Lsi1 and Lsi2-mossy fibers in organotypic slice cultures (N=7 in both lines) 

and analyzed their collateral patterns in the dentate hilus. Lsi1 granule cells extended 

collaterals throughout the entire hilus, whereas Lsi2 tended to maintain their collaterals 

closer to the main axon (Figure 4). This suggests that Lsi1 and Lsi2-granule cells might 

excite different fractions of mossy cells, thus triggering distinct feed forward excitation 

patterns. These data together with the previous observations suggest that Lsi1 and Lsi2 

label two subtypes of granule cells that differ in connectivity properties.  

 

 

 

 

 

 

 

 67



    

 
Figure 4. Collateral patterns of Lsi1 and Lsi2-granule cells in the dentate hilus 
Left top panels, example of one traced Lsi1 mossy fiber in its entire length at DIV 13. Right top panels, example of one 
traced Lsi2 mossy fiber in its entire length at DIV13. Lower panel, camera lucida drawings of the two examples. Note 
the difference of the collateral pattern in the dentate hilus between Lsi1 and Lsi2 granule cells (white circles). (N= 7 
different examples for each lines). Scale bar, 100 µm  
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Maturation of Lsi1 and Lsi2 granule cells 

Hippocampal granule cells are generated over a protracted period of time, and have been 

shown to also undergo adult neurogenesis (Danglot et al. 2006). Accordingly, we 

wondered whether Lsi1 and Lsi2-granule cells might differ in the kinetics at which they 

are generated postnatally. We included in this analysis an additional transgenic mouse 

line (Thy1-mGFPm Lmu) with more widespread expression in the dentate and in CA3, in 

order to determine the extent to which granule cells in the Lsi1 and Lsi2 lines might 

differ from average granule cells. To monitor postnatal neurogenesis, we used markers 

that are expressed at different stages of granule cell maturation. For example, 

doublecortin (DCX is a protein that promotes microtubule polymerization) is present in 

migrating neuroblasts and young neurons and its expression is thought to be specific for 

newly generated postmitotic neurons. In contrast, NeuN (a soluble nuclear protein) is 

expressed in late postmitotic neurons, and is a marker for mature neurons. We therefore 

used double-labeling with DCX and NeuN to discriminate between immature and mature 

hippocampal granule cells. We focused our analysis on the suprapyramidal blade of the 

dentate gyrus between bregma -1.955 mm and -2.255 mm, in order to compare similar 

groups of granule cells from mice of different ages. We found that Lsi1, Lsi2 and Lmu-

granule cells were positive for NeuN, but not for DCX at P90, indicating that these three 

transgenic mouse lines seemed not to label granule cells that undergo adult neurogenesis 

(not shown). We then analyzed granule cells between P3 and P30 (Figure 5A, left part). 

When found that Lsi1, Lsi2 and Lmu-granule cells matured faster than the bulk of the 

granule cells. When comparing the proportion of DCX and DCX/NeuN positive granule 

cells between Lsi1, Lsi2 and Lmu at P5 and P7, it became clear that Lsi1-granule cells 

exhibited the fastest maturation, followed by Lsi2 and Lmu (Figure 5B). At P30, Lsi1, 

Lsi2 and Lmu-granule cells were all NeuN positive, indicating that these transgenic 

mouse lines label hippocampal granule cells that are born during early postnatal 

neurogenesis (Figure 5A, right panel; Fig 5B). These results thus demonstrate that the 

transgenic lines highlight subpopulations of granule cells that mature at different rates 

during the first 2-3 postnatal weeks. The distinct maturation rates are consistent with the 

notion that the granule cells belong to distinct subtypes.  
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Preferred connectivity of Lsi1 and Lsi2 granule cells  

Lsi1 and Lsi2 Thy1-mGFPs transgenic mouse lines label subsets of neurons in the 

nervous system. In the hippocampus, subsets of granule cells and CA3 pyramidal neurons 

are in both lines m-GFP positive. In many samples of both lines we could image labeled 

CA3 pyramidal neurons and mossy fibers. We realized that in about 90 % of the cases m-

GFP positive LMTs were physically in contact with m-GFP CA3 thorny excrescence 

clusters. In some cases, we found that up to 4 LMTs from 4 distinct mossy fibers were in 

contact with one CA3 pyramidal neuron (Figure 6A). We first wondered whether these 

contacts were functional and decided to stain for pre-and postsynaptic markers, e.g. 

Bassoon and phospho-GluR1. In all cases we found that these contacts were indeed 

functional and contained pre-and postsynaptic markers (Figure 6B). At this point we 

started to wonder whether these mGFP-mGFP contacts might indicate a preferential 

connectivity. The connectivity between granule cells and CA3 pyramidal neurons is 

extremely low. Each CA3 pyramidal cell is supposed to receive inputs from 30-50 

different granule cells, and each granule cell contacts 10-15 different CA3 pyramidal 

cells. The fraction of labeled granule cells and CA3 pyramidal cells is very low in both 

lines. Lsi1 labels ~ 0.006% of granule cells (6000 over 1.106 cells) and ~ 0.003% of CA3 

pyramidal cells (900 over 3.105 cells), whereas Lsi2 labels ~ 0.002% of granule cells 

(2000 over 1.106 cells) and ~ 0.002% of CA3 pyramidal cells (600 over 3.105 cells). 

These low numbers clearly suggest that connectivity between Lsi1 or Lsi2 granule cells 

and CA3 pyramidal neurons is not random.  
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Figure 5. Maturation of Lsi1 and Lsi2 granule cells 
(A) Left part, maturation of all granule cells in the upper blade between bregma -1.955 mm and -2.255 mm throughout 
P3, P7, P12 and P30. Note how double labeling with doublecortin DCX and NeuN reveal that at P3 all granule cells are 
only doublecortin positive and at P30 almost only NeuN positive. Right panel, examples of double labeling for DCX 
and NeuN in Lsi1 (examples at P7) and Lsi2 (example at P30) lines at P7 and P30. Note that at P7 there are mGFP 
granule cells positive for DCX (very immature) only and for DCX/NeuN (intermediate stage). However at P30 all 
mGFP granule cells are positive for NeuN only (mature), (see asterisk). (B) Absolute numbers of DCX, DCXNeuN and 
NeuN positive granule cells in Lsi1, Lsi2, Lmu at P3, P5, P7, P12, P20 and P30. Note that the portion of DCX/NeuN 
granule cells at P5 and P7 is much higher in Lsi1 than Lsi2 and Lmu (N= 3 mice for each line and age). 
Scale bar, 20 µm (A)  
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Figure 6. Preferred connectivity of Lsi1 and Lsi2 granule cells 
(A) Left part, Lsi1 mossy fibers and one CA3 pyramidal cell in CA3 at P30. Right panel, 4 individual mossy fibers 
establishing LMTs in contact with the Lsi1 CA3 pyramidal cell (colored arrows). (B) Left part, Lsi2 LMT (purple 
arrow) in contact with Lsi2 CA3 dendritic branch (white arrows). Right part, single plane zoom of the contact site 
between LMT and thorny excrescences. Note that double labeling with synaptic markers (Bassoon and phospho-
GluR1) reveal functional synapses on these mGFP-mGFP contacts. 
Scale bars, 20 µm (A), 2 µm (B) 
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Selective remodeling of Lsi1 and Lsi2 plastic-LMTs in response to experience 

Several studies have shown that experience is involved in structural plasticity of dendritic 

spines and presynaptic terminals in different regions of the mature brain (Knott et al. 

2002 and Galimberti et al. 2006). LMTs were shown to respond to experience by 

increasing the number of satellite-LMTs when mice were exposed to an enriched 

environment (Galimberti et al. 2006). We exposed Lsi1 and Lsi2 mice to an enriched 

environment to monitor whether all LMTs or just plastic-LMTs would be affected. We 

designed two protocols, in the first one we exposed mice to an enriched environment for 

20 days starting at P30 (young) in the second for 30 days starting at P60 (old). Lsi1 and 

Lsi2 individual mossy fibers were solved and quantified as previously described. We 

found that Lsi1 and Lsi2-plastic-LMTs were affected in both protocols (Figure 7A and 

7B) compared with control animals that were not exposed to an enriched environment 

(for example for the second protocol: ~ 3 satellite-LMTs at P90 and ~ 6 satellite-LMTs at 

P90EE for Lsi1 and ~ 3 satellite-LMTs at P90 and ~ 5 satellite-LMTs at P90EE for Lsi2, 

Figure 7C). Single Lsi1 plastic –LMTs responded similarly to pooled Lsi2 plastic-LMTs, 

indicating that similarly to age they kept their differences along CA3. In addition, all 

other LMTs of Lsi1 and Lsi2-individual mossy fibers did not remodel, suggesting that 

plastic LMTs remodeling of both Lsi1 and Lsi2 mossy fibers is selective in response to 

experience. 
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Figure 7. Selective remodeling of Lsi1 and Lsi2 plastic-LMTs in response to experience 
(A) Camera lucida drawings of representative Lsi1 plastic-LMTs from P50 and P90 mice, kept under EE or Ctrl 
conditions. Note higher number of satellite-LMTs upon EE conditions (arrows). (B) Similar analysis in (A) for Lsi2 
plastic-LMTs. (C) Quantification of Lsi1 and Lsi2 plastic-LMT remodeling upon EE conditions. As in Figure 3 (panel 
E) Lsi2 plastic-LMTs were poled as one and compared with the single plastic-LMT of Lsi1. Note that in both protocols 
the number of satellite-LMTs increases similarly in Lsi1 and Lsi2.  
Scale bar, 10 µm (A and B)  
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DISCUSSION 

In this study we provide evidence that hippocampal granule cells consist of at least two 

subtypes with distinct connectivity properties and maturation rates, and that these 

subtypes seem to prefer distinct postsynaptic CA3 pyramidal cells. We first show that 

Lsi1 and Lsi2-granule cells differ in plastic-LMT numbers along CA3 and collateral 

patterns in the dentate hilus. We then show that they differ in their maturation rates in 

early postnatal life and are not produced during adult neurogenesis. Furthermore, in both 

lines plastic-LMTs respond selectively to age and experience by increasing local synaptic 

connectivity, suggesting that plastic-LMTs are important elements in the elaboration of 

sensory information. Finally, we realized that Lsi1 and Lsi2-granule cells make synaptic 

contacts preferentially with Lsi1 and Lsi2 CA3 pyramidal neurons and might represent 

distinct microcircuits. These results provide new insights about the organization of mossy 

fibers and their connectivity, and provide evidence for the existence of principal neuron 

subtypes in the hippocampus. 

 

Individual Lsi1-mossy fibers place one plastic-LMT along CA3 and have collaterals 

throughout the dentate hilus, whereas individual Lsi2-mossy fibers place two plastic-

LMTs and have collaterals that tend to extend in the vicinity and in parallel to the main 

axon. These results suggest that Lsi1 and Lsi2-granule cells produce synaptic contacts 

with different fractions of mossy cells and CA3 pyramidal cells. In the hilus, Lsi1 granule 

cells appear to recruit mossy cells throughout the dentate hilus, whereas Lsi2 outputs 

might be more spatially restricted to. In the CA3 region, Lsi1 granule cells can recruit 

locally several CA3 pyramidal cells with one plastic-LMT, whereas Lsi2 appear to recruit 

pyramidal cells within a broader spatial extension of CA3. This suggests that Lsi1 and-

Lsi2-granule cells can have different impacts on the feed forward excitation of the 

dentate gyrus, and can activate different patterns of pyramidal cells within CA3. Clearly, 

Lsi1 and-Lsi2-granule cells might just be two out of many more subtypes of granule 

cells. The investigation of further subtypes should be possible using additional Thy1 

transgenic lines, in combination with virus transduction experiments. Our preliminary 

analysis suggests that some subtypes might not have plastic-LMTs. In parallel, gene 
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profiling analysis of the different Thy1-mGFPs granule cells will clarify whether these 

subtypes might also differ in gene expression and have specific markers. 

 

The fact that individual Lsi1-granule cells have one plastic-LMT at different locations in 

CA3 indicates two aspects. First, it defines the Lsi1 granule cell subtype and second it 

suggests that Lsi1-mossy fiber projections could be organized topographically in CA3. 

One could speculate that some granule cells (Lsi1) can recruit preferentially few CA3 

pyramidal neurons by focusing their outputs at preferred locations. Why this? It is known 

that the hippocampus have place cells that exhibit spatially localized firing patterns when 

rodents explore the environment (Smith et al. 2006). One possibility could be that granule 

cells are topographically organized in respect to CA3 pyramidal cells in order to 

discriminate spatial firing patterns (place fields) by recruiting distinct neurons within the 

circuitry. In fact, a topographic organization between GC and CA3 pyramidal cells could 

represent an anatomical representation of a hierarchical coding scheme that might 

provide a mean of differentiating spatial learning. Which molecules could be involved in 

this topographic maps? Presumably, semaphorins, netrins and ephrins, but how and in 

which proportion need investigations. It could be that Lsi1 mossy fibers follow gradients 

of one or more of these molecules in CA3 and place their plastic-LMTs at preferred 

locations according to intrinsic properties.     

 

Neurogenesis of hippocampal granule cells occurs throughout the entire life and its 

efficiency declines in aging animals. In mice, the first hippocampal granule cells are born 

by E18 and the peak of their production is between P5-P7. Afterwards, their neurogenesis 

decreases and only few new granule cells mature and integrate functionally in the adult 

hippocampus. We found that Lsi1, Lsi2 and Lmu-granule cells are not produced in the 

adult, and differ in their maturation rates in early postnatal life. The proportion of 

DCX/NeuN positive granule was much higher in Lsi1 than Lsi2 and Lmu between P5 and 

P7. This indicates that Lsi1 granule cells mature faster than Lsi2 and Lmu, and Lsi2 

mature faster than Lmu. Moreover, all are born during the first peak of neurogenesis 

(between E14 and P10). This result is remarkable, because it suggests that subtypes of 

granule cells are integrated at different rates, and may contribute differently to the 
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development of dentate gyrus-CA3 circuitry. These results further suggest that there 

might be granule cell subtypes that only mature during adult neurogenesis. This could be 

investigated using further Thy1-mGFPs lines.   

 

It is very interesting that Lsi1/Lsi2-granule cells seem to contact preferentially Lsi1/Lsi2 

CA3 pyramidal cells. This might underly the existence of subtype specific microcircuits 

that might, for example, have specialized roles in pattern separation. In order to elucidate 

mechanisms that underly these synaptic preferences, one should perform gene profiling 

analysis of both Lsi1/Lsi2 granule and CA3 pyramidal cells, looking for example for Cell 

Adhesion Molecules CAMs (e.g. cadherins or protocadherins) that are exclusively 

expressed in Lsi1 and Lsi2.  
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3. GENERAL DISCUSSION 
 

Overview 

Recent neurobiological studies have begun to reveal the cognitive and neuronal coding 

mechanisms that underly episodic learning and memory (Vazdarjanova et al. 2004, 

Guzowski et al. 2001, Gabrieli et al. 1997 and Henke et al. 1997). The hippocampus has 

been shown to encode the sequences of places and events that compose episodic 

memories, and plays a critical role between the initial formation and their final repository 

elsewhere in the brain (Gabrieli et al. 1997 and Henke et al. 1997). However, we have 

only begun to conceptualize how information is encoded and preserved for long periods 

within the hippocampus. In fact, the exact contribution of each hippocampal cell type, 

which molecules are predominant and which kind of plasticity is crucial, is still poorly 

understood. Here I discuss new insights of the hippocampal granule cell organization that 

might be crucial to encode information that compose episodic learning and memory. In 

summary, we found: (1) that hippocampal mossy fibers exhibit structural plasticity at the 

level of the large mossy fiber terminals (LMTs); (2) that this remodeling respond to 

experience and age, (3) is regulated by spiking activity and mGluR2-sensitive transmitter 

release from LMTs (4) and can define subtypes of hippocampal granule cells that seem to 

belong to distinct microcircuits. 

 

Remodeling of LMTs  

We took advantages from recent technological advances and brought the first evidence 

that hippocampal mossy fiber terminals had “satellite-LMTs” that could contact 

additional CA3 pyramidal cells in adult mice. Furthermore, we showed that these 

“satellite-LMTs” are established and dismantled in organotypic slice cultures and can 

alter the strength of preexisting connectivity with CA3 pyramidal cells. Our results 

demonstrate that hippocampal mossy fibers are capable to modify locally their 

connectivity with CA3 pyramidal cells throughout life. Does this remodeling represent 

how mossy fibers encode information in general or just in special cases? We changed 

mice life styles by exposing them to an enriched environment and analyzed the number of 

satellite-LMTs. We found that they increased significantly and concluded that mossy 
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fibers utilize this remodeling in response to experience. Nevertheless, this does not mean 

that mossy fibers utilize this remodeling to encode any information. In fact, it could be 

that mossy fibers exhibit different structural changes for distinct life styles or learning 

tasks. Indeed, we know that age is affecting LMT sizes with the appearance of very long 

LMTs suggesting that age has preferred remodeling. Additional studies will elucidate 

whether mossy fibers react to different conditions by exhibiting distinct LMT-

remodelings and for example whether stress is different than spatial learning and enriched 

environment.  

 

Regulation of LMT remodeling 

We utilized hippocampal slice cultures to understand molecular mechanisms that are 

involved in the regulation of LMT-remodeling. We found that by blocking spiking 

activity with TTX all LMTs, including satellite-LMTs, shrinked and recovered when 

TTX was washed out. Furthermore, we obtained similar results when we agonized 

mGluR2 with DCGIV, or blocked PKC activity. Our results suggest that LMT-

remodeling depends on spiking activity, vesicle release from LMTs, and PKC activity. 

We then wondered whether ionotropic glutamate receptors might be involved and 

blocked NMDA, Kainate and AMPA receptors. By blocking NMDA and Kainate 

receptors the number of satellite-LMTs were not changing, whereas when we blocked 

AMPA receptors there was a significant increase of satellite-LMTs (data not shown). 

This suggests that AMPA receptors might play an important role in the regulation of 

LMT-remodeling. Nevertheless, many issues are not clear yet. We still do not know how 

AMPA receptors affect the number of satellite-LMTs. For example, we have preliminary 

evidence suggesting  that PKA activity might have a role comparable to that of PKC 

activity, and is mainly involved in maintaining satellite-LMTs but not in producing new 

ones (data not shown). One possibility could be that AMPA receptors trigger the 

modulation of second messengers e.g. NO, which is known to act on presynaptic 

plasticity. Additional experiments are needed to elucidate whether NO or other second 

messengers or even other molecules e.g. CAMs are downstream of AMPA receptors in 

the formation of satellite-LMTs. 
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Hippocampal microcircuits   

Each hippocampus in the mouse contains about 2 millions of different neurons that are 

interconnected with each other in highly complex ways, and allow to perceive and 

elaborate polymodal sensory information. The granule cells are one type of these neurons 

that produce an elaborated and highly precise hippocampal neuronal circuitry. However, 

how these circuits discriminate and encode sensory information has remained unclear, in 

part because the functional connectivity of the circuits has been difficult to determine. 

One possibility is that information might be channeled through specialized microcircuits, 

but there is no evidence in support of this possibility yet. We now found that 

hippocampal granule cells can be subdivided into subtypes that differ in their 

connectivity properties, and seem to connect preferentially to defined subsets of CA3 

pyramidal cells. In addition, we have provided evidence that structural plasticity of axon 

terminals can differ among neuronal subtypes, and represents a morphological parameter 

that can define those subtypes. Taken together, our results thus suggest the existence of 

distinct neuronal microcircuits between the dentate gyrus and the CA3 area of the 

hippocampus. However, much remains to be done in order to characterize these 

microcircuits at the structural and functional level. For example, it will be important to 

determine whether neurons of one microcircuit can be defined with specific markers, and 

whether these markers might reveal specific properties. This could lead to genetic 

approaches to manipulate these microcircuits in situ and test their relevance in distinct 

hippocampal paradigms. It will also be important to determine how many of these circuits 

might exist, and whether CA1 pyramidal cells might also participate, thus forming 

“trisynaptic loop microcircuits”. 
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While the anatomical and molecular characterization of hippocampal microcircuits will 

likely be challenging, one can safely predict that elucidating their functional significance 

will be even more challenging. On the other hand, the rewards might be significant. Thus, 

structure-function relationships in the hippocampus are currently being elucidated at the 

level of entire projections (e.g. the role of the enthorinal shortcut to CA3 or CA1). That 

information will be important to define “what” is being computed by a projection, but it 

will provide little information as to “how” the circuit carries out the computation. 

Information at the level of microcircuits might help to bridge the gap between circuit 

organization and the representation of information in the hippocampus.   
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4. MATERIALS AND METHODS 
 

Mice and reagents 

Transgenic mice expressing membrane-targeted GFP in only few (Thy1-mGFPs, Lsi1 and 

Lsi2) or most neurons (Thy1-mGFPmu, Lmui) were as described (De Paola et al., 2003). 

Transgenic males were crossed over more than 10 generations with non-transgenic F1 

offsprings from C57Bl6 x BalbC crosses, so that the genetic background of the mice was 

50% each of C57Bl6 and BalbC. For enriched environment experiments, sets of female 

littermates (3-4 mice each) were either kept in normal-sized cages without additional 

objects (1 mouse per cage; Ctrl conditions), or in large (rat) cages with running wheels 

and several objects for exploration (3-4 mice per cage; EE conditions). Transgenic mice 

expressing cytosolic YFP in few neurons (Thy1-cYFP) (Feng et al., 2000) were obtained 

from Jackson Laboratories. Drugs and their final concentrations in the culture medium 

were as follows: TTX (Latoxan, 1 µM, stock in acetate buffer), DCG-IV (Tocris, Bristol, 

1 µM), GABA (Fluka Biochemica, 100 µM), Chelerythrine (Sigma, 1 µM), APV (Sigma, 

100 µM). Antibodies: Bassoon (monoclonal mouse IgG2a, Stressgen, 2 µg/ml), phospho-

GluR1 (polyclonal rabbit, Upstate, 2 µg/ml), DCX (polyclonal goat, Santa Cruz, 2 

µg/ml), NeuN (monoclonal mouse, Chemicon, 2 µg/ml) anti-mouse/goat Alexa-Fluor-

568 (Molecular Probes) and anti-rabbit Alexa-Fluor-647 (Molecular Probes) 

 

Slice cultures 

The slice cultures were established according to the procedure described by Stoppini and 

colleagues (Stoppini et al. 1991). Brains of P6-P9 transgenic mice were dissected in 

MEM (GIBCO)-based ice-chilled medium, and hippocampal coronal sections of about 

400 µm were produced with a tissue chopper (McIlwain). Slices were selected, placed on 

Millicell (Millipore, PICM03050) und cultured in 6-well dishes at 35oC and 5% CO2 in 

the presence of 1ml of medium. The entire slice isolation procedure took about 30 min. 

The culture medium was exchanged every third day, and drugs were added in fresh 

culture medium. For drug wash-out, individual slices were placed in 35 mm Petri dishes, 

washed twice with 1 ml of Tyroid’s buffer, returned to 6-well dishes, and washed again 
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twice with 1 ml culture medium during the next 10 min. For all drug treatments, control 

slices were treated in the same way, except for the absence of the drug.  

For some experiments, DIV10-15 slice cultures from non-transgenic mice were 

transfected with cRFP cDNA under the control of the hSynapsin1 promoter (pMH4-

pSYN-tdimer RFP, generous gift from Thomas Oertner (FMI, Basel)). Gene gun 

transfection was performed according to the instructions of the manufacturer (Bio-Rad, 

Hercules, CA), except for a 100 µm nylon mesh which was inserted as a pressure-

deflecting screen. Slices were imaged 10-15 days after transfection. 

 

Imaging 

For time-lapse imaging, slices were placed in 2 ml of physiological Tyrode solution at 

37oC, and imaged under controlled temperature conditions (either incubation chamber (in 

most cases), or heating plate). For routine imaging of the entire mossy fiber projection 

and its LMTs, we used an Olympus set-up consisting of a Bx61 LSM Fluoview confocal 

microscope, a 40X/0.75W water immersion objective, and the following settings: PMT 

653, Gain 2.4, pinhole 105 μm, 0.62 μm/stack in the z-dimension, 512x512 pixels, and 

fast scan rate at 9% laser intensity. High-resolution imaging was carried out using a Zeiss 

set-up consisting of an Axioplan2 LSM 510 Meta Zeiss confocal microscope. In either 

case, all focal planes within the slice were acquired and analyzed. All slices and 

structures included in the analysis were examined 5, 10 and 20 days after the last imaging 

session to verify that no signs of phototoxicity could be detected (e.g. swelling and 

beading of axons, blurring of the fluorescence signal due to membrane damage). We 

found that in most cases (more than 98% of the slices), if cell bodies were only imaged at 

the first session, slices could be imaged repeatedly for at least 8 times without any sign of 

phototoxicity. For imaging of LMTs from mice of different ages, male transgenic mice 

were perfused transcardially with 100 ml ice-chilled 4% paraformaldehyde in PBS, and 

brains were kept in fixation solution over-night at 4oC. Vibratome coronal sections (60 

μm) were then cut using a LEICAVT 100S vibratome (Leica), and mounted in Airvol for 

fluorescence imaging. Highresolution images were acquired on an upright Zeiss 

Axioplan2 LSM510 Meta confocal microscope, using a Plan-Neofluar 40x/1.3 oil 

immersion objective (pinhole size of 65 μm), or a 100x/1.4 oil immersion objective 
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(pinhole sizes between 100-150 μm). Images were opened and processed using Imaris 4.2 

(Bitplane AG) and Image Access (IMAGIC) softwares. Deconvolution was performed 

with Huygens Deconvolution Software from Scientific Volume Imaging SVI (Hilversum, 

Netherlands). The interative Maximum Likelihood Estimation (MLE) algorithm was used 

with the computed Point Spread Function (PSF). For 3D analysis of LMT-Cs, images 

were opened in Imaris 4.2, smoothened by the Gaussian filter and Background 

subtraction tools of the software, cropped in 3D to reveal the regions of interest; 300 

frames movies were then produced in the animation mode. 

 

Immunocytochemistry and histology 

Slice cultures were fixed for 10 min in ice-chilled 20% methanol in PBS, rinsed 3 times 

with PBS, and post-fixed for 10 min at 4oC in 4% paraformaldehyde, PBS. Tissues were 

then washed in PBS, solubilized in 0.4% triton X-100, PBS (over-night at 4oC), blocked 

in the presence of PBS and 20% BSA (4h, RT), and incubated with primary, and then 

secondary antibody (over-night at 4oC, each). 

For electron microscopy, mice were perfused with buffered 2.5% glutaraldehyde, 

followed by fixation in buffered 2.5% glutaraldehyde (2h), post-fixation in buffered 2% 

Osmium tetroxide (2h), and dehydration through alcohol, followed by propylene oxide. 

Fixed brain material (hippocampal CA3a) was embedded in Docupon, stained with 

uranyl acetate and lead hydroxide, and sectioned with a diamond knife. Complete serial 

sections (75-85 nm each; total of 8-10 μm) were deposited on slot grids with formvar. 

Sections were recorded on Kodak electron image plates using a Zizze EM900 at 100 kV. 

 

Analysis of imaging data 

We defined LMTs as mossy fiber terminal regions of > 2.5 μm diameter in CA3a-c, 

which were arranged either en-passant, or as side structures connected to the mossy fiber 

projection by short (in most cases less than 10 μm) side-branches. As expected, 

individual LMTs exhibited highly complex morphologies (Chicurel and Harris, 1992; 

Danzer and McNamara, 2004). We found that they could be further subdivided into three 

subcomponents: 1) core terminal regions consisting of flattened domains of greatly 

varying sizes, and of beaded subunits of 2.5-3.5 μm diameter, arranged in grape-like 
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arrays (range of 0-25 bead subunits per LMT), 2) filopodia tipped by swellings of 1-2 μm 

diameter (range of 2-10 filopodia per LMT; lengths of 5-15 μm), 3) processes of 10-200 

μm length, emanating from LMTs and terminating in “satellite LMTs” (range of 0-5 

satellites per LMT) (Fig. 1a; Suppl. Fig. 1). 

For the quantification of LMT sizes in slice cultures, images were all acquired using 

the same settings, and processed using Imaris 4.2 and Image Access software. 

Acquisition settings (see above) were selected to minimize phototoxicity, but at the same 

time allow visualization of the thin axonal processes connecting LMTs to their satellites. 

The latter were defined as terminal structures of more than 2.5 μm in diameter, which 

were unambiguously connected to the main LMT as confirmed by a 3D analysis using 

Imaris software. Mossy fibers running deep in the slices exhibited thinner axons, and 

some of them were lost when cultures were kept for more than 4-5 weeks, possibly due to 

suboptimal access to oxygen. These deeper fibers could also be recognized by their 

weaker GFP signals, and were excluded from the analysis. LMT areas were derived from 

z-projections using ImageJ software. When LMT complexes unambiguously included 

satellites (about 10-20% of all LMTs), their terminal areas were included in the total size 

of the LMT complex. Sizes of individual identified LMTs were compared at the indicated 

times, and LMTs were subsequently grouped and analyzed according to their sizes at 

DIV20 (small < 30 μm2; medium < 60 μm2; large > 60 μm2).For the quantification of 

LMT volumes at different ages, at least three confocal 3D stacks (total volume of 230 μm 

x 230 μm x 40 μm) were acquired in CA3a for each preparation (three mice per age), and 

analyzed using Imaris 4.2 software. Individual LMT volumes contained in these cubes 

were measured using the Surpass/ Isosurface function of the software. Non-saturating 

imaging conditions were chosen for all size analyses. An intensity threshold of 300 was 

chosen to selectively analyze LMTs (excluding axons and other smaller objects). All 

identified objects were verified by eye inspection. Generally, the settings for the analysis 

were identical for all samples of all ages, but in some cases we verified the settings 

through internal calibration using the diameters and signal intensities of axons. After 

these measurements, LMTs were grouped according to their volumes. The volumes of all 

LMTs in one group were added up, and expressed as percentage of the total volume of all 

LMTs measured per cube. For the quantification of LMT subunit compositions as a 
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function of age, samples were processed as described above (230 μm x 230 μm x 40 μm). 

Image settings were then chosen to emphasize the beaded subunit compositions of 

individual LMTs. To analyze labeling homogeneities by the mGFP construct, 3D images 

(voxel sizes of 0.09 x 0.09 x 0.49 μm) were acquired using LSM510 Meta (100x/1.4 oil 

objective, 150 μm pinhole size), and opened in Zeiss LSM 510 Image examiner software. 

Membrane outlines of axons and LMTs included in one confocal plane were followed 

manually, and light intensities were plotted against distance.To determine numbers of 

Bassoon-positive structures per individual LMTs, 3D images of Bassoon stained slice 

cultures were acquired (LSM 510 Meta, 100x/1.4 oil, voxel sizes: 0.09 x 0.09 x 0.28 μm, 

150 μm pinhole size for both channels), and LMT volumes were derived as described 

above. Bassoon-positive structures were defined as single spots of 0.2 - 0.3 μm in 

diameter. Double counting of active zones was avoided by comparing adjacent confocal 

planes. 

 

Electrophysiology 

Slice cultures (DIV20-30) were transferred to a submerged recording chamber mounted 

on an upright microscope (BX50WI, Olympus, Germany), and continuously perfused (2-

2.5 ml/min) using a solution containing (in mM): NaCl 142, KCl 1.6, CaCl2 2.5, MgCl2 

1.5, NaHCO3 24, KH2PO4 1.2, bicuculline methochloride 0.02, D-AP5 0.08, NBQX 

0.0003, glucose 10, ascorbic acid 2; saturated with 95% O2 and 5% CO2 (pH 7.4; 

temperature 34°C). To establish pair recordings, a pipette supplemented with 

sulforhodamine (1%) or Lucifer Yellow (1%) was closely approached to a small (8-25 

μm2) or large LMT (80-150 μm2) and gentle, positive pressure applied in order to stain 

juxtaposed CA3 pyramidal neuron dendrites. As soon as dendrites adjacent to the LMT 

were visible, the pipette was moved along the dendrites to the soma, and the cell was 

recorded under whole cell patch conditions. Granular cells were recorded under current-

clamp mode with pipettes (3-5 MΩ) filled with a solution containing (in mM): K-

gluconate 135, HEPES 10, EGTA 0.4, MgCl2 10, phosphocreatine 14, Mg-ATP 2, Na2-

GTP 0.2 (pH 7.2-7.3; osmolarity 295-310 mosm). CA3 pyramidal cells were recorded 

under voltage-clamp mode with pipettes filled with a solution containing (in mM): 
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Cs-methanesulfonate 130, HEPES 10, EGTA 10, MgCl2 5, phosphocreatine 14, QX-314 

5, picrotoxin 1, Na2-ATP 2 and Na2-GTP 0.2 (pH 7.2-7.3 adjusted with CsOH; 

osmolarity: 295- 310 mosm). Current and voltage recordings were obtained using an 

Axoclamp-2A and an Axopatch 200B amplifier respectively (Axon Instruments, Union 

City, CA., USA). Membrane potentials were corrected for liquid junction potentials. 

Series resistance was compensated up to 50-80 % in order to avoid unstable recordings. 

Series and input resistances of voltage-clamp recordings were monitored throughout 

experiments, and data were discarded if they varied by more than 20%. Presynaptic 

action potentials were evoked by injecting depolarizing current pulses (1-1.5 nA for 2 

ms) at 0.5 Hz unless otherwise stated. Signals were filtered at 2 kHz, digitized at 5-10 

kHz and stored on hard disk. Data acquisition and analysis were performed using 

homemade A/D converter and software. The standard deviation of the latencies was used 

to calculate the jitter. Average values are expressed as mean ± S.E.M. Statistical 

differences were assessed by Student’s t-test. 

 

Protocols 
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ABSTRACT 

This protocol details a method to establish organotypic slice cultures from mouse 

hippocampus, which can be maintained for several months. The cultures are based on the 

interface method, which does not require special equipment, is easy to execute and yields 

slice cultures that can be imaged repeatedly – from when they are isolated at postnatal 

day 6–9, and up to 6 months in vitro. The preserved tissue architecture facilitates the 

analysis of defined hippocampal synapses, cells and entire projections. Monitoring of 

defined cellular and molecular components in the slices can be achieved by preparing 

slices from transgenic mice or by introducing transgenes through transfection or viral 

vectors. This protocol can be completed in 3 h. 

INTRODUCTION 

Recent advances in gene delivery and live imaging technology have had a marked impact 

on the range of experimental tools that are available to life scientists (Conchello et al. 

2005 and Yuste 2005). For research in neuroscience, these developments have meant that 

studying the structure and function of biologically relevant neuronal circuits can now be 

approached in a non-invasive way and with unprecedented analytical power. To fully 

exploit these technological developments, adequate biological preparations to investigate 

neuronal circuits have to be established in parallel. Fortunately, preparations that were 

developed by physiologists more than a decade ago (Gahwiler 1981, Stoppini et al. 1991 

and Gahwiler et al. 1997) could be readily adapted for live imaging studies of defined 

neuronal circuits (DePaola et al. 2003 and Galimberti et al. 2006). 

Advantages of the method 

Key features of the hippocampal organotypic slice cultures (Stoppini et al. 1991) include: 

well-defined cellular architecture of the hippocampal circuit, which preserves the 

organization in vivo, and allows the identification and manipulation of defined neurons 

and synapses (Gahwiler 1981, Stoppini et al. 1991, Gahwiler et al. 1997, DePaola et al. 

2003 and Galimberti et al. 2006); presence of axonal projections (mossy fiber axons 

extending from dentate gyrus granule cells to the distal end of CA3), which can largely 

be recovered in the slices in their original state (that is, without lesioning) and which 

establish stereotype numbers of readily identifiable presynaptic terminals onto excitatory 
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and inhibitory neurons in the hilus and in CA3 (DePaola et al. 2003 and Henze et al. 

2000); a long-term thickness of 100–150 µm, preserving three-dimensional organizations 

of connectivity (Stoppini et al. 1991 and Gahwiler et al. 1997); maturation of the slice 

cultures, closely reflecting the corresponding schedule in vivo (De Simoni et al. 2003 and 

Henze et al. 2000); option to prepare the slices from mice of any genetic background, 

including those of poor postnatal viability. 

Critical aspects 

The main critical issues relate to the extent to which organotypic slice cultures reproduce 

the properties of hippocampal circuits in vivo (Gahwiler et al. 1997). This information is 

important for deciding whether the approach is appropriate for addressing the particular 

experimental issues that might be in mind. These issues have been investigated in much 

detail by physiologists, who have demonstrated extensive similarities, but also a few 

discrepancies, to properties of the corresponding circuits in the adult brain (Gahwiler et 

al. 1997). With respect to development, the slice cultures exhibit a temporal profile of 

excitatory and inhibitory miniature synaptic events, which closely match, qualitatively 

and quantitatively, the corresponding times in vivo (De Simoni et al. 2003). This indicates 

that features that are critical to hippocampal circuit development and maturation are well 

established at 1 week postnatally, and are stable under organotypic culture conditions. A 

further critical issue involves the unavoidable separation of the hippocampal slices from 

their natural inputs, outputs and neuromodulatory systems. It turns out that most neuronal 

excitability and network properties are well preserved, in spite of the fact that the actual 

activity in the slices must be significantly different from the in vivo situation (Gahwiler et 

al. 1997). Predictably, synaptic connectivity in the slice cultures is initially greatly 

reduced due to the isolation procedure but, during the first 2–3 weeks in vitro, synapse 

numbers recover to a level comparable to that in vivo (Gahwiler et al. 1997), and the 

cultures are stable with respect to total synapse numbers from about 3 weeks in vitro 

DePaola et al. 2003). As a result, the degree of connectivity between some of the 

individual neurons that are present in the slices (e.g., pyramidal neurons in CA3) is 

higher than in vivo, a fact that facilitates the analysis of synaptically connected neurons 

(Gahwiler et al. 1997). With the exception of the molecular layer of the dentate gyrus, in 
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which the occasional recurrent mossy fiber collaterals can produce an excitation level that 

is higher than that of normal granule cells, this higher connectivity does not seem to 

produce aberrant patterns of activity (Gahwiler et al. 1997). The slices can, however, be 

electrically labile, and gentle handling is important to avoid epileptic-like discharges. 

One way to avoid higher excitability in granule cells is to prepare slices from P20-30 

mice when the circuits are more stable (Xiang et al. 2000). Finally, attempts to 

investigate adult neurogenesis in hippocampal slice cultures have suggested that the 

phenomenon is much less frequent than in vivo. This might be influenced by the culture 

medium, but the issue requires further investigation. 

Possible results and outlook 

Organotypic slice cultures from ~1-week-old mouse hippocampus appear to reproduce 

most anatomical and functional properties of the corresponding hippocampal circuits in 

vivo for at least 6 months in vitro due to the intrinsic properties of their neurons. 

Accordingly, limitations to their applications might be confined to studies of 

hippocampal input–output relationships. This leaves an exciting range of possibilities for 

the exploration of mechanisms that control the assembly and function of neuronal 

circuits. Some of these include: time-lapse imaging from the sub-second to the months 

range, and from individual molecules to entire neuronal projections and circuits; imaging 

of neuronal (DePaola et al. 2003, Galimberti et al. 2006, Caroni 1997 and Feng et al. 

2000) and glial (Dailey et al. 1999) subtypes; molecular manipulation using transfection 

(Lo et al. 1994 and Benediktsson et al. 2005) or viral approaches (Ehrengruber et al. 1999 

and miyaguchi et al. 1999) to knock down or overexpress genes, silence or activate 

neurons, render neurons responsive to light or selective drugs and to highlight sub-

circuits; combined physiology-imaging methods; manipulations to investigate lesion-

induced plasticity and pathways of neurodegeneration and repair (e.g., amyloid- or 

epilepsy-related); following the insertion of new neurons, the development of axons and 

their connections, or the insertion of exogenously added stem cells; post-hoc analysis 

using, for example, tracers, electron microscopy and single-cell genomic methods. 
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MATERIALS 

Reagents 

• Animals: 6–9-day-old mouse pups. You can prepare slices from six pups within 

one session, but for the beginner it may be preferable to start with two or three 

pups  

! CAUTION All animal experiments must comply with national regulations.  

• Hand sterilizing solution, e.g., Sterilium (Bode) or equivalent  

• Penicillin/streptomycin (Invitrogen, cat. no. 16050-122)  

• HEPES  

• Hank's balanced salt solution (HBSS; Invitrogen, cat. no. 24020-083)  

• Horse serum  

• 2 MEM (liquid Eagle's with Hank's Salts and 25 mM HEPES; Gibco, cat. no. 

04195120M)  

• Tris-(hydroxymethyl)aminomethane 

Equipment 

• Dissection microscope (e.g., ZEISS Stemi 2000-C binocular with 10 23 

objectives, but any 5–10 magnifying dissection microscope is suitable)  

• McIlwain tissue chopper (The Mickle Laboratory Engineering Co. Ltd.)  

• Sterile dissection hood  

• Razor blades that can be fixed in the McIlwain tissue chopper  

• Filter paper (e.g., Schleicher & Schuell, cat. no. 300009, or Whatman paper)  

• Small (35 mm 10 mm) and large (100 mm 20 mm) cell culture dishes (Corning, 

cat. no. 430165 and 430293, respectively)  

• 6-well culture plates (Corning, cat. no. 3516)  

• Culture plate inserts: 0.4 µm Millicell membrane, 30 mm diameter (Millipore, cat. 

no. PICM03050)  
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• Vacuum filter sterilizer for medium (e.g., Vacuum-driven disposable filtration 

system, 0.22 µm pore width; Millipore, cat. no. SCGPU02RE)  

• Cell culture incubator at 35 °C, 95% air, 5% CO2 

Equipment Setup 

• Dissection tools Scalpel, two round-ended spatulas, small scissors, large scissors, 

one pair of fine straight forceps, two pairs of curved fine forceps and two glass 

Pasteur pipettes that have to be custom designed as follows: one pipette is fire-

polished at the tip so that it adapts a round shape, has no sharp edges, but still has 

a small opening; the second pipette is cut at the intersection of the fine and thick 

tube using a canula opener (glass cutter), and the resulting large opening of this 

pipette is fire-polished to smooth the edges. 

Reagent Setup 

• Penicillin/streptomycin solution Dissolve 1.6 g penicillin G (100 U ml-1) and 2.5 

g streptomycin (0.1 mg ml-1) in 200 ml H2O, filter-sterilize and store at -20 °C in 

2-ml aliquots. Note that penicillin can reduce GABAergic neurotransmission in 

slices (Andersen et al. 1983). Signs of epileptic activity have, however, not been 

detected under these culture conditions.  

• Horse serum Heat-inactivate the complement system of the horse serum at 56 °C 

for 30 min; aliquots can be stored at -20 °C for at least 1 year. 

?Troubleshooting 

• Dissecting medium 50 ml MEM 2x, 1 ml penicillin/streptomycin solution, 120 

mg Tris (hydroxymethyl)aminomethane (final concentration: 10 mM); add up to 

100 ml with ddH2O. 

▲ CRITICAL Prepare within 24 h of the experiment, filter-sterilize through a 

0.22 µm membrane and keep it at 4 °C until dissection.  

• Culture medium 50 ml MEM 2x, 1 ml penicillin/streptomycin solution, 120 mg 

Tris (hydroxymethyl)aminomethane (final concentration: 10 mM), 910 µl of a 

7.5% NaHCO3 aqueous solution, 50 ml heat-inactivated horse serum, 50 ml 1x 
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HBSS; add up to 200 ml with ddH2O. 

▲ CRITICAL Filter-sterilize through a 0.22 µm membrane and keep at 4 °C. 

Pre-heat only the medium that is needed for a medium change on the same day. 

Culture medium can be stored at 4 °C for at least 1 month. 

Overview 

• Step 1 - 4 Preparation of membrane inserts and culture medium  

• Step 5 - 9 Preparation of dissection medium and chambers  

• Step 10 - 13 Preparation of dissection material  

• Step 14 - 17 Hippocampus dissection and cutting of coronal sections  

• Step 18 - 47 Dissection  

• Step 48 Cold incubation  

• Step 49 - 59 Selection and incubation of hippocampal slices 

PROCEDURE 

Preparation of membrane inserts and culture medium • TIMING 10-30 min

1. Prepare the culture medium and filter-sterilize it.  

2. Add 1 ml culture medium per well of a 6-well plate; prepare 3–4 wells for 

each pup to be dissected (one pup should yield 6–8 usable hippocampal slices 

and about two slices are cultured on one membrane).  

3. Add one culture plate insert into each prepared well, so that the insert 

membranes touch the medium, but are not covered by it.  

4. To warm up the medium, put the prepared 6-well plates into the cell culture 

incubator.  
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Preparation of dissection medium and chambers • TIMING 10-20 min preparation 

+ 15 min sterilization

5. Prepare the dissection medium, filter-sterilize and keep it at 4 °C.  

6. Cut a small triangle (about 4 x4 x4 cm) out of the filter paper, take the cover 

of a 100-mm cell culture dish and place the filter paper triangle into it. Prepare 

1 cover + filter paper for each pup to be dissected.  

7. Sterilize the covers containing the filter papers under ultraviolet light in the 

culture hood for 15 min.  

8. Add 1 ml of cold dissection medium on top of each filter paper and cover with 

the bottom of the cell culture dish under sterile conditions.  

9. Keep these 'dissection chambers' at 4 °C until dissection.  

Preparation of dissection material • TIMING 5-15 min

10. Clean all dissection tools with 70% ethanol, fire-sterilize them inside the 

dissection hood and keep them there. Clean a fresh razor blade with a 

chloroform:isoamylalcohol (49:1) solution, followed by 100% ethanol and 

70% ethanol and fix it in the McIlwain tissue chopper placed inside the 

dissection hood.  

! CAUTION Chloroform is toxic; avoid inhalation, ingestion or contact with skin, eyes 

or mucous membranes. 

11. Fix the plastic platform on the McIlwain tissue chopper and clean it with 70% 

ethanol; switch the chopper on and adjust the cutting thickness to 400 µm.  

12. Keep the dissection medium on ice inside the dissection hood.  

13. Put one 35-mm cell culture dish per pup to be dissected under the dissection 

hood.  
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Hippocampus dissection and cutting of coronal sections • TIMING 15-30 min/pup 

14. Place one of the prepared, cold 'dissection chambers' under the dissection 

microscope and remove the top plate so that the filter paper covered with cold 

dissection medium is exposed. 

▲ CRITICAL STEP Steps 14–38 are carried out under sterile conditions 

inside a dissection hood unless otherwise mentioned.  

15. Decapitate one pup outside the dissection hood using large scissors. Note that 

anesthesia of pups is notoriously difficult (dry ice is one possibility), and that 

decapitation as described above is usually advised. Nevertheless, make sure 

that the procedure complies with local regulations.  

16. Flush the head with 70% ethanol and transfer it into the hood. 

▲ CRITICAL STEP The fur of the pup is a potential contamination source. 

?Troubleshooting  

17. Sterilize your gloves with Sterilium or 70% ethanol before you proceed. 

▲ CRITICAL STEP Proceed carefully for Steps 18–24. The delicate 

nervous tissue of the brain is easily damaged by the sharp dissection tools or 

the edges of the cut skull. ?Troubleshooting 

Dissection

Figure 1. Workflow diagram. Slices from pups 1 to 6 are prepared sequentially: dissection, cold incubation and 

slice selection are performed in a staggered way.  
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Figure 2. Illustration of hippocampal slice preparation protocol (Steps 18-53). (a) Steps 18-22; (b) Steps 28-30; (c) 
Steps 31-32; (d) Step 33; (e) Step 34; (f) Steps 35-36; (g) Step 38; (h) Steps 39-43; (i) Steps 44-46; (j) Steps 50-53. * 
Back of the head (neck).   
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Dissection 

18. Make an incision into the skin along the midline of the head, starting at the 

neck up to between the eyes using the small scissors (see Figs. 1-3). 

19. To hold the head more easily and to expose the skull, flip the skin around the 

head and pull it to the lower side, where you pinch it between your fingers.  

20. Use the small scissors and the fine straight forceps to remove neck muscles 

and the first vertebrae.  

21. Insert the lower part of the small scissors carefully into the foramen magnum 

and cut the skull along the midline from the foramen magnum to the front 

until you reach between the eyes.  

22. Make two lateral cuts starting from the midline towards the sides.  

23. Peel away the skull using the fine straight forceps.  

24. Hold the head upside down above the prepared filter paper, which should be 

covered with cold dissection medium.  

25. Introduce the spatula carefully between the brain and the skull and remove the 

brain from the skull, cut the cranial nerves and, if necessary, the olfactory 

bulbs with the spatulas.  

26. Let the brain drop gently onto the filter paper covered with dissection 

medium.  

27. Immediately put a few drops of cold dissection medium onto the exposed 

brain.  

28. Put the brain upside up with the ventral side lying on the filter paper.  

29. Use the scalpel to cut off the forebrain and the cerebellum by coronal cuts.  

30. Using the scalpel, separate the two hemispheres cutting along the inter-

hemispheric fissure.  

31. Place one brain hemisphere on the frontal or caudal cutting surfaces; the 

intersection between cortex, midbrain and brainstem becomes visible.  

32. Separate the cortex with the underlying hippocampus from the brainstem, 

midbrain and striatum using the two spatulas. 
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▲ CRITICAL STEP Do not touch the hippocampus with the spatulas. 

?Troubleshooting 

33. Place the cortex upside down, so that the hippocampus is exposed.  

34. Use the curved forceps to cut the connections of the hippocampus to the 

ventral side (fimbria); leave it connected to the cortex by the subiculum.  

35. Flip the hippocampus over and out.  

36. Using the scalpel, cut the connection of the hippocampus to the enthorinal 

cortex (subiculum).  

37. Flush the dissected hippocampus with ice-cold dissection medium.  

38. Prepare the second hippocampus of the opposite hemisphere in the same way 

(see Fig. 2).  

39. Use the wide-bore, custom-made Pasteur pipette to suck one hippocampus 

into the pipette along with some dissection medium and transfer it to the 

plastic platform on the McIlwain tissue chopper.  

40. Repeat the same for the second hippocampus.  

41. Using the narrow-bore pipette, align the two hippocampi perpendicularly to 

the chopper blade. 

▲ CRITICAL STEP Avoid touching the slices; instead, use medium to push 

and pull them into the right position. ?Troubleshooting 

42. Remove all dissection medium around the hippocampi.  

43. Chop rapidly into 400 m thick transverse sections.  

44. Float the freshly cut sections immediately with cold dissection medium.  

45. Use the wide-bore pipette to transfer the sections into a 35-mm cell culture 

dish.  

46. Separate the sections by shaking the dish gently. If the sections stick together, 

remove all dissection medium and shake harshly but not for too long; 

alternatively, use the narrow-bore pipette and try to separate the sections by 

the flow of some dissection medium. 

▲ CRITICAL STEP Use great care as the sections are very easily damaged!  
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47. After separation, fill the 35-mm dish with cold dissection medium so that all 

sections are covered; push floating sections down to the bottom of the dish by 

dropping medium onto their tops.  

Cold incubation • TIMING 30 min-1.5 h/pup

48. Cover the 35-mm cell culture dish with its cover and label it with the number 

of the pup and the exact time. Incubate the separated slices for a minimum of 

30 min at 4 °C (up to 1.5 h). Repeat Steps 14–48 for all pups (see Fig. 1). 

▲ CRITICAL STEP After incubation of each pup, clean and fire-sterilize all 

dissection tools and the chopper platform; take a fresh and cold 'dissection 

chamber'; change and sterilize your gloves! ?Troubleshooting 

Selection and incubation of hippocampal slices • TIMING 10-20 min /pup

49. After completing the dissection of the last pup, start the selection of slices 

from the first dissected pup (see label) and proceed with the selection in the 

same sequence as in the dissection (see Fig. 1). 

▲ CRITICAL STEP Make sure that slices from each pup were cold 

incubated for at least 30 min (check the time on the label). Place the first 35-

mm dish (slices of the first pup) under the dissection microscope in the 

dissection hood.  

50. Remove the lid of the 35-mm dish and select the best slices for culturing 

according to the following criteria (see Fig. 3) Slices should have smooth 

margins and be clearly visible, have uniform and well-defined cell layers in 

the dentate gyrus and in CA1-3; the dentate gyrus should be tightly connected 

to the rest of the slice, and the fimbria should be intact. ?Troubleshooting  

51. Collect one pre-heated 6-well plate containing culture medium and a cell 

culture insert from the 35 °C incubator.  

52. Using the wide-bore pipette, transfer the selected slices individually onto the 

membranes along with some dissection medium. Alternatively, some labs use 
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thin spatulas for the transfer, but we have no direct experience with this 

alternative method.  

53. Using the narrow-bore pipette, orientate the slices to the middle of the 

membrane by pushing and pulling them with the stream of dissection medium.  

54. You can place up to four slices on one membrane but the number of slices on 

one membrane has to be adapted to the planned experiments. 

▲ CRITICAL STEP For live imaging, you should only place one or two 

slices on each membrane. Place the slices as close to the center as possible, so 

that the plastic edge of the membrane insert will not hinder the microscope's 

access to the top of the slices. Adapt the slice number that you put on one 

membrane to the estimated time required for later imaging of all slices on one 

culture plate insert. The time you can keep one culture plate insert outside the 

incubator during imaging is restricted to a maximum of 30 min (see also 

Imaging Protoco (Gogolla et al. 2006)). Keep a minimal distance of 2 mm 

between the slices to avoid fusion when flattening out during the culture 

period.  

55. Using the narrow-bore pipette, remove all dissection medium around the 

slices. 

▲ CRITICAL STEP This is critical because any remaining dissection 

medium covering the slices hinders oxygen exchange.  

56. To avoid cooling, put the 6-well culture plate back into the incubator 

immediately after having placed the slices.  

57. After 3–4 d, remove all culture medium below the insert and replace it with 1 

ml of fresh, 35 °C-warmed culture medium.  

58. Replace the culture medium every 3–4 d.  

59. The slice cultures can be maintained for several months. Criteria to verify 

viability: the slices must be transparent, firmly attached to the membrane and 

the dentate gyrus must be visible to the naked eye. In addition, if neurons are 

labeled with fluorescent markers, microscopic examination should reveal an 

absence of axonal and dendritic beading. If necessary, cell death in the slices 

can be assayed with propidium iodide (DePaola et al. 2003). 
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Figure 3. Selection of slices for culturing. (a) Optimal slice with nice cell layers in the dentate gyrus and CA1-3 
and smooth margins (b) slice in which the CA1 region was lesioned during preparation (arrow); (c) slice in which 
the dentate gyrus was lesioned (arrow); (d) slice in which the dentate gyrus detached from the rest of the section 
(arrow). Only the slice in a should be selected for culturing.  
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? Troubleshooting 

Problem Possible Reason Solution 

Slices become 
contaminated soon 
after preparation 

Contamination by the 
fur or blood of the pups 

Use 70% ethanol to repeatedly flush the head 
after decapitation 

    Change and sterilize the gloves after having 
touched the pups' fur and blood 

Slices detach from the 
membrane of the cell 
culture plate insert 
soon after preparation 

Check for the correct 
composition and pH of 
the culture medium 

Always adjust the pH of the culture medium 
to 7.2 

  Change the horse serum Inactivate the horse serum carefully and note 
the batch number, if possible; keep using a 
batch that has worked as long as possible 
(make many aliquots) 

Slices die prematurely 
during the culturing 
period 

Slices can become 
epileptic if treated too 
harshly 

Always move slices slowly and smoothly 

    Avoid strong vibrations 
Axons and/or 
dendrites assume a 
beaded appearance 

Wrong medium 
composition 

Strictly follow the indications in the protocol 
concerning media and times during 
preparations and handling 

  Wrong pH of culture 
medium 

  

  Treatment during 
preparation too harsh 

  

  Slice preparation took 
too long 

  

  Media were not at the 
right temperature 

  

  Incubator at wrong 
temperature or 
atmosphere 

  

Aberrant axonal 
projections 

The slices that were 
selected for culturing 
did not show the right 
morphology or were 
injured 

Select only slices in which the cell layers can 
be clearly seen and have the expected shape 

    Make sure that you do not touch the slices 
with any sharp tools 

  The cutting angle was 
not perpendicular to the 
long axis of the 
hippocampus 

Make sure that you cut and then select slices 
that were cut perpendicularly to the long axis 
of the hippocampus 
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• TIMING

Steps 1–4:  10–15 min (For trained experts);   20–30 min (For beginners). 
Steps 5–9:  10 + 15 min (For trained experts);   20 min (For beginners). 
Steps 10–13:  5–10 min (For trained experts);   15 min (For beginners). 
Steps 14–47:  15 min per pup (For trained experts);  30 min per pup (For beginners). 
Step 48:  30–90 min (For trained experts);   30–90 min (For beginners). 
Steps 49–56:  10 min per pup (For trained experts);  20 min per pup (For beginners). 

 

Anticipated results 

Critical factors to reproducibly achieve good yields and quality of slice cultures are 

speed, avoiding physical damage of the hippocampus and avoiding contaminations 

during the preparation (see Figs. 1- 3). These requirements mainly depend on training and 

concentration. We therefore recommend that beginners practice repeatedly during the 

first 2–4 weeks, in order to become confident and to acquire good experimental skills. A 

trained user should produce 6–8 good quality slices per pup, which can be maintained 

and imaged for at least 6–10 weeks. 
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ABSTRACT 

This protocol details a method for imaging organotypic slice cultures from the mouse 

hippocampus. The cultures are based on the interface method, which does not require 

special equipment, is easy to execute, and yields slice cultures that can be imaged 

repeatedly after they are isolated on postnatal day 6–9 and for up to 6 months in vitro. 

The preserved tissue architecture facilitates the analysis of defined hippocampal 

synapses, cells and entire projections. Time-lapse imaging is based on transgenes 

expressed in the mice, or on constructs introduced through transfection or viral vectors; it 

can reveal processes that develop over time periods ranging from seconds to months. 

Imaging can be repeated at least eight times without detectable morphological damage to 

neurons. Subsequent to imaging, the slices can be processed for immunocytochemistry or 

electron microscopy, to collect further information about the structures that have been 

imaged. This protocol can be completed in 35 min. 

INTRODUCTION 

Recent advances in live-imaging technology have had a dramatic impact on the range of 

experimental tools available to life scientists (Conchello et al. 2005 and Yuste 2005). 

These include the following: microscopes with greatly improved sensitivity, 

temporal/spatial resolution and spectral versatility; powerful image-acquisition and 

image-processing software; and an ever growing repertoire of fluorescent reagents to 

monitor second messengers, and to identify macromolecules and their physiological 

modifications as well as subcellular structures in situ. For research in neuroscience, these 

developments have meant that studying the structure and function of biologically relevant 

neuronal circuits can now be approached in a noninvasive way, and with unprecedented 

analytical power. In order to fully exploit these technological developments, adequate 

biological preparations have to be established in parallel to investigate neuronal circuits. 

Fortunately, preparations developed by physiologists more than a decade ago (Gahwiler 

et al. 1981, Stoppini et al. 1991 and Gahwiler et al. 1997) can be readily adapted for live-

imaging studies of defined neuronal circuits (DePaola et al. 2003 and Galimberti et al. 

2006). Labeling subsets of neurons and their subcellular structures can be achieved using 

transgenic mice and a mouse Thy1-promoter cassette (Caroni 1997, Feng et al. 2000). 
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While cytosolic fluorescent proteins work well (Feng et al. 2000), expression of 

membrane-targeted GFP constructs provides optimal visualization of neuronal outlines 

(DePaola et al. 2003 and Galimberti et al. 2006). Further constructs available for Thy1-

transgenic mice include, for example, synaptopHluorin (Araki et al. 2005). Alternatively, 

transgenes can be introduced directly into slice cultures using transfection methods (Lo et 

al. 1994 and Benediktsson et al. 2005) or viruses (Ehrengruber et al. 1999 and Miyaguchi 

et al. 1999). 

Advantages of the method 

Key features of the organotypic hippocampal slice cultures (Stoppini et al. 1991) include 

the following: (i) well-defined cellular architecture of the hippocampal circuit, which 

preserves the organization in vivo, and allows the identification and manipulation of 

defined neurons and synapses (Gahwiler 1981, Stoppini et al. 1991, Gahwiler et al. 1997, 

DePaola et al. 2003 and Galimberti et al. 2006); (ii) the presence of axonal projections 

(mossy fiber axons extending from dentate gyrus granule cells to the distal end of CA3), 

which can largely be recovered in the slices in their original state (i.e., without lesioning), 

and establish stereotypical numbers of readily identifiable presynaptic terminals onto 

excitatory and inhibitory neurons in the hilus and CA3 ( DePaola et al. 2003, Galimberti 

et al. 2006 and Henze et al. 2000); (iii) a long-term thickness of 100–150 µm, preserving 

the 3D organizations of connectivity (Stoppini et al. 1991 and Gahwiler et al. 1997); (iv) 

maturation of the slice cultures closely reflecting the corresponding schedule in vivo De 

Simoni et al. 2003); and (v) the option to prepare the slices from mice of any genetic 

background, including those with poor postnatal viability. 

Critical aspects 

One set of critical issues relates to the extent to which organotypic slice cultures 

reproduce the properties of hippocampal circuits in vivo (Gahwiler et al. 1997). This 

information is important for deciding whether the approach is appropriate to address the 

particular experimental issues of interest. These issues have been investigated in detail by 

physiologists, who have demonstrated extensive similarities, but also a few discrepancies, 

with respect to the properties of the corresponding circuits in the adult brain (Gahwiler et 
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al. 1997 and De Simoni et al. 2003). Further critical issues relate to the manipulations 

involved in the imaging procedures. The slices can be electrically labile, and gentle 

handling is important in order to avoid epileptic-like discharges (Gahwiler et al. 1997). In 

addition, it is essential to minimize the times during which the slices are kept outside of 

the tissue-culture incubator, and to allow sufficient recovery times between single 

imaging sessions (see PROCEDURE). These factors must be balanced against the 

requirements of the experimental questions. We recommend always optimizing and 

standardizing the particular experimental protocols, taking into account reproducibility 

and negative side-effects. By contrast, contaminations and phototoxicity can largely be 

avoided through appropriate precautions. 

Possible results and outlook 

Organotypic hippocampal slice cultures from mice aged 1 wk appear to reproduce most 

anatomical and functional properties of the corresponding hippocampal circuits in vivo 

for at least 6 months in vitro, due to the intrinsic properties of their neurons. Accordingly, 

the slices provide an exciting range of possibilities for the exploration of mechanisms 

controlling the assembly and function of neuronal circuits. These include the following: 

(i) time-lapse imaging over periods ranging from sub-seconds to months, and of objects 

in the slices ranging from individual molecules to entire neuronal projections and circuits; 

(ii) imaging of neuronal (DePaola et al. 2003, Galimberti et al. 2006 and Feng et al. 2000) 

and glial (Benediktsson et al. 2005) subtypes; (iii) molecular manipulation using 

transfection or viral approaches to knock down or overexpress genes, silence or activate 

neurons, render neurons responsive to light or selective drugs, and highlight sub-circuits; 

(iv) combined physiology and imaging methods; (v) manipulations to investigate lesion-

induced plasticity, and pathways of neurodegeneration and repair (e.g., amyloid-related 

or epilepsy-related pathways); (vi) following the insertion of new neurons, the 

development of axons and their connections, or the insertion of exogenously added stem 

cells; and (vii) post-hoc analysis using, for example, tracers, electron microscopy and 

single-cell genomic methods. 
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MATERIALS 

Reagents 

• Mouse organotypic hippocampal slice cultures (see Reagent setup)  

• Fungizone antimycotic, liquid (Gibco, cat. no. 15290-018)  

• Tyrode salt solution (see Reagent setup) 

Equipment 

• Single-point scanner upright confocal microscope with spectral detection (e.g., 

Olympus Bx61 LSM Fluoview or Zeiss LSM 510) equipped with a 40 /0.75W 

water-immersion objective  

• 35-mm Petri dishes (Corning, cat. no. 430165) 

Reagent Setup 

• Mouse organotypic hippocampal slice cultures Prepared from mice aged 6–9 d 

(see PROCEDURE). We have imaged slices at times ranging from 5 d to 6 

months in vitro. ! CAUTION All procedures must adhere to local laws regulating 

handling of experimental animals.  

• Tyrode salt solution 2.7 mM KCl, 0.5 mM MgCl2, 136.9 mM NaCl, 0.36 mM 

NaH2PO4, 1.4 mM Na2HPO4, 5.5 mM glucose, 1.8 mM CaCl2 (pH 7.26) 

▲ CRITICAL Filter-sterilize through a 0.22-µm membrane. 
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PROCEDURE 

Overview 

• Step 1  Set up of the confocal microscope  

• Step 2 - 6  Imaging session 

Set up of the confocal microscope • TIMING 10 min

1. Optimal acquisition settings are adapted to the intensity of the labeled cells based 

on the following criteria: use the smallest laser intensity possible, and enhance the 

intensity by increasing the gain and photo-multiplier (PMT) strength and/or 

opening the pinhole; also, use the largest step size possible (adapted to the size of 

the imaged objects). We obtained the best results for mossy fiber terminals using 

a step size of 0.62 m. In order to allow fast acquisition (and, thus, cause minimal 

damage to the slice cultures), use a low-resolution mode, avoid using averaging 

functions (e.g., Kalman) and apply the fastest scanning rate available to the 

microscope. We imaged mossy fiber terminals at 512 512 pixels.

 !Troubleshooting 

Imaging session  • TIMING 30 min maximum

2. Working in the cell-culture hood, place the cell-culture insert into a 35-mm Petri 

dish and add 2 ml pre-warmed Tyrode salt solution at 37 °C (1 ml above and 1 ml 

below the membrane).  

3. Move to the confocal microscope. Use the 40 /0.75W water-immersion objective 

and the mercury lamp to look for labeled cells. 

4. ▲ CRITICAL STEP To avoid contaminations originating during the imaging 

sessions, we clean the objective with 70% (vol/vol) ethanol in water before 

imaging individual slices. By taking this simple precaution, and using Fungizone 

and antibiotics in the culture media (see slice-preparation protocol, Gogolla et al. 
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(2006) Nat. Prot. 1, 1165-1171) we rarely experience contaminations upon 

imaging sessions.  

5. In order to include all labeled structures in the 3D region of interest (ROI), set the 

start point of the z-stack slightly below the first labeled structure, and the stop 

point slightly above the last labeled structure. For example, acquisition of the 

entire mossy fiber projection required four or five 3D stacks of 40–60 confocal 

planes in 10–15 min. 

▲ CRITICAL STEP The slices should not stay in the Tyrode salt solution and 

outside the incubator for more than 30 min.  

6. After imaging, remove the Tyrode salt solution, return the culture-plate insert into 

the six-well plate and place it back in the incubator. 

▲ CRITICAL STEP From now on, to avoid contaminations, the slices should be 

kept in culture medium supplemented with Fungizone (0.25 µg ml-1).  

7. Repeat Steps 2–5 for the next imaging session, keeping the same settings. In most 

cases, slices can be imaged repeatedly at least eight times, although some 

precautions should be taken (see below). 

▲ CRITICAL STEP Generally, we have observed that when the experiments 

require more than two or three imaging sessions, good results depend on allowing 

long recovery time intervals between individual imaging sessions (e.g., 10–20 d), and 

keeping slices outside of the incubator for no longer than 20 min during imaging 

sessions. Our observations suggest that, provided one adheres to the principles 

outlined above (also see TROUBLESHOOTING), phototoxicity is not the major 

limiting factor. Instead, most damage to the slices associated with the imaging 

sessions is due to the changes of medium, and the times when the slices are kept 

outside of the incubator. It is important to note that our protocol was optimized for 

imaging granule cells and their mossy fibers. We have noticed that pyramidal neurons 

in CA3 appear to be more vulnerable to repeated handling, and recommend that 

repeated imaging protocols should be initially tested and optimized. Characteristic 
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signs of selective damage include major reductions in the intensity of the GFP signal 

(Thy1-driven expression of membrane-targeted GFP), thinning of neuronal processes 

and losses of spines. !Troubleshooting

!Troubleshooting for imaging organotypic slice cultures.  

Problem Possible 
reason 

Solution 

Phototoxicity Possible signs 
include the following: abrupt 
weakening of fluorescence 
intensity; swellings and 
breakdowns of axons and 
dendrites into beaded chains; 
blurred GFP signal around 
membranes; formation of large 
blebs on cell bodies, dendrites or 
presynaptic terminals; loss of 
dendritic spines. 

Too high 
and/or long 
exposure to 
UV light. 

Use appropriate filters to reduce the intensity 
of the UV light when inspecting the 
fluorescent signal; reduce the exposure time 
to UV light to a minimum; search the ROI 
wherever possible using the live-scanning 
mode of the microscope avoiding using UV 
light; use fast and precise shutters. 
 

  Too high 
laser 
intensity. 

Adapt imaging settings to use the lowest laser 
intensity possible; optimize the imaging 
settings outside  
the ROI; acquire the images using the 16-bit 
mode, in order to be able to use low laser 
intensities; select the appropriate emission 
filter, in order to maximize signal intensity 
without increasing laser strength. 
 

  Too long 
exposure to 
laser 
energy. 

Use the fastest scan mode and the smallest 
amount of confocal images that still allow 
proper analysis; avoid time consuming 
averaging options during acquisition; instead, 
optimize image quality after acquisition (e.g., 
by applying deconvolution). 
 

  Too high 
light 
energy 
(UV and/or 
laser). 

Use the smallest magnification objective 
possible to resolve the structures of interest; 
choose a high numerical aperture objective; 
choose an objective lens that is optimized for 
your emission wavelength. 
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Anticipated results 

Critical factors for a successful imaging experiment are careful handling of the slices and 

rapid image acquisition. We strongly recommend always using the same confocal settings 

for comparable imaging sessions, and practicing the rapid identification of the orientation 

of labeled slices when first looking at a new type. It is also important to be able to rapidly 

re-identify the ROI within a given slice. This can be helped by making a schematic 

drawing, with landmarks of the particular slice, and using it for rapid orientation during 

the next imaging session (Fig.1). 
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Figure 1. The five images were acquired with a 40x objective and then tiled. The schematic on the right indicates 
the orientation of the hippocampus (dentate gyrus on the right). The axons are labeled by a membrane-targeted GFP 
construct, as described in the text. 
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Staining protocol for organotypic hippocampal slice cultures 
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ABSTRACT 

This protocol details a method to immunostain organotypic slice cultures from mouse 

hippocampus. The cultures are based on the interface method, which does not require 

special equipment, is easy to execute and yields slice cultures that can be imaged 

repeatedly, from the time of isolation at postnatal day 6–9 up to 6 months in vitro. The 

preserved tissue architecture facilitates the analysis of defined hippocampal synapses, 

cells and entire projections. Time-lapse imaging is based on transgenes expressed in the 

mice or on constructs introduced through transfection or viral vectors; it can reveal 

processes that develop over periods ranging from seconds to months. Subsequent to 

imaging, the slices can be processed for immunocytochemistry to collect further 

information about the imaged structures. This protocol can be completed in 3 d. 

INTRODUCTION 

Recent advances in live imaging and transgenic technology have had a substantial impact 

on the range of experimental tools available to life scientists (Conchello et al. 2005 and 

Yuste 2005). These include microscopes with greatly improved sensitivity, temporal and 

spatial resolution and spectral versatility; powerful image acquisition and processing 

software; and an ever-growing repertoire of fluorescent reagents to monitor second 

messengers, identify macromolecules and their physiological modifications, and examine 

subcellular structures in situ. In the field of neuroscience, these developments have 

allowed studies of the structure and function of biologically relevant neuronal circuits to 

be approached in a noninvasive way and with unprecedented analytical power. To fully 

exploit these technological developments, adequate biological preparations must be 

adapted for live-imaging studies of defined neuronal circuits (Gahwiler 1981, Stoppini et 

al. 1991, Gahwiler et al. 1997, DePaola et al. 2003 and Galimberti et al. 2006). 

Subsequent immunostaining of the preparations allows retrospective definition of the 

cellular and molecular identity of the imaged structures and their local surroundings, as 

well as molecular correlation of the dynamic processes. 
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Advantages of the method 

Key features of the hippocampal organotypic slice cultures (Stoppini et al. 1991) from 

mice include (i) well-defined cellular architecture of the hippocampal circuit, which 

preserves the organization in vivo and allows for the identification and manipulation of 

defined neurons and synapses (Gahwiler 1981, Stoppini et al. 1991, Gahwiler et al. 1997, 

DePaola et al. 2003 and Galimberti et al. 2006); (ii) presence of axonal projections 

(mossy fiber axons extending from dentate gyrus granule cells to the distal end of CA3) 

that can largely be recovered in the slices in their original state (that is, without lesioning) 

and that establish stereotype numbers of readily identifiable presynaptic terminals onto 

excitatory and inhibitoryneurons in the hilus and CA3 (DePaola et al. 2003, Galimberti et 

al. 2006 and Henze et al. 2000); (iii) a long-term thickness of 100–150µm, preserving 

three-dimensional organizations of connectivity (Stoppini et al. 1991 and Gahwiler et al. 

1997); (iv) maturation of the slice cultures closely reflecting the corresponding schedule 

in vivo (De Simoni et al. 2003); (v) the option to prepare the slices from mice of any 

genetic background, including those expressing fluorescent transgenes in selected 

neurons (DePaola et al. 2003, Galimberti et al. 2006, Caroni 1997 and Feng et al. 2000) 

and those of poor postnatal viability. Imaging coupled to retrospective 

immunocytochemistry allows the acquisition of information about unlabeled structures in 

the areas surrounding the imaged (fluorescent) structures, and the investigation of 

molecular mechanisms at the level of local identified structures within neuronal circuits. 

Critical aspects 

The main critical issues relate to the extent to which organotypic slice cultures reproduce 

the properties of hippocampal circuits in vivo (Gahwiler et al. 1997). This information is 

important in deciding whether the approach is appropriate to address the particular 

experimental issues one has in mind. These issues have been investigated in much detail 

by physiologists, who have demonstrated extensive similarities, but also a few 

discrepancies, between properties of the corresponding circuits in the neonatal and adult 

mouse brains (Gahwiler et al. 1997, DePaola et al. 2003, Galimberti et al. 2006, Henze et 

al. 2000 and De Simoni et al. 2003). Critical limitations of the immunocytochemistry 

protocol mainly involve issues of antibody penetration and antigen accessibility. Some of 
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these problems can be solved by varying the fixation and permeabilization protocols or 

by cutting sections of the slices. 

Possible results and outlook 

Organotypic slice cultures from approximately 1-week-old mouse hippocampus seem to 

reproduce most anatomical and functional properties of the corresponding hippocampal 

circuits in vivo for at least 6 months in vitro as a result of the intrinsic properties of their 

neurons. Imaging of the slices coupled to post hoc immunocytochemistry thus provides 

an exciting range of possibilities for the exploration of mechanisms controlling the 

assembly and function of neuronal circuits. Some of these possibilities include (i) time-

lapse imaging and molecular analysis over periods ranging from sub-seconds to months, 

and from individual molecules to entire neuronal projections and circuits; (ii) imaging 

and analysis of neuronal (DePaola et al. 2003, Galimberti et al. 2006, Caroni 1997 and 

Feng et al. 2000) and glial (Benediktsson et al. 2005) subtypes; (iii) molecular 

manipulation using transfection (Benediktsson et al. 2005 and Lo et al. 1994) or viral 

approaches (Ehrengruber et al. 1999 and Miyaguchi et al. 1999) to knock down or 

overexpress genes, silence or activate neurons, render neurons responsive to light or 

selective drugs, and highlight subcircuits; (iv) protocols that combine physiology, 

imaging and immunocytochemistry; (v) manipulations to investigate lesion-induced 

plasticity and pathways of neurodegeneration and repair (such as amyloid- or epilepsy-

related pathways); (vi) the potential to follow and characterize the insertion of new 

neurons, the development of axons and their connections, or the insertion of exogenously 

added stem cells; and (vii) additional post hoc analysis using methods involving tracers, 

electron microscopy and single-cell genomics. 
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MATERIALS 

Reagents 

• Organotypic hippocampal slices  

• Paraformaldehyde (PFA; Merck, cat. no. 1.04005.1000)  

• Methanol (MeOH; Merck, cat. no. 1.06009.1000)  

• Triton X-100 (Fluka Chemika, cat. no. 93420)  

• BSA (Sigma, cat. no. A3912-100G)  

• PBS (with or without magnesium and/or calcium)  

• Primary and secondary antibodies suitable for immunohistochemistry  

• 4% PFA in PBS (cooled to 4 °C) 

! CAUTION PFA is toxic. Avoid inhalation, ingestion or contact with skin, eyes 

or mucous membranes.  

• 20% MeOH in PBS (cooled to 4 °C)  

• Permeabilization solution: 0.5% Triton X-100 in PBS 

? TROUBLESHOOTING  

• Blocking solution: 20% BSA in PBS  

• Antibody solutions: 5% BSA in PBS + antibodies at specific dilution  

• First washing solution: 5% BSA in PBS  

• Second washing solution: PBS 

Equipment 

• Scalpel or razor blade  

• Fine straight forceps  

• Microscope slides (e.g., 76 x 26 mm; Menzel-Gläser)  

• Thin cover glasses (e.g., 40 x 24 mm, 170 nm thick; Assistant)  

• Mounting medium (e.g., ProLong Gold antifade reagent, Invitrogen, cat. no. 

P36934)  

• 12- or 24-well plates (Corning, cat. no. 3513) 
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PROCEDURE 

Overview 

• Step 1 - 8 Fixation of slice cultures (day 1)  

• Step 9 - 10 Permeabilization of slice tissue (day 1)  

• Step 11 - 12 Blocking (day 2)  

• Step 13 - 15 Cutting slices off membrane of culture plate inserts (day 2)  

• Step 16 - 19 Incubation with primary antibody (day 2)  

• Step 20 - 23 Washing off primary antibody (day 3)  

• Step 24 - 26 Incubation with secondary antibody (day 3)  

• Step 27 Washing off secondary antibody  

• Step 28 - 32 Mounting of stained slice cultures (day 3) 

Fixation of slice cultures (day 1) • TIMING 15 min 

1. Remove the culture medium beneath the membrane by suction.  

2. Add 1 ml of cold 4% PFA solution above and 1 ml beneath the membrane insert. 

! CAUTION Use gloves to handle PFA, and wear a mask.  

3. Wait 5 minutes. ? TROUBLESHOOTING 

4. Remove the PFA solution completely.  

5. Wash once briefly by adding 1 ml of cold PBS above and 1 ml beneath the insert 

and then removing by suction.  

6. Add 1 ml of cooled 20% MeOH/PBS solution above and 1 ml beneath the insert.  

7. Wait 5 minutes. ? TROUBLESHOOTING 

8. Wash once briefly with PBS as in Step 5.  

Permeabilization of slice tissue (day1) • TIMING Minimum 12 h 

9. Add 1 ml of permeabilization solution (0.5% Triton X-100 in PBS) above and 1 

ml beneath the insert.  
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10. Incubate overnight, or for at least 12 h, at 4 °C. 

■ PAUSE POINT Slices can be kept in the permeabilization solution for up to 18 h. 

 ?TROUBLESHOOTING 

Blocking (day 2) • TIMING Minimum 4 h

11. Remove permeabilization solution.  

12. Add blocking solution (20% BSA in PBS). 

■ PAUSE POINT Can be left for 4 h at room temperature (22–24 °C) or overnight at 

4 °C. Sections can be kept in the blocking solution at 4 °C for at least 2–3 d. 

Cutting slices off membrane of culture plate inserts (day 2) • TIMING 5 min

13. To reduce the volume of antibody solutions needed, the slices are cut off the 

membranes of the culture plate inserts. Place the culture plate insert on a plastic 

cover (preferably a transparent plastic cover lying on a dark background to make 

the tissue easily visible).  

14. Use forceps and scalpel to carefully cut the membrane piece together with the 

hippocampal slice out of the surrounding membrane. Keep 1–2 mm of distance to 

the tissue to avoid damage. (Optional: the slices can already be cut off just after 

the fixation to further limit the amounts of permeabilization and blocking 

solutions required).  

▲ CRITICAL STEP Always keep the top side of the membrane facing up, and do 

not flip it around.  

15. Place the cut-off membrane pieces (top sides facing up) onto the lid of a culture 

plate. 

▲ CRITICAL STEP To avoid drying, always keep a droplet of 5% BSA/PBS 

solution on top of each slice.  
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Incubation with primary antibody (day 2) • TIMING Minimum 4 h or overnight

16. To avoid drying of the slices during the antibody incubations, build a 'wet 

chamber' by putting wet paper tissues into a box that can be tightly closed and is 

large enough to hold the culture dish covers of Step 15.  

17. Prepare the primary antibody solutions in 5% BSA/PBS (50 µl per slice).  

18. Drop 50 µl of the antibody solution onto each slice.  

19. Carefully place the lid holding the slices into the wet chamber and close it. 

■ PAUSE POINT The primary antibody can be incubated overnight at 4 °C or for 3–

4 h at room temperature.  

Washing off primary antibody (day 3) • TIMING 30 min

20. Fill the wells of a 12- or 24- well plate with 5% BSA/PBS (fill three times as 

many wells as you have slices to stain).  

21. Put each stained slice into one well containing the 5% BSA/PBS washing 

solution. 

▲ CRITICAL STEP Always keep the top side of the slice facing up.  

22. To wash off excess antibody, put the plate onto a horizontal shaker for 5–10 min 

at moderate speed (be careful that the fluid movement does not cause the slice to 

flip over).  

23. Transfer the slices to the next unused wells and repeat this washing twice more. 

Incubation with secondary antibody (day 3) • TIMING Minimum 3 h 

24. Prepare the secondary antibody solution (50 µl per slice). 

▲ CRITICAL STEP If you use fluorescent secondary antibodies, perform the 

following steps whenever possible in the dark, and keep the antibody-containing 

solutions away from light.  
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25. Put the slices back onto a fresh plate lid (as in Step 15).  

26. Proceed as for primary antibody (Steps 16–19). 

■ PAUSE POINT The secondary antibody can be incubated for 3–4 h at room 

temperature or overnight at 4 °C.  

Washing off secondary antibody • TIMING 30 min 

27. Wash off the secondary antibody as for the primary antibody (Steps 20–23) but 

using simple PBS solution (no BSA required).  

Mounting of stained slice cultures (day 3) • TIMING 30 min

28. Put the washed slices, top sides facing up, onto a glass microscope slide.  

29. Put a droplet of mounting medium directly on the slice. 

▲ CRITICAL STEP Avoid drying out the slices.  

30. Cover the slice immediately with a thin cover glass.  

31. Seal the cover glass with nail polish. 

■ PAUSE POINT  

32. Store at 4 °C in the dark. The labeled slices can be kept for several months. 

• TIMING  

Day 1: fixation, 5 min PFA + 5 min MeOH; permeabilization, minimum 12 h (overnight). 

Day 2: blocking, minimum 3 h; incubation with primary antibody, minimum 4 h or 

overnight. 

Day 3: washing off primary antibody, 30 min; incubation with secondary antibody, 

minimum 3 h; washing off secondary antibody, 30 min; mounting sections, 5 min; 

sealing cover glasses, 5 min. 
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?TROUBLESHOOTING 

Table 1 Troubleshooting advice. 

Problem Possible reason Solution 
Transgenic GFP 
signal is beaded 
or very weak 

Fixation can destroy GFP 
signal (Steps 3 and 7) 

Reduce fixation times (e.g., 3 min each 
for PFA and MeOH) 

    Methanol fixation may not be required 
for each antibody. Try omitting 
methanol 

    Use anti-GFP antibody to enhance the 
signal 

Antibody does 
not penetrate 
deeply into the 
tissue 

Permeabilization too weak 
(Step 10; especially in young 
slices, which are more dense) 

Increase Triton X-100 concentration 
during the permeabilization step to 1–
2% and/or prolong the incubation 

 

ANTICIPATED RESULTS 

Critical factors are the fixation of the slices and penetration of antibodies and reagents. 

Penetration of reagents can be enhanced by double fixation followed by permeabilization 

overnight. Unfortunately, fixations are not entirely predictable, even when using the same 

protocol, so one should plan on processing several copies of crucial data. Suboptimal 

fixation can lead to a blurred appearance of small structures such as active zones. 

Optimization of protocols for special needs is recommended. 

This protocol should produce good-resolution labeling of cellular and subcellular 

structures (Fig. 1) and unambiguous identification of regions of interest, such as those 

that had been followed with live imaging before fixation. 
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Figure 1. A slice from a Thy1-mGFP single-transgenic mouse shows mossy fiber projection expressing 
membrane-targeted GFP. After imaging, the slice was fixed and stained for Bassoon (active zone marker) and 
phospho-GluR1 (pyramidal neuron dendrite marker). Live imaging was done on in vitro day 80 (DIV80) and DIV91; 
fixation and staining were done on DIV93. (a) Low-magnification view of mossy fiber projection and regions of 
interest (mossy fiber terminal complexes; ROI1–3). (b) Maximum-intensity projection of the GFP signal in ROI1 after 
fixation. (c) Same as b, but with superimposed Bassoon (blue) and phospho-GluR1 (red) signals. (d) Single confocal 
plane of ROI2. Note process grown from the mossy fiber terminal between DIV91 and DIV93 (arrow), which exhibits 
a terminal bouton and contacts the same dendrite (phospho-GluR1) as its mossy fiber terminal of origin. (e,f) Live 
imaging of ROI3 (maximum-intensity projection). (g) Single confocal plane of ROI3 after fixation and staining (green, 
GFP; red, phospho-GluR1). Note process that grew from the mossy fiber terminal between DIV80 and DIV91 (arrows 
in f and g), extending along a phospho-GluR1–positive dendrite. Scale bars, 25 µm. 
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