EFFICIENT AND RELIABLE
DATA STREAM MANAGEMENT

Inauguraldissertation

zur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultat

der Universitat Basel

von

Gert Brettlecker

aus Innsbruck, Osterreich

Basel, 2008

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultat
auf Antrag von:

Prof. Dr. Heiko Schuldt Prof. Dr. Paul Lukowicz

Basel, den 20.05.2008

Prof. Dr. Hans-Peter Hauri
Dekan

Kurzfassung

Aktuelle Entwicklungen in Sensortechnik, eingebetteten Systemen und
der Fortschritt in Ubiquitdren Informationstechnologien ermoglichen und un-
terstiitzen neuartige Anwendungen im Bereich der kontinuierlichen Sensor-
datenverarbeitung. Anwendungen wie Telemonitoring im Gesundheitswe-
sen oder Verkehrsdatenmanagement verlangen nach einer verldsslichen Ve-
rarbeitung von kontinuierlichen Datenstromen, auch Datenstrommanage-
ment (DSM) genannt. Die Anwendungsumgebung ist ausgesprochen fehler-
anfillig da sie mobile und eingebettete Gerite mit drahtlosen Verbindun-
gen beinhaltet. Um unsere Uberlegungen zu motivieren und prézisieren,
priasentieren wir eine Beispielanwendung aus dem Bereich Telemonitoring
im Gesundheitswesen im Detail. Diese Anwendungen benoétigen Unter-
stitzung durch das Kernthema dieser Doktorarbeit; effizientes und zuver-
lassiges Datenstrommanagement. Natiirlich werden Effektivitat und Flexi-
bilitat als notwendige Voraussetzungen fiir erfolgreiche Anwendungen nicht
ausser Acht gelassen.

Das Hauptaugenmerk der Arbeit umfasst drei Bereiche: Erstens ana-
log zu den Isolationsebenen in SQL definieren wir ein Modell fiir zuver-
lassiges DSM basierend auf Zuverlidssigkeitsebenen. Dazu beschreiben wir
notwendige Konsistenzbedingungen in verteiltem DSM. Zweitens prisen-
tieren und analysieren wir einen neuartigen Algorithmus fir zuverlissiges,
verteiltes DSM, namentlich Effizientes Koordiniertes Operator Checkpoint-
ing (ECOC). ECOC basiert auf dem prasentierten DSM Model und garantiert
sowohl verlustlose als auch verzogerungsbegrenzte Zuverlissigkeitsebenen.
Daher ist ECOC in kritischen Anwendungsbereichen einsetzbar welche
keinen Verlust von Daten erlauben. Der ECOC Ansatz erlaubt feingranulare
Sicherungen auf Operatorebene welche eine effiziente und flexible Nutzung
der vorhandenen Ressourcen im Netzwerk ermoglichen. Im Weiteren ist
ECOC optimiert um die Kosten fiir Zuverlassigkeit in Bezug auf Netzwerk-,
CPU-, und Speicherbedarf zu begrenzen. ECOC unterstitzt komplexe Aus-
fiihrungsgraphen von Datenstromoperatoren mit Vereinigungen, Verzwei-
gungen und sogar Zyklen. Drittens préasentieren wir eine detailliere Analyse
des Laufzeitverhaltens des ECOC Algorithmus im fehlerfreien und fehler-
behafteten Fall in einem Servernetzwerk und einem Netzwerk von mobilen
Geraten.

Zum Schluss unserer Arbeit demonstrieren wir die Anwendbarkeit un-
seres Ansatzes mit Hilfe einer anschaulichen Implementierung einer Tele-
monitoring Beispielanwendung aus dem Gesundheitswesen unter Verwen-

dung von verschiedenen physiologischen und anderen Sensoren. Die Analyse
des Laufzeitverhaltens und der Demo-Prototyp basieren auf der OSIRIS-SE
Implementierung eines verteilten zuverlassigen Datenstrommanagementsys-
tems. Die Implementierung in Java ermoglicht die Ausfithrung der gleichen
Software sowohl auf mobilen als auch auf Server-Geraten.

Abstract

The proliferation of sensor technology, especially in the context of em-
bedded systems, and the progress of ubiquitous computing strongly supports
new types of applications that make use of streams of continuously generated
sensor data. Applications like telemonitoring in healthcare or roadside traf-
fic management systems urgently require reliable data stream management
(DSM) in a failure-prone distributed setting including resource-limited mobile
and embedded devices. In order to motivate and illustrate our considerations,
we investigate an application in the field of telemonitoring for e-health in de-
tail. Telemonitoring applications in healthcare are demanding the key issue
of this thesis, namely efficient and reliable data stream management. Due to
its importance for applicability, effectiveness and flexibility is also considered
in this work.

The main contribution of this thesis is threefold. First, in analogy to the
SQL isolation levels, we define a model for reliable DSM based on levels of re-
liability and describe necessary consistency constraints for distributed DSM.
Second, we present and analyze a novel algorithm for reliable distributed
DSM, namely efficient coordinated operator checkpointing (ECOC) based on
this model. We show that ECOC provides lossless and delay-limited reliable
data stream management and thus can be used in critical application domains
such as healthcare, where the loss of data stream elements cannot be toler-
ated. The ECOC approach considers fine-grained backups at operator level,
which allows for the flexible and efficient usage of available resources in a net-
work. Moreover, ECOC is optimized to reduce the overhead of checkpointing
and to support complex stream process execution graphs, which include joins,
splits and even cycles within data stream flows. Third, we present detailed
performance evaluations of the ECOC algorithm running in a network of both
stationary server nodes and mobile, resource-limited devices.

Finally, the applicability of our approach is presented by an e-Health tele-
monitoring demo prototype developed with real-world sensors within this the-
sis. All evaluations and the demo application are based on the distributed
DSM infrastructure prototype OSIRIS-SE. The Java implementation allows
for running the same software on both mobile and stationary devices.

Acknowledgements

Firstly, I want to thank my advisor, Prof. Dr. Heiko Schuldt, for valuable
discussions, advice, and encouragement during the years of my Ph.D. studies.
The work presented in my thesis has started at the University of Health Sci-
ences, Medical Informatics and Technology (UMIT) in Tyrol, Austria. In the
year 2006 the work migrated to University of Basel, Switzerland. Prof. Dr.
Heiko Schuldt gave my the opportunity to join his group. He was already sup-
porting my work when we were together at UMIT although I was not member
of his research group.

Secondly, I want to thank my former adviser at UMIT, Prof. Dr. Hans-Jorg
Schek for giving me the opportunity to start a Ph.D. career and supporting
me with valuable discussion and advices in the beginning of this work.

I wish to thank my second reviewer, Dr. Paul Lukowicz at University of
Passau, Germany, for his willingness to review my thesis and for his time and
effort in doing this.

This thesis could not have been possible without financial support from
different projects. I am graceful that the following projects have supported
work done within this thesis:

e Health Monitoring (IT-based support and care for people in need of care),
funded by Health Information Technologies Tyrol (HITT) and Tiroler
Zukunftsstiftung at UMIT.

e DELOS (Network of Excellence on Digital Libraries), funded by the Eu-
ropean Union in the 6th Framework Programme at UMIT.

e DELOS (Network of Excellence on Digital Libaries), funded by the Swiss
State Secretariat for Education and Research (SER) under contract No.
SBF 03.0546-3 at University of Basel.

I am very grateful to all of my colleagues and friends in the Department of
Computer Science at University of Basel and at UMIT, for many helpful dis-
cussions and a pleasant working environment. In particular, I thank Michael
Springmann for many valuable discussions on the topic and help on revising
the final version of the thesis.

Basel, May 2008

Gert Brettlecker

Vi

Contents

Kurzfassung

Abstract

Acknowledgements

1

Introduction

1.1 Trends and Applications
1.1.1 Trends and Applications in Healthcare
1.1.2 Trends and Applications in other Domains

1.2 Requirements for DSM infrastructures.

1.3 Contribution

1.4 Structure ofthe Thesis

Motivation

2.1 e-Health Applications with DSM Demand
2.1.1 Telemonitoring Applications
2.1.2 e-Inclusion & Ambient Assisted Living.
2.1.3 Wellness and Lifestyle Monitoring

2.2 DSM in Healthcare Present and Future
221 ThecurrentState
2.2.2 Vision for the Future

Data Stream Management Infrastructure

3.1 The Hyperdatabase Vision
3.1.1 The HDB-Architecture
3.1.2 Basic Functionality of the Hyperdatabase System .

3.2 Extending the Hyperdatabase for Data Streams
3.2.1 DataStreams
3.2.2 Stream Processes vs. Workflow Processes
3.2.3 Additional HDB-Functionality for DSM

Data Stream Management Model

4.1 Basic Data Stream Model
4.1.1 Data Stream Management System (DSMS)
4.1.2 Data Streams and Data Stream Elements
4.1.3 Operator Type (OT)

25
26
28
31
32
32
33
35

Contents

7

viii

4.1.4 Stream Process Definition(SPD)
4.1.5 Stream Process Execution
4.2 Outside World Interactions
4.3 Well Formed Stream Process Definitions
4.4 Well Activated Stream Process

Reliable Data Stream Management
5.1 Reliability Levels of Stream Process Execution
5.2 FailureModel
5.3 States within Stream Process Execution
5.4 Consistency Within a Stream Process
5.5 Distinction Between Delays and Failures
5.6 Failure Handling of the DSM Infrastructure
5.7 Operator Migration
5.8 Operator Checkpointing
5.8.1 Consistency Requirements on Checkpointing
5.8.2 Overhead of Operator Checkpoints
5.9 Uncoordinated Operator Checkpointing
5.10 Efficient Coordinated Operator Checkpointing
5.11 Extensions of ECOC for Joins and Cycles

Implementation

6.1 The OSIRIS Infrastructure Implementation.
6.1.1 Implementation Details of the OSIRIS Infrastructure . .
6.1.2 Process Execution within OSIRIS

6.2 The OSIRIS-SE Infrastructure Implementation
6.2.1 Global Repositories
6.2.2 Extended OSIRIS-Layer
6.2.3 OSIRIS-Layer Tasksfor DSM
6.2.4 Stream Process Execution with OSIRIS-SE

Evaluation

7.1 Real-World Example Application Prototype

7.2 Performance Evaluations
7.2.1 Evaluation Settings
7.2.2 Investigated Parameters
7.2.3 Evaluation Stream Processes
7.2.4 Procedure of Evaluation
7.2.5 Performance Evaluations on Mobile Computers
7.2.6 Performance Evaluations on Stationary Devices
727 Summary e e e e

55
56
63
64
66
68
69
72
73
74
78
80
84
88

93
93
93
97
98
98
99
100
103

Contents

8 Related Work 143
8.1 Reliability of Distributed Systems 143
8.2 Data Stream Management Research 146

8.2.1 Reliability Aspects in DSM Research 152
8.3 Related Workine-Health 157
8.3.1 Physiological Telemonitoring Projects 157
8.3.2 e-Inclusion and Ambient Assisted Living Projects 161
8.3.3 Wellness Monitoring Projects 162
8.3.4 Commercial Products in e-Health and Wellness Monitoring164

9 Conclusion & Outlook 169
9.1 Contribution 169
9.2 Outlook to Future Research 171

Bibliography 193

List of Figures

1.1 Information Management Infrastructure for Healthcare. 7
1.2 Structureofthe Thesis. 12
2.1 Information Processing between Patient and Caregiver in a
Telemonitoring Application. 15
3.1 An Example Process Definition 27
3.2 The Hyperdatabase Architecture 29
3.3 HDB Metadata Replication 30
3.4 An Example Stream Process Definition 34
3.5 The Extended Hyperdatabase Architecture 37
4.1 Operator TypeModel 44
4.2 Example Stream Process Definition 46
4.3 Operator Model 48
4.4 UML Diagramm of the DSM Model 49
45 OutsideWorld, 50
5.1 Relationship between Reliability Levels of DSM 61
5.2 Statesofa Stream Process 65
5.3 Temporal Behavior of a Failure 69
5.4 Operator Migration 72
5.5 Single Failure Scenario 76
5.6 Multiple Failure Scenario 77
5.7 Transfer State Size 79
5.8 Checkpoint Overhead (CO) 80
5.9 Uncoordinated Checkpointing 81
5.10 Pseudocode of Uncoordinated Checkpointing 82
511 ECOCOverview o i ittt i it et et e e 85
5.12 Pseudocode of ECOC 87
5.13 Extended ECOC 89
5.14 Pseudocode Optimized ECOC 90
5.15 Cycles with Optimized ECOC 91
6.1 TheOSIRISLayer. 96
6.2 The OSIRIS Process Execution 97
6.3 The Stream Enabled OSIRIS(SE) Layer 101
7.1 Application Prototype Setup 106

LIST OF FIGURES

Xii

7.2 Application Prototype Demo Process 108
7.3 The Evaluation Stream Processes 111
7.4 The setting of the mobile evaluation 114
7.5 Network overhead during failure-free runtime in mobile setting 114
7.6 The ratio of extended backups for Stream Process2 116
7.7 Delay of pending checkpoints during failure-free runtime 117
7.8 CPU load during failure-free runtime 118
7.9 JVM memory consumption during failure-free runtime 118
7.10 Recovery Time e 119
7.11 CPU load during Recovery Time 119
7.12 JVM memory consumption during Recovery Time 120
7.13 CatchupTime, 120
7.14 CPU load during Catchup Time 121
7.15 JVM memory consumption during Catchup Time 121
7.16 Network overhead during failure-free runtime in stationary set-

ting e e e e e 123
7.17 Ratio of extended checkpoints during failure-free runtime ... 126
7.18 Delay of pending checkpoints during failure-free runtime 127
7.19 CPU load during failure-free runtime 128
7.20 JVM memory consumption during failure-free runtime 129
7.21 Recovery Time Single Failure 130
7.22 Recovery Time Multiple Failure 131
7.23 CPU load during Recovery Time Single Failure 132
7.24 CPU load during Recovery Time Multiple Failure 133

7.25 JVM memory consumption during Recovery Time Single Failure 134
7.26 JVM memory consumption during Recovery Time Multiple Fail-

1 135
7.27 Catchup Time Single Failure 136
7.28 Catchup Time Multi Failure 137
7.29 CPU load during Catchup Time Single Failure 138
7.30 CPU load during Catchup Time Multi Failure 139

7.31 JVM memory consumption during Catchup Time Single Failure 140
7.32 JVM memory consumption during Catchup Time Multi Failure 141

List of Tables

5.1 Categorizationof States 74
7.1 Operator Provider in Mobile Environment 113
7.2 Transfer Rates for Stream Process1 115
7.3 Transfer Rates for Stream Process 2 115
7.4 Operator Provider in Server Environment 122
7.5 Transfer Rates for Stream Process1 122
7.6 Transfer Rates for Stream Process 2 123
7.7 Transfer Rates for Stream Process3 124

7.8 Transfer Rates for Stream Process4 124

Introduction

1.1 Trends and Applications

In recent years, the proliferation of pervasive computing, wireless communi-
cation and sensor technology has spawned a variety of new applications in
the area of Data Stream Management (DSM). In general, these applications
are continuously monitoring the real world environment to extract and derive
relevant information from multiple sensor streams. In the near future, ubiq-
uitous and pervasive computing are starting to infiltrate people’s daily life
and generate an increasing amount of continuously generated data [Mat01].
In particular, research in the field of sensor networks is focusing on necessary
sensor node hardware, wireless networking, and basic processing algorithms.
For example, TinyOS [HSW*00a] provides an open-source operating system
for wireless sensor networks.

A challenging task is the extraction of relevant information coming from
heterogeneous data streams produced by various different devices and sen-
sors. In particular, we have to consider the inherent distributed setting con-
taining multiple different components, i.e., mobile and embedded devices,
where failures are likely to happen. A conference on research challenges in
information systems [J703] has highlighted the task to build “systems you can
count on” as one of five major research issues in IT for the future. These new
circumstances in pervasive and ubiquitous computing environments raise
new issues in information management which traditional database systems
(DBMS) never designed to meet [GO03]. Similarly, conventional workflow
and process support systems are tailored to execute processes at dedicated
points in time and not to keep them continuously running to process streams
of data. A proposed solution for the task of managing continuously gen-

1 Introduction

erated data in near real-time is data stream management (DSM). Various
groups [BBCT04, C*03, BBD"02, SKK04, YG03, CDTWO00] are currently in
research for new paradigms and techniques to handle and process informa-
tion flows like a DBMS does with static data. In addition to those rather
generic approaches investigated by these groups, we focus in this thesis on
an application-driven approach. Therefore, an important part of this thesis
is the presentation of major application areas for DSM particularly in health-
care and the analysis of their general properties. Extensibility and flexibility
of the proposed DSM infrastructure allows for executing disease — or more
general — scenario specific DSM operations. While DSM is quite promising, it
is not enough. The increased number of heterogenous components, (mobile)
devices, and platforms leads to an increased failure probability. Reliability
and provable correctness are new challenges [J703] that are of utmost impor-
tance for various real-world applications, i.e., in healthcare.

1.1.1 Trends and Applications in Healthcare

Within this thesis we emphasize in particular on an important field for appli-
cations of data stream management — applications in healthcare. The follow-
ing, we present three reasons why we focus on these applications:

e Demand for automated DSM in future to increase quality of patient’s
life.

e Challenging environment incorporates mobile and stationary devices.

e Healthcare applications require highest reliability. Failures may have
severe consequences.

Telemonitoring in healthcare (TM) allows healthcare institutions to contin-
uously monitor their patients at home while they are out of hospital in an on-
line fashion, which is especially useful for measuring the effects of treatments
under real-life conditions as well as for managing various chronic diseases or
even to immediately react to critical pathological changes. Technically, TM
aims at dynamically gathering, managing, processing, and storing physiolog-
ical data usually provided by a network of smart sensors.

The demand for TM is increasing due to the progression of chronic ail-
ments in an aging society. Chronic ailments such as cardiovascular diseases,
hypertension, and diabetes affect a significant number of the western popu-
lation [Ame07, Sop05]. According to a survey of the American Heart Asso-
ciation [Ame07], in particular cardiovascular diseases are the leading cause
of death in the US. Europe is facing a similar situation [Sop05]. Moreover,

2

1.1 Trends and Applications

if we consider our aging society [Eur05], the amount of elderly people suffer-
ing from one or more chronic diseases will be increasing. Chronic ailments
are frequently combined with general age-related impairments (e.g., visual
and tactile impairments) and mental diseases (e.g., Alzheimer). The health-
care system has to face this problem and increase its effectiveness in order to
avoid exploding costs.

Online telemonitoring is a rather novel domain and still topic of inten-
sive research [SB06, Sac02, WSN*00, AWL"04, Mob03]. Research in this
fields needs interdisciplinary cooperation of experts from various fields such
as electrical engineering, computer science, networking, information manage-
ment, (biomedical) signal processing, and - of course - medicine. In the field
of electrical engineering, telemonitoring greatly benefits from recent trends
in smart sensors and ubiquitous and wearable computing (e.g., smart shirts
[GTWO03, Sen07], ring sensors [ASR"03], or smart bandages [NAS00]). As a
result, a new generation of sensor systems currently emerges that allow for
non-invasive monitoring of an increasing number of patients and diseases.
In the field of networking, wireless network connections with both minimal
stand-by and transmission power consumption are needed to increase the life-
time of sensors and to avoid unnecessary perturbation of the system. Experts
from biomedical signal processing provide efficient and effective algorithms
for the (pre-) filtering of sensor signals and the processing of these signals
that allows to extract critical and/or medical relevant information. Moreover,
experts from the medical domain are needed to elaborate use cases and eval-
uate the benefit of TM for the therapy of patients. Finally, from an informa-
tion systems point of view, an efficient and reliable software infrastructure is
needed that supports continuous processing of data streams, like the system
and implementation described in this thesis. Until today, reliability of DSM
infrastructures has received little attention in research given it’s utmost im-
portance for various applications, i.e., healthcare applications. Apparently,
reliability is of utmost importance for healthcare applications. Patients and
caregivers need to fully count on the TM system. Failures have to be com-
pensated by the TM system in order to continue TM. Compensation can by
done by using alternative available nodes for processing or alternative com-
munication channels. Nevertheless, if the failure situation is too severe to
continue monitoring, the TM system has to raise an appropriate alarm in a
reliable way. Such an alarm has to inform both the patient and the caregiver
that online monitoring is currently not available and give hints on how the
issue can be fixed as soon as possible. For example, informing the patient to
replace batteries of a mobile device or calling a technical assistance service.
The existence of a failure in a TM system without knowledge to the patient or
caregiver may have severe consequences.

1 Introduction

Recent developments are trying to push the TM scenario even more ahead.
E-inclusion is emphasized by the EU as a strategic objective [Eur06] in order
to allow elderly and impaired people to benefit from modern ICT and prevent
the further growth of a so-called “Digital Divide” in society. Research in the
context of e-inclusion tackles the ambitious scenario of ambient assisted living
(AAL). AAL aims to develop a smart home infrastructure in order to support
an independent living for the handicapped people as long as possible at home.
The projects in this domain are most challenging, because all issues of TM
applications above are relevant to a high degree and simultaneously here. El-
derly people tend to suffer from chronic diseases, that require TM. Additional
age-related impairments make independent living at home difficult and there-
fore assistance for daily activities is required, and comfort services will foster
social contacts and prevent them from isolation. From the perspective of sen-
sor technology, this does not only require wearable sensors but also sensors
that are integrated into the smart-home environment (e.g., “intelligent car-
pets” [SLO7] measuring the position of a person and also his/her activity, i.e.,
whether a person is active —moving— or whether he/she fell down).

1.1.2 Trends and Applications in other Domains

The work presented in this thesis is not limited to the healthcare domain.
Similar issues arise also in other applications domains as for example:

Road Traffic Management

Industrial Process Automation

Environmental Monitoring

Structural Health Monitoring
e Power Grid Monitoring

Monitoring and managing the traffic on roads is an application area of in-
creasing importance during the last decades [CHKSO03]. Obviously, increasing
the utilization of streets is far cheaper than building new streets. Recent de-
velopments apply sensor networks on the streets (toll monitoring) as well as
built into cars (GPS, road conditions). The huge amount of streaming traf-
fic information data needs to be processed in a fast and reliable manner, so
that the relevant information is extracted and relayed to all participants of
road traffic in a soft real-time fashion. In near future, the number of sensors
and also the number of participants receiving information will reach up to the
number of millions, with some of the sensors delivering readings every second.

4

1.2 Requirements for DSM infrastructures

Therefore, scalable, reliable DSM systems are required. These systems can
provide various benefits for road traffic management, like improved safety,
better utilization of roads, lower traveling times, increased consumer com-
fort, and —recently most important— reduction of carbon dioxide emissions.
Last but not least, reliability of such applications is an important aspect. The
breakdown of a traffic management system due to a failure will cause heavy
congestions with severe consequences for the environment and the economy.

Another application area with similar data stream management demands
is industrial process automation [CHK"06]. Modern factories are equipped
with vast amount of sensors monitoring the production processes and provid-
ing continuous streams of process and machine data. Extraction of relevant
information will provide important support for business decision making or
optimization of the production processes. Of course, reliability of the DSM
infrastructure is again important in this scenario. Failures may have severe
economic consequences or even influence the safety of the running industrial
process, i.e., the factory workers.

Environmental monitoring with sensor networks has also demand for reli-
able data stream management. Considering surveillance systems of volcanic
activity [WALJ106], tsunamis [CLDO08], or oil spills [HJR"98], malfunction
may have severe impact on people and environment.

Structural health monitoring [CFP106] assesses the structural integrity
of bridges, buildings, and aerospace vehicles. Obviously, the reliability of the
monitoring system is of utmost importance to prevent harm due to suddenly
occurring degradation in these structures.

Power grid monitoring [YDHHO06] is another field of application for DSM.
The increasing power consumption of the industrial world leads to increasing
utilization of existing power grid lines. Better control of the utilization by an
reliable DSM system prevents from economic burden and danger of blackouts
due to overload situations.

1.2 Requirements for DSM infrastructures

The presented applications by far exceed the capabilities of existing database
systems [GOO03] in terms of processing and storing continuous data streams
but also in terms of support for distributed pervasive computing environ-
ments. Similarly, conventional workflow and process support systems are tai-
lored to execute discrete processes at dedicated points in time. Data stream
processing, however, require processes to run continuously. Services as ba-
sic activities in discrete processes are now accompanied by operators which
continuously process data streams in continuously running stream processes.

5

1 Introduction

Contrarily to the world of discrete services, data stream operators are state-
ful. This means that these operators produce results not only depending on
the current input stream data but also input stream data received previously
by continuous modification of an operator state during runtime, e.g., a data
stream operator calculating the average heart beat frequency within the last
hour. Obviously, in case of failures the recovery of operator states is neces-
sary to produce correct results. Special requirements are also needed for the
storage of streams, or for joins between streams in order to combine the data
produced by different sensors. The bottom line is that existing information
management infrastructures, which only support discrete processes or trans-
actions, have to be extended in order to continuously execute stream processes
in a volatile pervasive computing environment. Nevertheless, the presented
applications are not limited to streaming data because e.g. telemonitoring as
well as road traffic management requires traditional discrete processing of
data. For example, results from TM have to be stored in the electronic health
record of the patient or the traffic volume at critical crossroads today have to
be stored in statistic database for later analysis. Therefore, we propose in this
thesis an integrated information management infrastructure supporting both
traditional discrete process management and data stream management (see
Fig. 1.1).

In the following, we present a list of the four most important requirements
a DSM infrastructure has to provide:

e Integrated Continuous DSM and Discrete Information Management
e Reliability

e Support for Distributed Pervasive Environments

e Flexibility

Reliability: For various application domains (e.g., health monitoring and
e-Inclusion), a stringent requirement is that the underlying information man-
agement infrastructure implementing DSM is highly dependable since its
correct functioning may be potentially life-saving or preventing other severe
events. Contrarily, the distributed environment consisting of many connected
devices, both mobile and stationary, combined with unreliable wireless com-
munication implies a high failure probability compared to distributed com-
puting scenarios involving only administered server computers and Ethernet
connections, e.g., it is very likely that a roadside sensor gets damaged due
to an accident or even caused by animals or a wireless connection gets tem-
porarily hampered by interference. Applications in these areas have to be
fault tolerant because failures are much more likely to occur than in centrally

6

1.2 Requirements for DSM infrastructures

Physicians and emergency service

Information Management Infrastructure SE N fses
N <::|;J> .-
ervice
»| Operator
P \ Service
/ Operator » Operator l

Service

Operator

Service

Data Stream Process
Management anagement
Failure Handling / Reliability \ / \,
M "4

Patients with sensors

Caregiver / electronic health records

Figure 1.1: Information Management Infrastructure for Healthcare.

controlled applications (e.g., banking server). This means the DSM infras-
tructure has to cope with failures and therefore has to apply sophisticated
failure handling techniques in order to compensate and continue the applica-
tion seamlessly or to invoke reasonable failure handling at application level.
In here, dependability comes with several flavors.

First, the information management infrastructure has to be highly avail-
able and reliable in order to provide dedicated quality of service guarantees,
for example in terms of the real-time aspects of the data streams being pro-
cessed during runtime. Critical situations have to be detected immediately
and alarms have to be raised on the spot; no delay due to overload situations
of the infrastructure can be tolerated. Even in case of failures, e.g., a mobile
device is going down because of empty battery, the stream processing should
be continued seamlessly if there are enough available resources (devices) that
can backup for the failed ones.

1 Introduction

Second, the process-based applications have to be built in a way that cor-
rect failure handling is guaranteed (e.g., by following a reliability model as for
transactional processes [SABS02]). This also means that applications, since
they are vital to their users, have to be verified a design-time whether they
will behave correctly, even in failure situations.

In general, different application domains have different requirements in
terms of reliability and quality of data processing. Currently, there is no com-
mon model for specifying quality and reliability constraints for DSM applica-
tions demanded from a DSM infrastructure.

Distributed Environment: As an additional requirement imposed by
the presented applications, we have to consider DSM as a task inherently per-
formed in a distributed pervasive computing environment. Therefore, a novel
DSM infrastructure has also to support embedded and mobile devices, like a
patient’s PDA of the health telemonitoring scenario or a roadside sensor unit
of the traffic management scenario. A crucial requirement on this infrastruc-
ture for DSM is to take into account that users and patients, i.e., when being
monitored in an out-of-hospital environment, are usually mobile. Mobility of
users and patients poses a set of challenges to the design and development
of an information infrastructure for DSM. However, even when a device (e.g.,
a PDA carried by the patient) is disconnected or the some device fails, data
streams produced by some local (body) sensors still have to be processed and
stored by using the still available resources. Thereby it is important to take
limited CPU and storage resources into account and therefore use resources
efficiently.

Flexibility: In order to allow for fast adaptivity and reusability, DSM and
discrete processing applications are not monolithic but should be designed out
of basic building blocks (e.g., programs for sensor data filtering or processing,
noise reduction, access to medical databases or electronic patient records, etc.)
as it is state of the art in the world of service oriented architectures [Ley05].
Each of these DSM building blocks (or data stream operators) provides cer-
tain services that can be invoked. Application development in this context
therefore requires to seamlessly combine these building blocks into a coherent
whole rather than developing programs from scratch. Workflows or processes
are a means to combine existing services also in the world of DSM. For ex-
ample, the disease pattern of patients varies over time and the system should
allow to tailor stream processing to the current monitoring needs of an elderly
person or a patient. This includes new types of sensors, new types of services,
new types of processes, etc., that must be supported.

8

1.3 Contribution

1.3 Contribution

In this dissertation, we present a novel information management infrastruc-
ture for integrated reliable data stream and discrete process management. A
vision for the future is that such an infrastructure is able to cope with the
discrete and streaming data processing demands of modern distributed ap-
plications mainly coming from the pervasive and ubiquitous computing area
so as the presented applications. Moreover, we want to emphasize in this
thesis on achieving a very high degree of reliability for these applications al-
though they are running in a volatile distributed setting where failures are
very likely to happen. Nevertheless, the infrastructure is able to use available
resources efficiently and compensating failures seamlessly and transparently
for the application.

In order to realize the vision of this information management infrastruc-
ture and meet the requirements for DSM infrastructures stated in Section 1.2
this dissertation makes the following main contributions:

e Overview of healthcare application research and issues targeted by ap-
plication research (see Chapter 2).

e Definition of a formal model for data stream management which is capa-
ble of covering the application issues (see Chapter 4). Moreover a formal
reliability model for DSM is covering the important reliability aspects
and is giving a formal framework for the reliability strategy algorithms.
In order to proof correctness of algorithms, we define different reliability
levels of DSM (see Section 5.1) which describe the degree of allowed fail-
ures in data streams by still be considered as correct DSM processing.
The presented reliability levels cover the three orthogonal failure condi-
tions of data streams; loss of data stream elements, delay of data stream
elements, and order of data stream elements. In this thesis, we have in-
tentionally not modeled accuracy of data stream elements as reliability
criteria of the general DSM model, because we state that in particular
for healthcare applications inaccurate DSM processing is generally not
tolerable. Inaccurate data stream elements are considered as invalid
and therefore result in loss of data stream elements.

e Development of a suitable efficient reliability strategy for DSM to allow
for effective and efficient operator migration in case of failures or over-
load situations in Peer-to-Peer fashion by keeping lossless reliability. As
opposed to to most research in the field of DSM [HBR"05, BBMS05,
BBC*"04, SHB04, C*03], the presented reliability strategies for DSM in

9

1 Introduction

10

this thesis are performing at the data stream operator level in a dis-
tributed environment. Reliability at the operator level and not at the
level of a whole stream processing node allows for a fine grained load re-
distribution in case of failures or overload situations, which is called op-
erator migration (see Section 5.7). Based on operator migration, this the-
sis presents and evaluates a new reliability protocol, called Efficient and
Coordinated Operator Checkpointing (ECOC) (see Section 5.10), to re-
duce the drawbacks of passive standby approach presented in [HBR05],
i.e., high runtime and recovery overhead. Optimizations of ECOC sup-
port real world stream processing scenarios having complex distributed
operator graphs including joins, splits and even cycles.

Design and implementation of an integrated DSM and process man-
agement infrastructure as successor of the existing process manage-
ment infrastructure OSIRIS [SWSS04, SST*05, SWSS03] (see Chap-
ter 6), which is called OSIRIS-SE (Stream Enabled) [BS07, BSS06,
BSS05]. Since the original OSIRIS has been implemented in propri-
etary C++ limited to Windows platforms, we have re-implemented the
basic OSIRIS process management functionality in Java in order to al-
low for platform independence, i.e., to support mobile and embedded de-
vice platforms that offer an appropriate Java virtual machine. More-
over, we have integrated the support for reliable execution of contin-
uously running DSM processes or stream processes in the Java-based
OSIRIS-SE infrastructure. Essentially, stream processes have to be con-
tinuously fed with incoming sensor data. An important requirement is
also to provide an easy-to-use graphical interface that can be used by
non-programmers (e.g., physicians or care personnel) to design new or
to revise existing patient- and/or disease-specific stream processes. For
this reason, OSIRIS’s process design tool O’Grape [WSN'03] has also
been extended to support the design of stream processes.

The experimental evaluation in Chapter 7 is twofold. One aspect is to
provide a demonstrator illustrating a simplified real world telemonitor-
ing scenario by incorporation of a set of real world sensors and mobile
devices. The second aspect is performance evaluation on both server
hardware and mobile devices. For these evaluations we still use real
sensory data which is processed during evaluations. Moreover, these
evaluations cover both the performance during the normal (failure-free)
runtime of the system and the performance during the phase when re-
covering from failures.

1.4 Structure of the Thesis

1.4 Structure of the Thesis

This thesis is organized as presented in Fig. 1.2. Chapter 2 presents an
overview of application areas in the healthcare domain of relevance for
DSM. This chapter presents a visionary healthcare application scenario used
throughout the thesis. In Chapter 3, we describe the DSM infrastructure
based on the hyperdatabase concept and how the concept has been extended
in order to support DSM processing. In Chapter 4, we introduce a formal
model for DSM. The model is based on assumptions that are derived from the
analysis of application specific requirements. In Chapter 5, we introduce re-
liability levels and consistency within a distributed DSM system. Based on
this formalism, reliability algorithms are presented which guarantee correct
DSM processing even in case of failures. The presentation of the reliabil-
ity algorithm is based on the formalism presented in Chapter 4. Moreover,
this formalism allows to proof the introduced reliability algorithms theoreti-
cally. Chapter 6 describes the implementation of the DSM infrastructure in
OSIRIS-SE. Technical details on the implementation of the basic OSIRIS sys-
tem and the DSM extensions of are presented. Chapter 7 empirically proofs
the applicability and performance of the presented DSM infrastructure and
in particular the presented reliability algorithms through exhaustive evalua-
tions within the real-world infrastructure implementation of OSIRIS-SE. In
Chapter 8, we survey related work in the field of reliable data processing and
data stream management. Moreover, we discuss the differences compared to
our approach. In addition, the chapter introduces relevant application specific
research and derives common issues with respect to a DSM infrastructure re-
quired by these applications. Finally, Chapter 9 concludes in summarizing
the impact of the presented work and discussion of open and future research
issues.

11

1 Introduction

Introduction (Chapter 1)

Motivation

(Chapter 2)

Data Stream Management Model
(Chapter 4)

Reliable Data Stream Management
(Chapter 5)

(Chapter 3)

Implementation
(Chapter 6)

Evaluation
(Chapter 7)

Data Stream Management Infrastructure

Related Work Conclusion & Outlook
(Chapter 8) (Chapter 9)

12

Figure 1.2: Structure of the Thesis.

Motivation

In this chapter, we motivate the applicability of DSM to various application
domains. In particular, we introduce applications in the e-health field with
relevance for DSM and discuss the influences of new trends such wearable
and pervasive computing. In order to get a more precise view of the appli-
cation, we present a motivating telemonitoring application scenario in detail
and propose a novel DSM application system as a vision for the future. This
example application scenario is used throughout the remainder of the thesis
for motivation and illustration purposes.

2.1 e-Health Applications with DSM Demand

2.1.1 Telemonitoring Applications

Chronic ailments such as cardiovascular diseases, hypertension, diabetes,
overweight, or cognitive impairments (e.g., Alzheimer disease) are important
candidates to develop novel e-Health systems and consequently giving benefit
to a significant number of the western population [Ame07, Sop05, Eur05]. In
this thesis, we focus on telemonitoring (TM) applications in healthcare. TM
applications enable healthcare institutions first to take care of and control
therapies regarding their patients while they are out of hospital. Secondly,
they serve as instrument for performing research and for accomplishing med-
ical studies. Thirdly, they allow for triggering of emergency services in case
of severe health conditions. Finally, they can offer additional comfort services
as by-product, like assistive services, information services and communica-
tion services. As a consequence, the patient’s disease will be better managed
with less hospitalization (which usually has physical and emotional impact)

2 Motivation

and higher quality of life [BBGA03, RBS*02, RSB*01, RKH03, SSP01]. Ad-
ditionally, TM applications provide a major financial benefit compared to tra-
ditional care [DPSB01]. A prognosis for the year 2013 [HAHKO02] expects
the use of direct permanent monitoring of patients’ vital signs, as well as the
direct synchronous transfer of this sensory data to significantly increase. A
study in [BBGAO3] compares the outcomes of using a TM system for home
health care of chronic heart failure patients to traditional home nurse visits.
The results show that TM improves the patients health status and reduces
cost of care. Pathologic changes in vital signs are detected early [KWSBO02],
which allows for easy intervention while the patient is still at home and
avoids hospital readmission. Hypertension is a second major health risk in
our western society. A randomized controlled trial [RBS*02] shows that TM
improves the diagnosis of essential hypertension. Diabetes is a third chronic
disease with a high prevalence which can benefit from TM. At Columbia Uni-
versity, a TM project was conducted in which 1.500 participants are monitored
[SSW'02b]. The outcome of the project is that fast intervention and feedback
from the healthcare provider will allow for better control and maintenance of
glucose level and blood pressure compared to usual care. Obviously, a vital
requirement in telemonitoring is that the application provides a high degree
of reliability and availability, since it can potentially be life-saving. Therefore,
TM is considered to significantly enhance the quality of patients’ lives and to
increase overall quality of care, even in out-of-hospital conditions with major
reduction of costs [DPSBO1].

In order to remotely monitor a patient’s health status, a network of wear-
able sensors is attached to the subject’s body. Depending on the necessities of
the concrete medical case, the sensors take periodic measurements of physio-
logical parameters such as electrocardiogram (ECG), heart rate or blood pres-
sure as well as activity/context parameters such as location, velocity, or ac-
celeration [Ana03]. Since the utility value of the raw sensory data is rather
low [MFHHO02], it has to be processed (e.g., filtering, error compensation, fea-
ture extraction) and locally stored for buffering and further analysis. These
functions can be partially performed by smart sensors, wearable, intermedi-
ary devices (e.g., PDA, smart phone) as well as by the patient’s surround-
ing IT-infrastructure (e.g., base station at home, see Fig. 2.1). For system
and device control, user interface components have to be accessible, which
can also display relevant health and system status information to the pa-
tient [WCP199]. Long-range communication (e.g., Internet over UMTS) al-
lows for transmission of already preprocessed health data of interest to the
responsible care provider for observation, diagnosis, and treatment purposes.
Furthermore, in case of emergency or critical deviation of the patient’s health
parameters from the norm, appropriate actions such as an alarm or a call

14

2.1 e-Health Applications with DSM Demand

for paramedics should be taken automatically on behalf of the system’s local
or remote data analysis and interpretation. As this overview shows, a sys-
tem consisting of multiple, physically and logically distributed information
processing components is necessary in order to remotely manage a person’s
health status.

Bl6od Pressure
Sensor
Sensors

Patients :
Bluetooth . e : ;
. | BP ECG
Mobile B & = = Pre-Processing, Aquisition Aquisition
Devices == — &4 .. Short-Term Storage,
User-Interface v
a BP ECG
i Processing, Variability Variability
Intermediate
Storage,
Base Stations User-Interface Critioal
Internet, GPRS, I I S Detection
UMTS, Modem Processing, ¥
o L Long Term Analysis, Long Term v
e o~ — Long Term Storage - Alarm
prmrae e TS | Analysis
’3\131@ _nnay Processes

Healthcare Provider <4

Figure 2.1: Information Processing between Patient and Caregiver in a Tele-
monitoring Application.

Figure 2.1 illustrates the typical setting of a telemonitoring application.
The left hand side displays the hardware and communication needed to pro-
cess the data streams along from the patient to the caregiver. On the right
hand side, we illustrate an example stream processing composed of differ-
ent specialized data stream operators which are executed at different devices
within the system. The interconnected operators build up a processing mesh,
called stream process. More details on stream processes will be presented in
Chapter 3.

15

2 Motivation

2.1.2 e-Inclusion & Ambient Assisted Living

Recent developments are trying to push the TM scenario even more ahead.
E-inclusion is emphasized by the EU as a strategic objective [Eur06] in order
to allow elderly and impaired people to benefit from modern ICT and prevent
the further growth of a so-called “Digital Divide” in society. Research in the
context of e-inclusion tackles the ambitious scenario of ambient assisted living
(AAL). AAL aims to develop a smart home infrastructure in order to support
an independent living for the handicapped people as long as possible at home.
From the perspective of sensor technology, this does not only require wearable
sensors but also sensors that are integrated into the smart-home environment
(e.g., “intelligent carpets” [SL07] measuring the position of a person and also
his/her activity, i.e., whether a person is active —moving— or whether he/she
fell down).

In this kind of monitoring applications, it is therefore necessary to consider
the context of a person. According to [Dey01], context refers to any informa-
tion that can be used to characterize the situation of an entity. Where an
entity can be a relevant person, place, or object. Research in the area of per-
vasive computing provides techniques and algorithms in order to detect the
current context based on sensor information [BKL06, BGL07].

Applied to the area of AAL, a person without current activity may be fine
at night when being located in the bedroom, but when the person does not
show any activity at daytime when being located in the floor, an emergency
situation is very likely. We are considering furthermore people suffering from
special age-related impairments and mental diseases like Alzheimer. In this
case, even more emphasis has to be put on monitoring the activity of the
person together within the current context. A warning has to be generated,
for instance, when the person tries to leave the apartment without having
switched off the oven. By all these extensions, the number of sensors, data
sources, etc., and therefore also the number of data streams that have to be
processed will significantly increase compared to the TM scenario. This, of
course, has severe consequences on the requirements to the underlying infor-
mation management infrastructure.

The integration of home automation is an essential aspect of assisted liv-
ing for elderly or impaired people. The projects in this domain are most chal-
lenging, because all issues of TM applications above are relevant to a high
degree and simultaneously here. Elderly people tend to suffer from chronic
diseases, that require TM. Additional age-related impairments make inde-
pendent living at home difficult and therefore assistance for daily activities
is required, and comfort services will foster social contacts and prevent them
from isolation. A project at the University of Florida [GHMO02], called mobile

16

2.1 e-Health Applications with DSM Demand

Patient Care-giving assistant for Alzheimer (mPCA) is aiming in this direc-
tion. The system assists the patient in difficulties of daily life. A location
tracking system tracks the position and orientation of the patient and other
important objects (e.g., pills, pets). This context information is used to find
out which activities the patient intends to do. For instance, if the patient is
standing in front of the oven, the system can assume that the patient is going
to cook. The system will also remind the patient to perform important tasks
(e.g., turning off the oven after cooking, taking the medication). All patient
activities are monitored and deliver important information for the physician
on the progress of the disease.

2.1.3 Wellness and Lifestyle Monitoring

More and more people today attach great value to a health-conscious lifestyle,
which is driven by prevention of diseases and to maintain or increase their
health status. In this context intelligent monitoring applications emerge that
are using continuous sensor data and wearable devices. These applications
are similar to the telemonitoring and ambient assisted living applications,
where both, relevant physiological parameters and the context of users are
continuously monitored and analyzed to allow for correct interpretation. Nev-
ertheless, the demand for reliability is not as important as in the two pre-
viously presented fields of application. Also, the complexity of the overall
system is not as big as in the field of ambient assisted living applications.
Usually, for wellness monitoring the setup is smaller and more focused to
specific tasks. In particular obesity is a primary concern addressed by the
users of such systems. For this reason, let us assume the necessary sensors
are invisibly in the clothes and other everyday life articles (e.g., clock, arm-
bands [Bod07], etc.) and therefore are fully wearable and ubiquitous. The
important aspect in this application area is the unobtrusiveness of the used
wearable sensors and devices, like in an unobtrusive armband worn on the
back of the upper arm [Bod07]. Since the users are not suffering from dis-
eases, there is a lack of willingness to restrict their every-day behavior due to
the monitoring. Similarly to the previous applications, the wearable devices
are wirelessly connected to a base station which receives the pre-processed
streaming data and extracts information about things such as physical exer-
cise quantity, seating position, meal times, rest periods, etc. and process them
in correlation with some continuously gathered physiological health parame-
ter, like skin impedance, skin temperature, heat dissipation. Deviations from
normal state and suggestions to improve the lifestyle can be communicated
either to the user immediately, or presented later as a result of a long-term
analysis. In general, this kind of applications can be also used for early recog-

17

2 Motivation

nition of health changes and may support medical research on development
of health problems and on prevention of diseases.

2.2 DSM in Healthcare Present and Future

The following fictitious monitoring scenario will serve as illustration of our
statements and examples throughout the course of this thesis:

2.2.1 The current State

Fred, aged 68 and retiree, lives alone in a house of his own. In the EU, 23 mil-
lion adults are suffering from diabetes [Sop05]. So does Fred, maybe undiag-
nosed since a long time. High blood pressure and diabetes often occur together
and if left untreated can lead to serious consequences for the heart [NHEBO1].
Unfortunately due to the long time of untreated diabetes and hypertension,
Fred has developed congestive heart failure (CHF) 1.5 years ago. CHF is de-
fined as a disorder causing the heart to lose its ability to pump blood efficiently
to the rest of the body. CHF may develop over weeks, months or years. Nu-
merous risk factors can compound the effects of CHF. The most controllable
of them include smoking, obesity, excessive alcohol intake, high-fat and/or
high-sodium diets, hypertension, diabetes, lack of sufficient physical activity
and lack of daily consumption of vegetables and fruits. From the patient’s per-
spective, common symptoms associated with CHF include shortness of breath,
swelling of the legs and ankles, pulse irregularity and palpitations, and dif-
ficulty with eating or sleeping. Clinically, what is typically occurring is fluid
retention around the lungs, changes in blood pressure and enlargement of
the heart. Due to his age, Fred also shows slight signs of dementia, which
unfortunately affects the effectiveness of his personal disease treatment. For
example, sometimes Fred forgets to take his medication or does not drink
enough. Without an assistive telemonitoring system, Fred has to do man-
ual random sampling of his blood pressure, blood glucose level, heart rate,
and body weight. For further examination, he has to consult his family doc-
tor frequently. Nevertheless, this manual treatment does not prevent Fred
from regularly hospitalization due to dramatic degradations of his state of
health. Recently, a water accumulation in Fred’s lungs caused an acute med-
ical emergency. During the hospital stays, Fred’s cardiac balance is restored
by medicamentous treatment. Unfortunately, this balance is very unstable
and hard to maintain by manual random sampling of physiological signs.

18

2.2 DSM in Healthcare Present and Future

2.2.2 Vision for the Future

As a vision for the future, Fred’s caregiver will decide to equip him with
a wearable health monitoring systems consisting of a smart shirt [GTWO03,
Sen07, Viv07], a ring sensor [ASR'03], a glucose measuring watch [Ani07],
and a PDA for local processing, intermediate storage, and wireless commu-
nication. This wearable setup will allow for unobtrusive monitoring of ECG,
heart rate, respiratory and sweating rates, blood pressure, blood glucose level,
blood oxygen saturation as well as motion activities, sensed with an inbuilt
accelerometer. Fred’s PDA will wirelessly communicate with the base station
of his smart home system in order to extract and forward relevant stream-
ing data to the caregiver. Overall, the distributed setup of the telemonitoring
application will be according to Figure 2.1. Besides that, Fred’s smart home
infrastructure also aggregate additional context measurements. For this rea-
son, Fred’s physical activity is detected by acceleration sensors attached at
Fred’s body and an integrated positioning system in the smart home environ-
ment. Additionally, an electronic scale is measuring body weight and fat, an
electronic medication dispenser controls medication, and an smart bed sheet
is acquiring Fred’s physical activity while sleeping. Various electric appli-
ances like, e.g., the oven, fridge, TV set are also connected to the smart home
infrastructure to enable assistive and comfort services. This additional mea-
surements allow for detection of context information. In order to interpret
Fred’s vital signs even more appropriate this additional context information
is needed, e.g., ECG signals vary if Fred is running or sleeping and in order to
make correct medical interpretation this information is necessary. Addition-
ally, sensors in the toilet are controlling the amount of water Fred is loosing
through urination. Keeping the water amount in balance is very important
in treatment of CHF. If Fred is using toilets outside of his home he has to
roughly estimate this information and enter it in his smart phone manually.
Since Fred shows slight dementia these manual tasks are likely forgotten. In
order to remind him, a microphone in Fred’s smart phone can be use to detect
the sound pattern of a flushing toilet or sensors in his underwear can detect
whether the underwear is removed. Also Fred’s drinking habits have to be
logged to control the water balance. A swallowing sensor [AAB99] integrated
in Fred’s necklace could by used to remind Fred to enter the liquid amounts
into his smart phone after eating or drinking.

Feedback and Additional Services

The smart home infrastructure also offers an feedback channel to Fred by
using different screens integrated in his environment, e.g., his smart-phone,
his TV set, or the monitor of his computer. An important issue regarding the

19

2 Motivation

feedback system is to gather the attention of persons with moderate dementia,
like Fred. An attention-capturing application is activated when a particular
task needs to be done at a given time, e.g., to go to the medication dispenser
and take the medication or doing some regular physical exercise in order to
keep healthy. By using positioning information, the smart home infrastruc-
ture is able to choose the best suitable display system for the current context
to get Fred’s attention [GHMO02]. Once the attention is captured, the system
is able to give feedback information.

For instance during a long-term therapy, some of the monitored measure-
ments are likely subject to changes, i.e., they have a general tendency. As
a result, the physician is able to send various instructions to Fred, for in-
stance to tell him to alter the dose rate of a certain medicine, which may be
automatically done by the medication dispenser within his smart home, to be
more vigilant about the diet or physical activity, or simply tell him that every-
thing is ok. The goal of treatment for Fred is to reduce his cardiac workload
and keep his glucose level constant. Accomplishing this needs a multifaceted
approach involving patient education, behavior modification, medication and
close medical supervision. Giving Fred tools and support to better manage his
disease can help him avoid the physical and emotional impact of emergency-
department visits and hospitalizations, as well as the stress surrounding the
financial burdens related to stationary or nursery care.

Additional comfort and assistive services are also offered by the applica-
tion system. For example, Fred may forget to turn off the oven after prepar-
ing a meal. If the smart home infrastructure detects that Fred is leaving the
kitchen and going to sleep (by using positioning information, acceleration sen-
sors, and physiological sensors) the oven is turned off automatically. Another
assistive service can display the cooking recipe on a screen in the kitchen.
Fred has already chosen the meal in the morning and the system has pre-
pared the shopping list. After checking his food stock and the fridge, Fred has
adapted the list on his smart phone and went shopping. Nevertheless, Fred is
still able to change his meal when he is in the supermarket. Fred can select
another meal on his smart phone which is contacting the smart home environ-
ment and an adapted shopping list is transmitted. RFID technology used for
food products may even allow the smart home environment to check the food
stock for Fred. Also the stock of medicine in the medication dispenser needs
to be controlled. If the dispenser is running out of medication, the smart home
environment is automatically getting a prescription from his caregiver. The
prescription is send to the closed pharmacy and Fred just needs to go there
and get the medication. RFID’s incorporated in medication packages allow
for the smart home environment to check whether Fred is filling the medi-
cation dispenser correctly. Another important aspect of Fred’s smart home

20

2.2 DSM in Healthcare Present and Future

environment is social networking. The system should improve the social con-
tacts of impaired persons like Fred with other persons in his surroundings,
which may also be impaired. Interconnecting smart home environments offer
a variety of new beneficial application in order to improve Fred’s autonomy
and quality of life by supporting neighborly help and reducing feeling of so-
cial isolation. For example, Fred is going shopping to a supermarket nearby
daily. Sometimes, he accidentally meets his neighbor Anna, enjoys a small
talk, and helps her with the shopping bag. Anna lives in Fred’s neighborhood,
is 76 years old, and suffers from osteoporosis. But Fred would not like to dis-
turb Anna and call her to go shopping together. In order to improve such so-
cial contacts, Fred’s smart home environment can coordinate his habits with
habits of other smart home residents. In a neutral and anonymous way, the
smart home infrastructure can ask different persons with common habits to
join their activities today, e.g., asking Anna and Fred to go shopping together.
Certainly, the smart home infrastructure has to keep the privacy of the resi-
dents and common activities need common agreement. Other habits that may
be coordinated by smart homes are card playing, doing physical activities like
walking or biking, or just meet for coffee and small talk in a nearby café.

The DSM Infrastructure of the Future

The DSM infrastructure is continuously processing the data streams acquired
from Fred’s physiological sensors and context information coming from the
smart home. An important issue in this scenario is the continuous correlation
of data from the different sources, which are integrated into the DSM infras-
tructure. For example, the correlation between skin moisture, ECG, respira-
tion rate, and acceleration information allows for detection whether sweating
was caused by physical activity or physiological disturbance. Based on contin-
uously processed data streams the current context and state of Fred’s health
is derived. This data stream processing is individually defined by Fred’s care-
giver in a graphical "boxes and arrows" approach by combination of basic
building blocks. The relevant medical information from the DSM infrastruc-
ture allows the caregiver to control treatment and immediately intervene by
e.g., modifying medication through the automatic medication dispenser. Ad-
ditionally, the caregiver is able to define individual health thresholds with are
critical for Fred. If the infrastructure detects such a critical health situation
the caregiver is automatically alerted or in severe case the emergency pro-
cess is activated (e.g., calling the ambulance). Additional obvious emergency
cases like collapse, unconsciousness, or cardiac arrest are also detected by the
smart home infrastructure and trigger appropriate emergency handling.

21

2 Motivation

Roughly estimated all data acquired about Fred will likely exceed a GByte
per day. Therefore a efficient and reliable information management DSM in-
frastructure is needed, which will provide the services to analyze incoming
data streams, and to extract and to forward relevant information to the pa-
tient and the care provider in charge. Even considering Fred’s care provider,
which is monitoring thousands of patients, reliable and scalable data stream
processing is a vital requirement for such systems. Furthermore, the infras-
tructure will provide a flexible platform for different kinds of monitoring ap-
plications and allow for monitoring patients suffering on various chronic dis-
eases by supporting individual profiles for each patient. Fred may suffer from
additional diseases in the future (and therefore also new types of data sources
and processing operations have to be integrated then). Data stream process-
ing results at caregiver side are not only stored and queried later, additionally
the information is needed to be routed directly to the relevant recipients, e.g.,
the physician in charge for Fred to adapt his medication and treatment or the
emergency service closest to the Fred home in case of severe patterns in his vi-
tal parameters. Moreover, the analysis of aggregated continuously monitored
medical information over hundreds to even thousands of patients supported
by Fred’s caregiver offers new means for medical research.

In case of changes in Fred’s health condition, his physician in charge
will be automatically informed, and is able to retrieve all medical important
data. For this reason, the DSM infrastructure is not only able to perform
data stream management, but also offers access to distributed medical health
records. Non-streaming tasks, like accessing these health records are based
on the orchestration of discrete services. Therefore, the DSM infrastructure
supports also process management to orchestrate discrete service calls. On
the other hand, results about Fred’s health condition derived from telemoni-
toring are automatically updated in Fred’s health record. This example illus-
trates the need for an integrated DSM and process management infrastruc-
ture, where stream processing and discrete processes are working seamlessly
together. Without a telemonitoring system, Fred’s has to either move into a
nursing home with loosing his independence or he has to deal with the risk
that degradation of his health condition is not detected. Given this facts, Fred
will accept a certain degree of interference due to the telemonitoring system
on his daily life.

However, the most important fact is that the infrastructure has to guaran-
tee a certain degree of reliability. Patient’s and caregiver’s have to count on
the system, and failures may have severe consequences. Unfortunately com-
pared to a centrally controlled server system, the distributed setting including
embedded and mobile devices is much more vulnerable to failures (e.g., a mo-
bile device runs out of battery or a wireless connection is disturbed). Still

22

2.2 DSM in Healthcare Present and Future

the infrastructure can guarantee a certain degree of reliability by making
use of other redundantly available devices in a transparent and effective way.
This is based on the assumption that homes and hospitals of the future are
pervaded with computers that are participating nodes in this infrastructure.
Since also connections between nodes are subject to failures, the infrastruc-
ture has to deal with intermitted connectivity. In this case, disconnected parts
of the system still have to operate locally based on decentralized control. In
such situations, the separated parts can perform data (pre-)processing and
simple hazard detection. After reconnection, data stream processing is au-
tomatically and smoothly continued and the filled intermediate buffer are
worked off in order to provide full fledged medical, activity, and context mon-
itoring again.

Supported with this reliable integrated DSM infrastructure, Fred will feel
safe to live independent at home. Dramatic degradations of Fred’s health
condition or sudden critical events, e.g., falls, will be detected automatically
by the system and an emergency service is alarmed. On the other hand, this
system supports medical research by continuously analyzing the physiological
parameters of thousands of patients and acquiring the outcome of treatment
methods.

23

Data Stream Management
Infrastructure

We propose an integrated information management infrastructure support-
ing reliable execution of user-defined processes, both workflow and stream-
ing processes as needed for DSM applications. Stream processes are com-
posed of data stream operators, or shortly operators, (e.g., medical sensors,
sensor signal processing tasks, etc.) whereas workflow processes are based
on discrete service invocations such as data processing services, data stor-
age services, or event notification services, to mention only a few. Common
in both cases is that operators or services, respectively, have to be combined
in a given order (control flow) and that data has to be passed between them
(data flow). Moreover, the two are tightly connected to each other since work-
flow processes can be invoked by DSM results e.g., an operator of a stream
process monitoring our patient Fred detects a heart attack. In this case re-
liability becomes a life-saving requirement. Also workflow processes can af-
fect stream processes (e.g., Fred’s physician is setting up new threshold for
continuous blood pressure monitoring within the regular treatment process).
In all these cases, an infrastructure is needed that supports processes, that
provides dedicated execution guarantees for processes, and that is able to
scale with the number of processes and services or operators. For this rea-
son, our infrastructure considerations are based on Hyperdatabase (HDB)
systems [SBGT00, SSSW02, SSW02a] which already provide a sophisticated
infrastructure for workflow processes supporting (Web-)service compositions.
Because of the strong relation between stream processes for DSM and pro-
cesses for workflow management and similar quality requirements regarding
reliability, we propose the extension of HDB systems in order to support reli-
able DSM.

3 Data Stream Management Infrastructure

3.1 The Hyperdatabase Vision

The introduction of relational database systems in the 80’s has led to a new
infrastructure and main platform for development of data-intensive applica-
tions. Data independence was considered to be a major breakthrough: pro-
grammers were freed from low-level details, e.g., how to access shared data
efficiently and correctly, given concurrent access. But by now, the prerequi-
sites for application development have changed dramatically. Usually, spe-
cialized application systems or components are well in place. Applications
are no longer built from scratch but rather by combining services of existing
components into processes or workflows. These components implement their
own data management and provide application services to the outside. Hence,
similar to supporting access to shared data, current infrastructures need to
provide access to shared services.

A Hyperdatabase (HDB) [SBGT00, SSSW02, SSW02a] is such an infras-
tructure that supports the execution of processes on top of distributed compo-
nents using existing services. The HDB provides transactional guarantees for
processes, fault tolerance for process execution, sophisticated routing strate-
gies to dynamically choose among the available components, and allows to
balance the overall load among them. Hence, the HDB provides database-like
functionality, but not at the data level but at the level of access to services.

The Hyperdatabase system itself does not provide any application func-
tionality but, by combining specialized application services, supports the
definition and reliable execution of dedicated processes (this is also known
as “programming-in-the-large” [DK76]). When different specialized applica-
tion services are made available to the HDB-platform, users can define and
run powerful application processes by making use of these services. HDB-
processes themselves are wrapped by service interfaces again. Therefore, a
process can be invoked just like any other service (and used in other processes
as well).

A basis of the Hyperdatabase vision is the model of transactional pro-
cesses [SABS02]. These processes contain two orders on their constituent
services: a (partial) precedence order specifies regular execution while the
precedence order is defined for failure handling purposes (i.e., alternative ex-
ecution paths). Data flow between services within a process can be defined
independently of control flow. Activities in a process are invocations of appli-
cation services. Ideally, the transactional behavior of each application service
is known. This transactional behavior includes information on compensation
(how can the effects of a service execution be semantically undone; this is
needed for compensation purposes in case a failure in a process execution
occurs) and on whether a failed service can be re-invoked (retriability). In ad-

26

3.1 The Hyperdatabase Vision

dition to transactional execution, the Hyperdatabase concept emphasizes on
reliability at various levels, from reliable messaging to persistent queues.

Moreover, an important part of the Hyperdatabase is a graphical model-
ing tool to enable design and validation of processes in a boxes and arrows
approach without sophisticated programming skills. Figure 3.1 illustrates a
screenshot of an example workflow process definition within the process de-
sign tool O’GRAPE [WSN*03]. The example process is taken from our tele-
monitoring example application (see Section 2.2) where also the execution of
workflow processes based on discrete service calls is needed. The process def-
inition illustrates a process allowing Fred to order medication with his PDA.
The process consists of three activities. Firstly, Fred enters his medication re-
quest on his PDA (green circle symbol). Secondly, Fred’s physician is informed
and has to sign the electronic prescription (green square symbol). Thirdly,
given a signed prescription the pharmacy is now able to deliver the ordered
medication to Fred (green cross symbol).

Grape - Graphical Process Editor

: = _.“'D A A A A A 2 Backto Overal Process | Osiris Upload Osivis Download Osi
= | TSt SR s

el
il

Request Medication

salpacolg S58204d AMOUS

Create prescription

Deliver Medication

g

I Maothing selected

Figure 3.1: An Example Process Definition

27

3 Data Stream Management Infrastructure

3.1.1 The HDB-Architecture

The architecture of a Hyperdatabase is driven by the goal of implement-
ing a true peer-to-peer process execution engine in a reliable and efficient
way. Therefore, process execution involves only those machines of the net-
work that offer a service required by the process definition. Because they
are the only potential candidates for execution. Conceptually, the HDB sys-
tem is a Service-oriented Architecture (SoA) [Ley05], where service inter-
communication is done by passing messages through queues or pipelines
which are part of the HDB-middleware. There is no central peer that con-
trols the execution of process instances during process runtime. As a conse-
quence, distributed process execution necessitates efficient metadata man-
agement and replication in order to provide enough information locally to
allow for a local decision on how a process instance has to be routed. The
HDB distinguishes between application-specific services, called application
services, and services providing general purpose functions needed by all ap-
plications, called system services (see Fig. 3.2). Examples of Hyperdatabase
system services are repository services, replication services, and process ex-
ecution services, to name just the most important. An example of an appli-
cation service is the “Deliver Medication” service of the example process (see
Fig. 3.1).

While system services are part of the HDB-middleware, application ser-
vices can be any callable services provided by third parties. The architecture
of a Hyperdatabase consists of two parts. Firstly, each peer of the network
providing application services runs a small middleware layer, HDB-layer, that
provides local functionality for process instance navigation and routing (see
Fig. 3.2). Secondly, an HDB runs a number of additional system services.
One particular type of system services, which are not deployed at all service
providers, are global repositories for metadata management (see e.g., “Ser-
vice Repository” in Fig. 3.2). The global repositories hold information about
process definitions, subscription lists, service providers, load information, etc.
The local HDB-layers that actually execute processes should not have to query
meta information from the global repositories during process runtime. Rather
a specialized system service, the replication service is applying a push mecha-
nism that replicates those parts of meta information towards the local HDB-
layers in advance in a lazy way. For this reason, the providers are able to ful-
fill their tasks based on locally available information. For instance, if a peer
is involved in executing a certain process, the definition and any changes to
that definition are pushed from the process repository to the local HDB-layer
of the peer.

28

3.1 The Hyperdatabase Vision

System Services

Iyl
L) uﬁ @

Process Service Repository
Rep05|tory Repository
Replication
Service

Application Services

HDB Layer

Request Create Deliver P Resas
Medication Prescription Medication
1| s
Ecl B @
= . e e ‘
Fred’s PDA Physician’s Pharmacy’s
Office Server

Figure 3.2: The Hyperdatabase Architecture

Fig. 3.3 illustrates how process metadata is generated, stored, and repli-
cated in the distributed HDB network. After the design of the example pro-
cess specification (see Fig. 3.1), the process is uploaded to the process repos-
itory. For illustration purpose, we use the same green symbols to illustrate
the different service invocations within the process. After upload, the process
definition stored in the process repository is chopped into smaller pieces, so
called execution units, for replication. Each execution unit contains enough
information for a participating peer to fulfil the task locally and to know the
immediate next activities within the control flow of the process. Conceptual,
the execution unit corresponds to an edge in the control flow of the process.
Given the example process of Fig. 3.1, the HDB-layer of Fred’s PDA has to
know that after execution of Fred’s request the process instances has to be
passed to Fred’s physician for creation of a prescription. The HDB-layer of
the physicians computer has to know that after performing the prescription
the pharmacy has to be contacted for delivery. Finally, the HDB-layer of phar-

29

3 Data Stream Management Infrastructure

macy’s server has to know that the deliver activity is the last one and after
successful execution of the delivery service the process execution has finished
gracefully.

HDB Layer "”:"“"i“f‘f‘”i'ﬂf" —
Application U;_ky‘ =
Services ; .\Q.\\

1.Process . = = -

Design ~ " fs £

System
Services

upload

3. Replication of
Metadata

Load Repository

Figure 3.3: HDB Metadata Replication

The metadata replication reduces dramatically the probability that this in-
formation has to be requested at runtime. From another perspective, the local
HDB-layers perform their tasks based mainly on local versions of the global
meta information. Process execution is always triggered by an instance of
the process execution system service. Process execution services get meta-
data about the first activities to execute within a process. For this reason the
process execution services creates and migrates a process instance to a peer
providing one of these services. Furthermore, during process execution a peer
works off its part of a process and then directly migrates the process instance
data to nodes offering a suitable service for one of the next steps in the pro-
cess. For this reason, process navigation has to be decoupled from metadata
replication and allows for efficient distributed process execution. Moreover, it

30

3.1 The Hyperdatabase Vision

is often sufficient to hold approximate versions of metadata: for instance, load
information of peers is required by the local HDB-layer to balance the process
workload among the available service providers. Since this is an optimiza-
tion, it is sufficient if local load information is only approximately accurate.
Note that this would not lead to incorrect execution. In worst case, the load
distribution among all service providers is just not optimal. On the other
hand, changes on process definitions have to be propagated immediately to
be available for new process requests. However, even this information can
be replicated in a lazy way, since process instances are explicitly bound to a
dedicated version of a process definition.

3.1.2 Basic Functionality of the Hyperdatabase System

In the following, we describe the most important functionality of a Hyper-
database system with respect to decentralized peer-to-peer process execution.

e Messaging: The HDB-layer allows for a reliable exchange of messages
between all nodes of the HDB network.

e Service Provider: The HDB-layer is able to host both system and ap-
plication services and offers life-cycle management of service instances.
Life-cycle management includes activation, control, and deactivation of
services. Control of services includes important tasks, like checking the
current load of services and verification of correct service execution.

e Global Repositories: Host global meta information of the infrastruc-
tures. The most prominent examples are process definitions, available
services and their providers, and current load of providers.

e Meta-data Replication: The HDB-layer is responsible for meta-data
replication as needed for peer-to-peer process execution. Meta-data
replication is based on a hierarchical organization with global reposi-
tories and clients replicating from them. The replication is keeping local
replicas consistent.

e Process Design: The hyperdatabase offers a graphical process design
tool which allows non-programmers to design new application processes
in a boxes and arrows approach.

e Process Execution: The HDB-layer is in charge of local process execu-
tion. Since replication of meta-data guarantees that a runtime enough

31

3 Data Stream Management Infrastructure

information for process execution is locally available, the HDB-layer re-
ceives process instances, invokes local service calls as part of the pro-
cess. After that, the running process instances are routed to the next
best-suitable HDB-nodes.

3.2 Extending the Hyperdatabase for Data Streams

In this section, we describe the proposed extensions to the Hyperdatabase
concept in order to achieve flexibility and reliability for DSM with particular
respect to monitoring applications in healthcare. Stream processing within
a stream-enabled Hyperdatabase system is done by execution of stream pro-
cesses in order to process data streams.

3.2.1 Data Streams

A data stream is defined as a continuous transmission of data elements. Each
data element contains several data items as payload information, e.g., sen-
sor readings like Fred’s current blood pressure. These data elements have a
discrete time, which is realized by designated data items containing sequence
numbers relative to the order of the data element within the stream. This
discrete timestamp allows for recognition of missing data elements and cor-
rect ordering of elements within a data stream. Additionally, data elements
have a continuous global timestamp. The continuous global timestamp al-
lows for timely correlation between data elements of different data streams.
Particularly for the intended healthcare application scenario, this is very rele-
vant since we want to analyze different physiological signs of Fred, e.g., heart
activity and blood pressure, in combination. Due to temporal correlation of
these different signs, medical relevant information can be extracted. More-
over, there is no restriction on the amount of data elements within a data
stream. For this reason, data streams are theoretically unlimited. Therefore,
it is in general impossible to store a “complete” data stream and process it in
a single discrete event. Due to these constraints, data stream processing re-
sults have to be produced continuously and the results always correspond to
a limited time-frame of input data streams. In addition, applications restrict
the allowed processing delay between receiving input data stream elements
coming from sensor devices and producing corresponding result data stream
elements containing relevant extracted information. For example, for the de-
tection of critical health conditions the delay between the critical condition
happening in Fred’s body, e.g., a heart attack, and the triggering of an emer-
gency service is of high relevance.

32

3.2 Extending the Hyperdatabase for Data Streams

3.2.2 Stream Processes vs. Workflow Processes

Stream processes are a composition of data stream operators, or shortly oper-
ators, interconnected by data streams. Services or activities in workflow pro-
cesses of workflow management are discrete invocations in request/response
style. Usually, these invocation are rather short events. Contrarily, the op-
erator of a stream process perform continuously running operations on the
incoming data stream elements by producing outgoing data stream elements.
Moreover, the operators are continuously processing with respect to current
and the previously seen data stream elements and therefore keeping an con-
tinuously changing operator state. Contrarily, services within workflow pro-
cesses are usually stateless. Although, recent work in the area of Web-services
and Grid computing developed also standards for stateful Web-services, like
the Web Service Resource Framework (WSRF) [HWMBO04]. Based on this,
work has been done to use the WSRF standard directly for DSM [LL04]. But
we have not followed this heavyweight approach because we state that the
WSREF standard is not suitable for DSM and by far not sufficient. In particu-
lar considering the requirements on DSM imposed by the intended application
areas, like e.g., support of mobile devices.

Comparing the two kinds of processes with respect to control and data flow,
we see that for workflow processes the control flow is dominating and there-
fore explicitly modeled by the process designer as edges. In this case, the order
of service invocations is vital for the correct execution of the process. Also the
data flow is modeled by the process designer with the use of whiteboard and
mappings to and from activities. Contrarily, stream processes are dominated
by data flow. The control flow of a stream process is not obvious because all
operators are continuously running. Nevertheless since no application is run-
ning forever, we can define a life-time of a stream process consisting of three
phases. First, during the activation phase all necessary operator instances
and their interconnecting data streams are established by the infrastructure.
Second, during the runtime phase all operators are up, continuously running,
and passing the data flow via data streams. Third, during the deactivation
phase all running operator instances and so the stream process instance are
gracefully stopped. We can only define a control flow for the activation and
deactivation of a stream process, where discrete activities, i.e., the activation
or shutdown of an operator instance, are performed. For this reason, workflow
processes are used to activate and deactivate a stream process instance.

Figure 3.4 illustrates an example process taken from our telemonitoring
scenario (see Section 2.2). We have already presented this stream process on
the right hand side of Fig. 2.1 in Section 2.1.1. This stream process is sup-
posed to monitor heart activity and blood pressure of patient Fred. The “ECG

33

3 Data Stream Management Infrastructure

Acquisition” and “Blood Pressure Acquisition” operators are executed at a mo-
bile device, e.g., a PDA or smartphone, carried by the patient. In order to gain
more relevant medical information about Fred’s health condition the variabil-
ity of the heart rate and the blood pressure is jointly analyzed. This operator
may be executed at the base station in Fred’s home. Both, the “Critical Detec-
tion” operator and the “Analysis” operator are joining the two data streams
of blood pressure and heart activity. The “Critical Detection” is executed at
Fred’s base station at home and is checking whether some critical condition
arise which need immediate intervention. The “Analysis” is executed at Fred’s
caregiver and does some long-term and more thorough joint analysis in order
to give Fred’s physician valuable information for therapy control.

Grape - Graphical Process Editor

Al

zalpadold 5520044 AMOLS

Mothing selected

Figure 3.4: An Example Stream Process Definition

As Figure 3.4 also illustrates, the process design tool O'GRAPE [WSN 03]
has been extended in order to model stream processes. For the modeling of
data stream operators, the notion of ports has been introduced. Ports may
either be for input or output and allow the consumption or production of a data

34

3.2 Extending the Hyperdatabase for Data Streams

stream, respectively. In order, to design a valid stream process all output ports
of operators have to be connected with at least one input port ports by a data
stream. Since there is a strict consumer/producer pattern along a data stream
multiple different consumers are allowed, hence one output port is allowed to
feed multiple input ports. If ports of operators are not used for a certain
stream process they can be explicitly disabled. Within O’GRAPE input ports
are drawn as small circles attached above the operator symbol and output
ports are small circles attached below the operator symbol. Obviously, each
input and output port needs a corresponding numeric ID for identification.
The data streams connecting output and input ports are drawn as red dashed
line between the according ports.

For meta-data replication, stream process definitions are decomposed into
pairs of subsequent operators, also transmission units (TU) similar as for
workflow process definitions where pairs of subsequent activities are called
execution units. Contrarily to execution units which model the control flow,
the TU’s model the stream data flow.

We consider stream processes in a similar way as workflow processes with
respect to important aspects like distributed execution, load balancing, or
fault tolerance. As for workflow management, we need for DSM to distribute
meta information about stream processes. For this task, replication man-
agement of the Hyperdatabase can be exploited. Replication management
is extended by enabling global repositories to hold necessary information to
establish and run stream processes (like information about stream process
definitions, providers of operators, operator load, backup information, etc.).
Also the HDB-layer has to provide additional functionality, like transport of
data streams, activation, deactivation and routing of stream processes, execu-
tion of operators, load and failure handling for stream processes, to mention
the most important. Subsequently, we describe the basic architecture for a
DSM enabled Hyperdatabase system.

3.2.3 Additional HDB-Functionality for DSM

e Stream Transport: The extended HDB-layer allows for a reliable
transmission of data streams. Reliable transmission of data streams
include the detection of gaps or duplicates in data stream elements and
to guarantee first-in first-out (FIFO) transport of data stream elements
to keep the correct order of the elements within a data stream.

e Stream Operator Management: The extended HDB-layer is able to
host both instances of stream operators and offers also life-cycle man-
agement of running operator instances. Life-cycle management includes

35

3 Data Stream Management Infrastructure

activation, control, and deactivation of operator instances. The control
includes important tasks, like checking the current load of services and
verification of operator execution. Verification includes reliability algo-
rithms that are described in Chapter 5.

¢ Extended Global Repositories: The global repositories have been ex-
tended in order to support meta-data about stream process definitions.
Moreover, also information about available types of operators and the
corresponding providers needs to be replicated. In order to support,
checkpointing of running operator instances as needed for the presented
reliability algorithms in Chapter 5 also the information about the cur-
rent backup provider is new meta-information which needs to be stored
in a global repository.

e Meta-data Replication: The functionality of the basic HDB-system is
used without conceptual changes.

e Stream Process Design: The graphical design tool of the hyper-
database has to be extended in order to support design of stream pro-
cess. In particular, the design of operators, their corresponding ports
and connecting data streams has been added to the process design tool.

¢ Reliable Stream Process Execution: The HDB-layer has been ex-
tended to support the reliable execution of stream processes. For this
reason, the extended HDB-layer is able to start, stop and control run-
ning operator instances and connect their data streams appropriately.
Moreover in order to support reliable execution, running operator in-
stances are subject of checkpointing. Checkpointing mechanism keeps a
backup of current operator state at a backup provider consistent so that
in case of a failure the operator instance can be recovered and executed
at the backup provider (for details see Chapter 5). This mechanism is
called operator migration.

As defined by the hyperdatabase concept, the global repositories do not
require a centralized implementation. If the number of nodes in the hyper-
database network is increasing, additional repositories of the same kind can
reduce the load of repositories (i.e., by applying horizontal partitioning). The
different physical repositories form again a single global repository. Efficient
horizontal distribution of load can be achieved by applying Peer-to-Peer con-
cepts, like distributed hash-tables (DHT) [SMLN103, ZKJ02]. But this topic
is out of scope of this thesis.

Figure 3.5 illustrates the architecture of the extended HDB infrastructure
for DSM processing. The example stream process of Fig. 3.4 is uploaded to a

36

3.2 Extending the Hyperdatabase for Data Streams

HDB Layer
DSM Application
Operators Services
System Operator .Backup
Services Repository
C

il

Process &
Stream Process Rep.

ECG Variability
Blood Press. Var.
Critical Detection

Replication of

Metadata
ECG Acquisition ECG Variability
Blood Press. Acq.
|:| Fred’s Laptop
=5 @
Analysis
Critical Detection
Il E C> Caregiver'’s Server

Figure 3.5: The Extended Hyperdatabase Architecture

global repository for stream process definitions. Based on chopping the stream
process definition in transmission units, the TU’s are replicated at the rele-
vant peers. This mechanism allows similar to workflow processes, the true
peer-to-peer execution of stream processes without contacting global services
during runtime. For illustration, we describe how Fred’s monitoring applica-
tions is using the extended HDB. Fred’s physician has designed the stream
process (according to Fig. 3.4) and has also adjusted Fred’s operators to his
individual parameters (e.g., thresholds for the critical detection). After ap-
plying the necessary body sensors to Fred, the stream process is invoked, by
sending activation messages for the sensor operators to Fred’s PDA. Begin-
ning from there, all subsequent operators (on Fred’s PC and caregiver’s PC)
are activated in peer-to-peer style. For now, all operators are up and con-
tinuously processing data streams. In case of critical conditions (e.g., Fred
has a heart attack), his physician has designed appropriate processes (e.g.,
calling the emergency service) which are invoked by the local HDB-layer if

37

3 Data Stream Management Infrastructure

necessary. Snapshots of internal operator states are saved regularly on an
operator backup device for recovery (e.g., Fred’s PC for operators running on
Fred’s PDA and vice versa). If Fred’s PDA fails (e.g. due to empty batteries),
operators running on Fred’s PDA are migrated to Fred’s PC and are initial-
ized with the recently saved internal states. Now, Fred’s PC is receiving data
directly from the wireless body sensors, because it hosts the acquisition oper-
ators. Fred is required to stay near his PC, due to limited transmission range
of the body sensors. When Fred is out of range, the HDB-layer on Fred’s PC
is able to invoke processes to deal with this situation (e.g., inform Fred to
come back in range or stop the streaming process gracefully). Because of our
peer-to-peer approach processes may be executed off-line without central con-
trol. When Fred is replacing the empty batteries of his PDA, the operators are
migrated back and full functionality is available again without loss of data.

As shown in this chapter, our proposed information management infras-
tructure will incorporate DSM into process management of HDB-systems in
peer-to-peer style. Our solution offers great flexibility for healthcare applica-
tions. Non-programmer users are able to define individual stream processes
for different monitoring applications. Additionally, processes for failure han-
dling, result delivery, and critical event handling are supported. Our system
is extendable to new applications (i.e., diseases) by adding new operator ele-
ments (e.g., an additional glucose sensor if Fred will suffer from diabetes in
the future). Also reliability on system level is provided by the extended HDB.
Whenever a node fails, this is handled by node recovery or, if not possible, by
operator migration. Details on operator migration and reliability of DSM are
discussed in Chapter 5. In case operator migration is not available, user de-
fined failure processes (both streaming and workflow) may be invoked. More
details on failure handling of the DSM infrastructure is discussed in Chap-
ter 5. In addition, workflow processes can affect stream processes. For ex-
ample, a process called “Fred leaves the house” can stop DSM gracefully. In
general, this combination permits more complex applications, where process
and data stream management work seamlessly together.

38

Data Stream Management Model

In the following, we describe a formal model of a data stream management
system. The DSM system (DSMS) coordinates the execution stream processes
on top of data stream operators in a network of loosely coupled hosts and
ensures correctness even in case of failures.

4.1 Basic Data Stream Model

The presented formal model will use mathematical notation taken from set
theory where capital letters are used to denote sets. Using a hat on top of a
capital letter referencing to a set indicates that the set is global and therefore
containing all available objects within our model. For this reason, H denotes
the finite set of all hosts participating within the DSM system. Since usually
Iﬁl > 1, a DSMS is a distributed system. Each host is able to perform certain
data stream operations, also called operator types. The finite set of all oper-
ator types available for execution within the DSM system is called OT. The
subset of all operator types available at a given host h € H is called OT(h).
Of course, hosts may join and leave the DSMS at any time since we are as-
suming a dynamic system. For the ease of notation, we have omitted the time
dependency for participating hosts and their operators.

Stream process definitions combine operator types to build up complex
stream processing tasks which consume and produce data streams of/for the
outside world which encompasses all external systems interacting with the
DSMS. The DSMS is executing instances of stream process definitions, called
stream processes. Stream processes make use of instances of operator types,
also called operators. Operators are continuously processing data streams. In
the following, we introduce these terms with formal definitions.

4 Data Stream Management Model

4.1.1 Data Stream Management System (DSMS)
Definition 4.1 A DSM system (DSMS) is defined as the following 4-tuple:

DSMS = <ﬁ, C/)\T,S/PTD,§I3>

where H is a set of hosts participating in the DSM system, OT the set of global
available operator types offered by all hosts, SPD is a set of available stream
process definitions, and SP is the set of running stream process instances. <

Of course, the participating hosts }A{, _the available operator types oT , the
available stream process definitions SPD, and the running stream process
instances SP are not static but vary over time within the DSMS.

4.1.2 Data Streams and Data Stream Elements

Definition 4.2 A data stream DS is a possibly infinite, totally ordered set
(DE, <,0p,1ip, L) of data stream elements de € DE. DE is the set of all ele-
ments within a stream. The connection point of a data stream at producer-
side is called output-port op and at consumer-side input-port ip. The in-
put/output naming is assigned from a producer/consumer point of view. The
symbols to be sent as payload within data stream elements are defined in the
data stream alphabet X. O

A DS represents a continuous transmission of data stream elements de in a
temporal order between a producer and a consumer. The notation DS.ip refers
to the input-port of the data stream DS and DS.op refers to the output-port,
respectively.

Definition 4.3 A data stream element de € DS is defined by the following
tuple: de = (t,&,pd) where T € R* is a global timestamp attribute which is
given to a data stream element at the time of processing, & € Ny is a sequence
number which is used for ordering and gap detection of the data stream ele-
ments within the data stream, and pd is the payload information, which is a
symbol of the data stream alphabet pd € X. O

A data stream element shows some similarities to a tuple of a relational
database table like being structured according to a given schema. Therefore,
both are structured objects. But they differ in their cardinality. Whereas a
relational table has a finite number of elements, the number of data stream
elements in a data stream is potentially unlimited. In order to ease the no-
tation of structured objects and their attributes in this thesis, we are using
a labeled notation to refer to attributes as presented in the original work of

40

4 1 Basic Data Stream Model

Codd [Cod70] about relational algebra. This has the advantage of being inde-
pendent of an ordering of attributes and having a more compact and concise
representation. For example, the payload attribute pd of a data stream ele-
ment de is denoted in this thesis as de.pd.

Note that, the data stream type is corresponding to the data stream al-
phabet. Different types of data stream elements use different alphabets for
encoding the payload information. Within a data stream all containing data
stream elements are of the same type:

Vde € DS, : de.pd € DS,.X

According to the previous definition data stream elements have two tem-
poral ordering contexts. Firstly a global timestamp, called processing time,
and secondly a logical sequence number, called stream time. Whenever we
investigate a temporal portion of a data stream we can apply the following
subsets for processing time and stream time:

Subset of DS before time «;:

DS(kq) € DS|k < k4
Subset of DS within a time interval k1, k;:
DS(k1,k2) € DS|ky <k < k3

Where k = T € R* for processing time or k = £ € N, for stream time.
For example, a data stream element coming from a sensor and arriving at
a processing operator may look like the following:

deqgy = (
29.02.2008 10:00:00.50,
189,
< sample >
< time > 29.02.2008 10 : 00 : 00.00 < /time >
<value > T0mV < /value >
< /sample >

)

The data stream element is the 189" element within the data stream
(stream time). It was received by the operator at 10:00:00.50 of the 29" of
February 2008 global time (processing time). The payload of the element con-
tains an structured entry, e.g., in XML format. The payload was generated
by the sensor and contains the global time of generation and the value 10mV
(e.g., a sensor voltage value that corresponds to a physical quantity). More-
over, this example illustrates that processing time and stream time give no

41

4 Data Stream Management Model

information about the original time the data stream element was generated
by the sensor (generation time). If this information is necessary for the var-
ious applications (e.g., telemonitoring in healthcare) it must be part of the
payload information. Of course, if data streams coming from different sensors
are jointly processed on the basis of generation time the clocks of the different
sensors have to be synchronized. Such synchronization issues are out of scope
of this thesis.

4.1.3 Operator Type (OT)

Based on the data stream definition, we define operator types which are in
charge of processing data stream elements of incoming data streams and pro-
ducing derived data stream elements of outgoing data streams. The connec-
tion points of data streams to the operator type are called ports. Each oper-
ator type ot has an ordered set of n € N, input-ports IP(ot) with cardinal-
ity |[IP(ot)] = n and an ordered set of output-ports OP(ot) with cardinality
|OP(ot)| = m. Each output-port op; € OP produces data stream elements with
the stream alphabet op;.Z. Accordingly, each input-port ip; € IP expects to
receive data stream elements with the stream alphabet ip;.X. The behavior
of the operator type is deterministic and can be modeled as finite state ma-
chine (FSM). Figure 4.1 is illustrating the operator type model. Two streams
shown in Fig. 4.1 have a special purpose. Firstly, the config stream allows for
changing of the operator state explicitly. This is in particular useful for oper-
ator initialization. As an example, we present an operator processing medical
alerts of our patient Fred. The operator counts the number of medical alerts
of Fred since the beginning of the measurement and the number of medical
alerts in the last hour. For this reason, the operator may have the following
internal state (as XML representation):

< State >

< BeginOfMeasurement >
29.02.2008 10:00:00

< /BeginOfMeasurement >

< AlertsOverall >
16

< /AlertsOverall >

< AlertsLastHour >
1

< /AlertsLastHour >

< StartOfCurrentHour >
29.02.2008 18:00:00

< /StartOfCurrentHour >

42

4 1 Basic Data Stream Model

< /State >

An operator instance may not be initialized with an empty state but with
an already existing state. For example, due to a failure in processing the
operator instance has to be restarted at a different host node. The config
stream data element that initializes the restarted operator instance on the
29" of February 2008 at 18:10:00.00 is:

de1 = <
29.02.2008 18:10:00.00,
1,
< State >
< BeginOfMeasurement >
29.02.2008 10:00:00
< /BeginOfMeasurement >
< AlertsOverall >
16
< /AlertsOverall >
< AlertsLastHour >
1
< /AlertsLastHour >
< StartOfCurrentHour >
29.02.2008 18:00:00
< /StartOfCurrentHour >
< /State >

)

Secondly, the state backup stream allows for reading the current operator
state. This allows to take checkpoints of operators during execution in order
to achieve reliability. More on reliability of operator execution will follow in
Chapter 5. Elements of both of this data streams are structured as any other
data stream elements containing processing time, stream time, and payload
information.

Definition 4.4 An operator type OT is defined by the following tuple:
OT = (O, ST, 8, w, [P, OP, min A1)

Where O is the input alphabet as cartesian product over the alphabets of all
n data streams received by the ordered set of input-ports IP:

o= [] Eruy

i=0..(n—1)

43

4 Data Stream Management Model

Output
Ports

Input
Ports

o o
Operator
Type

@ (©,I,ST,minAt) QD\‘

l State Backup
Stream

l Config Stream

Input Streams . Output Streams

Figure 4.1: Operator Type Model

I" is the output alphabet as cartesian product over the alphabets of all m data
streams produced by the ordered set of output-ports OP:

r= [(E™ui

i=0..(m—1)

ST is a finite, non empty set of operator states. The state transition function
b is defined as:
5:STxO — ST

The output function w is defined as:
w:STxO—-T

min A T € R" is describing a minimal delay for processing a single state
change of this operator type. &

44

4 1 Basic Data Stream Model

According to this definition, an operator type describes a deterministic fi-
nite state machine. Whenever new input data stream elements are available,
 is applied in order to proceed to the new state and w is applied in order to
produce output data stream elements.

The A symbol identifies input or output data streams where no data stream
element is present. In this model, the FSM works asynchronously which
means that the FSM has not to wait for data stream elements to be present at
each input in order to proceed to the next state. Synchronous operator types
can be emulated inside the operator type implementation (e.g. by modeling a
state transition to the same state if the the input is not complete). Similarly,
not every state change has to produce data stream elements at each output.

4.1.4 Stream Process Definition (SPD)

Based on the two basic DSM building blocks of operator types and data
streams, we are now able to combine these two in order to define complex
stream processing tasks, called stream process definitions. A stream pro-
cess definition is described as a graph, where the vertices are operator types
and the edges are data streams. Since a data stream has a direction of data
flow, the graph is also directed. The graph is a multigraph because there can
be more than one edge (data stream) connecting a pair of vertices (operator
types). For example, we consider a combined heart and blood pressure sensor,
which is generating a heart activity and a blood pressure data stream as two
distinct output data streams and an analysis operator type which is combin-
ing blood pressure and heart activity from two distinct input data streams. In
this case, we have two edges (data streams) from the combined sensor to the
analysis operator type.

Definition 4.5 A stream process definition, SPD is defined by the following
tuple:
SPD = (V,E)

SPD is describing a directed multigraph, where V is a finite set of vertices and
E is a finite set of edges. O

Definition 4.6 The set of vertices V of SPD is defined as:
V = {{ot,s,, AT) |0t € {ﬁ U{ow}},so € ST, AT € RT}

where ot is the describing the operator type of the vertex. Additionally to
the operator types offered by the DSMS, outside world interactions are repre-
sented by ow-vertices. The initial state of the vertex using the operator type

45

4 Data Stream Management Model

System Border DSMS

ECG b 59 ECG o 4 ECG

Aquisition Filter Analysis
? 9
ow Edges
IR - : N I
: ECG ow Vertices : Analysis

 Sensor (ow) } iDatabase (ow);

Outside World

Figure 4.2: Example Stream Process Definition

is given by sy, this state is set by sending along the config stream of the oper-
ator instance at the time of startup. A detailed description on this will follow
in Section 4.1.5. In order to specify a maximum tolerable delay for processing
a state transition at this vertex, AT is given. &

Definition 4.7 The set of edges E of SPD is defined as:
E ={(x,0p,y,ip,AT)[x € V,0p € x.0t.OP,y € V,ip € y.ot.IP, AT € R"}

where x is the source vertex, op is the corresponding output port at the op-
erator type ot of vertex x. Similarly, y is the destination vertex, ip is the
corresponding input port at the operator type ot of vertex y. Edges where
either the source vertex or the destination vertex is an ow-vertex are called
ow-edges. In order to specify a maximum tolerable transfer delay for a data
stream element along this edge, A T is given. &

46

4 1 Basic Data Stream Model

This definition does not give any constraint on the correctness of a stream
process definition. For example, a well-formed stream process definition has
to have for each input port of a vertex exactly one input edge attached to it.
For details on this see Section 4.3.

Fig. 4.2 illustrates a simple example stream process definition taken from
our example telemonitoring scenario (see Section 2.2) by applying the pre-
sented DSM model. The stream process offers heart activity analysis by ap-
plying three operators. The first operator is reading out the sensor device.
The second operator is applying filtering a signal level in order to remove
noise. Finally, the third operator is deriving medical relevant information
of the electrocardiogram (ECG). Consequently, the example consists of three
vertices where ot € OT and two outside world vertices where ot = ow. The
sensor device is an ow-vertex. The acquisition is already part of the DSMS.
Furthermore filtering and analysis of the heart signal is performed. Finally,
the DSMS is producing an data stream feeding a analysis database, which is
an ow-vertex again.

4.1.5 Stream Process Execution

When during the execution of a stream process a running instance of an oper-
ator type is generated at a host, this instance is called operator. Additionally
to the operator type, the operator has a current time context, a current state
and a current host. Fig. 4.3 illustrates the operator model.

Definition 4.8 An operator O is a running instance of a vertex of a stream
process and has the following definition:

O = (v,Z", =% s, h, 1)

where v € SPD.V is a vertex taken from the corresponding SPD, =" is the
set of stream times of last de processed at each input port. Analogous, Z°"
is the set of stream times of the last de processed at each output port. The
current state of the operator is given by s € ST, the host executing the operator

instanceis h € ﬁ, and the current global time is indicated by T. O

In order to initialize running operator instances a data stream element
with a new initial state as payload can be sent to the operator instance along
the config stream. In order to retrieve the current state of an operator during
execution, the state backup stream produces a data stream element with the
current state as payload information for each state transition of the operator.
Whether this data stream or others are retrieved by push or pull technique is
not described in this model and therefore part of an implementation.

47

4 Data Stream Management Model

Config Stream

Operator

i

LT
' Operator

Input Streams Type

(©,I, minAt)

Operator
State

State Backup

Stream Ouput E
Ports Ports
. | »
Stream Times _ | Tt Stream Times —
of last =" T of last =out
elements read Global Time elements produced

Figure 4.3: Operator Model

Finally, running operator instances form together a running instance of a
stream process definition, called stream process. Additionally, to the stream
process definition the stream process has a set of operator instances. In this
set of operators, we do not consider outside world ow-vertices because this
operator instances are not executed within the modeled DSM system (DSMS).

Definition 4.9 A stream process, SP is defined by the following tuple:
SP = (SPD, OS, DSS)

where SPD is the corresponding stream process definition and OS is a set of
operators executing the operator types given by SPD. DSS is a set of data
streams connecting the operator instances &

This definition does not give any constraint on the correct activation of a
stream process instance. For example, a well-activated stream process has to

48

4.2 Qutside World Interactions

have a running operator instance in OS for each non-ow vertex in the stream
process definition. For details on this see Section 4.4.

Data_Stream_Element Stream_Process_Definition

1 1 1
1 g
*

Data_Stream Edge |- desfination 7| Vertex Operator_Type

1 1 * source 1 " 1

1

Stream_Process Operator

Figure 4.4: UML Diagramm of the DSM Model

Figure 4.4 overviews and shows relations between the different entities of
the presented DSM model by use of an UML class diagramm.

4.2 Outside World Interactions

As stated in the stream process definition, the DSMS is interacting with the
outside world (ow-vertices). From the outside world point of view, the DSMS
is seen as black box, which is interacting with the outside world through data
streams as illustrated in Fig. 4.5. These data streams are called outside data
streams or ow-edges.

In this thesis, we assume for our DSM model the outside world system
does not fail. Of course, in real world the outside world system may fail,
but from the DSM system point of view there is by nature no possibility to
cope with all kind of failures that result from this without performing active

49

4 Data Stream Management Model

DSMS
Input // \\ Output
Outside Outside
Streams Outside World Streams

Figure 4.5: Outside World

control on the outside world. For illustration, we take an example from our
telemonitoring scenario. Let us assume Fred’s heart activity is monitored by a
DSM system. For this reason, Fred has sensor hardware attached to his body
which is measuring the heart activity with electrodes attached to his breast.
The sensor hardware wirelessly transmits the sensor data stream to Fred’s
PDA. In this scenario, we consider the PDA as node of the DSM system, but
the sensor hardware is part of outside world system. If the sensor hardware
fails, the DSMS is no longer able to continue correct DSM monitoring of Fred’s
heart because the incoming ow-edge is dead. Surely, there is the possibility
to cope with this problem by having a redundant pair of sensor hardware.
From a model point of view, applying this failure handling mechanism means
that we move the system border between DSMS and the outside world in
a way that the sensor hardware now is under control of the DSMS. On the
other hand, e.g., if Fred’s PDA fails, which is inside the DSMS, the operator
instances executed there can be moved to Fred’s smartphone, which is also
inside the DSMS. In this case, the system border has not been moved.

50

4.3 Well Formed Stream Process Definitions

Furthermore, we state two assumptions on the behavior of the outside
world (ow-vertices) in order to make the failure handling of the DSMS more
efficient. Here are the details of the two assumptions for input and output
outside data streams:

Firstly, the outside world input is defined as receiving data stream ele-
ments from ow-vertices. For this case, we assume that the DSMS can reread
data stream elements from the outside data stream if necessary, because of
failures within the DSMS. Practically, this can be implemented e.g., by ap-
plying a reasonable buffer in the sensor hardware. This assumption is called
outside sender assumption (OSA). Of course this assumption, only holds for a
limited time-frame. But knowing this time limit and using this assumption
allows the DSMS to apply more efficient reliability algorithms.

Secondly, the output is defined as sending data stream elements to ow-
vertices. For this case, we assume that the DSMS is allowed to resend data
stream elements to the outside data stream if necessary. This re-sending
could be because of failures inside the DSMS. The practical implementation
at the ow-vertex will eliminate duplicates of data stream elements. Dupli-
cate elimination is allowed because our DSMS works strictly deterministic
and therefore the duplicates are identical. Duplicates could be detected at
the ow-vertex, e.g., by ignoring multiple data stream elements with the same
stream-time (aka, sequence number). This assumption is called outside re-
ceiver assumption (ORA). Again, by leveraging this feature of the ow-vertex
the DSMS can apply more efficient reliability algorithms.

4.3 Well Formed Stream Process Definitions

In this section, we describe the following set of constraints a stream process
definition has to fulfill in order to be considered as valid or well-formed. In
a practical system, this constraints can already be evaluated by the process
design tools before process execution.

1. Each vertex in a stream process definition has attached to each input
port exactly one input edge.

2. Each vertex in a stream process definition has attached to each output
port at least one output edge.

3. The stream alphabet of each output port corresponds along all connected
edges to the expected stream alphabet of input ports.

51

4 Data Stream Management Model

4. Outside world ow-edges are always connecting ow-vertices with non ow-
vertices. The stream process definition is not describing interactions
between ow-vertices.

5. Reasonable delay constraints are given within the stream process defi-
nition, which means the min A T constraints given by the operator type
are not violated in the SPD.

Definition 4.10 A well-formed stream process (SPD) definition holds the fol-
lowing constraints:

vv € SPD.V(Vip € v.ot.IP(dle € SPD.E : e.ip = ip)) (1)

Yv € SPD.V(Vop € v.ot.OP(de € SPD.E : e.op = op)) (2)
Ve € SPD.E:e.op.X =e.ip.X (3)
Ae € SPD.E: (ex=owAey =ow) (4)
Vv € SPD.V:v. AT >v.otminAT (5)
<&

Note that 3! describes the existence of exactly one element.

Finally, well formed stream process definitions may contain cycles in the
graph. Cycles are paths within the stream process definition, where the start
vertex corresponds to the end vertex. As defined in graph theory, a path is a
sequence of vertices in a form that from each vertex there is an edge to the
next vertex in the sequence. Nevertheless, we distinguish between cyclic and
non-cyclic stream process definitions for certain aspects in the remainder of
the thesis.

4.4 Well Activated Stream Process

After the design of a well-formed stream process definition SPD, the DSMS
is in charge of activating an stream process instance SP of the given SPD.
After successful activation, the following constraints on well-activated stream
process instances are defined:

1. Each non ow-vertex in SPD has a corresponding running operator in-
stance in OS.

2. Each edge in SPD has a corresponding running data stream instance in
DSS.

52

4.4 Well Activated Stream Process

Definition 4.11 A well-activated stream process (SP) holds the following con-
straints:
Vv € SP.SPD.V|, sow(3lo € SP.OS : v =0.v) (1)

Ve € SP.SPD.E(d!ds € SP.DSS : (e.op = ds.op A e.ip = ds.ip)) (2)

53

Reliable Data Stream Management

In this chapter, we describe how to apply reliable stream process execution
within our proposed DSM infrastructure of Chapter 3. Due to the nature
of DSM applications (e.g., as described in Chapter 2), the DSM system has
to work in a distributed setting including mobile devices and wireless con-
nection. Regarding this fact, efficiency of reliability algorithms have to be
particularly considered.

In what follows, we firstly describe a model for reliability of stream pro-
cess execution. We formally describe different levels of reliability for DSM,
like lossless, delay-limited and intra-order preserving reliability level (see Sec-
tion 5.1). We have chosen to focus on this reliability levels because we state
that loss of data stream elements is in general not tolerable by various DSM
applications (e.g., telemonitoring in healthcare). Moreover, also the delay of
data stream elements has to be limited in order to be able to react to cer-
tain conditions. In particular for critical health conditions, the correspond-
ing data stream elements should be available within limited and predictable
time. Lastly, also the order of the data stream elements within a data stream
(intra-order) has to be conserved.

Secondly, the proposed efficient reliability algorithm for DSM presented in
this chapter is designed to guarantee these reliability levels. Generally, we
can distinguish two groups of reliability techniques. First, hot-standby strate-
gies impose that DSM processing is performed in parallel at two different
nodes in the network. We state that these strategies are too resource demand-
ing for the presented application areas. Second, passive-standby strategies
do not process in parallel but regular checkpoint messages allow a passive
standby-node to seamlessly take over processing in case failures. We state
that, passive-standby is more appropriate with respect to the presented ap-
plications. Moreover with regard to passive-standby, we state that due to

5 Reliable Data Stream Management

resource limitations the complete migration of all DSM processing workload
that was performed at the failed node to a single standby-node is not always
possible. In particular, since the goal is to make efficient use of available re-
sources, the infrastructure has to deal with reliability at a more fine grained
level of data stream operators. For example, if a patient’s PDA fails, which has
previously hosted three operators, the most efficient failure handling can be
that two operators are migrated to the patient’s base station and one operator
is migrated to the patient’s smartphone. Obviously, the operator migration
in case of failures has to be seamless, which means that no streaming data
is getting lost. In order to achieve this the infrastructure has to apply effi-
cient and reliable operator checkpointing algorithms during the runtime of
operators.

5.1 Reliability Levels of Stream Process Execution

The presented model in Chapter 4 describes all interactions of the DSMS with
the outside world through outside data streams (ow-edges). Therefore from
the outside world point of view, the internals of DSMS are seen as a black
box. Based on this fact, we can define the reliability level of a DSMS faced
by an outside user by comparison of a real-world DSMS to an ideal DSMS.
The ideal DSMS system is a virtual system which is executing all stream
processes in a proper way according to the stream process definition (SPD).
This means that no delays are happening during stream process execution,
no data stream elements get lost, and no wrong data stream elements are
produced due to failures. In contrast the real-world DSMS is an error-prone
DSM system that has to deal with failures happening in the real-world.

In the following, we compare the output outside data streams DS;geq1 of an
ideal DSMS with output outside data streams DS,., of a real-world DSMS.
Since the ideal and real DSMS are fed with exactly the same input outside
data streams generated by the outside world, we only need to compare output
outside data streams.

The highest level of reliability is achieved by a real world system with
identical output data streams as the ideal system. In this case, there is no
difference to the ideal DSMS from the outside world’s point of view.

Definition 5.1 Ideal reliability level is defined as having for all output data
streams: DSigeat = DSreat &

Unfortunately, real world systems have to cope with failures and there-
fore may not produce the same result as ideal systems. Real world systems
may sacrifice this ideal reliability also on purpose in order to use available

56

5.1 Reliability Levels of Stream Process Execution

resources more efficiently. Since not all applications have the same require-
ments on reliability it is beneficial to have different levels of reliability applied
to different stream process definitions. In the following, we consider reliabil-
ity levels to be individually defined for different stream processes.

For this reason, we define the following two subset data streams of a real
world output outside data stream.

Definition 5.2 The correct data stream DS, contains the subset of the data
stream elements appearing in the real-world data stream DS,.,; which have
the same (correct) sequence number ¢ and payload information pd as data
stream elements appearing in the corresponding ideal data stream DS;gea:

Dscorr C Dsreal
Vdecorr € DScorr(Hldeidem € DSigear :
(deideal-‘(—v - decorr-(t—v AN deideal-pd - decorr-pd))

&

Elements in the correct data stream may have a different global timestamp
T compared to the corresponding data stream element in the ideal data stream
because they may be delayed during processing. Correspondence is defined on
the basis of the sequence number ¢ and payload information pd.

Definition 5.3 The incorrect data stream DSt contains the subset of the
data stream elements appearing in the real-world data stream DS, ., which
have no corresponding data stream elements appearing in the ideal data
stream DS;4.q1. Correspondence is defined on the basis of the sequence num-
ber & and payload information pd:

Dsfail C Dsreal
Vdesair € DStaut(Adeigear € DSigear :
(deideat-& = defqit.& A deigear.Pd = deqir-pd))

&

Furthermore, we are able to degrade the ideal reliability level in three or-
thogonal dimensions considering loss, delay, and order. In this thesis, we have
intentionally not modeled accuracy of data stream elements as reliability cri-
teria as in [C1T02, BBMSO05]. The reason for this is, we state that in several
application domains (e.g., for healthcare applications) inaccurate DSM pro-
cessing is generally not tolerable or very application specific. In this thesis,
we consider a binary approach where a data stream element is either consid-

57

5 Reliable Data Stream Management

ered as correct or incorrect. Inaccurate (incorrect) data stream elements are
considered as invalid and therefore result in loss of data stream elements.
Loss is defined as having less correct data stream elements DS, in the
real-world output outside data stream than the ideal output outside data
stream, but may have additional incorrect data stream elements DS¢.;;. The
loss definition allows for processing delays of data stream elements (a differ-
ent global timestamp T). For this reason, loss is independent or orthogonal to
reliability levels constraining the delay and order of data stream elements.

Definition 5.4 Limited-loss reliability level (LILO) is defined as having:

DSreaI - DScorr U DSfail
|DSidea1| Z |Dscorr‘ 2 ‘Dsideal’ *LF LF e (O> 1]
IDStaitl < [DSigeatl ¥ EF EF € [0, 00)

where LF is a maximum allowed loss factor and EF is a maximum allowed
error factor. &

Definition 5.5 Lossless reliability level (LOLE) is a special case of the loss
reliability level, where LF =1 and EF = 0. &

Revisiting our example scenario of Section 2.2, patient Fred will require
a lossless reliability level if the abnormalities in his physiological signals ap-
pear very infrequent but still have severe consequences for his health and
therefore for the adaption of treatment. This situation arises commonly with
cardiac arrhythmias like arterial fibrillation. This disturbances occur maybe
only once a week for a short period of time. If data stream elements that in-
dicate an arrhythmia of Fred’s heart are lost this has severe consequences for
the correct treatment of Fred.

Delay is defined as having for correct data stream elements in the real-
world outside data stream a certain delay in the global timestamp T com-
pared to DS;4eq1. Delay is not putting any constraints on missing data stream
elements compared to the ideal data stream, which are subject of loss. In
general, delay is putting no constraints on the order of data stream elements
within global time.

Definition 5.6 Limited-delay reliability level (LIDE) is defined as having:

vd—ecorr € Dscorr(zl!deideal € Dsideal :
deigeal.& = decorr.& AN deideal-pd = decorr-pd
/\d—eideal-T S decorr-”r S deideal-T—I' AT)

58

5.1 Reliability Levels of Stream Process Execution

where AT is a maximum allowed delay. O

Definition 5.7 Delay-free reliability level (DEFR) is a special case of the
limited-delay reliability level, where At = 0. O

Notice that in the delay-free case, the order of the data stream elements is
preserved. A detailed explanation is given in the proof of Lemma 5.13.

Revisiting our example scenario of Section 2.2, patient Fred will tolerate
a limited-delay reliability level. Limited-delay reliability guarantees that his
data streams are processed within a certain time. Delay times in the order
of seconds in stream processing are quite short to the normal time of inter-
vention needed to apply the telemonitoring results. Even in case of an severe
emergency, e.g., heart attack, the ambulance needs at least multiple minutes
to come. Therefore, some seconds due to delays on stream processing are neg-
ligible.

Order is defined for correct data stream elements in the real-world outside
data stream and is coming in two flavors. One is intra stream order, which
means that the ordering of the data stream (according to the global time-
stamp 7) is preserved. Order considers only the available correct data stream
elements and therefore does not allow for loss. Order also tolerates processing
delays as long as the order is not messed up.

Definition 5.8 Intra stream order preserving reliability level
(IASO) guarantees:

VdeCOTT‘(E’) E DSCOTT' . deCOTT(Ev)'T S deCOTT‘(Ev —I_])'T

<&

The other aspect is inter stream order, for which we compare addition-
ally if the temporal-order of data stream elements is preserved between data
streams of the same stream process. To be more precise, the relative order
between every pair of the correct data stream elements of two data streams
DScorr1 and DS .2 has to be maintained.

Revisiting our example scenario of Section 2.2, we consider a stream pro-
cess monitoring our patient Fred’s that is producing two output streams. One
output stream is the average blood pressure of the last minute and the other
is the average heart rate of the last minute. The ideal system always produces
the data stream element with the blood pressure average of the last minute
before the data stream element with the heart rate average. In this case, the
inter stream order reliability level is guaranteeing this behavior also for the
real-world system.

59

5 Reliable Data Stream Management

Definition 5.9 Inter stream order preserving reliability level
(IESO) guarantees:

Vdecorﬂ S DSCOTT] (Vdecor’rz S Dscorrz .
((decorﬂ-a S decorrz-a) AN (decorﬂ T S decorrZ-T))
V((decorﬂ Ev 2 decorrl‘i) A\ (decorﬂ T 2 decorr2~T)))

&

In general, patient Fred will be able tolerate disorder of data stream ele-
ments. A reason for this is that the DSMS is always able to detect disorder
within data streams and reorder them appropriate at network level to guar-
antee the intra stream order reliability level. For inter stream order relia-
bility level, Fred’s data stream analysis operators are able to detect disorder
at application level. For example, Fred’s heart rate data stream is arriving
in incorrect order compared to Fred’s blood pressure data stream at a com-
mon analysis join operator. In this case, additional time information about
the generation of a data element at sensor nodes can be used to verify time
synchronization at application level. Further details on generation time are
presented in Section 4.1.2. Of course, we assume that sensors are working on
synchronized clocks.

Figure 5.1 illustrates the reliability levels of DSM and their relationship.
The three levels of reliability LILO, LIDE, IASO are orthogonal sets. Loss-
less (LOLE), Delay-free (DEFR), and inter stream order (IESO) are subsets
of LILO, LIDE, and IASO respectively. The only exception of orthogonality
is between DEFR and IESO/IASO are related because delay-free reliability
guarantees inter-stream and intra-stream order reliability but not vice versa.
Formally, reliability levels are sets of DSM systems. In contrast, a real-world
DSMS is an element working at certain reliability levels. Fig. 5.1 illustrates
the relationship between these levels. The ideal DSMS which is working
at ideal reliability level and therefore fulfilling all other reliability levels is
shown in the center of Fig. 5.1. If a DSM system is not fulfilling a certain
reliability level, the system is not part of the reliability level set. In this case,
the actual reliability of the system with respect to the investigated reliability
level (loss, delay, order) is not defined and therefore unpredictable.

Lemma 5.10 All reliability levels have a common intersection. <&

Proof. The common intersection is proven because the ideal DSMS element
fulfills all defined reliability levels. This is given by the definitions of the
different reliability levels which define degradations compared to the result
of an ideal DSMS. O

60

5.1 Reliability Levels of Stream Process Execution

ideal

-

L

well-activated

well-formed

LOLE lossless, LILO limited-loss, DEFR delay-free, LIDE limited-delay,
IESO inter stream order, IASO intra stream order

Figure 5.1: Relationship between Reliability Levels of DSM

Lemma 5.11 The more restrictive reliability levels LOLE, DEFR, IESO are
subsets of the corresponding reliability levels LILO, LIDE, IASO.

LOLE C LILO

DEFR C LIDE

[ESO C IASO

O

Proof. Each lossless (LOLE) DSMS fulfills also the criteria for limited-loss
(LILO) reliability level where the loss factor LF = 1.

Each delay-free (DEFR) DSMS fulfills also the criteria for limited-delay
(LIDE) reliability level where the maximum allowed delay At = 0.

Each inter-stream order (IESO) preserving DSMS fulfills also the crite-
ria for intra-stream order preserving (IASO) reliability where the pair of
compared data streams points to the same data stream instance DS .1 =
DscorrZ- U

61

5 Reliable Data Stream Management

Lemma 5.12 The three reliability levels LIDO, LIDE, IASO are orthogonal
sets. Orthogonality describes in this case, that the sets are independent and
not subsets of each other. Because of Lemma 5.10 there is a common intersec-
tions between the sets. O

Proof. In order to proof this lemma, we have to show that none of these three
sets (LIDO, LIDE, IASO) are subsets of each other.

LIDE ¢ LILO: There are DSM systems, that produce data stream ele-
ments with limited delay (LIDE) but without any guarantee with respect to
the amount of loss (LILO) of data stream elements.

LILO ¢ LIDE: There are DSM systems, that produce data stream ele-
ments with limited loss (LILO) but without any guarantee with respect to the
amount of delay (LIDE) of data stream elements.

LILO ¢ IASO: There are DSM systems, that produce data stream elements
with limited loss (LILO) but without any guarantee with respect to preserving
the order (IASO) of data stream elements.

IASO ¢ LILO: There are DSM systems, that produce data stream ele-
ments with correct order (IASO) but without any guarantee with respect to
the amount of loss (LILO) of data stream elements.

IASO ¢ LIDE: There are DSM systems, that produce data stream ele-
ments with correct order (IASO) but without any guarantee with respect to
the amount of delay (LIDE) of data stream elements.

LIDA ¢ IASO: There are DSM systems, that produce data stream ele-
ments with limited delay (LIDE) but without any guarantee with respect to
preserving the order (IASO) of data stream elements. O

Lemma 5.13 The delay-free (DEFR) reliability level is also a subset of the
inter-stream order preserving reliability level.

DEFR C IESO

&

Proof. Each DSMS that guarantees delay-free (DEFR) data stream process-
ing also preserves the inter-stream order of the produced data stream ele-
ments. This is caused by the fact that the order of data stream elements
within a data stream can only be disturbed by additional delays. In the case
of DEFR, there is no delay of data stream elements as in the ideal case. For
this reason, the order of the correct produced data stream elements is also cor-
rect. Still, there is possible loss of data stream elements and therefore DEFR
is independent with respect to the limited-loss (LILO) reliability level. &

62

5.2 Failure Model

Finally, as an important prerequisite for guaranteeing the different relia-
bility levels all executed stream processes have to be well-activated and their
corresponding stream process definitions have to be well-formed.

5.2 Failure Model

In the following, we describe a failure model based on the given DSMS model
in Chaper 4.

Definition 5.14 Failure of an operator instance o¢q;1: This failure affects the
stream process SP.; which is using the affected operator:

SPfait € SP|0fail€SPfail-OS

Moreover, within SP¢.; besides oty all data streams DS¢y; from DSS are af-
fected that are connected to a port of o1

Dsfail € SPfa‘il'DSS‘ (DS¢qil-ip€0fail - V.-ot.IP)V(DS¢4i1.0p€EOf i1 .v.0t.IP)

<&

Definition 5.15 Failure of a data stream DS:¢.y: This failure affects the
stream process SP;.;; which is using the affected data stream:

SPfait € SPIDS; 1 €SPsaiL.DSS

Moreover, within SP¢;; besides DS« all operator instances o¢q;; that are con-
nected by DS¢.;; are affected:

Ofall. E SPf(l'Ll'OS‘ (DSfaﬂ.i‘peofau.v.otIP)\/(DSfau.OpEOfau.v.ot.OP))

<&

Definition 5.16 Failure of a host h¢1: This failure affects all stream pro-
cesses SP;qi1 having running operator instances, which are hosted by the af-
fected host:

SPfail € SP| (F0£ai1 €SPsail-OS:0fqi1-h=hsqi1)

Within each affected stream process SP¢,; the following operators o.; are
affected:
Ofait € SPtait-OSlo; i hehrant

63

5 Reliable Data Stream Management

Moreover, also the following data streams DS;.;; connecting to an affected
operator o4 are affected by the failure:

DSsai1 € SPfaﬂ.DSSHDSfau.iP € Ofqi1.v.0t.IP) V (DSfaﬂ.Op € Ofqir.v.0t.IP)
&

Our failure model assumes all failures to be fail-stop failures. Fail-stop
failures are failures where the affected part is completely stopping its work.
Other (non-fail-stop) failures may result in improper results, e.g., an oper-
ator instance is producing wrong output data stream elements or an data
stream is suffering from distortion and therefore modify payload information
during transfer. In practice, the later failure cases can be avoided by having
proper means, e.g., cyclic redundancy checks, within the DSMS infrastructure
to detect transmission errors or faulty operators. The outside world system is
assumed to be always working correct as discussed in Section 4.2.

5.3 States within Stream Process Execution

During runtime of a stream process in a DSMS different kinds of states are
generated:

e Operator state (s(7)). This is the most obvious state and has already
been defined in Section 4.1. This state is generated by each running
operator instance during the processing of data streams.

e Time context (TC(t)). Each operator instance has to know its current
stream-time context.
TC(1) = (=™, 2°%)

=in =out refer to the stream-time of last processed input and output data
stream elements (c.f. operator definition in Sec. 4.1).

e Transfer state (TS(t)). In a real world system the processing and trans-
mission of a data stream DS is suffering from delays. Therefore, there
may be at a given global timestamp 1t some data stream elements in a
state of transfer along an edge e = (x, op,y,ip, AT) of a stream process.
The state of the data stream between op and ip is called transfer state
TS. The transfer state along an edge is given as subset of DS:

TS(T) = DS(ES) Ee)

64

5.3 States within Stream Process Execution

Operator Transfer State
State

Routing
State

Figure 5.2: States of a Stream Process

where &, < &, and |[DS(&,, &.)| = & — & 1s the number of elements in the
transfer state. &, refers to the element with oldest stream-time and &.
refers to the element with the newest stream-time in state of transfer. In
practice, an acknowledgment protocol between consumers and producer
of a data stream will describe elements in transfer as non-acknowledged
elements.

¢ Routing information (RI(7)). Finally, for each edge the stream process
execution has to know the host which is currently hosting the source
vertex x and the host of the destination vertex y, where the data stream
has to be sent to. This routing information h,, h, is also considered as
state of the stream process.

Figure 5.2 illustrates the states within a stream process.

65

5 Reliable Data Stream Management

5.4 Consistency Within a Stream Process

Based upon the previous definitions of states within stream processes, we are
able to define consistency constraints for relations between the time context of
the operator state and transfer state.

Exact consistency ensures that at every global timestamp T all operator
instances are working consistently to the transfer states of the data streams
in between. For this reason, also all operator instances are working consis-
tent to each other. In this case, exact consistency is guaranteeing a lossless
reliability level, because loss would cause an inconsistency.

Definition 5.17 Exact Consistency, is defined by the following: For all pairs
of two operators x,y which are connected via an edge e from x.op to y.ip at
any point in global time T the following has to hold

T) = (OT,, 28 2, 4, hy, T)
y(t) = <OTy>H1Tv ngt>sy’hv T>
TS(1) = DS(&s, &)

(Eop = &e) N (&ip = &)

where &, is current stream time of the last element produced at the output
port of x taken from ="' and &;,, is the current stream time of the last element
consumed at the input port of y taken from EL“. O

Based on the deterministic operator model we are able to relax the exact
consistency constraint. Relaxed consistency allows for the sender x to re-
send data stream elements if necessary and for the receiver y to receive data
stream elements again. For internal vertices within the stream process this
assumptions are valid, because an appropriate transport mechanism within
the DSMS is able to offer this. For interaction with the outside world along
ow-edges this assumptions are also valid as stated in Section 4.2.

Definition 5.18 Relaxed Consistency, is defined by the following: For all
pairs of two operators x,y which are connected via an edge e from x.op to
y.ip at any point in global time T:

T) - <OTX>T;n>T2ut> Sx;hx T>
U(T) - <OTy»HLn> ’_‘Sut)sy»hy T>
TS(t) = DS(&s, &)

)

(EVO]:) < E,e) (Eylp > (is

66

5.4 Consistency Within a Stream Process

Revisiting our example scenario of Section 2.2, patient Fred’s heart ac-
tivity and blood pressure is monitored with the example process in Fig. 3.4.
In this stream process the ECG Acquisition operator is sending data stream
elements containing samples of Fred’s current heart activity to the ECG Vari-
ability operator which is processing the variability within Fred’s heart ac-
tivity. Having exact consistency enforced, the ECG Acquisition operator is
allowed to send each data stream element only once. This means that the
newest element in transfer has exact the stream timestamp of the last ele-
ment sent. Moreover, exact consistency forbids that elements get duplicated
during transfer. This means that the oldest element in transfer is exactly the
next data stream element the ECG Variability operator is expecting.

When relaxing consistency, we allow for the ECG Acquisition operator to
re-send data stream elements. This results in having duplicate heart activ-
ity data stream elements within transfer state. The stream timestamp of the
last element sent is allowed to be smaller or equal than the newest element
in transfer state. Relaxed consistency allows also for data stream elements
to exist duplicated in transfer state. This means that the oldest heart activ-
ity sample in transfer has to have a smaller or equal stream time (sequence
number) than the next data stream element expected by the ECG Variability
operator.

Lemma 5.19 Having relaxed consistency enforced at all times during the
processing of a DSMS guarantees lossless reliability. &

Proof. Relaxed consistency from Def. 5.18 is defined by (&0, < &) A (&ip > &s).
Compared to exact consistency from Def. 5.17 where (&o, = &) A (&p = &)
there are additional elements allowed between &,, and &. and between
&s and &;p. These elements are additional older elements and because of the
deterministic finite state machine model of the operator this elements must be
duplicates of the elements which caused the current state. Therefore, the ele-
ments can be safely discarded without affecting the current or future state of
the DSMS. In this case, relaxed consistency is also guaranteeing a lossless re-
liability level. Also with respect to outside world interactions (see Section 4.2)
relaxed consistency is applicable. The outside sender assumption is stating
the input data streams from outside word can be reread and the outside re-
ceiver assumption allows for re-sending data stream elements to the outside
world. O

67

5 Reliable Data Stream Management

5.5 Distinction Between Delays and Failures

In a real-world DSM system the processing and transmission of data stream
elements is subject of delays. Our model has inherently accepted delays as
part of operator types and stream process definitions where vertices and edges
have maximum allowed delay constraints given. Given this delays, we can de-
fine temporary failures, where the effect of a failure is only temporary, e.g., a
wireless network disturbance. The term temporary indicates that no delay
constraints within the stream process definition are violated. On the other
hand, if a failure is persistent in a way that the delay constraints are exceeded
we consider the failure as permanent failure. In a real-world implementation
of DSMS the temporary failures are usually compensated for through the use
of buffers in between the operators. Contrarily, permanent failures have to be
treated in a more sophisticated way. In order to follow the delay constraints
even in case of failures the real-world DSMS infrastructure has to apply an
efficient reliability strategy to handle the failure before delay constraints are
exceeded. Since the reliability strategy needs some time 7, to recover from the
failure situation, the DSMS has to start failure handling when the current
delay exceeds the maximum allowed delay A T minus the recovery time T,.
Fig. 5.3 illustrates the temporal behavior of an example data stream during a
failure and recovery of a DSMS. The illustration uses a two-axis visualization
of the data stream. The x-axis is the stream-time or sequence number and
the y-axis shows the processing time of the data stream element. In order
to measure delays in processing time, the illustration contains the ideal and
real world data stream elements. Shortly after processing of the third input
data stream element, the DSMS has a failure. Before exceeding the maxi-
mum allowed delay, the failure becomes a permanent failure and the DSMS
starts recovery. At this point in global time, the ideal DSMS would already
have processed the seventh data stream element (see thin horizontal line in
Fig. 5.3). Obviously these data stream elements have to be stored in appro-
priate queues in the real-world case, either directly within the sensors or at
an input interface for sensor devices. After the recovery time t,, the fourth
data stream element is processed by the real world DSMS while data stream
elements 5,6,7, and 8 have queued up and producing a congestion. Like other
time-constrained systems, a real-world DSM system is not able to be execute
at full CPU utilization [LL73]. For this reason, there are unused CPU re-
sources available that are able to work off the congestion during the catchup
time t.. This assumption includes the fact that also mobile device have spare
CPU cycles for such cases. After 1. the congestion is worked off and the av-
erage delay of an incoming data stream element is the same as before the
failure. Using the reliability levels introduced in Section 5.1, the illustrated

68

5.6 Failure Handling of the DSM Infrastructure

ProcessingTime 1 real-world
) DSMS
e e e —— - e e
e -9
1. Catchup -
7__4___R ________ .*———r
T, Recover L P’ /
z’l ’ '
AT I
At-T1.~ I
: I
Failue Ideal DSMS
g I
) I

AT max allowed delay
T, time for recovery
T, time for catchup
AT, delay of 1.elemen

1 2 3 4 5 6 Stream-Time &

Figure 5.3: Temporal Behavior of a Failure

real-world data stream fulfills lossless reliability, is intra-order preserving,
and has limited-delay reliability. Of course, the ideal data stream fulfills ideal
reliability.

5.6 Failure Handling of the DSM Infrastructure

In general, the DSMS is able to deal with failures in two different ways.
Firstly, transparent failure handling is completely done by the DSM infras-
tructure without any user intervention or interaction with the application.
Secondly, if transparent failure handling is not possible, the DSMS can apply
application-defined failure handling.

Application-defined failure handling can be applied in two flavors. Firstly,
alternative processing branches are defined in the stream process definition
and allow modifications for different branches within a stream process. For

69

5 Reliable Data Stream Management

example, this allows to continue data stream processing even in the case no
other provider in the network is able to host the failed operator instance for
recovery. This can be done by executing an alternative processing branch
given in the stream process definition which is bypassing any operator type
that is not available. In this thesis, we present this failure handling approach
for reason of completeness but we have not evaluated the outcome of this
approach in detail. Moreover, there are some issues on alternative processing
branches that are presented in the outlook of thesis in Chapter 9.

Secondly, invocation of traditional processes may handle failure situations
where the proper execution of the stream process is not possible. These tradi-
tional processes are defined by the process designer (e.g., the caregiver) and
they describe how to cope with the failure. For example, patient Fred is leav-
ing the house and therefore causing an network connection failure on the
wireless connection between his PDA and his base station at home. An ap-
propriate alarm process can inform Fred, e.g., by sending him an SMS to his
cellular phone, that he is currently not monitored because of network discon-
nection and returning back in connection range of his monitoring system will
solve the issue.

The first-class solution proposed and evaluated in this thesis is to han-
dle failures transparently by the DSM infrastructure. The remainder of this
chapter will emphasize on transparent failure handling. Transparent failures
are further distinguished between temporary and permanent failures (see Sec-
tion 5.5).

Temporary failures, e.g., a temporary network disconnection (loss of mes-
sages) or a temporary failure of a provider which is able to recover within
the maximum allowed delay time A T, are compensated by the transfer state
which is kept in output buffers of upstream providers. For recovery, the up-
stream provider is able to re-send the buffered data stream elements. In or-
der to prevent from long delays and huge buffer sizes, a temporary failure
becomes a permanent failure before exceeding the maximum allowed delay
AT.

Permanent failures, e.g., a permanent network disconnection or failure of a
provider, require to migrate an operator instance with its aggregated operator
state from the affected provider to another suitable provider. Operator migra-
tion implies the continuation of an operator instance from a recent checkpoint
on a new provider in order to allow for seamless continuation of DSM, and
eventually the stopping of an old running operator instance. Ensuring consis-
tency between operator states even in case of failures is a crucial constraint
for seamless continuation of data stream processing. Details on handling of
permanent failures are described in the remainder of this chapter.

70

5.6 Failure Handling of the DSM Infrastructure

Consequences of a failure in distributed DSMS usually affect more than
one node of the infrastructure because communicating operator instances of
a stream process may be executed at different nodes. Therefore, it is vital
for proper failure handling of a DSMS that all affected nodes detect the fail-
ure or have to be informed about the failure. Therefore, failure detection is
inevitable for proper failure handling.

In this thesis, we do not focus on the detection of failure situations in a
DSMS. We have implemented some basic failure detection mechanism based
on acknowledgement and heartbeat messages that are exchanged between
communicating hosts within the DSM infrastructure. Leveraging the nature
of stream processing, combination of transmission of data streams and ob-
servation of operator instances is reasonable. The DSM infrastructure offers
a reliable FIFO-transport for DSM messages, which leverages an acknowl-
edge protocol as described in [TS01]. This FIFO-transport already guaran-
tees intra-order reliability of DSM as defined in Section 5.1. The acknowl-
edge protocol is also used to detect failures along data stream connections
between operator instances, which are the edges in the stream process defi-
nition. This allows providers of connected operator instances to pairwise ob-
serve each other. Detected acknowledge failures are indicating a failure along
the connecting edge but the provider cannot distinguish between a network
failure, a failure of the other provider, or a just the failure of the operator in-
stance (according to the three kinds of failures defined in the failure model of
Section 5.2). The following failures are currently detectable by the proposed
DSMS infrastructure:

Operator failure. In this case, the operator instance has failed but the
provider node is still up and running.

Host failure. In this case, a host of the DSMS has failed and therefore all
running operator instances at the host have failed consequently.

Host overload. In this case, a host of the DSMS has not failed but due to
high workload the delay constraints are not maintainable. A typical task of a
DSM infrastructure is to monitor the computation load of each provider and
publishes this information via global repositories (see Chapter 3). This load
information is replicated throughout the DSM infrastructure and allows for
balancing the load within the overall system, i.e., by allowing to locally choose
the least loaded provider offering a particular operator.

Network disconnection. In this case, all hosts behind the network discon-
nection are unreachable and therefore affected from the failure. Because of
this, all operator instances running on the affected hosts have to be migrated
to unaffected hosts.

In particular, detection and handling of network disconnections which sep-
arates the DSM infrastructure into disconnected partitions is not trivial and

71

5 Reliable Data Stream Management

out of scope of this thesis. There is a plethora of work in the field of network-
ing research dealing with failure detection [KSS04, Sri06, HWS04]. In this
work, we assume the DSM infrastructure is able to detect the failure situ-
ation and there are significant numbers of unaffected hosts in the network
available to take over the workload and compensate the failure.

5.7 Operator Migration

Normal Failure
Host ha Host ha

A 4
v

DSV Sa DSG DSY / ‘\ DSG
Checkpoint Messages
Takeover
A
DS
Y Sh
Backup host h, / Host h,
Operator State Backup Selection of new backup host

Figure 5.4: Operator Migration

During runtime of a DSMS, failures as described in Section 5.2 are likely
to happen. If a failure situation persists longer than A t—, (see Figure 5.3) at
any edge or vertex of a running stream process the failure becomes a perma-
nent failure. In this case, the DSM system applies transparent failure han-
dling at first. For transparent failure handling, the DSMS has actively apply
some mechanisms in order to recover from the failure situation and keep the

72

5.8 Operator Checkpointing

required reliability levels. With respect to the applications with high reliabil-
ity demands, we focus on lossless and limited-delay reliability. The expected
failure situations within our model are operator failure, network disconnec-
tion, and host failure. Whereas some kinds of operator failures or data stream
failures may be solved by restarting an operator at the same host or reestab-
lishing a data stream between to operators again, we most failures require
that running operator instances have to be migrated from affected hosts to
other unaffected hosts. This movement of an operator instance from one host
to another is called operator migration. Of course, operator migration also
involves to redirect the edges (data streams) between them. Figure 5.4 illus-
trates how a failure can be handled by using to operator migration.

In order to allow for operator migration in case of failures, the DSM system
needs access to a recent state of the affected operator instances. For this
reason, we apply a passive-standby approach based on checkpointing [CL85,
HBR105].

5.8 Operator Checkpointing

In our model, we define an operator checkpoint as the reliable storage of the
current state of the operator instance and the transfer state of all streams
produced by this operator instance at a reliable backup host. The checkpoint
is passed to the backup host via sending a checkpoint message. By applying
an acknowledgement on this message the backup provider guarantees the
reliable storage of the checkpoint. The selection of the backup host is done by
the host of the corresponding operator instance and based on locally replicated
load information. Furthermore, we assume the backup host does not fail.
Otherwise, multiple backup hosts are needed to cope with such failures. In a
DSMS, the backup host of an operator checkpoint is ideally able to be the host
of the corresponding operator. In case of a failure, the backup host, which
has the operator checkpoint locally available, is the destination of operator
migration.

An important prerequisite of operator migration is to ensure the availabil-
ity of a recent operator state backup at the backup node in the DSM infras-
tructure. In order to achieve consistent recovery, which means that operator
migration will not lead to loss of data, the DSMS applies an efficient operator
checkpointing strategy during runtime of the stream process.

An operator checkpoint subsumes the current state of an running opera-
tor instance including the transfer states of the outgoing data streams. These
states (as introduced in Sec. 5.3) are categorized by size and frequency of
changes in Table 5.1. We consider the operator state (s) as changing fre-

73

5 Reliable Data Stream Management

quently because every incoming data stream element may trigger a state
change. The size of the operator state is according to a finite state model
usually constant and compared to other states it is considered as medium.
The time context (T'C) consists of a stream timestamp for each incoming and
outgoing data stream therefore the size is constantly small but changes fre-
quently. The transfer state (T'S) is considered as varying in size and rather
medium to big. We assume the size transfer state is usually bigger than the
size of the operator state. Finally, the routing information (RI) is giving the
destination providers for each outgoing and incoming data stream. This in-
formation is constant and small in size. The frequency of change is rather
low compared to the other states because changes in routing information are
happening only when operator instances migrated to other providers.

State Changes Size

Operator State (s) frequent constant medium
Time Context (TC) frequent constant small
Transfer State (TS) frequent varying medium - big
Routing Information (RI) | infrequent | constant small

Table 5.1: Categorization of States

In our model, the node hosting the producing operator instance is responsi-
ble for keeping the transfer states. Moving this responsibility to the consumer
side would cause unnecessary overhead since our DSM models assumes a
multiple consumer - single producer pattern for data streams. This means
that, a single output port of an operator is able to feed multiple data stream
that are connected to input ports of downstream operators. Downstream op-
erators are operator instances which are processing data stream elements
that are produced by the regarded operator. Similarly, upstream operators
are operator instances that produce data stream elements processed by the
regarded operator.

In order to reduce the effort for operator checkpointing at backup nodes,
we introduce the following additional assumption for the reliability strategies.
Only the most recent checkpoint is kept at the backup node. Therefore when
a host is sending a newer checkpoint the older one is always overwritten: For
this reason it is not possible for the DSMS to go back further than to the most
recent checkpoint stored at the backup node during operator migration.

5.8.1 Consistency Requirements on Checkpointing

Furthermore, the reliability strategy of the DSMS has to guarantee relaxed
consistency (see Section 5.4) in order that the DSMS can guarantee lossless
reliability level to the application. This reliability level has to be guaranteed

74

5.8 Operator Checkpointing

even in case of multiple failures for which one ore more operators are migrated
and have to be recovered from their last checkpoints. At the same time, all
other operators not affected from failures are keeping their current state.

In our investigations so far, the transfer state is part of the checkpoint
messages and used to backup data stream elements for consuming operators.
This allows data stream elements in transfer state to be re-sent in case of
failures. Conceptually, there is one transfer state for each output port of a
running operator instance keeping data stream elements which are in trans-
port and have not yet been processed by the consuming operator instances.
As mentioned previously in this sections, each output port is able to feed mul-
tiple input port and therefore multiple operator instance. Still, the multiple
consumers share one transfer state, which is keeping data stream elements.
Whenever, consumers no more rely on the transferred data stream elements
an appropriate acknowledgement (ACK) message is sent to the producing out-
put port. This message contains a stream timestamp £ which indicates the
timestamp of last data stream element the consuming operator as processed
of output port i. All data stream elements that have been acknowledged by
all consuming operator instances of output port i are subject to transfer state
trimming.

Considering a failure, the migrated operator instance restart from the pre-
vious checkpoint and is able to retrieve all data stream elements kept in trans-
fer states of upstream operators again.

In Figure 5.5, we present a single operator failure scenario. In this case, we
assume the execution of a stream process with a sensor (outside world) and
two subsequent operators in the data flow (see lower right corner of Fig. 5.5).
Operator checkpointing is applied by the DSMS for the operators A and B.
In case operator A fails the operator instance is recovered from the most re-
cent checkpoint before the failure. Checkpoints are drawn as big dots in Fig-
ure 5.5 and the failure is marked with a bold cross. As Fig. 5.5 illustrates,
operator A will start producing duplicate data stream elements after recovery
until the point of the failure (in stream-time) is reached. After the failure &,
the recovered operator instance is producing new data stream elements. The
deterministic operator model presented in Chapter 4 guarantees that these
duplicate data stream elements are identical with respect to stream time and
payload information. Based on this model, the duplicates can therefore be
dropped safely by the reliable stream transport facility of the DSM infras-
tructure. During the failure interval in global processing time a congestion
of data stream elements has occurred at the sensor node which needs some
time after recovery to be worked off again. This time interval in processing
time needed to catch up with processing again is called catch-up time 7. (see
Fig 5.3). As this failure scenario shows the recovery of the transfer state is not

75

5 Reliable Data Stream Management

A produces duplicates for B

Output Queue recovery of A not needed
‘Processing Time T ; 3
Restart A 3

No-delay =
Sensor

Catch-up time T,

Recovery time T,

h 4
A

Temporary failure timeout /./ T
v ; v 2

Failure of A @ Checkpoint of B
@ Checkpoint of A

O]

Operator B

3

Stream-Time

Figure 5.5: Single Failure Scenario

needed for single operator failures. In this case, recovered operator instances
are even producing duplicates. Since the consuming operator instances do not
fail in this scenario there is no need to retrieve data stream elements stored
in the transfer state.

Unfortunately, for our intended applications multiple failure scenarios are
very likely to happen and have to be considered in operator checkpointing.
Figure 5.6 illustrates a multiple operator failure scenario. The stream pro-
cess used for the example is the same as in the previous failure scenario.
Now we assume that the two subsequent operators (A and B) fail at the same
time. There can be several cases of ordering of two simultaneous failures. Si-
multaneous means, that both failure situations of the two operators overlap.
Firstly, operator A failed before operator B but the recovery of operator A was
not finished at the time when operator B failed too. After recovery of both op-
erators from the most recent checkpoints, we see that operator A will recover
in a state after operator B with respect to stream time of their connecting

76

5.8 Operator Checkpointing

ProcessingTime Operator B

Operator A

Restart B ------------ >

No-delay =

Restart A ’ : Sensor

Failure of B

Failure of A @ Checkpoint of B
@ Checkpoint of A

Stream-Time

Figure 5.6: Multiple Failure Scenario

data stream. This means that operator B needs data stream elements to con-
tinue processing that have been produced by operator A before the most recent
checkpoint used for recovery. In this case, we need the recovery of the trans-
fer state of operator A because the transfer state at checkpoint time contains
exactly those missing data stream elements. Otherwise, operator B is facing a
gap after recovery. This gap will result in loss of data stream elements which
is not allowed for the intended lossless reliability level. Moreover, Fig. 5.6 il-
lustrates if moving the most recent checkpoints of operator A a little bit back
so that the checkpoints of operator A and operator B are at the same point in
stream time will omit the need for transfer state recovery.

Concluding the investigations so far, we see that recovery of the transfer
state is not necessary for the single failure scenario. In the multiple failure
scenario, we have to check whether the checkpoint of a subsequent operator
(like operator B in Fig. 5.6) is before or after the checkpoint of the upstream
operator A. If we can guarantee that the most recent checkpoint of a subse-

77

5 Reliable Data Stream Management

quent operator is later or equal than the most recent checkpoint of its prede-
cessor at the backup node the checkpoint does not have to include the transfer
state, which is highly beneficial in sense of checkpointing overhead.

5.8.2 Overhead of Operator Checkpoints

The overhead of operator checkpointing can be categorized in CPU, memory
and network overhead. CPU overhead is caused by additional computational
effort for scheduling and executing checkpoints. Memory overhead is mainly
caused by data stream elements of the transfer state, which are kept in output
queues until Check-Ack. Communication overhead is caused by the check-
point messages sent from the operator provider to the backup provider. CPU
and memory overhead is affordable. In general, modern mobile and embedded
devices profit from higher memory density and more MIPS per Watt. Never-
theless communication overhead is still expensive because of its high energy
consumption and therefore our main focus of optimization.

Taking a closer look into the communication overhead of standard check-
pointing for DSM, we can estimate the communication overhead (CO) from
checkpoint message size (CS) and checkpoint interval (CI):

CO x CS/CI

This means that the communication overhead is proportional to the check-
point message size CS multiplied by the checkpointing frequency 1/CI.

The checkpoint message, which contains the current operator state, con-
sists of the operator state (s), the time context (TC), the transfer state (TS),
and the routing information (RI). Therefore the checkpoint message size (CS)
corresponds to:

CS = sizeof(s) + sizeof(TC) + sizeof(TS) + sizeof(RI)

Important to mention, the size of operator state, time context, and rout-
ing information are independent from the checkpoint interval. RI is even
changing only infrequently and therefore is not included in each checkpoint
message.

The size of the transfer state on the other hand is increasing with the
checkpoint interval. But inversely shortening the checkpoint interval does
not lead to unlimited smaller transfer state size in the checkpoint message.
This is caused by the inherent delay between producing and consuming data
stream elements. During the delay the producer may already produce addi-
tional elements before the consumer has received the previous ones. There-
fore for checkpoint intervals that are in the range or smaller than this in-
herent processing delay the transfer state size is no more decreasing, but

78

5.8 Operator Checkpointing

sticking to this constant amount. Figure 5.7 illustrates this behavior. The
point marked with MCI indicates the minimal checkpoint interval where the
minimal size of transfer state (MSTS) is reached.

sizeof (TS)

MSTS

MCI Cl

Figure 5.7: Transfer State Size

In the following, we call the function (illustrated in Fig. 5.7) between trans-
fer state size and checkpointing interval TSS(CI) = sizeof(TS). We can now
derive the checkpointing overhead as:

CO « (sizeof(s) + sizeof(TC))/CI + TSS(CI)/CI

Figure 5.8 illustrates CO and the two terms of the previous formula
as function of CI. The dashed line in this figure represents the overhead
caused by the operator state and the time context ((sizeof(s)+sizeof(TC))/CI),
whereas the dotted line represents the overhead caused by the transfer state
TSS(CI)/CI. For reasonable checkpoint intervals (CI >MCI), the majority of
the checkpointing overhead is caused by the transfer state. Obviously, the dif-
ference in absolute values between the two is application dependent. But at

79

5 Reliable Data Stream Management

a qualitative level, we see that the above MCI the overhead caused by trans-
fer state is constant whereas the overhead caused by operator state and time
context is still decreasing with CI. Based on these consideration, we see it
is very beneficial to omit the transfer state from the checkpoint messages if
possible while keeping the requested reliability level.

Overhead

Figure 5.8: Checkpoint Overhead (CO)

5.9 Uncoordinated Operator Checkpointing

Uncoordinated operator checkpointing is a straightforward checkpointing al-
gorithm which guarantees lossless reliability level for DSM. In uncoordinated
checkpointing, a local checkpoint scheduler is generating independently lo-
cal checkpointing events without coordination of checkpoints along intercon-
nected operators.

80

5.9 Uncoordinated Operator Checkpointing

Host h, Host h,,
Ack &% | §19 <, < &
A ™ B
— ——— g —
DS, A DS, DS
€a" &5 €.
T, T

l l
I I
T, 0
Backup host h, Global Time Backup host h,

Figure 5.9: Uncoordinated Checkpointing

Figure 5.9 illustrates uncoordinated checkpointing. In the illustrated ex-
ample, operator A schedules a checkpoint at t;. At this point in process-
ing time, operator A has an operator state sa, a time context (£}, £5) along
the input data stream y and the output data stream «, and a transfer state
TSo(T1) = DS&(ES, EF). Later in time at T, operator B schedules a checkpoint

with operator state sg, a time context <E§‘, EE’ > along the input data stream

« and the output data stream (3, and a transfer state TSg(12) = DSg(EE, 55).
After performing this checkpoint, operator B will never need to rollback be-
fore this checkpoint so the transfer state of DS, can be trimmed to the start
stream time &5 which corresponds to the time context of the last checkpoint
of B. This is done by sending an appropriate acknowledge message along all
input edges after performing a checkpoint.

Figure 5.10 illustrates the pseudocode of the uncoordinated checkpoint-
ing algorithm. If the local checkpointing scheduler is triggering a check-
point the checkpointing phase starts. During this phase, the current oper-

81

5 Reliable Data Stream Management

ator state, time context, and transfer states of each outgoing data stream are
saved within a single checkpoint message. If the transmission of the check-
point message to the backup host was successful, an appropriate Ack-message
is sent along all incoming data streams including the current stream time-
stamp of the checkpoint along the edge. If Ack-messages are received, data
stream elements before the included stream timestamp are marked for dele-
tion. Moreover, if all downstream operator instances of a certain output port
have sent acknowledgements, the data stream elements are deleted from the
corresponding transfer state.

//This code is executed for each operator instance
//this is referencing to this operator instance
while (true)
if (local checkpointing event) then
//checkpointing phase
Store operator state Sihis in checkpoint-message
foreach (output port op) do

W g o b W N

Store transfer state TS of op in checkpoint-message

O

endforeach

iy
o

Store time context TC of all input and output ports in checkpoint-message

=
=

Send checkpoint-message to backup-host (blocking with acknowledgement)

=
N

send Ack with Eg;k zzthiG(Onﬂ of checkpoint along input edges
endif
if (Ack ES5F received) then

Save Ack information for output port op

e
o U W

if (all downstream operators of output port op acknowledged)

—
~J

Trim transfer state of output port op to aszzaggk

=
o]

endif

[
e

endif

N
o

endwhile

Figure 5.10: Pseudocode of Uncoordinated Checkpointing

Lemma 5.20 Uncoordinated checkpointing as described above guarantees
relaxed consistency in case of failures for which one or more operators are
recovered from their recent checkpoints. Based on Lemma 5.19, this guaran-
tees lossless and intra-stream order preserving reliability. <&

Proof. In the single failure case only one operator fails. Without loss of gen-
erality, we choose operator B of Fig. 5.9 to fail. In general, operators have
multiple data streams (edges) between them. The presented proof is shown
for a particular edge but can be applied to each additional edge in the same
way. In the single failure case, operator B is recovered from the last recent
checkpoint taken at T1,. Affected from the rollback to the previous checkpoints
are the connected operators along DS, and DS;. For these two edges, we have

82

5.9 Uncoordinated Operator Checkpointing

to proof that relaxed consistency is guaranteed. Firstly along the input edge
DS, the transfer state has not been recovered and is starting from &%. Since
this was the stream-time of the checkpoint of B, the recovered operator B is
able to seamlessly continue to work. Therefore, even the constraint for exact
consistency is true:
(£5 = ES) N (&5, = &)

Secondly along the output edge DSg, the transfer state has been recovered
and is starting from ES to EE . Since operator C, which is receiving DSg, has
not failed the following condition for relaxed consistency is true:

(E5 =EB)A(ES > £D)

More input or output edges of an operator are proven in the same way. Re-
sulting of this, we have proven the lemma for the single failure case.

For the multiple failure case, we start with a failure of two connected op-
erators. Since consistency is defined pairwise, this argumentation can be ex-
tended to general multiple failure cases and multiple interconnecting edges.
Going back to the example, we assume operator A and operator B have been
recovered from their recent checkpoints. For the consistency evaluation of
this case, we can distinguish between edges to non-failed operators and edges
between failed operators. For edges to non-failed operators, we use the ar-
gumentation of the single failure case in order to proof relaxed consistency.
In this case, we have only to investigate for relaxed consistency along the
edge (data stream DS,) connecting the failed operators A and B. The current
stream time context along this edge is for the recovered operator A Eé\p and
for the recovered operator B &Ey Since operator A is responsible for the trans-
fer state of DS, we have &é\p guaranteed to be equal to the end of the transfer
state &.. Furthermore, Ein > &, has to be valid. Which can be proven by distin-
guishing two cases. Firstly £ < E‘f’p, in this case Eﬁj > £, because & < &, and
Eé\p = &.. Secondly &é\p > &FD, in this case the described acknowledge mech-
anism guarantees &59 > &, because only after a checkpoint & is trimmed to
later stream time. Therefore, the constraint for relaxed consistency is valid:

(&0, = EI A (ED, > &)

Other edges between failed operators are evaluated in the same way. O

The presented uncoordinated checkpointing algorithm is suffering from
a high transport overhead on sending checkpoint messages from the active
host to the backup host. Transfer overhead is defined as the relation between
the transport load because of checkpoint messages compared to the transport
load of a DSMS without checkpointing. Since the transfer state is part of the

83

5 Reliable Data Stream Management

checkpoint message and the transfer state along an edge can only be trimmed
when the receiving operator itself has performed a checkpoint, this algorithm
leads to a transport overhead of more than 100%. This is due to every data
stream element that is sent is guaranteed to be in a transfer state for at least
one checkpoint. In the investigation of this case, we discover a high over-
head of checkpointing mainly resulting from checkpointing the transfer state.
The high cost for checkpointing of the transfer state compared to the cost of
checkpointing of the operator state comes from a basic assumption generally
applicable to DSM processing: Each operator that continuously processes on
incoming data streams is extracting relevant information. Therefore the in-
formation content or entropy of the input data stream is naturally lower than
of output data streams with respect to relevant information. Based on this
fact, we assume a current operator state can be encoded by using less bytes
compared to the overall input data streams that have produced the current
operator state.

In order to supersede the transfer state checkpointing problem, we present
in the following an efficient coordinated checkpointing (ECOC) algortihm,
which is omitting transfer states from checkpoint messages by still keeping
the requested reliability levels based on relaxed consistency.

5.10 Efficient Coordinated Operator Checkpointing

The design goal of an efficient checkpointing algorithm is to reduce the over-
head needed for checkpointing messages between the active and the backup
host. A great portion of the checkpoint message are transfer states, which are
needed to guarantee relaxed consistency. In order to develop an algorithm,
which is allowed to omit transfer states from checkpointing, the following
lemma describes when the recovery of transfer state is not needed:

Lemma 5.21 The recovery of transfer state is not needed to achieve relaxed
consistency in case of failures if it is guaranteed, that &5, < E?D for every
pair of checkpoints along an edge connecting two operators (x,y) in a stream
process. &

Proof. As in the previous proof of Lemma 5.20, we distinguish between three
different kinds of edges along which transfer state may be recovered. As for
the previous proof, the argumentation can be applied to several input, output,
and connecting edges.

Firstly for the input edge of an affected, failed operator, the transfer state
has no to be recovered because for this kind of edge the producing operator
who is in charge of keeping the transfer state has not failed.

84

5.10 Efficient Coordinated Operator Checkpointing

Host h,
Ack Ack
< B <
DS DS
g > B >
% »
Check-Request | Check-Request

v

Pending Checkpoint Log
Time Context| Operator State

<€,9,&P> S

Permanent
Checkpoint v
<Ela!EZB>

S8

Backup host hy

Figure 5.11: ECOC Overview

Secondly for the output edge of an affected, failed operator, the transfer
state is to be recovered. But this recovery is not necessary because the desti-
nation operator has not failed and therefore even expects newer data stream
elements, than the one produced by the recovered, failed operator. Relaxed
consistency allows for ignoring these incoming duplicates.

Thirdly for the connecting edge of two affected, failed operators (x,y), de-
pending on the time context of the checkpoint of the source operator &7, along
the connecting edge to the checkpoint of the destination operator E‘fp, we can
define two different cases: Firstly £, < E?p, in this case recovery of the trans-
fer state is not needed because operator y is expecting even newer elements
as operator x is producing. Secondly &5, > &?p, in this case recovery of the
transfer state is needed because operator y is expecting elements older than
the elements as operator x is producing after recovery. O

Efficient coordinated operator checkpointing (ECOC) is our proposed
checkpoint algorithm to guarantee this lemma. In this case, transfer state

85

5 Reliable Data Stream Management

content can be safely omitted from checkpoint messages because the trans-
fer state is not needed for recovery even in case of multiple failures. In or-
der to achieve a temporal coordination of checkpoints, ECOC introduces an
additional checkpoint-request message (Check-Request) which is sent to down-
stream operators attached on the corresponding data stream element extend-
ing the alphabet of the payload information. Figure 5.11 illustrates the mes-
sages used for checkpoint coordination and the additional pending checkpoint
log (PCL). An additional advantage of this approach is that message exchange
is only between connected operator instances in a Peer-to-Peer fashion with-
out centralized control. The pending checkpoint log is used to store check-
points locally until along all outgoing edges all downstream operator have
performed their checkpoints and Eop < E,‘fp is fulfilled. For this reason, a two-
phase protocol described in pseudocode in Figure 5.12 is applied. Checkpoints
may be triggered by a local scheduler or by a Check-Request message from
an upstream operator. The local scheduler can follow different strategies for
checkpoint planning, e.g., every 50 incoming data stream elements.

In the first phase (planning phase), a checkpoint is triggered either by re-
ceiving a Check-Request or by the local scheduler and stored in the local PCL.
Additionally, along all output edges Check-Request messages are sent with
the corresponding stream-time context E})p. In the second phase (checkpoint
phase), corresponding Ack messages with ag;k are received along the outgoing
edges. If for a checkpoint in PCL all output edges have received the Ack mes-
sages where éi,p < Ef_}g“ the checkpoint is fully acknowledged. In this case, the
checkpoint is sent to the backup host and removed from the PCL. The PCL is
a data structure in the local memory assigned to an operator instance hold-
ing a list of checkpoints ordered by time of creation. Following transitively
the edges, we see that checkpoints requests are cascaded until the reach an
operator instance without internal output data streams because of the out-
side receiver assumption (see Section 4.2). Outside output data streams are
ignored in this case. At this operator instance the checkpoint can be passed
immediately to the backup host. The Ack messages are cascaded back transi-
tively against the flow of data streams and allow to make pending checkpoints
permanent at backup hosts.

A drawback of the ECOC approach is the delay of checkpoints in the plan-
ning phase. Checkpoints are delayed until all downstream operators have ac-
knowledged the checkpoint. After acknowledgement the checkpoint message
is sent to the backup node. In particular, these delays are getting longer if we
go upstream, closer to the sensors, in a stream process. Downstream, closer to
the final consuming operators, which itself have no more output streams, the
delays are getting shorter. These delays are not blocking stream processing
and have no affect on time constraints in stream time. Assuming the case of

86

5.10 Efficient Coordinated Operator Checkpointing

1 //This code is executed for each operator instance

2 //this is referencing to this operator instance

3 while (true)

4 if (Check-Request) or (local checkpointing event) then

5 //planning phase

6 if [{elx =this Ay #ow}| > 0 then

7 add new pending checkpoint do PCL

8 send Check-Requests to all output streams on all m output ports with
a})p i€ (0,m Ay # ow

9 else

10 do permanent checkpoint

11 send Ack’s upstream Ef;k ::EhﬂiE(OJﬂ of checkpoint along all input edges

12 endif

13 endif

14 if (Ack Eggk received) then

15 //checkpoint phase

16 Save Ack information for output port op

17 if (all downstream operators of output port op acknowledged)

18 Trim transfer state of output port op to Es::ag;k

19 foreach (checkpoint in PCL) do

20 if checkpoint is fully acknowledged then

21 save checkpoint permanently at backup host

22 remove checkpoint from PCL;

23 send Ack with Eﬁ;k ::abTiG[Onﬂ of checkpoint along input edges

24 endif

25 endforeach

26 endif

27 endif

28 endwhile

Figure 5.12: Pseudocode of ECOC

a failure in the planning phase, the affected operator is recovered from the
most recent permanent checkpoint before. In this case, correct data stream
processing is still guaranteed, but more duplicates are produced because of
recovering from the older checkpoint resulting in longer time for catchup. On
the other hand, storing checkpoints in the pending checkpoint log, requires
additional memory overhead. Since we do not need to store the transfer state
in the pending checkpoint log, this overhead is similar to the reduced commu-
nication overhead. Therefore, we consider these drawbacks as acceptable.

Lemma 5.22 The ECOC algorithm presented in Section 5.10 guarantees re-
laxed consistency for non-cyclic data stream process graphs if in case of fail-
ures one or more operators are recovered from their recent checkpoints. Based
on Lemma 5.19 this guarantees lossless and intra-stream order reliability. &

87

5 Reliable Data Stream Management

Proof. ECOC ensures coordination of checkpoints along outgoing edges
which guarantees Lemma 5.21. Combined with the proof of Lemma 5.20 for
uncoordinated checkpointing, this ensures relaxed consistency for the stream
process when recovering from one or more failures. Furthermore, it is needed
to proof that ECOC terminates when cascading of checkpoint requests tran-
sitively along connected edges. This is guaranteed because finally each path
in a non-cyclic stream process graph will reach an outside world vertex. The
last operator of the DSMS is allowed to perform immediately checkpoints at
the backup host. This is valid because of the assumptions on the outside
world defined in Section 4.2. Firstly, the outside world never fails and sec-
ondly the outside receiver assumption allows to re-sent data stream elements,
which is caused when an operator instance sending to the outside world is
recovering from a checkpoint. Finally, since the Ack-messages caused by per-
manent checkpoints are cascaded upstream in the same manner, all pending
checkpoints will be acknowledged, which proofs the termination of ECOC for
non-cyclic stream process graphs. O

So far, the presented ECOC algorithm does not support cycles in the graph
of stream processes, since Checkpoint-Request messages will continuously
trigger new pending checkpoints in the cycle and pending checkpoints will
never be acknowledged. Optimizations of ECOC for complex stream process
graphs including arbitrary combinations of splits, joins, and cycles are ad-
dressed in the following section.

5.11 Extensions of ECOC for Joins and Cycles

Supporting complex stream processing topologies is crucial for real-world
DSM applications. Recently, research in the area of DSM is focusing on adap-
tive stream processing [LZJ 705, CKP*05, BMM 704, YTPO5]. In this research
projects, stream processing is continuously adapting to different environment
conditions e.g, system load, sensor input characteristics. In general, this im-
plies that a feedback loop is applied within a stream process graph where
results of current stream processing are affecting the stream processing pro-
cessing in the future. In order to model and support such feedback cycles for
DSM processing also reliability algorithms have to support these topologies.
Firstly, we focus on optimizations for join-operators. Particularly for join-
operators, obeying all Check-Request messages that may come along differ-
ent input edges will increase the checkpoint frequency at the operator itself
and subsequently on all operators following transitively downstream in the
data stream process graph. The checkpoint requests along the different in-

88

5.11 Extensions of ECOC for Joins and Cycles

Host h,
Ack Ack
E)Et_RequeSt B) EXt'RequeSt ECPOB
DS, 1 s DS, (U
Check-Request I Check-Requy!/ _
. l N &P &P
Pending Checkpoint Log e &P
Time Context| Operator State | Transfer State | PO
<€,0.&P>| sp &P MM &ceo®
Extension of
Checkpoint in PCL
Permanent

Backup host hy

Figure 5.13: Extended ECOC

put edges are not correlated and therefore may be received shortly after each
other. An increased checkpoint frequency may reduce the benefit achieved by
ECOC because resulting again in increased checkpoint overhead.

In cases where multiple checkpoints are requested in a short time interval
it may be beneficial to extend the previous still pending checkpoint by the
necessary transfer state instead of performing a new checkpoint. Multiple
checkpoints in a short time frame may appear due to multiple input edges
on operators (as for join operators) or when local scheduling of checkpoints
is combined with obeying Check-Request messages from input edges. Due
to the coordination of checkpoints in ECOC, a checkpoint imposes load both
on the operator itself and all operators transitively following operators along
downstream paths in the data flow of the stream process.

In order to reduce the overhead for checkpoints triggered within a short
time frame, we propose an optimized version of ECOC (see Fig. 5.13), where
an additional extension request message (Ext-Request) is introduced to request
the extension of an existing checkpoint in the PCL by a limited part of the

89

5 Reliable Data Stream Management

[TSe| = sizeof {ds} * (&cpNn —é&cpo)
checkpointLoad = ACPS
foreach output edge i do
checkpointLoad = checkpointLoad + ADCPS;
endforeach
attach checkpointLoad to own ACK messages
//check if extension is beneficial
if (extTransferSize < checkpointLoad) then
Ext-Request from &cpn to &cpo
else

P O W 0 J o U B> W N -

=

perform a new checkpoint at &cpn

=
N

endif

Figure 5.14: Pseudocode Optimized ECOC

transfer state. Adding a subset from &cpo to &cpn of the transfer state of
checkpoint CPN extends the relaxed reliability constraint from &cpy < E}p to
Ecro < E}p, where &cpo 1s before &cpn Which is the time context of the check-
point to be extended. In Figure 5.13 &E‘ is the stream time of the pending
checkpoint with respect to output stream 3 and aﬁpo is the stream timestamp
of the Ext-Request. This extension is only applied if the overall checkpoint
load of the system is reduced compared to the standard ECOC algorithm.
Based on this, the extension is only done if the size of the extended transfer
state |TS.| is smaller than the overhead caused by performing a new coordi-

nated checkpoint.

As Fig. 5.14 illustrates, optimized ECOC allows the receiver of a Check-
Request message to decide whether a new checkpoint is performed or an Ext-
Request is returned to the sender. The ACPS is the average local load im-
posed by a checkpoint acquired during runtime of an operator instance. The
ADCPS; is the average downstream load imposed by all transitive checkpoints
triggered along the corresponding output edge i. This statistic is passed up-
stream as attachment on Ack-messages.

Still, ECOC has to support cycles in the stream process. A closed control
cycle in a stream process is in particular beneficial in scenarios where stream
processing has to adapt dynamically to changes in the data stream character-
istics during runtime [LZJ 705, CKPT05, BMM 104, YTPO05]. For example, the
processing of an ECG signal have to be changed when the heart beat becomes
pathological. In order to adapt stream processing, the operator parameters
have to be changed. The cycle support is based on the previous optimized
ECOC algorithm. Fig. 5.15 illustrates a cycle in a stream process. The cycle
caused an infinite cascading of checkpoint requests with unlimited increase
of the pending checkpoint log without applying permanent checkpoints at the

90

5.11 Extensions of ECOC for Joins and Cycles

Host h, Host h,

Check-Request (CPX

Check-Request (CPx) B >
A >
—_—
I | s
Sa DSG DS[_)>
A Ext-Request (CPx)
Y

Pending Checkpoint Log
CP1 Checkpoint

Check-Request (CPx)

55— I

Y

Figure 5.15: Cycles with Optimized ECOC

backup host. To break this infinite cycle, unique identifiers are applied to
Check-Request messages by the first operator instance that triggers the co-
ordinated checkpoint. All transitive checkpoints caused by cascading check-
points inherit the same identifiers. Consequently, the checkpoint identifiers
are also used to identify checkpoints in the pending checkpoint log. There-
fore, whenever a Check-Request message is received which has a checkpoint
identifier that already is available in the pending checkpoint log a cycle in
checkpoint coordination is detected. After the cycle is detected the affected
node can easily break the request cycle by requesting an extension of the pre-
vious checkpoint by using the presented extended ECOC approach. Obviously,
the pending checkpoint is extended in this case without regard to checkpoint
load statistics.

Lemma 5.23 The extended ECOC algorithm presented in Section 5.11 guar-
antees relaxed consistency for cyclic and non-cyclic data stream process
graphs if in case of failures one or more operators are recovered from their

91

5 Reliable Data Stream Management

recent checkpoints which may also be extended checkpoints. Based on
Lemma 5.19 this guarantees lossless and intra-stream order reliability. &

Proof. Extended ECOC ensures coordination of checkpoints along outgoing
edges. Based on the proof of Lemma 5.22, this ensures relaxed consistency for
the stream process when recovering from one or more failures in a non-cyclic
data stream process without extended checkpoints.

In addition, it is needed to proof that extended ECOC is also correct for ex-
tended checkpoints. The extension of a checkpoint means that a checkpoint is
enriched with the transfer state as in the uncoordinated case. For this reason,
we can refer to the proof of Lemma 5.20 for uncoordinated checkpointing on
any edge along a Ext-Request has been performed. Exemplary, we investigate
the edge between operator B and operator C, which follows along DS;. The
following condition for relaxed consistency is true:

(EE = EL)A(ES > E80p)

As in the proof of Lemma 5.20, we can investigate that relaxed consistency is
guaranteed for single and multiple failure cases along any edge within a data
stream graph.

Furthermore, it is needed to proof that extended ECOC also terminates
when cascading of checkpoint requests are passed transitively along con-
nected edges for cyclic stream process graphs. This is guaranteed because any
checkpoint request in a cyclic stream process branch will finally reach the ori-
gin of the request again. In this case, the cycle is detected and an extension of
the checkpoint is performed. In all other cases, non-cyclic branches within the
stream process graph will cause termination of the checkpoint request when
reaching outside world vertices as shown in the proof of Lemma 5.22. O

Finally, the proposed optimized ECOC approach is able to support lossless
reliability of DSM at operator level with affordable effort. Efficient reliabil-
ity is achieved for complex stream process graphs including a large number
of operators with combinations of splits, joins, and even loops. Optimized
ECOC is able to adapt its behavior according to acquired data stream statis-
tics in a way that the overall checkpointing overhead is kept minimal based
on Peer-to-Peer communication within neighboring operator instances with-
out establishing a centralized checkpoint control.

92

Implementation

6.1 The OSIRIS Infrastructure Implementation

OSIRIS (Open Service Infrastructure for Reliable and Integrated process
Support) [SWSS04, SST+05, SWSS03] is a prototype implementation of a
Hyperdatabase infrastructure (see Section 3.1). OSIRIS has been developed
at the Database Research Group at ETH Zurich and has been constantly
evolved at University for Health Sciences, Medical Informatics and Technol-
ogy (UMIT) and University of Basel. OSIRIS is a platform that allows com-
bining different distributed services into processes. Each participating host in
the OSIRIS network has a prototype implementation of the HDB-layer mid-
dleware, called OSIRIS-layer, running locally.

Moreover, OSIRIS is equipped with the O’GRAPE (OSIRIS GRAphical
Process Editor) [WSN*03], a Java-based process modeling tool that supports
a designer in defining and validating processes. It allows for easy creation of
process descriptions without programming skills. In addition, O’'GRAPE sup-
ports the integration of existing application services by leveraging existing
Web service standards like SOAP and WSDL.

6.1.1 Implementation Details of the OSIRIS Infrastructure

The original OSIRIS infrastructure has been implemented at ETH Zurich in
C++ and including ISIS [MSTO04] consisting of more than 300.000 lines of
code. ISIS stands for Interactice SImilarity Search and is a prototype applica-
tion for information retrieval in multimedia collections based on the OSIRIS
infrastructure. This implementation relies on using Microsoft Visual C++
Studio [Micb] as programming environment and due to this fact the execution

6 Implementation

platform is limited to Microsoft Windows systems. Unfortunately, also Win-
dows Mobile is not supported in unmanaged C++. The fact that the intended
application scenario depends on the use of embedded and mobile devices has
demanded to re-implement the basic OSIRIS process management function-
ality in Java for this thesis. The Java version of OSIRIS has been developed
at UMIT and University of Basel and is based on Java 2 SE 1.3, which is
available for a variety of different platforms like Windows, Linux, and also on
mobile devices running Windows Mobile. Therefore, the only prerequisite of
the Java version is to have an J2SE 1.3 compliant Java virtual machine avail-
able at the desired target system. The Java version contains about 20.000
lines of code, without counting third-party, open-source libraries, like Axis,
DOM4d, or Jetty. The Java version can make use of a variety of JDBC-enabled
databases, like Microsoft SQL Server [Mica], MySQL [MyS], or Derby [Der].
In particular Derby is beneficial to use because it is fully programmed in Java
and can run in embedded mode within the same virtual machine as OSIRIS,
so there is no need to install and configure a separate database server on the
node. Moreover, Derby has a very small footprint (about 2 MB) and still offer-
ing transactions and sufficiently supporting SQL92. For this reason, Derby
is even able to run on a Windows Mobile PDA with acceptable performance.
Due to the remarkable support for Java in the field of Web services and appli-
cation servers, we have integrated a Web service framework within the Web
component of the Java version. Technically, this is done by integration of
the embedded open-source Java application server Jetty [Jet] and Axis [Axi]
running as part of a system service. This framework allows to host Java Web
services within our OSIRIS infrastructure and control their life-cycle and load
situation, which offers a higher degree of control for loosely coupled services.
Also in this case, we support mobile devices, like Windows Mobile machines,
due to the small footprint required by Jetty and Axis.

In the following, we describe the most important functionality of OSIRIS
with respect to decentralized peer-to-peer process execution.

e Messaging: The local OSIRIS-layer allows for a reliable exchange of
messages between all nodes of the OSIRIS network. In addition to TCP
transport, the peer-to-peer messaging framework JXTA [JXT] has been
incorporated as additional transport layer to abstract from networking
obstacles, like inconsistent addressing and communication problems due
to firewalls or heterogenous network environments.

e Horus: The Horus component is the agent of a service provider and is
responsible for all external communication. The Horus is responsible for
activation and deactivation of local services. External communication is
done via two pipelines for incoming and outgoing messages, respectively.

94

6.1 The OSIRIS Infrastructure Implementation

Pluggable handlers are applied to the pipeline and offer specific process-
ing support for messages. In particular, process execution is done by
exchanging process messages, which are processed by a dedicated pro-
cess handler.

Process Handler: The process handler is plugged in the incoming mes-
sage pipeline of the Horus (see Fig. 6.1) and executes local process ac-
tivities (i.e., locally invokes a service) based on information in process
messages and replicated execution units of the current process. After
local activity execution, the process message is updated (e.g., with re-
sults of a service invocation) and forwarded to all subsequent activities
(providers).

Replication Manager: Meta data replication is based on a hierarchical
organization with global repositories and clients replicating from them.
The replication manager, which is part of the OSIRIS-layer, is keeping
local replicas consistent according to configured subscription settings.
Replication management is based on publish/subscribe techniques. The
primary copy resides at the global repository. Each local OSIRIS-layer as
client that needs replicas has to subscribe for the selected information.
As a result of this subscription, the repository publishes the current in-
formation. Whenever the primary copy changes, updates are published
to all subscribed clients. The following three constraints on meta infor-
mation explain, how replication can be made affordable. First, updates
on certain information (e.g., process definitions) are infrequent. Sec-
ond, nodes only require parts of the global information (e.g., only about
pieces of processes that the provider is able to host). Lastly, changes on
global meta information are not always critical (e.g., small changes on
load information). This is specified by a freshness level attached to the
subscription settings. According to this, updates of marginal changes
may be skipped as long as the replica is sufficiently close to the primary
copy. Additionally to classical publish-subscribe, in OSIRIS a subscriber
is also able to insert or update new information in the local repository
and these updates are propagated back to the global repository. Update
messages only contain changed parts of the subscribed information to
reduce replication overhead.

Routing Handler: The routing handler is a handler in the outgo-
ing message pipeline of the Horus and responsible for selection of an
appropriate provider as destination of outgoing messages. If multiple
providers are able to process the corresponding message, the best suited

95

6 Implementation

96

according to current load (the locally replicated approximation) is se-
lected (load balancing).

Process Component: The process component is a local OSIRIS system
service managed by the Horus, which is in charge of starting the exe-
cution of a process within the OSIRIS network. The process component
first looks up the necessary activities within the process control flow and
creates the required process messages which are delivered to appropri-
ate providers. The process component is also responsible for feeding the
process messages with the correct input parameters and for collecting
the process result parameter(s). The process result is returned to the
calling application. From the calling application’s point of view, a pro-
cess execution is just a service invocation. This mechanism allows also
for the easy nesting of processes as services within other processes.

Global Repositories

OSIRIS-Layer Services

Replication Manager

Horus

A
Process Handler

Routing Handler

v

Messaging Layer

oo e e e e o o = =

Output Messages Input Messages

Figure 6.1: The OSIRIS Layer

6.1 The OSIRIS Infrastructure Implementation

6.1.2 Process Execution within OSIRIS

Process Repository

O |:| [::"] OSIRIS Layer Qe PTOCESS €XECULION
Application Service i ’
e ——" rrnnns ervice invocation
e Metadata replication
System
‘ u Services
LI]
- []
L L[]
- ¢
L] ExtCol D |K
= B = n W= RIY| Extsnis
L) = S =
- - ol
L - B - A Do
» =| CrealErescription posito
K
.
*

* -
as
Pe

‘0

Figure 6.2: The OSIRIS Process Execution

Figure 6.2 illustrates the distributed process execution in the OSIRIS pro-
totype with a process containing three subsequent activities in the control
flow. The executed process is the example process of Fig. 3.1 again and the
application services are illustrated by the different green shapes. System
services are depicted in the middle (global repositories) and, in addition, each
node in the network is equipped with a local OSIRIS-layer. It can be seen that
process execution (solid, bold arcs) is decentralized and that all services are
invoked locally (dashed, bold arcs). Meta data replication from global repos-
itories to local OSIRIS-layers is decoupled from process execution (dashed,
thin arcs). The invocation of the example process is done by the process com-
ponent which is generating an appropriate process messages, which is a seri-
alized form of a process instance. The process message is send to an provider
that is able to offer the first service within the control flow. By passing the
process message the process component is no longer in charge of the process

97

6 Implementation

instance. By receiving the process message the provider gets in charge of the
process instance and executes the local service as an activity of the process.
Input parameters for the service are derived from the whiteboard of the pro-
cess instance. The whiteboard hosts process variables and is used to model
the data flow between the services. Accordingly, result parameters of the ser-
vice invocation are mapped to the whiteboard again. The whiteboard itself is
part of the process instance and serialized within the process message. The
mappings between whiteboard variables and service parameter are part of
the process definition.

6.2 The OSIRIS-SE Infrastructure Implementation

In this section, we describe our implementation of the proposed reliable DSM
infrastructure (see Section 3.2), which has been implemented on top of the re-
implemented Java version of the existing infrastructure prototype OSIRIS.
OSIRIS-SE (Stream Enabled) [BS07, BSS05, BSS04] supports integrated
stream processing and process management in order to achieve flexibility
and reliability for monitoring applications in healthcare. Stream processing
within OSIRIS-SE is done by execution of stream processes.

6.2.1 Global Repositories

In the following, we explain how the global repositories that have been imple-
mented in order to support DSM in a peer-to-peer fashion.

e Process Repository holds the global definitions of all processes, both
traditional and streaming. Stream process definitions are decomposed
into transmission units (TUs). For details on TUs see Section 3.2.

e Subscription Repository records all online providers within the
OSIRIS-SE network. Moreover, the repository keeps a list of all avail-
able services and operator types, offered by these providers. Again, as
for conventional process management also in DSM, providers hosting
operators only need to know subscription information about providers
offering subsequent operators with respect to the available stream pro-
cess definitions. Firstly, all TU’s are replicated to providers which offer a
producing operator type. Secondly, the subscription information is repli-
cated based based on the consuming operator types within the replicated
TU’s.

98

6.2 The OSIRIS-SE Infrastructure Implementation

e Operator Backup Repository is storing information about providers
in the network that are responsible to keep a backup of a currently run-
ning operator instance. Operator checkpoints are needed for reliable
stream process execution and are explained in detail in Chapter 4. This
information is published to providers that are potential backup provider
in case the operator instances fails at its current provider.

e Join Repository holds the current providers of all running operators
with more than one input stream, also known as joins. Since preceding
operators may be running on different providers, a designated provider
is needed to make the routing decision for the join such that the differ-
ent streams actually arrive at the same provider for being joined. The
designated provider is selected by the routing flag of the corresponding
TU. After routing, the decision has to be published to the other providers
via the join repository. A repository entry contains process ID, operator
ID, and actual provider address.

6.2.2 Extended OSIRIS-Layer

Each service provider has an OSIRIS-layer running locally for meta data
replication and management, operator invocation, etc. For reliably dealing
with data streams, this layer has to be extended by the following additional
modules. Figure 6.3 illustrates the extended OSIRIS-layer modules necessary
for data stream management.

e Stream Transport (ST) implements a reliable data stream commu-
nication between two OSIRIS-SE providers based on the functionality
provided by the message layer of OSIRIS. ST realizes the reliable trans-
port of data streams with proper order of elements (FIFO) and detection
of gaps. This module can leverage network dependent features to im-
prove transmission of data streams (e.g., produce optimal message sizes
by combining or splitting messages). Moreover ST handles the in- and
output queues for data stream elements to keep the transfer state, en-
forces the correct order of data stream elements based on their sequence
numbers, requests missing data elements from senders, and eliminates
duplicates. In case of loss on transmission or failure of output providers,
elements are re-sent. These issues are realized by acknowledgement
protocols between sender and receiver. Additionally, ST checks as by-
product whether all receivers are alive.

¢ Operator Management (OM) connects the incoming and outgoing
data streams with the corresponding local operators, establishes in-
ternal connections between local operators. Internal connections are

99

6 Implementation

needed if more operators of the same stream process are running on
the same provider. Internal connections are established directly without
need of ST. Usually for internal connections, the request for transmis-
sion of data stream elements originates from the sender in Push-style.
Pull-style communication where the receiver triggers the transmission
is implemented for sensor-operators. Sensor-operators are querying a
sensor therefore the information flow is coming from the outside world.
Necessary routing information is provided by the Stream Process Man-
ager. OM also takes checkpoints of local operator instances, which are
necessary for migrating operator execution to other service providers in
case of high load or failure.

Stream Process Manager (SPM) is responsible for activation and de-
activation of operator instances, migration of operators in case of high
load or failure, routing of data streams by selecting the provider of a
subsequent operator, doing backups of operator state checkpoints at the
backup host, and invocation of failure handling processes. For accessing
the state of a running operator instance two system data streams are
implemented. Firstly, the config stream allows to configure a previously
instantiated operators. This is used for the initial configuration of op-
erator instances with parameters defined in the corresponding stream
process definition. Furthermore, the config stream can be used to alter
dynamically state parameters of an operator during runtime. Secondly,
the state backup stream allows to retrieve the current operator state.
This is particularly necessary for checkpointing. The config stream is
implemented in Push-style and the state backup stream is implemented
in Pull-style. Therefore, the SPM is triggering both configuration and
checkpointing of running operator instances.

6.2.3 OSIRIS-Layer Tasks for DSM

e Operator Activation: Whenever operator instance is needed to be ac-

100

tivated in the OSIRIS-layer of a suitable provider, an activation mes-
sage is sent. This activation messages contains process ID and operator
ID. SPM requests the parts of corresponding stream process definition
and operator backup information from the replication manager. If the
operator instance is executed the first time ever, the operator backup in-
formation will be empty and therefore no internal state initialization is
needed, otherwise the new operator is initialized with a previously saved
operator checkpoint because the activation is actually a re-activation of
a previously failed operator instance.

6.2 The OSIRIS-SE Infrastructure Implementation

Global Repositories [| exendedforpsm

OSIRISSE-Layer
Replication Manager

3

Operator Management
Stream Process Manager

Process Handler !
Horus\

|
|
|
Stream Transport I
|
|
|
d

Routing| Handler | H

Messaging Layer

£ 4
@)

e

&

=

o

)

Output Messages Input Messages

Figure 6.3: The Stream Enabled OSIRIS(SE) Layer

101

6 Implementation

e Stream Routing: SPM controls the stream routing locally in peer-to-

102

peer fashion. For each outgoing data stream, suitable service providers
for subsequent operators need to be selected. Therefore, SPM retrieves
the corresponding subscription and join information from the local repli-
cation manager. If a subsequent operator has only a single input stream,
this decision can be made locally depending on distributed load informa-
tion and an activation message is sent to the chosen provider. In case of
a subsequent operator with multiple inputs (a join), only one preceding
provider, the designated provider, is responsible for making the rout-
ing decision. The designated provider is selected by the routing flag of
the corresponding TU. The routing decision is propagated to other input
providers by updating the join repository via the local replication man-
ager. Providers, for which the routing flag in the corresponding TU is
not set, have to wait for an update event on their local replicas. As long
as no decision is published, transmission is paused and data elements
are stored in transfer state.

Operator State Backup: SPM is also responsible for triggering op-
erator state checkpoints provided by OM, and perform backup of these
checkpoints at the backup host. The backup destination is registered in
the operator backup repository via the replication manager. An operator
state contains internal processing state information, sequence numbers
of the last consumed stream elements, sequence numbers of the last pro-
duced stream elements, and provider addresses of outgoing streams. Re-
covery of failed operators can be realized by moving internal states and
all input data elements after corresponding input sequence numbers to
the backup host, which is able to produce correct outgoing data elements
after the corresponding output sequence numbers. An important con-
straint for the checkpoints of operator states of subsequent operators is
to guarantee that checkpoints fit together such that no data elements
are missing, this is described as consistency of DSM in Section 5.4. As-
sume two subsequent operators. Then, the last output sequence number
in the checkpoint of the first operator has to be the last input sequence
number in the checkpoint of the second operator. If the checkpoint of the
second operator is later in time, data elements would be missing after
recovery. Otherwise, if the checkpoint of the second operator is earlier,
data elements would be duplicated after recovery. These duplicates are
safely deleted by ST with regard to the deterministic operator model pre-
sented in Section 4.1. Details on the implemented reliability algorithm
are presented in Chapter 5.

6.2 The OSIRIS-SE Infrastructure Implementation

e Transfer State Trimming: After a backup of an operator state check-
point, input elements before checkpoint time are no longer needed for
recovery or migration of this operator. OM calls ST to inform the corre-
sponding sender that this operator instance no longer depends on these
elements. If ST of the corresponding sender operator receives such ac-
knowledgements from all consuming providers, the referenced data ele-
ments in its transfer state are subject for discarding.

e Migration, Failure and Recovery: In case of high load, SPM can
offload operators by moving operator execution to another suitable
provider. In case of a failure, upstream SPM detect it (via ST), and wait
for recovery. If there is no recovery within a given time, the designated
input SPM uses replicated information from the operator backup repos-
itory in order to get information about the responsible backup host. As
usually in the HDB infrastructure, this replication is happening in a
lazy way. Then, the backup host receives an activation message and in-
stantiate a new operator instance starting from the saved checkpoint.
Non-designated input SPM also detect the failure, but need to wait for
the update of join information from the replication manager which indi-
cates that the backup provider has successfully recovered the operator
instance. Using additional routing information provided in the check-
point, the newly instantiated operator instance is able to provide the
input streams for the consuming operator instances again. In case no
suitable backup host is found, SPM can invoke user defined processes,
both alternative stream processes or processes, for failure handling.

6.2.4 Stream Process Execution with OSIRIS-SE

As shown in this section, our implemented information management infras-
tructure OSIRIS-SE will incorporate DSM into process management in peer-
to-peer style. Our solution offers great flexibility for healthcare applications.
Medical users are able to define individual stream processes for monitoring
different patients. Additionally, processes for failure handling, result deliv-
ery, critical event handling are supported.

In the activation phase of the stream process, OSIRIS-SE activates all
necessary operator instances. This activation is implemented as a traditional
process executing single service invocations, like a request for operator acti-
vation. If the operator has output data streams, this activation request must
contain the routing state to know destinations of output streams. The rout-
ing of an operator is performed by the OSIRIS-layer running of the upstream
operator instance. In case of multiple upstream operators, a join node, one

103

6 Implementation

of the upstream operators is marked with a routing flag. The OSIRIS-layer
hosting the marked operator is responsible for routing and its routing deci-
sion is propagated to the other upstream operators via the replication of the
join-repository. Secondly, during the running phase of the stream process,
OSIRIS-SE monitors all running operator instances and applies the selected
reliability algorithms as described in Chapter 5. Finally, during the deacti-
vation phase of a stream process, OSIRIS-SE performs a discrete workflow
process to shutdown all running operator instances gracefully. The imple-
mentation fulfils the limited-delay, lossless, and intra-stream order preserv-
ing reliability levels of Chapter 5.

Example Scenario Revisited: For illustration, we describe how Fred’s mon-
itoring applications is using these tasks. Fred’s physician has designed the
stream process (according to Fig. 3.4) and has also adjusted Fred’s operators
to his individual parameters (e.g., thresholds for the critical detection). After
applying the necessary body sensors to Fred, the stream process is invoked as
an execution of an discrete workflow process, by sending activation messages
for the sensor operators to Fred’s PDA. Beginning with this, all subsequent
operators (on Fred’s PC and caregiver’s PC) are activated in peer-to-peer style.
For now, the discrete activation process has terminated successful and all op-
erators are up and continuously processing data streams. In case of critical
conditions (e.g., Fred has a heart attack), his physician has designed appro-
priate processes (e.g., calling the emergency service) which are invoked by the
local OSIRIS-layer if necessary. Checkpoints of running operator instances
are saved regularly on backup hosts for recovery (e.g., Fred’s PC for opera-
tors running on Fred’s PDA and vice versa). If Fred’s PDA fails (e.g., due
to empty batteries), operators running on Fred’s PDA are migrated to Fred’s
PC and are initialized with the most recent saved checkpoint. Now, Fred’s
PC is receiving data directly from the wireless body sensors, because it hosts
the acquisition operators. Fred is required to stay near his PC, due to lim-
ited transmission range of the body sensors. When Fred is out of range, the
OSIRIS-layer on Fred’s PC is able to invoke processes to deal with this situ-
ation (e.g., inform Fred to come back in range or stop the streaming process
gracefully). Because of our peer-to-peer approach local processes may be ex-
ecuted while disconnected from the rest of the OSIRIS-SE network without
central control.

104

Evaluation

The experimental evaluation presented in this thesis is twofold. First, we
present a real world example application demonstrator. The demonstrator
implements a simplified real world telemonitoring scenario by incorporation
of a set of real world sensors and mobile devices. This demonstrator is used
for illustration purposes on scientific events [BS07], e.g., conferences, to show
the functionality of our proposed DSMS infrastructure, to give a hands on
impression, and to stimulate discussion.

Second, we are focusing on performance evaluation on both server hard-
ware and mobile devices. For these evaluations, we use real patient sen-
sory data which is processed during evaluations. Moreover, these evaluations
cover both the performance during the normal (failure-free) runtime of the
DSM system and the performance during the phase of recovering from one
or more failures. Additional evaluations are covering performance measure-
ments on stream processes with complex processing graphs including joins,
splits, and even feedback cycles where our extended checkpointing algorithms
are applied.

7.1 Real-World Example Application Prototype

The demonstration will show an example application within the presented
health monitoring scenario (see Section 2.2) based on our OSIRIS-SE infras-
tructure. Figure 7.1 illustrates the devices included in the demo setup. The
smart ECG sensor is continuously acquiring the current heart activity (as
ECG signal) of the patient at a rate of 100 samples per second and sending
them to an OSIRIS-SE enabled PDA. Additionally, a web cam attached to the
OSIRIS-SE enabled laptop is used as a second sensor source producing an im-

7 Evaluation

age data stream. Moreover, regularly taken measurements with a bluetooth
enabled blood pressure sensor device and a bluetooth enabled scale are also
forwarded to an OSIRIS-SE enabled PDA. In addition, an bluetooth enabled
acceleration sensor applied at the patient’s body allows for continuous mea-
surement of motion information. This motion data stream is forwarded to the
base station. Laptops and ultra-mobile PCs are used for the base station at
the patient’s home and the caregiver’s server.

D ﬁ scale, blood pressure,

patient with electrodes a@nd motion sensors

webca . T
patient's PDA
) § —' A
- e S]
t J ,/ Lt

ECG sensor

base stations k
physician‘s PDA & smartphone

Figure 7.1: Application Prototype Setup

The stream process used by this application is illustrated in Fig. 7.2. This
stream process will acquire the ECG signal by the ECGSensor operator. Noise
is removed from this data stream by applying the DSPFilter operator. Medi-
cal relevant information about the peaks of the heart activity (so called QRS
complexes) is derived by the @RSDetector operator. Moreover, the QRSDetec-
tor operator also gets input information about the current acceleration level
of the patient gathered by the AccelerationSensor operator in order to mark
detections with high motion as possible prone to movement artifacts. An-

106

7.2 Performance Evaluations

other physiological signal acquired in the demo prototype is blood pressure.
For this reason, the BloodPressureSensor is continuously querying a wire-
lessly connected blood pressure device. Whenever the patient is performing
a blood pressure measurement, the readings are automatically streamed into
the demo. This medical relevant information is combined with context infor-
mation derived from the web cam data stream. Therefore, the WebCam oper-
ator is acquiring images of the web cam, which are evaluated by the FaceS-
canner operator. This operator detects faces and calculates their average red
value. The AccelerationSensor operator delivers necessary movement infor-
mation about the patient to interpret the physiological signs correctly. The
HealthAnalyzer operator generates alarm events whenever the combination
of red value of the face, the heart activity, the blood pressure, and movement
information exceed thresholds given by the caregiver. These alarm events
are sent to the DocDisplayComp operator at the smartphone of the physician
in charge. This example —which can seamlessly be extended by other sensor
data sources— nicely illustrates the combination of physiological data streams
with contextual data streams. During the demonstration we show that even
if the smartphone fails because of battery problems or wireless coverage, the
OSIRIS-SE infrastructure is able to seamlessly migrate the DocDisplayComp
operator to another PDA device without loss of data. Additionally, the demo
presents that even multiple failure situations, e.g., also the patient’s base
station fails at the same time, are handled by OSISIS-SE. Furthermore, the
demo will show how to easily define and adapt stream processes with our
graphical process editor tool O'GRAPE [WSN*03].

7.2 Performance Evaluations

In this section, we present evaluation results of the different checkpointing
strategies presented in Chapter 5 of this thesis. Our reliable DSM is im-
plemented within our information management infrastructure OSIRIS-SE.
OSIRIS-SE is fully implemented in Java (see Section 6.1.2). For this reason,
each participating node within the OSIRIS-SE infrastructure needs to pro-
vide a Java virtual machine (JVM). Our evaluation is targeted to measure
network transport overhead, CPU load, and memory consumption during the
failure-free runtime of a stream process. Due to the requirements demanded
by the intended usage for pervasive computing applications including mo-
bile and embedded devices, we consider these resource utilizations as critical.
Moreover, we also investigate the behavior during recovery of failures. The
performance evaluation is done within two different hardware environments.
Firstly, we evaluate the performance within a network of seven mobile de-

107

7 Evaluation

Figure 7.2: Application Prototype Demo Process

vices. Secondly, we perform a deeper evaluation within a network of twelve
server-level nodes. On both mobile and stationary platforms, exactly the same
Java OSIRIS-SE implementation is executed.

7.2.1 Evaluation Settings

During the evaluation stream processes are executed in four different set-
tings:

1. Unsafe stream process execution refers to the execution of a stream pro-
cess without applying any reliability strategy. In this case, no recovery
by operator migration is possible in case of failures. In the unsafe set-
ting, no operator checkpoints are scheduled or performed.

2. Uncoordinated stream process execution refers to the execution of a
stream process with uncoordinated operator checkpointing applied (see

108

7.2 Performance Evaluations

Section 5.9). This case allows for recovery of failures by operator mi-
gration. In this setting each operator instance triggers checkpointing lo-
cally. In our evaluations, the stream process execution is investigated for
different checkpoint intervals. Checkpoint intervals are given in number
of data stream elements processed between two subsequent checkpoints.
For the uncoordinated setting, a fixed checkpoint interval would again
cause some form of coordination of checkpoints between the operators.
For this reason, checkpointing is not performed precisely the defined
number of elements for the checkpoint interval in the uncoordinated set-
ting. At each checkpoint the exact time of the next checkpoint is chosen
randomly within an interval from half of the given checkpoint interval
to one and a half of the given checkpoint interval.

3. Coordinated stream process execution refers to the execution of a
stream process with our ECOC operator checkpointing strategy applied
(see Section 5.10). This case allows for recovery of failures by opera-
tor migration. In the coordinated setting only sensor operators trigger
checkpoints. All other operators receive checkpoint requests via data
stream connections. For sensor operators, the checkpoints are scheduled
according to the given checkpoint interval parameter.

4. Extended stream process execution refers to the execution of a stream
process with our ECOC operator checkpointing strategy applied (see
Section 5.11). This case allows for recovery of failures by operator mi-
gration even for stream process topologies that contain cycles in the flow
of data stream processing. Also in the extended setting only sensor op-
erators trigger checkpoints and the checkpoints are scheduled according
to the given checkpoint interval parameter.

7.2.2 Investigated Parameters

Firstly, the following resource utilizations are measured during the failure-
free runtime of different stream processes and while applying the different
reliability strategies presented in this thesis.

e Network transport overhead is the additional amount of communication
data caused due to our reliability strategies. The overhead is measured
relative as ratio of bytes needed for sending checkpoint messages to
bytes needed for sending data stream elements between running opera-
tor instances.

e CPU load is the utilization of the CPU of a participating node during the
execution of a stream process.

109

7 Evaluation

e Memory consumption is the additional amount of main memory of a par-
ticipating node imposed by our reliability measures during the execution
of a stream process. Memory consumption is provided by the JVM. For
this reason, some deviations will occur in this measurement due to the
heuristics of the JVM’s garbage collector.

Furthermore, we evaluate the performance of failure handling of our pre-
sented reliability strategies during the operator migration phase:

e Recovery time is the time T, needed for instantiation of a new operator
instance and reconstruction of the recent operator state from the check-
point (see Fig. 5.3).

e Catchup time is the time 1. needed to work off the congestion that has
piled up during the time when the failed operator instance was not avail-
able (see Fig. 5.3).

e Resource utilization at the recovering node. The CPU and memory uti-
lization is presented as average value during the recovery phase T, and
the catchup phase 7..

7.2.3 Evaluation Stream Processes

For the experiments, the sample stream process depicted in Figure 7.3a is
implemented to process real world ECG data within a healthcare application.
The ECGSensor operator is simulating an sensor for a single-lead human elec-
trocardiogram (ECG) by reading data values from a file. The data file contains
real world ECG data coming from PhysioNet [Phy]. Each data sample within
the file contains one float value for the real-world timestamp of measurement
and one float value for the ECG voltage. The DSPFilter operator is processing
the incoming raw-ECG data stream by applying a FIR filter of fourth order.
This processing also removes high frequency distortions, e.g., noise. Finally,
the preprocessed ECG data stream is arriving at the QRSDetector operator.
The QRSDetector implements a single scan QRS-detection and feature ex-
traction algorithm based on [WC79]. The QRS complex is the characteristic
shape within the ECG which is caused by depolarization of the heart ventri-
cles. Changes in the shape of the QRS complex allow for diagnosis of various
diseases of the heart.

The sample stream process depicted in Figure 7.3b is implemented to al-
low for the analysis of more complex stream processes including a join of two
different data streams. This stream process is more artificial than the stream
process of Fig. 7.3a. Nevertheless the processing performed by the operators is

110

7.2 Performance Evaluations

Grape - Graphical Pracess Editor. g@@ B Grape - Graphical Pracess Editor. B@@

O HE L OO A & 4 % AP |sackto Overall Process Osirs Uplaad Osiis Dowinload Osig D@ E kOO % % A % |7 backto Oversll Prosess 0siis Unlosd Osivs Dawrload Osiis Exece

e Al

saiuizdon ssaa0k aous|

sepiadong 358901 Ol

kL L3 © 1 1 1 ()
- e
QRSDetector T

Hothing selected

|

Hothing selected

(a) Stream Process 1 (b) Stream Process 2

I Grape - Graphical Process Editor ()
DS E Ik OO % % A [Backto Overall Process Osiris Upload st Dowrload 0

) I Grape - Graphical Pracess Editor £l
DE | O DOA % & % A & BaktoOveral Process OsiisUoad Osis Dowrload O

3
3
A
salliatoi 32301 ML
8
3
s
i o

senpiadoig Ssaand Ao

Nething selected Nething selected

(¢) Stream Process 3 (d) Stream Process 4

Figure 7.3: The Evaluation Stream Processes

comparable to data processing needed in various application domains. Again
the two sensor operators (TestSensorl and TestSensor2) are generating sensor
data streams containing two float values (timestamp and value) for each data
stream element (sample). The TestJoin operator is performing as integration
of the sum of both data streams of a sliding window in time. Finally, the Tes-
tAvg operator is performing an average over a sliding window in time on its
incoming data stream. Due to the sliding window operations performed by
TestJoin and TestAvg the internal state of the operators is bigger than in the
first stream process.

The sample stream processes depicted in Figure 7.3c and Figure 7.3d are
extensions of the stream process in Figure 7.3b. Additional, feedback cycles
from the TestAvg to one or both TestSensor operators allow to influence the

111

7 Evaluation

sensor processing. In these sample processes, generated sensor values are
attenuated if the result of TestAvg exceeds a certain threshold.

7.2.4 Procedure of Evaluation

For both mobile and stationary environments a performance evaluation is
presented in the next sections. The performance evaluation investigates two
different situations of a stream process.

Firstly, the failure-free runtime is evaluated. In this case, the stream pro-
cess is up and running without any failure situation like crashed operator
providers or network disconnections. In order to avoid any disturbances, the
stream process is executed in a way that each operator instance is hosted
by a different provider node. Moreover, each operator instance has a dedi-
cated backup node which is not performing other tasks. The actual selection
of provider nodes and backup nodes is done by the OSIRIS-SE infrastructure
based on current load situations. During the experiment the stream process
is executed for each setting (unsafe, uncoordinated, coordinated, extended)
in combination with the different backup intervals (500, 1000, 1500, 2000,
2500, 3000) for a duration of 400 seconds and averaged logging statistics are
collected. Of course, for the unsafe setting the checkpoint interval is not appli-
cable. Therefore, there are 19 combinations of settings and backup intervals.
In order to avoid the influence random disturbances (e.g., operating system
tasks) the execution of stream processes is repeated several times. The pre-
sented results are aggregated over the execution time and the number of rep-
etitions. Moreover, only one stream process is executed at the same time. For
the mobile environment the measurements were repeated 5 times and for the
stationary environment 10 times. Therefore in total 95 stream processes were
executed for the mobile environment and 190 for the server environment for
each of the evaluated stream processes. In order to avoid interference of con-
current stream processes only one stream process was executed at the same
time.

Secondly, the failure handling is evaluated. In this experiment, the stream
process is set up and running again without failure situation for a duration of
150 seconds. After that an operator failure is explicitly triggered. In order to
avoid time synchronization effects, a random delay of between 0 and 50 sec-
onds is introduced before the actual failure triggering. As for the failure-free
measurement, this measurement is repeated 5 times for the mobile environ-
ment and 10 times for the stationary environment. Also in this situation, only
one stream process executed at the same time. In order to compare the dif-
ferent strategies, the measurements are performed for each setting (uncoor-
dinated, coordinated, and extended) in combination with the different check-

112

7.2 Performance Evaluations

point intervals (500, 1000, 1500, 2000, 2500, 3000). Of course, performing this
measurement with the unsafe setting is not possible. For this reason, there
are 18 combinations in this experiment. This leads to 180 stream process ex-
ecutions in the server environment and 90 stream process executions in the
mobile environment for each of the evaluated stream processes.

7.2.5 Performance Evaluations on Mobile Computers

This experimental setup consists of four Dell Axim X51v PDAs and three HTC
TyTN smartphones (see Fig. 7.4). The PDAs are equipped with an Intel XS-
cale processor with 624 MHz and 64MB of main memory. The smartphones
have a Samsung SC32442A processor with 400 MHz and also 64MB of main
memory. Both device types are running on the Windows Mobile 5 operat-
ing system. Each mobile device has a local OSIRIS-SE software layer hosted
by the J9 Java virtual machine and all devices are connected via wireless
connection (W-LAN). The J9 JVM is provided by IBM within the WebSphere
Everyplace Micro Environment Runtime [WeM]. An additional laptop com-
puter is used to host the global repositories. Due to the Peer-to-Peer nature of
stream process execution with OSIRIS-SE, the laptop is not directly involved
in stream process execution. The laptop computer is not hosting any operator
instances. The stream processes within the mobile environments are executed
with a rate of 30 data stream elements per second produced by each sensor
operator.

Node Operators (Stream Process 1) | Operators (Stream Process 2)
PDA 1 ECGSensor TestSensorl

PDA 2 ECGSensor TestSensor2

PDA 3 DSPFilter TestJoin

PDA 4 DSPFilter TestJoin

Smartphone 1 | QRSDetection TestAvg

Smartphone 2 | QRSDetection TestAvg

Smartphone 3 | QRSDetection TestAvg

Table 7.1: Operator Provider in Mobile Environment

Table 7.1 illustrates which operators are available at which nodes in the
experiments. Since all operators are available at more than one node in the
OSIRIS-SE network, the infrastructure is able to select one node as operator
provider and another node as backup provider for each operator instance. The
only exception is for Stream Process 2 where the backup provider for both
TestSensorl and TestSensor2 is the additional laptop computer. However,
this has no effect on the measurement because only the operator providers

113

7 Evaluation

Figure 7.4: The setting of the mobile evaluation

are evaluated. There is also no affection on the failure measurement because
no failures are triggered on either TestSensorl or TestSensor2.

100% - 100% - .
) —l -uncoordinated . LN —#-uncoordinated
90% 90% —A - coordinated
80% - —aA - coordinated 80% -®-
B - < ©® -extended

g 70% ~m_ g 70% | B
£ 60% =~ £ 60% i
= — g B g i =
> e | > -~ —m
° 50% 4 © 50%
X X
% 40% % 40%
L) 5
< 30% 4 < 30%

20% - 20%4 A

10% 10% —@— g .

- T — e — - — .
0% A — e - 0% . . . T * allall B
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2

Figure 7.5: Network overhead during failure-free runtime in mobile setting

114

7.2 Performance Evaluations

Data Stream | Check Interval | Uncoordinated | Coordinated
7.27 KB/s 500 5.60 KB/s 0.18 KB/s
7.27 KB/s 1000 4.98 KB/s 0.08 KB/s
7.27 KB/s 1500 4.29 KB/s 0.05 KB/s
7.27 KB/s 2000 4.08 KB/s 0.04 KB/s
7.27 KB/s 2500 4.20 KB/s 0.03 KB/s
7.27 KB/s 3000 3.83 KB/s 0.03 KB/s

Table 7.2: Transfer Rates for Stream Process 1

Data Stream | Check Interval | Uncoordinated | Coordinated | Extended
8.04 KB/s 500 7.70 KB/s 1.45 KB/s 0.77 KB/s
8.04 KB/s 1000 5.53 KB/s 0.71 KB/s 0.70 KB/s
8.04 KB/s 1500 5.24 KB/s 0.47 KB/s 0.45 KB/s
8.04 KB/s 2000 4.91 KB/s 0.35 KB/s 0.33 KB/s
8.04 KB/s 2500 4.44 KB/s 0.28 KB/s 0.24 KB/s
8.04 KB/s 3000 4.14 KB/s 0.24 KB/s 0.22 KB/s

Table 7.3: Transfer Rates for Stream Process 2

Fig. 7.5 illustrates the results for the network overhead during failure-free
runtime of a stream process. Fig. 7.5 is based on data coming from Table 7.2
and Table 7.3. These tables contain the transfer rates for the stream trans-
port and the additional checkpointing as absolute numbers. The first column
indicates the sum of average transfer rates of all data streams sent within
the stream process. The second column indicates the checkpoint interval and
the remaining columns contain the average transfer rates of checkpointing
messages needed for the different checkpointing algorithms. Comparing the
coordinated and uncoordinated setting, we see that our ECOC approach is sig-
nificantly reducing the overhead for checkpointing due to transport of check-
point messages from operator provider to backup provider.

Comparing Stream Process 1 and Stream Process 2, we see a slightly
higher network overhead for the coordinated setting. This is due to larger
operator states in Stream Process 2.

At the shortest checkpoint interval of 500 the uncoordinated setting shows
a significant increase of the network overhead for Stream Process 2. This
corresponds to the qualitative analysis of the checkpoint overhead in Sec-
tion 5.8.2. When the minimal checkpoint interval (MCI) is reached the trans-
fer state will no more reduce by reducing the checkpoint interval.

Analyzing the performance of the extended ECOC setting, we see a sig-
nificant improvement (from 18% down to 9%) in Stream Process 2 compared
to the coordinated setting with 500 checkpoint interval. For longer check-

115

7 Evaluation

point intervals no improvement is measured. The reason for that is explained
by Figure 7.6. Fig. 7.6 show the percentage of checkpoints that have been
extended during stream process execution. For 500 the extended ECOC strat-
egy has extended 20% of the checkpoints. For longer checkpoint intervals no
extension was performed because extensions are only performed if two sub-
sequent pending checkpoints are relatively close in stream-time. The chance
for this is decreasing by increased checkpoint intervals. The extended ECOC
setting has not been applied to Stream Process 1 for the mobile environment.
Since there is no expected improvement due to the extended setting for the
simple three-staged topology of Stream Process 1 this measurement has been
omitted. In order to empirically proof this statement, the measurement has
been conducted for Stream Process 1 within stationary environment (see Sec-
tion 7.2.6).

25% -
20% -
15% -

10% -

percentage of extened checkpoints

5% -

0%

500 1000 1500 2000 2500 3000
check interval in no. of elements

Figure 7.6: The ratio of extended backups for Stream Process 2

Fig. 7.7 illustrates the average delays for pending checkpoints until they
become permanent checkpoints and are transferred to the backup provider.
These delays are only existent in the coordinated and extended settings.
In the uncoordinated setting each checkpoint is immediately stored at the
backup provider. For the coordinated setting the delays are independent from
the checkpoint interval. For the 500 checkpoint interval of Stream Process
2, there is a significant increase of the pending checkpoint delay while for
higher checkpoint intervals it is only slightly increased. The explanation for

116

7.2 Performance Evaluations

this is that, the extension of a pending checkpoint introduces an additional
delay and for higher checkpoint intervals less checkpoints are extended. In
general, the pending checkpoint delays do not disturb stream processing and
also do not degrade the failure handling performance as results will show in
the remainder of this section.

25000 - 25000 A

— - coordinated

20000 20000 extended

15000 - 15000 -

T~
10000 1 10000 1 A — g —k-—-k-lg

A - — k- — k- — -k -— k- — A

pending checkpoint delays (ms)
pending checkpoint delay (ms)

5000 - 5000 -

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements

(a) Stream Process 1 (b) Stream Process 2

Figure 7.7: Delay of pending checkpoints during failure-free runtime

Fig. 7.8 illustrates the CPU load of the different reliability strategies.
Compared to the unsafe setting where no reliability is applied to stream pro-
cessing, the overhead of CPU load imposed by reliability is reasonable. For
Stream Process 1 which has a simple topology this overhead is less than in
the more complex Stream Process 2. Another result indicated by Fig. 7.8 is
that the coordinated und extended settings are slightly less CPU demand-
ing than the uncoordinated setting. This effect does not appear in the same
measurement for the stationary setting (see Fig. 7.19). An explanation for
this could be the fact that the uncoordinated setting is sending more data for
checkpointing. On a mobile device with a wireless module this task is more
CPU intensive compared to the server environment.

Fig. 7.9 illustrates the average JVM memory consumption of a node during
stream process execution. Compared to the unsafe setting in which no reli-
ability is applied to stream processing, the overhead of memory imposed by
reliability is reasonable. In particular the coordinated and extended settings
show only slightly higher memory demand. The significantly higher memory
demand for the uncoordinated settings comes from the need to checkpoint the
transfer state. During checkpointing of the transfer state, larger data struc-
tures in memory are needed to send the larger checkpoint messages. This
fact is also pointed out by increasing memory overhead for longer checkpoint
intervals which lead to larger checkpoint messages.

117

7 Evaluation

100% -

90%
80%
70%

CPU load

30% -
20% -
10% -

0%

b
=}
,

s
=}
\

\

»
=}
.

60% -
50% -
40% -

- ® -unsafe

—#ll-unccoordinated
—A - coordinated

500 1000 1500 2000 2500
check interval in no. of elements

3000

(a) Stream Process 1

100% -

90%
80%
70%

CPU load

30% -
20% -
10% A

0%

- ® -unsafe

—#ll-unccoordinated
—a - coordinated

60% -
50% -
40% -

extended

B — -

- - ——pg-——a——"
S-S

YTETEP S RN S

500 1000 1500 2000 2500 3000

check interval in no. of elements

(b) Stream Process 2

Figure 7.8: CPU load during failure-free runtime

- ® -unsafe

—#l-unccoordinated

o
o
\

o
o
‘

- ® -unsafe
—Hl-unccoordinated

JVM memory (MB)
n @«

=) o

|

g
o
L

o
o

The failure handling in the mobile environment was evaluated by trigger-
ing an operator failure of the QRSDetector operator for Stream Process 1 and
of the TestAvg operator for Stream Process 2. Fig 7.10 illustrates the time for
recovery T, of a failed operator instance. There is no significant difference be-
tween the different strategy approaches. There is a slightly shorter recovery
time for Stream Process 2 which is connected to the higher CPU utilization
during recovery in Stream Process 2 (see Fig. 7.11). Whereas JVM memory

—aA - coordinated _n
— - coordinated - - —-a extended -
a I n— — &
// o 4.0 -
P g s -
g g
~ A o
= £3.0
/. _‘—/"- —A g /./
- kT s -~
¥ . — x 320 . e —
N YEEEE TR SEPER S g
R TR SRR TR S
1.0 A
T 0.0 T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements

(a) Stream Process 1

check interval in no. of elements

(b) Stream Process 2

Figure 7.9: JVM memory consumption during failure-free runtime

consumption (see Fig. 7.12) is almost constant in all settings.

Fig 7.13 illustrates the time for catchup 7. of a failed operator instance.
During the catchup phase, a newly recovered operator instance is working
off the congestion that was caused during the time of failure. There are no

118

7.2 Performance Evaluations

5000 1 5000
4500 ‘ _- .\ 4500
-7 N~ N
4000 { W Px N N 4000
N\ N
B 1 ‘ N o —_— o~ 8
éasoo £ .- — 5__!— — —~=1 #3500 /// ~_
23000 3000 N ~
£ 2 Bpg by 18
22500 22500 - =
3]]
52000 ézooo
& 1500 21500 —M-uncoordinated —
—A- coordinated
1000 —Hll-uncoordinated 1000
extended
500 —A- coordinated 500
0 0
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
Figure 7.10: Recovery Time
100% 1 100% 1 p= e e == - ——F-—=0
% - - % |
90% ‘: /A—-—-*-—-'j__: 90%
80% A N~ . - 80% 4
5 B < —m—— - ’
> 70% A D > 70% 4
g g
S 60% 4 g 60% —M-uncoordinated [—
[@ .
= 50% 4 = 50% —A- coordinated |
3 . 3 . extended
S 40% A S 40% -
o o
O 30% 4 G 30% 4
20% 4 - 20% -
—H-uncoordinated
10% —A- coordinated 10% 4
0% T T . 0%
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements

(a) Stream Process 1

check interval in no. of elements

(b) Stream Process 2

Figure 7.11: CPU load during Recovery Time

significant differences between the different reliability algorithms. Also CPU
load (see Fig. 7.14) and JVM memory consumption (see Fig 7.15) are within
reasonable variations. Only for higher checkpoint interval an additional JVM
memory overhead is caused for Stream Process 1 and the uncoordinated set-
ting. This behavior is similar to the failure-free evaluation results.

119

7 Evaluation

2.0 2.0
1.8 1.8 1
516 1.6 1
B £
~1.4 4 ~1.4 4
I} 3]
21.241 31.2
8 3 B ——— R SRR Sl
“;’1_0 J = — P —— =~ — 1;1_0 | = L & ===
2084 E 0.8 4
§0.6 1 éo,s —l-uncoordinated -
0.4 1 i 204 —A- coordinated
‘-l—uncoordmated extended
0.2 —A- coordinated 0.2 1
0.0 T T T T T 1 0.0 T T T T T 1
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2

Figure 7.12: JVM memory consumption during Recovery Time

50000 50000

45000 A 45000 o

N
40000 40000 -
L N
735000 - _ _ 35000 \ Al
330000 | L e £ 30000 N -
@ 7 - - ~. B AL
E A‘“_, - .-k A g h e !——_
Foso00{ W—— W —-—A— 25000 | \ - ~ A —
a =3 AN — -~ Y ks
=1 3 - ~ -~
220000 - £20000 " -
E &
815000 815000 4
—#l-uncoordinated
10000 ‘—l—uncoordinated 10000 —A- coordinated |
5000 —A- coordinated 5000 extended -
0 0 . ‘ ‘ ‘ ‘ ‘
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2

Figure 7.13: Catchup Time

120

7.2 Performance Evaluations

100% 100%
-1
0% —_ % - —_ _—— —_—— - —
90% P _’_{;:___=. 90% _m ! - - =
80% s —— 2 80% [R
Y Ve
% - % | 2
o 70% 2 70% A
S 60% - S 60%- A C
8 8
o 50% 4 5 50%
g g
é 40% 4 é 40% 4
© 30% 4 O 30% 4
20% - - 20% —#l-uncoordinated —
—l-uncoordinated —a- coordinated
10% —A- coordinated 10%
extended
0% T T T T T ! 0% T T T T T !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
Figure 7.14: CPU load during Catchup Time
2.0 2.0
1.8 1 /‘t\\ /,-I—__. 1.8
SO i Nk 16 _
o A N o A
=3 ~o” . . A, s A . Bk — g O~
%1_4, \‘/_/ ~. 51.47 e N _ —-l\\“=
5§12 RN £121 =
©
S
2101 ;1.0 1
205 | 2058 |
o @
20,6 1 20.6 —l-uncoordinated
2)04 | _ 204 —A- coordinated
—Hl-uncoordinated extended
0.2 —A- coordinated 0.2 1
0.0 T T : : : 0.0 : : : : : !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements

(a) Stream Process 1

check interval in no. of elements

(b) Stream Process 2

Figure 7.15: JVM memory consumption during Catchup Time

121

7 Evaluation

7.2.6 Performance Evaluations on Stationary Devices

The experimental setup consists of a network of twelve server nodes. Each
node has an Intel Xeon CPU with 3.2GHz, 2GB of main memory, and is run-
ning on the Windows Server 2003 operating system. One node is dedicated to
host the global repositories. The others are operator and backup providers.
All nodes are equipped with a local OSIRIS-SE software layer which is hosted
by a Sun J2SE1.6 JVM [J2S] and thus are able to run the evaluation stream
processes. As for the mobile environment, a node is not operator provider and
backup provider at the same time and only the operator providers are evalu-
ated. All nodes are connected via a reliable Gigabit Ethernet connection. The
stream processes within the stationary environments are executed with a rate
of 200 data stream elements per second produced by each sensor operator.

Node Operators (Stream Process 1) | Operators (Stream Process 2,3,4)
Server 1 | ECGSensor TestSensorl
Server 2 | ECGSensor TestSensorl
Server 3 | ECGSensor TestSensor2
Server 4 | ECGSensor TestSensor2
Server 5 | DSPFilter TestJoin
Server 6 | DSPFilter TestJoin
Server 7 | DSPFilter TestdJoin
Server 8 | DSPFilter TestdJoin
Server 9 | QRSDetection TestAvg
Server 10 | QRSDetection TestAvg
Server 11 | QRSDetection TestAvg

Table 7.4: Operator Provider in Server Environment

Table 7.4 illustrates which operators are available at the server nodes in
the experiments. Since all operators are available at more than one node in
the OSIRIS-SE network, the infrastructure is able to select one node as oper-
ator provider and another node as backup provider for each operator instance.

Data Stream | Check Interval | Uncoordinated | Coordinated | Extended
29.02 KB/s 500 45.40 KB/s 0.72 KB/s 0.73 KB/s
29.02 KB/s 1000 29.46 KB/s 0.35 KB/s 0.37 KB/s
29.02 KB/s 1500 25.90 KB/s 0.25 KB/s 0.24 KB/s
29.02 KB/s 2000 24.39 KB/s 0.18 KB/s 0.17 KB/s
29.02 KB/s 2500 22.41 KB/s 0.14 KB/s 0.13 KB/s
29.02 KB/s 3000 20.31 KB/s 0.11 KB/s 0.11 KB/s

Table 7.5: Transfer Rates for Stream Process 1

122

7.2 Performance Evaluations

160% -

LS —Hl-uncoordinated
140% — - coordinated
\
\ extended
120%
= N\
g 100% B __
£ ~
g -
—
; 80% ~ = _ _
g .
£ 60% A
2
40% 4
20%
0% +——f= = == e L~ [= n—
500 1000 1500 2000 2500 3000
check interval in no. of elements
(a) Stream Process 1
160% -
140%)
N —Hl-uncoordinated
120%
extended
H AN
$ 100% A
£ |
g S
S so% -
red ~
5 - —n—— =
Z 60%
2
40%
20%
0% -
500 1000 1500 2000 2500 3000

check interval in no. of elements

(¢) Stream Process 3

160% -

140%

120%

network overhead

40% -

20% -

0%

160% 1

140%

120%

100%

80%

network overhead

60%

40%

20% -

0%

100% -

80% -

60% -

n =Ml -uncoordinated
— - coordinated
N\ extended
=~ ~
B
|
- — -

A

~

500

1000 1500

2000

2500 3000

check interval in no. of elements

(b) Stream Process 2

—#l-uncoordinated

extended

500

1000 1500

2000

2500 3000

check interval in no. of elements

(d) Stream Process 4

Figure 7.16: Network overhead during failure-free runtime in stationary set-

ting
Data Stream | Check Interval | Uncoordinated | Coordinated | Extended
47.80 KB/s 500 73.15 KB/s 11.88 KB/s | 8.95 KB/s
47.80 KB/s 1000 47.57 KB/s 5.82 KB/s 5.13 KB/s
47.80 KB/s 1500 41.82 KB/s 3.99 KB/s 3.55 KB/s
47.80 KB/s 2000 38.40 KB/s 2.82 KB/s 2.80 KB/s
47.80 KB/s 2500 34.25 KB/s 2.31 KB/s 2.15 KB/s
47.80 KB/s 3000 34.20 KB/s 1.90 KB/s 1.86 KB/s

Table 7.6: Transfer Rates for Stream Process 2

Also in the server environment, the network overhead during failure-free
runtime of a stream process is significantly reduced by applying the coordi-
nated and the extended reliability algorithm compared to the uncoordinated
algorithm (see Fig. 7.16). Fig. 7.16 is based on data coming from Table 7.5,

123

7 Evaluation

Data Stream | Check Interval | Uncoordinated | Extended

59.25 KB/s 500 83.10 KB/s 33.50 KB/s
59.25 KB/s 1000 56.16 KB/s 26.89 KB/s
59.25 KB/s 1500 49.36 KB/s 30.70 KB/s
59.25 KB/s 2000 42.33 KB/s 28.25 KB/s
59.25 KB/s 2500 39.98 KB/s 25.26 KB/s
59.25 KB/s 3000 39.77 KB/s 22.62 KB/s

Table 7.7: Transfer Rates for Stream Process 3

Data Stream | Check Interval | Uncoordinated | Extended

75.21 KB/s 500 69.95 KB/s 48.44 KB/s
75.21 KB/s 1000 49.69 KB/s 58.34 KB/s
75.21 KB/s 1500 44.61 KB/s 43.64 KB/s
75.21 KB/s 2000 43.28 KB/s 37.88 KB/s
75.21 KB/s 2500 40.37 KB/s 34.07 KB/s
75.21 KB/s 3000 37.89 KB/s 33.10 KB/s

Table 7.8: Transfer Rates for Stream Process 4

Table 7.6, Table 7.7, and Table 7.8. These tables contain the transfer rates
for the stream transport and the additional checkpointing as absolute num-
bers. The first column indicates the sum of average transfer rates of all data
streams sent within the stream process. The second column indicates the
checkpoint interval and the remaining columns contain the average transfer
rates of checkpointing messages needed for the different checkpointing algo-
rithms.

As already shown in the mobile environment, the network overhead of the
uncoordinated setting is exponentially increasing for shorter checkpoint inter-
vals. This corresponds to the qualitative analysis of the checkpoint overhead
in Section 5.8.2. When the minimal checkpoint interval (MCI) is reached the
transfer state will no more reduce by reducing the checkpoint interval. This is
caused by the inherent delay between producing and consuming data stream
elements. During the delay the producer may already produce additional ele-
ments before the consumer has received the previous ones. As a result of this,
some data stream elements are participate in multiple checkpoint messages
as part of the transfer state. If this happens, the network overhead can reach
even more than 100 percent.

When further analyzing the uncoordinated setting for the various stream
processes, we see that for the Stream Process 3 and 4 (the ones with cycles in
the data flow) the network overhead is reduced compared to Stream Process 2
(without cycles). The reason for this is that the network overhead is measured

124

7.2 Performance Evaluations

as ratio of bytes needed for sending of checkpoint messages to the number
bytes needed for sending of data stream elements. In Stream Process 3 and
4 the bytes needed for checkpoint messages have not that much increased
as the additional bytes needed for sending data stream elements along the
new feedback data streams (see Table 7.7 and Table 7.8). This results in less
network overhead for a more complex stream process in the uncoordinated
setting.

Analyzing the performance of the extended ECOC setting, we see no im-
provement in Stream Process 1 compared to the coordinated setting. The
reason for that is explained by Figure 7.17. Fig. 7.17 show the percentage of
checkpoints that have been extended during stream process execution. For
the simple Stream Process 1, no checkpoints were extended because there are
no joins or cycles in this stream process graph.

For the more complex Stream Process 2 which also includes a join of two
data streams, the extended ECOC setting provides an additional reduction
of the network overhead (from 24% down to 18%) for the 500 checkpoint in-
terval. For longer checkpoint intervals, the improvement is disappearing be-
cause of less checkpoints being extended (see Fig. 7.17). For the 500 check-
point interval, the extended ECOC strategy has extended around 23% of the
checkpoints. For longer checkpoint intervals, less extensions were performed
because extensions are only performed if two subsequent pending checkpoints
are relatively close in stream-time. The probability for this is decreasing by
increased checkpoint intervals.

For the stream processes with cycles (3 and 4), the coordinated setting is
not applicable because checkpoint request would be cascaded in the cycle end-
lessly. Still our extended ECOC approach overcomes this flaw and is able to
deal with cycles in the stream process graph. The extended setting shows a
significant reduction of the network overhead in Stream Process 3 (one cycle).
For Stream Process 4 (two cycles), there is only a significant reduction for
the shortest checkpoint interval. For longer checkpoint intervals the network
overhead is becoming comparable to the uncoordinated approach. Fig 7.17
shows an much higher extension rate for Stream Process 3 and 4 compared to
Stream Process 1 and 2. The cycles within the stream process graph (3 and
4) require that within cascading the checkpoint request at least one operator
instance within the cycle has to extend the checkpoint. The extension due
to the cycle is applied in every case and not only when checkpoint requests
follow short in time. This is the reason for the decline of the extended ECOC
performance with respect to network overhead in stream processes with cy-
cles. Nevertheless for a single cycle within a stream process, the extended
setting still significantly outperforms the uncoordinated setting with respect
to network overhead.

125

7 Evaluation

50% - 50%

45% 45% -

ints
ints

E 40% 4 £ 40% -

35% 35% -

30% 30% -

25% 25%

20% 20%

15% - 15%

percentage of extened checkpol
percentage of extened checkpo

10% -

,_\
1)
RS

5% 5% — g

0% +—— ————— ———— —— e~ —— — 0% - - - - -
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements

(a) Stream Process 1 (b) Stream Process 2

50% 50% -

45% 45% -

40%

N
2
K3

35% 35% -

30% 30% -

25% 25%

20% 20%

15% 15% -

10% - 10%

percentage of extened checkpoints
percentage of extened checkpoints

5% 4 5%

0% T T T T T 1 0% T T T T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements

(¢) Stream Process 3 (d) Stream Process 4

Figure 7.17: Ratio of extended checkpoints during failure-free runtime

Fig. 7.18 illustrates the average delay of a pending checkpoint until it gets
a permanent checkpoint. This delay is caused by cascading checkpoint re-
quest following the data stream. Checkpoint request are acknowledged imme-
diately at the last operator instance (which is only propagating data to outside
world systems) in the data flow or when a cycle of request is detected. Due to
this fact, pending checkpoints only occur in the coordinated and extended set-
ting. For Stream Process 2, we see a slightly increased delay for the extended
setting which results from the fact that an extended checkpoint is longer de-
layed. For Stream Process 3, we see even longer delays. For Stream Process 4,
the situation changes because due to the two cycles more checkpoint requests
are detected as cyclic and immediately trigger a permanent checkpoint. This
also explains the increased network overhead for the extended setting when
applied to this stream process.

126

7.2 Performance Evaluations

4000 + 4000 -
3500 | 3500 |
g g
<3000 4 <3000 4
o ke
[7} [}
T 2500 | T 2500 T
= g — - — - 2 £ A — - — -k e A
& 2000 S 2000
X X
3 8
i 1500 —A - coordinated g 1500 1 - & -unsafe
< < —#-uncoordinated
= extended = 1
?, 1000 g 1000 —A - coordinated
2 500 4 2 g0 extended
0 T T T T T ! 0 T T T T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
4000 4000 -
3500 A 3500 A
g g
23000 23000
3 3
[[
T 2500 T 2500
£ £
3 2000 8 2000
< <
3 3
5 1500 5 1500 -
2 2
S 1000 5 1000
=4 o
3 8
500 - 500
0 T T T T T | 0 T T T T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(c) Stream Process 3 (d) Stream Process 4

Figure 7.18: Delay of pending checkpoints during failure-free runtime

Fig. 7.19 illustrates the CPU load of the different reliability strategies.
The experiments show that there is no measurable CPU overhead due to reli-
ability algorithms when comparing to the unsafe setting where no reliability
is applied to stream processing. In general, CPU utilization increases with
more complex stream process topology. In some experiments, the unsafe set-
ting is slightly more CPU demanding compared the three reliable settings.
Explanations for this implausibility are error of measurement and that the
higher network utilization in the reliable settings may result in idle CPU cy-
cles due to network access.

Fig. 7.20 illustrates the average JVM memory consumption of a node dur-
ing stream process execution. Compared to the unsafe setting where no re-
liability is applied to stream processing, the overhead of memory imposed by
reliability is reasonable. In particular the coordinated and extended setting
show only slightly higher memory demand for non-cyclic stream processes (1

127

7 Evaluation

3.5% 4 3.5%
3.0% 3.0%
° - ® -unsafe 5 - ® -unsafe
2 5% —#-unccoordinated | 2 506 —8-unccoordinated |
5% — - coordinated 5% —A - coordinated
= extended = extended
& 2.0% - & 2.0% -
o °
= =
& 1.5% 4 % 1.5% 4
1.0% - 1.0% - .: '\-._\H. —
& ---- 9 =1 e e o e P
s T T A= - DI 3
0.5% f;ﬁ;—* vﬁ_—?;—ﬁﬁ.—.—_——.ﬁ—e =~ 0.5%
0.0% T T T T T 1 0.0% T T T T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
3.5% - 3.5% 4
3.0% A . : 30% @----@----@----@----@----9
unsafe . ol _ N
2.5% -8 -unccoordinated |- 2.5% - | g ~a- =~ - ——a8
extended
D 2.0% § 2.0% 4
o °
2 o 21
G 1.5% P _if_" == ;:i'- —~—w O 1.5% -
L 10% - ® -unsafe
! 0
0% =l -unccoordinated
0.5% 0.5% extended
0.0% . . . ‘ ‘ 0.0% ‘ ‘ ‘ ‘ ‘
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(c) Stream Process 3 (d) Stream Process 4

Figure 7.19: CPU load during failure-free runtime

and 2). The uncoordinated setting requires significantly more memory for
non-cyclic stream processes (1 and 2). This significant higher memory de-
mand for the uncoordinated settings comes from the need to checkpoint the
transfer state and therefore storing larger data structures in memory. For the
cyclic stream processes (3 and 4) the extended setting becomes more mem-
ory demanding due to more extended checkpoints. Still, the performance is
comparable to the uncoordinated setting.

The failure handling in the stationary environment was evaluated for sin-
gle and multiple failure situations. For the single failure situation an operator
failure of the QRSDetector operator for Stream Process 1 and of the TestAvg
operator for Stream Process 2,3,4 has been triggered. For the multi failure
situation the DSPFilter operator of Stream Process 1 and the TestJoin oper-
ator of Stream Process 2,3,4 failed in addition. Fig 7.21 illustrates the time
for recovery T, of a failed operator instance for the single failure scenario and

128

7.2 Performance Evaluations

20 4]
18

[| —#-unccoordinated

- ® -unsafe

—A - coordinated
extended

[—H-unccoordinated

- ® -unsafe

—A - coordinated
extended

- _ 18 1 -
o 16 — - o 16 p—
2 / - g _B
14 e »14 -
212 _E——a 212 ,,l—""‘.__'./
g — 3] | o
§ 10 | § . ; 10 - N
~ - —_c A e e =

2 8 —) e A T —= 2 8- &= - = Q- = -

6 1 6 ®----- ¢ -----¢ -- % - L g --®

®----- ®----@----9- - - - *

4 4

24 24

0 0

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
24 24
P
22 4 - 22 4 -z —
P O,
20 i 20 - —
] R] —

18 —_ 18 . = —
g 16 | ol @16
< =
>14 A 14
212 % 12
Q
E10 1 109 &----- ®----@----@- *----®
S .| @-----@---- - - .- R
S 81 * * - - *> * S g4

6 - ® -unsafe 6 - & -unsafe

41 —Hl-unccoordinated 41 —#l-unccoordinated

27 extended 27 extended

0 0

500 1000 1500 2000 2500

check interval in no. of elements

3000

(¢) Stream Process 3

500 1000 1500 2000 2500

check interval in no. of elements

3000

(d) Stream Process 4

Figure 7.20: JVM memory consumption during failure-free runtime

Fig. 7.22 for the multiple failure scenario. There are no significant differences
between the different reliability approaches.

Also CPU utilization (see Fig. 7.23 and Fig. 7.23) and JVM memory con-
sumption (see Fig. 7.25 and Fig. 7.26) have no significant variation between
the different reliability settings.

Fig 7.27 illustrates the time for catchup t. of a failed operator instance
for the single failure scenario and Fig. 7.28 for the multiple failure sce-
nario. There are no significant differences between the different strategy ap-
proaches. Except the fact that for Stream Process 4 (containing two feedback
cycles), the catchup time of the extended approach is increased. More in-
tensive checkpoint extension and loop detection seems to retard the catchup
process in this case. This issue may be caused by having less permanent
checkpoints compared to the uncoordinated case because the ratio of extended

129

7 Evaluation

200 4 200 4
180 4 180 4
160 4 160 4
5140 - R A ‘9140 -
______ = - =B -
2120 ___.._—;__“_____./ | 2120 Bl e =T A=
‘5100 Eloo
2 80 - g 80
o —l-uncoordinated o
= 60 —- coordinated £ 601
—l-uncoordinated
40 extended - 40 —A- coordinated
20 20 extended
0 T T T T T ! 0 T T T T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
200 4 200 q
180 + 180 4
160 1 160 1 A
| [N -7
7140 A B L — - 7140 S Phalomanialiy SIE SRSt
| e - £ N &
0120 2120 | g
£
5100 1 3100 1
[3
2 804 z 80
(=] 1=
2 60 | 2 60
40 - 40 1 -
—H-uncoordinated —l-uncoordinated
20 extended 20 extended
0 0 !

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements check interval in no. of elements
(c) Stream Process 3 (d) Stream Process 4

Figure 7.21: Recovery Time Single Failure

checkpoints is increased. Given this fact, longer intervals between check-
points cause longer catchup times.

Also in CPU utilization (see Fig. 7.23 and Fig. 7.23) there is no significant
variation between the settings. In JVM memory consumption (see Fig. 7.25
and Fig. 7.26), we see a slightly lower memory consumption for the coordi-
nated and extended settings compared to the uncoordinated setting in most
experiments. This conforms with the fact that also during failure-free run-
time the JVM memory consumption is significantly less for Stream Process 1
and Stream Process 2.

130

7.2 Performance Evaluations

recovery

recovery

200 200
180 + 180 4
] | ;|
160 = 160 L c AT g T
140] __—m-——w— T TEC suo| I g T = 4
T A" ~. £
120{ & = > 2120 -
£
100 100 4
80 1 2 80 -
—Hl-uncoordinated o
60 —A- coordinated £ 60+ :
—l-uncoordinated
40 extended — 40 —A- coordinated
20 20 extended —
0 T T T T T ! 0 T T T T T !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
200 - 200
180 4 180 4
160 o 160 = —
| e sl L B PintoX | il gy P
140 %140
120 0120
E
100 4 <100 A
80 1 % 80
o
60 - 2 60 -
40 - 40 4 -
—ll-uncoordinated —M-uncoordinated
20 extended 20 extended
0 T T T T T ! 0 T T T T T !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements

(¢) Stream Process 3

check interval in no. of elements

(d) Stream Process 4

Figure 7.22: Recovery Time Multiple Failure

131

7 Evaluation

50% 50%
5 —#-uncoordinated .
45% —A- coordinated | 45% 1
40% < extended — 40% -
B SRR Ny
>35% 4 < -~ ~ 350 | A — -
\-/ N e == 5} ~
830% = —- gaow | W
(7] [
= 25% 4 g < 25%
8 3
é 20% é 20%
G 15% G 15% | .
—Hll-uncoordinated
10% 4 10% —A- coordinated
5% - 5% extended —
0% T T T T 1 0% T T T T 1
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
50% - 50% -
45% 45%
40% 0% W
>35% B >35% <
7] ~ o
3 - ~ > \
©30% T ©30% Tt =
¢ e a ~ o g = = __ g - "
Ezs%f \\'/,—l Ezs%f
é 20% é 20%
O 15% O15% -
10% 4 . 10% 1 .
uncoordinated uncoordinated
5% extended 5% extended
0% T T T T 1 0% T T T T |
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

132

check interval in no. of elements

(c) Stream Process 3

check interval in no. of elements

(d) Stream Process 4

Figure 7.23: CPU load during Recovery Time Single Failure

7.2 Performance Evaluations

50% 4

50% 1

45% 1 45%
0%, A 40%
>35% 1 ‘__A‘\-\ _/‘A"\-\‘/‘/ >35% - A==
g - — B _ = g e o AT SR |
§30%— | ¢ ~ - - §30%7 -,\/_‘_/‘ - __.//
= 25% = 25% v
3 8
S20% 1 - S20% 4
2 —Hll-uncoordinated o
O15% R ; O 15% -
- COtOI'd(;HZted —H-uncoordinated
10% extende — 10% —A- coordinated
5% - 5% extended —
0% T T T T T ! 0% T T T T T !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2
50% - 50% 4
45% 4 45% 4
40% 4 40% 4
>35% 235% =
2300/ g300/ = B
)] =1 7—-,_—_——-4
g e L _ -~ g ~m— = =&
o=%] W - = a S 25% |
[
o o
EZO% 1 E20% 1
G 15% G 15% -
10% - - 10% - -
—#l-uncoordinated =uncoordinated
5% extended 5% extended
0% T T T T T ! 0% T T T T T !
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

check interval in no. of elements

(¢) Stream Process 3

check interval in no. of elements

(d) Stream Process 4

Figure 7.24: CPU load during Recovery Time Multiple Failure

133

7 Evaluation

20 - 20 4
—#-uncoordinated

18 —A- coordinated 181 -
R _ —#-uncoordinated
2 16 extended .- 16 —A- coordinated |
<14 4 14 extended —
g o
312 1 212 |
1= 1=
(7] [
=10+ =10+
2 2
g 81 g 81
[ﬂ)
£ 61 E 61
= =
By ES .

B e = ____i‘,_,._.—-h-—u-u-u B e e s Pl e e
24 24
0 T T T T T 1 0 T T T T T 1
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
check interval in no. of elements check interval in no. of elements
(a) Stream Process 1 (b) Stream Process 2

N

=}

