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Abstract

The quantum information science (QIS) is relatively young, but quite broad and

emerging field of modern physics. This is an interdisciplinary field where quantum me-

chanics, computer science, mathematics and computing technologies meet together.

Using the laws of quantum mechanics to deal with information opens many new

opportunities. However, these opportunities can only be used if one can construct a

quantum logic device to implement QIS methods. In the last decade many researchers

proposed the variety of physical systems, that can be used as building blocks of the

so called quantum computer. But the question of building an effective connection

between different blocks remains open. Recently, the idea to build a ’quantum wire’

using chains of permanently coupled spins was studied by a number of authors. The

purpose of this thesis is to investigate and develop advanced schemes for using quan-

tum chains as wires. The first part of the thesis shortly describes the concepts of

quantum computing and quantum state transfer. We then briefly introduce different

schemes to couple two superconducting qubits and analyze more closely one of them.

Then we analyze the process of the state transfer for the chain of flux qubits. Next,

we propose a new method of improved quantum state transfer which was created

as a part of this thesis. Finally, we study the effects and the role of interference in

quantum state transfer via spin chains.
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1 Introduction

1.1 Quantum computing

In this section we will shortly describe the concepts of quantum computing and quan-

tum state transfer. A classical computer has a memory made up of bits, where each

bit holds either one or zero. A quantum computer maintains a sequence of qubits. A

qubit (quantum bit) is a two-level quantum system. Therefore it can exist not only

in the state corresponding to the logical state 0 or 1 as in a classical bit, but also in

states corresponding to any superposition of these classical states

A0|0〉+ A1|1〉 , (1)

allowing infinite number of states.

This unique property of quantum bit gives quantum computers the potential to be

incredibly powerful computational devices. However, we can not say that quantum

tools will speed up different information processing tasks by a uniform amount. Some

tasks are not sped up at all by using quantum tools [1], some are sped up moderately

(Grover algorithm for locating an entry in database) and some are sped up exponen-

tially (Shor’s algorithm for factoring an integer number for which only exponential

classical algorithms are known at this time).

To measure the effectiveness of a machine doing some specific task, the so called

time complexity measure is used. The time complexity of a problem is a number of

steps that it takes to solve an instance of the problem on a machine as a function of

the size of the input (usually measured in bits), using the most efficient algorithm.

Big O notation is generally used (sometimes described as the ”order” of the calcula-

tion, as in ”on the order of”). If a problem has time complexity O(n2) (an instance

that is n bits long that can be solved in n2 steps) on one typical computer, then it

will also have complexity O(n2) on other computers, so this notation allows us to
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generalize away from the details of a particular computer. For example painting a

fence has linear time complexity (O(n)) because it takes double time to paint double

area. However, searching a number in a yellow page book has only logarithmic time

complexity(O(log n)) because double sized book only has to be opened one time more

(e.g. exactly in the middle - then the problem size is reduced by half). There is a

whole branch of the theory of computation in computer science, computational com-

plexity theory, that describes the scalability of algorithms, and the inherent difficulty

in providing scalable algorithms for specific computational problems.

In the terms of computational complexity theory, using the quantum computer

for searching the entry in the database speeds up the task from O(n) to O(n1/2)

compared to classical computer. Factorizing the integer speeds up from exponential

time complexity O(exp((log n)2/3n1/3)) for the fastest known classical algorithm to

O((log n)3). This turns out to be one of the practically important tasks, since the

hardness of this problem is the heart of several widely used cryptographic systems.

For example a fast integer factorization algorithm would mean that the RSA public-

key algorithm, used in the web-security and in most electronic commerce protocols,

is insecure.

Using the laws of quantum mechanics, instead of classical physics, we do not only

speed up tasks that are solvable on classical computers. Naturally, there are tasks

that are not doable in the classical world at all. For example quantum cryptography

uses quantum mechanics to guarantee absolute secure communication, that is impos-

sible to implement using any classical algorithm. There are also tasks that naturally

suits quantum computers. For example, Richard Feynman asserted that a quantum

computer could function as a kind of simulator for quantum physics. Although a clas-

sical computer can theoretically do the same, it is very inefficient, so that a classical

computer is effectively incapable of performing many tasks that a quantum computer

could perform easily. For example a system of only thirty qubits that exists in the
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Hilbert space of dimension ∼ 109 in simulation would require a classical computer to

work with extremely large matrices (to perform calculations on each individual state,

which is also represented as a matrix), meaning it would take an exponentially longer

time than even a simple quantum computer.

A quantum computer is a device that performs unitary operations with quantum

registers (sequences of n qubits that is the quantum mechanical analogue of a classical

processor register). The contents of the qubit registers can be thought of as an n-

dimensional complex vector. An algorithm for a quantum computer must initialize

this vector in some specified form (dependent on the design of the quantum computer).

In each step of the algorithm, that vector is modified by multiplying it by the unitary

matrix. The matrix is determined by the physics of the device. The unitary character

of the matrix ensures the matrix is invertible (so each step is reversible). Upon

termination of the algorithm, the n-dimensional complex vector stored in the register

must be somehow read off from the qubit register by a quantum measurement.

We have to mention, that physical qubits can be (and quite often are) represented

by the physical system with more than 2 possible states. However it is usually as-

sumed, that probability of the system to ever go in any state save the first two can be

neglected. If this probability is sufficiently small, quantum error correction can ”re-

pair” the qubit. In this thesis we will consider physical qubits as quantum two-level

systems.

There are a number of quantum computing candidates:

• Superconductor-based quantum computers (including SQUID-based quantum

computers)

• Trapped ion quantum computer

• ”Nuclear magnetic resonance on molecules in solution”-based quantum comput-

ers

3



• ”Quantum dot on surface”-based quantum computers

• ”Cavity quantum electrodynamics” (CQED)-based quantum computers

• Solid state NMR Kane quantum computers

• Optic-based quantum computers

Different proposals have different strong and weak sides and at the moment we can

not claim any of them to be the best one. And probably there will be more proposals

in the nearest future, that will allow us to perform quantum computing tasks. To

guide the search for a feasible quantum computing architecture the set of five general

criteria was developed. These five criteria, called DiVincenzo criteria [2], say that for

a system to be a candidate for an implementation of quantum computation, it should

1. Be a scalable physical system with well-defined qubits.

2. Be initializable to a simple fiducial state such as |000...〉.

3. Have long relevant decoherence times, much longer than the gate operation

time.

4. Have a universal set of quantum gates.

5. Permit high quantum efficiency, qubit-specific measurements.

These criteria are sufficient for quantum computation per se. But to build good

and scalable quantum computer we would also like to be able to communicate be-

tween different parts of it. Also, ability to perform quantum communication (transmit

qubits from place to place) is an essential part of many tasks in quantum information

processing. For example, algorithms for secret key distribution, secret sharing, multi-

party function evaluation as in appointment scheduling, etc. Therefore two additional

criteria are often considered as necessary to build a quantum computer [2]:
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6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

We will now briefly discuss the five main DiVincenzo criteria. The first one de-

scribes two basic properties of the system, that are required for efficient implementa-

tion of quantum computation. Qubits are necessary to store the quantum information

that would be manipulated during the computation. Well defined qubit means that

its physical parameters (such as Hamiltonian, presence of and coupling to other states

of the qubit, etc) are accurately known. Scalability is important if we want to build

an universal quantum computer. Non scalable proposals could allow us to solve some

specific problem, but you can not solve other problems and, thus, quantum computer

will not be universal. For example, Shor’s algorithm, mentioned above, was realized

using nuclear magnetic resonance (NMR) on ensembles of molecules in liquids [3].

The number 15 was factored into 3 and 5. However, the NMR-based quantum com-

puting proposal is not scalable and therefore you cannot factorize numbers higher

than 15 using that particular type of molecules or execute any quantum algorithm

that requires more than 4 qubits.

The second criterion simply means that we should be able to initialize our qubit

register to some known value before the start of computation.

The third criterion means that during the computation time no quantum infor-

mation should be lost and our quantum computing should not be reduced to classical

one. The decoherence time characterizes the dynamics of qubit in contact with its

environment and describes the time-scale for the emergence of classical behavior.

The fourth criterion basically determines if the system is a quantum computer, i.e.

a device that can perform arbitrary unitary operations with the qubits. Fortunately,

any such operation can be expressed in terms of sequences of one- and two-qubit

interactions [4] and the two-body interactions can be just one type [5]. It means that

we can achieve universal quantum computation using small amount of gates: a few
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single-qubit gates and one two-qubit gate. There are also proposals where quantum

information tasks are performed without using any gates, for example, measurement

based quantum computing using cluster states [6, 7]. But all other criteria must still

be satisfied for those proposals as well.

The fifth criterion implies that we can read out the result of a computation, as

this implies the ability to measure specific qubits.

The last two criteria use the term ”flying qubit”, i.e. the qubit that can be trans-

mitted from one position in space to another. It can be a moving physical qubit (for

example photon or electron) or a logical qubit that is transmitted through the array

of physical qubits with fixed positions. The purpose of this research is to study the

transfer of quantum information through chains of permanently coupled flux Joseph-

son qubits, to improve existing ideas for the transfer of quantum information by using

time dependent end gates and to investigate the role of coherence and interference in

high-quality state transfer.

1.2 Quantum spin chains as transmission lines

Recently, the idea to use quantum spin chains for short-distance quantum communi-

cation was put forward by Bose [8]. He showed that an array of spins (or spin-like

two level systems) with isotropic Heisenberg interaction is suitable for quantum state

transfer. The advantage of spin chains as transmission lines is the fact, that they

do not need to have controllable couplings between the qubits or complicated gating

schemes to achieve high transfer fidelity. For simplicity we will assume the case of

linear chains with sender having access to the first and receiver having access to the

last spin in the chain. In general one can consider graphs of qubits with sender and

receiver having access the subgraphs of this graph in the same way like we do with

the linear chain. We will also consider mostly chains where Hamiltonians conserve

the number on excitations. Since we start with at most one excitation in the chain
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this will reduce significantly the dimensionality of the Hilbert space of a quantum

chain that we are interested in (from 2N to N + 1). This allows us to derive some

analytical results in studying chain dynamics and makes numerical calculations for

longer chains much easier.

In the following we use the terms spin and qubit as equivalent. State |1〉 in

qubit language (which we will also call “excitation”) corresponds to spin-up in spin

language, and state |0〉 corresponds to spin-down.

The basic communication protocol, proposed in [8], can be described in several

simple steps:

1. The chain is initialized in its ground state

|ψ0〉 = |0...0〉 (2)

where all the spins are in their ground states. This is an important step since any

excitation left in the chain will interfere with the state to be transmitted and will

decrease the quality of the chain transfer drastically. How this initialization can be

achieved in particular systems will be discussed later.

2. At time t = 0, the sender initializes the first spin of the chain in some unknown

state

|ψin〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (3)

We are talking about unknown state, because if the state to be transferred is

known it can be simply reproduced by the receiver.

3. After a certain time t1 receiver measures (or picks up in any way) the state

|ψout〉 = Tr1,...,N−1e
−iHt1|φin〉 (4)

at his end of the chain. The fidelity of quantum communication averaged over
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all pure input states on the Bloch sphere, the quantity that we derive later in this

chapter, is taken as a measure of the transmission quality.

Bose showed that for short chains (number of spins ' 100) the average fidelity

is quite high, greater than 2/3, which is the highest fidelity of transmission through

a classical channel [9]. In a homogeneous chain, i.e. if all coupling constants are

the same, the information about the input state is dispersed between the spins at all

times t > 0. Therefore the fidelity is always less then 1 (maximal possible value that

imply an ideal state transfer) for chains with more than two spins.

Fidelity of the state transfer

Following [8] we will now derive the explicit form of the fidelity. Using the basic

communication protocol we assume that the sender initializes the first spin of the

chain in some unknown state (3). We perform our calculations in the basis |k〉 =

|00...010...0〉 for which the spin in the k-th qubit is in the state |1〉 and all the others

are in the state |0〉. For the chains with Hamiltonians that conserve the number of

excitations the evolution of the chain is

|ψ(t)〉 = cos
θ

2
|ψ0〉+ eiφ sin

θ

2

N∑
j=1

〈j|e−iHt|1〉|j〉 . (5)

Now following step 3 described above we will trace out all the spins except the

last one from |ψ(t)〉 to receive the state (possibly mixed) of the receiver spin.

ρout = p(t)|ψout〉〈ψout|+ (1− p(t))|0〉〈0| (6)

where

|ψout〉 =
1√
p(t)

(
cos

θ

2
|0〉+ eiφ sin

θ

2
f1,N(t)|1〉

)
(7)

with
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p(t) = cos2 θ

2
+ |f1,N |2 sin2 θ

2
(8)

and

f1,N = 〈N |e−iHt|1〉 (9)

is the transition amplitude of the excitation over the array. As the state to be

transmitted is unknown, we will average the fidelity of the quantum communication

over the whole Bloch sphere to characterize the quality of the chain as a transferring

media

F (t) =
1

4π

∫
〈ψin|ρout|ψin〉dΩ . (10)

After integration we get an explicit formula [8]

F (t) =
1

2
+
|f1,N(t)| cos γ

3
+
|f1,N |2(t)

6
(11)

with

γ = arg f1,N (12)

Equation (11) is one of the main results in [8] and it is valid for all Hamiltonians

that conserve the number of excitations in the chain.

Up to now it is not clear why the averaged fidelity should be the quantity that we

are interested in while studying the state transfer over the chain. The more intuitive

measure of the transmission quality is the minimal fidelity given by

Fm = min
ψin

〈ψin|ρout|ψin〉 (13)
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We will now show that both measures F and Fm are equivalent. It means that if

some chain is worse than another chain in terms of one measure it will be worse in

terms of another measure as well and a maximum of F corresponds to a maximum

of Fm. Indeed, for the fidelity of a given state |ψin〉 = cos(θ/2)|0〉+ eiϕ sin(θ/2)|1〉 we

can write an expression

F (θ, φ) = (1− p(t)) cos2 θ

2
+

(
cos2 θ

2
+ f ∗1,N sin2 θ

2

)(
cos2 θ

2
+ f1,N sin2 θ

2

)
(14)

or explicitly writing p(t) after some trigonometric transformations

F (θ, φ) =
1 + cos θ

2
− |f1,N |2 1− cos θ

2
cos θ +

f ∗1,N + f1,N

4
sin2 θ (15)

in the case fN
1,N(t) ≡ f = |f | we can write it as

F (θ, ϕ) =
1 + f

2
+ cos(θ)

1− f 2

2
+ cos2(θ)

f 2 − f

2
. (16)

The function changes monotonically from 1 for the |0〉 state to Fm = f 2 for

the |1〉 state. One can easily see that in this case the maximum of Fm is achieved

when f is maximal, that also corresponds to the maximum of the averaged fidelity

F = 0.5 + f/3 + f 2/6. However, while both fidelities are monotonic functions of f ,

their difference δF = |Fm − F | = 0.5 + f/3 − 5f 2/6 is not monotonic and has a

maximum at f = 0.2.

For f 6= |f | the fidelity can have a local minimum for θ 6= π. Since F (θ, φ) turns

to be independent of φ, we can easily find this minimum by taking the derivative over

θ. Using the fact that f ∗1,N + f1,N = 2|f1,N | cos γ we have

F ′(θ, φ) = −1

2
sin θ

[
1− |f1,N |2 + 2 cos θ(|f1,N |2 − |f1,N | cos γ)

]
(17)

10



From (17) we get

F ′(θ, φ) = 0 ⇒





θ = 0

θ = π

1− |f1,N |2 = 2 cos θ(|f1,N |2 − |f1,N | cos γ)

The first two solutions correspond to a maximum/minimum at the ends of the

considered interval θ ∈ [0, π]. The third solution is valid when |f | > cos(γ)/3 +
√

cos2(γ) + 3/3. In this case there is a local minima at θ = arccos
(

1−|f |2
2(|f | cos(γ)−|f2|)

)
,

but this minimum is maximal when γ is a multiple of 2π. Therefore, if we want to

maximize Fm, we will have cos(γ) = 1 which leads again to Eq. 16. This proves that

we can safely use the average fidelity as a quantity that characterizes the quality of

the state transfer and compare different chains and protocols by comparing averaged

fidelities.

1.3 Heisenberg Hamiltonian

A particular example of a Hamiltonian that conserves the number of excitations was

proposed in [8]. It is a Hamiltonian that describes a linear chain of N spins coupled

by an isotropic Heisenberg interaction in the presence of magnetic field

H = −J

2

N∑
i=2

(σx
i σx

i−1 + σy
i σ

y
i−1 + σz

i σ
z
i−1)−

N∑
i=1

Bσz
i . (18)

It was analytically solved in [8] and its eigenenergies and eigenstates are

En = 2B + 2J

(
1− cos

π(n− 1)

N

)
, (19)

|ñ〉 =

√
1 + δn1

N

∑

k

cos

(
π(n− 1)

2N
(2k − 1)

)
|k〉 , (20)

for

11



n = 1, ..., N .

We can express the transition amplitude using (19) and (20) as

f1,N(t) =
N∑

n=1

〈1|ñ〉〈ñ|N〉e−iEnt , (21)

that leads us to

f1,N(t) =
N∑

n=1

1 + δn1

N
cos

π(n− 1)

2N
cos

(
π(n− 1)

2N
(2N − 1)

)
e−iEnt , (22)

and using

cos

(
π(n− 1)− π(n− 1)

2N

)
= (−1)n cos

π(n− 1)

2N
, (23)

we get

f1,N(t) =
N∑

n=1

1 + δn1

N
(−1)n cos

(
π(n− 1)

2N

)2

e−i[2B+2J(1−cos
π(n−1)

N )]t . (24)

Using equation (24) one can easily evaluate f1,N and therefore the averaged fidelity

F even for long chains, see Fig. 1. We would like to mention, that by varying the

magnetic field B we can change the phase of the complex quantity f1,N and thus make

γ a multiple of 2π at any given time to maximize the averaged fidelity (11).

1.4 Improved quantum state transfer in spin chains

It was shown [8] that for short-length chains the fidelity of the state transfer is high,

i.e., close to one and is higher than the maximal fidelity of the state transfer realized

only by classical communication (2/3 according to [9]). However, the fact that it is

substantially reduced with the length of the chain, see Fig. 1, triggered the search of

methods that allow to increase the fidelity or even to obtain perfect state transfer,
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Figure 1: The first maximum of the averaged fidelity F (t) as a function of a chain
length.

in the absence of decoherence and relaxation processes. It is achieved when receiver

recovers an input state on the last spin, while sender normally looses his state, in

fulfillment of the no-cloning theorem [10]. In fact, we would like to achieve the ideal

state transfer under the assumption that quantum error correction algorithms can be

used, that gives us a threshold for the fidelity value 1− 3% [11].

The main reason for imperfect transfer is the dispersion of the initial information

over the whole chain. Most of the proposals that realize improved state transfer

minimize this dispersion in one or another way.

One of the more intuitive ways to improve the fidelity is to use spatially varying

coupling constants to “refocus” the information at the receiving part of the chain

[12, 13, 14]. These methods do not require extra resources or extra control. The

idea is to adjust the coupling between the spins in such a way, that the ratios of the

eigenenergies of the Hamiltonian are rational numbers. One of the particular forms

of the Hamiltonian, proposed independently in [12] and [15] is

13



H0 = −Jxy

N−1∑
n=1

√
n(N − n)(σx

nσx
n+1 + σy

nσ
y
n+1) , (25)

then the evolution operator

U(t) = exp(−iH0t) , (26)

describes the rotation of a spin 1
2
(N − 1) particle and the transition amplitude of

the excitation over the spin chain is

f1,N(t) = (−i sin 2Jxyt)
(N−1) . (27)

Thus, a state transfer with |f1,N | = 1 can be realized for the time

t =
π + 2πn

4Jxy

. (28)

If we add a magnetic field to the Hamiltonian

H = H0 +
N∑

i=1

Bσz
i (29)

we can achieve the perfect state transfer by choosing B in such a way that

arg f1,N = 2π . (30)

There are also other proposals to achieve perfect or nearly perfect state transfer

using engineered coupling constants [16, 17, 18].

The idea of the so-called conclusive transfer, providing perfect state transfer using

parallel quantum channels [19, 20], see Fig. 2, is very promising. It can be realized

using almost any spin chain and it is stable against fluctuations of the chain param-

eters [21]. The state is encoded as a superposition of the excitations in both chains
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Figure 2: Schematic of dual raid encoding.

by initializing the first qubit of chain the (1) in the state to be transmitted and then

applying a CNOT gate to the first qubit of the chain (2) with the first qubit of the

chain (1) as a control qubit. After some specific time, namely when the absolute

values of the transmission amplitudes of the excitation over the arrays are equal for

both chains |f 1
1,N(t)| = |f 2

1,N(t)|, the receiver applies a CNOT gate at his part of

the chain. After that, he performs a measurement on his qubit in the chain (2). If

the result of the measurement is the excited state (that happens with probability

|f 1
1,N(t)|2), then the last qubit in the chain (1) contains the state to be transmitted.

If the outcome is a ground state, the protocol can be repeated till the receiver gets the

state, under assumption that there are no relaxation and decoherence processes in the

system. The basic intuitive explanation why perfect state transfer can be achieved

is that by applying the CNOT gate, we introduce the dispersion of the state |0〉.
If we then apply a CNOT gate at the receiver part of the chain at the time when

|f 1
1,N(t)| = |f 2

1,N(t)| and measure the excitation in the second chain, then we will get

simply an amplitude damping channel for the state φ = cos θ
2
|0〉 + eiφ sin θ

2
|1〉. The

imperfection of the single chain transfer is now manifested not in the fact that fidelity

is smaller than unity, but in the fact that probability of measuring the desired state is

not unity. And since we don’t get any information about the state if the measurement

is failed, this information is still contained in the chain and can be obtained in the

next measurements.

Another possibility to get ideal or near-ideal state transfer is to encode the in-
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Figure 3: Schematic of Gaussian wave-packet encoding.

formation in Gaussian wave packets (with low dispersion) spread over several spins

[22], see Fig 3. In this case both the sender and the receiver should control parts of

the chain instead of one qubit. The longer is the part of the chain controlled by the

sender, the longer should be the part controlled by the receiver. The sender has to

encode the state to be transmitted in a Gaussian-modulated superposition of qubits

in his part of the chain. The receiver then has to decode this information in his part

of the chain.

Instead of coding information using several neighbor qubits in one chain, one can

do it by using only the first qubits of several chains [23]. It was shown that using

an optimal coding/decoding strategy asymptotically allows to achieve perfect state

transfer and optimal efficiency.

One can also achieve high fidelity of the state transfer by using chains where

the first and last qubits are only weakly coupled to the rest of the chain [24, 25].

The reason for nearly perfect transfer is that the intermediate spins are only slightly

excited, which means that dispersion is small. Actually, one can achieve arbitrary

high fidelity by making the coupling strength smaller. This method has the major

disadvantage that the time required for the transfer is long compared to the qubit

decoherence/relaxation times in present experimental setups. To achieve a fidelity as

big as 1 − δ for chains of odd length N , the time of the state transfer will be of the
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order of 2N/π√
δ

[24].

Another proposal that exploits the same gapped system behavior when interme-

diate spins are only slightly excited and therefore dispersion is small was investigated

in [26].

Finally, we have to mention that use of time-dependent control of some parameters

of the Hamiltonian can improve the fidelity of the quantum state transfer. Time-

dependent gates between each pair of qubits, for example swap gates that can be

switched on and off, will build a perfect transmission line, but are hard to realize.

It also is, in general, superfluous if we want to achieve good fidelity (∼ 0.99) and

use quantum error correction to repair the state. In fact, in practice each gate will

introduce an error and using many non-ideal gates can significantly reduce the fidelity

for relatively long chains. While use of static coupling constants with time-dependent

control of some parameters of the Hamiltonian allows us to perform perfect or nearly

perfect state transfer. It was shown in [27] that if the coupling at the end of the chain

can be controlled arbitrary then the Gaussian wave packet encoding scheme [22] can

be simulated. Another possibility is to use some global fields, for example pulsed

global rotations [28, 29, 30].

1.5 Outline

This thesis is organized as follows. Chapter 2 describes different schemes for coupling

two superconducting qubits, focussing on variable coupling schemes, that allow to

realize two-qubit gates which are necessary to build a universal set of quantum gates.

Chapter 3 is devoted to one particular scheme of charge qubit sign-tunable coupling.

In Chapter 4 we discuss the quantum state transfer in arrays of flux qubits. Chapter

5 is devoted to the use of dynamical coupling between just two pairs of qubits in the

chain for improved quantum state transfer. Finally, in Chapter 6 we discuss the role

of quantum interference in the state transfer via spin chains.
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2 Coupling of two superconducting qubits

2.1 Introduction

According to the 4th DiVincenzo criteria, a universal set of quantum gates is re-

quired for implementation of quantum computation. While single qubit operations

are relatively easy to perform [31, 32, 33], controllable coupling of two qubits is still

a challenge. Such interaction is also an essential part of time-dependent control re-

quired for improved quantum state transfer described in Chapter 5 of this thesis. In

this chapter we will describe and classify different proposals and technics that allow to

achieve controllable inter-qubit coupling for superconducting charge and flux qubits.

In this classification we will distinguish between tunability of the coupling (ability to

change coupling constant) and sign-tunability of the coupling. Sign-tunability means

that the coupling could change its sign and, therefore, it can be switched off. The

ability to change the sign of the coupling and switch it off completely is useful for

several applications, see for example Chapter 5. But in general it is not required for

building a universal set of quantum gates.

In this chapter we will consider only two types of superconducting qubits: the

charge qubit represented by the Cooper-pair box and the flux qubit represented by a

loop with three small-capacitance Josephson junctions (so-called Delft design). This

is done only to simplify the presentation of the methods that allow us to couple two

qubits. Other types of qubits based on the charge and flux degrees of freedom can

also be coupled using these methods. The flux qubit design is discussed in detail

in Chapter 4, while the Cooper-pair box is simply a small superconducting island

with n excess Cooper-pairs, connected by a tunnel junction with capacitance CJ and

Josephson coupling energy EJ to a superconducting electrode, see Fig. 4. We will

assume that our systems are in qubit regime with Hamiltonian
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Figure 4: Simplest charge qubit.

H = −Bσz + ∆σx (31)

where σz, σx are Pauli matrices and B, ∆ are some constants.

2.2 Static coupling between qubits

Conceptually, the simplest type of coupling between qubits is direct static coupling.

For example one can couple two Cooper-pair boxes via a capacitor [34, 35] or fabricate

two flux qubits close to each other so they would have a small inductive coupling

between each other [36, 37], see Fig. 5 (a),(b). The resulting charge-charge or flux-

flux interaction is described by the Ising-type coupling term

Hcoupl ∝ σz
1σ

z
2 . (32)

Despite its simplicity and absence of tunability one can perform two-qubit gates

based on static coupling using special protocols described later in this section.

We would like to mention, that the numerical value of the inductive coupling

constant estimated for conducting loops of actual qubits is very small. It turns out

to be at least one order of magnitude smaller than typical values of the constants

B and ∆ [38]. Therefore it was proposed to use shared big Josephson junction to
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Figure 5: Simple static coupling between the two qubits. (a) Two Cooper-pair boxes
connected by a capacitor. (b) Two flux qubits located near each other, coupled by
the magnetic flux that one qubit induce in the other nearby qubit. (c) Two flux
qubits coupled by a shared Josephson junction. (d) Two charge qubits coupled by a
Josephson junction.

increase the coupling strength [38], see Fig. 5 (c). In the regime when the Josephson

energy of the shared junction JS is much bigger than the Josephson energy of the

loop junctions J , the phase drop across large junction is much smaller than the overall

phase change. Therefore coupling do not perturb the dynamics of individual qubits.

However, the coupling strength is of the order of J2/JS and can be made comparable

to the parameters B and ∆.

Instead of coupling two flux qubits by their mutual inductance, one can use a

common loop inductance, as proposed in [39]. This is shown in Fig. 6.

The main advantage of this proposal is that a strong interqubit coupling can be

achieved using a small inductance, so that two-bit operations as fast as one-bit ones

can be easily realized.

If we would replace the capacitor between two charge qubits by a Josephson junc-

tion, the Cooper-pairs could tunnel between the left and the right superconducting

islands. This will correspond to the extra term in the Hamiltonian [40]
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Figure 6: Two flux qubits coupled by common inductance, after [39].

Hcoupl ∝ σ+
1 σ−2 + σ−1 σ+

2 , (33)

where σ+ = σx + iσy and σ− = σx − iσy. Since a Josephson tunnel junction has

some capacitance, there always would be small Ising-type coupling term presented in

a coupling Hamiltonian. One can achieve similar coupling between the flux qubits,

that allows them to exchange the excitations, by coupling them via a capacitor [38],

see Fig. 7 (a). More detailed explanation why such coupling provides Hamiltonian of

a form (33) can be found in Chapter 4. One could also achieve coupling described by

Hamiltonian

Hcoupl ∝ σ+
1 σ+

2 + σ−1 σ−2 , (34)

by using modified coupling via capacitor, see Fig. 7 (b).

By comparing coupling Hamiltonians (32) and (33) with Heisenberg Hamiltonian

(18), we see that the static coupling schemes described above allow us to realize

quantum state transfer in the chains of charge/flux qubits. Also we have to men-

tion, that despite being useful in the realization of quantum state transfer, capacitive

coupling between flux qubits has the disadvantage that it introduces sensitivity to

offset charges. The inductive and shared junction couplings (∝ σzσz) do not have

this problem.
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b)

Figure 7: Two flux qubits coupled via capacitor after [38]. (a) Realization of trans-
verse inter-qubit coupling described by Hamiltonian (33). (b) Realization of trans-
verse inter-qubit coupling described by Hamiltonian (34).
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2.2.1 Techniques to realize two qubit gates with static coupling between

qubits

Even if the coupling constants can not be controlled in static coupling schemes, one

can perform universal gates by using special experimental protocols. Here we describe

several proposals how to do so. From a practical point of view, we would like to have

our charge/flux qubits biased at a symmetry point [41, 42] (the so called optimal

point) where their coherence times are the longest because they are insensitive to the

first order to the main noise source (charge and flux-noise respectively). Generally the

static coupling at the optimal point fails due to the energy mismatch, as even a small

deviation in parameters of the two qubits will result in different energy gaps. Two

coupled qubits can exchange energy only if they are on resonance. This is another

reason why we need some special protocols to couple two qubits, if we want them to

be biased in their optimal points. We will present only two such protocols, though

another realizations of similar ideas are possible.

FLICFORQ protocol

The FLICFORQ protocol (fixed linear couplings between fixed off-resonant qubits)

was proposed in [43]. The idea is to use qubits with fixed, detuned Larmor frequen-

cies and fixed coupling strengths (σzσz coupling). By simultaneously irradiating two

qubits at their respective Larmor frequencies with appropriate amplitude and phase

one can achieve two-qubit gates. The essence of the method is similar to the tech-

niques used in NMR quantum computing. Qubit-photon coupling creates dressed

states and by matching the frequencies two qubits could exchange photons through

coupling reactance. The Hamiltonian of the irradiated qubits is [43]
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2
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2 σz
2 +
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2 +
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2
ωxxσx

1σx
2

(35)

were ωL
a /2π is the Larmor frequency of qubit a, ωR

a and ωrf
a /2π are, respectively,

the amplitude and frequency of the signal applied to qubit a, and ωxx/2π is the entan-

gling frequency. The mechanism allowing very weak nonsecular interqubit coupling

ωxx is easily understood in the dressed atom picture of quantum optics, see Fig 8.

Two dressed qubits may absorb and emit energy at frequencies ωL
1 ±ωR

1 and ωL
2 ±ωR

2 ,

respectively. Choosing ωL
1 − ωL

2 = ωR
1 + ωR

2 causes the upper sideband of qubit 1 to

overlap the lower sideband of qubit 2. Therefore qubits can exchange photons of the

energy ~
(
ωL

1 − ωL
2

)
= ~

(
ωR

1 + ωR
2

)
through the coupling reactance.

It was shown in [43] that one can perform two-qubit π/2 rotation (Y1Y2)
1/2 =

(1 + σy
1σ

y
2) /

√
2. Together with single-qubit gates (performed by single-qubit irradi-
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ation pulses) it builds an universal set for quantum computation. The advantage of

this technique is the fact that qubits may stay in their optimal bias point where the

first order decoherence to fluctuations in control parameters is suppressed.

Controllable coupling between flux qubits using time-dependent magnetic

flux

A slightly different protocol was proposed in [44] to couple two flux qubits using

time-dependent magnetic flux (TDMF). The qubits are assumed to be placed near

each other and to interact through a mutual inductance, see Fig. 5 (b). Two-qubit

coupling and decoupling are controlled only by the frequency of the applied TDMF.

Therefore the bias magnetic flux is not changed. The controllable coupling is realized,

when the large detuning condition is satisfied. Then in the absence of TDMF qubits

can be approximately treated as two decoupled subsystems. To couple two qubits

with assistance of the TDMF one has to [44]

• apply TDMF through one of the qubits, and its frequency should be equal to

detuning (or sum) of the two-qubit frequencies

• the reduced bias flux [45] on the qubit, which is addressed by TDMF, should

be near but not equal to 1/2.

The last condition shifts the qubit from the optimal point thus making the deco-

herence time short. However this proposal can work for small deviation from optimal

point and therefore can be realized in practice to couple two superconducting flux

qubits. In [44] it was shown that using TDMF one can realize two Hamiltonians

H1 ∝ σ+
1 σ−2 + H.c. , (36)

and
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Figure 9: Parametric coupling scheme: two qubits coupled through a circuit that
allows to modulate the coupling constant g through the control parameter λ, after
[46].

H2 ∝ σ+
1 σ+

2 + H.c. . (37)

Using the Hamiltonians H1 and H2 one can implement any two-qubit gate and

together with single qubit operations get an universal set for quantum computation.

2.3 Parametric coupling for superconducting qubits

Another way to couple detuned qubits biased at their optimal point was proposed

in [46]. The disadvantage of the FLICFORQ protocol is the fact that to satisfy the

resonance condition, the two qubits should be reasonable close in energy. Otherwise

large driving of each qubit could potentially excite higher energy states or uncontrolled

environmental degrees of freedom [46].

Parametric coupling relies on the possibility to control a coupling constant between

two qubits by a control parameter λ, see Fig. 9.

By modulating λ at the frequency close to the detuning (or sum) of the qubit

frequencies, one can achieve a controllable coupling between the qubits. The difference

between parametric coupling and the scheme proposed in [44] is that by modulating

the coupling between the qubits instead of applying the flux pulses directly through

the qubits allows qubits to stay in their optimal point.

Parametric coupling scheme require some tunable circuit that couple two qubits.
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Figure 10: LC circuit formed by inductance and the qubit capacitors, after [47].

In the rest of this chapter we will describe such circuits for flux and charge qubits.

Note, that not all schemes realize a controllable σzσz interaction required for paramet-

ric coupling. But other types of controllable interactions like σyσy, σxσx,σ+σ−+H.c.

also allow us to build a universal set of quantum gates required for quantum comput-

ing

2.4 Dynamical coupling between qubits using additional cir-

cuits

2.4.1 Circuits to couple charge qubits

Several schemes were proposed to achieve controllable charge qubit coupling using

additional circuits and circuit elements. To our knowledge, the first scheme was

proposed in [47]. It is shown in Fig. 10.

All qubits are connected in parallel to a common LC-oscillator mode. It was

shown in [47] that this scheme realizes coupling Hamiltonian

Hcoupl = −
∑
i<j

gijσ
y
i σ

y
j + const (38)

the coupling constant gij depends on the inductance L and Josephson energies of

the qubit tunnel junctions. Therefore, if the single Josephson junction in each qubit
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Figure 11: Two charge qubits coupled by a large Josephson junction, after [49]. Each
filled circle denotes a superconducting island, which is biased by a voltage Vgi via the
gate capacitance Ci and coupled to the bulk superconductors by two identical small
Josephson junctions

is replaced by a SQUID (to achieve controllable EJ) the coupling can be controlled

by fluxes through the SQUID loop.

The drawback of this type of coupling is that the eigenfrequency ωLC of the LC cir-

cuit is much higher than the quantum manipulation frequencies. Therefore there is a

limit for allowed number N of the qubits in the circuit because ωLC scales with 1/
√

N .

Another way to achieve controllable coupling between charge qubits is to replace

the Josephson junction in Fig. 5 (d) by a SQUID to control the tunneling rate of the

Cooper-pairs [48]. Then the coupling will be described by the Hamiltonian

Hcoupl = −g(Φ)σ+
1 σ−2 + H.c. (39)

where Φ is the magnetic flux through the SQUID loop.

Instead of using a large Josephson junction (or SQUID) between two qubits, one

can arrange it parallel to achieve coupling as described in [49], see Fig. 11.

To ignore the large Josephson junction capacitance, a large capacitance C0 is

placed in a parallel with it. Then the flux quantization around loops containing the
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Figure 12: Variable electrostatic transformer, after [50].

phase drops of involving junctions leads to the effective interaction Hamiltonian

Hcoupl = g(Φ)σx
1σx

2 (40)

where Φ is applied flux. It was also shown in [49] that replacing the large Joseph-

son junction by a symmetric dc SQUID with two sufficiently large junctions one can

implement both controllable σx
1σx

2 -coupling and the readout.

A variable electrostatic transformer was proposed in [50] to achieve controllable σz
1σ

z
2

coupling between two charge qubits. The scheme is shown in Fig. 12. A small Joseph-

son junction confined in its lowest energy band behaves as a variable capacitance with

respect to the injected charge [51]. This scheme will be discussed in detail in Chapter

3.

Another proposal, that utilizes a large Josephson junction to create a controllable

coupling between charge qubits was proposed in [52]. The qubits are represented

by Single Cooper Pair Transistors with loop-shaped electrodes coupled together by

current biased coupling Josephson junction at the loop intersection, see Fig. 13.
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Figure 13: Single Cooper Pair Transistors coupled by large Josephson junctions, after
[52]. Single-qubit readout can be performed by applying a current Im to a particular
readout junction. The interaction of the qubits is controlled by the qubit bias Ib or
by simultaneous current biasing of readout junctions.

Left without any external biasing of the coupling two charge qubits are indepen-

dent neglecting a weak residual interaction. By applying a non zero current bias Ib

or by simultaneously applying dc bias currents Im
i to both readout junctions one can

achieve the coupling described by the Hamiltonian

Hcoupl = g(Ib, φ1, φ2)σ
x
1σx

2 (41)

where φ1 and φ2 are phase drops across the readout junctions. A small residual

coupling prevents us from switching the interaction off completely, but the ability

to modulate the coupling strength together with the ability to perform single-qubit

operations is enough to build a universal set of quantum gates.
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Figure 14: SQUID-based coupling scheme, after [53]. The coupling is mediated by a
bias current Ib

2.4.2 Circuits to couple flux qubits

The simplest idea, utilized in most proposals mentioned here, is to use an extra

loop/circuit that is galvanically coupled to both qubits to create a controllable in-

terqubit coupling. Quite often the same circuit can be used to read out the flux states

of the qubits.

It was shown in [53], that one can achieve tunable coupling by placing two qubits

near the same dc SQUID, see Fig. 14. Each qubit is coupled to the SQUID loop

through a mutual inductance and thus coupled to each other indirectly. SQUID bias

current Ib can be used to control the coupling strength g in a coupling Hamiltonian

Hcoupl = g(Ib)σz
1σ

z
2 (42)

This coupling is sign-tunable (thus switchable) [53, 54]. By applying pulses of bias

current one can perform the CNOT operation that is sufficient to build a universal

set of quantum gates.

31



F
1

F
2

F
c

Figure 15: Variable inductance transformer scheme, after [55]. The qubits are coupled
to two branches of the device via fluxes Φ1 and Φ2. The control is achieved by a control
flux Φc.

The idea to use variable inductance transformer, equivalent to variable capacitance

transformer [50], to couple two flux qubits or to couple one flux qubit to read out

SQUID was proposed in [55]. The scheme is shown in Fig. 15. Each qubit is coupled

by mutual inductance to one of the branches of the transformer and control flux Φc

can be used to vary the coupling strength g in a coupling Hamiltonian

Hcoupl = g(Φc)σz
1σ

z
2 (43)

This scheme also allows to create a bus to couple multiple qubits with each other

[56].

Niskanen et al. proposed to use a high-frequency qubit placed between two flux

qubits and coupled to them via mutual inductance for parametric coupling scheme

described above [57]. The circuit used can be identical to the primary qubits, but the

splitting should be larger so that the third (coupling) qubit is always in the ground

state. There is an optimal point in the coupling energy, where it is insensitive to a
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low-frequency flux noise, therefore making the experimental realization easier.

There are also other proposals, not described here, that could be used to create a

tunable coupling between two qubits, see for example [58, 59, 60] and citations in

papers mentioned in this chapter. One can also use variable capacitance schemes

to create controllable (σ+σ− + H.c.) between the flux qubits and replace Josephson

junction/SQUID with variable inductance schemes for charge qubits.

2.5 Conclusion

In this chapter a number of proposals for coupling two superconducting qubits were

discussed. We have seen that there are different ways to realize a two qubit gate

that together with single qubit gates will build a universal set of quantum gates for

quantum computation.
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3 Variable coupling scheme for superconducting

charge qubits

3.1 Introduction

In this chapter we will analyze more closely the circuit, that implements a controllable

coupling of charge qubits [50], see Fig. 12. It was proposed as a generalization of a

simple capacitive coupling. The authors of this proposal use the fact, that a small

Josephson junction confined in its lowest energy band behaves as a variable capaci-

tance with respect to the injected charge [51]. One of the most important features of

this scheme is a sign-tunability of this capacitance. It implies the possibility to switch

the coupling on and off. For more details look at the original paper [50]. Here we

will shortly present the approximation, that was used to obtain analytical results and

then check the range of validity for this approximation using numerical calculations.

We will also analyze the influence of EJi on the lowest energy band of the system.

3.2 Born-Oppenheimer-like approximation

If we insert the transformer Fig. 12 between the two charge qubits Fig. 16, the Hamil-

tonian of the system can be written as follows:

H = −
∑

i=L,R

[
EJi cos φi + ECi(ni − qi)

2
]− EJ cos φ + EC [n− q(nL, nR)]2 (44)

where

EC =
2e2

C + CtR + CtL − C2
tR/(CR + CgR + CtR)− C2

tL/(CL + CgL + CtL)
(45)
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Figure 16: Two qubits coupled by a variable electrostatic transformer.

ECi =
2e2

Ci + Cgi + Cti

(46)

qi =
ViCgi

2e
. (47)

Here ni is the number of excess Cooper pairs on qubit i, q(nL, nR) is the charge

induced on the transformer junction defined by

q = q0 −
∑

i=L,R

(ni − qi)Cti

Ci + Cgi + Cti

(48)

with

q0 =
V0

2e

∑
i=R,L

Cti

(
1− Cti

Ci + Cgi + Cti

)
. (49)

The authors proposed to simplify equation (44) using a Born-Oppenheimer-like

approximation. The transformer junction is assumed to be confined to its lowest

energy band (so it acts like a variable capacitance). Then one can replace the ”trans-

former” part of the Hamiltonian by the dispersion relation of its lowest band

35



−EJ cos φ + EC [n− q(nL, nR)]2 = ε0(q(nL, nR)) (50)

This is similar to separating ”fast” electronic and ”slow” nuclei degrees of freedom

in the original Born-Oppenheimer approximation. The approximation is valid when

EJ À EJi for EJ ¿ EC and
√

ECEJ À EJi for EJ ≥ EC . In other words the

characteristic energy gap between the bands of the transformer junction is much larger

than the qubit energies. In the charge regime we identify the two states with zero

and one excess Cooper pair on the island respectively as the qubit states described

by Pauli matrices (ni = (σzi + 1)/2). Then, assuming that the system in Fig. 16 is

symmetric (Cg1/(C1 + Cg1 + Ct1) = Cg2/(C2 + Cg2 + Ct2) = c), one can express the

dispersion relation of the lowest transformer junction band as follows :

ε0(q(nL, nR)) = νσzLσzR + δ(σzL + σzR) + µ (51)

with

ν =
1

4
(ε0(q̃ + c) + ε0(q̃ − c)− 2ε0(q̃)) (52)

δ =
1

4
(ε0(q̃ + c)− ε0(q̃ − c))) (53)

µ = ε0(q̃ + c) + ε0(q̃ − c) + 2ε0(q̃) (54)

q̃ = q0 + c
∑

i

(qi − 1/2) (55)

The first term on the right-hand side in equation (51) describes the effective

coupling between the qubits, the second term describes the shift of the qubit bias
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and the third term is the constant. Equation (52) is the main result of [50]. The

authors showed that the coupling constant ν can be positive and negative and thus

is sign-tunable and therefore can be switched on and off. The coupling constant is

controlled by the average induced charge q̃, which depends on the gate voltage V0.

3.3 Numerical results

Our goal now is to check to what extent the Born-Oppenheimer-like approximation

is valid for EJi which are typical for real charge qubits and are of the order of a few

% of ECi. For this we will compare the coupling coefficient ν described by equation

(52) with the effective coupling coefficient calculated numerically. The qubits can

be still considered in a charge qubit regime (EJi ¿ ECi). This will simplify the

calculations and for such system a convenient basis is formed by the charge states,

parameterized by the number of Cooper pairs (n, nR, nL) on the islands. In this basis

the Hamiltonian (44) reads

H = −
∑

i=L,R

EJi

2
(|0〉i〈1|i + |1〉i〈0|i)− EJ

2

∑
n

(|n〉〈n + 1|+ |n + 1〉〈n|)

+
∑

i=L,R
ni=0,1

ECi (ni − qi)
2 |ni〉〈ni|+ EC

∑
n,nL,nR

(n− q(nL, nR))2 |n〉〈n||nL〉〈nL||nR〉〈nR| .(56)

We now calculate the eigenvalues of Eq. (56) by choosing the basis |nLnRn〉 and

taking into account the levels of the transformer with the number of excess Cooper

pairs from −n to n. The matrix 〈nnRnL|H|nLnRn〉 has a block structure and consists

of 16 (4× 4) matrices (N ×N), where N = 2n + 1.

Here are the matrix elements:

• 〈n00|H|00n′〉 = (ECL · q2
L + ECR · q2

R + EC · (n− q(0, 0)))
2
δn,n′ − EJ

2
(δn,n′+1 +

δn+1,n′)
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• 〈n00|H|01n′〉 = −EJR

2
δn,n′

• 〈n00|H|10n′〉 = −EJL

2
δn,n′

• 〈n00|H|11n′〉 = 0

• 〈n10|H|00n′〉 = −EJR

2
δn,n′

• 〈n10|H|01n′〉 = (ECL ·q2
L+ECR ·(1−qR)2+EC ·(n−q(0, 1)))2δn,n′+−EJ

2
(δn,n′+1+

δn+1,n′)

• 〈n10|H|10n′〉 = 0

• 〈n10|H|11n′〉 = −EJL

2
δn,n′

• 〈n01|H|00n′〉 = −EJL

2
δn,n′

• 〈n01|H|01n′〉 = 0

• 〈n01|H|10n′〉 = (ECL ·(1−qL)2+ECR ·q2
R +EC ·(n−q(1, 0)))2δn,n′− EJ

2
(δn,n′+1+

δn+1,n′)

• 〈n01|H|11n′〉 = −EJR

2
δn,n′

• 〈n11|H|00n′〉 = 0

• 〈n11|H|01n′〉 = −EJL

2
δn,n′

• 〈n11|H|10n′〉 = −EJR

2
δn,n′

• 〈n11|H|11n′〉 = (ECL · (1 − qL)2 + ECR · (1 − qR)2 + EC · (n − q(1, 1)))2δn,n′ −
EJ

2
(δn,n′+1 + δn+1,n′)

By numerically diagonalizing this matrix we get the eigenvalues and eigenvectors

and therefore the energy levels of our system.
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Figure 17: The lowest energy band of the system for n = 1 (left) and n = 2 (right).
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Figure 18: The lowest energy band of the system for n = 3 (left) n = 10 (right).

We will normalize all energies through the charging energy of the transformer

junction and put the electron charge to e = 1. For the sake of simplicity we as-

sume that the junction energy of the transformer is 1
2

of its charging energy and the

capacitance of all three Josephson junctions are the same.

We now have to choose the parameter n big enough, to calculate the lowest energy

bands of the system as a function of the injected charge (gate voltage) with a high

precision. Naturally, the wider the gate voltage range is that we are interested in,

the more extra Cooper pairs on the transformer junction (n) we have to take into

account. Figures 17 and 18 show the lowest energy band E0 for different n.

To analyze the effective coupling between the qubits it is enough to consider q̃

in the interval [−0.5; 0.5]. For our further calculations we put n = 21. Numerical
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Figure 19: The lowest energy band of the system for EJi = 0 (left) and EJi = 1%ECi

(right)

calculations show that this gives us the exact lowest energy levels of the system in

the desired interval, while the matrix is still small enough (172 × 172) to be exactly

diagonalized in a short time.

Now we are in the position to evaluate the lowest energy band of our system for

different EJi, see Figs. 19-21. Here we put c = 1/3 in agreement with [50]. The

results are logical. A non-zero value of EJi mixes the states of the qubits {↑↓} and

{↓↑} (that are indistinguishable if our system is symmetric) with the states {↓↓} and

{↑↑} due to the transitions. Here the state ↓ represent the ground state and the state

↑ the excited state of the charge qubit. The higher the Josephson energy of the qubit

junction is, the bigger is the split between the energy bands and therefore the bigger

is the influence on E0. There is also a small shift of the level to the zero point.

The value of the EJ - Josephson energy of the transformer - affects the influence

of the EJi on the minimum energy level, see Figs. 22. As we can see, the mixing of

the states is more effective with bigger EJ . The influence of the EJi on the lowest

energy band of the transformer is similar to the influence on the minimum energy of

the system, see Figs. 23, 24. We can see, that the energy of transformer increases

with the increasing EJi, but the full energy - decreases. So the influence of the EJi

on the qubits energy is more significant.
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Figure 20: The lowest energy band of the system for EJi = 2%ECi (left) and EJi =
3%ECi (right)
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Figure 21: The lowest energy band of the system for EJi = 4%ECi (left) and EJi =
5%ECi (right)

-4 -2 0 2 4
0.260

0.265

0.270

0.275

0.280

0.285

0.290

E 0 /
 E

C

V
0

-4 -2 0 2 4
0.330

0.335

0.340

0.345

0.350

0.355

0.360

0.365

0.370

E 0 /
 E

C

V
0

Figure 22: The lowest energy band of the system for EJ = 0.5EC (left) and EJ =
0.3EC (right), EJi = 3%ECi
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Figure 23: The lowest energy band of the transformer for EJi = 0 (left) and EJi =
1%ECi (right)
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Figure 24: The lowest energy band of the transformer for EJi = 2%ECi
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Figure 25: The lowest energy bands of the transformer junction.

Now we can check the validity of Born-Oppenheimer-like approximation. In the

charge qubit regime the energy of the transformer is expressed as Eq. (51). We will

write the formulas for ν, δ and µ once again:

ν =
1

4
(ε0(q̃ + c) + ε0(q̃ − c)− 2ε0(q̃))

δ =
1

4
(ε0(q̃ + c)− ε0(q̃ − c)))

µ = ε0(q̃ + c) + ε0(q̃ − c) + 2ε0(q̃)

q̃ = q0 + c
∑

i

(qi − 1/2)

We will calculate the quantity ε0 as a function of the injected charge using the

same matrix method. It is well known function of the charge. The lowest energy

bands of the transformer junction are shown in Fig. 25.

Figure 26 shows ν as a function of q0 given by formula (51).

To check how ν depends on EJi we assume that Josephson energies of the qubit

junctions, despite having non zero values, are small enough. Therefore the qubits are
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Figure 26: Coupling constant ν as a function injected charge q0 for c = 0.1

still in the charge regime and formula (51) is valid with coefficients that now also

depend on EJi. In this case the energies of different qubit states are

E↑↑ = 2δ′ + ν ′ + ECL(1− qL)2 + ECR(1− qR)2 , (57)

E↑↓ = −ν ′ + ECL(1− qL)2 − ECRq2
R , (58)

E↓↑ = −ν ′ − ECLq2
L + ECR(1− qR)2 , (59)

E↓↓ = −2δ′ + ν ′ − ECLq2
L − ECRq2

R . (60)

To simplify the analysis we put ECL = ECR and qL = qR = 1
2
, so that E↑↓ = E↓↑.

Knowing the lowest energy bands of our system and identifying them with Eqs.

(57)-(60) we can calculate ν ′ and compare it with ν. However, one must remember,

that in the regions, that are close to the points where the states are mixing we can

not perform the identification and this method is not valid anymore. In this case one

should use the whole Hamiltonian Eq. (44) with the transformer energy Eq. (51) and

calculate ν ′ using its lowest energy bands. But as we are interested in relatively small

value of EJi ∼ 1− 4%ECi (state mixing is small), we can use the formulas (57)-(60)
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Figure 27: Coupling constant ν as a function injected charge q0 for EJi = 0 (left) and
EJi = 1%ECi (right).
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Figure 28: Coupling constant ν as a function injected charge q0 for EJi = 2%ECi.

almost for any value of gate voltage from the interval we are interested in. Results

for c = 0.3 are show in Figs. 27, 28.

For better comparison with [50] we can draw the point from the ”trusted” regions

for c = 0.1 in one graph, see Fig. 29.

3.4 Conclusion

We can see that in the vicinity of the point where the coupling is switched off (which

is the most important for realization of two qubit quantum gates) our simple method

is valid and the influence of non zero values of EJi can be neglected. The coupling

constant is changed slightly, but the point where ν is equal to zero is not affected

by EJi. Therefore the Born-Oppenheimer-like approximation is valid for qubits in a

realistic system if there are no other types of interactions between the qubits.

Recently, Hutter et al showed that the nonadiabatic, inductive contribution per-

sists in this coupling scheme when the capacitive coupling is tuned to zero. On the

other hand, the total coupling can be turned off (in the rotating wave approximation)
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Figure 29: Coupling constant ν as a function injected charge q0 for different EJi

if the qubits are operated at the symmetry points.
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4 Quantum state transfer in arrays of flux qubits

4.1 Introduction

As we have written in the introduction, the idea to use quantum spin chains for short-

distance quantum communication was put forward by Bose [8]. The main results

of Bose’s work are independent of physical realizations of the spins and the spin-

spin couplings. Quantum state transfer can be implemented using any type of two-

level systems. However, it is preferable to use the technology that is adapted to the

quantum information hardware that is supposed to be coupled by the transmission

line. One of the most promising architectures of quantum computing devices are

superconducting circuits, for example charge, flux and charge-flux qubits. In recent

years these were intensively studied both theoretically and experimentally.

One possible realization of an effective transmission line for charge qubits was

described in [61]. This was, to our knowledge, the first implementation of a solid-

state quantum communication protocol following the idea of Bose. There, the fidelity

of state transfer through Josephson junction arrays and the influence of static disorder

and dynamical noise were analyzed. Authors also studied the readout process using

single-electron transistor and its back action on the state transfer.

In this chapter we will consider a persistent-current qubit [36] and a line of such

qubits [38] as a spin chain. We will show that it is appropriate for state transfer with

high fidelity in systems containing flux qubits.

4.2 Persistent-current qubit arrays

A persistent current qubit is a superconducting loop with three Josephson junctions,

see Fig. 30. First we will briefly describe the physics of this system following [37, 36].

We assume that the left and the right Josephson junctions have capacitance C and

Josephson energy EJ , the central junction is characterized by a capacitance αC and
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Figure 30: Persistent-current qubit [after [37]]

Josephson energy αEJ with α < 1. The gate capacitances are equal to γC. Neglecting

the inductance of the loop we can assume that the total flux through it is external

flux Φ. Therefore flux quantization gives us φl + φα − φr = −2πf , where φl, φr and

φα are the gauge-invariant phases of the left, right and central junctions respectively

and f is the magnetic frustration, i.e. the amount of external magnetic flux in the

loop in units of the flux quantum Φ0 = h/(2e). We also assume the same direction

of the currents as in [37]. Now we are in the position to write the Josephson energy

of the system as

UJ(φl, φr)

EJ

= 2 + α− cos φl − cos φr − α cos(2πf + φl − φr) (61)

for a certain range of magnetic frustration f , UJ as a function of phases φl and φr

has two stable configurations. They correspond to the clockwise and counterclockwise

currents in the loop and repeat in a phase space, since (61) is 2π-periodic function

of its arguments, see Fig. 31. We will neglect the tunneling between different cells

with two minima [36] and will consider the qubit dynamics only within one cell, see

Fig. 32. In this case our system can be approximated as a two level system with

Hamiltonian

48



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

ϕ π
l
/

ϕ
π

r
/

Figure 31: Josephson energy of qubit as a function of phases for α = 0.8 and f = 0.48.
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Figure 33: Capacitively coupled qubits.

H0 = −∆0σ
x −Bσz (62)

that is the same as that of a spin-1
2

particle in a magnetic field. The eigenstates

|0〉 ≡ | ↓〉 and |1〉 ≡ | ↑〉 of σz correspond to clockwise and counterclockwise currents

(minima within one cell in Fig. 31). The coefficient ∆0 is a tunneling amplitude

between these states and its exact expression as a function of the system parameters

will be given later. The effective magnetic field B is determined by the modulus of

the circulating current Ip and the external magnetic flux Φ

B = Ip(Φ)

(
Φ− 1

2
Φ0

)
, (63)

The circulating current Ip depends on the magnetic frustration.

We assume, that the temperature is low enough, i.e. kBT is smaller than the

energy of the state |1〉, so we can neglect thermal fluctuations.

Persistent-current qubits can be capacitively coupled (with coupling capacitance

βC, see Fig. 33) to form a one-dimensional array [38], that for β À 1 has the

Hamiltonian

H = −
N∑

i=2

[Jxy(σ
+
i σ−i−1 + σ−i σ+

i−1) + Jzσ
z
i σ

z
i−1]−

N∑
i=1

(∆σx
i + Bσz

i ) . (64)

The terms Jzσ
z
i σ

z
i+1 are due to the small inductive coupling between adjacent
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qubits. Here Jz = 2Mq,qI
2
p , where Mq,q is their mutual magnetic inductance. The

coupling constant Jz could in principle be increased by a common Josephson junction

between two neighboring qubits [38]. However calculations show that smaller Jz is

preferable for good state transfer and therefore we will consider only weak coupling

without any amplification. The Hamiltonian (64) contains the term ∆
∑

i σ
x
i , i.e.

it does not conserve the z-component of the total spin (which is equivalent to the

number of sites in the excited state |1〉). Therefore, the theory proposed in [8] is not

valid in our case. However, if β À 1 ∆ is much less than Jxy [38] and we can neglect

this term at first. Later we will use perturbation theory to analyze how nonzero

values of ∆ affect the results.

The tunneling amplitude ∆ between the states |0〉 and |1〉 of the coupled qubits

differs from the value ∆0 for individual non-coupled qubits. As we will see later, this

is due to the fact that coupling suppresses independent tunneling events in which

only one qubit changes its state. Also, simultaneous tunneling events |11〉 ←→ |00〉
for two neighboring qubits are suppressed and therefore we neglect such processes in

our model. Correlated tunneling events |10〉 ←→ |01〉 are unaffected by the coupling.

We assume that the gate capacitances are equal to γC and use quasiclassical

approach described in [37] to calculated ∆ and Jxy. The idea is to represent the

dynamics of the qubit by motion of a fictitious particle in the potential (61), see also

Fis. 32. Under this approximation, ∆0 can be obtained by the WKB method as

∆0 =
√

EJEC

√
2(4α2 − 1)

α(1 + γ)
exp

(
−4

~
√

MαEJ

(√
1− α2/4− arccos(α/2)

2α

))
(65)

where

M =
~2

EC

1 + 2α + γ

4
. (66)
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is effective mass of the fictitious particle.

We now want to consider two interacting qubits that are coupled by a capacitor

βC, see Fig. 33. The collective dynamics of the two qubits can be described by

the motion of a fictitious particle in a two-dimensional potential (parameterized by

qubit phase differences θ1 and θ2) with four minima. The kinetic energy is the as-

sociated Coulomb charging energy of the junction capacitances, while the potential

energy corresponds to the Josephson energy of the qubits and is equal to the sum of

the Josephson contributions of both qubits. When two qubits are connected by the

capacitor, kinetic energy gets the extra term [38]

Tcoupl =
m∗

8
(θ̇1 + θ̇2)

2 , (67)

where

m∗ = (~/2e)2βC . (68)

In this case the effective mass to move in (0, 0) ↔ (1, 1) direction (see Fig. 34)

is M + 2m∗, the effective mass for independent qubit tunneling events is M + m∗

and the effective mass for tunneling in (1, 0) ↔ (0, 1) direction is equal to M . From

these formulas one can see that the tunneling is suppressed in all directions except

(1, 0) ↔ (0, 1), if m∗ À M . Due to this fact state transfer with high fidelity is

possible.

We will also use the WKB-method to obtain ∆ and Jxy. Namely we will de-

scribe the tunneling amplitude through some potential barrier U(x), see Fig. 35, for

a particle with effective mass m and energy E as

t =
~ω
2π

exp

[
− i

~

∫ x2

x1

√
2m(E − U(x))dx

]
(69)

where ω is the attempt frequency to escape the potential well. To calculate ∆
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Figure 34: Tunneling in capacitively coupled qubits.
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Figure 35: Particle with energy E escaping the potential well described by U(x).
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we simply use formula (65) taking into account the new effective mass M + m∗ and

therefore multiplying the expression in the exponent by

√
M + m∗

M
=

√
1 +

β

2(1 + 2α + γ)
(70)

To calculate Jxy we have to take into account, that the tunneling rate in (1, 0) ↔
(0, 1) direction (WKB-calculation gives extra factor 2 in the exponent in (65)) is

contributed by two terms of our Hamiltonian. One part of it is described by ∆-term

and correspond to independent qubit tunneling. It is proportional to
(

∆
~ω

)2
. Second

part is described by Jxy-term and corresponds to correlated tunneling of two cubits.

It is equal to 4Jxy since

〈10|Jxy(σ
+
1 σ−2 + σ−1 σ+

2 )|01〉 = 4Jxy (71)

To simplify the form of the expressions for ∆ and Jxy we will use realistic qubit

parameters from [37] and [36], namely α = 0.75, γ = 0.02

∆ = ∆0 exp(−0.49
√

EJ/EC(
√

1 + β/5− 1)) , (72)

4Jxy = ∆0e
−0.49

√
EJ/EC

(
1− e−0.98

√
EJ/EC(

√
1+β/5−1)

)
. (73)

With EJ/EC ≈ 100, we obtain

∆/∆0 = exp(−4.9(
√

1 + β/5− 1)) . (74)

Therefore, independent tunneling is effectively suppressed for β ∼ 10. ∆ and 4Jxy

coincide for β = 15. For β = 20, 4Jxy is three times larger and for β = 30 it is 25

times larger than ∆. In this case, as we will show later, ∆ can be neglected for short

chains.
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For ∆ = 0, the Hamiltonian (64) is that of an asymmetric (XXZ) Heisenberg

model in the presence of a magnetic field,

HL = −
N∑

i=2

[Jxy(σ
+
i σ−i−1 + σ−i σ+

i−1) + Jzσ
z
i σ

z
i−1]−

N∑
i=1

Bσz
i . (75)

We now want to calculate the fidelity of the state transfer. The chain is initialized

in the state |00...00〉 by first choosing a large negative value for the parameter B, see

Eqs. (75) and (63). Then, the first qubit is prepared in the state |ψin〉 i.e., the total

state of the array is |ψin, 00...00〉. This is not an eigenstate of the Hamiltonian (75),

therefore the system will evolve in time. After some time t the state of the last qubit

is read out. In general the last qubit will be in a mixed state, which is described by

a density matrix ρout. As wrote earlier in introduction, we average the fidelity over

all pure input states on the Bloch sphere

F (t) =
1

4π

∫
〈ψin|ρout(t)|ψin〉dΩ (76)

to obtain a quantity 1/2 ≤ F (t) ≤ 1 that measures the quality of transmission

independent of |ψin〉.

4.3 Fidelity of the state transfer

As written in the introduction, we perform our calculations in the basis |k〉 =

|00...010...0〉 for which the spin in the k-th qubit is in the state |1〉 and all others are

in the state |0〉. The Hamiltonian (75) of the array commutes with the z-component

of the total spin
∑

i σ
z
i . Therefore we can use the results of [8] to calculate the av-

erage fidelity in terms of f1,N(t) = 〈1|e−iHLt|N〉 i.e., the transition amplitude of the

excitation over the array. The average fidelity can then be expressed as

F (t) =
1

2
+
|f1,N(t)|2

6
+
|f1,N(t)| cos(γ)

3
, (77)
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Figure 36: The first fidelity maximum for an array with α = 0.75, γ = 0.02, EJ/EC =
100, β = 30 and EJ = 3GHz, a = 0.1.

where γ = Arg(f1,N(t)) is the argument of the complex quantity f1,N(t).

Varying the magnetic field one can make γ a multiple of 2π to maximize the

average fidelity, such that the maximum fidelity will correspond to the maximum

of |f1,N(t)|. From here on we will assume that this is the case and therefore put

f1N = |f1N | when plotting fidelities of the state transfer. Furthermore, the fidelity of

any state transfer is unity, if the modulus of the amplitude to transmit the state |1〉
across the array is unity.

We will now calculate |fN
1,N(t)| in the case ∆ = 0. The eigenfunctions of HL can

be described as follows:

|k̃〉 =
N∑

n=1

bk,n|n〉 . (78)

From the Schrödinger equation

HL|k̃〉 = (B(N − 2)− Jz(N − 5))|k̃〉 − 2Jz(bk,1|1〉+ bk,N |N〉)

−4Jxy(bk,2|1〉+
N−1∑
n=2

(bk,n−1 + bk,n+1)|n〉+ bk,N−1|N〉) , (79)
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Figure 37: Time (in units of 1/EJ) at which the first fidelity maximum is achieved.
It is proportional to the length of the chain and depends on the coefficient Jxy.

we obtain the following system of equations for the coefficients bk,n





bk,n−1 + bk,n+1 = Dbk,n (n ∈ [2, N − 1])

abk,1 + bk,2 = Dbk,1

abk,N + bk,N−1 = Dbk,N

(80)

where a = Jz/2Jxy and D is a constant. From the first two equations bk,i can be

expressed in terms of bk,1 as

bk,i = Pi(Dk)bk,1 , (81)

here Dk, k = 1, ..., N are the roots of

(D − a)PN(D) = PN−1(D) . (82)

Pi(D) is a polynomial, that is determined recursively

P1 = 1, P2 = D − a, Pi = DPi−1 − Pi−2, i = 3, ..., N . (83)
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Figure 38: Fidelity as a function of time (in units of 1/EJ) for a chain with N = 8.
Upper panel: first fidelity maximum at small times. Lower panel: fidelity maxima
around t = 198. The parameters are chosen as in Fig. 36.
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Figure 39: Fidelity maxima for times less than 4000/Jz, all the chain parameters are
as in Fig. 36.

The coefficient bk,1 can be found from the normalization conditions

〈k̃|m̃〉 = δk,m ⇒ b2
k,1 =

1

P 2
1 (Dk) + ... + P 2

N(Dk)
. (84)

Thus we have determined the eigenfunctions of the Hamiltonian and can find its

eigenenergies

Ek = −Jz(N − 5) + B(N − 2)− 4DkJxy . (85)

Setting E0 = 0, we obtain

Ek = 2B + 4Jz − 4DkJxy . (86)

The transition amplitude of the excitation through the array is given by

f1,N(t) =
N∑

k=1

〈k̃|1〉〈N |k̃〉e−iEkt =
N∑

k=1

bk,1bk,Ne−iEkt . (87)

Using these formulas we have numerically calculated the average fidelities for

different chain lengths and ratios a = Jz/2Jxy. The most relevant quantities for
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Figure 40: Times (in units of 1/EJ) at which the fidelity maxima in Fig. 39 are
achieved.

practical purposes are the first fidelity maxima, see Fig. 36 and Fig. 37, that we will

call “fidelity” in the rest of this chapter.

For short-length chains the average fidelity is higher than 0.9. This makes per-

sistent qubit arrays good candidates for transmission lines in quantum computers,

that are based on flux degrees of freedom. Also they can be effectively used in the

two-chain method proposed for achieving perfect state transfer [20]. The fidelity has

a complicated oscillating behavior as a function of time, see Fig. 38. There are many

local maxima, and the first of them is usually not the global maximum. Therefore,

waiting long enough, we can achieve a higher fidelity. This can be seen by comparing

Fig. 36 and Fig. 39.

However, the waiting times, i.e. the times, at which the maximum peaks of the

fidelity shown in Fig. 39 occur are much longer than for the first maximum, see Fig.

40. Therefore, from the practical point of view the first maxima in the fidelity are

more relevant.

Decoherence is another important reason why practical realizations of our proposal

would have to focus on the first fidelity maximum. Like any physical realization of
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a qubit, flux qubits are characterized by a finite dephasing time, and in a recent

experiment times of order τφ ≈ 20ns were reported for a single flux qubit [33]. The

time for the appearance of the first fidelity maximum is of order ~L/EJ . Therefore

as a simple estimate of the effects of decoherence, we compare this time with the

dephasing time, which leads to a limit of the length of the array of L ∼ τφEJ/~ ∼ 100.

Additional maxima after the first one will be further reduced by decoherence since

they correspond to states traversing the array more than once.

To maximize the fidelity γ = Arg(f1,N(t)) has to be chosen equal to zero. This can

be done by varying the magnetic field, so that −2Bt+γ0 = 2πn. Here γ0 is transition

amplitude phase for B = 0. To achieve more control of the qubit parameters the

central junction can be replaced by a SQUID [37].

The works of Bose [8] and Christandl et al. [12] correspond to spin chains with a

particular form of the Hamiltonian HL (Jz/2Jxy = 1, Jz/2Jxy = 0). We have checked

that in these limits our results agree with [8] and [12].

As mentioned above, the Hamiltonian of the real chain contains the term ∆
∑N

i=1 σx
i ,

that does not conserve the z-component of the total spin (i.e. the number of exci-

tations). ∆ is small, however, i.e. we can use perturbation theory to analyze the

influence of this term on the average fidelity. In this case we need to do calculations

in a larger (2N +1)-dimensional space, because in principle any number of excitations

is possible. One can easily show, that in zero-order approximation the fidelity and the

N + 1 lowest eigenstates will be the same as in the unperturbed case. The first-order

corrections are zero, because 〈k|σx
i |k〉 = 0 for the lowest eigenstates. So only the

second-order terms, which are proportional to ∆2, affect the fidelity. The influence

of the symmetry-breaking term therefore vanishes quadratically with ∆.

From Fig. 41 one can see that for qubits with the parameters mentioned in Fig.

36 it is sufficient to choose coupling capacitors with about 25-30 times the junction

capacitance. In this case we can neglect the influence of ∆. For long times this
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Figure 41: Fidelity dependence on β for chain length N = 5.

term becomes more important. This is another reason why only the first maxima

are useful for practical realizations of high-fidelity transmission lines. One can, in

principle, raise β to make the ∆-term less important for the maxima that occur later,

but in this case the charging energy will increase and this will influence the fidelity

and the properties of the qubit.

Conclusion

We have shown that a persistent-current qubit array is a good candidate for quan-

tum state transfer with high fidelity in flux-qubit based quantum computers. For

short-length chains the average fidelity of state transfer is higher than 0.9. Therefore,

this type of array can be effectively used in the two-chain algorithm [20] for achiev-

ing perfect state transfer. The influence of the term proportional to ∆σx, that does

not commute with the z-component of the total spin, is quadratic in ∆ and can be

neglected at small times for β À 1.
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5 Use of dynamical coupling for improved quan-

tum state transfer

5.1 Introduction

We have seen above that efficient short-distance quantum state transfer is an im-

portant problem in the field of quantum computing. If we neglect relaxation and

decoherence processes, then practical realization of the efficient quantum state trans-

fer will have two problems to be solved. First is an efficient protocol, that provides

high fidelity. As we wrote in introduction, a number of protocols of different nature

were proposed in the last five years to improve the quality of the state transfer in

spin chains. In all of them we have to use additional resources to raise the fidelity,

that is quite natural trade-off for information sciences. It can be extra time needed

for state transfer in the ”weak coupling” proposals [24, 25], extra chain or chains for

dual- and multi-rail encoding [20, 23], extra qubits to be controlled for encoding the

information in Gaussian-like wave packets [22] or time-dependent coupling between

the first and last pairs of qubits [27]. Only engineered couplings allow us to improve

fidelity without extra resources used, but in this case F is more sensitive to disorder

in qubit/coupling parameters.

While concentrating on improving the fidelity of the state transfer per se many

papers ignored another fact that limits practical use of spin chains as transmission

lines: the time interval for which the fidelity is high is very small for physical qubits

and realistic qubit coupling parameters. For example, for the chain of flux qubits

[62] with realistic experimental parameters [37], the half-width of the first fidelity

maximum is about 0.2ns. At these time scales state readout and manipulation is

impossible using current experimental technology. In this chapter we show that by

dynamically varying the coupling constants only between the first and last pair of

qubits we can solve this problem and also increase the fidelity of the state transfer.
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In real chains the state to be transmitted is initialized in the first qubit, and this

process must not influence the fidelity and dynamics of the chain. The most natural

idea for a full transferring protocol is as following: to initialize the state in the first

qubit, that is decoupled from the rest of the chain, then adiabatically couple it, wait

a certain time and then adiabatically decouple the last qubit from the chain [63].

This method requires two controllable gates like one of the proposals for achieving

perfect state transfer [27]. However in this chapter, the main purpose of the gates is

to localize the state on the last qubit where it can be manipulated during times that

are comparable to the decoherence/relaxation times.

5.2 Time-dependent coupling constants

As in the previous chapters we consider the XXZ-Hamiltonian as a model Hamilto-

nian. The XX-part of the Hamiltonian describes the tunneling of the excitation from

one site to another and is a necessary requirement for quantum state transfer. Here,

however, we will use time-dependent coupling constants between the first and last

pair of qubits:

H(t) = −Jxy1(t)(σ
+
2 σ−1 + σ−2 σ+

1 )− Jxy

N−1∑
i=3

(σ+
i σ−i−1 + σ−i σ+

i−1)

−JxyN(t)(σ+
Nσ−N−1 + σ−Nσ+

N−1)− Jz

N∑
i=2

σz
i σ

z
i−1 −B

N∑
i=1

σz
i . (88)

The time-dependent coupling constants can be realized by varying the gate volt-

ages on the 1st/2nd and (N−1)th/Nth qubits for the flux qubit chain, or by replacing

the Josephson junction between the charge qubits with a SQUID and varying the flux

through it. One can also use a transformer scheme described in Chapter 3 as a variable

capacitance between the flux qubits.

As a model we use “Fermi-function like” coupling constants:
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Figure 43: Fidelity as a function of time (in units of J−1
xy ) for a chain with constant

coupling parameters (dashed line) and time-dependent coupling parameters (solid
line), N = 10, ti = 0, tf = 6.2/Jxy, τ = 1/Jxy.
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Jxy1(t) = Jxyf(ti, t)

JxyN(t) = Jxyf(t, tf ) ,
(89)

with

f(t, t′) =
1

1 + exp t−t′
τ

. (90)

These are smooth functions that vary from 0 (no coupling) to Jxy (full coupling)

and vice versa, see Fig. 42. The time scale of the coupling/decoupling procedure is

determined by τ . Instant coupling/decoupling corresponds to τ = 0. Later we will

use another type of coupling/decoupling functions to show that main results of this

chapter are independent of our choice (89). The main reason why we use it first is

simplicity of varying the coupling parameters.

As earlier in this thesis we will characterize the quality of the state transfer by

fidelity. As usual, we assume that the chain is initialized in the state |00...00〉. Then,

the first qubit is prepared in the state |ψin〉, i.e. the total state of the array is

|ψin, 00...00〉. However if earlier after a time t the state of the last qubit was simply

read out instantly, now we will analyze the fidelity after some longer time td > tf ,

when the last qubit can be considered as completely decoupled from the rest of the

chain.

By numerically solving the Schrödinger equation for the time-dependent Hamil-

tonian (88) we get the fidelity of the state transfer as a function of time and the

coupling parameters τ , ti and tf . The fidelity has a complex oscillating behavior.

Our goal is to find the coupling parameters that allow us to localize the state at the

last qubit by decoupling it from the rest of the chain so that the fidelity is maximal.

In comparing this fidelity with the static case, we concentrate on the first maximum:

higher maxima appear only after times much longer than the time at which the first

one occurs [62, 61]. The typical behavior of F (t) for the static chain in the vicinity
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Figure 44: Stationary value of the fidelity after decoupling as a function of τ and tf ,
N = 10, ti = 0.

of the first maximum is shown in Fig. 43 (dashed line).

Figure 43 also shows the fidelity in the presence of time-dependent coupling con-

stants (solid line). One can clearly see that at large times the state is localized at the

last qubit with a fidelity Fd that is higher than for static coupling constants. The time

at which the maximum is achieved is slightly larger. This is natural since in the pres-

ence of the coupling/decoupling procedure the transmission of the information from

the first qubit to the chain and then to the last qubit is slower. After decoupling,

the localized state can be manipulated during the time interval comparable with the

decoherence and relaxation times for the qubit, which are several orders of magnitude

longer then the half-width of the first fidelity maximum in the static case in present

experimental setups. We would like to mention that the first fidelity maximum in the

case of dynamical coupling constants is even higher than the stationary value of the

fidelity after decoupling. Numerical calculations show that it can exceed the value

0.99, i.e. above threshold needed for quantum error correction. However, in this case,

after the full decoupling the fidelity will go down to about 0.9.
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Figure 44 shows the fidelity of the state transfer after completely decoupling the

last qubit from the rest of the chain for t →∞ as a function of the parameters τ and

tf (for ti = 0). There is a region where the fidelity for the localized state is higher

than in the time-independent case (up to 4%).

The origin of this phenomenon is similar to the effect described in Ref. [27]. By

dynamically varying the coupling constant between the first and the second qubit,

the information about the state enters the chain as a wave packet that has small

dispersion. This corresponds to some sort of filtering, an interpretation in agreement

with the fact that the fidelity is higher in the case of equal “profiles” for the coupling

and decoupling functions. If we use dynamical decoupling only at the end of the chain

and employ instant coupling to initialize the chain, the maximal possible fidelity for

the chain of N = 10 qubits drops from about 0.99 to 0.95 (but it is still higher than

the fidelity for the time-independent case, which is around 0.93). Apparently, during

the dynamical decoupling, the information that is still dispersed in the chain will

arrive at the last qubit. Therefore, slow decoupling allows more information to be

gathered before the full decoupling occurs.
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Figure 46: Fidelity distribution in the presence of small disorder in the coupling
constants Jxy, N = 10, ti = 0, τ = 0.325/Jxy, tf = 6.2/Jxy. F0 is the first fidelity
maximum for the ideal chain with static coupling constants. Inset: distribution of
the fidelity difference between the dynamical and static cases in the presence of equal
disorder.

One may think that we simply replace the time scale when fidelity is big in usual

communication protocol by about the same time scale when we have to start de-

coupling procedure to achieve big fidelity. However there are two facts that make

dynamical coupling constants more suitable for practical purposes. First of all, as

one can see in Figures 44 and 45, adiabatic coupling requires less precise definition

of tf to achieve the same quality of the state transfer, compared to instantaneous cou-

pling. Also it is easier to realize precise pulses of flux/voltage for coupling/decoulping

instead of performing complex qubit manipulations in a very limited time scale, for

example applying quantum error correction and then executing some quantum algo-

rithm with the transmitted state.

Since we are discussing practical realization of the state transfer using spin chains,

we have to take into account that experimental qubit arrays are always inhomoge-

neous. Therefore in the rest of the chapter we will discuss the effect of static dis-

69



order in Jxy and dynamical fluctuations in the coupling/decoupling functions. For

charge qubit arrays, the most important source of inhomogeneity is the variance of

the Josephson energies of the junctions (about 5%). In the case of the flux-qubit

chain with capacitive coupling, Jxy is a complicated function of the Josephson and

charging energies as well as the capacitance of the coupling capacitor, see Ref. [37].

A rough estimate using realistic parameters leads to the variance of 10%.

We have performed numerical simulations to evaluate the time evolution of the

system. As a result we find out that the phenomena described above, are stable to

static disorder and dynamical fluctuations in the coupling functions, see Figs. 46,

47. Figure 46 shows the distribution of the fidelity after complete decoupling in the

presence of disorder in the coupling constants. Its half-width is quite small: even

in the worst case the fidelity is higher than the fidelity of the ideal chain without

disorder. The graph was constructed using a numerical simulation for the ensemble

of 10000 chains where the coupling constants were of the form Jxyi → Jxyi(1 + ri),

i = 1..N . The quantity ri was a random number with uniform distribution in the

interval [0; 0.07].

The inset of Fig. 46 shows the difference between the fidelities for different real-

izations of the chains with constant and time-dependent couplings. This difference is

around 2%, so the effect of increased fidelity persists. In each realization both chains

have the same randomized coupling constants and the only difference is that Jxy1 and

JxyN are not multiplied by coupling functions for the time-independent chain.

Figure 47 shows the influence of fluctuations in the coupling/decoupling func-

tions. Here the coupling constants Jxy are the same for all realizations and the

coupling/decoupling functions are of the form

Jxy1(t) = Jxy

(
1 + exp ti−t

τ

)−1

(1 + r1(t))

JxyN(t) = Jxy

(
1 + exp

t−tf
τ

)−1

(1 + rN(t)) .

(91)
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Figure 47: Fidelity distribution in the presence of fluctuations in the cou-
pling/decoupling function, all other coupling constants are fixed and equal. ti = 0,
τ = 0.325/Jxy, tf = 6.2/Jxy. Fd is the fidelity after decoupling in the absence of
fluctuations. Inset: fidelity distribution in the presence of site energy fluctuations
(δB = 5%).

The quantities r1,N(t) are stepwise stochastic processes of step width 0.036τ , the

step heights are uniformly distributed in the interval [0; 0.02]. The influence of these

fluctuations is small. The fidelity in the presence of dynamical fluctuations in the

coupling functions is always decreased. This is in agreement with the filtering idea

described above.

The inset of Fig. 47 shows the influence of fluctuations in the site energies. This

influence is small, because assuming that B is chosen to maximize the average fidelity,

the fluctuations of B will influence only one term in the fidelity as a multiplicative

factor that is approximately equal cos(δB), see [8].

Finally, to check that all the effects described above are not the consequence of

our special choice of coupling functions (89), we also did the calculation for another

type of dynamical coupling/decoupling:
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Figure 48: Fidelity maxima in the case of coupling functions parameterized as
Jxy((t)/τ)a, Jxy((tf − t)/τ + 1)a.

Jxy1 =





0 t < 0

Jxy(t/τ)a t ∈ [0, τ ]

Jxy t > τ

(92)

JxyN =





Jxy t < tf

Jxy((tf − t)/τ + 1)a t ∈ [tf , tf + τ ]

0 t > tf + τ

(93)

These functions vary from 0 to Jxy (and vice versa), and we have chosen ti = 0.

The parameters a and τ describe the shape and timescale of the coupling/decoupling

function. The first maxima of the fidelity for different a ∈ [0.1; 1] are shown in Fig. 48.

Here, as in Fig. 47, τ and tf are chosen to maximize the fidelity. One can see that

this type of dynamical coupling also allows us to have better state transfer than for

the chain with constant couplings (where the height of the first maximum is F0). In

general, wave packets with bigger width have lower dispersion. Therefore we expect

that every smooth monotonic coupling/decoupling function with equal profiles will
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allow us to improve the fidelity of state transfer.

5.3 Conclusion

In the past, a number of quantum transmission line systems was proposed to achieve

a perfect or almost perfect state transfer. A common disadvantage of most of these

proposals is the very short time interval, for which the fidelity of the state transfer is

high. Manipulating the state in such short time intervals is impossible using current

experimental technology. In this chapter we have proposed the method that allows

to localize the transferred state on the last qubit of the transmission line, by vary-

ing the coupling constants between the first and last pair of qubits. We have also

shown that this method increases the fidelity of the state transfer and that this effect

is stable to static disorder in the coupling constants and dynamical fluctuations in

the coupling/decoupling functions. We would also like to mention, that applying a

sequence of coupling/decoupling pulses may lead to an even better fidelity [64].
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6 Quantum interference in the state transfer via

spin chains

6.1 Introduction

As with any task in quantum information processing which offers an advantage over

classical information processing, the question arises what in the quantum world allows

for that advantage. It is generally acknowledged that quantum entanglement and

interference are two ingredients which distinguish quantum information processing

from its classical counterpart [65]. Quantum entanglement has been studied in great

detail over the last fifteen years [66], but the precise role of interference in various

quantum information treatment tasks remains to be elucidated [67].

Contrary to entanglement, interference is a property not of a quantum state but of

the propagator of a state. This is due to the fact that the coherence of the propagation

is important for interference. Indeed, the final probability distribution resulting from

a given quantum algorithm can always be generated through stochastic simulation on

a classical computer as well: for a known quantum circuit and initial state one can, in

principle, calculate the final state, and, therefore, the probability distribution. It is

then simple to create a stochastic process which gives each possible outcome with the

correct probability. In such a classical simulation clearly no interference takes place.

Thus, what counts for interference is not a state itself but the way it was created.

A quantitative measure of interference in any quantum mechanical process in a

finite-dimensional Hilbert space was recently introduced in [68], and the statistics

of quantum interference in random quantum algorithms was studied in [69]. Here

we propose to study the role of interference in quantum state transfer through spin

chains. After defining the notion of interference, reduced interference, and fidelity in

Subsection 6.3.1, we will follow two complementary approaches: in Subsection 6.3.2

we will consider the spin chain as a black box which propagates the initial state of the
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first and last spins combined to a final state of these two spins. We will calculate the

reduced interference that describes this propagation for different spin chains and show

that perfect state transfer is possible without quantum interference. In Subsection

6.3.5 we will then consider the unitary evolution of the entire chain and analyze this

unexpected result.

6.2 Quantum interference

The quantity, that quantify the amount of interference present in any physical process

that maps an initial density matrix to a final density matrix was introduced in [68].

This quantity, called quantum interference, is connected to several phenomena that

capture the essence of its classical counterpart [68]:

1. Coherence. As in classical case, quantum interference should be able to distinguish

between coherent and incoherent propagation. Thats why it was mentioned earlier

that measure of interference is a property of the propagator of states.

2. Equipartition. If propagator just permutes incoming amplitudes, there is no in-

terference involved. Interference requires coherent superposition of several states and

therefore its measure should be linked to how many different initial state amplitudes

contribute to each final state amplitude and to what extent. This measure should be

maximal if each basis state as input produce and equipartitioned output state, i.e.

state with the same absolute probability amplitude for each basis state.

3. Basis dependance. Interference measure should depend on basis in which the

propagator matrix is described. Like in classical double slit experiment there is no

interference pattern if we observe it in the momentum basis.
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Taking into account these three phenomena the interference I(t) for a general quan-

tum process described by a propagator P(t) = Pij,kl(t) which propagates an initial

state ρ with matrix elements ρij in a fixed orthonormal basis of dimension D to a

final state ρ′,

ρ′ij =
D∑

k,l=1

Pij,klρkl (94)

is defined as [68]

I(t) =
∑

i,k,l

|Pii,kl(t)|2 −
∑

i,k

|Pii,kk(t)|2 . (95)

6.3 Role of quantum interference in the state transfer

6.3.1 Interference and reduced interference

If P describes the propagation of the reduced density matrix of the first and last spins

alone (which will be mixed in general, as it results from tracing out the intermediate

spins of the chain), Eq. (95) defines the “reduced interference” Ir(t). We will evaluate

Ir(t) analytically for spin chains which conserve the number of excitations in the chain,

and show that Ir(t) is intimately linked to the average fidelity F (t),

F (t) =
1

4π

∫
〈ψin|ρout(t)|ψin〉dΩ , (96)

where |ψin〉 is the pure state to be transmitted prepared on the first spin, ρout is

the output state on the last spin (i.e. ρout = Tr1ρ
′, with the trace over the first (input)

spin), and the integral is over all initial states of the input spin on the Bloch sphere

parameterized by the spatial angle Ω. We will also provide numerical results for Ir(t)

for chains in which the number of excitations is not conserved.

The interference measure for unitary propagation of the entire chain, |ψ′〉 = U |ψ〉
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reduces to [68]

IU(t) = D −
D∑

i,k=1

|Ui,k(t)|4 . (97)

For this coherent propagation, the interference IU(t) measures the degree of equipar-

tition of the output that result from any basis state of a system at t = 0. Here, an

equipartitioned state means a state that is a superposition of all the basis states with

amplitudes of modulus 1/
√

D. For better comparison of the results we will plot the

normalized interference I = IU/(D − 1) so that the maximal possible value of the

interference is one and does not depend on the number of qubits in the chain.

6.3.2 Reduced interference for excitation-conserving spin chains

We start by evaluating the reduced interference in excitation-preserving chains, i.e.,

spin chains for which the total Hamiltonian H commutes with the total spin compo-

nent Sz =
∑N

i=1 σz
i . The particular example of the chain with isotropic Heisenberg

interaction proposed by Bose [8] falls into this class (see Section 6.3.3 below). We

start with at most one excitation in the chain and limit ourselves to pure initial states.

Therefore one can specify a state of the entire chain |j〉 (j = 1, . . . , N) by the position

at which the excitation is localized. In principle there are four computational basis

states for the two spins, but the state where both the first and last spins are excited

will never appear. We therefore restrict our attention to the three-dimensional Hilbert

space spanned by the states |1〉, |N〉, and |0〉r (the state where both the first and last

spins are not excited). We will also make use of the state |0〉m of the intermediate

part of the chain, where all intermediate spins are not excited.

We start from an initial state of the chain which factorizes between the two selected

spins (1 and N) and the rest of the chain, which is assumed to be in state |0〉m,

|Ψin〉 = (a0|0〉r + a1|1〉+ aN |N〉)|0〉m . (98)
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The initial reduced density matrix of the first and last spins,

ρ =




|a0|2 a0a
∗
1 a0a

∗
N

a1a
∗
0 |a1|2 a1a

∗
N

aNa∗0 aNa∗1 |aN |2




, (99)

then still represents a pure state. For any Hamiltonian that conserves the number of

excitations we can write the state at time t as

|Ψout(t)〉 = a0|0〉r|0〉m + a1

N∑
j=1

〈j|e−iHt|1〉|j〉+ aN

N∑
j=1

〈j|e−iHt|N〉|j〉 , (100)

or

|Ψout(t)〉 = a0|0〉r|0〉m + a1f11|1〉|0〉m + a1

N−1∑
j=2

〈j|e−iHt|1〉|0〉r|j〉+

a1fN1|N〉|0〉m + aNf1N |1〉|0〉m + aN

N−1∑
j=2

〈j|e−iHt|N〉|0〉r|j〉+ aNfNN |N〉|0〉m , (101)

where

fij(t) = 〈i|e−iHt|j〉 . (102)

After tracing out the intermediate spins we obtain the final density matrix of the

first and last spins,

ρ′ =




|a0|2 + Sm a0(a∗1f∗N1 + a∗Nf∗NN ) a0(a∗1f∗11 + a∗Nf∗1N )

a∗0(a1fN1 + aNfNN ) |a1fN1 + aNfNN |2 (a1fN1 + aNfNN )(a∗1f∗11 + a∗Nf∗1N )

a∗0(a1f11 + aNf1N ) (a1f11 + aNf1N )(a∗1f∗N1 + a∗Nf∗NN ) |a1fNN + aNf1N |2




(103)

where

Sm =
N−1∑
j=2

|a1〈j|e−iHt|1〉+ aN〈j|e−iHt|N〉|2 . (104)
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Comparing Eqs. (99), (103), and (94) we read off the propagator

P =




1 0 0 0
∑

j |fj1|2
∑

j fj1f
∗
jN 0

∑
j fjNf ∗j1

∑
j |fjN |2

0 f ∗N1 f ∗NN 0 0 0 0 0 0

0 f ∗11 f ∗1N 0 0 0 0 0 0

0 0 0 fN1 0 0 fNN 0 0

0 0 0 0 |fN1|2 fN1f
∗
NN 0 fNNf ∗N1 |fNN |2

0 0 0 0 fN1f
∗
11 fN1f

∗
1N 0 fNNf ∗11 fNNf ∗1N

0 0 0 f11 0 0 f1N 0 0

0 0 0 0 f11f
∗
N1 f11f

∗
NN 0 f1Nf ∗N1 f1Nf ∗NN

0 0 0 0 |f11|2 f11f
∗
1N 0 f1Nf ∗11 |f1N |2




,

(105)

where the rows and columns are in the order 00, 01, 0N , 10, 11, 1N , N0, N1, NN .

Inserting P into Eq. (95), we obtain

Ir(t) =

∣∣∣∣∣
N−1∑
j=2

〈j|e−iHt|1〉〈N |eiHt|j〉
∣∣∣∣∣

2

+

∣∣∣∣∣
N−1∑
j=2

〈j|e−iHt|N〉〈1|eiHt|j〉
∣∣∣∣∣

2

+|fN1f
∗
NN |2 + |fNNf ∗N1|2 + |f11f

∗
1N |2 + |f1Nf ∗11|2 (106)

for the reduced interference. This expression can be further simplified by using

N∑
j=1

〈N |eiHt|j〉〈j|e−iHt|1〉 = 〈N |1〉 = 0 , (107)

such that

Ir(t) = 2 |f11f
∗
N1 + fN1f

∗
11|2 + 2|f11f

∗
1N |2 + 2|fN1f

∗
NN |2 . (108)

This result is valid for any Hamiltonian of the entire chain that conserves the number

of excitations. In the case of a linear chain with symmetrical nearest-neighbor inter-
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actions (i.e. the Hamiltonian is invariant under relabeling the qubits 1, 2, .., N into

N, ..., 2, 1), we have f1N = fN1 and f11 = fNN . The reduced interference can then be

expressed using two amplitudes of the state transfer,

Ir(t) = 8|f11|2|f1N |2 + 2f 2
11(f

∗
1N)2 + 2f 2

N1(f
∗
11)

2

= 4|f11|2|f1N |2(1 + 2 cos2(γ11 − γ1N)) , (109)

where γij = arg(fij). We are now in the position to evaluate I(t) for specific examples.

6.3.3 Chains that conserve the number of excitations

Let us first consider the spin chains studied in [8] and described in the introduction

part of this thesis. They consist of a one-dimensional array of N spins, with nearest-

neighbor spins coupled through an isotropic Heisenberg interaction. The Hamiltonian

of the chain reads

H = −
N∑

i=2

Jσi · σi−1 −
N∑

i=1

Biσ
z
i , (110)

where σi = (σx
i , σy

i , σ
z
i ) denotes the vector of the Pauli matrices on site i, Bi

denotes the site-dependent static magnetic field and J > 0 is the coupling strength,

taken as constant for all spins.

As was shown earlier, the average fidelity, Eq. (96), for this model is given by

F =
|f1N | cos γ1N

3
+
|f1N |2

6
+

1

2
. (111)

At t = 0, f1N = 0 for N > 1, such that the average fidelity corresponds to the fidelity

of a random guess of Bob of the quantum state of Alice (F = 1/2). The overlap f1N(t)

becomes appreciable, once the spin wave excited at Alice’s end arrives at Bob’s spin.

Perfect state transfer for all states (F = 1) requires f1N = 1, along with cos γ1N = 1.
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By comparing Eqs. (109) and (111) one can see that interference is determined by

one more complex variable f11 compared to the fidelity. Therefore, in general there

is no explicit formula that describes interference in terms of fidelity alone. Naively

one might expect that interference should play an important role for quantum state

transfer, if the fidelity of the process exceeds the maximal classical value, F = 2/3

[9]. However, note that an ideal quantum state transfer can be realized through the

permutation of the first and last spins |0〉r ↔ |0〉r, |1〉 ↔ |N〉, which does not lead

to any interference at all. In general, interference measures both the equipartition of

all output states for any computational basis state as input, and the coherence of the

propagation. “Coherence” was defined in [68] as the sensitivity of the final probabili-

ties ρ′ii to the initial phases. As is evident from Eq. (109), the only phase information

which contributes to the reduced interference in the propagation through the spin

chain is the relative phase between the states |0〉r and |N〉. However, the coherence

of the propagation becomes irrelevant for perfect transfer, f1N = 1, as then fNN = 0

due to conservation of the number of excitations, and then the final probabilities do

not depend on any initial phases anymore. I.e. for ideal state transfer, the dynamics

of the chain indeed realizes the above permutation with vanishing interference. This

is also evident from Eq. (109) for f11 = fNN = 0. Note, however, that the interfer-

ence is finite during the propagation of the signal through the chain, as well as quite

generally for any situation in which neither f11 nor f1N vanish. All one can say is that

for F (t) close to 1, i.e. f1N close to 1 and thus fNN close to 0 - Ir(t) remains quite

small. We would also like to mention, that in a simple series of swap (SOS) protocol

the reduced interference for chains with more than two qubits is always zero, since

either f11 or f1N has zero value at any time.

Figure 49 shows Ir(t) that was obtained by numerically propagating |Ψ(t)〉 for

N = 20 (see Eq. (100)) with the Hamiltonian (110). The results are plotted with

time in units of 1/J . We also assumed that Bi = B for all i, and therefore the
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Figure 49: Reduced interference for a spin chain with N = 20 qubits described by
the model defined in Eq. (110).

interference does not depend on magnetic field. Indeed, in our model B influences

only the phases of f11 and f1N through a term exp(−2iBt) (see, for example [8]) and

according to Eq. (109) the interference depends only on phase differences and not on

a global phase. One can see that the interference remains quite small. This is because

the probability to find an excitation inside the chain is high and both quantities |f11|2

and |f1N |2 cannot be big (∼ 0.5) at the same time at the time scale that is relevant

for quantum state transfer.

Let us now consider the case of reduced coupling constants of spins 1 and N to

the rest of the chain

H = −
N∑

i=2

Ji(σ
x
i σx

i−1 + σy
i σ

y
i−1) , (112)

with J2 = JN = aJ where a ¿ 1, and Ji6=2,N = J . It was shown in [24] that this

can drastically increase the fidelity of the state transfer. Figure 50 shows the reduced

interference Ir(t) together with F (t). We see that both are perfectly anticorrelated.

In particular, we have again Ir(t) ' 0 for F (t) ' 1 for the same reasons as discussed

before. The interference is maximal half way through the perfect state transfer. In

this case, the interference is not small (compare Fig. 49 and Fig. 50) since due to the

weak coupling the intermediate spins are only slightly excited [24] and both quantities
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Figure 50: Reduced interference Ir for the case of small coupling constants between
the first and the last pair of qubits, N = 8 (blue, thick solid line). The green (thin
solid) line shows the full interference of the entire chain (renormalized by a factor
1/N). The black (dot-dashed) line shows the fidelity F (t). The red (dashed) lines are
the probabilities to find an excitation on the first qubit and on the last qubit (|f11|2
and |f1N |2, respectively) if we start with the excitation on the first qubit.

f11 and f1N can be big (1/
√

2) at the same time (see red (dashed) curves in Fig. 50).

6.3.4 Chains that do not conserve the number of excitations

Now we consider a more general Hamiltonian that does not conserve the number of

excitations,

H = −
N∑

i=2

[Jxy(σ
x
i σx

i−1 + σy
i σ

y
i−1) + Jzσ

z
i σ

z
i−1]

−
N∑

i=1

(∆σx
i + Bσz

i ) . (113)

Equation (113) is a more realistic model than Eq. (110) since in real qubits the σx

term, which describes the tunneling between the states |0〉 and |1〉, cannot always be

neglected. A physical realization of Hamiltonian (113) was proposed in [62]. Some-

times the σx term can be suppressed [38, 62], but for longer chains even small values

of ∆ will influence the dynamics of the chain. In this case, Eq. (109) is not valid

anymore, and the question of how much interference is used in the quantum state
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Figure 51: Global maxima of f1N = 〈1|e−iHt|N〉 in the time interval [0,1/Jxy] as a
function of ∆ for the model defined by Eq. (113), N = 3.

transfer needs to be reassessed. Since the number of excitations is not conserved, we

have to do the calculation in the much larger Hilbert space with dimensionality 2N

instead of N + 1. One can numerically evaluate ρ′(t) and find Ir(t) as a function of

time. We used realistic qubit parameters that are typical for flux qubits, see [37, 62],

namely Jxy = 0.08Jz, and B = 0. The results of the calculations are shown in Figs.

51 and 52.

Figure 51 shows the global maxima of f1N = 〈1|e−iHt|N〉 in the time interval

[0,1/Jxy] as a function of ∆ for a chain with N = 3 qubits. The quantity f1N

decreases with ∆ until the time required for the state to be transferred from the first

to the last qubit is approximately equal to 1/∆. This is in agreement with [62]. For

large ∆, f1N is close to one due to excitations that are created in the chain during

this time interval.

Figure 52 shows the reduced interference at the global maxima of f1N = 〈1|e−iHt|N〉
in the time interval [0,1/Jxy]. Once again, interference decreases with increasing f1N ,

and vice versa, but this time as a function of the parameter ∆. For very small ∆, we

have nearly perfect state transfer (almost no equipartition and coherence), therefore

the interference is small. It increases with ∆, as the creation of excitations enhances
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Figure 52: Reduced interference at the global maxima of f1N = 〈1|e−iHt|N〉 in the
time interval [0,1/Jxy], see Fig. 51.

the equipartition and sensitivity of the final state to the initial state. For large ∆,

when a high value f1N is achieved due to excitations created in the chain, interference

is small. For example if the excitation is created on the last qubit, then the amplitude

|f1N | will be equal to one. It corresponds to nearly stochastic transfer, since the final

probabilities to find the last qubit in the state |0〉 or |1〉 are almost independent of

the initial state.

6.3.5 Interference in the unitary propagation of the entire chain

The result that perfect quantum state transfer is possible (and realized!) without

quantum interference is rather counter-intuitive. It is natural to wonder what hap-

pens within the chain. Let us therefore open the black box and study the inter-

ference in the propagation of the state of the entire chain (called “full interference”

I = IU/(D−1) = IU/N in the following, where confusion is possible) for chains which

conserve the number of excitations. This corresponds to a unitary propagation, and

we will therefore employ Eq. (97) to quantify the interference.
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Figure 53: Fidelity (red, dashed line) and normalized full interference (green, solid
line) for N = 2 and N = 3 qubits with uniform coupling constants, Eq. (114).

Chain with uniform coupling constants

For a simple chain that consists of more than three qubits, the fidelity is always

less than one (except the case of specially engineered coupling constants). This is due

to the fact, that the input state gets dispersed over the spins at all times t > 0.

Using the theory described in [62] we calculated the eigenstates and the eigenen-

ergies of a more general version of the Hamiltonian (110),

H = −
N∑

i=2

[Jxy(σ
x
i σx

i−1 + σy
i σ

y
i−1) + Jzσ

z
i σ

z
i−1]−

N∑
i=1

Bσz
i . (114)

This Hamiltonian also conserves the number of excitations and describes the chains

of superconducting qubits, proposed in [62] and [61]. Knowing the eigenvalues and

eigenenergies of (114) allows us to find the matrix elements Uik and numerically

calculate the full interference as a function of time and of the number of the qubits

in the chain, restricting ourselves again to the (N + 1)-dimensional Hilbert space of

the states in Eq. (98). The results of these calculations are shown in Figs. 53, 54 for

Jz/Jxy = 0.05 [62].

As we can see in Fig. 53, the full interference is close to zero if the fidelity is
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Figure 54: Fidelity (red, dashed line) and normalized full interference (green, solid
line) for N = 10 and N = 20 qubits with uniform coupling constants, Eq. (114).
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Figure 55: Fidelities (red, dashed line) and normalized full interference (green, solid
line) for N = 6 qubits with uniform coupling constants, Eq. (114).
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Figure 56: Fidelities (red, dashed line) and normalized full interference (green, solid
line) for N = 3 qubits with uniform coupling constants, Eq. (114).
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close to one. The reason is that the time that is required for the excitation to be

transferred from the first to the last qubit (the time of the first fidelity maximum) is

approximately equal to the time that it takes for the excitation to travel from qubit 2

to the end of the chain and then back to qubit N−1 (and so on). This is illustrated in

Fig. 55, where the fidelities Fij =
|fij |
3

+
|fij |2

6
+ 1

2
and the normalized full interference

are shown for the chain of N = 6 qubits. We can see that the interference is minimal

in the region where local maxima of the fidelities are located. When all maxima are

close to one, then, independently of the initial state, the final state will have small

equipartition and therefore the interference is small.

When the fidelity maximum goes down, the corresponding full interference in-

creases rapidly (see, for example, Fig. 53, N = 3). Hence, I is very sensitive to the

amplitude distribution of the final state over the qubits. Here the amplitude of the

spin j in the final state is f1j = 〈1|e−iHt|j〉.

For short chains the fidelity maxima correspond to minimal dispersion. For longer

chains, the minima of the full interference are shifted with respect to the fidelity

maxima. This is due to the fact that a maximal amplitude of the state “up” of the

last qubit does not necessarily correspond to the minimal dispersion as measured by

interference, which takes into account all possible input states.

Another feature of the interference graph are intermediate minima which cor-

respond to a partial localization of the excitation on the intermediate qubits. For

example in Fig. 53 (N = 3) there are clear shallow local interference minima that

correspond to localization of the excitation on the nearest neighbor of the initial

qubit, see Fig. 56. Deep minima correspond to localization of the excitation after

the state is transferred through the whole chain. For longer chains, the times when

the excitation is localized on intermediate qubits depends on the initial state, i.e. the

fidelity maxima do not exactly coincide (see Fig. 55). Therefore these small features

are less pronounced.
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Reduced coupling constants at the end of the chain

The full (normalized) interference I(t) for a chain with reduced coupling constants

between the first and last pair of qubits is shown as the green solid line in Fig. 50.

I(t) oscillates rapidly on the time scale of the state transfer from the first to the last

qubit, with an envelope whose upper boundary perfectly correlates with the oscilla-

tions of the reduced interference and an amplitude which is, for N = 8, about a tenth

of the amplitude of the reduced interference Ir(t). This behavior is indeed to be ex-

pected from the fact that I(t) is a sum of equipartition measures for all initial states

localized on any qubit in the chain, whereas Ir(t) measures equipartition only on the

first and last qubits. As the state transfer is basically perfect (and therefore Ir(t) = 0

for t = 0 and at the time of optimal transfer t = t1), the lack of this contribution

to the equipartition measure leads to a minimum in the envelope of I(t) at t = 0

and t = t1. At the same time, the maximum of the envelope of I(t) halfway through

the state transfer (corresponding to an additional contribution of about 0.1 to I(t))

indicates that the equipartition of the first and last qubit captures the essence of the

equipartition in the chain for an initial state localized on the first qubit. This agrees

with Ref. [24] since there is only a small amplitude for an excitation inside the chain

during the state transfer. Therefore the equipartition between the first and last qubit

gives the main contribution to the full interference.

6.4 Conclusion

In summary we have calculated the interference during the transfer of a quantum

state through several types of one-dimensional spin chains with time-independent

nearest-neighbor coupling constants, both for chains which do or do not conserve

the number of spin excitations. We have shown that for a high-fidelity transfer the
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reduced interference of the propagator of just the first and last qubits is very small,

and vanishes for perfect transfer. This can be understood from energy conservation

and the fact that interference measures, besides phase coherence, the equipartition of

the final states for all computational states taken as input states. The full interference

of the entire chain (propagated unitarily) shows rapid oscillations on the time scale of

a complete transfer. For a chain with reduced coupling constants between the first and

last pair of qubits the envelope of these oscillations follows the reduced interference.

Thus, interference is not only valuable tool for investigating quantum algorithms, but

also gives us a deeper insight into the dynamics of quantum state transfer.
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7 Conclusion and outlook

Controllable coupling between quantum bits and quantum state transfer between

quantum bits via ’quantum wires’, two main problems discussed in this thesis, are

important topics in quantum information science. Many quantum computer propos-

als differ only in the nature of the quantum bit elemental base but repeat the classical

’gate’ concept of the computing device. It naturally implies possibility to connect dif-

ferent gates between each other and qubits that serve as a quantum memory. Starting

from controllable interqubit coupling, that is a key element for building an universal

set of quantum gates, this thesis leads to the proposal for realization of the effective

quantum state transfer in flux-qubit based quantum computers. The second part of

this thesis is devoted to the method, that allows us to localize the transferred state

and improve the fidelity of the state transfer at the same time. It can also be used

as a part of other methods for achieving an effective state transfer such as differ-

ent multi-rail protocols, ’quantum valve’ proposal and conclusive transfer to improve

their efficiency. Finally, we analyzed the role of interference measure proposed in [68]

in studying quantum state transfer via spin chains.

While state transfer with quantum chains is relatively young and small part of

quantum information science, it is quite active and more than hundred theoretical

articles appeared in the last few years. They describe possible realizations and provide

methods to increase the efficiency of the basic idea. However, no real experiments

were done yet and realizing proof-of-principle state transfer in a short chain is an

important goal for the nearest future. Around working experimental setup one could

build system specific theories, that take into account decoherence, dephasing, noise

and other system dependant phenomena that influence the efficiency of the state

transfer.
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Appendix A. Calculation of the fidelity using soft-

ware Mathematica 5.2

All the numerical calculations in this thesis were performed by using mathematical

software system Mathematica 5.2. To calculate the fidelity for figures in introduction

and chapters 3-6 we used the qubit parameters that are specific for persistent-current

qubits [37, 36] and formulas (65), (72) and (73). Most of the results were plotted in

dimensionless units, where time was measured in the inverse energies that characterize

qubits or coupling between them. Therefore most of our results depend only on the

form of the Hamiltonian and the ratio of energies that characterize it. Typical block-

scheme of fidelity calculation for ideal XXZ-Hamiltonian (88) was as follow:

1. Hamiltonian parameters are initialized in units of energy, that characterize ei-

ther qubits (usually Josephson energy EJ) or coupling between them (usually

Jxy).

2. Equation (82) was solved numerically using built-in Mathematica function Solve[].

3. Arrays of eigenenergies and eigenvalues of the Hamiltonian were formed using

equations (81), (84) and (86).

4. Fidelity was calculated using equations (77) and (87).

5. To determine the maxima of the fidelity as function of time, we use a dis-

cretization step of 0.01/Jxy. This is enough to give us the maxima and the time

when they are achieved with a sufficient precision since the half-width of the

maximum profile is in the order of 1/Jxy.
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