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Mini-abstract 
 

Large cartilage grafts were engineered in vitro using human nasal chondrocytes loaded into non-

woven meshes, implanted in nude mice and assessed histologically, biochemically and 

biomechanically. We demonstrated the importance of graft pre-cultivation to enhance the clinically 

relevant biomechanical characteristics (i.e., suture retention at implantation and tensile/bending 

stiffness 2 weeks post-implantation).  
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Structured abstract 

Objective: To investigate if pre-cultivation of human engineered nasal cartilage grafts of clinically 

relevant size would increase the suture retention strength at implantation and the tensile and bending 

stiffness 2 weeks after implantation. 

Summary Background Information: In order to be used for reconstruction of nasal cartilage defects, 

engineered grafts need to be reliably sutured at implantation and resist to bending/tension forces 

about 2 weeks after surgery, when fixation is typically removed.  

Methods: Nasal septum chondrocytes from 4 donors were expanded for 2 passages and statically 

loaded on 15x5x2mm size non-woven meshes of esterified hyaluronan (Hyaff®-11). Constructs were 

implanted for 2 weeks in nude mice between muscle fascia and subcutaneous tissue either directly 

after cell seeding, or after 2 or 4 weeks pre-culture in chondrogenic medium. Engineered tissues and 

native nasal cartilage were assessed histologically, biochemically and biomechanically.  

Results: Engineered constructs reproducibly developed with culture time into cartilaginous tissues 

with increasing content of glycosaminoglycans and collagen type II. Suture retention strength was 

significantly higher (3.6±2.2 fold) in 2-week pre-cultured constructs than in freshly seeded meshes. 

Following in vivo implantation, tissues further developed and maintained the original scaffold size and 

shape. The bending stiffness was significantly higher (1.8±0.8 fold) if constructs were pre-cultured for 

2 weeks than if they were directly implanted, whereas tensile stiffness was close to native cartilage in 

all groups.  

Conclusion: In our experimental set-up, pre-culture for 2 weeks was necessary to engineered nasal 

cartilage grafts with enhanced mechanical properties relevant for clinical use in facial reconstructive 

surgery.  
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Introduction 

Autologous cartilage grafts are frequently utilized in reconstructive and aesthetic surgery of the nose. 

The main disadvantages of this approach are the limited availability of tissue, morbidity at the donor 

site1,2 and time consuming surgery. In fact, the external ear and nasal septum provide only limited 

quantities of cartilage, and harvesting larger amounts of costal cartilage may lead to acute or delayed 

complications such as pneumothorax or chest wall deformities 3. Tissue engineering offers the 

possibility of producing large quantities of cartilage of autologous origin, starting from a small tissue 

biopsy and thus with minimal donor site morbidity. Recent studies have shown that human nasal 

chondrocytes released form a tissue biopsy and de-differentiated by expansion in monolayers, have 

the capacity to re-differentiate and generate cartilaginous tissue structures when cultured at high 

density (e.g., in micromasses or pellets 4,5) or in a variety of porous scaffolds6,7.  

In order to be used in a clinical setting for nasal reconstructive surgery, engineered cartilage grafts 

need to have sufficient mechanical integrity (i.e., suture retention strength) at the time of implantation, 

to allow for reliable suturing at the recipient site, and sufficient mechanical stability (i.e., tensile and 

bending stiffness) when fixation is typically removed (i.e., 2 weeks after implantation), to resist 

contraction by scar tissue formation and by exposure to local or external forces in the recipient bed. 

So far, however, both native cartilage tissue and engineered cartilage grafts have been mostly 

characterized biomechanically in terms of compressive stiffness 7-9, which would be of limited 

relevance for nasal reconstruction.  

Another important issue to be addressed towards the clinical use of engineered cartilage grafts is the 

extent of pre-cultivation of cell-scaffold constructs prior to their implantation. In this context, previous 

studies indicated that pre-cultivated engineered cartilage tissues not only reach a superior quality, but 

display a higher capacity to further develop upon implantation than scaffolds implanted directly after 

seeding 10,11, possibly due to less fibrous tissue and blood vessel ingrowth. However, an independent 

study reported that in vitro culture time had only a minor influence on construct development 7: the 

issue is thus still controversial and is likely related to the scaffold used and the specific pre-cultivation 

conditions. 

Based on the above design considerations, the aim of this study was to investigate if pre-cultivation of 

human tissue engineered nasal cartilage grafts of clinically relevant size would increase the suture 

retention strength before implantation and the tensile and bending stiffness at 2 weeks post-
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implantation. In order to address this question, the selected model system consisted of human nasal 

chondrocytes, de- and re-differentiated using previously identified culture medium supplements 4,10,  

and loaded into non-woven meshes made of esterified hyaluronic acid (Hyaff®-11, Fidia Advanced 

Biopolymers, Abano Terme, IT), already in clinical use for the repair of articular cartilage12. The in vivo 

model consisted of ectopic implantation in nude mice, in a pocket between excised muscle fascia and 

subcutaneous tissue, resembling the environment where nasal cartilage grafts would be clinically 

implanted (i.e., highly vascularized mucosal tissue on one side, and thin layer of subcutaneous tissue 

on the other side). 

 

Materials and Methods 

Cartilage biopsies 

Human nasal septal cartilage biopsies from 4 patients  (mean age 48.8, range 34-61 years) were 

harvested at the Institute of Pathology and Forensic Medicine in Basel, following protocol approval by 

the local ethical committee (Ref.-No.: EK 40/03 and EK 263/03). Tissue harvesting was performed 

prior to the autopsy (within 36 hours post-mortem) under sterile conditions, with meticulous care to 

minimize mechanical trauma to the specimens. The incisions were made according to standard 

principles of plastic surgery in order to avoid disfigurement. A sample of about 1.5 x 2 cm of cartilage 

was removed by an interseptocolumellar approach and careful separation from mucosa and 

perichondrium. The specimen was divided into two pieces: one part for cell isolation and tissue 

engineering, and the other for histological, biochemical and biomechanical characterization, as 

detailed below. 

 

Chondrocyte isolation and expansion 

Chondrocytes were isolated by 22-hour incubation at 37°C in 0.15% type II collagenase and 

resuspended in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, 4.5 

mg/mL D-glucose, 0.1mM nonessential amino acids, 1 mM sodium pyruvate, 100 mM HEPES buffer, 

100 U/mL penicillin, 100 µg/mL streptomycin and 0.29 mg/mL L-glutamine (complete medium). 

Chondrocytes were plated in plastic dishes at a density of 104 cells/cm2 in complete medium further 

supplemented with  1 ng/mL Transforming growth factor-β1 (TGF-β1), 5 ng/mL Fibroblast growth 

factor-2 (FGF-2) and 10 ng/mL Platelet-derived growth factor-bb (PDGF-bb) (all from R&D Systems, 
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Minneapolis, MN). This specific combination of growth factors was previously shown to enhance 

human nasal chondrocyte proliferation and post expansion differentiation ability 4. When sub-

confluent, cells were detached by sequential treatment with 0.3% type II collagenase and 0.05% 

trypsin/0.53 mM EDTA, and replated at 5 x 103 cells/cm2. Before reaching again confluence, cells 

were detached and seeded on scaffolds as described below. 

 

Chondrocyte seeding and culture on three-dimensional scaffolds 

Cells were statically seeded at a density of 6.7E+07 cells/cm3 on non-woven meshes (15mm width x 

5mm length x 2mm thickness fleeces) made of esterified hyaluronic acid (Hyaff®-11, Fidia Advanced 

Biopolymers, Abano Terme, IT). Scaffolds were placed on dishes coated with a thin film of 1% 

agarose to prevent cell attachment to the dish bottom, and a cell suspension (1E+07cells in 60 µl) 

was distributed on the top surface. Constructs were statically cultured for 2 or 4 weeks in complete 

medium supplemented with 10 µg/mL insulin, 0.1 mM ascorbic acid and 10 ng/mL TGF-β3, with 

culture medium completely replaced twice a week. These supplements were previously shown to 

enhance chondrogenesis of de-differentiated human chondrocytes during culture into Hyaff-11 non-

woven meshes 10. Constructs (N = 3 per condition for each donor), immediately after cell seeding or 

following pre-culture, were either processed for histological, biochemical and biomechanical 

characterization or implanted in nude mice, as described below.  

 

Construct implantation 

Freshly seeded scaffolds, constructs pre-cultured for 2 weeks, for 4 weeks and cell-free scaffolds as 

control were implanted in the back of nude mice (CD-1 nu/nu, athymic, 6 to 8-week-old females) in a 

pocket between excised muscle fascia and subcutaneous tissue. All animals in this study were cared 

for and treated according to institutional guidelines. Each mouse received two grafts, and grafts from 

the same experimental group were implanted in different mice. Constructs were harvested after 2 

weeks, corresponding - in the clinical setting – to the time when fixation is typically removed and thus 

when the constructs shall have reached adequate biomechanical properties.  

 

 



  7  

Histological analysis 

Tissue constructs were fixed in 4% formalin for 24 h at 4°C, dehydrated, embedded in paraffin, and 

cross-sectioned (7 µm thick). Sections were stained with Safranin-O for sulfated glycosaminoglycans 

(GAG).  

 

Biochemical analysis 

Native cartilage samples and tissue constructs were weighed and digested with proteinase K (1 

mg/ml protease K in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, and 10 µg/mL pepstatin-A) 

for 15 h at 56°C 13. GAG contents were measured spectrophotometrically using dimethylmethylene 

blue dye 14, with chondroitin sulfate as a standard. The GAG content was expressed as percentage of 

tissue wet weight. Total collagen and type II collagen contents were determined respectively by 

measurement of hydroxyproline and by inhibition enzyme-linked immunosorbent assay (ELISA), as 

previously described 15.  

 

Biomechanical testing  

Specimens were maintained in phosphate buffered solution prior to all mechanical tests and kept 

moist during the tests. The width and thickness of the specimens were measured with a Vernier 

caliper. All tests were performed by applying deflections and measuring the corresponding forces 

using a standard miniature mechanical testing instrument (MTS Synergie 100, MTS Systems 

Corporation, Eden Prairie, MN, USA), with data transmitted to a standard personal computer for 

subsequent calculations. Tests were conducted at room temperature. 

Three point bending test 

This test produces data showing the relationship between force and deflection (bending) of the 

specimen in the direction of the force, from which it is possible to obtain the bending stiffness of the 

material, a key property for materials required to maintain the shape of a structure such as the nasal 

septum. Generally, point loading occurs only if specimens have a cylindrical cross-section, whereas 

for rectangular cross-section specimens, like those used in these studies, line loading is performed 

(Fig. 1A). The approximate bending stiffness or modulus EB of the specimen at the deflection rate of 

20 mm/minute was calculated based on the assumption that the specimen is homogenous, using the 

formula: 
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(1) 

 

E =
∆F
∆fm

⋅
l3

48I
 

where F is the applied force, fm is the bending deflection in the direction of the force, and I is the 

second moment of area, which measures the efficiency of a specific shape in resisting bending in the 

direction of loading. For a rectangular section of width b and height d, the second moment of area is: 

(2) 
12

3bdI =  

For this study the support span was 10.2 mm and 1 mm was chosen as the maximal deflection. Only 

data from deflections in the range between 0.4 mm and 0.9 mm, where the measured forces 

increased almost linearly with increasing displacement, were used to calculate the slope of the 

load/deflection regression line. Each specimen was deflected 11 times, turned over and deflected 11 

times again. Data from the first bending cycle and those during unloading were excluded. For each 

specimen, the bending stiffness was calculated as the mean of average values obtained in both 

orientations (before and after turn-over).  

Tensile test 

This test determines the elastic modulus in tension, ET , of the specimen as the ratio of tensile stress 

to strain in the elastic region, as follows: 

(3) ET = (F/A) / (∆l/lO) 

where A is the specimen cross-sectional area at the original length lO and ∆l is the change in length 

between the zero force and the maximum recorded force, F. The specimens were secured at their 

lower end with a suture of a type that would be used clinically to secure a construct to the surrounding 

tissue (POLYSORBTM 5-0, coated, braided lactomer 9-1, synthetic absorbable suture with a P-13 

needle, SynetureTM). The suture was inserted 1 to 2 mm above the lower end of the specimen 

(Fig.1B) and fixed with a flying triple knot to the holding hook affixed to the base plate of the 

mechanical test machine. The knot from the suture was additionally held by a needle holder to reduce 

the internal sliding from the knot. The upper end of the specimen was gripped with an Allis tissue 

forceps (15 cm, 4 x 5 teeth), hung from a rigid metal hook attached to the load cell of the test 

instrument. On each specimen different points were marked with a pen to identify a fixed initial 

specimen "gauge" length, whose changes were analysed from video-sequences recorded during the 

force/elongation tests. The gauge length was between 5 and 10 mm in all cases. The video images 

were calibrated by recording a plastic scale placed at the same distance relative to the camera as the 
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sample. Each specimen was first elongated 3 times to create a maximum length change of 1.2 mm, 

returning the actuator to the original position after each elongation. Subsequent additional sets of 3 

elongations were performed with maximal length changes of 1.8, 2.4 and 3 mm, unless the resultant 

force produced specimen failure (i.e., the suture tearing the tissue). The rate of elongation was set at 

24 mm/minute. The calculated value of ET is approximate for several reasons, including (i) the 

assumption that the specimen is homogeneous in composition and structure, (ii) the use of an 

arbitrary rate of strain, (iii) the use of the initial rather than instantaneous area of the cross-section in 

the computation, and (iv) the assumption of linear force/displacement behavior over the data range 

used in the computations. Thus, the test was not performed to obtain precise material property data, 

but rather to derive relative comparisons on the tensile performance of specimens in a test resembling 

some aspects of in vivo loading. 

Suture pull out test 

The suture pull out test was performed to measure the maximal force that could be applied on a 

suture in the axial direction before pulling out from the construct. The setup was the same as in the 

tension test described above: at the end of the tension test, the actuator was programmed to continue 

elongation at a rate of 24 mm/minute until the suture pulled out of the specimen. The maximal applied 

force was normalized to the specimen thickness, measured prior to performing the tests, and is 

reported as N/mm. 

 

Statistical analysis 

Data are presented as mean ± standard deviation of results obtained from at least 3 constructs 

generated for each of the 4 donors. Mean values were compared using Mann-Whitney tests. 

Statistical analyses were performed using the Sigma Stat software (SPSS Inc., Version 13), with 

p<0.05 as the criteria for statistical significance. 

 

Results 

Engineered tissues following in vitro culture 

Nasal chondrocytes from all donors could be reproducibly expanded in monolayers and underwent an 

average of 9.6 doublings in 14 days. After cell loading into the scaffolds, the resulting constructs 
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maintained the original size and shape, and already after 2 weeks of culture acquired a typical 

cartilaginous glossy appearance, with a firmer consistency than the original fleece (Fig. 2).  

Histological cross-sections of the generated constructs indicated progressive temporal development 

of cartilaginous tissues (Fig. 3A-C). Freshly seeded scaffolds consisted only of a network of 

fibroblastic cells among Hyaff®-11 fibers (Fig. 3A). Extracellular matrix was abundant after 2 and 4 

weeks of culture, with an increasing intensity of Safranin-O staining for GAG with time (Fig. 3B, C). 

Cells in pre-cultured constructs appeared chondrocytic, with a round morphology and embedded in 

large lacunae. 

 Biochemical analysis (Fig. 4A-C) of the pre-cultured constructs was consistent with their 

histological appearance. Wet weight fractions of GAG, total collagen and type II collagen were 

negligible in freshly seeded scaffolds and significantly increased following pre-culture, reaching levels 

respectively 5.5-, 8.1- and 19.5-fold lower than in the native cartilage specimens (respectively 3.3 ± 

1.4, 7.8 ± 2.1 and 7.4 ± 2.0).  

The suture pull out force normalized to the specimen's thickness (Fig. 4D) was 3.6-fold higher 

in 2 week pre-cultured constructs than in freshly seeded scaffolds, did not further increase with longer 

pre-culture time and reached levels 4.3-fold lower than those measured in native nasal cartilage (4.5  

± 1.9 N/mm). The suture pull out strength of the cell-free scaffolds was below the sensitivity of the 

test. 

 

Engineered tissues following in vivo implantation 

After 2 weeks’ implantation, all constructs maintained the original size and shape of the graft and 

displayed a smooth, shiny surface. Tissues generated by freshly seeded scaffolds were weakly 

stained for Safranin-O (Fig 3D). Constructs pre-cultured for 2 or 4 weeks yielded tissues with stronger 

staining intensity for GAG, but predominantly in the inner region (Fig. 3E, F), where cells had a more 

chondrocytic morphology and were at lower density. No vascularization or mineralization was 

observed in any of the explants. Constructs derived by implantation of cell-free scaffolds had a very 

soft consistency and displayed histologically a large amount of vascular ingrowth, without any sign of 

cartilaginous matrix (data not shown). 

 The wet weight fractions of GAG and total collagen (Fig. 5A, B) were similar in explants that 

were grafted immediately after cell seeding or following 2 weeks of pre-culture, and significantly 
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higher if grafts were pre-cultured for 4 weeks, reaching levels respectively 4.5- and 4.0-fold lower than 

in native nasal cartilage. The wet weight fractions of collagen type II following in vivo implantation 

(Fig. 5C) were significantly higher if constructs were pre-cultured for 2 or 4 weeks prior to implantation 

than if constructs were implanted directly after seeding, and reached levels 13.1-fold lower than in 

native cartilage. 

The modulus of elasticity in tension following 2 weeks of in vivo implantation (Fig. 5D) was not 

significantly different if constructs were grafted immediately after cell seeding or following 2 or 4 

weeks of pre-culture. The level reached was 2.7-fold lower than in native nasal cartilage (6.4 ± 

2.4N/mm2). Instead, the modulus of elasticity in bending following 2 weeks of in vivo implantation was 

significantly higher (rsp. 1.8/2.3 - fold) if constructs were grafted after 2 or 4 weeks of pre-culture than 

immediately after cell seeding (Fig. 5E). The level reached was 7.4-fold lower than in native nasal 

cartilage (6.8 ± 3.8N/mm2). The mechanical properties of the implanted cell-free scaffolds were below 

the detection level of the biomechanical test setup. 

 

Discussion 

With the ultimate goal of the clinical use of engineered cartilage for nasal reconstruction, in 

this study we demonstrated that pre-cultivation of human nasal chondrocytes into Hyaff®-11 non-

woven meshes for 2 weeks yields engineered grafts with (i) significantly higher suture retention 

strength, a pre-requisite for reliable implantation, and (ii) significantly higher bending stiffness after 2 

weeks’ implantation, a pre-requisite for safe removal of external fixation. Moreover, pre-cultivated 

engineered tissues were reproducibly approaching histological and biochemical properties of native 

nasal cartilage, which would be required to prevent fibrous tissue and vascular ingrowth and thus to 

support long-term stability of the graft. 

Human nasal chondrocytes have been previously reported to have the capacity to generate 

hyaline-like cartilaginous tissues after monolayer expansion, to a higher extent than articular 16 and rib 

4 chondrocytes. In addition, unlike articular chondrocytes 17, the age of the donor and quality of the 

donor tissue did not effect the cell chondrogenic capacity following monolayer expansion 7, indicating 

that tissue engineering of human septal cartilage is likely possible over a wide age range 7. Our 

results further emphasize the reproducibility of engineering cartilage tissues starting from human 

nasal chondrocytes.  
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Despite previous extensive characterization of human engineered nasal cartilage, to the best 

of our knowledge the present study is the first to use an experimental design based on clinically 

relevant parameters and related to issues which need to be addressed towards a clinical 

implementation of the procedure. In particular, the size and shape of the graft (i.e., 1.5 x 0.5 cm 

beam) would be compatible with the use in a variety of reconstructive surgeries of the nose, including 

treatment of defects at the nasal septum or alar. The extent of cell expansion (i.e., about 10 

doublings), considering a previously determined yield of about 3.5E3 cells/mg of nasal cartilage tissue 

4, would be in the range of that required to have a sufficient number of cells starting from a biopsy of a 

few milligrams. Unlike subcutaneous implantation used by previous studies 7,9, the in vivo model was 

selected to more closely resemble the environment of nasal cartilage, namely a pocket between 

muscle fascia and subcutaneous tissue, and in vivo implantation was for a shorter period (2 weeks), 

which is clinically critical as the typical time before external fixation is removed. Most importantly, the 

biomechanical properties assessed were those specifically required for a graft to resist contraction by 

scar tissue formation and by exposure to local or external forces in the recipient bed, as opposed to 

previously characterized properties in compression or indentation tests 7,9.  

 Rotter et al. observed only minor differences in the in vivo formation of engineered nasal 

cartilage when PLA/PGA scaffolds were implanted immediately after seeding or following pre-culture 

for 3 weeks 7. The discrepancy in comparison to our results could be explained by a number of 

different factors including the scaffold used, specific growth factors inducing chondrocyte 

redifferentiation, the time point of explantation and the different mechanical properties assessed. In 

this regard, however, it should be pointed out that the experimental design of our study did not include 

different times of implantation, and thus does not allow to derive a conclusion on whether in vitro pre-

culture effectively enhances cartilage tissue development in vivo or simply anticipates the time to 

reach a defined level of quality.  

The scaffold used for this study is a non-woven mesh composed of a benzylic ester of 

hyaluronic acid, a molecule naturally present in all soft tissues and playing an essential role in the 

maintenance of the normal extracellular matrix structure 18. The resulting material, commercially 

known as Hyaff®-11 and available in different forms (e.g., sponges, meshes), has been extensively 

used for studies on cartilage tissue engineering10,18-20 and is already in clinical use for the repair of 

articular cartilage defects 12. The result that a pre-culture of 2 weeks improved the suture retention 
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strength of engineered grafts is clearly related to the fact that the mesh used has intrinsically 

negligible mechanical properties. This observation allows to conclude that the mechanical properties 

reached by the grafts were merely due to the deposition and/or functional organization of new 

extracellular matrix, and therefore are not likely to reduce with time due to scaffold degradation. 

Interestingly, the modulus of elasticity in tension was not modulated by pre-cultivation time, and 

reached levels closest to native tissue as compared to all other parameters, suggesting that tensile 

properties of engineered cartilage are not a critical read-out in quality assessment. A longer 

implantation time was not the objective of the present study, although previous works 7,9 reported that 

engineered nasal cartilage tissues improved biochemical and biomechanical similarity to native tissue 

with time of implantation. The lack of a direct correlation between the collagen and GAG content and 

the measured mechanical properties of the tissues suggests the importance of a functional 

organization of those molecules and prompts for future investigations on the assessment of the level 

of collagen crosslinking.   

In conclusion, the results of the present study demonstrate the possibility to develop in vitro a 

nasal cartilage graft with clinically relevant size and biomechanical properties. Furthermore, our data 

indicate a possible advantage in the pre-culturing of engineered human nasal cartilage grafts for 2 

weeks prior to implantation, and together with other promising reports on the topic prompt for the 

clinical test of pre-cultivated grafts in nasal reconstructive surgery. 
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Figure legends 
 

Figure 1: Biomechanical setup 

Schematic diagrams and macroscopic views of setup configurations for the three point bending test 

(A) and the suture pull out test (B) 

 

Figure 2. Macroscopical appearance of engineered cartilage 

Glossy appearance and firm consistency of a typical engineered nasal cartilage graft after 2 weeks of 

pre-culture, prior to implantation. 

 

Figure 3. Histological appearance of the grafts  

Representative Safranin O-stained cross sections of constructs generated by nasal chondrocytes 

freshly seeded (A,C), pre-cultured for 2 weeks (B,D) or pre-cultured for 4 weeks (C,E) into Hyaff®-11 

meshes, before (A,B,C) or after (D,E,F) 2 additional weeks of implantation in nude mice. Arrows (see 

B) indicate undegraded polymer fibers. Scale bar = 100 µm (left panels) or 40  µm (right panels).  

 

Figure 4. Properties of engineered nasal cartilage grafts after in vitro preculture. 

Wet weight fractions of GAG (A), total collagen (B), collagen type II (C) and suture pull out force, 

normalized to specimen thickness (D) in constructs generated by nasal chondrocytes, freshly seeded 

or pre-cultured for 2 or 4 weeks into Hyaff®-11 meshes. * = statistically significant difference from the 

freshly seeded group; °  = statistically significant difference from the 2 weeks pre-culture group. 

 

Figure 5. Properties of engineered nasal cartilage grafts after 2 weeks of in vivo implantation.  

Wet weight fractions of GAG (A), total collagen (B), collagen type II (C), and modulus of elasticity in 

tension (D) or in bending (E) in grafts explanted after 2 weeks of implantation in nude mice. 

Constructs were generated by nasal chondrocytes, freshly seeded or pre-cultured for 2 or 4 weeks 

into Hyaff®-11 meshes prior to implantation. * = statistically significant difference from the freshly 

seeded group; °  = statistically significant difference from the 2 weeks pre-culture group. 
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