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Abstract 
 

 
ABSTRACT 
 

Sirtuins comprise a highly conserved protein family which catalyse the deacetylation of 

proteins in an NAD+-dependent manner. In S. cerevisiae and in C. elegans sirtuins have 

been shown to mediate the beneficial effects of caloric restriction on organismal longevity 

thus giving rise to the notion that may function as key regulators of the ageing process. 

 

SIRT1 is the best characterised member of the mammalian sirtuin family which comprises 

seven homologues. It has been shown to associate with and deacetylate several proteins, 

predominantly transcriptional regulators such as p53, NFκB, MyoD and FOXO, thus 

functioning in processes as diverse as development, differentiation, senescence, survival, 

proliferation and metabolic regulation. 

 

Understanding the dynamics of intracellular SIRT1 function has been hindered by the 

limitation of methods for accurately quantifying free intracellular [NAD+] levels and thus 

SIRT1 activity. Furthermore, nothing is known about potential post-translational mechanisms 

involved in SIRT1 regulation. 

 

During the course of this work, the task of identifying novel mechanisms that regulate SIRT1 

function was undertaken. SIRT1 was found to be specifically phosphorylated in mitosis as 

well as in interphase. In addition, its subcellular localisation and turnover are sensitive to UV 

irradiation. Finally, various stresses induce caspase-mediated SIRT1 cleavage which has an 

impact on overall protein stability. 

 

These data provide the first glimpse into the molecular regulatory mechanisms that dictate 

SIRT1 function.  The implications of this work are discussed in the context of current 

knowledge as well as proposed novel functions of SIRT1. 
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Chapter 1 - Adaptive cellular responses to environmental stimuli 

 

 

CHAPTER 1 
 
 
 
 
ADAPTIVE CELLULAR RESPONSES TO  

ENVIRONMENTAL STIMULI 
 
 
 
1.1 SIGNALLING PATHWAYS REGULATING ADAPTIVE RESPONSES TO NUTRIENT AVAILABILITY 
 

1.1.1 Archetypal signaling strategies in bacteria and lower eucaryotes 
 

 Evolutionary considerations suggest that the ensemble of living organisms that 

constitute an environment's population stems from their ability to perpetuate under this 

environment's particular conditions. By definition, such populations are fit to thrive. Yet, living 

environments are dynamic rather than static and in combination with genetic variability 

contribute to the evolution of the species. Thus, a paramount feature of living organisms 

throughout the phyla is their ability to adapt to such environmental changes in order to 

increase their survival potential. 

 Unicellular organisms have evolved specific biochemical systems of variable 

complexity that allow them to respond to environmental changes such as fluctuating levels of 

nutrients.  

Bacteria preferentially utilise glucose as their primary carbon source even in the 

presence of other sugars in their growth environment. Only following depletion of glucose can 
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other sugars such as lactose also be used for energy production, a phenomenon called 

diauxic growth. Jacob and Monod proposed the concept of the lac operon to explain this 

phenomenon which was subsequently confirmed and elaborated extensively (Lewis, 2005). In 

this model, the lac repressor can bind a cis acting element in the promoter region of genes 

encoding proteins that allow lactose production suppressing their expression under 

conditions of glucose abundance. When lactose is the primary carbon source, it binds to the 

repressor inducing a conformational change which reduces its affinity for the operator, 

leading to its dissociation from the promoter and allowing the expression of genes involved in 

the uptake and metabolism of lactose. 

More advanced signaling cascades in bacteria adopt a simple two-component 

modular configuration comprising a sensor and an effector module. This is exemplified by the 

two-component signal transduction (or phosphorelay) system which is widely employed by 

bacteria and to a lesser extend by fungi and plants (Perraud et al., 1999). In bacteria, two-

component systems regulate basic cellular processes such as chemotaxis, osmoregulation, 

temperature sensing, metabolism and 

membrane transport (West and Stock, 2001). 

 The basic architecture of such 

systems is depicted in FIGURE 1-1. The 

sensor (HK) is a transmembrane protein 

(TM1 and TM2 are the membrane-

spanning regions) which can dimerise 

through a dimerisation domain. The 

intracellular region of the protein contains 

a histidine kinase activity characterised by 

four conserved motifs (N, G1, F, G2). The 

effector component of the system (RR) 

contains a conserved regulatory domain 

and an effector domain. Environmental 

stimuli induce the histidine kinase activity 

of HK leading to its autophosphorylation 

(depicted with P in FIGURE 1-1). Following 

FIGURE 1-1. Schematic represenation of a basic
two-component phosphotransfer system. A typical
two-component phosphotransfer system consists of a
dimeric transmembrane sensor HK and a cytoplasmic
RR. A monomer of a representative HK is shown with
transmembrane segments indicated by TM1 and TM2.
Conserved sequence motifs N, G1, F and G2, are
located in the ATP-binding domain. HKs catalyze ATP-
dependent autophosphorylation of a specific
conserved His residue (H). The activities of HKs are
modulated by environmental signals. The phosphoryl
group (P) is then transferred to a specific Asp residue
(D) located within the conserved regulatory domain of
an RR. Phosphorylation of the RR typically activates
an associated (or downstream) effector domain, which
ultimately elicits a specific cellular response.  
 

Adapted from West and Stock, 2001
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that, RR catalyses the transfer of the phosphate group to one of its own aspartic acid 

residues within the regulatory domain leading to the activation of the effector domain. More 

elaborate systems based on these principles including consecutive histidine/aspartic acid 

phosphorelay systems are also found (Perraud et al., 1999).  

 Unicellular eucaryotic organisms such as the yeast S. cerevisiae exhibit increased 

complexity in the signaling cascades mediating adaptive responses, which reflect not only 

their architectural differences to procaryotes (e.g. in the case of regulated nucleocytoplasmic 

transport) but also their increased computational capacity in decision-making processes. A 

well-studied system, largely conserved also in higher eucaryotes is the mitogen-activated 

protein kinase (MAPK) signalling cascade in yeast.  

 The MAPK kinase signaling pathwa

behaviour and responses to osmotic stress 

and nutrient availability (FIGURE 1-2). Upon 

induction, a kinase cascade involving 

sequential phosphorylation/activation steps 

is initiated (FIGURE 1-3A). Surprisingly, 

multiple stimuli use a largely shared set of 

molecules to elicit diverse and specific 

responses raising the issue how specificity 

is attained in such systems.  

A potential specificit

y regulates processes as diverse as mating 

y mechanism 

involve

FIGURE 1-2. Multiple MAPK pathways regulate
distinct cellular responses. Each pathway is
triggered by a specific extracellular signal and leads
to activation of a single MAP kinase, which mediates
characteristic cellular responses.  
 

Figure and legend adapted from Lodish et al., 2000

s the formation of protein complexes dedicated to a single pathway (FIGURE 1-3B). 

Complex formation is driven by scaffold proteins which can bring into proximity multiple 

components that are then allowed to phosphorylate each other but not proteins in a 

heterologous pathway (Dard and Peter, 2006). It has also been proposed that MAPK functions 

independent of their catalytic activity exist. In particular, the Fus3 and Kss1 MAPKs which 

mediate the mating and filamentous growth pathways respectively, bind with different 

affinities to a common scaffold protein Ste5. Thus Fus3 precludes the binding of Kss1 to Ste5 

driving preferentially the mating pathway. More recently, it has been suggested that a more 

significant specificity factor is provided by the preferential substrate selectivity of Fus3 over 

 3
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A B

FIGURE 1-3. Mechanisms of specificity in yeast MAPK signaling. (A) MAPK cascade that transmits
signals in the mating pathway in S. cerevisiae. The receptors for yeast a or a mating factors are both
coupled to the same trimeric G protein. Ligand binding leads to activation of the G protein and dissociation
of Gα · GTP from the G βγ complex. In the yeast mating pathway, however, the physiological responses are
induced by the dissociated Gβγ, which activates a protein kinase cascade. The final component, Fus3, is
functionally equivalent to MAP kinase (MAPK) in higher eukaryotes. It phosphorylates transcription factors
(e.g., Ste12) that control expression of proteins involved in mating-specific cellular responses. (B)
Formation of pathway-specific complexes prevents "cross-talk" between pathways that contain a common
component, such as Ste11 in these two pathways. These large complexes are assembled on the
molecular scaffolds Ste5 and Pbs2. Unlike Ste5, which has no catalytic function, Pbs2 has MEK activity
(analogous to Ste7 in the mating pathway). Once phosphorylated by Ste11, activated Pbs2
phosphorylates Hog1.  
 

Figure and legend adapted from Lodish et al., 2000

Kss1 towards Far1 rather than physical occlusion of Kss1 from the signaling scaffold 

(Breitkreutz and Tyers, 2002).  

Thus, even in single-cell eucaryotes, elaborate networks are in action to sense and 

respond to environmental changes. Although the principles of adaptive responses delineated 

for unicellular organisms are broadly conserved in more advanced forms of life, multicellular 

organisms exhibit increased complexity in the form of functionally specialised organs and 

organ systems.  

Reflecting this complexity, an additional level of co-ordination is required to sustain 

survival in response to environmental as well as intraorganismal changes. For this to be 

achieved elaborate endocrine systems are in action. Such a signaling system with central 

roles in animal physiology is mediated by the hormone insulin and the related insulin-like 

growth factors (IGFs), IGF1 and IGF2. Both at the intracellular as well as organismal level, 

 4



Chapter 1 - Adaptive cellular responses to environmental stimuli 

the sophistication of this system exemplifies the underlying basis of advanced biological 

systems design. 

 

1.1.2 Major homeostatic pathways in higher eucaryotes 
 
1.1.2.1 The insulin/IGF signaling system 

 

The insulin/IGF sytem is involved in fundamental biological processes such as growth, 

proliferation, survival and metabolic regulation (White, 2003; Pollak et al., 2004). For example, in 

response to feeding, insulin, which is produced in the pancreas, dictates the uptake and 

catabolism of glucose by peripheral tissues. IGF1 and IGF2 are produced primarily by the 

liver and have mitogenic capacity. IGF1 but not IGF2 production is dictated by pituitary gland-

derived growth hormone underlying its function in regulating animal size (Kenyon, 2001).  The 

insulin/IGF system has also an evolutionarily conserved function in determining organismal 

longevity which is tighly linked to its responsiveness to nutritional inputs (Kenyon, 2001).  

The effects of insulin/IGF are mediated by binding to three receptors, the insulin 

receptor (IR), IGF1 receptor (IGF1R) and IGF2 receptor (IGF2R). A fourth family member 

exists named insulin receptor-related receptor (IRR) for which an endogenous ligand has not 

been identified (Kitamura et al., 2003).  

IR, IGF1R and IRR harbour ligand-activated tyrosine kinase activity in their 

intracellular domains which initiates downstream signaling cascades. Although several 

protein substrates of the insulin/IGF receptor tyrosine kinase activity have been identified, 

genetic ablation studies in mice suggest that the majority of insulin responses are mediated 

by insulin receptor substrates 1 or 2 (IRS1 or IRS2 respectively) (White, 2003). Thus, IRS1 is 

responsible for body growth control and peripheral insulin action, while IRS2 controls brain 

growth, body weight, glucose homeostasis and female fertility (White, 2003).  

IRSs are scaffold proteins which upon their phosphorylation allow the docking of 

multiple kinases or other scaffold proteins that contain phospho-aminoacid binding domains. 

Upon binding to IRS proteins through its SH2 domains, the lipid kinase activity of 

phosphoinositide-3 kinase (PI3K) is induced and results in increased membrane 

phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3] levels (Vanhaesebroeck and Alessi, 
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2000). These lipids are preferentially recognised by the pleckstrin homology (PH) domains of 

protein kinase B (PKB, a.k.a. Akt) and phosphoinositide-dependent kinase (PDK). Following 

membrane recruitment, PDK phosphorylates PKB at S308 contributing to its activation.  

A critical regulator of this pathway is the tumour suppressor protein PTEN 

(phosphatase and tensin homologue deleted on chromosome 10). PTEN is a lipid 

phosphatase which attenuates PKB activation by catalysing the reverse reaction to that of 

PI3K.  

 
1.1.2.1.1 The PI3K-PKB signaling pathway 

 

Regulation of cell survival 
 

In the presence of growth factors, 

PKB activity promotes cell survival through 

a pleiotropic mode of action (FIGURE 1-4). Bad 

is a member of the Bcl-2 family of proteins 

which upon growth factor withdrawal, it 

translocates to mitochondria where, in 

collaboration with other pro-apoptotic 

members of the Bcl-2 protein family it elicits 

cytochrome-c release, the first step in the 

intrinsic cellular apoptotic pathway (Danial 

and Korsmeyer, 2004). PKB phosphorylates 

the pro-apoptotic protein Bad leading to its 

sequestration to the cytoplasm by 14-3-3 proteins thus preventing cell death (Datta et al., 1999). 

PKB can also inhibit apoptosis downstream of cytochrome-c release by phosphorylating and 

inactivating caspase-9 (Datta et al., 1999). 

FIGURE 1-4. PKB-mediated pathways that regulate
cell survival. See text for details. 
 

Adapted from Mayo and Donner, 2002

Interestingly, the ability of PKB to prevent cytochrome-c release is coupled to glucose 

availability, requiring the phosphorylation of glucose by hexokinase, i.e. the first step in the  

glycolytic pathway (Gottlob et al., 2001). Concomitant to this, PKB greatly enhances the 

mitochondrial localisation of hexokinase. Two mechanisms by which hexokinase localisation 
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to mitochondria prevents apoptosis have been proposed (Majewski et al., 2004). Firstly, 

hexokinase precludes the recruitment of the pro-apoptotic protein Bax to mitochondria 

preventing cytochrome-c release. Secondly, it participates in the maintainance of 

mitochondrial integrity by regulating the voltage-dependent anion channel (VDAC) in the 

outer mitochondrial membrane. VDAC is involved in the exchange of metabolites such as 

adenine nucleotides and respiratory substrates across the outer mitochondrial membrane 

contributing to mitochondrial homeostasis. Upon glucose withdrawal, decreased hexokinase 

at mitochondria results in VDAC closure leading to mitochondrial outer membrane swelling 

and eventual rupture. 

 PKB also contributes to the activation of the anti-apoptotic pathway driven by the 

transcription factor NFκB.  PKB phosphorylates and activates the inhibitor of κB kinase β 

(IKKβ). IKKβ in turn targets the inhibitor of κB (IκB) proteins for degradation allowing the 

activation of NFκB. NFκB target genes include the cellular inhibitor of apoptosis (cIAP) 

proteins that bind to and inactivate caspases (Datta et al., 1999).  

Forkhead or winged-helix transcription factors are also regulated by PKB activity. In 

the presence of growth factors, PKB phosphorylates FOXOs (forkhead box subclass O) and 

FOXA2 factors leading to their sequestration in the cytoplasm by 14-3-3 proteins (Plas and 

Thompson, 2005). Upon growth factor limitation, FOXOs can translocate to the nucleus where 

they bind cognate DNA sequences in target gene promoters modulating their expression. A 

FOXO target gene is Fas ligand (FasL) which upon binding to its cognate receptor induces 

apoptotic cell death in neuronal cells (Datta et al., 1999). PKB-mediated phosphorylation 

prevents the pro-apoptotic function of FOXO through FasL expression.  

 

Regulation of cell cycle 
 

Another emerging function of PKB is in the regulation of the cell cycle (FIGURE 1-5). PKB 

attentuates the activity of the cyclin-dependent kinase (CDK) inhibitor p27 by at least two 

mechanisms. By directly phosphorylating p27, PKB induces its retention to the cytoplasm by 

14-3-3 proteins preventing p27 from inhibiting nuclear CDK complexes (Shin et al., 2002). 

Secondly, p27 is a transriptional target of FOXO transcription factors thus, in the presence of 

growth factors, nuclear exclusion of FOXO leads to reduced p27 transcription. Interestingly, 
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FIGURE 1-5. PKB-mediated pathways that regulate cell cycle progression. See text for details. 
 

Adapted from Brazil et al. 2004

FOXO is also the target of another regulator of p27, the Skp2 ubiquitin ligase complex. Skp2 

mediates entry into the S phase by ubiquitinating p27 targeting it for proteasome-mediated 

degradation (Sutterluty et al., 1999). Similarly, PKB-mediated phosphorylation of FOXO targets it 

to proteasome-mediated proteolysis via Skp2-mediated ubiquitination (Huang et al., 2005).  

An alternative mode of G1/S regulation by FOXO was proposed by Ramaswamy et al. 

who showed that a FOXO1 species that cannot bind the p27 promoter but retains its ability to 

inhibit transcription of D-type cyclins is sufficient to induce cell cycle arrest (Ramaswamy et al., 

2002). Interestingly, PKB promotes cyclin D1 stability by inhibiting glycogen synthase kinase-3 

(GSK-3) which under limiting growth factor conditions phosphorylates cyclin D1 and targets it 

for proteolysis (Diehl et al., 1998).  

Unlike the effects of PKB on FOXO and p27 where phosphorylation induces their 

nuclear exclusion, PKB phosphorylates and promotes the nuclear localisation of another E3 

ubiquitin ligase component, mdm2 (mouse double minute 2). Nuclear mdm2 is thus able to 

target the transcription factor p53 for degradation, leading to reduced expression of its target 

genes including the CDK inhibitor p21 (Mayo and Donner, 2002). Thus PKB promotes S phase 
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entry by both inhibiting CDK inhibitors and by upregulating CDK activity through stabilisation 

of D-type cyclins. 

Further evidence supports a role for PKB in the G2/M transition too as PKB activation 

either by PTEN inactivation or trangenic expression overrides DNA damage-induced G2/M 

arrest (Brazil et al., 2004). A potential mechanism was provided by studies in the starfish oocyte. 

Myt1 is a Wee1-related kinase whose activity inhibits cyclinB/Cdk1 complexes thus 

attenuating cell cycle progression. PKB phosphorylates and inactivates Myt1, assisting the 

dephosphorylation and activation of Cdk1 and subsequent initiation of mitosis (Okumura et al., 

2002). 

 In addition, PKB-driven phosphorylation of CHFR (checkpoint protein with forkhead 

associated and ring finger domains) stabilises polo-like kinase 1 (Plk1) which is required for 

mitotic progression (Shtivelman, 2003) providing an additional mechanism of regulation of 

mitosis by PKB. 

 
Regulation of metabolism 
 

One of the first PKB substrates identified was GSK-3. GSK3 phosphorylation by PKB 

alleviates the GSK3-mediated inhibition of glycogen synthesis so that in the presense of 

insulin which signifies glucose abundance, glycogen synthesis is promoted (Cross et al., 1995). 

Since then, the role of PKB in the regulation of metabolism has been expanded. PKB 

regulates the translocation of the glucose transporter GLUT4 to the plasma membrane to 

stimulate glucose uptake in response to insulin signaling but also to other receptor pathways 

such as EGF, IL-3 and TGF-β (Plas and Thompson, 2005). It is also possible that the 

enhancement of hexokinase recruitment to mitochondria by PKB (see above) increases the 

overall rate of glycolysis (Gottlob et al. 2001).  

Furthermore, PKB can exert its effects on cellular metabolism through a class of target 

genes which are regulated by FOXO in a manner distinct from the aformentioned type D 

cyclins (Ramaswamy et al., 2002). In this respect FOXOs activate the transcription of manganese 

superoxide dismutase (MnSOD) whose gene product encodes for an enzyme involved in the 

detoxification of reactive oxygen species. IGF-binding protein 1 (IGF-BP1) is also a 

downstream target of FOXO. IGF-BP proteins bind IGFs and regulate their plasma 
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availability since they attenuate their ability to activate their cognate receptors (Pollak et al., 

2004). Furthermore, FOXOs co-regulate the expression of metabolic genes in combination 

with nuclear receptors. FOXO in conjunction with peroxisome proliferator-activated receptor-γ 

(PPAR-γ) represses transciprtional activity of IGF-BP1 and phosphoenolpyruvate 

carboxykinase (PEPCK) gene promoters. Conversely, in combination with PGC-1α (PPAR-γ 

co-activator 1α), FOXO induces the transcription of  PEPCK and glucose-6-phosphatase (G-

6-Pase) upon fasting in the liver thus contributing to the gluconeogenesis programme 

(Puigserver et al., 2003). FOXO transcriptional responses are in addition fine-tuned by 

acetylation, more of which will be discussed in Chapter 2.  

 

1.1.2.1.2 Endocrine functions of the IGF system and the regulation of longevity 
  

 Endocrine IGF signaling is central to organismal growth. IGF factors are produced in 

the liver a process controlled by growth hormone (GH). GH is produced by the pituitary gland 

in response to signals from the hypothalamus, mainly somatostatin and growth-hormone-

releasing hormone (GHRH). The ability of GH to regulate IGF production though, is greatly 

influenced by dietary input. Under low food intake conditions, IGF production is suppressed 

(Thissen et al., 1994). 

It has been long known that organismal longevity can be extended by nutrient 

limitation, often referred to as caloric restriction, a phenomenon demonstrated in S. 

cerevisiae, C. elegans, Drosophila as well as mammals (Bordone and Guarente, 2005). Extensive 

genetic studies in these model systems have established that the beneficial effects of dietary 

limitation to life-span are mediated by the IGF signaling pathway which is well conserved in 

higher eucaryotic organisms (FIGURE 1-6) (Partridge and Gems, 2002).  

The term 'replicative life-span' refers to the number of cell divisions a cell undergoes 

before cessation of cell division. In mammalian cells the discontinuation of division is also 

know as 'cellular senescence'. Chronological life-span refers to the amount of time that a cell 

is alive. 

Mutations that abolish IGF signaling result in increased replicative life span (Kenyon, 

2001). Interestingly, tissue-specific ablation of the insulin receptor in adipose tissue results in 
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FIGURE 1-6. Neuroendocrine regulation of ageing. (a) Insulin/IGF signalling in a two-step hormone signalling
system in Caenorhabditis elegans. In this model, food modulates the production of an insulin-like peptide
hormone (INS) by chemosensory neurons. This acts on DAF-2, which is also expressed in the nervous
system, to cause the production of a second hormone signal, which modulates development and ageing
throughout the organism. Elements of this model are speculative, and the following remain to be determined:
whether environmental stimuli regulate INS production and what these stimuli are; the role of DAF-16 in
regulating secondary hormone production; and whether this hormone regulates longevity. (b) Two hypotheses
for the role of insulin/IGF signalling in ageing in Drosophila. In both models, Drosophila insulin-like peptides
(DILPs) are produced by the brain in response to environmental or internal nutritional stimuli. How the
production of DILPs is regulated is unknown. In one version of this model, DILPs act directly on the ovaries,
stimulating the production of the steroid hormone ecdysone; in the other, DILPs stimulate the production of the
isoprenoid hormone juvenile hormone by the CORPORA ALLATA. (c) Insulin/IGF signalling in mice. This
model proposes that Igf1, rather than insulin, acts as a modulator of ageing in mammals; this role of Igf1 in
ageing remains to be shown directly. DAF, dauer larva formation abnormal; Igf1, insulin-like growth factor 1;
Inr, insulin-like receptor. 

Figure and legend adapted from Partridge and Gems, 2002
 

a ~18% increase in life-span in mice suggesting that specific metabolic effects are 

responsible for this effect (Bluher et al., 2003).  

The influence of IGF on life-span is tightly coupled to its ability to down-regulate 

forkhead transcription factors (Kenyon, 2005). In C. elegans, life-span extension due to 

mutations in the IGF pathway depend on the presence of DAF-16. In agreement to this, 

dFOXO overexpression in Drosophila results in lifespan extension. This function of FOXO 

factors is tighly coupled to a concomitant resistance to stress (Kenyon, 2001; Kenyon, 2005) 

which is also thought to operate in other mutant animals with extended life-span (Miggliacio et 

al., 1999). 
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An explanation of this may lie with the genes regulated by forkhead factors. FOXO 

drives the expression of MnSOD, an enzyme involved in superoxide detoxification. MnSOD 

overexpression in Drosophila suffices to confer life-span extension (Kenyon, 2001). This 

evidence provides support of the "free radical theory" of ageing which states that the rate of 

ageing is related to the deleterious effects of free raicals upon the cell (Balaban et al., 2005). 

Although relatively little is known about the downstream effectors of free radicals it has 

been proposed that they cause an accumulation of mutations in the DNA leading to 

progressively aberrant cellular functions leading to cellular death and the decline of organ 

performance (Lombard et al., 2005). Alternatively, there is evidence that signaling pathways that 

regulate cellular survival are regulated by reactive oxygen species (ROS). Jun N-terminal 

kinase (Jnk) is activated by phosphorylation which is counteracted by the action of 

phosphatases. The  enzymatic activity of Jnk phosphatases is regulated by ROS in that high 

ROS levels oxidise a key residue in the phosphatase catalytic site leading to their inactivation 

(Kamata et al., 2005). Thus Jnk kinases are allowed to elicit the cellular apoptotic programme 

which in turn may contribute to tissue decline (Balaban et al., 2005).  

Despite the lack of a classical IGF signaling pathway in yeast, homologues thereof 

have been also implicated in the regulation of cellular life-span. Mutations in Sch9 a gene 

encoding for a homologue of PKB confer increased replicative life-span in S. cerevisiae. 

Interestingly, two recent studies identified yeast TOR1 as a negative effector of both 

replicative and chronological life-span in response to nutrient satiety consistent the interplay 

of this pathway with the IGF system in higher organisms (Kaeberlein et al., 2005; Powers et al., 

2006). Thus, the conserved functions of IGF signaling in response to dietary factors appear to 

underlie the determination of cellular as well as organismal life-span. 

 
1.1.2.2 The TOR signaling pathway 
 

1.1.2.2.1 Signaling pathways regulating TOR activity 
 

Under conditions of growth factor availability, cell proliferation is favoured. However, to 

ensure sustainable growth, cell division has to be co-ordinated with concomitant increases in 
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cell mass, primarily protein synthesis. A key signaling module in the regulation of cell growth 

is mediated by the target of rapamycin (TOR) kinase.  

TOR activity is under the possitive influence of PKB (Figure 1-7). PKB phosphorylates 

and inactivates the GTPase-activating protein (GAP) tuberous sclerosis 2 (TSC2). TSC2 in 

complex with the putative chaperone TSC1 inactivates the small G protein Rheb (Plas and 

Thompson, 2005). Rheb is a positive regulator of the protein kinase activity of TOR.  

FIGURE 1-7. Signaling pathways that regulate TOR activity. See text for details. 
 

Adapted from Hardie, 2005

Apart from the input growth factor signaling pathways TOR also responds to the 

energy status of the cell expressed as the AMP/ATP ratio (FIGURE 1-7) (Hardie, 2005). When 

glucose levels are low, the rate of glycolysis and ensuing oxidative phosphorylation are 

suppressed leading to a high AMP/ATP ratio which activates AMP-dependent protein kinase 

(AMPK). AMPK in turn phosphorylates TSC2 enhancing its GAP activity unltimately leading 

to TOR inactivation as described above. Upon energy deprivation, another kinase LKB1 also 

phosphorylates and activates AMPK parallel to AMP to ultimately inhibit TOR. TOR has also 

been proposed to directly sense the energy status of the cell due to an uncharacteristic high 

Km for ATP rendering functional only under high energy conditions (Dennis et al., 2001). 

Nutrients, in particular aminoacids, have a positive impact on TOR function yet the 

molecular mechanisms involved remain controversial (Wullschleger et al., 2006). It has been 

proposed that the effect of nutrients on TOR is mediated by the TSC1/2-Rheb axis, however 

this does not address the issue how aminoacids regulate TOR in yeast where TSC1/2 and 

Rheb homologues have not been identified. It is thus possible that aminoacids are directly 

sensed by TOR. 
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1.1.2.2.2 Functions of the TOR pathway 
 

Two TOR complexes have been 

isolated in yeast and mammals named 

TORC1 and TORC2 (FIGURE 1-8) 

(Wullschleger et al., 2006). Apart from TOR 

and LST8, a positive regulator of TOR 

kinase activity, the two complexes differ 

in their protein composition as well as 

function (FIGURE 1-9). TORC1 contains a 

protein termed raptor (for regulatory 

associated protein of mTOR) while 

TORC2 contains rictor (rapamycin-

insensitive companion of mTOR, a.k.a. 

mAVO3). 

TORC1 function is sensitive to 

rapamycin, a bacterial metabolite with 

potent anti-proliferative properties. This 

is not the case for TORC2. As 

numerous studies of TOR biology were 

based on rapamycin sensitivity of TOR-

mediated pathways, little is known about TORC2 function. Recent data suggest that TORC2 

regulates the actin cytoskeleton (Wullschleger et al., 2006). Furthermore, TORC2 has been 

shown to phosphorylate PKB which in combination to the activity of PDK1 contributes to full 

PKB activation (Sarbassov et al., 2005). 

FIGURE 1-8. TOR complexes. Depicted are TOR-
associated proteins (KOG1, TCO89, LST8, AVO1–3, and
BIT61) and the domains found in TOR (HEAT, FAT, FRB,
Kinase, and FATC). Both TORC1 and TORC2 are
multimers, likely dimers. TORC1 mediates the
rapamycin-sensitive signaling branch that couples growth
cues to the accumulation of mass. Stimuli that positively
regulate TORC1 and TORC1 outputs that promote the
accumulation of mass are depicted with black arrows.
Inputs that negatively regulate TORC1 and the stress-
and starvation-induced processes that TORC1 regulates
negatively are depicted with red bars. TORC2 signaling is
rapamycin insensitive and is required for the organization
of the actin cytoskeleton. Upstream regulators of TORC2
are not known. 
 

Figure and legend adatped from Wullschleger  et al., 2006

It is well accepted that TORC1 is a central regulator of cell growth. This is primarily 

through its ability to positively regulate ribosomal biogenesis and eventually cellular protein 

synthesis capacity which in turn is required for cell mass accumulation prior to cell division. 

TORC1 positively regulates the activity of ribosomal S6 kinase (S6K) a Ser/Thr kinase which 

phosphorylates the 40S ribosomal protein S6. It has been proposed that this phosphorylation 

event allows the ribosome to preferentially translate mRNAs containing a 5' tract of 
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FIGURE 1-9. Model of the mTOR Signaling Network in
Mammalian Cells. The mTOR signaling network consists
of two major branches, each mediated by a specific mTOR
complex (mTORC). Rapamycin-sensitive mTORC1
controls several pathways that collectively determine the
mass (size) of the cell. Rapamycin-insensitive mTORC2
controls the actin cytoskeleton and thereby determines the
shape of the cell. mTORC1 and possibly mTORC2
respond to growth factors (insulin/IGF), energy status of
the cell, nutrients (amino acids), and stress. mTORC1 (and
likely mTORC2) are multimeric, although are drawn as
monomers. Arrows represent activation, whereas bars
represent inhibition. 
 

Figure and legend adatped from Wullschleger  et al., 2006

oligopyrimidine (5' TOP) which comprise 15-20% of total cellular mRNA and encode for 

components of the translational apparatus. However, recent data sugest that 5' TOP 

translation can take place in the absense of S6Ks or S6 phosphorylation leaving the issue of 

5' TOP translation regulation by TORC1 open (Wullschleger et al., 2006).  

TORC1 also enhances cap-dependent translation by phosphorylating 4E-binding 

protein 1 (4E-BP1). 4E-BP1 can associate with the eucaryotic translation initiation factor 4E 

(eIF-4E) inhibiting its translation initiation function. Upon its phosphorylation by TORC1, 4E-

BP1 dissociates from eIF-4E allowing it to associate with eIF-4G to stimulate translation 

initiation (Gingras et al., 2001). Furthermore, TORC1 regulates the transcription of ribosomal 

protein genes by co-ordinate control of transcription factor activity (Wullschleger et al., 2006). 

Recently, a potential mediator of the effects of TORC1 on transcription was identified, 

termed URI (for unconventional Rpb5-interacting protein). URI mediates rapamycin-sensitive 

transcription programmes in yeast and mammals and can itself be phosphorylated in a 

rapamycin-sensitive manner (Gstaiger et al., 2003). URI can associate with Rpb5, a common 

subunit of all mammalian RNA polymerases. Furthermore, URI also binds to a parafibromin-

based complex whose orthologous counterpart in yeast is involved in transcriptional 

elongation and 3' processing. This complex also associates with RNAPolII in mammalian 

cells (Yart et al., 2005). These data suggest that TORC1 may have broader functions in 

transcriptional regulation. 

Finally, emerging evidence implies a role of TORC1 in metabolic regulation. TORC1 

mediates the aminoacid-dependent transactivation capacity of PPARγ which mediates 
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adipogenesis. In addition, genetic ablation of S6K1 confers resistance to diet and age-

induced obesity in mice (Um et al., 2004). The underlying mechanism was attributed to the 

inhibitory phosphorylation of IRS1 by S6K under conditions of nutrient abundance which 

negatively regulates insulin signaling.  

 

1.1.2.3 Molecular pathways sensing oxygen 
 
 Another important attribute of cells concerns their capacity to sense oxygen, an 

important factor for cellular functions such as oxidative phosphorylation. This is exemplified 

by solid tumours whose development is inhibited by agents that block their ability to elicit 

angiogenesis which otherwise provides the necessary supply of nutrients and oxygen to 

support survival (Reymond and Segrè, 2006; Carmeliet and Jain, 2000). 

The key mediator the cellular response to hypoxia is a transcription factor called 

hypoxia-inducible factor (HIF). HIF acts in gene promoters as a heterodimer between an α 

and a β subunit the latter also being known as ARNT (for aryl hydrocarbon receptor nuclear 

translocator) both of which are members of the basic helix-loop-helix Per/Arnt/Sim (PAS) 

family of transcription factors (Kaelin, 2005). HIFβ is a stable 

protein in contrast to HIFα which, under conditions of 

normal oxygen tension, is modified by hydroxylation at 

proline residues by a class of enzymes knowns as prolyl 

hydroxylases. This modification tags HIFα for recognition by 

the E3 ubiquitin ligase von Hippel-Lindau (VHL) which 

ubiquitinates it and targets it for proteasomal degradation 

(Kaelin, 2005). At the same time hydroxylation at an arginine 

residue in the HIFα transactivation domain blocks its 

binding to the co-activator p300 thus blunting any residual 

transcriptional activity (FIGURE 1-10).  FIGURE 1-10. Dual regulation of
HIF-   subunits by prolyl and
asparaginyl hydroxylation.
Hydroxylation sites are indicated
for the human HIF-1   polypeptide. 

Figure and legend adapted from
Pugh and Ratcliffe, 2003

The prolyl hydroxylase activity of the HIF modifying 

enzymes exhibits an intrinsic dependence on oxygen with 

a Km suitable to serve as sensor of oxygen availability 

(Kaelin, 2005). Thus under hypoxic conditions, HIFα is not 
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hydroxylated, cannot be recognised by VHL and thus is stabilised. Once in the nucleus, HIF 

drives the expression of target genes involved in physiological as well as metabolic 

responses that allow cells to adapt to low oxygen conditions (see also discussion in Chapter 5). 

Towards this end, HIF target genes include angiogenesis-promoting factors such as VEGF 

(vascular endothelial growth factor) as well as other growth factors (e.g. TGF-β) and genes 

involved in glycolysis (Semenza, 2002).  

Interestingly, recent reports provide evidence both in Drosophila and mammalian cells 

that hypoxia inhibits the TOR pathway via the TSC1/2 complex (Liu et al., 2006; Brugarolas et al., 

2004; Reiling et al., 2004). There is however some controversy whether this phenomenon is 

dependent on HIF. Brugarolas et al. reported that hypoxia inhibits TOR through the HIF 

target gene RTP801/REDD1 (for regulated in development and DNA damage responses) 

and that this effect is independent of AMPK activity (Brugarolas et al., 2004). In contrast, Liu et al. 

showed that ARNT-deficient fibroblasts retain their ability to inhibit TOR under hypoxic 

conditions leading them to propose that hypoxia-induced changes in cellular energy status 

activates the AMPK pathway which also contributes to TOR inactivation (Liu et al., 2006).  

Irrespective of the exact molecular details, these data provide a first glimpse into the 

mechanisms involved in the growth inhibitory effects of hypoxia. Furthermore, they 

demonstrate the existense of intimate connections between basic homeostatic pathways that 

ensure the co-ordinate control of cellular activities in response to environmental factors.  

The molecular circuitries described above provide a picture of the complexity 

underlying the first level of adaptive cellular responses to environmental stimuli. Many of the 

effects elicited by these pathways require the expression of new genes as demonstrated for 

HIF and forkhead factors. The regulation of gene expression is a second level at which 

multiple regulatory inputs convert to implement transcriptional programmes that support 

cellular functions. Thus the following section will review the mechanisms involved in the 

regulation of gene expression. 
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1.2 REGULATION OF CHROMATIN STRUCTURE AND GENE EXPRESSION 
 

1.2.1 Regulation of chromatin structure 
 

Eucaryotic genomes comprise thousands of genes encoded in the DNA in a way that 

allows gene expression suited to support specific cellular needs to be achieved with 

remarkable accuracy.  

A critical factor in this feat is the packaging of the DNA into ordered structures called 

nucleosomes which are arranged in a "bead-on-a-string" configuration comprising the 

chromatin fiber. Nucleosomes consist of a strectch of DNA wrapped around a proteinaceous 

core of core histones (H2A, H2B, H3, and H4) arranged as an octamer and stabilised by 

linker histones (H1, H1°, and H5). Nucleosomes are spatially positioned to form a 30-nm 

chromatin fiber which in turn can further 

compact to increasingly thicker structures to 

form chromosomes which is the configuration 

of DNA during cell division (FIGURE 1-11) 

(Falsenfeld and Groudine, 2003).  

In interphase cells, distinct regions of 

chromatin can be observed cytologically 

known as euchromatin and heterochromatin. 

Heterochromatin is thought to be tightly 

condensed and thus inaccessible to DNA 

binding factors unlike euchromatin which 

adopts a more relaxed conformation (Grewal and 

Moazed, 2003). 

Chromatin structure can be altered by 

replacement of the core histones with 

specialized histone variants, ATP-dependent 

nucleosome remodeling enzymes, or by 

covalent modification of histones within the 

nucleosome. 

FIGURE 1-11. Hierarchical organisation of nuclear
DNA structure in eucaryotes. See text for details 
 

Adapted from Falsenfeld and Groudine, 2003
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1.2.1.1 Histone variants 
 

Variants for all except histone H4 have been identified and are thought to have 

occurred through gene duplication (Gilbert et al., 2005). Histone variants are located in distinct 

chromatin regions where they are proposed to participate in the formation of specialised 

chromatin structures. CENP-A is an H3 variant found in centromeric chromatin which is 

characterised by increased compaction. H2A.Z may be able to influence chromatin structure 

since H2A.Z-containing nucleosomal arrays are less condensed and thus may facilitate 

transcription. Converesely, another H2 variant, macroH2A has been associated with X-

chromosome inactivation and may interfere with gene transscription (Gilbert et al., 2005). 

  

1.2.1.2 ATP-dependent nucleosome remodeling 
 

Nucleosomes perform a dual function as structural components of chromatin and as 

regulators of gene expression. Nucleosome position is precisely determined so that key 

transcription factor binding sites are exposed while maintaining proper DNA packaging. 

During processes that require active nucleosome repositioning, such as replication and 

transcription, nucleosomes can be mobilised on the chromatin fiber or the histone-DNA 

contacts within individual nucleosomes can be discrupted by ATP-dependent chromatin 

remodeling complexes which use the energy derived from ATP hydrolysis to perform their 

task (Smith and Peterson, 2005). 

A central function in ATP-dependent chromatin remodeling complexes is performed by 

a helicase-like protein of the SWI/SNF (switch genes/sucrose non-fermentors) family. This 

class of helicases has also been subdivided into three subfamilies based on primary 

sequence homology as well as the individual charateristics of the corresponding remodeling 

complexes: the SWI2/SNF2, Mi-2/CHD and ISWI families (Smith and Peterson, 2005). 

The SWI2/SNF2 complexes have been implicated in the regulation of gene 

transcription in yeast but also mammalian organisms where they participate in differentiation, 

early development and cytokine-mediated gene expression. the catalytic components contain 

bromodomains which mediate interaction with acetylated histone tails. Mutations of complex 

components have also been associated with tumour progression, in particular lung and 

 19



Chapter 1 - Adaptive cellular responses to environmental stimuli 

gastric cancers. Aside from their role in transcriptional regulation, SWI2/SNF2 complexes 

have also been implicated in global chromatin structure control during mitosis when 

chromosomes undergo major structural changes. 

The ISWI (imitation SWI)-based complexes contain ATPases which are characterised 

by a different histone-binding domain than SWI/SNF complexes, namely the SANT domain. 

Although they also participate in transcriptional regulation, they have also been implicated in 

global nucleosome assembly and positioning. This is likely to be coupled to replication as 

ISWI components co-localise with replication foci in mammalian cells. Furthermore, ISWI 

complexes are thought to be involved in transciptional repression as well as the formation of 

silenced regions on chromatin (Smith and Peterson, 2005). 

The ATPases of the third class of remodeling complexes, the Mi-2 family, contain yet 

another histone binding domain, the chromodomain. Many of Mi-2 complexes are thought to 

participate in transcriptional repression by virtue of their association with histone 

deacetylases (HDACs, see below). 
 
1.2.1.3 Covalent histone modifications and the histone code concept 
 
 The ability of histones to nucleate the assembly of nucleosomes can be attributed to 

their overall basic charge which attracts the negatively-charged phosphate backbone of the 

DNA. In addition, histones play important roles in the regulation of chromatin structure and 

associated functions as acceptors of posttranslational modifications in their N-termini (FIGURE 

1-12). At least five such modifications have been shown to occur in histones: acetylation, 

FIGURE 1-12. Histone modifications. Each
histone protein consists of the N- and C-
terminal tails and a central globular domain
(gray box). The N- and C-terminal tails of core
histones can be chemically modified by
methylation (red bar), acetylation (blue bar),
phosphorylation (green bar), or ubiquitination
(Ub) at several residues along the length of the
protein.  
 

Figure and legend adapted from Gilbert et al., 2005
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methylation, phosphorylation, ADP-ribosylation and ubiquitination. At least the first three of 

these are thought to exert their function primarily by disrupting histone/DNA contacts in the 

nucleosome thus altering chromatin structure directly, while there is evidence that modified 

histone tails serve as platforms for other DNA regulatory complexes via the recruitment of 

proteins (Jenuwein and Allis, 2001).  

 
1.2.1.3.1 Histone acetylation 
 

Early experiments provided evidence that histone acetylation correlates with areas of 

high DNase sensitivity and transcriptional activity suggesting that these chromatin regions 

exhibit a lower degree of compaction (Roth et al., 2001). Indeed, the acetyl group serves as a 

moiety partially neutralising the basic charge of histones thus weakening interactions with the 

surrounding DNA although biophysical evidence has not provided any evidence for gross 

structural changes in chromatin fiber structure (Gilbert et al. 2005). 

At the global level, euchromatin which is associated with transcriptionally competent 

regions of the genome, contains high levels of acetylated histones whereas heterochromatin 

is characterised by histone hypoacetylation (Grewal and Moazed, 2003). Heterochromatin is 

concentrated around functional chromosomal regions such as centromeres and telomeres 

and participates in genomic stability by maintaining the structure of these regions intact. 

Histone acetylation can occur at specific lysine residues which are highly conserved 

throughout the species. It is regulated by enzymes called acetyltransferases which transfer 

acetyl groups from acetyl-CoA to histones and is removed by deacetylases. Either of these 

classes of enymes are recruited to specific sites of the genome by sequence-specific 

transcription factors to regulate gene expression. Acetylated lysines are recognised by 

dedicated protein interaction domains called bromodomains. 

Three families of histone acetyltransferases have been described (FIGURE 1-13): GNAT 

for (Gcn5-related N-acetyltransferases), MYST (named after its founding members MOZ, 

Ybf2/Sas3, Sas2, and Tip60) and p300/CBP (for CREB binding protein). The best-

characterised among them and of interest for this thesis is the p300/CBP family. 

p300 and CBP were independently identified as binding partners of the E1A 

adenoviral oncoprotein and cAMP response element binding factor (CREB). They contain 
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FIGURE 1-13.  Overview of histone acetyltransferases (HATs).  
 

Adapted from Vaquero et al., 2003

multiple domains which mediate their interaction with transcription factors and recruit them to 

specific sites on the genome (Goodman and Smolik, 2000). Interestingly, the majority of proteins 

identified to-date bind in close proximity to second of the two zinc fingers of the histone 

acetyltransferase domain (HAT, or simply AT). Genetic studies in the mouse along with data 

derived from patients support a role of these proteins in tumour suppression. Mice 

heterozygous for CBP develop a range of hematopoietic malignansies due to bone marrow 

abnormalities (Kung et al., 2000). It is of note, however, that apart from histones, p300/CBP 

were found to acetylate non-histone proteins such as other transcription factors and thus 

regulate their activities (see below). 

Histone acetylation is reversed by histone deacetylases or HDACs. Three classes of 

deacetylases have been described phylogenetically (FIGURE 1-15): class I which comprises 

HDAC1, 2, 3 and 8, class II HDAC4, 5, 6, 7, 9 and 10 and class III SIRT1-7 (Eckwall, 2005; de 

Ruijter et al., 2003). Despite their name, it is now clear that deacetylation of proteins other than 

histones can be catalysed by HDACs, as is the case for HDAC6 which is associated with 

microtubules and deacetylates tubulin (Hubbert et al., 2002). 
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FIGURE 1-14. Domain organisation and known binding partners of the co-activators CBP/p300. 
 

Adapted from Goodman and Smolik, 2000

Class I HDACs are thought to be ubiquitously expressed whereas Class II HDACs are 

restricted to specific tissues and thus are proposed to be involved in differentiation. Similar to 

acetyltransferases, HDACs act in the context of multicellular complexes which target them to 

specific genomic sites where they participate in the regulation of gene transcription. 

Furthermore, as recombinant HDACs alone do not exhibit robust deacetylase activity, it is 

likely that such complexes contain additional co-factors required for the deacetylase reaction 

(de Ruijter et al., 2003). 

Three protein complexes have been characterized that contain both HDAC1 and 

HDAC2: Sin3, NuRD (nucleosome remodelling and deacetylating) and Co-REST. HDAC3 is 

found as part of SMRT (silencing mediator for retinoic acid and thyroid hormone receptors) 

and N-CoR (nuclear receptor co-repressor). HDACs can act in conjunction with each other 

although the exact purpose of this co-operation is not clearly understood. 

Class III deacetylases are the focus of this thesis and will be discussed in detail in 

Chapter 2. 
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FIGURE1-15. Overview of protein deacetylase families.  
 

Adapted from Vaquero et al., 2003

 

1.2.1.3.2 Histone methylation 
 
In addition to acetylation, histones can be modified by methyl groups by histone 

methyltransferases (HMTs) (FIGURE 1-16). Unlike acetylation, up to three methyl groups can be 

attached to either a lysine or arginine side-chain (Gilbert et al., 2005). Lysine methyltransferases 

belong to the SET domain-containing family of proteins while arginine methyltransferases to 

the PRMT1. Methylation of specific residues marks the transcriptional competence of whole 

chromosomal regions such as the inactive X chromosome as well as individual genes. Thus, 

H3-K9, H3-K27, H4-K20 methylation correlates with silent chromatin, whereas H3-K4, H3-

K36, H3-K79 mark transcriptionally active chromatin although this general rule is subject to 

exceptions (Sims et al., 2003, Vaquero et al., 2003). Methylated lysines are recognised by 

dedicated protein interaction domains called chromodomains. 

Until recently, it was thought that unlike acetylation histone methylation is a stable 

modification that could only be reversed by histone exchange (Gilbert et al., 2005). Tsukada et 

al., reported the identification of an enzyme that catalyses the removal of methyl-groups from 

histones (Tsukada et al., 2006). The demethylase in question, called JHDM1 (for JmjC domain-

containing histone demethylase 1), preferentially demethylates methyl-K36 of histone H3 and 

is conserved in yeast and humans. Thus, it is very likely that additional demethylases exist 

with distinct sequence specificities.    
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Interestingly, DNA itself is also methylated and this modification correlates with 

transcriptional repression too. In some occassions there is a correlation between specific 

histone methylation events such as at H3K9 and DNA methylation. A recent report by Viré et 

al. provided a molecular explanation for this by showing that the Polycomb Group (PcG) 

EZH2 methyltransferase which methylated H3-K27, directly interacts with DNA 

methyltransferases (DNMTs) to recruit them to specific genomic sites where DNA is 

subsequently methylated (Viré et al., 2006). 

 

FIGURE 1-16. Overview of protein methyltransferase families. 
 

Adapted from Vaquero et al., 2003

1.2.1.3.3 Histone phosphorylation 
 
All histones, including H1,  have been shown to be modified by phosphorylation 

(FIGURE 1-17). Among them the best characterised is histone H3 phosphorylation which occurs 

at residues S10 and S28. H3-S10 phosphorylation appears early in G2 in pericentromeric 

heterochromatin and spreads throughout mitotic chromosomes. In relation to this, H3-S10 

phosphorylation has been implicated in mitotic chromosome condensation, yet this appears 

not to be an absolute requirement in all species as in yeast mutations of phosphorylated H3 

tail residues do not cause any mitotic defects (Vaquero et al., 2003). 

Rapid H3 phosphorylation is also observed upon stimulation with mitogens. The 

significance of this is not clear but it may reflect the concomitant induction of proliferation 

(Cheung et al., 2000). C-terminal phosphorylation of a histone H2A variant, H2A.X is observed 
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rapidly following DNA damage caused 

by ionising radiation as well as in 

response to caspase-mediated 

apoptotic signaling. Similarly, H2B is 

also phosphorylated during apoptosis. 

Thus, it has been postulated that 

H2A.X and H2B phosphorylation 

correlate with the occurrence of DNA 

double strand breaks, yet little is 

known about the kinase pathways 

involved (Cheung et al., 2000).  

 

1.2.1.3.4 Histone ubiquitination 
 

Histone ubiquitination is a less 

understood modification. Unlike 

methylation, acetylation and phosphorylation, ubiquitination occurs in the C-terminus of 

histones. It was initially linked to transcriptional activation as monoubiquitinated histones 

where found in actively transcribed chromatin in Tetrahymena (Vaquero et al., 2003). In 

agreement to this the transcriptional co-activator TAFII250 has been reported to have a 

histone monoubiquitination activity. Furthermore, an interplay between histone ubiquitination 

and histone methylation is implied by the observation that lack of H3-K123 ubiquitination 

prevents methylation of H3 at K4 (Vaquero et al., 2003). 

FIGURE 1-17. Cellular processes are associated with
histone phosphorylation. Phosphorylation of H3, H2A.X,
H2B has respectively been associated with mitogen
stimulation (and thus potentially transcription), chromosome
condensation (Mitosis), DNA damage, and apoptosis. The
putative enzymes responsible for these phosphorylation
events and the sites of phosphorylation, where known, are
as indicated, and PK? refers to unknown protein kinases.
The amino acid sequences surrounding those
phosphorylation sites are indicated at the bottom, and the
yellow boxes typically indicate stretches of basic amino acid
residues flanking the phosphorylated serines. 
 

Figure and legend adapted from Cheung et al., 2000

 

1.2.1.3.5 Histone ADP-ribosylation 
 

Histone ADP-ribosylation occurs in glutamic acids in a polyglutamate stretch or single 

arginines (Vaquero et al., 2003). Although mono-ADP-ribosylation can also occur, poly-ADP-

ribosylation is relevant to histone function and can comprise more than 100 ADP-ribosyl 

moieties with extensive branching (Jacobson and Jacobson, 1999). Poly-ADP-ribosylation is 
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highly dynamic being catalysed by poly-ADP-ribosyltransferases (PARPs) and removed by 

poly-ADP-ribose glycohydrolases (PARGs).  

PARP1 is required to recruit the DNA repair machinery in response to DNA damage it 

is though possible that PARP1 has a stimulatory effect on gene transcription by modifying not 

only histones but also transcription factors. Conversely, PARP1 has also been shown to 

inhibit RNAPolII transcriptional elongation (Vaquero et al., 2003 and references therein). PARP 

activity requires NAD+ and one of its enzymatic products is nicotinamide both of which are 

features of the enzymatic reaction catalysed by sirtuin deacetylases (see Chapter 2). The 

possible significance of this will be discussed in Chapter 5. 
 
 
1.2.1.3.6 Epigenetics and the 'histone code' hypothesis 
 

As is evident from the above, histone modifications serve as recognition sites for 

specific protein domains to recruit additional chromatin-modifying complexes that regulate 

gene expression. Thus, the modification status of histone tails in addition to sequence 

elements encoded on the DNA can dictate chromatin structure and thus transcriptional 

activity. The recognition of this led credence to the notion of a "histone code" which 

postulates that covalent chromatin modifications are carriers of information that contribute to 

gene expression (Jenuwein and Allis, 2001).  

The histone code along with DNA methylation are so-called epigenetic events as they 

are not encoded in the genome, yet they correlate with specific phenotypes (Pennisi, 2001). 

Although epigenetic regulation underlies basic biological phenomena such as inheritence 

and differentiation (Pennisi, 2001),  the field of epigenetics has only recently started to provide 

detailed molecular mechanisms primarily fuelled by the discovery of the enzymes involved in 

histone and DNA modification, the identification of specific protein interaction domains 

recognising such modifications and the elucidation of the interlinks between them.  

Given this knownledge, it is of great interest to identify links between specific 

epigenetic phenomena and associated phenotypes as it becomes apparent that information 

other than DNA nucleotide sequence is contained within chromatin. 
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1.2.2 Transcriptional regulation 
 

Extracellular stimuli can evoke specific transcriptional responses by eliciting changes 

in chromatin structure. Multiple mechanisms of specificity that ensure appropriate pathway 

activation are in place, however a major role in this process is played by the sequence-

specific binding of transcription factors to DNA elements that can affect the activity of the 

basal transcriptional machinery. These factors and their assembly into functional protein 

complexes can be controled either by specific small molecule ligands such as lipids, 

cholesterol and xenobiotics, or by posttranslational modifications often smilar to the ones 

occuring in histones. This section will provide an overview of the current knowledge 

underlying transcriptional regulation necessary for the understanding of the concepts 

discussed in later chapters of this thesis. 

 
1.2.2.1 Basal transcription 
 

mRNA synthesis from a gene-encoding DNA sequence is catalysed by RNA 

Polymerases (RNAPols). Three distinct RNAPols exist in eucaryotic cells which were first 

distinguished from their variable sensitivity to amanitin, a mushroom poison. They are 

designated RNAPolI, RNAPolII and RNAPolIII.  

RNAPolI catalyses the transcription of precursor rRNA (pre-rRNA), which is processed 

into 28S, 5.8S, and 18S rRNAs. RNAPolIII transcribes the genes encoding tRNAs, 5S rRNA 

as well as other small, stable RNAs including U6 RNA involved in RNA splicing and the 7S 

RNA of the signal-recognition particle involved in the transport of proteins into the 

endoplasmic reticulum (Lodish et al., 2000). RNAPolII transcribes all protein-encoding genes as 

well as four small nulcear RNAs involved in RNA splicing. 

DNA sequences located at the beginning (5') of the gene coding region recruit 

RNAPols to initiate gene transcription (FIGURE 1-18). Such sequences constitute the core 

promoter element which is able to sustain transcriptional initiation by RNAPols.  

Initiation of RNAPolII-catalysed transcription starts by the recognition of the TATA box 

element by the TATA-binding protein (TBP) of TFIID. TBP binding causes a dramatic 

conformational change on the DNA which is thought to contribute to the downstream 
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transcriptional activation events 

(Orphanides et al., 1996). RNAPolII 

transcription initiation can also occur in 

the absence of TATA elements where 

other sequences such as the initiator (Inr) 

or the downstream core promoter element 

(DPE) take up its role (Butler and Kadonaga, 

2002).  

TFIID nucleates the ordered 

recruitment of a multisubunit complex 

which comprises activites that lead to 

promoter 'melting', i.e. nucleosome 

disruption and opening of the DNA double 

helix, rendering it competent as a 

transcription template. Following that, transcriptional elongation from TATA-driven promoters 

requires the phosphorylation of the C-terminal domain (CTD) of RNAPolII which is catalysed 

by CDK7. 

FIGURE 1-18. Core promoter elements. Some core
promoter motifs that can participate in transcription by
RNA polymerase II are depicted. Each of these elements
is found in only a subset of core promoters. Any specific
core promoter may contain some, all, or none of these
motifs. The BRE is an upstream extension of a subset of
TATA boxes. The DPE requires an Inr, and is located
precisely at +28 to +32 relative to the A+1 nucleotide in
the Inr. The DPE consensus was determined with
Drosophila transcription factors and core promoters. The
Inr consensus sequence is shown for both Drosophila
(Dm) and humans (Hs).  
 

Figure and legends adapted from Butler and Kadonaga, 2002

rDNA genes contain distinct promoter elements that recruit RNAPolI. These elements 

are recognised by upstreat binding factor (UBF) which nucleates the formation of the 

RNAPolI holoenzyme (Grummt, 2003). 

Three types of RNAPolIII promoters have been described based on the sequence 

elements encompassed by each (Schramm and Hernandez, 2002). In contrast to RNAPolI and 

RNAPolII core promoters which are located upstream or at the very 5' of the mRNA-

encoding region, RNAPolIII promoters encoding for tRNA and 5S rRNA are intragenic while 

these encoding for snRNAs contain a TATA box and a proximal sequence element (PSE).  

In addition to promoter elements which act in-cis DNA sequences which act in-trans 

play important roles in transcriptional regulation. These elements are called enhancers and in 

contrast to promoters whose spatial positioning with respect to the transcribed region is 

important for their function, enhancers can promote gene transcription in a position- and 

orientation-independent manner. 
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Events following promoter recruitment of RNAPolI and RNAPolIII are similar in nature 

to those described for RNAPolII although the individual protein components as well as 

regulatory mechanisms involved are clearly distinct. For the rest of this section, the focus will 

be on RNAPolII-related mechanisms. 

 
1.2.2.2 Transcription factors and their regulation 
 
1.2.2.2.1 Mechanisms of transcription factor action 
 

Transcription factors are modular 

proteins which comprise a DNA-binding 

domain, a protein interaction domain 

that mediated homo- or hetero-

dimeriation and an effector domain 

which mediates transcriptional activation 

or repression (Merika and Thanos, 2001). 

Such a modular structural configuration 

in combination with differential 

arrangements of enhancer and promoter 

gene elements allows transcription 

factors to assemble into variable protein 

complexes to implement distinct gene 

expression programmes.  

The molecular machinery 

activated in response to viral infection 

and regulates transcription of the 

interferon-β  gene has been extensively 

studied and will be used here as an 

exemplar of inducible gene expression 

mechanisms.  Activation of IFN-β gene transcription in response  to viral infection is 

mediated by at least three transcription factors NF-κB (nuclear factor κB), members of the 

FIGURE 1-19. Transcriptional regulation at the IFN-β
gene promoter. See text for details.  
 

Adapted from http://www.fleming.gr/en/investigators/Thanos/index.html
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IRF (interferon regulatory factor) family, and the ATF-2 (activating transcription factor-2)/c-

Jun heterodimer (Merika and Thanos, 2001). 

These factors (activators) act in concert upon viral entry to form a complex known as 

the 'enhanceosome' to specifically activate IFN-β gene transcription (FIGURE 1-19). Assembly of 

these factors on the IFN-β gene promoter is dictated by enhancer elements which are found 

in a specific spatial positioning pattern. In a different context any of these factors can mediate 

other processes such as response to cytokines, UV irradiation or the proliferative response to 

mitogens. At the same time none of them alone can elicit the response to viral infection 

(Merika and Thanos, 2001). Enhanceosome assembly is greatly facilitated by a high mobility 

group protein HMG I(Y) which binds to four sites in the enhancer sequence and induces a 

conformational change on the DNA that lowers the free energy of activator binding (Merika and 

Thanos, 2001). At the same time HMG I(Y) contributes to the stability of the enhanceosome. 

Upon its assembly, the enhanceosome, recruits the co-activator GCN5 which 

acetylates a nucleosome masking the promoter TATA element. At the same time GCN5 also 

acetylates HMG I(Y) at K71 contributing to enhanceosome stability. TATA box exposure 

allows the assembly of the RNAPolII pre-initiation complex along with the acetyltransferase 

CBP which in turn recruits the SWI/SNF remodelling complex and acetylates promoter 

histones, a prerequisite for SWI/SNF-mediated nucleosomal remodelling (Agalioti et al., 2000). 

This cascade culminates with the assembly of the RNAPolII holoenzyme and transcriptional 

initiation. 

 

1.2.2.2.2 Post-translational regulation of transcription factors 
 

Apart from histone modifications, transcription factor modifications are also well-

established events in the regulation of transcription. These include acetylation, 

phosphorylation, ubiquitination, sumoylation and proteolytic cleavage to mention but some 

and have variable effects in the ability of transcription factors to modulate gene expression. 

Many of the modifying enzymes described for histones also target transcription factors. Such 

modifications provide a way of modulating transcription factor activity by upstream signaling 

cascades as described in section 1.2. The wealth of studies on the regulation of the tumour 

suppressor p53 provide a characteristic example of this. 
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p53 is a transcription factor that binds to specific DNA elements as a tetramer. It is a 

highly unstable protein due to its constant ubiquitination by the E3 ligase Mdm2 (a.k.a. 

Hdm2) which targets it for proteasomal degradation. Mdm2 also binds an N-terminal 

transactivation domain thus inhibiting downstream transcriptional induction. Upon exposure 

of cells to genotoxic stresses, p53 ubiquitination is suppressed allowing its accumulation in 

the nucleus where it activates or represses more than 150 target genes to control cell cycle 

and survival (Bode and Dong, 2004). 

Multiple pathways are involved in p53 stabilisation. Acetylation targets among other 

sites the lysine residues ubiquitinated by Mdm2 contributing to p53 stabilisation. 

Furthermore, p53 acetylation enhances its ability to bind to DNA and consequently its 

transcription activation capacity (Luo et al., 2004). Phosphorylation by multiple kinases can also 

affect p53 targeting by Mdm2, increase its transcriptional activity and modulate its subcellular 

localisation by affecting NLS recognition (Bode and Dong, 2004). Furthermore, phosphorylation 

of p53 renders it a substrate for the peptidyl-prolyl isomerase Pin1 which induces a 

conformational change that enhances its transactivation capacity (Zheng et al., 2002; Zacchi et al., 

2002). Recently, methylation of p53 by a SET domain methyltransferase was also reported to 

modulate protein stability (Chuikov et al., 2004). 

Acetylation can also have more subtle effects on transcription factor activity. Upon 

stimulation the NFκB  transcription factor is released from the inhibitory protein IκB to 

translocate to the nucleus and activate transcription (Chen and Greene, 2004). Similarly to p53 

acetylation has been shown to enhance binding to DNA. At the same time though, 

acetylation reduces its affinity for IκB albeit by targeting different lysine residues. Conversely, 

HDAC3-mediated deacetylation contributes to the attenuation of the NFκB response by 

enhancing NFκB interaction with IκB, a complex that is actively exported to the cytoplasm 

(Chen et al., 2001). 

 

1.2.2.2.3 Ligand-mediated modulation of transcription factor activity 
 

Similarly to procaryotic cells, some eucaryotic transcription factors harbour domains 

that can be directly bound to by specific ligands. Several small molecules including 

aminoacids (proline, arginine), intermediate metabolites (benzoic scid, orotic acid) and 
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sugars are known to regulate transcriptional switches with the primary goal to modulate 

metabolic output depending on the cellular needs as relayed by these molecules (Sellick and 

Reece, 2005). 

The family of nuclear receptors comprise transcription factors most of which are 

regulated by ligand binding (Weatherman et al., 1999). Nuclear receptor ligands include among 

others hormones such as estrogen and growth hormone, metabolites such as bile acids, 

lipids and cholesterol and xenobiotics such as drugs. The natural ligands for many nuclear 

receptors are unknown thus such receptors are described as 'orphan'. 

Ligand effects are mediated through a C-terminal ligand binding domain (LBD) and an 

N-terminal DNA binding domain (DBD) linked by a flexible linker region which is proposed to 

allow not only conformational changes but also contribute to the recruitment of co-activators 

and co-repressors. 

Co-activator and co-repressor recruitment sites are overlapping in the LBD. Thus it is 

postulated that ligand binding induces a conformational change that allows the exchange of 

co-repressors for co-activator complexes to induce gene expression (Nagy and Schwabe, 2004). 

Recently, two F-box/WD-40 containing proteins, transducin β-like (TBL1) and the related 

TBLR1, were identified as critical components for this exchange mechanism. Upon ligand 

binding TBL1 and TBLR1 recruit the 19S proteasome to induce the clearance of co-repressor 

complexes allowing the binding of co-activators to the liganded receptors (Perissi et al., 2004). 

 

1.2.2.2.4 Transcriptional regulatory networks 
 

The complexity of the mechanisms in place to determine gene transcription by multiple 

regulatory events allows an enormous degree of flexibility in the implementation of specific 

gene expression programmes suited to environmental cues. During development for 

example, multipotent stem cells derived from a single zygote form the starting cell pool which 

will generate hundreds of different cell types to form tissues, organs and together an 

organism. 

Recent technical advances are starting to provide an integraded view of how 

transcription factor networks drive the spatio-temporaly precise execution of complex 

biological processes (Blais and Dynlacht, 2005). During early development, the transcription 
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factors OCT4, SOX2 and NANOG are important for the maintainance of the pluripotent 

character of stem cells in that loss-of-function results in aberrant differentiation. Genome-

wide analysis of target promoter occupancy revealed an elaborate gene regulatory network 

dictated by OCT4, SOX2 and NANOG which among other features drives the expression of 

homeobox transcription factors important for development (Boyer et al., 2005). This work implied 

the existence of autoregulatory and feedforward loops which enable the maintainance of the 

stem cell's pluripotent character while enabling it to repond to developmental cues in order to 

give rise to appropriate cell types (Boyer et al., 2005). 

 

1.2.2.3 Additional mechanisms of gene regulation 
 

Finally, in addition to the above mechanisms regulating gene expression other factors 

may also contribute to it. 

Chromosomes are arranged into so-called chromosome territories in the interphase 

nucleus in that they occupy distinct nuclear regions. For example the rDNA-containing 

acrocentric chromosomes 13, 14, 15, 21 and 22 associate preferentially with nucleoli. Human 

chromosomes 18 and 19, although of comparable size they differ in gene density with 

chromosome 18 being gene-poor (~4.3 genes per Mbp) and chromosome 19 gene-rich (22.7 

genes per Mbp). Chromosome 18 is located in the nuclear periphery whereas chromosome 

19 is positioned more internally (Gilbert et al., 2005). Furthermore, chromosome 19 spreads in 

an area larger than that of chromosome 18 suggesting that the chromatin in the former 

adopts a less condensed conformation than that in the latter.  

It is thought that interchromatin domains (ICDs) which are chromatin-free regions, 

contain a high density of transcriptional apparatus components to which genes located in 

euchromatin have access (Gilbert et al., 2005). Moreover, foci of transcription have been 

observed in nuclei (Francastel et al., 2000). However, little is known about the way nuclear 

architecture can affect gene expression in reponse to specific stimuli or whether it simply 

provides an organisational framework for proper execution of the cell's transcriptional 

activities. 

Finally, post-transcriptional regulatory mechanisms exist to determine gene 

expression. A mechanism of post-transcriptional regulation previously identified in plants and 
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C. elegans has been recently shown to apply in mammalian cells. It is known as RNA 

interference (RNAi) and it acts by the formation of precisely processed small RNA molecules 

that guide molecular complexes such as the RISC (RNA-induced silencing complex) or RITS 

(RNA-induced initiation of transcriptional gene silencing) to recognise complementary 

sequences on target mRNAs (Tomari and Zamore, 2005). This drives the degradation of the 

target mRNA and thus reduction of the respective gene product synthesis. There is evidence 

that engogenous small RNA molecules known as microRNAs (miRNAs) are involved in 

development and disease thus further expanding the cellular toolbox or transcription 

regulatory mechanisms (Wienholds and Plasterk, 2005). 

 

1.3 Conclusion 
 

 This chapter provided an overview of the signaling mechanisms involved in the 

transduction of environmental cues to the nucleus and described mechanisms available 

therein that allow the implementation of transcriptional programmes determined by the nature 

of the upstream signals. The importance of elucidating such basic cellular processes is 

emphasised by the increasing appreciation that deviation from these finely designed 

pathways underlies the cause of many disease states such as cancer and diabetes. 

 Prompted by our interest in undertanding how nutrient availability and cellular energy 

status modulate gene trasncription, we initiated the investigation of the sirtuin family of 

deacetylases. This family comprises proteins with reported histone deacetylase activity 

which, unlike HDACs, depends on NAD+. Thus, sirtuins are prime candidates to function as 

nodes that couple cellular redox status and transcriptional regulation. 
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CHAPTER 2 

 
THE SIRTUIN FAMILY OF PROTEIN DEACETYLASES 
 

 

2. INTRODUCTION TO THE SIRTUIN FAMILY 
 
2.1  Discovery of sirtuins and determination of their enzymatic activity 
 

The sirtuin family of enzymes comprises protein members from across all three phyla. 

They are characterised by a highly conserved core domain which carries a catalytic activity 

and in is flanked by N- and C-terminal regions of variable length which are particularly 

prevalent in the more recent additions of the evolutionary time-scale. 

Early studies implicated the yeast sirtuin Sir2 as part of the genetic network that 

regulates the position-dependent expression of genes which determine mating type in S. 

cerevisiae, a phenomenon also known as gene silencing (Ivy et al., 1986; Kimmerly and Rine, 1987; 

Rine and Herskowitz, 1987). An indication as to the actual activity of Sir2 was given by the finding 

that silenced chromatin correlated with concomitant hypoeacetylation of histones and that 

Sir2 overexpression resulted in significant histone deacetylation in vivo (Braunstein et al., 1993). 

This implied that Sir2p harbors a deacetylase activity. However, initial attempts to 

demonstrate such enzymatic action in vitro were unsuccesful. 

In search of a catalytic activity it was noted that the CobB gene in Salmonella 

typhimurium, a bacterial sirtuin member, could compensate for loss-of-function mutations in 

another gene, CobT (Tsang and Escalante-Semerena, 1998). CobT encodes for a 5,6-
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dimethylbenzimidazole phosphoribosyltransferase that transfers the 5-phospho-α-D-ribosyl 

moiety from nicotinate mononucleotide onto 5,6-dimethylbenzimidazole (FIGURE 2-1). This 

produces α-ribazole-5'-phosphate a precursor for the in cobalamin biosynthesis pathway. 

Given its ability to compensate for loss of CobT, it was proposed that CobB and, by 

association, sirtuins, could catalyse a similar, pyridine nucleotide transferase-like reaction 

which yet had to be distinct given the absence of the cobalamin biosynthesis pathway in 

higher eucaryotes. 

 

 

 

 

 

 

FIGURE 2-1. The reaction catalysed by
CobT. See text for details. 
 

Adapted from Trzebiatowski et al., 1997

 

Using computer-based homology searches, Frye provided the first comprehensive 

description of the sirtuin family, discovering the first five human orthologues and provided 

experimental evidence that some bacterial, yeast and human sirtuin members harbor an 

ADP-ribosyltransferase activity (Frye, 1999). Interestingly, this activity seemed to depend on 

nicotinamide adenine dinucleotide (NAD+). Subsequent studies provided support for these 

conclusions and showed that Sir2 requires this enzymatic activity to perform its chromatin 

silencing function (Tanny et al., 1999). 

Given the evidence for an NAD+-dependence of the enzymatic activity Imai et al. 

investigated whether NAD+ regulates the effect of Sir2 on histone H3 and H4 acetylated 

peptides (Imai et al., 2000). They could demonstrate that the vast majority of the reaction 

product was deacetylated rather than ADP-ribosylated peptides. This reaction absolutely 

required NAD+ and none of NADH, NADPH or NADP+ could substitute for it. This provided 

the first evidence that Sir2 is an NAD+-dependent histone deacetylase. This exceptional 

property for chromatin-modifying enzymes implied that sirtuins may provide a link between 

nutrient availability sensed as the intracellular NAD+ levels and transcriptional regulation. 

Further studies also confirmed the same enzymatic activity for other sirtuins in yeast, 
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Drosophila and mammals. An exception to this consensus is mammalian SIRT6 which was 

recently shown to be an ADP-ribosyltransferase (Liszt et al., 2005). 

Phylogenetic studies of the sirtuin concerved core domain (Frye, 2000) have identified 

four classes of proteins according to their evolutionary relationship (FIGURE 2-2) with a variable 

presence across the phyla. Furthermore, some gram-positive bacteria and Thermotoga 

maritima exhibit sequence similarities between class II and class III sirtuins and thus are 

classified separately as class U. A multiple sequence alignment of representative members 

of sirtuins from across the phyla is shown in FIGURE 2-3. 

 

FIGURE 2-2. Phylogenetic analysis of sirtuins. Human sirtuin homologues are circled in red
while their yeast counterparts are indicated in green. 

Adapted from Frye, 2000

 

 

 
2.2 Structural and enzymatic properties of sirtuins 
 

As delineated in the previous section, two enzymatic activities have been associated 

with sirtuins, that of ADP-ribosyltransferase and that of NAD+-dependent deacetylase. The  
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H. sapiens SIRT1     ------MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREVPAAARGCPGAAAAALWREAEAEAAA
M. musculus SIRT1    ------MADEVALALQAAGSP-SAAAAMEAASQPADEPLRKRPRRDGPGLGRSPGEPS----AAVAPAAAGCEAASAAAPAALWREAAGAA
D. melanogaster Sir2 -----MMENYEEIRLGHIRSK-------DLGNQVPDTTQFYPPTKFDFGAEILASTST------------EAEAEATATTTEPATSELAGK
C. elegans Sir2-1    -------------------------------------------------MSRDSGNDS--------------EVAVTHGEVQEITEENPEI
S. cerevisiae SIR2   MTIPHMKYAVSKTSENKVSNTVSPTQDKDAIRKQPDDIINNDEPSHKKIKVAQPDSLRETNTTDPLGHTKAALGEVASMELKPTNDMDPLA
S. typhimurium CobB  -----------------------------------------------------------------------------SPPAFNPDSALTIN
A. fulgidus Sir2-Af1 ---------------------------------------------------------------------------------SPNPDARCFN
 
H. sapiens SIRT1     AGGEQEAQATAAAGEGDNGPGLQGPSREPPLADNLYDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDW
M. musculus SIRT1    ASAEREAPATAVAGDGDNGSGLR---REPRAADDFDDDEGEEEDEAAAAAAAAAIGYRDNLLLTDGLLTNGFHSCESDDDDRTSHASSSDW
D. melanogaster Sir2 ANGEIKTKTLAAREEQEIGANLEHKTKNPTKSMGEDEDDEEEEEEDDE-------EEEE----DDEEGITGTSNEDEDSSSNCSSSVEPDW
C. elegans Sir2-1    GSMHITQETDISDAPETNTDSSRQRTESTTSVSSESWQNNDEMMSNLR-------------------------------------------
S. cerevisiae SIR2   VSAASVVSMSNDVLKPETPKGPIIISKNPSNGIFYGPSFTKRESLNAR-------MFLKYYGAHKFLDTYLPEDLNSLYIYYLIKLLGFEV
S. typhimurium CobB  AD------------------------DEPENDENTDEACETYLASEEC-------------------------------------------
A. fulgidus Sir2-Af1 AD------------------------DEPENDENTDEACETYLASEEC-------------------------------------------
 
H. sapiens SIRT1     TPRPRIGPYTFVQQHLMIGTDPRTILKDLLPETIP--PPELDD--------------------MTLWQIVINILSEPPKRKKRKDINTIED
M. musculus SIRT1    TPRPRIGPYTFVQQHLMIGTDPRTILKDLLPETIP--PPELDD--------------------MTLWQIVINILSEPPKRKKRKDINTIED
D. melanogaster Sir2 KLR-------WLQREFYTGRVPRQVIASIMPHFATGLAGDTDD--------------------SVLWDYLAHLLNEPKRRNKLASVNTFDD
C. elegans Sir2-1    ----------RAQRLLDDGATPLQIIQQIFPDFNASRIATMSE--------------------NAHFAILSDLLERAPVRQKLTNYNSLAD
S. cerevisiae SIR2   KDQALIGTINSIVHINSQERVQDLGSAISVTNVEDPLAKKQTV--------------------RLIKDLQRAINKVLCTRLRLSNFFTIDH
S. typhimurium CobB  ----------------------REGLATRYPRTEINSIRHMLG-SALMNELLATYPHI-MQSRRFHRLSRFRKNKRLLRERLRQRIFFRDR
A. fulgidus Sir2-Af1 ----------------------REGLATRYPRTEINSIRHMLG--------------------SIR-AF-ARCHAEGLBSFLGIDS-MDEK
 
H. sapiens SIRT1     AVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIEYFRKDPRPFFKFAKEIYP----GQFQPSLCHKFIAL
M. musculus SIRT1    AVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIEYFRKDPRPFFKFAKEIYP----GQFQPSLCHKFIAL
D. melanogaster Sir2 VISLVKKSQKIIVLTGAGVSVSCGIPDFRSTNGIYARLAHDFPDLPDPQAMFDINYFKRDPRPFYKFAREIYPGE--FQFQPSPCHRFIKM
C. elegans Sir2-1    AVELFKTKKHILVLTGAGVSVSCGIPDFRSKDGIYARLRSEFPDLPDPTAMFDIRYFRENPAPFYNFAREIFP----GQFVPSVSHRFIKE
S. cerevisiae SIR2   FIQKLHTARKILVLTGAGVSTSLGIPDFRSSEGFYSKIKHLG--LDDPQDVFNYNIFMHDPSVFYNIANMVLP----PEKIYSPLHSFIKM
S. typhimurium CobB  VVPEMMENPRVLVLTGAGISAESGIRTFRAADGLWEEHRVEDVATP---EGF----AR-NPGLVQTFYNARRQQLQQPEIQPNAAHLALAK
A. fulgidus Sir2-Af1 LLKTIAESKYLVALTGAGVSAESGIPTFRGKDGLWNRYRPEE------LANP--QAFAKDPEKVWKWYAWRMEKV--FNAQPNKAHQAFAE
 
H. sapiens SIRT1     SDK-EGKLLRNYTQNIDTLEQVAGIQR--IIQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEP-----------------
M. musculus SIRT1    SDK-EGKLLRNYTQNIDTLEQVAGIQR--ILQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEP-----------------
D. melanogaster Sir2 LET-KGKLLRNYTQNIDTLERVAGIQR--VIECHGSFSTASCTKCRFKCNADALRADIFAQRIPVCPQCQPNKEQSVDA-----------S
C. elegans Sir2-1    LET-SGRLLRNYTQNIDTLEHQTGIKR--VVECHGSFSKCTCTRCGQKYDGNEIREEVLAMRVAHCKRCEGVIK-----------------
S. cerevisiae SIR2   LQM-KGKLLRNYTQNIDNLESYAGISTDKLVQCHGSFATATCVTCHWNLPGERIFNKIRNLELPLCPYCYKKRREYFPEGYNNKVGVAASQ
S. typhimurium CobB  LEEALGDRFLLVTQNIDNLHERAGNRN--IIHMHGELLKVRCSQSGQILEWNGDVMP-----EDKCHCCQFPAP-----------------
A. fulgidus Sir2-Af1 LER-LGVLKCLITQNVDDLHERAGSRN--VIHLHGSLRVVRCTSCNNSFEVESAP---KIPPLPKCDKCGSLLR-----------------
 
H. sapiens SIRT1     -------------LAIMKPEIVFFGENLPEQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIP-HEVPQILINREP-LPHLHFDVELL
M. musculus SIRT1    -------------LAIMKPEIVFFGENLPEQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIP-HEVPQILINREP-LPHLHFDVELL
D. melanogaster Sir2 VAVTEEELRQLVENGIMKPDIVFFGEGLPDEYHTVMATDKDVCDLLIVIGSSLKVRPVAHIPSSIP-ATVPQILINREQ-LHHLKFDVELL
C. elegans Sir2-1    -----------------P-NIVFFGEDLGREFHQHVTEDKHKVDLIVVIGSSLKVRPVALIPHCVD-KNVPQILINRES-LPHYNADIELL
S. cerevisiae SIR2   GSMSERPPYILNSYGVLKPDITFFGEALPNKFHKSIREDILECDLLICIGTSLKVAPVSEIVNMVP-SHVPQVLINRDP-VKHAEFDLSLL
S. typhimurium CobB  ----------------LRPHVVWFGEMP--LGMDEIYMALSMADIFIAIGTSGHVYPAAGFVHEAKLHGAHTVELNLEPSQVGSEFEEKHY
A. fulgidus Sir2-Af1 ------------------PGVVWFGEMLPPDVLDRAMREVERADVIIVAGTSAVVQPAASLPLIVKQRGGAIIEINPDE-TPLTPIADYSL
 
H. sapiens SIRT1     GDCDVIINELCHRLGG---EYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSS-----SPERTSPPDSSVIVTLLDQAAKS
M. musculus SIRT1    GDCDVIINELCHRLGG---EYAKLCCNPVKLSEITEKPPRPQKELVHLSELPPTPLHISEDSS-----SPERTVPQDSSVIATLVDQATNN
D. melanogaster Sir2 GDSDVIINQICHRLSDNDDCWRQLCCDESVLTESKELMP-PEHSNHHLHHHLHHHRHCSSESERQSQLDTDTQSIKSNSSADYILGSAGTC
C. elegans Sir2-1    GNCDDIIRDICFSLGG---SFTELITSYDSIMEQQGKTK-------------------SQKPS---------QNKRQLISQEDFLNICMKE
S. cerevisiae SIR2   GYCDDIAAMVAQKCGWT----------------------------------------------------------------------IPHK
S. typhimurium CobB  GPASQVVPEFVDKFLKGL-------------------------------------------------------------------------
A. fulgidus Sir2-Af1 RGKAGEVMDELVRHVR---------------------------------------------------------------------------
 
H. sapiens SIRT1     NDDLDVSESKGCME----------------------------------EKPQEVQTSRNVESIAEQME-------NPDLKNVGSSTGEKNE
M. musculus SIRT1    NVNDLEVSESSCVE----------------------------------EKPQEVQTSRNVENINVEN---------PDFKAVGSSTADKNE
D. melanogaster Sir2 SDSGFESSTFSCGKRSTAAEAAAIERIKTDILVELNETTALSCDRLGLEGPQTTVESYRHLSIDSSKDSGIEQCDNEATPSYVRPSNLVQE
C. elegans Sir2-1    KRNDDSSDEPTLKK---------------------------------------PRMSVADDSMDSEK--------NNFQEIQKHKSEDDDD
S. cerevisiae SIR2   KWNDLKNKNFKCQE-----------------------------------------------------------------------------
S. typhimurium CobB  -------------------------------------------------------------------------------------------
A. fulgidus Sir2-Af1 -------KALS--------------------------------------------------------------------------------
 
H. sapiens SIRT1     RTSVAGTVRKCWPNRVAKEQISRRLD-GNQYLFLPPNRYIFHGAEVYSDSEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGL
M. musculus SIRT1    RTSVAETVRKCWPNRLAKEQISKRLE-GNQYLFVPPNRYIFHGAEVYSDSEDDVLSSSSCGSNSDSGTCQSPSLEEPLEDESEIEEFYNGL
D. melanogaster Sir2 TKTVAPSLTPIPQQRGKRQTAAERLQPGTFYSHTNNYSYVFPGAQVFWDNDYSDDDDEEEERSHNRHSDLFGNVGHNYKDDDEDACDLNAV
C. elegans Sir2-1    TRNSDDILKKIKHPRLLSITEMLHDN---KCVAISAHQTVFPGAECSFDLETLKLVRDVHHETHCESSCG-SSCSSNADSEANQLSRAQSL
S. cerevisiae SIR2   -----------------------------------------------KDKGVYVVTSDEHPKTL---------------------------
S. typhimurium CobB  -------------------------------------------------------------------------------------------
A. fulgidus Sir2-Af1 -------------------------------------------------------------------------------------------
 
H. sapiens SIRT1     EDEPDVPERAGGAGFG--TDGDDQEAIN-----------------EAISVKQEVTDMNYPSNKS--------------------- 
M. musculus SIRT1    EDDTERPECAGGSGFG--ADGGDQEVVN-----------------EAIATRQELTDVNYPSDKS--------------------- 
D. melanogaster Sir2 PLSPLLPHSLEAHIFTDIVNGSNEPLPNSSPGQKRTACIIEQQPTPAIETEIPPLKKRRPSEENKQQTQIERSEESPPPGQLAAV 
C. elegans Sir2-1    DDFVLSDEDRKNTIHLD-LQRADSCDGDFQ---------------YELSETIDPETFSHLCEEMRI------------------- 
S. cerevisiae SIR2   ------------------------------------------------------------------------------------- 
S. typhimurium CobB  ------------------------------------------------------------------------------------- 
A. fulgidus Sir2-Af1 ------------------------------------------------------------------------------------- 

 
FIGURE 2-3. Multiple sequence alignment of sirtuin members from different species. Accession numbers
of the sequences used are repsectively from top to bottom: Q96EB6,  Q923E4, O96505, Q21921, P06700,
P0A2F3, O28597. 
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NAD+-dependence of deacetylase activity was an unprecedented paradigm in the field of 

histone-modifying enzymes, the original proposed role of sirtuins, and consequently has 

attracted considerable effort to elucidate the enzymatic mechanism of the catalysed reaction. 

This effort was fuelled initially by biochemcal studies primarily based on quantitative 

measurements of sirtuin enzymatic products and, upon their availability, on structural data.  

The crystal structures of several sirtuins from across the phyla and in complex with 

different substrate forms have been determined. TABLE 2-1 summarises these crystalographic 

studies.  

TABLE 2-1. Available crystal structures of sirtuin family members 

Protein Organism Co-crystalised with: Resolution Reference 

SIRT2 (aa 34-356) H. sapiens - 1.7 Å Finnin et al., 2001 

Sir2-Af1 Archaeoglobus fulgidus NAD+ 2.1 Å, 2.4 Å Min et al., 2001 

Sir2-Af2 Archaeoglobus fulgidus 18-aa Ac-K382 p53 peptide 2.0 Å Avalos et al., 2002 

Sir2-Af1 Archaeoglobus fulgidus NAD+ 1.47 Å Chang et al., 2002 

Hst2 S. cerevisiae - 2.5 Å Zhao et al., 2003a  

Hst2 (1-294) S. cerevisiae NAD+ 2.7 Å Zhao et al. , 2003b  

Hst2 (1-294) S. cerevisiae 
2'-O-acetyl-ADP-ribose &  

Ac-H4 peptide 
1.5 Å 

Zhao et al., 2003b 

Zhao et al., 2004a   

Hst2 (1-294) S. cerevisiae carba-NAD+ & Ac-H4 peptide 1.75 Å Zhao et al., 2004a  

CobB E. coli AcK16-H4 peptide  1.96 Å Zhao et al., 2004b  

Sir2-Af2 Archaeoglobus fulgidus NAD+ 2.3 Å Avalos et al., 2004 

Sir2-Af2 Archaeoglobus fulgidus ADP-ribose 2.3 Å Avalos et al., 2004 

Sir2-Af2 Archaeoglobus fulgidus Nicotinamide 2.4 Å Avalos et al., 2005 

Sir2-Tm Thermotoga maritima Nicotinamide 1.4 Å Avalos et al., 2005 
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These studies show the existence of a catalytic core that adopts an elongated shape 

containing two domains connected by four cross-over loops (FIGURE 2-4). The smaller  domain 

consists of a three-stranded antiparallel β-sheet, two α-helices and a large portion of the long 

loop connecting the two domains. This domain binds a structural zinc ion through two pairs of 

cycteines which are highly conserved among sirtuins. This zinc-binding module has the same 

topology as a RING finger motif which is known to mediate protein-protein interactions 

although it lacks the secong zinc stom of 

the RING finger (Finnin et al., 2001). The 

larger domain adopts a reverse 

Rossmann fold structure characteristic of 

NAD+- and NADP+-binding enzymes. Six 

parallel strands form a central β-sheet 

flanked by four α-helices one one side of 

the β-sheet and two α-helices on the 

other. In between the two domains there 

is a large groove that contains the NAD+ 

binding site and comprises residues with 

high degree of conservation across all 

classes which form the catalytic domain of 

the enzyme.  

Three distinct regions are found in 

the NAD+ binding pocket (FIGURE 2-5) (Min et 

al., 2001; Finnin et al., 2001). Site A that binds 

the adenine-ribose moiety of NAD+, site B 

where the nicotinamide-ribose moiety is 

bound and site C burried deep inside the 

NAD+-binding pocket and contains 

residues that affect enzymatic activity 

despite the fact that it makes no direct 

contact with NAD+.  

FIGURE 2-4. Representative crystallographic
structures of sirtuins. (a) Structure of yHst2. The
catalytic core is color-coded to distinguish the large
conserved domain (cyan), structurally more variable
small domain (green), the loops connecting the small and
large domains (brown) and the bound zinc ion (blue).
Features present uniquely in Hst2 are yellow (N-terminal
loop and α13 helix) and light green. (b) Structure of the
Af1 Sir2−NAD+ complex with the NAD+ (red). (c)
Structure of the Af2 Sir2−p53 peptide complex with the
p53 peptide (yellow). (d) Structure of human SIRT2.  
 

Figure and legend adapted from Zhao et al., 2003The structure of Sir2-Af2 bound to 
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acetylated p53 peptide  (FIGURE 2-4b) 

and of Hst2p bound to acetylated 

histone H4 peptide (FIGURE 2-6) showed 

that substrate binding occurs in the 

large pocket between the Rossmann 

fold and the zinc binding module with 

the acetylated lysine inserted in a 

hydrophobic tunnel placing acetyl 

group adjacent the NAD+-binding site 

(FIGURES 2-5B,C & 2-6).  

A B

C

In the absence of substrate 

peptide, the nicotinamide ring of NAD+ 

appears unstructured. When acetylated 

FIGURE 2-5. The sirtuin NAD+-binding  pocket. (A) In the
absence of substrate peptide, NAD+ can bind in the A and
B pockets of sirtuins in alternative, nonproductive
conformations. (B) In the presence of substrate peptide
(modeled in blue), NAD+ binds in a precise productive
conformation that buries its nicotinamide moiety in the
highly conserved C pocket of sirtuins. (A) and (B) are based
on the crystal structure of the archaeal sirtuin Sir2-Af2. (C)
Schematic representation of the observed interactions
between yeast Hst2 and histone H4 acetyl-K16 peptide.  
 

Adapted from Avalos et al., 2005 [(A) and (B)]; Marmorstein, 2004 (C)

FIGURE 2-6. Crystal structure of Hst2 in
complex with acetyl-K16 histone H4
peptide and carba-NAD+. 
 

Adapted from Marmorstein, 2004
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peptide substrate or mimics thereof are present (Avalos et al., 2004), NAD+ undergoes a 

conformational change that places the nicotinamide ring in the highly concerved C pocket to 

induce a productive conformation (FIGURE 2-5).  

The crystallographic 

analyses along with biochemical 

studies have led to a proposed 

mechanism of NAD+-dependent 

deacetylation (FIGURE 2-7). Binding of 

the acetylated substrate to the 

catalytic pocket facilitates the 

binding of NAD+ in a productive 

conformation (Avalos et al., 2005; Borra 

et al., 2004; Marmorstein, 2004). The 

reaction starts with the nucleophilic 

attack of the 1' carbon of the ribose 

ring leading to the cleavage of 

nicotinamide from NAD+ and 

formation of an active O-alkyl 

amidate (FIGURE 2-7 step i). The rate 

of this reaction is similar to that of 

the reverse (step ii), thus to proceed 

in the next step nicotinamide has to 

be either quickly released or adopt 

a conformation that prevents its 

condensation with O-akyl amidate. Nicotinamide can exist in two interchangable 

conformations, an entrapped or a reactive state. In a reactive state, the pyridine ring is in 

position to react with the C1' of the O-acyl amidate and reform NAD+, in a reaction known as 

nicotinamide exchange, leading to a non-productive catalysis (FIGURE 2-7 step I and FIGURE 2-9). 

In the entrapped state, the pyridine ring establishes contacts in the distal site of the C pocket  

away from the O-acyl-amidate allowing the reaction to proceed. The O-acyl-amidate too can 

adopt two conformations, a contracted and an extended one, which also influences the 

FIGURE 2-7. Mechanism of sirtuin-catalysed deacetylation. 
See text for details. 
 

Adapted from Avalos et al., 2005
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outcome of the reaction due to the different 

relative orientations of the intermediate and a 

catalytic histidine residue (Avalos et al., 2005). The 

contracted form favours deacetylation. The 

ribose ring of the nicotinamide-proximal site of 

NAD+ (henceforth: nicotinamide ribose) is then 

rotated to a position that allows the catalytic 

histidine to deprotonate the 3' hydroxy group of 

the nicotinamide ribose eliciting a cascade that 

leads to the formation of a cyclic acyldioxalane 

involving the 1' and 2' oxygens of the ribose ring. 

A water molecule stably positioned by hydrogen-

bonding with an asparagine residue then 

performs the nucleophilic attack of the cyclic 

acyldioxalane resulting in the production of deacetylated lysine of the protein substrate and a 

mixture of 2'-O-acetyl-ADP-ribose and 3'-O-acetyl-ADP-ribose (Jackson et al., 2002). Thus, 

unlike other HDACs whose enzymatic activity leads to the release of acetate, sirtuins 

produce two distinct products, nicotinamide and 2',3'-O-acetyl-ADP-ribose (FIGURE 2-8).  

This mechanism 

FIGURE 2-8. General reactions catalyzed by
known histone and/or protein deacetylases.
(a) Class I and II histone deacetylases
(HDACs) catalyze the hydrolysis of acetyl-
lysine side-chains to generate deacetylated
lysine and acetate as products. (b) Class III,
silent information regulator 2 (Sir2)-like
deacetylases (e.g. yeast Sir2) require the
coenzyme NAD+ and produce deacetylated
lysine, nicotinamide and O-acetyl-ADP-ribose
as enzymatic products.  
 

Figure and legend adapted from Denu, 2003

also provides an explanation as to the inhibitory properties of 

nicotin

 

amide upon sirtuins. The flexibility of the intradomain loop that contributes to the 

structure of the C pocket may allow the release of nicotinamide through partial disassembly 

of the C pocket. If nicotinamide binds to the C pocket while the O-acyl-amidate intermediate 

is there, a base-exchange reaction takes place leading to the re-formation of NAD+ and 

preventing the deacetylation reaction (FIGURE 2-9). 

 

 

 

 FIGURE 2-9. The nicotinamide exchange
reaction. See text for details. 

alos et al., 2005
 

Figure and legend adapted from Av
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2.2.1 Structural insights into the regulation of Hst2p 

he crystal structure of Hst2p revealed additional features which provided interesting 

insight

from t

 
T

s into potential regulatory mechanisms of its enzymatic activity (Zhao et al., 2003a). In 

particular, the α13 α-helix at the C-terminal extension of the protein folds back to the main 

body of the protein forming contact with residues within the cleft between the to lobes of the 

core domain  (FIGURE 2-4a). Superimposition of the Hst2p structure with that of Sir2-Af1 

revealed that the α13 helix interacts with highly conserved residues that mediate interactions 

with NAD+. In addition, the β1-α2 loop forms contacts with NAD+ in the Sir2-Af1-NAD+ 

structure but cannot be modeled in the absense of NAD+ (Finnin et al., 2001; Avalos et al., 2002; 

Zhao et al., 2003) most probably due to high atomic temperature factors indicating that this 

region is highly mobile. These observations imply that by folding into the NAD+ binding site of 

the catalytic pocket, the C-terminus of Hst2p precludes NAD+ binding and thus acts as an 

autoinhibitory domain. Validation to this theory was provided by the fact that an Hst2p 

species lacking the α13 helix exhibits a lower Km value for NAD+ than the full-length form. 

Another insight into the regulation of Hst2p came 

he arrangement of Hst2p in the crystal lattice 

used for the determination of its structure. It indicated a 

symmetry-related trimeric configuration with the 

extended N-terminal loop of Hst2p forming contacts 

with the active site of a neighbouring Hst2p molecule in 

the lattice (FIGURE 2-10). In particular the N-terminal 

methionine of Hst2p superimposes well with the acetyl-

lysine residue seen in the Sir2-Af2-Ac-p53 peptide 

structure. This implies that residues within the N-

terminal region may influence the catalytic function of 

the enzyme by interfering with substrate binding. 

Sendimentation equilibrium experiments confirmed that 

the N-terminal region mediates trimerisation and that 

absence of 7 N-terminal amino acids results in 

enhanced enzymatic activity towards acetylated 

FIGURE 2-10. Structure of the Hst2
trimer. The three subunits of the trimer
are shown in blue, aqua and green. The
N- and C-terminal extensions that
occupy the acetyl-K and NAD+ binding
sites are highlighted in yellow. 
 

Adapted from Marmorstein, 2004
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substrates. 

The proposed autoinhibitory function of the C-terminus of Hst2p is very reminiscent of 

the Src kinase regulatory mode where C-terminal extension when phosphorylated on a 

specific tyrosine residue can bind the SH2 domain of the enzyme and impose an 

autoinhibitory closed conformation (Harrison, 2003). Thus, as Hst2p shares N- and C-terminal 

extensions with other members of sirtuins, including mammalian SIRT1, it is possible that the 

observed structural features reflect true regulatory mechanisms. 

 

2.2.2 Fate of the sirtuin deacetylation products 
 

Apart from the deacetylated lysine, nicotinamide and 2',3'-O-ADP-ribose are produced 

as a result of sirtuin-mediated deacetylation (FIGURE 2-8). The function of these molecules has 

not been firmly established yet, however some insights have been provided by recent work in 

the field.   

 

2.2.2.1 Nicotinamide and NAD+ biosynthesis pathways 
 

Biochemical studies along with the structural data presented above provided good 

evidence that the involvement of two naturally occuring metabolites in the catalysis, NAD+ 

and nicotinamide, may provide a potential mechanism of regulation of sirtuin activity. For this, 

we shall review the basic pathways of NAD+ biosynthesis in the cell which will be of 

importance to understand the underlying principles and significance of the work addressing 

the function of sirtuins discussed below. 

In both procaryotic and eucaryotic cells there are two pathways that participate in 

NAD+ production, the de novo pathway and the salvage pathway (FIGURE 2-11). The 

converging molecule of the two pathways is nicotinic acid mononucleotide (NaMN).  

In the de novo pathway NaMN derives from the degradation of tryptophan in a six-step 

reaction where the last step is catalysed by quinolinate phosphoribosyl transferase 

(BNA6/QPT1). In animals this reaction occurs mainly in the liver and kidney. Inadequate 

dietary supplementation of tryptophan leads to a condition known as pellagra characterised 

by diarrhea, dermatitis and dementia. 
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FIGURE 2-11. NAD+ biosynthetic pathways. The biosynthesis of NAD+ occurs through both salvage and de
novo pathways. The salvage pathways begin with either nicotinamide or nicotinic acid, collectively referred to as
niacin or vitamin B3. One salvage pathway leading from nicotinic acid (Na) to NAD+, known as the Preiss-
Handler pathway, goes through two intermediates, nicotinic acid mononucleotide (NaMN) and nicotinic acid
adenine dinucleotide (NaAD). A parallel salvage pathway leading from nicotinamide (NAm) to NAD+ goes
through one intermediate, nicotinamide mononucleotide (NMN). The de novo pathway leads from tryptophan to
quinolinate, which connects to the Preiss-Handler salvage pathway through NaMN. Recently, nicotinamide
riboside (NR) was also shown to be a precursor for NAD+ synthesis, connecting to the NAm salvage pathway
through NMN (Bieganowski and Brenner, 2004).  

Figure and legend adapted from Kim et al., 2005.

In the salvage pathway, in a reaction catalysed by nicotinate phosphoribosyl 

transferase (NPT1), NaMN is synthesised from nicotinic acid (a.k.a. nicotinate or niacin) and 

5-phosphoribosyl-α-pyrophosphate (PRPP) which is derived from α-D-ribose-5-phosphate of 

the pentose phosphate pathway.  Nicotinic acid can be derived extracellularly by import 

through nicotinic acid permease (TNA1). Alternatively it comes from the hydrolysis of 

nicotinamide (Nam) catalysed by a nicotinamidase encoded by the PNC1 gene. 

NaMN derived from either pathway is converted to desamido-NAD (NaAD) by 

nicotinate mononucleotide adenylyl transferase encoded by the NMA1 and/or NMA2 genes. 

Finally, an NAD+ synthase encoded by QNS1 converts NaAD to NAD+. Nicotinamide derived 

from NAD+ through the action of NAD+ utilising enzymes can then be hydrolysed to give NA 

completing the salvage pathway circle. In mammals exists a pathway that can use Nam 

directly for NAD+ synthesis bypassing its conversion to Na. This involves the conversion of 
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Nam into nicotinamide mononucleotide (NamMN) which is then converted to NAD+ by the 

action of the same enzyme that catalyses NAD+ formation from NaMN (Voet and Voet, 

Biochemistry, Wiley 1995, p825). 

NAD+ is a key molecule in many metabolic, primarily catabolic, processes  such as 

glycolysis and the tricarboxylic acid (TCA) cycle, where it participates as a proton acceptor 

leading to its reduction to NADH. It is also important in DNA metabolism since enzymes like 

DNA ligase and poly(ADP) ribose polymerase (PARP) depend on NAD for their activity.  

The ratio of NAD+ to NADH is important for the redox state of the cell and has been 

shown to flactuate in response to metabolic changes. Accordingly, it can regulate the activity 

of enzymes such as glyceraldehyde 3-phosphate dehydrogenase in glycolysis and pyruvate 

dehydrogenase which converts pyruvate to acetyl-CoA that is used in the TCA cycle. Thus, 

homeostatic mechanisms exist that ensure the constant re-oxidation of NADH to NAD+ e.g. 

through the respiratory chain. Nevertheless, limitations in the accurate experimental 

determination of the intracellular [NAD+]/[NADH] ratio have fueled an extensive ongoing 

debate as to the exact quantitation of this ratio and how it fluctuates  (Lin and Guarente, 2003).  

The relevance of the interaction between NAD+ metabolic pathways and the function 

of sirtuins is further exemplified by the recent evidence in the work of Pan et al. which 

revealed a network of synthetic lethal interactions between NPT1 and components of the 

replication machinery (Pan et al., 2006). In the same study, Hst3 shared the majority of these 

interactions although it did not exhibit synthetic lethality with Npt1 itself suggesting that they 

participate in a novel NAD+-dependent pathway regulating DNA replication in yeast.  

Revollo et al. found that in mammals the rate-limiting enzyme in NAD+ biosynthesis is 

nicotinamide phosphoribosyltransferase (NamPT) (FIGURE 2-11) rather than 

nicotinamide/nicotinic acid mononucleotide adenylyl transferase (Nmnat) (Revollo et al., 2004). 

Accordingly, overexpression of NamPT increased cellular NAD+ levels and this correlated 

with transcriptional activation of mouse SIRT1 on a heterologous reporter. Furthermore, the 

transcription profiles induced by overexpression of either NamPT or SIRT1 in MEFs 

significantly overlapped, indicating that regulation of intracellular NAD+ by the mammalian 

salvage pathway also had a potential impact on SIRT1. 
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Araki et al. observed that increased NAD+ levels due to overxpression of Namnt1 

provided neuroprotection depending on SIRT1 (Araki et al., 2004). This work will be discussed 

in more detail in section 2.3.5.1.7. 

Some other aspects of interest in relation to this issue will be presented in the 

discussion of his thesis (Chapter 5). 

 
2.2.2.2 The function and fate of 2',3'-O-ADP-ribose 
 
 Borra et al. hypothesised that being a distinctive protein deacetylation reaction 

product, 2',3'-O-acetyl-ADP-ribose may serve either as a second messenger in a manner 

reminiscent of cAMP, or as a substrate for other proteins. They tested their hypothesis by 

microinjecting purified O-acetyl-ADP-ribose into starfish (A. miniata) immature oocytes a 

system previously used to probe the biological function of proteins compounds. At low mM 

concentrations, O-acetyl-ADP-ribose was able to block oocyte maturation (Borra et al., 2002). In 

starfish immature oocyte cell-free extracts O-acetyl-ADP-ribose is rapidly metabolised 

suggesting the existence of enzymes that mediate its turnover. Thus it is possible that either 

O-acetyl-ADP-ribose or a metabolite thereof is responsible for the observed effects. The 

oocyte maturation blockade is recapitulated by injection of recombinant yeast sirtuin Hst2p in 

a manner dependent on its enzymatic activity. Microinjection of either Hst2p or O-acetyl-

ADP-ribose into one cell of a two-cell stage embryo also caused a delay in cell cycle 

progression of the injected cell.  

In a subsequent study, Rafty et al. identified a class of hydrolases termed Nudix that 

could robustly catalyse the cleavage of O-acetyl-ADP-ribose into AMP and acetylated ribose-

5'-phosphate (Rafty et al., 2002). However, in cellular extracts O-acetyl-ADP-ribose was subject 

to modifications inconsistent with Nudix activities an associated with novel unidentified 

enzymes. Rafty et al. predicted the existence of cytoplasmic esterases that hydrolysed O-

acetyl-ADP-ribose to acetate and ADP-ribose and nuclear O-acetyl-ADP-ribose-dependent 

acetyltransferases. 

In a study with exciting implications, Kustatscher et al. discovered that the macro 

domain of histone macroH2A1.1 (mH2A1.1) can bind O-acetyl-ADP-ribose through a distinct 

binding pocket with µM affinity (Kustatscher et al., 2005). mH2A1 is a histone variant found 
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associated with heterochromatic foci in senescent and quiescent cells. Interestingly, the gene 

encoding for mH2A1 can give rise to two alternatively spliced variants with distinct 

spatiotemporal distribution during development. Among these isoforms, only one is able to 

bind O-acetyl-ADP-ribose suggestive of a potential regulatory role for the alternative splicing 

of this histone and adding another link between NAD+ and DNA metabolism. 

These experiments suggested that the enzymatic products of sirtuins and in particular 

O-acetyl-ADP-ribose may have novel unexplored functions aside the deacetylation of 

proteins conferred by the enzymes themselves. 

 
2.2.3 Specificity of sirtuins 
 

As for all catalysed reactions, an issue of interest is whether the enzymes involved 

exhibit substrate specificity and if yes how this is attained. Ultimately, provided enough 

information as to the associated biological functions, enzymatic specificity may provide 

important clues for the effective therapeutic targetting of the enzyme in question.  

Early studies of sirtuin deacetylation activity showed that the yeast Sir2p may target 

histones for deacetylation based on the fact that overexpression of Sir2p in yeast leads to 

histone hypoacetylation. Imai et al. provided evidence that Sir2 has preference for residues 

Ac-K9 and Ac-K14 in histone H3 as well as residue Ac-K16 in histone H4 in vitro in 

agreement to previous data indicating a requirement for these residues for silencing (Imai et 

al., 2000). Some evidence to support this is also provided by recent studies in mammalian 

cells that show SIRT1 may deacetylate both histones H3 and H4 with preference to Ac-K9 

and Ac-K16 respectively as well as histone H1 Ac-K26 in vivo (Vaquero et al., 2004). However, 

the high degree of phylogenic conservation of sirtuins and the fact that bacteria do not have 

canonical histones raised the possibility that additional sirtuin deacetylation targets exist, a 

hypothesis proved to be correct in both prokaryotic and eukaryotic organisms. Despite the 

emergence of new substrates a consensus deacetylation target sequence failed to emerge. 

In order to investigate the issue of substrate specificity for the human sitruin SIRT1, 

Blander et al. performed an unbiased study using oriented peptide libraries (Blander et al., 

2005). This approach has been succesfully used before for the identification of protein domain 

consensus binding sites as well as kinase target sequences. This screen involved the 
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incubation of a degenerate peptide library containing acetylated lysines with recombinant 

SIRT1 and the selective purification of deacetylated peptides. This is achieved by reacting 

the ε-amino group of deacetylated lysine with a photocleavable linker which is tagged with 

biotin. After removal of the linker, the purified peptides bearing sites specifically targeted by 

SIRT1 were analysed by Edman degradation. This allowed the determination of the 

frequency at which specific aminoacids occur in the regions flanking the deacetylated lysine. 

This approach clearly showed that SIRT1 shows no sequence specificity in vitro (Blander et al., 

2005). In a subsequent study, Khan et al. using yeast Hst2p showed that this sirtuin shows 

preference for acetylates lysines situated within unstrustured protein regions (Khan et al., 2005).  

These approaches imply that sirtuins, unless promiscuous, attain specificity in vivo by 

mechanisms other than recognition of substrate primary sequence. Crystal structures of 

sirtuins in complex with peptide substrates only are available and show only weak contacts 

between sirtuin residues and the region surrounding the target lysine. It is not for sure that 

this applies in the context of the entire protein substrate but if true, it would support the notion 

that sirtuins may deacetylate their targets specifically by virtue of their localisation, binding 

partners that act like scaffold proteins or both. 

 

2.2.4 Small molecule modulators of sirtuins 
  

Metabolites of the NAD+ biosynthetic pathway such as nicotinamide, NADH and NAD+ 

itself have been useful tools in preliminary pharmacological studies of sirtuins due to their 

availability and low cost. However, their prominent role in basic cellular metabolic processes 

as well as our limited knowledge of mammalian sirtuin biology prompted the search of both 

activators and inhibitors that could provide sirtuin-specific targeting. 

A study by Howitz et al. identified a class of compounds called polyphenols as sirtuin 

activating compounds (STACs). Among them, resveratrol, a molecule found in red wine, 

exhibited the most potent effects on sirtuins by lowering the Km of the enzyme for acetylated 

substrate (Howitz et al., 2003). Given the previously documented effects of resveratrol on 

neuroprotection, cardioprotection and chemoprotection (Pervaiz, 2003), the study of Howitz et 

al. raised the exhiting possibility that the molecular target of resveratrol is a sirtuin. In a 

follow-up study, Wood et al. could show that resveratrol and other STACs could extend life-
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span in Drosophila as well as C. elegans in a manner dependent on Sir2 and non-additive to 

caloric restriction (Wood et al., 2004). 

However, subsequent studies by Kaeberlein et al. and Borra et al. challenged these 

observations (Kaeberlein et al. 2005, Borra et al. 2005). Kaeberlein et al. could find no evidence that 

resveratrol increased life-span in three different yeast strains, while both studies provided 

evidence that the observed effect of resveratrol depended on the particular fluorophore 

attached to the peptide used to assay sirtuin activity. Thus, resveratrol seems to be a 

substrate-specific activator of sirtuins and whether it truly regulates sirtuins in vivo remains to 

be further investigated especially following recent evidence that enhanced NAD+ biosynthesis 

and SIRT1 activity promote neuroprotection in mice (Araki et al., 2004). 

Forward chemical genetic approaches have also yielded novel compounds that inhibit 

sirtuin activity. Forward chemical genetic screens involve assaying of libraries of small 

organic molecules for their ability to inhibit or enhance a particular phenotype. Grozinger et 

al. assayed a library of 1,600 compounds for their ability to allow expression of a reporter 

gene from the telomeres that would lead to cell death (Grozinger et al., 2001). Their work yielded 

three inhibitors, A3, M15 and sirtinol, the latter being the most potent exhibith IC50 values of 

68 and 38 µM for yeast Sir2p and hSIRT2 respectively.  

Bedalov et al. used an ameliorated version of this screen in that inhibition of telomeric 

silencing rescued cell growth, having the advantage that they could eliminate false hits due to 

cytotoxic compounds (Bedalov et al., 2001). Their study identified 11 out of 6,000 compounds 

screened to inhibit telomeric silencing. Among these, only 1, splitomicin was subsequently 

shown in a secondary screen to be capable of inhibiting silencing also at rDNA and mating 

type loci. Splitomicin exhibits an IC50 of 60 µM for yeast Sir2p in vitro. Mutagenesis analysis 

revealed that splitomicin may target the acetylated lysine binding pocket of the enzyme. In a 

later study, Hirao et al. identified dehydrosplitomicin and compound 26, two splitomicin 

analogues as specific inhibitors of the yeast sirtuins Hst1 and Sir2 respectively (Hirao et al., 

2003). 

Recently, Solomon et al. identified a novel compound in a high-throughput screen 

using bacterially expressed SIRT1 (Solomon et al., 2006). The compound, named EX-527 

inhibits SIRT1 potently with an IC50 of 38 nM and is highly specific since its IC50 values for 
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SIRT2 and SIRT3 are in the µM range. This compound was succesfully used for intracellular 

inhibition of SIRT1 as described in section 2.3.5.1.4. 

It is likely that such compounds will be of great use for the study of sirtuin biology, 

especially when activators/inhibitors targeting other sirtuin homologues are developed (see 

discussion in Chapter 5). The emergence of powerful novel technologies such as RNA 

interference and gene targeting by homologous recombination allow efficient genetic 

manipulation of protein expression in mammalian cells. However, RNAi is limited by the 

protein turnover rates so that a gradual rather than accute protein depletion takes place. 

Furthermore, the presence of several homologues in a protein family, at times allows the 

functional compensation of the depleted protein. Small molecule compounds that can 

accutely interfere with enzymatic activity can offer important tools to overcome such 

difficulties provided that their specificity is reasonably establised. However, the translation of 

such compounds into therapeutics will only depend on our understanding of a protein's 

biological function. 
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2.3 FUNCTIONAL STUDIES OF SIRTUINS 
 
 
2.3.1 Sirtuin functions in prokaryotic organisms 
 
2.3.1.1 Bacterial sirtuins 
 

The ability of Salmonella typhimurium cobB to compensate cobT mutations in the 

cobalamin biosynthesis pathway provided the first hints into the biochemical activity of 

sirtuins (Tsang and Escalante-Semerena, 1998). Interestingly, strains of Salmonella enterica that 

lack the cobB gene are unable to utilise propioniate and low acetate concentration as carbon 

sources because in such strains the acetyl-CoA synthase (ACS) enzymes required to convert 

these substances into acyl-CoA derivatives are inactive (Starai et al., 2002). ACS from cobB- but 

not cobB+ strains was highly acetylated implying that its enzymatic activity is regulated by 

acetylation (Starai et al., 2002). 

ACS mediates acetyl-CoA production in a two-step mechanism. First, acetate is 

adenylated to yield acetyl-AMP and subsequently ACS catalyses the formation of a thioester 

bond to produce acetyl-CoA (Starai et al., 2004). Acetylation of ACS at K609 by the 

acetyltransferase Pat (protein acetyltransferase) specifically inhibits the ATP-dependent 

adenylation of acetate but leaves the thioester bond forming activity unaffected (Starai et al., 

2004; Starai et al., 2002). Incubation of inactive ACS with NAD+ and cobB resulted in a dramatic 

increase of ACS activity suggesting that the deacetylase activity harboured by cobB acts as 

an activator of ACS (Starai et al., 2002). 

 Interestingly, ACS K609 is located within a sequence which is highly conserved 

among AMP-forming enzymes including propionyl-CoA synthase and luciferase (Starai et al., 

2002). Despite lack of experimental evidence, it is tempting to speculate for a broader role of 

acetylation in regulating similar reactions and thus an expanded role of sirtuins in these 

processes. 

 

 

 54



Chapter 2 - The sirtuin family of protein deacetylases 

2.3.1.2 Archaeal sirtuins 
 

Similar to bacteria, some but not all Archaea do not have histone-like proteins to 

organise their genome. Instead, this role is performed by small 7-10 kDa proteins (Bernander, 

2003). One such protein known as Sso10b and later renamed Alba (acetylation lowers binding 

affinity) which binds to DNA as a dimer, was identified as a interaction partner of the sirtuin 

orthologue from Sulfolobus solfataricus ssSir2.  

Alba was shown to be acetylated at K16 by an archaeal orthologue of Pat 

acetyltransferase (Marsh et al., 2005) which results in lower affinity for DNA (Bell et al., 2002). This 

was further supported by the crystal structure of Alba and molecular modeling that revealed a 

role of K16 in the binding of the protein to DNA (Wardleworth et al. 2002; Zhao et al., 2003). ssSir2-

mediated deacetylation induces the ability of Alba to mediate silencing in an in vitro 

reconstituted transcription system, an attribute that correlates with the ability of Alba to bind 

DNA (Bell et al., 2002; Marsh et al., 2005).  

These data indicated that archaeal sirtuins may regulate gene transcription by 

modulating the ability of proteins to bind DNA. Furthermore, as the chromosomal DNA of 

Sulfolobus is differently organised in exponentially growing versus stationary phase cells, the 

regulation of Alba acetylation by ssSir2 may have a broader role in genome organisation 

(Bernander, 2003).  

 

2.3.2 Sirtuin functions in S. cerevisiae 
 
2.3.2.1 Regulation of chromatin silencing in S. cerevisiae by sirtuins 
 
2.3.2.1.1 Silencing at mating type loci 
 

Two types of haploid cells are known in the yeast Saccharomyces cerevisiae, denoted 

a and α. These cell types are determined by the selective expression of the mating type 

locus (MAT) alleles MATa and MATα which encode transcriptional regulators that dictate the 

expression of gene sets specific for each type.  

Certain yeast strains known as homothallic are able to interconvert between the two 

cell types. These strains harbor an active HO gene encoding a site-specific endonuclease 
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that cleaves the mating locus. 

Such interconversion also 

requires two more genes 

namely HMR and HML which in 

most yeast strains encode 

cryptic copies of the entire 

MATa and MATα loci 

respectively (and in other 

strains, mostly natural isolates, the inverse configuration). These loci act as sequence 

templates in the interconversion between the MATa and MATα alleles: upon cleavage of the 

MAT locus by the HO endonuclease, they provide the template for copying the MAT allele 

that replaces the original allele in the MAT locus. 

FIGURE 2-12. Mating type loci on S. cerevisiae chromosome III.
See text for details. 

Adapted from Haber, 1998

The HMR and HML loci are found in the proximity of the telomeres in the same 

chromosome as the MAT locus and remain silenced due to their location within the genome 

that adopts a heterochromatic structure. Heterochromatin formation at the HMR and HML loci 

is dictated by the flanking DNA sequences (EL, IL, ER, IR, FIGURE 2-12) which are responsible 

for the recruitement of trans-acting factors required for silencing. These sequences have 

properties of autonomously replicating sequences (ARS) when placed in plasmids but only 

HMR-E and HMR-I are shown to be bona fide origins of replication in the chromosome.  

Genetic screens to identify determinants of silencing in the HML and HMR loci led to 

the cloning of several genes whose mutations resulted in activation of silent mating gene 

expression: RAP1, origin recognition complex (ORC1) and ABF1 and four genes termed 

SIR1-4 for Silence Information Regulator.  

The HMR-E silencer is a 140-bp DNA sequence that harbours binding sites for the 

gene products of RAP1, ORC1 and ABF1, Rap1p, Orc1p and Abf1p respectively. 

Interestingly, none of these proteins is specific to silencer regions. Rap1p and Abf1p are 

found in many promoter regions where they stimulate transcription while ORC1 is found in 

origins of replication throughout the genome. However there is evidence that the silencing 

functions of these proteins may by separable from the others. For example the N-terminus of 

Orc1p is not required for replication but it is required for silencing (Bell et al., 1995). Mutations in 

any two of the three binding sites of these proteins suffices to abolish silencing while a single 
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copy of any of these binding sites is insufficient to establish silenced chromatin. Conversely, 

the Sir proteins are devoid of direct DNA binding ability. Thus it is thought that the combined 

binding of Rap1p, Orc1p and Abf1p to the silencer creates a platform for the recruitment of 

Sir proteins by means of protein-protein interactions.  

Isolation of native Sir complexes from S. cerevisiae showed that while Sir2p and Sir4p 

form a soluble complex, Sir3p fails to co-purify in stoichiometric amounts. Furthermore, Sir3p 

and Sir4p bind preferentially to the hypoacetylated tails of histone H3 and histone H4 in vitro 

and Sir mutations that disrupt these interactions abolish silencing (Hecht et al.,1995). Mutational 

analyses also showed that the regions of histones H3 and H4 required for Sir3p and Sir4p 

binding are also required for silencing. Importantly, genomic regions occupied by Sir 

complexes overlap with the location of hypoacetylated histones suggesting a tight connection 

between these two phenomena.  

The initiating step in the establishment of Sir-dependent chromatin silencing is the 

binding of Sir1p to the silencer. Sir1p binds directly to Orc1p and is confined to the silencer 

region without spreading adjacently. Tethering of Sir1p to silencers by a heterologous DNA 

binding domain can support the establishment of silenced chromatin in the absence of ORC 

or Rap1p. Both Sir3p and Sir4p can bind to Rap1 and the Sir3p-Rap1p interaction can also 

occur in vitro in the absense of other yeast proteins (Moretti et al., 1994). Sir4p is recruited to the 

silencer through its interaction with Sir1p/Rap1p independently of Sir2p and Sir3p. Thus 

Sir2p is most likely recruited to the silencer in complex with Sir4p. Sir3p is engaged in the 

complex through its interactions with Sir4p and Rap1p.  

Once located to the silencer the Sir complex spreads towards the gene to be silenced. 

Sir2p and Sir3p are essential for this. The histone deacetylase activity of Sir2p which is 

dispensable for the recruitment of the complex to the silencer is required for this function. 

Upon its recruitment to the silencer Sir2p is brought in the proximity of acetylated histones H3 

and H4 in the nearby nucleosome which it deacetylates creating high affinity sites for more 

Sir3p and Sir4p. In turn, this allows the sequential binding of more Sir2 complexes allowing 

their spreading along with the consequent deacetylation of histones. Thus chromatin loaded 

with Sir complexes adopts a compact structure which renders it silent. 
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2.3.2.1.2 Chromatin silencing at telomeres 
 

Sir complexes also participate in another site of silencing in yeast at telomeres. This 

phenomenon, reminiscent of position-effect variegation is known as telomere position effect  

(TPE) and refers to the silencing of genes in the proximity of telomeres. Telomeric silencing 

shares many of the features of silencing at mating-type loci yet it differs in that it is 

independent of Sir1p and that recruitment of the Sir complex in yeast telomeric repeats is 

mediated by both Rap1p and a protein known as Hdf1 or yKu70 (Guarente, 1999). 

Luo et al. found that Sir4p can bind to Rap1p independent of other Sir proteins or the 

Ku complex in the telomeric region proximal to the chromosome end (Luo et al., 2002). The 

reverse is true as the distance from chromosome ends increases suggesting that as in the 

case of mating type loci, the Rap1p-Sir4p complex participates in the seeding of the silenced 

chromatin at the telomeres. A schematic model of the proposed mechanism for the 

establishment of silencing at yeast telomeres is shown in Figure 2-13. 

FIGURE 2-13. Schematic model of Sir-mediated
silencing mechanism at yeast telomeres.
Multiple copies of Rap1 bind to a simple repeated
sequence at each telomere region, which lacks
nucleosomes (top). This nucleates the assembly of
a multiprotein complex (bottom) through protein-
protein interactions between Rap1, Sir2, Sir3, Sir4,
and the hypoacetylated amino-terminal tails of
histones H3 and H4 of nearby nucleosomes.
Asterisks represent hyperacetylated histone amino-
terminal tails. The heterochromatin structure
encompasses ~4 kb of DNA neighboring the Rap1-
binding sites, irrespective of its sequence. The
actual structure of the higher-order heterochromatin
is not yet understood.  
 

Adapted from Grunstein, 1997  

 

Hediger et al. used live imaging of yeast telomeres to unveil another function of the Sir 

proteins at telomeres. They found that Ku and Sir proteins share a redudant role in telomere 

anchoring to the nuclear periphery (Hediger et al., 2002). Telomere anchoring is thought to be 

important for the establishment of epigenetic states. Both Ku and Sir support telomere 

anchoring in the absence of eachother, but while Ku's contribution spans the entire cell cycle, 

that of Sirs is limited to the S-phase: In the absence of Ku, telomeres are less efficiently 
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tethered to the nuclear periphery during G1. This work provided evidence for a mechanism 

that explains the juxtaposition of silenced chromatin in distinct sub-nuclear compartments. 

The Ku complex is phylogenetically conserved from bacteria to humans (Daley et al., 

2005). It comprises two subunits, termed Ku70 and Ku80. Its best known functions are in non-

homologous end joining (NHEJ), V(D)J recombination and DNA damage repair where it 

participates in the recognition of double-strand DNA breaks and serves to recruit the 

appropriate protein complexes such as DNA ligase that fulfill the corresponding functions 

(Boulton and Jackson, 1998).  

The work of Tsukamoto et al. identified Sir4 as a binding partner of yKu70 in a yeast 

two-hybrid screen. They could show that in accordance to the previously established roles of 

the Sir proteins that Sir2p, Sir3p and Sir4p but not Sir1 participate in the illegitimate 

recombination, end-joining and double-strand break repair pathways (Tsukamoto et al., 1997). 

Mutations in the corresponding genes confer higher sensitivity to genotoxic stresses such as 

ionising irradiation. Interestingly, upon DNA damage, both Sir and Ku proteins re-localise 

from subtelomeric foci to sites of DNA damage albeit with different kinetics providing support 

for the notion that subtelomeric chromatin serves as a reservoir for proteins that are 

relocated to specific nuclear sites upon physiological stimuli (Martin et al., 1999). 

With regards to the role of the Sir complex in DNA damage repair, it has been 

suggested that its recruitment at sites of DNA damage induces a heterochromatin-like 

structure which may prevent the transcriptional and replication machineries from accessing 

the site until it has been repaired. Alternatively, the localised compact state of chromatin may 

facilitate the re-joining of the damaged DNA  (Critchlow and Jackson, 1998). 

 

2.3.2.1.3 Chromatin silencing at the rDNA locus 
 
Another site where silencing holds important roles in the yeast genome is the loci that 

encode ribosomal RNAs (rDNA). The rDNA locus has a repetitive nature in that it comprises 

a 9.1 kb sequence that is tandemly repeated 100-200 times. Each rDNA repeat encodes the 

35S RNA which is transcribed by RNAPolI and serves as the precursor for the 25S, 18S and 

5.8S rRNAs and the RNAPolIII-transcribed 5S rRNA. These genes are separated by non-

transcribed spacer regions. Sir2p was shown to be more highly associated with these spacer 
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regions than with the 35S coding region and this gave rise to the as yet unproven notion that 

a silencer sequence similar to the one found in mating type loci is also present therein. 

Several RNA PolII-transcribed genes when introduced within the rDNA repeats are silenced 

(Bryk et al., 1997; Fritze et al., 1997; Smith and Boeke, 1997). 

Unlike mating type and telomeric loci, Sir3 and Sir4 are not required for silensing at 

the rDNA loci. Rather an entirely separate Sir2p-containing complex called RENT (for 

regulator of nucleolar silencing and telophase) is required. The RENT complex was identifed 

by two groups using distinct starting points for their investigation. Seeking to understand the 

mechanism of rDNA silensing, Straight et al. compared gel patterns of proteins which interact 

with GST-Sir2 vs. GST-Sir4 C-terminal fragment fusions to identify Sir4p components that 

are specific to Sir2p. They found a protein with an apparent mass of 175 kDa which they 

termed Net1 by virtue of its previously given names (NUS1-nucleolar silencing protein, 

ESC5-establishes silent chromatin and TUB2-telophase arrest bypassed) (Straight et al., 1999).  

Shou et al. also identified Net1p in a genetic screen for proteins that allow a yeast 

strain bearing a deletion of the cdc15 gene and arrests in telophase to survive (Shou et al., 

1999). Cdc15 encodes a protein kinase which is part of a signalling pathway known as the 

mitotic exit network (MEN). The MEN is required for proper exit from mitosis primarily through 

its ability to inactivate mitotic cyclin-dependent kinases. Its function is to induce and maintain 

the release of the phosphatase Cdc14p from the nucleolus to the cytoplasm at anaphase and 

beyond during which Cdc14p dephosphorylates and thus inactivates mitotic kinases allowing 

cells to enter the next G1. To understand the mechanism underlying the genetic interaction 

between Cdc14p and Net1p, Shou et al. used immunoaffinity purification to identify binding 

partners of Net1. Among the proteins identified were Cdc14p and Sir2p (Shou et al., 1999). 

Visintin et al. also indepedently identified Net1p as a Cdc14p partner in a yeast two-hybrid 

screen (Visintin et al., 1999). 

Net1 was shown to be required for normal growth and rDNA silencing. In agreement to 

this, chromatin immunoprecipitation experiments showed that Net1 is associated with rDNA 

loci independent of Sir2p. Conversely, Sir2p binding to rDNA requires the presence of Net1. 

Thus Net1 seems to be the protein that recruits Sir2p to rDNA consistent with the absence of 

Sir4 from these loci. At the same time Cdc14p also binds to the rDNA loci in a Net1-

dependent manner (Straight et al., 1999). The binding of Sir2p, Net1p and Cdc14p to rDNA 
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coincides with their localisation to nucleoli throughout the cell cycle until the 

anaphase/telophase transition where both Sir2p and Cdc14p are released to the cytoplasm. 

The release of Cdc14p from the nucleoli coincides with its activation because when bound to 

Net1p its phosphatase activity is inhibited. 

In strict terms, the observations above do not prove the existence of a ternary complex 

comprising Sir2p, Net1p and Cdc14p. Indeed, Shou et al. even demonstrated that loss of 

rDNA silencing does not bypass lethality caused by a mutation in tem1 whose product is an 

activator of the MEN. This implies two separable functions for Net1p/Cdc14p and 

Net1p/Sir2p complexes. Sequential co-immunoprecipitation experiments, mutational analysis 

on Net1p in an attempt to dissect these two functions in rDNA silencing and mitotic exit as 

well as genetic analysis of the interaction between MEN and Sir2 would be required to firmly 

establish the interconnectivities between these pathways. 

 

2.3.2.2 Regulation of meiotic checkpoint function and recombination 
 

Aside its function in rDNA silencing as part of the RENT complex, the localisation of 

Sir2p in the nucleolus also functions in securing faithful meiotic progression (San-Segundo and 

Roeder, 1999). Proper synapsis of homologous chromosomes during meiosis is guarenteed by 

checkpoint systems. Mutations in meiotic checkpoint genes such as zip1 cause cells to arrest 

in the pachytene phase of meiosis I (Sym et al., 1993). Pch2p is a protein identified in a genetic 

screen for mutants that can bypass the pachytene checkpoint elicited by zip1 mutation. zip1-

pch2 double mutants sporulate and undergo mitotic recombination but the haploid progeny 

show poor viability due to chromosome missegregation. 

The proper function of Pch2p requires its localisation to the nucleolus, an event which 

is dependent on Sir2p. In the absence of Sir2p, Pch2p is localised to the nucleoplasm and 

these cells exhibit high rates of recombination in the rDNA locus similar to cells defective for 

Pch2p alone. This may arise due to the increased presence of the meiotic recombination 

protein Hop1p in the nucleolus. 

The exact role of Sir2p in meiotic checkpoint function is not understood but two pieces 

of experimental evidence suggest that it may contribute through its role in the establishment 

of the structural characteristics of silenced chromatin (San-Segundo and Roeder, 1999). Firstly, in 
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a strain carrying deletion of the rDNA array with the essential rDNA genes provided as an 

extrachromosomal plasmid, Pch2p still localises to nucleoli-like structures but is defective in 

its meitotic checkpoint function. In this strain, mutation in sir3 induces the relocalisation of 

Pch2p and Sir2p to the telomeres and partially restores checkpoint function. A second 

experiment showed that in the presence of intact rDNA, overexpression of Sir4p induces the 

relocalisation of Pch2p to telomeres but only partially abolishes meiotic checkpoint function 

and this is depedent on sir2. This evidence sustains the notion that the telomeric locus 

provides some element similar to the rDNA arrays that supports the meiotic checkpoint 

function of Pch2p. 

Interestingly, mutations in another pachytene checkpoint protein Dot1 (a.k.a. Pch1) 

disrupt Pch2 and Sir2 localisation from the nucleoli (San-Segundo and Roeder, 2000). Dot1 is a 

distinct H3 histone methyltransferase which lacks the charactersitic SET domain of other 

lysine methyltransferases and can trimethylate H3-K79 (Vaquero et al., 2003).  

This implies a possible interconnection between histone methylation and Sir-mediated 

silencing which has not been experimentally addressed further yet. 

 
2.3.2.3 Regulation of DNA replication 
 

Given the association of Sir2p with ORC, it is not surprising that recently a novel role 

for Sir2p in the control of replication has emerged (Pappas et al., 2004). Replication of DNA 

takes place during the S-phase of the cell cycle. However, assembly of pre-replication 

complexes (pre-RC) at origins of replication occurs as early as at the anaphase of the 

previous cell cycle. Cdc6p orchestrates pre-RC assembly by initiating recruitment of its 

components such as the MCM (minichromosome maintainance) helicase to ORC at the 

origins of replication. The temperature-sensitive cdc6-4 mutant is lethal due to its inability to 

assemble pre-RCs.   

A genetic screen for rescue of this phenotype identified mutations in sir2 and to a 

lesser degree sir3 and sir4 as potential candidates. Loss of sir2 was shown to supress the 

lethality of other replication initiation mutants, notably orc-5 and mcm2, but not that of genes 

acting at steps subsequent to pre-RC assembly such as the kinase and DNA polymerase α-

encoding genes cdc7 and cdc17 respectively. Subsequently, chromatin immunoprecipitation 
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experiments showed that Sir2p deletion restored the loading of MCM2 helicase to origins 

albeit to a different extend depending on the ARS tested. 

The exact mechanism by which Sir2p inhibits replication is unclear. Interestingly, 

deletion of two other deacetylases, Hda1p and Rpd3p does not phenocopy the sir2 deletion 

suggesting that the observed effects on pre-RC assembly are specific to Sir2p. It has been 

demonstrated that targeted increase of acetylation near ARS induces earlier activation of the 

affected originsshowing increased recruitment of Cdc45p, a temporal marker for the initiation 

of DNA synthesis (Vogelauer et al., 2002). Thus sir2 may inhibit replication by deacetylating 

histones at ARS, deacetylate a replication complex component or even regulate the 

transcription of a gene required for replication. 

 
2.3.2.4  Sir2 and the regulation of life-span in S. cerevisiae 
 
2.3.2.4.1 Molecular mechanisms that determine life-span in S. cerevisiae 
 

Yeast cells multiply by the budding of a daughter cell from the mother cell. Cell 

division is asymmetrical in that daughter cells are smaller and consist mainly of newly 

synthesised molecules including cell wall components and proteins. Ageing in yeast is 

associated with disinct phenotypes, namely increase in size, sterility and cell surface 

deterioration (Sinclair et al., 1998). The "ageing" of the mother cell can be followed 

microscopically by removing the daughter cell away each generation. Also, because budding 

leaves a scar on the surface of the mother cell, counting of the bud scars can be used to 

define a yeasst cell's age. Thus, it was shown that each yeast cell divides by and large a 

fixed number of times, approximately 20 (Sinclair et al., 1998) indicating that there exists a 

genetic component underlying life-span determination. 

An important work that shed light in the process of ageing in yeast was provided by 

Kennedy et al. (Kennedy et al., 1994) who found that yeast daughter cell derived from old 

mothers exhibited limited life-span. This suggested that a factor may be present in the 

mother cells that accumulates after each cell division and can be transmitted in a stochastic 

manner to the daughter cells at increased propensities as the cell ages. Interestingly, 

subsequent generations of these daughter cells did not inherit the decreased life-span 
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phenotype suggesting that it did not derive from genomic mutations (Kennedy et al., 1994). 

Another major discovery came from a genetic screen by Kennedy et al. based on the fact 

that genes conferring stress resistance also associated with increased longevity (Kennedy et 

al., 1995). Among other genes they isolated SIR4-42 a mutant of the Sir4 gene that conferred 

a 45% increase in life-span. The mutation comprised a truncation at the C-terminus that 

prevented the assembly of the Sir complex at the mating type and telomeric loci because it is 

required for the interaction of Sir4p with Rap1p. However, deletion of Sir4, while abolishing 

mating type locus and telomeric silencing, it also decreases life-span suggesting that the 

SIR4-42 mutant acted as dominant for some functions. It was subsequenlty shown that in 

SIR4-42 strains Sir3p and Sir4p re-localise to nucleoli while this phenomenon is also 

observed in old yeast cells (Kennedy et al., 1997). This observation provided an explanation as 

to why old yeast cells are sterile: relocalisation of the Sir complex alleviates silencing in the 

mating type loci allowing the expression of both a- and α-specific genes. These data further 

suggested a tight link between gene silencing and ageing. 

Kaeberlein et al. (Kaeberlein et al., 1999) discovered that Sir3 and Sir4 deletions 

decreased life-span due to elimination 

of silencing at the mating type loci 

which indirectly caused increased 

levels of rDNA recombination. High 

rDNA recombination is detrimental to 

the yeast cell because it leads to the 

excission of rDNA locus fragments that 

form extrachromosomal rDNA circles 

(ERCs) (Sinclair and Guarente, 1997). 

ERCs contain ARS which drive ERC 

replication in each cell cycle (Figure 2-

14). Thus after each division, mother 

cells accumulate ERCs which are 

thought to titrate away essential 

components for the replication of the 

genome eventually leading to the 

FIGURE 2-14. The ERC model of yeast aging. In young
yeast cells, the rDNA locus comprises 100–200 tandem
copies of a 9.1 kb repeat (red rectangles) and is located
within a compact nucleolus. Homologous recombination
between rDNA repeats results in the formation of an
extrachromosomal rDNA circular molecule, or ERC (red
circle). ERCs can replicate via the ARS elements in each
repeat (ERCs derived from the first ERC are shown in blue).
Asymmetrical segregation of ERCs results in their
exponential accumulation in mother cells. Daughters rarely
inherit ERCs and regenerate their rDNA array, perhaps by
gene conversion. The rate of ERC accumulation is such that
after 15 divisions following ERC excision, the total DNA
content of ERCs may equal that of the total yeast genome.
Cell death occurs by titration of either vital replication or
transcription components.  
 

Figure and legend adapted from Sinclair, 1998
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inability of the cell to divide further. The localisation of Sir2p to the nucleolus at sites of rDNA 

loci, suppresses the recombination that gives rise to ERCs, allowing yeast cells to divide 

more times. Indeed, a second copy of Sir2 suffices to confer an increase of up to 30% in the 

replicative life-span of yeast (Kaeberlein et al., 1999). 

Interestingly, Aguilaniu et al. provided a novel mechanism by which Sir2p may 

increase life span. Their starting point was the fact that protein carbonylation, an irreversible 

effect of oxidative damage, accumulates with replicative age (Aguilaniu et al., 2003). 

Furthermore, carbonylated proteins are preferentially segregated in the mother cells during 

cytokinesis. However, mother cells bearing a Sir2 deletion failed to retain carbonylated 

proteins suggesting that Sir2p protects progeny cells from oxidative damage by dictating the 

retention of oxidatively damaged cellular components at the mother cell. 

 

 

2.3.2.4.2 Regulation of life-span by caloric restriction 
 

Given that limitation of food uptake in mammals and rodents had been shown to result 

in increased longevity, Lin et al. tested whether caloric restriction in yeast could also extend 

its replicative life-span. Limiting the glucose content in the growth medium from 2.0% to 0.5% 

resulted in an increase of average life-span from 21.2 to 26.2 generations (Lin et al., 2000). 

Glucose activates the cAMP/PKA pathway and mutations in its components (e.g. the 

GDP/GTP exchange factor Cdc25) or in enzymes that are involved in glucose metabolism 

such as hexokinase also exhibit increased life-spans (FIGURE 2-15). Thus caloric restriction also 

seems to positively influence replicative life-span in yeast. 

Interestingly, caloric restriction does not increase the life-span of yeast cells carrying 

mutations in the Sir2 gene. Similarly, mutation of the Npt1 gene which is involved in the 

salvage pathway of NAD+ biosynthesis also abolishes the beneficial effects of caloric 

restriction. In agreement to the known function of Sir2p in limiting rDNA recombination, cells 

carrying mutation in the cdc25 gene to mimic caloric restriction show decreased levels of 

recombination of a reporter plasmid concomitant to reduced ERC levels. Subsequent studies 

also demostrated that calorically restricted yeast exhibits enhanced silencing (Lin et al., 2002). 
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From these results it was inferred that the enzymatic 

activity of Sir2p is required for the extension of life-span 

due to limitation of nutrients. This however raised the 

question as to how caloric restriction regulates Sir2p 

activity. 

 

2.3.2.4.3 Proposed mechanisms of Sir2p-mediated life-
span extension by caloric restriction in S. 
cerevisiae 

 
The utilisation of glucose as a carbon source in 

yeast depends on its abundance in the growth environment. 

When glucose is unlimited, pyruvate is directed to the 

fermentation pathway which yields only 2 ATP molecules. 

When glucose is scarce, pyruvate is shunted to the 

tricarboxylic acid cycle (TCA) and respiration to yield 28 

molecules of ATP per glucose molecule. 

 Lin et al. showed that in reduced glucose growth 

ast cells overexpressing Hap4p show increased 

respira

conditions respiration is increased (Lin et al., 2002). To 

determine whether respiration mediates the effects of 

caloric restriction on longevity they deleted the gene 

encoding cytochrome c1 (CYT1) to impede the function of 

the mitochondrial respiratory chain. Such cells were not 

responsive to caloric restriction. Hap4p is a transcription 

factor responsible for the switch from fermentation to 

respiration through activation of many respiratory chain 

genes.  

Ye

tion expressed as increased oxygen consumption, 

have approx. 35% increased life-span while exhibiting enhanced rDNA silencing in a manner 

depending on Sir2p. These effects were dependent on an intact respiratory chain and were 

FIGURE 2-15. Glucose sensing
signaling pathway in S. cerevisiae.
The carbon source glucose
stimulates a signal transduction
pathway including a Ras GTP-
binding protein, a GTP/GDP
exchange factor, an adenylate
cyclase, and cAMP-dependent
protein kinase A (PKA). Without
cyclic AMP, PKA is in a complex with
the inhibitor protein Bcy1. Signalling
is attenuated either by lowering the
glucose levels in the media (caloric
restriction) or by mutating genes that
encode components of the pathway
(for example, Cdc25, Cdc35 or
tyrosine protein kinase (Trk), shown
in red). This reduction in signalling
leads to an increase in silencing by
Sir2 and its NAD cofactor and an
extended life span.  
 

Adapted from Guarente and Kenyon, 2000
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not additive to those elicited by low glucose growth conditions. Furthermore, it is possible that 

Hap4p overxpression resulted in increased resistance to ROS, This was however disproven 

by the fact that these cells exhibited similar sensitivities to oxidising agents and mRNA levels 

of antioxidant enzymes. Based on these observations, Lin et al. proposed that the effects of 

caloric restriction on Sir2 may be either due to the reduced carbon flow through glycolysis 

because of the elevated ATP levels and/or due to increased NAD+/NADH ratio because of 

increased rates of NADH oxidation. Nevertheless both proposals remained experimentally 

unproven. 

Anderson et al. addressed this issue by creating an NAD+-reporter strain. They 

exploited the fact that NadR protein from Salmonella typhimurium binds to a DNA sequence 

called the NAD box in a manner that depends on NAD+ concentration. Their strain expresses 

a fusion of NadR fragment and the transcriptional activation domain of GAL4 so that the 

fusion activates transcription of a gene required for survival under the control of UAS in an 

NAD+-dependent way (Anderson et al., 2003a). Thus fluctuations of intracellular NAD+ levels 

directly correlate with viability. Using this system they found that upon caloric restriction their 

reporter line grew slower because of low NAD+ because the phenotype could be rescued 

with acetaldehyde which induces NADH oxidation and presumably increases the NAD+ pool. 

Furthermore, using highly-sensitive 13C NMR spectroscopy they could show that the 

intracellular pool of NAD+ is not greatly altered by caloric restriction. In vitro deacetylation 

assays also showed that neither Sir2p nor SIRT1 activity are altered by NADH when 

concentrations within the physiological range of NAD+/NADH were used. Finally, depletion of 

NADH by treatment with acetaldehyde did not alter silencing of rDNA reporters suggesting 

that fluctuation of NADH levels are unlikely to affect Sir2 activity. 

In a subsequent study, Anderson et al. investigated whether the natural sirtuin inhibitor 

nicotinamide can alter cellular Sir2p activity. They could show that increased levels of Npt1, 

an enzyme in the NAD+ salvage pathway, suffices to induce life-span extension associated 

with increased silencing and rDNA stability (Anderson et al., 2003b). At the same time steady-

state NAD+ levels were unaltered indicating that the observed effects were not due to 

increased NAD+. Because the above were true for most of the enzymes involved in the NAD+ 

salvage pathway, they concluded that increased flux through this pathway suffices to elicit 

life-span extension. In a follow-up study they investigated whether nicotinamide affects Sir2p 
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activity. Nicotinamide is not only an intermediate in the NAD+ salvage pathway but also one 

of the products of the sirtuin-catalysed deacetylation reaction. Nicotinamide was found to be 

a non-competitive inhibitor of both Sir2p and SIRT1 and decreased the life-span of wild type 

yeast cells concomitant to inducing recombination of rDNA arrays and inhibiting silencing.  

To address whether nicotinamide is important in determining life-span increase upon 

caloric restriction, Anderson et al. showed that caloric restriction could not extend the life-

span of yeast lacking Pnc1 (Anderson et al., 2003b). Interestingly, caloric restriction as well as 

other stress conditions that are known to increase life-span such as heat shock, osmotic 

stress and amino-acid starvation are all potent inducers of Pnc1p protein levels. Increased 

Pnc1p activity could increase Sir2p activity by stimulating NAD+ synthesis. This is unlikely to 

be the case since supplementation of nicotinic acid, the product of the reaction catalysed by 

Pnc1p did not increase gene silencing at rDNA. Furthermore, deletion of Npt1p, a protein that 

feeds nicotinic acid to the NAD+ salvage pathway downstream of Pnc1p, did not affect rDNA 

silencing when intracellular NAD+ levels were restored suggesting that Pnc1p can increase 

Sir2p activity in the absence of an intact NAD+ salvage pathway. Finally, Anderson et al. 

could show that reduction of nicotinamide levels by driving its excretion had a positive impact 

on rDNA silencing as well as life-span. 

Lin et al. then argued that the effects of caloric restriction are actually exerted through 

modulation of the levels of NADH (Lin et al., 2004). They could show that caloric restriction 

decreases NADH levels while it leaves NAD+ levels unaffected. This was dependent on an 

intact mitochondrial respiratory chain and could also be observed in cells with genetically 

increased respiration via the overexpression of the transcription factor Hap4p. Furthermore, 

NADH levels decreased upon caloric restriction indepedently of the presence of Sir2p. In 

vitro analysis of the effects of NADH on Sir2p as well as human SIRT1 showed that NADH 

can act as a competitive inhibitor of both enzymes' catalytic activities.  

In order to examine whether this is applicable in vivo, Lin et al. overexpressed two 

NADH dehydrogenases to induce a decrease of cellular NADH (Lin et al., 2004). These cells 

exhibited increased life-span in the presence of 2% glucose similar to wildtype cells under 

caloric restriction (0.5% glucose) and this  life-span extension was not further enhanced by 

lowering glucose levels. Finally, they overexpressed Nnt1p to reduce the levels of 

nicotinamide and found that caloric restriction would still increase life-span in a mutant Pnc1 
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background suggesting. The authors interpreted this as an indication that in mutant Pnc1 

strains, elevated nicotinamide levels mask the beneficial effects of decreased NADH. 

However it is important to note that this conclusion is the result of alternative interpretation of 

the experiments by Anderson et al. rather than hardcore experimental evidence to support 

Lin et al.'s claims. Furthermore, despite their life-span measurements, Lin et al. provided no 

evidence as to the actual downstream effects such as ERC accumulation or silencing 

function of Sir2p.  

Recent genetic studies by Kaeberlein et al. have put both these models under 

scrutiny. To begin with, Kaeberlein et al. could show that caloric restriction is able to actually 

increase life-span in the absence of Sir2p (Kaeberlein et al., 2004). Subsequently, they used 

respiratory-deficient yeast strains with a broader range of glucose concentrations than used 

before to show that even in the original strain background used by Lin et al. Sir2p is 

dispensable for the caloric restriction-induced extension of longevity (Kaeberlein et al., 2005a). 

Caloric restriction did not alter Sir2p activity based on an experiment assaying telomeric 

silencing efficiency. In addition they could show that in the absence of Sir2p, nicotinamide 

was able to reduce replicative life-span while this was also true for the effects of caloric 

restriction. Surprisingly, they found that although in strains lacking Sir2p nicotinamide did not 

reduce life-span consistent with the notion that it targets Sir2p, when these strains where 

subjected to caloric restriction nicotinamide only partially inhibited life-span extension.  

These data implicated that there exist at least one Sir2p-independent pathway 

mediating longevity in response to caloric restriction and that nicotinamide inhibits both 

pathways. Indeed, using a large-scale screen for genes that mediate longevity in yeast, 

Kaeberlein et al. subsequently identified genes whose deletion increased life-span. Among 

them were components of the yeast TOR1 pathway and SCH9 kinase the latter being an 

orthologue of mammalian PKB (Akt) kinase. Consistent with their previous conclusions TOR1 

and SCH9 deletions extended yeast life-span in the absense of Sir2 (Kaeberlein et al., 2005b). 

The works presented above exemplify one of the many controversies present in the 

field of Sir2 biology. Clearly, some differences in the conclusion drawn from each study may 

be accounted for due to differences in yeast strains and experimental conditions used. While 

Sir2p overexpression can extend replicative life-span, whether it also plays a role in life-span 

extension upon caloric restriction remains at best uncertain. Current evidence supports a 
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model where Sir2 acts in parallel with another independent pathway which is driven by 

caloric restriction, yet the molecular mechanisms of this remain to be identified. 

 
2.3.2.5 Homologues of Sir2 (Hst) proteins 
 

Apart from Sir2p only limited information exists about the other four yeast sirtuins, 

Hst1-4 (for homologues of Sir two 1-4) (FIGURE 2-16). Brachmann et al. showed that Hst1p can 

rescue the silencing defect of Sir2 mutants while an Hst3 and Hst4 double mutant strain 

exhibits telomeric silencing defects. Furthermore, they could demonstrate that Hst3 and Hst4 

contribute to genomic stability. Interestingly, in an advanced genetic screen for synthetic 

lethality, Pan et al. discovered a broad genetic interaction between Hst3 and replication 

machinery components. Hst3 and Hst4 also interact genetically with eachother albeit the 

latter does not share the synthetic lethal interactions of the former with replication 

components (Pan et al., 2006). 

Bedalov et al. provided evidence supporting a role for Hst1p as a cellular NAD+ 

sensor. They could show that whereas the NAD+ salvage pathway is constitutively active, low 

intracellular NAD+ concentrations potently induce the de novo pathway and that Hst1p is a 

transcriptional repressor of these genes (Bedalov et al., 2003). Consistent with the notion that 

Hst1p senses NAD+ levels, they could show that Hst1p has  higher Km for NAD+ than other 

yeast sirtuins. 

 Halme et al. identified Hst1p and Hst2p as the deacetylases responsible for the 

epigenetic silencing of FLO10 (Halme et al., 2004). FLO genes express cell-wall glycoproteins 

that regulate cell adhesion. Only one family member is expressed  while the others are 

silenced due to their proximity near telomeres. Expression of the silenced genes allows for 

variation of cell-surface properties which is functionally important for processes such as 

pseudohyphal growth in response to nutrient limitation. Thus Hst1p and Hst2p can influence 

the cell-surface properties of a yeast cell through epigenetic regulation of FLO gene 

epxression. In the light of the results presented by Bedalov et al. it would be of interest to 

investigate whether a drop in intracellular NAD+ levels can function as an indicator of the 

metabolic status of the cell and thus influence FLO gene expression contributing to the 

phenotypic changes accompanying nutritional availability. 
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SIR2 MTIPHMKYAVSKTSENKVSNTVSPTQDKDAIRKQPDDIINNDEPSHKKIKVAQPDSLRETNTTDPLGHTKAALGEVASMELKPTNDMDPLAVSAASV 
HST1 MNILLMQRIVSFILVVSQGRYFHVGELTMTMLKRP-------Q---------EEESDNNATKKLKTRLT---------------------------- 
HST2 ------------------------------------------------------------------------------------------------- 
HST3 ------------------------------------------------------------------------------------------------- 
HST4 ------------------------------------------------------------------------------------------------- 
 
SIR2 VSMSNDVLKPETPKGPIIISKNPSNGIFYGPSFTKRESLNARMFLKYYGAHKFLDTYLPEDLNSLYIYYLIKLLGFEVKDQALIGTINSIVHINSQE 
HST1 --------------YPCILGKDKVTGKFIFPAITKDDVMNARLFLKDNDLKTFLEYFLPVEVNSIYIYFMIKLLGFDVKDKELFMALNSNITSNKER 
HST2 ---------------------------------------------------------------------------------------MSVSTASTEM 
HST3 -------------------------------------------------------------MTSVSPSPPASRSGSMCSDLPSSLQTEKLAHIIGLD 
HST4 --------------------MKQKFVLPITPPSTAEKKPQTENRCNENLKPRRLLPQLKKSVRNRKPRLSYRPELNSVFDLDAYVDSTHLSKSQRHH 
 
SIR2 RVQDLGSAISVTN----VEDPLAKKQTVRLIKDLQRAINKVLCTRLRLSNFFTIDHFIQKLHTARKILVLTGAGVSTSLGIPDFRS-SEGFYSKIKH 
HST1 SSAELSSIHAKAEDEDELTDPLEKKHAVKLIKDLQKAINKVLSTRLRLPNFNTIDHFTATLRNAKKILVLTGAGVSTSLGIPDFRS-SEGFYSKIRH 
HST2 SVRKIAAHMKSNP--------------------------------------------------NAKVIFMVGAGISTSCGIPDFRSPGTGLYHNLAR 
HST3 ADDEVLRRVTKQLS------------------------------------------------RSRRIACLTGAGISCNAGIPDFRS-SDGLYDLVKK 
HST4 MDRDAGFISYALN-------------------------------------------------YSKRMVVVSGAGISVAAGIPDFRS-SEGIFSTVNG 
 
SIR2 -----LGLDDPQDVFNYNIFMHDP--SVFYNIANMVLPPEK--IYSPLHSFIKMLQMKGKLLRNYTQNIDNLESYAGISTD---------------- 
HST1 -----LGLEDPQDVFNLDIFLQDP--SVFYNIAHMVLPPEN--MYSPLHSFIKMLQDKGKLLRNYTQNIDNLESYAGIDPD---------------- 
HST2 -----LKLPYPEAVFDVDFFQSDP--LPFYTLAKELYPGNF--RPSKFHYLLKLFQDKDVLKRVYTQNIDTLERQAGVKDD---------------- 
HST3 DCSQYWSIKSGREMFDISLFRDDFKISIFAKFMERLYSNVQLAKPTKTHKFIAHLKDRNKLLRCYTQNIDGLEESIGLTLSNRKLPLTSFSSHWKNL 
HST4 -----GSGKDLFDYNRVYGDESMS--LKFNQLMVSLFRLSKNCQPTKFHEMLNEFARDGRLLRLYTQNIDGLDTQLPHLSTN-------VPLAKPIP 
 
SIR2 KLVQCHGSFATATCVTCHWNLPGERIFNKIRN------LELPLCPYCYKKRREYFPEGYNNKVGVAASQGSMSERPPYILNSYGVLKPDITFFGEAL 
HST1 KLVQCHGSFATASCVTCHWQIPGEKIFENIRN------LELPLCPYCYQKRKQYFPMSNGNNTVQTNINFNS---P--ILKSYGVLKPDMTFFGEAL 
HST2 LIIEAHGSFAHCHCIGCGKVYPPQVFKSKLAEHPIKDFVKCDVCGELVKPAIVFFGEDLPDSFSETWLNDSEWLREKITTSGKHPQQPLVIVVGTSL 
HST3 DVVQLHGDLKTLSCTKCFQTFPWSR----------------YWSRCLRRGE---LPLCPDCEALINKRLNEG---KRTLGSNVGILRPNIVLYGENH 
HST4 STVQLHGSIKHMECNKCLNIKPFD------------P--ELFKCDDKFDSRTEIIPSCPQCEEYETVRKMAG-----LRSTGVGKLRPRVILYNEVH 
 
SIR2 PNKFHKSIREDI------LECDLLICIGTSLKVAPVSEIVNMVPSHVPQVLINRD-------------PVKHAEFDLSLLGYCDDIAAMVAQKCGWT 
HST1 PSRFHKTIRKDI------LECDLLICIGTSLKVAPVSEIVNMVPSHVPQILINRD-------------MVTHAEFDLNLLGFCDDVASLVAKKCHWD 
HST2 AVYPFASLPEEIPRKVKRVLCNLETVGDFKANKRPTDLIVHQYSDEFAEQLVEELGWQEDFEKILTAQGGMGDNSKEQLLEIVHDLENLSLDQSEHE 
HST3 PSCEIITQGLNLD--IIKGNPDFLIIMGTSLKVDGVKQLVKKLSKKIHDRGGLIILVNKTPIGESSWHGIIDYQIHSDCDNWVTFLESQIPDFFKTQ 
HST4 PEGDFIGEIANN---DLKKRIDCLIIVGTSLKIPGVKNICRQFAAKVHANRGIVL-------------YLNTSMPPKNVLDSLKFVDLVVLGDCQHV 
 
SIR2 IPHKKWNDLKNKNFKCQEKDKGVYVVTSDEHPKTL------------------------------------------------------------- 
HST1 IPHKKWQDLKKIDYNCTEIDKGTYKIKKQPRKKQQ------------------------------------------------------------- 
HST2 SADKKDKKLQRLNGHDSDEDGASNSSSSQKAAKE-------------------------------------------------------------- 
HST3 DQIKKLRQLKREASDLRKQMKAQKDSIGTPPTTPLRTAQGIDIQGNNELNTKIKSLNTVKRKILSPENSSEEDEEENLDTRKRAKIRPTFGDNQAS 
HST4 TSLL-------------------------------------------------------------------------------------------- 

FIGURE 2-16. Multiple sequence alignment of the yeast sirtuin family members. Accession numbers of
the sequences used are repsectively from top to bottom: P06700,  P53685, P53686, P53687, P53688,
P0A2F3, O28597. 
 

 Perrod et al. showed that Hst1p and Hst2p are not required for rDNA and for either 

rDNA or telomeric silencing respectively (Perrod et al., 2001). Even though Hst2p is not able 

to compensate for the silencing defects upon Sir2 loss, it seems to have a dominant 

negative effect on telomeric silencing upon overexpression. Conversely, overexpression of 

Hst2p enhances rDNA silencing in a wild-type Sir2 background. Strikingly, Hst2p is a 

cytoplasmic protein. This led Perrod et al. to hypothesise the presence of a Sir2p 

interacting partner that is required for telomeric silencing and undergoes nucleocytoplasmic 

shuttling. This partner is sequestered by Hst2p inducing the translocation of Sir2p to the 

rDNA locus where it enhances silencing. 

 In a recent study, Lamming et al. showed that Hst2p is required for caloric restriction-

induced life-span extension by supressing rDNA recombination in the absence of Sir2 

providing further support to the notion that despite the observed non-redundancy between 
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them, yeast sirtuins may share some functional roles (Lamming et al., 2005). The potential 

significance of this will be analysed in a later part of this thesis. 

 
2.3.3  Caenorhabditis elegans sirtuins 
 

The nematode C. elegans sirtuin family comprises 

four members. C. elegans provided an excellent 

multicellular model organism for the study of sir2.1 effects 

on longevity. In C. elegans, a pathway orthologous to the 

insulin signalling system has been identified (FIGURE 2-17) 

(Kenyon, 2001). Downregulating the levels of the insulin/IGF-

1 receptor orthologue DAF2 results in doubling the life-

span of these animals. In addition, mutation in the age-1 

(PI-3 kinase orthologue) and pdk1 (phosphoinositide-

dependent kinase orthologue) genes also extend life-span. 

Life-span extension in these mutants is abolished in the 

background of daf-16 mutations, a gene encoding a 

forkhead transcription factor. Furthermore, this pathway 

regulates the developmental arrest of worms induced by 

food deprivation, a state known as dauer (Kenyon, 2005). 

This can only occur prior to reproductive maturation of the 

animal as adult worms do not form dauers upon caloric 

restriction. Dauers are resistant to oxidative stress and 

long-lived and can resume development and progress to 

adulthood upon repletion of nutrients. 

FIGURE 2-17. The IGF signaling
pathway in C. elegans. See
accompanying text and Chapter 1
for details. 
 

Adapted from Guarente and Kenyon, 2000

 Tissenbaum and Guarente screened several C. elegans strains carrying chromosomal 

duplications and identified one which exhibited significant extension in life-span (up to 50%) 

(Tissenbaum and Guarente, 2001). This strain contained a duplication  of a chromosome IV region 

spanning the sir2.1 locus. Transgenic lines created by injection of the sir2.1 genomic 

fragment also lived longer suggesting that the sir2.1 gene product mediated this effect. daf-

16 mutant worms have shorter life-spans that could not be extended by overxpression of 

 72



Chapter 2 - The sirtuin family of protein deacetylases 

sir2.1. Furthermore, sir2.1 overexpression did not extent further the life-span of worms 

carrying mutations in the daf-2 gene. These experiments firmly established SIR2.1 as a 

mediator of life-span within the C. elegans insulin signalling system. 

 Mutations in the insulin signalling pathway synergise with mutations in the TGF-β 

pathway to affect life-span. daf-1 and daf-4 encode two types of TGF-β receptors and 

mutations in either of these genes cause a temperature-sensitive constitutive dauer 

phenotype. sir2.1 overexpression alone did not induce dauer formation but in the background 

of either daf-1 and daf-4 mutations it increased markedly the proportion of animals that 

entered the dauer stage. These experiments further supported the notion that by modulating 

the C. elegans insulin pathway, SIR2.1 regulates longevity and that as in the unicellular S. 

cerevisiae, it holds an evolutionarily conserved function. 

 A later study by Wang and Tissenbaum further investigated the role of sir2.1 in the 

worm by employing a loss-of-function approach. They used a strain with a deletion in the 

sir2.1 locus that eliminates half of the sirtuin core domain and is likely to result in a null allele 

(Wang and Tissenbaum, 2006). Worms mutated for sir2.1 showed a slight decrease in mean life-

span which was further exuberated when these worms were exposed to stresses such as 

heat-shock, H2O2 and UV irradiation. Next, they tested for genetic interactions with daf-2 

mutants to establish the exclusivity as well as the topology of the pathway with respect to life-

span. Interestingly, worms mutated in both daf-2 and sir2.1 had the same life-span as worms 

mutated in daf-2 only suggesting that sir2.1 is upstream of the insulin receptor or alternatively 

in a parallel pathway. 

unc-13, a gene positioned genetically upstream of daf-2, is a regulator of 

neurotransmiter release and when mutated it results in a moderate life-span extension in a 

daf-16 dependent manner. Mutations in sir2.1 could partially suppress the long-lived 

phenotype of unc13 mutant worms. When in this double-mutant background a mutation of 

daf-16 was added, unc-13 life-extension could be completely suppressed suggesting that 

sir2.1 and daf-16 have distinct functions in life-span determination in C. elegans. 

Interestingly, one of the many phenotypes of the unc-13 mutants a defect in food ingestion 

implying that life-span extenstion in these mutants is a by-product of caloric restriction.  

Mutations in the eat-2 gene are thought to mimick caloric restriction because of 

pharyngeal defects leading to slower and irregular pumping. Accordingly, eat-2 mutant 
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worms live longer. Worms carrying mutations in both eat-2 and sir2.1 have wild-type life-

spans suggesting that the effects of caloric restriction on longevity are dependent on the 

sir2.1 gene (Wang and Tissenbaum, 2006). These data provided experimental evidence for the 

involvement of sir2.1 in regulating caloric restriction-driven extension of worm life-span and 

that these effects are only partially overlapping with those of daf-16.  

 Underlying the validity of these findings, Viswanathan et al. exploited the compound 

resveratrol, previously shown to enhance the activity of SIRT1, to probe the signalling 

pathways mediating longevity in C. elegans. Resveratrol was found to increase life-span in a 

manner dependent on sir2.1 but independent of daf-16 (Viswanathan et al., 2005). Furthermore, 

resveratrol treatment in combination with sir2.1 overexpression had additive effects on life-

span, which the authors interpreted as an indication that resveratrol increases life-span via a 

sir2.1-independent pathway. This result could also be interpreted as super-activation of 

already overexpressed sir2.1 by resveratrol according to the proposed role of the compound 

as an activator of sirtuins, a notion supported by data in the same work which show that the 

effects of resveratrol on longevity are abolished in a sir2.1 mutant strain. On the other hand, 

unlike resveratrol, sir2.1 overexpression increases life-span in a manner fully dependent on  

daf-16.  

Wanting to explore the molecular mechanisms involved in resveratrol-induced 

increase in life-span, Viswanathan et al., analysed gene expression profiles of worms treated 

with this compound. A class of genes that was prominently induced by resveratrol treatment 

encodes PQN [prion-like asparagine(Q)/glutamine(N)-rich] and its subgroup ABU (activated 

in blocked unfolded protein response) which, as the name implies, act in response to ER 

stresses when the canonical UPR (unfolded protein response) pathway malfunctions. ER 

responses dictate cell survival upon different stress conditions so resveratrol may affect life-

span by activating this pathway to promote survival. RNAi-mediated downregulation of 

PQN/ABU proteins reduced or even completely abolished (in the case of ABU-11) the 

resveratrol-induced increase in longevity. Consistent with the notion that pqn gene activation 

correlates with  increased life-span, transgenic animals overxpressing ABU-11 showed life-

span extension up to 28% in a manner dependent on ABU-11 expression levels. 

Resveratrol was expected to activate SIR2.1 which could in turn induce transcription 

of the pgn/abu genes. Surprisingly, sir2.1 mutant worms showed higher levels of abu-11 
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mRNA and other pqn genes while SIR2.1 overxpression had the reverse effect implying that 

SIR2.1 is a repressor of these genes. Importantly, gene expression profiles dictated by 

resveratrol treatment did not include genes activated in response to other stresses such as 

heat-shock, oxidative stress or ethanol and resveratrol did not induce a general ER stress 

response as evidenced by its inability to affect expression of the UPR pathway genes 

(Viswanathan et al., 2005).  

FIGURE 2-18. Proposed roles of SIR2.1 in
determination of life-span in C. elegans. See
text for details. 

This work, while it opens a completely 

new vista on pathways mediating longevity in C. 

elegans, also raises questions on the action of 

SIR2.1 therein. Conspicuously, sir2.1 is required 

for resveratrol-induced life-span extension which 

in turn is associated with elevated pqn gene 

expression. At the same time resveratrol is 

proposed to be a sirtuin activator and SIR2.1 

ovexpression suffices to increase life-span in a 

manner that can be further stimulated by 

resveratrol. On the other hand SIR2.1 seems to 

repress pqn gene expression. To explain these 

disrepancies, drawing from the studies of Borra et al. (Borra et al., 2005) and Kaeberlein et al., 

(Kaeberlein et al., 2005) Viswanathan et al. propose that resveratrol is either an activator or 

inhibitor of sirtuins depending on the substrate the enzyme encounters. In the context of their 

experiments resveratrol would be an inhibitor of SIR2.1 (FIGURE 2-18). On the other hand, while 

abu-11 overexpression is sufficient to increase life-span, sir2.1 mutants, which have elevated 

ABU-11, do not live longer. It is possible that a third sir2.1-dependent pathway which is not 

inhibited by resveratrol acts in parallel to the pqn pathway to promote longevity. It is also 

conceivable that, like in the case of nuclear receptor-driven transcription, SIR2.1 can either 

activate or repress transcription depending on the context of protein complexes it participates 

in or even modulate the content of such complexes itself, while resveratrol can act 

exclusively as an activator of SIR2.1. Notwithstanding this added complexity, these novel 

observations further triggered our thinking on the mode of action of SIR2.1 in C. elegans and 

is likely to fuel the quest to find parallels in mammalian cells. 
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 2.3.4 Drosophila melanogaster sirtuins 
 

Five orthologues of the yeast Sir2 have been identified in Drosophila (CG5216, 

CG5085, G3187, CG6284, and CG11305, FlyBase), among which dSir2 (CG5216) shares 

the highest homology with and was actually shown to exhibit NAD+-dependent deacetylase 

activity. dSir2 localises primarily in the nucleus in cultured Drosophila cells and the animal 

but is found to be exclusively cytoplasmic in the syncytial blastoderm and both cytoplasmic 

and nuclear during late embryogenesis. The dSir2 mRNA is present throughout 

emryogenesis, is markedly downregulated in larvae and returns to higher levels in the pupal 

and adult stages. In particular, the presence of dSir2 transcripts within the first hours of 

emryogenesis imply maternal  effect (Rosenberg and Parkhurst, 2002).  

Indeed, embrya derived from mothers with reduced dSir2 contribution exhibit 

segmentation defects due to aberant pair rule gene expression as hinted by the derepression 

of the secondary pair rule gene fushi tarazu (ftz). This phenocopies reduced funtion of a 

primary pair rule gene, hairy, which is a member of the basic helix-loop-helix (bHLH) family of 

repressors Idiscussed in more detail below) and behaves genetically as a repressor of ftz. 

Consistent with this hypothesis, dSir2 and hairy interact genetically to determine embryonic 

segmentation as well as physically in a biochemical binding assay via a basic aminoacid 

motif conserved in bHLH proteins (Rosenberg and Parkhurst, 2002).  In fact, another bHLH 

protein, Deadpan, also interacted with dSir2. Deadpan is involved in sex determination by 

participating in the expression of a gender-specific transcipt sex lethal (sxl). In agreement to 

this, lower dSir2 resulted in male-specific lethality due to aberrant dosage compensation 

providing evidence for the physiological significance of the observed biochemical interaction 

with Deadpan (Rosenberg and Parkhurst, 2002).  

More recently, a report by Astrom et al. has challenged the above conclusions based 

on the fact that the dSir2 mutant strain used for these experiments could be fully 

complemented by a strain they generated which lacked most of the dSir2 ORF (Astrom et al., 

2003). Using this strain, Astrom et al. also demonstrated that viability of Sxl null male flies is 

not sensitive to dSir2 levels suggesting that the effects observed by Roseneberg and 

Parkhurst reflected extraneous mutations in the strain used in their studies.  
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Another well characterised occurrence of gene silencing in Drosophila is mediated by 

the polycomb group proteins (PcG), best known for their involvement in the spatial regulation 

of homeobox gene expression during development. PcG comprises several chromatin-

modifying proteins that are recruited to the DNA by means of specialised regulatory elements 

called polycomb response elements (PREs). 

dSir2 deletion was found to enhance the PcG mutant phenotype "extra sex combs" via 

a PRE-dependent mechanism (Furuyama et al., 2004). Consistent with a role in polycomb 

silencing, dSir2 interacts directly and co-localises with the PcG protein E(Z) while it co-

fractionates with other members of a previously known E(Z) complex from larval extracts. 

One of these proteins, Rpd3 is also a deacetylase found to affect the expression of a largely 

distinct set of genes. Disruption of  dSir2 does not affect the localisation of PcG components 

to chromatin suggesting that the role of dSir2 in this context is not exerted through regulation 

of PcG protein recruitment. Thus the functional significance of dSir2 in this distinct E(Z) 

complex remains to be elucidated. Further insighst into the potential role of sirtuins in 

polycomb-mediated repression were provided by the identification of a mammalian complex 

comprising the mammalian enhancer of zeste orthologue Ezh2 and SIRT1 and will be 

discussed in section 2.3.5.1.3. 

dSir2 associates with both heterochromatin and euchromatin. Several groups reported 

that dSir2  mutations affect heterochromatin silencing a phenomenon known in Drosophila as 

position effect variegation (PEV). Assaying for PEV is attained in reporter fly strains by 

placing the white gene in the context of DNA derived from genomic regions known to be 

subject to silencing. When mutated, a gene thought to mediate PEV would alleviate silencing 

of the reporter gene and the eyes of these animals would show red patches corresponding to 

areas with defective silencing. Using such an assay, Rosenberg and Parkhurst suggested 

that dSir2 participates in heterochromatic but not telomeric silening (Rosenberg and Parkhurst, 

2002). Newman et al. speculated that loss of dSir2 function results in impairment of 

heterochromatin formation or maintainance, surprisingly, though, they have omitted to 

substantiate this by studying the banding pattern of salivary gland chromosomes (Newman et 

al., 2002). In the same study, dSir2 was found to share similar distribution pattern with dCBP, 

an acetyltransferase which was found to be associated with SIRT1 is mammalian cells (see 

later) and was also implicated in heterochromatin formation. 
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dSir2 loss-of-function mutations reduce Drosophila life-span when animals with 

matched genetic backgrounds are compared (Rogina and Helfand, 2004). Furthermore, when 

dSir2 was overexpressed under the regulation of a strong promoter, an extension of up to 

57% was observed. dSir2 was shown to be highly expressed in neuronal tissues and 

neuronal-specific dSir2 overexpression was sufficient to induce an increase in life-span. 

Significantly, calorie restriction could not further increase longevity in dSir2-overexpressing 

animals suggesting that the effects of caloric restriction on longevity in Drosophila are 

mediated  by dSir2 (Rogina and Helfand, 2004).  

 

2.3.5 The mammalian sirtuin family 
 
2.3.5.1 SIRT1 
 
2.3.5.1.1 Expression and genetic ablation of SIRT1 in the mouse 
 

Since the description of the mammalian sirtuin family, SIRT1 (also referred to as 

mSir2α or Sir2α in the mouse) has attracted most of research efforts to elucidate its function 

as it has been considered the functional orthologue of scSir2. This was based on the fact that 

it exhibits the highest homology compared to the other mammalian sirtuins, it is localised in 

the nucleus and was shown to complement the silencing defects of sir2-defective strains. 

Furthermore, SIRT1 shares the characteristic N- and C-terminal extensions flanking the 

conserved sirtuin core domain laso present in scSir2. A multiple sequence alignment of 

SIRT1 with the other six human famiy members is shown in FIGURE 2-18. 

SIRT1 mRNA is ubiquitously expressed in all mouse tissues tested (Sakamoto et al., 

2003; McBurney et al., 2003a). Quantitative expression analysis indicated that SIRT1 is highly 

expressed in the mouse embryo early during development but progressively declines to 

lower amounts which remain constant into adulthood. The highest levels of SIRT1 mRNA 

were found in the lung and testes (Sakamoto et al., 2003). Immunohistochemical studies also 

showed ubiquitous expression of SIRT1 with predominant presence of the protein in the 

heart, brain, spinal cord and dorsal root ganglia at E10.5-13.5 (Sakamoto et al., 2003). McBurney 

et al. also showed that SIRT1 protein is highly expressed in mouse emryonic stem (ES) cells  
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 FIGURE 2-19. Multiple sequence alignment of sirtuin members from different species. Accession
numbers of the sequences used are respectively from top to bottom: Q96EB6,  Q8IXJ6, Q9NTG7, Q9Y6E7,
Q9NXA8,  Q8N6T7, Q9NRC8. 

SIRT1 MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREVPAAARGCPGAAAAALWREAEAEAAAAGGEQ 
SIRT2 -----------------------------------------------------------------MAEPDPSHPLET-------QAGKVQ 
SIRT3 --------MAFWGWRAAAALRLWGRVVERVEAGGGVGPFQACGCRLVLGGRDDVSAGLRGSHGARGEPLDPARPLQRPPRPEVPRAFRRQ 
SIRT4 ------------------------------------------------------------------------------------------ 
SIRT5 ----------------------------------------------------------------------------------------MR 
SIRT6 ---------------------------------------------------------------------------------------MSV 
SIRT7 ----------------------------------------------MAAGGLSRSERKAAERVRRLREEQQRERLRQVSRILRKAAAERS 
 
SIRT1 EAQATAAAGEGDNGPGLQGPSREPPLADNLYDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWTPRP 
SIRT2 EAQDSDSDSEGGAAGGEADMDFLRNLFSQTLSLGSQKERL-------------------------------------------------- 
SIRT3 PRAAAPSFFFSSIKGGRRSISFSVGASSVVGSGGSSDK---------------------------------------------------- 
SIRT4 MKMSFALTFRSAKGRWIANPSQPCSKASIGLFVPASPP---------------------------------------------------- 
SIRT5 PLQIVPSRLISQLYCGLKPPASTRNQICLKMARPSSSM---------------------------------------------------- 
SIRT6 NYAAGLSPYADKGKCGLPEIFDPPEELER------------------------------------------------------------- 
SIRT7 AEEGRLLAESADLVTELQGRSRRREGLKRRQEEVCDDPEE-------------------------------------------------- 
 
SIRT1 RIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDINTIEDAVKLLQECKKIIVLTGAGVSVSCGI 
SIRT2 ----------------------------------LDELTLEGVARYMQSE---------------------RCRRVICLVGAGISTSAGI 
SIRT3 -----------------------------------GKLSLQDVAELIRAR---------------------ACQRVVVMVGAGISTPSGI 
SIRT4 ----------------------------------LDPEKVKELQRFITLS-----------------------KRLLVMTGAGISTESGI 
SIRT5 ----------------------------------------ADFRKFFAKA-----------------------KHIVIISGAGVSAESGV 
SIRT6 --------------------------------------KVWELARLVWQS-----------------------SSVVFHTGAGISTASGI 
SIRT7 ----------------------------------LRG-KVRELASAVRNA-----------------------KYLVVYTGAGISTAASI 
 
SIRT1 PDFRSRDGIYARLAVDFPDLPDPQAMFDIEYFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSD----KEGKLLRNYTQNIDTLEQVAGI 
SIRT2 PDFRS-PSTGLYDNLEKYHLPYPEAIFEISYFKKHPEPFFALAKELYPGQFKPTICHYFMRLLK----DKGLLLRCYTQNIDTLERIAGL 
SIRT3 PDFRS-PGSGLYSNLQQYDLPYPEAIFELPFFFHNPKPFFTLAKELYPGNYKPNVTHYFLRLLH----DKGLLLRLYTQNIDGLERVSGI 
SIRT4 PDYRS-EKVGLYARTDRRPIQHGDFVRSAPIRQRYWARNFVGWPQFSS--HQPNPAHWALSTWE----KLGKLYWLVTQNVDALHTKAGS 
SIRT5 PTFRG--AGGYWRKWQAQDLATPLAFAHNPSR---VWEFYHYRREVMGS-KEPNAGHRAIAECETRLGKQGRRVVVITQNIDELHRKAGT 
SIRT6 PDFRG-----------------PHGVWTMEER--GLAPKFDTTFESAR----PTQTHMALVQLER----VGLLRFLVSQNVDGLHVRSGF 
SIRT7 PDYRG-----------------PNGVWTLLQK----GRSVSAADLSEA---EPTLTHMSITRLH----EQKLVQHVVSQNCDGLHLRSGL 
 
SIRT1 QR--IIQCHGSFATASCL--ICKYKVDCEAVRGD---I-FNQVVPRCPRCPAD-EPLAIMKPEIVFFGENLPEQFHR---AMKYDKDEVD 
SIRT2 EQEDLVEAHGTFYTSHCVSASCRHEYPLSWMKEK---I-FSEVTPKCEDCQS------LVKPDIVFFGESLPARFFS---CMQSDFLKVD 
SIRT3 PASKLVEAHGTFASATCT--VCQRPFPGEDIRAD---V-MADRVPRCPVCTG------VVKPDIVFFGEPLPQRFL----LHVVDFPMAD 
SIRT4 RR--LTELHGCMDRVLCL--DCGEQTPRGVLQER---F-QVLNPTWSAEAHG------LAPDGDVFLSEEQVRSFQV-PTCVQCGGHLKP 
SIRT5 KN--LLEIHGSLFKTRCT--SCGVVAEN-------------YKSPICPALSGK-----GAPEPGTQDASIPVEKLPR-CEEAGCGGLLRP 
SIRT6 PRDKLAELHGNMFVEECA--KCKTQYVRDTVVGT---MGLKATGRLCTVAKARGLRACRGELRDTILDWEDSLPDRD-LALADEASRNAD 
SIRT7 PRTAISELHGNMYIEVCTSCVPNREYVRVFDVTERTALHRHQTGRTCHKCGT------QLRDTIVHFGERGTLGQPLNWEAATEAASRAD 
 
SIRT1 LLIVIGSSLKVR---PVALIPSSIPHEVPQILINREPLPHLHFDVELLGD--CDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQK 
SIRT2 LLLVMGTSLQVQ---PFASLISKAPLSTPRLLINKEKAGQSDPFLGMI---------MGLGGGMDFDSKKAYRDVAWLGECDQGCLALAE 
SIRT3 LLLILGTSLEVE---PFASLTEAVRSSVPRLLINRDLVG-------------------------PLAWHPRSRDVAQLGDVVHGVESLVE 
SIRT4 DVVFFGDTVNPD---KVDFVHKRVKEADSLLVVGSSLQVYS-------------------G--------YRFILTAWEKKLPIAILNIGP 
SIRT5 HVVWFGENLDPA---ILEEVDRELAHCDLCLVVGTSSVVYP---------------------------AAMFAPQVAARGVPVAEFNTET 
SIRT6 LSITLGTSLQIR---PSGNLPLATKRRGGRLVIVNLQPTKHDRHADLRIHGYVDEVMTRLMKHLGLEIPAWDGPRVLERALPPLPRPPTP 
SIRT7 TILCLGSSLKVLKKYPRLWCMTKPPSRRPKLYIVNLQWTPKDD-------------WAALKLHGKCDDVMRLLMAELGLEIPAYSRWQDP 
 
SIRT1 ELAYLSELPPTPLHVSEDSSSPERTSPPDSSVIVTLLDQAAKSNDDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENPDLKNVGSSTGE 
SIRT2 LLGWKKELEDLVRREHASIDAQSGAGVPNPSTSASPKKSPPPAKDEARTTEREKPQ---------------------------------- 
SIRT3 LLGWTEEMRDLVQRETGKLDGPDK------------------------------------------------------------------ 
SIRT4 TRSDDLACLKLNSRCGELLPLIDPC----------------------------------------------------------------- 
SIRT5 TPATNRFRFHFQGPCGTTLPEALACHENETVS---------------------------------------------------------- 
SIRT6 KLEPKEESPTRINGSIPAGPKQEPCAQHNGSEPASPKRERPTSPAPHRPPKRVKAKAVPS------------------------------ 
SIRT7 IFSLATPLRAGEEGSHSRKSLCRSREEAPPGDRGAPLSSAPILGGWFGRGCTKRTKRKKVT----------------------------- 
 
SIRT1 KNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVYSDSEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFY 
SIRT2 ------------------------------------------------------------------------------------------ 
SIRT3 ------------------------------------------------------------------------------------------ 
SIRT4 ------------------------------------------------------------------------------------------ 
SIRT5 ------------------------------------------------------------------------------------------ 
SIRT6 ------------------------------------------------------------------------------------------ 
SIRT7 ------------------------------------------------------------------------------------------ 
 
SIRT1 NGLEDEPDVPERAGGAGFGTDGDDQEAINEAISVKQEVTDMNYPSNKS 
SIRT2 ------------------------------------------------ 
SIRT3 ------------------------------------------------ 
SIRT4 ------------------------------------------------ 
SIRT5 ------------------------------------------------ 
SIRT6 ------------------------------------------------ 
SIRT7 ------------------------------------------------ 
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and during spermatogenesis, particularly in the nuclei of spermatogonia, spermatocytes and 

round spermatids (McBurney et al., 2003a; McBurney et al., 2003b). 

Consistent with SIRT1 expression in embryonic tissues, mice with genetic ablation of 

the both SIRT1 alleles die soon after birth, although in an outbred background animals can 

survive to sterile adults which are smaller than their littermates (McBurney et al., 2003a). The 

sterility was attributed to defects in spermatogenesis with increased apoptosis in the 

seminiferous tubules and associated failure of spermatozoa to mature properly in agreement 

with the high expression of SIRT1 during spermatogenesis. Furthermore, SIRT1-/- mice had 

eye abnormalities which were attributed to an eyelid opening failure seen consistently in 

these animals (McBurney et al., 2003a). 

SIRT1-/- mice exhibit no global defects in silencing of either endogenous genes or 

reporter β-galactosidase transgene suggesting that if SIRT1 functions in silencing similarly to 

its yeast orthologue it does so in a gene-specific rather than genome-wide manner (McBurney 

et al., 2003a). Furthermore, ES cells derived from SIRT1-/- mice are able to differentiate in vitro 

and exhibit no global changes in histone acetylation patterns (McBurney et al., 2003b).  

The SIRT1-/- mice used in the studies of McBurney et al. were generated by targeted 

deletion of exons 5 and 6 of the murine SIRT1 gene which encode for a large part of the 

catalytic subunit (McBurney et al., 2003a). In an independent study, Cheng et al. used targeted 

homologous recombination to delete the entire region encoding for SIRT1. They also created 

a mouse line with a conditional deletion of exon4 in the SIRT1 gene which encodes 51 

aminoacids of the SIRT1 conserved domain (Cheng et al., 2003).  

These animals exhibited cardiac abnormalities, including ventricular and atrial septal 

defects and elongated atrioventricular valves, all of which were absent in SIRT1-/- mice 

surviving into adulthood. In addition, the retinas of post-natal SIRT1-/- mice showed severe 

defects with many of the characteristic retinal layers being thinner and disorganised. This 

correlated with abnormal closure of the optic fissure found in  SIRT1-/- embrya providing 

evidence that the retinal abnormalities are attributable to a developmental defect rather than 

a secondary effect of eyelid closure abnormalities as proposed by McBurney et al. (McBurney 

et al., 2003a). 

Several studies mainly in tissue culture systems have implicated SIRT1 in various 

cellular processes by means of its interaction with other proteins (TABLE 2-2). There is a 
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varying degree of experimental evidence provided that supports a relevance of these 

observations  in animal physiology. Thus some molecular aspects of SIRT1 biology are 

described in detail while there exist physiological processes where SIRT1 has been 

implicated in that await elucidation of the underlying molecular mechanisms. 

 

TABLE 2-2. Substrates, biochemical and functional interactions of mammalian SIRT1. 

Target 
protein 

Endogenous 
interaction 

Minimal 
determined 
binding site 
on SIRT1 

Deacetylation 
of binding 

partner 

Transcriptional 
effect of SIRT1 

AT§ 
involved 

Reference(s) 
 

p53 + n.d. + repression p300 Vaziri et al., 2001; Luo et al., 
2001; Langley et al., 2002 

FOXO1 + 208-409 + activation/ 
repression CBP Daitokou et al., 2004;  

Motta et al., 2004 

FOXO3a + n.d. + activation/ 
repression p300 

Brunet et al., 2004; Motta et 
al., 2004; van der Horst et al., 

2004 
FOXO4 n.d. n.d. + activation CBP van der Horst et al., 2004 
Ku70 + n.d. + n.a. CBP Cohen et al., 2004a, b 

p300 + n.d. + repression n.a. Bouras et al., 2005 and 
present study 

FHL2 n.d. n.d. n.d.∂ repression n.d Yang et al., 2005 
Histone H1 + 1-268 + repression n.d Vaquero et al. 2004 
PPARγ + n.d n.d repression n.d Picard et al., 2004 
NCoR + 214-541 n.d repression n.d Picard et al., 2004 
MyoD + n.d. + repression PCAF Fulco et al., 2003 
PCAF +  236-510 + repression n.a. Fulco et al., 2003 
RelA/p65 + n.d. + repression p300 Yeung et al., 2004 
Su(z)12 +¥ n.d. n.d. repression? n.d. Kuzmichev et al., 2005 
TAFI68 n.d. n.d. + repression PCAF Muth et al., 2001 
PML + n.d. n.d. n.a. CBP Langley et al., 2002 
HIC1 + n.d. n.d. n.a. n.a. Chen et al., 2005 
Histone H4 n.d. n.d. + repression? n.d. Imai et al., 2000 
Bcl-6 (*) n.d. n.d. + repression p300 Bereshchenko et al., 2002 
CTIP2 + 214-441 ?/histones repression n.d. Senawong et al., 2003 
Hes1/Hey2 n.d. n.d. n.d. repression n.d. Takata and Ishikawa, 2003 

HIV Tat + 
(Tat exog.) n.d. + activation p300/GCN

5 Pagans et al., 2005 

n.d.: not determined; n.a.: not applicable 
§ acetyltransferase. N.B.: all ATs implicated from the experiments in the corresponding publications are listed ; not all were 

shown to be the relevant endogenous enzymes. 
* SIRT1 only implicated in Bcl-6 regulation based on evidence from nicotinamide sensitivity of Bcl-6 acetylation 
∂ FHL2 recruits SIRT1 to FOXO which is a SIRT1 substrate 
¥ SIRT1 was found to inderact with other components of the PRC4 complex, including Ezh2 

 

For this reason, the reported functions of SIRT1 will be critically presented in two 

broad categories. In the first of them, data linking SIRT1 to the regulation of protein function 

with no experimental evidence for a physiological relevance of these interactions at the 
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organismal level will be discussed. In the second category work implicating SIRT1 in 

physiological processes irrespective of the degree of understanding of the molecular 

mechanisms involved will be presented. An integrative review of this work is provided in 

Chapter 5. 

 
 
2.3.5.1.2 Regulation of chromatin structure by SIRT1 
 

Histone H1 
 

The fact that Saccharomyces cerevisiae Sir2 was shown to affect histone acetylation 

prompted Vaquero et al. to investigate whether this function was conserved in mammalian 

cells. In an in vitro deacetylase assay using recombinant SIRT1 they observed that all four 

core histones could be deacetylated albeit with different kinetics and an apparent specificity 

for histones H3 and H4 (Vaquero et al., 2004). Using antibodies against specific acetylated 

residues of these histones they could demonstrate specificity for SIRT1 against H4-K16 in 

vitro, while in vivo downregulation of SIRT1 by siRNA resulted in increasing levels of H4-K16 

acetylation and decrease in H4-K20 methylation, a mark for repressed chromatin.  

To further investigate the function of SIRT1 on chromatin remodelling, Vaquero et al. 

isolated chromatographically SIRT1-associated proteins from cells stably expressing Flag-

tagged SIRT1 and found a specific interaction with histone H1b, a histone H1 isoform 

implicated in heterochromatin formation. The authors next asked whether H1 is regulated by 

acetylation and identified H1-K26 as the residue targetted for deacetylation. To investigate 

the functional significance of these observations, SIRT1 was fused to the DNA binding 

domain of GAL4 and used in transcriptional reporter assays. GAL4-SIRT1 could induce a 

94% decrease in reporter activity while a catalytically inactive mutant only 36% indicating that 

part of the SIRT1 repressive activity was independent of its enzymatic activity and likely to 

depend on its ineraction with histone H1 since an N-terminal deletion of SIRT1 was also 

partially defective in repressing reporter activity. This region corresponded to the H1 

interacting site.  

To further analyse the effect of SIRT1 on chromatin modification, the authors 

established a 293-based cell line with a stably-integrated luciferase reporter under the control 
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of GAL4-binding sites. The same line carried a stable integration of a tetracycline-regulated 

GAL4-SIRT1 contruct which upon induction was detected in the luciferase promoter and 

repressed it. This coincided with histone H1 recruitment and H4-K16 deacetylation 

exclusively in the promoter. Upon examination of other histone modifications by ChIP 

analysis, tetracycline induction also resulted in increased H4-monoMeK20 and H3-triMeK9 

but these modifications also spread in the coding region of the reporter. H3-diMeK79, a 

modification marking the boundary between active and inactive chromatin was conversely 

downregulated.  

 In unicellular eucaryotes including S. cerevisiae, histone H1 depletion does not affect 

survival but it shortens lifespan. Histone H1 has also been shown to hold important roles in 

germline proliferation and differentiation in multicellular eucaryotes such as C. elegans where 

it participates in chromatin silencing. In mice, severe developmental defects are apparent 

only when several histone H1 variants are simultaneously deleted while experiments indicate 

that although required for maintainance of higher order chromatin, H1 is not likely to be 

needed for its formation. It is also postulated that H1-mediated changes in higher chromatin 

structure may affect the binding of other chromatin regulating proteins with ultimate effects on 

gene expression.  

The work of Vaquero et al. provided evidence that in conjunction with histone H1, 

SIRT1 activity can influence the establishment of heterochromatin either through direct 

deacetylation of H1 and thus chromatin compaction or through the deacetylation of other 

histones possibly in combination with enzymatic activities recruited to chromatin through 

histone H1. It would be predicted that in such a role, SIRT1 could influence global chromatin 

structure. The consequences of this and the interlink to lifespan under the light of global 

heterochromatinisation observed in ageing remain to be elucidated. 

 

SIRT1 in polycomb repressing complexes 
 

As discussed in section 1.2.1.3.2, histone lysine modifications are important elements of 

the epigenetic machinery regulating chromatin structure and gene expression. Lysine 

methylation is catalysed by lysine-specific histone methyltransferases (HKMT) which are part 

of multisubunit complexes. The human enhancer of zeste orhologue 2 (Ezh2) is a SET 
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domain methyltransferase that forms different complexes known as polycomb repressive 

complexes (or PRCs) mainly defined by the isoform of Eed, the human Extra Sex Combs 

orthologue, that they contain. Each Eed isoform confers specificity as to the lysine residue 

targeted by the corresponding PRC complex.  

PRC4 was purified as a novel polycomb repressive complex on account of its 

exclusive content of Eed2 and its specificity towards histone H1b K26 (Kuzmichev et al., 2005). 

Equipped with the knowledge that H1b-K26 is deacetylated by SIRT1, Kuzmichev et al. 

determined that SIRT1 is a component of PRC4 most probably through its association with 

Su(z)12 (suppressor of zeste 12). Interestingly, a catalytically inactive SIRT1 mutant could 

associate with Eed but not with Ezh2.  

Because PRC component abundance changes during differentiation and in cancer, 

the authors examined the levels of PRC4 components in these conditions. Upon induction to 

differentiate, mouse ES cells showed progressively decreasing levels of Ezh2, Eed2 and 

mSIRT1 while breast and colon cancer tissues showed similar levels of expression of PRC4 

components to transformed cell lines which were significantly higher compared to normal 

tissues. To investigate the significance of this observation, Kuzmichev et al. used a mouse 

model of prostate cancer that carries monoallelic deletions of both the prostate-specific 

homeobox gene Nkx3.1 and the tumour suppressor lipid phosphatase Pten. As tumours 

emerged in these animals, the protein levels of SIRT1 and Ezh2 as well as the mRNA levels 

of Ezh2, Su(z)12 and Eed were elevated. Concomitant to this, PRC target genes were 

accordingly affected.  

Thus SIRT1 participates in a complex with chromatin modifying activity that may 

contribute to some aspects of the transformed phenotype (Kuzmichev et al., 2005). Although not 

demonstrated, the targetting of H1b-K26 by the deacetylase activity of SIRT1 may allow its 

methylation by PRC4 in a similar fashion as previously described for HDAC1 in H3-K9 

methylation. Recently, a report by Viré et al. showed that Ezh2 can dictate DNA CpG 

methylation by the direct recruitment of DNA methyltransferase activity providing an 

integrative model for two major epigenetic mechanisms (Viré et al., 2006). It would be of interest 

to know whether SIRT1 activity can modulate Ezh2-associated DNA methylation. 
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Thus these findings further enhance the notion that a member of mammalian sirtuins 

participates in epigenetic regulation of gene expression and provide evidence for a 

conservation of the Drosophila dSir2 interaction with PcG proteins in mammals. 

 

2.3.5.1.3  Regulation of transcription by SIRT1 
 

HIV Tat 
 

FIGURE 2-20. Regulation of HIV Tat transcriptional
activity by acetylation.  

Adapted from Kaehlcke et al., 2003

 Human immunodeficiency virus-1 (HIV-1) replication depends among the others on 

the Tat protein, a transcriptional activator. Tat forms a ternary complex with cyclinT1 and a 

trans-acting response element (TAR) found in the 5' of all viral mRNAs (FIGURE 2-20). This 

complex recruits CDK9 which in turn phosphorylates RNAPolII to substantially enhance the 

processivity of the enzyme. Acetylation of Tat at K50 by p300 during the intermediate stages 

of transcription prevents the formation of the Tat/cyclinT1/TAR complex. Acetylated Tat is 

then transferred to the elongating polymerase to recruit PCAF by means of the later's 

bromodomain. At the early stages of viral 

replication, Tat protein is limiting yet 

crucial for driving transcription of more Tat 

mRNAs until a critical concentration that 

can further sustain viral replication is 

achieved. Based on the above model of 

Tat action (FIGURE 2-20), deacetylation of 

Tat at the early stages of viral replication is crucial. Furthermore, following completion of the 

transcription cycle, the fate of acetylated Tat was unclear. 

 Pagans et al. identified all SIRT1, SIRT2 and SIRT3 as Tat deacetylases in vitro 

(Pagans et al., 2005). SIRT2 and SIRT3 are excluded from the nucleus and given the nuclear 

localisation of both Tat and SIRT1 they probed the functional link between these two 

proteins. They found that Tat and SIRT1 can associate both in in vitro and when co-

expressed in cells. Furthermore, transcriptional reporter assays indicated that SIRT1 could 

enhance Tat-driven transcription in a manner dependent on SIRT1 enzymatic activity and 

independent of the promoter's NFκB  sites (see below on SIRT1 and NFκB  interaction). 
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Conversely, siRNA targeting SIRT1 reduced Tat transcriptional activity. Tat-driven 

transcription dramatically decreased i Sirt1-/- MEFs, and reconstitution of SIRT1 can reverse 

this effect. Additionally, small molecule inhibition of SIRT1 by nicotinamide or the splitomicin 

derivative HR73 recapitulated the effects of SIRT1 siRNA on Tat-driven transcription. To test 

whether SIRT1 inhibition could be used as a target for therapeutic intervention against HIV 

infection, Pagans et al. treated HIV-infected Jurkat cells with HR73 and found that HIV gene 

transcription was approx. 5-fold decreased. This ultimate experiment provided proof of 

principle that the identified role of cellular SIRT1 in the replication of HIV can be a site of 

pharmacological targeting in the future.  
 

CTIP1 and CTIP2 
 

Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting 

proteins 1 and 2 (CTIP1and CTIP2), are transcription factors that interact with and emhance 

COUP-TF-mediated transcriptonal repression. It has also been proposed that they may 

mediate transcriptional repression independently of COUP-TF since they can bind directly to 

a defined DNA sequence and they are expressed in hematopoietic cells of lymphoid origin 

which do not express COUP-TF. Loss-of-function analysis in mice as well as data showing 

genetic aberations the CTIP1 and CTIP2 loci, have provided significant correlations between 

CTIP1and CTIP2 dysregulation and hematopoietic malignancies. 

Both CTIP1- and CTIP2-driven repression are independent of class I/II HDACs based 

on their sensitivity to TSA. Senawong et al. could show that nicotinamide could alleviate 

CTIP2-induced repression in reporter assays as well as demostrate by ChIP that the effects 

of nicotinamide correlated with increased H3/H4 acetylation in an exogenous chromatinised 

template (Senawong et al., 2003). Co-expression of SIRT1 recapitulates these findings in a 

manner dependent on the latter's enzymatic activity. suggesting that SIRT1 participates in 

CTIP2-driven repression. This effect stems from the ability of SIRT1 to interact via its sirtuin 

core domain with CTIP2 both in vitro and in vivo. A follow-up study demonstrated that the 

closely related protein CTIP1 behaves in a very similar manner as CTIP2 in the assays 

employed (Senawong et al., 2005). 
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Apart from the discovery of SIRT1 as the deacetylase that potentially mediates the 

TSA-insensitive repressive activities of CTIP1/2, the physiological importance of these 

findings remains elucive. It would be of interest to investigate whether SIRT1 can be 

exploited for pharmaceutical intervention within the context of leukemias that carry aberrant 

CTIP1/2 chromosomal loci. 

 
TAFI68 

 

Apart from PolII-mediated gene transcription, chromatin remodelling has also been 

implicated in the regulation of PolI-transcribed genes which predominantly encode for 

ribosomal DNA. Transcription termination factor-I (TTF-I) is required for the recruitment of 

chromatin remodelling complexes to PolI promoters to render chromatin accessible to the 

transcriptional machinery. Targeted promoter binding of TTF-I is achieved by a promoter-

proximal terminator element named T0 160 bp upstream the transcription start site.  

Muth et al. showed that TTF-I is able to bind the acetyltransferase PCAF, thus they 

investigated whether components of the transcription initiation machinery are acetylation 

substrates. They found that PCAF specifically acetylates the TAFI68 (TATA-box binding 

protein-associated factor I of 68 kDa) subunit of the promoter selectivity factor TIF-IB/SL-1 

both in vivo and in vitro. Similar to other acetylated proteins, TAFI68 can also bind to PCAF 

(Muth et al., 2001). Importantly, TAFI68 was also shown to be acetylated in vivo and that this 

acetylation can occur when it is bound to the TIF-IB/SL-1 holocomplex.  

Furthermore, electrophoretic mobility-shift assays (EMSAs) demonstrated that 

acetylation of TAFI68 increased its binding to rDNA sequences consistent with previous 

observations for many other transcription factors. In an in vitro reconstituted transcription 

system, acetylated TAFI68 is able to drive transcription more powerfully compared to the 

unacetylated form suggesting that the increased binding of TAFI68 to DNA via acetylation 

may regulate transcription of rDNA genes. Interestingly, treatment of cells with TSA did not 

affect rDNA transcription assayed by Norhtern blot of pre-rRNA transcripts suggesting that 

class I/II HDACs are not the physiological deacetylases regulating rDNA transcription. 

Conversely, SIRT1 can deacetylate TAFI68 in vitro while incubation of the previously 

employed in vitro transcription system with SIRT1 reduced rDNA transcription suggesting 
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that SIRT1 may be the relevant deacetylase. Notably, the DNA template used in this system 

is devoid of histones suggesting that SIRT1 exerts this regulatory role independent of 

chromatin. 

rDNA silencing was one of the first described functions for yeast Sir2. This work 

provided the first evidence that a mammalian sirtuin can modulate rDNA transcription. 

Ribosomal DNA synthesis is essential for ribosomal biogenesis which correlates with a cell's 

translational capacity. Protein translation is required for proliferation as demonstrated by cell 

cycle arrest by means of small molecule inhibitors of translation (e.g. mimosine) and the 

cytostatic effects of ribosome-targeting antibiotics. Furthermore, it has been suggested that 

there exists a checkpoint that only allows cell division to occur under conditions that optimal 

growth has been achieved (Thomas, 2000). Consequently, the role of SIRT1 in rDNA 

transcription as documented in the work of Muth et al. is likely to reveal a deeper role for this 

protein in cellular homeostasis. 

 
Regulation of Hes1/Hey2 bHLH repressors  

 

The bHLH family of transcription factors comprise both activators and repressors 

which differ in the presence of distinct regulatory motifs. These motifs are thought to mediate 

the interaction with co-repressors which in turn mediate the recruitment of chromatin 

modifying factors such as deacetylases to implement transcriptional repression. The 

mammalian counterpart of Hairy is Hes1 and is found to recruit co-repressors through a C-

terminal WRPW motif. Another member of the Hairy family of repressors, the Drosophila Hey 

and its mammalian orthologue Hey2 show a distinct mechanism of repressor recruitment 

through the bHLH domain itself implying diversity in the mode of action of this family of 

transcriptional regulators.  

Driven by the discovery of Rosenberg and Parkhurst in Drosophila that dSIRT1 

interacts with the bHLH factor Hairy, Takata et al. examined the potential interaction between 

the mammalian counterparts of these proteins (Takata et al., 2003). Although no endogenous 

interactions were observed between these proteins, co-transfection experiments 

demonstrated that both protein could immunoprecipitate each other. In vitro binding assays 

mapped the SIRT1 binding site to the bHLH domain of both human HES1 and HEY2 protein. 
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Reporter assays employing GAL4 fusions of Hes1 and Hey2 contransfected with either wt or 

catalytically inactive SIRT1 showed that SIRT1 augments the repression driven by either 

factor and that its enzymatic activity is required for this effect. Taken together these data 

suggested that SIRT1 may be a novel regulator of human bHLH factor transcriptional 

repression activity. It would be of interest to examine whether acetylation  of bHLH factors is 

also involved in their regulation as for the majority of transcription factors interacting with 

SIRT1. 

Te interaction of SIRT1 with bHLH repressors is important with respect to recent 

evidence suggesting that Hes1 regulates directly the transcription of the cell cycle inhibitor 

p27. Hes1-/- mice exhibit developmental defects attributed to reduced proliferation which 

correlated with increased p27 mRNA levels. Indeed, Hes1 can bind elements in the p27 

promoter and repress its activity (Murata et al., 2005). Interestingly, SIRT1-/- mice exhibit cardiac 

as well as retinal development defects similar to Hey2- and Hes1-deficient mice respectively 

(Cheng et al., 2003). It would be of interest to investigate whether SIRT1 is required for the 

repressive effect on p27 expression and if any of the observed phenotypes of the  SIRT1-/- 

mice can be attributed to the proposed function of SIRT1 on Hes1/Hey2 factors. 

 

Bcl-6 
 

BCL6 is a protooncogene that encodes a nuclear protein of the BTB/POZ (bric-à-brac, 

tramtrac, broad complex/Pox virus zinc fingers) family of proteins. It is required for germline 

centre formation and it has been implicated in the pathogenesis of B-cell lymphomas. Bcl-6 

acts as a transcriptional repressor by recruiting HDAC-containing co-repressor complexes 

including SMRT and Sin3A. This function depends on the zinc finger DNA binding domain, 

the N-terminal POZ domain and an additional repression domain located in the middle of the 

molecule. Bereshchenko et al. showed that Bcl-6 repressional activity is regulated by 

acetylation (Bereshchenko et al., 2003).  

In particular, Bcl-6 interacts and gets acetylated by the acetyltransferase p300. This 

acetylation markedly decreases its transcriptional repressor activity on a luciferase reporter 

and induces the dissociation of Bcl-6 from HDAC2. Accordingly, mutation of the Bcl-6 

acetylation sites abolishes p300-mediated regulation and diminishes the transformation 
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capacity of Bcl-6 based on anchorage-independent growth assays. TSA and nicotinamide 

treatment have additive effects in inhibiting Bcl-6 transcriptional activity and its association to 

HDAC2 suggesting a synergistic role of both HDACs and sirtuins in the regulation of Bcl-6.  

As the only evidence that sirtuins are involved in the regulation of Bcl-6 acetylation 

was based on nicotinamide sensitivity, it can only by presumed that SIRT1 is the relevant 

sirtuin. Interestingly, though, Bcl-6 has been shown to directly repress p53 target genes  and 

thus inhibit p53-mediated apoptosis and cell cycle arrest hinting that these proteins may be 

co-ordinately regulated by acetylation. Moreover, this work provided evidence that sirtuins 

can induce transcriptional repression by deacetylating and thus activating transcriptional 

repressors such as Bcl-6 (Bereshchenko et al., 2003). 

 

 

2.3.5.1.4 Regulation of survival by SIRT1 
 

SIRT1 regulation of p53 and p53-mediated tumourigenesis 
  

The p53 gene encodes a transcription factor that has been shown to be mutated in 

more than 50% of human tumours and has a firmly established role as a tumour suppressor 

(Vogelstein et al., 2000). Mice lacking both p53 

alleles showed normal development but 

exhibited a broad array of spontaneous 

tumours by 6 months of age confirming that 

p53 is a gatekeeper against neoplasia 

(Donehower et al., 1992). 

p53 is subject to proteasome-mediated 

degradation by means of at least an E3 

ubiquitin ligase encoded by the gene Mdm2. 

Upon genotoxic stresses, p53 is stabilised and 

mediates transcription programmes that dictate 

processes such as cell cycle arrest, apoptosis 

and DNA repair (Vogelstein et al., 2000). p53 

FIGURE 2-21. Acetylation sites in the C-
terminus of p53.  
 

Adapted from Bode and Dong, 2004
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stabilisation is not sufficient, though for full p53 activity. Concomitant to the occurrence of 

protein stabilisation, an array of post-translational modifications is required for p53 to fully 

exert its roles which include phosphorylation, sumoylation, ubiquitination, neddylation, 

acetylation and methylation. These modifications span the entire region of the protein and 

affect protein stability, transcriptional activity, hetero- and homo-dimerisation and localisation. 

Acetylation of p53 has been shown to increase protein stability and transactivation 

capacity (Figure 2-21). It is believed that acetylation prevents ubiquitination, but also 

neddylation or sumoylation of lysine residues, a proposal fitting to the observation that 

increased deacetylase activities found in many cancers correlate with destabilisation of p53. 

In parallel, acetylation of the C-terminus of p53 increases its DNA binding affinity both in vivo 

and in vitro. Thus, modification of p53 by acetylation modulates its activity at multiple levels 

and emerges as an important regulatory mechanism in tumour progression. 

Acetylation of p53 upon DNA damage can be enhanced by treatment of cells with 

HDAC inhibitors but TSA-independent deacetylation can also occur (Luo et al., 2001). Two 

reports by Luo et al. and Vaziri et al. first demonstrated that the TSA-insensitive p53 

deacetylase activity could be attributed to SIRT1 (Luo et al., 2001; Vaziri et al., 2001). SIRT1 

interacts in vivo and in vitro with p53 and shows an apparent specificity for acetylated K382. 

Overxpression of SIRT1 results in decrease of both basal as well as p300 overexpression-

induced and ionising radiation-or etoposide-induced K382 acetylation. Transfection of a 

catalytically inactive mutant of SIRT1 had a dominant-negative effect in that, while deficient in 

p53 deacetylation in vitro, it could induce p53 hyperacetylation in response to ionising 

radiation. Furthermore, nicotinamide, a proposed inhibitor of sirtuins, was sufficient to abolish 

most of p300-induced p53 acetylation. Importantly, SIRT1 inhibited p53-driven transcription 

in both in vivo targets (p21) and in reporter assays. Matching these, SIRT1 overexpression 

inhibited apoptosis in response to ionising radiation, etoposide treatment or indeed p53 

overexpression alone but not Fas-induced apoptosis pointing to a specific effect on the p53 

apoptotic pathway.  

In an extension of these studies, Langley et al. provided evidence that p53 

deacetylation by SIRT1 occurs in the context of promyelocytic leukemia (PML) nuclear 

bodies (Langley et al., 2002). PML bodies are distinct foci in the cell nucleus with high 

concentrations of the PML protein and are known to be sites of regulation of transcription, 
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apoptosis, tumour suppression and the anti-viral response. They are dynamic structures that 

respond to a variety of cellular stresses and comprise cellular depots for several factors 

including the small ubiquitin-like modifier SUMO-1, the acetyltransferase CBP and the tumour 

suppressors pRb and p53. Upon overexpression of the PML isoform PML-IV, p53 is recruited 

to PML bodies, a translocation which correlates with acetylation of p53 in K382, its 

subsequent activation and induction of premature cellular senescence.  

SIRT1 was found to be associated with PML-IV and localise to PML bodies in both 

primary and transformed cells that overxpressed PML-IV (Langley et al., 2002). This localisation 

appeared to bear functional significance because PML-IV-induced cellular senesence was 

attenuated by co-expression of SIRT1, which correlated with decreased p53 acetylation at 

K382. This report supported the notion that SIRT1 may regulate cellular life-span through a 

pathway involving p53. 

Fibroblasts derived from mice deficient for mSIRT1 show increased levels of p53 

acetylation in response to DNA damaging agents. However, it was also found that by using 

acetylation-specific antibodies higher acetylation of residues other than K379, the mouse 

equivalent of K382, could also be observed suggesting an expanded specificity for SIRT1. 

Furthermore, despite hyperacetylation of p53, adriamycin fails to induce higher levels of p21, 

a p53 target, in Sirt1-/- MEFs a finding contradictory to the ones of Luo et al. and Vaziri et al.. 

Consistent with these, Sirt1-/- MEFs were equally sensitive to death induced by adriamycin 

and UV. In contrast, thymocytes of Sirt1-/- animals were hypersensitive to ionising radiation 

(IR)-induced cell death and this correlated with p53 hyperacetylation. Of note, 

p53-/- thymocytes were resistant to IR-induced death. This implied that the hypersensitivity of 

Sirt1-/- thymocytes was due to hypeactivation of the p53 pathway. However, the levels of p53 

target genes were not assayed in this context leaving open the issue of whether p53 

hyperacetylation in Sirt1-/- animals/cells actually affects a downstream transcription program.  

SIRT1 is highly expressed in mouse ES cells (McBurney et al., 2003b).  Interestingly, ES 

cells fail to undergo G1 arrest upon treatment with ionising radiation despite the presence of 

p53 protein  raising the possibility that p53 function is impaired due to presumed 

concomitantly high SIRT1 activity. This, however is not the case as SIRT1-/- ES cells show 

cell cycle profiles which are intistinguishable from those of SIRT1+/+ ES cells (McBurney et al., 

2003b). Although the discrepancies between studies can be attributed to the different nature 
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of the cell systems employed, they also illustrate that the regulation of p53 by SIRT1 in the 

physiological context of an organism remains poorly understood. 

This issue has been addressed in a recent study by Kamel et al. who generated mice 

defective in both Sirt1 and p53 genes (Kamel et al., 2006). These animals had an overall 

phenotype indistinguishable from Sirt1-/- mice, including early post-natal lethality, eyelid 

closure defects and reduced size. Furthermore, although they could confirm the interaction of 

the two proteins and the effects on p53 acetylation, the authors could obtain no evidence of 

changes in p53-mediated gene transcription nor differential sensitivity of 

thymocytes/splenocytes to ionising radiation.  

These results are in agreement with the study of Solomon et al. who identified 

compound EX-527 in a high-throughput screen for SIRT1 catalytic inhibitors and used it to 

acutely downregulate SIRT1 activity (Solomon et al., 2006). EX-527 enhances p53 K382 

acetylation upon different genotoxic stimuli (etoposide, adriamycin, hydroxyurea, H2O2) in a 

variety of human cell lines [NCI-H460 (large-cell lung carcinoma), U2-OS (osteosarcoma), 

MCF7 (breast carcinoma), HMEC (human mammary epithelial cells)]. This is not 

accompanied, however, by a concomitant change in p21 expression, nor cell viability or 

growth rate. Conversely, although TSA acted additively to EX-527 to induce p53 

hyperacetylation, it also decreased stress-induced viability under the same experimental 

conditions.  

Overall these studies suggested that SIRT1-mediated deacetylation as a potential 

novel mechanism of p53 regulation. This is an exciting observation because it would imply 

that in tumours that are treated with DNA-damaging agents, SIRT1 inhibition may potentiate 

apoptosis by allowing hyperactivation of the p53 apoptotic response and thus providing the 

basis for ameliorated cancer therapies. However, given the absense of effects on p53-

mediated transcription and the accumulating evidence that SIRT1 inhibition may not affect 

viability in response to genotoxic stress, it would be of great importance to determine the 

functional relevance of SIRT1-catalysed p53 deacetylation. 
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SIRT1 autoregulation through HIC1 and p53 tumour suppressors 
 

p53 functionally cooperates with a multiplicity of pathways that ultimately contribute to 

cancer initiation and progression. One such pathway of relevance here is regulated by the 

tumour supressor HIC1 (hypermethylated in cancer 1). Monoallelic HIC1 gene disruption 

results in a broad spectrum of cancers in mice in which the other allele of the gene is 

hypermethylated. This reflects the situation in human tumours where epigenetic inactivation 

of the gene occurs rather than mutation. Genetic evidence also suggests that HIC1 and p53 

synergise in tumour suppression given that animals heterozygous for both genes have a 

distinct spectrum of tumours, with earlier appearance, increased prevalence and 

aggressiveness. Furthermore, Hic1-/- MEFs are more resistant to etoposide-induced death 

compared to wt MEFs. Conversely, MCF-7 cells overexpressing HIC1 are more sensitive to 

DNA damage-induced apoptosis. 

The gene product of HIC1 encodes a zinc-finger transcriptional repressor. In HIC1 

protein, an N-terminal POZ domain and a central proline-rich domain mediate transcriptional 

repression in a manner both independent and dependent of HDAC1 respectively with 

correlating TSA sensitivities. Given the functional link to p53, an enzymatic target of the TSA-

insensitive deacetylase SIRT1, Chen et al. investigated whether SIRT1 is the enzyme 

mediating HIC1 POZ-domain transcriptional repression. Indeed, SIRT1 was found to interact 

with the POZ domain of HIC1 (Chen et al., 2005). Deletion of this domain partially abolishes the 

hypersensitivity of cells to etoposide-induced apoptosis. 

Interestingly, Hic1-/- MEFs exhibit elevated levels of SIRT1 and tumors from Hic1+/- 

animals with inactivation of the second HIC1 allele also show elevated levels of SIRT1. Both 

 
 
 
 
 
 
 
FIGURE 2-22.  A Model for the Roles of HIC1 in Tumor
Suppression. A circular regulation of HIC1, SIRT1, and p53
is proposed for modulation of cellular responses to DNA
damage. HIC1 represses the transcription of SIRT1, SIRT1
deacetylates p53 post-transcriptionally, and p53 trans-
activates HIC1.  
 

Adapted from Chen et al., 2005
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reporter and ChIP assays confirmed that HIC1 but not a ∆POZ species binds directly to the 

SIRT1 promoter via two 5'TGCC(A/C)3' sites in the same orientation. This implied that SIRT1 

may regulate its own expression by complexing with HIC1 which proved to be the case since 

consecutive ChIP experiments confirmed the presence of both proteins on the Sirt1 

promoter. Importantly, transfection of dominant negative SIRT1 in Hic1-/- MEFs resulted in 

reduced resistance to apoptosis presumably by blunting the elevated levels of SIRT1 

encountered in these cells. Furthermore, despite its accumulation in etoposide-treated cells, 

p53 acetylation was only evident in HIC1-overexpressing cells and, in reverse, siRNA-

mediated downregulation of HIC1 resulted in SIRT1 accumulation and p53 hypoacetylation. 

These data provided evidence for SIRT1 as a key effector of tumourigenesis in 

response to HIC1 inactivation and pointed to a molecular link between HIC1 and p53 tumour 

supressor pathways (FIGURE 2-22). 

 
Regulation of forkhead transcription factors 

 

The insulin signalling pathway has been described as a phylogenetically conserved 

signalling module in the determination of life-span. In Drosophila and C. elegans, the 

forkhead transcription factor daf-16, which is negatively regulated by the insulin pathway, is 

important for this effect on longevity (Giannakou et al., 2004). 

In mammals the functional orthologues of daf-16 are believed to be the forkhead or 

winged helix family of transcription factors (TFs) which comprises four members, FOXO1 (or 

FKHR), FOXO3 (or FKHRL1), FOXO4 (or AFX) and FOXO6. Phosphorylation of these 

factors by PKB leads to their exclusion from the nucleus under conditions of growth factor 

availability. The identification of SIRT1 as a transcription factor deacetylase provided an entry 

point for the experimental validation of the hypothesis that mammalian sirtuins and forkhead 

factors functionally interact.  

The acetyltransferase CBP enhances acetylation of both FOXO1 and FOXO4 when 

co-transfected in cultured cells while both p300 and PCAF have the same effect on FOXO3. 

In all cases complexes between FOXO TFs and the corresponding acetyltransferases were 

observed. Furthermore, FOXO TF acetylation increases upon some genotoxic stresses. 

Brunet et al. found that H2O2 and to a certain extend heat shock but not UV induce FOXO3 
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hyperacetylation in 293T cells (Brunet et al., 2004). Increased FOXO3 acetylation correlated 

with enhanced binding to the acetyltransferase PCAF. In HeLa cells, Motta et al. also 

observed UV-induced FOXO3 hyperacetylation (Motta et al., 2004). Consistent with these van 

der Horst et al. found that FOXO4 is hyperacetylated in response to H2O2 in HEK293T cells 

and this event also correlated with increased binding to acetyltransferase CBP. A more 

recent study by Kitamura et al. validated the acetylation-dependent binding of FOXO1 too to 

CBP in the pancreatic β-cell line βTC3. 

FOXO3 acetylation was not altered by treatment of either TSA or nicotinamide alone 

but the combination of the two drugs resulted in a marked hyperacetylation of the protein 

suggesting that it is subject to regulation by both class I/II and class III deacetylases (Brunet et 

al., 2004). Co-transfection experiments showed that FOXO1, FOXO3 and FOXO4 all interact 

with SIRT1. This interaction was observed mainly in response to H2O2 (Brunet et al., 2004; van 

der Horst et al., 2004) or after serum starvation (Daitoku et al., 2004), conditions that were shown to 

result in nuclear accumulation of FOXO but in the case of FOXO3, Motta et al. could also 

observe the interaction in unstimulated cells in co-transfection experiments. Moreover, Yang 

et al. showed that the LIM-only protein FHL2 (four-and-a-half LIM 2) tethers SIRT1 to FOXO1 

to induce its deacetylation (Yang et al., 2005).  

Mutation of the FOXO sites phosphorylated by PKB to alanines results in the 

constitutive translocation of FOXOs to the nucleus. Such a mutant species cannot interact 

with SIRT1 in the absense of stress stimuli suggesting that this interaction probably depends 

in additional modifications confered upon the protein(s) in response to such stimuli (Brunet et 

al., 2004). Brunet et al. identified several stress-induced phosphorylation and acetylation sites 

in transfected FOXO3 which might contribute to this interaction. 

These observations raised the question whether acetylation of play a role in the 

regulation of FOXO activity. FOXO1 and FOXO3 reporter activities were enhanced by 

contransfection of CBP and p300 respectively. This effect could arise either due to 

acetylation of histones or direct activation of FOXOs. Daitoku et al. identified putative 

acetylation sites on FOXO1 by similarity to known histone H2B acetylation sites and mutated 

them to arginine to create non-acetylatable species (Daitoku et al., 2004). Surprisingly, some of 

these mutants either alone or in combination resulted in increased FOXO1 transcriptional 

activity. Comparison of the relative activation induced by either wild-type or non-acetylatable 

 96



Chapter 2 - The sirtuin family of protein deacetylases 

mutants showed that although CBP could induce transcription driven by both species, it 

would do so more profoundly in the non-acetylatable mutants. This led to the conclusion that 

in this context CBP co-activated FOXO1-driven transcription by presumably deacetylating 

histones but would subsequently attenuate FOXO1 activity through its acetylation. Consistent 

with these conclusions, van der Horst et al. discovered that CBP inhibited the transcriptional 

activity of FOXO4. At present, it is not clear whether this applies to FOXO3 too, yet it 

demonstrates the potential pitfalls and complexity in interpreting such results. 

Conversely, in order to determine whether SIRT1-driven deacetylation of FOXOs 

could alter their activity a variety of assays were employed. SIRT1 was shown to inhibit 

reporter acivity driven by wild-type and a constitutively nuclear FOXO3 as well as in cells 

overexpressing the lipid phosphatase PTEN and thus are expected to have low PKB activity 

and allow translocation of exogenous FOXO3 to the nucleus. This effect depended on SIRT1 

deacetylase activity and was sensitive to nicotinamide only when SIRT1 was co-expressed 

(Motta et al., 2004). SIRT1 could also inhibit reporter activity driven by constitutively nuclear 

FOXO1 and FOXO4 (Motta et al., 2004). Although conceptually agreeable these results are 

surprising under the light of the observation that simple translocation of FOXO3 to the 

nucleus does not suffice to sustain an interaction with SIRT1 raising the question as to the 

mode of action of SIRT1 under these experimental conditions. On the other hand, Daitoku et 

al. could show that SIRT1 deacetylase activity enhanced CBP-driven FOXO1 co-activation in 

an additive manner.  

In the light of these contradictory results it is interesting to know how SIRT1 affects 

FOXO target genes. In agreement with their reporter assay results, upon treatment of 

HEK293 cells with nicotinamide Daitoku et al. observed a decrease in the protein levels of 

the cell cylce inhibitor p27 and maganese superoxide dismutase (MnSOD), an enzyme 

involved in the detoxification of reactive oxygen species both FOXO1 target genes. Similarly, 

overexpression of SIRT1 but not a catalytically inactive mutant significantly enhanced the 

levels of these proteins in response to growth factor withdrawal. They also demonstrated the 

presense of SIRT1 along with CBP and FOXO1 in the promoters of p27 and MnSOD genes. 

In agreement with the above conclusions is the study of van der Horst et al., who found that 

FOXO4-driven p27 and MnSOD expression is suppressed when SIRT1 are downregulated 

by RNAi. Interestingly, using the same cell line (HEK293) Motta et al. observed the opposite 
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effect on p27 protein expression when they transfected SIRT1 along with FOXO3. They also 

found enhanced activity of a reporter gene driven by a FOXO consensus DNA binding site in 

Sirt1-/- ES cells both in the presence and absense of exogenous FOXO3, supporting their 

findings of SIRT1 as a repressor of FOXO transcriptional activity. 

Brunet et al. used a Rat-1 cell line derivative that was engineered to express a fusion 

of FOXO3 to the ligand binding domain of the oestrogen receptor (Brunet et al., 2004). Upon 

addition of 4-hydroxytamoxifen (4-OHT), the fusion protein dimerises and translocates to the 

nucleus and is competent in driving transcription of FOXO target genes such as p27 and 

GADD45. In these settings, the combination of TSA and nicotinamide suppresses p27 and 

GADD45 induction but does not affect another FOXO target gene BIM which is known to 

promote cell death. Accordingly, Brunet et al. note that SIRT1 also repressed FOXO-

dependent transcription of a reporter under the control of the death cytokine Fas ligand gene 

promoter. They could also extend their findings in Sirt1-/- MEFs where expression of GADD45 

was impaired in response to treatment with the PI-3 kinase inhibitor LY294002, which allows 

FOXO translocation to the nucleus. Conversely, BIM expression was unaltered in Sirt1-/- 

MEFs. Motta et al. went further to investigate FOXO target gene expression in the liver and 

kidney of Sirt1-/- mice where they found enhanced expression of PEPCK and IGFBP1. 

Accordingly, p300, FOXO1, FOXO3 and SIRT1 itself are bound to the IGFBP1 gene 

promoter in wildtype MEFs, as well as in Sirt1-/- MEFs despite the absense of SIRT1 protein 

from this site which suggests that SIRT1 does not prevent transcription factor recruitment 

(Motta et al., 2004). 

To investigate the functional consequences of FOXO coactivation by SIRT1 of p27, 

Brunet et al. used their FOXO3-ER Rat1 fibroblasts and could show that, in agreement with 

their observations on p27 expression, SIRT1 enhanced the G1 cell cycle arrest driven by 

nuclear  translocation of FOXO3. In agreement to this, exogenous FOXO3 expression in 

Sirt1-/- MEFs was impaired in eliciting a G1 arrest compared to wild-type MEFs. Similar 

effects of SIRT1 on cell cycle progression were reported by van der Horst et al. in the DLD-1 

human colon carcinoma cell line derivative DL-23 that inducibly expresses constitutively 

active FOXO3 as well as in transient transfections of constitutively active FOXO3 in A14 cells 

which are NIH3T3 mouse fibroblast derivatives that overexpress the human insulin receptor.  
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van der Horst et al. could also demonstrate a functional link for the observed SIRT1 

effects on MnSOD expression (van der Horst et al., 2004). They used a probe whose 

fluorescence intensity is sensitive to its oxidation status which in turn reflects cellular 

oxidative stress. Although FOXO3 alone could protect cells from H2O2-evoked oxidative 

stress, nicotinamide suppressed this effect. Brunet et al. provided further evidence 

supporting the cytoprotective role of SIRT1 against oxidative stress by showing that Sirt1-/- 

MEFs were more sensitive to H2O2 treatment. They could also show that FOXO-induced cell 

death is attenuated by SIRT1. Cerebellar granule neurons contransfected with FOXO3 and 

SIRT1 showed less apoptosis compared to cells expressing only FOXO3. Also, in their 

FOXO3-ER Rat1 fibroblasts the DNA damaging agent etoposide was less potent in inducing 

cell death in the presence of exogenous SIRT1.  

Overall these data suggest a gene-specific role for SIRT1 in the regulation of FOXO-

driven transcription. SIRT1 supports the function of FOXO in G1 cell cycle arrest by co-

activating transcription of p27 and supports its anti-oxidative capacity presumably through 

MnSOD and probalby other genes. On the other hand SIRT1 opposes the pro-apoptotic role 

of FOXOs. In the context of a cell under cytotoxic stress, SIRT1 could thus modulate FOXO-

driven transcriptional responses in a way that promotes cell cycle arrest but opposes death 

allowing time for the cell to repair damage and eventually promote survival. 

The inconsistent effects of SIRT1 on different FOXO target genes are not conpletely 

surprising. As discussed in the introduction, Ramaswamy et al. have identified distinct 

classes of FOXO target genes with accordingly different influence on cell cycle arrest and 

apoptosis (Ramaswamy et al., 2002). Thus the observation of Motta et al. that SIRT1 can 

negatively regulate FOXO-driven expression of IGFBP1 and PEPCK, as opposed to what 

was shown by other groups for p27 and GADD45 may reflect the fact that these genes 

exhibit different promoter requirements for their FOXO-mediated activation. Interestingly, the 

study of Ramaswamy et al. also showed that downregulation of p27 is not necessary for 

FOXO-induced cell cycle arrest which rather driven by FOXO-mediated repression of 

cyclinD1 (Ramaswamy et al., 2002). It would be of interest to investigate whether SIRT1 

mediates cell cycle arrest exclusively through p27 or is also shared by the cyclinD1 branch of 

FOXO-driven transcription.  
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 Recently, a molecular link between FOXO1 and PML, both of which are binding 

partners of SIRT1, was discovered and provided a physiological setting where these 

interactions might hold a major role. In particular, they investigated the role of FOXO1 in the 

protection of pancreatic β-cells from glucose-induced toxicity. Chronic exposure to high 

glucose such as in diabetic patients, is thought to overload β-cells' glycolytic capacity 

ultimately resulting in the production of excess reactive oxygen species (ROS). By nature, β-

cells have reduced capacity to deal with these agents which in turn have been proposed to 

impair expression of the Insulin2 (Ins2) gene trascription factor Pdx1 leading to increased 

apoptosis.  

Kitamura et al. found that induction of ROS leads to relocation of FOXO1 to nuclear 

PML bodies, an event shown to depend on its acetylation (Kitamura et al., 2005). Concomitant to 

this relocation, FOXO1 activates the transcription of two Ins2 transcription factors, MafA and 

NeuroD to protect β-cells from death due to hyperglycaemia. In contrast to its requirement for 

localisation to PML bodies, the transcriptional activity of FOXO1 requires its deacetylation. 

Hypoacetylated FOXO1 is highly active in transcription but has a high ubiquitin-mediated 

turnover. FOXO1 ubiquitination is increased in cells overexpressing SIRT1. In this respect, it 

is implied, although not experimentally proven, that SIRT1-driven deacetylation promotes the 

transcriptional activity of FOXO1 while inducing its increased turnover. Thus, SIRT1 may 

have a cytoprotective role for pancreatic β-cells in vivo by co-activating FOXO1-driven 

expression of MafA and NeuroD. 

  

Transcriptional regulation of SIRT1 by p53 and FOXO 
 

All the evidence described above supports a role for SIRT1 as a regulator of FOXO 

function. Another study by Nemoto et al. showed that FOXO may be itself a regulator of 

SIRT1 expression (Nemoto et al., 2004). They could show that the promoter of the Sirt1 gene 

mediates the induction of a reporter gene transcription in response to glucose and growth 

factor starvation in PC12 cells. Under these conditions, FOXO was found in the nucleus and 

showed increased transcriptional activity. siRNA-mediated decrease of FOXO3 by siRNA 

could suppress the activity of the SIRT1 promoter under starvation suggesting that FOXO3 

transcriptionally regulates SIRT1. Interestingly, SIRT1 mRNA levels increased upon 

 100



Chapter 2 - The sirtuin family of protein deacetylases 

overnight fasting in the muscle and liver but not in the heart of mice. This is in contrast to the 

findings of Rodgers et al. who found increased SIRT1 protein levels in mouse liver upon 

fasting without concomitant increase of mRNA levels (see below) (Rodgers et al. 2005).  

Nemoto et al. found that the region between nucleotides -202 and -91 from SIRT1 

transcription start site is important for starvation-inducible induction of the gene but could 

identify no consensus forkhead binding sites within it. However, they determined two p53 

consensus sites that when mutated alone or together they could abolish FOXO3-stimulated 

SIRT1 promoter activity. This suggested that FOXO3 and p53 synergise in the regulation of 

SIRT1 gene transcription. FOXO3 and p53 were shown to physically interact both in vitro and 

when co-transfected in vivo and this interaction increased upon growth factor withdrawal. p53 

inhibited the transcription of a reporter gene driven by the SIRT1 promoter p53 binding 

element and this was aleviated by co-expression of FOXO3. In parallel, FOXO3 could also 

inhibit p53-driven reporter activity driven by an alternative p53 binding element suggesting 

that the physical interaction of FOXO3 with p53 in promoters had antagonistic effects on the 

latter's transcriptional activity. In accordance to these results, basal SIRT1 mRNA levels were 

elevated in the adipose tissue of p53-/- mice but the starvation-induced induction of its 

transcription was abolished.  

Taken together, these data suggested that in response to nutrient limitation, SIRT1 is 

upregulated via a transcriptional mechanism involving the alleviation of p53-mediated 

repression of its promoter by FOXO3.  

Overall, there is compelling evidence that SIRT1 interacts physically and functionally 

with several forkhead transcripton factors in a reciprocal manner. Furthermore, the recent 

findings that p53 can also participate in the determination of organismal longevity and the 

interconnection between PML, which by itself regulates senescence, forkhead transcription 

factors and SIRT1 implicates a complex regulatory mechanism that may govern cellular and 

organismal life-span. 

 

NFκB 

 

The transcription factor NFκB is known to hold important roles in acute inflammatory 

responses and cell survival by mediating the expression of genes with of a broad spectrum of 
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FIGURE 2-23. Regulation of HIV Tat transcriptional
activity by acetylation.  

Adapted from Chen and Greene, 2003

functions including cytokines and apoptotic inhibitors (Chen and Greene, 2004). The NFκB family 

comprises NF-κB1 (p105/p50), NF-κB2 (p100/p52), RelA (p65), RelB and c-Rel and act as 

homo- or hetero-dimers in a variatey of subunit combinations. NF-κB1 and NF-κB2 are 

synthesized as large precursors, p105 and p100, that are post-translationally processed to 

the DNA-binding subunits p50 and p52, respectively, which by themselves lack 

transcriptional activity. A transcriptional ac

the family. In unchallenged cells, NFκB 

dimers are bound to inhibitor of NFκB  

(IκB) and are held in the cytoplasm.  

Two pathways that lead to the activation 

of NFκB  transcription have been 

described, known as the classical and 

the alternative pathway (FIGURE 2-23). In 

the classical pathway, activation of 

cellular receptors by signals such as 

pro-inflammatory cytokines and bacterial 

cell-wall components activate the IκB  

kinase (IKK) which comprises three 

subunits: α and β with catalytic activity 

and the regulatory γ subunit. 

Phosphorylation of IκB by IKKβ leads to 

its proteasome-mediated degradation 

and subsequent release of NFκB 

heterodimers which can translocate to 

the nucleus and activate target genes. The alternative pathway is independent of IKKβ and 

IKKγ. IKKα homodimers are activated upon receptor stimuation by the upstream NFκB 

inducing kinase (NIK) and in turn phosphorylate and lead to the proteasome-mediated 

processing of p100. The processed p52 subunit acts as a heterodimer with RelB to 

translocate to the nucleus and activate transcription. 

tivation domain is present in the Rel members of 
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 As in every multistep cellular process, the NFκB pathway offers multiple levels for 

regulatory inputs but the transcription factor itself is subject to a variety of modulatory events. 

Phosphorylation of RelA/p65  by PKA, MAP kinases and PKCζ allows the phosphorylation-

dependent binding of co-activators including CREB binding protein (CBP) and p300 both of 

which exhibit histone acetyltransferase (HAT) activity. Acetylation of RelA/p65 at specific 

lysines affects both DNA binding and transcriptional activity. Recent reports also suggest that 

RelA/p65 acetylation reduces its affinity for IκB and deacetylation by class I HDACs 

promotes its nuclear export in a IκB-dependent manner.  

 The observation that resveratrol, a sirtuin activator, is also a potent NFκB 

transcriptional inhibitor, led Yeung et al. to investigate whether SIRT1 is required for this 

inhibitory effect. They confirmed that pharmacological activation of sirtuin activity with 

resveratrol suppressed TNFα-induced NFκB activation of reporter activity while the sirtuin 

inhibitors splitomycin and nicotinamide had the reverse effect (Yeung et al., 2004). Interestingly, 

the latter compounds also increased basal reporter activity in the absence of TNFα, a fact not 

discussed by the authors but that could signify a role for sirtuin-mediated inhibition of basal 

transcription as observed in the work of Vaquero et al. discussed earlier. SIRT1 co-

transfection inhibited TNFα-induced NFκB reporter activity suggesting that the observed 

effects of the pharmacological study were mediated by this sirtuin.  

The authors went on to determine that it was the transcriptional activity of the 

RelA/p65 subunit that was sensitive to SIRT1 dose pointing at a potential regulatory site for 

SIRT1 on NFκB dimers. Indeed, co-transfection as well as endigenous co-

immunoprecipitation experiments showed that SIRT1 and p65 interact. Importantly, 

resveratrol treatment did not alter IκB degradation kinetics, nuclear accumulation kinetics of 

neither p65 nor p50, nor did it affect their DNA binding capacity. These suggested that SIRT1 

may modulate this factor at the level of its transcriptional activity.  

It could subsequently be shown that SIRT1 acts through the transactivation domain of 

p65 by deacetylating it at lysine 310. Furthermore, a p65 transactivation domain mutant for 

the acetylateable residue (K310) was no longer subject to resveratrol- and SIRT1-mediated 

repression confirming that NFκB activity is modulated by SIRT1 through deacetylation of the 

transactivation domain. Importantly, these events are significant for cellular homeostasis 
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because NFκB inhibition by resveratrol sensitised cells to TNFα-induced apoptosis in a 

SIRT1-dependent manner. As expected, this was due to suppression of TNFα-induced 

expression of NFκB anti-apoptotic target genes, such as cIAP and Bcl-XL. Interestingly, 

resveratrol seems to potentiate SIRT1 occupancy of target promoters which correlated well 

with the observed repression of  target genes. 

 This study brought forward an aspect of SIRT1 biology which conflicted previous 

reports supporting its role as an antiapoptotic factor, e.g. in the context of p53 and FOXO. 

This is not entirely surprising since the signalling cascades involved in the activation of these 

pathways are seemingly divergent. Thus while DNA damage would engage the p53 

response, inflammatory stimuli such as TNFα would signal through the NFκB pathway. 

However, it is also increasingly appreciated that under specific contexts, there is extensive 

cross-talk between these pathways which establishes an elaborate mechanism determining 

cell survival (Janes et al., 2006; Janes et al., 2005). 

 

Ku70 
 

Ku70 is a protein involved in the DNA repair pathway and has been shown to be a 

substrate for the DNA-dependent protein kinase DNA-PK. As a heterodimer with Ku80 it 

participates in non-homologous end-joining (NHEJ), V(D)J recombination and telomere 

maintenance. Consequently, Ku70 null knockout mice exhibit higher sensitivity to ionising 

radiation, are immunocompromised and show high rates of apoptosis in the developing 

nervous system. The latter phenomenon is attributed to the ability of Ku70 to associate with 

the pro-apoptotic factor Bax in the cytosol in a complex devoid of Ku80 and sequester Bax 

from mitochondria. In response to apoptotic stimuli Bax translocates to the mitochondrial 

outer membrane, oligomerises and renders it permeable eliciting the release of cytochrome c 

and other death-promoting factors.  

The interaction between Ku70 and Bax is regulated by the acetylation status of Ku70. 

When Ku70 is acetylated by the acetyltransferases CBP and PCAF it dissociates from Bax 

allowing it to translocate to mitochondria (Cohen et al., 2004a). Several lysines were shown to 

be acetylated in vivo but K539 and K542 appeared to be critical for this regulation given that 
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cells expressing Ku70 with either of these lysines substituted with glutamines to mimic 

acetylation, were more sensitive to apoptosis.  

Sirtuins were implicated in the regulation of Bax-mediated apoptosis on account of the 

fact that Ku70 acetylation  is sensitive to both TSA and nicotinamide, a sirtuin inhibitor. In this 

way, deacetylase-mediated sequestration of Bax by Ku70 would promote survival. In a later 

report, Cohen et al. showed that SIRT1 is a Ku70 deacetylase which led them to propose 

that caloric restriction promotes survival at the cellular level and increased life-span at the 

organismal level by supressing Bax-mediated apoptosis in a manner dependend on SIRT1 

(Cohen et al., 2004b). 

 

2.3.5.1.5 SIRT1 regulation of transcription factors involved in muscle differentiation 
 

Repression of MyoD by SIRT1 
 

Intracellular redox state is finely regulated in muscle cells in particular during 

differentiation when a drop in the [NAD+]/[NADH] ratio is observed. This prompted Fulco et al. 

to investigate the role of SIRT1 in muscle differentiation due to the NAD+ dependence of the 

enzyme (Fulco et al., 2003). MyoD is a basic helix-loop-helix (bHLH) transcription factor which 

collaborates with the MEF2 (myocyte enhancer factor 2) transcription factor to induce gene 

expression programmes that dictate muscle differentiation.  

Inhibitor studies indicated that mSIRT1 supressed transcription driven by MyoD and 

MEF2 and attenuated muscle differentiation by global downregulation of muscle-specific 

genes. mSIRT1 was found in a ternary complex with PCAF and MyoD and was able to 

deacetylate both factors in vitro and in vivo. Since MyoD acetylation is important for its full 

transcriptional activity, it is possible that deacetylation of MyoD by SIRT1 mediates the 

effects of the later on muscle differentiation (Fulco et al., 2003). Conversely, the authors 

demonstrated that mSIRT1 activity regulates histone H3 K9 and K14 acetylation in muscle-

specific gene promoters implying that SIRT1 may regulate promoter accessibility directly 

through chromatin modifications. Importantly, by modulating the intracellular [NAD+]/[NADH] 

ratio coupled to RNA interference-mediates mSIRT1 downregulation the authors 
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demostrated the effects of intracellular redox state on muscle differentiation are mediated 

through mSIRT1. 

 

Functional interaction of SIRT1 with HDAC4 to regulate MEF2 repression 
  

The class II deacetylase HDAC4 has been shown to interact with MEF2 via an N-

terminal MITR (MEF2-interacting transcriptional repression) homology domain and repress 

muscle-specific gene expression. This function has been assumed to be performed via 

promoter specific HDAC4-mediated histone deacetylation. Nevertheless, deacetylase-

independent transcriptional repression activity of HDAC4 has also been reported. 

SUMO (small ubiquitin-like modifier) is a small protein that can be covalently linked to 

lysine residues of other proteins and has been implicated in transcriptional repression. 

Similar to ubiquitination, protein sumoylation requires an E1 activating enzyme, an E2 SUMO 

conjugating enzyme (Ubc9) and a SUMO E3 ligase several of which have been identified. 

In a yeast two-hybrid screen, Ubc9 was found to bind to an N-terminal coiled-coil 

region of HDAC4 previously shown to mediate interaction with MEF2 (Zhao et al., 2005). 

HDAC4 was shown to be sumoylated on K559, however mutations in this residue failed to 

reveal an effect on the ability of HDAC4 to repress MEF2 transcriptional activity. Zhao et al. 

subsequently showed that MEF2 is itself sumoylated at K424 and HDAC4 could enhance 

MEF2 sumoylation both when co-transfected in cultured cells or in in vitro sumoylation 

assays. This suggested that HDAC4 recruits the SUMO conjugating complex to modify 

MEF2. 

Interestingly, MEF2 K424 is also acetylated directly by the MEF2 co-activator CBP yet 

this acetylation is not sensitive neither to HDAC4 overexpression nor to TSA treatment. 

MEF2 K424 is, however, sensitive to the sirtuin inhibitor nicotinamide and SIRT1 was shown 

to interact with HDAC4 and reverse CBP-mediated MEF2 acetylation in co-transfection 

experiments.  

As MEF2 acetylation increases during myocyte differentiation Zhao et al. predicted 

that K424 sumoylation would have an inhibitory effect on MEF2 function. Indeed, fusion of 

SUMO to MEF2 impedes its ability to interact with MyoD in activation of reporter gene 
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transcription while a sumoylation-deficient mutant of MEF2 shows higher activity in the same 

assay.  

These data led the authors to propose a model where HDAC4 and SIRT1 synergise to 

induce MEF2 respression. SIRT1 deacetylates MEF2 at K424 to allow its sumoylation by the 

SUMO-conjugating activity recruited by HDAC4. This is a first indication that SIRT1 acts in 

concert with another HDAC to repress gene expression in a mechanism other than histone 

deacetylation. 

 

 

2.3.5.1.6 Genetic and biochemical interactions of SIRT1 with proteins regulating 
metabolism 

 

The implication of sirtuins in regulation of life-span upon caloric restriction in lower 

eucaryotes led to the hypothesis that they may mediate metabolic changes which in turn 

promote longevity. In this respect genetic ablation of the insulin receptor in mice leads to 

18% increase in mean life-span while as discussed C. elegans sir2.1 interacts genetically 

with the insulin signalling pathway. Recent studies have shed light into potential mechanisms 

that employ SIRT1 to regulate cellular metabolic pathways.  

 

 SIRT1 and the regulation of fat metabolism 
 

Picard et al. used the mouse cell line 3T3-L1 which can be induced to differentiate into 

cells with adipocytic characteristics including expression of adipose-specific differentiation 

markers  and triglyceride accumulation in cytoplasmic lipid droplets (Picard et al., 2004). Upon 

differentiation, 3T3-L1 cells with downregulated levels of mSIRT1 by means of a vector-

driven short hairpin RNA showed increased accumulation of intracellular triglycerides (TG) 

while the converse was observed in cells overepxpressing SIRT1. This behaviour was 

paralleled by the levels of adipogenic factors such as PPARγ, C/EBPδ, C/EBPα and aP2 

respectively.  This implied a role of SIRT1 in adipogenesis.  

To investigate whether SIRT1 affects fat metabolism in differentiated adipocytes, the 

authors used the sirtuin activator resveratrol to stimulate the activity of mSIRT1 and also 
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observed suppression of TG accumulation while the levels of free fatty acids (FFA) in the 

medium were elevated. Picard et al. could recapitulate these findings in primary rat 

adipocytes treated with resveratrol. To investigate the molecular mechanism underlying this 

behaviour, chromatin immunopreciptiation (ChIP) was employed. mSIRT1 was found bound 

to the aP2 and PPARγ promoters implying that it may exert its adipogenesis-suppressing role 

by inhibiting the action  of adipogenesis-promoting factors. Indeed, mSIRT1 can directly bind 

to both PPARγ and its transcriptional repressor NCoR in the same promoters where PPARγ 

is found. Importantly, NCoR depletion by shRNA abrogated the suppressive action of SIRT1 

on fat accumulation. The authors extended their findings in the mouse and showed that 

mSIRT1 is bound to PPARγ and aP2 promoters in mice that had been fasted, a condition 

characterised by high FFA serum content. Consistent with this, Sirt1+/- animals exhibited 

lower FFA serum levels upon fasting than Sirt1+/+ animals and adipocytes from Sirt1+/- 

animals also had suppressed FFA mobilisation upon adrenergic stimulation. In all, these 

findings suggested that SIRT1 modulates circulating FFA levels by suppressing the function 

of adipogenic transcription factors. 

Although the data in this study are convincing and well-controllled with respect to the 

experimental setups employed, there are two issues worth of further investigation. Firstly, the 

authors showed that upon induction of 3T3-L1 cells to differentiate, endogenous mSIRT1 

levels increase. This behaviour is reminiscent of that of the adipogenesis-promoting factor 

PPARγ and contradicts the proposed role of SIRT1 as an inhibitor of adipogenesis. Secondly, 

the proposed mechanism of SIRT1 regulation of fat metabolism would suggest that 

suppression of adipogenesis, which is characterised by accumulation of TG, is sufficient to 

induce the release of FFA. To the best of my knowledge little evidence exists to support this. 

It is possible that absence of SIRT1 supresses FFA production upon fasting by a machanism 

related to TG turnover such as lipolysis an aspect worth investigating, in particular through 

assaying the activity of TG mobilising enzymes such as hormone-sensitive lipase (HSL) and 

the recently discovered adipose triglyceride lipase (ATGL)(Zehner et al., 2005; Zimmermann et al., 

2004). 
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 SIRT1 and the regulation of glucose homeostasis 
 

Blood glucose levels are tightly regulated through elaborate molecular mechanisms 

involving several tissues. This guarantees that tissues such as the brain and red blood cells 

where glucose is the primary fuel used for energy production are in constant supply.  

 

SIRT1 regulation of fasting hepatic gluconeogenesis. Another important regulator 

of energy homeostasis is peroxisome proiferator-activated receptor-γ coactivator 1α (PGC-

1α). PGC-1α is required for a diverse set of metabolic processes such as mitochondrial 

oxidative metabolism in brown adipose tissue, fiber-type switching in skeletal muscle and 

gluconeogenesis and stimulation of fatty acid oxidation in the liver upon fasting. Fasting liver 

metabolism is dictated by the actions of hormones as well as nutrients the mode of action of 

the latter being largely elucive. 

As some aspects of fasting (controlled by PGC-1α) recapitulate some of the effects of 

caloric restriction (proposed to be regulated by sirtuins), Rodgers et al. examined the 

potential role of SIRT1 in glucose homeostasis. They found that although mSIRT1 mRNA 

levels do not change in the livers of fasted animals, protein levels increase (Rodgers et al. 2005). 

They also observed that fasting livers have elevated NAD+ levels. These observations 

indicated that mSIRT1 has a role in fasting liver responses.  

The authors went on to show that the observed elevation of mSIRT1 protein is due to 

increased translation and that it can be positively regulated by the levels of pyruvate, a 

metabolite derived from blood alanine by the fasting liver and used as a substrate for 

gluconeogenesis. Conversely, glucose causes a decrease in mSIRT1 protein levels. PGC-1α 

activates the gluconeogenic programme through its interaction with HNF4α. SIRT1 is found 

in a complex with both proteins and regulates the acetylation status of PGC-1α. Acetylated 

PGC-1α has decreased capacity to co-activate HNF4α in response to pyruvate and 

downregulation of mSIRT1 by siRNA abolishes the ability of PGC-1α to induce 

gluconeogenic genes such as PEPCK and Glucose-6-phosphatase. Interestingly, this SIRT1 

dependence is not extended to the mitochondrial genes regulated by PGC-1α. PGC-1α and 

SIRT1 also synergise to suppress glycolysis and in combination with the co-ordinated 

enhancement of gluconeogenesis they result in elevation of glucose production in 
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hepatocytes. Taken together these data provided solid evidence for a role of SIRT1 in 

regulating glucose production in the liver through the transcriptional co-activator PGC-1α 

(Rodgers et al. 2005). 

 

SIRT1 regulation of insulin secretion. A major role in acute glucose regulation at 

the organismal level is played by the pancreas. The exocrine pancreas which comprises the 

bulk of the organ is largely involved in the excretion of digestive enzymes. Embedded within 

this exocrine tissue are clusters of cells known as the islets of Langerhans which are involved 

in the endocrine functions of the organ. Three major cell types are found in the islets of 

Langerhans and are the sites of secretion of the major hormones produced therein. The α-

cells, which secrete glucagon, the β-cells which secrete insulin and the δ cells which secrete 

somatostatin. Defects in pancreatic function, expecially in β-cells as encountered in disease 

such as diabetes have detrimental effects on animal physiology.  

Pancreatic β-cells respond to elevated levels of blood glucose to secrete insulin which 

acts in peripheral tissues such as the muscle to stimulate glucose uptake and adipose tissue 

to increase energy storage in the form of triglycerides. The basic components of glucose-

stimulated insulin secretion in β-cells have been described. Glucose catabolism results in 

increased ATP/ADP ratios that lead to the closing of ATP-dependent K+ channels. This 

causes membrane depolarisation which in turn activates voltage-gated Ca2+ and induces 

calcium influx that then allows intracellular vesicles containing insulin to fuse with the plasma 

membrane and secrete their contents. Proteins that modify this pathway have been 

described, notably uncoupling protein 2 (UCP2) which uncouples proton entry to 

mitochondria from ATP production. The action of UCP2 results in lower ATP/ADP levels and 

decreased insulin secretion. Indeed Ucp2-/- knockout animals show increased islet ATP and 

increased glucose-stimulated insulin secretion. UCP2 levels were elevated in ob/ob mice, a 

genetic model of obesity-induced diabetes, and this elevation correlated with increased 

insulin lelvels and hypoglycemia. 

Moynihan et al. (Moynihan et al., 2005) and Bordone et al. (Bordone et al., 2005) 

independently described a role for mSIRT1 in β-cell function. Both groups' work was 

triggered by the observation that mSIRT1 is expressed in the pancreatic islets. Moyihan et 
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al., clearly showed that mSIRT1 shows higher expression in α-cells where it localises to the 

cytoplasm while a weak β-cell specific staining was also observed.  

To investigate the physiological significance of this observation, Moyihan et al. created 

a transgenic mouse that expressed mSIRT1 cDNA under the control of the human insulin 

promoter (Moynihan et al., 2005). They termed these animals BESTO for β-cell-specific Sirt1-

overexpressing. Conversely, Bordone et al. made use of the Sirt1-/- animals generated by 

McBurney et al. as a loss-of-function model (Bordone et al., 2005).  

BESTO mice exhibited normal insulin and glucose levels in both fed and fasted state 

but when challenged with high glucose they showed better glucose tolerance attributed to 

elevated insulin levels. Sirt1-/- animals had constitutively lower levels of insulin and 

completely impaired insulin secretion upon glucose injection. Surprisingly, glucose levels in 

Sirt1-/- mice were lower compared to wild-type controls while these mice also consumed more 

food, suggesting that they have improved insulin sensitivity. In their respective models, both 

groups confirmed that islet morphology and gross mass did not differ from control 

preparations. Islets isolated from Sirt1-/- animals, however were defective in glucose-induced 

insulin secretion while pancreata of BESTO mice showed elevated insulin levels when 

perfused with glucose.  

In an attempt to understand the impaired insulin secretion phenotype of Sirt1-/- islets, 

Bordone et al. used INS-1 cells which are rat pancreatic cell lines where they downregulated 

SIRT1 by means of shRNA to exclude differential expression of proteins involved in glucose 

uptake and insulin secretion. However, they observed suppressed levels of ATP/ADP in the 

knockdown cells which implied that respiration in these cells is more uncoupled compared to 

control cells. Upon examination the levels of UCP2 protein were found to be higher in both 

INS-1 knockdown cells and the pancreata of Sirt1-/- mice. Furthermore, ChIP experiments 

showed that mSIRT1 binds directly the Ucp2 promoter to suppress expression of the gene. 

Using gene expression profiling of derivatives of MIN6, a mouse β-cell line, where mSIRT1 

levels were modulated, Moynihan et al. reached largely the same conclusions.  Interestingly, 

Bordone et al. measured the NAD+/NADH in the pancreata of starved animals and found in to 

be decreased. This would lead to a decrease in SIRT1 activity. In agreement to this, UCP2 

levels were high in starved wild-type animals.  
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β-cell disfunction is associated with diseases such as diabetes and positively 

correlates with old age. mSIRT1 expression in the pancreas was clearly demonstrated 

although the focus of the above work was on β-cells despite the significant presence of 

mSIRT1 in α-cells too. However, the above data are significant because they provide the first 

evidence of a physiological system where modulation of SIRT1 activity can be considered as 

a drug target and paved the way for further investigation of its role in metabolic regulation 

which the major effect of caloric restriction is thought to be exerted upon.  

 
2.3.5.1.7 Neuroprotection and cardioprotection by SIRT1 
 

Degeneration of neuronal axons is a feature of many neuropathies such as 

Parkinson's and Alzheimer's disease. In Wallerian degeneration slow (wlds) mice, a 

spontaneous dominant mutation results in the overexpression of Wlds, a chimaeric nuclear 

protein comprising the N-terminal 70 aminoacids of Ufd2a (ubiquitin fusion degradation 

protein 2a) which participates in ubiquitin chain assembly and the entire sequence of Nmnat1 

which participates in nuclear NAD+ biosynthesis (see section 2.2.2.1). These mice exhibit 

delayed axonal degeneration.  

Araki et al. determined that the enzymatic activity of Nmnat1 is required for the 

neuroprotective effects of Wlds in response to various damaging agents such as ischaemia 

and actin poisons as well as mechanical ablation of axons suggesting a role of nuclear NAD+ 

in this process which they called NAD+-dependent axonal protection (NDAP) (Araki et al., 2004). 

In agreement to this, exogenously provided NAD+ also had a protective effect in neuronal 

cultures. Araki et al. hypothesised that de novo gene expression is required for NDAP as 

these were evident only after >8 hours of pretreatment with NAD+.  

Using sirtinol and resveratrol, an inhibitor and activator of sirtuins respectively as well 

as lentivirus-expressed shRNA against SIRT1, Araki et al. could demonstrate that NDAP 

required SIRT1 consistent with the dependence of its activity on NAD+. Interestingly, they 

could observe no change in cellular NAD+ concentrations suggesting that because of the 

nuclear localisation of Wlds it is only the nuclear pool of NAD+ that is relevant in NDAP (Araki 

et al. 2004). 
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Similarly, pharmacological evidence suggests a role for sirtuins in cardioprotection and 

cardiac hypertrophy as SIRT1 overexpression protected cardiomyocytes from serum 

deprivation-induced death and casued an increased cell size  (Alcendor et al., 2004). 

Conversely, sirtuin inhibition induced cell death in isolated neonatal rat cardiomyocytes. 

These effects are likely mediated by SIRT1 since in a dog model of heart failure, SIRT1 was 

specifically found to be upregulated (Crow, 2004). 

 
 
2.3.5.1.8 SIRT1 and caloric restriction in rodents 
 

As sirtuins in lower organisms mediate in part the effects of caloric restriction on 

longevity, it is of great interest to examine whether this constitutes a conserved function of 

mammalian sirtuins. At least two pieces of evidence indicate that this is the case. 

Caloric restriction in mice can be implemented by reducing food availability to 60% of 

normal food intake. Under these conditions, complex physiological and behavioural changes 

are observed such as a drop in blood plasma triglyceride, glucose and IGF-1 levels and 

increase in animal movement. In response to caloric restriction, mice carrying a genetic 

ablation of SIRT1 alleles, exhibit reduced or absent increases of physical activity (Chen et al., 

2005). This is in spite of changes in plasma markers of caloric restriction comparable to 

wildtype animals and enhanced performance in movement capacity assays such as 

accelerating treadmil or rotarod. This suggests that SIRT1 mediates at least some 

behavioural effects of caloric restriction, possibly through its action in movement centers of 

the central nervous system where SIRT1 has been shown to be strognly expressed (Sakamoto 

et al., 2003). 

 In a separate study, Nisolo et al. observed a marked increase of mitochondrial 

biogenesis and respiration in mice under a caloric restriction regimen (Nisolo et al., 2005). This 

correlated with increased expression of key mitochonrial biogenesis regulators such as PGC-

1α, nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (Tfam) in 

WAT. This response was markedly reduced in mice null for endothelial nitric oxide synthase 

gene (eNOS-/-) while eNOS mRNA levels were induced upon caloric restriction in wild-type 

mice uggesting that it mediates the effects of caloric restriction on mitochondrial biogenesis.  
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Interestingly, SIRT1 mRNA and protein level changes paralleled those of 

mitochondrial biogenesis genes and were also shown to depend on the presence of eNOS in 

WAT as well as other tissues. The same could be recapitulated in cultured white adipocytes 

where treatment with NO donors or a cGMP analogue (mimicking a second messenger 

downstream of eNOS) induced a significant increase in SIRT1 protein levels. Thus SIRT1 

expression is upregulated in WAT upon caloric restriction by a mechanism involving eNOS-

mediated signaling.  

In this study, the expression of both PGC-1α and SIRT1 in induced upon caloric 

restriction suggesting a potential functional interaction of the two proteins in WAT similar to 

the one seen in the liver (Rodgers et al., 2005). However, in the latter case Rodgers et al. 

showed that SIRT1 synergises with PGC-1α for the expression of genes involved in hepatic 

gluconeogenesis but not mitochondrial biogenesis (Rodgers et al., 2005). It is possible that the 

interaction of SIRT1 with PGC-1α in WAT does occur and is distinct from that in the liver 

owing to the differing function of the two tissues upon fasting. 

 

2.3.5.2 SIRT2 
 

SIRT2 localises to the cytoplasm and in particular is found associated with 

microtubules. Concomitant to this property, SIRT2 is the only sirtuin that deacetylates tubulin 

while it shares this function with a member of class II deacetylases, HDAC6 (Hubbert et al., 

2002). SIRT2 and HDAC6 interact in vivo and siRNA-mediated knock-down of either enzyme 

alone is sufficient to induce tubulin hyperacetylation (North et al., 2003). Crucially, the authors 

did not investigate the effect of both SIRT2 and HDAC6 protein knock-down which would 

shed light on the interdependency of their activities on tubulin. Interestingly though, SIRT2 

and HDAC6 differ in that among the two only SIRT2 can deacetylate microtubules purified 

from cell lysates while both enzymes can deacetylate in vitro-assembled microtubules. Also, 

as predicted, the tubulin deacetylase activity of SIRT2 is NAD+-dependent. These 

observations imply the presence of an HDAC6-inhibitory microtubule-associated protein(s) 

(MAPs) and point to differential regulation of these tubulin deacetylases. 

Microtubule dynamics play central role in cell motility and in settings where cell 

movement is thought to participate in disease, such as cancer metastasis. HDAC6 
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overexpressing cells showed increased motility in transwell migration assays, a property 

thought to be conferred by decreased levels of stable microtubules due to higher 

deacetylation rates (Hubbert et al., 2002). However, although high acetylation levels of tubulin 

correlate with stabilised microtubules, it has been an issue of debate whether microtubule 

acetylation is a cause or a consequence of microtubule stability. In another report, Palazzo et 

al. showed that HDAC6 inhibition by TSA, while inducing  tubulin hyperacetylation, fails to 

induce tubulin detyrosynation (Palazzo et al., 2003). Tubulin detyrosynation by itself does not 

induce microtubule stabilisation, rather stable microtubules accumulate this modification and 

thus it is considered a bona fide marker of microtubule stability. Based on this, it was 

proposed that the effects of microtubule acetylation changes on cell motility are not due to 

influences on microtubule stability but on the activity of other factors such as MAPs and 

motor proteins which in turn might influence such events as endocytic vesicle recycling and 

recruitment of intermediate filaments to microtubules. 

Dryden et al. reported that SIRT2 abundance increases during mitosis and that SIRT2 

is subject to a λ-phosphatase-sensitive modification occuring in cells arrested with 

nocodazole (Dryden et al., 2003). Stable overexpression of SIRT2 but not of a catalytically 

inactive mutant delayed exit from a nocodazole-induced mitotic arrest. In S. cereviciae exit 

from mitosis depends on a signalling network known as the mitotic exit network (MEN). A key 

molecule in this system is the phosphatase Cdc14p, which dephosphorylates the mitosis-

specific kinase Cdc28/Clb.  

Two orthologues of the yeast Cdc14 have been described in humans, Cdc14A and 

Cdc14B (Mailand et al., 2002). Transfection of Cdc14B in cells stably expressing SIRT2 led to 

decrease in SIRT2 levels while a catalytically inactive mutant of the phosphatase failed to 

have the same effect (Dryden et al., 2003). The loss of SIRT2 was shown to be reversible by 

treatment with proteasome inhibitors suggesting that phosphorylation may regulate SIRT2 

stability during cell cycle progression. Corroborating to this was the fact that co-transfection 

of SIRT2 with ubiquitin allowed the detection of ubiquitinated SIRT2. It would be of great 

interest to investigate whether the proposed role of SIRT2 in mitosis is exerted through its 

microtubule deacetylation activity.  

Some light to this aspect of SIRT2 function was shed by the study of Bae et al. who 

analysed the proteomes of human gliomas and showed that SIRT2 is markedly 
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downregulated in these cancers (Bae et al., 2004). Interestingly, the SIRT2 locus is located in 

chromosomal region 19q13.2 which is frequently deleted in gliomas. Gliomas are also 

characterised by aneuploidy suggesting that defects in the spindle checkpoint may underlie 

tumour development and may reflect the proposed function of SIRT2 in mitosis. 

In an attempt to identify SIRT2 interacting partners by a yeast two-hybrid assay,  

Hiratsuka et al. showed that SIRT2 interacts both in vitro and in vivo with the homeobox 

transcription factor HOXA10 (Hiratsuka et al., 2003). Interestinlgy, HOXA10 was shown to 

regulate the transcription of the cell cycle inhibitor p21 in the context of differentiation. This is 

reminiscent of the SIRT1 interacting partners Hes1/Hey2 that regulate another cell cycle 

inhibitor, p27. It remains unclear whether these interactions are of physiological significance 

while little is known about the mechanism of action of SIRT2 in the experimental settings 

employed in these studies. 

 

2.3.5.3 SIRT3 
 

SIRT3 localises to mitochondria by means of a predicted amphipathic α-helix 

comprising the first 25 aminoacids of the protein (Schwer et al., 2002). Immunoblotting analysis 

of cell extracts revealed two immunoreacetive bands, one at the predicted size of ~44 kDa 

and one at ~28kDa. The 28 kDa species was shown to be a soluble mitochondrial matrix 

protein derived proteolytically from the inner mitochondrial membrane-associated 44 kDa 

species predominantly through the action of mitochondrial matrix processing peptidase 

(MPP). Interestingly, the full-length protein lacks detectable enzymatic activity while the 

processed form exhibits NAD+-dependend deacetylase activity. 

Aside their role in energy production, mitochondria are also major players in the 

dissipation of energy in the form of heat, a process known as adaptive thermogenesis, which 

is important for maintaining energy balance in response to environmental stimuli such as diet 

and temperature. In rodents, brown adipose tissue (BAT) is the primary site of adaptive 

thermogenesis a fact linked to their high content of mitochondria. The production of heat by 

mitochondria is attained primarily through the action of uncoupling protein 1 (UCP1) which 

uncouples fuel oxidation from ATP production by inducing proton leakage across the 

mitochondrial inner membrane.  
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Shi et al. observed that mSIRT3 mRNAs are enriched in mouse BAT but not in white 

adipose tissue (WAT) (Shi et al., 2005). In addition, mSIRT3 transcripts were induced in 

response to cold exposure and brown adipocytes overexpressing SIRT3 by means of 

retroviral transduction induced the expression of UCP1 along with other mitochondrial genes 

(ATP synthase, cytochrome c oxidase subunits II and IV) and PGC-1α, a coactivator shown 

to have major metabolic regulatory functions including mitochondrial biogenesis. Importantly, 

the authors demonstrated that these effects required both the deacetylase and ADP-

ribosyltransferase activities of mSIRT3. mSIRT3-induced UCP1 induction was shown to 

depend on PGC-1α and correlated with phosphorylation of CREB, a known PGC-1α 

activator. Consistent to these, mSIRT3 stimulated both mitochondrial electron transport and 

uncoupling and reduced mitochondrial membrane potential and ROS production.  

Upon examination of mSIRT3 transcript levels in mouse models of obesity, mSIRT3 

was shown to be reduced in BAT, in agreement with its defective thermogenesis capacity in 

obesity. Interestingly, given the proposed role of PGC-1α in diabetes (Mootha et al., 2003), 

Yechoor et al. observed a downregulation of SIRT3 mRNA levels in the skeletal muscle of a 

streptozotocin-induced mouse model of diabetes a phenomenon further exuberated by 

muscle-specific deletion of the insulin receptor (MIRKO mice) (Yechoor et al., 2004). Moreover, 

as ROS production has been linked to life-span regulation, it remains to be investigated 

whether the proposed roles of SIRT3 mediate organismal longevity.  

Indeed there is evidence that in humans specific SIRT3 polymorphisms are found in 

long-lived individuals. The SIRT3 genomic locus maps to the chromosomal region 11p15.5 

where four other genes potentially associated with longevity are also located (HRAS1, 

Insulin-like Growth Factor 2, Proinsulin, and Tyrosine Hydroxylase). A genetic-demographic 

study identified a silent nucleotide transversion that correlated with increased life-span in 

males but not in females of the examined cohort. Linkage-disequilibrium analysis revealed a 

potential role of this SIRT3 polymorphism or a tightly linked gene in longevity independent of 

the other longevity-associated genes in the locus (Rose et al., 2003).  

Further analysis identified a allele-length polymorphism in intron 5 of the gene that 

was highly linked to this silent variant. A nucleotide variability within this polymorphism was 

found to convert a GATA3 site to a deltaEF1 site lacking enhancer activity in reporter assays. 

Intriguingly, this allele was completely absent in old male subjects while allele length was 
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also shown to correlate with specific age groups (Bellizzi et al., 2005). How different haplotypes 

dictate downstream molecular events and how these are linked to longevity remains to be 

elucidated. 

 
2.3.5.4 SIRT6 
 

FISH studies located the SIRT6 locus in chromosomal region 19p13.3. In the mouse, 

it is expressed in both embryonic and adult tissues, with higher mRNA levels detected in the 

brain, heart and liver. lacZ reporter gene replacement of the endogenous mSIRT6 locus 

confirmed ubiquitous expression of the protein in the mouse. Interestingly, in the muscle 

mSIRT6 shows the highest protein expression levels despite low mRNA abundance relative 

to other tissues tested (Liszt et al., 2005). 

SIRT6 is reported to be a nuclear protein, excluded from nucleoli (Michishita et al., 2005; 

Liszt et al., 2005) while showing a moderate concentration in regions of high Hoechst staining, 

implying that it is associated with heterochromatin. To this effect, it has been shown by 

biochemical fractionation of chromatin- and nuclear matrix-bound proteins that, contrary to 

SIRT1, SIRT6 associates with chromatin. 

SIRT6 shows no in vitro deacetylase activity against an acetylated histone H4 (K16) or 

acetylated p53 (K382) peptide. Consistent with this, p53 K382 acetylation was markedly 

suppressed in normal human prostate epithelial cells transduced with a SIRT1 but not with 

SIRT6 recombinant retrovirus. This implied either that the specificity of SIRT6 for the tested 

substrates differed from that of SIRT1 or that SIRT6 has no deacetylase activity.  

Biochemical studies probing the enzymatic activity of mouse SIRT6 (mSIRT6) showed 

that bacterially expressed mSIRT6 is able to transfer robustly 32P from 32P-NAD+ but not to 

core histones as substrate suggesting that it has auto-ADP-ribosyltransferase activity (Liszt et 

al., 2005). Moreover, this was shown to be an intramolecular reaction since co-incubation with 

differently tagged mSIRT6 failed to label an mSIRT6 species mutated in the catalytic site 

previously demonstrated to be important for the ADP-ribosyltranferase activity. Although no 

substrates of this SIRT6 activity have been reported to-date, it is thought that auto-ADP 

ribosylation may serve as an autoregulatory mechanism for the enzyme based on previous 

reports from other proteins. 
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In an attempt to understand the physiological functions of SIRT6, Mostoslavsky et al. 

created a knock-out mouse lacking SIRT6 by means of homologous recombination 

(Mostoslavsky et al., 2006). ES and MEF cells derived from these animals showed reduced BrdU 

incorporation and S-phase cells implying a proliferation defect. These cells also axhibited a 

higher sensitivity to ionising radiation treatment but not ultraviolet radiation indicating an 

intact nucleotide excision repair (NER) pathway. Karyotype analysis revealed a multiplicity of 

chromosomal abnormalities pointing to a defect in genomic stability maintainance pathways. 

To address this issue, Mostoslavsky et al. analysed the ability of SIRT6-/- cells to arrest in 

response to IR and found it to be intact. In addition, mSIRT6 deficiency did not compromise 

double-strand break (DSB) repair pathways as judged by an extrachromosomal plasmid-

based non-homologous end joining (NHEJ) assay, chromosomal  DSB repair rates and 

formation/clearance rates of γ-H2AX foci, an early marker of DSBs. 

Conversely, both SIRT6-/- MEFs and ES cells were found to be more sensitive to 

treatment with the alkylating agent MMS and the ROS inducer H2O2, which create DNA 

lesions repaired by the BER pathway. Importantly these phenotypes were shown to be 

reversible by re-expression of recombinant SIRT6 but not a catalytically inactive mutant. 

Furthermore, the MMS, IR and H2O2 sensitivity was rescued by overexpression of the 5'-

deoxyribose phosphate (dRP) lyase domain of Polβ, a protein exclusively operating in the 

BER pathway, confirming that SIRT6 mediates genomic stability by modulation of BER repair 

mechanisms. These effects are not thought to directly affect BER factors, since their 

expression is not altered in SIRT6-/- cells, nor does mSIRT6 colocalise with these 

components upon MMS and H2O2 treatment. Interestingly, however, extracts of SIRT6-/- cells 

could perform as wildtype cells in in vitro BER assays.  

SIRT6-/- mice were born at the expected Mendelian frequency from an intercross 

between SIRT6 heterozygous animals and remained apparently normal and viable albeit 

weighing less than their wild-type litermates (Mostoslavsky et al., 2006). However, SIRT6-/- mice 

invariably died at around 3 weeks of age following the onset of several degenerative 

processes such as subcutaneous fat loss, lordokyphosis due to osteopenia, colitis, 

lymphopenia, phenotypes associated with ageing. The lymphopenia could be attributed to 

increased lymphocyte apoptosis which correlated with decreased CD4+/CD8+ double positive 

thymocytes and decrease in splenic lymphocytes and bone marrow B cell progenitors. The 
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latter phenotypes were shown to be due to systemic effects on lymphocytes, since both 

donor bone marrow SIRT6-/- cells and wt competitor cells contributed equally to lymphocyte 

repopulation when co-injected into lethally irradiated acceptor mice. Along these lines, 

SIRT6-/- mice exhibited markedly reduced IGF-1 serum levels. Concomitantly, plasma 

glucose of these animals steadily decreased after P12 reaching undetectable levels before 

death. IGF-1 is thought to contribute to lymphocyte resistance to apoptosis and reduction of 

lymphocyte population associated with ageing correlates with low IGF-1 serum levels.  

Although little is known about the molecular mechanisms or, indeed, the actual SIRT6 

enzymatic activity that mediates the observed effects, genomic stability and consequently 

ageing, this work comprises the most convincing evidence to-date that in higher eucaryotic 

organisms a member of the sirtuin family mediates processes involved in determining life-

span.  
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2.4 Aim of the project 
 

In relation to our interests in understanding cellular responses to nutrient availability 

we selected to study sirtuins as potential candidates linking the metabolic status of the cell 

expressed by the levels of NAD+ and transcription through their deacetylase activity. 

The identification of the NAD+-dependent enzymatic activity of sirtuins fuelled a lot of 

speculation as to whether intracellular NAD+/NADH levels could act as regulators of their 

activity. This is a particuarly attractive hypothesis since yeast sirtuins are known mediators of 

the effects of caloric restriction on longevity. However, experimental verification of this 

hypothesis is hintered by the lack of direct methods of assaying sirtuin activity in native 

conditions since cell disruption automatically dictates the provision of exogenous NAD+ for 

the enzymatic reaction. Consequently, sirtuin activity can only be indirectly predicted by 

correlation with the (measurable) intracellular [NAD+]/[NADH] or assessment of the 

acetylation status of known substrates.  

Post-translational modification (PTM) is a ubiquitous mode of protein regulation by 

means of affecting biomolecular interactions or enzymatic activity. Thus, PTMs have been 

broadly employed as a means to investigate the behaviour of proteins and their influence 

upon the biological systems they participate in. To-date, no PTMs have been identified for 

sirtuins.  

The aim of this project was to identify PTMs that influence sirtuin activity, focusing on 

SIRT1. We employed an broad range of approaches towards this goal and to understand the 

functional significance of the newly-discovered modifications. 
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3.1 BUFFERS (in alphabetical order) 
 
 
 
Apoptotic extract buffer A 
 
 20 mM  HEPES-KOH pH 7.5 
 10 mM  KCl 
1.5 mM  MgCl2 
1.0 mM  EDTA 
1.0 mM  EGTA 
 
Used with freshly added DTT (1mM) protease inhibitors as described in the text. 
 
 
 
 
ATP for luciferase assays 
 
100 mM dissolved in H2O adjusted to pH 7.8 with NaOH 
 
 
 
 
2xBBS (Borate-buffered saline) 
 
   50 mM  BES [N-N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid] pH 6.96 
 280 mM NaCl 
  1.5 mM  Na2HPO4 
 
 
 
 
β-galactosidase assay buffer 
 
60  mM  Na phosphate 
10  mM  KCl 
  1  mM  MgCl2 
50  mM  β-mercaptoethanol (added fresh prior to use) 
0.7 mg/ml ONPG (o-nitrophenyl-β-D-galactopyranoside) 
 
60 mM Na phosphate was prepared by mixing (for 1 litre): 
 93.2 ml   1M Na2HPO4 
   6.8 ml   1M NaH2PO4 
 
 
 
Gel Filtration buffer 
 
  50 mM  Hepes pH 7.5 
150 mM  NaCl 
  10 mM  MgCl2 
    0.1%  NaN3 
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Gel Filtration lysis buffer 
 
  50 mM  Tris-HCl pH 8.0 
150 mM NaCl 
     1%   Triton X-100 
  20 mM  NaF 
 
Used with freshly added DTT (1mM) protease and phosphatase inhibitors as described in the text. 
 
 
 
 
Glutathione elution buffer 
 
 15 mM  Glutathione  
 50 mM  Tris pH 8.0  
 
Stored at -20 °C 
 
 
 
 
6.7xGlycylglycine buffer 
 
150 mM  MgSO4 
250 mM Glycylglycine  
  pH 7.8 
 
 
 
 
HAT (histone acetyltransferase) buffer 
 
 50 mM  Tris-HCl pH 8.0 
 10 mM  Na butyrate 
0.2 mM  acetyl-CoA 
  10 %   glycerol 
 
Used with freshly added DTT (1mM)  
 
 
 
 
 
2xHBS (HEPES-buffered saline) 
 
  50 mM  HEPES pH 7.05 
140 mM  NaCl 
 1.5 mM  Na2HPO4 
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In vitro transcription/translation (IVT) reaction mix 
 
25 µl  rabbit reticulocyte lysate (RRL) 
  2 µl  TNT buffer 
  1 µl  aminoacid mix (w/o methionine) 
  1 µl  RNasine RNase inhibitor 
  2 µl  DNA (at 1 µg/µl starting concentration) 
16 µl  H2O 
  1 µl TNT T7 RNA polymerase 
  2 µl  35S-methionine (30 µCi) 
50 µl  FINAL VOLUME 
 
 
 
 
Kinase assay buffer 
 
  20 mM Tris-HCl pH 7.5 
  50 mM KCl 
  10 mM MgCl2 
2-10 µM ATP 
   10 µCi 32P-γ-ATP 
 
 
 
 
λ-phosphatase lysis buffer 
 
  50 mM Tris-HCl pH7.5 
250 mM NaCl 
 0.1 mM  EDTA 
 0.5 %   NP-40 
 
Used with freshly added DTT (1mM) and protease inhibitors 
 
 
 
 
LB medium 
 
   1 %  (w/v)  Bacto-tryptone (BD)  
0.5 %  (w/v)  Bacto-Yeast extract (BD)  
    1%  (w/v)  NaCl  
pH 7.0  
 
 
 
 
LB agar 
 
15g of agar in 1 l LB medium 
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6.7x Luciferin 
 
2mM in 1x Glycylglycine buffer 
 
 
 
Luciferase assay buffer 
 
1x Glycylglycine buffer 
1x Luciferin 
5 mM ATP 
 
 
 
Luciferase extraction buffer 
 
0.1 M K-phosphate buffer pH 7.8 [10 parts of 1 M K2HPO4 mixed with 1 part 1M KH2PO4] 
0.1% Triton X-100 
 
Used with freshly added DTT (1mM) 
 
 
 
Maltose elution buffer 
 
  20 mM  Tris-HCl pH 8.0 
200 mM NaCl  
    1 mM EDTA 
  10 mM β-mercaptoethanol (freshly added) 
  10 mM Maltose 
 
 
NETN lysis buffer 
 
  20 mM  Tris-HCl pH 8.0 
100 mM NaCl  
    1 mM EDTA 
    0.5%  NP-40  
 
Used with freshly added DTT (1mM) and protease inhibitors as described in the text. 
 
 
 
Paraformaldehyde (PFA) fixation solution  
 
3.7% PFA/2% sucrose 
 
18.5 g PFA dissolved in 400 ml of H2O by heating and addition of 400 µl 10N NaOH. To this solution add 50 ml 
of 10x PBS and 10g sucrose. Adjust pH to 7.4, make up to 500 ml with H2O and aliquot in Falcon tubes. Stored 
at -20 °C. 
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PBS (Phosphate-buffered saline) 
 
137 mM NaCl 
 2.7 mM KCl 
  10 mM Na2HPO4 
     2mM KH2PO4 
  pH 7.4 
 
 
Peptide/protein affinity column blocking buffer 
 
   0.1 M  Tris-HCl pH 8.0 
 
 
 
Peptide/protein affinity column coupling buffer 
 
0.1 M  NaHCO3 
0.5 M  NaCl 
 
pH 8.0 
 
 
 
Peptide/protein affinity column washing buffer A 
 
0.1 M  CH3COONa 
0.5 M  NaCl 
 
pH 4.0 
 
 
 
Peptide/protein affinity column washing buffer B 
 
0.1 M  Tris-HCl 
0.5 M  NaCl 
 
pH 8.0 
 
 
 
SDS running buffer 
 
25 mM Tris-HCl 
250 mM glycine 
0.1% SDS 
pH 8.3 
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SIRT1 deacetylation assay buffer 
 
  25 mM  Tris-HCl pH 8.0 
137 mM  NaCl 
 2.7 mM  KCl 
    1 mM  MgCl2 
1 mg/ml  BSA 
 
 
Sodium borate (NaB) solution for antibody coupling 
 
0.2 M sodium borate pH 8.0 
 
  1 part     0.2 M  H3BO3 (Boric acid) 
10 parts  0.05 M  Na2B4O7 
 
 
TBE  
 
89 mM  Tris-HCl pH 8.0  
89 mM Boric acid  
  2 mM  EDTA  
 
 
TBST 
 
 
  50 mM  Tris-HCl pH 8.0 
150 mM  NaCl 
   0.1 %  Tween-20 
 
 
TNN lysis buffer 
 
  50 mM  Tris-HCl pH 7.5 
250 mM NaCl (high salt) or 120 mM (low salt) 
    5 mM EDTA 
  50 mM Sodium Fluoride (NaF) 
    0.5%  NP-40 (high NP-40) or 0.1% (low NP-40) 
 
Used with freshly added DTT (1mM) protease and phosphatase inhibitors as described in the text. 
 
 
WCE (Whole Cell Extract) lysis buffer 
 
  20 mM HEPES-KOH pH 7.5 
400 mM NaCl 
    25%  Glycerol 
     1mM  EDTA 
    5 mM NaF 
   0.1%  NP-40 
 
Used with freshly added DTT (1mM) protease and phosphatase inhibitors as described in the text. 
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3.2 METHODS 
 
3.2.1 BIOINFORMATICS RESOURCES 
 
Multiple sequence alignments:  ClustalW 1.8 (Baylor College of Medicine) 

http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html 

 
Aligned sequence editing:   BoxShade (Pasteur Institute) 

http://bioweb.pasteur.fr/seqanal/interfaces/boxshade-simple.html 

 

PEST motif identification:   PESTFind (University of Vienna) 

https://emb1.bcc.univie.ac.at/toolbox/pestfind/pestfind-analysis-webtool.htm 

 

Phosphorylation site searches:  Scansite Motif Scanner (MIT) 

http://scansite.mit.edu/motifscanner/motifscan1.phtml?database=_SWS_ 

 
 
3.2.2 MOLECULAR BIOLOGICAL TECHNIQUES 
 
Construction of plasmids expressing SIRT1 and deletion/point mutants thereof 
 

Two vectors containing the cDNA encoding for human SIRT1 and that of a catalytically 

inactive mutant (Vaziri et al., 2001) were kindly provided by Prof. Robert Weinberg (Whitehead 

Institute, MIT, USA). These vectors were named pYESir2 and pYESir2HY respectively and 

were based on a pBabePuro retroviral expression vector backbone. The SIRT1 cDNA was 

excised with BamHI/SnaBI and subcloned into pcDNA3 and pcDNA3-HA vectors in the 

BamHI/EcoRV sites. 

 

All SIRT1 point mutants were created by the two-step PCR method, using either the Pwo 

polymerase kit (Roche), or GC-rich PCR system (Roche) for amplification of regions 

corresponding to the N-terminus of the protein, according to manufacturer's protocols. 

Mutations proximal to the N-terminus of SIRT1 were introduced to BamHI/PacI-digested 
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pcDNA3-HA-SIRT1 plasmid while mutations proximal to the C-terminus were introduced to 

PacI/XbaI-digested pcDNA3-HA-SIRT1 plasmid. The XbaI site is part of the 3' UTR of SIRT1 

mRNA which was present in the original pYESir2 vector. Truncation mutants were cloned 

following the same strategy. All mutations were confirmed by sequencing of the relevant 

region. The mutated cDNAs as well as other SIRT1 fragments were subsequently subcloned 

to various vectors as follows: 

 

pcDNA3-based vectors:  Into the BamHI/XbaI sites 

pBabePuro vector:   Into the BamHI/SnaBI sites (following 3' Klenow fill-in) 

pAcGST vector:   Into the BamHI/SmaI sites 

pGEX-2TK vector:  Into the BamH/EcoRI sites 

pMAL-c2 vector:  Into the BamHI/XbaI sites 

 

Other plasmids used in this study were obtained as follows: 

 

GST-Pin1:   Gianni Del Sal, LNCIB, Trieste, Italy (Zacchi et al., 2002) 

GST-p300(HAT): Richard Eckner, New Jersey Medical School, New Jersey, USA 

Flag-β-TrCP:  Giulio Draetta, European Inst. of Oncology, Milan (Busino et al., 2003) 

 

 

Origin of SIRT1 knock-out mice 
 
Mice of the 129/SvJ strain containing a targeted deletion of the SIRT1 locus were provided 

by Prof. F. Alt, Harvard University, Boston USA (Cheng et al., 2003).  

 

 

Genotyping of SIRT1 knock-out mice and MEFs 
 

Genotyping was performed by standard Taq polymerase PCR methods using the following 

primers recommended by the provider of the mice: 
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SIRT1SKO-F:  5'-CTTGCACTTCAAGGGACCAA-3' 

SIRT1SKO-R1: 5'-GTATACCCACCACATCTGAG-3' 

SIRT1SKO-R2: 5'-CTACCACTCCTGGCTACCAA-3' 

 

All three primers were uses simultaneously giving a band of ~ 800 bp for the knockout allele 

and a band of ~500 bp for the wildtype allele. 

 

Specific PCR conditions were: 33 cycles of 94 °C, 40"; 55 °C 50"; and 72 °C  1.2'. 

 

3.2.3 CELL CULTURE METHODS 
 
3.2.3.1 Mammalian cell culture 
 
NB: When the term "standard medium" is used in the context of cell culture applications, the 

following formulation should be assumed: 

500 ml Dulbecco's MEM (Invitrogen, #10938-025) supplemented with 50 ml FCS 

(final: 10%) 5ml of 200mM L-Glutamine (final: 2mM) and 5ml 10,000 U/ml 

penicillin/10,000µg/ml streptomycin mix (final: 100U and 100µg respectively). 

 

MEF medium: standard medium + 200 µM β-mercaptoethanol  

Sf9 insect cell medium: Grace's insect medium (Invitrogen, #11605-045) + 10 % FCS 

Other media formulations are indicated were appropriate 

 

 

Transfection of mammalian cells with small interfering RNAs (siRNAs) 
 
At least 24 hours prior to transfection, cells were seeded in antibiotic-free standard medium 

so that they were approx. 50% confluent on the day of transfection. 

 

For a 10-cm tissue culture plate, 18 µl of 20 µM siRNA (40 nM final concentration unless 

othewise indicated) were added to 892 µl OPTIMEM serum-free medium in an Eppendorf 
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tube and mixed by pipetting. In a separate tube, 18 µl of Oligofectamine transfection reagent 

were added to 72µl OPTIMEM and gently mixed by flicking the tube 1-2 times. The lipid 

preparation was then allowed to sit at room temperature for 10' and it was then added to the 

diluted siRNA mix. In the meantime, cells were washed at least 1x with standard medium 

without antibiotics and without serum and 5 ml of the wash medium were added to the cells 

prior to return to the incubator. Following a 20-25' incubation at room temperature, the 

transfection mix was added to the cells in a dropwise fashion. 4-6 hours after transfection, 

standard medium containing 30% FCS  was added to the plate to a final FCS content of 10% 

(typically 3 ml of this medium to the 6 ml of medium in plates). Cells were harvested at the 

indicated times and typically 48-72 hours after transfection. 

 

 

RNAi target sequences  
 
control non-silencing:   5'-AATTCTCCGAACGTGTCACGT-3' 

Cdh1 (Donzelli et al., 2002):  5'-AATGAGAAGTCTCCCAGTCAG-3' 

Cdc20 (Donzelli et al., 2002):  5'-AAACCTGGCGGTGACCGCTAT-3' 

MPS1 (Stucke et al., 2002):  5'-AACCCAGAGGACTGGTTGAGT-3' 

Bub1 (Johnson et al., 2004):  5'-AAATACCACAATGACCCAAGA-3' 

BubR1 (Johnson et al., 2004):   5'-AACGGGCATTTGAATATGAAA-3' 

SIRT1-1:    5'-AATTATCACTAATGGTTTTCA-3' 

SIRT1-2 (Lin and Elledge, 2003): 5'-AACTGGAGCTGGGGTGTCTGT-3' 

SIRT1-3*:  5'-CAAGCGATGTTTGATATTGAA-3' 

(*designed using the HiPerfmormance Design Algorithm by Qiagen) 

 
 
Calcium phosphate transfection of cultured cells 
 
For calcium phosphate transfection, cells were seeded 24h prior to transfection. 1-2 hr prior 

to transfection, the medium was exchanged with 9ml of fresh standard medium. 
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Typically 1-5 µg of plasmid DNA were combined with H2O to a final volume of 450 µl. 50 µl of 

2.5M CaCl were added to the DNA mix followed by vortexing for 10'' then 500 µl of 2xBBS 

buffer were added followed by 30'' vortexing. The tranfection mix was left at room 

temperature for 20' then added to the cells in a drop-wise fashion while gently rocking the 

plates. 16 hours post-transfection the cells were washed 3x with DMEM and supplemented 

with 9 ml of standard medium. Cells were harvested for further work approx. 40-46 hr, post-

transfection. 

 
 
Luciferase and β-galactosidase reporter assays 
 
1.0x105-1.5x105 cells were seeded in 6-well plates at least 24 hours prior to transfection. 

Transfected cells were lysed in 250 µl luciferase extraction buffer, harvested with a Teflon 

cell scraper and transferred to an Eppendorf tube. Cellular debris was pelleted by 

centifugation for 10-15' at 14,000 rpm (20,800xg) at 4 °C. Cleared supernatants were 

transferred to white 96-well plates. 100 µl of cell lysate were used for luciferase activity assay 

in a MicroLumat Plus LB96V (Berthold Technologies, Bad-Woldbad, Germany) luminometer. 

Two injections, each 50 µl luciferase assay buffer were added per sample with a 1.6" delay 

and 15" integration time.  

 

In parallel, 20 µl of each lysate were transferred to wells in transparent 96-well plates and 

170 µl β-galactosidase assay buffer were added to each sample. Reactions were incubated 

in the dark at 37 °C until a yellow coloration started becoming visible and quantified by 

spectophotometry at 420 nm prior to apparent reaction saturation. 

 

All tranfections for luciferase assays were performed in triplicate, each luciferase reading was 

normalised against the corresponding β-galactosidase value, data were averaged and 

standard deviation was calculated using Microsoft Excel. 
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In vivo 35S-labelling of proteins 
 
Cells at approx. 60-80% confluency were used for in vivo 35S-labelling of newly synthesised 

proteins. Cells were washed twice with methionine-free medium (with L-glutamine and 

penicillin/streptomycin as in standard medium) without FCS and supplemented with 4 ml of 

the wash medium containing 10 % dialysed FCS. Cells were incubated for 15'-30' at 37 °C, 

the medium was subsequently replaced with 3ml of methionine-free medium (incl. 

penicillin/streptomycin, L-glutamine and 10 % dialysed FCS) supplemented with 100 µCi/ml 

radioactive labelling mix (PROMIX, Amersham Biochiences). The plates were covered with 

charcoal filters and incubated at 37 °C, 5% CO2 for 3 hours after which cells were harvested 

for further manipulations. 

 

 

Isolation of mouse embryonic fibroblasts (MEFs) 
 
SIRT1+/+, SIRT1+/- and SIRT1-/- MEFs were derived from E12.5 embryos from an intercross of 

SIRT1+/- animals. Observation of a vaginal plug after overnight mating was considered as 

E0.5. Pregnant mice were sacrificed by cervical dislocation, embryos were isolated and 

placed in ice-cold PBS containing 2% FCS. The head and internal organs of the embryos 

were removed and the head was used for genotyping. The remaining tissue was finely cut 

with a scalpel and incubated for up to 15' in trypsin solution at 37 °C, 5% CO2. Trypsinised 

tissue was further dissociated by pipetting through a 1ml pipette tip, transferred to a 10 cm 

tissue culture plate and incubated at 37 °C, 5% CO2. After reaching confluency, each 10-cm 

dish of MEFs was expanded into two 15-cm dishes. At confluency, MEFs were either 

counted and frozen in 9:1 MEF medium/DMSO or expanded for further experiments. 
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Retroviral infection of mammalian cells 
 
Retroviruses were created by transfecting the appropriate recombinant retroviral transfer 

vector pBabePuro, that carries the puromycin selectable marker into the BOSC23 or Phoenix 

"packaging" cell lines.  

 

In detail, one day prior to trasfection, the packaging cells were seeded so that at the day of 

transfection they were 40-60% confluent. 1-2 hr prior to transfection, the medium was 

exchanged with 9ml of fresh medium.  

 

For the transfection, 20 µg of recombinant retroviral transfer vector containing the cDNA of 

interest were diluted with H2O to a final volume of 440 µl. After addition of 62 µl of 2M CaCl2 

the mixture was vortexed for 10'' followed by addition of 500 µl of 2xHBS. The transfection 

mix was vortexed for 30'' and let to stand at room temperature for 20'. The transfection mix 

(1ml in 9ml of medium per 10 cm dish) was added dropwise to the packaging cell line and 

cells were incubated for approx. 16 hours (O/N) at 37°C, 5% CO2. Cells were subsequently 

washed 3x with DMEM and supplemented with 9ml of standard medium. On the same day, 

the cells to be infected were seeded so that they were approx. 50-60% confluent on the day 

of infection. Approx. 40-46 hr, post-transfection, the medium of the packaging cells was 

harvested with a sterile syringe and filtered through a 0.45 µm syringe filter into a 15ml 

Falcon tube. This viral supernatant was supplemented with polybrene from a stock of 8 

mg/ml to a final concentration of 4 µg/ml and added to the cells to be infected after removal 

of the old medium. Infection was repeated twice and 24 hr after the last infection, selection of 

the infected cells was initiated by replacing the medium with standard medium containing 2 

µg/ml puromycin. Based on inspection of puromycin resistant colonies, typically >200-300 

colonies comprised each pool (uncloned cell mass). 
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3.2.3.2 Insect cell culture 
 
Production of recombinant baculoviruses 
 

2x106 Sf9 cells were seeded in 6-cm dishes and were left to attach for approx. 20' at room 

temperature in a total medium volume of 4 ml. In the meantime, 0.5µg of BaculoGold® DNA 

(in 5 µl) were combined with 2 µg of recombinant baculovirus transfer vector, mixed gently by 

pipetting and let stand for 5'. Following that, 1ml of Transfection Buffer B was added to the 

DNA mix. The medium of Sf9 was then aspirated and cells were overlayed with 1ml 

Transfection Buffer A. The 1ml of Transfection Buffer B/DNA was then added dropwise to the 

cells, and the plates were incubated for 4 h at 27 °C. The transfection mix was then 

aspirated, cells were washed 2x with 4 ml and 4 ml of medium was applied to each plate. 

The 6-cm dishes were then placed in 15-cm dishes along with Whattman 3M paper pre-wet 

with H2O to minimise culture mediun evaporation and incubated in ambient atmosphere, at 

27 °C for 5 days. Supernatants were then harvested, cell debris was removed by 

centrifugation (1000xg, 2' at RT), the supernatant was filtered through a 0.45 µm syringe filter 

and used to infect 2x106 Sf9 cells in 6-cm dishes in 3 ml of Grace's insect medium/10% FCS. 

At least 72 h post-infection, the resulting viral supernatant (1st amplification) was harvested 

as above and 1 ml of it was used to infect 2x107 Sf9 cells in T75, screw-cap tissue culture 

flasks with a filter lid in a medium volume of 30-40 ml. At least 72 h post-infection, the viral 

supernatant (2nd amplification) was harvested as above and stored in the dark at 4 °C. This 

was used as the main viral stock and further viral amplifications were initiated from this. 

 

 

Production of recombinant proteins in Sf9 insect cells 
 
Logarithmically growing Sf9 cells were dislocated from the dish, counted and re-plated at 

5x106 cells per 10 cm plate. Cells were left to attach to the plate and the medium was 

replaced with 5 ml fresh medium (Grace's insect medium/10% FCS). 0.2-1.0 ml of 

recombinant baculovirus stock was used for infection. Cells were incubated at 27 °C and 

harvested 48 hours after infection. 
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3.2.3.3 Bacterial culture - Production of recombinant proteins in E. coli 
 
The appropriate plasmid encoding the protein of interest was transformed into E. coli by the 

heat-shock method. Transformants were grown O/N at 37 °C. A single colony was then used 

to inoculate 10 ml LB medium (+antibiotic) and the culture was grown shaking (230 rpm) O/N. 

The following day, the culture was diluted 1:10 with fresh pre-warmed LB medium 

(+antibiotic) and incubated for 1.5 h as above. Protein expression was induced with 0.1mM 

IPTG for 3-4 hours and cells were harvested by centrifugation prior to further processing. 

 
 

 

3.2.4 BIOCHEMICAL TECHNIQUES 
 

 

Purification of GST-fusion proteins produced in Sf9 insect cells 
 

Cells were lysed in 1ml TNN lysis buffer per cell pellet derived from a 10-cm culture plate 

(initial seeding density: 5x106 cells infected for ~48 hours) for 30' on ice. Cell debris was 

removed by centrifugation (20', 12000xg, 4 °C). Glutathione bead slurry was added to the 

cleared supernatant and the mixture was incubated for 1 h in a rotating wheel at 4 °C. The 

beads were subsequently pelleted by brief centrifugation up to maximum speed at 4 °C and 

similarly washed 4x with lysis buffer. The beads were subsequently washed 1x with 50 mM 

Tris-HCl pH 8.0 and the purified proteins were either used for assays as described in the 

corresponding sections or eluted 2x with glutathione elution buffer for 10-20' at room 

temperature. The eluted material was supplemented with glycerol to a final concentration of 

20% and stored at -80 °C. All steps were performed at 4 °C. 
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Purification of GST-fusion proteins produced in E. coli 
 
All steps were performed exactly as above with the exception that bacterial cells were lysed 

in NETN buffer and sonicated (3x10" at maximum amplitude) on ice.  

 

 

Purification of MAL-fusion proteins produced in E. coli 
 

All steps were performed as described for bacterially-expressed GST-fusion proteins with the 

exception that amylose resin (NEB, E8021-S) was used for the purification of the 

recombinant proteins and following washing with the lysis buffer the bead-bound material 

was washed 1x with maltose elution buffer (without maltose) and eluted 2x with maltose 

elution buffer for 10-20' at room temperature. 

 

 

Gel filtration chromatography 
 

A frozen pellet of 5x109 HeLa cells was lysed in 10 ml gel filtration lysis buffer, dounce 

homogenised (15 strokes) with a type B tight-fitting pestle and left for 30' on ice. The lysate 

was pre-cleared by centrifugation for 30', at 3000xg, 4 °C and filtered through a 0.45 µm low-

protein binding syringe filter prior to gel filtration. Gel filtration was performed using a 

Superose 6, XK26/70 preparative column at a flow rate of 0.5 ml/min in gel filtration buffer. 50 

fractions of 4 ml each were collected in total and 50 µl of each fraction were used for SDS-

PAGE analysis. 

 
 
In vitro kinase assays 
 
Recombinant GST or GST-SIRT fragment fusion proteins were expressed in E. coli and 

purified using glutathione beads as described. Recombinant CK2 was purchased from Cell 

Signalling. 500 units of CK2 were diluted in kinase assay buffer (10 µM ATP) containing ~4 
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µg recombinant protein substrate to a final volume of 30 µl. Reactions were incubated for 30' 

at 30°C, stopped by addition of Laemmli buffer and boiling followed by analysis on an SDS-

PAGE gel. Gels were dried and exposed for autoradiography. 

 

GST-CyclinB1/His-Cdk2 were co-expressed in Sf9 cells and purified by glutathione affinity 

chromatography. Assay conditions were as for CK2. 

 

BubR1 was immunoprecipitated from cell extracts. Assay conditions were as for CK2. 

 

 

In vitro SIRT1 deacetylase activity assay using a fluorogenic peptide 
 

For in vitro determination of SIRT1 activity, SIRT1 preparation (immunoprecipitated or 

recombinant expressed in Sf9 cells as a GST-fusion) was incubated with 100 µM Fluor de 

Lys-SIRT1 acetylated peptide substrate (corresponding to residues 379-382 of p53) and 0.5 

mM NAD+ in SIRT1 deacetylation assay buffer according to manufacturer's protocol 

(BIOMOL HDAC fluorescent activity assay/drug discovery kit - AK-500). Final reaction 

volume was 50 µl. Reactions were incubated for 30' at 37 °C and stopped by addition of 1x 

volume of Fluor de Lys Developer II incubated for an additional 45' at 37 °C in the dark and 

fluorescence was measured (excitation: 360 nm, emission: 460 nm, cutoff: 455 nm) with a 

SPECTRAmax GEMINI  96-well plate fluorometer (Molecular Devices). 

 

 

In vitro SIRT1 deacetylase activity assay using autoacetylated GST-p300(HAT) 
 

Prior to use in the deacetylation assay, GST-p300(HAT) was expressed in E. coli, purified 

using glutathione beads, washed 3x in NETN buffer, washed 2x in HAT buffer (w/o acetyl-

CoA) and the beads were resuspended in HAT buffer with acetyl-CoA. The reaction was left 

to proceed for 30' at 30 °C. The final reaction volume was 50 µl. This autoacetylation reaction 

can also be omitted with equally good results as GST-p300(HAT) shows significant 

autoacetylation when expressed in bacteria and can thus be readily used as a substrate for 
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the deacetylation reaction. Recombinant GST-SIRT1 or GST-SIRT1(H363Y) expressed in 

Sf9 cells was purified using glutathione beads and eluted as described. Following 

autoacetylation, the GST-p300(HAT)-bound beads were washed 3x in TNN buffer, 2x in 

SIRT1 deacetylation assay buffer, the beads were equally divided to Eppendorf tubes for the 

various reactions and resuspended in SIRT1 deacetylation assay buffer supplemented with 

0.5 mM NAD+ and, where indicated, 0.5 mM nicotinamide or 10 mM Na butyrate. 5 µl of 

SIRT1 enzyme preparation corresponding to ~2 µg of purified protein were used per reaction. 

The final reaction volume was 50 µl. Reactions were incubated for 1h at 37 °C, stopped with 

addition of Laemmli buffer, boiled and analysed by SDS-PAGE. 

 
 
 
In vitro transcription/translation 
 
In vitro transcription/translation was performed with the Promega TNT® coupled reticulocyte 

lysate system using T7 RNA polymerase. Typically, 2 µg of DNA midiprep were incubated 

with IVT reaction mix for 90' and used directly or stored at -20 °C. 

 

 

 

In vitro binding assays 
 
The appropriate fusion protein (bait) was purified as detailed above, the beads were washed 

3x with 1 ml lysis buffer without additives, and resuspended in 1 ml lysis buffer with additives. 

1-5 µl of IVT were added to the bead suspension and the tubes were incubated in a head-to-

head rotor for 1-3 hr. The beads were subsequently washed 4x with 1 ml lysis buffer without 

additives and bound material was released by addition of Laemmli buffer and boiling for 5' 

prior to loading on a gel. 
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Preparation of cell-free apoptotic extracts from 293 cells  
 
Extracts were prepared as described in (Liu et al., 1996). In detail, 293 cells were grown to 90% 

confluency, washed 1x with ice-cold PBS and scrapped with a teflon cell scrapper in a Falcon 

tube and resuspended in 5x volumes of ice-cold apoptotic extract buffer A. The lysates were 

allowed to stand on ice for 15' then homogenised with a tight-fitting type B pestle in a Dounce 

homogeniser followed by centrifugation at 1000xg for 10' at 4 °C. The resulting supernatant 

was then centrifuged at 105xg (23,700 rpm) for 1h at 4 °C in a Beckman SW40 rotor. The 

supernatant (S-100 fraction) was aliquoted, snap-frozen in liquid N2 and stored at -80 °C until 

further use. Total protein concentration in these extracts was at 5 µg/µl.  

 

In vitro caspase cleavage assay 
 

For in vitro cleavage assays, S-100 extracts were thawed on ice, dATP was added to a final 

concentration of 1 mM where applicable and the extract was incubated at 30°C for 1h. 10 µl 

of extract corresponding to 5 µg total protein were added to 1-2 µl of in vitro translated 

material and incubated for the time indicated in the text. Reactions were stopped by the 

addition of SDS sample buffer and analysed by SDS-PAGE. 

 

Tryptic digestion of GST-SIRT1 for phosphorylation analysis 
 
GST-SIRT1 was expressed in Sf9 cells and purified as described, but not eluted from the 

beads. Following washes with lysis buffer, the sample was divided into two equal parts and 

either mock-treated, or treated with λ-PPase as described. The bead-bound material was 

then washed with lysis buffer to remove λ-PPase followed by 2x washes with 10 mM Tris pH 

8.1. The beads were subsequently resuspended in 50 µl of 10 mM Tris pH 8.1 and 

supplemented with CaCl2 to a final concentration of 2mM and sequencing-grade trypsin 

(Promega) at a ratio of 1:20 (w/w) trypsin:GST-SIRT1 (this corresponded to 1 µg trypsin). 

The samples were incubated at 37°C O/N, the supernatants were harvested and stored at     

-80°C until analysed by MALDI-MS. 

 141



Chapter 3 - Materials and methods 
 

3.2.5 IMMUNOLOGICAL TECHNIQUES 
 
Paraformaldehyde fixation/Triton X-100 permeabilisation 
 

Cells were seeded at least 24 and usually 48 hours prior to treatment/fixation on 18x18 mm 

#1 coverlips placed in the wells of a 6-well plate. The medium was aspirated and 2 ml PFA 

fixation solution freshly thawed and pre-warmed to 37 °C was added to each well. The plate 

was incubated at 37 °C for 10'. Cells were then washed 2x with PBS and permeabilised with 

0.02% Triton X-100 in PBS for 10' at RT. Cells were washed 2x with PBS and proccessed for 

immunostaining as described below.  

 

Methanol fixation/Acetone permeabilisation 
 

Cells were seeded on coverslips as above, the medium was aspirated and cells were directly 

fixed with methanol (-20 °C) then permeabilised in an acetone bath (-20 °C). Coverslips were 

subsequently washed 1x in a PBS bath at RT and processed for immunostaining as 

described below. 

 

Cells were seeded at least 24 and usually 48 hours prior to treatment/fixation on 18x18 mm 

#1 coverlips placed in the wells of a 6-well plate. 

 
 
Immunostaining of cultured cells 
 

Fixed/permeabilised cells were incubated with primary antibody mix (1-5 µg/ml of antibody in 

PBS/1% BSA/1% goat serum) for 1-2h at RT or O/N at 4 °C. Cells were washed 3x with PBS 

at RT and subsequently incubated with secondary antibodies coupled to the appropriate 

fluorescent dye (diluted in  PBS/1% BSA/1% goat serum) for 1h at RT. In parallel DNA was 

counterstained with 1 µg/ml DAPI (1,4,6-diamidino-2-phenylindole). Cells were washed 3x 

and inverted over Vectashield medium on top of a microscope glass. Coverslips were sealed 

using nail varnish and either observed directly , or were stored in the dark at 4 °C until 

observation. 
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Preparation of peptide affinity columns for antibody purification 
 

For antibodies raised against a peptide, the same antigenic peptide was used for affinity 

purification. In detail: Activated CH sepharose 4B (Amersham #17-0490-01) was 

resuspended in 20 ml of 1 mM HCl and washed for 15' through a sintered glass filter with 

300-400 ml of the same solution. Washed sepharose was transferred to a 15 ml Falcon tube 

and washed 1x with peptide coupling buffer. Peptide was dissolved in coupling buffer in a 

volume equivalent to 2x volumes of swollen sepharose and was added to the sepharose 

bead slurry [20mg peptide per gram of sepharose (dry weight; 1 g sepharose gives ~3ml 

slurry following swelling)]. The suspension was incubated on a tilting shaker for 2 h at RT. 

The beads were subsequently washed 2x with peptide coupling buffer and unreacted 

moieties on the beads were blocked with blocking buffer for 1 h at RT. The beads were then 

washed for 3 consecutive cycles of alternating wash buffer A and B. Finally, the beads were 

washed with PBS and stored in PBS+0.05% NaN3 at 4 °C. 

 
 
Preparation of protein affinity columns for antibody purification 
 

Preparation of protein affinity columns was essentially as described for peptide columns with 

the following modifications: 

 

CNBr-activated sepharose 4B (Amersham #17-0430-01) was used; 1 mg of protein was 

coupled per gram of sepharose; 1 g sepharose gives ~3.5 ml slurry following swelling.  

 

The relevant antigenic region was expressed as a fusion protein in bacteria and purified as 

described. Prior to coupling, the purified protein was dialysed against coupling buffer O/N at 

4°C. 
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Affinity purification of rabbit polyclonal antibodies 
 
α-SIRT1 Ctp was purified through a peptide affinity column using the same antigenic peptide. 

α-SIRT1 GST-S1 antibody was purified through a MAL-SIRT1(575-676) column. Affinity 

purification was performed identically for both antibodies. 

 
 
Affinity columns were  prepared as described. The storage buffer was allowed to flow through 

and the column was washed  with 3 volumes of binding buffer (PBS+0.2% Tween-20). 

Typically, 3 ml of rabbit serum were diluted to 10 ml total volume with binding buffer 

(PBS+0.2% Tween-20) and applied to the column. Bound material was washed until the 

OD280 was equal to ODPBS+0.2% Tween-20 (usually approx. 3 column volumes). Elution was 

accomplished using 8-10 ml of 0.2M Glycine pH 2.2. Fractions (7-9) of 750 µl were collected 

directly into Eppendorf tubes containing 250 µl 1M Tris pH 8.0. The OD280 of all fractions was 

measured using (PBS+0.2% Tween-20)/Tris pH 8.0 (3:1) for the first 2 fractions and 0.2M 

Glycine pH 2.2/Tris pH 8.0 (3:1) for the following fractions. Fractions with the highest OD280 

were poolled, loaded on a pre-wet dialysis bag (MWCO 6,000-8,000, Spectra/Por) and 

dialysed O/N in PBS+30% glycerol. The dialysate was collected, OD280 was determined 

using the dialysis buffer as blank and purified antibody concentration was determined 

according to the formula: 

 

[antibody µg/µl]= OD280 x ε 

 

where ε= 0.699 and is the IgG extinction coefficient. 

 

The purified antibody solution was supplemented with BSA at a final concentration of 1 

µg/ml, aliquoted and stored at -80 °C until further use. Antibody working solutions were 

typically stored at 4 °C where they were stable for at least 3 months. 

 

 

 144



Chapter 3 - Materials and methods 
 

Immunoprecipitation 
 

Cells were rinsed with ice-cold PBS and either lysed directly in 1ml TNN lysis buffer per 

10cm dish, and hervested with a teflon cell scraper in a 1.5ml Eppendorf tube. Cells were left 

on ice for 30' and debris and unlysed material was pelleted by centifugation for 20-30' at 

14,000 rpm (20,800xg) at 4 °C. The cleared supernatant was transferred to a new Eppendorf 

tube containing 35 µl of a 50% Protein-A sepharose bead slurry, or a 1:1 mixture of Protein-

A:ProteinG beads where appicable and pre-cleared for 1 h on a head-to-head rotator at 4°C. 

The beads were subsequently pelleted for 10' at 14,000 rpm (20,800xg) at 4 °C, the 

supernatant was transferred to a new Eppendorf tube and supplemented with the appropriate 

antibody. Immunocomplexes were precipitated with the addition of 35 µl of beads as used for 

the preclearing step, for 1 h on a head-to-head rotator at 4°C. Beads were washed 4x in 1 ml 

lysis buffer without supplements by successive pelleting of the beads and following the final 

wash, residual buffer was aspirated using a hypodermic needle, the beads were 

resuspended in 2x Laemmli buffer, boiled and analysed by SDS-PAGE. 

 

Alternatively, cells were rinsed with ice-cold PBS and collected with a teflon cell scraper in 1 

ml PBS in an Eppendorf tube, centrifuged for 3' at 3,000 rpm (1000xg) at 4 °C, the 

supernatant was aspirated, cell pellets were snap-frozen in liquid nitrogen and stored at -

80°C until use. 

 
 
Antibody coupling to sepharose beads 
 

Antibody diluted in PBS was bound to protein-A sepharose CL-4B beads (Amersham, #17-

0780-01) in a rotating wheel for 1 h at 4 °C. Approx. 2 mg antibody were bound per ml of wet 

beads. The beads were washed 2x with 10 volumes of 0.2 M NaB (pH 9.0) and resuspended 

in 10 volumes of the same solution. Solid dimethylpimelimidate (DMP) was added to the 

suspension to a final concentration of 20 mM while ensuring that the pH of the suspension 

was ≥8.3. The coupling reaction was allowed to proceed for 30 min in a tilting shaker and 
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was stopped by washing the beads 1x with 0.2 M ethanolamine followed by a 2 h incubation 

in the same solution with gentle mixing at RT. The beads were finally washed 2x with PBS 

and stored in PBS+0.05% NaN3 at 4 °C. Coupling efficiency was assessed by analysing 

equivalent volumes of bead suspension before and after coupling by SDS-PAGE. 

 

 
 
Preparative large-scale immunoprecipitation for mass spectrometry 
 

A frozen pellet of 5x109 HeLa cells was lysed in 160 ml TNN buffer, dounce homogenised (10 

strokes) with a type B tight-fitting pestle and left for 30' on ice. The lysate was cleared by  

centrifugation for 30', at 18000xg, 4 °C using an SS34 rotor, followed by centrifugation for 

30', 100000xg at 4°C using an SW37 rotor. Rabbit IgG covalently coupled to protein-A 

sepharose was used to pre-clear the lysate for 1h at 4°C, then the beads were removed by 

centrifugation (5', 3000xg) and the bound material (unspecific, control) was eluted by addition 

of 300 µl 0.2M glycine pH2.2. the eluate was neutralised with 100 µl of 1M K2HPO4. The 

supernatant was incubated for 3h with α-SIRT1 Ctp antibody covalently coupled to 

sepharose beads.  The beads were subsequently washed 4x with lysis buffer and bound 

material was eluted as above. Both eluates were concentrated using Centricon columns 

(Millipore) with a M.W.C.O. (molecular weight cut-off) of 10,000. Laemmli buffer was added 

to the samples to a 1x final dilution and samples were analysed by SDS-PAGE in a 6-15% 

gradient gel. Gels were subsequently stained using colloidal blue solution and relevant bands 

were excised with a surgical scalpel. Following in-gel trypsinisation, proteins were identified 

as described (Gstaiger et al., 2003). 
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Antibodies 
 

Antigen Host & isotype Clone Conjugation Cat. no. Manufacturer 
α-acetyl-lysine mouse Ac-K-103 - #9681 Cell signaling 

BubR1 mouse IgG2a 9 - D 612502 Transduction Labs 

Cdc20 (p55CDC) rabbit H175 - sc-8358 Santa Cruz 

Cdh1 mouse IgG1κ Ab-2 - CC43 Calbiochem 

cyclin B1 rabbit H-433 - sc-752 Santa Cruz 

cyclin B1 rabbit GNS1 - sc-245 Santa Cruz 

Flag mouse M2 - F3165 SIGMA 

cdk2 goat - - sc-163G Santa Cruz 

GST rabbit (GST-2) - G-1160 SIGMA 

HA mouse Y11 - MMS-101R BABCO 

Histone H3 pSer-10 rabbit - - 9706 Cell signaling 

α-rabbit IgG donkey - HRP NA-934V Amersham 

α-mouse IgG donkey - HRP NA-931V Amersham 

α-rabbit IgG goat - Alexa Fluor 680 A-21076 Molecular Probes 

α-mouse IgG goat - Alexa Fluor 680 A-21057 Molecular Probes 

α-rabbit IgG goat - IR Dye 800 611-132-122 Rockland 

α-mouse IgG goat - IR Dye 800 610-132-121 Rockland 

α-goat IgG rabbit - HRP 61-1620 Zymed 

α-rabbit IgG goat - Alexa Fluor 488 A-11070 Molecular Probes 

α-mouse IgG goat - Alexa Fluor 488 A-11017 Molecular Probes 

rabbit IgG rabbit - - 02-6102 Zymed 

p21 mouse - - 15091-1 BD Pharmingen 

p27 rabbit N-20 - sc-527 Santa Cruz 

p300 mouse RW128 - - Richard Eckner 

PARP mouse - - 556362 BD Pharmingen 

Skp2 mouse 95.60.2 - - Krek Lab 

Topoisomerase-IIβ   rabbit JB-1 - - Dan Sullivan 

α-tubulin mouse - - CP06 Calbiochem 
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CHAPTER 4 

 
 

RESULTS: FUNCTION AND REGULATION OF SIRT1 
 
 
4.1 REGULATION OF SIRT1 BY PHOSPHORYLATION 
 
4.1.1 Production of α-SIRT1 polyclonal and monoclonal antibodies  
 

Since at the time this project was initiated no commercial antibodies against 

mammalian sirtuins were available, in order to perform functional analyses of SIRT1, we 

developed two polyclonal antibodies raised in rabbits. One was raised against a peptide 

corresponding to the last 21 aminoacids of the C-terminus of SIRT1. The other was raised 

against an N-terminal fusion of GST to aminoacids 575-676 of SIRT1 expressed in E. coli. 

These antibodies will henceforth be referred to as Ctp and GST-S1 respectively. The 

latter fragment was chosen based on sufficient expression levels of the corresponding 

recombinant protein after a small-scale screen of GST-fusions of SIRT1 fragments 

spanning the N- and C-terminal regions of the protein. Given the enhanced mobility of 

protein domains known to harbour catalytic acivity due e.g. to induced-fit effects upon 

substrate binding, the sirtuin core domain was deemed potentially unsuitable for raising 

an antibody against it. This is because in experimental conditions where the protein's 

tertiary structure is conserved such as immunofluorescence microscopy studies or 

immunoprecipitation, such antibodies may exhibit weak affinities for the antigen.   

Two rabbits were immunised with each of the antigens and the sera were tested for 

immunoreactivity to HA-tagged SIRT1 overexpressed in 293 cells. Based on their ability to 

efficiently recognise the antigen, the serum from one rabbit typically 3-5 months after 
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immunisation start was used to purify SIRT1-specific antibodies by affinity 

chromatography. 

FIGURE 4-1 shows the characterisation of these antibodies. Both the Ctp and GST-S1 

antibodies recognise a single band of endogenous SIRT1 with an apparent moilecular 

weight of ~120 kDa by Western blotting of cell extracts from a variety of cell lines. In 

addition, both antibodies could efficiently immunoprecipitate endogenous SIRT1. 

Specificity was probed by siRNA-mediated depletion of the immunoreactive band for the 

Ctp antibody and by blotting GST-S1 immunoprecipitates with a monoclonal antibody 

recognising SIRT1 (see FIGURE 4-3).  
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FIGURE 4-1. Characterisation of α-SIRT1 polyclonal antibodies. (A) Characterisation of Ctp, a
rabbit polyclonal antibody raised against a peptide corresponding to the C-terminus of SIRT1; (B)
Characterisation of GST-S1, a rabbit polyclonal antibody raised against residues 575-767 of
SIRT1. See text for details. 
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Neither of these antibodies recognises mouse SIRT1 in NIH3T3 and primary 

embryonic fibroblasts (FIGURE 4-1B and not shown). This is not surprising for the Ctp antibody 

since the C- termini of human and mouse SIRT1, although similar, do not exhibit a stretch 

of ≥6 identical aminoacids which could serve as a common antigenic region. However, the 

region comprising aminoacids 575-676 of human SIRT1 should provide such an epitope 

and the reasons of this are currenlty elucive provided that fibroblasts do express 

detectable SIRT1 levels according to published reports and our own observations. 

Immuofluorescence microscopy on PFA-fixed cells revealed a consistent nuclear 

staining which at times appeared speckled, especially when using the GST-S1 antibody 

(FIGURE 4-2). This is consistent with essentially all the studies published subsequently 

confirming the nuclear localisation of SIRT1. Moreover, these signals can be abolished 

when the SIRT1 antibodies are pre-incubated with the corresponding antigens and 

downregulation of SIRT1 by RNAi as confirmed by WB (FIGURE 4-2C). These data 

corroborate to the specificity of the signal.  
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To enrich our SIRT1 toolkit, it was considered desirable to also generate mouse 

monoclonal antibodies targeting this protein. Mouse monoclonal antibodies have several 

advantages that complement polyclonal antibodies since they recognise a single epitope, 

once generated they are essentially of unlimited quantity and they do not cross-react with 

rabbit secondary antibodies used for immunoprecipitation to name but few. Thus 

monoclonal antibodies were raised in mice, the antigen used being bacterially-expressed 

full-length SIRT1 fused in its N-terminus with maltose binding protein (MAL). After several 

serial screens following sub-cloning of initially immunoreactive-clones, a single clone, that 

exhibited sustainable growth in culture and consistently produced α-SIRT1 

immunoreactivity was isolated. This clone and henceforth the antibody that it produces 

are referred to as mAb12/1. 
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FIGURE 4-3. Characterisation of α-SIRT1 monoclonal antibody mAb12/1. (A) siRNA-mediated SIRT1
downregulation in HeLa cells to probe the specificity of mAb12/1; (B) Capacity of mAb12/1 to
immunoprecipitate endogenous SIRT1 from HeLa cells; (C) Mapping of mAb12/1 immunogenic epitope; (D)
Immunolocalisation pattern of SIRT1 using mAb12/1. a,b: HeLa cells fixed with methanol and permeabilised
with acetone. c,d: HeLa cells were treated for 30’ with 100 nM mitotracker dye fixed with paraformaldehyde
and permeabilised with Triton X-100. All scalebars represent 5 µm. SIRT1 is in green, mitotracker in red,
DAPI nuclear stain in blue. 
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mAb12/1 can recognise a single band in WB (FIGURE 4-3) and immunoreactivity is 

reduced in cells treated with siRNA targeting SIRT1. Furthermore, mAb12/1 can efficiently 

immunorpecipitate endogenous SIRT1 from HeLa cell lysates using Protein-A sepharose. 

The epitope recognised by mAb12/1 was determined to be within the first 121 aminoacids 

of the protein (FIGURE 4-3C) and λ-phosphatase (henceforth: λ-PPase) treatment did not 

affect its recognition of GST-SIRT1 expressed in Sf9 cells. Furthermore, mAb12/1 was 

also tested for its ability to recognise SIRT1 by indirect immunofluorescence (FIGURE 4-3D). 

Unlike Ctp and GST-S1, mAb12/1 gave a cytoplasmic staining pattern when using 

different fixation/permeabilisation methods. This cytoplasmic staining does not correspond 

to mitochondria as judged by co-staining with the mitochondrial marker MitoTracker. 

Although in contrast to both what the polyclonal antibodies of this study as well as 

numerous published results from other groups suggest, mAb12/1 may selectively 

recognise a small cytoplasmic subfraction of SIRT1 which is otherwise masked when a 

strong nuclear SIRT1 staining is present. mAb12/1 was subsequently shown to 

specifically recognise an unphosphorylated form of SIRT1, however whether this is 

unlikely to be connected to the observed immunolocalisation because mutants of the 

phosphoaminoacids in question are also nuclear (see Section 1.2.2, this chapter). 

Given the fact that all three antibodies recognise different epitopes while they all 

immunoprecipitate endogenous SIRT1, their ability to recognise different SIRT1 

complexes was tested. For this purpose, HeLa cells were incubated with 35S-methionine 

to label newly synthesised proteins and subjected to immunoprecipitation with GST-S1 

and mAb12/1. As shown in FIGURE 4-4A, apart from a band at ~120kDa presumably 

corresponding to SIRT1, the pattern of co-immunoprecipitated bands differed between the 

two antibodies. As SIRT1 requires NAD+ for its enzymatic activity, NADH was proposed to 

be a competitive inhibitor thereof (Lin et al., 2004) and because of the fact that small 

molecules involved in catalysis often impose a conformational change to the 

corresponding enzymes, the possibility that either NAD+ or NADH can change the pattern 

of SIRT1 binding partners was tested. HeLa cells were labelled as above but all 

subsequent manipulations thereof including lysis, immunoprecipitation with mAb12/1 and 

washes were performed in the presence of the indicated compound. No major differences 

in the pattern of co-precipitated bands between the different conditions tested were 

observed suggesting that NAD+ and NADH may not exert their effects on SIRT1 activity 

by modulation of its binding to other proteins. 
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Finally, GST-S1  and mAb12/1 were tested for their ability to interfere with the 

enzymatic activity of SIRT1. This is particularly important when it comes to 

immunopurifying SIRT1 from cell extracts in order to assay for SIRT1 activity under 

particular conditions. For this, a baculovirus expressing GST-SIRT1 was constructed and 

used to generate recombinant protein in Sf9 insect cells. GST-SIRT1 affinity-purified using 

reduced glutathione was able to deacetylate a peptide based on the known p53 target 

sequence flanking K382 in a fluorescence-based peptide deacetylation assay (FIGURE 4-5). 

Thus insect cell-expressed GST-SIRT1 is an active deacetylase. When 

immunoprecipitated with either mAb12/1 or with GST-S1, Sf9 cell-expressed GST-SIRT1 

retained its enzymatic activity, which, as expected, was sensitive to inhibition by 

nicotinamide, suggesting that these antibodies do not obviously interfere with its 

enzymatic activity. It cannot be excluded, though, that under particular conditions these 

antibodies may interfere with binding of a cellular regulator of SIRT1 activity. 
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4.1.2 SIRT1 is a phosphoprotein 
 

The immunofluorescence staining patterns of either the Ctp or GST-S1 antibodies 

revealed a characteristic loss of intensity in cells that appeared to be in the phase of 

mitosis based on their counter-stain with DNA-binding dies (FIGURE 4-6). This could be 

attributed to the diffusion of the protein following nuclear envelope break-down which 

occurs in mitosis. To confirm that this is indeed the case in contrast to a genuine loss of 

signal due to e.g. high proteolytic turnover of the protein during mitosis, total cell extracts 

of HeLa cells either logarithmically growing or arrested in mitosis by treatment with 

nocodazole were compared by Western blot (WB) (FIGURE 4-7A). Nocodazole binds and 

destabilises microtubules preventing the attachment of kinetochores to the mitotic spindle 

during cell division which results in the engagement of the mitotic spindle checkpoint and 

mitotic arrest. Treatment of HeLa cells with nocodazole for 16 hours was typically used in 

these studies. The mitotic population of adherent cells was purified by virtue of the fact 
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that such cells attach loosely to the cell culture dishes due to the charactersitic rounding 

associated with mitotic division in contrast to their non-mitotic counterparts. 

  

 

 

Immunoblotting with the GST-S1 antibody revealed that total SIRT1 protein levels 

were unchanged in both logarithmically growing and nocodazole-arrested cells suggesting 

that total SIRT1 protein levels are not subject to regulation during mitosis (FIGURE 4-7A). 

However, a subtle but evident retardation in the mobility of SIRT1 in nocodazole-arrested 

cells was observed. Such mobility retardation during SDS-PAGE is frequently seen when 

proteins are phosphorylated due to the increased negative charge conferred to the protein 

by the attached phosphate group. Thus it was hypothesised that this was also the case for 

SIRT1.  
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FIGURE 4-6. Changes in SIRT1
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with GST-S1 antibody (green) and
counterstained with propidium iodide (red).
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 To test this hypothesis, cell extracts from nocodazole-arrested cells were treated 

with λ-PPase and subjected to immunoblotting (FIGURE 4-7B). λ-PPase is a dual specificity 

phosphatase encoded by the bacteriophage λ genome. As a control, a similar reaction 

was set in the presence of Na3VO4  a potent inhibitor of λ-PPase (Zhuo et al., 1993). The 

SIRT1 immunoractive band in the λ-PPase-treated nocodazole-arrested cells migrated 

with increased mobility suggesting that indeed the observed band-shift was due to 

phosphorylation. However, it was also obvious that λ-PPase caused an even higher 

mobility than that of untreated cells. A more careful observation of the untreated sample 

SIRT1 band reveals a "comet-tail" effect suggestive of the presence of more than one 

SIRT1 species. Given the fact that in a typical exponentially growing population of HeLa 

cells 3-5% of cells are in mitosis, it is very unlikely that the observed electrophoretic 

retardation in interphase extracts is due to this small population. Thus, it was concluded 

that SIRT1 is phosphorylated in interphase and hyperphosphorylated in nocodazole-

arrested mitotic cells. 

Based on these results, a two-fold goal for the project was defined, namely to 

identify the phosphorylation site(s) of SIRT1 that cause the reduced electrophoretic 

mobility in (i) interphase cells and  (ii) in mitotic cells and explore their effects on SIRT1 

activity. 

 

4.1.3 Phosphorylation of SIRT1 in interphase 
 

To identify the interphase kinase and its target residues of SIRT1, a 

multidisciplnary approach was employed harnessing the power of bioinformatics, 

biochemical evidence and litterature search. These approaches as well as the functional 

characterisation of the identified modifications will be delineated below. 

 
4.1.3.1 Identification of phosphorylation sites of SIRT1 expressed in Sf9 cells 
 
 Recombinant human proteins expressed in insect cells often exhibit patterns of 

post-translational modifications similar to the ones found in human cells. Interestingly, λ-

PPase treatment of GST-SIRT1 expressed in Sf9 cells increases the electrophoretic 

mobility of the protein (FIGURE 4-8A) similarly to the situation in human cells suggesting that 

it is phosphorylated. Thus, it was hypothesised that if phosphorylation does play a role in 
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FIGURE 4-8. Dephosphorylation of GST-
SIRT1 expressed in Sf9 cells abolishes
its deacetylase activity. (A) GST-SIRT1
expressed in Sf9 cells was treated with λ-
PPase or mock-treated and subsequently
analysed by western blotting; (B) The GST-
SIRT1 species prepared in (A) were
assayed for in vitro deacetylase activity
using bacterially-expressed autoacetylated
GST-p300(HAT) as a substrate. 

regulation of SIRT1, this may affect the enzymatic 

activity of the protein. To test this, the λ-PPase-

treated GST-SIRT1 species of FIGURE 4-8A were 

subjected to an in vitro deacetylation assay using 

GST-p300 histone acetyltransferase (HAT) 

domain, which is autoacetylated when expressed 

in bacteria, as a substrate. Untreated GST-SIRT1 

was able to robustly deacetylate GST-p300(HAT) 

whereas its λ-PPase-treated counterpart lost this 

activity (FIGURE 4-8B). These data suggest that 

phosphorylation of GST-SIRT1 may have an 

impact on its enzymatic activity, potentially 

reflecting a situation in human cells too. 

 Thus, GST-SIRT1 purified using glutathione 

sepharose beads and treated with λ-PPase on-

the-beads, was subsequently digested also on-

the-beads with trypsin. The released tryptic 

peptides were subjected to matrix-assisted laser 

desorption ionisation mass spectrometry (MALDI -

MS) to identify phosphorylated peptides. This approach, coupled to automated database 

searches indicated the presence of at least two phosphorylated serines, corresponding to 

aminoacids S27 and S47 (FIGURE 4-9). 

 To test whether phosphorylation of these serines conferred the characteristic 

mobility shift to SIRT1, Flag-tagged SIRT1 or non-phosphorylatable mutants carrying 

serine to alanine substitutions were transfected in 293 cells and subjected to post-lysis λ-

PPase treatment. All three species exhibited similar behaviour in this experiment (FIGURE 4-

10) suggesting any of the following possibilities: (i) S27 and S47  are not phosphorylated 

in human cells, (ii) S27 or S47 are phosphorylated but do not cause a shift or (iii) 

phosphorylation of either S27 or S47 suffices to cause a shift which is not abolished when 

only either one of these residues is mutated to alanine. To date only possibility (i) can be 

dismissed because during the course of these studies, a recent report identified both 

residues as phosphorylated in an unbiased large-scale screen of nuclear phosphoproteins 

from HeLa cells (Beausoleil et al., 2004). In addition, two truncation mutants lacking aa's 1-

GST-SIRT1

GST-p300 AT

Ac-GST-p300 AT

GST-p300AT 
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λ-PPase
– +     +
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A
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192 and 1-217 respectively showed a λ-PPase-sensitive shift suggesting that the 

phosphorylation sites in question are not located in the N-terminal 217 aminoacids of the 

protein (FIGURE 4-10 right panel). 

 

 

 
FIGURE 4-9. Identification of phosphorylation sites in GST-SIRT1 expressed in Sf9 cells. Tandem
mass spectra of the two singly charged phosphopeptides found are shown along with the annotations of the
aminoacids corresponding to the observed mass differences. [M+H]+1-H3PO4 indicates the peak
corresponding to the intact phosphopeptide that has lost H3PO4 following fragmentation in the mass
spectrometer. 
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FIGURE 4-10. Alanine substitution of S27 or S47
does not abolish phosphorylation-induced
electrophoretic mobility retardation of SIRT1.
293 cells were transfected with the indicated Flag-
tagged SIRT1 constructs and either treated with
λ-PPase or mock-treated prior to western blotting
with α-Flag antibody. 

∆192 ∆ 217

75

– + – + – +λ-PPase: – + – +

wt S27A S47A

Flag-SIRT1

WB: α-Flag

293 cells

In the light of the information gained 

from the crystal structure of the yeast Hst2p 

(Zhao et al., 2003) which indicated that sirtuins 

may form trimeric complexes by interacting 

through their N-termini, the possibility that 

SIRT1 also forms a homopolymer was 

investigated. Since modifications in the N-

terminus of the protein could regulate this 

event, HeLa cells were transfected with HA- 

or Flag-tagged SIRT1 either alone or in 

combination and were subjected to 

immunoprecipitation with either α-HA or α-Flag antibodies. HA-SIRT1 could be detected in 

α-Flag immunoprecipitates only when Flag-SIRT1 was co-expressed but the reverse was 

not the case (FIGURE 4-11A).  This suggested that human SIRT1 can homodimerise or 

possibly form higher order homopolymers. In a gel filtration experiment where proteins are 

separated according to the size of the native complexes they participate in, SIRT1 exhibits 

a broad profile spanning between molecular weights of ~300 kDa to 158 kDa (FIGURE 4-11B) 
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FIGURE 4-11. Evidence for SIRT1 oligomerisation. (A) HeLa cells were transfected with the indicated
SIRT1 constructs and subsequently subjected to immunoprecipitation and western blotting with either α-
HA or α-Flag antibodies; (B) Gel filtration analysis of SIRT1 derived from HeLa cells. 
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consistent with the presence of trimers, if these species correspond to homopolymers. 

This is in agreement with a subsequent report (Vaquero et al., 2004) where SIRT1 was also 

suggested to be in a trimeric form. The above results show that SIRT1 can 

homopolymerise, possibly forming trimers. It remains to be tested whether this is 

mediated through the N-terminus of the protein and whether it is subjected to regulation 

by phosphorylation at S27 or S47. 

As a putative nuclear localisation signal (NLS) was predicted in residues 233-238 

of SIRT1 (FIGURE 4-12B and Frye, 1999; originally aa's 41-46 since the identified SIRT1 cDNA 

started from M193), the localisation of either of the N-terminal deletion mutants was 

investigated. As expected, wild-type SIRT1 was nuclear (FIGURE 4-12A). However, ∆192 

exhibited equal distribution between the cytoplasm and the nucleus while ∆217 was 

exclusively cytoplasmic despite harbouring the putative NLS. Thus the N-terminus of 

SIRT1 must include another element that determines the protein's subcellular localisation. 

Another K/R-rich sequence that can serve as a putative NLS is found at aa's 94-99 (FIGURE 

4-12B). These results raise the possiblity that SIRT1 is targeted to the nucleus by a 

bipartite NLS or additional modifications that reside within the N-terminus of the protein. 

 

4.1.3.2 Identification of the mobility-shift inducing phosphorylation sites 
 

 The observed mobility shift of SIRT1 in interphase cells shown to be due to 

phosphorylation was used as an indicator to determine the region of SIRT1 that harbored 

the putative phosphoaminoacids. In a primary screen, C-terminal deletions of SIRT1 were 

expressed as HA-tagged species in 293 cells and the derivative cell extracts were either 

Untransfected

FLAG-SIRT1 wt

FLAG-SIRT1 ∆192

FLAG-SIRT1 ∆217

Putative Nt SIRT1 NLS sequences:
94 RKRPRR 99

233 KRKKRK 238

A

B

Figure 4-12. The N-terminus of
SIRT1 harbours a previously
unidentified NLS. (A) HeLa
cells were transfected with the
indicated SIRT1 constructs and
subsequently subjected to
immunocytochemical analysis
with α-Flag antibodies; (B) Two
sequences within the N-terminus
of SIRT1 which can potentially
serve as NLS. 
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treated or not with λ-PPase. The logic behind this experiment was that because of the de 

facto reduced molecular weight of the truncated species, it would be difficult to compare 

their electrophoretic mobilities to that of the full-length species. If the absence of a protein 

region abolished the mobility shift, this should be observed when the truncated species is 

treated with λ-PPase by comprison to its untreated counterpart. 

 FIGURE 4-13A shows the results of this screen. A clear shift in the mobility of HA-

SIRT1 could be observed validating this approach since it showed that exogenous SIRT1 

behaves similarly to its endogenous counterpart. Furthermore, mAb12/1 could recognise 

all C-terminal truncations indicating that its epitope is still intact while it also allowed to 

monitor endogenous SIRT1 mobility as a control for the efficiency of the λ-PPase 

treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A SIRT1 species that lacked the ultimate 134 aminoacids [HA-SIRT1(1-612)] did 

not exhibit any mobility shift upon λ-PPase treatment suggesting that the "phosphoshift" 

sites are located within this region. The species HA-SIRT1(1-631) did not show an 
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FIGURE 4-13. Screen for the identification of residues involved in phosphorylation-induced
electrophoretic mobility retardation of SIRT1. See text for details. 
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obvious shift, yet the intensity of the SIRT1 band in the λ-PPase treated cells was higher, 

a phenomenon which, based on experience acquired during this project, may arise when 

multiple protein species are concentrated to a single band. Indeed this proved to be the 

case when this experiment was repeated (see FIGURE 4-13B). Thus based on this experiment 

it was concluded that phosphorylation of SIRT1 between residues 613 and 656 causes 

the observed mobility shift of SIRT1 in interphase. 

To confirm this, all phosphorylatable aminoacids within this region were mutated to 

alanines and subjected to the same type of assay (FIGURE 4-13B). None of these individual 

mutations sufficed to abolish λ-PPase sensitivity suggesting that multiple phosphorylation 

sites within this region may contribute to the observed shift. Given the fact that any 

combination of 2 or more of the 6 aminoacids could be phosphorylated, it was considered 

appropriate to address this issue by creating a species which lacked aminoacids 612-631 

and 612-656 henceforth referred to as ∆612-631 and ∆612-656 respectively. As ∆612-631 

migrated very similarly to wt SIRT1 it is difficult to conclude whether this mutant still shows 

a shift. However, it is clear that the ∆612-656 deletion renders SIRT1 insensitive to λ-

PPase treatment providing further evidence that the 612-656 region of SIRT1 is 

phosphorylated in interphase. 

An alternative interpretation of these results is that aa 612-656 do not harbor the 

phosphorylation sites in question but rather they serve as the docking site for the 

responsible kinase. Despite the transient nature of enzyme-substrate interactions, some 

kinases have been shown to interact with their substrates stably enough to allow the co-

purification of the complex by affinity chromatography. Such an example is cyclin A/Cdk2 

with E2F-1 (Krek et al., 1994) and Jnk with c-Jun (Hibi et al., 1993). To investigate the 

possibility that SIRT1 co-purifies with a kinase, SIRT1 was immunopurified (IP'd) with 

each of the Ctp, GST-S1 and mAb12/1 antibodies, the buffer of the immunoprecipitates 

(IPs) was exhanged for a standard kinase buffer supplemmented with 32P-ATP. In the 

presence of a co-purifying kinase, SIRT1 should be labelled with 32P as visualised by 

autoradiography. 

 As seen in Figure 4-14A, despite the presence of IP'd SIRT1 with all antibodies, no 

signal was present in the mAb12/1 IP whereas a very weak signal may be seen in the 

immunoprecipitates of the polyclonal antibodies (arrowheads). This suggested either the 

complete absence of a co-purifying kinase or the unsuitability of the reaction conditions for 

the succesful outcome of this experiment. It is also possible that the weak signal in the 
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Ctp and GST IPs reflects a very transient interaction between SIRT1 and the putative 

kinase.  

 

 

 

 

 It was thus hypothesised that overexpression of SIRT1 might facilitate the 

visualisation of this interaction. 293 cells were transfected with HA-SIRT1 and subjected 

to IP with an α-HA mAb. WB confirmed the presence of the IP'd protein (FIGURE 4-14B) and 

the autoradiogram showed a strong signal migrating at the same molecular weight as 

exogenous HA-SIRT1 in the transfected but not the untransfected samples suggesting the 

presence of a co-purifying kinase. 
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 To test whether this kinase interacted with SIRT1 through the phosphoshift site, the 

same experiment was repeated with wild-type HA-SIRT1 and the ∆612-631, ∆612-656 

mutants. As shown in FIGURE 4-14C, neither deletion abolishes the 32P-labelling of the 

corresponding IP'd species.  

 These experiments suggest that there is a kinase that can bind stably to SIRT1 

causing its in vitro phosphorylation in a region outside 612-656 which was shown to 

harbour residues responsible for the protein's electrophoretic mobility shift. This does not 

exclude the possibility that the kinase causing the shift is bound to this region in which 

case the interaction might be too weak to be detected with this assay especially in the 

presence of another kinase demonstrated to be present in these experiments. Thus it is 

necessary to probe further the identity of this kinase and identify the sites affected by its 

action. 

 

4.1.3.3 In vitro phosphorylation of SIRT1 by Casein Kinase 2 
 

Kinases exhibit profound selectivity not only for the residue that they target for 

phosphorylation but also for the aminoacids that flank it. The availability of information on 

phosphorylation consensus sites targeted by specific kinases allowed the creation of 

searchable databases that provide the researcher with the ability to investigate whether 

their protein of interest harbours any or specified phosphorylation sites. Clearly, though, 

this approach is limited to previously reported data and cannot indicate whether a 

proposed phosphorylation site occurs in vivo and has physiological relevance. 

 In search for potential phosphorylation sites on SIRT1 the program Scansite was 

used (http://scansite.mit.edu/motifscanner/motifscan1.phtml?database=_SWS_). This 

program allows the input protein sequence to be investigated for harbouring 

phosphorylation sites within any of 62 motifs comprising kinase consensus target sites as 

well as known binding motifs for several protein interaction-mediating domains such as 

SH2 and SH3 domains. 

This approach indicated that the C-terminus of SIRT harbours a putative 

phosphorylation site for casein kinase 2 (CK2) at residue S693. The CK2 consensus site 

consists of a phosphorylatable serine or threonine residue followed by acidic aminoacids 

i.e. D or E or phosphorylated S and T, especially at the +3 position (Litchfield, 2003). Manual 

observation of the sequence revealed two more putative CK2 sites at residues S659 and 



Chapter 4 - Results: Function and regulation of SIRT1 

 165

S661 (FIGURE 4-15A top). Further support for a potential interaction between SIRT1 and CK2 

was provided by the results of a recent large-scale yeast two-hybrid screen aiming at the 

creation of global protein interaction networks in Drosophila (Giot et al., 2003). In this screen, 

the Drosophila homologue of SIRT1, dSir2 was shown to interact with the β subunit of 

Drosophila CK2. 
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 CK2 is a serine/threonine protein kinase with ubiquitous presence in eucaryotic 

cells. It comprises three catalytic subunits α, α' and the recently identified α''' and two 

regulatory β subunits which can combine to form a tetrameric holoenzyme in the following 

configurations: α2β2, αα' β2 or α'2β2 (Ahmed et al., 2002). CK2 exhibits broad specificity and 

has consequently been shown to phosphorylate hundreds of proteins participating in 

diverse cellular processes (Meggio and Pinna, 2003). Of note is its function in promoting cell 

survival in agreement with the consistent increase in CK2 protein levels in all human 

tumours examined, which can be separated from their hyperproliferative behaviour (Ahmed 

et al., 2002). An interesting mode by which CK2 is thought to promote survival is by 

phosphorylating caspase target proteins close to their cleavage site precluding the 

recognition of the site and thus inhibiting their caspase-mediated processing (Desagher et 

al., 2001; Krippner-Heidenreich et al., 2001). CK2 is required for implementation of the spindle 

assembly checkpoint in response to microtubule poisons while in the same context it is 

also required for p53-mediated apoptosis (Sayed et al., 2001). CK2 phosphorylates the 

protein X-ray cross-complementing gene 1 (XRCC1) mediating its recruitment to sites of 

DNA damage upon oxidative stress where it is required for the repair of the incurred 

lesions (Loizou et al., 2004). Furthermore, it regulates transcription through RNAPolI by 

phosphorylating the initiation factor UBF promoting its transactivation potential (Voit et al., 

1992). CK2 has also been shown to phosphorylate different components of the RNAPolIII 

machinery resulting in either inhibition or activation of transcription depending on the 

phase of the cell cycle (Hu et al., 2004). 

 To investigate whether SIRT1 residues S659, S661 ad S693 are indeed 

phosphorylated by CK2, commercially available recombinant CK2 was used in an in vitro 

kinase assay against bacterially expressed GST-fusions of the SIRT1 C-terminus (aa 575-

697) harbouring either the wild-type sequence or mutations of S659, S661 and S693 to 

alanine which cannot be phosphorylated (FIGURE 4-15A). A mutant where all three residues 

were mutated to alanine in the same species was also tested. CK2 potently 

phosphorylated wild-type SIRT1 in vitro but not GST alone suggesting that phosphate 

incorporation occurred within the SIRT1 Ct sequence (FIGURE 4-15B).  None of the single 

mutants abolished this phosphorylation. However, the 3A mutant exhibited only 

background phosphorylation levels suggesting that all putative CK2 phosphoacceptor 

sites were abolished. Another 3A mutant, also harbouring aminoacids 471-574 was not 

significantly phosphorylated indicating that indeed S659, S661 and S693 are the only 

sites targeted by CK2 in vitro. This experiment does not exclude the possibility that the 
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rest of SIRT1 sequence also harbours CK2 sites, which is desirable to know for an in-

depth analysis of CK2 action on the protein. SIRT1 fusions do not express well in E. coli 

DH5α strain tested, thus GST-SIRT1 expressed in Sf9 cells by a recombinant baculovirus 

was tested. Proteins expressed in Sf9 cells may be phosphorylated by insect kinases in 

which case the residues in question would not incorporate 32P. To exclude this, an in vitro 

CK2 kinase assay was performed on GST-SIRT1 either mock-treated or treated with λ-

PPase (FIGURE 4-8A) which led to the characteristic increased mobility of the protein. As 

shown in FIGURE 4-15C comparable 32P incorporation was observed for both GST-SIRT1 

species suggesting that CK2 does not target SIRT1 in Sf9 cells. Thus Sf9 cells-expressed 

recombinant SIRT1 would provide a good system to further analyse the effects of CK2 

phosphorylation on SIRT1 activity. 

 These observations raised the possibility that the CK2 phosphorylation sites are 

responsible for the observed mobility shift of SIRT1 in interphase cell extracts. To test this 

hypothesis, the full-length cDNA of SIRT1 harbouring S659A, S661A and S693A 

(henceforth referred to as "3A") substitutions was expressed as an HA-tagged fusion in 

HeLa cells and its mobility was compared to the mobility of wild-type HA-SIRT1. As a 

control the lysates from both transfected cell populations were treated with λ-PPase. The 

migratory behaviour of either SIRT1 species was indistinguishable (FIGURE 4-16) suggesting 

either that these three serine residues are not phosphorylated in vivo or that even if they 

are phosphorylated they do not alter the mobility of the protein. Interestingly, HA-SIRT1 

3A was expressed at much higher levels compared to its wild-type counterpart suggesting 

that inability to phosphorylate these sites correlates with increased stability of SIRT1 

protein.  
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FIGURE 4-16. Alanine substitution of the in
vitro CK2 sites does not abolish
phosphorylation-induced electrophoretic
mobility retardation of SIRT1. Cells were
transfected with the indicated HA-tagged SIRT1
constructs, lysed and either treated with λ-PPase
or mock-treated. The electrophoretic mobility of
the corresponding proteins was analysed by
immunoblotting with α-HA antibody. 
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4.1.3.3.1 SIRT1 in the UV response 
 

The experimental approaches delineated above were based on the widely 

accepted assumption that CK2 is a constitutively active kinase (Litchfield, 2003). However, 

several recent reports have proposed novel modes of CK2 action where its activity is 

inducible by extracellular stimuli. In particular a new emerging role of CK2 in response to 

UV irradiation is of note.  

CK2 is part of a complex with the chromatin transcriptional elongation factor FACT 

(facilitates chromatin transcription) which comprises hSpt16 and SSRP1 (structure-

specific recognition protein 1). In the context of this complex whose assembly is induced 

upon UV irradiation, CK2 phosphorylates p53 at S392 resulting in enhanced binding of 

p53 to DNA which in turn correlates with its ability to induce transcription (Keller et al., 2001).  

In another report, Kato and co-workers (Kato 

et al., 2003) showed that CK2 mediates the 

phosphorylation-driven degradation of IκB upon 

ultraviolet (UV) irradiation in a pathway distinct from 

that of IκB kinase (IKK). In response to inflammatory 

cytokines and ionising radiation IKK phosphorylates 

the N-terminus of IκB and promotes its degradation 

via a β-TrCP-based SCF E3 ubiquitin ligase 

complex (Hayden and Ghosh, 2004). In contrast, upon 

UV irradiation CK2 phosphorylates six residues in 

the C-terminus of IκB in a manner dependent on the 

kinase p38 and leads to the degradation of IκB and 

subsequent NFκB activation. Furthermore, the CK2 sites reside within a region known as 

the PEST motif (FIGURE 4-17). The PEST motif is characterised by enrichment in P, E, S and 

T residues but lacks positively-charged aminoacids. It is found in several proteins 

including the myc, fos and jun oncogenes and p53 tumour suppressor which it targets for 

degradation by the ubiquitin-proteasome pathway (Rechsteiner and Rogers, 1996). 

To investigate whether SIRT1 also carries a similar motif and is therefore 

potentially regulated by PEST-mediated proteolysis, a web-based algorithm that scores 

for potential PEST motifs in protein sequences was used1. A region between aa's 653-711 
                                                 

1 (https://emb1.bcc.univie.ac.at/toolbox/pestfind/pestfind-analysis-webtool.htm) 
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FIGURE 4-17. The CK2
phosphorylation sites of IκB are
located within a PEST sequence.
See text for details. 
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harbours a high-scoring PEST sequence (score: +14.9, FIGURE 4-18A). This is among the 

best scores of previously identified PEST motifs (FIGURE 4-18B) further validating the 

argument that SIRT1 harbours a 

bona fide PEST sequence. 

Moreover, the PEST region 

encompasses all three putative CK2 

phosphorylation sites similar to the 

PEST motif in IκB. 

Interestingly, SIRT1 was also 

shown to negatively regulate the 

transcriptional activity of NFκB  by 

deacetylation in response to TNFα 

(Yeung et al., 2004) and in the work 

presented here, CK2 is a proposed 

SIRT1 kinase. Thus, two negative 

regulators of NFκB activity, IκB and 

SIRT1 share a common regulatory 

domain, the PEST motif, which 

harbours CK2 phosphorylation sites. 

This raised the possibility that a 

CK2-mediated regulatory 

mechanism exists that dictates the 

activation of NFκB in response to 

UV irradiation by ensuring the 

concomitant inactivation of two of its 

negative regulators. This 

observation prompted the 

exploration of the hypothesis that 

SIRT1 is regulated in response to 

UV irradiation. 

To examine the question 

whether a UV-inducible kinase 

associates with and phosphorylates 
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FIGURE 4-18. Identification of a PEST sequence in the
C-terminus of SIRT1. (A) Results screen of the
PESTFIND programme indicating regions scoring highly
(red) or poorly for the presence of a PEST sequence; (B)
A table of previously identified protein harbouring PEST
sequences and their corresponding PESTFIND scores
provided for comparison.  
(B) adapted from Rechsteiner and Rogers, 1996. 
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SIRT, GST or GST-SIRT1 expressed in Sf9 cells were 

bound to glutathione beads which were subsequently 

incubated with extracts of HeLa cells irradiated with 20 

J/m2 UV for 30' prior to lysis. The beads were 

subsequenlty washed, equilibrated with kinase buffer and 
32P-γ-ATP was added to the preparation allowing any co-

precipitating kinase to label SIRT1 with 32P. No 

phosphorylation activity was observed against GST 

alone, however GST-SIRT1 showed significant 

incorporation of radioactivity (FIGURE 4-19). Yet, this activity 

was independent of UV treatment suggesting that, 

consistent with the notion of SIRT1 being stably bound 

to a kinase (see section 1.2.1.2, this chapter), GST-

SIRT1 also binds to and gets phosphorylated by a 

kinase from HeLa cell extracts but this phosphorylation 

is not inducible by UV irradiation.  

To test the possibility that due to the presence of 

the PEST motif, SIRT1 degradation is induced in 

response to UV irradiation, the degradation kinetics of 

SIRT1 protein were probed by incubation of cells with 

the translation inhibitor cycloheximide (CHX). In such experiments, the rate of 

dissapearence of specific immunoreactive bands correlates with the rate of degradation of 

the corresponding protein since no more protein is newly synthesised. Thus, cells were 

either left untreated or treated with 20 J/m2 UV and cycloheximide was added either 1 h or 

8 hours post-treatment to account for potential differences between early- and late-

responses (Agami and Bernards, 2000). 1 hour after UV treatment, p53 stabilisation was 

evident (FIGURE 4-20A). In contrast, a modest but existing increase in the rate of SIRT1 

degradation was observed at this time point. This increase in SIRT1 degradation kinetics 

was also seen even after 0.5 h of UV treatment, in an independent experiment (FIGURE 4-

20B). Similarly, at 8 h after UV treatment, a modest loss of SIRT1 stability occured 

compared to untreated cells (cf. 0 and 2 h CHX treatment time-points in UV-treated and 

untreated samples). Nevertheless, a significant increase in SIRT1 protein levels ensued 
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FIGURE 4-19. No evidence for UV-
inducible phosphorylation of
SIRT1 by a stably-bound kinase.
GST or GST-SIRT1 expressed in
Sf9 cells was purified using
glutathione beads (right panel) and
subsequently incubated with
extracts of HeLa cells treated with
20 J/m2 UV or mock-treated. The
beads were washed, resuspended
in kinase buffer including 32P-γ-
ATP and incorporation of 32P by
GST-SIRT1 was assessed by
autoradiography (left panel). 
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UV irradiation in the absence of CHX (CHX 0 h) suggesting that despite the observed 

increase in SIRT1 turnover, total protein levels increased. 

Initial efforts to examine the effects of downregulating CK2 or p38 activity, using 

the chemical inhibitors DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) or 

SB203580 respectively, did not provide any conclusive evidence for a role of these 

kinases in the regulation of SIRT1 turnover (not shown). In an alternative approach, to 

test whether the putative CK2 phosphorylation sites played a role in UV-induced SIRT1 

turnover, pools of HeLa cells (uncloned mass culture) infected with retroviruses 

encoding either wild-type HA-SIRT1 or HA-SIRT1(3A) were generated. This was 

important as consistent amounts of protein are necessary to ensure reliable 

measurements of protein immunoreactivity which is more difficult to attain in transient 

transfection assays.  FIGURE 4-21 shows the comparison of the turnover of exogenous 

wild-type SIRT1 in the presence or absence of treatment with UV. Consistent with the 

previous results, low dose of UV irradiation caused a modest increase in SIRT1 
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FIGURE 4-20. Effects of UV treatment on endogenous SIRT1 protein stability. (A) U2OS cells were
either mock-treated or treated with 20 J/m2 UV for 1 or 8 h prior to addition of cycloheximide (CHX) for
the indicated amounts of time. Cells were harvested and subjected to immunoblotting either with
mAb12/1 or p53 antibody as a control; (B) The same experiment was performed as in (A) but CHX was
added 30’ after exposure to UV for the indicated amounts of time. 
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turnover. Unfortunately, due to the reduced expression of the 3A mutant, it was not 

possible to probe the effect of the putative CK2 sites, however this experiment validates 

the feasibility of the approach and attempts to resolve the differential expression of the 

mutant are underway. 

The above results (FIGURE 4-20) also 

raised the interesting possibility that SIRT1 

total protein levels increase in response to UV 

irradiation. Consequently, a closer analysis of 

this phenomenon was undertaken. To examine 

the kinetics of SIRT1 accumulation in response 

to UV irradiation, the human osteosarcoma 

U2OS cell line which has an intact p53 

response was treated with increasing amount 

of UV light for various time-points (FIGURE 4-22A). 

In parallel, the effects of actinomycin-D, a 

chemical compound which is known to inhibit 

RNA polymerase II inducing single-strand 

breaks that mimic DNA lesions arising from 

UV-induced damage, was also investigated 

(FIGURE 4-22B). Low doses of UV induced an 

accumulation of SIRT1 protein which was 

apparent already at 2 hours post-treatment. 

This was also evident upon actinomycin-D 

treatment. In both cases, total p53 protein levels increased consisten with an induction of 

the DNA damage response. Interestingly, increasing levels of UV irradiation blunted the 

increase of SIRT protein levels, a phenomenon also observed for p53 (FIGURE 4-22A). This 

may indicate that at high doses of DNA damage, the p53-driven DNA repair pathway is 

inhibited to favour cell-death over lesion repair in face of the insurmountable damage 

incurred upon the genome. It is also of note that a second, lower molecular weight band, 

reactive to mAb12/1 appeared in a time- and dose-dependent manner. The identity of this 

SIRT1 species is the subject of discussion in part 2 of this chapter. 

Given that SIRT1 abundance paralled that of p53, the possibility that SIRT1 

expression is governed by p53 transcription was raised. Indeed, it was recently reported 

that the SIRT1 gene promoter harbours two p53 binding sites that allow the p53-mediated 

80

85

90

95

100

105

110

0 1 2 4 6 6 -
CHX

hours CHX

-UV
+UV

Hours after 
CHX add.: 42 610 -

UV (20 J/m2)

No UV

WB: α-HA

FIGURE 4-21. Effects of UV treatment on
exogenous SIRT1 protein stability. HeLa
cells were stably infected with a recombinant
retrovirus expressing HA-SIRT1 and selected
with puromycin. Puromycin-resistant cells
were treated with 20 J/m2 UV or mock-treated
(no UV) 30’ prior to addition of CHX for the
indicated amounts of time. Cell lysates were
subjected to immunoblotting, visualised using
the Odyssey imaging system (upper pannel)
and band intensity was quantified using the
accompanying software (lower panel). 



Chapter 4 - Results: Function and regulation of SIRT1 

 173

transcriptional induction of the gene in response to nutrient deprivation (Nemoto et al., 2004). 

However, this is unlikely to be the case here in the light of the fact that the transcriptional 

inhibitor actinomycin-D also elicited the induction of SIRT1 protein levels yet, to confirm 

this, it would be necessary to investigate the inducibility of the SIRT1 promoter upon UV 

irradiation. Furthermore, this does not rule out the possibility of a p53-mediated event in 

the control of SIRT1 mRNA translation. 
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FIGURE 4-22. Effects of DNA damage-inducing agents on endogenous SIRT1 protein abundance.
U2OS cells were treated with 0, 20, 50, 100 or 200 J/m2 UV (A) or 0.4 µM actinomycin-D (B) and cells
were harvested at the indicated times. SIRT1 protein levels were assessed by immunoblotting using
mAb12/1. As a control, p53 antibody was used on the same blots. 
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FIGURE 4-23. Effects of p53 on endogenous SIRT1 protein abundance after UV exposure. HCT116
cells (p53+/+) or an isogenic derivative lacking both p53 alleles (p53-/-) were treated with 20 J/m2 or 200 J/m2

UV, cells were harvested at the indicated times and subjected to immunoblotting using mAb12/1 or p53
antibody as a control. 
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To test this, SIRT1 protein levels in response to UV treatment were examined in 

two human colon carcinoma cell lines, HCT116 and an isogenic derivative where the p53 

locus is deleted by means of homologous recombination (Cahill et al., 1998). Interestingly, 

SIRT1 protein levels are almost unchangeable in either of these cell lines raising the 

possibility that the previously observed effects of UV on SIRT1 may be determined by 

cell-type or cell-line-specific factors. It would thus be important to repeat this experiment in 

U2OS cells in combination with p53 depletion by e.g. siRNA to answer this question 

conclusively.  

Another possibility explored was that in response to UV, the binding of SIRT1 to 

other proteins may be affected. p300 is a transcriptional co-activator with 

acetyltransferase activity which has been proposed to acetylate several SIRT1 

deacetylation targets such as NFκB, p53 and FOXO (see Chapter 2).  To establish the 

validity of these 

observations and define the 

topology of the SIRT1/p300 

interaction, the binding of 

GST-fusion proteins 

corresponding to fragments 

of p300 spanning the entire 

protein were tested for their 

ability to bind IVT full-length 

SIRT1. Aminoacids 1197-

1673 which harbour the 

acetyltransferase activity of 

p300 exhibited strong 

binding to SIRT1 while a 

modest degree of binding 

was shown by the C-terminal fragment of the protein (aa's 1572-2371, FIGURE 4-24A). An 

attempt to define the region of SIRT1 that binds to p300 was inconclusive since, while the 

IVTs of N- and C-terminal regions of SIRT1 did not bind GST-p300(HAT), the remaining 

region corresponding to the sirtuin core domain exhibited profound binding to GST alone. 

It is thus possible that the sirtuin core domain and the zinc binding module in particular 
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FIGURE 4-24. Interaction of SIRT1 with the acetyltransferase
p300. (A) In vitro interaction of IVT (in vitro translated) SIRT1 with
bacterially-expressed GST fused to polypeptides spanning the
entire p300 coding region as indicated schematically in the lower
panel; (B) In vivo interaction between SIRT1 and p300 in 293 or
U2OS cells. SIRT1 was immunoprecipitated with GST-S1 antibody.
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may mediate the interaction with p300 consistent with the role of this domain as a 

mediator of protein interactions (Finnin et al., 2001). 

To investigate whether endogenous SIRT1 and p300 interact, GST-S1 IPs from 

U2OS and 293 cells were probed with antibodies against p300 (FIGURE 4-24B). In both 

cases an interaction was observed albeit of different strength with the one in 293 cells 

being the strongest. 293 cells but not U2OS cells express the transforming E1A viral 

protein which partially exerts its oncogenic effects by binding to the p300 HAT region 

similarly to SIRT1. This could indicate that in 293 cells the observed interaction is 

mediated by E1A. However, the strength of the in vitro interaction as well as the observed 

co-purification of the two proteins in U2OS cells provide evidence against this possibility.  

The acetyltransferase activity of p300 has been recently shown to be regulated by 

acetylation itself (Thompson et al., 2004). To investigate whether the deacetylase activity of 

SIRT1 actually regulates acetylation of p300, GST-SIRT1 or the catalytically inactive 

mutant GST-SIRT1(H363Y) expressed in Sf9 cells were incubated with GST-p300(HAT) 

expressed in bacteria. The latter protein species is able to autoacetylate within the 

bacterial cells providing a substrate to assay SIRT1 activity in vitro. GST-SIRT1 but not its 

catalytically inactive counterpart exhibited a robust deacetylation activity against GST-

p300(HAT) (FIGURE 4-25A). Moreover, this effect was sensitive to inhibition by nicotinamide 

but not TSA further supporting the concept that it is exclusively mediated by a sirtuin 

deacetylase rather than a co-purifying HDAC. These results firnly establish SIRT1 as an 

in vitro deacetylase of p300 raising the possibility that it may act as a regulator of p300 

activity in vivo.  

 To investigate this possibility, NIH3T3 mouse fibroblasts were infected with 

retroviruses expressing either SIRT1 or SIRT1(H363Y). As a control cells infected with a 

virus expressing GFP were also included in the analysis. p300 IP's from these cells were 

probed with α-acetylated lysine (α-AcK) antibodies to examine the acetylation status of 

p300. A significant reduction of p300 acetylation was observed in the cells expressing 

wild-type but not the catalytically inactive SIRT1 confirming that SIRT1 can deacetylate 

p300 in vivo (FIGURE 4-25B). A small reduction in the total levels of p300 was also observed 

(FIGURE 4-25B, middle panel, lanes 7 and 8). However, the relative reduction of p300 

acetylation levels when SIRT1 was expressed was significantly higher (FIGURE 4-25B, upper 

panel, lanes 7 and 8) compared to that of total p300 protein levels supporting the above 

conclusions. Also note that the absence of SIRT1 immunoreactivity in lane 1 does not 
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necessarily indicate lack of endogenous SIRT1 expression. Rather, it stems from the 

inability of mAb12/1 to recognise the mouse protein (see section 1.1, this chapter). 

 

 

Upon UV irradiation p53 mediates the establishement of the DNA repair response 

and acetylation of p53 by p300 is required for its transcriptional activity (Luo et al., 2004). 

Thus, it was hypothesised that attenuation of SIRT1 deacetylase activity upon p300 as 

well as p53 itself would be required for the activation of p53 after UV irradiation. One way 

to achieve this would be the loss of interaction between p300 and SIRT1 although, strictly 

speaking, the necessity of the interaction for the deacetylation of p300 by SIRT1 to occur 

has not been firmly established. To test this possibility, U2OS cells were irradiated with 

UV, harvested at either 2 or 8 hours following treatment, subjected to IP with the GST-S1 

antibody and probed with an α-p300 antibody. p300 was present at equal levels in SIRT1 
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FIGURE 4-25. Deacetylation of p300 by
SIRT1 (A) In vitro deacetylation assay was
performed as in Figure 4.8B except that in
addition a catalytically inactive mutant of
SIRT1 was also used [GST-SIRT1(HY)]
and the sensitivity of SIRT1 deacetylase
activity was assayed using nicotinamide
and butyrate. GST-p300(HAT) acetylation
status was assayed using an α-acetyl-K 
mAb and presence of the indicated GST-
fusion proteins was probed by α-GST 
polyclonal antibody; (B) In vivo
deacetylation of p300 by SIRT1. NIH3T3
mouse fibroblasts were infected with
recombinant retroviruses expressing eGFP
as a control, SIRT1 or catalytically inactive
SIRT1 [SIRT1(HY)] and selected using
puromycin. Puromycin resistant cell lysates
were subjected to immunoprecipitation with
α-p300 mAb and acetylation levels of p300
were probed as in (A).  
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IPs from both UV-treated and untreated 

cells (FIGURE 4-26) suggesting that the 

interaction between the two proteins is not 

subjected to regulation in response to UV 

treatment under the experimental conditions 

employed here. 

UV irradiation was also shown to 

promote the association of p53 with the 

peptidyl-prolyl-cis/trans isomerase (PPIase) 

Pin1 in a manner dependent on 

phosphorylation of S33, T81 and S315 

(Zacchi et al., 2002, Zheng et al., 2002). Pin1 

catalyses the cis/trans isomerisation (Lu et 

al., 2004) of proline residues located directly 

at the C-terminus of phosphorylated S or T 

(Yaffe et al.,1997; FIGURE 4-27A). This induces a 

conformational change in the target protein 

with various poorly understood effects (Lu et 

al., 2004). Under this attribute Pin1 has been 

linked to several pathological states 

including cancer and Alzheimer's disease 

(Wulf et al., 2005). Upon UV treatment, the 

interaction of Pin1 with p53 results in a 

conformational change of the latter which 

allows its dissociation from its negative 

regulator Mdm2 leading to the 

transcriptional activation of target genes 

required for the DNA damage response 

(Zacchi et al., 2002). Furthermore, in response 

to cytokine treatment, Pin1 binds to 
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FIGURE 4-26. Interaction of SIRT1 with the
acetyltransferase p300 is not abolished by UV
treatment. U2OS cells were mock-treated or
treated with 20 J/m2 UV, cells were harvested at
the indicated amounts of time, lysed and
subjected to immunoprecipitation with either
control or GST-S1 antibodies. Interaction
between p300 and SIRT1 was probed using the
corresponding antibodies. α-p53 antibody was
used as control for the UV treatment. 
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FIGURE 4-27. No UV-inducible interaction between Pin1 and SIRT1. (A) Stick model depicting the
proline isomerisation reaction catalysed by Pin1 PPIase (adapted from Lu, 2004); (B) Bacterially-
expressed GST or GST-Pin1 were purified  using glutathione beads and incubated with cell lysates
derived from U2OS cells mock-treated or treated with 20 J/m2 UV for the indicated amounts of time. The
previously reported interaction of Pin1 with p53 was included as a positive control.  



Chapter 4 - Results: Function and regulation of SIRT1 

 178

phosphorylated T254 of the NFκB p65/RelA subunit, an event that is proposed to induce a 

conformational change that leads to reduced binding to the inhibitory IκB, resulting in 

enhanced activity of NFκB (Ryo et al., 2003). Thus at least two pathways in which a role for 

SIRT1 has been demonstrated are regulated by Pin1-mediated prolyl isomerisation, 

raising the possibility that SIRT1 may also be a Pin1 target potentially enabling their 

activation by promoting its dissociation from these factors. 

To explore the possibility of an interaction occuring between SIRT1 and Pin1, 

U2OS cells were irradiated with UV and harvested at various time-points. Lysates thereof 

were incubated with glutathione beads bearing bound GST or GST-Pin1, washed and 

subjected to immunoblotting with either p53 antibody or mAb12/1. UV treatment induced 

the interaction between p53 and Pin1 (FIGURE 4-27B, lower panels) consistent with the 

published reports. In contrast, no interaction between SIRT1 and Pin1 was observed in 

the same assay either before or after UV treatment, thus dismissing the proposed 

hypothesis.  

Regulation of protein function can also be implemented by changes of its 

subcellular localisation e.g. providing 

thus access to specific substrates or 

other regulators. To examine the 

localisation of SIRT1 in response to 

UV treatment, U2OS cells were 

irradiated with 20 or 50 J/m2 UV, fixed 

and stained with GST-S1 antibody. 

Increasing amounts of UV radiation 

caused a dose-specific change of 

SIRT1 staining from a diffuse 

nucleoplasmic pattern to characteristic 

rings surrounding nuclear regions of 

poor DAPI staining reminiscent of 

nucleoli (Figure 4-28). As a control for 

the specificity of the antibody, 

irradiated cells incubated without the 

primary antibody were used (FIGURE 4-

28g). 
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FIGURE 4-28. Effects of UV treatment to SIRT1
subnuclear localisation. U2OS cells were treated
with 20 (a-c) or 50 J/m2 (d-i) UV and immunostained
with GST-S1 antibody (green) or DAPI (blue) except
for g where the primary (GST-S1) antibody was
omitted. Scalebars represent 90 µm (a-c and g) or 15
µm (d-f and h,i). 
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In addition to the well-established function of nucleoli in the assembly of ribosomes, 

a role in cellular stress responses is also emerging (Olson, 2004). In particular, nucleoli 

appear to function as nuclear depots of proteins in a manner depending on their structural 

integrity. Upon stress stimulation, disruption of nucleolar structure allows the release of 

such factors partly contributing to the ensuing cellular responses to these stimuli. A more 

detailed account of this function of nucleoli will be given in Chapter 5. Under the light of 

these, it would be important to conclusively establish that the distinct localisation of SIRT1 

is indeed associated with nucleoli and subsequently investigate the functional significance 

of this phenomenon. 

 
4.1.4 Regulation of SIRT1 by phosphorylation in mitosis 
 
 According to its electrophoretic mobility during SDS-PAGE, SIRT1 was shown to 

be a phosphoprotein which is subjected to hyper-phosphorylation in cells arrested in 

mitosis by treatment with the microtubule-destabilising agent nocodazole (FIGURE 4-7). This 

observation raised the possibility that SIRT1 is phosphorylated in a cell cycle-dependent 

manner. Mitotic phosphorylation of SIRT1 may be particularly relevant especially given 

the proposed roles of situins in life-span 

determination under the light of increasing 

evidence for a link between components of the 

mitotic regulatory apparatus and the aging process 
(e.g. Ly et al., 2000; Baker et al., 2005 and discussion in 

Chapter 5). 

Cell proliferation requires a series of events 

that are collectively known as the cell cycle. Four 

distinct phases comprise a cell cycle (FIGURE 4-29A): 

the S (synthesis) phase where the genome is 

replicated, the M (mitosis) phase where all 

components of the mother cell divide to give rise 

to the daughter cells and two "gap" phases G1 

preceding the S phase and G2 preceding the M 

phase. All phases between two successive 

mitoses are known as the interphase. Quiescent 

B

A

Figure 4-29. Schematic representation
of the eucaryotic cell cycle (A) and
associated changes in cyclin protein
levels (B). (A) adapted from Purves et al. and (B)
from Sherr, 1996. 



Chapter 4 - Results: Function and regulation of SIRT1 

 180

cells are said to be in the G0 phase. 

A primary feature of cell cycle regulation is the tightly controlled periodic expression 

of proteins known as cyclins. Cyclins heterodimerise with proteins known as cyclin-

dependent kinases (CDKs). CDK protein levels are largely constant throughout the cell 

cycle, their activity though correlates with the expression levels of cyclins (FIGURE 4-29B). 

The expression of cyclins, in turn, is regulated by a combination of transcriptional 

mechanisms as well as ubiquitin-mediated proteolysis so that each step of the cell cycle is 

unidirectional (Reed, 2003). 

CDK1 (a.k.a. cdc2 kinase) with its partner cyclin B1 regulate several key features 

of mitosis, including nuclear envelope break-down by phosphorylation of nuclear lamins, 

chromosome condensation by the phosphorylation of condensin as well as the activation 

of the anaphase promoting complex (APC) by the phosphorylation of its substrate-

recognition subunit Cdc20 (Ferrari, 2006; Peters, 2002). Thus, other mitotic kinases are 

required for proper cell division (Ferrari, 2006) CDK1 plays a central role. To understand the 

role of the observed mitotic phosphorylation of SIRT1 its primary sequence was examined 

for the presence of CDK consensus phosphorylation sites (S/T-X-K/R where X is any 

aminoacid; Brown et al., 1999). One such sequence was located around S540 in the C-

terminal region following the sirtuin core domain (FIGURE 4-30A). To test whether this site is 

phosphorylated by CDK1 in vitro, His-CKD1/GST-cyclin B1 were co-expressed in Sf9 

cells, purified with glutathione beads and were incubated in the presence of 32P-γ-ATP 

with GST-SIRT1 also expressed in Sf9 cells. Two examples representative of the results 

obtained are shown in FIGURE 4-30B. As a positive control, histone H1, a widely used in vitro 

substrate of CDKs was used. A certain degree of GST-SIRT1 phosphorylation was 

observed in the absence of CDK1/cyclinB1 suggesting the presence of an Sf9-cell derived 

kinase that co-purifies with the deacetylase. However, 32P incorporation was significantly 

enhanced in the presence of CDK1/cyclinB1 implying that SIRT1 may be a substrate of 

this kinase in vitro. It is of note that GST alone is phosphorylated by the kinase complex, 

albeit at a level lower than that of GST-SIRT1. These results raised the possibility that 

SIRT1 may be a substrate of CDK1 in mitosis.  

To test whether in vitro phosphorylation of SIRT1 by CDK1 induces the 

characteristic electrophoretic mobility shift of SIRT1 in mitosis, HA-SIRT1 was in vitro 

transcribed/translated, immunoprecipiated using α-HA antibodies and incubated with 

CDK1 in the presence of ATP. The same reaction was also performed on IVT-SIRT1 
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FIGURE 4-30. SIRT1 phosphorylation by
CDK1 in vitro. (A) CDK1 consensus
phosphorylation site flanking S540 in the
C-terminus of SIRT1; (B) In vitro kinase
assay using purified components
expressed in Sf9 cells; (C) In vitro
phosphorylation of SIRT1 by Cdk1 does
not cause electrophoretic mobility shift. IVT
SIRT1 was phosphorylated in vitro by
cyclin B1/Ckd1 complexes expressed in
Sf9 cells either directly (right) or following
immunoprecipitation of the IVT protein with
α-HA antibody (left). Arrowhead indicates
full-length IVT (HA-)SIRT1 

without immunoprecipitation. In neither case did an electrophoretic mobility shift occur 

(FIGURE 4-30C) suggesting that phosphorylation of SIRT1 by CDK1, if it occurs in vivo, is 

unlikely to account for the hyper-shifting of SIRT1 correlating with mitotic cells. 

  

In an attempt to confirm the generality of the previously described electrophoretic 

mobility shift of SIRT1 in mitotic cells, mAb12/1 was used to detect SIRT1 in untreated or 

nocodazole-arrested cells of HCT116 cells. Surprisingly, mAb12/1 immunoreactivity was 

dramatically decreased in nocodazole-arrested cells in a manner independent of p53 

(FIGURE 4-31A)(Vogel et al., 2004; Lanni and Jacks, 1998). MG132 treatment increased mAb12/1 

immunoreactivity in logarithmically growing cells in contrast to nocodazole-treated cells 

where although it did not rescue mAb12/1 immunoreactivity, it induced the appearance of 

a faster-migrating band in two independent experiments (FIGURE 4-31B). The migration of 

this band is consistent with a hypo-phosphorylated SIRT1 species raising the possibility 

that phosphorylation functions as a mechanism preventing the proteasome-mediated 

degradation of SIRT1. Nevertheless, judging from the combined intensity of the mAb12/1 
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in the nocodazole- and MG132-treated samples, it was clear that MG132 does not result 

in complete recovery of the mAb12/1 signal.  

 

 

 

 

 

 

Given that the initial experiments were performed in HeLa cells, it was possible that 

these results reflected a peculiarity of the HCT116 cell line. Thus, in a similar experiment 

extracts of HeLa cells were probed with mAb12/1. In parallel, to examine whether 

ubiquitination or sumoylation of SIRT1 occurs, logarithmic or nocodazole-arrested HeLa 

populations were treated with N-ethylmaleimide (NEM) which inhibits the hydrolysis of 

ubiquitin or SUMO from modified proteins. The results of this experiment recapitulated the 

ones using HCT116 cells, while indicated no NEM-sensitive SIRT1 species (FIGURE 4-31C). 

A fast migrating band distinct from that observed in FIGURE 4-31B also appeared in the 

nocodazole-treated cells. This band co-migrated with the SIRT1 species arising from UV 

treatment of HeLa cells (FIGURES 4-22, 4-31C). These results suggested the reduction of 

SIRT1 protein levels specifically in nocodazole-arrested cells. 
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FIGURE 4-31. Loss of mAb12/1 α-SIRT1 immunoreactivity in mitotic cells. (A) HCT116 cells (p53+/+) or
an isogenic derivative lacking both p53 alleles (p53-/-) were treated with nocodazole or mock treated lysed
and immunoblotted with mAb12/1; (B) HCT116 cells (p53+/+) were treated with nocodazole or mock treated
in the presence or absense of the proteasomal inhibitor MG132; (C) HeLa cells were treated as in (B) and
in addition with or without de-ubiquitination/de-sumoylation inhibitor NEM. UV-treated cells were also
analysed in parallel to indicate co-migration of the lower band seen in nocodazole-treated cells with that in
UV-treated cells. Arrowhead indicates full-length SIRT1. 
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 The best-studied mechanism of 

proteasome-dependent degradation during 

mitosis is mediated by the APC ubiquitin E3 

ligase. Unlike other E3 ligases whose 

activity is targeted by their substrates' 

phosphorylation status, APC activity is 

dictated by its binding to two distinct 

substrate-binding modules, Cdc20 and 

Cdh1 (Zachariae and Nasmyth, 1999). 

Recognition of substrates for APC/Cdc20-

mediated ubiquitination is mediated by a 

short motif known as the D-box (Glotzer et al., 

1991) whereas recognition by APC/Cdh1 

occurs through a distinct motif called the 

KEN box (Pfleger and Kirschner, 2000). 

APC/Cdc20 complexes are present from 

early mitosis through the 

anaphase/telophase transition when 

APC/Cdh1 mediates Cdc20 degradation 

along with mitotic cyclins thus controlling 

mitotic exit and entry into G1 (Kurland and 

Tansey, 2004). APC/Cdh1 complexes persist 

throughout interphase. Recent work 

suggests that at least one of the functions 

of APC/Cdh1 is to regulate G1 duration as well by degrading the F-box protein Skp2 

which targets the CDK inhibitor p27 for ubiquitin-mediated proteolysis thus permiting entry 

into S phase (Wei et al., 2004, Bashir et al., 2004). 

 An SCF E3 ubiquitin ligase complex based on the F-box protein β-TrCP has also 

been shown to play a role in protein turnover during mitosis. β-TrCP substrate recognition 

depends on a short motif of the general consensus sequence -D-pS-G-(X)2-4-pS- where 

pS is a phosphorylated serine (Cardozo and Pagano, 2004). Thus, this sequence is also 

known as a "phosphodegron". Phosphorylation of the CDK1 inhibitory kinase Wee1 by 

Plk1 and CDK1 results in its recognition by SCFβ-TrCP which ubiquitinates and targets it for 

degradation (Watanabe et al., 2004). This event is required for the onset of M phase. 
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FIGURE 4-32. Sequence motifs putatively
mediating mitosis-specific SIRT1
degradation. (A) The locations of the D-box
and the β-TrCP phosphodegron are indicated;
(B) Multiple alignment of the SIRT1 D-box
sequence with other bona fide D-box
sequences found in proteins shown to be
degraded in mitosis; (C) Multiple alignment of
phosphodegron sequences mediating protein
targeting for ubiquitination by β-TrCP.  

(C) Adapted from Busino et al., 2003
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Similarly, phosphorylation by Plk1 targets Emi1 (early mitotic inhibitor 1) for SCFβ-TrCP-

driven degradation (Margottin-Goguet et al., 2003; Guardavaccaro et al., 2003; Moshe et al., 2004). 

Emi1 prevents APC activation probably by inhibiting its association to Cdc20 and Cdh1 

which allows a sufficient degree of stability for cyclins to initiate mitosis. Thus Emi1 

degradation is also required for entry into mitosis confirming an important role for SCFβ-

TrcP in the regulation of mitotic progression. 

Observation of the primary sequence of SIRT1 revealed the presence of a D-box in 

the N-terminus and a potential β-TrCP phosphodegron in the C-terminus of the protein 

(FIGURE 4-32). This raised the possibility that SIRT1 may be targeted for degradation by 

either an APC or SCF ubiquitin ligase and prompted experiments to establish the 

functional significance of these consensus sites. 

As SIRT1 expressed in Sf9 cells is phosphorylated (FIGURE 4-8A), it is possible that 

the proposed C-terminal phosphodegron can be recognised by β-TrCP. To test this, GST-

SIRT1 expressed in Sf9 cells was either treated with λ-PPase or mock-treated (FIGURE 4-

8A) and incubated with IVT Flag-β-TrCP1. As a control GST alone expressed in Sf9 cells 

was also incubated with the same amount of IVT. GST-SIRT1 but not GST alone 

exhibited a strong interaction with IVT Flag-β-TrCP1. λ-PPase-treated GST-SIRT1 was 

significantly less able to interact with Flag-β-TrCP1 suggesting that a phosphorylation-

dependent interacton can occur in vitro between the two proteins (FIGURE 4-33A).  
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FIGURE 4-33. Investigation of interaction between SIRT1 and β-TrCP. (A) In vitro association assay
using GST or mock-/λ-PPase-treated GST-SIRT1 expressed in Sf9 cells as a bait and IVT β-TrCP as the
prey; (B) Weak interaction between co-transfected SIRT1 and β-TrCP in HeLa cells. 
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To test whether this interaction could also be observed in vivo, tagged SIRT1 and 

β-TrCP were co-transfected in HeLa cells and immunoprecipitated with the corresponding 

antibodies. A very weak band corresponding to HA-SIRT1 was observed in Flag-β-TrCP1 

IPs but not vice versa (FIGURE 4-33B). This implied that either the interaction does not occur 

in vivo, that the co-purification conditions are not optimal to preserve the interaction or that 

it occurs in a very small subfraction of cells, probably in a cell cycle-dependent manner 

hence explaining the low abundance of the observed complex. It is also possible that the 

position of the tags is not optimal for the interaction to be detected. Unfortunately, 

attempts to probe the interaction between the endogenous proteins in vivo was 

unsuccessful due to the poor performance of the β-TrCP antibodies available at the lab at 

the time of the experiments. 

Given the ambiguity of these results and the absence or a good antibody to monitor 

β-TrCP downregulation by siRNA for genetic studies, the effects of depleting another F-

box protein Skp2 (S-phase kinase-associated protein 2) which also functions in the 

context of SCF complexes (FIGURE 4-34A), were investigated. Skp2 was also a relevant 

choice since in experiments where nocodazole-arrested cells were released into G1, the 
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FIGURE 4-34. SIRT1 is not targeted for degradation by Cul1-based E3 ligases. (A) Ribbon representation
of the crystal structure of β-TrCP and Skp2-based SCF E3 ligase complexes; (B) No SIRT1 accumulation
following siRNA-mediated downregulation of Skp2 in HeLa cells; (C) No SIRT1 accumulation following
transfection of a construct expressing dominant negative Cul1 in various cell lines.  

(A) adapted from Cardozo and Pagano, 2004
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kinetics of re-appearance of SIRT1 mAb12/1 immunoreactivity was reminiscent of the 

Skp2 substrate p27 CDK inhibitor (FIGURE 4-39A and Wei et al., 2004). Skp2 protein 

downregulation by siRNA resulted in no obvious difference in mAb12/1 immunoreactivity 

suggesting that SIRT1 is not a target of an SCFSkp2 E3 ligase complex (FIGURE 4-34B). In a 

more generic approach, different cell lines were transfected with a Cul1 contruct lacking 

the C-terminus (HA-Cul1∆C). The expressed protein can bind endogenous Skp1 but not 

Rbx1 thus acting as a dominant negative species (Donzelli et al., 2002). Overexpression of 

HA-Cul1∆C has no effect on the abundance of SIRT1 (FIGURE 4-34C) suggesting that SIRT1 

is not subjected to proteasome-mediated proteolysis driven by Cul1-based SCF 

complexes. 

To investigate the potential 

involvement of APC in SIRT1 turnover during 

mitosis the ability of SIRT1 to interact with the 

APC substrate recognition components 

Cdc20 and Cdh1 was tested. Despite the 

absence of a KEN box which is usually 

required for the recognition of substrates by 

Cdh1, the latter was included in the analyses 

firstly as a comparison to Cdc20 but also 

because of the proposed role of S. cerevisiae 

Sir2p in mitotic exit. Bacterially-expressed 

GST-Cdh1 could co-purify IVT HA-SIRT1 

while GST-SIRT1 expressed in Sf9 cells could interact with either IVT HA-Cdh1 or HA-

Cdc20 (FIGURE 4-35). In the latter case, a signal was also detected in the pull-downs 

containing GST alone albeit at significantly lower levels. Again though, despite the good 

quality of antibodies in hand, an interaction between SIRT1 and either Cdc20 or Cdh1 

could not be established. 

As it is possible that the inability to detect protein-protein interactions does not 

necessariy reflect their absence but rather may be due to suboptimal assaying conditions, 

a genetic link between these E3 ligases and SIRT1 was sought. The protein levels of 

Cdh1 or Cdc20 were downregulated in HeLa cells by siRNA and the levels of SIRT1 were 

assayed at various times following siRNA transfection using mAb12/1. Despite efficient 

downregulation of either Cdh1 and to a lesser extend Cdc20 protein levels, no 
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accumulation of SIRT1 mAb12/1 immunoreactivity was observed (FIGURE 4-36A). siRNA-

mediated downregulation of either Cdh1 or Cdc20 in asynchronous cell populations 

suffices to induce the accumulation of their established sustrate Cdc25A (Donzelli et al. 

2002). In agreement to this, Cdh1 depletion resulted in increased levels of Skp2 (FIGURE 4-

36A, Wei et al., 2004, Bashir et al., 2004). In order though to exclude the possibility that a 

potential mitosis-specific effect on SIRT1 is masked in an asynchronous population, HeLa 

cells treated with siRNAs targeting Cdh1 or Cdc20 were either mock-treated or arrested in 

prometaphase with nocodazole and assaye for SIRT1 levels with mAb12/1. Similarly to 

the previous results, no change in SIRT1 protein abundance was observed despite the 

characteristic loss of immunoreactivity in nocodazole-treated cells (FIGURE 4-36B). These 

results suggested that APC is not likely to act as an E3 ligase that mediates SIRT1 

turnover in vivo. 

 

As attempts to demonstrate that the observed loss of mAb12/1 immunoreactivity is 

due to ubiquitin-mediated proteolysis were unsuccessful, we were prompted to re-

evaluate the behaviour of SIRT1 during the course of normal progression through the cell 

cycle in the absence of nocodazole. For this, HeLa or HCT116 cells were arrested at the 

G1/S boundary by successive treatments with thymidine and aphidicolin and 

subsequenlty allowed to progress through the cell cycle in a synchronous manner. Cell 
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FIGURE 4-36. No effect of
Cdh1 or Cdc20
downregulation on SIRT1
abundance. (A) HeLa cells
were treated with siRNAs
targeting Cdh1, Cdc20 or
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indicated times and probed
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cycle progression can be monitored by measuring the DNA content of the cells using 

fluorescence-activated cell sorting (FACS) and follow molecular markers characteristic of 

each phase by Western blot. Such an analysis revealed that total protein levels of SIRT1 

did not change throughout the cell cycle as assayed using both mAb12/1 and GST-S1 

(FIGURE 4-37B and C respectively). At the same time, there was no obvious mobility shift of 

SIRT1 throughout the experiment again contradicting the data obtained with nocodazole-

treated cells.  

Unlike mAb12/1, the GST-S1 antibody does not indicate reduction of SIRT1 protein 

levels in nocodazole-arrested mitotic cells (cf. FIGURES 4-31A and 4-7). Given the results 

excluding that proteolysis can account for this behaviour, it was hypothesised that the 

mAb12/1-specific effects observed may be accounted for by a modification occuring in the 

corresponding antigenic epitope. As mAb12/1 immunoreactivity was reduced in mitotic 

cells where phosphorylation plays a primary role in its orchestration, the possibility that 

such a modification is actually phosphorylation was invetigated. 

HeLa lysates of logarithmically growing and nocodazole-arrested cells were either 

treated with λ-PPase or mock-treated, loaded in parallel on the same SDS-PAG and 
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subjected to immunoblotting by either mAb12/1 or GST-S1. Consistent with the previous 

experiments, mAb12/1 but not GST-S1 antibodies indicated a nocodazole-specific loss of 

SIRT1 immunoreactivity (FIGURE 4-38A). Surprisingly, mAb12/1 immunoreactivity could be 

recovered upon treatment with λ-PPase in nocodazole-treated cells and to a certain 

extend in unsynchronous cell extracts. In contrast, GST-S1 immunoreactivity was largely 

unaltered by λ-PPase treatment. These results suggested that phosphorylation of SIRT1 

in nocodazole-arrested mitotic cells precludes its recognition by the mAb12/1 antibody.  

The results above obviated the neccessity to identify the antigenic epitope of 

mAb21/1. The preliminary epitope mapping pointed to the first 121 aminoacids (FIGURE 4-

3C). Thus stepwise 3-aa N-terminal SIRT1 truncations were expressed as GST-fusions in 

bacteria and subjected to immunoblotting with mAb12/1. Truncation of the first 18 

aminoacids of SIRT1 abolished recognition of the corresponding fusion protein while 

deletion of the first 15 aminoacids did not (FIGURE 4-38B). This indicated that at least 

aminoacids 16-18 are essential for the recognition of SIRT1 by mAb12/1.  

As residue 16 is a serine and the data of FIGURE 4-38A suggest that phosphorylation 

of the antigenic epitope modulates mAb12/1 binding, the possibility that S16 

phosphorylation alters the binding capacity of mAb12/1 was investigated. To this end, S16 
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in a fragment harbouring SIRT1 aa's 1-252 was mutated to either A or D to mimic a non-

phosphorylatable and a constitutively phosphorylated species respectively and expressed 

as GST-fusions in bacteria. As a control, similar mutations were introduced to the nearby 

S14 whose absence did not affect recognition by mAb12/1 (FIGURE 4-38B). The S16D 

mutation completely abolished recognition of the corresponding fragment (FIGURE 4-38C). 

The S16A mutation did not eliminate mAb12/1 recognition but significantly reduced it. 

Mutations in the proximal S14 did not affect mAb12/1 binding. These results are 

consistent with the interpretation that S16 is a residue within the antigenic epitope of 

SIRT1 required for its recognition by mAb12/1 and that S16 phosphorylation can abolish 

binding of the antibody. 

To test whether in vivo mutations of S16 affect binding of mAb12/1, HeLa cells 

were transfected with HA-SIRT wild-type or harbouring A and D substitutions at positions 

S14 and S16. Lysates were probed with either mAb12/1 or stripped and re-probed with 

GST-S1. As shown in FIGURE 4-39A, either A 

or D mutations of S16 abolished mAb12/1 

binding in agreement with the results using 

bacterially expressed proteins. Interestingly 

though, the S14A mutant was recognised 

significantly more efficiently than wild-type 

SIRT1 while the S14D mutant exhibited the 

oposite effect. These observations would 

be consistent with S14 phosphorylation 

being required for the phosphorylation of 

S16 in vivo.  

The action of some kinases and 

phosphatases is dictated by the adoption of 

specific conformations of their substrates. 

The PPIase Pin1 catalyses the 

phosphorylation-dependent isomerisation of 

proline residues and is required to generate 

the appropriate conformational change on 

proteins to allow their subsequent targeting 

by such kinases and phosphatases (Lu, 

FIGURE 4-39. mAb12/1 reactivity is sensitive to
SIRT1 phosphorylation of both S14 and
S16.(A) HeLa cells were transfected with the
indicated contructs and immunobloted with
mAb12/1 and GST-S1 antibodies; (B) Dose-
dependent inhibition of SIRT1 S16
phosphorylation by the Pin1 prolyl isomerase
inhibitor juglone. 
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2004; FIGURE 4-27A). Thus is appeared possible that the interdependence of S16 

phosphorylation on S14 phosphorylation is due to a pS14-driven P15 isomerisation which 

in turn may lead to the recruitment of a S16 kinase or prevent phosphate hydrolysis at 

S16 by a conformation-specific phosphatase.  

To test this, unsynchronised or nocodazole-arrested HeLa cells were in parallel 

treated with increasing concentrations of Juglone, an inhibitor of the Pin1 family of 

PPIases but not of the cyclophilin and FKBP families. GST-S1 immunoblotting showed no 

significant differences in SIRT1 abundance. Conversely, juglone treatment abolished the 

nocodazole-induced loss of mAb12/1 reactivity in a dose-dependent manner (FIGURE 4-

39B). Jugone treatment of asynchronous cell populations had no effect on mAb12/1 

reactivity. These data provide support for the hypothesis that Pin1-mediated PPIase 

activity driven by S14 phosphorylation enhances S16 phosphorylation. 

Taken together, the above analyses suggest that the loss of SIRT1 

immunoreactivity in nocodazole-treated cells is due to phosphorylation of S16. As the 

cells in the experiment of FIGURE 4-39A were not treated with nocodazole, it is possible that 

S14-dependent S16 phosphorylation is not exclusive to nocodazole-arrested cells, at least 

to a certain extend. This would be consistent with the observation that λ-PPase treatment 

enhances recognition of SIRT1 by mAb12/1 in asynchronous cells (FIGURE 4-38A). 

Under the light of these results the behaviour of SIRT1 in mitotic cells was re-

evaluated. If the proposed phosphorylation of S16 is specific to mitotic cells, mAb12/1 

immunoreactivity should be recovered as cells re-enter G1. To explore this, HeLa cells 

were arrested in mitosis with nocodazole then allowed to resume cycling by removing the 

drug. Cells were harvested at various time-points after release and analysed by 

immunobloting with either mAb12/1 or GST-S1. The GST-S1 signal was constant 

throughout the experiment. That of mAb12/1 was dramatically decreased in nocodazole-

arrested compared to untreated cells but it gradually recovered in a time-dependent 

fashion as cells were allowed to enter G1 (FIGURE 4-40A) consistent with the hypothesis that 

phosphorylation of S16 is specific to nocodazole-arrested cells and can be reversed in the 

absence of the drug. 

As another human SIRT1 homologue, SIRT2 is a tubulin deacetylase, it is possible 

that in mitosis SIRT1 plays a similar role perhaps participating in a signaling network that 

regulates or monitors microtubule dynamics. This raises the possibility that the binding of 

nocodazole to microtubules may elicit a signaling cascade that induces phosphorylation of 
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SIRT1 at S16 as assayed by mAb12/1. If this were 

the case, a rapid phosphorylation of SIRT1 would 

occur in response to nocodazole treatment similar to 

all kinase signalling cascades without neccessitating 

the synchronisation of the cell population in mitosis 

which is achieved after nocodazole treatment of 

duration equivalent at least to one cell cycle.  

To investigate this possibility, HeLa cells 

were treated with nocodzole and harvested at 

various time points after initiation of treatment.  As a 

control taxol, a microtubule stabilising agent was 

also used. Although both taxol and nocodazole elicit 

the spindle-assembly checkpoint and result in cell 

cycle arrest, they do so by different mechanisms. 

Nocodazole prevents the attachment of kinetochores to spindle microtubules whereas 

taxol prevents microtubule tension to be built up (Bharadwaj and Yu, 2004). 

SIRT1 levels remained largely unaltered for the first 12 hours after treatment as 

assayed by either mAb12/1 or GST-S1 antibodies (FIGURE 4-41). As cells became 

synchronised in mitosis though by 20 hours, mAb12/1 but no GST-S1 reactivity was 

reduced. At longer time-points GST-S1 reactivity 

also droped presumably due to increased cell death 

occuring as a result of prolonged exposure of cells 

to the microtubule poisons. In the case of 

nocodazole, a slight recovery of mAb12/1 signal 

was observed by 48 hours of treatment,  likely to 

arise because of adaptation of cells to the drug 

(Rieder and Maiato, 2004). 

It is possible that a rapid phosphorylation 

within the first 6 h of treatment occurs which could 

not be observed in this experiment. However, the 

kinetics of mAb12/1 activity loss correlate with 

kinetics of cell accumulation in mitosis suggesting 

that rather than being elicited by microtubule 

destabilisation, SIRT1 S16 phosphorylation is the result of a mitosis-specific 

FIGURE 4-40. Restoration of mAb12/1
reactivity following mitotic exit. Cells
were arrested in mitosis with
nocodazole, the drug was washed
away and cells were re-plated for the
indicated amounts of time. 
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phosphorylation event. Interestingly, in a similar experiment, loss of mAb12/1 reactivity 

follows the kinetics of activation of BubR1, a protein kinase involved in the implementation 

of the spindle assembly checkpoint (Shin et al., 2003). As mAb12/1 loss of reactivity is 

specific to nocodazole-treated cells but does not occur during progression through normal 

mitosis (FIGURE 4-37) this raised the possibility that SIRT1 is a target of a kinase activated 

upon engagement of the spindle assembly checkpoint. 

The spindle assembly checkpoint (SAC) also known as the mitotic checkpoint 

ensures that all kinetochores are attached to the mitotic spindle in a bipolar manner 

before anaphase is allowed to occur. This is important to maintain genomic stability as 

improper chromosome segregation leads to aneuploidy and cancer (Kops et al., 2005).  

The SAC is elicited by unattached 

kinetochores upon entry into mitosis 

(FIGURE 4-42). Several highly conserved 

proteins participate in SAC signalling 

including Mad1, Mad2, BubR1, Bub1, 

Bub3 and Mps1 (Kops et al., 2005). Initiation 

of the SAC involves the recruitment of 

Bub1 to the unattached kinetochore in a 

Bub3-dependent manner to promote the 

binding of other checkpoint proteins. 

BubR1, which harbours protein kinase 

activity is similarly recruited to 

kinetochores. The enzymatic activity of 

BubR1 is induced upon binding of the kinetochore-associated microtubule motor protein 

CENP-E. BubR1 kinase activity is in turn required for the recruitment of a Mad1-Mad2 

heterodimer to the kinetochore resulting in the adoption of an active conformation by 

Mad2 which allows it to bind to the APC substrate recognition subunit Cdc20. Dissociation 

of Mad2 from kinetochore-bound Mad1 may be promoted by phosphorylation  of Mad1 by 

Bub1 (Bharadwaj and Yu, 2004). Mad2 and Cdc20 associate with BubR1 and Bub3 to form a 

soluble complex known as the mitotic checkpoint complex (MCC) which is able to inhibit 

APC activity. Consequently, anaphase cannot occur until all kinetochores are attached in 

which case formation of the MCC is prevented. 

Genomic instability is a prime contributing factor to the occurrence of neoplasia 

(Hanahan and Weinberg, 2000). It may arise from malfunction of DNA repair pathways that 

FIGURE 4-42. Schematic description of the 
mammalian spindle assembly checkpoint. 

Figure adapted from Kops et al., 2005
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lead to microsatellite instability (MIN) but also several human cancers carry mutations in 

genes encoding for SAC protein components leading to chromosomal instability (CIN) 

which in turn results in abnormal chromosome numbers, a phenomenon also known as 

aneuploidy (Cahill et al., 1998; Kops et al., 2005). Stable cell lines derived from cancers with 

either CIN or MIN have been established. A major difference between these cell lines is 

the inability of those carrying CIN mutations to arrest in response to nocodazole 

treatment, because of a disfunctional SAC.  

To test the possibility that SAC kinases phosphorylate SIRT1 at S16, the CIN colon 

cancer cell line SW480 and the MIN colon cancer cell line HCT116 along with an isogenic 

derivative thereof lacking p53 by targeted homologous recombination were used. These 

cell lines were treated with nocodazole for 18 hours or mock-treated with carrier (DMSO) 

and probed with either mAb12/1 or GST-S1. 

GST-S1 immunoreactivity was unchanged, 

exhibiting the characteristic mobility shift in 

both HCT116 cell-lines treated with 

nocodazole. This paralleled a decrease in 

mAb12/1 reactivity (FIGURE 4-43). Conversely, 

the relative mAb12/1 reativity decrease elicited 

by nocodazole in SW480 cells was 

considerably reduced while no apparent 

mobility shift was detected with GST-S1. This 

experiment suggested that intact checkpoint 

function is required for the phosphorylation of 

SIRT1 on S16 in response to nocodazole. 

To investigate this further, the impact of 

siRNA-mediated depletion of Bub1, BubR1 or Mps1 on SIRT1 S16 phosphorylation was 

tested. siRNA depletion of these three SAC kinases suffices to abolish checkpoint 

function in response to nocodazole (Stucke et al., 2002; Meraldi et al., 2004; Meraldi and Sorger, 

2005). Depletion of any of these kinases had no effect on mAb12/1 immunoreactivity in 

untreated cells (FIGURE 4-44A). However, BubR1 but not Bub1 or Mps1 siRNA resulted in 

the rescue of mab12/1 recognition of SIRT1 in HeLa cells arrested in mitosis with 

nocodazole. These data suggest that BubR1 may specifically phosphorylate SIRT1 S16 in 

Nocodazole: – + – +   – +

Cell line:
HCT116 

p53 +/+

HCT116 

p53 – / –SW480

mAb12/1

GST-S1

FIGURE 4-43. Comparison of mAb12/1
immunoreactivity in colon cancer cell
lines with or without defects in the
spindle assembly checkpoint. mAb12/1
immunoreactivity in logarithmically growing or
nocodazole-arrested cells was compared in
the SW480 cell line that exhibits
chromosomal instability (CIN) due to a defect
in the mitotic checkpoin apparatus and two
isogenic HCT116 cell lines that exhibit
microsatellite instability (MIN) (Cahill et al.,
1998).
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response to SAC activation. This was confirmed in U2OS cells and further investigated by 

titrating increasing amounts of BubR1 siRNA in HeLa cells (Figure 4-44B).  

 

Subsequently, an effort to demonstrate direct phosphorylation of SIRT1 by BubR1 

was undertaken. In an initial approach, BubR1 from untreated or nocodazole-arrested 

cells was immunoprecipitated, washed and tested for its ability to phosphorylate Sf9-

expressed GST-SIRT1 in vitro, as assayed by mAb12/1 reactivity. The expected decrease 

of mAb12/1 recognition of GST-SIRT1 was not observed (Figure 4-45A). CENP-E was 

shown to be required for efficient catalysis by BubR1 in vitro (Mao et al., 2003) raising the 

possibility that inefficient BubR1 kinase activity was present in the IPs resulting in 

significantly substoichiometric phosphorylation of SIRT1 which could not be detected by 

the loss of mAb12/1 signal. To achieve higher sensitivity in this assay, the same 

experiment was repeated using 32P-γ-ATP and GST-SIRT1(1-252) expressed in bacteria 

as a substrate. Significant background phosphorylation was present in this assay, yet no 

obvious fluctuation in the levels of 32P incorporation was observed despite the fact that 

significant autophosphorylation activity of the IP'd BubR1 was evident (Figure 4-45B). 

 

mAb12/1

GST-S1

Bub
R1

Moc
k

ctr
l.

Bub
1

– +  – + – + – +  – +

Mps
1

siRNA:

– + – + – + – + – + – +

Bub
R1

Moc
k

ctr
l.

Bub
1

– +  – + – +  – +

Moc
k

ctr
l.

Bub
1

Bub
R1 (

10
0 n

M)

Bub
R1 (

50
 nM

)
Bub

R1 (
20

 nM
)

mAb12/1

GST-S1

BubR1

CyclinB1

Nocodazole

U2OS HeLa

A

B

FIGURE 4-44. Investigation of SIRT1 S16 phosphorylation by mitotic checkpoint kinases. See text
for details  



Chapter 4 - Results: Function and regulation of SIRT1 

 196

 

Despite the clarity of the results presented in FIGURE 4-44, the inability to 

demonstrate in vitro SIRT1 phosphorylation by BubR1 prompted a deeper evaluation of 

the effects of nocodazole on SIRT1 S16 phosphorylation.  

In the experiment of FIGURE 4-37, cells that reach the G2/M phase of the cell cycle 

are harvested as a whole population and subsequent flow cytometric and immunoblotting 

analyses do not distinguish between the G2 and M populations. To compare the 

immunoractivity of mAb12/1 in pure mitotic cells and nocodazole-arrested cells, HeLa 

cells were sunchronised in G1/S phase by successive thymidine-aphidicolin treatments 

and allowed to progress through the cell cycle for 12 hours at which point previous 

analyses showed that they enter G2/M. At this point the mitotic population was separated 

by mitotic shake-off from the G2 cells which remained attached to the culture dish and 

harvested separately. In parallel, identically treated cells were supplemented with MG132 

to prevent progression beyond metaphase (Meraldi and Sorger, 2005 and see below) or 

nocodazole to activate the SAC and prevent progression beyong prometaphase. For 

comparison, untreated or nocodazole-treated cells were also prepared. Immunobloting 

analysis with mAb12/1 revealed that mitotic cells contain SIRT1 essentially 

stoichiometrically phosphorylated at S16 in contrast to the related G2 population which 

shows significant mAb12/1 reactivity (FIGURE 4-46A). This is the case also for MG132-

arrested metaphase cells. Addition of nocodazole to the synchronised G2/M cells resulted 
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in a further decrease in the SIRT1 signal suggesting an additive effect of mitotic and 

checkpoint kinase contribution to SIRT1 S16 phosphorylation.  

To further elaborate 

these results, in a separate 

experiment, HeLa cells were 

arrested in mitosis with 

nocodazole and released for 

4 hours in the presence or 

absence of the proteasome 

inhibitor MG132. In this 

setting cells are expected to 

remain arrested in 

metaphase independently of 

the spindle-assembly 

checkpoint, because the 

degradation of proteins (e.g. 

securin) required for the 

transition from metaphase to 

anaphase is prevented 

(Meraldi and Sorger, 2005). In 

the absence of MG132 

mAb12/1 reactivity is recovered four hours after removal of nocodazole, whereas in the 

presence of MG132, where cells are expected to remain in metaphase, mAb12/1 

reactivity remains low (FIGURE 4-46B). This suggests that SAC activation is dispensable for 

S16 phosphorylation to occur and that anaphase-to-metaphase transition is required for 

the dephosphorylation of this residue. 

These experiments demonstrated that contrary to the initial belief that SIRT1 S16 

phosphorylation requires the activation of the mitotic checkpoint, this phosphorylation can 

also occur in normal mitosis. 

To understand the functional role of SIRT1 in mitosis, SIRT1 protein levels were 

reduced by siRNA treatment in HeLa cells and the ability of cells to arrest in mitosis in 

response to nocodazole treatment was investigated. Judging from the extend of 

accumulation of cyclinB1 and histone H3 S10 phosphorylation, two bona fide markers of 
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mitosis, no obvious impairment in the ability of cells to arrest in mitosis was observed with 

either of two siRNAs targeting distinct regions of the SIRT1 mRNA (FIGURE 4-47A). 

Similar results were obtained in 

HCT116 cells and their isogenic derivative 

lacking p53 alleles (FIGURE 4-47B). 

Furthermore, SIRT1 depletion did not 

affect the levels of the CDK inhibitors p21 

and p27.  

Protein downregulation by siRNA 

can have variable effects depending on its 

efficiency as residual amounts of the 

targeted protein may suffice to carry out 

its task in the cell precluding the 

emergence of any obvious phenotypes. 

To address this issue, mouse embryonic 

fibroblasts (MEFs) derived from mice with 

targeted deletion of the SIRT1 locus were 

prepared and their cell cycle profiles in 

response to nocodazole treatment were 

assayed. Compared to their wild-type 

counterparts, cells heterozygous or 

homozygous null for the SIRT1 gene 

exhibited an approx. 15% reduction in 

G2/M arrest following 18 hours of 

nocodazole treatment, a difference that persisted for at least another 22 hours (FIGURE 4-

48). This indicated that SIRT1 may be required for entering mitosis or for proper 

implementation of the spindle assembly checkpoint in mouse fibroblasts. 

During mitosis the DNA undergoes extensive condensation which leads to the 

formation of compact chromosomes suitable for segregation minimising the possibilities of 

chromosomal breaks which would compromise genomic integrity. Treatment of cells with 

topoisomerase inhibitors that prevent DNA decatenation without introducing DNA breaks 

delays entry into mitosis. This led to the proposal that during the G2 phase a 

"decatenation checkpoint" is in operation to ensure that the newly replicated DNA is 

sufficently untangled prior to progression to mitosis (Downes et al., 1994).  
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In an early experiment 

during the course of these 

studies, a large-scale 

immunoprecipitation using the 

Ctp antibody was performed in 

HeLa cell lysates and mass 

spectrometry was subsequently 

employed to identify proteins 

co-purifying with SIRT1. One of 

these proteins was DNA 

topoisomerase IIβ. This 

interaction was subseqeunlty 

confrimed in independent 

experiments using the Ctp 

antibody but could not be 

observed with neither the GST-

S1 antibody nor mAb12/1 (FIGURE 4-49 and not shown). Interestingly, a further link between 

sirtuin activity and DNA decatenation was provided from studies in S. cerevisiae. Cioci et 

al. reported that deletion of top1 causes increased histone acetylation at the rDNA locus 

similar to Sir2 deletions (Cioci et al., 2002). Mutations of either gene lead to increased 

accessibility of the rDNA locus assayed by nuclease sensitivity suggesting that Sir2-
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FIGURE 4-49. In vivo interaction of SIRT1 with topoisomerase 
IIβ. SIRT1 was immunoprecipitated with the indicated antibodies
from HeLa cells and probed for the presence of topoisomerase
IIβ with JB-1 polyclonal antibody. 
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mediated modification of the nucleosome and topological changes in DNA structure 

contribute to gene silencing in a similar manner.  

These observations raise the possibility that a role for SIRT1 in mitosis may be to 

act in conjunction with topoisomerase IIβ as a regulatory complex that implements the 

necessary structural alterations to prepare the newly replicated DNA to undergo 

segregation in a faithful manner. 

Overall, these results provide evidence for a mitosis-specific post-translational 

modification of SIRT1, namely phosphorylation of S16. Prior phosphorylation of S14 which 

mediates a predicted Pin1-dependent conformational change is required for S16 

phosphorylation. Preliminary evidence in mouse firbroblasts indicates a potential function 

of SIRT1 in mitosis indicating that S16 phosphorylation may constitute a molecular 

mechanism underlying the regulation of SIRT1 in this context. 

 
4.2 REGULATION OF SIRT1 BY CASPASE-MEDIATED CLEAVAGE 
 

On several occassions during the course of these studies, a novel protein species 

highly immunoreactive to mAb12/1 and to a lesser extend to GST-S1 was observed 

(FIGURES 4-7B, 4-22, 4-40, 4-41, 4-46). The appearance of this band, which is approx. 10 kDa 

smaller than full-length SIRT1 (henceforth p110SIRT1), correlated with the occurrence of 

apoptotic figures in the corresponding cell populations as observed by light microscopy. 

This raised the possibility of a causal link between cell death and the appearance of this 

putative novel SIRT1 species. 

To confirm this correlative link, HeLa and U2OS cells were subjected to treatments 

with various stress stimuli to induce cell death and lysates thereof were probed with 

SIRT1 antibodies. UV irradiation as well as actinomycin-D treatment both of which elicit 

cellular apoptotic responses by causing DNA damage induce the appearance of p110SIRT1 

(FIGURE 4-49A). This band co-migrates with a similar SIRT1 band appearing in nocodazole-

treated cells. Anicomycin is a potent inducer of Jun N-terminal kinase (Jnk) which is a 

positive mediator of cellular apoptotic pathways (Davis, 2000). Anicomycin treatment also 

induces the appearance of p110SIRT1 (FIGURE 4-50A lower panel). Another apoptosis inducer in 

the inflammatory cytokine TNFα. In cell culture experiments TNFα alone is not sufficient to 

elicit apoptosis because activated TNF receptors induce the NFκB  survival pathway that 

mediates the transcription of genes which prevent activation of Jnk and its pro-apoptotic 
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function (Kamata et al., 2005; De Smaele et al., 

2001; Tang et al., 2001). Inhibition of NFκB target 

gene expression by actinomycin-D to block 

transcription or cycloheximide (CHX) to block 

translation enables TNFα to induce 

apoptosis. CHX alone can also induce 

apoptosis. As shown in FIGURE 4-50B CHX 

alone and to a greater extend the 

combination of TNFα and CHX, but not TNFα 

alone lead to the induction of p110SIRT1. Thus 

multiple stress stimuli that induce cell death 

elicit the appearance of a novel SIRT1 

species, p110SIRT1. 

This observation prompted the 

investigation of the molecular mechanism 

that results in the appearance of p110SIRT1. 

DNA database sequence searches indicated 

that p110SIRT1 is unlilkely to arise by 

expression of a SIRT1 gene alternative transcript or alternative splicing. This was further 

supported by the fact that neither actinomycin-D nor CHX prevented formation of this 

band (FIGURE 4-50). Furthermore, alternative translation initiation was also excluded since 

two potential methionine residues that could account for this give rise to SIRT1 species 

which are smaller than p110SIRT1 (see FIGURE 4-10). Apart from its role in protein 

degradation, the proteolytic activity of the proteasome is also implicated in regulated 

protein processing (e.g. Orian et al., 2000; Hoiby et al., 2004). Proteolytic processing by the 

proteasome is also unlikely since MG132 treatment of cells does not prevent the 

occurrence of p110SIRT1 (FIGURE 4-46B). 

A specific class of cysteine proteases known as caspases are essential mediators 

of the apoptotic programme (Danial and Korsmeyer, 2004). In unstimulated cells, caspases are 

present as inactive zymogens (Riedl and Shi, 2004). When the apoptotic pathway is 

activated, limited proteolytic events result in the cleavage of the zymogens to yield active 

caspases which in turn catalyse the cleavage of effector proteins (Danial and Korsmeyer, 

2004).  
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To test whether p110SIRT1 

formation is sensitive to caspase 

inhibition, U2OS cells were induced 

to undergo apoptosis by either UV or 

actinomycin-D treatment in the 

presence or absence of a general 

caspase inhibitor. This inhibitor 

prevented the appearance of 

p110SIRT1 suggesting that this SIRT1 

species may arise by caspase-

mediated cleavage (FIGURE 4-51A). 

Similarly, titration of increasing 

concentrations of a caspase-8 

inhibitor prevented p110SIRT1 formation in a dose-dependent manner (FIGURE 4-51B). 

As p110SIRT1 is detected by mAb12/1 which maps at the N-terminus of SIRT1 

(FIGURE 4-38B) it was expected that this novel SIRT1 species arises by cleavage of the C-

terminus of the protein. To confirm this, U2OS cells were induced to undergo apoptosis 

with various treatments and subjected to immunoblotting with mAb12/1 a well as GST-S1 

and Ctp which were raised against epitopes in the C-terminus of the protein. mAb12/1 is 

significantly more reactive to p110SIRT1 compared to GST-S1 which can recognise the 

band too (FIGURE 4-52). p110SIRT1 is not recognised by Ctp corroborating the prediction that 

caspase-mediated SIRT1 processing occurs in the C-terminus of the protein.  

 

FIGURE 4-51. Caspase inhibitors prevent stress-
induced SIRT1 cleavage. See text for details. 
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To precisely map the caspase cleavage site of SIRT1 was examined for the 

presence of putative caspase consensus target sequences. Several such sites were 

identified in the C-terminus of the protein (FIGURE 4-53A). Caspases show specificity for the 

peptide bond following aspartic acid and in particular target sites with the consensus -D-X-

X-D*- where X is any aminoacid and * marks the cleavage site. It was also considered 

possible that phosphorylation of S or T residues can drive caspase-mediated cleavage 

probably because the negative charge of the phosphate mimics the acidic side-chain of D. 

It is of note, however, the report of Tozser et al. 2003 who showed that such 

phosphorylations actually decrease susceptibility to caspases (Tozser et al., 2003). Also 

interestingly, substitution of D with E abolishes caspase cleavage indicating that caspase 

targeting is not only determined by the charge but also by steric factors (Riedl and Shi, 2004). 

To find which of the putative sites is targeted by caspases in vivo, several SIRT1 

C-terminal truncation mutants were expressed in U2OS cells as HA-tagged species and 

analysed by immunobloting with either mAb12/1 or α-HA antibody. Among these species 

HA-SIRT1(1-707) co-migrated with the HA-p110SIRT1 band derived from the cleavage of 

wild-type HA-SIRT1 in response to UV or actinomycin-D treatment (FIGURE 4-53B). A second 

less adundant cleavage product co-migrated with HA-SIRT1(1-540). Interestingly, similar 

bands also appeared in untreated transfected cells, probably arising due to apoptosis 

induced by the calcium phosphate tranfection method. It should also be noted that the full-

length HA-SIRT1 as well as the C-terminal truncations appear as doublets with the 

mAb12/1 but not with the α-HA antibody. Supeimposition of the films from the two blots 

revealed that it is the upper band that is recognised by the α-HA antibody suggesting that 

FIGURE 4-53. Identification of the
SIRT1 caspase cleavage site. (A)
Putative caspase cleavage sites in the
C-terminus of SIRT1 are highlighted in
red; (B) Mapping of the putative SIRT1
caspase cleavage sites by comparison
of the electrophoretic mobilities of
truncated SIRT1 species with
processed SIRT1 following stress. 
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the lower band arises due to loss of the HA tag. Indeed, examination of the HA tag 

sequence revealed the presence of a caspase consensus site providing an explanation as 

to the origin of this phenomenon.  

To confirm that SIRT1(1-707) is the caspase cleavage product, D707 was mutated 

to E which is expected to hinder proteolytic processing by caspases. This mutation 

(D707E) abolished stress-induced cleavage as well as the cleavage observed in 

untreated cells confirming that this D707 is a major caspase proccessing site on SIRT1 

(FIGURE 4-54). In the same samples, HA tag loss occurred equally in all samples.  

As a SIRT1 ragment corresponding to residues 1-540 appeared to co-migrate with 

a  full-length SIRT1 proteolytic product (FIGURE 4-53B), the effects of S540 modification were 

examined. S540 was mutated to A or D to mimic a non-phosphorylatable and a 

constitutively phosphorylated species and expressed in U2OS cells. The proteolytic 

cleavage pattern of the S540 mutants was indistinguishable from that of wild-type protein 

(FIGURE 4-55) independently of the presence or absence of apoptotic stimulus (UV), 

suggesting that even if the region flanking S540 is susceptible to proteolytic processing by 

caspases, S540 modification is not likely to modulate that. 

Despite the evidence that the stress-induced processing of SIRT1 is prevented by 

caspase inhibitors and that the identified cleavage site conforms with the caspase 

consensus recognition site, it is possible that the influence of caspase inhibitors on SIRT1 

processing (FIGURE 4-51) is a secondary effect arising due to the prevention of apoptosis 
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FIGURE 4-54. D707 is the major SIRT1 caspase cleavage site. See text for details. 
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thus abolishing an apoptosis-linked but 

caspase-independent proteolytic activity. 

To test this, an in vitro caspase assay was 

employed. In this assay cytosolic S100 

extracts of unstimulated 293 cells are 

treated with the nucleotide dATP which is 

sufficient to elicit an apoptosis-like 

programme which results in an accute 

activation of caspases (Liu et al., 1996). 

Wild-type SIRT1, SIRT1(1-707) and the 

D707E mutant were in vitro transcribed-

translated and incubated in the presence of S100 extracts which had been either mock 

treated or treated with dATP. No cleavage of SIRT1 was observed in the absence of 

dATP whereas a proteolytic product which co-migrated with the SIRT1(1-707) truncation 

mutant appeared even after 15' of incubation with dATP-treated extracts (FIGURE 4-56A). In 

contrast, no proteolytic product arose from the D707E mutant under identical incubation 

conditions. In the 30' of incubation in this experiment, no further cleavage of the 1-707 

mutant was observed.  

To confirm that the observed effect is due to caspase activation, SIRT1, SIRT1(1-

707) and SIRT1(D707E) were incubated 

with dATP-activated extracts for 90' and 

a generic caspase inhibitor was added 

to the reaction of wild-type SIRT1. 

Under these conditions, SIRT1 was 

undetectable in the activted extracts and 

this could be inhibited by the caspase 

inhibitor (FIGURE 4-56B). Interestingly, 

SIRT1(1-707) was also rendered 

undetectable in activated extracts 

suggesting that it can undergo further 

proteolysis. Although it is not clear 

based on these experiments if this is 

also a caspase-catalysed processing 
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FIGURE 4-55. S540 mutation does not affect
SIRT1 processing. See text for details. 
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event, this is a plausible scenario. In contrast, SIRT1(D707E) was completely resistant to 

proteolysis.  

To investigate this point further, U2OS cells were 

treated with 50 J/m2 UV light for 24 hours in the presence 

of the proteasome inhibitor MG132 or carrier solvents for 6 

hours prior to harvesting. MG132 treatment had little effect 

on full-length SIRT1, however it induced a marked increase 

in the abundance of the caspase cleavage product (FIGURE 

4-57). These results suggest that SIRT1 is cleaved by 

caspases at residue D707 and that caspase cleavage 

renders the protein susceptible to further proteolytic 

processing. 
 Prolonged arrest of cells in mitosis due to activation 

of the SAC can lead to apoptotic cell death (Rieder and 

Maiato, 2004). As cleavage of SIRT1 was also frequently 

observed in nocodazole-treated cells (e.g. FIGURE 4-50A), to 

verify that this is also due to activation of caspases, cells 

arrested in mitosis with nocodazole were treated with a 

generic caspase inhibitor or caspase-8 inhibitor and 

immunoblotted with either mAb12/1 or GST-S1. Caspase 

inhibition prevented the formation of the 

proteolytic band confirming that its 

presence can be attributed to nocodazole-

induced apoptosis (FIGURE 4-58). 

Interestingly, caspase-8 inhibition did not 

abolish completely the processing of 

SIRT1 revealing also the presence of a 

slightly faster migrating band with a 

minimal apparent size difference 

compared to full-length SIRT1. Unless 

this reflects an inhibitor dose effect, it 

can be proposed that multiple caspase 

FIGURE 4-57. SIRT1 caspase
cleavage product is
susceptible to increased
proteasomal degradation.
U2OS cells were either mock
treated or treated with 50 J/m2

UV for 24 h and with either
carrier or 50 µM MG132 for 6h
prior to harvesting.   
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species contribute to SIRT1 processing during apoptosis and that additional subtle 

proteolytic effects may also occur. 

 As a first step towards elucidating the functional significance of caspase-mediated 

SIRT1 cleavage, the subcellular localisation of SIRT1(1-707) was investigated. HeLa or 

U2OS cells were transfected with HA-tagged constructs of either wild-type SIRT1 or 

SIRT1 (1-707) and their localisation was probed by indirect immunofluorescence. Both 

wild-type and the truncated mutant were consistently detected in the nucleus in a manner 

undistinguishable from each other (FIGURE 4-59). Thus truncation of the last 40 aminoacids 

of SIRT1 does not have an effect on its 

subcellular distribution.  

 The crystal structure of the yeast 

sirtuin Hst2p revealed that the C-terminus 

of the protein forms extensive contacts with 

the catalytic cleft implying a potential 

autoregulatory mechanism for sirtuins (Zhao 

et al., 2003). As SIRT1 also shares an 

extensive C-terminal region it is possible 

that caspase-mediated truncation of the last 

40 aminoacids may influence potential 

intramolecular contacts which in turn could 

affect the deacetylase activity of the protein. 

To this end, HA-SIRT1, HA-SIRT1(1-707) 

and the catalytically inactive mutant H363Y 

as a control were transfected into 293 cells, 

immunoprecipitated with α-HA antibody and 

their activity was assayed using a 

fluorescence-based peptide deacetylation 

assay. Accounting for expression 

differences, the catalytic activities of wild-

type and the 1-707 mutant SIRT1 species 

were comparable (FIGURE 4-60). It is however 

possible that SIRT1 truncation results in 

only subtle differences in its catalytic 
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properties which would not be revealed in such an end-

point assay. Indeed, truncation of the C-terminus of Hst2p 

leaves the kcat of the enzyme unaffected while it reduces 

its Km for NAD+ 3.6-fold (Zhao et al., 2003). The type of 

assay used in this experiment, though, is not easily 

amenable to extensive quantitative analysis since 

parameters which are difficult to control precisely such as 

the IP bead volume, can hinter the accuracy of the 

measurements. 

To address this issue, GST-SIRT1(1-707) was 

cloned in a baculoviral expression vector and expressed 

in Sf9 cells. Unfortunately, despite good expression 

levels, this protein species was virtualy impossible to 

elute from the glutathione beads used to purify it. Further 

work to resolve this problem is underway. Succesful 

purification of this protein will provide a major tool for a 

detailed analysis of the potential effects of caspase-

mediated cleavage in the enzymatic activity of SIRT1. 

In view of several reports implicating SIRT1 in the regulation of transcription factor 

activity, the possibility that caspase-mediated cleavage may affect this function was 

tested. In response to environmental simuli, signalling and transcriptional responses 

undergo dynamic changes that underlie cellular adaptability. As SIRT1 was shown to be a 

negative regulator of NFκB and p53 transcription factors, it is plausible that this function is 

blunted upon genotoxic stresses, allowing the efficient activation of gene expression 

programmes driven by these transcription factors. Caspase cleavage could potentially 

play such a role, either as a modulator of SIRT1 deacetylase activity (described above) or 

by regulating protein complex formation that requires the C-terminal region of SIRT1. 

Towards this end, the effects of wild-type SIRT1 and the 1-707 mutant upon NFκB-

driven reporter gene activity were assayed. A luciferase gene driven by a constitutive 

promoter under the control of three NFκB consensus DNA binding sites (3xκB) was 

contransfected along with increasing amounts of the SIRT1 contructs. To induce NFκB 

activity, cells were treated with TNFα and the ability of SIRT1 to suppress this activation 

was assayed by measuring luciferase activity (compared to identically-transfected 
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uninduced cells for each reaction).  All 

luciferase measurements were normalised 

for transfection efficiency by assaying for 

β-galactosidase activity which was co-

expressed in each reaction. FIGURE 4-61 

shows to representative examples of 

results obtained from such experiments. 

Low amounts of HA-SIRT1(1-707) 

appeared to be more efficient in 

suppressing TNFα-induced NFκB reporter 

activity although at higher SIRT1 

concentrations, this effect was more subtle 

(FIGURE 4-61A). Repetition of this experiment 

using untagged SIRT1 contructs failed to 

reproduce this result as it showed equal 

capacities of both SIRT1 species to 

repress inducible reporter gene activity 

(FIGURE 4-61B). Thus, to this point little 

evidence exist supporting a role for 

caspase-mediated SIRT1 cleavage in 

regulating the transcriptional activity of the 

latter.  

In conclusion, SIRT1 is subjected 

to a caspase-catalysed proteolytic 

cleavage in response to apoptotic stimuli. The major cleavage site was mapped in a 

capsase consensu target site in the C-terminus of SIRT1 at residue D707. Assessment of 

the transcriptional respression activity of SIRT1 on gene reporter assays revealed little 

evidence for an effect attributable to SIRT1 cleavage. However, the cleaved SIRT1 

species shows increased proteolytic turnover which can be inhibited by MG132 pointing to 

a potential role of cleavage at D707 in protein stability. 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

– –
HA-SIRT1wt HA-SIRT1(1-707)

3xκB-luciferase

0

0.2

0.4

0.6

0.8

1

1.2

– –
SIRT1wt SIRT1(1-707)

3xκB-luciferase

A

B

FIGURE 4-61. SIRT1(1-707) does not exhibit
altered transcriptional repression activity. See
text for details. 



Chapter 4 - Results: Function and regulation of SIRT1 

 210

4.3 OTHER FEATURES OF THE SIRT1 PRIMARY SEQUENCE  
 

During the course of these studies, other features of the primary sequence of 

SIRT1 were discovered, yet time limitations did not allow the experimental assessment of 

their functional significance.  

Of note among these is a 

TOR signaling (TOS) motif 

comprising residues 474-478 

immediately following the sirtuin 

core domain (FIGURE 4-62). The 

TOS motif was discovered as a 

protein sequence region required 

for the activation of S6 kinase, a 

well-established mTOR effector 

(Schalm and Blenis, 2002). 4E-BP1, 

another mTOR target also harbours a TOS motif which was subsequently shown to 

mediate the interaction of 4E-BP1 with the mTOR binding partner raptor (Schalm et al., 2003) 

providing a molecular explanation of its functional significance. Indeed, expression of 4E-

BP1 with mutated TOS motif results in decreased cell size consistent with its neccessity 

for TOR signaling. The TOR signaling pathway is a key mediator of cellular responses to 

nutrient availability and recent evidence suggests that TOR itself may regulate organismal 

life-span in yeast (Kaeberlein et al., 2005). Thus it would be of interest to investigate whether 

similar to other TOS-bearing proteins, SIRT1 is also a target of mTOR signaling or indeed 

a substrate of the latter's kinase activity.  

Another characteristic feature of SIRT1 is an extensive stretch of acidic residues 

comprising residues 122-134 found in the N-terminus of the protein (FIGURE 4-62 lower panel). 

This feature is well conserved between human, mouse and Drosophila SIRT1 but not in 

lower organisms. Acidic stretches are not an unknown feature and are particularly present 

in transcriptional regulators possibly reflecting a tendency to associate with histones 

which are basic. 

The importance of these motifs is unclear, yet their identification may provide a 

useful guide for future structure-function analyses of SIRT1. 

TOS motifTOS motif

hSIRT1
1 253 469 747

Sirtuin core domain

TOS motif
474FDVEL478

Acidic stretch
122DEDDDDEGEEEEE134

FIGURE 4-62. Novel SIRT1 sequence motifs with potential
function in signaling. See text for details. 
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CHAPTER 5 

 
 

DISCUSSION AND FUTURE PERSPECTIVES 
 

 

Elucidating signaling circuitries that underlie cellular and organismal physiology has 

allowed a significant understanding of the homeostatic mechanisms employed by living 

organisms to adapt to environmental stimuli. Such mechanisms have been a major driving 

force in the evolution process and continue to be important in the way pathogenic organisms  

as well as aberrantly functioning cells withstand ever more elaborate pharmacological 

interventions treating disease. Thus, in-depth comprehension of adaptive signaling systems 

and their interlinks allows to track down the molecular causes of particular disease states 

leading to the development of novel knowledge-based therapeutic strategies. 

 

5.1  Common pathways underlying homeostatic cellular processes are disregulated 
in diverse diseases 
 

It has been increasingly evident that molecular players of pathways involved in basic 

homeostatic processes go frequently awry in diseases apparently as diverse as cancer and 

the metabolic syndrome. In particular several components of the insulin, TOR and oxygen 

signaling pathways have been directly implicated in such diseases (Wullschleger et al., 2006; Plas 

and Thompson, 2005; Barry and Krek, 2004). Aberrant function of these circuitries underlies 
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dramatic changes in the proliferative, growth and metabolic cellular capacity, which are 

closely related to the disease phenotype(s). 

The fact that these signaling pathways co-ordinate such basic cellular functions 

provides a first level of explanation as to why their molecular components comprise the 

common denominator of different diseases. However, the mechanistic details of this 

phenomenon remain largely elusive. Recent evidence has shed more light into the intriguing 

cross-talk at play which co-ordinates diverse cellular activities and underlies the complex 

disease phenotypes associated with mutations of these central homeostatic pathways. 

 

 

5.1.1 Functional interconnection between the PKB, TOR and oxygen signaling 
pathways in health and disease 

 

The insulin/IGF pathway involves a highly conserved set of signaling molecules that 

coordinate cellular growth, proliferation and metabolism (Plas and Thompson, 2005; Brazil et al., 

2004). A central orchestrator of these effects is the kinase PKB. PKB phosphorylates a 

diverse array of proteins to promote cell cycle progression, survival and sustain the metabolic 

capacity at the levels required for proliferation (Plas and Thompson, 2005). 

An independent pathway that yet is under the positive influence of growth factor 

signaling through the insulin receptor is mediated by the TOR kinase. TOR is also activated 

by aminoacids through a largely unknown mechanism and is a central regulator of cellular 

protein biosynthetic capacity by dictating ribosomal biogenesis (Wullschleger et al., 2006). At the 

same time, cellular energy status, modulated e.g. by glucose, also determines the activity of 

TOR via the AMPK kinase cascade (Hardie, 2005). 

The VHL-HIF signaling axis allows cells to adapt their metabolic programme to the 

oxygen tension experienced at any given time and to elicit appropriate adaptive changes in 

their environment such as the formation of new blood vessels in response to hypoxic 

conditions (Barry and Krek, 2004; Kaelin, 2002).  
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5.1.1.1 Representative mechanisms employed by hypoxia to inhibit growth and 
proliferation 

 

At least two mechanisms have been shown to implement suppression of cellular 

growth in response to hypoxia. The first requires a HIF target gene known as REDD1, which 

is also a p53 target. REDD1 signals via the TSC1/TSC2 tumour suppressor complex to 

inhibit TOR activation (Brugarolas et al., 2004). The second mechanism implicates that reduction 

in cellular energy due to low oxygen tension results in the activation of the AMPK pathway 

which in turn inhibits components of the translational apparatus (e.g.eIF2α and eEF2) as well 

as TOR to suppress translation (Liu et al., 2006).  

Similarly, energy availability expressed as the ratio of AMP/ATP depends on another 

tumour suppressor, p53 to elicit cell cycle arrest under conditions of nutrient limitation. This 

requires the phosphorylation and subsequent activation of p53 by the AMPK kinase (Jones et 

al., 2005). Interestingly, p53 is also stabilised by HIF, however no direct experimental evidence 

exists to support that p53 is required for the cell cycle arrest in response to hypoxia (Dang and 

Semenza, 1999). An alternative mechanism possibly at play postulates that HIF represses the 

activity of the myc oncoprotein which itself is a negative regulator of p21 and p27 

transcription (Gartel and Shchors, 2003). 

 
5.1.1.2 Reciprocal relation between metabolic enzymes and proteins regulating 

proliferation 
 

Cancer cells exhibit profoundly altered metabolic characteristics, predominantly 

increased glucose uptake and enhanced anaerobic glycolysis even at normoxic conditions 

(Dang and Semenza, 1999). This phenomenon is known as the Warburg effect. Several 

oncogenes as well as tumour suppressors have been shown to mediate the gene expression 

changes associated with such a phenotype. 

The transcriptional activity of HIF accounts for a large part of such changes as it 

induces the transcription of essentially all key enzymes in the glycolytic pathway (Dang and 

Semenza, 1999). In addition, the tumour suppressor p53 and the oncogene myc also regulate 

respectively the expression of hexokinase, the rate-limiting step in glycolysis and lactate 
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dehydrogenase which promotes the anaerobic utilisation of pyruvate (Kim et al., 2004; Dang and 

Semenza, 1999). At the same time, myc promotes mitochondrial biogenesis, and the resulting 

increased mitochondrial activity has been proposed to contribute to augmented levels of 

ROS that in turn enhance genomic instability (Dang et al., 2005).  

Furthermore, PKB-mediated recruitment of hexokinase to mitochondria has an anti-

apoptotic effect (Majewsky et al., 2004) while PKB also promotes survival by contributing to the 

phosphorylation and thus inactivation of Bad along with S6K and glucokinase (Brazil et al., 

2004; Danial et al., 2003). Interestingly, though, recent data suggest that PKB also enhances 

aerobic glycolysis in cancer cells which renders them more susceptible to apoptosis induced 

by glucose withdrawal (Elstrom et al., 2004). 

Interestingly, other glycolytic 

enzymes appear to have evolved 

additional functions  parallel to their 

classic ones in the glycolytic pathway 

(Kim and Dang, 2005) raising the exciting 

possibility that their transcriptional 

regulation by the HIF and other cancer 

pathways elicits a cellular response 

that extends far beyond metabolic 

adaptation. Thus, in addition to the 

aforementioned hexokinase, GAPDH 

was shown to participate in the 

transcriptional activation of histone 

H2B genes (FIGURE 5-1) (Zheng et al., 2003) 

while it also appears to have a role in 

the regulation of apoptosis, albeit an 

incompletely understood one (Kim and 

Dange, 2005). 

FIGURE 5-1. GAPD and LDH as transcriptional
regulators. Both GAPD and LDH are involved in the
glycolytic steps that are coupled with the oxidation or
reduction reaction of NADH to NAD+ and vice versa. The
phosphorylated form of LDH is exclusively localized in the
nucleus. The molecular mechanism responsible for nuclear
translocation of GAPD and phosphorylated LDH is not yet
known. Along with LDH, nuclear GAPD forms an Oct-1
transcriptional coactivator complex, OCA-S, which is an S-
phase-dependent transactivator of the gene encoding
histone H2B. The DNA-binding property of LDH and GAPD
is increased by a low NADH:NAD+ ratio, such that OCA-S
activity and H2B expression are increased. Yellow and
blue ovals represent other components of the OCA-S
complex. 
 

Figure and legends adapted from Kim and Dang, 2005

It is possible that transcriptional as well as indirect metabolic effects upon the 

glycolytic or indeed other metabolic pathways alter the flux through an enzymatic cascade 

and eventually skew the balance of individual pools charged with specific tasks. 
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Further to the apparent dependence of cancer cells to glycolysis, mitochondrial 

function also plays an important role in cancer biology. To begin with, mitochondrial genes 

participating in the tricarboxylic acid (TCA) cycle such as succinate dehydrogenase and 

fumarate hydratase were shown to be mutated in different cancers including renal cell 

carcinoma which is frequently associated with mutations on VHL, the negative regulator of 

HIF (Barry and Krek, 2004; Gottlieb and Tomlinson, 2005 and references therein). In particular, 

accumulation of succinate due to succinate dehydrogenase malfunction leads to inhibition of 

HIF prolyl hydroxylases and thus stabilisation of HIF under normoxic conditions, a 

phenomenon called pseudohypoxia, providing a possible rationale behind the tumourigenic 

effects arising from mutations in metabolic enzymes (see Chapter 1). 

Interestingly, members of the E2F protein family, which are transcription factors with 

cardinal roles in the regulation of cell cycle progression, have been shown to regulate 

mitochondrial gene expression. In particular, E2F4 specifically co-operates with the pocket 

protein p130 to mediate the gene expression programme in response to growth arrest stimuli 

such as contact inhibition, growth factor withdrawal and forced expression of the p16INK4A 

CDK inhibitor (Cam et al., 2004). A remarkable enrichment of nuclear respiratory factor-1 (NRF-

1) binding sites is exhibited within the set of E2F4 promoters especially of genes required for 

mitochondrial biogenesis. This work provided a hint of a molecular mechanism linking 

proliferation and the metabolic status of the cell. 

Mitochondrial dysfunction is also linked to the formation of reactive oxygen species 

(ROS) which promote genomic instability possibly by enhancing DNA mutation rates (Balban et 

al., 2005). As ROS is a by-product of basic mitochondrial functions, the existence of cellular 

mechanisms that ensure their prompt elimination is of great importance. MnSOD is one of 

the enzymes that catalyse ROS removal and is under the transcriptional control of FOXO in 

response to oxidative stress stimuli. This is of particular interest as the hyperactivation of 

PKB in tumours would lead not only to increased mitochondrial metabolism but also to 

enhanced FOXO suppression and thus impaired MnSOD activity. Consequently, mutations 

that result in PKB hyperactivation such as in the PTEN gene constitute a double-edged 

sword against tumour suppression. 

Conversely, aspects of cellular proliferation can also have an impact on organismal 

metabolism. Abblation of the p27 gene locus in mice leads to increased pancreatic islet mass 
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due to enhanced proliferation of β-cells. Consequently, these mice have an improved 

response to diabetes-associated hyperglycaemia (Uchida et al., 2005). Furthermore, glucose 

intolerant diabetic patients have remarkably reduced mRNA levels of the HIF 

heterodimerisation partner ARNT in pancreatic islets (Gunton et al., 2005). This is recapitulated 

in a mouse model bearing β-cell specific deletion of ARNT as well as tissue culture 

experiments where ARNT loss results in impaired glucose-stimulated insulin release. 

In a macroscopic view of these observations, a stricking correlation between diet and 

the incidence of disease exists. Although in the case of metabolic diseases the causative role 

of diet quality is more straight-forward, although incompletely understood, the link to cancer 

is less clear. Excluding the influence of dietary substances that have a tumourigenic effect on 

their own, there is increasing evidence that the metabolic state of an organism may influence 

tumour formation propensity independently of genetic background. 

In particular, obesity, which frequently results in insulin resistance and consequently to 

major imbalances in metabolic homeostasis, has been directly linked to some types of cancer 

occuring in the colon, endometrium, kidney and oesophagus (Calle and Thun, 2004). Some 

preliminary glimpses of the molecular mechanisms underlying this phenomenon have been 

recently produced.  

Inflammation seems to be a common denominator in both cancer and obesity-

associated disorders. For example, in a mouse model of colitis, which is characterised by a 

persistent inflammatory response, genetic ablation of macrophage-mediated inflammation 

results in attenuation of tumour incidence and size (Greten et al., 2004). Similarly, ablation of 

macrophage-mediated inflammation results in enhanced insulin sensitivity in obese mice 

(Arkan et al., 2005; Wellen and Hotamisligil, 2005). 

Furthermore, in the hyperglycaemic diabetic mouse, S6K1, which is under the positive 

influence of TOR kinase, phosphorylates IRS in an inhibitory site resulting in reduced insulin 

receptor signaling and thus insulin resistance. Interestingly, inactivating mutations of the 

genes encoding for the TSC tumour suppressor complex lead to hyperactivation of the TOR 

signaling pathway and tumour development (Astrinidis and Henske, 2005).  

Conspicuously, the incidence of both cancer and diabetes increase with age (Hasty et 

al., 2003; Moller et al., 2003), and besides its roles in these diseases the IGF/insulin signaling 

pathway is a well established regulator of the ageing process in a manner remarkably similar 
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between different species. Genetic ablation of IGF signaling pathway components results in 

extension of lifespan in Drosophila, C. elegans and in mice (Partridge and Gems, 2002). This 

extended longevity phenotype depends on the activity of  the forkhead family of transcription 

factors (Guarente and Kenyon, 2000). For example, genetic studies have revealed that the activity 

of the forkhead target gene MnSOD leads to increased resistance to oxidative stress-elicited 

damage and promotes organismal life-span (Kenyon, 2005). Intriguingly, ROS-induced 

oxidative damage is also a proposed causal factor for cancer, further underlining the 

commonalities of phenotypes associated with ageing and associated diseases. 

In addition to dietary quality and its influence on disease occurrence (McCullough and 

Giovannucci, 2004), dietary restriction has a major impact on ageing, an effect closely 

associated with its ability to suppress the IGF signaling pathway (Guarente and Picard, 2005). In 

lower organisms, the beneficial effects of caloric restriction on organismal life-span have 

been partially attributed to the sirtuin family of protein deacetylases (Guarente and Picard, 2005). 

Thus, a great deal of experimental effort has been invested into investigating the role of 

sirtuins in this process. 

 

5.2  The sirtuin family of protein deacetylases 
 

Further to its well-established role in the regulation of gene expression through 

alternation of transcription factor activity and chromatin structure, acetylation is being 

increasingly appreciated as a modification with a broad spectrum of effects (Kouzarides, 2000). 

Proteins are acetylated by acetyltransferases by transfer of the acetyl-group from acetyl-CoA 

to either the ε-amino group of lysine residues or the α-amino group of protein amino-terminal 

residues. While N-terminal acetylation occurs co-translationaly in about 85% or eucaryotic 

proteins, lysine acetylation occurs post-translationaly (Polevoda-Sherman 2002). Similar to 

phosphorylation the reversible nature of acetylation is a paramount feature allowing rapid 

adaptation to a dynamic environment. Thus deacetylases are likely to play key roles in 

processes regulated by acetylation other than chromatin structure modification. 
Sirtuins are a recently identified protein family of deacetylases, often referred to as 

class III deacetylases, which are distinct from classical HDACs due to the dependence of 

their activity on NAD+ and their insensitivity to TSA (Denu, 2003). They are highly conserved 
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throughout the phylogenetic tree yet they have been shown to regulate metabolic and gene 

regulatory processes not shared by all species.  

The bacterial sirtuin CobB functions in the cobalamin biosynthesis pathway which is 

absent in higher eucaryotic cells (Tsang and Escalante-Semerena, 1998; Blander and Guarente, 2004). 

In S. cerevisiae, Sir2 has a well-established role in gene silencing at mating-type, rDNA and 

telomeric loci where its deacetylase activity is required for the establishment and spreading 

of heterochromatin (Grewal and Moazed, 2003; Guarente, 1999). Several enzymatic targets of 

mammalian sirtuins have been identified to-date (FIGURE 5-2), primarily transcriptional 

regulators yet no evidence exists supporting a broader role in global gene silencing and 

heterochromatin formation similar to yeast (Blander and Guarente, 2004). 
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FIGURE 5-2. Schematic summary of reported SIRT1 interacting partners. Directionality of arrows indicates
which protein has been used as a bait and which was isolated as pray (arrowhead) in interaction studies.
Associations that have been shown to occur directly (by in vitro binding assays) are indicated by direct contact
of the arrow to SIRT1 and their positioning in relation to the protein domains represents the mapped
interaction region in approximation. 
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5.2.1 Sirtuins and the regulation of organismal life-span 
 

Sir2 has been proposed to be a factor determining longevity in S. cerevisiae as well as 

C. elegans. Furthermore, Sir2 mediates life-span extension in response to nutrient limitation. 

This is based on experimental evidence demonstrating that the presence of Sir2 is required 

for life-span extension in calorically restricted yeast and worm while overexpression of the 

protein suffices to increase life-span in a manner not-additive to caloric restriction itself 

(Guarente 2005; Tissenbaum and Guarente, 2001; Lin et al., 2000). 

Various theories have been put forward to explain the role of sirtuins in longevity. 

Initially it was proposed that the suppression of recombination at the rDNA locus by Sir2p 

attenuates the formation of ERCs (extrachromosomal rDNA circles) which normally 

accumulate in mother cells and correlate with yeast ageing but also are suppressed in 

calorically restricted cells (Lin et al., 2000; Sinclair, 1998; Sinclair and Guarente. 1997). Interestingly, 

increased recombination rates are observed in ageing yeast cells suggesting a link between 

genomic stability and life-span which extends beyond the rDNA locus (McMurray and Gottschling, 

2003). In addition, preferential segragation of oxidatively damaged proteins in mother cells 

has also been implicated in yeast ageing and shown to depend on Sir2p (Aguilaniu et al. 2003).  

Increased respiration and changes in cellular NADH or nicotinamide levels have all 

been proposed to influence Sir2 activity and contribute to its involvement in caloric restriction 

(Lin et al., 2004; Anderson et al., 2003; Lin et al., 2002; Anderson et al., 2002). Recent evidence, however 

has challenged the exclusive role of Sir2 contribution in longevity showing that TOR1 and 

SCH9 deletions can increase yeast life-span in the absence of Sir2 (Kaeberlein et al., 2005; 

Kaeberlein et al., 2005). Moreover, caloric restriction fails to increase life-span in yeast strains 

carrying TOR1 and SCH9 deletions indicating a major contribution of these proteins in this 

process (Kaeberlein et al., 2005). This clearly demonstrated that, at least in yeast, there are Sir2-

independent pathways that mediate the effects of nutrient limitation on longevity. These 

pathways involve the kinases Tor1, a well-established sensor of nutrient availability in yeast 

and mammals (Jacinto and Hall, 2003) and the yeast orthologue of mammalian PKB kinase 

SCH9. 

Interestingly, TOR regulates ribosomal biogenesis through the PKA pathway. TOR 

modulates PKA subcellular localisation to maintain the donwstream kinase YAK1 inactive. 
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TOR inhibition leads to activation of YAK1 which in turn phosphorylates the transcriptional 

co-repressor CRF1. CRF1 then transclocates to the nucleus and competes with the co-

activator IFH1 for binding to the ribosomal gene transcription factor FHL1 thus repressing 

ribosomal gene transcription (Martin et al., 2004). In addition TOR mediates ribosomal 

biogenesis by regulation of rDNA transcription through the transcription factors UBF and 

TIF1A (Mayer et al., 2004).  

PKA is also involved in the glucose sensing pathway and PKA mutations mimic caloric 

restriction to extend life-span in a manner dependent on Sir2p (Lin et al., 2002). Furthermore, 

SIRT1-mediated deacetylation of the RNAPolI transcription factor subunit TAFI68 represses 

ribosomal biogenesis. Thus, TOR and Sir2, both of which are proposed to function as 

nutrient sensors, regulate life-span and ribosomal biogenesis in opposite ways and are 

genetically linked to PKA which also responds to nutrient availability. It would hence be of 

interest to investigate whether TOR and Sir2 genetically interact to regulate ribosomal 

biogenesis and whether the later process is an active determinant of life-span or simply 

correlates to proliferation rates associated with ageing. 

In C. elegans mutations in the IGF signaling pathway regulate life-span in a manner 

dependent on the forkhead transcription factor daf-16 (Tissenbaum and Guarente, 2002). A 

genetic interaction between Sir-2.1 and the IGF-signaling pathway has been reported. In 

particular, life-span extension induced by increased Sir-2.1 expression dependents on the 

forkhead transcription factor daf-16 which is under the negative regulation of the IGF 

signaling pathway (Wang and Tissenbaum, 2006; Tissenbaum and Guarente, 2001). This provided 

evidence that sirtuins may mediate organismal longevity in multicellular organisms albeit by a 

different, or as-yet unidentified common, mechanism than in yeast. Consequently, the quest 

to identify a similar function in human sirtuins was pursued. 
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5.2.2 Mammalian sirtuin function in diseases associated with ageing 
 

5.2.2.1 Molecular pathways involved in ageing are modulated by SIRT1 
 

SIRT1 is considered to be the functional homologue of Sir2p since the core domain of 

SIRT1 could substitute for that of Sir2p in silencing functions (Sherman et al., 1999). 

Furthermore, SIRT1 shares characteristic N- and C-terminal extensions flanking the sirtuin 

core domain with Sir2p. These protein regions are almost absent in other mammalian family 

members (FIGURES 2-3 & 2-19; Frye, 2000). 
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Oxidative stress induced by standard cell culture conditions is 

thought to be the  underlying cause of replicative senescence in 

cultured primary mouse fibroblasts (Parrinello et al., 2003). 

Unexpectedly, under these conditions SIRT1 regulates replicative 

life-span by controlling the levels of the tumour suppressor  p19ARF 

which functions to activate p53 leading to senescence (FIGURE 5-3) 

(Chua et al., 2005; Sherr, 1998). Importantly, this function is distinct from 

oncogene-induced senescence since activated Ras can induce 

p19ARF in the absence of SIRT1 (Chua et al., 2005). 

Until recently, only correlative evidence suggested a link 

between cellular senescence and organismal life-span. In particular 

the levels of the p16 tumour suppressor, a positive regulator of the 

retinoblastoma (pRb) protein, and senescence-associated β-galactosidase (SA-β-gal) were 

found to be increased during normal ageing (Campisi, 2005). Recent work in mice has provided 

experimental support to this notion. In a conditional mouse model, Keyes et al. showed that 

abblation of the p53-related protein p63 caused a premature ageing phenotype in mice while 

at the same time primary keratinocytes lacking p63 show increased senescence in culture 

(Keyes et al., 2005).  

FIGURE 5-3. Dual mode
of p53 regulation by
SIRT1. See text for
details. 

This evidence would imply that the observed effect of SIRT1 in mouse fibroblasts may 

reflect a similar role at the organismal level, i.e. of SIRT1 as a promoter of ageing. In 

agreement to this, there is no epidemiological support for a role in SIRT1 gene variations and 

increased human longevity (Flachsbart et al., 2006). The perinatal lethality of SIRT1-/- precludes 
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their use as a model to probe the contribution of SIRT1 on ageing. Interestingly, adipose-

specific ablation of IGF receptor results in a ~18% increase in life-span in mice suggesting 

that organismal life-span can be influenced by the function of certain pathways in specific 

tissues (Bluher et al., 2003). Thus, conditional deletion of SIRT1 would provide an important tool 

for resolving its roles in mammalian biology and in particular ageing.  

 

5.2.2.2 Molecular basis of SIRT1 function in ageing phenotypes  
 

In our view of SIRT1 as a regulator of mammalian life-span, there are two ideas to be 

taken into consideration. Firstly, the evolutionary theories of ageing would suggest that there 

need not be a single gene or a common mechanism of life-span determination throughout the 

species (Kipling et al., 2004; Kirkwood, 1996). Secondly, the multiplicity of mutations giving rise to 

progeroid (premature ageing) syndromes and the wide spectrum of associated phenotypes 

would support the notion that multiple factors contribute to the ageing process which 

ultimately determines life-span (Kipling et al., 2004). 

In elderly people as well as progeroid syndrome patients and mouse models of aging 

common phenotypic manifestations include reduced body weight, reduced fecudity, higher 

cancer incidence, lordokyphosis (curvature of the spine), decreased bone density, decreased 

organ mass, cellular senescence, alopecia (balding), increased skin ulcerations and atrophy, 

decreased dermal and adipose thickness, and sebaceous gland hyperplasia (Lombard et al., 

2005; Keyes et al., 2005). Werner syndrome (WS), a human autosomal genetic disorder provides 

a characteristic example of the above. Werner syndrome patients suffer from abnormal 

stature, atherosclerosis, graying of the hair,  type II diabetes, cataracts and osteoporosis, all 

of which are diseases more prevalent with ageing (Kipling et al., 2004). 

Based on the above, in our analysis of SIRT1 as a modulator of mammalian life-span 

it would be more meaningful to consider its potential functional role in alleviating age-related 

phenotypes rather than view it as an intrinsic genetic determinant of longevity. This is also a 

relevant approach when it comes to exploiting sirtuins as drug targets to treat ageing-related 

symptoms with the aim to ameliorate the life of the elderly. 
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5.2.2.2.1 Neuroprotective and cardioprotective roles of SIRT1 
 

Immunohistochemical studies have identifed the heart and central nervous system as 

sites of high murine SIRT1 expression during emryogenesis and in adult animals (Sakamoto et 

al., 2004). Furthermore, mice with genetic ablation of the SIRT1 locus exhibit multiple 

developmental defects some of which are consistent with this localisation (Cheng et al., 2003). 

Experimental evidence suggests that SIRT1 has a protective role against neuronal and 

cardiac damage. 

In the Wallerian degeneration slow (wlds) mice increased nuclear NAD+ underlies the 

protection exhibited in the neurons of these mice against neurodegenerative agents. 

Importantly, the neuroprotective effects of NAD+ require SIRT1. Moreover, sirtinol and 

resveratrol, two compounds that inhibit and activate SIRT1 respectively affect this process in 

a manner consistent with the proposed involvement of SIRT1 (Araki et al. 2004). Similar effects 

of sirtinol and resveratrol were also observed in an independent in vitro model of cerebral 

ischaemia (Raval et al., 2005). 

These observations also extend to the heart. In isolated neonatal rat cardiomyocytes 

sirtuin inhibition by either nicotinamide or sirtinol induced cell death in a p53-dependent 

manner. SIRT1 overexpression also caused an increase in cardiomyocyte size and protected 

cells from apoptosis following serum starvation (Alcendor et al., 2004). Importantly, SIRT1 levels 

were dramatically increased in a dog model of heart failure possibly a result of a failed 

attempt to prevent cell death (Crow, 2004). 

Risk of neurodegenerative and cardiovascular pathological conditions such as 

Alzheimer's and ischaemic heart disease respectively increase dramatically with age and 

together account for the vast majority of death rates (Hadley et al., 2005; Kirkwood, 1996). A 

causative role for the devastating outcomes of ischaemic conditions is also connected to how 

promptly they are treated so that to minimise tissue damage. This, in combination with life-

style factors such as diet, which is proposed to affect sirtuin function, render sirtuins an 

important potential target for preventive treatments in the context of these diseases. 
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5.2.2.2.2 SIRT1 and muscle mass maintenance 
 

Multiple factors contribute to muscle mass reduction during ageing and disease states 

such as cancer or muscular dystrophy. These include oxidative and inflammatory damage 

due to neutrophil and macrophage recruitment as well as muscle wasting due to increased 

protein catabolism (Mourkioti and Rosenthal, 2005; McKinnell and Rudnicki, 2004). 

Balanced protein turnover is paramount for the maintenance of proper muscle mass 

(McKinnell and Rudnicki, 2004). Increased protein catabolism associated with cachexia is 

attributed to the action of specific E3 ubiquitin ligases that target proteins for proteasome-

mediated proteolysis. Two such proteins have been identified, MuRF1 (for muscle RING 

finger 1) and MAFbx/atrogin-1 (for muscle atrophy F-box) which are transcriptionaly 

controlled by the NFκB and FOXO pathways respectively (Glass, 2005).  

IGF-1 has a pleiotropic role in protecting 

muscle cells from degeneration and 

contributing to muscle repair (Mourkioti and 

Rosenthal, 2005). This includes inhibition of 

FOXO transcription factors to prevent MAFbx 

expression and protein degradation (FIGURE 5-4). 

Conversely, inflammatory cytokines such as 

TNFα induce the NFκB  pathway to cause the 

opposite effect (Glass, 2005).  

SIRT1 has been shown to act as a 

negative regulator of both TNFα-induced NFκB 

activity and of several forkhead family 

transcription factors including FOXO1, 

FOXO3a and FOXO4 (Yang et al., 2005; Yeung et 

al., 2004; Motta et al., 2004; Brunet et al., 2004; Daitoku et al., 2004; van der Horst et al., 2004). The 

transcriptional activities of FOXO target genes are heterogeneous including both activation 

and repression through an N-terminal domain (Yang et al., 2005; Ramaswamy et al., 2002). SIRT1 

is thought to enhance the expression of FOXO target genes involved in stress responses and 

cell cycle arrest such as MnSOD, GADD45 and p27 (Brunet et al., 2004; Daitoku et al., 2004; van der 

FIGURE 5-4. Signaling diagram illustrating
skeletal muscle hypertrophy and atrophy
signaling pathways. Modulators that increase
skeletal muscle mass are in green; proteins that
mediate the loss of muscle mass and that are
activated during atrophy are in red. See text for
further details. 

Adapted from Glass, 2005

 224



Chapter 5 - Discussion and future perspectives 

Horst et al., 2004) while it suppresses transcription of some IRS (insulin response element)-

driven genes (IGFBP1 and PEPCK) (Motta et al., 2004). Similarly, SIRT1 deacetylates the p65 

subunit of NFκB to inhibit its transactivation potential and SIRT1 activation by resvertrol 

inhibits NFκB-mediated antiapoptotic gene expression leading to enhanced cell death upon 

TNFα treatment (Yeung et al., 2004). 

Moreover, SIRT1 deacetylase activity negatively modulates the transcription factor 

MyoD which is one of the key executors of the muscle differentiation programme.  SIRT1 

activity in turn is dictated by the progressively decreasing levels of NAD+ during muscle 

differentiation thus alleviating SIRT1-mediated MyoD suppression and allowing differentiation 

(Fulco et al., 2003). Interestingly, in response to TNFα, MyoD gene expression is suppressed 

due to NFκB activation while MyoD is also proposed to be a substrate of the MAFbx E3 

ligase (Glass, 2005).  

Based on the above an attractive 

model could be proposed where SIRT1 

represses MAFbx and MuRF expression by 

deacetylating and inhibiting FOXO and 

NFκB activity respectively to prevent 

muscle mass loss (FIGURE 5-5). This scenario 

is seemingly contradictory to the finding that 

SIRT1 behaves as an inhibitor of 

myogenesis in the context of in vitro muscle 

differentiation models, yet this need not be 

the case.  

Following injury, muscle 

regeneration involves proliferation of 

satellite cells prior to their terminal 

differentiation (Mourkioti and Rosenthal, 2005). 

Inhibition of MyoD-mediated differentiation 

by SIRT1 may serve to promote proliferation in this context until sufficient numbers of cells 

have been generated to replenish the ones lost by injury. This may be assisted by 

concomitant alleviation of cell cycle inhibition by FOXO (see FIGURE 5-4). Alternatively, SIRT1 
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FIGURE 5-5. Model of SIRT1 influence on muscle
homeostasis. See text for details 
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may promote MyoD mRNA and protein stability through inhibition of FOXO and NFκB as 

delineated above. Furthermore, NFκB inhibition by SIRT1 may also limit inflammatory 

cytokine production in macrophages thus mitigating the effects of inflammation-induced 

damage in the muscle. 

Evidently, these interconnections are derived from SIRT1 interactions observed in a 

variety of heterologous experimental settings and is not clear whether it has a physiological 

function in the animal. However, they would provide a reasonable starting model for further 

investigation of exploiting SIRT1 as a therapeutic target for ageing and cancer-associated 

muscle atrophy. 

  

5.2.2.2.3 SIRT1 functions in metabolic regulation 
 

SIRT1 in homeostatic organ functions regulating glucose metabolism  
 

Ageing is associated with several pathological conditions affecting metabolic functions 

of the body. Prevalent among them is type 2 diabetes which shows almost an exponential 

incidence rate increase after the age of 20-30 years (Moller et al., 2003). Type 2 diabetes is 

associated with decreased insulin secretion or the development of insulin resistance which in 

turn is a major risk factor for cardiovascular disease and a series of other medical conditions 

collecively known as the metabolic syndrome (de Luka and Olefsky, 2006).  

In response to elevated glucose levels e.g. following a meal, insulin is secreted by the 

β-cells found in the pancreatic islets of Langerhans to promote glucose uptake and 

catabolism in peripheral tissues. β-cell function deteriorates with ageing (Moller et al., 2003). 

SIRT1 is expressed in the pancreatic β-cells as well as the glucagon-producing α-cells 

(Moynihan et al., 2005; Bordone et al., 2005). In β-cells SIRT1 enhances insulin secretion by 

suppressing the expression of uncoupling protein 2 (UCP2). UCP's uncouple metabolic fuel 

oxidation from ATP production thus leading to a decrease of ATP which is required for the 

secretion of insulin (Lowell and Spiegelman, 2000). Consistent with a physiological role of SIRT1 

in insulin secretion, mice overexpressing SIRT1 in pancreatic β-cells exhibited an enhanced 

response to glucose challenge attributed to higher blood insulin, while conversely, SIRT1-/- 

animals had lower levels of circulating insulin (Moynihan et al., 2005; Bordone et al., 2005). 
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Furthermore, SIRT1 appears to have a protective role against glucose-induced 

cytotoxicity in pancreatic β-cells, an underlying cause of β-cell degeneration seen in diabetic 

patients whose plasma glucose levels are high. The cytotoxic effects of increased glucose 

conentrations are attributed to elevated mitochondrial oxidation rates which lead to increased 

ROS production. Under these conditions, SIRT1 was shown to be required in sustaining 

FOXO1-mediated transcription of MafA and NeuroD, two transcription factors required for the 

expression of the Insulin 2 gene to prevent apoptosis (Kitamura et al., 2005). 

Another site of SIRT1 function in glucose metabolism is the liver. SIRT1 interacts with 

the co-activator PGC-1α to induce gluconeogenesis in response to fasting (Rodgers et al., 2005). 

This is rather the opposite role compared to the one it plays in β-cells where SIRT1 

essentially functions to promote glucose utilisation. However, the strong expression of the 

protein in the α-cells may also be similar to its hepatic function, although nothing is known 

about that yet and it is possible that the different functions can solely be attributed to the 

proteins SIRT1 partners with to perform the respective functions. 

The above evidence suggests a multiple impact of SIRT1 function on body glucose 

homeostasis through its role in insulin secretion and contribution to survival in the context of 

pancreatic β-cells and gluconeogenesis in the liver. Interestingly, SIRT3, a mitochondrial 

sirtuin, was shown to be downregulated in the skeletal muscle of a mouse model of diabetes 

(Yechoor et al., 2004). Whether this underlies a concerted function of sirtuins in metabolic 

regulation (see section 5.7) or, indeed, the function of SIRT3 in mitochondira, remain to be 

elucidated. 

Thus the activity of SIRT1 and possibly other sirtuins may also be a relevant 

therapeutic target for diabetes, where aberrant glucose homeostasis and β-cell disfunction 

are key manifestations of the disease. 

 

SIRT1 function in lipid metabolism 
 

Another tissue of interest in metabolic regulation is the adipose tissue. The adipose 

tissue is the major site of triglyceride storage, an important energy source when glucose 

availability is limited. During fasting and starvation, adipose triglyceride (TG) stores are 

mobilised to give rise to free fatty acids (FFA) which can be utilised by other tissues for 
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energy production (Rosen et al., 2002). Furthermore, the metabolic activities of adipose tissue 

may have an impact on organismal longevity since adipose-specific ablation of IGF receptor 

results in a ~18% increase in life-span in mice. 

SIRT1 was shown to suppress adipocyte differentiation by inhibiting the adipogenic 

factor PPARγ through the transcriptional co-repressor NCoR (Picard et al., 2004). Furthermore, 

it was suggested that SIRT1 is required for TG mobilisation as SIRT1+/- animals exhibited low 

levels of blood FFAs following fasting or β-adrenergic stimulation.  

Interestingly, the bacterial sirtuin orthologue CobB deacetylates and activates the 

enzyme acetyl-CoA synthase (ACS) which catalyses the synthesis of acetyl-CoA, a key 

molecule in mitochondrial oxidation and lipid synthesis (Starai et al., 2004; Starai et al., 2002). Thus 

it is possible that in higher organisms too SIRT1 or another sirtuins may affect lipid 

metabolism by mediating intracellular acetyl-CoA levels.  

Dyslipidemia is a common feature of the metabolic syndrome-associated disorders 

including cardiovascular disease and atherosclerosis. Thus it would be of interest to 

investigate whether modulation of SIRT1 activity can be considered as a possible target for 

treating these conditions or symptoms thereof. 

 
5.2.2.2.4 Reproduction 
 

There is an inverse correlation between age and fecundity in that as animals age their 

ability to produce viable offspring decreases (Partridge and Gems, 2002). Experimental evidence 

in model organisms suggests that a hormonal cue from the reproductive system regulates 

life-span in both the nematode and the mouse. 

In C. elegans, ablation of germline precursors leads to an approx. 60% life-span 

extension. Interestingly this is associated with an apparent loss/reduction of IGF signaling in 

the intestine and adipose tissue since in these animals daf-16 translocates to the nucleus 

(Kenyon, 2005). In the mouse, transplantation of ovaries derived from young animals to old 

animals results in 40-60% increase in life-span. As the transplantation process kills the germ 

cells, these animals have only a somatic gonad, a situation that parallels that in worms 

described above (Kenyon, 2005). 
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Despite this apparent evolutionary conservation, there are examples of animals that 

do not comply with this relationship between reproductive capacity and life-span. This is the 

case for the honey bee (Apis mellifera). Honey bee populations have a long-lived queen cast 

with a reproductive role and a short-lived cast of sterile workers. Both queens and  the long-

lived worker bees that remain in the hive to tend the larvae express higher levels of the 

vitellogenin protein compared to the animals that leave the collony to collect honey (Seehuus et 

al., 2006). Vitellogenin is controlled by the IGF signaling pathway in C. elegans and, consistent 

with that, reduction of vitellogenin protein levels results in increased life-span in the worm. In 

contrast, in the honey bee, despite its beneficial role in reproduction by equiping the yolk with 

nutrients, the protein confers resistance to oxidative stress thus extending life-span (Seehuus 

et al., 2006).  

 SIRT1 is highly expressed in the developing spermatocytes and deletion of the SIRT1 

gene leads to severe sperm abnormalities and sterility (McBurney et al., 2003). In this context 

SIRT1 would apper to be important to the reproductive capacity of the animal thus defying its 

role in longevity based on the above. Interestingly, reduction of IGF signaling starting at the 

time of hatching in C. elegans extends life-span and delays reproduction whereas IGF 

signaling reduction in the adult increases life-span to the same extend without affecting 

reproduction (Kenyon, 2005). Thus it is possible that SIRT1 holds a role in the adult 

reproductive system that extends beyond embryonic development, possibly by controlling 

IGF signaling through its documented roles in regulating forkhead factor activity. 

 

5.2.2.2.5 SIRT1 and cancer 
 

 Cancer is a term coined to describe a vastly heterogeneous set of diseases that are 

characterised by aberrant proliferation at the expense to physiological body functions, which, 

when untreated, leads to death. Thus, although malignansies occur in younger individuals 

too, sporadic cancer incidence shows a striking correlation with age (DePinho, 2000). 

Several genetic and epigenetic processes have been linked to age-induced cancer 

and mouse model studies have provided extensive evidence that genes involved in the 

maintenance of genomic stability and cancer are also intimately linked to the development of 

ageing phenotypes (Lombard et al., 2005; DePinho, 2000). 
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Perhaps one of the most striking recent molecular links between cancer and ageing 

was the discovery of an allele of the p53 tumour suppressor which correlates with high p53 

activity and confers resistence to tumourigenesis but induces the onset of premature ageing 

due to increased IGF signaling (Levine et al., 2006; Campisi, 2004; Maier et al., 2004; Tyner et al., 2002). 

This and other evidence provided support to the notion that ageing is a by-product of an 

organism's mechanisms for tumour suppression (Ferbeyre and Lowe, 2002).  

Furthermore, recent work has identified interlinks between nutrient signaling and 

pathways involved in cancer development such as the activation of p53 by the AMPK kinase 

to co-ordinate cell cycle progression with the energy status of the cell (Jones et al., 2005). Both 

the AMPK and IGF signaling pathways are upstream regulators of the mTOR pathway which 

plays a paramount role in regulating cell growth and mutations in components of these 

pathways are frequently found in cancers (Wullshleger et al., 2006 and section 5.1). 

Whether SIRT1 has a causative role in tumour development is not known as no 

studies reporting SIRT1 mutations in cancer have emerged to-date. However, several lines of 

evidence indicate that SIRT1 may regulate various signaling pathways known to be involved 

in cancer. 

 

SIRT1 and epigenetic changes occuring in cancer 
 

SIRT1 has been shown to have multiple effects on histone modifications. siRNA-

mediated downregulation of SIRT1 leads to H4-K16 hyperacetylation, and reduction in H3-

Tri-MeK9 and H4-MeK20 in mammalian cells while in vitro SIRT1 preferentially deacetylates 

H4-K16 (Vaquero et al., 2004; Imai et al., 2000). Interestingly, Fraga et al. reported a consistent 

loss of H4-K16 and H4-Tri-MeK20 in various tumours and tumour-derived cell lines 

suggesting that these modifications consistute epigenetic hallmarks of cancer (Fraga et al., 

2005).  

SIRT1 was also identified as a component of the polycomb repressive complex 4 

(PRC4) which harbours  the SET domain histone methyltransferase Ezh2 (Kuzmichev et al., 

2005). Four distinct PRC complexes have been identified to-date that differ in their 

composition and sustrate specificity. In a mouse model of prostate cancer, the protein levels 

of all PRC4 components tested, including SIRT1, were upregulated. Concomitantly, 
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expression of PRC4 target genes was accordingly modified in these tissues. Although there 

is no evidence confirming a causal role for PRC4 in cancer initiation, it is possible that PRC4-

mediated histone modifications contribute to cancer-spicific epigenetic changes. 

In addition, in the context of the PRC4 complex, SIRT1 deacetylates histone H1-K26 

and promotes heterochromatin formation through spreading hypometylated histone H3-K79 

(Kuzmichev et al., 2005; Vaquero et al., 2004). Histone H1 is a linker histone which has primarily a 

structural role in maintaining chromatin structure and through this regulates genomic stability 

and ageing (Harvey and Downs, 2004). Furthermore, linker histone H1.2 has also been 

implicated as a signal transmitter of apoptosis from the nucleus to the cytoplasm (Konishi et al., 

2003). Elucidation of the functional significance of SIRT1 in histone modifications is likely to 

provide further insights into how it may contribute to cancer phenotypes. 

A focused effort to develop HDAC inhibitors has been long underway following the 

ralisation that many cancers and in particular leucemias, exhibit aberrant acetylation (Marks et 

al. 2001). In this respect, SIRT1 joins its kins as a potential target for cancer therapy, although 

clearly, more has to be known about its exact function in the disease to validate this 

prospect. 

 

Non-histone targets of SIRT1 in tumour development 
 

Acetylation of transcription factors correlates, in general, with increased transcriptional 

activity mainly due to enhanced binding to DNA (Kouzarides, 2000). SIRT1 deacetylates several 

transcription factors involved in the regulation of cell cycle progression and apoptosis 

consistent with a role in the fundamental processes underlying cancer.   

SIRT1 deacetylates the tumour suppressor p53 to inhibit its transcriptional acivity 

resulting in reduced apoptosis in response to various genotoxic stimuli (Luo et al., 2001; Vaziri et 

al., 2001). Furthermore, SIRT1 localises to PML bodies to attenutate p53-dependent cellular 

senescence induced by PML-IV overexpression (Langley et al., 2002). 

SIRT1 associates with the tumour suppressor HIC1 which has been shown to act 

synergistically with p53 in tumourigenesis. Both SIRT1 and HIC1 can bind the SIRT1 

promoter to repress gene transcription and thus allow p53 acetylation and activation (Chen et 

al., 2005). HIC1-/- cells exhibit elevated levels of SIRT1, hypoacetylated p53 and enhanced 
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resistance to DNA-damage induced apoptosis which can be reversed by expression of 

dominant-negative SIRT1. Interestingly, HIC1 expression is progressively reduced during 

ageing due to promoter methylation which would lead to higher SIRT1 levels, reduced p53 

activity and prolonged life-span. However, such a model would also predict a higher 

propensity to form tumours due to higher SIRT1 activity consistent with the inverse 

relationship between longevity and tumour suppression discussed above. 

SIRT1 deacetylates and inactivates another transcription factor NFκB leading to 

enhanced cell death in response to the inflammatory cytokine TNFα (Yeung et al., 2004). NFκB 

is required for the transcription of growth factors and cytokines involved in inflammation 

which has been linked to several diseases including type-2 diabetes and cancer (Karin et al., 

2006). Other NFκB target genes include antiapoptotic factors such as cIAP and selective 

members of the Bcl2 family and the antioxidant MnSOD which protects cells from TNFα-

induced apoptosis.  

MnSOD is also a target of forkhead transcription factors yet SIRT1 enhances its 

expression in a FOXO dependent-manner (Giannakou and Partridge, 2004). Forkhead factors 

regulate genes that are involved in cell cycle arrest and survival and due to their negative 

regulation by the PKB pathway which is frequently hyperactivated in cancers they are 

thought to contribute to tumour suppressor. Interestingly, FOXO is under the negative control 

of IKKβ too, which targets it for ubiquitin-mediated proteolysis (Hu et al., 2004). IKKβ is also 

required for NFκB activation implying a cross-talk between these two pathways. How SIRT1 

co-ordinates the activities of these two factors in a coherent manner remains to be 

investigated. This will be particularly informative with respect to cancer development as the 

effects of SIRT1 through these two transcription factors can be seemingly conflicting as in the 

case for MnSOD and cell survival. 

The recent discovery that Ku70 interaction with the pro-apoptotic protein Bax is 

regulated by acetylation can provide an alternative route by which SIRT1 promotes cancer 

cell survival. SIRT1-mediated deacetylation of Ku70 preserves its association with Bax which 

is inhibited by CBP-driven Ku70 acetylation, thus preventing the translocation of Bax to 

mitochondria to initiate apoptosis (Cohen et al., 2004). 

In relation to another theme in cancer biology, SIRT1 was identified in an enhanced 

retroviral mutagenesis (ERM) screen for negative regulators of telomerase gene expression 
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(Lin and Elledge, 2003). High telomerase activity and reduced telomere shortening is one of the 

hallmarks of cancer thus tumour supressor pathways are thought to actively participate in 

telomerase gene suppression (Hanahan and Weinberg, 2000). However, subsequent experiments 

provided conflicting evidence as to the exact role of SIRT1 in telomerase regulation. Yet, this 

work is noteworthy given the unbiased approach followed to implicate SIRT1 in this 

fundamental for cancer development process. 

Cancer drug resistance is a major hindrance in the effectiveness of cancer therapies. 

Chu et al. observed a positive correlation between SIRT1 protein levels and the expression 

of P-glycoprotein, a drug efflux pump implicated in cancer multidrug resistance further 

expanding the proposed ways SIRT1 regulates cancer cell biology (Chu et al. 2005). 

In addition to these experimentally documented roles of SIRT1 involvement in cancer, 

it would be possible to predict at least another mode of action (Caron et al., 2005). In the context 

of pancreatic β-cells SIRT1 leads to FOXO deacetylation and increased transcriptional 

activity yet the stability of the protein decreases (Kitamura et al., 2005). A correlation between 

acetylation and stability has also been reported for p53 and HIF transcription factors albeit 

with different end-effects in each case (Bode and Dong, 2004; Jeong et al., 2002). This may arise 

from the fact that deacetylation allows the lysine residue involved to be targeted by 

ubiquitination or other modification as is the case with the transcription factor MEF2 where 

deacetylation by SIRT1 allows the targeting of the relevant lysine by sumoylation resulting in 

inhibition of its transcriptional activity (Zhao et al., 2005). 

Proteasome-mediated degradation of FOXO is primed by PKB- or IKKβ-dependent 

phosphorylation. In the case of PKB-mediated phosphorylation, Skp2 is the relevant E3 

ligase ubiquitinating FOXO. Skp2 is an oncoprotein and frequently overexpressed in human 

cancers (Gstaiger et al., 2001). Thus it is potentially credible that SIRT1-mediated deacetylation 

promotes FOXO ubiquitination by Skp2, contributing to its instability in particular conditions. 

  

5.3  Reported roles of other sirtuins in the determination of life-span 
 

In addition to SIRT1, recent reports suggest that other sirtuins may play a role in the 

determination of life-span in higher eucaryotes. Epidemiological evidence identified 

polymorphisms in the SIRT3 gene and gene promoter that occur at higher frequency in long-
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lived individuals (Bellizzi et al., 2005; Rose et al., 2003). Given the prominent role of mitochondria in 

ageing processes (Balaban et al., 2005), a possible role of SIRT3 in this context would not be 

surprising. 

Mouse SIRT6 which was shown to harbour an ADP-ribosyltransferase activity (Liszt et 

al., 2005), is required for DNA repair by the base-excision repair (BER) pathway thus 

contributing to genomic stability. Deletion of both SIRT6 alleles in the mouse results in viable 

animals which however die soon after birth following the onset of multiple degenerative 

processes reminiscent of ageing symptoms (Mostoslavsky et al., 2006). Consequently, by 

supporting genomic stability, SIRT6 may contribute to organismal survival and fitness. 

Thus, based on current evidence it appears that multiple sirtuins may contribute to 

various aspects of organismal physiology to regulate fitness. Consistent with this is the 

proposal put forward here, namely that, in relation to sirtuin function, ageing should be 

viewed as a set of phenotypes various aspects of which individual sirtuins may contribute to 

or indeed alleviate. 

 

5.4 Role of NAD in transcriptional regulation and disease 
 

Changes of NAD+ intracellular dynamics in disease 
 

Under certain conditions, SIRT1 activity may be regulated by controlling SIRT1 protein 

levels as is the case in the liver following fasting (Rodgers et al., 2005; Kuzmichev et al., 2005) or in 

prostate cancer. However, a characteristic feature of sirtuins is the dependence of their 

enzymatic activity on NAD+ and their proposed regulation by NADH and/or nicotinamide. 

Consequently, conditions where cellular NAD+ levels change may lead to modulation of 

sirtuin activity. 

Changes in intracellular NAD+/NADH concentrations have been implicated in various 

conditions such as diabetes-associated retinopathy (Wahlberg et al., 2002; Salceda et al., 1998), 

cardiovascular disease (Liu et al., 2005), fatty liver disease (You and Crabb, 2004) and 

neurodegenerative diseases such as Alzheimer's (Jackson et al., 1994). Furthermore, 

NAD+/NADH has been shown to decrease during muscle differentiation (Fulco et al., 2003).  
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A key target of such changes has 

been thought to be the nuclear enzyme 

poly-ADP ribose polymerase (PARP). The 

enzymatic activity of PARP shows stricking 

similarities with that of sirtuins (FIGURE 5-6). 

They both modify histones in an NAD+-

dependent manner. Unlike redox enzymes 

that use NAD+ as a co-factor, PARPs and 

sirtuins cleave the glycosidic bond  between 

ADP-ribose and nicotinamide thus 

consuming NAD+ irreversibly (Kim et al., 

2005). Yet, PARP-1 is considered to be the 

major consumer of NAD+ leading to 

dramatic changes in cellular NAD+ pools upon its activation following DNA damage (Zhang, 

2003). Indeed, in streptozocin-induced type-I diabetes mouse model, genetic ablation of the 

PARP1 gene results in reduced β-cell death and protects mice against diabetes (Burkart et al., 

1999).  

FIGURE 5-6. Dynamics and enzymology of protein
ADP-ribosylation. Synthesis and degradation of PAR
on an acceptor protein. PARP-1 catalyzes the
polymerization of ADP-ribose units from donor NAD+

molecules on target proteins, resulting in the
attachment of PAR. PARG catalyzes the hydrolysis of
PAR producing free mono and oligo(ADP-ribose). ADP-
ribosyl protein lyase cleaves the final remaining ADP-
ribose monomer from the target protein, releasing ADP-
3''-deoxypentose-2''-ulose (ADP-DP) 
 

Figure and legend adapted from Kim et al., 2005.

Interestingly, increasing the levels of NPT1, an enzyme involved in the NAD+ salvage 

pathway in yeast, leads to enhanced rDNA and telomeric silencing without changing steady-

FIGURE 5-7. Interplay between sirtuin and PARP
signaling pathways. The depletion of NAD+ and the
increase of nicotinamide by PARP-1 may suppress
Sir2 deacetylation activity. PARP-1 and Sir2 share
the NAD+ salvage pathway. The rapid and cyclic
turnover of poly(ADP-ribose) by PARG to ADP-ribose
results in a drop of NAD+ and the rise of
nicotinamide, both of which are able to directly down-
regulate Sir2 activity. The possible linkage of PARP-1
and Sir2 pathways may provide a network that
couples energy production, oxidative stress, DNA
damage, chromosome remodeling and gene
silencing. ARPP: ADP-ribose pyrophosphatase;
NAD+: β-nicotinamide adenine dinucleotide; NPRT:
nicotinate phosphoribosyl transferase; PARG:
poly(ADP-ribose) glycohydrolase; PARP-1:
poly(ADP-ribose) polymerase-1; Ppi: pyrophosphate;
PRPP: 5-phosphoribosyl-1-pyrophosphate; RPPK:
ribose phosphate pyrophosphokinase. 
 

Figure and legend adapted from Zhang, 2003.
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state levels of NAD+ or the cellular NAD+/NADH ratio (Anderson et al. 2002). This indicates that 

subtle changes in NAD+ flux may be sufficient to affect sirtuin activity. Thus given the 

apparently disproportional relationship between the rates of NAD+ consumption coupled to 

nicotinamide production by PARPs and sirtuins, it is likely that increased PARP activity may 

have an inhibitory effect on sirtuins by depleting local NAD+ and producing the inhibitor 

nicotinamide (FIGURE 5-7). Some credence to this hypothesis is provided by the observation 

that ADP-ribosylation predominates in regions with hyperacetylated histones which could 

stem from increased local PARP activity coupled to SIRT1 inhibition (Vaquero et al., 2003). 

 

5.5 SIRT1 as a drug target 
 

 Nicotinamide and its acid form are collectively known as niacin or Vitamin B3 (Denu, 

2005). Diets poor in Vitamin B3 and tryptophan which are used for the salvage and de novo 

NAD+ production pathways respectively, lead to a condition called pellagra (DiPalma and Thayer 

1991). As nicotinic acid has no effect on the activity of yeast Sir2 tested (Bitterman et al., 2002), it 

is thought that any effects of Vitamin B3 on sirtuins are the result of nicotinamide action.  

Nicotinamide has been used as a treatment for some of the conditions mentioned 

above where cellular redox abnormalities have been known to play a role in pathogenesis 

(DiPalma and Thayer, 1991). Yet, there is little actual evidence to suggest that the beneficial 

effects of nicotinamide can be attributed to inhibition of either PARPs or sirtuins.  

In vivo administration of nicotinamide or nicotinic acid leads to increased pyridine 

nucleotide content in kidney, liver, cardiac muscle, adipose tissue and spleen consistent with 

their role as precursors in cellular NAD+ biosynthesis (Wahlberg et al., 2002). Thus, whether 

nicotinamide inhibits directly PARPs/sirtuins or it actually enhances their activity by 

increasing the influx of NAD+ anabolic pathways should be further elucidated. This is 

exemplified in addition by the fact that although a beneficial role for SIRT1 activity has been 

proposed in cardioprotection, niacin treatment has also a protective effect in the heart against 

ischaemia (Trueblood et al., 2000).   

 The considerations presented above also highlight another dilemma burdening the 

field of sirtuin biology, namely whether pharmacological targeting for therapeutic purposes 

 236



Chapter 5 - Discussion and future perspectives 

should aim at enhancing or inhibiting sirtuin and in particular SIRT1 activity. This is a valid 

problem for several reasons which will be delineated below. 

 Model organism data suggest that caloric restriction enhanced Sir2 activity to extend 

life-span (Guarente and Picard, 2005). Based on this assumption, a chemical screen identified 

plant polyphenols as potent activators of sirtuins raising the exciting possibility that chemical 

activation of sirtuins may prolong life-span (Wood et al., 2004; Howitz et al., 2003). Interestingly, 

one such compound, resveratrol, is found in red wine! 

Subsequent experiments  into the mechanism of Sir2 activation revealed that the 

proposed effects of resveratrol are substrate-specific rendering the effects of the compound 

towards as-yet unidentified sirtuin substrates unpredictable (Kaeberlein et al., 2005; Borra et al., 

2005). This was further elaborated by the finding that resveratrol inhibits the Sir-2.1-mediated 

transcriptional activation of certain genes in C. elegans (Viswanathan et al., 2005). It is also of 

importance to note that other direct effects of resveratrol on distinct biomolecules such as 

DNA polymerases have been demonstrated (Locatelli et al., 2005).  

Clearly, these observations should not prevent a valuable therapeutic application of 

resveratrol, but they also demonstrate our limited understanding of the underlying 

mechanism of action. Indeed, resveratrol appers to have a beneficial effect in preventing 

inflammation, atherosclerosis and carcinogenesis (Locatelli et al., 2005 and references therein). 

Whether this is due to sirtuin activation remains to be demonstrated. 

Some evidence against the use of sirtuin activators is provided by current knowledge 

of sirtuin function. Sirtuin activation would prevent Bax transclocation to the nucleus by 

promoting its association with Ku70 conferring a survival advantage to cells (Cohen et al., 2004). 

Similarly, activation of SIRT1 would lead to increased suppression of p53 activity, also 

leading to enhanced survival potential. Evasion of apoptosis is one of the hallmarks of cancer 

(Hanahan and Weinberg, 2000) thus SIRT1 activation in this context would promote 

tumourigenesis consistent with the relationship between enhanced longevity and cancer 

discussed in section 5.2.2.2.5. 

Furthermore, SIRT1 was shown to partially mediate the transcriptional repression 

activity of the bHLH factors HES1/HEY2 (Takata and Ishikawa, 2003). HES1-mediated repression 

is required for progenitor cell proliferation during development because it binds to and 

represses transcription from the promoter of the CDK inhibitor p27 (Murata et al., 2005). Thus, if 
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SIRT1 activity also contributes to p27 gene expression, in addition to the proposed regulation 

of p27 protein stability via Skp2-mediated ubiquitination (see section 5.2.2.2.5), based on this 

knowledge, deacetylase activation would also promote cell proliferation. 

Conversely, lack of SIRT1 leads to reduced senescence due to suppression of the 

p19ARF/p53 axis (Chua et al., 2005).  Evasion of senescence is itself a cancer attribute and in 

this case SIRT1 is important for accumulation of p19ARF to prevent a transforming phenotype 

to occur. Clearly, though,  the complete physical absence of protein cannot by any means be 

deemed equivalent to pharmacological manipulation of its activity.  

Among other implications, these data would suggest that the functions of SIRT1 may 

prove to be separable in which case promoting cell survival while preventing the associated 

tumour-promoting effects would render SIRT1 a suitable therapeutic candidate. 

Finally, it is noteworthy to mention that sirtuins have also been implicated in the 

survival of pathogens such as Leishmania where nicotinamide is also effective in limiting their 

growth (Vergnes et al., 2005; Sereno et al., 2005). This demonstrates that the development of 

compounds targeting sirtuins would have a broader applicability in promoting human health. 

 

5.6 Emerging nuclear roles of metabolic enzymes and metabolic intermediates  
 

It has been widely believed that the major functional site of action of metabolic 

enzymes and intermediate metabolites may also reflect the compartmentalisation of 

metabolic functions such as energy production in the cytoplasm. However increasing 

evidence suggests that this may not need to be the case.  

The first hint defying this notion comes from the fact that several metabolic enzymes 

have been identified associated with DNA (McKnight, 2003). Hall et al. reported that Arg5,6 

which is cleaved to give rise to two mitochondrial proteins, Arg5 and Arg6, involved in 

arginine biosynthesis that bears a close link to nitrogen metabolism (Hall et al., 2004). ChIP 

experiments identified both mitochondrial and nuclear loci bound by Arg5,6 where it serves to 

regulate their transcription. 

Furthermore, several reports identified proteins that associate with DNA in a manner 

that is sensitive to the redox state of the cell and in particular NAD+/NADH levels 
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demonstrating a role for the latter that extends beyond the obvious regulation of glycolytic 

and other redox-sensitive enzymes (Liu et al., 2005; McKnight, 2003).  

Dioum et al. found that the neuronal PAS domain protein 2 (NPAS2), a transcription  

factor required for the expression of genes involved in the mammalian circadian clock, 

contains a heme group. Furthermore, its in vitro association to DNA was promoted by NADH 

and under oxidative conditions was hintered (Dioum et al., 2002). This suggested that alterations 

in neuronal cell metabolism may underlie transcriptional regulation of circadian rythms. 

Interestingly, the acetylation patterns of histone H3 were found to change in a periodic  

fashion that correlated with the expression of genes that control circadian rhythmicity 

(Etchegaray et al. 2003). 

 The C-terminal binding protein (CtBP) co-repressor harbours a NAD+/NADH binding 

domain. NADH binding induces a conformational change on CtBP that stimulates its 

association with transcription factors thus promoting its transcriptional repression activity 

(Zhang et al. 2002). Importantly, an increase in NADH/NAD+ levels induced under hypoxic 

conditions or the hypoxia-mimic CoCl2 enhanced the CtBP-dependent transcriptional 

repression in cells, suggesting that CtBP may couple cellular redox status with transcription. 

 Yet another example of redox regulation of mammalian transcription is exhibited by 

the coactivator complex OCA-S which regulates histone H2B gene expression (FIGURE 5-1). 

Surprisingly, OCA-S comprises at least two metabolic enzymes namely lactate 

dehydrogenase (LDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In this 

context, GAPDH is recruited to the H2B promoter during S-phase where histones are 

required to decorate the newly replicated DNA and this recruitment is essential role for OCA-

S-mediated transactivation (Zheng et al., 2003). In contrast to CtBP, association of GAPDH to 

DNA is favoured by NAD+ and inhibited by NADH suggesting that either the activity or 

another subtle effect of pyridine nucleotide binding regulates this distinct nuclear function of a 

long-known metabolic enzyme. 

In addition to the NAD+-dependence of sirtuins, the distinct nature of the products 

derived from their enzymatic activity may also serve an as-yet elusive role in gene 

expression. The Sir2 protein deacetylation reaction yields, apart from the deacetylated 

protein, nicotinamide and 2',3'-O-acetyl-ADP-ribose. The latter product was shown to inhibit 

 239



Chapter 5 - Discussion and future perspectives 

starfish oocyte maturation implying that it may itself have a biological function (Borra et al., 

2002). 

Interestingly, during its catalytic reaction the recently-identified JmjC-containing 

histone demethylase JHDM1 utilises iron and α-ketoglutarate to produce formaldehyde and 

succinate further underlying the involvement of intermediate metabolism products in nuclear 

activities (Tsukada et al., 2006). 

As only preliminary evidence exists to support a specific role or metabolic enzymes on 

DNA, it is tempting to think that they may constitute further evidence in support of the 

endosymbiotic theory of eukaryotic cell origin proposed by Lynn Margulis.  

 

5.7 Functional interaction between sirtuins and HDACs 
 

The existence of several deacetylase activities within mammalian cells raises 

questions about this apparent redudancy. Clearly, the molecular differences between the 

known deacetylases may account for the specificity of the processes they participate in by 

means of subcellular localisation and participation in distinct protein complexes. 

Nevertheless, an additional degree of complexity may be exerted by the combinatorial co-

operation between deacetylases of the same or even different class. 

At least two examples in the field of sirtuin research corroborate to this. Firstly, SIRT1 

co-operates with HDAC4 to regulate the sumoylation and thus transcriptional activity of 

MEF2, (Zhao et al., 2005). Secondly, the microtubule-associated SIRT2 interacts with HDAC6 

and both have been shown to deacetylate microtubules (Hubbert et al., 2002), yet the rationale 

behind this co-operation is less understood.  

Moreover, there are numerous examples where TSA and nicotinamide have additive 

effects in rescuing protein acetylation (e.g. p53, FOXO, Bcl6) and in some cases as for p53 

and FOXO, HDAC1 has also been shown to deacetylate them (Kouzarides, 2000). 

Finally, it is conceivable that sirtuins themselves may collaborate to perform some 

cellular tasks. In yeast, overexpression of the cytoplasmic Hst2 affects the distribution of 

nuclear Sir2 thus enhancing rDNA silencing while alleviating telomeric silencing (Perrod et al., 

2001). The mechanistic details explaining this phenomenon are not clear but some hints of 

potential ways this can be achieved can be derived from studies of p53. p53 regulates 
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apoptosis through a nuclear pool that transcribes po-apoptotic genes and a cytoplasmic pool 

that, when activated, enhances mitochondrial permeability. In unstressed conditions 

cytolasmic p53 is bound to Bcl-XL preventing it from activating apoptosis. Following genotoxic 

stress, nuclear p53 drives the expression of PUMA (for p53-upregulated modifier of 

apoptosis) which induces the release of cytoplasmic p53 from Bcl-XL to induce BAX and thus 

mitochondrial permeability and apoptosis (Chipuk et al., 2005), providing a striking example of 

functional co-operation between distinct pools of the same enzyme. 
 

5.8 Conclusion 
 

A surge of recent data have implicated mammalian sirtuins and in particular SIRT1 in 

the regulation of transcription factor activity. These effects are primarily exerted through the 

deacetylase enzymatic function of SIRT1 which has been widely suspected but only once 

experimentally demonstrated (Fulco et al., 2003) to be potentially linked to cellular NAD+/NADH 

changes. Thus further work would need to address how the NAD+-dependance of SIRT1 is 

actually relevant to the transcriptional regulatory activity of the protein. For this, it is important 

to attain a deeper understanding of the metabolic pathways regulating NAD+ biosynthesis as 

well as the role of other NAD+ utilising enzymes such as PARPs (Zhang et al., 2003). This is 

also relevant for elucidating the cellular mode of action of known small molecule regulators of 

SIRT1 such as nitotinamide which is at the same time an important intermediate in the NAD+ 

salvage pathway (Lin et al., 2003). 

In addition, the existing preliminary evidence for a role of the sirtuin enzymatic product 

2',3'-O-acetyl-ADP-ribose as a secondary messenger (Borra et al., 2002) supported by the 

identification of 2',3'-O-acetyl-ADP-ribose-metabolising enzymes (Rafty et al., 2002) paves the 

way for further penetrating into the roles of these metabolites in cellular physiology. 

Clearly, despite the plethora of SIRT1 deacetylase targets already identified (FIGURE 5-

2), the current approaches towards identifying novel SIRT1 substrates have been in part 

limited to predictions from sirtuin function in lower organisms. Yet, very little evidence exists 

to support a functional conservation between yeast Sir2 and mammalian SIRT1 excluding 

probably the documented actions on histone H1 deacetylation (Vaquero et al., 2004) and its 

participation in a transcriptional repression complex (Kuzmichev et al., 2005). For example, none 
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of the Sir2 protein complexes involved in silencing in S. cerevisiae have been identified in 

mammalian cells although the protein complex composition of many evolutionarily conserved 

proteins such as TOR and URI has been demonstrated to be also preserved throughout 

evolution (Wullschleger et al., 2006; Gstaiger et al., 2003). 

What is more, should sirtuin activity be subjected to targeted pharmacological 

manipulation, it would be important to establish the interconnections between family 

members not excluding a detailed characterisation of structural similarities of these proteins 

as well as to other deacetylases. Clearly, current evidence from gene ablation studies in the 

mouse suggests that non-redundant functions of individual sirtuin members exist as distinct 

not compensated  for phenotypes are evident (Mostoslavsky et al., 2006; Cheng et al., 2003).  

Finally, the limitations in directly measuring intracellular NAD+/NADH levels and 

demonstrating the direct link to sirtuin activity remains a great obstacle in studying sirtuin 

biology in their cellular in vivo context. Protein post-translational modifications (PTMs) and in 

particular phosphorylation constitute a universally applicable regulatory mechanism. 

Monitoring steady-state PTM levels e.g. by immunohistochemical techniques is indicative of 

specific signaling pathway activities in the context of tissues and organs, which in turn allows 

the correlation of signalling fluxes with particular disease states.  

No known SIRT1 PTMs have been reported yet. In order to address this need, the 

work presented in this thesis has focused on the identification of molecular events and 

pathways with potentially regulatory roles for SIRT1 activity. 
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5.9 THESIS RESULTS: DISCUSSION AND FUTURE PERSPECTIVES 
 
5.9.1 Regulation of SIRT1 by phosphorylation 
 
5.9.1.1 SIRT1 is a nuclear phosphoprotein 
 

 To study the function and cellular localisation of SIRT1 one mouse monoclonal and 

two rabbit polyclonal antibodies raised against different antigenic regions of the protein were 

developed. All three antibodies were specific for SIRT1 and were succesfully used in different 

experimental applications including immunoprecipitation and immunolocalisation (FIGURES 4-1 

TO 4-4). Importantly, these antibodies sustain SIRT1 enzymatic activity making them useful for 

purifying SIRT1 and assaying deacetylase activity in vitro (FIGURE 4-5). 

 A preliminary characterisation of the protein's subcellular localisation using either of 

the polyclonal antibodies in indirect immunofluorescence microscopy revealed a nuclear, 

occassionaly speckled, staining pattern (FIGURE 4-2). In contrast mAb12/1 gave a prominent 

cytoplasmic staining following different fixation/permeabilisation conditions (FIGURE 4.3). SIRT1 

has been consistently reported as a nuclear protein (e.g. Vaquero et al., 2004; Langley et al., 2002) 

while mAb12/1 recognises a single band when used in immunoblotting attesting to its 

specificity (FIGURE 4-3). Thus, despite the absence of biochemical evidence in support of this, it 

could be postulated that a fraction of SIRT1 does localise to the cytoplasm but is only 

revealed with mAb12/1 due to a peculiarity of the antibody allowing it to recognise the 

cytoplasmic SIRT1 pool. This cytoplasmic SIRT1 pool would be predicted to be much smaller 

relative to its nuclear counterpart given the inability of the polyclonal antibodies to recognise 

the latter (FIGURE 4-2). Alternatively, despite its apparent specificity in immunoblotting 

applications mAb12/1 specificity may be skewed following cell fixation giving rise to an 

artifactual cytoplasmic signal. 

 An extensive attempt to compare the focal staining of SIRT1 with other known 

speckled structures in the nucleus such as lamin-containing replication foci (Kennedy et al., 

2000), BRCA1-containing nuclear foci (Scully et al., 1996) and PML bodies (Seeler and Dejean, 

1999) have indicated a partial co-localisation with PML bodies consistent with a previous 

study (Langley et al., 2002), but not with lamin or BRCA1 (data not presented here). 
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 Interestingly, the immunofluorescence signal corresponding to SIRT1 was markedly 

reduced in mitotic cells (FIGURE 4.6). To test and exclude the possibility that this did not simply 

result from signal diffusion due to nuclear envelope break-down the protein levels of 

endogenous SIRT1 were compared in unsynchronous and mitosis-arrested cells by 

immunoblotting. This approach revealed that SIRT1 migration in denaturing gels is sensitive 

to λ-PPase attesting to the fact that SIRT1 is a phosphoprotein (FIGURE 4-7). Furthermore, in 

mitotic cells, SIRT1 in nocodazole-arrested cells exhibited a more prominent electrophoretic 

mobility retardation relative to that in logarithmically growing cells suggesting the existence of 

mitosis-specific phosphorylation event(s) in addition to the interphase one(s) (FIGURE 4-7B). 

 To this end a multidisciplinary approach was followed to determine the interphase-

specific as well as the mitotic phosphorylation events which SIRT1 is subjected to. 

 

5.9.1.2 Identification of SIRT1 phosphorylation sites in interphase 
  

 Initial experiments revealed that the electrophoretic mobility of Sf9 (insect) cell-

expressed recombinant GST-SIRT1 is sensitive to λ-PPase treatment indicating that it is also 

a phosphoprotein, similarly to endogenous human SIRT1 (FIGURE 4-8A). Interestingly, the in 

vitro deacetylase activity of insect cell-expressed GST-SIRT1 was significantly reduced 

following λ-PPase treatment (FIGURE 4-8B). As phosphorylation events are often conserved 

between insect and mammalian cells, this observation indicated that phosphorylation can 

regulate the enzymatic activity of SIRT1. Supporting this notion, other deacetylases have 

also been shown to be regulated at multiple levels by phosphorylation (e.g. Zhang et al. 2005; 

Pflum et al., 2001). Thus an in-depth investigation into the identification and functional 

characterisation of the relevant phosphorylation sites was undertaken. 

The phosphorylation sites of insect cell-expressed SIRT1 were determined by tryptic 

digestion of purified recombinant protein followed by mass spectrometric analysis (FIGURE 4-9). 

This approach revealed the existence of at least two serines modified by phosphorylation at 

positions 27 and 47 in the N-terminus of the protein. Individual mutations of either residues to 

non-phosphorylatable alanine indicated that neither of these were the phosphoshift sites and 

truncation of the N-terminus of the protein suggested that the phoshoshift site does not 

reside within the first 217 aminoacids (FIGURE 4-10). Nevertheless further credence to the fact 
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that these these phosphorylation events are conserved was provided by a study published 

subsequently and identified the same SIRT1 phosphorylation sites employing a large-scale 

study of HeLa cell nuclear phosphoproteins (Beausoleil et al., 2004). Importantly, no other SIRT1 

phosphorylation sites were reported in the same study. 

The yeast sirtuin orthologue Hst2p has been reported to form homotrimers through N-

terminal domain contacts. Furthermore, this homotrimerisation event is important for efficient 

enzymatic catalysis (Zhao et al., 2003). Given the presence of the identified phosphorylation 

sites in the N-terminus of the protein, the possibility that S27 and/or S47 phoshorylation 

regulates human SIRT1 homopolymerisation was tested. Co-expression of differentially 

tagged SIRT1 followed  by reciprocal immunoprecipitation confirmed the ability of SIRT for 

homotypic association (FIGURE 4-11A). Moreover, gel filtration analysis of endogenous SIRT1 in 

HeLa cells revealed a size distribution pattern consistent with the protein being in a 

monomeric to trimeric configuration (FIGURE 4-11B). Preliminary experiments to investigate the 

influence of S27 and S47 phosphorylation on this association gave ambiguous results but 

further work into this issue is underway. 

An interesting observation stemming out of this line of investigation revealed that apart 

from the previously described putative nuclear localisation sequence (NLS) in residues 233-

238, a second NLS must be present, possibly within residues 94-99, as a SIRT1 species 

lacking the N-terminal 217 aminoacids exhibits an exclusively cytoplasmic localisation (FIGURE 

4-12). 

In an alternative approach, the λ-PPase-sensitive electrophoretic mobility shift of 

endogenous SIRT1 was used as an indirect means of identifying the relevant interphase 

phosphorylation sites henceforth referred to as 'phosphoshift sites'. Sequential screens of 

truncated SIRT1 species revealed that the phosphoshift site(s) is (are) located within region 

612-656 at the C-terminal extension of the protein (FIGURE 4-13A). A SIRT1 species with a 

deletion of aa's 612-656 showed an electrophoretic mobility which was not sensitive to λ-

PPase confirming that the region in question carries the phosphoshift sites (FIGURE 4-13C). 

However, single mutations of all phosphorylatable aminoacids harboured within this region 

failed to abolish the λ-PPase-sensitivity of SIRT1 mobility (FIGURE 4-13B) suggesting that more 

than one sites are responsible for the observed shift. 
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Alternatively, none of these sites are phosphorylated to cause a mobility shift, rather 

the region in question is responsible for the recruitment of the relevant kinase which upon 

deletion of aa's 612-656 would be abolished resulting in the observed behaviour of the 

protein in FIGURE 4-13C.  

To investigate this posibility, either endogenous or transfected SIRT1 was 

immunoprecipitated and incubated with 32P-γ-ATP to allow its labeling by a putative stably-

bound kinase. Although little activity was detected in immunoprecipitates of endogenous 

protein (FIGURE 4-14A), HA-tagged SIRT1 was strongly labelled with 32P indicating the presence 

of a co-purifying kinase (FIGURE 4-14B). To test whether the putative co-purifying kinase 

associates through aa's 612-656 which cause the phosphoshift, the same assay as above 

was performed in full-length SIRT1 or a species lacking aa's 612-656. Deletion of aa's 612-

656 did not abolish 32P incorporation (FIGURE 4-14C) suggesting that the identity of the stably-

bound kinase differs from that of the kinase causing the phosphoshift. 

Thus, the above experimental approach identified a region in the C-temrinus of human 

SIRT1 that is required for the phosphorylation of the protein during interphase and a separate 

phosphorylation event mediated by a stably bound kinase. Further work into this issue will 

aim at identifying the site(s) of SIRT1 phosphorylation by the co-purifying kinase and probing 

the nature of the kinases involved. Towards this end, initial attempts to identify SIRT1 co-

precipitating proteins by mass spectrometry has been hintered by insufficently pure 

immunoprecipitates which under the light of the gel filtration data  is likely to stem from a very 

low abundance of such SIRT1-containing complexes (FIGURE 4-11B). 

The emergence of data demonstrating that specificity of substrate recognition by 

kinases is determined by the primary sequence surrounding the phosphorylated residue, led 

to the development of searchable web-based databases which allow the user to probe for the 

presence of kinase target sites in a protein of interest. Following this approach one putative 

site for CK2 kinase was identified at residue S693. Further observation of the C-terminal 

sequence of the protein revealed at least two other sites (S659 and S661) that complied with 

the criteria of a CK2 site (FIGURE 4-15A). 

In vitro kinase assay using recombinant CK2 cofirmed that all three SIRT1 sites are 

phosphorylated by CK2. Mutation of all three sites did not affect phosphorylation by the co-

precipitating kinase (FIGURE 4-14B) nor did it abolish the λ-PPase-sensitive shift of interphase 
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cells (FIGURE 4-16). This indicated that, if CK2 phosphorylates SIRT1 in vivo, this constitutes 

yet a third phosphorylation event.  

Given the strength of SIRT1 phosphorylation by CK2 in vitro it is important to 

determine whether this also occurs in vivo. Several lines of evidence support the value of 

pursuing this observations further. To begin with, a large-scale two-hybrid analysis of the 

Drosophila proteome revealed a direct association of dSir2 with the the regulatory β subunit 

of CK2 (Giot et al. 2003). Similarly, the entire CK2 complex is a third order interactor of the 

yeast Sir2 in another large-scale screen (Ho et al., 2002). In human cells CK2 phosphorylates 

and activates another nuclear deacetylase, HDAC1. Furthermore, this phosphorylation 

enhances the formation of HDAC1-containing transcriptional complexes (Pflum et al. 2001).  

For a long time CK2 was thought to be a constitutively active enzyme and its substrate 

repertoire numbers hundreds of proteins (Meggio and Pinna, 2003; Ahmed et al., 2002). Yet, recent 

evidence has demonstrated additional roles for this kinase where it acts in an inducible 

manner (Loizou et al., 2004). In this respect it is also important to note that the specificity of CK2 

towards different substrates depends on the context of the protein complex which CK2 

participates in. Thus purified CK2 phosphorylates different substrates than when bound to 

the DNA damage-inducible FACT complex (Keller et al. 2001). Also, CK2 phosphorylates 

components of the RNAPolIII holoenzyme with either inhibitory or activating effects on its 

transcriptional activity depending on the cell cycle phase (Hu et al., 2004). This may partially 

explain the apparent in vitro promisquity of CK2 towards other proteins but also underlines 

the fact that despite its apparently mudane cellular tasks, it may perform as-yet unidentified 

exciting  novel functions, in particular through SIRT1 phosphorylation under specific condition 

and molecular context. 

The crystal structure of the Hst2p yeast sirtuin revealed that the C-terminal extension 

of the protein forms contacts with the NAD+ binding pocket in the enzymatic active site (Zhao 

et al., 2003). Intramolecular contact formation is a mechanism commonly employed by 

enzymes to regulate their activity. The example of Src kinase readily demonstrates this 

(Harrison, 2003). Phosphorylation of the C-terminal tail of Src leads to recognition and binding 

of the phosphorylated tyrosine residue by the SH2 domain of th  e kinase, inducing a 

compact inactive conformation of the enzyme (FIGURE 5-8). 
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If the intramolecular interaction between the C-

terminus of Hst2p is also conserved in SIRT1, it could be 

envisioned that phosphorylation of the C-terminus of the 

protein leads to dissociation of the C-terminus from the 

active site rendering it more accessible to substrates. 

Conversely, the phosphate groups may mimic the 

phosphates found in NAD+ and thus promote the interaction 

of the SIRT1 C-terminal tail with the NAD+ binding pocket 

thus competing for NAD+ binding. This would increase the 

Km of NAD+ for enzyme binding and would consequently 

modulate the sensitivity of SIRT1 towards cellular redox 

changes. 

Interestingly, CK2 was also shown to phosphorylate 

the protein IκB which is a negative regulator of NFκB 

transcription factor (Kato et al., 2003) similarly to SIRT1 (Yeung 

et al., 2004). The IκB sites are located within the C-terminal 

part of the protein (FIGURE 4-17) in a region known as PEST, 

named after the abundance of P, E, S and T residues it exhibits (Rechsteiner and Rogers, 1996). 

Upon UV treatment, CK2 phosphorylates several residues in the IκB PEST region in a 

manner depending on the kinase p38 to target IκB for degradation (Kato et al., 2003). 

Importantly, this is a distinct mechanism of NFκB activation compared to the one employed 

upon other stresses such as inflammatory cytokines and ionising radiation in which case an 

N-terminal phosphorylation event is required (Hayden and Ghosh, 2004). It would thus be 

conceivable that under particular circumstances, the co-ordinate regulation of both  IκB and 

SIRT1 is orchestrated by CK2 as a determinant of NFκB activity.  

FIGURE 5-8. Intramolecular
interactions in Src kinase
regulation. Intramolecular
interactions mediated by  the SH2
and SH3 domains (“clamp”) of Src
fix the bilobed kinase domain in an
inactive conformation.
Phosphorylation of SIRT1 in its C-
terminal extension may serve a
similar role. See text for further
details. 
 

Adapted from Harrison, 2003

This theory was supported by the in silico identification of a PEST region in the C-

terminus of SIRT1 itself, which encompasses aa's 653-711. Importantly, all three identified in 

vitro CK2 phosphorylation sites are located within this region (FIGURE 4-18). This discovery 

further validated the CK2-SIRT1 link and prompted the invastigation of a putative role of 

SIRT1 in the UV reponse. 
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5.9.1.3 SIRT1 in cellular responses to UV irradiation 
  

Epidemiological as well as experimental studies corroborate to the fact that UV light 

contributes profoundly in the aetiology of skin cancer (Bode and Dong, 2003). Several kinase 

signaling cascades have been shown to be activated in response to UV irradiation 

contributing to a proliferation-like response, possibly reflecting the perceived need to 

compensate for the damaged tissue (Bode and Dong, 2003). 

Jun N-terminal kinase (Jnk) was identified as a UV-inducible kinase by its ability to 

associate with c-jun (Derijard et al., 1994) similarly to the identification of CK2 as the UV-

inducible IκB kinase (Kato et al., 2003). Based on this paradigm and equipped with the 

knowledge that SIRT1 associated stably with a kinase, the possibility that this kinase is also 

UV-inducible was investigated. However, although recombinant GST-SIRT1 could co-

precipitate kinase activity, this did not appear to be UV-inducible (FIGURE 4-19). 

 

Altered SIRT1 protein turnover in response to UV irradiation 
 

Cycloheximide chase studies indicated that SIRT1 is more unstable following UV 

irradiation compared to mock treatment in agreement with the model presented above which 

draws parallels with the regulation of IκB by CK2 (FIGURES  4-20, 4-21). In contrast to this result,  

further analyses revealed that SIRT1 protein abundance increases in a time- and dose-

dependent manner (FIGURE 4-22). Importantly, this increase is independent of the presence of 

p53 protein which mediates the expression of several genes following UV irradiation (Latonen 

and Laiho, 2005). 

These results, although at first sight conflicting need not be considered as such. 

Cellular responses to DNA damage evoke cell cycle arrest allowing time for DNA repair to 

take place and prevent genomic instability. In the case of irrepairable damage apoptosis is 

elicited. Cellular responses following DNA damage also involve de novo gene transcription 

which for intrinsic reasons requires significantly longer time than the immediate arrest 

required to prevent engamement into an abberant and possibly detrimental process. 

This has been well-documented in the response to ionising radiation. Long-term cell 

cycle arrest is achieved by transcriptional upregulation of the CDK inhibitor p21 which 
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depends on the tumour suppressor p53. Immediately after damage though, cell cycle arrest 

is achieved by proteolytic destruction of cyclin-D which allows the release of p21 from CDK4 

and its association to CDK2 leading to cell cycle arrest (Agami and Bernards, 2000). This work 

clearly demonstrated that the mechanisms employed to implement initiation and 

maintenance of cellular responses to DNA damage are distinct. 

In response to UV irradiation, several transcription factors are activated including p53, 

NFκB and AP-1 (Bode and Dong, 2003). Yet, SIRT1 appears to inhibit the transcriptional activity 

of at least p53 and NFκB (Yeung et al., 2004; Vaziri et al., 2001; Luo et al., 2001).  It is possible that 

an initially high proteolytic turnover of SIRT1 alleviates such repressive effects on 

transcription to allow for an early boost of gene expression required for the damage 

response. At later times, SIRT1 net protein levels increase, probably despite continuously 

high proteolytic turnover reflecting a dynamic system adaptable to intracellular cues 

monitoring the extend of repair. This is consistent with the results in FIGURE 4.22 that indicate 

no accumulation of SIRT1 protein at high doses of UV irradiation where the extend of 

damage is presumably insurmountable for the cell. 

Importantly although the kinetics of SIRT1 accumulation closely resemble those of p53 

there is no indication that SIRT1 expression is a target of p53 in this context based on FIGURE 

4.23. However this possiblity should be tested repeatedly to confirm the validity of the latter 

experiment especially under the light of recent evidence that the SIRT1 gene promoter 

harbours p53 binding sites which drive SIRT1 expression in response to starvation (Nemoto et 

al., 2004). 

Furthermore, although the osteosarcoma cell line used here has been extensively 

employed as a system to study cellular UV responses, it is conceivable that it does not reflect 

a physiologically relevant system to study such pathways as bone cells are not subjected to 

direct UV exposure. Thus a more suitable cell line to investigate these processes would be 

one derived from skin such as HaCaT keratinocytes. This is prarticularly important as the 

presence of additional transcription factors may determine the exact outcome of SIRT1 

action. 

Finally, following a different line of investigation, it was discovered that mAb12/1 used 

for all the above experiments shows phosphorylation-sensitive recognition of the 

corresponding SIRT1 epitope (see later this section). Thus a re-evalutation of these results is 
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necessary to confirm the conclusions presented above as it is possible that what were 

interpreted to be changes in protein abundance may actually reflect phosphorylation 

changes. At this point, this could be deemed unlikely as the only circumstances under which 

mAb12/1 was shown to be altered were in mitosis. Although UV treatment causes a G2/M 

arrest this requires the de novo protein synthesis (Shaulian et al., 2000) and would thus be 

incompatible with the cycloheximide and actinomycin-D treatment results (FIGURE 4-22). 

 

SIRT1 interacts with and deacetylates the co-activator p300 
 

The co-activator p300 acetylates and thus increases the transcriptional activity of 

several transcription factors, including p53 and NFκB (Goodman and Smolik, 2000). Furthermore, 

p300 acetyltransferase (AT) activity depends on autoacetylation of the AT domain (Thompson 

et al., 2004). Given the need to co-ordinately regulate several transcription factors in a 

coherent manner, it was considered plausible that SIRT1 deacetylates and thus inhibits p300 

AT activity to induce hypoacetylation of downstream transcription factors. 

In support of this scenario, SIRT1 and p300 were shown to interact both in vivo and in 

vitro (FIGURE 4.24) through the AT 

domain of p300 (residues 1197-

1673). Furthermore, SIRT1 

deacetylates p300-AT both in vivo 

and in vitro (FIGURE 4.25). However, 

following UV treatment in U2-OS 

cells, no change in the ability of the 

two proteins to interact was 

observed (FIGURE 4.26) suggesting that 

any transcriptional effects of SIRT1 

are not likely to stem from differential 

p300 association to SIRT1. 

SIRT1 
levels/activity?

Stress
stimulus

TxF1 activity

Transcription
Translation
Proteolysis

Survival
Survival

TxF2 activity
TxF3 activity

p300

Mild stress

Severe stress

Survival
Death

Death
DeathNevertheless, the functional 

consequences of SIRT1-regulated 

p300 deacetylation should be further 
FIGURE 5-9. Co-ordinate regulation of transcription factors
and co-activators by SIRT1. See text for details. 
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investigated. Indeed, systematic analyses of transcriptional responses  to stress stimuli have 

identified extensive cross-talking between transcription factors that underlie the 

corresponding gene expression changes (Janes et al., 2005; Janes et al., 2006). This is 

conceptually reasonable as given the plethora of environmental stimuli a cell faces at any 

given time, the pleiotropic effects elicited by different transcription factors need to be co-

ordinated so that a coherent and appropriate response is elicited. Alternatively, it is the very 

fine balance between the activities of these transcription factors that determines the final 

outcome of the response. In any case, despite our understanding of individual regulatory 

evetns, the underlying molecular mechanisms responsible for the co-ordination thereof 

remain largely unknown. Thus, it is conceivable that SIRT1 may play such a co-ordinating 

role through its dual function in deacetylating both transcription factors directly and an 

upstream acetyltransferase, in parallel to additional regulatory mechanisms (FIGURE 5-9). 

 

UV-inducible changes in SIRT1 subnuclear localisation 
 

 In addition to changes in gene expression, UV irradiation results in significant 

structural rearrangements within the cell, possibly reflecting the need to accommodate the 

ensuing changes in gene transcription and DNA replication or other regulatory mechanisms 

(discussed below). Thus the localisation of SIRT1 in response to UV irradiation in U2OS cells 

was investigated by indirect immunofluorescence microscopy. 

 Strikingly, following UV irradiation SIRT1 redistributed from showing a diffuse nuclear 

localisation to form characteristic ring-like structures within the nucleus surrounding regions 

staining poor for DAPI and thus being predicted to be nucleoli (FIGURE 4.28). Clearly further 

evaluation of this conclusion should be pursued in the form of co-localisation studies with 

nucleolar markers as well as biochemical confirmation of this (Andersen et al., 2002). 

 The nucleoli are structures within the nucleus where rDNA is transcribed by RNAPolI 

and ribosomes are assembled, i.e. they are the sites of ribosomal biogenesis (Grummt, 2003). 

Further to this well-established role, though, other nucleolar functions have been postulated 

as several proteins with no apparent role in ribosomal biogenesis have been found therein 

(Olson, 2004). 
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In particular, nucleolar integrity is important for regulation of p53 tumour suppressor 

protein stability by sequestering the p53 E3 ubiquitin ligase mdm2/hdm2. Consistent with 

this, the majority of stress stimuli that lead to p53 stabilisation tested to-date are associated 

with disruption of nucleolar structure (Olson, 2004; Rubbi and Milner, 2003). Direct disruption of 

nucleolar structures by microinjection of antibodies against nucleolar structural proteins or 

localised UV irradiation of nucleoli established that nucleolar integrity acts as a cellular 

sensor for stress to induce p53 stability (Rubbi and Milner, 2003). Three apparently distinct 

mechanisms that link nucleolar structure and p53 stabilisation have been proposed.  

The first one involves the p19ARF tumour suppressor which binds to mdm2 and 

sequesters it to the nucleolus thus preventing p53 degradation (Weber et al., 1999). 

Interestingly, p19ARF progressively accumulates to the nucleoli of serially passaged primary 

mouse fibroblasts correlating with the onset of senescence which is known to require p53 

(Weber et al., 1999). Furthermore, absence of SIRT1 prevents p19ARF accumulation and 

subsequent p53 stabilisation allowing MEFs to overcome senescence (Chua et al., 2005).  

The second mechanism proposes exactly the same role for the PML protein which can 

recruit mdm2 to the nucleolus in a manner independently of p19ARF (Bernardi et al., 2004). 

Interestingly, PML was also shown to associate with SIRT1 and regulate the stability of 

another SIRT1 target, FOXO1 in pancreatic β-cells in response to hyperglycaemia-induced 

ROS (Kitamura et al., 2005; Langley et al., 2002).  

The third mechanism involves the ribosomal assembly and transport protein 

nucleophosmin (NPM, a.k.a. B23, numatrin or NO38). NPM is detected in the nucleoli of 

unstressed cells although it undergoes constant nucleocytoplasmic transport. In response to 

UV, though, NPM shows a diffuse nucleoplasmic distribution. This correlates with disruption 

of hmd2/p53 interaction and consequently increased p53 stability (Kurki et al., 2004). In this 

context, NPM has also been shown to direclty interact with p53 and act as a repressor of its 

transcriptional activity thus setting a threshold for UV-induced p53 activation (Maiguel et al., 

2004). 

Based on these data, a general model of how nucleolar structure regulates p53 

stability has been proposed. According to this, following stress, disruption of the nucleolus 

results in the release of nucleolar proteins such as p19ARF and NPM which bind to mdm2 and 

prevent p53 degradation (Olson, 2004). 
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 Additional evidence corroborating to a role of SIRT1 in nucleolar function is provided 

by the well-studied biology of Sir2 in yeast. In S. cerevisiae Sir2 is part of a multisubunit 

complex known as RENT. The RENT complex is required for silencing at the rDNA loci and 

mitotic exit (Straight et al., 1999; Shou et el., 1999). Net1, an integral part of the RENT complex, is 

required for nucleolar integrity. Interestingly, Sir2 is associated throughout the cell cycle with 

nucleoli until the anaphase/telophase transition when it disperses away from the nucleoli, 

which undergo structural changes (Straight et al., 1999; Shou et el., 1999; Gotta et al., 1997). 

Consistent with these, nucleolar fragmentation correlates with ageing in yeast cells (Sinclair et 

al., 1997) while ageing-associated changes in nuclear structure in general are also observed in 

mammalian cells (Lans and Hoeijmakers, 2006).  

Finally, in response to various cellular stresses, the transcription of rDNA genes and 

therefore ribosomal biogenesis is downregulated resulting in a general reduction in protein 

biosynthetic capacity (Grummt, 2003). This is mediated, at least in part, by the Jnk2 kinase 

which phosphorylates the RNAPolI basal transcription factor TIF-IA to inhibit RNAPolI 

holoenzyme formation (Mayer et al., 2005). Thus post-translational modifications regulate pre-

initiation complex formation to control rRNA synthesis in response to stress. Similarly, 

deacetylation of TAFI68, a subunit of TIF-IB, another RNAPolI basal transcription factor, 

decreases its ability to bind to rDNA promoters and rRNA synthesis (Muth et al., 2001).  

Under the light of this, it can be proposed that the recruitment of SIRT1 to nucleoli 

following UV irradiation may contribute to the suppression of RNAPolI-mediated transcription 

by preventing the assembly of the RNAPolI transcriptional machinery in the rDNA promoter. 

It would thus be interesting to investigate the effects of SIRT1 on the efficiency of rDNA 

transcription in response to UV or other stresses. 

 

5.9.1.4 Phosphorylation of SIRT1 in mitosis 
 

The eucaryotic cell cycle (FIGURE 4-29A) comprises a sequence of spatiotemporaly 

ordered events that aim at the duplication of the genome and its subsequent segragation to 

daugther cells in a faithful manner that maintains genomic integrity. During mitosis major 

structural changes occur in the cell such as nuclear envelope break-down and chromosomal 
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condensation. The reversibility of these changes is crucial to the outcome of the commitment 

of cells to division. 

Several aspects of chromosome condensation have been described in relation to the 

gross structural changes that chromatin undergoes during mitosis (Swedlow and Hirano, 2003). 

The condensed nature of mitotic chromatin is reminiscent of heterochromatin, the 

transcriptionally inactive part of the genome which correlates with at least one distinct state of 

histone modification, that of hypoacetylation (Grewal and Moazed, 2003). The role of histone 

modifications in mitotic chromatin condensation is less clear. Phosphorylation of histone H3 

at S10 is considered to be a hallmark or mitotic chromatin, yet its exact function is not well 

understood (Swedlow and Hirano, 2003). 

Global acetylation in mitosis is thought to serve as an epigenetic memory mark for 

transcriptionally active genes (Jeppesen, 1997) yet both HATs and HDACs dissociate from 

mitotic chromatin being unable to modify histones in the context of mitotic chromosomes 

(Kruhlak et al., 2001). Whether, though global deacetylation is a prerequisite for mitotic 

chromosome condensation remains unclear. 

SIRT1 was found to be hyperphosphorylated in nocodazole-arrested mitotic cells 

(FIGURE 4-7) suggestive of a cell cycle-specific modification and potentially also function of the 

protein. Further corroborating to this, a single CDK consensus site was identified in the C-

terminus of SIRT1 (S540) and recombinant cyclinB/Cdk1 complexes can phosphorylate 

insect cell-expressed GST-SIRT1 in vitro (FIGURE  4-30). This phosphorylation does not cause 

the characteristic electrophoretic mobility shift of SIRT1 seen in mitosis (FIGURE 4-30C) implying 

that Cdk1 is not the relevant kinase, that this site is not at all phosphorylated in vivo, or if it is, 

it does not change SIRT1 mobility or, indeed, that there are other unidentified 

phosphorylation sites and kinases modifying SIRT1 in mitosis. 

Nocodazole is a microtubule destabilising drug by virtue of its ability to bind to 

microtubules and inhibit their polymerisation. This disrupts the mitotic spindle, prevents 

kinetochore attachment to it and thus elicits the mitotic spindle checkpoint (Rieder and Maiato, 

2004). The ultimate goal of this process is to prevent the degradation of specific substrates 

such as cyclins and securin by the APC ubiquitin ligase a process which is normally 

necessary for the metaphase to anaphase transition causing the observed cell cycle arrest in 

what bears the characterisitics of a prometaphase (Peters, 2002).  
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Unexpectedly, using mAb12/1, SIRT1 protein levels appeared to be reduced in 

nocodazole-arrested mitotic cells but not in cells synchronised in mitosis following release 

from a thymidine/aphidicolin block (FIGURES  4-31 & 4-37). This implicated that the epitope 

recognised by mAb12/1 is potentially modified in response to mitotic spindle checkpoint 

activation rendering it unrecognisable by the antibody. 

Detailed mapping of the mAb12/1 epitope revealed that aa's 16-18 are minimally 

required for recognition by the antibody (FIGURE  4-38). Interestingly, residue 16 is a serine 

which can be modified by phosphorylation. Subsequent mutagenesis analyses, revealed that 

modification of SIRT1 S16 by phosphorylation prevents its recognition by mAb12/1 explaining 

the observed loss of SIRT1 signal in nocodazole-arrested cells (FIGURE S 4-38  & 4-39A). 

Furthermore, given the almost complete loss of signal in nocodazole-treated cells, it can be 

concluded that this phosphorylation is stoichiometric. 

In addition, it was considered possible that, due to its proximity, S14 could also have 

an impact on S16 phosphorylation. Indeed, even in logarithmically growing cells, substitution 

of S14 with alanine resulted in increased mAb12/1 signal, consistent with reduced S16 

phosphorylation, suggesting that S14 phosphorylation is required for efficient S16 

phosphorylation (FIGURE  4-39A). Interestingly, this implied that a basal level of S16 

phosphorylation also occurs in intephase, consistent with the rescue of mAb12/1 

immunoreactivity by λ-PPase treatment of log-phase cells (FIGURE  4-38A). 

Attempts to create phospho-specific polyclonal antibodies recognising either 

phosphorylated S16 or phosphorylated S14/S16 have been until now unfruitful. This may 

extend beyond the technical difficulties of creating successful phospho-specific antibodies as 

treatment of nocodazole-arrested cells with the prolyl isomerase Pin1 inhibitor juglone 

rescued mAb12/1 immunoreactivity (FIGURE 4-39B). Pin1 recognises proline to induce its 

isomerisation from the trans to the cis configuration when it is preceded by a phosphorylated 

serine or threonine (FIGURE  4-27A) (Yaffe et al., 1997).  

In a synthetic view of the above results, a model can be proposed where SIRT1 S14 

phosphorylation allows recognition of P15 to induce its isomerisation. The resulting regional 

conformational change imposed drives the recognition of the site by possibly another kinase 

which then phosphorylates S16 (FIGURE  5-10). Alternatively, this sequence of events renders 

S16 inaccessible to a phosphatase thus attenuating S16 dephosphorylation kinetics.  
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Provided that this is a valid 

interpretation, the use of a doubly 

phosphorylated synthetic peptide for 

the creation of phospho-specific 

antibodies is doomed to failure as 

the predicted Pin1-imposed 

conformational change in the native 

protein, not present in the antigenic 

peptide used for immunisation, 

would hinter the recognition of the 

endogenous protein due to the 

associated steric hindrance effects stemming from P15 isomerisation. 
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dependent SIRT1 S16 phosphorylation. See text for details.

Structural analyses of substrate recognition by kinase domains as well as oriented 

peptide library screens have revealed that several residues flanking the phosphorylatable 

aminoacids contribute to the specificity of the kinase further supporting the proposed concept 

that S14 influences S16 phosphorylation (O'Rourke and Ladbury, 2003). Surveillance of known 

phosphoproteins in the litterature as well as protein phosphory

presense of several S-P-S sites (e.g. Beausoleil et al., 2004) 

nevertheless the knoweldge concerning the interplay 

between the neighbouring serine modifications is remarkably 

limited.  
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A representative example of such an interconnection 

is provided by the regulation of Cdc25C. The Cdc25 family of 

proterins are dual-specificity phosphatases whose best-

characterised role is in the dephosphorylation of CKD's at 

the inhibitory T14 and Y15 sites contributing to their 

activation at various stages of the cell cycle (Busino et al., 

2004). Following DNA damage, Cdc25C is phosphorylated at 

S216 and is sequestered by 14-3-3 proteins leading to its 

inactivation thus preventing cell cycle progression (Donzelli 

SpSaagaSpSaaga

FIGURE 5-11. Mechanism of
Cdc25 regulation by dual
phosphorylation at an S-P-S
site.  

Adapted from Bulavin et al., 2003
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and Draetta, 2003). However, during mitosis, the preceding S214 is phosphorylated 

preventing S216 phosphorylation and thus maintaining Cdc25C capable to activate CDKs 

and allow cell cycle  progression (FIGURE 5-11) (Bulavin et al., 2003). Interestingly, S214 and S216 

flank a proline residue. Although in this particular example, neighbouring phosphorylation has 

an inhibitory rather than a promoting effect contrasting what is proposed for the SIRT1 S-P-S 

site, it strongly supports the merit of further investigating the interplay between S14 and S16. 

 
Investigation of SIRT1 S16 phosphorylation by mitotic checkpoint kinases 
 

SIRT1 was found to be phosphorylated in response to activation of the mitotic spindle 

checkpoint providing a hint for the possible kinases involved. To this end, three previously 

characterised checkpoint kinases, Bub1, BubR1 and Mps1 (Kops et al., 2005) were depleted by 

siRNA, cells treated with nocodazole and the resulting effects on S16 phosphorylation were 

monitored with mAb12/1. This approach initially indicated that depletion of BubR1 but not 

Bub1 or Mps1 rescues mAb12/1 immunoreactivity in nocodazole-arrested cells suggesting 

that BubR1 is the relevant S16 kinase. However, various lines of evidence indicate that this 

was an erroneous conclusion.  

Firstly, BubR1 fails to phosphorylate recombinant SIRT1 in vitro (FIGURE 4-45) despite 

exhibiting a robust autophosphorylation activity which suggests that it is an active kinase. 

Secondly, BubR1 depletion itself suffices to prevent mitotic checkpoint signaling resulting in 

failure of cells to arrest in prometaphase in response to nocodazole treatment (Meraldi et al., 

2004). Thus, the apparent rescue of mAb12/1 immunoreactivity is likely to stem from the fact 

that the cells are actually not fully arrested in mitosis and thus not phosphorylated on S16 

rather than from the inactivation of BubR1 per se.  

Although the ability of cells to arrest in mitosis in response to nocodazole treatment 

should also be compromised by Bub1 and Mps1 depletion leading to a mAb12/1 

immunoractivity rescue similar to BubR1 depletion, this is not the case here. This is likely to 

be due to the inefficient downregulation of the respective protein levels by the siRNAs 

employed in this study as this is known to allow sufficient residual protein at the kinetochores 

to maintain a functional checkpoint (P. Meraldi, ETH, personal communication). Thus, when the 
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above observations are considered in their totality, it is likely that the approach followed for 

the identification of the relevant S16 kinase is problematic. 

Further investigation led to the observation that when the mitotic cells were separated 

from the G2 cells in a synchronous population following release from a thymidine/aphidicolin 

block, SIRT1 also showed stoichiometric phosphorylation of S16 (FIGURE 4-46). This firmly 

established that S16 phosphorylation is not specifically elicited in response to spindle 

checkpoint activation, but rather it occurs during normal mitosis. Further support for this was 

provided by the fact that cells arrested in metaphase by MG132 treatment in the absence of 

spindle checkpoint stimulation also exhibited S16 phosphorylation (FIGURE 4-46B). 

A potentially more appropriate approach to this problem would involve the use of cell-

free mitotic extracts accompanied by immunodepletion of candidate kinases and subsequent 

use of these preparations for in vitro kinase assays using SIRT1 as a substrate (Nakagawa et 

al., 1989). This would overcome the defects in mitotic arrest/entry which are tightly associated 

with siRNA-mediated depletion of mitotic and checkpoint kinases as demonstrated above. 

The modification of SIRT1 in mitosis implies a role of the protein in cell cycle. To probe 

this possibility, SIRT1 was depleted by siRNA and the effects on mitotic markers following 

arrest with nocodazole were analysed. Cyclin B1 accumulation and phosphorylation of S10 

on histone H3 showed an indistinguishable pattern in either the presence or absence of 

SIRT1 (FIGURE 4.47A) suggesting that SIRT1 is not likely to be an integral component of spindle 

assembly checkpoint. It is also possible, however, that similar to incomplete depletion of 

Bub1 and Mps1, residual SIRT1 may mask such an effect.  

This is supported by the finding that SIRT1-/- or SIRT1+/- MEFs are partially impaired in 

their ability to arrest in G2/M following nocodazole treatment (FIGURE 4-48). Similarly, though 

this experiment may also hide some pitfalls as the observed effect can reflect reduced 

proliferation rates of the SIRT1-/- or SIRT1+/- MEFs.  

Furthermore, mouse cells are particularly resistant to nocodazole treatment as the 

drug does not seem to build up in such high intracellular concentrations as in human cells. 

This has been partially attributed to increased drug efflux via the P-glycoprotein mutlidrug 

resistance protein (Rieder and Maiato, 2004). Recently, SIRT1 was shown to possitively regulate 

the expression of P-glycoprotein multidrug resistance gene mdr1 in cancer cells (Chu et al., 

2005). If this also applies to mouse cells, one would predict that reducing or completely 
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eliminating expression of SIRT1 in MEFs would result in impaired nocodazole efflux, leading 

to higher intracellular amounts of the drug and thus increased sensitivity of these cells to 

nocodazole-induced mitotic arrest. This would contradict the observed effects and would 

consequently dismiss this interpretation.  

Despite the evidence presented above, it is noteworthy that the initial line of 

investigation to explain the loss of SIRT1 immunoreactivity in mitosis was based on the 

assumption that it was a consequence of proteolytic degradation of SIRT1. This was strongly 

supported by the identification of specific sequences that have been previously shown to 

target proteins for proteolysis during the M-phase, namely the D-box which serves as a 

recognition motif for APC/Cdc20 (Glotzer et al., 1991) and the β-TrCP phosphodegron which is 

recognised by the SCFβ-TrCP E3 ligase (FIGURE 4-32) (Watanabe et al., 2004; Moshe et al., 2004; 

Margottin-Goguet et al., 2003; Busino et al., 2003; Jin et al., 2003). 

This prediction was further supported by clear experimental evidence that 

demonstrated a direct in vitro interaction of SIRT1 with both substrate recognition subunits of 

the APC, Cdh1 and Cdc20 in vitro as well as a phosphorylation-dependent interaction of 

SIRT1 with β-TrCP (FIGURES 4-33 & 4-35). However, subsequent experiments were unable to 

demonstrate a functional consequence of the presence of these E3 ligase recognition motifs 

(FIGURES 4-34 & 4-36). 

In retrospect, the inability of β-TrCP to target SIRT1 for degradation is not surprising. 

The crystal structure of β-TrCP in complex with its substrate β-catenin coupled to 

biochemical evidence demonstrated that the spacing between the β-TrCP phosphodegron 

and the lysine residue targeted for ubiquitination by the E3 ligase complex is crucial and 

varies between 9-11 aminoacids in known β-TrCP substrates (Wu et al., 2003). No lysine 

residues lie in the proximity of the SIRT1 phosphodegron providing an explanation for the 

inability of β-TrCP to target the protein for degradation. The question, though, what, if any, is 

the function of this sequence motif remains unanswered. 

With respect to the D-box it could be argued that if SIRT1 were an APC substrate, 

mitotic arrest with nocodazole would result in SIRT1 accumulation rather than degradation 

due to APC inactivation. Although this is the case for most APC substrates, it is of interest to 

note that the degradation of cyclin A by the APC is not inhibited by the spindle assembly 

checkpoint as with other APC substrates (Geley et al., 2001).  
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Normally, UbcH10, the E2 protein required for the degradation of cyclin A is subjected 

to auto-ubiquitination and degradation by the APC and this is inhibited by other APC 

substrates (Rape and Kirschner, 2004). Thus, as APC is inactivated by the spindle-assembly 

checkpoint, APC substrates accumulate, UbcH10 is stable and cyclin A is degraded probably 

because the APC/UbcH10 complex shows different sensitivity to checkpoint inhibition 

compared to other APC/E2 complexes. 

Based on these, SIRT1 degradation in the presence of an active checkpoint would be 

feasible, encouraging further investigation of the D-box function. Although the ineffectiveness 

of Cdh1 and Cdc20 depletion to elicit any changes in SIRT1 abundance puts this theory at 

doubt it is noteworthy that they both significantly 

interact with SIRT1 in vitro (FIGURE 4-35). 

Furthermore, bearing in mind the 

considerations presented in section 5.9.1.1, it is 

also possible that the degradation mechanisms 

proposed above only apply to a specific SIRT1 

pool of low abundance. In this case, changes in 

protein turnover would occur in a significantly 

under-represented protein population and thus 

would be not be readily detectable using the 

polyclonal antibodies. 
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FIGURE 5-12. Overlap of the SIRT1 D-box
and eIF4E consensus binding sites. An
alignment of the eIF4G and 4E-BP In bold
red: conserved residues of the eIF4E
consensus site. In bold green: conserved
residues of the consensus D-box (in light
green rectangle). 

An additional consideration is also of note: while attempting to identify functional 

motifs in the N- and C-terminal SIRT1 extensions, it was observed that the identified D-box  

overlaps with a consensus eIF4E binding site found in 4E-BPs and eIF4G, an integral 

component of the translation initiation machinery (FIGURE 5-12) (Gingras et al., 1999). The 

association of 4E-BP to eIF4E inhibits translation as it prevents the latter from binding to the 

5' cap of mRNAs (Gingras et al., 1999). The significance of this overlap is unknown, however it is 

particularly intriguing in view of the presence of a TOS motif in SIRT1 because 4E-BPs also 

have one which is required for their phosphorylation by TOR kinase leading to dissociation 

from eIF4E and consequently to translation initiation (Schalm and Blenis, 2002). 

Finally, the presence of two distinct degradation-targeting motifs is not unprecedented. 

Apart from the aforementioned IκB which has both a β-TrCP phosphodegron and a PEST 
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region (Kato et al., 2003), Cdc25A also harbours a KEN box targeting the protein to APCCdh1 as 

well as a β-TrCP motif (Busino et al., 2004). Moreover, treatment of logarithmically growing cells 

with the proteasome inhibitor MG132 results in SIRT1 protein accumulation demonstrating 

that the protein is subjected to constant proteolytic turnover (FIGURE 4-31B). Given the fact that 

SIRT1 protein accumulates in response to at least one stimulus, namely nutrient starvation 

(Rodgers et al., 2005) the mechanism of reversing this effect is of importance and based on the 

observations presented here is likely to be via proteasome-mediated degradation. 

 

 

5.9.1.4.1 Potential functions of SIRT1 in mitosis 
 
 Evidence from the literature indicates various aspects of mitosis where functions 

perfomed by SIRT1 could be envisioned.  

 The potential role of SIRT1 as a histone deacetylase in mitotic chromosome 

condensation has been discussed in Chapter 4. Its recent demonstration as a histone H1 

deacetylase specifically, adds further to this notion (Vaquero et al., 2004). H1 is a linker histone 

which has been shown to be required for proper chromosome structure in Xenopus egg 

extracts. Depletion of histone H1 leads to incompletely condensed chromosomes that extend 

out of the metaphase plate (Maresca et al., 2005). It is not clear whether the acetylation status of 

histone H1 is important for this function, yet this is a line of investigation that should be 

further explored. Interestingly, histone H1 interacts with the N-terminus of SIRT1 which also 

harbours the mitotic phosphorylation site S16 described in this work. Thus, it is possible that 

S16 phosphorylation controls this interaction to regulate histone H1 function in mitotic 

chromosome structure apart from its proposed role in transcriptional regulation (Vaquero et al., 

2004). 

 Additional potential roles of SIRT1 in mitosis are discussed below. 

 

 Acetyl-CoA metabolism and mitosis 
 

 To begin with, at least two distinct acetyltransferases have been implicated in mitotic 

progression, namely Eco1 and p300. The Eco1 acetyltransferase was firstly described in 
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yeast as a protein required for the establishment of chromatid cohesion during S phase. 

Bioinformatic analysis identified an acetyl-CoA binding motif within the Eco1 sequence and 

subsequent experiments demonstrated an in vitro acetyltransferase activity which targets 

several components of the cohesin complex (Ivanov et al., 2002).  The importance of this activity 

has been subsequently questioned  as yeast expressing acetyltransferase-defective Eco1 is 

viable (Brands and Skibbens, 2005). Although the exact mode of action of Eco1 remains unclear, 

orthologues have been identified in higher organisms and were also shown to be required for 

cohesion (Hou and Zou, 2005; Williams et al., 2003). 

 Recently, a further link between silencing and chromatin cohesion involving the Sir 

protein was established. Using a system that allowed the visualisation of cohesion outside 

the context of the chromosome, Chang et al. could show that in S. cerevisiae the Sir proteins 

are required for cohesion of the HMR loci, but not for other chromosomal regions, by directly 

recruiting the cohesin complex (Chang et al., 2005). In addition, in S. pombe, Swi6 is required 

for the recruitment of the cohesin complex to centromeric heterochromatin but does not 

appear to participate in chromosome arm cohesion (Huang and Moazed, 2006). A Swi6 

orthologue has been identified in both Drosophila and humans and is known as 

heterochromatin protein 1 (HP1). As the topology of chromatid cohesion remains debatable 

(Huang and Moazed, 2006), it is tempting to speculate that in a conserved similar function of 

SIRT1 is also present in mammalian cells. 

 Furthermore, the dynamics of acetyl-CoA and related metabolic activities appear to 

have a broader impact on mitosis. In S. pombe, mutations in acetyl-CoA carboxylase (ACC) 

and fatty acid synthase result in defective mitosis (Saitoh et al., 1996). The situin orthologue 

CobB has been implicated in acetyl-CoA biosynthesis in bacteria by activating the acetyl-CoA 

synthase (Starai et al., 2002). Also SIRT1 regulates lipid metabolism in rodents where the 

proposed mechanism of action though is thought to be through transcriptional regulation 

(Picard  et al., 2004). Given the apparent involvement of SIRT1 in mitosis presented here, it 

would be really exciting to investigate how acetyl-CoA metabolism and lipid biosynthetic 

processes impact cell division and what the potential role of sirtuins in these processes might 

be. 

 The acetyltransferases CBP/p300 have also been shown to be required for proper 

mitotic progression by associating with the APC components Apc5 and Apc7 via an E1A-like 
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region present in the latter two (Turnell et al., 2005). Both Apc5 and Apc7 potentiate CBP/p300 

transcriptional activation while CBP is required for the ubiquitin ligase function of APC and 

also for proper mitotic exit. It is important to note, though, that this latter function is attributed 

to the E4 ligase activity of CBP. Thus, in addition to acting as a deacetylase for the putative 

substrates of the proteins described above, SIRT1 may also modulate the mitotic role of 

CBP/p300 by deacetylation as shown in this thesis. 

  

SIRT1 and mitotic exit 
 

Further evidence for potential roles of SIRT1 in mitosis lies within our current 

knowledge of sirtuin biology in lower organisms. In S. cerevisiae Sir2p is part of the RENT 

complex as described previously, which also includes the Cdc14 phosphatase that 

inactivates mitotic CDKs to promote mitotic exit (Shou et al., 1999; Straight et al., 1999). Two 

mammalian orthologues of Cdc14 have been identified named Cdc14A and Cdc14B and 

abberant expression of either protein leads to mitotic defects althought their exact 

mechanism of action reamisn unclear (Mailand et al., 2002).  

Interestingly, SIRT1 S16 dephosphorylation appears to require the anaphase-to-

metaphase transition implying that the dynamics of SIRT1 phosphorylation during mitosis 

may be linked to mitotic exit (FIGURE 4.46B). It would thus be of interest to probe the 

evolutionary conservation and potential functional significance of the SIRT1/Cdc14 

association in particular in the context of mitotic exit. This is also of broader interest as 

despite the accumulating knowledge about mitosis-associated events, relatively little is 

known about mitotic exit in mammalian cells. 

 

Survival during mitosis 
 

Progress through mitosis is associated with dramatic cytoarchitectural changes which 

have a broad impact on the organisation of the cell and thus require sustaining survival 

signaling in order to prevent cell death. Recent evidence suggests that upon treatment of 

cells with microtubule poisons, the NFκB pathway is activated and this is required for survival 

(Mistry et al., 2004). As SIRT1 has been shown to deacetylate and thus inactivate the p65 
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subunit of NFκB, it is likely that is also has a similar role in this context. Furthermore, this 

might also have therapeutic implications as microtubule poisons such as taxol are used for 

cancer treatment. If the above prediction is correct, concomitant inactivation of survival 

pathways by SIRT1 activation in addition to microtubule poisons would not only attenuate the 

high proliferation rate of cancer cells but would also enhance their propensity to undergo 

apoptosis. 

It is noteworthy that activation of mitotic proteins such as CDKs is also linked to cell 

death. The CDK inactivating proteins Wee1 kinase and the Cdc27 subunit of the APC are 

cleaved in a caspase-dependent manner following apoptotic stimulation leading to CDK 

activation (Zhou et al., 1998). Conversely, induced activation of CDK1 in post-mitotic neurons 

promotes neuronal apoptosis (Stegmuller and Bonni, 2005). In either cases, the exact purpose 

and ensuing consequences of CDK activation remains unclear but these examples underline 

yet another aspect of the close interplay between cell division and apoptosis. Again, the 

preceding knowledge of SIRT1 involvement in cell survival regulation coupled to the 

proposed involvement in mitosis strongly indicate another path of investigation along these 

lines. 

 

Priming S phase events in mitosis  
 

One of the success strategies of the cell cycle programme is based on mechanisms 

that couple each phase to the other thus allowing unidirectional progression. Thus events 

that are associated with a particular cell cycle phase have their foundations in a preceding 

phase.  

One such example is the formation of pre-replication complexes (pre-RCs) during late 

mitosis and early G1. Starting already at anaphase, pre-RCs assemble at replication origins 

to establish replication competence, although by themselves are not sufficient for replication 

(Prasanth et al., 2004). In S. cerevisiae Sir2p deletion suppresses the phenotype of a pre-RC 

assembly mutant (Cdc6p - required for loading of the pre-RC component MCM helicase to 

origins of replication) indicating that Sir2p is a negative regulator of replication (Pappas et al., 

2004). 
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It would be of interest to investigate whether SIRT1 has a similar role in mammalian 

cells. In this case, SIRT1 would need to be inactivated to allow efficient pre-RC formation. 

Following mitotic exit, re-activation of SIRT1 would function in preventing pre-RC formation 

and thus aberrant genome re-replication until the next cell cycle. An experimental issue to be 

taken into consideration is that based on such a model, depletion of SIRT1, e.g. by siRNA, 

would have minimal impact on mitosis itself. If the identified SIRT1 S16 phosphorylation 

plays a role in this process a more appropriate approach would require the investigation of 

how SIRT1 S16 mutants affect S phase entry/progression kinetics. 

Furthermore, S phase onset is regulated by the levels of the CDK inhibitor p27. 

Degradation of p27 by the SCFSkp2 ubiquitin ligase underlies S-phase entry (Sutterluty et al., 

1999) while Skp2 levels are also under the negative control of APCCdh1 to regulate G1 

duration by allowing p27 accumulation and thus prevent premature S phase entry (Bashir et al., 

2004; Wei et al., 2004). As previously discussed (section 5.2.2.5), SIRT1 may contribute to 

transcriptional repression of the p27 gene in collaboration with the Hes1/Hey2 transcriptional 

repressors or alternatively, promote Skp2-mediated p27 degradation by deacetylating and 

thus exposing lysine residues in p27 for ubiquitination.  

 

 

Mitosis and ageing 
 

Recent data suggest a close link between molecular components regulating mitosis as 

well as the spindle assembly checkpoint and the ageing process (Baker et al., 2005).  

Comparison of mRNA transcript levels between fibroblasts derived from young and old 

invividuals as well as people who suffer from a progeroid syndrome revealed that a striking 

proporion of genes that displayed differential expression are involved in mitotic progression. 

These genes included cyclins A, B and F, Polo-like kinase and the APC component Cdc20 

which were all downregulated in the fibroblasts derived from old/prematurely aged individuals 

(Ly et al., 2000). 

Mouse models further support these findings. Mice genetically engineered to express 

a BubR1 hypomorphic allele (leading to reduced but not completely abolished BubR1 
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expression) suffer from premature ageing which correlates with increased expression of 

senescence markers (reviewed in Fernandez-Capetillo and Nussenzweig, 2004). 

 

In conclusion, the role of SIRT1 in mitosis proposed by this work is unclear and only 

inferred by the observation that SIRT1 is stoichiometrically phosphorylated at least at S16 in 

this phase of the cell cycle. The ability of SIRT1 to modulate mammalian ageing has been 

poorly investigated and largely unproven. Understanding the significance of SIRT1 

modification in mitosis would provide further insights into a novel function for SIRT1 and a 

potential link to the regulation of organismal life-span. 

 

5.9.2 Regulation of SIRT1 by caspase-mediated cleavage 
  

During the course of these studies and on several occasions a fast-migrating protein 

band strongly immunoreactive to mAb12/1 and to a lesser extend to GST-S1 was observed 

(e.g. FIGURES 4-7, 4-22, 4-31). The appearence of this band, initially termed p110SIRT1 by virtue of 

its apparent molecular weight, invariably correlated with the presence of apoptotic figures 

observed by light microscopy.  

Systematic investigation of various apoptosis-inducing stimuli further supported this 

observation (FIGURE 4-50). Furthermore, the use of caspase inhibitors as well as in vitro 

caspase cleavage assays established that p110SIRT1 derives from full-length SIRT1 by 

caspase-mediated proteolytic processing (FIGURES 4-51 & 4-56).  

Comparison of SIRT1 antibody recognition patterns in extracts of cells stimulated to 

undergo apoptosis indicated that caspase cleavage occured in the C-terminal site of SIRT1 

(FIGURE 4-52). Systematic mapping and mutagenesis of consensus caspase cleavage sites on 

SIRT1 identified D707 as the relevant processing site giving rise to p110SIRT1 which was 

henceforth referred to as SIRT1(1-707) (FIGURES 4-53, 4-54, 4-56). 

Based on these results, the GST-S1 epitope is preserved in SIRT1(1-707) which 

would thus be predicted to be fully recognised by this antibody. However, while GST-S1 only 

weakly recognises SIRT1(1-707) in immunoblotting, mAb12/1 exhibits significantly higher 

relative immunoreactivity towards this species (FIGURE 4-52). Under the light of the 

phosphorylation-sensitive recognition of SIRT1 by mAb12/1, these results also bear 
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additional significance: they imply that SIRT1(1-707) is dephosphorylated, enhancing its 

recognition by the monoclonal antibody. As our understanding of SIRT1 S16 phosphorylation 

remains limited, it is difficult to appreciate the significance of this observation, nevertheless, it 

should be taken into consideration in subsequent studies. 

It is also worth mentioning that there exist several examples in the literature where 

phosphorylation of residues in the proximity of caspase cleavage sites was shown to impede 

processing by caspases. This was shown to be the case for the class II deacetylase HDAC4 

(Paroni et al., 2004, Liu et al., 2004), the transcription factor Max (Krippner-Heidenreich et al., 2001), the 

tumour suppressor lipid phosphatase PTEN (Torres et al., 2003) and the apoptosis factor Bid 

(Desagher et al., 2001). Intriguingly, in all these cases, the relevant kinase is CK2. However, 

none of the mutant CK2 sites confered differential cleavage sensitivity to SIRT1 (not shown) 

suggesting that this mechanism may not apply for this protein under the experimental 

conditions employed for these experiments. 

 

5.9.2.1 Functional significance of caspase-mediated SIRT1 cleavage 
 

Importantly, SIRT1(1-707) does not exhibit altered in vitro enzymatic activity nor does 

it localise differently than its full-length counterpart (FIGURES 4-59 & 4-60). These results raise 

the obvious question what is the functional significance of this processing event. 

Initial approaches towards addressing this issue focused on the potential impact of 

SIRT1 C-terminal cleavage on its transcriptional activities. For this purpose, a heterologous 

luciferase reporter assay was employed where 3 consensus NFκB binding sites were located 

upstream of a consistutive promoter to render luciferase expression sensitive to NFκB 

activity. This is a well-suited system for such studies as it provides a straightforward means 

of not only monitoring transcriptional effects of SIRT1 but also allows to assay various SIRT1 

mutants and assess their functional significance. 

The choice of NFkB reporter was based on previous work where SIRT1 was shown to 

negatively regulate NFκB transcriptional activity in response to TNFα stimulation (Yeung et al., 

2004), but also on the fact that most of the stimuli that were shown to induce SIRT1 cleavage 

are also known to be potent NFκB activators (FIGURE 4-50). Of note is also the example of 

hematopoietic progenitor kinase 1 (HPK1) which is an activator of NFκB , yet under apoptotic 
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conditions it undergoes caspase-mediated cleavage which converts it into an inhibitor of 

NFκB (Arnold et al., 2001). Thus it was postulated that under such conditions, modulation of 

SIRT1 activity may in turn impact the activation status and/or magnitude of NFκB.  

Following extensive optimisation of assay conditions, SIRT1 was found to consistently 

suppress NFκB reporter activity in response to TNFα stimulation even at very low amounts of 

transfected SIRT1 which ranged in the few ng of DNA level or up to 1/500 SIRT1-to-reporter 

plasmid ratio. However, no significant difference in the ability of SIRT1(1-707) to suppress 

TNFα-induced NFκB activity was observed (FIGURE 4-61). These data implied that caspase-

mediated processing of SIRT1 is unlikely to impact its transcriptional repressor activity under 

the assay conditions used. 

It is worthwhile, however, to critically evaluate the validity of this conclusion with 

respect to the limitations that such an experimental system comprises. To begin with it is 

possible that the reporter construct employed here does not bear the necessary features 

required for a functional consequence of SIRT1 cleavage to be revealed. This would be 

particularly the case if an additional protein interaction mediated by the cleaved C-terminal 

region is required for such an effect. It is of interest to note that in the original work reporting 

the SIRT1-NFκB interaction, treatment of cells with the SIRT1 activator resveratrol resulted in 

suppression of NFκB gene espression attributed to the prolonged occupancy of NFκB  target 

gene promoters by SIRT1 (Yeung et al., 2004). The molecular mechanism of this is intriguing 

but remains elusive. It is possible that this can be accounted by a conformational change 

elicited by resveratrol. Similarly, any of the modifications of SIRT1 discovered in this work, 

including the caspase-mediated cleavage may have a similar modus operanti.  

Furthermore, Starai et al. reported that CobB, a bacterial sirtuin deacetylates acetyl-

CoA synthase leading to its activation (Starai et al., 2002). As the authors point out, the catalytic 

lysine targeted for deacetylation constitutes a functionally conserved residue in AMP-forming 

enzymes which include luciferase. Thus it is conceivable that the expression of SIRT1 in the 

NFκB reporter assays results in a steady-state modification of luciferase that alters its activity 

leading to erroneous conclusions. 

 It is also clear that additional levels of NFκB activity modulation exist such as the 

deacetylation-dependent nucleocytoplasmic transport of the p65 subunit (Chen et al., 2001). 

Thus, it is possible that SIRT1(1-707) does have a different function than that of full-length 
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SIRT1 however the steady-state conditions under which the reporter assays are performed 

are unsuitable for detecting the potentially subtle differences incurred.  

Examining the nuclear translocation kinetics of NFκB as well as NFκB target gene 

expression following TNFα stimulation is likely to be more informative in this context. The 

evaluation of MEFs lacking SIRT1 for such an experiment is underway. Provided that the 

presence of SIRT1 proves to be a determinant of NFκB activation amplitude, re-introduction 

of SIRT1 and mutants thereof by retroviral transduction will be employed to assess the 

differential effects of SIRT1 species. 

A significant hint as to the potential significance of SIRT1 cleavage was also provided 

by two other pieces of data. Firstly, inhibition of proteasome activity by MG132 under 

conditions that induced apoptosis, resulted in rescue of SIRT1(1-707) immunoreactivity 

(FIGURE 4-57). What is more, in vitro cleavage of SIRT1 by activated cell extracts indicated that 

under these conditions, SIRT1(1-707) was sensitive to further proteolytic processing, while 

mutation of the caspase cleavage site not only prevented SIRT1(1-707) formation, but it also 

blocked SIRT1 degradation overall (FIGURE 4.56).  

Taken together, these data suggest that a potential role of SIRT1 cleavage by 

caspases following activation of the apoptotic programme is to render the protein more 

susceptible to further proteolysis. The impact of a SIRT1 non-cleavable mutant on the 

sensitivity of cells to apoptotic stimuli is currently under examination.  

Interestingly, the C-terminal region removed following caspase cleavage harbours a 

consensus sumoylation site (733VKQE736)(Seelre and Dejean, 2003). Modification of proteins by 

SUMO has been linked, among others, to transcriptional regulation and interestingly, SUMO 

is found concentrated at PML bodies, a site where also SIRT1 was shown to localise under 

specific conditions (Seelre and Dejean, 2003; Langley et al., 2002). It is also of particular interest that 

p300, has a transcriptional repression domain called  CRD1 (for cell cycle regulatory domain 

1) which harbours two sumoylation sites K1020 and K1024. SUMO modification at these 

lysines is essential for its transcriptional repressor function (Bouras et al., 2005). Interestingly, 

SIRT1 represses p300-mediated transactivation in a manner that depends on the p300 

CRD1 domain because SIRT1 deacetylates K1020 and K1024 allowing them to be modified 

by SUMO ligases and promoting the transcriptional repressor function of p300 (Bouras et al., 

2005). 
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Increased caspase activity during ageing 
 

Several of the ageing phenotypes can be attributed to loss of tissue mass due to 

increased apoptosis. This has been well documented for different post-mitotic tissues 

including the heart, muscle and the central nervous system where apoptosis is one of the 

underlyng disease mechanisms in Alzheimer's and Parkinson's disease, two age-related 

neurological disorders (Zhang et al., 2003).  

Overall, there is a striking correlation between caspase activity and ageing-associated 

apoptosis. Studies in humans as well as mice have shown increased activity as well as 

mRNA levels for various caspases in cells of the liver, spleen, lung and the immune system 

(Zhang et al., 2003). Strikingly, mouse models that exhibit premature ageing also have 

increased caspase activity.  

A recent example of this are mice with a mutation in the nucleus-encoded catalytic 

subunit of mitochondrial DNA (mtDNA) polymerase PolgA that abolishes its proofreading 

activity and thus renders it more prone to errors during mtDNA replication. These mice have 

high mtDNA mutation rates and, at the organismal level, they suffer from classic symptoms of 

premature ageing such as weight loss, hair loss, skeletal abnormalities, osteoporosis, 

anemia and reduced fertility (Kujoth et al., 2005; Trifunovic et al., 2004). Such mice also exhibit 

increased occurrence of apoptotic markers, including cleaved and thus activated caspase-3 

especially in tissues with high cell turnover such as the thymus, intestine and testis (Kujoth et 

al., 2005). 

Intriguingly, increased apoptosis in kidneys of aged rats can be suppressed by caloric 

restriction (Lee et al., 2004). This was attributed to the decrease of oxidative damage elicited by 

diet and, in support of this, markers of lipid peroxidation resulting from oxidative damage, 

were higher in animals fed ad libitum compared to those subjected to caloric restriction (Lee et 

al., 2004).  

Finally, progressive apoptosis of oocyte population acquired during embryonic 

development in the ovaries leads to reduced reproductive capacity and ultimately what is 

known as the menopause in females (Tilly, 2000). A recent report has drawn a link between 

cellular metabolic status and oocyte death. NADPH production  by the pentose phosphate 
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pathway promotes the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) 

which in turn phosphorylates and inhibits caspase-2, a key executor of the apoptotic 

programme in oocytes (Nutt et al., 2005). This provides evidence that the nutrient status of the 

environment experienced by the reproductive system determines to a significant extend the 

reproductive capacity of an animal.   

In conclusion, the work described above as well as the demonstration that SIRT1 is a 

substrate for caspases, constitute compelling evidence in favour of investigating the link 

between ageing-associated apoptosis and SIRT1 processing especially in the light of the 

proposed role of SIRT1 in ageing. Moreover, undertanding the functional significance of 

SIRT1 processing is likely to provide an entirely novel mechanism of SIRT1 regulation and 

thus shed light into unknown aspects of the protein's role in physiological conditions where a 

role for apoptosis has been documented. 

 

5.9.3 Prediction of signalling pathways which SIRT1 may participate in 
  

In addition to the experimental evidence provided in this work with regards to novel 

potential SIRT1 regulatory mechanisms, current knowledge derived from the literature as well 

as the in silico identification of putative regulatory motifs in the primary sequence of SIRT1 

cast some light into which signaling pathways are likely to be involved in modulating SIRT1 

function (FIGURE 5-13). 

One of the phenotypes of SIRT1-/- mice is persistent eyelid closure accompanied by 

developmental abnormalities of the eye (Cheng et al., 2003; McBurney et al., 2003). The EGF 

signaling pathway is a well-established mediator of eyelid development in the mouse and 

genetic inactivation of its components such as Jnk1 and Jnk2 or c-jun invariably leads to 

eyelid closure defects (Weston et al., 2004; Zenz et al., 2003; Li, 2003). This is due to the inability of 

two fronts of epithelial cells to fuse during embryonic development attributed to reduced EGF 

receptor signaling. Furthermore, EGF signaling is also important for the major structural 

changes leading to opening of the eyelid post-natally (Zieske, 2004).  

The persistence of eyelid closure in SIRT1-/- mice post-natally indicates that SIRT1 

plays an important role in the eyelid opening process and this is likely to be linked to its ability 

to participate in signaling downstream the EGF receptor, possibly by modulating the 
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FIGURE 5-13. Overview of the newly-identified and predicted SIRT1 modifications with potential
regulatory roles. 

expression of genes required for this developmental process (Zieske, 2004). Interestingly, 

among the factors involved in eyelid development (such as Pax6 and E2F transcription 

factors) are members of the forkhead transcription factor family as well as IKKα (Zieske, 2004).  

 Furthermore, genetic evidence supports a role for Sir-2.1, the C. elegans SIRT1 

orthologue, in negative regulation of the insulin/IGF signaling pathway (Tissenbaum and 

Guarente, 2001). Similarly, SIRT1 was shown to regulate the transcriptional activity of forkhead 

transcription factors which are under the negative control of insulin/IGF signaling.  (Giannakou 

and Partridge, 2004). It is thus conceivable that SIRT1 activity itself is under the control of this 

pathway in order to ensure a functionally coordinated modulation of the forkhead mediated 

transcriptional response via mechanisms discussed in other parts of Chapter 5. 

 Similarly, in addition to SIRT1 regulating the transcriptional activity of NFκB it is 

conceivalbe that SIRT1 activity also receives inputs from upstream components of the NFκB 

pathway such as IKKβ. This again would ensure the co-ordinate regulation of transcriptional 

activity by modulating the amplitude, duration and reversibility of NFκB activity. 

The TOR signaling pathway is proposed to function as an integrator of energy, nutrient 

and growth factor cues. Energy depletion leads to TOR inactivation via the AMPK kinase 

cascade, insulin receptor signaling activates TOR kinase via the PKB/Rheb signaling axis 

while oxygen levels also modulate TOR activity through different mechanisms (Wullshleger et 

al., 2006). Interestingly, SIRT1 harbours a TOS motif in the proximity of its sirtuin core domain. 

TOS motifs are present in all major TOR substrates tested to-date and have been shown to 

be required for their interaction with the TORC1 component raptor (Schalm et al., 2003; Schalm 
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and Blenis, 2002). It would thus be intriguing to consider a scenario where SIRT1 and TORC1 

components interact functionally, biochemically or even physically in a manner that 

potentially requires their corresponding enzymatic activities  possibly through their enzymatic 

activities. 

Finally, the dependence of SIRT1 deacetylase function on NAD+ in addition to the 

proposed inhibitory role of NADH on its activity make it suitable for responding to cellular 

metabolic changes incurred by changing oxygen tension. Hypoxic conditions lead to a 

decrease in NAD+/NADH ratio (Zhang et al., 2002) suggesting that under limiting oxygen 

conditions, SIRT1 activity would be impaired. The cellular redox status has been shown to 

modulate transcriptional activities of other factors as discussed in section 5.4. Thus it is a 

valid to predict that SIRT1 may one way or another participate in the oxygen homeostasis 

signaling pathway. 

 

5.9.4 Conclusion 
 

There is an increasing appreciation of the significance behind the extensive 

interconnections between basic cellular homeostatic pathways. In an ever-changing 

environment, a dynamic system must be in place to ensure the functional co-ordination 

between diverse signaling cascades and implement a physiologicaly coherent outcome. 

Proteins that integrate diverse signals and can in turn pleiotropically affect 

downstream effectors would be key for this strategy. The emergence of SIRT1 as a regulator 

of several aspects of homeostatic signaling pathways (FIGURE 5-14) makes it a likely candidate 

for this function. Thus understanding the mechanistic details of its regulation will provide a 

means to test its proposed role as a master co-ordinator of responses to environmental cues. 

The work presented here provides the first examples of SIRT1 regulatory mechanisms and is 

likely to yield new insights into the signaling pathways that modulate SIRT1 activity. 
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