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I. Summary 
 

One of the hallmarks of a living organism is the ability to respond to intra- or 

extracellular changes. These responses involve panoply of enzymes mediating signals 

through the cell and regulating distinct cellular functions. Protein kinases and protein 

phosphatases are important antagonists in this finely balanced process. 

 

Protein phosphatase 2A (PP2A) is one of the major serine/threonine-specific 

phosphatases and has the most diverse substrate specificity of all protein serine/threonine 

phosphatases in the cell. PP2A consists of a core dimer made up of the 36-kDa catalytic 

subunit C tightly complexed with the scaffold regulatory subunit PR65/A. This complex 

associates with any one of the second or variable regulatory subunits PR55/B, PR61/B’, 

PR72/B” or PR110/B’’’ to form an extensive array of trimeric holoenzymes. PP2A 

impacts on all major signaling pathways by reversing the functions of protein kinases and 

is, therefore, considered to be a central regulator of eucaryotic signal transduction. 

Dysfunction of this molecule may have severe consequences for the organism and it is, 

therefore, not surprising that PP2A has become an important target in the investigation of 

various diseases. 

 

We investigated the function of invariant active-site residues of PP2A that are crucial for 

catalytic function of the enzyme. A baculovirus system using High Five insect cells was 

developed that allowed high level expression of active PP2A which was used for 

structural and functional analysis. Site-directed mutagenesis of PP2Ac and purification of 

mutant proteins from insect cells combined with functional analysis in yeast provided a 

powerful system for structure–function analysis of PP2Ac. Mutation of the active-site 

residues Asp88 or His118 within the human PP2A catalytic α subunit impaired catalytic 

activity in vitro and in vivo indicating an important role for these residues in catalysis. 

 

As PP2A containing the PR55/B regulatory subunit is known to be involved in the 

pathogenesis of neurodegenerative disorders, we characterized the PR55/B family with 

particular emphasis on its distribution and developmental regulation in the brain. The 
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study revealed new aspects of genomic organization and variability, as well as hitherto 

unknown expression patterns of the PR55/B family in the brain. We also found distinct 

subcellular localizations of PR55/B isoforms in areas of the brain known to be affected 

by Alzheimer’s disease. In addition, our results suggest a distinct role for PR55/Bα in 

astrocytosis, given that this isoform is highly expressed in activated astrocytes. 

Interestingly, astrocyte activation is an early step in the pathogenesis of Alzheimer’s 

disease and related disorders. 

 

In addition, we attempted to define the transcriptional effects of the PP2A-inhibitor 

okadaic acid (OA) on promoter complexes using Affymetrix GeneChips. Based on 

known target genes and further target genes that we identified, we suggest that OA 

mainly stimulates transcription activators and/or inhibits transcription repressors, 

probably by inhibition of PP2A. In order to investigate genes that are transcriptionally co-

regulated by OA, we developed a software tool we named “StampCollector” that predicts 

potential transcription factor pairs (TF pairs) involved in the regulation of genes based on 

their promoter sequences.  

 

Taken together, the results presented in this thesis underline the significance of PP2A in 

the regulation of cellular events. We combined various approaches in order to 

characterize the precise role of PP2A and its PR55/B regulatory subunits in gene 

regulation. Considering the putative role of PP2A in the pathogenesis of human disease, 

our results may lead eventually to the discovery of therapeutic agents for specifically 

counteracting PP2A dysfunction. 
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III. Abbreviations 
 
Aβ    β-amyloid peptide  
AD   Alzheimer’s disease  
AGC  Containing PKA, PKG and PKC families 
AP-1  Activator protein-1  
APC  Anaphase-promoting complex  
APCC  Adenomateus polyposis coli complex 
APP  Amyloid precursor protein 
BRD  Bromodomain kinase 
CAMK  Ca2+/calmodulin-dependent kinase  
Cav-1  Caveolin-1  
Cdc25   Cell-division-cycle 25 
CMGC  Containing CDK, MAPK, GSK3 and CLK families 
CDK  Cyclin dependent kinase 
DARPP-32  dopamine and adenosine 3’, 5’-monophosphate-regulated 

phosphoprotein 
DISC Death inducing signaling complex  
DNA-PK  DNA-dependent protein kinase  
DSP   Dual-specific protein tyrosine phosphatase 
EGFR   Epidermal growth factor receptor 
ERK   Extracellular signal-regulated kinase  
FHL2  Four-and-a-half-LIM-only protein 2  
HEAT   Huntingtin/elongation/A subunit/TOR 
HIV-1  Human immunodeficiency virus 1 
Ig   immunoglobulin 
IkB   Inhibitor of IkB 
IKK  IkB kinase 
IL   Interleukin 
IFN  Interferon  
JAK  Janus kinase 
JNK   c-Jun N-terminal kinase  
KAP   CDK-associated protein phosphatase 
KSR  Kinase suppressor of RAS 
MAP   Microtubule-associated protein  
MAPK  Mitogen Activated  Protein Kinase 
Mdm2  Murine double minute 2 
MEKK1  MAPK/ERK Kinase Kinase 1 
MKK4  Mitogen-activated protein kinase kinase 4  
MPF  M-phase-promoting factor 
MSK1  Mitogen and stress response kinase-1  
MT   Microtubules  
NF-AT  Nuclear factor of activated T cells 
NFkB  Nuklear factor kappa b 
NIPP-1  Nuclear inhibitor of protein phosphatase 1 
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NMDA  N-methyl-d-aspartate 
OA   Okadaic acid  
PAK  p21-activated kinase 
PDHK  Pyruvate dehydrogenase kinase 
PHF  Paired helical filaments  
PI3K  Phosphatidylinositol 3- Kinase  
PIAS  Protein Inhibitor of Activated STAT 
PIKK  PI3K-related kinase 
PKR   Double-stranded-RNA-dependent protein kinase 
PKB   Protein kinase B  
PKC   Protein kinase C  
PP    Protein phosphatase   
PPME  Protein phosphatase methylesterase  
PPMT   Protein phosphatase methyltransferase  
pRb  Retinoblastoma protein 
PRMT-1  Protein Arginine Methyltransferase-1  
PSTP  Protein serine-threonine phosphatase 
PTEN  Phosphatase and tensin homologue deleted from chromosome ten 
PTP  Protein tyrosine phosphatase  
SCA   Spinocerebellar Ataxia 
SCID   Severe combined immunodeficiency  
SH2  Src homology domain 2 
SHP2  Src homology domain 2 protein tyrosine phosphatase 
SMN  Survival of motor neurons 
STE  Homolog of yeast sterile 7, 11, 20 kinase 
STAT  Signal transducer and activator of transcription 
SUMO  Small ubiquitin-related modifier  
TAK1  TGFβ-activated kinase 1 
TC-PTP   T cell protein tyrosine phosphatase  
TCR  T cell antigen receptor  
TGFβ  Transforming growth factor β 
TOR  Target of rapamycin 
TPPII  Tripeptidyl peptidase II  
TPR  Tetratrico-peptide repeat 
TRIP-1  TGF-β receptor II interacting protein-1  
Ub    Ubiquitin  
UBC9  Ubiquitin conjugating enzyme 9  
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IV. General Introduction 
 

Reversible Phosphorylation 

The reversible phosphorylation of proteins controlled by protein kinases and protein 

phosphatases is a major regulation mechanism in all eucaryotic cells. All known protein 

phosphatases reverse the function of protein kinases in intracellular processes of 

eucaryotic cells by catalyzing the dephosphorylation of posttranslational modified serine, 

threonine and tyrosine residues in phosphoproteins (Fig. 1).  

 

Fig. 1: Reversible protein phosphorylation involves the function of protein kinases and 
protein phosphatases. 
 

Protein Kinases 

 

The human genome sequence has revealed that estimations from other species 

(Saccharomyces cerevisiae and Caenorhabditis elegans) of the total number of genes, 

and consequently the number of genes encoding protein kinases must be corrected 

downward. Of the 30,000 genes present in the human genome, about 518 are encoded as 

protein kinases. In the human kinome map they are clustered into 7 functional groups 

primarily by sequence comparison of their catalytic domains, aided by sequence similarity 

and domain structure outside of the catalytic domains, known biological functions, and a 

similar classification of the yeast, worm, and fly kinomes (Table 1) (Manning et al., 
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2002a; Manning et al., 2002b). Protein kinases control protein activity by catalyzing the 

addition of a negatively charged phosphate group to other proteins. They modulate a wide 

variety of biological processes, especially those carrying signals from the cell membrane 

to intracellular targets, and coordinate complex biological function. Based on their 

substrate specificity, protein kinases are divided into three major groups: (i) the protein 

serine/threonine kinases, (ii) the protein tyrosine kinases, and (iii) the dual-specific 

protein kinases that phosphorylate serine, threonine and tyrosine residues. As many as 

90% of phosphorylation events occur on serine, about 10% on threonine and less then 1% 

on tyrosine residues. The level of tyrosine phosphorylation is often higher in virus-

infected cells, linking tyrosine phosphorylation to cell proliferation and transformation 

(Sefton et al., 1981). In agreement with this, many receptor tyrosine kinases, which 

comprise most of the growth factor receptors, have been identified as oncogenes (Hunter 

and Cooper, 1985). 
 

Group Families Subfamilies 
Yeast 

kinases 
Worm

 kinases
Fly  

kinases
Human 
kinases

Human 
pseudogenes 

Novel human 
kinases 

AGC 14 21 17 30 30 63 6 7 

CAMK 17 33 21 46 32 74 39 10 

CK1 3 5 4 85 10 12 5 2 

CMGC 8 24 21 49 33 61 12 3 

Other 37 39 38 67 45 83 21 23 

STE 3 13 14 25 18 47 6 4 

Tyr kinase 30 30 0 90 32 90 5 5 

Tyr kinase-like 7 13 0 15 17 43 6 5 

RGC 1 1 0 27 6 5 3 0 

Atypical-PDHK 1 1 2 1 1 5 0 0 

Atypical-Alpha 1 2 0 4 1 6 0 0 

Atypical-RIO 1 3 2 3 3 3 1 2 

Atypical-A6 1 1 1 2 1 2 2 0 

Atypical-Other 7 7 2 1 2 9 0 4 

Atypical-ABC1 1 1 3 3 3 5 0 5 

Atypical-BRD 1 1 0 1 1 4 0 1 

Atypical-PIKK 1 6 5 5 5 6 0 0 

Total 134 201 130 454 240 518 106 71 

 
Table 1: Kinase distribution by major groups in human and model systems (taken from 
(Manning et al., 2002b)).  
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Protein Phosphatases  

About 150 genes in the human genome encode protein phosphatases, including up to 40 

protein serine/threonine phosphatases (Cohen, 2002). Protein phosphatases are classified 

into the broad classes of (i) the protein serine/threonine phosphatases and (ii) the protein 

tyrosine phosphatases, which include the dual-specific phosphatases dephosphorylating 

serine, threonine and tyrosine. It is now possible to discern several major subgroups in 

both classes (Fig.2).  

The abundant functions of protein phosphatases and their involvement in major signal 

transduction pathways make them important targets in the investigation of many different 

diseases. Defective or inappropriate signal transduction can result, for example, in 

diabetes, cancer and immune dysfunction. Also very important is phosphatase interaction 

with brain-specific phosphoproteins, the dysfunction of which may lead to severe 

disorders such as Alzheimer’s. Since deregulated protein kinases may function as 

dominant oncogenes, some protein phosphatases are expected to function as tumor 

suppressors. Some properties of major representatives of each subgroup will be discussed 

to illustrate their known structures and physiological roles (see Table 4). 

 

Fig. 2: Protein phosphatases are assigned to two classes, protein serine-threonine (PSTP) 
and protein tyrosine phosphatases (PTP). The PSTP class is further subdivided into the 
PPP and PPM families, and the PTP family consists of receptor- (RPTP), non receptor- 
(NPTP) and dual-specific protein tyrosine phosphatases (DSP). 
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Protein Serine/Threonine Phosphatases (PSTP) 

 

The major PSTPs were initially classified into two groups based on their ability to 

dephosphorylate the β subunit (type 1: PP1) or the α subunit (type 2: PP2A, PP2B and 

PP2C) of phosphorylase kinase. Another criterium was their sensitivity to inhibition by 

protein inhibitors 1 (I-1) and 2 (I-2) (type 1: sensitive, type 2: insensitive). The type 2 

phosphatases were further characterized by their substrate specificity, divalent cation 

dependency for activity and mechanisms of regulation. A more recent classification into 

the PPP (PP1, PP2A, PP2B) and the PPM subfamilies (PP2C) is based on the sequence 

homology of their catalytic subunits (Fig.3 and Fig. 4). A growing number of minor 

human protein phosphatases (PP4, PP5, PP6 and PP7) have been identified recently that 

belong to the PPP subfamily. 

 

Fig. 3: The protein serine-threonine phosphatases are classified into the PPP (PP1, PP2A, 
PP2B, PP4-7) and the PPM (PP2C) subfamilies based on the sequence homology of their 
catalytic subunits. 
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PPP Subfamily 

 

Protein phosphatase 1 (PP1 or PPP1) is an iron-zinc metalloenzyme present in the 

cytoplasm and the nucleus of eucaryotic cells (reviewed in (Ceulemans and Bollen, 2004; 

Cohen, 2002; Wera and Hemmings, 1995)). PP1 is involved in a variety of cellular 

processes, including dephosphorylation of several metabolic enzymes, regulation of 

glycogen metabolism (Suzuki et al., 2001), muscle contraction (Carr et al., 2002), Ca2+-

channels (Brown et al., 2000), protein synthesis (Keller and Krude, 2000), cell division 

and meiosis (Bayliss et al., 2003; Margolis et al., 2003). Three different genes give rise to 

the four isoforms (α,β,γ1,γ2)  encoding the 37-kDa catalytic subunit in mammalian cells. 

The three gene products share an amino acid sequence identity of >90% and are dispersed 

at different locations in the genome. The catalytic subunit (PP1c) exists as a heterodimer 

in vivo and has a distinct tissue distribution and subcellular localization. The crystal 

structures of PP1γ1 in complex with tungstate (Egloff et al., 1995) or PP1α in complex 

with microcystin (Goldberg et al., 1995) have been solved revealing important structural  

mechanisms of the regulation of PPP family members. More than 50 dimerization 

partners of PP1c have been identified to date that target a specific PP1 dimer to its 

restricted subcellular location and have distinct substrate specificities and diverse 

regulation. While only a small fraction of PP1 is inhibited by phosphorylation during the 

cell cycle, most forms of regulation and interaction are achieved through the regulatory 

subunits. This interaction occurs mainly through a short, conserved RVxF-binding motif 

initially identified in studies of the glycogen-targeting subunits (Cohen, 2002). A well-

studied example is the dimer PP1G containing the PP1c subunit and a glycogen-binding 

G subunit (Stralfors et al., 1985). This dimer regulates the dephosphorylation of glycogen 

phosphorylase and glycogen synthase. The G-subunit targets PP1 towards glycogen or 

sarcoplasmic reticulum and regulates cardiac muscle relaxation (Hubbard and Cohen, 

1989; Hubbard et al., 1990). The expression of PP1c in the brain plays a major role in 

neuronal development, signaling mechanisms and modulation of neuronal activity. The 

four isoforms of PP1c are expressed in different regions of the brain and are targeted to 

different neuronal cytoskeletal structures with high specificity. PP1c binds directly to 
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DARPP-32 (dopamine and adenosine 3’, 5’-monophosphate-regulated phosphoprotein), 

an isoform of protein inhibitor-1 (I-1), and is involved in the PKA/DARPP-32/PP1 

signaling cascade that regulates the functional status of neostriatal neurons (Yan et al., 

1999). In chromatin, PP1c is complexed with the RNA-binding, 39-kDa PP1 inhibitor 

NIPP-1 that was identified as a nuclear inhibitor of PP1c (Jagiello et al., 1997; Van 

Eynde et al., 1995). Phosphorylation of NIPP-1 by PKA disrupts the complex and 

activates PP1. This activating phosphorylation can be reversed by PP2A, suggesting that 

PP1 is regulated by PP2A (Elson, 1999). PP1 is also involved in regulating entry into M 

phase. The relevant mechanism responsible for inhibition of PP1 activity and successive 

prevention to enter M phase was not known until recently (Margolis et al., 2003) and will 

be described in more detail in the chapter “Cell Cycle Regulation by PP2A”.  

 

Fig. 4: Holoenzyme assembly of the four most abundant serine-threonine phosphatases. 
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Protein phosphatase 2A 

Will be discussed in a later chapter (Structure and Regulation of PP2A). 

 

Protein phosphatase 2B (PP2B, PPP3 or calcineurin) is a Ca2+-dependent PSTP with a 

narrower substrate specificity than PP1, PP2A and PP2C. This calmodulin-stimulated 

phosphatase is abundant in the brain (1% of total brain protein) but is also present in other 

tissues and is highly conserved between species. It is the only PSTP under 

Ca2+/calmodulin control and, therefore, important for coupling Ca2+ signals to cell 

responses (Klee et al., 1998). PP2B is active as a heterodimer containing a 60-kDa 

catalytic subunit (calcineurin A) and a 19-kDa Ca2+-binding regulatory subunit 

(calcineurin B). Three genes producing alternative splice variants encode six isoforms of 

the catalytic subunit (α1, α2, β1, β2, β3, γ)  that share an amino acid sequence identity of 

80% and also a high similarity with the catalytic subunits of PP1 and PP2A. The isoforms 

differ mainly at the C-terminus, which may explain their different functions, since the C-

terminus is involved in the regulation of activity in the absence of Ca2+ and calmodulin. 

The α and β isoforms are expressed in all tissues, with the highest level in the brain, 

whereas γ is expressed specifically in testis. All β isoforms contain a proline-rich region 

with 11 consecutive proline residues close to the N-terminus. The crystal structure 

identifies PP2B as an iron-zinc metallo-enzyme, since the catalytic subunit contains a 

binuclear metal center (Egloff et al., 1995; Kissinger et al., 1995). PP1 and PP2A are also 

metallo-enzymes with two metal atoms at the active site. Calcineurin B is encoded by two 

different genes giving rise to three isoforms: α1 is expressed in the brain as well as in 

other tissues, while α2 and β are testis specific. On the basis of the four Ca2+- binding 

domains, the regulatory subunit was originally identified as ‘EF-hand’ Ca2+-binding 

protein. The regulatory subunit also shares 35% sequence identity with calmodulin, which 

increases the activity of PP2B 20-fold when complexed with the catalytic subunit to form 

a heterotrimer. PP2B regulates the function of growth factors like interleukin-2, TNFα, 

NF-κB and TGFβ. It also promotes binding of hyperphosphorylated tau to the 

microtubule and inhibits the release of neurotransmitters and desensitizes postsynaptic 

NMDA receptor-coupled Ca2+-channels in neuronal cells (Lieberman and Mody, 1994).  
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Activation of the T-cell receptor by PP2B drives transcription of IL-2 and, subsequently, 

T-cell proliferation. The two pathways necessary for transactivation of the IL-2 gene can 

be activated by Ca2+ ionophores and phorbol esters (Nolan, 1994). The Ca2+- dependent 

pathway is mediated via activation of PP2B, which leads to dephosphorylation of the 

transcription factor NF-AT. Upon dephosphorylation, NF-AT is translocated to the 

nucleus, where it binds and activates the IL-2 promoter (Crabtree and Olson, 2002). PP2B 

is a target for two immunosuppressive drugs, cyclosporine A and FK506. Both 

immunosuppressants block T-cell activation and suppress cardiac hypertrophy when 

bound to PP2B as complexes with the immunophilin proteins cyclophilin and FKBP12, 

respectively. Inhibition of PP2B activity blocks NF-AT activation and leads to 

immunosuppression (Molkentin et al., 1998). 

 

Protein phosphatase 4 (PP4 or PPP4) is found in the cytoplasm and to a higher extent in 

the nucleus of all mammalian cells (Brewis and Cohen, 1992). PP4 associates with 

centrosomes, where it may participate in the initiation of microtubule growth and 

organization. Analysis of the homologue in C. elegans by RNA-mediated interference 

showed that PPP4c is also essential for formation of the mitotic spindle in mitosis and is 

required for sperm meiosis (Sumiyoshi et al., 2002). The 35-kDa catalytic subunit shows 

65% identity to PP2A and a 45% identity to PP1. Furthermore, the human catalytic 

subunit is 100% identical to the mouse protein sequence and 94% identical to the 

Drosophila protein. This high degree of sequence conservation suggests that PP4 

performs a critical function in the cell. 

PPP4 exists as high molecular mass complexes of 450-600 kDa, and two putative 

regulatory subunits have been identified to date: PPP1R1 (Kloeker and Wadzinski, 1999) 

and R2 (Hastie et al., 2000). The 105-kDa regulatory subunit PPP4R1 contains 13 non-

identical repeats similar to the 15 HEAT-repeats of the regulatory PR65/A subunit of 

PP2A. Although the structure of the PPP4 dimer is similar to the core AC unit of PP2A, 

the catalytic subunit of PP4 is unable to form a complex with the PR65/A subunit.  

The 50-kDa PP1R2 subunit targets the phosphatase to the centrosomes, suggesting that 

PPP4R2 also regulates the activity of PPP4c at centrosomal microtubule organizing 

centers (Hastie et al., 2000). Two novel `variable' regulatory subunit(s) Gemin3 and/or 
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Gemin4 have been identified that are components of the SMN complex. These two 

proteins were identified previously as components of the Survival of Motor Neurons 

(SMN) protein complex, which is functionally defective in the hereditary disorder spinal 

muscular atrophy (Hastie et al., 2000; Melki, 1997). 

One known function of PP4 is the association with and activation of the two transcription 

factors c-Rel and NF-κB (Hu et al., 1998). Similar to PP2A, PP4 forms a 

phosphorylation-independent complex with the α4 phosphoprotein. This complex is 

believed to be involved in a rapamycin-sensitive pathway that may regulate translation in 

response to nutrient availability (Chen et al., 1998; Kloeker et al., 2003). 

 

Protein phosphatase 5 (PP5 or PPP5) is a PSTP abundant in the nucleus and cytoplasm 

of mammalian, Drosophila and yeast cells (Chen et al., 1994b). The 58-kDa catalytic 

subunit is related to that of PP1, PP2A and PP2B but has an N-terminal extension of 200 

amino acids that serves both regulatory and targeting functions (reviewed in (Chinkers, 

2001). This extension contains three tetratrico-peptide repeat (TPR) motifs that have also 

been found in proteins required for mitosis, transcription and mRNA splicing (Goebl and 

Yanagida, 1991; Lamb et al., 1995). The repeats are involved in protein-protein 

interactions by forming a scaffold-like structure and are thought to target PP5 to its site of 

action. In addition, the TPR repeats are responsible for stimulating the phosphatase 

activity >25-fold by poly-unsaturated fatty acids such as arachidonic acid (Chen and 

Cohen, 1997; Sinclair et al., 1999; Skinner et al., 1997). 

PP5 is involved in the regulation of ribosomal RNA transcription by regulating RNA 

polymerase II activity in the nucleus. This enzyme also promotes cellular proliferation by 

binding to Hsp90 in the glucocorticoid/Hsp90/p23-heterocomplex and inhibiting and/or 

activating glucocorticoid-induced signaling pathways (Chen et al., 1996; Zuo et al., 1999). 

Putative roles for PP5 in cell cycle regulation (Chinkers, 2001) include promoting 

progression into S-phase by dephosphorylating p53 and regulating progression through 

mitosis by binding to CDC16 and CDC27 of the anaphase-promoting complex (APC). In 

view of these functions, it is assumed that PP5 could have an effect on the development of 

cancer cells. PP5 has been suggested to be involved in dephosphorylation of tau protein in 

vitro and it is assumed that that PP5 can also dephosphorylate tau in vivo, since a small 
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pool of PP5 is also associated with microtubules in PC12 cells and in neurons of 

postmortem human brain tissue. These results suggest that PP5 might be involved in the 

molecular pathogenesis of Alzheimer's disease (Gong et al., 2004; Liu et al., 2002a). PP5 

interacts with active forms of Galpha(12) and Galpha(13) through its TPR domain and its 

phosphatase activity gets activated about 2.5-fold. In addition, the active form of 

Galpha(12) translocates PP5 to the cell periphery and colocalizes with PP5 proposing a 

new signaling pathway of G(12) family G proteins (Yamaguchi et al., 2002). 

. 

Protein phosphatase 6 (PP6 or PPP6) is a PP2A-like PSTP initially identified in yeast 

cells. The PP6 35-kDa catalytic subunit is highly conserved between species and shares 

57% amino acid sequence identity with PP2A. PP6 is expressed in testis, heart and 

skeletal muscle in humans. PP6 interacts, like PP2A and PP4, with the α4 protein, 

suggesting that these phosphatases influence the mammalian rapamycin-sensitive pathway 

mediated by mTOR (Chen et al., 1998). PP6 has been identified in a complex with 

spliceosomal small nuclear ribonucleoproteins in lymphocyte extracts and is regulated by 

IL-2 in peripheral blood T cells, suggesting that PP6 is a component of a signaling 

pathway regulating cell cycle progression in response to IL-2 receptor stimulation (Filali 

et al., 1999). 

 

Protein phosphatase 7 (PPEF, PP7 or PPP7) is abundant in the retina and shows 35% 

similarity to other PSTPs. The 75-kDa enzyme, exclusively detected in retina and retinal-

derived retinoblastoma cells, has unique N- and C-terminal regions. The C-terminal 

region contains five Ca2+-binding sites (EF-hand motifs) but its structure is distinct from 

that of PP2B. The function of the N-terminal domain is not yet known. Recombinant PP7 

is Mg2+-dependent and activated by calcium through the EF-hand motifs. It is assumed 

that PP7 is involved in a genetic disorder called retinitis pigmentosa (RP) that results in 

degeneration of photoreceptor cells (Huang and Honkanen, 1998). 
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PPM Subfamily 

 

Protein phosphatase 2C (PP2C or PPM1) is a monomeric PSTP that does not form 

complexes with regulatory subunits. It shares sequence similarity with the other 

phosphatases over a limited 80-amino-acid region. Thus, it is assumed that the PPP and 

the PPM phosphatases are derived from different ancestral genes and may represent an 

example of convergent evolution in enzyme structure/function.  

Encoded by at least 10 different genes in mammalian cells, the PP2C isoforms share 20-

76% sequence identity. In addition, two splice variants of PP2Cα and six splice variants of 

PP2Cβ have been identified. All 10 distinct PP2C gene products, including PP2Cη, share 

six conserved motifs and have Mg2+- and/or Mn2+-dependent protein phosphatase 

activities against artificial substrates in vitro (Komaki et al., 2003). The catalytic subunits 

of PP2C α, β and γ are Mg2+ dependent, while the δ isoform is inhibited by Mg2+. Unlike 

PP2Cβ1, the β2 subtype is not widely expressed but is specifically found in brain and 

heart. PP2Cγ is mostly present in skeletal muscle, heart and testis. It is distinguishable 

from the other isoforms by its 54-residue acidic domain, 75% of which are glutamate and 

aspartate residues. The PP2Cδ isoform shares 30% amino acid sequence identity to the 

other PP2C isoforms but lacks 90-amino-acid domains at the C-terminal sequence usually 

conserved in other PP2C isoforms. 

PP2Cε is composed of 303 amino acids, and the overall similarity of amino acid sequence 

between PP2Cε and PP2Cα is 26%. PP2Cε inhibits the IL-1- and TAK1-induced 

activation of the mitogen-activated protein kinase kinase 4 (MKK4)-c-Jun N-terminal 

kinase or MKK3-p38 signaling pathway. This suggests that, in the absence of an IL-1-

induced signal, PP2Cε helps maintain the TGFβ-activated kinase 1 (TAK1) signaling 

pathway in an inactive state by associating with and dephosphorylating TAK1 (Li et al., 

2003b). 

PP2Cζ, which is composed of 507 amino acids, has a unique N-terminal region and is 

specifically expressed in testicular germ cells. The overall similarity of the amino acid 

sequence between PP2Cζ and PP2Cα is 22%. PP2Cζ is able to associate with ubiquitin 

conjugating enzyme 9 (UBC9) and the association is enhanced by co-expression of small 

ubiquitin-related modifier-1 (SUMO-1), suggesting that PP2Cζ exhibits its specific role 
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through its SUMO-induced recruitment to UBC9 (Kashiwaba et al., 2003). Although 

little is known about the regulation of PP2C, its activity is stimulated by unsaturated fatty 

acids. PP2C is able to dephosphorylate DARPP-32 at Ser137, which then no longer 

inhibits the dephosphorylation of Thr34, the regulatory site for inhibiting activity of 

DARPP-32 by PP2B. This process activates PP1, which is inhibited by Thr34 

phosphorylation of DARPP-32 (Huang et al., 1999). Calcium-calmodulin kinase II 

(CaMKII) is possibly a neuronal substrate for PP2C. It is dephosphorylated by PP2C at 

its autophosphorylation site (Fukunaga et al., 1993). 

 

 

Protein Tyrosine Phosphatases (PTP) 

 

The protein tyrosine phosphatases are intracellular and integral membrane phosphatases 

that dephosphorylate protein tyrosine residues. Tyrosine phosphorylation is known to be 

a control mechanism for growth, differentiation, metabolism, cell cycle regulation and 

cytoskeletal function (reviewed in (Andersen et al., 2001)). PTPs are abundant in 

mammalian and Drosophila cells and show positive and negative effects in various 

eucaryotic signal transduction pathways. The protein tyrosine phosphatases are classified 

into receptor (RPTP) or transmembrane PTPs, non-receptor (NPTP), also known as 

intracellular protein tyrosine phosphatases, and the dual-specific phosphatases (DSP). A 

further classification is based on their overall structure (Fig. 5). Since the identification of 

the first RPTP (CD45) and NPTP (PTP1B) in 1988, more than 100 PTPs have been 

cloned. Both groups of PTPs consist of at least one intracellular, conserved catalytic 

domain (~240 residues) harboring a consensus sequence ([I/V]HCxAGxxR[S/T]G), 

followed or preceded by a regulatory domain. The consensus PTP sequence is defined by 

these 11 amino acids, including the absolutely conserved cysteine residue necessary for 

phosphatase activity. PTPs dephosphorylate the autophosphorylated insulin receptor and 

epidermal growth factor receptor (EGF-R) in vitro as well as many other substrates. In 

addition, they function as “second messengers” of growth factor pathways and play an 

important role in neuronal development (reviewed in (Stoker and Dutta, 1998)). 
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Receptor Tyrosine Phosphatase Subfamily (RPTP) 

 

RPTPs consist of an extracellular variable N-terminal domain, a transmembrane domain 

and an intracellular region. The intracellular variable region is followed by one or two 

catalytic phosphatase domains separated by 50-100 amino acids. The catalytic domain 

(D1) adjacent to the membrane provides the main phosphatase activity, while the second 

catalytic domain (D2) may be involved in the regulation of enzyme activation, protein-

protein interaction, substrate specificity and presentation of substrates to the active 

catalytic domain. The RPTPs are classified based on structural differences in the 

extracellular domain. Six distinct groups of extracellular domains have been identified: 

 

Type I, represented by the CD45 (PTPRC) family, is exclusively expressed in 

hematopoietic cells. It is heavily glycosylated and has a cysteine-rich region next to a 

fibronectin (FN III)-like region in the extracellular domain. CD45 dephosphorylates 

members of the Src-tyrosine kinase family and induces T-cell activation. Dimerized 

CD45 is inactive and subsequently inhibits T cell signaling. Mutation or deletion in the 

CD45 gene leads to severe combined immunodeficiency disease (SCID) in humans and 

T- and B-lymphocyte dysfunction (Kung et al., 2000). CD45 can also function as a Janus 

kinase (JAK) tyrosine phosphatase that negatively regulates cytokine receptor signaling 

involved in the differentiation, proliferation, and antiviral immunity of haematopoietic 

cells (Irie-Sasaki et al., 2001; Irie-Sasaki et al., 2003). 

 

Type II RPTPs have one to three extracellular immunoglobulin (Ig)-like domains, in 

addition to the two intracellular domains, followed by up to 10 fibronectin III (FNIII)-like 

domains. RPTPµ (PTPRM), κ, λ and ψ  share an additional N-terminal meprin/A5/PTPmu 

(MAM) domain. Because of this pattern, the type II tyrosine phosphatases, like the 

neuronal-expressed LAR (PTPRF) (leukocyte antigen-related) and RPTPµ, are believed to 

function as cell-adhesion receptors, regulating tyrosine dephosphorylation in response to 

cell contact. An isoform of LAR has been identified as a receptor for the laminin/nidogen 

complex and may affect actin cytoskeleton structure, resulting in morphological changes in 

the cell (O'Grady et al., 1998). It was suggested, that density-dependent regulation of LAR 
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expression is mediated by functional E-cadherin and may play a role in density-dependent 

contact inhibition by regulating tyrosine phosphorylation in E-cadherin complexes 

(Symons et al., 2002). 

 

Type III phosphatase RPTPβ (PTPRB) contains only a single catalytic domain and an 

extracellular region with multiple FN III-like repeats. This extracellular domain functions 

as a ligand for neuronal receptor complexes, interleukin and growth hormones. The 

structurally related SAP-1 (PTPRH) consists of eight FN III-like repeats and multiple N-

glycosylation sites. SAP-1 is mainly expressed in brain and liver, but not in pancreas or 

colon. In contrast, SAP-1 is highly expressed in colon and pancreas cancer cell lines and in 

a high percentage of surgically excised colorectal cancers (Matozaki et al., 1994).  SAP-1 

induces apoptotic cell death by inhibition of cell survival signaling mediated by several 

kinases (PI 3-kinase, PKB, and ILK) and activation of a caspase-dependent proapoptotic 

pathway (Takada et al., 2002). In addition, SAP-1 plays also a potential role in 

hepatocarcinogenesis. SAP-1 expression is downregulated during the dedifferentiation of 

human hepatocellular carcinoma and therefore may play a causal role in disease 

progression (Nagano et al., 2003).  

 

Type IV phosphatases consist of the two catalytic domains and a glycosylated extracellular 

region. In order to function as a receptor, the enzymes need to associate with proteins that 

have receptor-binding domains. Like other RPTPs, RPTPα (PTPRA) is able to form 

inactive hetero- and homodimers, which may be important for down-regulation of the 

phosphatase activity. RPTPα  is assumed to dephosphorylate the Src proto-oncogene, 

thereby activating Src (Jiang et al., 1999). Catalytically defective RPTPα shows reduced 

binding to Src, providing another potential checkpoint for physiological regulation of the 

Src-family pathway. RPTPε (PTPRE) plays a role in tumorigenesis in a manner consistent 

with its upregulation in mammary tumors induced by the oncogenes ras and neu (Elson, 

1999). 

 

Type V enzymes represented by RPTPζ (PTPRZ1) and RPTPγ (PTPRG) have a 

regulatory carbonic anhydrase (CA)-like region and a single FN III-like domain in 
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addition to the two catalytic domains. Similar to the type III phosphatases, RPTPζ 

functions as a ligand for neuronal receptor complexes. The CA-like domain and the FN 

III-like domain are assumed to be necessary for binding to the contactin-protein 

complexes. RPTPγ  is believed to be a tumor suppressor gene, since it is located in a 

region frequently deleted in different types of renal and lung cancer (Panagopoulos et al., 

1996). 

 

Type VI phosphatases are expressed in the brain and pancreas and contain a unique N-

terminal extracellular domain with four cysteines and one intracellular catalytic domain. 

IA-2 (PTPRN) (islet cell antigen 512) and its homologue IA-2 beta (PTPRN2) are 

important autoantigens associated with insulin-dependent diabetes melitus (type 1 

diabetes) (Bonifacio et al., 1998; Hanifi-Moghaddam et al., 2003). 

 

Non Receptor Tyrosine Phosphatase Subfamily (NPTP) 

 

The non-receptor tyrosine phosphatases are found in the cytosol and consist of a conserved 

catalytic domain followed by a variable regulatory domain. While the catalytic domain is 

responsible for dephosphorylation of the target protein, the regulatory domain is involved 

in modulation of activity, subcellular localization and interaction with other proteins and 

substrates. NPTPs are mostly involved in mitogenic signaling pathways, where they 

dephosphorylate proteins localized between the membrane and the cytoskeleton. 

 

PTP1B (PTP1N), the prototype of cytoplasmic tyrosine phosphatases, has a regulatory 

domain that is necessary for localization to the endoplasmic reticulum (ER). Proteolytic 

cleavage of PTP1B leads to translocation of the catalytic domain from the membrane to the 

cytosol and subsequently to an increase in phosphatase activity. The crystal structure 

reveals, that the catalytic domain consists of a central twisted, mixed β sheet flanked by α 

helices. The conserved cysteinyl residue of the signature motif is located within a single 

loop at the base of a cleft on the protein surface (Barford et al., 1994). PTP1B was recently 

identified as a negative regulator of the insulin-signaling pathway, suggesting that 
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inhibitors of PTP1B support the treatment of type 2 diabetes (Harley and Levens, 2003; 

Kennedy, 1999). 

 

SHP1 (PTPN6) and SHP2 (PTPN11) phosphatases contain two Src homology-2 (SH2) 

domains N-terminal to the catalytic domain. These SH2 domains associate with 

phosphorylated tyrosine residues on target proteins and form active complexes. Elucidation 

of the crystal structure of SHP2 revealed how the two SH2 domains regulate the catalytic 

activity. The N-terminal SH2 domain acts as a conformational switch by binding and 

inhibiting the enzyme, or by binding phosphoproteins and activating the phosphatase. The 

second or C-terminal SH-2 domain is not involved in activation of the phosphatase, but 

contributes binding energy and specificity. SHP1 is highly expressed in hematopoietic 

cells, while SHP2 is expressed ubiquitously. Although the phosphatases share 55% 

sequence identity, they have distinct biological roles. SHP1 is a negative regulator of 

hematopoietic signaling pathways downstream of cytokine receptors, oligomeric receptors 

and receptor tyrosine kinase. SHP2 is involved in the MAP kinase (MAPK) signaling 

pathway. The autophosphorylated epidermal growth factor receptor (EGFR) activates the 

MAPK signaling pathway until it is dephosphorylated and subsequently deactivated by 

SHP2. MAPK in turn deactivates SHP2 by phosphorylation on threonine, thus closing an 

autoregulatory positive feedback loop. Interaction of EGFR and SHP2 in a growth-factor 

signaling pathway (Agazie and Hayman, 2003) is assumed to be involved in the 

development of defective cardiac semilunar valvulogenesis, an aortic valve disease (Chen 

et al., 2000). 

 

PTP-PEST (PTPN12) was found to be a PTP that may provide proline-rich binding sites in 

its PEST domain for SH3- or WW-domain containing proteins such as p130Cas. The PEST 

motif is also assumed to be involved in protein degradation, since it has been identified in 

proteins with a short half-life. Dephosphorylation of p130Cas may be one of the 

physiological roles of PTP-PEST, controlling tyrosine-dependent signaling events and cell 

migration (Garton and Tonks, 1999). Serine phosphorylation of ShcA controls the ability of 

its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the 
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dephosphorylation and down-regulation of ShcA after insulin stimulation (Faisal et al., 

2002). 

 

PTPH1 (PTPN3) and PTP-MEG (PTPN4) have cytoskeleton-associated regulatory motifs 

that are also found in band 4.1, ezrin-, moesin-, radixin- and talin-directed binding of PTP 

to the interface between plasma membrane and cytoskeleton structures (Takeuchi et al., 

1994). 

 

Dual-Specific Phosphatase Subfamily (DSP) 

Dual-specific phosphatases are able to dephosphorylate tyrosine, as well as threonine and 

serine residues of phosphoproteins. The structure of these enzymes is more related to the 

PTPs, since they all exhibit the PTP fingerprint sequence containing the conserved 

cysteine residue.  

 

VH1 was the first identified DSP, encoded by the late H1 gene of the vaccinia virus, 

which dephosphorylates serine and tyrosine residues in a viral histone-like protein.  

VHR (DUSP3), a VH1-related DSP, has been identified as a negative regulator of 

extracellular regulated kinases such as ERK1, ERK2 and JNK (Todd et al., 2002). VHR is 

constitutively expressed, localized to the nucleus (Todd et al., 1999) and gets activated by 

ZAP70 kinase, a key component of the signaling machinery for the T cell antigen receptor 

(TCR) (Alonso et al., 2003). DUSP5 has been suggested to be a direct target of p53, in a 

novel mechanism by which p53 might negatively regulate cell-cycle progression by 

downregulating mitogen- or stress-activated protein kinases (Ueda et al., 2003). 

  

MKP-1 (DUSP1) is a VH1-related MAP kinase phosphatase involved in signaling of the 

mitogen-activated protein kinase. This is expressed in human skin fibroblasts and 

dephosphorylates the threonine and tyrosine residues of activated MAP kinases, thus 

inactivating them (Hirsch and Stork, 1997). In converse, activated ERK1/2 can trigger 

MKP-1 degradation via the ubiquitin-proteasome pathway, thus facilitating long-term 

activation of ERK1/2 against cytotoxicity (Lin et al., 2003). 
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Cdc25 (CDC25C) with its three human isoforms (cell-division-cycle 25 A, B, C) and 

multiple splice variants is involved in the control of the cell cycle by dephosphorylating 

the threonine and tyrosine residues of cyclin-dependent kinases. Cdc25A is a potential 

human oncogene based on its ability to transform primary mouse embryo fibroblasts in 

cooperation with activated Ras or loss of RB (Galaktionov et al., 1995). In addition, 

Cdc25A and Cdc25B are overexpressed in a variety of human cancers (Broggini et al., 

2000).  Cdc25A is involved in the control of the G1/S transition, Cdc25B is active during 

G2 phase, before Cdc25C is activated at the G2/M transition) (Bulavin et al., 2003; Giles 

et al., 2003) (see also “Cell Cycle Regulation by PP2A” and (Margolis et al., 2003)). 

Cdc25B may trigger the activation of an auto-amplification loop required for entry into 

mitosis before being degraded (Nilsson and Hoffmann, 2000). 

 

PTEN (phosphatase and tensin homologue deleted from chromosome ten) is a tumor 

suppressor gene, also called MMAC (mutated in multiple advanced cancers) or TEP-1 

(TGF-β-regulated and epithelial cell-enriched phosphatase). It encodes a dual-specific 

protein phosphatase/lipid phosphatase that modulates signal transduction pathways 

involving lipid second messengers. Since PTEN dephosphorylates 3-phosphorylated 

phosphoinositides such as PtdIns-3,4,5-P3, it is able to negatively regulate the activity of 

Akt/PKB and is involved in negative regulation of the modulation of cell migration. 

PTEN is one of the most common targets of mutation in human cancer, with a mutation 

frequency comparable to that of p53. PTEN loss of function results in formation of tumors 

in different tissues and is involved in, for example, glioblastoma, endometrial carcinoma 

and prostate cancer. Germ-line mutations are known in PTEN that cause three rare 

autosomal dominantly inherited cancer diseases showing benign tumors in which 

differentiation is normal but cells are not organized: Cowden disease, Lhermitte-Duclos 

disease and Bannayan-Zonana syndrome (Cantley and Neel, 1999; Sulis and Parsons, 

2003).  

 

EPM2A, a PTP with predicted dual-specificity phosphatase activity is involved in 

Lafora’s disease (LD), an autosomal recessive form of progressive myoclonus epilepsy. 

Mutations identified in the EPM2A gene are predicted to cause deleterious effects in the 
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presumed protein (laforin), resulting in LD (Ianzano et al., 2004; Minassian et al., 1998). 

Recently, EPM2B a second gene associated with this disease was identified which 

encodes malin, a putative E3 ubiquitin ligase.  Laforin together with malin, are suggested 

to operate in related pathways protecting against polyglucosan accumulation and epilepsy 

(Chan et al., 2003). 

 

Fig. 5: The protein tyrosine phosphatases are classified into receptor- (RPTP), 
nonreceptor- (NPTP) and into dual-specific phosphatases (DSP). A further classification 
is made based on their overall structure (adapted from (Andersen et al., 2001)). 
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Structure and Regulation of PP2A 

 

Holoenzyme Formation 

Protein phosphatase 2A (PP2A or PPP2) is a trimeric holoenzyme displaying the most 

diverse substrate specificity of all PSTPs identified so far. Present in the nucleus and 

cytoplasm of all eucaryotic cells, PP2A is involved in a large number of cellular processes, 

such as the regulation of signal transduction pathways, DNA replication and transcription, 

RNA splicing and translation, cell cycle progression, morphogenesis, (neuronal) 

development and transformation. PP2A consists of a core dimer consisting of the 36-kDa 

catalytic subunit (C) complexed in vivo with the scaffold regulatory subunit (PR65/A).  
 

Fig. 6: Holoenzyme assembly of PP2A. The catalytic C subunit (Evans et al., 1999) and 
the structural A subunit (Groves et al., 1999) form the core dimer of the phosphatase. Any 
of the variable regulatory subunits bind to the core dimer in order to activate or inhibit 
(viral proteins) the phosphatase. 
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This dimer associates with any one of the second regulatory subunits (PR55/B, PR61/B’ 

PR72/B” and PR93/110/B’’’) to form heterotrimeric holoenzyme complexes (Fig.6). The 

question of whether the dimer exists in vivo has not yet been answered satisfactorily, 

although it was reported to have been purified from various tissues. On the one hand it 

was shown that the dimer was generated during purification of the trimer due to 

dissociation or proteolysis of the B subunit, whereas others show the presence of the 

dimer in an early step of the purification (Cayla et al., 1990; Cohen, 1989; Depaoli-Roach 

et al., 1994). However, the level of AC dimer has been estimated to be around 30% of all 

cellular PP2A (Kremmer et al., 1997). 

 

Catalytic C Subunits 

The two closely related genes of the catalytic subunit Cα and Cβ are ubiquitously 

expressed and share 98% sequence identity to each other and about 40% identity to PP1C 

(Arino et al., 1988; Green et al., 1987; Stone et al., 1988). Interestingly, PP2ACα is about 

10 times more abundant than the β isoform (Khew-Goodall and Hemmings, 1988). 

Expression from the PP2ACα gene promoter is about 10-fold stronger than from the 

PP2ACβ promoter, which may account for the difference in protein levels (Khew-Goodall 

et al., 1991). The two isoforms are encoded by two distinct genes (Khew-Goodall and 

Hemmings, 1988), localized to human chromosome 5q23-q31 and to 8p12-p11.2 (Jones et 

al., 1993). The sequence of PP2A is highly conserved across evolution from plants to 

human (Arino et al., 1993; Cohen et al., 1990; Cormier et al., 1991; Kinoshita et al., 1990; 

MacKintosh et al., 1990; Orgad et al., 1990; Sneddon et al., 1990; Van Hoof et al., 1995). 

 

Regulatory PR65/A Subunits 

The two PR65/A isoforms (α and β) share 86% sequence identity and have an unusual 

structure of 15 pairs of antiparallel helical HEAT repeats (huntingtin/elongation/A 

subunit/TOR) (Hemmings et al., 1990). This motif consists of 39-41 amino acid 

sequences forming superimposed α-helices that elongate into a hook-like structure with a 

scaffolding function for other interacting proteins (Andrade and Bork, 1995; Groves et al., 

1999). The catalytic C subunit binds to C-terminal repeats 11 - 15 and regulatory B 
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subunits bind to N-terminal repeats 1 – 10 (Ruediger et al., 1994; Ruediger et al., 1992). 

Comparable to the catalytic subunit, both isoforms are ubiquitously expressed (Hemmings 

et al., 1990) and with the exception of Xenopus laevis oocytes, PR65/Aα seems to be 

more abundant than the β isoform (Hendrix et al., 1993). Recent investigations identified 

somatic alterations in the human PR65/Aβ sequence in 15% of primary lung and colon 

tumor-derived cell lines and one deletion mutation in PR65/Aβ was shown to restrict 

binding of PR65/Aβ to the catalytic subunit (Wang et al., 1998). Because of the 

suggestion that PP2A acts as a tumor suppressor gene, further implications of the above 

results will be discussed in the chapter “PP2A and disease”. 

 

Variable B Regulatory Subunits 

 

PR55/B 

The four unrelated and variable regulatory subunits (B, B’, B’’, B’’’) are encoded by 14 

distinct genes and have been described in mammalian cells (Barford, 1996; Millward et 

al., 1999; Strack et al., 1999; Yan et al., 2000). The B regulatory subunits are not only 

striking because of their high subunit diversity, but also for their lack of sequence 

similarity to each other and their ability to interact with similar PR65/A regions. They are 

also responsible for substrate specificity and subcellular localization of PP2A and are 

involved in developmental regulation, cell fate determination, complex formation and cell 

division. Four isoforms with a sequence identity of >90% to each other encode the family 

of mammalian PR55/B. They display a tissue-specific distribution: PR55/Bα is present in 

all tissues, Bβ is expressed in brain and (mouse) testis, Bγ is brain specific and Bδ is a 

newly identified isoform present in all tissues. (Healy et al., 1991; Mayer et al., 1991; 

Schmidt et al., 2002; Strack et al., 1999; Strack et al., 1998; Zolnierowicz et al., 1994). 

Two splice variants of the mouse PR55/Bβ have been identified, PR55/Bβ.1 and 

PR55/Bβ.2, encoding N-terminally spliced forms that preserve the ORF and result in a 

protein in which the first 23 amino acids are replaced by five and 26 novel amino acids, 

respectively (Schmidt et al., 2002). The diversity, developmental regulation and 

distribution of the regulatory B subunits will be discussed in the results section. All 

PR55/B regulatory subunits were identified as WD-40 repeat motif proteins (Fig. 7). One 
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repeat of this structural motif consists of 40-60 minimally conserved amino acids typically 

between GH and WD dipeptides. The propeller-like structure is formed of four stranded 

antiparallel β-sheets and at least four repeats are necessary to form a circular structure. 

Depending on the stringency of the parameters, the B regulatory subunits contain 5-7 of 

this imperfect repeat in mouse and human. All WD-40 proteins show this structural 

relationship, but the functional relationship remains unclear, although it is assumed that 

the motifs serve as docking sites for other interacting proteins. (Schmidt et al., 2002; 

Smith et al., 1999). In this regard, PR55/Bα and PR55/Bβ have been shown to interact 

with the cytoplasmic domain of TGF-β receptors and to be a direct target for their kinase 

activity (Griswold-Prenner et al., 1998). The TGF-β receptor II interacting protein-1 

(TRIP-1), a protein largely composed of WD-40 repeats, also associates with the related 

type II TGF-β receptors (Chen et al., 1995). This suggests that binding of both PR55/B 

and TRIP-1 to the TGF-β receptors is mediated by their WD-40 repeat motifs. 

 

 
Fig. 7: Structure prediction of B-family regulatory subunits. A, the amino acid sequence 
of Bγ was aligned according to boundaries of the seven WD repeats and component β-
strands (d and a-c) provided by the Pfam web application. Sequence conservation of WD 
repeats are gray and black shading. B, β-strand arrangement of the α-propeller fold. C, 
ribbon view of the Bγ subunit model based on the Gβ1 crystal structure (taken from 
(Strack et al., 2002)). 
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PR61/B’ 

Five genes encoding isoforms of the PR61 family (B' or B56) have been cloned so far 

(α, β, γ, δ, ε) and these are localized on human chromosomes 1q41, 11q12, 3p21, 6p21.1 

and 7p11.2-p12, respectively. These five isoforms undergo alternative splicing to generate 

as many as 11 isoforms (Andjelkovic et al., 1996b; Csortos et al., 1996; McCright et al., 

1996a; McCright et al., 1996b; McCright and Virshup, 1995; Tanabe et al., 1996; Tehrani 

et al., 1996). The B’ subunits share an 80% sequence identity in the core domain, whereas 

the N- and C-termini are less conserved. Similar to the PR55/B subunits, it is assumed 

that the conserved region serves as a binding site for PP2A holoenzyme formation, 

whereas the divergent N- and C-termini are involved in the regulation of substrate 

specificity and subcellular localization. This notion is supported by the fact that PR61/B’α, 

PR61/B’β and PR61/B’ε are found in the cytoplasm, whereas PR61/B’γ is localized to the 

nucleus and PR61/B’δ is found in both cytoplasm and nucleus. In addition, all isoforms 

show a tissue-specific expression pattern and are all phosphoproteins, with the exception 

of PR61/B’γ1 (Csortos et al., 1996; McCright et al., 1996b; McCright and Virshup, 1995; 

Tehrani et al., 1996). 

 

PR72/B” 

The B'' subunits are encoded by a gene generating two isoforms (PR72/B” and PR130/B”) 

by alternative splicing. PR130/B” is ubiquitously expressed, whereas PR72/B” expression 

is restricted to heart and muscle (Hendrix et al., 1993). PR72/B” contains a potential 

nuclear localization signal that may account for the presence of PP2A in the nucleus. A 

related gene producing PR59/B” and a third gene encoding PR48/B” have been identified 

by yeast two-hybrid screening. PR59/B” shares 56% sequence identity and plays a role in 

cell cycle control by dephosphorylating p107, a pocket protein of the retinoblastoma 

family (Voorhoeve et al., 1999). It is ubiquitously expressed except in muscle. PR48 

shares sequence identity of 68% with PR59 and is highly homologous to PR72. PR48 is 

localized to the nucleus and inhibits cell cycle progression by dephosphorylating cdc6. 

This suggests that the selective interaction between a PR48-containing PP2A trimer and 

cdc6 controls initiation of DNA replication (Farhana et al., 2000). Interestingly, analysis 
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of the human EST-database and human PR48 gene structure revealed that the human 

PR48 clone published is incomplete. Instead, it is proposed that the gene encodes a 

protein of 70 kb rather then 48 kb and should be renamed PR70/B” (Farhana et al., 2000). 

 

PR110/B’’’ 

Striatin (PR110) and S/G2 nuclear autoantigen (SG2NA; PR93) have been identified as 

new members of a putative third B regulatory subunit family (B’’’), based on a conserved 

epitope shared with the B´ subunits. Both proteins were identified as WD-40 repeat 

proteins, but have no sequence homology to the PR55/B subunits. Striatin is localized to 

the postsynaptic densities of neural dendrites and SG2NA is nuclear. Other unknown 

proteins have been identified in the corresponding trimers, which leads to the assumption 

that both function as a scaffold for other interacting proteins (Moreno et al., 2000). 

 

Posttranslational Modifications 

 

Reversible covalent modification of proteins is an important step in cellular signaling. The 

list of posttranslational modifications includes phosphorylation, acetylation, lipid 

modifications, glycosylation, and methylation. These modifications are involved in a 

variety of molecular functions, but are especially important in regulating protein-protein 

interactions and formation of signaling complexes. 

 

Phosphorylation 

The catalytic subunit undergoes reversible phosphorylation. The phosphorylation occurs 

on Tyr307, which is located in the conserved C-terminal part of PP2AC, and results in 

inactivation of the phosphatase. Okadaic acid (OA) enhances tyrosine phosphorylation, 

suggesting that PP2A can rapidly re-activate itself by auto-dephosphorylation.  

This also indicates  that PP2A can act as a phosphotyrosine phosphatase.  

In vitro, the catalytic subunit of PP2A can be phosphorylated by the tyrosine kinases 

pp60v-src, pp56lck, EGFR and insulin receptor (Chen et al., 1992). In vivo, tyrosine 

phosphorylation was detected in activated human T cells and in fibroblasts overexpressing 

pp60v-src. In addition, stimulation with growth factors such as EGF or serum (Chen et al., 
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1994a), interleukin-1 or TNFα (Guy et al., 1995), and insulin (Begum and Ragolia, 1996; 

Begum and Ragolia, 1999; Srinivasan and Begum, 1994{Begum, 1996 #289) also 

induced inactivation of PP2A by tyrosine phosphorylation. This interesting in vivo 

regulation model places PP2A in an important position to accelerate the transmission 

through signaling cascades. In addition, PP2AC undergoes phosphorylation on an 

unidentified threonine residue in response to autophosphorylation-activated protein kinase 

(Guo and Damuni, 1993). This phosphorylation leads to the inactivation of both the 

phosphoserine/threonine (Guo and Damuni, 1993) and the phosphotyrosine phosphatase 

activities of PP2A (Damuni et al., 1994). The physiological implications of the 

inactivation of PP2A have to be further investigated. In addition, members of the PR61/B’ 

family can be phosphorylated. PKR (double-stranded-RNA-dependent protein kinase) 

interacts with and phosphorylates PR61/B’α and increases the activity of the PR61/B’α-

containing trimer towards PKC-phosphorylated myelin basic protein and PKR-

phosphorylated eIF2α in vitro (Xu and Williams, 2000). Phosphorylation of PR61/B’δ by 

PKA in vitro does not affect association with the core dimer, but changes the substrate 

specificity of the phosphatase (Usui et al., 1998). 

 

Methylation 

Taking phosphorylation as the most abundant posttranslational modification of proteins, 

several of the less prevalent modifications, including methylation, also play important 

roles in signaling events (Fig. 8) (reviewed in (Mumby, 2001)). Not only the small 

GTPases like Ras, Rac, Rho, and Cdc42 but also the γ subunit of heterotrimeric GTP-

binding proteins (G proteins) and the catalytic subunit of PP2A are methylated signaling 

molecules. 

The six C-terminal residues (TPDYFL) are conserved in all PP2A catalytic subunits and 

are important for interaction of the core dimer with the regulatory subunits. The catalytic 

subunit of PP2A is carboxymethylated by a unique methyltransferase (PPMT) on the C-

terminal Leu309 residue that is specific for the catalytic subunits of PP2A, PP4, and PP6 

(Kloeker and Wadzinski, 1999; Lee and Stock, 1993{Xie, 1994 #277; Xie and Clarke, 

1994). The methylation is reversible and can be removed by a specific methylesterase 

(PPME) (Lee et al., 1996). PPMT and PPME appear to selectively interact with and 
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reversibly methylate the AC dimer and not the free catalytic subunit. The regulatory 

subunits are not found in complexes with PPME and the core dimer but, in contrast, they 

compete with PPME and protect the holoenzymes from demethylation (Tolstykh et al., 

2000). Methylation of the PP2A catalytic subunit selectively enhances association of the 

core dimer with the PR55/B and PR61/B' regulatory subunits (Millward et al., 

1999{Virshup, 2000 #281; Virshup, 2000), but it does not directly alter the activity of the 

PP2A catalytic subunit (Tolstykh et al., 2000). The binding of other regulatory subunits 

like PR72/B”, striatin, SG2NA or polyomavirus middle T tumor antigen to the core dimer 

are unaffected (De Baere et al., 1999; Yu et al., 2001). The different methylation 

dependencies of interacting proteins have important consequences for the equilibrium 

between core dimer and various holoenzymes, such as altered targeting of PP2A and 

subsequent protein dephosphorylation. 

Increased methylation of the AC dimer would favor association with methylation-

dependent proteins and decrease the formation of complexes with methylation-

independent interacting proteins. 

 

Fig. 8: Reversible methylation regulates the assembly and distribution of PP2A 
holoenzymes. The core dimer is methylated (Me) by a specific protein phosphatase 
methyltransferase (PPMT). The AC dimer is demethylated by a specific protein 
phosphatase methylesterase (PPME). (taken from (Mumby, 2001)). 
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Protein Phosphatase Inhibitor Okadaic Acid 

 

The naturally occurring phosphatase inhibitor OA has become an essential tool for the 

investigation of protein phosphatases in signaling events in vivo (Fernandez et al., 2002). 

This potent tumor promoter is a C38 polyether fatty acid produced by marine 

dinoflagellates and the causative agent of diarrhoetic shellfish poisoning (Bialojan and 

Takai, 1988). OA induces various biological effects in vivo, including promotion of 

tumor growth (Suganuma et al., 1988), prolonged smooth muscle contraction (Shibata et 

al., 1982) and promotion of genomic instability (Kohno and Uchida, 1987; Nagao et al., 

1995; Tohda et al., 1993). Malignant transformation and cell growth is found to be both 

promoted and inhibited, depending on the system used (Katoh et al., 1990). The variety 

of effects caused by OA is presumably a result of the down-regulation of OA-sensitive 

protein phosphatases. Treatment of SCC-25 carcinoma cells with OA enhanced the 

expression of mRNAs and proteins of both Fas receptor and Fas ligand. OA treatment did 

not only lead to translocation of NFkB from the cytosol to the nucleus, its levels also 

increased, whereas the amount of IkB-α decreased. This suggests that NF-kB activated at 

early stages by OA stimulated the promoter activity of Fas receptor in the cells leading to 

apoptosis (Fujita et al., 2004). Another apoptotic effect of was shown in HL-60 cells, 

where OA induces bcl-2 mRNA destabilization which is associated with decreased 

binding of trans-acting factors to the AU-rich element (ARE) (Sengupta et al., 2003). 

Inhibition of PP2A by OA in metabolically competent rat brain slices induced a dramatic 

increase in the phosphorylation/activation of ERK1/2, MEK1/2, and p70 S6 kinase as 

well as the phosphorylation of tau at several sites (Pei et al., 2003). In addition, several 

other phosphatase inhibitors have been identified and described, including calyculin A 

(Ishihara et al., 1989), microcystin-LR (Honkanen et al., 1990), tautomycin (MacKintosh 

and Klumpp, 1990), nodularin (Honkanen et al., 1991), cantharidin (Li and Casida, 1992). 

Treatment of cells with OA leads to concentration-dependent inhibition of 

serine/threonine protein phosphatases and often results in apoptosis. While PP2A is 

inhibited most efficiently (Ki 0.2 nM), PP1 is 100-fold less sensitive to OA in vitro. The 

effect on PP2B is even lower and PP2C is insensitive to the treatment. Since OA does not 
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penetrate cell membranes rapidly to accumulate on the catalytic subunit of the 

phosphatases, it is very difficult to control the actual concentration of the compound in 

vivo. However, conditions for the selective inhibition of PP2A in cells have been 

established and 1 µM OA applied to the living cell is sufficient to specifically block 

PP2A activity (Favre et al., 1997). We have to consider that less-abundant protein 

phosphatases like PP4, PP5 and PP6 are as sensitive to OA as PP2A and, thus, that the 

cellular effects of OA can no longer be entirely attributed to PP2A inhibition. On the 

other hand, the physiological role of these novel phosphatases is still unclear and they 

represent only a minor fraction of total cellular phosphatase activity (Chen et al., 1998; 

Fernandez et al., 2002; Usui et al., 1998). The use of OA as specific inhibitor has become 

interesting in terms of drug development (Honkanen and Golden, 2002; McCluskey et al., 

2002). Unfortunately, OA induces tumor formation in a mouse skin two-stage model 

(Suganuma et al., 1988), which almost immediately disqualifies OA for therapeutical use 

in patients. 

 38



 

 

Biological Role of PP2A 

 

Cell Cycle Regulation by PP2A 
 

 

Fig. 9: Holoenzymes of PP2A involved in the regulation of cell cycle. Substrates of 
different PP2A holoenzymes are indicated in brackets (adapted from (Zolnierowicz, 
2000)).  
 

Cell cycle progression is regulated by the activity of Cdc/cyclin (or CDK/cyclin) 

complexes that are controlled by reversible phosphorylation. PP2A plays both a negative 

and a positive role in the regulation of cell cycle progression, especially during mitosis, 

due to the multiplicity and substrate specificity of the trimeric holoenzyme (Fig. 9). For 

example, a mutation in yeast PR55/B, displays a cold-sensitive phenotype with a defect in 

cell septation and separation (Healy et al., 1991). Further analysis of this mutant revealed 

that the PR55/B subunit is required for a kinetochore/spindle checkpoint (Wang and 

Burke, 1997). In Drosophila, the absence of the PR55/B protein results in an abnormal 

sister chromatid separation called abnormal anaphase resolution (aar) (Mayer-Jaekel et al., 

1993).  
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PP2A is reported to play a negative role in the transition from G2 to M phase (Fig. 10), 

which is controlled by the CDC2–cyclin B complex also called MPF (M-phase-promoting 

factor)(reviewed in (Millward et al., 1999)). MPF phosphorylates specific substrates, such 

as histone H1, lamins, vimentin, cyclins and microtubule-associated proteins. This 

explains the initiation of mitotic processes such as nuclear breakdown, chromosome 

condensation and spindle formation. The kinase activity of the complex is absolutely 

dependent on the phosphorylation of Thr-161 on CDC2, whereas phosphorylation of two 

additional sites, Thr-14 and Tyr-15, inhibits the activity of this enzyme. PP2A can 

regulate the activity of CDC2 and related kinases by at least three different mechanisms.  

(i) PP2A and KAP (CDK-associated protein phosphatase) have been suggested to be 

active phosphatases at Thr-161 of CDC2, although it is more likely that PP2A inhibits the 

pathway rather than being involved in the direct dephosphorylation of Thr-161 (Lee et al., 

1994b; Poon and Hunter, 1995). (ii) PP2A can inactivate CDC2 indirectly by both the 

activation of WEE1 kinase, which phosphorylates CDC2 at Tyr-15 (Borgne and Meijer, 

1996; Mueller et al., 1995), and (iii) by the inactivation of dual-specificity phosphatase 

CDC25, which removes phosphate from both Thr-14 and Tyr-15 of CDC2 (Clarke et al., 

1993). In addition, PP2A or PP-1 may also be involved in exit from mitosis, since cyclin 

degradation and the subsequent inactivation of MPF (by dephosphorylation of Thr-161) 

at the metaphase/anaphase transition are affected by an OA-sensitive PPase (Felix et al., 

1990; Yamashita et al., 1990). The regulatory functions of PP2A and the important 

protein kinases involved at the G2/M transition are summarized in Figure 10. In order to 

achieve these functions, PP2A has to be inactivated for progression into mitosis and 

reactivated at the exit from mitosis. As mentioned above, PP2A and probably PP1 play a 

role in maintaining G2 arrest by preventing activation of MPF complex. The transcription 

factor HOX-11 was reported to interact with and inhibit PP2Ac and PP1c (see also Table 

3). Expression of HOX-11 inhibits PP2Ac, disrupts G2 checkpoint and allows cells to 

proceed inappropriately through M phase. This is suggested to promote genomic 

instability and oncogenesis (Kawabe et al., 1997). A recent report shows, that PP1 is 

required for dephosphorylation of the Cdc2-directed phosphatase Cdc25 at Ser287 (of 

Xenopus Cdc25; Ser216 of human Cdc25C), a site that suppresses Cdc25 during 

interphase. Moreover, PP1 recognizes Cdc25 directly by interacting with a PP1-binding 
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motif in the Cdc25 N-terminus. They also show that dissociation of 14-3-3 protein from 

Cdc25 upon entry into mitosis leads to Ser287 dephosphorylation in an phosphatase-

independent pathway (Margolis et al., 2003). 

 

Fig. 10: PP2A and regulation of the G2/M transition. 
The most important protein kinases and protein phosphatases implicated in the activation 
of MPF (Cdc2/cyclin), governing the G2/M transition, are depicted. In early G2, PP2A 
(ABαC) is required to keep MPF in its inactive precursor form by inhibiting the activities 
of both CAK and Wee1. PP2A also inhibits complete Cdc25 phosphorylation (and 
activation) by counteracting the Plx1 kinase. Finally, PP2A is also positively implicated 
in exit from mitosis through its role in cyclin B destruction and by dephosphorylating 
specific mitotic substrates of activated MPF (taken from (Janssens and Goris, 2001)). 
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Since different functions of PP2A are exerted by its regulatory subunits, it is not 

surprising that two members of the PR72/B'' family, namely PR48 and PR59, have been 

involved in the dephosphorylation of cell cycle regulators. PR59/B" specifically targets 

p107, a retinoblastoma protein (pRB)-related protein, for dephosphorylation by PP2A and 

inhibits cell proliferation by causing cells to accumulate in G1 (Voorhoeve et al., 1999). 

Dephosphorylation of p107 in late G1 phase inhibits the release and the activation of E2F 

transcription factors. PR48 targets PP2A to dephosphorylate CDC6 and blocks cell cycle 

progression, causing a G(1) arrest. Phosphorylation of CDC6 by CDK2 is required for 

initiation of DNA replication and the export of CDC6 from the nucleus. Since PR48 is 

localized to the nucleus, the role of a PR48-containing trimer could be to maintain levels 

of dephosphorylated CDC6 until replication is triggered by CDK2 (Yan et al., 2000). In 

contrast, PP2A appears to have activating effects during the early phases of G1 by 

affecting the activity of G1-specific CDK complexes. In particular, the inhibition of 

PP2A activity results in decreased expression of cyclin D2, cyclin E, and cyclin A, which 

are essential regulatory subunits of the respective CDK complexes. The unavailability of 

cyclins results in severely impaired CDK activity and the cells become arrested in the G1 

phase of the cell cycle (Schonthal and Feramisco, 1993; Yan and Mumby, 1999). This 

positive function of PP2A obviously contrasts with its well-established negative role 

during the G2/M transition, but could be due to the actions of distinct PP2A holoenzymes 

that are targeted at different G1 versus G2/M phase substrates. 
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PP2A and Apoptosis 

 

Apoptosis is an active intracellular signal transduction pathway by which the cell 

regulates its own death. It is required for the elimination of harmful cells and for cell 

turnover during embryonic development and tissue homeostasis. Dysfunction of the 

tightly regulated apoptotic signal transduction pathway can lead to cancer, auto-immune 

diseases, and neurodegenerative disorders (Bratton and Cohen, 2001; Rathmell and 

Thompson, 2002). Apoptosis is regulated by reversible phosphorylation of apoptotic 

signaling proteins and is, therefore, controlled by the activity of protein kinases and 

protein phosphatases. PP2A plays an important role the regulation of apoptosis by its 

interaction with caspase-3 (Allan et al., 2003; Santoro et al., 1998), Bcl2-family (Deng et 

al., 1998; Ruvolo et al., 1999) and adenovirus E4orf4 protein (Kleinberger and Shenk, 

1993) (Marcellus et al., 2000; Shtrichman et al., 1999; Shtrichman et al., 2000).  

Caspase-1 and caspase-3 are two important factors involved in apoptosis (Fig. 11). 

Caspase-3 is not only responsible for the cleavage of enzymes involved in DNA repair, 

such as poly (ADP-ribose) polymerase and DNA-dependent protein kinase (DNA-PK), 

but is also an interaction partner of the PR65/A subunit of PP2A (Santoro et al., 1998). 

Cleaving of PR65/A by caspase-3 results in increased PP2A activity of the catalytic 

subunit, which is measured by decreased phosphorylation of MAPK and correlates with 

the commitment of cells to apoptosis by specific activation of caspase-3 (Allan et al., 

2003; Santoro et al., 1998). However, the physiological targets of this free pro-apoptotic 

PP2A catalytic subunit are not known. As already shown for the PP2A-α4 complex in the 

TOR signal transduction pathway (Chung et al., 1999), it might be possible that the free 

catalytic subunit associates with other regulatory proteins altering the PP2A activity 

towards specific substrates. 
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Fig. 11. Schematic presentation of the caspase cascades activated by apoptotic signals. In 
the extrinsic apoptotic pathway, ligand binding to death receptors induce the formation of 
a Death Inducing Signaling Complex (DISC), leading to the activation of initiator 
caspases 8 or 10. These caspases cleave the pro-apoptotic Bcl-2 family member Bid, 
activating the intrinsic pathway or directly cleave and activate the effector caspases 3 and 
7. In the intrinsic signaling pathway, apoptotic signals sensed by the Bcl-2 family at the 
mitochondrial membrane result in the release of cytochrome c. Cytochrome c and ATP 
bind to Apaf-1, eliciting the recruitment of pro-caspase 9 in this apoptosome complex, 
causing its activation. Both initiator caspases of the intrinsic and extrinsic signaling 
pathway cleave and subsequently activate effector caspases, responsible for auto-
amplification of the cascade as well as execution of the apoptotic response by cleaving 
cellular substrates involved in the apoptotic morphology changes of the cell. One of the 
cellular substrates for effector caspase 3 is shown to be the A/PR65 subunit of PP2A. 
Degradation of this regulatory PP2A subunit alters the PP2A activity of the catalytic 
subunit (whether or not associated with a specific regulatory protein) towards unidentified 
substrates, resulting in the promotion of the apoptotic response (taken from (Van Hoof 
and Goris, 2003)). 
 

The Bcl-2 family consists of pro- and anti-apoptotic proteins localized at the 

mitochondrial outer membrane (Fig.12). Bad is a pro-apoptotic member whose function is 

regulated by reversible phosphorylation. Bad gets phosphorylated at Ser-112, Ser-136 
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and/or Ser-155 by different pro-survival kinases such as PKA and PKB, which mediate 

binding of Bad to 14-3-3 proteins. This interaction confines Bad to the cytosol, altering 

translocation to the mitochondrial membrane. Bad cannot heterodimerize with Bcl-2 and 

fails to inhibit the anti-apoptotic protein. In the absence of survival stimuli, Bad is 

dephosphorylated by PP2A and leads to inhibition of Bcl-2, leading to apoptotic cell death 

(Datta et al., 2000; Tzivion and Avruch, 2002). The activity of the anti-apoptotic protein 

Bcl-2 is regulated by phosphorylation on Ser70. This phosphorylation is required for the 

apoptosis-suppressing ability and can be reversed by PR61/B’ containing PP2A (Deng et 

al., 1998). Since PP2A activates pro-apoptotic (Bad) and inhibits anti-apoptotic proteins 

(Bcl-2) of the Bcl-2 family, it is generally assumed that PP2A has a positive regulatory 

function in apoptosis. Nevertheless, this pro-apoptotic function of PP2A stands in contrast 

to results obtained from RNAi knockdown experiments in Drosophila, which show that a 

PR61/B’ containing PP2A is inhibitory for apoptosis (Li et al., 2002; Silverstein et al., 

2002). This suggests different regulatory mechanisms and substrates in the Drosophila 

apoptotic signaling pathway and that of mammals. 

In this context, interaction of PP2A with other proteins modulates its activity towards 

specific substrates in apoptosis. Cyclin G interacts with PP2A and recruits it to 

dephosphorylate the G-binding partner Mdm2 at Thr216 (Okamoto et al., 1996; Okamoto 

et al., 2002). Mdm2 is known to be a negative regulator of p53, inducing cyclin G 

transcription. Dephosphorylation of this Mdm2 site by cyclin G1-directed PP2A leads to 

Mdm2 activation followed by degradation of p53 (Okamoto et al., 2002). This might 

explain the anti-apoptotic effect of B'/PR61 containing PP2A in Drosophila. It is clear 

that the diversity of the incoming signals will ultimately alter the balance between pro-

survival and pro-apoptotic signaling. PR55/Bβ2 has been reported to colocalize with 

mitochondria in neuronal PC12 cells due to its subcellular targeting signal containing N-

terminus. Inducible or transient expression of PR55/Bβ2 specifically accelerates 

apoptosis in response to growth factor deprivation, suggesting that alternative splicing of 

a mitochondrial localization signal generates a PP2A holoenzyme involved in neuronal 

survival signaling (Dagda et al., 2003).  

 45



 

 

Fig. 12: Regulatory role of PP2A in the apoptotic signal transduction pathway upstream 
of the Bcl-2 family. Ceramide induces the expression and translocation of the B'/PR61 
subunit, resulting in the assembly of a mitochondrial PP2A trimer dephosphorylating and 
inactivating the anti-apoptotic Bcl-2. PP2A is also a Bad phosphatase, keeping this pro-
apoptotic protein in a dephosphorylated and mitochondrial located state, where it is 
functional in inhibiting Bcl-2. The net result is the release of cytochrome c, required for 
the apoptotic response. The composition of the Bad PP2A trimer is not yet defined (taken 
from (Van Hoof and Goris, 2003)). 
 

A cell that is infected with a virus undergoes apoptosis due to its defense mechanism. In 

contrast, viral infection can also inhibit this apoptotic response, driving cell proliferation 

and high yields of progeny. The virus inhibits apoptosis by encoding viral Bcl-2 and 

Caspase inhibitors. The virus will terminate infected cells in a later stage, allowing virus 

spread (Roulston et al., 1999; Teodoro and Branton, 1997). Several viral proteins such as 

adenovirus E4orf4 and simian virus small t antigen target PP2A to alter its activity, 

resulting in induction of apoptosis as a regulatory mechanism, enhancing virus spread 

(Fig. 13). The adenovirus E4orf4 protein interacts with PR55/Bα or through some of the 

PR61/B´ subunits and activates PP2A. However, only the interaction with PR55/Bα is 
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essential for the induction of apoptosis (Kleinberger and Shenk, 1993) (Marcellus et al., 

2000; Shtrichman et al., 1999; Shtrichman et al., 2000). The PR61/B' regulatory subunit 

bound to E4orf4 might be involved in down-regulation of virus-stimulated transcription 

(Bondesson et al., 1996; Kleinberger and Shenk, 1993) and of alternative splicing 

(Kanopka et al., 1998). 

 

Fig. 13:. Interaction of viral proteins with different PP2A holoenzymes (taken from (Van 
Hoof and Goris, 2003)). 
 

PP2A and Yeast 

 

Saccharomyces cerevisiae and Schizosaccharomyces pombe have been used to investigate 

the biological role of PP2A. The catalytic subunits of S. cerevisiae are encoded by PPH21 

and PPH22 (Ronne et al., 1991), the structural PR65/A subunit by TPD3 (van Zyl et al., 

1992; van Zyl et al., 1989), and only two regulatory subunits by CDC55 (PR55/B) and 

RTS1 (PR61/B’) (Healy et al., 1991; Shu et al., 1997; van Zyl et al., 1992). In addition to 
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the two catalytic subunits, there are three 2A-like phosphatases encoded by PPH3, PPG1, 

and SIT4 (Ronne et al., 1991; Sneddon et al., 1990; Sutton et al., 1991). 

Although S. cerevisiae has a much smaller set of possible PP2A heterotrimers, mutations 

in the above-mentioned five genes elicit complex pleiotropic phenotypes. Deletion of both 

catalytic subunits PPH21 and PPH22 generates cells that are temperature sensitive, have 

decreased growth rates, and exhibit cell wall and polarity defects, whereas single 

disruptions produce no mutant phenotype (Lin and Arndt, 1995; Ronne et al., 1991). Pph3 

phosphatase activity is believed to be responsible for sustaining cell growth in the absence 

of PP2A. Deletion of PPH3 in combination with pph21∆ pph22∆ is lethal (Ronne et al., 

1991), whereas inactivation of Pph3 alone is without any effect on cell growth (Hoffmann 

et al., 1994). Sit4 normally associates with a family of related proteins termed Sap 

proteins (Luke et al., 1996) and promotes progression through G1 via regulation of G1 

cyclin production (Fernandez-Sarabia et al., 1992; Sutton et al., 1991). Yeast cells have 

another 2A-related phosphatase encoded by PPG1, whose inactivation reduces glycogen 

accumulation in yeast cells but does not affect cell growth (Posas et al., 1993). PP2Ac and 

Sit4 have been found to form complexes with a phosphatase-associated protein termed 

Tap42 (Di Como and Arndt, 1996). Association with Tap42 prevents PP2Ac from 

interacting with Tpd3 and Cdc55, suggesting that Tap42 competes with Tpd3 and Cdc55 

for PP2Ac binding (Jiang and Broach, 1999). The Tor-dependent phosphorylation of 

Tap42 seems to be important for the interaction of Tap42 with phosphatases, because 

inactivation of the Tor protein prevents formation of the Tap42-phosphatase complexes 

(Di Como and Arndt, 1996). The Tap42-phosphatase complexes have been demonstrated 

to play a major role in Tor-dependent phosphorylation of many factors downstream of the 

Tor proteins. Rapid dephosphorylation of these factors is found to accompany the 

dissociation of Tap42 from phosphatases (Bertram et al., 2000; Schmidt et al., 1998). This 

observation has led to the suggestion that Tap42 acts as a phosphatase inhibitor (Jacinto et 

al., 2001). In a recent study it was shown, that the interaction between Tap42 and the 

catalytic subunits of PP2A is required for cell cycle-dependent distribution of actin. 

Further, PP2A activity might play a negative role in controlling the actin cytoskeleton and 

might be involved in regulation of the G2/M transition of the cell cycle (Wang and Jiang, 

2003). Mutagenesis experiments and functional analysis of human PP2A in a yeast system 
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(Evans and Hemmings, 2000a; Evans and Hemmings, 2000b; Evans et al., 1999; Myles et 

al., 2001) reveal that the invariant C-terminal leucine-309, the site of regulatory 

methylation, is dispensable for protein function, whereas the L199P mutant protein is 

catalytically impaired despite binding to the yeast PR65/A subunit Tpd3p (Evans et al., 

1999). Also, mutations of other key residues such as Y127N (abolished PP2A function), 

H118N, D88N, V159E (all impaired catalytic activity), F232S, P240H (both temperature-

sensitive impaired catalytic activity), Y307D (catalytically active, but impaired protein 

function), and T304D (impaired protein function) are important for PP2A function (Evans 

and Hemmings, 2000a). 

Cells null for the structural A subunit TPD3 are temperature sensitive, exhibit RNA-

processing defects, and become multibudded at low temperatures (van Zyl et al., 1992; 

van Zyl et al., 1989). Mutations in the B regulatory subunit CDC55 result in highly 

elongated, multiply budded cells, which is an indication of delayed cytokinesis (Healy et 

al., 1991). In addition, multiple roles in mitosis have been suggested for CDC55. For 

example, cdc55 mutants lack a functional kinetochore/spindle assembly checkpoint, 

whereas their cell cycle progression in response to DNA damage or an inhibitor of DNA 

synthesis is not affected (Minshull et al., 1996; Wang and Burke, 1997). Instead of cyclin 

B destruction and sister chromatid separation, this defective spindle assembly checkpoint 

in cdc55 mutants allows inactivation of Cdc2-cyclin B by tyrosine phosphorylation 

(Minshull et al., 1996). The other regulatory B’ subunit Rts1p is necessary for regulating 

responses to a variety of stressful cellular conditions, for proper nucleus and spindle 

orientation, and for control of cyclin B2 degradation (Shu and Hallberg, 1995; Shu et al., 

1997). A novel mechanism was suggested to generate active PP2A in vivo. Deletion of 

the yeast phosphotyrosyl phosphatase activator (PTPA) homolog generated a PP2A 

catalytic subunit with a conformation different from the wild-type enzyme, as indicated 

by its altered substrate specificity, reduced protein stability, and metal dependence 

(Fellner et al., 2003). 
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PP2A and Drosophila 

 

The use of Drosophila melanogaster as a model organism has produced additional 

insights into the role of PP2A in developmental processes, cell cycle regulation and 

intracellular signaling. In contrast to the situation in yeast and mammalian cells, only 

PP2AC (Orgad et al., 1990), the A/PR65 (Mayer-Jaekel et al., 1992), the B/PR55 (Mayer-

Jaekel et al., 1993) and the B´/PR61 (Berry and Gehring, 2000) subunits have been cloned. 

With the exception of B´/PR61, all the subunits are encoded by a single gene. Ablation of 

either the catalytic subunit or PR65/A causes the disappearance of all PP2A subunits in an 

RNA interference approach. Also, targeting all four of the Drosophila PP2A regulatory 

subunits caused the disappearance of both the A and C subunits, indicating that only the 

trimer is stable in Drosophila cells. In addition, knockdown of C, A or PR55/B subunits 

increases insulin-mediated ERK activation, confirming that PP2A is a negative regulator 

of the MAPK pathway. In contrast to its known role in apoptosis, a C, A or PR61/B’ 

subunit ablated form of PP2A reduces cell number and activates apoptosis and apoptosis-

related markers (Caspase-3) (see also chapter ‘PP2A and apoptosis’). Unlike PP2A, 

knockdown of PP4 caused only a slight reduction in cell growth but had no effect on 

MAPK signaling or apoptosis. Depletion of PP5 had no effects on MAP kinase, cell 

growth, or apoptosis in Drosophila cells (Avdi et al., 2002; Silverstein et al., 2002). 

Mutants of the PP2A catalytic subunit die in embryogenesis around the time of 

cellularization, exhibiting overcondensed chromatin and a block in mitosis between 

prophase and the initiation of anaphase. The fact that they also possess multiple 

centrosomes with disorganized, elongated arrays of microtubules suggests that PP2A is 

required for the attachment of microtubules to chromosomal DNA at the kinetochore and 

the proper initiation of anaphase (Snaith et al., 1996). Moreover, mutation of PP2AC 

stimulates signaling from Ras1 but impairs signaling from Raf, suggesting that PP2A 

regulates the Ras1 cascade both negatively and positively, by dephosphorylating factors 

that function at different steps in the cascade (Wassarman et al., 1996).  

A cell cycle function of PP2A is suggested not only by the fact that levels of the C and A 

subunit of PP2A change during development in a tissue- and time-specific manner 

(Mayer-Jaekel et al., 1992). Mitotic defects are shown by two Drosophila mutants, termed 
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aar1 (abnormal anaphase resolution) and twinsP (Fig. 14). Both mutations are defective in 

the gene encoding B/PR55. aar1 mutants show intact lagging chromatids separated from 

their sisters but remaining at the position formerly occupied by the metaphase plate. In 

addition, they display anaphase figures that show bridging chromatin with two 

centromeric regions (Gomes et al., 1993). These defects can be rescued by re-introducing 

one allele of full-length PR55/B (Mayer-Jaekel et al., 1993). The second mutation twinsP 

contains morphologically abnormal imaginal discs where part of the wing imaginal disc is 

duplicated in a mirror-image fashion (Uemura et al., 1993).  

These data suggest that a PR55/B-containing trimer directs substrate specificity and is 

involved in cell fate determination and cell cycle regulation. This role in cell cycle 

regulation is indicated by the fact that increase in the severity of the mutation correlates 

with a decrease in phosphatase activity towards p34cdc2 phosphorylated proteins (Mayer-

Jaekel et al., 1994). In addition, mutations in PR55/B suppress a mks mutant-dependent 

metaphase arrest and permit an alternative means of initiating anaphase. It also suggests 

that the anaphase-promoting complex (APC) is normally required to inactivate wild-type 

PR55/B (Deak et al., 2003).  

The Drosophila PR61/B’ regulatory subunit termed widerborst (wdb) is suggested to be 

involved in organizing tissue polarity proteins into proximal and distal cortical domains, 

thus determining wing hair orientation. It is also needed to generate the polarized 

membrane outgrowth that becomes the wing hair (Hannus et al., 2002). 
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Fig. 14: Drosophila PR55/B mutant defects (taken from (Mayer-Jaekel and Hemmings, 
1995)) 
 

 

PP2A Mutant Mice 

 

Since PP2A plays an important role in a diverse set of cellular functions, it is expected 

that deregulation of this phosphatase will have severe consequences on different 

organisms. In this context, it has been shown that mice with a disrupted Cα subunit of 

PP2A die at embryonic day 5.5-6.5. Despite the fact that Cα shares a sequence identity of 

97% and that total levels of PP2A catalytic subunit are comparable with those in wild-

type embryos, Cβ is not able to compensate for the loss of Cα after E6.5. Degenerated 

embryos can be recovered even at embryonic day 13.5, indicating that, although 

embryonic tissue is still capable of proliferating, normal differentiation is significantly 

impaired. The primary germ layers ectoderm and endoderm are formed, but mesoderm 

formation is absent in degenerating knockout embryos (Gotz et al., 1998). The functional 
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difference between PP2ACα and PP2ACβ may be explained by their distinct subcellular 

localizations in the early embryo: while Cα was found predominantly in the plasma 

membrane, Cβ was localized mainly within the cytoplasm and the nucleus (Gotz et al., 

2000). Cα is in a stabilizing complex containing E-Cadherin and β-catenin, whereas E-

cadherin and β-catenin in the knockout embryos are redistributed to the cytoplasm, 

resulting in degradation of β-catenin in both the presence and the absence of a Wnt signal 

(Gotz et al., 1998) (Gotz et al., 2000). This might be an indication that embryonic 

lethality results from defects in cell adhesion caused by insufficient levels of membrane-

associated E-cadherin and β-catenin (Zolnierowicz and Bollen, 2000), which is in 

agreement with a proposed role of PP2A in Wnt/β-catenin signaling (Hsu et al., 1999; 

Ikeda et al., 2000; Seeling et al., 1999).  

No reports of PP2A regulatory subunit knockout in mouse have been published so far. 

Attempts in our laboratory and in the group of our collaborator J. Goetz from the 

University of Zurich have not been successful so far. Splice variants with variable first 

exons more than 50 kb apart from each other and the possibility of splicing out targeted 

regions had significant consequences for the design of the targeting strategy (Schmidt et 

al., 2002). So far, only PR61/B’γ has been expressed in transgenic mice, which die 

neonatally and lack normal lung structure (Everett et al., 2002). β-catenin is absent in 

PR61/B’γ transgenic embryos, suggesting a role for PR61/B’γ in Wnt signaling during 

lung airway morphogenesis.  

Two dominant negative transgenic mouse lines have been established with mutations in 

the catalytic subunit. One carries a mutation in the catalytic site (L199P) and is 

catalytically impaired, probably due to disruption of metal- or substrate-binding 

implicated in catalytic function rather than due to a disturbed subunit interaction through 

misfolding. The reduced activity is associated with altered compartmentalization, 

hyperphosphorylation and ubiquitination of tau, resembling a key pathological finding in 

Alzheimer's disease (AD) (Kins et al., 2001). In addition, reduced PP2Ac activity in 

L199P transgenic mice causes the activation of ERK and JNK, which results in nuclear 

accumulation of their substrates, Elk-1 and c-Jun. This suggests that PP2A is a negative 

regulator of the ERK and JNK signaling pathways in vivo (Kins et al., 2003). The second 

mutation (L309A) is located at the very C-terminus of Cα and inhibits PP2A activity by 
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preventing the binding of the PR55/B regulatory subunits to the PP2A core dimer. Similar 

to the catalytic mutation, tau protein is hyperphosphorylated and translocated to the 

somatodentritic domain of neurons, suggesting a role for PR55/B in the tau pathogenesis 

of AD (Gotz and Schild, 2003).  

Transgenic mice were generated expressing high levels of a dominant negative mutant of 

the PR65/A subunit in heart, skeletal muscle, and smooth muscle. The mutant PR65/A 

carrying a deletion of repeat 5 competes with the endogenous A subunit for binding the C 

subunit, but does not bind B subunits. The generated transgenic mouse has an increased 

ratio of the core enzyme relative to the holoenzyme in the heart. Already at day 1 after 

birth, transgenic mice have an increased heart-to-body weight ratio that persists 

throughout life. End-diastolic and end-systolic dimensions are increased and fractional 

shortening is decreased. In addition, the thickness of the septum and of the left ventricular 

posterior wall is significantly reduced. This phenotype is considered to be a form of 

dilated cardiomyopathy that frequently leads to premature death. (Brewis et al., 2000). 

 

PP2A Substrates and Complex Formation 

 

PP2A regulates many cellular processes by reversing the actions of protein kinases. In 

addition, many kinases are regulated by reversible phosphorylation and turn out to be 

substrates or form stable complexes with protein phosphatases. PP2A appears to be the 

major kinase phosphatase in eucaryotic cells that down regulates activated protein 

kinases. Thus, PP2A is likely to play an important role in determining the activation 

kinetics of protein kinase cascades. In contrast, the activity of the PP2A and other 

phosphatases can be regulated by kinases as well, which would lead, in the case of PP2A, 

to inhibition. More than 30 protein kinases are known to be regulated by the action of 

PP2A (Table 2) and many of them form stable complexes in vitro (Table 3) and some in 

vivo. Most of the kinases regulated by PP2A belong to distinct families of protein kinases, 

such as the AGC family (PKA, PKB, PKC, p70S6K), the CMGC family (ERK, MAPK, 

CDK) and the CAMK family (CaMK, IkK). With some exceptions (CK1, Raf-1, GSK-3, 

MST1, Wee1), all protein kinases get inactivated upon PP2A-mediated 

dephosphorylation (reviewed in (Millward et al., 1999)). 
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For example, PKB is stimulated in cells upon treatment with PP2A-specific inhibitors 

OA (Andjelkovic et al., 1996a) and calyculin A (Meier et al., 1998), indicating its 

negative regulation by PP2A. PKCα is dephosphorylated by a B/PR55-containing trimer 

in vitro (Ricciarelli and Azzi, 1998) and in cell extracts by a membrane-bound, B/PR55-

containing PP2A trimer (Hansra et al., 1996). Similar to PKB, MEK1 and ERK-family 

kinases are activated after treatment of cells with OA (Gause et al., 1993; Sonoda et al., 

1997) and dephosphorylated by PP2A in vitro (Anderson et al., 1990; Gomez and Cohen, 

1991; Haccard et al., 1990).  

CyclinB-Cdc2 is dephosphorylated by PP2A, since it was shown that it is activated in 

vivo by OA and other PP2A-specific inhibitors (Lee et al., 1991a). As mentioned above, 

some of the substrates of PP2A also form stable complexes with different subunits of the 

PP2A trimer. For example, CKIIa the catalytic subunit of CK2, forms a complex with the 

PP2A core enzyme via the C subunit, and stimulates PP2AC activity towards Raf-

phosphorylated MEK1 (Heriche et al., 1997). Expression of activated Raf results in 

disruption of the CKIIa-PP2A association (Lebrin et al., 1999), which may be a necessary 

step for maximal activation of the MAPK pathway by Raf. A complex between 

Ca2+/calmodulin-dependent kinase IV (CaMKIV) and PP2A dephosphorylates and 

inactivates a kinase, acting as a negative regulator of CREB-mediated transcription in 

Jurkat T cells (Westphal et al., 1998). 

In rat brain extracts, PAK1, PAK3 (Westphal et al., 1999), as well as p70S6 kinase 

(Peterson et al., 1999; Westphal et al., 1999) form complexes with PP2A. In addition, 

dephosphorylation of p70S6 kinase by purified PP2A leads to inactivation of the kinase 

(Ballou et al., 1988). Another PP2A-interacting kinase is the Janus kinase JAK2, which 

associates transiently with PP2A, PI-3K, and Yes (Src family member), upon interleukin-

11 stimulation of adipocytes (Fuhrer and Yang, 1996). 

The IkB kinase complex (catalytic IKKα and β subunit and regulatory IKKγ subunit) 

phosphorylates IkB, an inhibitory subunit of NF-kB, and targets it for polyubiquitination 

and proteasome-mediated degradation. IKKα is activated upon exposure of cells to OA 

and is inactivated by PP2A in vitro (DiDonato et al., 1997). IKKγ binds Tax 

(transactivator/oncoprotein of HTLV-I) and PP2A, and forms a stable ternary complex 

via a tripartite protein-protein interaction. Tax-mediated constitutive IKK activation is 
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due in part to a direct interaction between Tax and IKKγ (Chu et al., 1998; Chu et al., 

1999; Good and Sun, 1996; Jin et al., 1999; Sun and Ballard, 1999; Sun et al., 1994; Xiao 

and Sun, 2000). It is assumed that IKKγ-associated PP2A is responsible for the rapid 

deactivation of IKK, and inhibition of PP2A by Tax in the context of IKK-PP2A-Tax 

ternary complex leads to constitutive IKK and NF-kappa B activation (Fu et al., 2003). 

PP2A interacts directly with axin and GSK3 in the β-catenin-containing adenomateus 

polyposis coli (APC)-complex (Fig. 15). The APC protein is mutated in over 80% of 

sporadic colon cancers and it is thought that the PP2A-APC complex plays a role in the 

turnover of the β-catenin protein, whose stabilization itself plays an important role in the 

development of cancer (Polakis, 2000). The PR61/B’-containing PP2A trimer functions 

as scaffold protein for axin, GSK3 and β-catenin assembly (Seeling et al., 1999). Within 

this complex, GSK3 is constitutively active and phosphorylates β-catenin, which is 

promoted by axin. The inactive PP2A is not able to dephosphorylate its substrates due to 

inhibitory regulation of catalytic PP2A activity by PR61/B’ (Ratcliffe et al., 2000). This 

leads to β-catenin degradation and inhibits the Wnt signaling pathway (Hsu et al., 1999). 

In the presence of a Wnt signal, Dsh inhibits GSK3, which leads to accumulation of 

unphosphorylated β-catenin, axin and APC. Activated PP2A complexed to axin may 

contribute directly to this state by dephosphorylating GSK3-phosphorylated members of 

the complex. β-catenin can then translocate to the nucleus and activate Wnt target genes 

(Kikuchi, 2000). PP2A complexed to axin can directly dephosphorylate GSK3-

phosphorylated APC and axin (Ikeda et al., 2000). 
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Fig. 15: In the absence of a Wnt signal, β -catenin is present in two distinct complexes. 
One complex is located at the plasma membrane, where PP2ACα stabilizes the β-catenin–
E-cadherin complex, which itself mediates interactions with the actin cytoskeleton. The 
other complex is located in the cytoplasm and contains axin, APC, GSK-3b and PP2A 
(AB´Cβ). Within this complex, GSK-3β is thought to be constitutively active, resulting in 
the phosphorylation of β-catenin, APC and axin. In this case, the associated PP2A 
activity may not be high enough to counteract GSK-3β-mediated phosphorylation. This 
may be achieved by negative regulation of PP2AC activity by B´/PR61 – hence the PP2A 
AB´C trimer is denoted 'inactive'. Phosphorylated β-catenin is unstable, becomes 
ubiquitinated and is eventually degraded by proteasomes. In the presence of a Wnt ligand, 
GSK-3β activity in the APC–β-catenin–axin–GSK-3β–PP2A complex is blocked by 
Disheveled, resulting in the accumulation of unphosphorylated axin, APC and β-catenin. 
PP2A may contribute to this state by directly dephosphorylating APC and axin, and 
possibly β-catenin. This implies that PP2A should be activated – or, alternatively, that the 
B´/PR61-mediated inhibition of PP2AC activity should be relieved. How exactly this is 
achieved is not clear. Unphosphorylated axin will be degraded specifically, leading to 
dissociation of unphosphorylated β-catenin from the complex and accumulation in the 
cytosol. After translocation to the nucleus, it can transactivate specific target genes. There 
is evidence that PP2AC is involved in this part of the pathway as well, either in the 
translocation of β-catenin to the nucleus or in the regulation of Lef/TCF transcriptional 
activity by β-catenin (taken from (Janssens and Goris, 2001)). 

 57



 

 
Integrins are shown to control PKCε phosphorylation by determining complex formation 

with PP2A and the upstream kinase PDK1. Complex formation between PKCε and PP2A 

is not constitutive, but seems to be highly regulated by changes in integrin engagement. 

The PP2A-induced loss of PKCε function results in attenuated interferon-γ (INF-γ)-

induced phosphorylation of STAT1 downstream of JAK1/2. PKCε function and the IFN-

γ response can be recovered by inhibition of PP2A if PDK1 is associated with PKCε in 

this complex. Therefore, PKCε is established as a point of convergence for the pathways 

operating downstream of the IFN-γ receptor and integrins (Ivaska et al., 2003). 

Recent studies reveal a role for PP2A in localization and activation of two proteins of the 

Ras–MAPK signaling pathway, Raf-1 and Kinase suppressor of RAS (Ksr) (Fig. 16). 

Using mass spectrometry, PP2A was identified as a component of the Ksr signaling 

complex in cell cultures and in brain lysates from mice. The PP2A core dimer is bound to 

Ksr under both stimulated and non-stimulated conditions, whereas the association of the 

regulatory B subunit with Ksr was dependent on growth factor stimulation (Ory et al., 

2003). Mutations in several PP2A subunit genes have been recovered in Drosophila and 

C. elegans genetic screens for components of the Ras pathway (Sieburth et al., 1999; 

Wassarman et al., 1996). PP2A is a positive effector of Ras signaling in C. elegans, while 

in Drosophila, PP2A has both positive and negative effects on the Ras pathway. These 

differences presumably reflect the multiplicity of targets that are affected by loss of PP2A 

activity. For example, MEK and ERK are likely candidates for the inhibitory effect of 

PP2A, given that both kinases can be dephosphorylated and inactivated by PP2A in vitro 

(Frost et al., 1994; Zhou et al., 2002) and that inhibition of PP2A leads to MEK and ERK 

activation in vivo (Alessi et al., 1995; Frost et al., 1994; Silverstein et al., 2002; Sontag et 

al., 1993). In conclusion, PP2A is a component of the KSR1 scaffolding complex and it 

positively regulates both KSR1 and Raf-1. Moreover, PP2A activity is required for KSR1 

to promote ERK pathway activation. This defines a biochemical mechanism for PP2A 

acting as a positive effector of Ras signaling (reviewed in (Raabe and Rapp, 2003)).  
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Fig. 16: Model for the regulation of Raf and Ksr by protein phosphatase 2A. 
(A) In non-stimulated cells, binding of dimeric 14-3-3 to phosphorylated Raf (Ser259 and 
621) and Ksr (Ser297 and 392) retains both complexes in the cytoplasm. Phosphorylation 
of Ksr at Ser297 and Ser392 is mediated by C-TAK1 whereas the kinase(s) that 
phosphorylate Ser 259 and 621 of Raf have not been fully elucidated. The PP2A core 
enzyme is bound to Raf and Ksr. In addition, inactive MEK is associated with Ksr. (B) 
Stimulation of cells by growth factors results in the assembly of the active PP2A 
holoenzyme leading to dephosphorylation of Ser259 in Raf and Ser392 in Ksr. 
Displacement of 14-3-3 from these sites facilitates the membrane recruitment of both 
proteins. A current model suggests that the transition from the inactive to the active, 
membrane-bound form of Raf also requires interaction with phospholipids, binding to 
Ras-GTP, several phosphorylation events and reassociation with 14-3-3. As a result, an 
active signaling complex of Raf, MEK and Erk is formed at the membrane (taken from 
(Raabe and Rapp, 2003)). 
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A novel regulatory mechanism has been suggested for microtubule-associated PP2A. The 

α4 protein interacts with the catalytic subunit of PP2A independent of its regulatory A 

and B subunits. The α4 protein is also able to complex with MID1, a phospho protein 

involved in the pathogenesis of BBB/G Opitz syndrome (OS) (Fig. 17). The MID1-α4 

complex is suggested to function as an E3-ubiquitin ligase for degrading the catalytic 

subunit of PP2A, leaving as-yet-undefined proteins bound to microtubules in their 

phosphorylated state. Mutated MID1, as frequently found in OS, loses its ability to bind 

to the microtubules and can no longer provide the scaffold for the ubiquitination complex. 

PP2Ac assembles with its regulatory subunits and dephosphorylates the unknown 

phosphoproteins (Trockenbacher et al., 2001) (reviewed in (Schweiger and Schneider, 

2003)). 

 

Fig. 17: Model of the MID1-mediated ubiquitin-dependent regulation of PP2A (a) and its 
disruption in BBB/G Opitz syndrome (b). a: MAPK triggers microtubule association of 
MID1 via phosphorylation of Ser96. Functional MID1 binds to α4 and MID1–α4 
displaces the A and B regulatory subunits from microtubule-associated PP2Ac. A 
postulated ubiquitin transferase unit bound to the RING finger of MID1 transfers 
ubiquitin onto PP2Ac, which, in its polyubiquitinated state, will be degraded by the 
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proteasome. As-yet-undefined microtubule-associated (P) proteins (MAPx/y) remain in 
their equilibrium phosphorylated state as long as PP2A levels are controlled by this 
targeted degradation process. B: In OS, mutated MID1 is aggregated in the cytosol and 
can no longer juxtapose the ubiquitination controlled machinery and PP2Ac. 
Microtubule-associated PP2Ac accumulates and the phosphorylation-dephosphorylation 
equilibrium of the MAPs is shifted toward hypophosphorylation (taken from (Schweiger 
and Schneider, 2003)). 
 

PP2A is able to associate with Shc through the Shc phosphotyrosine-binding domain 

(PTB domain). Insulin, IGF-1, or EGF treatment or small t expression causes dissociation 

of this complex with enhanced Shc phosphorylation. Thus, growth factor-stimulated Shc 

phosphorylation and downstream signaling increases in small-t-expressing cells. This 

suggests, that PP2A can negatively regulate growth factor signaling by binding to Shc 

and preventing its phosphorylation. In addition, these results indicate an additional level 

of control for Shc phosphorylation and a new mechanism for PP2A downregulation of the 

Ras/MAP kinase pathway (Ugi et al., 2002). 
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  Comments     Ref.     
Kinases inactivated by PP2A         
cAMP-dependent kinase     Major PKA phosphatase activity in cells is PP2A-like     (Liauw and Steinberg, 1996)     

cGMP-dependent kinase b           (Zhou et al., 1996)      

PKB  PKB is activated in vivo by OA     (Andjelkovic et al., 1996a)     

PKC     Dephosphorylated by membrane-associated PP2A     (Ricciarelli and Azzi, 1998)     

PKCµ          (Van Lint et al., 1998)     

p70 S6 kinase     p70 S6 kinase forms a stable complex with PP2A     (Ballou et al., 1988)     

CaM kinase I           (DeRemer et al., 1992)     

CaM kinase II     Downregulation of CaM-KII is prevented by OA in vivo     (Barnes et al., 1995)     

CaM kinase IV     CaMKIV forms a stable complex with PP2A in vivo     (Park and Soderling, 1995)     

AMP-activated kinase     The physiological AMPK phosphatase is probably PP2C    (Kudo et al., 1996)     

MEK     Activated by OA and by expression of small t antigen     (Gomez and Cohen, 1991)     

Ste7            

ERK MAP kinase     Activated by OA and by expression of small t antigen     (Anderson et al., 1990) 

Fus3p           (Errede et al., 1993)     

SEK1                

p38/RK           (Doza et al., 1995)     

JNK1/SAPK                

MAPKAP kinase 2           (Stokoe et al., 1992)     

p90 RSK1, p90 RSK3       (Stokoe et al., 1992)     

CDC2 (CDK1)     CyclinB-Cdc2 is activated in vivo by OA     (Lee et al., 1991a)     

CDK2           (Poon and Hunter, 1995)     

Polo-like kinase (Plk)           (Mundt et al., 1997)     

IkB kinase (IKK)     IKK-PP2A-Tax complex: PP2A inhibits, Tax activates  (DiDonato et al., 1997)     

31-kDa S6 kinase           (Hei et al., 1994)     

p21-activated kinase (PAK1) PAK1 forms a stable complex with PP2A     (Westphal et al., 1999)      

Mck1           (Hei et al., 1994)     

Casein kinase II            (Lebrin et al., 1999)     

pp60 SRC         (Ogris et al., 1999)      

Pim kinase   (Losman et al., 2003) 

KSR1 kinase suppressor of Ras binds to C and A subunit (Ory et al., 2003)  

Kinases activated by PP2A         
Casein kinase I           (Cegielska et al., 1998) 

RAF-1     RAF-1 forms a stable complex with PP2A     (Dent et al., 1995)     

GSK-3       (Sutherland and Cohen, 1994)   

MST1           (Creasy and Chernoff, 1995)    

WEE1     Phosphorylated on inhibitory sites       (Mueller et al., 1995) 
 

Table 2 : In vitro protein kinase substrates of PP2A (updated from (Millward et al., 
1999)) 
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  Comments     Refs     
Protein kinases         
p70 S6 kinase     p70 S6 kinase is a PP2A substrate     (Westphal et al., 1999)     
CaM kinase IV     Binds to ABC complex; substrate for C  (Westphal et al., 1998)     
Casein kinase IIa     Binds to AC dimer in quiescent cells; stimulates activity of C  (Heriche et al., 1997)     
RAF-1 b     RAF-1 can be dephosphorylated by PP2A     (Dent et al., 1995) 
p21-activated kinase (PAK1)     PAK1 is a PP2A substrate     (Westphal et al., 1999)     
JAK2     Association upon IL11 stim. of adiposides (Fuhrer and Yang, 1996)     
TGF-β1 receptor Binds to B subunit; inhibits p70S6K signaling (Petritsch et al., 2000) 
atypical PKC Regulation of TJ formation (Nunbhakdi-Craig et al., 2002)  
PKCe  PKCe-PP2A-PDK1 complex regulated by integrins (Ivaska et al., 2003)  
KSR1 Kinase suppressor of Ras binds to C and A subunit (Ory et al., 2003) 
IKK IKK-PP2A-Tax complex: PP2A inhibits, Tax activates  (Agazie and Hayman, 2003)  

Other cellular proteins         
I-1PP2A (PHAPI, mapmodulin) Endogenous, heat-stable inhibitor of PP2A     (Li et al., 1996a)     
I-2PP2A (SET)     Endogenous, heat-stable inhibitor of PP2A     (Li et al., 1996b)     
Tap42/4     Binds to C; interaction dependent upon TOR1      (Murata et al., 1997) 
Cyclin G1     Binds to B subunits of the B' (PR61) family     (Okamoto et al., 1996)     
p107 (pRb-related)     Binds PR59-containing ABC complex     (Voorhoeve et al., 1999) 
HOX11     Binds to C subunit; inhibits phosphatase activity     (Kawabe et al., 1997)     
HRX     Binds PP2A through I2PP2A; mutated in acute leukaemias    (Adler et al., 1997)     
Caspase-3     Activates PP2A during apoptosis by proteolysis of A     (Santoro et al., 1998)     
PTPA (PPP2R4)     Binds dimer through A subunit; confers tyr-phos activity     (Cayla et al., 1994) 
TAU     Dephosphorylated by ABC; promotes microtubule binding     (Sontag et al., 1996) 
Neurofilament proteins     AC,  binds and dephos. NF proteins, promotes assembly     (Saito et al., 1995)     
eRF1     Binds dimer through C subunit;  targets dimer to ribosomes    (Andjelkovic et al., 1996b)     
Paxillin Binds PR61/B’γ, truncated  PR61/B’γ causes malignancy (Ito et al., 2000) 
Cdc6 Binds PR48/B’’, modulates DNA replication in human cells (Yan et al., 2000) 
Bcl2 Binds to C subunit (Deng et al., 1998) 
Vimentin Binds to B subunit, no association without B (Turowski et al., 1999) 
HePTP Complex has pERK phosphatase activity (Wang et al., 2003) 
Importin beta family Native complex, regulating nuclear import  (Lubert and Sarge, 2003) 
MID1 Complex MID-PP2A-a 4, OptizBBB/G syndrome (Schweiger and Schneider, 2003) 
ERa No complex with C upon OA, then ER-MAPK complex (Lu et al., 2003)  
tight junction complex Complex with ABaC-TJ proteins at apical membrane (Nunbhakdi-Craig et al., 2002)  
bestrophin Binds to Cb subunit (Marmorstein et al., 2002) 
Shc No complex upon insulin/ EGF stim. or small t antigen inhibit. (Ugi et al., 2002)  
RelA/NFkB Binds to A subunit (Yang et al., 2001) 
NMDA-R subunit NR3A Dynamic complex regulation by NR3A and PP2A interaction (Chan and Sucher, 2001)  
E4orf4 E4orf4-PP2A interacts with the APC/C (Marmorstein et al., 2002) 
GADD45A Component of APC complex (Hildesheim et al., 2003) 
hUPF1 Complex involved in nonsense-mediated mRNA degradation (Ohnishi et al., 2003) 
axin Binds to PR61/B' in APC complex (Wnt signaling) (Gao et al., 2002)  

Viral proteins         
SV40 small t     Binds to and inhibits AC dimer; displaces  B subunits     (Scheidtmann et al., 1991)    
Polyomavirus small t     Confers tyrosine phosphatase activity     (Cayla et al., 1993)     
Polyomavirus middle T     Confers tyrosine phosphatase activity     (Cayla et al., 1993)     
Adenovirus E4orf4     Binds to ABC complex; causes downregulation of AP-1     (Bondesson et al., 1996)     
HIV Ncp7:Vpr     Binds to AB'C complex; activates C subunit     (Tung et al., 1997) 

Table 3: Proteins that form stable complexes with PP2A (updated from (Millward et al., 
1999)) 
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PP2A and Transcription Regulated by Viral Proteins 

 

Reversible phosphorylation of transcription factors regulates their trans-activating 

potential, DNA-binding properties and intracellular location. In addition to its 

physiological targets, such as cell-surface receptors, ion channels, protein kinases, key 

regulatory enzymes and proteins involved in metabolism, PP2A is also involved in the 

direct and/or indirect regulation of transcription factors (Alberts et al., 1993; Cohen, 1989; 

Mumby and Walter, 1993; Wera and Hemmings, 1995). This regulation is partially due to 

the fact that viruses have developed distinct strategies to deregulate cellular signaling via 

PP2A. Some viruses simply incorporate PP2A holoenzymes or downstream components 

of the PP2A signaling pathway. Polyoma small t and middle T, as well as SV40 small t, 

form stable complexes with the PP2A core dimer by competing with the B regulatory 

subunits (Pallas et al., 1990; Walter et al., 1990). The A regulatory subunit of the PP2A 

core dimer is the only cellular protein known to bind to SV40 small t (Pallas et al., 1990; 

Yang et al., 1991). Experiments performed with SV40 small t and OA have clearly 

demonstrated that PP2A is a negative regulator of major transcription factors including 

AP1 (Frost et al., 1994), NF-kB (Sontag et al., 1997), Sp1 (Vlach et al., 1995), and CREB 

(Wheat et al., 1994) (Fig. 18). The proto-oncogene c-Jun, a major component of the 

activator protein-1 (AP-1) transcription-factor complex, is a substrate for PP2A. Evidence 

supporting this notion includes the observation that OA increases the concentration, 

phosphorylation and DNA binding of c-Jun as well as AP-1 (Black et al., 1991; Lee et al., 

1994a). Compared to the other major mammalian protein serine/threonine phosphatases, 

purified PP2A preferentially dephosphorylates c-Jun isolated from OA-treated cells 

(Black et al., 1991; Lee et al., 1994a). In agreement with this, microinjection studies with 

purified PP2A (Alberts et al., 1993) and I2
PP2A expression in HEK 293 cells (Al-Murrani 

et al., 1999) both demonstrate that this phosphatase regulates c-Jun activity. Expression of 

SV40 small t antigen also increases the concentration and phosphorylation of c-Jun, as 

well as AP-1 transcriptional activity (Frost et al., 1994; Howe et al., 1998). SV40 small t 

promotes transformation and cell growth by activating PKCζ, resulting in MEK activation 

and NF-kB-dependent transactivation. Upon inhibition of PP2A, PKCζ and NF-kB 
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become constitutively activated (Sontag et al., 1997). NF-kB also plays a critical role in 

the regulation of the expression of various viruses, including SV40 (Sassone-Corsi et al., 

1985), HIV-1 (Nabel and Baltimore, 1987), CMV (Cherrington and Mocarski, 1989), 

herpes simplex virus type 1 (HSV-1) (Cherrington and Mocarski, 1989) and hepatitis B 

(Siddiqui et al., 1989). SV40 small t also inhibits dephosphorylation of PKA-

phosphorylated CREB and, thereby, stimulates CREB-dependent transactivation (Wheat 

et al., 1994). Finally, small t also induces transactivation of Sp1-responsive promoters 

through inhibition of PP2A activity (Garcia et al., 2000). The association of adenovirus 

E4orf4 protein with a PR55/B subunit results in down regulation of JunB 

transcription (Bondesson et al., 1996). This effect could play an important role during 

viral infection by regulating the apoptotic response of the infected cells in a p53-

independent manner (Shtrichman and Kleinberger, 1998). In addition to further tumor 

viruses, the lentivirus HIV-1 encodes proteins that directly interact with PP2A. Vpr, the 

product of a regulatory gene of HIV-1, can induce G2 cell cycle arrest by inhibiting 

CDK1-cyclin B complex activation. This effect is reversed by OA, suggesting that Vpr 

activates PP2A (Re et al., 1995). In line with this, HIV-1 Vpr interacts with PP2A in vitro 

and activates its catalytic activity (Tung et al., 1997). PP2A has also been implicated in 

the regulation of STAT3. This transcription factor is activated through tyrosine 

phosphorylation by JAK kinases and serine phosphorylated by MAPK upon angiotensis II 

(Liang et al., 1999). Inhibition of PP2A by specific phosphatase inhibitors induces (i) 

phosphorylation of STAT3 on serine and threonine residues, (ii) inhibition of STAT3 

tyrosine phosphorylation and DNA binding activity, and (iii) relocation of STAT3 from 

the nucleus to the cytoplasm. This indicates, that PP2A plays a crucial role in the 

regulation of STAT3 phosphorylation and subcellular distribution in T cells (Woetmann 

et al., 1999). As mentioned in “PP2A and Cell Cycle” the transcription factor HOX-11 

was reported to interact with and inhibit PP2Ac and PP1c, abrogating a G2 checkpoint 

that could promote genomic instability and oncogenesis (see also Table 3) (Kawabe et al., 

1997). The activity of a general coactivator, the four-and-a-half-LIM-only protein 2 

(FHL2), is upregulated upon SV40 small t-antigen inhibition of PP2A. FHL2 functions as 

a coactivator for CREB-mediated transcription, and inactivation of PP2A further increases 
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FHL2-induced CREB-directed transcription. This effect can be reversed by 

overexpression of PR61/B’α, B’β and B’γ (Johannessen et al., 2003).  

 

Fig 18: Simplified model for the regulation of gene transcriptional activation by 
interaction of SV40 small t with PP2A (taken from (Sontag, 2001)). 
 

 

PP2A and Disease  

 

PP2A appears to be critically involved in the regulation of a diverse set of cellular 

processes such as metabolism, transcription, translation, cell cycle, signal transduction, 

differentiation, and oncogenic transformation. Therefore, it is assumed that any 

dysfunction of PP2A will have severe consequences for cell physiology. Many 

observations support a role for PP2A in the pathology of human diseases, such as cancer, 

Alzheimer's, spinocerebellar ataxia, AIDS, malaria and BBB/G Opitz syndrome (Table 4). 
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Class Name Gene 
symbol 

Synonym GenBank 
accession

Position Diseases (presumed*) 

PSTP             

PPP PP1 PPP1C   M63960 11q13 Alzheimer's disease 

  PP2A PPP2C   M66483 5q23 Cancer, Alzheimer's disease 

  PP2B PPP3C Calcineurin A M29550 4q21 Alzheimer's disease, cardiac 
hypertrophy, cerebral ischemia 

  PP4 PPP4C PPX AF097996 16p11   

  PP5 PPP5C   X89416 19q13   

  PP6 PPP6C   X92972 Xq22   

  PP7 PPP7C   AF27977 Xp21 Retinitis pigmentosa 

PPM PP2C PPM1A   AF070670 14   

PTP             

RPTP   I CD45 PTPRC LCA, GP180, Y00062 1q31 immunodeficiency disease SCID

            IIA RPTPm PTPRM   X58288 18p11   

  RPTPk, l PTPRK   L77886 6q22   

            IIB LAR PTPRF   Y00815 1q34   

            III RPTPb PTPRB   X54131 12q15   

  SAP-1 PTPRH   D15049 19q13 Colon & pancreas cancer 

            IV RPTPa PTPRA LPR M34668 20p13   

  RPTPe PTPRE   X54134 10q26 Mammary cancer 

            V RPTPz PTPRZ1   M93426 7q31 Lung & renal cancer 

  RPTPg PTPRG   L09247 3p14 Lung & renal cancer 

            VI IA-2 PTPRN   L18983 2q35 Diabetes type I, Celiac disease 

  IA-2B PTPRN2 ICAAR U65065 7q36 Diabetes type I 

NPTP PTP1B PTP1N   M31724 20q13 Diabetes type II 

  SHP1 PTPN6 SHPTP1, PTP1c X62055 12p13 Aortic valve disease 

  SHP2 PTPN11 SHPTP3 X70766 12q24 Noonan & LEOPARD syndrome 

  PTP-
PEST 

PTPN12   M93425 7q11   

  PTP-H1 PTPN3   M64572 9q31   

  PTP-MEG PTPN4   M68941     

DSP VHR DUSP3   L05147 17q21   

  MKP-1 DUSP1 PTPN10, HVH1 X68277 5q34 Prostate & pancreas cancer  

  Cdc25A CDC25C   M34065 5q31 Cancer & Alzheimer’s disease  

  

PTEN PTEN MMac-1 U92436 10q23 Bannayan-Zonana syndrome,  
Cowden’s disease,  
Lhermitte-Duclos syndrome,  
Prostate cancer 

  EPM2A EPM2A LD, LDE, MELF AF084535 6q24  Myoclonic epilepsy, type lafora 
 
 

Table 4: List of human protein phosphatase catalytic subunits with classification, official 
gene symbol synonym, Genbank accession, chromosomal position, and predicted 
involvement in disease (updated from (Schmidt and Hemmings, 2002)). 
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Cancer 

The exact role that protein phosphatases play in the pathology of cancer is much less clear 

than the involvement of protein kinases (reviewed in (Schonthal, 2001)). Only a few 

phosphatases have been found to be directly implicated in carcinogenesis, such as the 

dual-specificity protein phosphatases CDC25 and the dual-specificity protein phosphatase 

PTEN. CDC25, an important regulator of cell cycle progression, is able to transform cells 

in culture and, therefore, appears to harbor oncogenic potential (Galaktionov et al., 1995). 

In contrast, PTEN exhibits many characteristics of a typical tumor suppressor, since it is 

frequently found mutated or deleted in various types of advanced cancers (Simpson and 

Parsons, 2001). Initial evidence for a negative role for PP2A in tumor development came 

from the observation that the tumor promoter OA (Suganuma et al., 1988) is a potent 

inhibitor of PP2A (Bialojan and Takai, 1988). Additional evidences, such as complexing 

with DNA tumor viruses, indicate that PP2A is a negative regulator of cell growth and 

might even function as a tumor suppressor. In contrast, opposing results have emerged 

suggesting a positive function in tumorigenesis (Mordan et al., 1990; Rivedal et al., 1990). 

Recent investigations identified somatic alterations in the human PR65/Aβ sequence in 

15% of primary lung and colon tumors-derived cell lines and one deletion mutation in 

PR65/Aβ was shown to restrict binding of PR65/Aβ to the catalytic subunit (Wang et al., 

1998). Although the frequency of these mutations is low, they clearly implicate PP2A as a 

participant in tumorigenesis. Based on the site of mutation, it was shown that binding of 

the A subunit not only to the C-subunit but also to the regulatory B subunits was defective 

(Ruediger et al., 2001b). The eight PR65/Aβ mutants found in human lung and colon 

cancer were generated by site-directed mutagenesis and assayed for their ability to bind B 

and C subunits. Two mutants showed decreased binding of PR72/B”, but normal C 

subunit binding; two mutants exhibited decreased binding of the C subunit and of 

B"/PR72; and one mutant showed increased binding of both the C subunit and B"/PR72. 

Of the three mutants that behaved like the wild-type PR65/Aβ subunit, one is a 

polymorphic variant and another is altered outside the binding region for B and C subunits. 

Interestingly, the wild-type PR65/Aα and PR65/Aβ isoforms, although 85% identical, are 

remarkably different in their ability to bind B and C subunits (Colella et al., 2001; 

Ruediger et al., 2001a; Ruediger et al., 2001b). In addition, alterations of PR65/Aα have 
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been found in human melanomas, breast and lung carcinomas. It is assumed, therefore, 

that PP2A suppresses tumor development through its involvement in cell cycle regulation 

and cellular growth control. This is also supported by the fact that overexpression of 

PR65/Aα in rat fibroblasts leads to multinucleated cells. A role for PP2A in melanoma 

tumor progression was suggested by overexpression of PR61γ in malignant melanomas 

(Francia et al., 1999). Furthermore, a N-terminally truncated form of PR61γ1 was 

associated with a higher metastatic state of melanoma cells (Ito et al., 2000; Ito et al., 

2003). In addition, PP2A inhibits nuclear telomerase activity in human breast cancer cells 

(Li et al., 1997) and human leukemia cells  (Liu et al., 2002b). While telomerase activity 

is not detected in normal somatic cells, it is elevated in many primary human 

malignancies. This suggests, that de novo synthesis of telomeres is crucial for unlimited 

cell division. PP2A can thus counteract uncontrolled cell growth by inhibiting this 

enhanced telomerase activity in cancer cells. Another aspect of PP2A function is its 

association with the APC tumor suppressor. The APC protein is mutated in over 80% of 

sporadic colon cancers and the PP2A-APC complex is considered to play a role in the 

turnover of the β-catenin protein. The stabilization of β-catenin plays an important role in 

the development of cancer (Polakis, 2000). Loss of protein phosphatase 2A expression 

correlates with phosphorylation of differentiation related transcription factor 1-

polypeptide-1 (DP-1) and reversal of dysplasia through differentiation in a conditional 

mouse model of cancer progression (Tilli et al., 2003). Caveolin-1 (cav-1) is elevated in 

metastatic mouse and human prostate cancer (Yang et al., 1998) and it is involved in the 

inhibition of PP1 and PP2A through scaffolding domain binding site interactions leading 

to increased phosphorylation of specific PP1/PP2A substrates. Interestingly, cav-1-

mediated increased PKB activities are suggested to be responsible for enhanced cell 

survival of prostate cancer cells (Li et al., 2003a). 

 

Alzheimer’s disease 

Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the 

presence of two histopathological hallmarks called senile plaque formation and 

neurofibrillary tangles. Senile plaques are deposits of β-amyloid peptide (Aβ) produced by 

abnormal processing of amyloid precursor protein (APP) (Selkoe, 1991), whereas 
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neurofibrillary tangles consist of abnormally hyperphosphorylated tau protein assembled 

in paired helical filaments (PHF) (Grundke-Iqbal et al., 1986). The amount of 

neurofibrillary tangles is reported to directly correlate to the degree of dementia in AD 

patients. The high levels of the PP2A catalytic subunit in the brain (Cheng et al., 2000) 

and the brain-specific expression of some members of the PR55/B (Grundke-Iqbal and 

Iqbal, 1999; Khatoon et al., 1994; Lee et al., 1991b) and PR61/B’(Bennecib et al., 2001) 

subunit families suggests that PP2A has unique functions in neuronal cells (reviewed in 

(Price and Mumby, 1999)). As major brain phosphatases, PP1, PP2A and PP2B regulate 

microtubule-associated proteins (MAP) such as tau and MAP2. Inhibition of PP2A leads 

to hyperphosphorylation of tau at multiple sites followed by its dissociation from 

microtubules (MT) and loss of MAP-mediated MT-stability. Of the serine/threonine 

phosphatases that were confirmed to be involved in dephosphorylating the 29 

phosphorylation sites of the tau protein, PP2A is likely to be the major tau phosphatase. 

Inhibition of PP2A by OA in metabolically competent rat brain slices induced an increase 

in the phosphorylation/activation of ERK1/2, MEK1/2, and p70 S6 kinase as well as the 

phosphorylation of tau at several sites (Pei et al., 2003). Although tau 

hyperphosphorylation induced by OA-mediated protein phosphatase inhibition contributes 

to pathological aggregate formation, only hyperphosporylation of tau followed by 

proteasome inhibition leads to stable fibrillary deposits of tau similar to those observed in 

neurodegenerative diseases (Goldbaum et al., 2003). A pool of PP2A, especially a 

PR55/Bα containing trimer, associates with tau protein directly or interacts with 

microtubules through tau (Sontag et al., 1996; Sontag et al., 1999). In vitro studies have 

shown that hyperphosphorylated tau fails to promote microtubule assembly (Alonso et al., 

1996; Bramblett et al., 1993; Gong et al., 1996; Iqbal et al., 1994; Wang et al., 1995) and, 

thus, it leads to microtubule destabilization, appearance of neurofibrillary tangles, and 

neurodegeneration in AD brain (Trojanowski and Lee, 1994). PP2A activity is reduced 

30% in brain homogenates from AD patients (Gong et al., 1995), and mRNA levels of Cα, 

PR55/Bγ and PR61/Bε are quantitatively decreased in the hippocampus of AD brains 

(Vogelsberg-Ragaglia et al., 2001)..The role of PP2A in Alzheimers disease has been 

studied extensively in various transgenic mouse models, which are reviewed in (Gotz and 

Schild, 2003) and further described in the chapter “PP2A Mutant Mice”. 
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Spinocerebellar Ataxia 12 

Cerebellar dysfunction is a hallmark of different neurodegenerative disorders, like 

Spinocerebellar Ataxias (SCAs), but many also include abnormalities in other regions of 

the central and/or peripheral nervous system. Twenty distinct forms (SCAs 1–17, 19, 21 

and 22) have been identified to date and most of them can be subclassified into three 

discrete groups based on pathogenesis: (i) the polyglutamine disorders, which result from 

proteins with toxic stretches of polyglutamine (SCAs 1, 2, 3, 7, and 17); (ii) the 

channelopathies, which result from disruption of calcium or potassium channel function 

(SCA6); (iii) the gene expression disorders, which result from repeat expansions outside 

of coding regions that may quantitatively alter gene expression (SCAs 8, 10, and 12) (for 

review see (Margolis, 2002). PR55/Bβ was predicted to be involved in SCA12. This form 

of autosomal dominant spinocerebellar ataxia is caused by CAG trinucleotide repeats in 

the 5’ region of PR55/Bβ (Fig. 19). Onset of the disease is in the fourth decade of life and 

leads to loss of movement, head/extremity tremors and in a later stage to complete 

dementia. The CAG repeat associated with SCA12 lays 133 nucleotides upstream of the 

predicted transcription start side for PR55/Bβ. Up to 29 CAG repeats are considered 

normal, whereas more than 55 repeats are considered disease causative for SCA12. It is 

speculated, that the CAG repeat expansion affects PR55/Bβ expression and subsequently 

alters the function of PP2A in the brain (Holmes et al., 2001; Holmes et al., 1999).  

 

Fig. 19: Neuroradiologic images from a patient with spinocerebellar ataxia type 12. (C) 
(sagittal), (D) (coronal): T-1 weighted magnetic resonance images of a 59-year-old 
affected woman shows cerebellar and cortical atrophy (taken from (Holmes et al., 2001)). 
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V. Aim of Thesis 
 
 

Protein Phosphatase 2A is on of the major multi-subunit serine/threonine protein 

phosphatases found in eukaryotic cells. It exerts pleiotropic effects on various cellular 

processes that may lead to the development of disease depending on the subunit assembly 

of the phosphatase. 

The major aim of this thesis was to gain a more detailed insight into the structure and 

function of PP2A. Given the numerous cellular processes involving PP2A we sought to 

develop a method that allows overexpression of high levels of active PP2Ac for the 

investigation of active-site residues that were invariant for the catalytic function of 

PP2Ac.  

Another goal was to investigate the biological function of PP2A and the involvement of 

its B regulatory subunits in the development of disease. Therefore, we determined the 

genomic organization, identified novel splice variants and analyzed expression levels and 

the subcellular localization of the PP2A B regulatory subunits in the murine brain. These 

studies will help to interpret phenotypes of transgenic or knockout mice that are altered or 

deficient in various PP2A subunits.  

The protein serine-threonine phosphatase inhibitor okadaic acid was used in a GeneChip 

approach to model transcriptional effects of PP2A in HEK293 cells. In addition, we 

developed a software tool called StampCollector to predict potential transcription factor 

pairs that are involved in the regulation of genes based on their promoter sequence. 
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Active-site mutations impairing the catalytic function of the catalytic subunit
of human protein phosphatase 2A permit baculovirus-mediated
overexpression in insect cells
Timothy MYLES1, Karsten SCHMIDT, David R. H. EVANS2, Peter CRON and Brian A. HEMMINGS3

Friedrich Miescher Institut, Postfach 2543, Basel CH-4002, Switzerland

Members of the phosphoprotein phosphatase (PPP) family of

protein serine}threonine phosphatases, including protein phos-

phatase (PP)1, PP2A and PP2B, share invariant active-site

residues that are critical for catalytic function [Zhuo, Clemens,

Stone and Dixon (1994) J. Biol. Chem. 269, 26234–26238].

Mutation of the active-site residues Asp)) or His"") within the

human PP2A catalytic subunit (PP2Ac)α impaired catalytic

activity in �itro ; the D88N and H118N substitutions caused a

9- and 23-fold reduction in specific activity respectively, when

compared with wild-type recombinant PP2Ac, indicating an

important role for these residues in catalysis. Consistent with

this, the D88N and H118N substituted forms failed to provide

PP2A function in �i�o, because, unlike wild-type human PP2Acα,

neither substituted for the endogenous PP2Ac enzyme of budding

yeast. Relative to wild-type PP2Ac, the active-site mutants were

dramatically overexpressed in High Five2 insect cells using the

INTRODUCTION

Protein phosphatase (PP)2A is a major protein serine}threonine

phosphatase that plays an important role in diverse eukaryotic

cellular processes regulated by reversible protein phosphorylation

[1–4]. PP2A exists as a number of holoenzymes; the basic

structure contains an invariant core dimer that is composed of a

highly conserved 36 kDa catalytic subunit (PP2Ac) bound tightly

to a 65 kDa regulatory subunit (PR65}A). PR65}A acts as a

scaffold protein for the binding of PP2Ac and a large number of

B-type regulatory subunits in the heterotrimeric holoenzyme

[1,3]. The three major families of B-type subunits, PR55}B [5],

PR61}B« [6] and PR72}B«« [7] share no significant similarity in

primary structure, and this diversity is believed to determine the

enzymic activity and substrate specificity of PP2Ac, as well as its

intracellular localization and the tissue specificity of distinct

holoenzyme forms [8–11].

PP2Ac belongs to the phosphoprotein phosphatase (PPP)

family of protein serine}threonine phosphatases and shares many

invariant residues with the PP1 and PP2B (also known as

calcineurin) catalytic subunits, and some active-site residues with

bacteriophage λ phosphatase (λPPase), suggesting that these

enzymes share a common catalytic mechanism [12–14]. Sequence

alignment of the conserved phophoesterase domain (Figure 1)

shows a consensus sequence important for metal and phosphate

Abbreviations used: 5-FOA, 5-fluoroorotic acid ; HA, haemagglutinin ; moi, multiplicity of infection; PP, protein phosphatase ; PP2Ac, PP2A catalytic
subunit ; PR65/A, PP2A regulatory subunit ; PPP, phosphoprotein phosphatase ; λPPase, bacteriophage λ phosphatase ; Sf9, Spodoptera frugiperda ;
TBS, Tris-buffered saline.
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2 Present address : Program in Molecular Pharmacology, Mailstop D2-100, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North,
Seattle, WA 98109, U.S.A.

3 To whom correspondence should be addressed (e-mail hemmings!fmi.ch).

baculovirus system. Milligram quantities of PP2Ac were purified

from 1¬10* High Five cells and the kinetic constants for

dephosphorylation of the peptide RRA(pT)VA (single-letter

amino-acid notation) by PP2Ac (K
m

¯ 337.5 µM; k
cat

¯ 170 s−")

and D88N (K
m

¯ 58.4 µM; k
cat

¯ 2 s−") were determined. The

results show that the substitution impairs catalysis severely

without a significant effect on substrate binding, consistent with

the PPP catalytic mechanism. Combination of the baculovirus

and yeast systems provides a strategy whereby the structure–

function of PP2Ac may be fully explored, a goal which has

previously proven difficult, owing to the stringent auto-regulatory

control of PP2Ac protein levels in �i�o.

Key words: kinetics, mutagenesis, PP2A, recombinant protein,

yeast.

binding and catalysis [DXH-(C25)-GDXXD-(C25)-GNHD}E;

where single-letter amino-acid notation has been used] [13].

Site-directed mutagenesis and kinetic analysis of PP1 [14,15] and

λPPase [13] active-site residues, predicted to be involved in metal

binding, substrate binding and catalysis, combined with the

crystal structure of PP1 has defined a catalytic mechanism for

members of the serine}threonine PPs [16]. The mechanism

proposed for PP1 involves metal ion-mediated hydrolysis of the

target substrate, where Ser(P)}Thr(P) is orientated for attack by

a nucleophile in the active site by residues Arg*' and Arg"##

(Arg)* and Arg""& in PP2Ac). An H
#
O molecule is activated to a

hydroxide by two metal ions co-ordinated by several metal-

binding residues. The hydroxide then makes a nucleophillic

attack on Ser(P)}Thr(P). The PP1 residue His"#& (His"") in

PP2Ac) acts as a general acid, which protonates the leaving

group oxygen, accelerating the dephosphorylation reaction. The

acidic nature of His"#& is further enhanced by an ion-pair

interaction with Asp*& (Asp)) in PP2Ac). The importance of the

λPPase residues His(' (His"#& in PP1) and Asp&# (Asp*& in PP1),

and the PP1 residue Asp*& in catalysis has been demonstrated by

site-directed mutagenesis studies [13–15]. Recently, PP2Ac

mutants mutated at the general acid residue His"") or residues

involved in metal-ion binding were expressed in NIH3T3 cells.

Immunoprecipitated proteins had impaired phosphatase activity,

revealing conservation of the PPP catalytic mechanism [17,18].
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Figure 1 Alignment of phosphoesterase domains of representative PPP family members

λPPase, human PP1 (HPP1), human PP2Ac (HPP2A), S. cerevisiae PPZ1 and human calcineurin (HCAL) share the highly conserved phosphoesterase domains I, II and III (boxed). Numbers

preceding the amino acid sequences denote the starting amino acids. Numbers between domains represent the number of amino acids between the conserved domains. The filled circle highlights

the conserved histidine residue that acts as a general acid in catalysis. It’s aspartate ion-pair partner is also shown (filled square).

Despite this, a detailed analysis of the structural and functional

aspects of catalysis by PP2Ac is lacking, in part, due to the

difficulty in overexpressing recombinant PP2Ac for purification.

Thus in many cell lines, including NIH3T3 cells [19,20] and

COS-7 cells [21], the expression of recombinant PP2Ac is

maintained at a level comparable with that of endogenous

PP2Ac by translational [19] or possibly transcriptional auto-

regulatory mechanisms [21]. In the present study we have

analysed the effects of PP2Ac active-site mutations, involving the

general acid residue His"") and its ion-pair partner Asp)).

EXPERIMENTAL

Materials

Purified rabbit skeletal muscle PP2Ac was a gift from Josef Goris

(Katholieke Universiteit, Leuven, Belgium). The antibodies used

in this study, AB45 and AB38, are rabbit anti-(human PP2Ac)

and anti-(human PR65}A) respectively [22]. Horseradish-per-

oxidase conjugated goat anti-mouse and sheep anti-rabbit IgG

antibodies, and Streptavidin Texas Red were purchased from

Amersham Pharmacia Biotech. Secondary biotinylated goat anti-

rabbit IgGantibodieswere purchased from Bio-Rad, and okadaic

acid was purchased from Alexis. The insect cell lines High Five2
(Trichoplusia ni isolate BTI-TN-5b1-4) and Spodoptera frugiperda

(Sf9) were obtained from Invitrogen.

Construction of baculovirus transfer vectors and generation of
recombinant baculovirus

The wild-type PP2Acα cDNA [23] was cloned into pBS KS− as

a HindIII–BamHI fragment and was used as a template for PCR

amplification using pfu DNA polymerase to place a 5« BamHI

haemagglutinin (HA) epitope in frame with the coding sequence

downstream of the initiation codon and a 3« EcoRI site im-

mediately downstream of the termination codon. The fragment

was cloned into pBS KS− (to generate pBSHACatα) and

sequenced by an Applied Biosystems PRISM 377 sequencer.

pBSHACatα was used for subcloning into the baculovirus

transfer vector pBB4.5 (Invitrogen) to generate the transfer

vector pBBHAPP2Ac. To generate the active-site substitutions

H118N and D88N, pBSHACatα was used as template DNA for

Quickchange PCR (Strategene) using appropriate mutagenic

primers. Mutations were confirmed by DNA sequence analysis

and subcloned into pBB4.5 to generate the transfer vectors

pBBHAD88N and pBBHAH118N. Transfer vectors were co-

transfected into Sf9 cells using the BAC-N-BLUE2 linear trans-

fection kit (Invitrogen) according to the manufacturer’s

instructions. Recombinant baculoviruses (vBBHAPP2Ac,

vBBHAD88N and vBBHAH118N) were subjected to one round

of plaque purification and identified by PCR amplification [24].

The recombinant baculovirus, PR65BV, was maintained on

Sf9 cells as a high titre stock [25].

Expression and Western-blot analysis of PP2Ac

Expression of HA-epitope-tagged wild-type and mutant PP2Ac

was achieved by seeding 25 cm# flasks with High Five cells

(Invitrogen) grown in Express Five2 serum-free medium (Gibco

BRL) at a density of 1¬10& cells}cm#, and infecting with

recombinant baculoviruses (vBBHAPP2Ac, vBBHAD88N or

vBBHAH118N) at a multiplicity of infection (moi) of 5. Cells

were harvested and lysed in 4 ml of buffer A [50 mM Tris}HCl

(pH 7.5), 100 mM NaCl, 1 mM EDTA, 1% (v}v) Nonidet P40,

0.1 mM PMSF and 1 mM benzamidine]. HA-tagged PP2Ac was

detected by Western-blot analysis using the HA-epitope-specific

12CA5 monoclonal antibody or the polyclonal antibody AB45

(specific for PP2Ac). Detection was achieved using horseradish-

peroxidase conjugated goat anti-mouse or sheep anti-rabbit IgG

antibodies and ECL2 (Amersham Pharmacia Biotech).

Immunoprecipitations and Western-blot analysis

Flasks (185 cm# ; Nunc) were seeded with High Five cells

grown in Express Five serum-free medium (Gibco BRL) at

1¬10& cells}cm# and infected with recombinant virus at an moi

of 5. For coexpression studies of HA–PP2Ac and PR65}A, cells

were transfected with both the HA–PP2Ac recombinant virus

and vPR65BV, at an moi of 5. Cells were harvested, lysed in

buffer A and harvested by centrifugation at 190 g for 30 min.

HA-tagged PP2Ac was immunoprecipitated from cleared lysate

using 12CA5 saturated Protein A–Sepharose beads. Immuno-

precipitates were washed three times in buffer A and two times in

Tris-buffered saline [TBS; 50 mM Tris}HCl (pH 7.5)}150 mM

NaCl]. Typically 50 µl of beads was boiled in 50 µl of Laemmli

buffer [50 mM Tris}HCl (pH 6.8), 2% (w}v) SDS, 0.004%

(w}v) Bromophenol Blue, 10% (v}v) glycerol and 5% (v}v) 2-

mercaptoethanol] then analysed by Coomassie Brilliant Blue

staining or Western blotting [25] using 12CA5 or AB45 as

primary antibodies for the detection of HA–PP2Ac, and AB38

for the detection of PR65}A, followed by ECL2 using the

secondary antibodies described above. Quantification of

immunoprecipitatedHA–PP2Ac from cell lysateswas determined

by Western blotting, using okadaic-acid titrated rabbit skeletal

muscle PP2Ac of known concentration as a standard. 12CA5–

Protein A–Sepharose immunoprecipitated HA–PP2Ac (50 µl ;

diluted 1:1 in TBS) was added to 50 µl of Laemmli buffer and

boiled for 5 min, then analysed by Western blotting as described
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previously [26] with samples run in duplicate. After transfer to

Immobilin, the membranes were probed with AB45, washed

extensively, then incubated with biotinylated goat anti-rabbit

IgG antibodies and Streptavidin Texas Red. Blots were developed

for red fluorescence using a Molecular Dymamics STORM 380

PhosphorImager. The signal for each band was quantified using

ImageQuant software (Molecular Dymamics).

Overexpression and purification of PP2Ac

Triple flasks (Nunc; 500 cm#) with High Five cells in Express

Five serum-free medium at a density of 1¬10& cells}cm# were

infected with recombinant virus at an moi of 5, and incubated at

27 °C for 72 h. At 72 h post-infection the majority of the infected

cells had detached and the remaining cells were detached from

the flasks with gentle tapping. The cells were collected by

centrifugation at 800 rev.}min (190 g) for 20 min in a Sorval

RC2B rotor, and pellets were washed with 1¬TBS, pooled and

stored at ®80 °C. Recombinant protein was purified from cell

lysates by a modified ethanol precipitation procedure [27,28].

Briefly, cell pellets were thawed and diluted with 3 vol. of buffer

B [50 mM Tris}HCl (pH 7.4), 150 mM NaCl, 0.5 mM EDTA

and 0.2% Triton X-100], containing Complete Protease Inhibitor

Cocktail (Boehringer Mannheim), then lysed by several passes in

a French press. Lysates were clarified by centrifugation at

10000 g at 4 °C, and 4 vol. of absolute ethanol (at 22 °C) was

added to the clarified lysate to precipitate the proteins. The

precipitate was collected by centrifugation at 10000 g, then

resolubilized in buffer B by trituration. The sample was dialysed

extensively against 50 mM Tris}HCl (pH 7.4)}0.5 mM EDTA,

and clarified by centrifugation at 10000 g at 4 °C. The

resolubilized proteins were loaded on to a Protein A–Sepharose

column crosslinked with 12CA5 monoclonal antibody (10 ml

bead volume), washed extensively with 50 mM Tris}HCl

(pH 7.4)}0.5 mM EDTA then eluted with HA peptide at 1 mg}ml

in the same buffer. Fractions containing HA–PP2Ac were

determined by Coomassie Brilliant Blue staining of SDS}PAGE

gels then pooled, diluted 2-fold with glycerol and stored at

®20 °C.

Gel-filtration chromatography of PP2Ac

Gel-filtration chromatography was employed to ensure that

monodisperse and correctly-folded PP2Ac was obtained after

ethanol precipitation. Native and mutant HA–PP2Ac were

dialysed from glycerol stocks against 50 mM Tris (pH 7.4),

150 mM NaCl, 1 mM dithiothreitol and 0.5 mM EDTA prior

to concentration with Centricon YM-30 Centrifugal Filter

Devices (Millipore). Approximately 0.2 mg of protein (PP2Ac)

was loaded on to a Superdex 75HR 10}30 FPLC-column

(Pharmacia). Fractions were collected based on FPLC profiles

and the retention time for HA–PP2Ac was determined by

Coomassie Brilliant Blue staining and Western-blot analysis of

SDS}PAGE gels. The column was calibrated using the following

proteins : BSA (66 kDa), carbonic anhydrase (29 kDa) and

trypsin inhibitor (10 kDa).

PP assays

A phosphatase assay using a $#P-labelled peptide (LRRASVA;

kemptide) as the substrate has been described previously [10].

Briefly, phosphatase assays were performed in a 30 µl volume

containing 50 mM Tris}HCl (pH 7.5), 50 mM NaCl, 0.1 mM

EDTA, 1 mM MnCl
#
, 0.1% 2-mercaptoethanol, 1 mg}ml BSA,

60 µM LRRAS-$#PO
%
-VA and 1 nM purified HA–PP2Ac with

or without 10 nM okadaic acid at 30 °C. For assays using

immunoprecipitates, the appropriate dilution of each sample was

used such that assays were performed within the linear range.

Protein concentrations of immunoprecipitates determined by

quantification of Western blots were then used to normalize

PP2Ac concentrations in the phosphatase assays. For the kinetic

analysis of purified proteins, phosphatase assays were performed

according to the Promega non-radioactive phosphatase assay

system (Kit V2460) using the peptide RRA(pT)VA as the

substrate, and the same buffer used above. For the determination

of K
m

and k
cat

for RRA(pT)VA of purified HA–PP2Ac and

HA–D88N, the proteins were titrated with okadaic acid to

determine the concentration of active molecules [29]. The initial

rates of hydrolysis of RRA(pT)VA at 30 °C by native and

mutant PP2Ac were determined for substrate concentrations

ranging from 50 to 500 µM. The initial reaction velocities (�)

were plotted against [S] and then fitted to the Michaelis–Menten

equation by non-linear regression analysis to determine values of

K
m

and k
cat

. Reactions were performed in triplicate under

conditions where substrate depletion was less than 20%.

Test for PP2Ac function in vivo by plasmid shuffling in yeast

Human PP2Acα wild-type and mutant cDNA clones were tagged

with the HA epitope and expressed in yeast from the PGK1

(phosphoglycerate kinase gene) promoter}CYC1(iso-1-cyto-

chrome c gene) terminator of the TRP1 (phosphoribosyl-

anthranilate isomerase prototrophic selectable marker gene)

vector pYPGE2 as previously described [30]. The pph22-156 and

pph22-186 mutant alleles (where PPH22 is the PP2A gene

homologue 2, encoding yeast PP2Ac), encoding the D156N and

H186N substitutions respectively, in yeast PP2Ac were generated

by Quickchange PCR amplification (Promega) of the PPH22

genomic clone in plasmid pDE22 [31] and were inserted (1.8 kb

XbaI–EcoRI fragments) into the TRP1 shuttle vector YCplac22

[32] for expression in yeast (plasmids YCpDE88 and YCpDE-

186 respectively). For plasmid shuffling experiments, TRP1

plasmids were introduced into cells of the haploid mutant strain

DEY3 (MATa pph21::LEU2 pph22∆1::HIS3 pph3∆1::LYS2

lys2-951 ade2-1 ura3-1 his3-11 trp1-1 leu2-3,112 ssd1-d1

[YCpDE8: URA3 PPH22]) which is triply deleted for the

chromosomal PPH21, PPH22 and PPH3 genes and contains

the URA3 PPH22 plasmid YCpDE8 providing essential yeast

PP2Ac function [31]. Loss of YCpDE8 from these cells was tested

by growing Trp+ transformants on agar medium containing

uracil and 5-fluoroorotic acid (5-FOA) [33] ; 5-FOA is toxic to

cells containing the URA3 gene and permits the growth of cells

that have lost YCpDE8 and are kept alive by PP2Ac function

provided by the incoming TRP1 plasmid.

RESULTS

High-level expression of recombinant PP2Ac in insect cells

To obtain recombinant PP2Ac for structure–function analysis,

the baculovirus system was tested for expression of the human

enzyme PP2Acα in the insect cell line, High Five. Western-blot

analysis of lysates, prepared from cells infected with the recom-

binant virus vBBHAPP2Ac, revealed the presence of HA-tagged

human PP2Ac using the 12CA5 monoclonal antibody (Figure 2).

The PP2Ac-specific antibody, AB45, raised against a peptide

based on the N-terminal 20 amino acids of PP2Ac [22], detected

endogenous PP2Ac in non-infected High Five cells as expected,

since the amino acid sequence similarity between Drosophilia and

human PP2Ac is greater than 93% [34]. However, the expression

level of recombinant PP2Ac was approximately 5-fold greater

than endogenous enzyme (Figure 2). Comparison of HA–PP2Ac
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Figure 2 Expression of human PP2Ac in High Five insect cells

Lysates (10 µg) prepared from baculovirus-infected High Five insect cells 48 h post-infection

were resolved by SDS/PAGE and analysed by Western blotting using the 12CA5 monoclonal

antibody (bottom panel) or the PP2Ac peptide antibody AB45 (top panel). Gels were run in

tandem and the first three lanes contained 1, 10 and 50 ng of purified rabbit PP2Ac as controls.

Lane 4 contained uninfected High Five cells (control), and lanes 5, 6 and 7 contained lysates

from High Five cells infected with baculoviruses for recombinant wild-type HA–PP2Ac, and the

mutant HA–D88N and HA–H118N forms respectively.

present in High Five cells with known concentrations of purified

rabbit skeletal muscle PP2Ac (Figure 2) indicated that the level

of expression of recombinant protein was of the order of

1–2 mg}10* cells. By comparison, the insect cell line Sf9 expressed

a 10-fold lower level of recombinant HA–PP2Ac (results not

Figure 3 Co-immunoprecipitation of PR65/A with wild-type and mutant
PP2Ac

(A) Immunoprecipitation of HA-tagged wild-type, D88N and H118N PP2Ac. Lysates were

prepared from High Five cells and immune complexes were recovered with the 12CA5

monoclonal antibody. Two gels were run in tandem and subjected to Western blotting with

12CA5 or staining with Coomassie Brilliant Blue. Lane 1 contained 10–20 pg of rabbit PP2Ac

as a control and lane 2 is a High Five cell lysate control. Lanes 3, 4 and 5 contained the HA-

tagged wild-type PP2Ac, D88N PP2Ac and H118N PP2Ac proteins respectively. Coomassie

Brilliant Blue staining revealed high and low molecular mass bands corresponding to heavy and

light chain antibodies. (B) Recombinant human PP2Ac binds recombinant human PR65/A.

Lysates were prepared from High Five cells expressing human HA–PP2Ac, human PR65/A or

both (doubly infected). HA-tagged proteins were immunoprecipitated with the 12CA5 monoclonal

antibody, resolved by SDS/PAGE, and analysed by Western blotting with 12CA5 to detect

HA–PP2Ac or AB38 to detect the presence of co-precipitated PR65/A. Lanes 1 and 2 contained

total lysate (10 µg) prepared from High Five cells infected with vBBHAPP2Ac and PR65BV

respectively. Lanes 3–5 contained immune complexes prepared from High Five cells infected

with vBBHAPP2Ac, vBBHAD88N and vBBHAH118N respectively. Lanes 6–8 contained immune

complexes prepared from High Five cells doubly infected with vBBHAPP2Ac/PR65BV,

vBBHAD88N/PR65BV and vBBHAH118N/PR65BV respectively. Lane 9 contained immune

complexes prepared from High Five cells infected with the virus PR65BV.

Table 1 Specific activities for immunoprecipitated wild-type and mutant
HA-tagged PP2Ac

Recombinant HA-tagged wild-type and mutant PP2Ac subunits were immunoprecipitated from

High Five insect cell lysates using 12CA5–Protein A–Sepharose. The concentration of

immunoprecipitated PP2Ac subunits was determined by quantitative Western-blot analysis (see

the Experimental section) and used to standardize phosphatase assays using 32P-labelled

kemptide as substrate. Assays were performed in triplicate with and without okadaic acid and

were compared with the specific activity of purified rabbit skeletal muscle PP2Ac.

PP2Ac

Specific activity (nmol [32P]Pi released/min per mg)

­Okadaic acid (10 nM) ®Okadaic acid

Rabbit PP2Ac 10.0³1.1 180.1³30.4

HA–PP2Ac 4.4³0.3 218.3³17.4

HA–D88N 0.8³0.1 23.5³3.9

HA–H118N 2.2³0.1 9.7³1.3

shown). Thus baculovirus infection of High Five cells is an

efficient system for expressing recombinant HA–PP2Ac.

Overexpression of PP2Ac active-site mutant proteins in insect
cells

To test the impact of PP2Ac active-site residues on catalytic

function, and obtain maximum yields of recombinant PP2Acα

for structure–function analyses we generated mutant forms of

HA–PP2Ac containing the H118N or D88N substitutions. Based

on sequence alignment of the PPP family members (Figure 1)

and kinetic studies of λPPase and PP1 [13–16] the PP2Ac residue

His"") is believed to serve as a general acid, donating protons to

the serine}threonine leaving group during the phosphatase

reaction, while Asp)) increases its acidic character. Changing

either amino acid to a neutral asparagine residue is predicted to

impair PP2Ac catalytic function. Mutant forms of HA–PP2Ac

were expressed in High Five insect cells following infection with

the recombinant viruses vBBHAD88N or vBBHAH118N. Re-

markably, the expression level of HA–PP2Ac mutant proteins

was approximately 5-fold greater than that of the native recom-

binant HA–PP2Ac (Figure 2). This observation, together with

data shown below, suggests that, in High Five insect cells,

overexpression of PP2Ac is facilitated by active-site mutations

which impair catalytic function.

Active-site mutations impair PP2Ac catalytic activity in vitro

To examine catalytic activity in �itro, native and mutant HA–

PP2Ac proteins were immunoprecipitated from lysates prepared

from High Five cells (Figure 3A). The amount of HA-tagged

native and mutant (D88N or H118N) PP2Ac recovered in

immune complexes was similar, as judged by Western-blot

analysis (results not shown). However, phosphatase activity

assays on the immune complexes revealed that, whereas the

specific activity of the native HA–PP2Ac (218 nmol [$#P]P
i

released}min per mg) was similar to that of the purified rabbit

skeletal muscle enzyme (180 nmol [$#P]P
i
released}min per mg),

there was a 9-fold and 22-fold reduction in specific activity for

the mutants D88N (24 nmol [$#P]P
i
released}min per mg) and

H118N (9.7 nmol [$#P]P
i
released}min per mg) respectively, using

a phospho-kemptide substrate (Table 1). These results are in

agreement with those of Ogris et al. [17,18] who detected a

dramatic decrease in PP2Ac activity towards phosphorylated
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Figure 4 Analysis of active-site mutant forms of PP2Ac in yeast

(A) Functional replacement of yeast PP2Ac by active-site mutant forms of human PP2Ac by

plasmid shuffling. TRP1 plasmids encoding wild-type human PP2Ac (PP2Acα), no insert DNA

(Empty vector) or a mutant form of human PP2Ac (containing the substitution indicated) were

tested for PP2Ac function by plasmid shuffling in strain DEY3. Trp+ transformant cells

were grown to saturation in liquid SD medium [0.17% (w/v) yeast nitrogen base (Difco), 0.5%

(w/v) ammonium sulphate and 2% (w/v) dextrose] with uracil. Cell suspensions were then diluted

(1 : 1 or 1 : 10), spotted on to agar medium containing 5-FOA and incubated at 30 °C for 3 days.

(B) Western-blot analysis of HA-tagged forms of human PP2Ac expressed in strain DEY3. Yeast

cell extracts (30 µg) containing wild-type human PP2Ac (wt), a mutant form of PP2Ac (with

the substitution indicated) or the empty expression vector were resolved by SDS/PAGE and

probed with the 12CA5 monoclonal antibody. A molecular-mass marker is shown on the right-

hand side. Human PP2Ac migrates as a doublet. (C) Functional replacement of wild-type PP2Ac

with active-site mutant forms of yeast PP2Ac. TRP1 plasmids encoding wild-type yeast

PP2Ac (Pph22p), no insert DNA (Vector) or the active-site mutant form Pph22-H186N (left) or

Pph22-D156N (right) were tested for essential function in vivo as in (A).

histone H1 (2% of wild-type) and phosphorylase (8% of wild-

type) caused by a H118Q substitution [17].

PP2Ac complexes with PR65}A in �i�o to form a core dimer

[1,3]. To examine whether the HA–PP2Ac active-site mutations

disrupted protein folding we tested whether the recombi-

nant native and mutant HA–PP2Ac proteins bound recombinant

PR65}Aduring coexpression in insect cells. Immunoprecipitation

of HA-tagged PP2Ac proteins using the 12CA5 antibody caused

co-precipitation of PR65}A with the native, D88N and H118N

PP2Ac forms, indicating the formationof a stable protein–protein

interaction in each case (Figure 3B). This suggests that the D88N

and H118N mutations impair the catalytic function of PP2Ac

without severely disrupting protein folding.

Active-site mutations abolish essential PP2Ac function in vivo

Because the D88N and H118N substitutions inhibited PP2Ac

catalytic activity in �itro, we tested whether they similarly

impaired PP2Ac function in �i�o. To do this, we employed a

Figure 5 Purification of recombinant PP2Ac

Lysates were prepared from High Five cells using a French press. Proteins were purified by

ethanol precipitation and 12CA5 monoclonal antibody affinity chromatography as described in

the Experimental section. Approximately 1–3 µg of purified HA–PP2Ac (lane 1) and HA–D88N

(lane 2) was resolved by SDS/PAGE and stained with Coomassie Brilliant Blue.

plasmid shuffling procedure (see the Experimental section) that

tests the ability of human PP2Ac proteins to functionally replace

the endogenous enzyme of the budding yeast Saccharomyces

cere�isiae [30]. Functional analysis in yeast revealed that, unlike

wild-type human PP2Acα, the PP2Ac-H118N and PP2Ac-D88N

mutant proteins each failed to substitute for the endogenous

yeast PP2Ac in �i�o (Figure 4A), although each protein was

expressed at a similar level (Figure 4B). To confirm this for the

endogenous yeast PP2Ac we generated active-site mutations in S.

cere�isiae Pph22p, which shares 71% amino acid sequence

identity with human PP2Acα over the region of homology [30].

Like the equivalent human proteins, the active-site mutant forms

of yeast PP2Ac, containing the H186N or D156N substitutions

(analogous to H118N and D88N in human PP2Acα respectively)

failed to provide PP2Ac function in �i�o (Figure 4C). Together,

these results demonstrate that active-site mutations impairing

catalysis inhibit essential PP2Ac function in �i�o.

Purification and characterization of native and mutant PP2Ac

For the large-scale expression and purification of PP2Ac we

employed an HA tag, placed in frame with the N-terminus of

human PP2Acα, for immunoaffinity purification of recombinant

protein. Constructs with N- and C-terminal His tags were also

evaluated; however, binding of the tagged PP2Ac to Ni#+-

nitrilotriacetate agarose (Qiagen) was ineffective for large-scale

purification, since significant amounts of endogenous insect

PP2Ac were purified from lysates prepared from High Five cells.

This would suggest that PP2Ac may bind to Ni#+-nitrilotriacetate

agarose matrix via the active site and as such would be a major

source of contamination in the purification of His-tagged recom-

binant PP2Ac (results not shown). Large-scale expression of

PP2Ac was achieved by seeding 20 triple flasks with 1¬10* High

Five cells. Recombinant protein was prepared from infected cells

utilizing a two-step purification protocol based on ethanol

precipitation [27,28] and monoclonal antibody affinity chromato-

graphy. Ethanol precipitation was used as the initial purification

step in order to increase the yield of pure PP2Ac and significantly

reduce non-specific binding to the 12CA5–Protein A–Sepharose
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Figure 6 Gel filtration of recombinant PP2Ac

Approximately 0.2 mg of purified recombinant wild-type or mutant HA-tagged PP2Ac was

loaded on to a Superdex 75HR 10/30 FPLC gel-filtration column. Fractions were collected over

the course of the chromatography and the presence of PP2A was determined by Coomassie

Brilliant Blue staining and Western-blot analysis. The chromatogram shows the elution profile

of wild-type PP2Ac and is a representative trace for all PP2Ac forms tested. The inset shows

a Coomassie Brilliant Blue-stained gel of the purified three main fractions of HA–PP2Ac in lanes

1–3 respectively. Each PP2Ac protein eluted off the column as a single peak with a retention

time of 24 min. PP2Ac was not detected in any of the other fractions.

immunoaffinity column and to ensure that purified PP2Ac was

not complexed to the insect cell A-subunit. This procedure

permitted essentially quantitative recovery of 1 mg of pure wild-

type HA–PP2Ac, while only 10% of the HA–D88N PP2Ac

(1 mg}1¬10* cells) was recovered with a purity greater than

90% (Figure 5). The mutant HA–H118N PP2Ac did not survive

ethanol precipitation well with l% recovery (results not shown).

To ensure the purified PP2Ac was monodisperse and correctly

folded using the ethanol precipitation procedure, we performed

gel filtration on HA-tagged wild-type and mutant PP2Ac. The

wild-type and mutant forms of PP2Ac eluted as a single peak

with a retention time of 24 min suggesting that the proteins were

not aggregated and were correctly folded (Figure 6), with the

correct apparent molecular mass, as judged by standards.

Purified recombinant HA–PP2Ac and HA–D88N were titrated

with okadaic acid revealing a concentration of active molecules

similar to that determined by the Bradford assay using BSA as a

standard (results not shown). The kinetic constants K
m

and k
cat

for the dephosphorylation of the peptide RRA(pT)VA were

determined for titrated HA–PP2Ac and HA–D88N PP2Ac

(Table 2). The K
m

for HA–D88N (58.4 µM) was reduced by

approximately 6-fold compared with HA–PP2Ac (337.5 µM),

whereas k
cat

was decreased 85-fold for HA–D88N (2 s−") com-

pared with HA–PP2Ac (170 s−"). For HA–PP2Ac, the value of

K
m

for the substrate RRA(pT)VA was similar to that measured

for the native bovine PR65}A–PP2Ac complex using $#P-

labelled kemptide as a substrate (K
m

¯ 361 µM) [35], and for

purified rabbit skeletal muscle PP2Ac using RRA(pT)VA as

substrate where the K
m

was 310 µM (Promega).

Table 2 Kinetic constants for purified wild-type HA–PP2Ac and HA–D88N
PP2Ac

The values for Km and kcat for the dephosphorylation of the peptide RRA(pT)VA were determined

for purified wild-type HA–PP2Ac and HA–D88N PP2Ac. Substrate concentrations ranging from

50 to 500 µM were used in a 50 µl assay volume containing either 2 nM wild-type HA–PP2Ac

or 10 nM HA–D88N and incubated at 30 °C for 10 and 30 min respectively. The reactions were

stopped and free phosphate was measured as described by the manufacturers using a

Molecular Devices Softmax plate reader. The initial reaction velocities (v ) were plotted against

[S] and then fitted to the Michaelis–Menten equation by non-linear regression analysis to

determine values of Km and kcat. Reactions were performed in triplicate under conditions such

that substrate depletion was less than 20%.

PP2Ac Km (µM) kcat (s−
1) kcat/Km (M−1 [ s−1)

HA–PP2Ac 337.5³37.4 170.0³12.8 5.03¬105

HA–D88N 58.4³14.6 2.0³0.1 0.34¬105

DISCUSSION

Baculovirus system for expression of PP2Ac

The identification and analysis of PP2Ac structural determinants

important for catalysis and its interaction with PR65}A and B-

type subunits has been restricted by lack of a convenient

eukaryotic expression system capable of generating high levels of

recombinant PP2Ac significantly in excess over the endogenous

enzyme. For example, expression of PP2Ac from the strong U3

promoter of the Moloney murine leukaemia virus led to an

increase in the total (endogenous plus recombinant) PP2Ac in

murine NIH}3T3 fibroblasts of only 30–50% [20], while ex-

pression of recombinant PP2Ac from the cytomegalovirus pro-

moter was achieved at a level only 3-fold higher than that of the

endogenous protein in HEK-293 human kidney cells [36]. Ac-

cordingly, PP2Ac appears to control its intracellular levels

stringently. Studies by Baharians and Scho$ nthal [19] showed that

the strict control of endogenous and recombinant PP2Ac levels

in NIH}3T3 cells is due to auto-regulation at the level of

translation, whereas Chung and Brautigan [21] show PP2Ac

activity is strictly regulated at the level of transcription in COS-

7 cells. These mechanisms are likely to operate in most cell types

to maintain a constant intracellular pool size of PP2Ac. Our

results indicate that the baculovirus system using High Five

cells is appropriate for the overexpression of recombinant

PP2Ac because it partially lacks these stringent mechanisms

of PP2Ac auto-regulation. The baculovirus system has been

used previously to investigate the regulation of PP2A enzyme

specificity by regulatory B subunits in Sf9 cells, which were triply

infected with baculoviruses for PP2Ac, PR65}A, and PR55}B,

PR61}B« or simian-virus-40 small tumour antigen [35]. Purifi-

cation of PP2A heterotrimers yielded approximately 150 µg}10*

Sf9 cells (approx. 50 µg of PP2Ac) similar to the yields from

Sf9 cells infected with recombinant PP2Ac obtained in the

present study (results not shown). Remarkably, we show that

the level of recombinant HA–PP2Ac in High Five cells is in excess

of 1 mg}10* cells (approximately 5-fold higher than endogenous

PP2Ac).

Active-site mutations inhibit catalysis and allow overexpression of
PP2Ac

Mutating the active-site residues Asp)) and His"") to the neutral

amino acid asparagine yielded substantially higher levels (5–

10 mg}10* High Five cells) of mutant HA–PP2Ac compared

with native recombinant HA–PP2Ac. The Asp)) and His"")

residues were chosen based on analogous residues in the struc-
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turally related PP1 and λPPase (Figure 1), which, when similarly

mutated, cause reduced values for V
max

in phosphatase reactions

[13,14]. HA–PP2Ac activity assays revealed a 9- and 23-fold

reduction in the relative activity of the HA–D88N and HA–

H118N forms of PP2Ac respectively, while binding of the native

and mutant PP2Ac proteins to PR65}A was similar, suggesting

similar folding in each protein. The results for the HA–H118N

substitution are similar to those observed for the H118Q sub-

stitution of PP2Ac, which had decreased activity towards the

substrates phosphorylase a and histone H1 [17,18]. Moreover,

functional analysis in yeast revealed that the D88N and H118N

substitutions in human PP2Ac, as well as the analogous active-

site mutations (D156N and H186N) in yeast PP2Ac, abolished

essential PP2A function in �i�o. These observations demonstrate

that the human Asp)) and His"") residues perform a key,

phylogenetically conserved, role in the catalytic mechanism of

PP2Ac. Furthermore, our results indicate that the regulation

of PP2Ac expression is apparently controlled by its PP activity,

and could be due to the mechanisms outlined by Baharians and

Scho$ nthal [19] or Chung and Brautigan [21].

Expression, purification and characterization of recombinant
PP2Ac

Scaled-up expression and purification of recombinant PP2Ac

from 1¬10* High Five cells using a two-step purification

procedure yielded 1 mg of pure HA–PP2Ac and 1 mg of HA–

D88N, whereas the mutant HA–H118N did not survive the

ethanol precipitation step particularly well. Only 1 and 10% of

the total HA–H118 and HA–D88N was recovered respectively,

and reflects the effect of the mutations on the stability of PP2Ac

after ethanol precipitation. However, gel-filtration chromato-

graphy shows the mutant proteins to be monodisperse with a

similar fold to wild-type PP2Ac. Expression of HA-tagged PP2Ac

in conjunction with the two-step purification procedure has

yielded milligram quantities of pure PP2Ac which has been

complexed with recombinant PR65 from Escherichia coli (results

not shown) to allow the structure determination of PP2Ac in

complex with PR65}A using X-ray crystallography.

The kinetic parameters for the dephosphorylation of

RRA(pT)VA by purified recombinant HA–PP2Ac (K
m

¯
337.5 µM; k

cat
¯ 170 s−") were similar to values described pre-

viously for rabbit skeletal muscle PP2Ac (Promega) and the

values obtained for the dephosphorylation of $#P-labelled

kemptide by the PR65}A–PP2Ac complex where K
m

was 361 µM

[18]. Substitution of Asp)) with the isosteric asparagine shows a

small decrease in K
m

(6-fold), but a significant reduction in k
cat

(85-fold), suggesting that the association of the Ser(P)}Thr(P)

substrate with the PP2Ac active site is not impaired for complex

formation; however, the mutation has an effect on catalysis.

Mutation of λPPase residue Asp&#!Asn (D88N in PP2Ac)

caused a small decrease in K
m

for the substrate p-nitrophenyl

phosphate (3-fold) but a 35-fold decrease in k
cat

, which is similar

to the effects of HA–D88N PP2Ac towards RRA(pT)VA [13].

The effect of the PP2Ac D88N substitution on catalysis is

consistent with the catalytic mechanism proposed for the PPP

family member, PP1, based on its crystal structure, involving an

ion-pair interaction between Asp*& (Asp)) in PP2Ac) and His"#&

(His"") in PP2Ac). The analogous PP1 residue Asp*& promotes

catalysis, both by enhancing the acidic character of His"") via

electron withdrawal and by holding the imidazole ring of PP1

His"#& in a rigid conformation permitting the protonation of the

target substrate [16]. The PP2Ac residue Asp)) is highly conserved

between members of the PPP family and the effect of the D88N

substitution on catalysis by PP2Ac provides support to the

notion that the active-site topology and catalytic mechanism of

this family of PPs is also conserved.

We show that the baculovirus system using High Five insect

cells allows, for the first time, the high-level expression of

biologically active PP2Ac for structural and functional studies.

Site-directed mutagenesis of PP2Ac and purification of mutant

proteins from High Five insect cells combined with functional

analysis in yeast provides a powerful system for structure–

function analysis of PP2Ac. We are currently employing these

systems to further investigate the mechanism of PP2Ac catalysis

and the role of post-translational modifications in PP2Ac func-

tion, activity and subunit interactions.

This work was supported by grants from the European Union Structural Biology
programme (to B.A.H.) and the Human Frontiers programme (to B.A.H.).
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Abstract  

 
Protein phosphatase 2A is a hetero-trimeric holoenzyme that consists of a core dimer 

composed of a catalytic subunit that is tightly complexed with the scaffolding subunit 

PR65/A. This core dimer associates with variable regulatory subunits of the PR55/B, 

PR61/B', PR72/B'' and PR93/PR110/B''' families. As PP2A holoenzymes containing 

PR55/B have been shown to be involved in the pathogenesis of Alzheimer’s disease, we 

characterized the PR55/B family with particular emphasis on its distribution and 

expression in the brain. We determined the genomic organization of all members of the 

PR55/B family and cloned their murine cDNAs. Thereby, two novel splice variants of 

PR55/Bβ were identified. In addition, Northern blot analysis revealed multiple transcripts 

for the different PR55 subunits, suggesting a higher variability within the PR55 family. In 

situ hybridization analysis revealed that all PR55/B subunits were widely expressed in the 

brain. PR55/Bα and Bβ protein expression varies significantly in areas of the brain 

affected by neurodegenerative diseases such as the hippocampus or cerebellum. At the 

cellular level, PR55/Bβ protein expression was confined to neurons, whereas PR55/Bα 

was also expressed in activated astrocytes indicating that the PR55 isoforms confer a 

different function to the holoenzyme complex. As PP2A dysfunction has been 

demonstrated to contribute to various human diseases, dissecting the PP2A holoenzyme 

and its particular function in different cell types will assist in the development of novel 

therapeutic strategies.  
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INTRODUCTION 

 

Protein phosphatase 2A (PP2A, PPP2) is one of the major serine/threonine-specific 

phosphatases which, together with PP1 (protein phosphatase 1), PP2B (calcineurin), and 

PP2C, is involved in many diverse cellular processes (Millward et al., 1999).  

Several holoenzyme complexes of PP2A have been isolated from a variety of tissues and 

have been extensively characterized. The core enzyme is a dimer, consisting of a highly 

conserved catalytic subunit (C) and a structural scaffolding subunit (PR65/A) that forms 

complexes with variable regulatory B subunits. Four families of B subunits have been 

identified so far, termed PR55/B, PR61/B´, PR72/B´´ and PR93/PR110/B´´´ (Janssens & 

Goris, 2001). A striking feature of the regulatory subunits is the lack of sequence 

similarity between these families, despite the recognition of similar sequence motifs 

within the A subunit. Due to the expression in mammals of at least two A, two C, four B, 

at least eight B´, four B´´, and two B´´´ isoforms, a total of about 75 PP2A holoenzymes 

can be generated. Taking the different splice variants into account, even more 

holoenzymes can be formed (Janssens et al., 2001). This complexity, in addition to 

posttranslational modifications including phosphorylation and methylation of the C 

subunits, provides a vast variety of possibilities for the regulation of PP2A activity. Many 

substrates of PP2A have been described, including the microtubule-associated protein tau 

(Gong et al., 1994). Hyperphosphorylated forms of tau form insoluble intracellular 

deposits in several human neurodegenerative diseases including Alzheimer’s disease 

(AD) (Gotz, 2001). Previous studies have shown that in brain homogenates of AD 

patients, PP2A activity was 30% lower than in those of control subjects (Gong et al., 

1995) and, of five subunits analyzed, PP2A Cα, PR55/Bγ and PR61ε mRNA expression 

was quantitatively decreased in the CA3 region of the hippocampus (Vogelsberg-

Ragaglia et al., 2001). A role for PP2A in tau dephosphorylation is also supported by the 

finding that PP2A is localized on microtubules and that it binds directly to tau (Sontag et 

al., 1999). In particular, PP2A holoenzymes containing regulatory subunits of the 

PR55/B family were shown to bind and dephosphorylate tau very efficiently (Goedert et 

al., 1992; Sontag et al., 1999). Recent findings in subjects with spinocerebellar ataxia, in 

whom an expanded CAG repeat has been identified immediately upstream of the 
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PR55/Bβ gene, indicate that dysregulation of PR55 may have functional consequences in 

neurodegenerative disorders (Holmes et al., 1999). 

Genetic approaches in mice will play an integral role in understanding PP2A function in 

vivo (Janssens et al., 2001). To provide a framework for the interpretation of phenotypes 

of mice that either lack PP2A subunits (Gotz et al., 1998; Gotz et al., 2000) or display an 

altered PP2A composition or activity (Kins et al., 2001; Planel et al., 2001), we 

determined the genomic organization, identified novel splice variants and analyzed the 

mRNA and protein expression of the PR55/B regulatory subunits of PP2A in different 

tissues, in particular the brain. 

 

MATERIALS AND METHODS 
 

PR55 cDNA cloning 

 

Different mouse brain cDNA libraries were screened to isolate cDNA clones of the three 

PR55/B isoforms that have been previously described in humans (α, β, and γ) (Mayer et 

al., 1991), and a fourth isoform (δ) that has been identified in the rat (Strack et al., 1999). 

In addition, the human sequences of the PR55/B isoforms were used to search murine 

expressed sequence tags (ESTs) in the NCBI nucleotide database. From EST libraries 

(Incyte Genomics, St. Louis, Missouri, USA and Invitrogen, Paisley, UK), a full-length 

IMAGE cDNA clone for PR55/Bα (thymus, accession # aa111189) and two splice 

variants for PR55/Bβ termed PR55/Bβ.1 (testis, EST accession # aa108896, GeneBank 

accession # AS512670) and PR55/Bβ.2 (lung, EST accession # bi150825, GeneBank 

accession # AF536771) were obtained. PR55/Bγ was obtained from a λ ZAP II mouse 

brain library (Stratagene, La Jolla, California, USA) by screening with a human cDNA 

probe at low stringency. PR55/Bβ and δ cDNAs were isolated by isoform-specific PCR 

amplification of the Marathon-Ready mouse brain cDNA library (Clontech, Palo Alto, 

California, USA). Nucleotide sequences were determined by automated sequencing (ABI 

PRISM 3700, Applied Biosystems, Foster City, California, USA).  
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BAC genomic clones and chromosomal localization  

 

The cDNAs encoding the PR55/B subunits were used to screen a mouse BAC library 

constructed from 129/SvJ genomic DNA (Genome Systems, Palo Alto, California, USA). 

A BAC sub-library was screened to establish the genomic organization of PR55/Bα. 

Positive clones were identified by filter hybridization using the corresponding 32P-

labelled cDNA fragments. A 20kb PR55/Bα EcoRl fragment covering exons 4 to 10 was 

sub-cloned and sequenced. The complete genomic organization of PR55/Bα, β, and the 

partial organization of γ and δ was assembled by a Blast screening of the Ensembl murine 

database. The Ensembl database was also used to determine the chromosomal 

localization of the four PR55/B genes. 

 

Northern blot analysis 

 

2 µg polyA+ mRNA derived from different tissues of adult 3-month-old Balb/c mice and 

four embryonic stages of Balb/c mice (Clontech) were prehybridized at 50°C for 4 h in 

Express Hybridization buffer (Clontech) complemented with denatured and sonicated 

salmon sperm DNA (100 mg/ml), and sequentially hybridized with 32P-labeled PR55/B 

subunit-specific 45 bp-long antisense oligonucleotides  

(α: 5’-tatctgcttctgctacgtcatcatctactgctcctttcacctgag-3’,  

β: 5’-gttgaattctaccgtagagataatgtcagctgtgaagggcttcat-3’, 

γ: 5’-agtggagatgacgtcagcttctgtcacatagctgtggtcccgcag-3’,  

δ: 5’-tattggaacccgtagtgccgtaattctaaatgggtctcgaagtcg-3’).  

The β antisense probe hybridizes to all PR55/Bβ transcripts including β.1 and β.2. A 

random-primed 2 kb human β-actin cDNA probe was used for normalization. The blots 

were washed sequentially using increasingly stringent conditions. The final wash was 

performed at 60°C for 30 min in a buffer containing 0.1 x SSC and 0.1% SDS, conditions 

used previously to differentiate between highly homologous transcripts (Kins et al., 2000; 

Ramming et al., 2000). Finally, the membranes were exposed to Biomax films (Kodak) 

for 10-60 h at –70°C.  
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In situ hybridization  

 

Wild-type mice were transcardially perfused with PBS containing 4% paraformaldehyde, 

postfixed overnight at 4°C, and paraffin embedded. 7 µm sections were dried overnight at 

42°C on coated glass slides, dewaxed and permeabilized by acid treatment (0.1 M HCl 

for 10 min), followed by a proteinase K treatment (10 µg/ml) for 10 min at 37°C. After 

acetylation with 0.1 M triethanolamine and 0.4% acetic anhydride (20 min at room 

temperature), sections were incubated for 1 h at room temperature in hybridization buffer 

(25% deionized formamide, 4 x SSC, 5 x Denhardt’s reagent, 0.25 mg/ml yeast tRNA, 

10% dextransulfate, 50 mM DTT, 1 mM EDTA, 0.5 mg/ml salmon sperm DNA in 50 

mM phosphate buffer pH 7). The sections were hybridized overnight at room temperature 

in hybridization buffer with DIG-labeled 45 bp antisense oligonucleotide probes and the 

complementary sense probes. Sections were washed at 37°C in solutions of decreasing 

salt concentrations (2 x, 1 x, 0.2 x SSC), blocked with 2% (v/v) normal sheep serum, and 

incubated with an anti-DIG antibody conjugated to alkaline phosphatase (Roche, Basel, 

Switzerland) in 100 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Triton X-100, and 1% 

normal sheep serum. Alkaline phosphatase activity was visualized with staining solution 

(100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2, 1 mM levamisole, 450 ng/µl 

NBT, and 175 ng/µl BCIP) for 2-14 h. After washing, slides were mounted in Mowiol 

(Hoechst, Frankfurt, Germany). 

 

Western blot analysis 
 
To determine the specificity of the PR55/B-specific antibodies, COS cells were 

transfected with constructs encoding HA-tagged PR55/Bα, PR55/Bβ, and PR55/Bγ, and 

lysates analyzed by western blotting. To ascertain the tissue distribution of PR55/Bα and 

PR55/Bβ, murine tissues were homogenized in TBS containing protease inhibitors 

(Complete® containing EDTA, Roche). Triton X-100 was added to a final concentration 

of 1%, and the homogenate was mixed in an overhead incubator for 1 h at 4°C. After 

centrifugation at 5000 g for 5 min at 4°C, the supernatant was used for western blot 

analysis. As a control, recombinant PR55/Bα was loaded. For sub-fractionation, brains 
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were homogenized in 10 mM Tris pH 7.5, 1 mM EGTA, 1 mM EDTA, and 1 mM DTT 

in the presence of protease inhibitors. The homogenate was centrifuged at 100,000 g for 

60 min, and the supernatant (S1, cytosolic proteins) was removed. The pellet was 

rehomogenized in 10 volumes of homogenization buffer plus 1% Triton X-100 and 

centrifuged as before. The supernatant (S2, membrane fraction) was removed, and the 

pellet was resuspended in 10 volumes of homogenization buffer (P2, cytoskeletal 

proteins) (McNeill & Colbran, 1995; Strack et al., 1998). Protein concentrations were 

determined with the DC-protein assay (BioRad, Hercules, California, USA) following the 

instructions of the manufacturer. 40 µg of protein were separated on 10-20% tricine 

gradient gels (Novex), and transferred to Hybond ECL membranes. Ponceau stainings of 

the membranes were included to confirm loading of comparable amounts of protein. 

Blots were developed with the following rabbit antisera: anti-β-actin (Abcam, 

Cambridge, United Kingdom, 1:5000), anti-GAPDH (BioDesign, Saco, Maine, United 

States, 1:500), anti-APP (Amyloid precursor protein, C-terminal, Sigma, 1:400), anti-

phospho-APP (Thr668 phosphorylated, Cell Signaling, Beverly, MA, USA, 1:1000), anti-

GFAP (Innogenex, San Ramon, California, USA 1:300), anti-PP2A/Bα 14-57 

(Calbiochem, 1:200), anti-PP2A/Bβ 2-14 (Calbiochem, 1:200), anti PP2A/Bγ 53-66 

(Calbiochem, 1:200), and anti-PP2A/Cα #45 (Gotz & Kues, 1999), and HRP-conjugated 

secondary antibodies as described (Kins et al., 2001). 

 

Immunohistochemistry 

 

Brains from three-month-old wild-type mice were used for immunohistochemical 

analysis. Animals were perfused transcardially with 4% paraformaldehyde in sodium 

phosphate buffer. 40 µm sections were cut on a vibratome and permeabilized with 0.1% 

NP-40 (Calbiochem), using standard published procedures (Gotz et al., 1998; Kins et al., 

2001). Some of the sections were pretreated either with 5 µg/ml proteinase K or 0.1% 

Triton X-100 in TBS or PBS at 37°C for 2.5 mins for signal enhancement. The PR55/Bα 

and PR55/Bβ antisera (Calbiochem) were used at 1:200 dilutions, anti-GFAP mouse 

monoclonal (Innogenex, San Ramon, California, USA) at 1:1000, and the mouse 

monoclonal anti-MAP-2 (Chemicon, Temecula, California, USA) at 1:200. For 
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peroxidase/DAB stainings, secondary antibodies were obtained from Vector Laboratories 

(Burlingame, California, USA, Vectastain ABC kits PK-6101 and PK-6102). For 

immunofluorescence, secondary antibodies were obtained from Molecular Probes 

(Eugene, Oregon, USA, ALEXA-FLUORTM series). Sections were dehydrated in an 

ascending series of ethanol and flat-embedded between glass slides and coverslips in 

Eukitt (Kindler, Germany). 
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RESULTS 

 

Cloning of all murine PR55/B subunits and two novel splice variants 

 

Four murine cDNAs encoding the PR55/Bα, β, γ, and δ subunits were identified, as well 

as two novel splice variants, β1 and β2 (Fig. 1). PR55/Bα was obtained as an IMAGE 

mEST clone (accession # 111189, from thymus). In addition, a PR55/Bα pseudogene was 

identified in a genomic database with exons 3 to 10 fused. The nucleotide sequence 

contained many point mutations, indicating that the pseudogene is not functional. 

PR55/Bβ was isolated by isoform-specific PCR amplification of a mouse brain cDNA 

library (Clontech). In addition, two PR55/Bβ splice variants were identified, encoding 

amino-terminally spliced variants of the β subunit that do not result in a shift of the open 

reading frame (ORF). PR55/Bγ was isolated from a λ ZAP II mouse brain library 

(Stratagene), and PR55/Bδ was isolated by tissue-specific PCR from a mouse brain 

cDNA library (Clontech). All mRNA and corresponding protein sequences were 

compared to those obtained in other species. Alignment of the murine protein sequences 

revealed, as for other species, a high degree of sequence conservation of the four 

subunits, with the exception of a highly diverse amino-terminus (Fig. 2). The overall 

sequence identity is in the range of 90%, the inter-species conservation of the individual 

subunits is between 94% (α) and 97% (γ), when compared to the human isoforms.  

 

The genomic organization of PR55/B subunits is highly conserved 

 

Specific cDNA probes were used to screen a mouse BAC library constructed from 

129/SvJ genomic DNA. We isolated three PR55/Bα clones, and one each for PR55/Bβ 

and PR55/Bγ. The genomic organization was established by restriction enzyme analysis 

and Southern blotting. A 20kb EcoRI fragment of the α isoform containing exons 4-10 

was sub-cloned and sequenced. The genomic maps of the remaining isoforms were 

partially established in silico (Fig. 1). The size of the introns was determined based on 

publicly-available sequence data. Some of the introns are quite large which is indirectly 
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supported by the finding that the respective genes are not present in their full length on 

single BAC clones. 

PR55/Bα is localized on chromosome 14D2, the likely PR55/Bα pseudogene on 

chromosome 12C3, PR55/Bβ on chromosome 18B3, PR55/Bγ on chromosome 5B2, and 

PR55/Bδ on chromosome 7F5.  

Alignment of the cDNA and genomic sequences of the PR55/B isoforms revealed that the 

exon/intron boundaries of the final eight exons are conserved for each isoform, the 

PR55/Bβ splice variants, and when compared with other species. The PR55/Bα gene 

consists of ten coding exons, whereas all other isoforms have nine coding exons. The 

transcription start site for the splice variant PR55/Bβ.2 is on exon 1, followed by the start 

codon for PR55/Bβ.1 on exon 2, and the start codon for PR55/Bβ on exon 3. Alignment 

of the murine sequences revealed that all isoforms, including the novel PR55/Bβ.1 and 

PR55/Bβ.2 isoforms, contain a structural WD-40 repeat motif of five to seven imperfect 

repeats, depending on the stringency of the parameters, as in humans (Fig. 2).  

 

High diversity of PR55/B mRNAs  

 

We performed a northern blot analysis using isoform-specific probes, to determine the 

mRNA expression of PR55/B (Fig. 3A). The β antisense probe hybridizes to all PR55/Bβ 

transcripts including β.1 and β.2. No transcripts were detected for α, γ, or δ in mice at 

embryonic days E7, E11, E15, or E17. In contrast, a 2.5 kb β transcript was detected as 

early as embryonic day E11, with increasing levels until E17. Hybridization of multiple 

tissue northern blots revealed a PR55/Bα transcript of 2.5 kb in all tissues examined, 

similar to the expression pattern in humans (Mayer et al., 1991). Likewise, PR55/Bδ was 

expressed in all tissues. In testis, two mRNA species of 2.1 and 2.3 kb were found, 

whereas in all other tissues 2.0 and 2.2 kb transcripts were present. However, in brain, an 

additional transcript of 2.5 kb was detected. A major PR55/Bβ transcript of 2.5 kb and a 

minor transcript of 2.0 kb were found in brain, whereas in testis a 1.8 kb transcript was 

detected. Upon longer exposure, transcripts were found in additional tissues including 

lung and spleen. In contrast to PR55/Bβ, the 4.4 kb transcript of PR55/Bγ was solely 

restricted to brain. Control hybridizations with a probe specific for β-actin revealed that 
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equal amounts of mRNA were loaded (not shown). These results, together with the 

identification of two novel splice variants of the Bβ subunit, indicate both a high 

complexity of the PR55/B family and a very fine-tuned regulation of distinct functions of 

the heterotrimeric PP2A holoenzyme. 

 

In situ hybridization analysis of brain sections 

 

To visualize the distribution of PR55/B subunit mRNAs in mouse brain, DIG-labeled 

antisense oligonucleotide probes specific for all PR55/B subunits were hybridized to 

parasagittal mouse brain sections. The distribution of the PR55/Bα subunit mRNA is 

shown in cortex, hippocampus, and cerebellum (Fig. 3B). No significant staining was 

obtained using the corresponding sense probes on adjacent sections (insets Fig. 3B). All 

PR55/B subunits were widely distributed in the brain, with a predominant expression by 

neurons. In general, hybridization was strongest in cell-dense areas such as the 

cerebellum, hippocampus, and olfactory bulb (Table 1). PR55/Bα and PR55/Bδ showed a 

similar distribution, and hybridization was more intense in brain stem than in cortex. In 

the dentate gyrus, the PR55/Bβ probe hybridized strongly to singulate cells, whereas the 

three other antisense probes hybridized more uniformly. With the exception of PR55/Bγ 

that was absent in the brain stem, the four PR55/B subunits were transcribed in all brain 

areas analyzed (Table 1). 

 

Immunoblot analysis of PR55/B subunits 

 

For detection of PR55/B, commercial antibodies were used that have been shown 

previously to be specific for the PR55/Bα and Bβ subunits on western blots and by 

immunohistochemistry (Strack et al., 1998). The commercially-available Bγ antiserum 

has been shown to be cross-reactive (Strack et al., 1998) and was therefore excluded from 

our analysis of the tissue distribution of PR55 subunits. We confirmed the specificity of 

the above antibodies by transfecting COS cells with constructs encoding HA-tagged 

PR55/Bα, Bβ, and Bγ, and analyzed lysates using western blot analysis. Whereas the HA-

antibody detected all PR55 isoforms, the PR55/Bα- and PR55/Bβ-specific antibodies 
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detected only the respective isoforms (Fig. 4A and (Strack et al., 1998)). To determine 

the expression profile of PP2A Cα and of the PR55/B subunits, protein extracts were 

obtained from different tissues (Fig. 4B). A β-actin specific antibody (data not shown) 

and a GAPDH specific antibody (Fig. 4B) were included as controls. Cα was present in 

all tissues examined with levels highest in the brain. Next, we determined the tissue 

distribution of the PR55 subunits. PR55/Bα was ubiquitously present; levels were very 

low in kidney, liver, and heart, intermediate in testis, muscle, and spleen, and highest in 

lung and brain, as shown with the commercially-available antiserum: similar results were 

obtained with a second PR55/Bα-specific antiserum. PR55/Bβ was found in brain and 

testis, consistent with the northern blot data. Upon longer exposure, Bβ was also detected 

in additional tissues including lung and spleen (Fig. 4B). The commercially-available 

anti-PR55/Bγ antiserum was not reactive, and anti-PR55/Bδ antisera were not available.  

To determine the subcellular localization of the PR55/B subunits, we generated brain 

homogenate fractions enriched for cytosolic, membranous and cytoskeletal proteins (Fig. 

4C). This sub-fractionation protocol enriches for cytosolic, membraneous and 

cytoskeletal proteins, but does not completely separate them; the membrane fraction 

contains trans-membrane as well as membrane-associated proteins, and the cytoskeletal 

fraction contains all proteins that are insoluble in 1% Triton X-100, including RAFTs. 

Enrichment was demonstrated by Western blot analysis of the three fractions and probing 

the blot using a GAPDH-specific antibody as cytoplasmic marker, two APP (amyloid 

precursor protein) -specific antibodies as markers for the membrane fraction, and a GFAP 

(glial fibrillar acid protein) -specific antibody as marker for the cytoskeletal fraction. The 

APP-specific antibody revealed a doublet representing the immature and mature form of 

APP, whereas the phospho-APP-specific antibody detected only the mature and 

phosphorylated form of APP. Our data are consistent with previous studies in the rat 

using identical experimental conditions (Strack et al., 1998). Cα was present in all 

fractions, with slightly lower levels in the cytoskeletal fraction. PR55/Bα and β were 

present in all fractions, with highest levels in the cytosolic fraction.  
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PR55 subunits are differentially expressed in brain and display a diverse subcellular 

localization 

 

To determine the distribution of PR55/Bα and β proteins in the brain, we analyzed 

parasagittal sections using immunohistochemistry (Fig. 5). Both isoforms were widely 

expressed in the brain; stainings were generally weak in the hippocampus, more intense 

throughout the cortex and brain stem, and even stronger in the cerebellum. In the cortex, 

Bα was present in somata and apical dendrites of pyramidal neurons, whereas Bβ was 

mainly confined to the soma (Fig. 5a,b). In the cerebellum, the anti-Bβ antiserum 

intensely stained somata and dendrites of Purkinje cells, whereas Bα was present in 

additional cell types and weakly-stained Purkinje cells (Fig. 5c,d). In the brain stem, both 

subunits were expressed in different cell types, including motor neurons (Fig. 5e,f). 

PR55/Bβ was stronger in neurons of the hilus of the dentate gyrus, whereas Bα was not 

detected (Fig. 5g,h); in the CA1 region of the hippocampus, PR55/Bβ was more strongly 

expressed than PR55/Bα: however, the PR55/Bα-specific antiserum strongly stained cells 

resembling activated astrocytes (Fig. 5i,k).  

Our RNA in situ hybridization data indicated a preferential expression of PR55/Bα and β 

by neurons. To determine neuronal versus glial expression of PR55/Bα and β proteins, we 

analyzed parasagittal brain sections using double-immunofluorescence analysis using 

PR55/Bα- and β-specific antisera together with a MAP-2-specific antibody as a dendritic 

marker for neurons, and a GFAP-specific antibody as a marker for activated astrocytes, 

respectively (Fig. 6). PR55/Bα was localized to cell bodies and dendrites of neurons (Fig. 

6a-c), whereas PR55/Bβ was mainly confined to the cell body (Fig. 6d-f). In areas of the 

brain with activated astrocytes, PR55/Bα was expressed by these cells at much higher 

levels than by neurons, as judged by the fluorescence settings (Fig. 6g-i). In contrast, 

PR55/Bβ was only expressed at background levels, indicating a distinct role of PR55/Bα 

during astrocytosis (Fig. 6k-m). Together, as neurons outnumber astrocytes in healthy 

brain, the number of Bα and Bβ-expressing neurons by far exceeded that of Bα-

expressing astrocytes, confirming the findings of our RNA in situ hybridization analysis 

(Fig. 3).  
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DISCUSSION 

 

In the present study, we performed an analysis of the distribution and developmental 

regulation of the murine PR55/B subunit family of PP2A, with particular emphasis 

placed on its role in the brain.  

We identified two novel splice variants of the β subunit, PR55/Bβ.1 and Bβ.2, encoding 

amino-terminally spliced forms of the β isoform that preserve the ORF and result in a 

protein that has the first 23 amino acids replaced by 5 and 26 novel amino acids, 

respectively (Fig. 1). Whereas Bβ and Bβ.2 had a size of roughly 55 kDa, Bβ.1 had a size 

of 53 kDa. Different PR55/Bβ transcripts were revealed after northern blot analysis, a 

major transcript of 2.5 kb and a minor transcript of 2.0 kb in the brain, and a 1.8 kb 

transcript in the testis. Similarly, for PR55/Bδ, multiple transcripts between 2.0 and 2.5 

kb were detected in all tissues examined. However, as no δ-specific antiserum was 

available, there was no possibility of testing for the presence of this isoform. Together, 

our data indicate that different PR55/B transcripts are tightly regulated at the 

transcriptional level in different cell types. For comparison, ribonuclease assays were 

performed in the rat for all four subunits, precluding the possibility of detecting splice 

variants (Strack et al., 1998; Strack et al., 1999). Thus, it appears likely that in mammals 

the variability of the PR55/B family is even higher than previously thought. For other 

families of PP2A regulatory subunits, multiple splice variants have also been described 

(McCright et al., 1996; Janssens et al., 2001).  

No transcripts were detected for the α, γ, and δ subunits in mouse embryos until 

embryonic day E17, in contrast to a 2.5 kb β transcript that was detected as early as E11, 

with increasing levels until E17. These data indicate that the β subunits exert a distinct 

function during development. Previous data in rat have also shown a differential 

expression of the four subunits during peri- and postnatal development using 

ribonuclease protection assays. RNA levels were quantified in E18, P1, P7, P14, P21, and 

adult rat brain. α levels stayed constant throughout all stages of development, β levels 

were approximately threefold reduced, and γ levels threefold increased when adult brain 

was compared with E18 brain (Strack et al., 1998). RNA levels were determined in eight 
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subdissected brain regions. Differences in RNA levels were generally moderate, with the 

exception of the β subunit mRNA that was sevenfold higher in the olfactory bulb 

compared with the cerebellum (Strack et al., 1998).  

Our northern blot analysis of adult tissues including testis, kidney, muscle, liver, lung, 

spleen, brain, and heart revealed that the α and δ subunit were ubiquitously expressed, 

indicating that these subunits are involved in general cellular processes of adult, but not 

immature tissues. In contrast to the α and δ subunits, the γ subunit was transcribed 

exclusively in the brain, and the β subunit was restricted to the brain and testis. This 

indicates that these subunits confer the PP2A holoenzyme with brain-specific functions. 

Also, expression of all four subunits in adult tissues indicates a diversification of the 

function of the four subunits. A tight transcriptional control of the individual PP2A 

regulatory subunits may be critical for proper cell function, as indicated by the recent 

finding of a CAG expansion in the 5’ region of PR55/Bβ associated with spinocerebellar 

ataxia 12, an autosomal dominant neurodegenerative disease (Holmes et al., 1999). 

The high levels of expression of both PP2AC isoforms in brain (Khew-Goodall & 

Hemmings, 1988) and the brain-specific expression of some members of the PR55/B 

(Mayer et al., 1991; Zolnierowicz et al., 1994; Strack et al., 1998) and B´/PR61 

(McCright & Virshup, 1995; Csortos et al., 1996) subunit families indicate that PP2A has 

unique functions in neuronal cells (Price & Mumby, 1999). These include the 

dephosphorylation of neurofilaments (Saito et al., 1995; Strack et al., 1997) and 

neuronal-specific microtubule-associated proteins including tau and MAP-2 (Mandelkow 

et al., 1995). Interestingly, the aggregation of hyperphosphorylated tau in neurofibrillary 

tangles is a pathological hallmark of AD, and hyperphosphorylation of tau has been 

proposed as a mechanism leading to neuronal degeneration (Lee, 1995; Billingsley & 

Kincaid, 1997). As mentioned above, a pool of PP2A mainly containing PR55/B subunits 

associates with microtubules (Sontag et al., 1995). In a more recent report, it was shown 

that only trimeric PP2A forms containing PR55/Bα or PR55/Bβ, but not PR55/Bγ or 

B´/PR61, associate with neuronal microtubules, and that this interaction depends on an as 

yet unidentified anchoring factor (Price et al., 1999).  

Previous studies with rat brain have shown that the α, β, and γ isoforms are transcribed in 

all brain areas examined (Strack et al., 1998). In agreement with these findings, our in 
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situ hybridization and immunohistochemical analysis of the murine brains showed that all 

PR55/B subunits, including δ,  were widely distributed in brain with regional differences 

in expression levels. At the protein level, PR55/Bα and β were differently distributed in 

the cerebellum. PR55/Bβ was mainly localized to somata and dendrites of Purkinje cells, 

whereas α was present in additional cell types and present at lower levels in Purkinje 

cells. As the cerebellum is affected in spinocerebellar ataxia, a disease for which an 

association with an expanded CAG repeat immediately upstream of the PR55/Bβ gene 

has been shown, a detailed analysis of the PP2A holoenzyme composition may contribute 

to the understanding of the pathogenesis (Holmes et al., 1999). In the cortex and 

hippocampus, areas prominently affected in AD brains, the distribution of the two PR55 

subunits also varies. Whereas PR55/Bα is present in apical dendrites, β is mainly 

confined to cell bodies suggesting distinct subcellular substrates. The presence of 

PR55/Bα in activated astrocytes at staining intensities far exceeding those seen for 

neurons indicates a pivotal role of PR55/Bα in activated astrocytes. Remarkably, 

astrocyte activation is an early step in the pathogenesis of AD and related disorders 

(Kurosinski & Gotz, 2002). Collectively, our data indicate that the individual PR55/B 

subunits exert specialized functions in different subcellular compartments of neurons and 

in the course of astrocytic activation, but their widespread distribution in the brain 

indicates that they are also involved in central functions of both neurons and glial cells. 

Finally, sequence analysis of all murine PR55/B subunits revealed the presence of five to 

seven degenerate WD-40 repeats depending on the setting of the search parameters (Fig. 

2). WD-40 repeats are minimally conserved sequences of approximately 40 amino acids 

that typically end in tryptophan–aspartate (WD) and are thought to mediate protein–

protein interactions (Neer et al., 1994). Insight into the distinct role of PR55/B subunits 

and their specific interaction partners may emerge from knock-out studies in mice. In 

Drosophila, PR55/B mutant phenotypes have been described; however, in contrast to 

mice, Drosophila only expresses one PR55/B isoform (Gomes et al., 1993; Mayer-Jaekel 

et al., 1993; Uemura et al., 1993; Mayer-Jaekel et al., 1994; Silverstein et al., 2002). 

Considering the putative role of PP2A in the pathogenesis of human diseases, all these 

studies may eventually lead to the discovery of therapeutic agents that can specifically 

counteract PP2A dysfunction.  
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TABLES 

 

Table 1 

 

Distribution of PR55 mRNAs in brain 

 

  PR55/Bα PR55/Bβ PR55/Bγ PR55/Bδ 
      
hippocampus  +++ +++ +++ ++++ 
olfactory bulb  ++++ ++++ ++++ ++++ 
cortex  ++ + + ++ 
cerebellum  +++++ +++++ +++ +++++ 
striatum  ++ ++ +++ ++ 
thalamus  ++ + + + 
brain stem  +++ ++ - +++ 
pons  ++ + + + 

 

(-, no; +, low; ++, low to intermediate; +++, intermediate; ++++, high; and +++++, very 

high signal intensities) 
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FIGURE LEGENDS 

 

Figure 1  

 

Genomic structure and chromosomal localization of the four murine PR55/B isoforms 

including the novel PR55/Bβ.1 and PR55/Bβ.2 splice variants. Exon/intron boundaries of 

the final eight exons are conserved in each isoform and the PR55/Bβ splice variants. 

Boxed numbers represent the exons, and the size of the introns is indicated. The first 

coding exon of each isoform is indicated by an arrow. 

 

Figure 2 

 

Alignment of the amino acid sequences of the murine PR55/B isoforms. The highly 

diversive amino-terminus is highlighted in black. The overall sequence similarity is in the 

range of 90%, and amino acid differences are highlighted in black using Bα as reference. 

The WD-40 repeat motifs are shown in dark grey whereas the overlap of the PR55/Bα N-

terminus with the first WD-40 repeat is highlighted in light grey. The exon boundaries 

are indicated with vertical lines for PR55/Bα. 
 

Figure 3  

 

A: Embryonic and tissue-specific distribution of murine regulatory PR55/B subunits 

mRNAs. Blots with mRNA of different embryonic stages or multiple tissues were 

hybridized with probes directed against PR55/B α, β, γ, and δ subunit transcripts, 

respectively. E7, embryonic day 7; te, testis; ki, kidney; li, liver; lu, lung; sp, spleen; br, 

brain; he, heart. 

B: The distribution of the PR55/Bα subunit mRNA is shown by in situ hybridization 

analysis of cortex (a), hippocampus (b), cerebellum (c), and olfactory bulb (d). No 

significant staining was obtained using the corresponding sense probes on adjacent 

sections (insets).  
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Figure 4 

 

A: For detection of PR55/B, commercial antibodies were used that have been shown 

previously to be specific for the PR55/Bα and Bβ subunits on western blots and by 

immunohistochemistry (Strack et al., 1998). The specificity of the above antibodies was 

determined by transfecting COS cells with constructs encoding HA-tagged PR55/Bα, Bβ, 

and Bγ, and analyzing lysates using western blot analysis. Whereas the HA-antibody 

detected all PR55 isoforms, the PR55/Bα- and PR55/Bβ-specific antibodies detected only 

the respective isoforms. The commercially-available Bγ antiserum was not specific as 

shown previously (Strack et al., 1998) and was therefore excluded from the subsequent 

analysis. 

B: The expression profile of PR55/Bα, PR55/Bβ and PP2A Cα determined by western 

blot analysis. Protein was extracted from: te, testis; ki, kidney; li, liver; lu, lung; sp, 

spleen; br, brain; and he, heart.  

C: To determine the subcellular localization, brain homogenates were fractionated into 

fractions enriched for cytosolic (cy), membranous (me), and cytoskeletal (sk) proteins as 

confirmed by the staining with antibodies specific for GAPDH (cy, 43 kDa), APP (me, 

115 kDa), phosphorylated APP (me, 115 kDa), and GFAP (sk, 50 kDa). Cα was present 

in all fractions, with slightly lower levels in the cytoskeletal fraction. PR55/Bα and β 

were present in all fractions, with highest levels in the cytosolic fraction.  

 

Figure 5 

 

To determine the distribution of PR55/Bα and Bβ protein in the brain, we analyzed 

parasagittal sections by immunohistochemistry. Both isoforms are widely expressed. The 

distribution in cortex, cerebellum, brain stem, in the hilus of the hippocampus, and the 

CA1 region of the hippocampus is shown for Bα (a,c,e,g,i) and Bβ (b,d,f,h,k). In the 

cortex (a,b), Bα is present in somata and apical dendrites of pyramidal neurons, whereas 

Bβ is mainly confined to the soma. In the cerebellum, the anti-Bβ antiserum intensely 

stains somata and dendrites of Purkinje cells, whereas Bα is present in additional cell 

types and weakly stains Purkinje cells (c,d). In the brain stem, both subunits are 
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expressed in different cell types, including motor neurons (e,f). While Bβ is stronger in 

neurons of the hilus of the dentate gyrus, Bα is not detected (g,h); in the CA1 region of 

the hippocampus (indicated by an asterisk), Bβ is more strongly expressed than α; 

however, the Bα-specific antiserum strongly stains cells resembling activated astrocytes 

(see inset in (i) and Fig. 6).  

Scale bar: a,b: 20 µm; c,d,i,k: 30 µm; e-h: 40 µm. 

 

Figure 6 

 

PR55/Bα is, in addition to neurons, strongly expressed by activated astrocytes. To 

determine neuronal versus glial expression of PR55/Bα (a-c, g-i) and Bβ (d-f, k-m) in the 

cortex, we analyzed parasagittal sections by double-immunofluorescence analysis using 

PR55-specific antisera together with a MAP-2-specific antibody as dendritic marker for 

neurons (a-f), and a GFAP-specific antibody as marker for activated astrocytes (g-m), 

respectively. PR55/Bα is localized to cell bodies and dendrites (a-c; a:Bα/Cy2, b:MAP-

2/Cy3, c:merge), whereas PR55/Bβ is mainly confined to the cell body of neurons (d-f; 

d:Bβ/Cy2, e:MAP-2/Cy3, f:merge). PR55/Bα is expressed by activated astrocytes (g-i; 

g:Bα/Cy2, h:GFAP/Cy3, i:merge) at much higher levels than by neurons, whereas 

PR55/Bβ is only expressed at background levels (k-m; k:Bβ/Cy2, l:GFAP/Cy3, 

m:merge). Neuronal expression of PR55/Bα and PR55/Bβ in (g) and (k) is visible upon 

longer exposure. Scale bar: 20 µm 
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 Schmidt et. al., Figure 1 
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  1   |      |             |       100 

  alpha ~~~~~~MAGA GGGNDIQWCF SQVKGAVDDD VAEADIISTA EFNHSGELLA TGDKSGRVVI FQQEQENKIQ SHSRGEYNVY STFQSHEPEF DYLKSLEIEE 

beta ~~~~~~~~~~~MEEDIDTRKI NNSFLRDHSY ATEADIISTV EFNHTGELLA TGDKGGRVVI FQREQESKNQ VHRRGEYNVY STFQSHEPEF DYLKSLEIEE   

beta.1  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~MK PFTADIISTV EFNHTGELLA TGDKGGRVVI FQREQESKNQ VHRRGEYNVY STFQSHEPEF DYLKSLEIEE 

beta.2  ~~~~~~~MKC FSRYLPYIFR PPNTILSSSC HTEADIISTV EFNHTGELLA TGDKGGRVVI FQREQESKNQ VHRRGEYNVY STFQSHEPEF DYLKSLEIEE 

gamma  ~~~~~~~~~~ MGEDTDTRKI NHSFLRDHSY VTEADVISTV EFNHTGELLA TGDKGGRVVI FQREPESKNA PHSQGEYDVY STFQSHEPEF DYLKSLEIEE 

delta MAGAGGGGCP AGGNDFQWCF SQVKGAVDED VAEADIISTV EFNYSGDLLA TGDKGGRVVI FQREQENKGR AHSRGEYNVY STFQSHEPEF DYLKSLEIEE   

 

  101     |            |             200 
alpha  KINKIRWLPQ KNAAQFLLST NDKTIKLWKI SERDKRPEGY NLKEEDGRYR DPTTVTTLRV PVFRPMDLMV EASPRRIFAN AHTYHINSIS INSDYETYLS 

beta KINKIRWLPQ QNAAYFLLST NDKTVKLWKV SERDKRPEGY NLKDEEGRLR DPATITTLRV PVLRPMDLMV EATPRRVFAN AHTYHINSIS VNSDYETYMS   

beta.1  KINKIRWLPQ QNAAYFLLST NDKTVKLWKV SERDKRPEGY NLKDEEGRLR DPATITTLRV PVLRPMDLMV EATPRRVFAN AHTYHINSIS VNSDYETYMS 

beta.2  KINKIRWLPQ QNAAYFLLST NDKTVKLWKV SERDKRPEGY NLKDEEGRLR DPATITTLRV PVLRPMDLMV EATPRRVFAN AHTYHINSIS VNSDYETYMS 

gamma  KINKIKWLPQ QNAAHSLLST NDKTIKLWKI TERDKRPEGY NLKDEEGKLK DLSTVTSLQV PVLKPMDLMV EVSPRRTFAN GHTYHINSIS VNSDCETYMS 

delta KINKIRWLPQ QNAAHFLLST NDKTIKLWKI SERDKRAEGY NLKDEDGRLR DPFRITALRV PILKPMDLMV EASPRRIFAN AHTYHINSIS VNSDHETYFS   

 

  201        |                  |                300 
alpha  ADDLRINLWH LEITDRSFNI VDIKPANMEE LTEVITAAEF HPNSCNTFVY SSSKGTIRLC DMRASALCDR HSKLFEEPED PSNRSFFSEI ISSISDVKFS  

beta ADDLRINLWN FEITNQSFNI VDIKPANMEE LTEVITAAEF HPHHCNTFVY SSSKGTIRLC DMRASALCDR HTKFFEEPED PSNRSFFSEI ISSISDVKFS   

beta.1  ADDLRINLWN FEITNQSFNI VDIKPANMEE LTEVITAAEF HPHHCNTFVY SSSKGTIRLC DMRASALCDR HTKFFEEPED PSNRSFFSEI ISSISDVKFS 

beta.2  ADDLRINLWN FEITNQSFNI VDIKPANMEE LTEVITAAEF HPHHCNTFVY SSSKGTIRLC DMRASALCDR HTKFFEEPED PSNRSFFSEI ISSISDVKFS 

gamma  ADDLRINLWH LAITDRSFNI VDIKPANMED LTEVITASEF HPHHCNLFVY SSSKGSLRLC DMRAAALCDK HSKLFEEPED PSNRSFFSEI ISSVSDVKFS 

delta  ADDLRINLWH LEITDRSFNI VDIKPANMEE LTEVITAAEF HPHQCNVFVY SSSKGTIRLC DMRSSALCDR HAKFFEEPED PSSRSFFSEI ISSISDVKFS 

 

  301         |             |              400 
alpha  HSGRYMMTRD YLSVKIWDLN MENRPVETYQ VHEYLRSKLC SLYENDCIFD KFECCWNGSD SVVMTGSYNN FFRMFDRNTK RDITLEASRE NNKPRTVLKP 

beta HSGRYIMTRD YLTVKVWDLN MENRPIETYQ VHDYLRSKLC SLYENDCIFD KFECVWNGSD SVIMTGSYNN FFRMFDRNTK RDVTLEASRE NSKPRAILKP   

beta.1  HSGRYIMTRD YLTVKVWDLN MENRPIETYQ VHDYLRSKLC SLYENDCIFD KFECVWNGSD SVIMTGSYNN FFRMFDRNTK RDVTLEASRE NSKPRAILKP 

beta.2  HSGRYIMTRD YLTVKVWDLN MENRPIETYQ VHDYLRSKLC SLYENDCIFD KFECVWNGSD SVIMTGSYNN FFRMFDRNTK RDVTLEASRE NSKPRAILKP 

gamma  HSGRYMLTRD YLTVKVWDLN MEARPIETYQ VHDYLRSKLC SLYESDCIFD KFECAWNGSD SVIMTGAYNN FFRMFDRNTK RDVTLEASRE NSKPRAVLKP 

delta  HSGRYMMTRD YLSVKVWDLN MEGRPVETHQ VHEYLRSKLC SLYENDCIFD KFECCWNGSD SAIMTGSYNN FFRMFDRNTR RDVTLEASRE NSKPRASLKP  

 

  401          450 
alpha  RKVCASGKRK KDEISVDSLD FNKKILHTAW HPKENIIAVA TTNNLYIFQD KVN*    

beta RKVCVGGKRR KDEISVDSLD FSKKILHTAW HPSENIIAVA ATNNLYIFQD KVN*      

beta.1  RKVCVGGKRR KDEISVDSLD FSKKILHTAW HPSENIIAVA ATNNLYIFQD KVN* 

beta.1  RKVCVGGKRR KDEISVDSLD FSKKILHTAW HPSENIIAVA ATNNLYIFQD KVN*      

gamma RRVCVGGKRR RDDISVDSLD FTKKILHTAW HPAENIIAIA ATNNLYIFQD KVNSDMH* Schmidt et. al., Figure 2 
    

     
delta RKVCTGGKRK KDEISVDSLD FNKKILHTAW HPMESIIAVA ATNNLYIFQD KIN*
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Schmidt et. al., Figure 3 
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Schmidt et. al., Figure 4
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Schmidt et. al., Figure 5  
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Schmidt et. al., Figure 6 
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Abstract 

GeneChip technology has become a powerful tool for investigating the regulation of 

global gene expression. We have used Affymetrix U133A micro arrays to define the 

effects of okadaic acid (OA) on gene expression in HEK293 cells with time. We 

developed and applied a variety of bioinformatics tools, since the primary goal was to 

find genes that are co-regulated under the same experimental conditions. As co-regulated 

genes should have similar regulatory mechanisms at the transcriptional level, we explored 

their promoter regions (2 kb upstream of the start of transcription. Source: Genomatix 

GMBH). We identified common motifs that may act as binding sites for transcriptional 

regulators (TransFac Pro 7.2) and correlated them with transcription factors that are 

themselves altered in their expression profiles. In this way, we identified a key group of 

transcription factors that may be central to the primary transcriptional effects of OA.  
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Introduction 

Regulation of signal transduction pathways plays a crucial role in a variety of cellular 

processes and results in changes in both the phosphorylation status of the components 

and the expression of specific target genes. While much is known about the effect of 

kinases and phosphatases on protein levels; the involvement of these enzymes, especially 

protein phosphatases, on transcriptional events is less clear. The naturally occurring 

phosphatase inhibitor okadaic acid (OA) has become an essential tool for the 

investigation of protein phosphatases in signaling events in vivo. This potent tumor 

promoter is a C38 polyether fatty acid produced by marine dinoflagellates and the 

causative agent of diarrhetic shellfish poisoning. OA induces various biological effects in 

vivo, including promotion of tumor growth, prolonged smooth muscle contraction and 

promotion of genomic instability (reviewed in (Fernandez et al., 2002)). Malignant 

transformation and cell growth is found to be both promoted and inhibited, depending on 

the system used. The variety of effects caused by OA is presumably a result of the down-

regulation of OA-sensitive protein phosphatases. Following these studies on OA, several 

other phosphatase-inhibiting compounds have been identified, including calyculin A 

(Ishihara et al., 1989), microcystin-LR (Honkanen et al., 1990), tautomycin (MacKintosh 

and Klumpp, 1990), nodularin (Honkanen et al., 1991), and cantharidin (Li and Casida, 

1992). 

OA regulates gene expression at transcriptional, posttranscriptional and posttranslational 

levels on several signaling pathways, including the mitogen-activated protein kinase 

(MAPK) and the phosphatidylinositol 3'-kinase (PI3K) pathways. Although both 

pathways are known to be regulated at multiple levels by protein phosphatase 2A (PP2A), 

the main criterion used to link PP2A involvement to the regulation of transcriptional 

activity is the application of OA (Schonthal, 1995). Several genes, including c-Jun , Early 

growth response 1 & 3 (Egr1&3), interleukin 6 (IL-6) (Guy et al., 1992), collagenase and 

stromelysin (Westermarck et al., 1995a) are transcriptionally induced in fibroblasts in the 

presence of OA, whereas elastin (Westermarck et al., 1995b) and different collagen 

subtype genes (Westermarck et al., 1995a) are repressed. Induction of IL-8, nerve growth 

factor (NGF) and c-fos (Miskolci et al., 2003; Rosenberger et al., 1999) (Sonoda et al., 
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1997) by OA involves both transcriptional and posttranscriptional mechanisms in 

different cell types.  

At the posttranslational level, OA causes increased phosphorylation of p53 but inhibits 

phosphorylation of the Rb gene product (Zhang et al., 1994). Inhibition of PP2A by OA 

in metabolically competent rat brain slices induced a increase in the 

phosphorylation/activation of ERK1/2, MEK1/2, and p70 S6 kinase as well as the 

phosphorylation of tau at several sites (Pei et al., 2003). Although tau 

hyperphosphorylation induced by OA-mediated protein phosphatase inhibition 

contributes to pathological aggregate formation, only hyperphosporylation of tau 

followed by proteasome inhibition leads to stable fibrillary deposits of tau similar to 

those observed in neurodegenerative diseases (Goldbaum et al., 2003). Treatment of 

SCC-25 carcinoma cells with OA enhanced the expression of both Fas receptor and Fas 

ligand mRNA and protein levels. OA treatment did not only lead to translocation of 

NFkB from the cytosol to the nucleus, its levels also increased, whereas the amount of 

IkB-α decreased. This suggests that NF-kB activated at early stages by OA stimulated the 

promoter activity of Fas receptor in the cells leading to apoptosis (Fujita et al., 2004). 

Another apoptotic effect of OA was shown in HL-60 cells, where OA induces bcl-2 

mRNA destabilization which is associated with decreased binding of trans-acting factors 

such as nucleolin to the AU-rich element (ARE) of Bcl-2 (Sengupta et al., 2003). Direct 

involvement of PP2A has been shown in the inactivation of CREB activity (Wadzinski et 

al., 1993; Wheat et al., 1994). Also, indirect activity of PP2A in the regulation of 

transcription at the phosphorylation level is known. Treatment of cells with OA leads to 

concentration-dependent inhibition of serine/threonine protein phosphatases. While PP2A 

is inhibited most efficiently, PP1 is 100-fold less sensitive to OA in vitro. The effect on 

PP2B is even lower and PP2C is insensitive to the treatment. Since OA does not penetrate 

cell membranes rapidly to accumulate on the catalytic subunit of the phosphatases, it is 

very difficult to control the actual concentration of the compound in vivo. Nevertheless, 

conditions for the selective inhibition of PP2A in intact cells have been established 

(Favre et al., 1997) and 1 µM OA applied to the living cell is sufficient to block PP2A 

activity. As less abundant protein phosphatases like PP4, PP5 and PP6 are just as 

sensitive to OA as PP2A, the cellular effects of OA can no longer be entirely attributed to 
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PP2A inhibition. On the other hand, the physiological role of these novel phosphatases is 

still unclear and they represent only a minor fraction of total cellular phosphatase activity 

(Brewis et al., 1993)(Chen et al., 1994). 

The aim of this study was to model the common transcriptional events induced in genes 

that are up-regulated in response to OA treatment using microarray and bioinformatics 

tools. Using DNA microarrays, we identified both novel and known target genes for 

OA/PP2A. Further, we developed a computational tool called StampCollector that 

allowed us to confirm established (Schonthal, 1995) and predict novel regulatory 

mechanisms for the control of gene expression at the transcriptional level due to the 

action of OA. 
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Experimental Procedures 

 

Cell Culture, protein and RNA extraction 

Human embryonic kidney cells (HEK293) were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% (v/v) heat-inactivated fetal calf serum 

(FCS, Life Technologies) and 50 U/ml penicillin/streptomycin (Gibco) and incubated 

with 5% CO2-in-air at 37°C. Cells were seeded at 50% confluency and treated with 1 µM 

OA in 0.1% N,N-dimethylformamide (Alexis Biochemicals, Switzerland) for 0, 30, 60 

and 90 min after 24 h pre-incubation. Total RNA from two 10-cm dishes was extracted at 

each time point using the RNeasy mini kit (Qiagen). NP40 protein extracts were prepared 

from one 10-cm dish at each time point to monitor the state of inhibition by OA. 

 

Western blotting 

NP40 protein (30 µg) extracted from OA-treated HEK293 cells at each time point was 

used to test the effect of OA on protein levels. The extracts were separated on 10% SDS-

PAGE and transferred to polyvinylidene difluoride membranes. Membranes were blocked 

in TBST containing 10% horse serum for 1 h and incubated for a further 1 h at room 

temperature with 1:500 Ndr kinase anti-Thr-444P purified antibody (Tamaskovic et al., 

2003). The antibody was detected using horseradish peroxidase-conjugated donkey anti-

rabbit Ig antibody (Amersham Biosciences) and ECL. 

 

Microarray analysis 

Microarray analysis was performed using HG_U133A GeneChips™ (Affymetrix, Santa 

Clara, USA). A 10-µg aliquot of total RNA (isolated from HEK293T cells) was reverse 

transcribed using the SuperScript Choice system for cDNA synthesis (Life Technologies) 

according to the protocol recommended by Affymetrix (GeneChip Expression Analysis: 

Technical Manual (2001) p. 2.1.14-2.1.16). The oligonucleotide used for priming was 5’-

ggccagtgaattgtaatacgactcactatagggaggcgg-(t)24-3’ (GenSet Oligo, France), as 

recommended by Affymetrix. Double-stranded cDNA was cleaned by phenol:chloroform 

extraction and the aqueous phase removed by centrifugation through Phase-lock Gel 

(Eppendorf). In vitro transcription was performed on 1 µg of cDNA using the Enzo 
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BioArray High Yield RNA transcript labeling kit (Enzo Diagnostics, USA) following the 

manufacturer’s protocol. The cRNA was cleaned using RNAeasy clean-up columns 

(Qiagen) and fragmented by heating in 1x fragmentation buffer (40 mM Tris-acetate pH 

8.1, 100 mM KOAc, 30 mM MgOAc). A 10-µg aliquot of this fragmented cRNA was 

hybridized to an HG-U133A GeneChip (45°C, 16 h). Washing and staining were 

performed in a Fluidics Station 400 (Affymetrix) using the protocol EukGE-WS2v4 and 

scanned in an Affymetrix GeneChip 2500 scanner. Chip analysis was performed using 

the Affymetrix Microarray Suite v5 and GeneSpring 5.1 (Silicon Genetics). Changes in 

gene expression were assessed by looking for concordant changes between replicates 

using a signed Wilcoxon rank test (as recommended by Affymetrix P-value threshold 

<0.003). A gene that changed in the same way in at least 6 out of 9 replicate comparisons 

was considered to be changing reproducibly. Gene with detection P values of >0.05 in all 

experimental conditions were discarded from the analysis as unreliable data. Final data 

quality assessment was by a Student T-test (P value threshold <0.05). Genes failing the 

Student T-test were eliminated due to their highly variable expression profiles within the 

replicates. A Benjamini and Hochberg false discovery rate multiple testing correction was 

applied to the T-test data. 

 

Transfac database  

The Transfac 7.2 Pro database was installed locally together with ActivePerl 5.8.0 

(Sophos, Inc. Mass., USA) and an Apache 1.3.28 web server (Apache Software 

Foundation, Minn., USA). The Transfac Pro database is a commercial product that is 

required for the StampCollector application. 

 

Genomatix database 

The Genomatix Chip Promoter Resource CD for the HG-U133A and MOE430A 

GeneChips (Genomatix Software GmbH, Munich, Germany) contains all of the annotated 

promoters from the commercial Genomatix database, indexed according to their 

Affymetrix accession numbers. The sequences provided on the CD were derived from the 

NCBI Human Genome build 33. 
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StampCollector  

The StampCollector program imports the provided sequences in FASTA format. 

Transcription factor binding sites are predicted using the Match 1.1 component of 

Transfac 7.2 via an automated batch query. The identified transcription factors are 

compared to the expression data and those factors that are not expressed in the samples 

are removed from the analysis. The distances between each remaining factor and all the 

others are calculated and pairs generated for those factors 10-100 bp apart. This threshold 

was selected to minimize false pairs (multiple binding sites for the same factor located 

over a stretch of 1-10bp are common; Setting the minimum to 10-bp decreases the risk of 

generating false homodimers). The maximum of 100 represents an arbitrary measure 

beyond which paired-binding interactions are not expected to be as important as DNA-

binding interactions. Pairs were considered to be the minimum simplification state as 

they should allow the modeling of higher order complexes while minimizing disruption 

caused by extra predicted sites in the sequence. 

 
DNA Block Aligner  

The DNA Block Aligner (DBA) is an online tool 

(http://www.ebi.ac.uk/Wise2/dbaform.html) that aligns two sequences under the 

assumption that the sequences share a number of co-linear blocks of conservation 

separated by potentially large and varied lengths of DNA in the two sequences. The 

conserved blocks may be regions important for regulation of the gene. The final model is 

a probabilistic finite state machine (or pair-HMM) that aligns the two sequences. Each 

block can choose one of four different parameter Sets, roughly with conservation at 65% 

(A), 75% (B), 85% (C) or 95% (D) identity. Linear gaps (gaps where the open gap is the 

same as the extension) were modeled in the blocks at a fixed probability 0.05 and each 

block is expected at around 1% of the DNA sequence. We used DBA to compare 

upstream regions of a gene from mouse and human. 
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MEME and MOTIFSampler 

We used the online version 3.0 of the MEME motif discovery program 

(http://meme.sdsc.edu/meme/website/intro.html). MEME is a tool for discovering motifs 

in a group of related DNA or protein sequences. MEME represents motifs as position-

dependent letter-probability matrices that describe the probability of each possible letter 

at each position in the pattern. Individual MEME motifs do not contain gaps. Patterns 

with variable-length gaps are split by MEME into two or more separate motifs. MEME 

uses statistical modeling techniques to automatically choose the best width, occurrence 

and description of each motif. We downloaded the command line version 0.1.2 of the 

MotifSampler (http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSampler.html), which 

attempts to find over-represented motifs in the promoter region of a Set of co-regulated 

genes. This motif-finding algorithm uses Gibbs sampling with a probabilistic framework 

and higher-order background models to find a position probability matrix representing 

the optimum motif. The command line was automated so that each sequence could be 

resampled 20 times. The parameters were Set to search for 15 different motifs, each with 

a length of 8 bp. 
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Results 

 

OA treatment leads to phosphorylation of NDR kinase 

The level of phosphorylation of the nuclear Dbf2-related (NDR) kinase in HEK293 cells 

was used to test for effective inhibition of PP2A by OA. The anti-Thr-444P rabbit 

polyclonal antisera (Tamaskovic et al., 2003) detected endogenous activated NDR kinase 

at the 60- and 90-min time points. 

 

Microarray analysis identifies OA-regulated genes 

In order to identify genes transcriptionally co-regulated by OA, we treated human 

embryonic kidney (HEK293) cells with 1 µM OA for 30, 60 and 90 min prior to total 

RNA extraction (Fig. 1). The RNA was converted into cRNA following the protocol 

recommended by Affymetrix and was hybridized to human HG-U133A oligonucleotide 

arrays for 16 h. Of the 22283 transcripts present on the human HG-U133A chip 11581 

were identified as present in HEK293 cells based on the filter ‘data quality flags’ in the 

original data files. The chips were subjected to an Affymetrix change call filter that 

required that each condition had a change P value of <0.003 for increase and >0.997 for 

decrease genes. Concordance filtering was applied to the lists by requiring that a gene 

called as changing did so in at least six out of nine replicate comparisons. The remaining 

genes were then subjected to a Student T-test to eliminate those genes whose expression 

values were highly variable (P value cutoff 0.05).  

Of those genes remaining, 115 were found to be up-regulated between 2-fold and 994-

fold (Table 1), whereas only five genes were down-regulated more than twofold (35 

genes down more than 1.5-fold) (Table 2). This suggests that OA mainly stimulates 

transcription activators or inhibits transcription repressors, probably by inhibition of 

PP2A. Of the 115 genes that were up-regulated at any time point, six were genes 

encoding hypothetical proteins without any reported function. Of these 115 genes, 33 

were transcription factors and DNA-binding proteins. The group of genes up-regulated by 

OA was further analyzed on the basis of functional similarity using gene ontology 

grouping of the Genespring 6.0 program. This classification revealed a wide range of 

different biological functions for the regulated genes, such as cell communication, signal 
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transduction, cell cycle and apoptosis regulators, signal transducers, and genes involved 

in cell transformation. Notable examples include AP-1 family members like Fos and Jun 

transcription factors, other early intermediate genes like the Egr-1 and Egr-3, growth 

arrest and DNA damage-induced genes like Gadd45B, phosphatases of the MAPK 

pathway like dual specific phosphatases DUSP1 and DUSP5, and other activators (VEGF) 

and suppressors (SOCS1) of various signaling cascades. With the exception of the Fos 

and Jun family, most of the genes were not known to be regulated by OA prior to this 

study. Thus, the results provide a more comprehensive and deeper knowledge about OA 

regulation of gene expression in HEK293 cells. 

 

Genes regulated jointly by TPA 

About 20 genes that were up-regulated upon OA treatment coincide with genes up-

regulated by treatment of HEK 293 cells with the phorbol ester 12-O-tetradecanoyl-

phorbol-13 acetate (TPA) (Table 3). Although there is contradictory evidence about the 

co-regulation of gene expression by two different treatments, it has been suggested that 

some of the effects of OA and TPA are mediated via the same pathways. TPA-activated 

PKC initiates a phosphorylation cascade that can be reversed by OA-sensitive 

phosphatases. Inhibition of these phosphatases may lead to altered phosphorylation of 

substrates of the PKC pathway and, thereby, may affect gene expression in a manner 

similar to TPA. For example, Fos and Jun family members were up-regulated by both OA 

and TPA in our chip experiments. In addition, this is supported experimentally in the 

literature (Rahmsdorf and Herrlich, 1990). This well-characterized relationship can be 

used as an internal control for inhibitor efficiency at the transcriptional level. 

 

Clustering of OA up-regulated genes by K-means 

The 115 OA-regulated genes were clustered according to their different expression 

profiles at 10, 30, 60 and 90 min. Clustering was achieved in five Sets (SET1-5) by the 

K-means algorithm with a standard correlation for the similarity measure and the number 

of iterations Set to 100 (Fig. 2). No significant change in transcription was observed at 10 

or 30 min for almost all genes. This may be because OA needs time to penetrate the cell 

wall, bind and inhibit the catalytic subunits of PP2A and PP1 and trigger the transcription 
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machinery of the target genes. The 23 genes in SET1 showed an increase in transcription 

between 30 and 60 min incubation with OA that persisted up to the 90-min time point, 

whereas the 32 genes in SET 2 followed a slower but steady increase in rate from 30 to 

90 min. SET3 contains 14 genes that increased moderately up to 60 min and showed no 

further change in transcription rate from 60 to 90 min (Fig. 3 and 4). The change in 

transcription rate of the 29 genes in SET4 started between 60 and 90 min and was thus 

delayed for 30 min relative to SET1-3. The transcription of seven of 17 genes in SET 5 

decreased slightly between 30 and 60 min and then increased between 60 and 90 min 

(Table 1). 

 

StampCollector identifies potential transcription factor pairs involved in regulation of 

OA treated cells 

As described in Experimental Procedures, we have developed a software tool called 

“StampCollector” that is able to predict potential transcription factor pairs (TF pairs) 

involved in the regulation of genes based on their promoter sequences. The rational 

behind predicting TF pairs is that most genes are activated by TF complexes rather than 

by a single activator protein. On this assumption, we were able to reduce the number of 

TF hits from the Transfac 7.2 Pro database significantly (Matys et al., 2003). We 

obtained putative promoters for all of the target genes from Genomatix (Genomatix, 

2003), a promoter being defined as the sequence extending 2 kb upstream of every 

mapped transcriptional start site for a gene. The mapping information fell into three 

quality classes: gold (experimentally verified by oligo-capping); silver (predicted start 

sites derived from Genomatix’s promoter inspector software) and bronze (no prediction 

or experimentally verified start available, so the start of translation was used). For the 

purposes of this experiment, we restricted ourselves to gold and silver promoters. The 

promoters were loaded into the StampCollector program, which generated three output 

files: 1) all potential transcription factor-binding sites and their positions according to 

Transfac 7.2 Pro, using all vertebrate matrices optimized to minimize both false positive 

and false negative hits, are identified; 2) after calculation of the distance between each 

potential binding site, every neighboring pair more than 10 and less than 100 bp away are 

recorded for each promoter. The minimum of 10 bp was chosen to prevent the same 
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binding site being selected as a pair with itself; the maximum of 100 bp was an arbitrary 

distanced based on 10 helical repeats of the DNA to minimize the number of distant pairs 

that should be considered; 3) after assigning all possible distance pairs for each promoter, 

those pairs common to at least 50% of the promoters are recorded (Fig. 3). 

In order to generate a control Set of genes, we also examined the expression values of all 

22283 transcripts on the HG-U133A chip actually expressed (detection P-value < 0.05) at 

all time points for those classed as robustly unchanging (change P value = 0.50000) at all 

time points relative to time zero and whose fold change relative to time zero was 0.95-

1.05. 

Of the 54 genes that passed all selection criteria, we retrieved a total of 90 promoter 

sequences from the Genomatix database and identified common motifs that function as 

binding sites for transcriptional regulators. Several transcription factor pairs identified 

were simply over-represented in the promoter sequence of the clustered genes in SET1-5 

compared with the 90 promoter sequences of the 54 control genes. Potential binding sites 

for a TF pair had to be present in a minimum of 50% of genes in at least one SET in order 

to be included in the analysis for the StampCollector approach. The reason for the 

StampCollector approach is that certain transcription factors may be involved in 

regulating a certain Set of genes if the frequency of its binding motif in the putative 

promoter region of OA-regulated genes is significantly over-represented compared with 

the 90 promoter sequences of the 54 control genes. Table 4 shows 11 different 

transcription factors involved in the formation of 18 transcription factor pairs that pass 

the 50% over-representation and 1-out-of-5 Set restriction (Table. 4): Gut-enriched 

Krueppel-like factor (GKLF), spermatogenic Zip (SPZ1), zink finger protein (ZF5), 

simian-virus-40-protein1 (SP1), paired domain, paired box/homeodomain (PAX-4), 

homeodomain TF (MSX), general initiator signal (GEN_INI), fetal Alzheimer antigen 

(FAC-1), caudal homolog homeobox protein (CDXA), CCAAT/enhancer binding protein 

(C/EBP) and vitamin D receptor (VDR). 

Binding sites for about seven different TF pairs were present in over 50% of the 23 genes 

in SET1. Binding sites for four of these nine pairs were over-represented >2-fold 

compared with the 90 control sequences: GKLF+SPZ1 (47.8%, 4.7-fold), ZF5+ZF5 

(56.5%, 3.6-fold), SP1+ZF5 (60.9%, 3.2-fold) and PAX-4+SPZ1 (56.5%, 2.4-fold). This 

 169



 

suggests that TF pairs containing GKLF, ZF5, SP1, PAX-4 or SPZ1 are involved in the 

transcriptional regulation of these genes (Fig. 4). 

The genes clustered in SET2 showed a similar expression profile, but only six different 

TF pairs were present in over 50% of the 32 genes in SET2. As in SET1, binding sites for 

SP1+ZF5 (50%, 2.6-fold) and PAX-4+SPZ1 (56.3%, 2.4-fold) were over-represented >2-

fold compared with the 90 control sequences. Interestingly, binding sites for 

GKLF+SPZ1 and ZF5+ZF5 were over-represented 4.2-fold and twofold, respectively, 

but did not match the 50% occurrence restriction (46.9% and 31.3%). We also found that 

the occurrence of the binding sites for MSX+GEN_INI is 9.4% and thus 3.1-fold less 

then in the 90 control sequences (Fig. 4). 

Binding sites for nine different TF pairs were present in over 50% of the 14 genes in 

SET3. FAC-1+GEN_INI (57.1%, 3.4-fold), PAX-4+SPZ1 (57.1%, 2.5-fold), 

GEN_INI+GKLF (64.3%, 2.3-fold) and MSX-1+GEN_INI (57.1%, 2.0-fold) fulfilled 

these criteria. Conspicuously, binding sites for GEN_INI+PAX-4 were present in 93% of 

the promoter sequences in SET3, and 1.8-fold over-represented compared with all other 

SETs and the 90 control sequences. We observed a similar scenario for all other TF pairs 

containing bindings sites for GEN_INI and conclude from this that TF pairs containing 

GEN_INI are be involved in the transcriptional regulation of these genes in SET3. 

Surprisingly, there were no binding sites for ZF5+ZF5 in SET3 at all, compared with 

SET1, where binding sites for this pair were present in 56.5% and over-represented 3.6-

fold. This emphasizes the importance of the presence/absence of specific TFBS for the 

regulation of transcription (Fig. 4). 

None of the five genes that pass the 50% occurrence restriction in SET4 fulfilled the >2-

fold over-representation requirement. Merely three TF pairs GKLF+SPZ1 (31.0%, 2.8-

fold), ZF5+ZF5 (41.4%, 2.7-fold) and GKLF+ZF5 (41.4% and 2.5-fold) met the 

>twofold restriction. The 25 genes in SET4 contained a higher binding-site number of 

CDXA-containing TF pairs than the other SETs. In addition, the representation of these 

pairs in SET1-3 and SET5 was lower than in the 90 control sequences, whereas the 

representation of these pairs in SET4 was higher than in the control sequences (see PAX-

4+CDXA, CDXA+CDXA and CDXA+C/EBP) (Fig. 8). Only ZF5+PAX-4 had a TFBS 

on more than 50% of the 17 genes in SET5, but the over-representation was <twofold 
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(1.7). Interestingly, the 4.2-fold over-representation of binding sites for GKLF+SPZ1 was 

comparable to all other SETs. As argued above (SET1), this strengthens the point that TF 

pairs containing GKLF, ZF5, SP1, PAX-4 or SPZ1 might be involved in the 

transcriptional regulation of these genes (Fig. 4). 

 

Human and Mouse Promoter Comparison 

Comparative analysis of genomic sequences is used more and more to investigate coding 

and regulatory regions in mammalian genomes, since only a very limited number of 

promoters have been experimentally evaluated to date. To further examine the results 

obtained from the StampCollector program, we compared sequence identity and TF 

binding-site similarity to mouse promoter sequences. For this we retrieved the mouse 

Affymetrix identification number corresponding to the human code obtained from the 

chip experiment and obtained 2 kb of putative promoter sequence for all of the mouse 

target genes from Genomatix. Both the human and the mouse sequences were loaded into 

the DNA Block Aligner (DBA) program that aligns two sequences under the assumption 

that the sequences share a number of co-linear blocks of conservation separated by 

potentially large and varied lengths of DNA. DBA models four different types of 

conserved blocks, with corresponding sequence identities: type A, 60-70%; type B, 70-

80%; type C, 80%-90%; type D, 90-100%. Assuming that the human and mouse genomes 

share a sequence identity of 51% under non-selective pressure (Jukes and Cantor, 1969), 

the single blocks were considered to be conserved because of functional constraints and 

are, therefore, likely to play functional roles. Based on this, the sequences of the blocks 

were loaded into the StampCollector program, which then determined all TF binding sites 

present and all possible TF pairs within the conserved blocks of the human and mouse 

sequences. In an further step, the results were visualized by a graphic tool and could be 

easily evaluated. As shown in (Fig. 5), many predicted human TF-binding sites lined up 

well with the binding sites of the corresponding mouse homologues. Also, the number of 

TF hits was again reduced compared with the Transfac database. All of the TF-binding 

sites for c-Fos were identified by StampCollector in this analysis. Whether any of the 

other TFs are directly involved in the regulation of c-Fos remains to be tested 

experimentally. 
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Supporting evidence 

Interestingly, when we examined the functional annotations of a training Set containing 

23 “best hit” genes identified in the Affymetrix experiment, we observed that seven of 

them encoded the transcription factors c-Fos; FosB; EGR1; ATF3; c-Jun; GKLF and 

CITED. With the exception of c-Fos and ATF3, none of the transcription factors had 

binding sites on any of the 23 genes. Binding sites for GKLFwere present in every gene 

with the exception of DTR (22/23). C/EBP binding sites were identified in all of the 

promoters except those of the JUN, ID1 and SGK genes (20/23). Cyr61 had binding sites 

in all promoters except for ZF5 and SP1. In addition, no ZF5 binding sites were found on 

the VEGF gene (21/23 and 22/23). Interestingly, GKLF was not only identified by the 

StampCollector program as a candidate for the regulation of this Set of genes, it was also 

itself one of the 23 up-regulated genes. CITED, a co-activator of GKLF, was also in the 

list. GKLF and CITED are particularly interesting candidates because, in addition to 

having binding sites in most of the up-regulated gene promoters and being up-regulated 

themselves in response to OA treatment, they were not up-regulated by treatment with 

any of the other phosphatase inhibitors which we had tested in independent GeneChip 

experiments (preliminary results from treatment of HEK293 cells with Calyculin A, 

Tautomycin, Cyclosporin A, unpublished data, not discussed in this thesis). This leads us 

to suggest that the role of GKLF and CITED in the regulation of these genes is specific 

for OA treatment. 

We used MEME and MotifSampler, a Gibbs sampling algorithm, to identify over-

represented cis-regulatory motifs in the 2-kb promoter region of the 23 co-expressed 

genes. Both established computational methods confirmed our findings that the 

transcription factors GKLF, C/EBP, ZF5 and SP1, identified by StampCollector, are 

indeed cis-regulatory motifs over-represented upon OA treatment in all tested up-

regulated genes (Table 5).  
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Discussion 
 
One of the most important breakthroughs in the investigation of how protein 

serine/threonine phosphatases function occurred with the discovery of OA more than 15 

years ago (Haystead et al., 1989). Since then, many members of different signaling 

pathways have been identified with the help of OA-mediated inhibition of protein 

serine/threonine phosphatases. While many examples in the literature associate these 

events with PP2A or sometimes with PP1, the existence of other OA-sensitive protein 

serine/threonine phosphatases like PP4, PP5 and PP6 is widely ignored (Hastie and 

Cohen, 1998)(Chen et al., 1994).  

In this study, we used Affymetrix GeneChips to identify genes in which expression levels 

are regulated by 1 µM OA, which is reported to be specific for inhibition of PP2A. 

However, even knowing that PP1 is two orders of magnitude less sensitive to OA than 

PP2A and that PP4, PP5 and PP6 are less abundant in the cell, it can not entirely be 

assumed that the cellular effects observed are only due to inhibition of PP2A. Treating 

HEK293 cells with OA had mainly positive effects on transcription, which suggests that 

OA mainly stimulates transcription activators or inhibits transcription repressors, 

probably by inhibition of PP2A.  

Most of the 115 genes that were up-regulated upon OA treatment in HEK293 in our study 

were previously not known to be transcriptionaly regulated by OA. Amongst other genes, 

we were able to confirm the transcriptional up-regulation of AP-1 gene members like c-

Fos, FosB, c-Jun and JunB (Park et al., 1992)(Holladay et al., 1992) and other early 

intermediate genes such as Egr-1 and Egr-3 following OA treatment (Kharbanda et al., 

1993). The fact that all genes up-regulated have diverse functions in the cell shows that 

OA-inhibited serine/threonine phosphatases fulfill a wide variety of cellular functions 

(Janssens and Goris, 2001).  

In addition, we found about 20 genes that were up-regulated upon OA treatment and also 

by the treatment of HEK 293 cells with TPA in an unrelated experiment. Although there 

is contradictory evidence about the co-regulation of gene expression due to these two 

different treatments (Guy et al., 1992), it has been suggested that some of the effects of 

OA and TPA are mediated via the same pathways (Rahmsdorf and Herrlich, 1990; 

Wakiya and Shibuya, 1999). In concordance with this, we found Fos and Jun family 
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members to be up-regulated by both OA and TPA in our chip experiments. OA 

significantly changes the expression levels of many cytokines and genes induced by DNA 

damage.  

About 30% of the up-regulated genes encode transcription factors, which raises the 

question of whether these genes or even all genes up-regulated in response to OA follow 

similar activation pathways. It has been reported that OA-responsive sequences in up-

regulated genes, such as c-Fos, map to AU-rich sequences in combination with an 

unidentified protein complex (Farhana et al., 2000). With our approach, we cannot 

necessarily confirm these findings, but we also identified transcription factor binding 

sites (TFBS) that may be involved in OA-mediated up-regulation and that included AU-

rich sequences, e.g. PAX-4, CDXA and C/EBP. Our data reveal that activation of 

transcription of distinct genes occurs in a time-dependent manner and is in most cases 

irreversible due to the apoptotic effect of OA. 

Accurate in silico detection of TF-binding sites is a challenge and needs a combination of 

different approaches. For this reason, we developed a software tool called 

“StampCollector” that is able to predict potential TF pairs involved in the regulation of 

genes, based on their promoter sequences. One reason for creating this computational tool 

was that identification of TF-binding sites using the Match search program of the 

Transfac database results in an overwhelmingly large number of false positive TF-site 

hits. Despite the fact that statistical analysis can be useful in some cases (Qiu et al., 2002), 

we were still concerned that the high number of false positives sometimes "dilutes" the 

frequency of key TF sites. The program identified 11 different TF-binding sites present 

and over-represented in up-regulated genes and involved in the formation of 18 

transcription factor pairs (Table 4). At least four of these 11 TFs are regulated by 

phosphorylation. C/EBP is phosphorylated by PKA and translocates to the nucleus to 

induce p21-mediated apoptosis (Chinery et al., 1997). The activity of SP1 is regulated by 

PP2A and PP1 (Garcia et al., 2000). Interestingly, Sp1 activity at the nitric oxide synthase 

promoter has been proposed to be regulated by a CKll and PP2A complex, indicating that 

phosphorylation and dephosphorylation maybe linked (Cieslik et al., 1999). VDR is 

regulated by DNA-PK-mediated phosphorylation (Okazaki et al., 2003), and FAC1 is 

dephosphorylated by an OA sensitive phosphatase (Jordan-Sciutto et al., 1999). Given the 
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flexibility and variability of promoter regulatory mechanisms, we decided to combine the 

TF pair over-representation approach of StampCollector with a comparison of human and 

mouse promoter regions using the DNA Block Aligner tool. Only TFs located in these 

blocks in both human and mouse promoters were considered for further analysis. In this 

way, we were able to reduce the over-represented TF pairs to regions of the promoters 

conserved between human and mouse.  We found differences in regulatory motifs of the 

promoter sequences clustered according to their expression patterns.  

Of the 18 TF pairs, five (GKLF, ZF5, SP1, PAX-4 and SPZ1) passed our stringent filter 

criteria and are good candidates for a central role in the primary transcriptional effects of 

OA. The upstream regulatory region of the c-Fos promoter contains two growth factor-

regulated promoter elements: the serum response element, which binds a ternary complex 

comprising serum response factor (SRF) and a ternary complex factor (TCF); and the sis-

inducible element (SIE), which binds STAT transcription factors. In addition, AP-1/ATF- 

and CREB-binding sites have been reported (Hill and Treisman, 1995). The cellular 

retinoblastoma susceptibility gene protein Rb also binds to specific cis elements in the c-

Fos gene promoter, leading to repression of c-Fos transcription (Robbins et al., 1990). 

StampCollector identified all of these TF-binding sites involved in the upregulation of c-

Fos in this analysis. Whether any of the additional TFs identified with StampCollector are 

directly involved in the transcriptional regulation of c-Fos or other upregulated genes 

remains to be experimentally validated. 
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SET1 OA up  0 10 30 60 90mincommon name name 

209189_at 1.0 1.1 1.8 210.5 994.2FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 
222315_at 1.0 0.7 1.0 48.9 279.7ESTs ESTs no further annotation 
210090_at 1.0 0.8 0.9 30.7 238.6ARC activity-regulated cytoskeleton-associated protein 
202768_at 1.0 0.9 1.0 33.6 175.1FOSB, GOS3 FBJ murine osteosarcoma viral oncogene homolog B 
201694_s_at 1.0 0.9 1.8 18.7 45.0EGR1, TIS8 early growth response 1 
207574_s_at 1.0 0.8 1.0 12.3 30.8GADD45B growth arrest and DNA-damage-inducible, beta 
214349_at 1.0 1.1 1.0 7.3 24.8TPARL Homo sapiens cDNA: FLJ23438 fis, clone HRC13275. 
202672_s_at 1.0 0.9 1.0 4.1 14.2ATF3, ATF3 activating transcription factor 3 
202912_at 1.0 1.3 1.2 5.2 14.1ADM, ADM adrenomedullin 
201041_s_at 1.0 0.9 1.0 4.3 11.3DUSP1, HVH1, MKP-1 dual specificity phosphatase 1 
201473_at 1.0 1.3 1.1 3.6 8.0JUNB, JUNB jun B proto-oncogene 
222162_s_at 1.0 1.0 0.9 3.6 6.8ADAMTS1 a disintegrin-like and metalloprotease  with thrombospondin type 1 motif, 1 
206115_at 1.0 1.1 1.3 4.1 6.6EGR3, EGR3 early growth response 3 
201289_at 1.0 1.0 1.1 2.8 6.5CYR61, IGFBP10 cysteine-rich, angiogenic inducer, 61 
209357_at 1.0 0.8 0.9 3.5 6.0CITED2 Cbp/p300-interacting transactivator,  Glu/Asp-rich C-terminal domain, 2 
210592_s_at 1.0 0.9 0.9 2.5 5.2SAT spermidine/spermine N1-acetyltransferase 
201464_x_at 1.0 1.0 1.0 3.3 5.2JUN v-jun sarcoma virus 17 oncogene homolog  
213931_at 1.0 1.2 1.1 3.2 4.9ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 
210512_s_at 1.0 1.3 1.0 2.9 4.7VEGF vascular endothelial growth factor 
201236_s_at 1.0 1.2 1.1 3.1 4.3BTG2, TIS21 BTG family, member 2 
216248_s_at 1.0 1.1 1.0 3.7 3.8NR4A2 nuclear receptor subfamily 4, group A, member 2 
201502_s_at 1.0 1.0 0.8 2.7 3.5NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 
213649_at 1.0 1.0 0.9 3.5 3.2SFRS7 splicing factor, arginine/serine-rich 7, 35kDa 
209293_x_at 1.0 1.0 0.9 2.2 2.6ID4 inhibitor of DNA binding 4, dominant negative helix-loop-helix protein 
202531_at 1.0 1.2 1.2 2.3 2.5IRF1 interferon regulatory factor 1 

        

SET2 OA up 0 10 30 60 90mincommon name name 

203821_at 1.0 1.8 1.0 3.9 22.0DTR diphtheria toxin receptor  
209305_s_at 1.0 0.9 1.1 4.4 21.7GADD45B growth arrest and DNA-damage-inducible, beta 
202014_at 1.0 2.1 1.9 5.0 19.4PPP1R15A, GADD34 protein phosphatase 1, regulatory  subunit 15A 
201939_at 1.0 0.6 1.4 4.9 13.3SNK serum-inducible kinase 
221841_s_at 1.0 1.0 1.1 3.1 12.5KLF4 Homo sapiens cDNA FLJ38575 fis, clone HCHON2007046. 
201693_s_at 1.0 0.9 1.3 3.7 11.3EGR1, early growth response 1 
219480_at 1.0 1.0 1.1 2.7 9.1SNAI1 snail homolog 1  
202081_at 1.0 0.9 1.1 2.9 8.8ETR101 immediate early protein 
209457_at 1.0 0.8 0.9 2.1 8.3DUSP5 dual specificity phosphatase 5 
210764_s_at 1.0 1.3 1.4 2.8 6.6CYR61, IGFBP10 cysteine-rich, angiogenic inducer, 61 
202388_at 1.0 0.9 0.9 1.9 6.2RGS2 regulator of G-protein signalling 2, 24kDa 
36711_at 1.0 0.9 1.0 3.3 6.1MAFF, v-maf musculoaponeurotic fibrosarcoma oncogene homolog F  
220319_s_at 1.0 1.0 1.0 2.2 5.9MIR myosin regulatory light chain interacting protein 
208937_s_at 1.0 1.0 0.9 2.1 5.4ID1 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein 
207980_s_at 1.0 1.1 1.2 2.4 5.0CITED2 Cbp/p300-interacting transactivator,  Glu/Asp-rich C-terminal domain, 2 
203394_s_at 1.0 0.9 0.8 2.0 4.5HES1, HRY hairy and enhancer of split 1,  
203751_x_at 1.0 1.1 1.3 1.9 4.4JUND jun D proto-oncogene 
212099_at 1.0 1.2 1.1 2.1 3.9ARHB Human HepG2 3' region cDNA, clone hmd1f06. 
217028_at 1.0 0.9 1.0 1.9 3.9CXCR4 chemokine  receptor 4 
218611_at 1.0 1.0 1.0 2.0 3.8IER5 immediate early response 5 
213281_at 1.0 1.1 1.3 2.4 3.4JUN v-jun sarcoma virus 17 oncogene homolog  
211965_at 1.0 1.0 0.8 2.2 3.0ZFP36L2 zinc finger protein 36, C3H type-like 1 
209212_s_at 1.0 1.1 1.1 1.8 3.0KLF5, CKLF Kruppel-like factor 5  
217168_s_at 1.0 1.0 1.0 1.6 3.0HERPUD1 homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain  
201235_s_at 1.0 0.6 0.6 2.1 2.9BTG2 BTG family, member 2 
200920_s_at 1.0 0.8 0.9 1.5 2.9BTG1 B-cell translocation gene 1, anti-proliferative 
201367_s_at 1.0 1.1 1.1 2.2 2.9ZFP36L2 zinc finger protein 36, C3H type-like 2 
214016_s_at 1.0 1.3 0.8 1.7 2.7SFPQ splicing factor proline/glutamine rich  
208707_at 1.0 0.9 0.9 1.6 2.6EIF5 eukaryotic translation initiation factor 5 
204622_x_at 1.0 1.1 0.8 1.9 2.5NR4A2 nuclear receptor subfamily 4, group A, member 2 
215224_at 1.0 0.9 1.4 1.6 2.3  Homo sapiens cDNA: FLJ21547 fis, clone COL06206. 

 
 
Table 1: List of genes up-regulated by OA treatment in HEK293 cells, clustered in 
SET1-5 according to their expression profiles by K-Means (Table 1 continues on next 
page). 
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SET3 OA up  0 10 30 60 90mincommon name name 

210001_s_at 1.0 1.8 3.9 14.9 26.7SOCS1, SSI-1 suppressor of cytokine signaling 1 
38037_at 1.0 1.8 2.0 5.9 16.4DTR, DTS diphtheria toxin receptor  
201531_at 1.0 1.4 1.6 4.2 13.8ZFP36, TIS11 zinc finger protein 36, C3H type, homolog  
210056_at 1.0 2.0 0.7 6.8 10.3RHO6 GTP-binding protein 
211527_x_at 1.0 1.6 1.6 9.8 5.8VEGF vascular endothelial growth factor 
214696_at 1.0 2.2 1.8 8.8 5.0MGC14376 hypothetical protein MGC14376 
213805_at 1.0 1.3 1.3 3.0 4.8CGI-58 CGI-58 protein 
204602_at 1.0 1.8 1.3 2.6 3.7DKK1 dickkopf homolog 1  
204748_at 1.0 0.5 1.0 4.3 3.6PTGS2 prostaglandin-endoperoxide synthase 2  
217524_x_at 1.0 0.9 1.7 5.1 3.0ESTs ESTs, Moderately similar to  hypothetical protein FLJ20489 
215011_at 1.0 1.5 1.3 3.0 2.8RNU17D, U17HG RNA, U17D small nucleolar 
203780_at 1.0 1.5 1.7 2.1 2.2EVA1 epithelial V-like antigen 1 
221919_at 1.0 1.3 1.5 3.5 1.9HNRPA1 heterogeneous nuclear ribonucleoprotein A1 
204291_at 1.0 1.0 1.2 2.8 1.5KIAA0335 KIAA0335 gene product 
218750_at 1.0 1.0 1.1 2.2 1.4MGC5306 hypothetical protein MGC5306 
209451_at 1.0 1.0 1.0 2.1 1.3TANK, I-TRAF TRAF family member-associated NFKB activator 

        

SET4 OA up  0 10 30 60 90mincommon name name 

201739_at 1.0 1.0 1.0 3.5 33.6SGK serum/glucocorticoid regulated kinase 
201631_s_at 1.0 0.9 0.8 2.1 10.7IER3 immediate early response 3 
33767_at 1.0 0.2 0.9 1.3 10.0NEFH neurofilament, heavy polypeptide 200kDa 
220266_s_at 1.0 0.8 0.9 1.9 7.5KLF4, GKLF Kruppel-like factor 4  
203725_at 1.0 1.1 0.9 1.8 6.4GADD45A growth arrest and DNA-damage-inducible, alpha 
218810_at 1.0 1.2 0.9 1.5 6.2FLJ23231 hypothetical protein FLJ23231 
209325_s_at 1.0 1.3 1.1 1.8 5.8RGS16 regulator of G-protein signalling 16 
213988_s_at 1.0 0.8 1.1 1.7 5.7SAT spermidine/spermine N1-acetyltransferase 
208078_s_at 1.0 1.1 1.0 1.4 4.8TCF8 transcription factor 8  
221011_s_at 1.0 1.5 1.2 1.5 4.4LBH likely ortholog of mouse limb-bud and heart gene 
203304_at 1.0 1.0 0.8 1.3 3.7NMA putative transmembrane protein 
202814_s_at 1.0 1.2 1.0 1.5 3.5HIS1 HMBA-inducible 
203455_s_at 1.0 0.8 0.8 1.2 3.5SAT spermidine/spermine N1-acetyltransferase 
202887_s_at 1.0 1.0 0.7 1.1 3.4RTP801 HIF-1 responsive RTP801 
203395_s_at 1.0 1.0 1.0 1.1 3.4HES1 hairy and enhancer of split 1,  
209006_s_at 1.0 1.1 1.2 1.6 3.3DJ465N24.2.1, hypothetical protein dJ465N24.2.1 
206724_at 1.0 1.2 1.0 1.3 3.2CBX4 chromobox homolog 4  
213348_at 1.0 0.9 1.0 1.1 3.1CDKN1C cyclin-dependent kinase inhibitor 1C  
203068_at 1.0 1.2 1.3 1.5 3.0KIAA0469 KIAA0469 gene product 
212171_x_at 1.0 0.9 1.1 1.5 2.8VEGF vascular endothelial growth factor 
208922_s_at 1.0 1.0 1.1 1.3 2.7NXF1 nuclear RNA export factor 1 
201416_at 1.0 0.9 0.9 1.1 2.7SOX4 SRY -box 4 
202636_at 1.0 1.1 1.1 1.4 2.5ZFP103 zinc finger protein 103 homolog  
212724_at 1.0 0.9 1.1 1.5 2.5ARHE ras homolog gene family, member E 

        

SET5 OA up 0 10 30 60 90mincommon name name 

206935_at 1.0 1.6 4.2 1.8 20.8PCDH8 protocadherin 8 
203140_at 1.0 2.4 1.4 1.7 5.6BCL6 B-cell CLL/lymphoma 6  
218559_s_at 1.0 1.1 1.0 1.1 4.5MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B  
209201_x_at 1.0 1.1 1.1 0.7 3.3CXCR4 chemokine  receptor 4 
209007_s_at 1.0 0.6 0.8 0.9 3.3DJ465N24.2.1 hypothetical protein dJ465N24.2.1 
209803_s_at 1.0 0.9 1.0 1.0 3.2TSSC3 tumor suppressing subtransferable candidate 3 
210425_x_at 1.0 1.2 1.2 1.0 3.1GOLGIN-67 golgin-67 
212501_at 1.0 1.0 0.9 1.1 3.1CEBPB CCAAT/enhancer binding protein , beta 
221768_at 1.0 1.2 1.5 1.1 3.0SFPQ Homo sapiens cDNA FLJ38383 fis, clone FEBRA2003726. 
219142_at 1.0 1.0 1.2 1.2 2.9MGC2827 hypothetical protein MGC2827 
202284_s_at 1.0 1.2 0.9 1.2 2.9CDKN1A, P21, CIP1 cyclin-dependent kinase inhibitor 1A  
202815_s_at 1.0 1.0 0.9 1.1 2.8HIS1 HMBA-inducible 
220306_at 1.0 1.0 1.1 0.9 2.8FLJ20202 hypothetical protein FLJ20202 
204286_s_at 1.0 1.1 0.8 1.1 2.7PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 
218012_at 1.0 1.1 0.8 1.0 2.6SE20-4, CDA1, CTCL cutaneous T-cell lymphoma-associated tumor antigen se20-4 
204379_s_at 1.0 1.1 1.1 0.9 2.4FGFR3 fibroblast growth factor receptor 3  

 

Table 1 continued: List of genes up-regulated by OA treatment in HEK293 cells, 
clustered in SET1-5 according to their expression profiles by K-Means.  
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OA down 0 30 60 90min common name name 

216855_s_at 1.0 -1.3 -2.4 -1.1 HNRPU Heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A) 
213119_at 1.0 -1.1 -2.2 -1.1 cDNA: FLJ21449 wx23h08.x1 NCI_CGAP_Kid11 Homo sapiens cDNA IMAGE:2544543 3', 
204766_s_at 1.0 -1.2 -1.2 -2.0 NUDT1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 
205967_at 1.0 -1.2 -2.0 -1.3 H4FG H4 histone family, member G 
202979_s_at 1.0 -1.0 -1.6 -2.1 ZF HCF-binding transcription factor Zhangfei 

 
 
Table 2: List of genes down-regulated by OA treatment in HEK293 cells 
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  OA TPA common name name 

209189_at 994.2 44.1 FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 
202768_at 175.1 31.2 FOSB, GOS3 FBJ murine osteosarcoma viral oncogene homolog B 
201694_s_at 45.0 20.9 EGR1, TIS8 early growth response 1 
202672_s_at 14.2 1.8 ATF3 activating transcription factor 3 
201041_s_at 11.3 2.6 DUSP1, HVH1,  MKP-1 dual specificity phosphatase 1 
201631_s_at 10.7 2.2 IER3 immediate early response 3 
202081_at 8.8 2.7 ETR101 immediate early protein 
201473_at 8.0 4.7 JUNB jun B proto-oncogene 
222162_s_at 6.8 2.5 ADAMTS1 a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 1 
206115_at 6.6 22.4 EGR3 early growth response 3 
210764_s_at 6.5 3.4 CYR61, IGFBP10 cysteine-rich, angiogenic inducer, 61 
36711_at 6.1 5.3 MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 
209325_s_at 5.8 2.2 RGS16 regulator of G-protein signalling 16 
201466_s_at 5.2 2.0 JUN v-jun sarcoma virus 17 oncogene homolog (avian) 
210592_s_at 5.2 1.7 SAT spermidine/spermine N1-acetyltransferase 
201236_s_at 4.3 1.7 BTG2, TIS21 BTG family, member 2 
212099_at 3.9 1.5 ARHB Human HepG2 3' region cDNA, clone hmd1f06. 
202887_s_at 3.4 1.5 RTP801 HIF-1 responsive RTP801 
209803_s_at 3.2 2.2 TSSC3, tumor suppressing subtransferable candidate 3 
212724_at 2.5 1.5 ARHE ras homolog gene family, member E 

 
Table 3: Genes jointly up-regulated by OA and TPA. Maximum fold change at either 10, 
30, 60 or 90 min is indicated 
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 chip up TF class function 

GKLF P 2.7x Zn Growth arrest and cell cycle regulation 

C/EBP P 3.3x ZIP Regulation of proliferation, differentiation and apoptosis 

Binds to AP-1 sites and heterodimerizes with Fos/Jun, 

interacts with SP1 

PAX-4 A - HTH-PD Regulates pancreatic cell differentiation and development, 

represses glucagen expression 

SP1 P 2.5x Zn Ubiquitous factor, PP2A activates SP1. It’s reversed in 

GeneChip!! OA induces SP1 driven gene expression 

ZF5 P 2.2x Zn Activator and repressor 

GEN_INI - - - General initiator sequence, surrounding TSS, bound by 

general TFs 

SPZ1 - - HLH-ZIP Testis specific. Role in spermatogenesis by regulating 

proliferation and differentiation 

VDR A - Zn VDR binding site includes AP-1 site 

FAC1 P - Zn Repressor, role in neural development/degeneration 

MSX-1 P 2.4x HTH-HD Activator of development and differentiation, also repressor, 

since interaction with proteins from core transcription 

complex (TBP, TFllA) 

CDXA - - HTH-HD - 

 
Table 4: Transcription factors involved in TF pair formation upon okadaic acid (OA) 
treatment of HEK 293 cells. Present (P) or absent (A) call from chip data is included as 
well as TF class and the known function of the TF. 
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MotifSampler MEME TFBS 

CCCGCGCs - AP2 

TGTGTrTn - - 

GCsGCCGC - ZF5, SP1 

GGGCGGGG GGGGGCGGGG 

T   A       A     A 

Sp1, VDR (100%), ZF5, SPZ1 

TnATTwTT TTATTATT 

   ATA  T 

PAX-4, CDXA, HNF 

- TTTTTTTTTTCG 

GG       C 

PAX-4, C/EBP, FAC1, HNF3 

- AGAAAAAAAA 

   AG   G 

PAX-4, C/EBP, FAC1, GKLF, Oct-1 

- TTTAAAAA 

   A  T         T 

MEF-1, C/EBPg, CDC5 

  
Table 5: Transcription factor binding sites identified using MEME and MotifSampler 
bioinformatic tools. 
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Fig 1: Flowchart of data analysis 
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Fig. 2: Trend of expression profiles for K-Means clustered OA up-regulated genes 
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Fig. 3: Functional principle of the StampCollector program to predict potential 
transcription factor pairs involved in the regulation of genes based on their promoter 
sequences 
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Fig. 4: Over-representation of TF pairs in SET1-5 compared with the control set. 
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Fig. 5: Different sensitivities used for StampCollector program to predict transcription 
factos on c-Fos promoter that may play a regulatory role upon OA treatment of HEK293 
cells. 
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Abbreviations 
 
ARE    AU-rich element  
CDXA   Caudal homolog homeoboxprotein 
C/EBP   CCAAT/enhancer binding protein 
CREB   c-AMP responsive element binding protein  
DUSP   Dual specific phosphatase 
Egr   Early growth response 
ERK1/2  Extracellular signal-related kinase1/2 
FAC-1   Fetal Alzheimer antigen 
GADD45B   Growth arrest and DNA damage-induced 45B 
GEN_INI   General initiator sequence 
GKLF    Krueppel-like factor 
IkB-α   Inhibitor of NFkB 
IL   Interleukin 
MAPK   Mitogen-activated protein kinase  
MEK1/2  MAP/ERK kinase 1/2 
MSX   Homeodomain TF  
NDR    Nuclear Dbf2-related  
NFkB   Nuclear factor kappa B  
NGF   Nerve growth factor  
OA    Okadaic acid  
PAX-4   Paired domain, paired box/homeodomain  
PI3K    Phosphatidylinositol 3'-kinase  
pRb   retinoblastoma protein 
SOCS1  Suppressor of cytokine signaling 1 
SP1   Simian-virus-40-protein1 
SPZ1    Spermatogenic Zip  
TF   Transcription factor 
TFBS   Transcription factor binding site 
VDR   Vitamin-D receptor  
VEGF   Vascular and endothelial growth factor 
ZF5   Zink finger protein 
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VII. General Discussion 
 
Protein phosphatase 2A (PP2A) is one of the major multi-subunit serine/threonine protein 

phosphatases found in eucaryotic cells. It exerts pleiotropic effects on various cellular 

processes and has been shown to be involved in the regulation of growth and metabolism, 

signal transduction, cell cycle progression, cell transformation, DNA replication and 

transcription, RNA splicing and translation and neuronal development (reviewed in 

(Janssens and Goris, 2001)). Defective or inappropriate function of PP2A may lead to 

deregulation of signal transduction and in the worst-case scenario to the development of 

diseases such as diabetes, cancer or immune dysfunction. Altered interaction or 

dysfunction of PP2A in the brain may also lead to neurodegenerative disorders such as 

Alzheimer's disease (AD) (Tian and Wang, 2002).  

Given the numerous cellular processes involving PP2A, we developed a method that 

yields over-expression of high levels of active PP2Ac for the investigation of active-site 

residues invariant for the catalytic function of PP2Ac. PP2Ac shares many invariant 

residues with the PP1 and PP2B catalytic subunits and some active-site residues with 

bacteriophage λ phosphatase (λPPase), suggesting that these enzymes share a common 

catalytic mechanism (Barford et al., 1998; Huang et al., 1997; Zhuo et al., 1994). 

Mutation of two of these sites (D88N and H118N) resulted in a dramatic reduction in 

phosphatase activity in vitro and in vivo, which is in concordance with functional analysis 

of yeast, where the substitutions abolished in vivo function (Ogris et al., 1999a; Ogris et 

al., 1999b). One aim of this study was to establish a method producing over-expression of 

recombinant protein in insect cells at a level significantly higher than that in mammalian 

cell lines. Detailed analyses of the structural and functional aspects of catalysis by PP2A 

are rare, due to the fact that over-expression in mammalian cells is restricted to 

endogenous levels by a transcriptional (Chung and Brautigan, 1999) and/or translational 

autoregulatory mechanism (Baharians and Schonthal, 1998). Mutating the active-site 

residues Asp88 and His118 to the neutral amino acid asparagine yielded substantially higher 

levels of mutant HA–PP2Ac than native recombinant HA–PP2Ac. Taken together, these 

observations demonstrate that the human Asp88 and His118 residues perform a key, 

phylogenetically conserved role in the catalytic mechanism of PP2Ac. Furthermore, we 
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suggest that the regulation of PP2Ac expression is controlled by its phosphatase activity 

and may be due to mechanisms outlined (Baharians and Schonthal, 1998; Chung et al., 

1999). This method will also be a useful tool for generating large amounts of biologically 

active PP2Ac protein, which can then be used for resolving the crystal structure and 

further functional analysis. 

In its active in vivo complex, the catalytic subunit of PP2A is bound to the regulatory A 

subunit and to one of the variable B regulatory subunits. About 75 different holoenzymes 

can be theoretically generated, given that there are two C, two A, four B, at least eight B’, 

four B’’ and two B’’’ isoforms. The fact that we identified two novel splice variants for 

mouse PR55/Bβ (Schmidt et al., 2002) and that there are additional splice variants for 

other B’ regulatory subunits clearly shows that the variability of the PR55/B family, and 

consequently for the PP2A trimer, is even greater than previously thought (McCright et 

al., 1996). We were also able to show that the brain- and testis-specific PR55/Bβ isoform 

exerts a distinct function during mouse brain development, since transcripts of other 

isoforms were not detected during embryogenesis. Interestingly, the main PP2A complex 

in the brain is ABαC and it probably performs general cellular functions, in contrast to 

PR55/Bβ and Bγ. PR55/Bα- and Bβ-containing trimers have been reported to be involved 

in the association with the tau protein, which in its hyperphosphorylated form is involved 

in the development of Alzheimer’s disease (Billingsley and Kincaid, 1997; Goldbaum et 

al., 2003). Neither the PR55/Bγ nor the PR61/B’ regulatory subunits are involved in the 

association with the tau protein or microtubules (Price et al., 1999). A distinct function of 

the brain-specific PR55/Bγ in promoting differentiation in neuronal cells has been 

suggested recently (Strack et al., 2002). Our in situ hybridization and 

immunohistochemical analysis of murine brains showed all PR55/B subunits to be widely 

distributed in brain, with regional differences in expression levels. In concordance with 

this, significant differences in distribution at the protein level have been found in the 

cerebellum, an area reported to be involved in a spinocerebellar ataxia (Costa Lima and 

Pimentel, 2004). This disease, called SCA12, is probably caused by a CAG repeat in the 

non-translated region of the PR55/Bβ gene (Holmes et al., 2001; Holmes et al., 1999). In 

addition, the distribution of the PR55/Bα and Bβ subunits also varies in the cortex and 

hippocampus, areas prominently affected in AD brains. Interestingly, we identified high 
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levels of PR55/Bα staining in activated astrocytes, which suggests a role for this isoform 

in AD, since astrocyte activation is an early step in the pathogenesis of AD and related 

disorders (Kurosinski and Gotz, 2002). 

Taken together, the results presented in this part of the thesis provide insights into the 

regulation and distribution of the PR55/B regulatory subunits in mouse brain, which may 

be extremely valuable for understanding the biological role of this subunit family in the 

overall function of PP2A. These results will help in the interpretation of the phenotypes 

of transgenic or future knockout mice (Gotz and Schild, 2003) that are altered or deficient 

in various PP2A subunits.  

A useful tool in studying cellular functions of PP2A is the tumor promoter OA. As 

already mentioned, the effects of OA can not be entirely attributed to the inhibition of 

PP2A; even though PP1 and PP2B are not affected at this concentration, the less 

abundant PP4, PP5 and PP6 are probably affected (Fernandez et al., 2002). For 

characterizing the effects of inhibitors on a distinct protein phosphatase, it would be 

extremely helpful to know the crystal structure of each protein phosphatase and so to 

identify unique binding interactions. To date, only PP1 (Egloff et al., 1995; Goldberg et 

al., 1995), PP2B (Kissinger et al., 1995) and PP2C (Das et al., 1996) have been 

characterized. Characterization of the other members will not only increase our 

understanding of the function of the different phosphatases and their inhibitors, but will 

also allow development of specific and selective phosphatase inhibitors and provide 

deeper insights into the regulation of phosphatase activity. 

Given that all diseases involve deficiencies in cellular signaling, it is not surprising that 

protein kinases and protein phosphatases have become targets for the design of novel 

therapeutic tools (Dancey and Sausville, 2003). Understanding of the role of protein 

phosphatases in these systems, however, is behind that of protein kinases, but it is already 

apparent that the role of protein phosphatases is just as complex and elegant as that of 

protein kinases. Consequently, efforts have increased to elucidate the biological roles of 

protein phosphatases and, thus, their potential medical implications (Honkanen and 

Golden, 2002). The development of type-specific protein phosphatase inhibitors has 

become an interesting task, since they are believed to be extremely useful research tools 

with potential for development as novel therapeutic agents (McCluskey et al., 2002). In 
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the case of PP2A, several inhibitors have been described that are more or less specific 

(Sheppeck et al., 1997). The most prominent of these is the tumor-promoter okadaic acid 

(OA), whose ability to inhibit protein serine-threonine phosphatases in a dose-dependent 

manner has been proven to be extremely valuable in the investigation of major signaling 

events. One crucial disadvantage of OA is that it induces tumor formation in a mouse 

skin two-stage model (Suganuma et al., 1988). This almost immediately disqualifies it for 

therapeutical use in patients, since no physician wishes to apply a treatment that produces 

more harm than good. Another drawback of OA is that it equally inhibits minor abundant 

protein phosphatases like PP4, PP5 and PP6 (Cohen, 1997). This complicates the 

development of a specific phosphatase inhibitor for clinical use, because from a drug 

development point of view the target for development remains uncertain. It is also 

important to remember that a potential drug must distinguish between different isoforms 

of the phosphatase. Given that there are almost always multiple phosphatase complexes 

in a cell, this may complicate the issue dramatically. In some cases, for example that of 

AD, inhibition of PP2A may even promote development of the disease it restrains the 

level of tau phosphorylation. Thus, therapeutic use of such an inhibitor would be 

counterproductive (Gong et al., 1995). The use of a PP2A inhibitor as an anti-cancer 

agent also seems counterintuitive, since PP2A is considered to be a negative regulator of 

the cell cycle and would, therefore, stimulate rather than inhibit cell growth (Ghosh et al., 

1996). Nevertheless, some inhibitors such as cyclosporine A (Kosch et al., 2003), 

fostriecin (de Jong et al., 1999) or cantharidin (Langley et al., 2003; Sakoff et al., 2002; 

Wang, 1989) have been used clinically to treat patients, since they are 

immunosuppressive or are toxic for a wide range of cancer cell types. 

Even if OA is not suitable for the in vivo treatment of patients, it is still one of the most 

valuable tools for investigating cellular mechanisms mediated (in part) by PP2A in cell 

culture. We treated HEK293 cells with OA in a GeneChip approach using microarray and 

bioinformatics tools to define the common transcriptional events induced in genes that 

are up-regulated in response to OA. We identified both novel and known target genes for 

OA/PP2A (Schonthal, 1995). Whereas about 115 genes were up-regulated >2-fold, only 

two genes passed the >2-fold down-regulated restriction, which suggests that OA exerts 

activating effects on transcription activators and/or suppressing functions on transcription 
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suppressors by inhibiting PP2A. We found that about 30% of the up-regulated genes 

encode transcription factors such as the AP-1 members c-Fos and c-Jun. This finding is in 

concordance with earlier reports demonstrating that OA induces expression of c-Fos and 

c-Jun proto-oncogenes in human breast cancer cells (Kiguchi et al., 1992) and increases 

activity (Rosenberger et al., 1999). This effect is reported to be shared by other tumor 

promoters such as TPA (Rosenberger and Bowden, 1996) and was confirmed by our 

findings in an independent GeneChip experiment. Activation of the c-Fos gene is 

regulated through reversible phosphorylation of the ternary complex factor (TCF) by 

kinases of the MAPK family, and OA stimulates TCF via activation of the MAPK 

pathway (Schonthal, 1998). In addition, it was shown that tumor promotion by OA is due 

to increased AP-1 DNA transactivation mediated by c-Jun hyperphosphorylation (Peng et 

al., 1997). This and other reported evidence makes it very likely that the effect of OA on 

AP-1 family of transcription factors is due to the inhibition of PP2A.  

As discussed above, OA exerts its function through modulating regulatory mechanisms 

like dephosphorylation of the TCF complex that is responsible for activating c-Fos. One 

aim of this project was to investigate such regulatory events arising from OA treatment of 

HEK293 cells. Therefore, we developed a software tool we named "StampCollector" that 

allowed us to test established mechanisms and, based on their promoter sequences, to 

predict potential transcription factor (TF) pairs involved in the regulation of genes. The 

major challenge in developing in silico tools is the filtering of false positive and false 

negative results to give reliable readout. This is certainly a drawback of the Transfac 

database, a commercially available tool that includes the highest number of transcription 

factors and their putative binding sites. Use of the Match search program of the Transfac 

database resulted in an overwhelmingly high number of false positive TF site hits, which 

we attempted to reduce by combining the TF pair over-representation approach of 

StampCollector with a comparison of human and mouse promoter regions using the DNA 

Block Aligner tool. We used c-Fos as a training gene for StampCollector since its 

promoter region is well characterized (Hill and Treisman, 1995). We were able to 

confirm all regulatory elements for c-Fos reported in the literature and, in addition, we 

identified 11 transcription factors forming 18 different TF combinations that seem to be 

important for OA-mediated up-regulation of different genes in HEK293 cells. Whether 
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any of these TF pairs play an important role in transcriptional regulation remains to be 

tested experimentally.  

In conclusion, the work presented in this thesis is in many ways comprehensive for the 

understanding of “how PP2A does its job” or, in more scientific terms, the multiple 

functions that PP2A and in particular its B regulatory subunits exert in all major signal 

transduction pathways.  

In the first part of this thesis, we set the course for structural and functional analysis of 

the catalytic subunit of PP2A with the study “Active-site mutations impairing the 

catalytic function of the catalytic subunit of human protein phosphatase 2A permit 

baculovirus-mediated over-expression in insect cells”. In addition to the new insights 

gathered by this work, structural biologists will also profit from the devised method that 

allows over-expression of biologically active protein sufficient for crystallizing this 

extremely important molecule. 

Investigating the “Diversity, developmental regulation and distribution of murine PR55/B 

subunits of protein phosphatase 2A” clearly indicates that PP2A is a global player at the 

cellular level and that the deregulation or altered function of the phosphatase on any level 

can lead to severe disorders, such as Alzheimer’s disease or related neurodegenerative 

disorders. This shows how important it is to accomplish a detailed functional analysis of 

PP2A. 

In the third part of this thesis, we tried to pursue this challenge by defining the 

“Transcriptional effects of protein phosphatase 2A inhibitor okadaic acid on promoter 

complexes using Affymetrix GeneChips”. With this approach, we underline the 

importance of the PP2A inhibitor OA in the regulation of transcriptional effects prior to 

or based on the activation or suppression of signaling events.  

Considering the putative role of PP2A in the pathogenesis of human disease, all these 

results will at least help to understand the molecular mechanisms involved and may 

eventually lead to the discovery of therapeutic agents that specifically target PP2A 

dysfunction. 
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VIII. Appendix 

 
My aim was to dissect the function of the PR55/B family of subunits using a gene knock 

out strategy in mice. The project is still ongoing with our collaborator Juergen Goetz in 

Zurich, but was not presented in this thesis due to the lack of homologous recombination 

of our targeting constructs in ES cells for all PR55/B isoforms. The strategy will be 

described briefly for further attempts. 

 

Characterization of Murine PR55/B BAC Clones 

cDNAs for the murine PR55/Bα, Bβ, Bβ.1, Bβ.2, Bγ and Bδ were cloned or obtained 

from various libraries (described in Results: “Diversity, developmental regulation and 

distribution of murine PR55/B subunits of protein phosphatase 2A”). PR55/Bα, Bβ.1 and 

Bγ cDNAs were digested with the corresponding enzymes in order to release the full-

length insert. The PR55/Bα insert (2.3kb) was released with EcoRI/NotI, PR55/Bβ.1 

(1.8kb) with NotI/XhoI and PR55/Bγ (2.5kb) with HindIII/BamHI. The released and gel-

purified full-length inserts of PR55/Bα, Bβ and Bγ were used to screen a mouse BAC 

library constructed from 129/SvJ genomic DNA (Incyte Genomics). We received three 

PR55/Bα BAC clones (GS control number 23175-23177), and one each for PR55/Bβ 

(23029) & Bγ (22922). The PR55/Bγ BAC clone was sent to J. Goetz (University of 

Zurich) for further characterization. The PR55/Bα and Bβ.1 BAC clones were digested 

with a set of restriction enzymes for Southern blotting and hybridisation with P32-labelled 

cDNA probes. Hybridization was performed with the entire cDNA labeled as well as with 

exon specific cDNA fragments obtained from PCR amplification (e.g. E1-4, E3-5) for 

verification of the completeness of the BAC clones. A BAC sub-library was screened in 

order to establish the genomic structure of the PR55/B isoforms. Positive clones were 

identified by filter hybridization with the corresponding P32-labelled cDNA fragments. A 

14kb PR55/Bα sub-clone was sequenced to verify the exon/intron boundaries, as well as 

the genomic structure between exon 3 and exon 9. The full genomic structures for all 

PR55/B genes were assembled by screening the genomic databases (Ensembl and Celera).  
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Fig. A: Cloning and screening process for assembling of PR55/B targeting vectors 

 

 

Targeting constructs for PR55/B isoforms  

A knockout targeting vector was assembled from the 14kb PR55/Bα subclone 

encompassing 9kb of genomic PR55/Bα sequence with exons 4 to 6 replaced by a 

neomycin-resistance cassette. In addition, a PR55/Bα control vector was generated to 

establish PCR conditions for the ES-cell screen. The PR55/Bβ vector was cloned by 

direct amplification from the PR55/Bβ BAC clone and encompassed 11.4kb genomic 

sequence. The IRES/lacZ/NEO cassette replaced 5kb of genomic sequence including 

parts of exon 4 and exon 5. A knock-in approach was used for the complete disruption of 

the PR55/Bγ gene. A targeting vector was assembled encompassing exon 2 to exon 5 

with a stop-codon introduced into exon 3 to prevent alternative splicing. In addition, 

intron 3 was replaced by a neomycin/thymidine kinase (TK)-resistance cassette.  
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PR55/Bα PR55/Bβ PR55/Bγ 
500 ES cell screened by PCR 

400 ES cell screened by PCR and 

Southern blot 

 no homologous recombination 

 new strategy, new vector 

500 ES cell screened by PCR and 

Southern blot 

 

 no homologous recombination 

 new strategy, new vector 

1400 ES cell screened by PCR 

 

 2 positive clones 

 chimeras don’t go germ line 

 new ES screens, new strategy 

 

Table A: Status of the screening process 

 

.  

 

 

 

Fig B: Assembled PR55/B targeting vectors. 
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