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Summary 

The target of rapamycin (TOR) kinase is a central controller of cell growth. In yeast, the 

TOR proteins function as key components of two highly conserved multiprotein 

complexes, TORC1 and TORC2.  TORC1 is sensitive to the immunosuppressive and 

anti-cancer drug rapamycin, and controls temporal aspects of cell growth through 

regulation of transcription and translation.  It contains TOR1 or TOR2, and in addition 

KOG1, LST8, and TCO89.  TORC2 is a rapamycin insensitive complex that mediates 

spatial control of cell growth via actin cytoskeleton organization.  It contains TOR2, 

AVO1, AVO2, AVO3, BIT61 and LST8.  

This thesis has two parts.  In the first part, we describe a molecular analysis of the 

TORC2 subunit AVO3.  We find that AVO3 is localized at the cell periphery, consistent 

with the localization of TOR2.  AVO3 has six distinct regions that are highly 

conserved from yeast to human.  AVO3 and, in particular, five of its conserved regions 

are required for the TORC2 function of signaling via the cell integrity pathway and 

polarization of the actin cytoskeleton.   AVO3 also interacts with the novel TORC2 

component BIT2, and is required for full activation of the TORC2 downstream target 

MPK1.  This part of the thesis therefore describes a positive role for AVO3 in TORC2, 

to support growth and actin organization.   

In the second part of this thesis, we focus on a new readout of TORC2, crosstalk with 

the sphingolipid biosynthesis pathway.  Sphingolipids and their metabolites are known 

as building components of cellular membranes, and also as signaling molecules 

mediating cell growth, endocytosis, actin regulation, and stress response.  Here we 

show that TORC2 temperature sensitive mutants, tor2ts and avo3-1, are synthetically 

lethal at the permissive temperature, with partial inhibition of sphingolipid biosynthesis 

by the antibiotic myriocin.  At non-permissive temperature, the TORC2 mutants show 

reduced de novo synthesis of sphingolipids.  Consistent with this, a general reduction 

of sphingolipid contents is also observed in steady state.  In contrast, rapamycin 

treatment and loss of TORC1 function do not induce a reduction in sphingolipid 
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biosynthesis.  Our findings in this part of the thesis indicate that TORC2, but not 

TORC1, mediate sphingolipid biosynthesis.  
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Preface 

This thesis focuses mainly on functional analysis of TOR complex 2 (TORC2) in yeast 

Saccharomyces cerevisiae.  As a result, many exciting findings concerning TOR 

complex 1 (TORC1) are overlooked in this thesis, even though the importance of 

TORC1 on cell growth is recognized.    

As the mammalian TORC1 field has been tugged by findings in yeast TORC1, so could 

the findings in yeast TORC2 contribute to understanding of the structure and function of 

mammalian TORC2.   

This thesis is divided into three parts.  The first part, the introduction, provides an 

overview of the two major players of this thesis, yeast TORC2 signaling pathway and 

sphingolipid biosynthetic pathway.   

The second part, the results, represents two major findings that were made during this 

study.  The first key finding was that AVO3, a component of TORC2, is essential for 

TORC2 function.  The second was that TORC2 signaling pathway controls 

sphingolipid biosynthesis.  This study was carried out in close collaboration with 

Karsten Meyer and the help of Xue Li Guan, and Markus R. Wenk at Singapore.  

In the last part, based on our findings and results as well as those of other labs, the 

functions of TORC2 are discussed in a broader context.  Although this part is 

hypothetical, it gives some perspective to understanding the “TORC2 network”.  
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Introduction 

Cell growth is a fundamental property of cells 

Cell growth, defined as accumulation of cell mass, is a fundamental property of cells, 

together with cell division and cell death.  Cell growth and cell division are considered 

to be distinct processes.  During formation of egg and neuronal spiral code, for 

example, cells accumulate cell mass without dividing.  On the other hand, during egg 

cleavage, cells divide without any accumulation of cell mass.  These examples clearly 

show that the two fundamental processes, cell growth and cell division, are distinct.  

Since cell growth governs cell size, it must be tightly regulated.   Imagine a cell that 

its size decreases its size 0.98 times during the cell cycle.  The cell would become 

smaller than a single atom after several thousand cell cycles.  Imagine a cell that 

increases its size 1.02 times during cell cycle.  The cell would be larger than the earth 

after several thousand cell cycles.  Thus, similar to cell division, cells have specific 

mechanisms that regulate accumulation of mass.   

Cell growth implicates mass accumulation and 
surface expansion 

Mass accumulation during cell growth is accompanied by expansion of cell surface, i.e. 

plasma membrane.  Mathematically, when the cubic volume of an ideal sphere is 

doubled, the surface area is increased 1.69 times; therefore cells need to synthesize a 

sufficient quantity of lipids during each cell growth period.  In addition to the plasma 

membrane, cells contain other membrane systems, such as mitochondria, Golgi, 

endoplasmic reticulum, and other vesicles which are also required for duplication.  In 

other words, cells have to coordinate synthesis of those membranes, and particularly 

synthesis of lipids, with cell growth.  Thus, cells most likely have a system(s) that 

regulates lipid biogenesis.   
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TOR as a central controller of cell growth 

The target of rapamycin 
The target of rapamycin protein, TOR, plays a key role in the regulation of cell growth.  

TOR was originally identified in Saccharomyces cerevisiae as a mutant that is resistant 

to rapamycin, a drug known as immunosuppressant, anti-proliferative, and anti-cancer 

agent (Heitman, Movva et al. 1991).   TOR is a structurally and functionally 

conserved in eukaryotes.  It contains a kinase domain which has strong similarity to 

the catalytic domains of phosphoinositide-3 kinase (PI3K) and phosphatidylinositol-4 

kinase (PI4K) (Fruman, Meyers et al. 1998; Crespo and Hall 2002).  Two other 

conserved domains, HEAT repeats and FAT domain, are involved in mediating protein 

interaction.  Functionally, TOR regulates cell growth in response to nutrients.  

TOR complex 1 as a temporal controller of cell growth 
The TOR proteins in Saccharomyces cerevisiae are part of two distinct multiprotein 

complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2) (Loewith, Jacinto 

et al. 2002; Wedaman, Reinke et al. 2003; Reinke, Anderson et al. 2004).  The activity 

of both TOR proteins depends on formation of these complexes (Wullschleger, Loewith 

et al. 2005).   

In response to nutrients, TORC1, which contains TOR1 or TOR2 (and is therefore 

termed “the shared pathway”), and associated partners KOG1, TCO89, and LST8, plays 

an essential role in temporal control of cell growth.  TORC1 positively controls 

starvation-specific transcription and translation via a phosphatase switch composed of 

the type 2A-related phosphatase SIT4, TAP42, and TIP41 (Di Como and Arndt 1996; 

Jiang and Broach 1999; Jacinto, Guo et al. 2001; Cherkasova and Hinnebusch 2003).  

Under good nitrogen conditions, TOR inactivates the type 2A-related phosphatase SIT4 

by binding SIT4 to TAP42 (Di Como and Arndt 1996; Jiang and Broach 1999; Jacinto, 

Guo et al. 2001).  In the absence of nutrients, TORC1 is inactive and mediate release 

of SIT4 from TAP42.  Released, and therefore active SIT4, dephosphorylates and 

activates target proteins such as the transcription factor GLN3 and the kinase NPR1, 

which are involved in synthesizing alternative nutrient sources (Beck and Hall 1999; 

Jacinto, Guo et al. 2001).  TOR also mediates ribosomal protein gene transcription, by 
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regulating the subcellular localization of a corepressor CRF1 via protein kinase A 

(PKA) and the PKA-regulated kinase YAK1 (Martin, Soulard et al. 2004).  In addition, 

TOR regulates autophagy, by controlling ATG1 kinase-dependent organization of 

elements on the pre-autophagosomal membrane (Mizushima, Yamamoto et al. 2001; 

Suzuki, Kirisako et al. 2001; Kim, Huang et al. 2002).   

Mammalian TOR complex 1 (mTORC1) controls several pathways that collectively 

determine the cell mass.  mTORC1 acts as an assembler of growth signals, such as 

growth hormones, amino acids availability, and energy, and regulates several cellular 

processes including translation, transcription, ribosome biosynthesis, and autophagy 

(Hay and Sonenberg 2004; Wullschleger, Loewith et al. 2006).  mTORC1 is sensitive 

to rapamycin, and consists of mTOR, raptor, and mLST8, which are the mammalian 

homologs of TOR1/TOR2, KOG1 and LST8, respectively (Hara, Maruki et al. 2002; 

Kim, Sarbassov et al. 2002).  

TOR complex 2 as a spatial controller of cell growth 
While TORC1 is responsible for temporal control of cell growth, TORC2 signaling 

pathway mediates a spatial control of cell growth, including actin cytoskeleton 

organization and regulation of endocytosis in a cell-cycle dependent manner.  TORC2 

is rapamycin insensitive complex.  Intensive work on TORC2 and its downstream 

targets have revealed parts of this complex signaling network, however there is still 

much unknown.  The TORC2 and its downstream cascades are drawn in Figure I-1. 
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Figure I-1. The TOR complex 2 signaling network.   

“P” indicates phosphorylation.  See text for detail.  
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TORC2 in S. cerevisiae 

Yeast TOR2, as well as TOR1, are ~280 KDa proteins that contain several domains.  

An N-terminal domain comprised of up to 20 tandem-repeated HEAT motifs, that 

mediate protein-protein interactions in multiprotein complexes (Groves and Barford 

1999).  The FAT domain, occupying the region between the HEAT repeats and a 

C-terminal catalytic domain, also mediates protein-protein interactions, and perhaps 

also acts as a scaffold.  In addition, based on gel filtration elution profile, TOR2 

appears as two species, one of 1.5–2 MDa and a second of 0.7–0.8 MDa (Loewith, 

Jacinto et al. 2002; Wullschleger, Loewith et al. 2005).  Consistent with the findings 

above, TOR2 is indeed found in a multiprotein complex (Loewith, Jacinto et al. 2002; 

Wedaman, Reinke et al. 2003; Reinke, Anderson et al. 2004).  TORC2 is composed of 

TOR2, but not TOR1 (and is therefore termed “the unique pathway”), AVO1, AVO2, 

AVO3, LST8, BIT61, BIT2, SLM1, and SLM2 (Loewith, Jacinto et al. 2002; Wedaman, 

Reinke et al. 2003; Audhya, Loewith et al. 2004; Fadri, Daquinag et al. 2005).  The 

complex mediates actin cytoskeleton organization, and therefore is essential for spatial 

control of cell growth (Loewith, Jacinto et al. 2002).   

TOR2, LST8, AVO1, and AVO3 are essential genes.  SLM1 and SLM2 are redundant 

and perform an essential function, since a double deletion mutant is lethal (Audhya, 

Loewith et al. 2004).  Consistent with the phenotypes of TOR2-depleted cell, LST8-, 

AVO1-, and AVO3-depleted cells exhibit a depolarized actin cytoskeleton and show cell 

cycle arrest at G2/M transition (Loewith, Jacinto et al. 2002; Ho, Shiau et al. 2005).  

AVO2, BIT61, and BIT2 are non-essential genes, and deletion mutants do not show any 

phenotype under good nutrient conditions.  Function of the partner proteins is not 

well-characterized except contribution to TORC2 kinase activity (Wullschleger, 

Loewith et al. 2005). 

Downstream targets of TORC2 in yeast 

ROM2, RHO, PKC1, and MPK1-MAP kinase cascade 

The TORC2 signaling pathway begins with activation of the guanine nucleotide 

exchange factor ROM2 by an unknown mechanism (Schmidt, Bickle et al. 1997).  

Activated ROM2 in turn converts small GTPase RHO1 and RHO2 to their active, GTP 
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bound state.  GTP-bound RHO can bind and phosphorylate PKC1 (Kamada, Qadota et 

al. 1996).  PKC1 regulates organization of the actin cytoskeleton via the MPK1-MAP 

kinase cascade (Schmidt, Bickle et al. 1997; Helliwell, Howald et al. 1998; Loewith, 

Jacinto et al. 2002).  The MPK1-MAP kinase cascade composes of MAPKKK, BCK1, 

two redundant threonine/tyrosine MAPKKs, MKK1 and MKK2, and the MAPK 

MPK1/SLT2 (Costigan, Gehrung et al. 1992; Nonaka, Tanaka et al. 1995; Kamada, 

Qadota et al. 1996; Delley and Hall 1999).   

It is known that the MPK1-MAP kinase cascade mainly maintains cell integrity by 

regulating cell wall biosynthesis in response to stresses (Levin 2005).  MPK1 is 

activated by dual phosphorylation of its two conserved theronine (Thr190) and tyrosine 

(Tyr192) residues (Lee, Irie et al. 1993).  The activated-MPK1 induces transcription of 

genes involved in cell wall biosynthesis such as CHS3, encoding a chitin synthase, and 

FKS1, a component of β-1,3-glucan synthase (Jung and Levin 1999).  RLM1 and 

SWI4 are identified as the transcription factors of MPK1 (Watanabe, Takaesu et al. 

1997; Garcia, Bermejo et al. 2004; Levin 2005).  RLM1 up-regulates expression of 

cell wall-related genes.  RLM1 interacts with MPK1 for activation by phosphorylation 

(Watanabe, Irie et al. 1995; Jung, Sobering et al. 2002).  However, loss of MPK1 

function leads to more severe phenotypic defects than a rlm1 deletion mutant, 

suggesting that MPK1 has additional effectors (Jung and Levin 1999).  SWI4 is the 

transcription factor of the SWI4-SWI6 complex that regulates late G1-specific 

transcription targets.  SWI6 is a transcription cofactor of SWI4, and phosphorylated in 

vivo in an MPK1-dependent manner in response to cell wall stress (Madden, Sheu et al. 

1997).  Interestingly, the cell cycle regulated phosphorylation site of SWI6, Ser160, is 

within a consensus MAP kinase phosphorylation site, and a swi6 mutant that lacks this 

site is not phosphorylated by MPK1 (Baetz, Moffat et al. 2001). This suggests that 

MPK1 may regulate the SWI4-SWI6 complex through the cell cycle.  Consistent with 

this notion is the fact that MPK1 activity fluctuates through the cell cycle, peaking in G1 

(Zarzov, Mazzoni et al. 1996).  It is also unknown how MPK1 mediates actin 

cytoskeleton organization.   

MAPK phosphatases 

As the phosphorylation cascades of MAP kinases positively regulate their activity, 
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dephosphorylation of MAP kinases plays an important role in their regulation.  MAPK 

phosphatases remove a phosphate from phospho-tyrosine and/or phospho-threonine 

residues of MAP kinases, and thereby downregulate the activity of MAP kinases.  

MSG5 is a dual-specificity (Tyr and Ser/Thr) protein phosphatase involved in regulation 

of the MPK1 activity.  MSG5 was originally isolated as a suppressor of G1 cell cycle 

arrest induced by pheromone-stimulation and disruption of GPA1, α subunit of G 

protein coupled to mating factor receptors (Doi, Gartner et al. 1994).  Overexpression 

of MSG5 suppresses the growth-inhibitory effect of overexpression of MKK1P386, an 

activated-form of MKK1 MAPK kinase (Watanabe, Irie et al. 1995).  In contrast, 

disruption of MSG5 increases the phosphorylation state of MPK1 upon heat shock 

(Martin, Rodriguez-Pachon et al. 2000; Flandez, Cosano et al. 2004).  MSG5 binds 

and dephosphorylates MPK1.   Reciprocally, MPK1 phosphorylates MSG5 as a 

consequence of the activation of MPK1.  Under activating conditions, a decrease in the 

affinity between MSG5 and MPK1 is observed, suggesting that the mechanism by 

which MPK1 controls MSG5 is via the modulation of protein-protein interactions.  

The other MAPK phosphatases, such as PTP2, PTP3, and SDP1, are also known to act 

on MPK1, and are required in a passive way to provide basal signal to the MAP kinase 

(Theodosiou and Ashworth 2002).   

YPK1 and YPK2 

YPK1 and YPK2 were originally isolated as genes which share 44-46% identity with 

mammalian PKC isozymes throughout their putative catalytic domains (Chen, Lee et al. 

1993).  Double deletion mutant ypk1 ypk2 is lethal.  Expression of rat serum- and 

glucocorticoid-inducible kinase (SGK) can rescue the ypk1 ypk2 mutant, but other AGC 

kinases, such as mouse protein kinase B (PKB) or rat p70 S6 kinase, can not suppress 

the lethality, suggesting that yeast YPK function similarly to mammalian SGK 

(Casamayor, Torrance et al. 1999).   

YPK kinases are phosphorylated by TOR2 and PKH kinases (Roelants, Torrance et al. 

2002; Kamada, Fujioka et al. 2005; Liu, Zhang et al. 2005).  TOR2 directly 

phosphorylates the turn motif and the hydrophobic motif of YPK2, and regulates YPK2 

kinase activity, which is required for regulation of actin organization(Kamada, Fujioka 

et al. 2005).   PKH kinase, PKH1 and PKH2, are yeast orthologues of the mammalian 
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PDK1 protein kinase.  PKH kinases phosphorylate the conserved residue Thr501 in 

YPK2 (Casamayor, Torrance et al. 1999), which is also required for endocytosis and 

actin organization (Friant, Lombardi et al. 2001; deHart, Schnell et al. 2002).  PKH 

kinases are activated by sphingoid bases, and phosphorylate YPK kinases and PKC1 

(Friant, Lombardi et al. 2001; Roelants, Torrance et al. 2002; Liu, Zhang et al. 2005).   

Loss of YPK1 alone is sufficient to cause slow growth and a defect in the depolarization 

of the actin cytoskeleton (Chen, Zheng et al. 1995; Roelants, Torrance et al. 2002; 

Schmelzle, Helliwell et al. 2002).  These defects are suppressed by overexpression of 

the Rho GEF TUS1, or expression of activated-PKC1 (Roelants, Torrance et al. 2002; 

Schmelzle, Helliwell et al. 2002).  In addition, YPK deficient cells are defective in 

MAP kinase activation in response to heat shock, indicating that YPK proteins mediate 

actin cytoskeleton organization via the MPK1-MAP kinase cascade (Schmelzle, 

Helliwell et al. 2002).  Another downstream target of YPK proteins is a type I myosin 

MYO5 (Grosshans, Grotsch et al. 2006).  Deletion of MYO5 has little effect on growth, 

but together with a deletion of MYO3, encoding the other type I myosin, severe defect in 

growth, actin cytoskeleton organization, and endocytosis are observed (Geli and 

Riezman 1996; Anderson, Boldogh et al. 1998; Jonsdottir and Li 2004).  MYO5 

interacts with YPK2, and its myosin motor domain is phosphorylated by YPK2 in vitro.  

In addition, a deletion of MYO5 causes a synthetic α-factor uptake defect in a YPK2 

deletion mutant (Grosshans, Grotsch et al. 2006).  MYO5 also interacts with PKH1 

and PKH2, and a MYO5 deletion mutant shows synthetic growth defect in a PKH 

deficient cells (Grosshans, Grotsch et al. 2006).  These results suggest that YPK 

kinases and probably PKH kinases directly control MYO5 activity that modulates actin 

cytoskeleton and endocytosis.   

In summary, YPK kinases act as an effecter of TORC2 and PKH kinases, and mediate 

actin cytoskeleton organization and endocytosis together with MPK1-MAP kinase 

cascade and the type I myosins.   

SLM1 and SLM2 

SLM1 and SLM2 were originally identified as interacting proteins of AVO2 by a global 

two-hybrid screening (Uetz, Giot et al. 2000).  The screening has also provided an 
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interesting connection; SLM1 and SLM2 can also interact with AVO3 via BIT2.  

SLM1 and SLM2 are 53%indentical and functionally redundant proteins, but expression 

levels of SLM1 is about 10 times higher that those of SLM2 (Audhya, Loewith et al. 

2004).  Both proteins contain Pleckstrin homology (PH) domains, which are known for 

their ability to bind phosphoinositides and to drive membrane recruitment of their host 

proteins.   

Disruption mutant of SLM1 is synthetic lethal with mss4ts, a temperature sensitive 

mutant of a single phosphoinositide kinase in yeast (Audhya, Loewith et al. 2004).  

This genetic interaction is interesting because overexpression of MSS4 is a suppressor 

of tor2ts (Helliwell, Howald et al. 1998).  Double deletion mutant slm1 slm2 is lethal.  

Lethality of the double deletion mutant can be suppressed by additional deletion of 

SAC7, a RHO1 guanine nucleotide activating protein, both at permissive and 

non-permissive temperature, suggesting that elevated RHO1-GTP levels are sufficient 

to bypass the requirement for SLM1 and SLM2 for cell viability (Audhya, Loewith et al. 

2004).  SLM temperature sensitive strains, slm1ts slm2∆, show actin depolarization and 

the depolarization of actin is suppressed by overexpression of PKC1 (Audhya, Loewith 

et al. 2004; Fadri, Daquinag et al. 2005).  SLM1 and SLM2 are phosphorylated by 

TORC2 protein kinase activity in vitro, and phosphorylation of SLM proteins requires 

TORC2 protein kinase activity in vivo.  In tor2ts strain, SLM1 does not localize the cell 

periphery where SLM1 in the wild type localizes.  Thus these data suggest that SLM1 

and SLM2 act on downstream of TORC2 in signaling to the actin cytoskeleton, and 

represent the first substrates of TORC2 protein kinase activity (Audhya, Loewith et al. 

2004).  

Recently, it was proposed that SLM1 and SLM2 are substrates of the calcineurin 

phosphatase required for heat stress-induced endocytosis of the yeast uracil permease 

FUR1 (Bultynck, Heath et al. 2006).  SLM1 and SLM2 lacking the calcineurin 

recognition site is unable to be dephosphorylated, and the phosphorylated SLM proteins 

accumulate in time dependent manner upon heat stress.  This phosphorylation is also 

observed in tor2ts mutant, suggesting that phosphorylation of SLM proteins upon heat 

stress are carried out by other kinases.  During heat shock, YPK and PKH kinases are 

activated by sphingolipid intermediates phytosphingosine (Friant, Lombardi et al. 2001).  
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Inhibition of whole sphingolipid biosynthesis by antibiotic myriocin demonstrates less 

phosphorylation of SLM proteins, indicating that certain kinases activated 

phytosphingosine are required for phosphorylation of SLM proteins (Bultynck, Heath et 

al. 2006).   

Taken together, SLM proteins could play a role in an effecter of TORC2 signaling, 

phosphoinositide signaling, and stress response cascade, and mediates actin 

cytoskeleton organization.   

TORC2 readouts  

Actin cytoskeleton organization 

The actin cytoskeleton organization is a well-established readout of TORC2.  In 

Saccharomyces cerevisiae, there are three distinct structures of actin, actin cables, an 

actinmyosin contractile ring, and cortical patches (Adams and Pringle 1984; Pruyne and 

Bretscher 2000).  Actin cables, composed of actin (ACT1), fimbrin (SAC6), and 

tropomyosin (TPM1, TPM2), is organized in parallel towards the incipient and growing 

bud (Pruyne and Bretscher 2000).  The cables serve as tracks for myosin V–based 

transport system that delivers vesicles, organelles and mRNA to the bud.  The 

actin-myosin contractile ring transiently forms at the mother-daughter neck and is 

important for cytokinesis.  Actin patches are associated with invaginations of the 

plasma membrane and are composed of filamentous actin and many other proteins 

(Mulholland, Preuss et al. 1994; Pruyne and Bretscher 2000).  These structures appear 

at the cortex with a short lifetime (5 to 20 sec) (Smith, Swamy et al. 2001; Kaksonen, 

Sun et al. 2003) and are highly motile (Doyle and Botstein 1996; Waddle, Karpova et al. 

1996; Carlsson, Shah et al. 2002; Kaksonen, Sun et al. 2003).   The actin cytoskeleton 

carries out reconstruction and provides mechanical strength in response to changes in 

the external environment, and is also implicated in various other cellular processes 

(Pruyne and Bretscher 2000; Pruyne and Bretscher 2000).  In addition, both cables and 

patches change their arrangement in a cell cycle-dependent manner.  The cortical 

patches, for instance, localize to the cell periphery during the S phase, and to the small 

and growing bud during the G2/M phase (Casamayor and Snyder 2002).  The functions 

of actin patches are not clearly defined, but they are likely to act on part of endocytic 
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events.  

Endocytosis  

Several reports have argued that TOR is involved in endocytosis (deHart, Schnell et al. 

2003; Schmelzle, Beck et al. 2004).  Endocytosis plays a key role not only in uptake of 

nutrients and pathogens from extracellular environment, but also in control of the 

protein and lipid composition of the plasma membrane and regulation of signaling 

pathways.  Endocytosis requires remodeling of the cell cortex during its internalization, 

i.e. invagination of the plasma membrane induced by endocytic coat proteins.  In 

addition, actin cytoskeleton organization, especially actin cortical patches, plays a 

critical role in endocytic internalization (Engqvist-Goldstein and Drubin 2003).  It can 

be suspected that TOR has a linkage to endocytosis via actin cytoskeleton control.   

Indeed, Hicke and colleagues isolated a TOR2 mutant tor2G2128R which has defect in 

endocytosis.  α-factor internalization in tor2G2128R cells was significantly delayed 

compared with TOR2 wild type cells (deHart, Schnell et al. 2002), and Lucifer yellow 

uptake to the vacuole in the mutant was not be observed (deHart, Schnell et al. 2003).  

In the mutant cells, actin was frequently depolarized, with actin patches seen throughout 

the mother cell, instead of polarized towards the bud.   

Consisted with tor2G2128R results, disruption of rom2, a downstream target of TOR2, 

also decreased efficiency of α-factor internalization (deHart, Schnell et al. 2003).  A 

mutant of ypk1, another down stream target of TOR2 (Kamada, Fujioka et al. 2005), 

was also identified as defective in α-factor internalization through ROM2-RHO1 

(deHart, Schnell et al. 2002; deHart, Schnell et al. 2003), suggesting that YPK1 is 

required for receptor internalization.  All of the findings described above indicate that 

TOR2 could be involved in endocytosis in yeast. 

TORC2 in other species  

Currently, mammalian TORC2 (mTORC2) and Dictyostelium TORC2 are only 

identified.  However, Drosophila, Candida Sp., Ashbya gossypii, Schizosaccharomyces 

pombe have a putative homolog of AVO3.  There is possibility that these species 

posses a functionally and structurally equivalent complex to TORC2.  AVO3 homolog 

is not found yet in plants and C. elegance.  
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Mammalian 

Mammalian TOR complex 2 (mTORC2) is proposed to mediate actin cytoskeleton 

organization like the yeast TORC2.  mTORC2 contains mTOR, rictor (also known as 

mAVO3), and mLST8, orthologs of the yeast TOR2, AVO3, and LST8, respectably 

(Jacinto, Loewith et al. 2004; Sarbassov, Ali et al. 2004).  mTORC2 associates and 

phosphorylates Akt/PKB on Ser473 within the carboxyl-terminal hydrophobic motif 

(Hresko and Mueckler 2005; Sarbassov, Guertin et al. 2005).  Function and regulation 

mechanism of mTORC2 are not clearly defined yet.   

Dictyostelium discoideum 

Dictyostelium discoideum, a soil-living amoeba, has unique advantages for studying the 

molecular mechanisms underlying cytokinasis and chemotaxis.  Pianissimo, the D. 

discoideum homolog of AVO3, encodes a cytosolic regulator of receptor- and G 

protein-mediated activation of adenylate cyclase ACA (Chen, Long et al. 1997).  The 

AVO1 homolog RIP3 (Ras-interacting protein) was also isolated as a component of the 

Ras regulatory network, that is required for signal relay and proper chemotaxis (Lee, 

Parent et al. 1999).  Unlike the counterparts in yeast, both genes in D. discoideum are 

not essential for growth.  However, disruption of each gene eliminates ACA activity in 

response to an exogenous cAMP signal, and impairs the ability for chemotaxis (Chen, 

Long et al. 1997; Lee, Parent et al. 1999).  Recently, mass spec analysis and 

co-immunoprecipitations revealed that Pianissimo and RIP3 interact with the 

Dictiosterium homolog of TOR and LST8, indicating that TORC2 is conserved in D. 

discoideum  (Lee, Comer et al. 2005; Sasaki and Firtel 2006).  Dd-LST8 disruption 

mutant is defective in ACA activation and fails in chemotaxis, similar to either pia and 

rip3 mutants (Lee, Comer et al. 2005; Sasaki and Firtel 2006).  Taken together, these 

data indicates that TORC2 in D. discoideum positively regulates ACA activity in 

response to exogenous cAMP signals, and mediates cytokinasis and chemotaxis.  

Although the finding that TORC2 might be involved in RAS-cAMP signaling pathway 

is not confirmed yet in the other organisms, remodeling actin cytoskeleton and 

maintaining polarity in Dictyostelium represent a common function of TORC2 which is 

found in other organisms.    
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Sphingolipids as a membrane component and 
signaling molecule 

Sphingolipids are essential components of cellular membranes in eukaryotic cells.  

First described by Johann L.W. Thudichum in 1884 as an enigmatic compound found in 

brain tissue (Thudichum 1884), sphingolipids are now recognized as a building block of 

the cellular membrane, a signal molecule of intracellular signal transduction, and a 

substance of several disorders.  

Sphingolipid structure 
All sphingolipids contain a ceramide which consists of a long-chain sphingoid base (in 

general, sphingosine, sphinganine, or phytosphingosine, see below) and a fatty acid 

molecule attached by an amide bond to carbon 2 in the sphingoid base. 

 

 

Figure I-2. Molecular structure of sphingolipid 

The structure of sphingolipids contains sphingoid base (shown as sphingosine in this figure) 

that is linked to a fatty acid molecule through an amide bond, thereby forming the ceramide 

unit.  Addition at the polar head group provides property of the sphingolipids.  In yeast, 

inostolphosphate, mannosyl inositolphsphate, or  mannosyl 

diinositolphophatephosphocholine to ceramide leads to inositol phosphorylceramide (IPC), 

mannosylinositol phosphorylceramide (MIPC), and mannosyldiinositol phosphorylceramide 

(M(IP)2C).  In mammal, phosphocholine or carbohydrates to ceramide, for example, leads to 

sphingomyelin or glycosphingolipids, respectively 
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The sphingoid base normally consists of 18- or 20- carbon alkyl chain, in which two 

atoms from L-serine and the others from fatty acyl CoA, however the yeast serine 

palmitoyltransferase, the first enzyme of sphingolipid biosynthesis, can use C12, and 

C14 fatty acyl CoA as a substrate as well (Pinto, Wells et al. 1992).  The sphingoid 

base often has a modification with either a hydroxyl group at position 4 or a 

trans-double bond at carbon 4 and 5 (note that sphingoid base with the trans-double 

bond is called sphingosine, whereas sphingoid base without the trans-double bond is 

called sphinganine).  The length of the fatty acid is from 14 to 30, probably providing 

some physical characterizations that enable sphingolipids to form ‘lipid rafts’.   

Sphingolipids have a polar head group which provides unique properties to the lipids.  

Distinguished by the polar head group, yeast have three major complex sphingolipids 

(Dickson and Lester 2002): inositol phosphorylceramide (IPC), mannosylinositol 

phosphorylceramide (MIPC), and mannosyldiinositol phosphorylceramide (M(IP)2C).   

In mammals sphingolipids can also be categorized by the polar head group into three 

classes; ceramide, sphingomyelin, and glycosylceramide, although there are huge 

structural variations amongst head groups (Futerman and Hannun 2004).   

 

Sphingolipid biosynthesis in yeast 
The sphingolipid biosynthesis in yeast consists of several catalytic steps in the ER and 

Golgi.  The first reaction of the synthesis, condensation of L-serine and palmitoyl-CoA, 

is known as a rate-limiting step of the reaction chain, and the final product is 

mannosyldiinositol phosphorylceramide (M(IP)2C).  
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Figure I-3. Schematic overview of the yeast sphingolipid biosynthetic pathway 

To avoid confusion, complex sphingolipids B’and D species are not illustrated here. The 

B’species are hydoxylation form of ceramide A catalyzed by SCS7. The D species are the C 

species with hydroxylated long chain fatty acid.  

3-KDS 3-ketodihydrosphingosine, PHS phytosphingosine, IPC inositol phosphorylceramide, 

MIPC mannose inositol phosphorylceramide, M(IP)2C mannose di-inositol 

phosphorylceramide PI phosphatidylinositol, DAG diacylglycerol 

 

Serine palmitoyltransferase 

The first step of sphingolipid biosynthesis in S. cerevisiae as well as mammals involves 

condensation of L-serine and palmitoyl-CoA by the serine palmitoyltransferase, a 
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rate-limiting enzyme of the de novo sphingolipid biosynthesis.  The product of this 

reaction is 3-ketodihydroshingosine (3-KDS) (Pinto, Wells et al. 1992; Nagiec, 

Baltisberger et al. 1994).  The enzymatic activity of the serine palmitoyltransferase 

depends in vitro on supply of its substrates, serine and palmitoyl-CoA, but not on its 

products either 3-KDS or sphinganines, suggesting that either feedback inhibition or 

repression of enzyme synthesis could be very mild (Pinto, Wells et al. 1992).   The 

serine palmitoyltransferase is supposed to be a heterotrimer composed of the two 

homologous units LCB1 and LCB2, and a small protein TSC3 (Gable, Slife et al. 2000).  

LCB1 and LCB2 are required for SPT activity in all eukaryotes (Hanada 2003).  

Sequence analysis reveals that both proteins have at least one potentail transmembrane 

domain at their N-terminus and an aminotransferase motif around 320 aa.  Disruption 

of either of these genes cause lethality, which can be suppressed by exogenous 

sphingoid bases (Pinto, Wells et al. 1992).  TSC3, an 80 amino acid protein, was 

identified as a component of the serine palmitoyltransferase complex that optimizes the 

serine palmitoyltransferase activity upon heat stress (Gable, Slife et al. 2000).  So far, 

TSC3 orthologues are found only in S. cerevisiae.  Disruption of TSC3 induces a heat 

sensitive phenotype, indicating that sphingolipids are required for heat stress response.  

TSC3 may bind and deliver palmitoyl-CoA to the SPT, thus increasing its activity 

(Gable, Slife et al. 2000; Monaghan, Gable et al. 2002).   

The serine palmitoyltransferase activity is inhibited by myriocin/ISP-1, initially isolated 

as an antibiotic and immunosuppressant from Myriococcum albomyces, Isaria sinclairi, 

and Mycelia sterilia (Miyake, Kozutsumi et al. 1995).  The inhibitory effect of 

myriocin on the serine palmitoyltransferase might be caused by the structure of the 

molecule which is an analogue of its product sphingosine. Consisted with this, 

myriocin-containing affinity chromatography carried out a screening of myriocin 

binding protein and isolated LCB1 and LCB2 (Chen, Lane et al. 1999).  The serine 

palmitoyltransferase localizes at the endoplasmic reticulum confirmed by GFP fusions 

with LCB1 and LCB2 (Habeler, Natter et al. 2002; Jockusch, Voigt et al. 2003; Han, 

Gable et al. 2004), therefore the reaction of the serine palmitoyltransferase would occur 

in the ER 
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3-keto reductase 

After the initial condensation of L-serine and palmitoyl-CoA into 3-KDS, 3-KDS is 

immediately reduced using NADPH by the 3-keto reductase TSC10 into sphinganine, 

also called dihydrosphingosine (DHS) (Pinto, Srinivasan et al. 1992; Beeler, Bacikova 

et al. 1998).  This reaction also occurs in the ER.  Deletion of TSC10 makes yeast 

auxotroph to sphinganine or its hydroxylation form sphingosine (Beeler, Bacikova et al. 

1998).   

Enzymes that modify sphingoid bases 

Sphinganine can be modified in three ways.  The first way is hydroxylation at the C-4 

position by SUR2, producing phytosphingosine (PHS, also called 4-hydroxyshinganine) 

(Grilley, Stock et al. 1998).  The second way is phosphorylation at C-1 position of the 

sphingosine backbone by sphingoid base kinase LCB4 and LCB5 providing 

sphinganine-1-phosphate (DHS-1P) (Nagiec, Skrzypek et al. 1998).  The third way is 

condensation with a very long chain fatty acid by ceramide synthase converting into 

sphinganine-derived ceramide (Guillas, Kirchman et al. 2001; Schorling, Vallee et al. 

2001; Vallee and Riezman 2005).   

Phytosphingosine is the primary sphingoid base in yeast (Grilley, Stock et al. 1998).  

This intermediate of sphingolipid has unique property that 20 µM of exogenous 

phytosphingosine inhibits cell growth, while structurally similar or metabolically related 

molecules including 3-KDS, sphinganine, C2-phytoceramide, and stearylamine did not 

affect cell growth (Chung, Mao et al. 2001).  Also, phytosphingosine inhibit uptake of 

uracil, tryptophan, leucine, and histidine (Chung, Mao et al. 2001).   

Phytosphingosine is a product of hydroxylation of sphinganine catalyzed by SUR2, with 

NADPH as electron donor (Grilley, Stock et al. 1998).  SUR2 is an integral membrane 

protein localizing in the ER (Habeler, Natter et al. 2002; Jockusch, Voigt et al. 2003).  

SUR2 is also able to hydroxylate sphinganine-derived ceramide into 

phytosphingosine-derived ceramide (Grilley and Takemoto 2000).  As expected, 

disruption of SUR2 induces accumulation of IPC-A and IPC-B’ (Haak, Gable et al. 

1997; Grilley, Stock et al. 1998), which are sphinganine derivate sphingolipids without 

hydroxylation at C4 position, and also did influence cellular phospholipid levels 
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(Cliften, Wang et al. 1996).  However, disruption of SUR2 does not affect cell viability.  

Together with the fact that sphinganine-derived ceramide and its derivatives are rarely 

found in the wild type strain W303 (Grilley, Stock et al. 1998), even though 

phytosphingosine is the primary sphingoid base, there is redundancy between 

phytosphingosine and sphinganine, and even between phospholipids (Cliften, Wang et 

al. 1996).  

Sphinganine-1-phosphate and phytosphingosine-1-phosphate (S1P) are bioactive lipid 

metabolites that have been implicated in many biological processes (Chalfant and 

Spiegel 2005).  One example of function of S1P is cell growth and cell death.  

Abnormal accumulation of S1P induces cell death.  Double disruption of dpl1 ysr2, 

both encode proteins in degradation of S1P, were inviable, but additional disruption of 

lcb4, responsible for about 97% of total phosphorylation activity of S1P (Nagiec, 

Skrzypek et al. 1998), can suppress the phenotype (Kim, Fyrst et al. 2000; Zhang, 

Skrzypek et al. 2001).  Furthermore, overexpression of either LCB4 or LCB5 in the 

triple mutant dpl1 ysr2 lcb4 induced growth inhibition, suggesting that S1P 

accumulation can inhibit cell growth.  LCB4 was localized to the ER whereas LCB5 

was found to co-fractionate with Golgi membranes (Funato, Lombardi et al. 2003).   

In mammals, function of S1P is much investigated than yeast.  S1P controls numerous 

aspects of cell physiology, including cell survival and mammalian inflammatory 

responses (Spiegel and Milstien 2003; Chalfant and Spiegel 2005).  Mammalian can 

sense extracellular S1P as a signal through its interaction with a family of five specific 

G-protein-coupled receptors (GPCRs), S1P1 to S1P5 (Spiegel and Milstien 2003; 

Goetzl and Rosen 2004).  Furthermore, similarly to other potent lipid mediator, S1P 

also has intracellular function independent of these receptors (Spiegel and Milstien 

2003).   

Ceramide synthase 

As mentioned above, hydroxylation of sphinganine produces phytosphingosine.  In the 

ER, phytosphingosine is further modified to ceramide by the ceramide synthase.  Two 

types of ceramide synthases are known.  One is a minor acyl-CoA-independent 

ceramide synthase encoded by YPC1 and YDC1 that are able to catalyze both synthesis 
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and breakdown of ceramide (Mao, Xu et al. 2000; Mao, Xu et al. 2000).  The other is 

the acyl-CoA-dependent ceramide synthase, that is composed of LAG1, LAC1, and 

LIP1 (Guillas, Kirchman et al. 2001; Schorling, Vallee et al. 2001; Vallee and Riezman 

2005).  LAG1 and LAC1 that share 87.3% similarity at the amino acid level are 

functionally equivalent.  A double deletion mutant of lag1 lac1 has reduced 

sphingolipid levels because of  less activity of the acyl-CoA-dependent ceramide 

synthase (Guillas, Kirchman et al. 2001; Schorling, Vallee et al. 2001).  Double 

mutation is lethal or results in very slow growth, probably due to accumulation of 

phytosphingosine and S1P (Schorling, Vallee et al. 2001).   

IPC synthase 

IPC is synthesized by a ceramide phosphoinositol transferase, also called IPC synthase.  

This synthase are encoded on AUR1 named after aureobasidin A resistance 1.   AUR1 

was identified as a gene whose mutation provides resistance for antifungal drug 

aureobasidin A (LY295337) (Heidler and Radding 1995).  It consists of 401 amino 

acids and contains a PAP2 domain, which is found in the enzyme type 2 phosphatidic 

acid phosphatases.  Subsequent studies revealed that disruption mutants of AUR1 fail 

to synthesize complex sphingolipid species and accumulates ceramide (Nagiec, Nagiec 

et al. 1997), indicating that AUR1 encodes an IPC synthase.  AUR1 localizes primarily 

in the Golgi and not in the ER (Levine, Wiggins et al. 2000).  Taken together with the 

fact that IPC localizes at the Golgi fraction and that ceramide exists in the ER fraction, 

AUR1 converts ceramide to IPC probably in the Golgi (Funato and Riezman 2001).  

Deletion of AUR1 induces microtubule disassembly and chitin delocalization, a similar 

phenotype to aureobasidin A treatment (Hashida-Okado, Ogawa et al. 1996).  The 

mechanism that causes this phenotype is unclear, but the findings suggest a connection 

between sphingolipids biogenesis and cell morphology.   

MIPC synthase 

MIPC is a mannosylated form of IPC.  SUR1, encoding MIPC synthase subunit, has 

been originally identified as the suppressor mutant of rvs161, whose phenotypes are 

reduced viability upon starvation and sensitivity to several drugs with non-related 

structure (Desfarges, Durrens et al. 1993).  Later on, the gene was independently 

isolated as CSG1, by screening for growth phenotypes in the presence of 100 mM 
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calcium (Fu, Beeler et al. 1994).  Disruption mutant of sur1/csg1 fails to accumulate 

glycogen upon stationary phase entry, and has dumbbell-like morphology in stationary 

phase (Desfarges, Durrens et al. 1993).  It was therefore speculated that SUR1 might 

play a role in maintenance of the cell membrane.  Indeed, SUR1 mutant cells show an 

overall decrease of the phospholipid amounts and modifications in the relative contents 

of some phospholipid classes (Desfarges, Durrens et al. 1993).  Consequential studies 

revealed that sur1 mutants have reduced MIPC and M(IP)2C amounts, and accumulate 

IPC species, suggesting that SUR1 is required for IPC monnosylation (Beeler, Fu et al. 

1997).  Amino acids 56 – 148 in SUR1, located between transmembrane domain I and 

II, are homologous to the catalytic domain of the OCH1 and HOC1-encoded α-1, 6- 

mannosyltransferase, supporting the idea that SUR1 is a mannosyltransferase of IPC 

(Beeler, Fu et al. 1997).  Recently, CSH1 has been identified as a mannosyltransferase 

component which has redundant functions of SUR1 (Uemura, Kihara et al. 2003; 

Lisman, Pomorski et al. 2004).  CSH1 is highly homologous to SUR1 (71% similarity 

and 65% identity) and CSH1 protein sequence displays similarity to the sequence in the 

mannosyltransferases as well as SUR1.  Single deletion mutants of either CSH1 or 

SUR1 can synthesize MIPC and M(IP)2C, however a double deletion of CSH1 and 

SUR1 completely blocks MIPC and M(IP)2C synthesis (Uemura, Kihara et al. 2003; 

Lisman, Pomorski et al. 2004), indicating that these proteins have redundant functions 

as mannosyltransferases of IPC.  A further study of SUR1 and CSH1 has demonstrated 

that these two proteins have different substrate specificity (Uemura, Kihara et al. 2003).   

The other subunit of MIPC synthase is CSG2.  CSG2 was isolated as a calcium 

sensitive mutant but not strontium sensitive, indicating that it does not have defects in 

the vacuolar transport system, which would cause both calcium and strontium 

sensitivity (Beeler, Gable et al. 1994).  CSG2 encodes a putative membrane protein 

with nine transmembrane domains.  Amino acid 95-106 within the first cytoplasmic 

loop of CSG are homologous to a consensus Ca2+-binding loop of the EF-hand.  

Although the growth rate of csg2 null mutants is similar to wild type in the absence of 

calcium, concentrations higher than 10 mM calcium decreases the growth rate of csg2 at 

26°C.  In the presence of calcium, csg2 mutant accumulate Ca2+, probably in a 

nonvacuolar organelle (Beeler, Gable et al. 1994).  Disruption mutants of csg2 fail to 
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synthesize MIPC, but since CSG2 has no homologous sequence to mannosyltransferase 

reactive site, function of CSG2 is speculated to be regulatory subunit of MIPC synthase 

(Zhao, Beeler et al. 1994; Beeler, Fu et al. 1997; Uemura, Kihara et al. 2003; Lisman, 

Pomorski et al. 2004).   Physical interaction between CSG2 and both CSH1 or SUR1 

can support this hypothesis (Uemura, Kihara et al. 2003).   

VRG4 that encodes a GDP-mannose transporter is also required for monnosylation of 

IPC, since VRG4 delivers GDP-mannose from the cytosol to lumen of the Golgi (Dean, 

Zhang et al. 1997). 

M(IP)2C synthase 

A further modification of MIPC, addition of an inositol phosphate to the head group of 

MIPC, takes place at the Golgi.  This modification that produces mannose 

di-inositolphosphotidyl ceramide [M(IP)2C] is performed by insitolphosphotransferase 1 

(IPT1).  IPT1 was identified by sequence comparison as the only putative homolog of 

the AUR1 in the S. cerevisiae genome sequence data base (Dickson, Nagiec et al. 1997).  

Mutants baring disruption of IPT1 fails to produce M(IP)2C, and accumulates its 

precursor MIPC, indicating that IPT1 is indeed the M(IP)2C synthase.  Although 

M(IP)2C is the most abundant sphingolipid found in the plasma membrane, an IPT1 

disruptant did not show any growth defect either in rich media or several stress 

conditions including heat shock (52°C), high salt stress (0.75 M NaCl), and low pH 

(pH4.1), indicating that M(IP)2C is not really necessary for responding to these stresses 

(Dickson, Nagiec et al. 1997).  Recent studies provided some interesting findings 

toward elucidation of M(IP)2C function.  Disruption of IPT1 confers tolerance to 

exogenous zymocin, a trimeric protein toxin complex which inhibits cell growth (Zink, 

Mehlgarten et al. 2005).  In contrast, overexpression of IPT1 enhances zymocin 

sensitivity.  Since exogenous zymocin has to be taken up to perform its toxicity, it is 

speculated that M(IP)2C participates in endocytosis (Zink, Mehlgarten et al. 2005).   

Sphingolipid catabolism in yeast 
As many other degradation mechanisms, study of sphingolipid catabolism in yeast is 

less focused than its anabolism.  On other hand, sphingomyelinases in mammals, 

which hydrolyze the phosphodiester linkage of sphingomyelin to produce ceramide and 
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phosphorylcholine, are well-studied because the enzyme acts as key regulators of the 

intracellular levels of ceramide (Smith and Merrill 2002) and apoptosis and cell 

differentiation and cell proliferation (Claus, Russwurm et al. 2000; Gulbins and Li 

2006).  In S. cerevisiae, at least four classes of sphingolipid degradation enzymes have 

been identified which depredate sphingolipid and its derivatives.   

 

 

 

 

Figure I-4. the yeast sphingolipid catabolism 

See text for detail.  

 

Inositol phosphosphingolipid phospholipase C 

Yeast Inositol phosphosphingolipid phospholipase ISC1 has 30% identity to neutral 
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sphingomyelinase of mammals, and shares several common features including 

hydrolytic activity, the requirement of Mg2+ for optimal activity, optimal neutral pH, 

and the conserved P-loop-like domain found in the entire family of sphingomyelinases 

(Sawai, Okamoto et al. 2000).  ISC1 can hydrolyze phosphoceramides, i.e. all complex 

sphingolipids, to generate ceramide.  Deletion strain of ISC1 is loss of sphogolipase 

activity, suggesting that ISC1 is the only shingolipase in yeast.  Regulation of ISC1 

activity in vivo is supposed to depend on mitochondrial lipid phosphatidylglycerol and 

cardiolipin (Vaena de Avalos, Okamoto et al. 2004; Vaena de Avalos, Su et al. 2005).   

Ceramidase 

Two ceramidase are identified in S. cerevisiae.  YPC1 preferentially hydrolyzes 

phytoceramide (Mao, Xu et al. 2000), whereas YDC1 hydrolyzes dihydroceramide 

preferentially and phytoceramide only slightly (Mao, Xu et al. 2000).  Deletion of YPC 

and YDP1 or both did not apparently affect growth, suggesting neither gene is essential 

(Mao, Xu et al. 2000).  However, the ydc1 deletion mutant, but not the ypc1 deletion 

mutant, is sensitive to heat stress, supporting the idea that the two enzymes have distinct 

physiological functions (Mao, Xu et al. 2000). 

Sphingoid base phosphate phosphatase 

Sphingoid base phosphate phosphatase LCB3/LBP1/YSR2 was separately identified as 

a mutant that confers resistance to sphingosine (Mandala, Thornton et al. 1998), and that 

accumulates phosphorylated sphingoid bases (Mao, Wadleigh et al. 1997).  The 

deletion of LCB3 results in the accumulation of phosphorylated sphingoid bases, 

reduced ceramide levels, and fails to incorporate exogenous dihydrosphingosine into 

sphingolipids (Mao, Wadleigh et al. 1997; Mandala, Thornton et al. 1998).  The 

homolog of LCB3, YSR3/LBP2 also encodes sphingoid base phosphate phosphatase that 

specifically dephosphorylates sphinganine 1-phosphate (Mao, Wadleigh et al. 1997).   

Sphingoid base phosphate lyase 

In addition, yeast express sphingoid base phosphate lyase encoded by DPL1, which 

cleaves the substrates to yield ethanolamine-1-phosphate and hexadecanal (Saba, Nara 

et al. 1997).  Disruption mutants of DPL1 accumulate sphingoid base phosphates (Kim, 

Fyrst et al. 2000) at slightly elevated levels (Skrzypek, Nagiec et al. 1999; Kim, Fyrst et 
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al. 2000).  This effect is further enhanced in dpl1 lcb3 double mutants with 500 times 

greater levels of sphingoid base phosphate relative to wild type (Skrzypek, Nagiec et al. 

1999; Kim, Fyrst et al. 2000).  Although the functions of sphingoid base phosphate in 

yeast are largely unknown, recent evidence suggests a role for these lipids in resistance 

to heat stress, in the shift from fermentative to respiratory growth, and in messengers of 

calcium signaling (Skrzypek, Nagiec et al. 1999; Kim, Fyrst et al. 2000; Birchwood, 

Saba et al. 2001). 

Sphingolipid function in yeast 

As a building blocks of membranes 

Sphingolipids are components of cellular membranes.  Cellular membranes are 

composed of a mixture of lipids and proteins, as suggested by the fluid mosaic model 

proposed by Singer and Nicolson back in 1972 (Singer and Nicolson 1972).  Studies 

on membranes conducted in the past 24 years draw a much more detailed picture of the 

membrane structures (Engelman 2005), revealing that membranes are typically very 

crowded with proteins, and that their bilayers vary considerably in thickness.  Together 

with phospholipids, sphingolipids form the lipid bilayers which distinguish the 

intracellular environment from the extracellular environment.  The lipid composition 

of a typical plasma membrane in S. cerevisiae contains 30% sphingolipid species and 

70% phospholipid species in weight (Patton and Lester 1991).  As both lipid species 

have similar molecular weight and mass, sphingolipids are speculated to occupy 30% of 

the lipid surface area of the cell membrane.  

It is known that sphingolipids can aggregate with themselves in cellular membranes and, 

with sterol-backbone lipids, form separate domains which are less fluid than the bulk 

phospholipids.  These sphingolipid-based microdomains, or "lipid rafts", offer active 

spots where protein-protein interactions are enhanced, and where signal transduction, 

lipid and protein trafficking, and enzymatic reactions are accelerated (Simons and 

Ikonen 1997; Edidin 2003; Munro 2003; Simons and Vaz 2004).    

As signaling molecules 

Sphingolipids are known to function as signaling molecules that regulate many cellular 

processes, including cell growth, endocytosis, and stress response.   
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Cell growth 

Sphingolipids are essential for cell growth and survival, since yeast strains defective in 

sphingolipid biosynthesis are non-viable, unless exogenous sphingoid bases are 

supplied.  Disruption of a subunit of serine palmitoyltransferase, either lcb1 or lcb2, is 

lethal (Dickson, Wells et al. 1990).  TSC10, the 3-ketosphinganine reductase 

responsible to the next reaction of serine palmitoyltransferase, is also essential for 

growth (Beeler, Bacikova et al. 1998).  Double disruption of lac1 and lag1, 

components of ceramide synthase, shows very slow growth (Barz and Walter 1999; 

Schorling, Vallee et al. 2001), and single deletion of the other component of ceramide 

synthase lip1 shows very slow growth as well as the double disruption lac1 lag1 (Vallee 

and Riezman 2005).  Consistent with the deletion mutants, inhibition of the synthase 

activity by the specific inhibitor of ceramide synthase Fumonisin A leads to a severe 

growth defect (Wu, McDonough et al. 1995), indicating ceramide are required for 

effective vegetative growth.    IPC synthase encoded by AUR1 is also an essential for 

growth, and an inhibitor of AUR1, aureobasidin A, blocks cell growth (Heidler and 

Radding 1995; Hashida-Okado, Ogawa et al. 1996; Nagiec, Nagiec et al. 1997; 

Hashida-Okado, Yasumoto et al. 1998).  While the sphingolipids mentioned above are 

required for cell growth, MIPC and M(IP)2C, the end products of the sphingolipids 

biosynthesis pathway are not essential for growth.   Inactivation of either MIPC 

synthase by csg2 deletion (Beeler, Gable et al. 1994) or M(IP)2C synthase by ipt1 

deletion did not significantly slow cell growth under good growth conditions (Dickson, 

Nagiec et al. 1997).  These findings suggest that sphingolipids are important molecules 

for cell growth, especially sphingoid bases, ceramide, and IPC, which are critical.   

How do sphingolipids contribute cell growth?  The complete explanation is still 

unknown, but the findings described above support the existence of other functions for 

sphingolipids except as building blocks of cellular membranes.  Another function of 

sphingolipids is as signaling molecules, which response to environmental changes.   

One crucial study with the serine palmitoyltransferase inhibitor myriocin/ISP-1 has 

given a clue.  Myriocin inhibits serine palmitoyltransferase activity, thereby blocking 

cell growth.  A multi-copy suppressor screening with the drug identified YPK1, a gene 

encoding a serine/threonine kinase (Sun, Taniguchi et al. 2000).  A functional homolog 
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of YPK1 is a mammalian protein kinase SGK, which is phosphorylated by PDK1, a 

downstream kinase of phosphatidylinositol 3-kinase (PI3K), suggesting that 

sphingolipids participate in a signal transduction pathway.   

In mammalian cells, the PDK1-PKB signaling cascade downstream of PI3K mediates 

the physiological effects of insulin and other growth factors.  PDK1 can phosphorylate 

a conserved residue within the activation loop of the AGC subfamily of protein kinases, 

containing PKB, PKC isozymes, p70 S6 kinase, and SGK (Vanhaesebroeck and Alessi 

2000; Biondi 2004; Long, Muller et al. 2004; Mora, Komander et al. 2004).  Together 

with PKB, SGK mediates the readouts of PI3K signaling, such as cell survival and cell 

cycle progression (Vanhaesebroeck and Alessi 2000; Mora, Komander et al. 2004).   

Kinase dead mutants of YPK1 fail to suppress the growth defect upon myriocin 

treatment, suggesting that the kinase activity of the YPK1 is essential for the 

suppression (Sun, Taniguchi et al. 2000).  YPK1 is a phospho-protein and the 

phosphorylation of YPK1 is decreased upon myriocin-induced sphingolipid depletion.  

Addition of exogenous sphinganine to myriocin-treated cells suppresses the reduction in 

the phosphorylation of YPK1, indicating that intercellular sphingolipids mediates the 

phosphorylation of YPK1 (Sun, Taniguchi et al. 2000).   

Which protein(s) can phosphorylate YPK1?  It has been shown previously that PKH1 

can phosphorylate Thr504 in YPK1 (Casamayor, Torrance et al. 1999).  PKH1 and its 

homolog PKH2 encode protein kinases with catalytic domains closely related to those 

of human and Drosophila PDK1 (Casamayor, Torrance et al. 1999).  Similar to YPK1, 

overexpression of PKH1 suppresses the myriocin-induced cell growth defect (Sun, 

Taniguchi et al. 2000), suggesting that sphingolipids can act as a signaling molecules 

and  upregulate YPK1 kinase activity via PKH.  Indeed, nanomolar concentrations of 

sphingoid base increase PKH1 and PKH2 kinase activity in vitro (Friant, Lombardi et al. 

2001), indicating that PKH could be a link between the lipid molecules and a signaling 

cascade consisted by kinases.  PKH1 and PKH2 also phosphorylate PKC1 in vitro 

(Friant, Lombardi et al. 2001).  PKC1 in yeast, the only yeast homolog of the 

mammalian protein kinase C (Levin, Fields et al. 1990), regulates MPK1-MAP kinase 

cascade and mediates the cell wall synthesis and actin cytoskeleton organization.   In 
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summary, sphingoid base, one of the intermediate of sphingolipids metabolites, plays a 

key role as a signaling molecule which activate PKH kinases and its substrates YPKs 

and PKC1 (Casamayor, Torrance et al. 1999; Friant, Lombardi et al. 2001; Schmelzle, 

Helliwell et al. 2002).   

Endocytosis 

The initial observation that sphingolipids mediate endocytosis came up with a genetic 

screening for endocytosis mutants (Munn and Riezman 1994); one of those mutants was 

allelic to the LCB1 (Sutterlin, Doering et al. 1997).  The endocytic defect of the lcb1 

mutant, named lcb1-100, could be overcome by exogenous sphingoid base (Zanolari, 

Friant et al. 2000).  Even when endogenous sphingolipid synthesis was inhibited, and 

exogenous sphingolipid could not be given a further modification, sphingoid bases were 

able to suppress the endocytic defect (Zanolari, Friant et al. 2000).  These results 

suggest that sphingoid base is required for the internalization step of endocytosis.  

Consistent with the study that showed that sphingoid base can activate PKH1 and PKH2, 

overexpression of either PKH1 or PKH2 can suppress the lcb1-100 endocytic defect 

(both fluid phase and receptor mediated internalization) and temperature sensitivity 

(Friant, Lombardi et al. 2001; deHart, Schnell et al. 2002).  In addition, a temperature 

sensitive mutant pkh-ts, harboring a chromosomal deletion of PKH2 (pkh2::LEU2) and 

a temperature-sensitive pkh1-ts mutant allele, pkh1D398G (Inagaki, Schmelzle et al. 1999), 

failed in fluid phase and receptor mediated internalization at non-permissive 

temperature 37°C (Friant, Lombardi et al. 2001).  Not only PKH kinases, but also 

YPK1 and YPK2 were found to be required for endocytosis (deHart, Schnell et al. 

2002).  These findings suggest that sphingoid bases mediate endocytosis via the 

protein kinases PKH1 and PKH2. 

Since endocytosis is tightly coupled with actin assembly (Engqvist-Goldstein and 

Drubin 2003), it is conceivable that sphingolipids mediate actin cytoskeleton 

organization.  Indeed, the serine palmitoyltransferase temperature sensitive mutant 

lcb1-100 showed actin depolarization at non-permissive temperature.  This actin defect 

was suppressed by additional sphingoid bases (Zanolari, Friant et al. 2000) and by 

overexpression of either PKH1, PKH2, YCK2 or PKC1 (Friant, Zanolari et al. 2000; 

Friant, Lombardi et al. 2001).  Thus, sphingoid bases and PKH-PKC signaling cascade 



 35

seems to be required for proper actin organization, but it is not clear yet how the 

cascade regulates actin organization.  Notably, PKC1 and its downstream MPK-MAPK 

signaling pathway are involved in actin regulation (Delley and Hall 1999; Levin 2005), 

so it is suspected that the signaling cascade at least partially participates in the 

regulation mechanism of actin cytoskeleton by sphingolipids.   

Stress response 

Sphingolipids are also required for stress response.  Studies of serine 

palmitoyltransferase mutant strains (lcb1-100 and 7R4), which lack newly synthesized 

sphingolipids at non-permissive temperature, have demonstrated that these lipids play a 

role in resisting heat, osmotic, and low pH stresses (Patton and Lester 1991) since the 

mutants are hypersensitive to these stresses.  Following studies on a wild type strain 

showed, upon heat stress, a transient (up to 20 min) increase in the concentration of 

phytosphingosine and sphinganinel, and a more stable increase in ceramide This 

accumulation was not observed in the mutants (Dickson, Nagiec et al. 1997).  

Treatment of sphinganine at the permissive temperature 25°C induced expression of 

STRE (stress response element) regulated genes, which are also induced by heat stress, 

suggesting that sphingolipids mediate heat stress response (Dickson, Nagiec et al. 1997; 

Cowart, Okamoto et al. 2003).  Increase of ceramide upon heat stress was inhibited by 

either australigungin or Fumonisin B1, both are ceramide synthase inhibitors, indicating 

that accumulation of sphingolipid intermediates (sphinganine, phytosphingosine, and 

ceramide) by heat stress probably results in de novo synthesis (Jenkins, Richards et al. 

1997; Wells, Dickson et al. 1998).  The transient change in these intermediates is 

consistent with the idea that these intermediates act as signaling molecules.  

Interestingly, mutants lacking increased de novo sphingolipids upon heat stress were 

found to lack the transient heat stress induced G0/G1 arrest (Shin, Matsumoto et al. 

1987; Jenkins and Hannun 2001), suggesting that newly synthesized sphingolipid 

metabolites also mediate the cell cycle arrest.   

The mechanism by which sphingolipids contribute to heat stress response is gradually 

beginning to be understood.    Upon heat stress, in the lcb1-100 strain, there was no 

induction of the major heat shock proteins (Friant, Meier et al. 2003), although 

transcription and nuclear export of mRNA of heat shock protein was not affected.  
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Translation initiation was strongly down-regulated, as demonstrated by pulse-chaise 

experiment and polysome profiling (Meier, Deloche et al. 2005).  The defects in 

translation initiation in the mutant were not observed in a ceramide synthase mutant 

(lac1 lag1ts) or a sphingoid bases kinase mutant (lcb4 lcb5), suggesting that sphingoid 

bases have a role in heat stress response (Meier, Deloche et al. 2005).  Disruption of 

the yeast eIF4E-binding protein EAP1 restored translation initiation and synthesis of 

heat shock proteins, suggesting that sphingoid bases during heat stress regulate 

translation initiation at a cap dependent step.  In addition, the PKH-YPK signaling 

cascade, a downstream target of sphingoid bases, is partially required for the stability of 

eIF4G (Meier, Deloche et al. 2005).  Taken together, the results of the studies presnetd 

above suggest that sphingoid bases are required for heat stress response, probably 

because the lipids promote translation of heat shock proteins via PKH-YPK signaling 

cascade and a cap dependent translation initiation step.  It would be interesting to 

sturdy that, for example, how PKH signaling reaches EAP1, or the contribution of the 

other signaling pathway on regulation of the translation initiation upon heat stress 

response.   

Not only de novo biogenesis of sphingolipids, ceramide and sphingoid bases can be 

generated by degradation of complex sphingolipid (hydrolysis pathway).  So far, 

contribution of the hydrolysis pathway to the heat shock response seems less impact 

than that of de novo pathway.  ISC1 hydrolyzes complex sphingolipids to ceramide.  

At 39°C for 1 h, disruption mutant of isc1 showed cell cycle arrest like wild type 

suggesting that ceramide produced by ISC1 is not likely to contribute cell cycle 

regulation in response to heat stress (Cowart, Okamoto et al. 2006).  However, the 

mutant showed decrease of the C24-, C24:1- and C26-dihydroceramide species (Cowart, 

Okamoto et al. 2006), suggesting that possibly sphingolipid hydrolysis pathway 

participates in heat shock response at different level of that of de novo sphingolipid 

biogenesis. 

As substances of several disorders 

One obvious reason that sphingolipids draw attention is that the lipids are involved in 

several human disorders, including acid sphingomyelinase deficiency types A and B, 

and Krabbe diseases.   
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The acid sphingomyelinase deficienies types A and B, also called Niemann-Pick disease, 

are an autosomal recessive disorders due to mutation of the sphingomyelinase gene 

(Vanier 2002).   

Krabbe disease (or globoid cell leukodystrophy ) is an autosomal recessive disorder 

resulting from the deficiency of galactocerebrosidase (Wenger, Victoria et al. 1999).  

The galactocerebrosidase is a lysosomal β-galactosidase responsible for the hydrolysis 

of several galactolipids, including galactosylceramide and psychosine 

(galactosylsphingosine).  Deficiency of the enzyme induces accumulation of its 

substrates, and accumulation of psychosine may be the cause of the pathology and 

symptoms observed in this disease (Kobayashi, Shinoda et al. 1987; Wenger, Victoria et 

al. 1999). 

Not only the two disorders written above, but also Tay-Sachs disease, Farber Disease, 

and Gaucher disease are known as autosomal recessive disorders caused by deficiency 

of enzymes in sphingolipid metabolism.  These genetic disorders confirm the 

importance of sphingolipids and the existence of regulation mechanisms of sphingolipid 

metabolism.   
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Aim of This Thesis 

The TOR signaling pathway, conserved from yeast to mammals, is essential for cell 

growth.   

The aim of this thesis is to find and describe additional functions of TOR in the model 

organism Saccharomyces cerevisiae, and to gain further understanding of how TOR 

contributes to cell growth.  We specifically focus on the TOR complex 2 signaling 

branch, and study a novel readout, sphingolipid biosynthesis.   
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PART II 
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Results 

II-1.  Analysis of AVO3 function in TOR complex 2 
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SUMMARY 
The atypical and highly conserved protein kinase TOR is a central controller of growth.  

In yeast, TOR2 is found in two functionally and structurally distinct complexes, TORC1 

and TORC2.  TORC2 contains TOR2, AVO1, AVO2, AVO3, BIT61 and LST8.  Here 

we describe a molecular analysis of the TORC2 subunit AVO3.  AVO3 has six distinct 

regions that are highly conserved from yeast to human.  AVO3 and, in particular, five 

of its conserved regions are required for the TORC2 function of signaling via the cell 

integrity pathway and polarization of the actin cytoskeleton.   AVO3 also interacts 

with the novel TORC2 component BIT2.   Our results suggest that AVO3 performs a 

positive role in TORC2 to support growth and actin organization.        
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INTRODUCTION 
TOR, the target of rapamycin, plays a crucial role in the regulation of cell growth by 

coupling the accumulation of mass to nutrient and other environmental cues (Barbet, 

Schneider et al. 1996; Schmelzle and Hall 2000; Rohde, Heitman et al. 2001; Jacinto 

and Hall 2003; Hay and Sonenberg 2004).   TOR was originally defined in 

Saccharomyces cerevisiae with the identification of mutations that confer resistance to 

the anti-fungal, immunosuppressant and anti-cancer drug rapamycin (Heitman, Movva 

et al. 1991).   TOR proteins are functionally and structurally conserved in all 

eukaryotes and are the founding members of the phosphatidylinositol kinase-related 

protein kinase (PIKK) family.  These proteins contain several known or putative 

protein-protein interaction domains, and most function as components of multiprotein 

complexes (Bakkenist and Kastan 2004).   

In budding yeast, there are two TOR genes, TOR1 and TOR2, and the TOR proteins 

function in two distinct complexes, TOR complex 1 (TORC1) and TOR complex 2 

(TORC2) (Loewith, Jacinto et al. 2002; Chen and Kaiser 2003; Wedaman, Reinke et al. 

2003; Reinke, Anderson et al. 2004).  TORC1 is composed of KOG1, TCO89, LST8 

and either TOR1 or TOR2.  When growth conditions are favorable, TORC1 promotes 

mass accumulation by stimulating ribosome biogenesis, translation initiation and 

nutrient uptake, and by inhibiting autophagy (Noda and Ohsumi 1998; Crespo, Powers 

et al. 2002).  TORC2 contains AVO1, AVO2, AVO3/TSC11, BIT61, LST8 and TOR2, 

but not TOR1.  Although AVO3 was originally named TSC11 (temperature sensitive 

suppressor of csg2) (Beeler, Bacikova et al. 1998), we prefer to use the name AVO3 to 

avoid confusion with mammalian TSC (tuberous sclerosis complex) proteins that 

negatively regulate mTOR activity (Jacinto and Hall 2003).  While TORC1 mediates 

temporal control of cell growth, TORC2 regulates the cell-cycle dependent polarization 

of actin cytoskeleton and thus controls spatial aspects of cell growth.   

Loss of TORC2 function leads to a depolarization of the actin cytoskeleton – actin 

patches are evenly distributed in the mother and daughter cell (Schmidt, Kunz et al. 

1996).  This defect in cell cycle-dependent actin organization is suppressed by 

hyperactivation of the TORC2-regulated cell integrity pathway (Helliwell, Schmidt et 

al. 1998; Loewith, Jacinto et al. 2002).  TORC2 regulates this pathway via activation 
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of the guanine nucleotide exchange factor ROM2 (Schmidt, Bickle et al. 1997).  

ROM2 converts the small GTPases RHO1 and RHO2 to an active, GTP-bound state.  

GTP-bound RHO binds and activates PKC1 (Nonaka, Tanaka et al. 1995).  PKC1, in 

turn, signals to the actin cytoskeleton via a MAP kinase cascade composed of the 

MAPKKK BCK1, the MAPKKs MKK1 and MKK2, and the MAPK MPK1/SLT2 (Lee 

and Levin 1992; Irie, Takase et al. 1993; Lee, Irie et al. 1993; Helliwell, Schmidt et al. 

1998).   

Here we investigate the function of AVO3, an essential component of TORC2.  

Disruption of AVO3 mimics a TOR2 deficiency, and AVO3 defects are suppressed by 

overexpression of signaling proteins downstream of TORC2.  Thus, AVO3 functions 

positively with TOR2 to regulate the cell integrity pathway and the cell cycle-dependent 

polarization of the actin cytoskeleton.  AVO3 is conserved throughout eukaryotic 

evolution and we show that several domains that are particularly well conserved are 

essential for the function of AVO3.  Lastly, we show that the non-essential TORC2 

components AVO2, BIT61 and its homolog BIT2 perform positive roles in TORC2 

signaling. 

  

EXPERIMENTAL PROCEDURES 

Yeast strains, plasmids and media  

The complete genotypes of yeast strains used in this study are listed in Table I.  

Plasmids used in this study are listed in Table II.  Standard techniques and media were 

used (Sherman 1991; Barbet, Schneider et al. 1996).  All cultures were incubated at 

30°C unless otherwise indicated.  

Actin staining 

Cells growing logarithmically in YPD were fixed in formaldehyde (3.7%) and 

potassium phosphate buffer (100 mM [pH 6.5]) and stained with tetramethyl rhodamine 

isothiocyanate (TRITC)-phalloidin (Sigma) to visualize actin, as described previously 

(Benedetti, Raths et al. 1994).  Actin cytoskeleton organization was assessed in several 

hundred small-budded cells, as described previously (Delley and Hall 1999). 
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Spot assay 

Logarithmically growing cells were harvested and resuspended in 10 mM TRIS pH 7.4.  

The resuspended cells were diluted in a fivefold dilution series.  4 µl of each dilution 

(10x, 50x, 250x, 1250x and 6750x diluted) were spotted on an YPD plate.  Growth 

was scored after two days at 30°C.   

MPK1 phosphorylation assay 

YPD cultures of logarithmically growing cells were heat-shocked at 39°C and harvested. 

Cell extracts were prepared as described previously (Martin, Rodriguez-Pachon et al. 

2000).  Protein concentrations of extracts were determined by using Bradford Assay 

(Bio-RAD).  Samples were denatured by addition of 5X SDS-polyacrylamide gel 

electrophoresis (PAGE) sample loading buffer and heating at 96°C for 5 min.  A total 

of 25 µg of protein (for MPK1 protein detection) or 40 µg of protein (for 

phosphorylated MAPK detection) was loaded for standard SDS-PAGE (10% 

acrylamide) and Western blot analyses.  For immunodetection, a mouse anti-HA 

antibody (12CAS) and rabbit phospho-p44/42 MAP kinase (Thr202/Tyr204) antibody 

(1:1000; Cell Signaling) were used.  Secondary antibodies were horseradish 

peroxidase-conjugated anti-mouse (anti-HA) or anti-rabbit (anti-phospho MAPK) 

antibody and detection by ECL reagents (Amersham Pharmacia Biotech). 

Immunoprecipitation and Western blotting 

YPD cultures of logarithmically growing cells were harvested, and cell extracts and 

co-immunoprecipitation were prepared as described previously (Loewith, Jacinto et al. 

2002).  Western blotting and immunodetection were performed as described above for 

the MAP kinase assay.   

RESULTS 

AVO3 is essential and required for actin cytoskeleton organization 

TORC2 regulates polarization of the actin cytoskeleton, through RHO small GTPases, 

protein kinase C (PKC1) and the MPK1 MAP kinase cascade (Helliwell et al., 1998b; 

Loewith et al., 2002; Wedaman et al., 2003).  Since AVO3 is an essential protein 

(Winzeler et al., 1999) and a subunit of TORC2 (Loewith et al., 2002; Wedaman et al., 

2003), it likely plays a role in TORC2 signaling.  To investigate this possibility, we 



 45

examined if an avo3 mutant phenocopies a tor2 mutant.  We constructed a strain that 

expresses HA-tagged AVO3 under the control of the galactose-inducible, glucose 

repressible GAL1 promoter and assayed this strain for the ability to form colonies.  As 

expected, this strain showed a severe growth defect when cells were grown in 

glucose-containing media (data not shown).  Previous work (Helliwell et al., 1998b) 

demonstrated that the growth and actin defects of a tor2 mutant are suppressed by 

hyperactivation of the RHO-PKC1-MAP kinase cascade.  To examine whether the 

growth of AVO3-depleted cells is restored by overexpression of TOR2 or known tor2 

suppressors, we transformed plasmids carrying these genes into the GAL1p-AVO3 strain 

and spotted the cells on glucose containing, solid medium (Figure II-1-1A).  Although 

overexpression of TOR2 did not suppress the avo3 growth defect, the growth defect was 

suppressed by multicopy ROM2, RHO2, TUS1, activated-PKC1, activated-BCK1, 

activated-MKK1 and MSS4, suggesting that, like TOR2 and AVO1 (Loewith et al., 

2002), AVO3 positively regulates signaling through the RHO-PKC1-MPK1 pathway.   

We next investigated whether AVO3 is required for polarization of the actin 

cytoskeleton.  Since actin polarization is a rapid process relative to colony formation, 

we first determined the time course of AVO3 depletion in GAL1p-AVO3 cells shifted 

from galactose- to glucose-containing media.  The HA-tagged AVO3 protein decreased 

in a time dependent manner, and was undetectable by immunoblot within 12 to 16 hours 

after the shift to glucose medium (Figure II-1-1B).  Within 12-16 hours of incubation 

in glucose medium, the AVO3-depleted cells lost actin polarization (Figure II-1-1C).  

This actin defect was suppressed by AVO3 (Figure II-1-1C, middle panels), by 

overexpression of activated-PKC1 (Figure II-1-1C, bottom panels) or by the above 

multicopy suppressors of the avo3 growth defect (RHO2, TUS1, activated-BCK1, 

activated-MKK1) (data not shown).  Thus, an avo3 mutation mimics tor2 and avo1 

mutations, suggesting that AVO3 functions positively with TOR2 and AVO1 to support 

growth and polarization of the actin cytoskeleton.   

AVO3 is required for full MPK1 activation 

To confirm that AVO3 signals through the MPK1 MAPK cascade, we examined 

heat-induced activation of MPK1 in cells depleted for AVO3.  To assay MPK1 

activation, we monitored the phosphorylation state of MPK1 using a phospho-specific 
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• Figure II-1-1
AVO3 is essential and required for actin cytoskeleton organization.  (A) Multicopy of ROM2, RHO2, 
TUS1, activated-PKC1, activated-BCK1, activated-MKK1 and MSS4 restore growth in AVO3-
depleted cells.  GAL1p-AVO3 cell (RS61-4B) containing empty vector (YEplac195) or AVO3 (pRS1), 
TOR2 (pJK3-3), ROM2 (pAS30), RHO2 (pRHO2), TUS1 (pTS38), activated-PKC1
(YCp50::PKC1(R398P)), activated-BCK1 (pRS316::BCK1-20), activated-MKK1
(YCplac33::MKK1(S386P)) and MSS4 (pSH22) were incubated on either galactose- or glucose-
containing plate.  Asterisk indicates activated-proteins.  (B) HA-AVO3 abundance in GAL1p-AVO3 
cells decreased in a time dependent manner upon shift from galactose- to glucose-containing media.  
GAL1pHA-AVO3 cells (RS61-5B) were incubated in glucose-containing media for the indicated 
times.  HA-AVO3 was immunoprecipitated and detected by anti-HA antibody.  Equal amounts of 
protein extracts were used for immunoprecipitation.  (C) Actin depolarization of AVO3-depleted cells 
was suppressed by activated PKC1.  GAL1p-AVO3 cells with empty vector, pAVO3, or pPKC1*
were incubated in YPD for 16 h.  After fixing with formaldehyde, the cells were treated with 
rhodamin-phalloidin to stain actin.  Actin was visualized by fluorescence microscopy using TRITC 
filters.  Cells were visualized by Nomarski optics.
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antibody that specifically recognizes the dually phosphorylated and thereby activated 

form of MPK1.  Wild type and GAL1p-AVO3 cells were incubated at 24°C for 16 

hours in glucose-containing medium (YPglucose) to deplete AVO3 protein (in the 

GAL1p-AVO3 strain) and then shifted to 39°C to induce phosphorylation and activation 

of MPK1 (Martin et al., 2000) (Figure II-1-2).  MPK1 phosphorylation showed similar 

induction kinetics in both strains however the magnitude of MPK1 phosphorylation was 

significantly reduced in AVO3-depleted cells.  Thus, AVO3 is required for heat-shock 

induced phosphorylation of MPK1, confirming that AVO3 signals positively through the 

MPK1 MAPK pathway. 

AVO3 localizes at the cell periphery  

To gain a better understanding of AVO3 and TORC2 function, we observed the 

subcellular localization of AVO3.  Previous studies have revealed that TOR2 is mainly 

enriched in the plasma membrane fraction on sucrose density gradient (Kunz et al., 

2000), and localized at the cell periphery (Kunz et al., 2000; Wedaman et al., 2003).  

Since AVO3 physically interacts with TOR2 (Loewith et al., 2002; Wedaman et al., 

2003), we hypothesized that AVO3 localize at the cell periphery as well.  To address 

this, indirect immunofluorescence was performed to visualize AVO3.  We constructed 

a C-terminus conjugated 13Myc-tagged AVO3 (AVO3-Myc) using PCR-recombination 

method (Longtine et al., 1998).   AVO3-Myc was expressed under control of 

endogenous promoter.  AVO3-Myc was functional, since the tagged-protein 

suppressed lethality of depleted-AVO3 (data not shown).  Indirect 

immunofluorescence against the Myc epitope revealed that AVO3 localized at the cell 

periphery, and formed patch structures (Figure II-1-3).  This peripheral localization of 

AVO3 is consistent with the previous studies that demonstrate TOR2 localization (Kunz 

et al., 2000; Wedaman et al., 2003), and the patch structure of AVO3 might correspond 

to the clusters of gold particle which visualized endogenous TOR2 under electron 

microscopy (Wedaman et al., 2003).  Even in small budded cells, the AVO3 patch 

structures are distributed both in the mother cell and the bud tip, suggesting that AVO3 

localization is independent of cell cycle (Figure II-1-3).  The AVO3 peripheral 

localization was stable upon stress conditions; starvation, high temperature (37°C), 

osmostress, and 0.005% SDS.  Rapamycin and myriocin (inhibitor of serine 
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Figure II-1-2
AVO3 is required for full MPK1 activation.  After 16 h growth in glucose medum (YPD) at 24°C, 
wild type (TS99-5C) and GAL1p-AVO3 (RS97-5A) were incubated at 39°C for indicated times (0, 
30, 60, 90 and 120 min).  Phospho-MPK1 was detected with antibody against phospho-p44/42 
MAP kinase (see Experimental procedures).  For total MPK1, anti-HA antibody was used 
because MPK1 in both strains is HA-tagged.
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Figure II-1-3
Cells were grown in YPD to midlog phase and fixed with 3% formaldehyde.  AVO3 localizaiton was 
examined by indirect immunofluorescence on whole fixed cell.  Wild type: TB50,  AVO3-Myc: RL40-1c
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palmitoyltransferase) also did not affect on the localization of AVO3, suggesting that 

AVO3 constantly might localizes at the cell periphery. 

AVO3 has six highly conserved regions 

To obtain further insight into AVO3 function, we compared the amino acid sequences of 

AVO3 orthologs to identify conserved regions that might be particularly important for 

AVO3 function.  A global alignment program called T-coffee 

(http://www.ch.embnet.org/software/TCoffee.html) (Notredame et al., 2000) was used 

to compare putative AVO3 orthologs from six genera (Candida sp., Schizosaccaromyces 

pombe, Neurospore crassa, Dictyostelium discoideum, Drosophila melanogaster, Homo 

sapiens).  The T-coffee analysis revealed that AVO3 orthologs contain at least 6 

conserved regions (AVO3 Conserved Regions, ACR I to VI), corresponding to amino 

acids 351-480, 740-806, 870-905, 930-1050, 1145-1220 and 1340-1406 in S. cerevisiae 

AVO3 (Figure II-1-4A).  ACRII and V (Figure II-1-4B) are more highly conserved 

than ACRI, III, IV and VI.  ACRI, II, III, IV, V and VI are 51%, 66%, 47%, 41%, 66% 

and 41% similar between S. cerevisiae and human, respectively.  The alignment also 

demonstrated that yeast AVO3, compared to fly and human sequences, contains a ~150 

amino acid extension at the N-terminus and lacks a ~500 amino acid insertion between 

ACRV and VI (Jacinto et al., 2004).  Individual BLAST searches with each conserved 

region failed to reveal any significantly related peptide sequence in other proteins.  

The alignment data indicate that AVO3 is evolutionally conserved and suggest that it 

might have a unique function.  

To determine if AVO3 has defined domains, the yeast AVO3 amino acid sequence was 

also analyzed with the Conserved Domain Database (CDD) program 

(http://www.ncbi.nlm.nih.gov:80/Structure/cdd/cdd/.shtml).  This analysis revealed 

that AVO3 has two domains at the C-terminus, so-called RasGEFN and KOG3694 

domains.  The RasGEFN domain is commonly found N-terminal to the catalytic site of 

Ras guanine nucleotide exchange factors (RasGEF).  RasGEFN is thought to play a 

structural role in maintaining the RasGEF catalytic site in a precise position 

(Boriack-Sjodin et al., 1998).  The putative RasGEFN domain in S. cerevisiae AVO3, 

amino acids 990 to 1047, falls within the C-terminal half of ACRIV and is of 

questionable significance as it was not detected with the BLAST searches described 
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Figure II-1-4
AVO3 has six highly conserved regions.  (A) Schematic diagram of AVO3 conserved regions (ACR) I to VI 
are shown in grey boxes, and corresponding amino acids of ACRI-VI are 350-480, 740-806, 870-905, 930-
1050, 1145-1220 and 1340-1406, respectably.  (B) An amino acid sequence alignment of ACRII and ACRV 
in S. cerevisiae (S.cer) and H. sapiens (H.sap).  In the middle line of each alignments, identical residues are
shown in single letter code and similar residues are shown in “+”.  The numbers correspond to the amino acid 
position of each protein. 
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above nor is it found in AVO3 orthologs outside of S. cerevisiae.  KOG3694 

(eukaryotic ortholog groups 3694) has been defined solely by computational analysis 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, KOG v1.00, (Tatusov et al., 

2003)) and is of unknown function.  KOG3694 corresponds to ACRV and is found in 

all AVO3 orthologs but not in other proteins.  KOG3694 is unrelated to the TORC1 

subunit KOG1.   

To investigate the function of each conserved region of AVO3, we performed a deletion 

analysis on S. cerevisiae AVO3.  AVO3-myc plasmids individually containing in-frame 

deletions of each ACR, the N-terminal extension, or the RasGEFN domain (Figure 

II-1-5A) were constructed.  Sequence analyses confirmed that each construct contained 

the desired deletion.  Immunoblot analyses with anti-Myc confirmed that all constructs 

except those lacking ACRIII and ACRV expressed stable, deletion variants of AVO3 

(Figure II-1- 5B).  To determine which regions are essential for AVO3 function, the 

deletion alleles were introduced into the GAL1p-AVO3 strain, and the transformants 

were assayed for growth on YPglucose agar (Figure II-1- 5A, right column).  This 

assay revealed that ACRII and ACRIV are essential for AVO3 function and a region 

spanning amino acids 221-422 containing the N-terminal part of ACRI is also essential.  

However, although ACRIV is essential, deletion of the overlapping RasGEFN domain 

did not compromise AVO3 function, indicating that the RasGEFN domain is not the 

essential part of ACRIV.  ACRVI and the N-terminus of AVO3 are not essential for 

AVO3 function.  AVO3 deletion variants lacking ACRIII and ACRV were undetectable 

suggesting that ACRIII and ACRV are required, directly or indirectly, for AVO3 stability.  

Thus, amino acids 221-422 (containing a part of ACRI), ACRII, III, IV and V, but not 

ACRVI and the N-terminal extension of S. cerevisiae AVO3 are essential for AVO3 

function.  The RasGEFN domain is not required for AVO3 function.   

Examination of the actin cytoskeleton in the above mutants revealed a direct correlation 

between inability to grow at the nonpermissive condition (glucose medium) and a defect 

in polarization of the actin cytoskeleton (data not shown).  Thus, amino acids 221-422, 

ACRII, III, IV and V are essential for the ability of AVO3 to support both cell growth 

and actin regulation.   
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AVO3 interacts with BIT2 in TORC2 

Powers and colleagues recently identified BIT61 (YJL058c) as a component of TORC2 

(Reinke et al., 2004).  Disruption of BIT61 confers hypersensitivity to rapamycin but 

otherwise fails to confer a phenotype under a variety of growth conditions (Reinke et al., 

2004).  The uncharacterized S. cerevisiae protein BIT2 (Binding protein of TOR2, 

YBR270c) shares 44% identity with BIT61 (Figure II-1- 6A).  The putative protein 

BIT2 derives it name from BIT61 and has yet to be shown to bind TOR2.  BIT2 or 

BIT61 homologs are found in other fungi but not in higher eukaryotes, suggesting that 

BIT2 and BIT61 perform function(s) unique to fungi.  Global yeast two-hybrid 

analyses (Ito et al., 2001; Uetz et al., 2000) indicated that both BIT2 and BIT61 interact 

with AVO3.  These two-hybrid analyses also indicated that BIT2 binds to the TORC2 

substrates SLM1 and SLM2.  These observations suggest that BIT2 is a novel 

component of TORC2.  To confirm that BIT2 is a component of TORC2, we examined 

whether BIT2 associates with TOR2 and AVO3 in vivo.  Immunoprecipitated 

myc-tagged BIT2 co-precipitated both HA-tagged TOR2 and HA-tagged AVO3 (Figure 

II-1- 6B).  Furthermore, BIT2 binds to the other TORC2 partners AVO1 and AVO2, 

also as determined by co-immunoprecipitation experiments (data not shown).  Thus, 

BIT2 is indeed a component of TORC2.   

AVO3 functions positively with BIT2, BIT61 and AVO2 in TORC2 

Like AVO2 and BIT61, BIT2 encodes a nonessential protein.  To further examine the 

role of these proteins in TOR signaling, we investigated the phenotype of mutants 

containing all possible combinations of BIT2, BIT61 and AVO2 wild type and null 

alleles.  Single and double mutants were crossed to generate all possible combinations 

of the double and triple disruptions to assay synthetic effects on cell growth.  We did 

not observe any significant growth defects when the single, double or triple disruptants 

were incubated at low temperature (15°C), high temperature (37°C or 39°C), high 

osmolarity (1 M Sorbitol), or in the presence of a salt stress (1.2 M NaCl, 0.3 M LiCl), 

or a cell wall stress (0.005% SDS) (data not shown).  However, all the above null 

mutants, with the exception of the bit61 and bit2 single mutants, exhibited a growth 

defect when combined with an AVO3 deficiency.  bit2 GAL1p-AVO3 cells and bit61 

GAL1p-AVO3 cells grew like GAL1p-AVO3 cells, but the bit2 bit61 double mutation or 
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Figure II-1-6 
BIT2 is a component of TORC2.  (A) Alignment of the amino acid sequences of BIT61 and BIT2.  The 
alignment was generated using the ClustalW and BOXSHADE.  Black boxes indicate identical residues and 
grey boxes show amino acid similarities.  (B) BIT2 associates with AVO3 and TOR2.  Lysates from wild 
type (TB50a, lane 1), cells expressing myc-tagged BIT2 (RL155-1D, lane 2), cells expressing HA-tagged 
AVO3 (RL42-1C, lane 3), cells co-expressing HA-tagged AVO3 and myc-tagged BIT2 (RL163-8A, lane 4), 
HA-tagged TOR2 (SF43-1C, lane 5) or co-expressing HA-tagged TOR2 and myc-tagged BIT2 (RL163-8A, 
lane 6) were immunoprecipitated with anti-HA antibody (top two panels), or with anti-myc antibody (bottom 
three panels).  Immunoblots were performed with anti-HA antibody (top two panels and bottom two panels), 
or with anti-myc antibody (middle panel). 
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 the avo2 single mutation exacerbated the growth defect of GAL1p-AVO3 cells grown 

on media containing raffinose as the sole carbon source where the GAP1 promoter is 

only weakly active (Figure II-1- 7A).  Furthermore bit2 bit61 avo2 GAL1p-AVO3 cells 

exhibited an even more severe growth defect compared to either bit2 bit61 

GAL1p-AVO3 or avo2 GAL1p-AVO3 cells grown on raffinose.  Introduction of an avo2 

deletion into an avo3 temperature sensitive strain further reduced the temperature 

tolerance of the strain (data now shown).  Thus, combined with the results of the above 

binding studies, BIT2, BIT61 and AVO2 function positively with AVO3 in TORC2.  

Furthermore, as suggested by the synthetic phenotype of bit2 and bit61 mutations and 

the homology of the BIT proteins, BIT2 and BIT61 may have redundant functions.  

Finally, our observations also suggest that BIT2 or BIT61 and AVO2 perform distinct 

functions in TORC2.   

To further investigate the function of these non-essential TORC2 proteins, we examined 

the actin cytoskeleton in the above mutant cells containing all possible combinations of 

BIT2, BIT61 and AVO2 wild type and null alleles and GAL1p-AVO3.  Cells grown in 

galactose medium were shifted to YPglucose and harvested after 4, 8, or 10 hours.  

Actin defects appeared earlier in the bit2 bit61 GAL1p-AVO3, avo2 GAL1p-AVO3 and 

bit2 bit61 avo2 GAL1p-AVO3 cells compared to GAL1p-AVO3 cells (Figure II-1- 7B).  

Thus, although BIT2, BIT61 and AVO2 likely perform separate functions, both of these 

functions, like that of AVO3, seem to be required for polarization of the actin 

cytoskeleton.  
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Figure II-1-7 
(A) AVO3, BIT2, BIT61 and AVO2 function positively in TORC2.  (A) Wild type (TB50a), GAL1p-AVO3 
(RS61-4B), avo2 GAL1p-AVO3 (RS89-25A), bit61 GAL1p-AVO3 (RS94-23A), bit2 GAL1p-AVO3 (RS93-
7D), avo2 bit61 GAL1p-AVO3 (RS91-1A), avo2 bit2 GAL1p-AVO3 (RS92-4D), bit61 bit2 GAL1p-AVO3 
(RS95-21C) and avo2 bit61 bit2 GAL1p-AVO3 (RS90-1A) were spotted onto galactose (left panel) or 
raffinose (right panel) containing plates and incubated at 30°C for 2 days (for galactose) or 4 days (for 
raffinose).  (B) Disruptants of bit61 bit2 avo2 GAL1p-AVO3 represents actin depolarization in earlier time 
point.  After several hour pre-incubation with galactose, cells were incubated with YPglucose for the 
indicated hours.  Fixing, staining and observing cells were performed as Figure 1B.  Percentage of small-
budded cells in which actin was depolarized was counted as described in the experimental procedure. 
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Discussion 
We have demonstrated that AVO3, an essential component of TORC2, acts similarly to 

TOR2 and AVO1 to positively regulate cell growth and actin cytoskeleton organization.  

TORC2 regulates actin organization via the RHO-PKC1-MAP kinase cascade (the cell 

integrity pathway), and indeed disruption of AVO3 results in reduced signaling through 

this pathway.  However, the mechanism by which TORC2 regulates this pathway 

remains unclear.  Direct substrates of this kinase complex are SLM1 and SLM2 

(Audhya, Loewith et al. 2004), but how SLM function relates to RHO function is 

unknown.   

What is the molecular function of AVO3?  AVO3 lacks a defined functional or 

catalytic domain but does have six regions that have been highly conserved among 

AVO3 orthologs.  Five of these six regions are essential for AVO3 function but the 

roles of these domains remain to be elucidated.  At least some of the conserved 

domains may be required for interaction with other TORC2 components as TORC2 is 

also conserved(Jacinto, Loewith et al. 2004; Sarbassov, Ali et al. 2004).  Conserved 

regions ACRIII and ACRV are required for stability of AVO3, but the instability of 

AVO3 deletion variants lacking these two regions may be due to an inability of the two 

mutant proteins to assemble into TORC2.  If AVO3 performs a scaffolding role, as 

suggested by multiple conserved domains, or performs a catalytic role remains to be 

determined. 

Is AVO3 a link between TORC2 signaling and sphingolipid signaling?  AVO3 was 

originally identified as tsc11, a temperature sensitive mutation that suppresses the 

calcium sensitive growth phenotype of a csg2 mutant (Beeler, Bacikova et al. 1998).  

Interestingly, this suppressor screen also identified a temperature sensitive mutation in 

TOR2/TSC14 as a suppressor of csg2 (Beeler, Bacikova et al. 1998).  CSG2 encodes a 

subunit of the inositol phosphorylceramide (IPC) mannosyltransferase (Zhao, Beeler et 

al. 1994; Uemura, Kihara et al. 2003; Lisman, Pomorski et al. 2004).  csg2 mutants 

accumulate the sphingolipid IPC-C and die in the presence of >20 mM Ca2+ (Beeler, 

Gable et al. 1994; Zhao, Beeler et al. 1994; Haak, Gable et al. 1997; Kohlwein, Eder et 

al. 2001).  Most csg2 suppressors act by reducing IPC-C levels.  However, this does 

not appear to be the mechanism by which avo3/tsc11 or tor2/tsc14 suppresses csg2 
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(unpublished data).  The sphingolipid composition of an avo3 temperature sensitive 

mutant at permissive and nonpermissive temperatures was not significantly different 

from that of a parental wild type strain (unpublished data).  This suggests that TORC2 

does not act upstream of IPC-C synthesis.  It is possible that TORC2 signals in parallel 

to or downstream of IPC-C and that hyperactivation of one or both of these pathways is 

toxic.  The yeast PDK1 homologs PKH1 and PKH2 are activated in vitro by 

sphingolipid precursors and activate PKC1 and the PKC1-effector MAPK pathway, 

which are also a downstream effectors of TORC2 (Helliwell, Schmidt et al. 1998; 

Inagaki, Schmelzle et al. 1999; Friant, Lombardi et al. 2001), supporting the notion of 

parallel signaling.  The relationship between TORC2 and sphingolipid metabolism 

remains to be defined.  It is also unclear how downregulation of TORC2 signaling 

suppresses the calcium sensitivity of a csg2 mutant.   

We have also provided evidence that BIT2 is a component of TORC2.  BIT2, its 

homolog BIT61, and AVO2 are all non-essential components of TORC2, suggesting that 

they perform peripheral roles in TORC2.  Although, simultaneous loss of BIT2, BIT61 

and AVO2 did not affect cell growth in either good nutrient conditions or under stress 

conditions, loss of BIT2 and BIT61 or AVO2 exacerbated the growth defect of an avo3 

mutant.  This suggests that BIT2, BIT61 and AVO2, have positive functions in TORC2.  

Notably, global two-hybrid analyses suggest that BIT2 and AVO2 interact with the 

homologous proteins SLM1 and SLM2 (Uetz, Giot et al. 2000; Ito, Chiba et al. 2001).  

SLM1 and SLM2 are substrates of TORC2 (Audhya, Loewith et al. 2004).  Thus it 

seems plausible that BIT2, BIT61 and AVO2 might act as adaptors to facilitate the 

association of TOR2 with some of its substrates. 
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Table I.  Strains used in this study 
 

Strain  Genotype        
TB50a   MATa leu2-3,112 ura3-52 trp1 his3 rme1 HMLa leu 

RL37-4a-Nat TB50a avo2::NatMX 

RL42-1C  TB50a AVO3-3HA::KanMX4 

RL140-2D TB50a BIT2-13Myc::KanMX4 

RL155-1D  TB50α BIT2-13Myc::KanMX4 tor2::KanMX4 / pRS3143HA-TOR2 

RL163-8A TB50α BIT2-13Myc::KanMX4 AVO3-3HA::KanMX 

RS4-2D  TB50a [KanMX4]-GAL1p-AVO3 

RS61-5B  TB50a [HIS3MX]-GAL1p-3HA-AVO3  

RS89-25A RS61α avo2::NAT 

RS90-8A  RS61a avo2::NAT bit2::KanMX bit61::KanMX 

RS91-1A  RS61α avo2::NAT bit61::KanMX 

RS92-4D  RS61a avo2::NAT bit2::KanMX 

RS93-7D  RS61a bit2::KanMX 

RS94-23A RS61α bit61::KanMX 

RS95-21C RS61a bit2::KanMX bit61::KanMX 

RS97-5A  TB50a [KanMX4]-GAL1p-AVO3 MPK1-3HA::KanMX 

SF43-1C  TB50a tor2::kanMX4 / pRS3143HA-TOR2 

SW70  TB50a 3HA-TOR2 

TS99-5C  TB50a MPK1-3HA::KanMX4 
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Table II.  Vectors used in this study 
 

Plasmid Description (reference)      
YEplac195 (2µm URA3) (Gietz and Sugino 1988) 

YCplac33 (CEN URA3) (Gietz and Sugino 1988) 

pRS1 express AVO3 from the AVO3 promoter (CEN URA3) - a 5.0 kb PCR 

fragment containing the AVO3 locus (-445 to +4379) was cloned into the 

SmaI and the SacI sites of YCplac33. 

pJK3-3  expresses TOR2 (2µm URA3) (Kunz, Henriquez et al. 1993) 

pAS30  expresses ROM2 (2µm URA3) (Helliwell, Schmidt et al. 1998) 

pRHO2  expresses RHO2 (2µm URA3) (Madaule, Axel et al. 1987) 

pTS38  expresses TUS1 (2µm URA3) (Schmelzle, Helliwell et al. 2002) 

YCp50::PKC1(R398P) expresses an activated allele of PKC1 (CEN URA3) (Nonaka, 

Tanaka et al. 1995) 

pRS316::BCK1-20 expresses an activated allele of BCK1 (CEN URA3) (Lee and 

Levin 1992) 

YCplac33::MKK1(S386P)  expresses a hyperactive mutation of MKK1 (CEN URA3) 

(Watanabe, Irie et al. 1995) 

pSH22   expresses MSS4 (2µm URA3) (Helliwell, Schmidt et al. 1998) 

pRS28  expresses Myc-tagged AVO3  

pRS42  expresses myc-tagged AVO3(∆1096-1430)  

pRS43  expresses myc-tagged AVO3(∆1263-1430)  

pRS44  expresses myc-tagged AVO3(∆2-220)  

pRS45  expresses myc-tagged AVO3(∆2-422)  

pRS47  expresses myc-tagged AVO3(∆738-811)  

pRS48  expresses myc-tagged AVO3(∆870-905) 

pRS49  expresses myc-tagged AVO3(∆920-1059)  

pRS50  xpresses myc-tagged AVO3(∆990-1046)  

pRS52  expresses myc-tagged AVO3(∆1053-1252)  
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Summary 
Sphingolipids and their metabolites are known as building components of cellular 

membranes, and also as signaling molecules mediating cell growth, endocytosis, actin 

regulation, and stress response.  Here we report a crosstalk between sphingolipid 

biosynthesis and the TOR signaling pathway in Saccharomyces cerevisiae.  The target 

of rapamycin (TOR) kinase is a central component of two highly conserved multiprotein 

complexes, TORC1 and TORC2.  TORC1 is sensitive to the immunosuppressive and 

anti-cancer drug rapamycin, and controls temporal aspects of cell growth through 

regulation of transcription and translation.  TORC2 is a rapamycin insensitive complex 

that mediates spatial control of cell growth via actin cytoskeleton organization.  We 

show that TORC2 temperature sensitive mutants, tor2ts and avo3-1, are synthetically 

lethal at the permissive temperature, with partial inhibition of sphingolipid biosynthesis 

by the antibiotic myriocin.  At non-permissive temperature, the TORC2 mutants show 

reduced de novo synthesis of sphingolipids.  Consistent with this, a general reduction 

of sphingolipid contents is also observed in steady state.  In contrast, rapamycin 

treatment and loss of TORC1 function do not induce a reduction in sphingolipid 

biosynthesis.  Our findings indicate that TORC2, but not TORC1, mediate sphingolipid 

biosynthesis.  
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Introduction 
Cell growth, defined as accumulation of cell mass, is a fundamental property of cells, 

together with cell division and cell death.  In response to nutrient, many processes of 

cell growth, including transcription, translation, ribosome biogenesis, autophagy, and 

actin cytoskeleton organization are regulated by the well-conserved protein kinase TOR 

(Target Of Rapamycin) (Barbet, Schneider et al. 1996; Schmelzle and Hall 2000; Rohde, 

Heitman et al. 2001; Jacinto and Hall 2003; Hay and Sonenberg 2004; Martin and Hall 

2005; Wullschleger, Loewith et al. 2006).  TOR constitutes two distinct protein 

complexes, TORC1 and TORC2 (Loewith, Jacinto et al. 2002), which are structurally 

and functionally conserved from yeast to mammals (Wullschleger, Loewith et al. 2005).  

In S. cerevisiae, TORC1, sensitive to the immunosuppressive and anti-cancer drug 

rapamycin, consists of either TOR1 or TOR2, KOG1, TCO89, and LST8 (Loewith, 

Jacinto et al. 2002; Reinke, Anderson et al. 2004).  TORC1 controls translation and 

transcription via the type 2A-related phosphatase SIT4 and its regulatory subunit TAP42 

(Di Como and Arndt 1996; Jiang and Broach 1999; Jacinto, Guo et al. 2001).  In the 

absence of nutrients, TORC1 is inactive: under these conditions, SIT4 is released from 

TAP42, and thereby becomes active.  Released SIT4 dephosphorylates and activates 

targets such as the transcription factor GLN3 and the kinase NPR1, which are involved 

in synthesizing alternative nutrient sources (Beck and Hall 1999; Jacinto, Guo et al. 

2001).  In the presence of nutrients, in addition to maintaining SIT4 in an inactive state, 

TORC1 mediates ribosome biogenesis, by switching the forkhead-like transcription 

factor FHL1 from binding its corepressor CRF1 to its coactivator IFH1.  This 

regulation mechanism is mediated by protein kinase A (PKA) and the PKA-regulated 

kinase YAK1 (Martin, Soulard et al. 2004).  In addition, TORC1 mediates autophagy 

by controlling the ATG1 kinase-dependent organization of the pre-autophagosomal 

membrane (Mizushima, Yamamoto et al. 2001; Suzuki, Kirisako et al. 2001; Kim, 

Huang et al. 2002).  TORC2, the rapamycin insensitive complex, is composed of 

TOR2, AVO1, AVO2, AVO3, BIT61, and LST8 (Loewith, Jacinto et al. 2002; Wedaman, 

Reinke et al. 2003; Fadri, Daquinag et al. 2005).  The complex mediates cell-cycle 

dependent actin cytoskeleton organization, via RHO1-PKC1 and the 

SLT2/MPK1-MAPK cascade (Schmidt, Bickle et al. 1997; Helliwell, Schmidt et al. 

1998; deHart, Schnell et al. 2003).  In addition, it has been suggested to mediate 
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endocytosis (deHart, Schnell et al. 2003).  Recent studies have identified two 

substrates of TORC2, SLM1/2 and YPK2, both are involved in actin cytoskeleton 

regulation (Audhya, Loewith et al. 2004; Fadri, Daquinag et al. 2005; Kamada, Fujioka 

et al. 2005).  SLM1 and SLM2 contains a PH domain, and act downstream of TORC2 

and the phosphatidylinositol-4-phosphate 5-kinase MSS4 (Audhya, Loewith et al. 2004; 

Fadri, Daquinag et al. 2005).  YPK2, the yeast homolog of SGK1 (serum- and 

glucocorticoid-activated kinase), is phosphorylated at the hydrophobic motif by TORC2 

(Kamada, Fujioka et al. 2005).  YPK2 is also phosphorylated at the T loop by PKH2 

(the yeast homolog of PDK1), which acts downstream of sphingolipids in yeast 

(Casamayor, Torrance et al. 1999; Inagaki, Schmelzle et al. 1999; Friant, Lombardi et al. 

2001).  It is unclear whether SLM1/2 or YPK2 signal through RHO1 or a parallel 

pathway to the actin cytoskeleton.   

Sphingolipids are serine-backbone lipids found in cellular membranes in all eukaryotes.  

Sphingolipids and their derivatives function as building components of cellular 

membranes, but also as signaling molecules that regulate many cellular processes, 

including cell growth, endocytosis, actin regulation, and stress response (Dickson and 

Lester 2002; Obeid, Okamoto et al. 2002; Jenkins 2003; Sims, Spassieva et al. 2004).  

In yeast, LCB1 and LCB2, encoding the two subunits of a serine-palmitoyl transferase 

which catalyzes the first step of sphingolipid synthesis, are essential for growth (Pinto, 

Wells et al. 1992; Nagiec, Baltisberger et al. 1994).  Other genes that encode enzymes 

involved in sphingolipid synthesis, such as the 3-ketosphinganine reductase TSC10 

(Beeler, Bacikova et al. 1998), a ceramide synthase subunits LIP1 (Vallee and Riezman 

2005), and the inositol-phosphoryl ceramide (IPC) synthase AUR1 (Heidler and 

Radding 1995) are also essential, suggesting that sphingolipid biosynthesis is required 

for cell growth.  Sphingolipid intermediates sphinganine (DHS) and phytosphingosine 

(PHS) are known to mediate endocytosis and actin cytoskeleton regulation (Dickson 

and Lester 2002; Sims, Spassieva et al. 2004), probably since both processes are tightly 

coupled (Engqvist-Goldstein and Drubin 2003).  For example, an lcb1 mutant that fails 

to uptake α-factor and Lucifer yellow (Munn and Riezman 1994), also shows actin 

depolarization (Zanolari, Friant et al. 2000; Schmelzle, Helliwell et al. 2002).  The 

endocytic defect and actin disorganization of the lcb1 mutant can be overcome by 
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supplementing the growth media with either DHS or PHS (Zanolari, Friant et al. 2000), 

or by overexpression of PKH1, PKH2, YPK1, and YPK2, which act downstream of DHS 

and PHS (Friant, Lombardi et al. 2001; deHart, Schnell et al. 2002).  PHS and PKH 

kinases are also involved in translation initiation upon heat stress, and are required for 

the recovery from heat shock (Meier, Deloche et al. 2005).   

Interestingly, many TOR functions overlap sphingolipids functions.  As described 

above, cell growth, actin cytoskeleton regulation and endocytosis are mediated by both 

TOR signaling and sphingolipids biosynthesis.  Furthermore, some genetic links 

between the two pathways have been described (Beeler, Bacikova et al. 1998; Helliwell, 

Howald et al. 1998).  A TORC2 temperature sensitive mutant (tor2ts) can be 

suppressed by overexpression of SUR1, a gene encodeing a subunit of mannosyl 

inositolphosphoryl ceramide (MIPC) synthase (Helliwell, Howald et al. 1998).  

Reciprocally, tor2ts and AVO3 temperature sensitive mutant, avo3-1, can suppress the 

calcium sensitivity of a disruption mutant of CSG2, another subunit MIPC synthase.  

Although these suppression mechanisms are not clear, the findings suggest a 

crosstalk(s) between TORC2 signaling and the sphingolipid biosynthetic process.   

Here, we describe that TORC2 mediates sphingolipid biogenesis in S. cerevisiae.  

TORC2 deficient cells showed synthetic lethality upon treatment with myriocin, a 

specific inhibitor of the serine-palmitoyl transferase.  In addition, TORC2, but not 

TORC1 deficient cells showed less accumulation of complex sphingolipids and 

ceramide, indicating that sphingolipid biosynthesis is mediated specifically by TORC2.  

Our findings provide a novel target of TORC2 signaling pathway.   

Results 

TORC2 deficient cells are sensitive to myriocin 

The initial observation that indicated a crosstalk(s) between TORC2 signaling module 

and sphingolipid biosynthesis was a genetic interaction: overexpression of SUR1, a 

subunit of MIPC synthase could suppress lethality of tor2ts mutant (Helliwell et al., 

1998a).  Further genetic evidence came from the identification of mutants of TORC2 

components, tor2ts and avo3-1, as suppressors of calcium sensitivity, which was induced 

by disruption of CSG2, another subunit of MIPC synthase (Beeler et al., 1998).  Taken 
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together with the functional overlaps between the two pathways (see introduction), 

these evidence support the existence of a crosstalk between TORC2 and sphingolipids.  

To confirm this hypothesis, we investigated the cell viability of TORC2 deficient cells 

upon myriocin treatment.  Since myriocin is a specific inhibitor of serine 

palmitoyltransferase, which catalyses the first step of sphingolipid biosynthesis (Sun et 

al., 2000), then if both pathways are cooperating, myriocin treatment could give a 

synthetic effect on cell growth for TORC2 deficient cells.  TORC2 deficient cells, both 

tor2ts and avo3-1, did not grow upon 100 ng/ml myriocin treatment at permissive 

temperature 34°C, whereas the wild type strain formed colonies (Figure II-2- 1A).   

Colony formation of TORC2 deficient cells was defective both in a myriocin 

concentration-dependent and in a temperature-dependent manner (data not shown), 

suggesting that TORC2 and sphingolipid biogenesis are indeed cooperating to control 

growth.   

TORC2 components, AVO2, BIT61, and BIT2 contribute to myriocin tolerance 

The non-essential proteins AVO2, BIT61, and BIT2 (YBR270c) were isolated as 

interacting proteins of TOR2 in two-hybrid screens (Ito et al., 2001; Uetz et al., 2000), 

and in co-immunoprecipitations (Fadri et al., 2005; Loewith et al., 2002; Reinke et al., 

2004).  BIT61 and BIT2 are highly related proteins, sharing 45% amino acid identity 

and 61% similarity.  Although no growth defects were observed under rich medium 

conditions neither for the single deletion mutant of avo2, bit61, or bit2, nor for the avo2 

bit61 double mutant (Reinke et al., 2004), the double mutant showed a modest growth 

defect when treated with 1.0 ng/ml rapamycin (Reinke et al., 2004), and promotion of 

cytosolic localization of SLM1 (Fadri et al., 2005).  These findings suggest that the 

non-essential TORC2 components participate in TORC2 function under certain 

conditions, even though their contribution seems not to be indispensable.   

To determine whether AVO2, BIT61, and BIT2 are required for the cooperation of 

TORC2 and sphingolipids, we tested the myriocin tolerance of deletion mutants in all 

possible combinations of these three genes.  Although all single and double deletion 

mutants did not show significant growth defect at 34°C with 100 ng/ml myriocin (under 

which avo3-1 showed a growth defect), the avo2 bit61 bit2 triple mutant failed to grow 

(Figure II-2- 1B).  The growth defect of the triple mutant was more severe with higher 
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Figures II-2-1
TORC2 deficient cells are sensitive to myriocin.  (A) Saturated cultures of wild type, tor2ts, or avo3-1 cells 
were serially diluted and spotted onto YPD plus methanol (vehicle), or YPD plus 100 µg/ml myriocin, and 
grown for two days at 34°C.  (B) Saturated cultures of wild type, avo3-1, avo2 bit61, avo2 bit2, bit61 bit2, 
and avo2 bit61 bit2 cells were serially diluted and spotted onto YPD plus methanol (vehicle), or YPD plus 
100 µg/ml myriocin, and grown for three days at 30°C. 
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myriocin doses (data not shown).  avo2 bit61 and avo2 bit2 double mutants, but not 

bit61 bit2, showed growth defects at 24°C when treated with 250 ng/ml myriocin (data 

not shown).  The synthetic growth defect of avo2 bit61 bit2 and myriocin suggests that 

these TORC2 components could be required for the cooperation between TORC2 and 

sphingolipids.   

AVO3 domains are required for the cooperation with sphingolipid biogenesis 

AVO3, an essential TORC2 component (Loewith et al., 2002; Wedaman et al., 2003; 

Wullschleger et al., 2005), has several conserved domains identified by sequence 

alignments of AVO3 orthologs from Saccharomyces cerevisiae, Dictyostelium 

discoideum, Drosophila melanogaster and Mus musculus (Jacinto et al., 2004) and from 

six fungi (Ho et al., 2005).  To determine whether these domains are required for the 

cooperation between TORC2 and sphingolipids, we examined the effect of myriocin 

treatment on domain-specific deletion mutants of AVO3.  Following the Jacinto paper 

(Jacinto et al., 2004), the six conserved domains of yeast AVO3 were chosen for 

disruption (Figure II-2- 2A).  AVO3 lacking domains I, II, III, IV or V failed to 

suppress the avo3-1 temperature sensitivity at the non-permissive temperature (Figure 

II-2- 2B), suggesting that these domains are critical for the function of AVO3.   The 

disruption mutant of domain VI, however, was able to rescue avo3-1 growth at 

non-permissive temperature.  Furthermore, disruption of domain VI, but not of the 

other domains, was able to suppress the avo3-1 growth defect upon myriocin treatment, 

similar to full length AVO3.  The domain VI deletion mutant was also able to suppress 

the actin depolarization phenotypes of avo3-1 (data not shown).  Domain VI locates 

very close to the stop codon (1340-1410 aa of 1430 aa), and the similarity of the domain 

between S. cerevisiae and H. sapience is 40%, but despite this high similarity, the 

domain is not likely to be essential for AVO3 function.  Taken together, these findings 

suggest that the conserved domains I - V of AVO3 are required for its function, and in 

particular for the cooperation with sphingolipid biogenesis to control cell growth.   

TORC2 deficient cells show less accumulation of sphingolipids 

The synthetic growth defect described above has led us to further investigate the 

cooperation between TORC2 signaling and sphingolipid biogenesis.  Since the genetic 

interaction between TORC2 and MIPC synthase indicates a modulation of synthesis of 
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Figure II-2-2
Functional analysis of AVO3 conserved regions.  (A) Schematic diagram of AVO3 conserved regions.  The 
conserved regions I to VI are shown in grey boxes, the corresponding amino acids are 350-480, 740-806, 
870-905, 930-1050, 1145-1220 and 1340-1406, respectively.  (B) Saturated cultures of avo3-1 cells carrying 
the indicated plasmid were serially diluted, spotted onto YPD plus methanol (vehicle) or 100 µg/ml myriocin, 
and grown at the conditions indicated.  .
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the complex sphingolipids inositol phosphorylceramide (IPC), MIPC, and mannosyl 

diinositolphosphoryl ceramide (M(IP)2C) (Beeler et al., 1998; Helliwell et al., 1998a), 

we hypothesized that the level of complex sphingolipids would be influenced under 

TORC2 deficiency.  To address this hypothesis, newly-synthesized complex 

sphingolipids in TORC2 deficient cells were measured using tritium-labeled inositol, 

since at least one inositol is contained in each of the complex sphingolipids.  The wild 

type and TORC2 deficient cells tor2ts and avo3-1 were incubated at the non-permissive 

temperature (37°C) for six hours to decrease TORC2 activity (Ho et al., 2005; Schmidt 

et al., 1996).  At this time point, both tor2ts and avo3-1 cells stopped growing and 

showed actin depolarization, but were still able to form colonies (data not shown).  

After two hours of labeling with [3H]-inositol at the non-permissive temperature, lipids 

were extracted.  Same amount of labeled material was loaded onto a thin layer 

chromatography (TLC), separated, and visualized on X-ray films.  After the six hour 

incubation at the non-permissive temperature, IPC levels in avo3-1 were reduced 

whereas the level in wild type was constant (Figure II-2- 3).  Consistent with this 

reduction, the levels of MIPC and M(IP)2C, the products of IPC modification, were also 

decreased in comparison with the wild type levels.  Notably, phosphatidylinositol (PI) 

level did not significantly change during the incubation, suggesting that PI can be able 

to be synthesized even though TORC2 is inactive.  Another TORC2 deficient mutant, 

tor2ts also showed a similar reduction in complex sphingolipids under the same 

experimental conditions, although this reduction was lower than avo3-1 (data not 

shown), perhaps due to the different mutant alleles.  For further confirmation, the lipid 

profile of the TORC2 deficient cells in steady-state was analyzed using mass 

spectrometry-based lipid profiling (Figure II-2- 4).  Consistent with the reduction in 

newly-synthesized complex sphingolipids on the TLC plate, IPC levels in steady-state 

in the TORC2 deficient cells were decreased (Figure II-2- 4).  In contrast, MIPC were 

slightly elevated, though there was a species-dependent response.  Another major 

difference in the lipid levels of TORC2 deficient cells besides the sphingolipid 

reduction was lyso-PI accumulation (Figure II-2- 3), and this accumulation was also 

observed in the steady state lipid profile (Figure II-2- 4).  Interestingly, the lipid 

profiling demonstrated reduction of phosphatidylserine levels in the TORC2 deficient 

mutants.  Taken together, our results indicate that TORC2 activity is required for 
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Figure II-2-3
Complex sphingolipid levels decrease in TORC2 deficient cells.  Wild type and avo3-1 cells were incubated 
for the indicated times at non-permissive temperature, and then labelled with [3H]-inositol for two hours, also 
at non-permissive temperature.  Lipids were extracted and separated by TLC with chloroform, methanol, and 
0.25% potassium chloride (55/45/10, v/v/v), and then visualized by autoradiography.  PI: 
phosphatidylinositol, IPC: Inositol phosphorylceramide, MIPC: mannosyl inositolphosphoryl ceramide, 
M(IP)2C: mannosyl diinositolphosphoryl ceramide
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Figure II-2-4
Steady state levels of IPC and phosphatidylserine in TORC2 deficient cells are decreased.  Analysis of 
phospholipids and complex sphingolipid levels in avo3-1, tor2ts and torc1ts relative to a wild type strain was 
performed using the mass spectrometry-based lipid profiling.  Levels of lipid were quantified using relevant 
internal standards and calculated relative to the wild type strain for the individual molecular species.  LPI: 
lyso-phosphatidylinositol, LPS; lyso-phosphatidylserine, PS: phosphatidylserine, PC: phosphatidylcholine, 
the other abbreviations are in figure 3. 
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 sphingolipid synthesis.   

TORC1 does not participate in the sphingolipid biogenesis 

TORC1, a distinct protein complex from TORC2, regulates cell growth in response to 

nutrients in eukaryotes.  Yeast TORC1 regulates starvation-specific transcription and 

translation via a phosphatase switch composed of the type 2A-related phosphatase SIT4, 

TAP42, and TIP41 (Cherkasova and Hinnebusch, 2003; Di Como and Arndt, 1996; 

Jacinto et al., 2001; Jiang and Broach, 1999), and ribosomal protein gene transcription 

by control of the subcellular localization of a corepressor CRF1 via protein kinase A 

(PKA) and the PKA-regulated kinase YAK1 (Martin et al., 2004).  Does TORC1 

participate in sphingolipid biosynthesis like TORC2?    To answer this question, we 

investigated whether TORC1 inactivation would cause a decrease in sphingolipid 

biogenesis.  TORC1 inactivation was performed in two ways; rapamycin treatment of 

wild type cells, and incubation at non-permissive temperature of a TORC1 temperature 

sensitive strain (torc1ts).   

Rapamycin, known as an anti-fungal, anti-tumor and immunosuppressive drug, is a 

specific inhibitor of TORC1 (Loewith et al., 2002).  Wild type strain was incubated at 

24°C for one hour with rapamycin, and then cells were labeled with [3H]-inositol for 

two hours.  Lipids were extracted and separated by TLC.  One hour treatment of 

rapamycin inhibited TORC1 activity (Loewith et al., 2002; Martin et al., 2004), but did 

not affect complex sphingolipid biosynthesis (Figure II-2- 5), suggesting that TORC1 

does not mediate complex sphingolipid biosynthesis.   

The torc1ts strain is defective in both TOR1 and TOR2 genes, but contains a plasmid 

encoding for a tor2 mutant that can carry out the TORC2 unique function, but not the 

TORC1 shared function (Helliwell et al., 1998a).  Therefore, at non-permissive 

temperature, the torc1ts cells are inactivated only for TORC1 signaling but not TORC2.  

Under the conditions where TORC2 deficiency arises (six hours at 37°C), the torc1ts 

cells were large and rounded, indicating the torc1ts are indeed defective in TORC1 

function (data not shown) (Helliwell et al., 1998a).  Lipid profiling analysis of the 

torc1ts cells, as measured by mass spectrometry, demonstrated that complex 

sphingolipids were not reduced at the non-permissive temperature (Figure II-2- 4), 
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Figure ii-2-5
Rapamycin does not affect sphingolipid synthesis.  Wild type strain at the mid-log phase was incubated with 
200 ng/ml rapamycin for 30 min, and then labelled with [3H]-inositol for two hours in the presence of 
rapamycin.  Lipids were extracted and subjected to alkaline hydrolysis with 0.6 M NaOH for 150 min at 
30°C.  Then, lipids were separated by TLC with chloroform, methanol, and 4.2 M ammonium hydroxide 
(9/7/2, v/v/v), and visualized by autoradiography.  For the abbreviations of lipids, see Figure 3.
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suggesting that inactivation of TORC1 does not influence sphingolipid biosynthesis.  

Importantly, this finding excludes a non specific effect of the long term heat stress on 

sphingolipid biosynthesis in temperature sensitive strains, since the long time heat stress 

on torc1ts did not lead to a general reduction in sphingolipid biosynthesis.  Thus, only 

TORC2, but not TORC1 or heat stress, mediates sphingolipid biosynthesis.  

TORC2 deficient cells show a decrease in sphingoid bases and ceramide.  

How does TORC2 mediate complex sphingolipid biosynthesis?  One possibility is that 

TORC2 mediates synthesis of sphingolipid intermediates, thereby influencing complex 

sphingolipid biosynthesis (Figure II-2- 6A).  Sphingolipid biosynthesis in yeast begins 

with condensation of L-serine and palmitoyl-CoA by serine palmitoyltransferase, which 

consists of three subunits in yeast, LCB1, LCB2, and TSC3 (Gable et al., 2000; Pinto et 

al., 1992b), and two subunits in mammals, LCB1 and LCB2 (Hanada, 2003).  This 

reaction appears to be the rate-limiting step of the whole sphingolipid biosynthesis 

process, and a key factor of the reaction is intracellular concentration of its substrates 

serine and palmitoyl-CoA (Pinto et al., 1992b).  This condensation generates a 

sphingoid base called 3-ketodihydrosphingosine (3-KDS).  3-KDS is reduced 

immediately by TSC10 into DHS, also called sphinganine (Pinto et al., 1992b).  DHS 

is then mainly hydroxylated into PHS at the C-4 position by SUR2 (Grilley et al., 1998).  

DHS and PHS can be converted into ceramide at the ER by ceramide synthase (Guillas 

et al., 2001; Schorling et al., 2001; Vallee and Riezman, 2005).  Then, ceramide is 

transported by vesicular and non-vesicular transport to the Golgi, where ceramide is 

transformed into the complex sphingolipids IPC, MIPC and M(IP)2C (Dickson and 

Lester, 2002; Sims et al., 2004).  To investigate whether TORC2 mediates synthesis of 

sphingolipid intermediates, sphingoid bases (3-KDS, DHS, and PHS) and ceramide in 

wild type, tor2ts, and avo3-1 cells were measured.  Similar to the inositol labeling, wild 

type and mutant strains were incubated at 37°C for six hours to inactivate TORC2 and 

then labeled with [3H]-palmitic acid or [3H]-L-serine for two hours.  During labeling, 

both radioactive molecules were taken up by wild type and TORC2 deficient strains 

without significant difference (data not shown).  Again, the amount of [3H] of the 

extracted lipids was counted by a scintillation counter, and same amounts of [3H] were 

loaded onto a TLC.   Palmitate labeling has demonstrated that both TORC2 deficient 
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Figure II-2-6
TORC2 deficient cells show downregulation in de novo sphingolipid biosynthesis.  (A) Schematic diagram of 
yeast sphingolipid biosynthetic pathway.  3-KDS: 3-ketodihydrosphingosine, DHS: dihydrosphingosine, 
PHS: phytosphingosine.  (B) [3H]-palmitate labeling was performed on wild type, tor2ts, and avo3-1 cells 
after a six hour incubation at non-permissive temperature.  Lipid extraction and separation were the same as 
in figure 4.  The asterisks indicate unidentified lipids.  (C) [3H]-L-serine labeling was performed on wild type, 
tor2ts, and avo3-1 cells.  The experimental conditions were the same as in (B). 
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strains accumulated palmitate and showed almost complete loss of synthesis of other 

sphingolipid metabolites (Figure II-2- 6B), suggesting that TORC2 mutants are unable 

to utilize palmitate.  Serine labeling showed a reduction in complex sphingolipids in 

TORC2 deficient cells (Figure II-2- 4C), consistent with the results of inositol labeling.  

In addition, ceramide in TORC2 deficient cells was slightly reduced, and sphingoid 

bases were undetectable (Figure II-2- 6C).  Since the accumulation of a substrate is 

expected when an enzyme is defective (Beeler et al., 1998; Haak et al., 1997; Schorling 

et al., 2001), the findings suggest that the first step, mediated by serine 

palmitoyltransferase, failed to occur in TORC2 deficient cells.   

TORC2 does not mediate the serine palmitoyltransferase activity at the 

translational, transcriptional, and post-transcriptional levels.   

The findings described above led us to investigate serine palmitoyltransferase.  The 

activity of serine palmitoyltransferase is the first and apparently rate-limiting step of 

sphingolipid metabolism (Obeid et al., 2002), therefore the reduction in sphingolipid 

biosynthesis in TORC2 deficient cells could be explained by defects in serine 

palmitoyltransferase.  A microarray dataset of tor2ts at 37°C for six hours revealed that 

TOR2 has 108 transcriptional readouts (that change more than two fold compared to 

wild type), but these readouts did not include the serine palmitoyltransferase 

components LCB1, LCB2, or TSC3 (data not shown).  There was also no significant 

difference in the protein levels of serine palmitoyltransferase components between the 

wild type and TORC2 deficient cells after a six hour incubation at non-permissive 

temperature (data not shown).  Physical interaction between LCB1 and LCB2 (Gable 

et al., 2000) was observed in the mutant strain as well as the wild type in the conditions 

where TORC2 deficient cells demonstrate reduction of sphingolipids (data not shown).  

In addition, no phosphorylation on LCB1 and LCB2 was observed by anti-phospho 

antibodies in both the wild type and the mutants, suggesting that TORC2 does not 

mediate the serine palmitoyltransferase activity at the translational, transcriptional, and 

post-transcriptional level.   
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Discussion 
We have shown that deficiency of TORC2 results in reduction of sphingolipid 

metabolites.  TORC2 mutants, tor2ts and avo3-1, as well as avo2 bit61 bit2 are 

synthetically lethal upon myriocin treatment at sub-lethal concentrations.  In tor2ts and 

avo3-1 mutants, sphingolipid metabolites are reduced.  The findings indicate that 

TORC2 is required for sphingolipid biosynthesis.   

TORC2 inactivation was induced upon shift of yeast cells to 37°C, a non-permissive 

temperature, for six hours. Under these conditions actin depolarization is observed 

(Schmidt, Kunz et al. 1996; Loewith, Jacinto et al. 2002).  Previous studies have 

shown that heat stress induces sphingolipid synthesis and de novo sphingolipid 

metabolites are required for heat shock response (Jenkins and Hannun 2001; Dickson 

and Lester 2002; Jenkins 2003).  However, TORC2 mediated sphingolipid biosynthesis 

is not likely to be influenced by heat stress.   First, as described above, reduction of 

sphingolipid biosynthesis only appeared in tor2ts and avo3-1, but not in torc1ts cells, 

suggesting that temperature sensitivity did not affect sphingolipid biosynthesis upon 

long term exposure to heat stress.  Second, while the induction of DHS and PHS by 

heat stress is transient and occurs within 30 minutes of heat stress onset (Dickson, 

Nagiec et al. 1997), reduction of sphingolipids was only observed after six hour of 

incubation at the non-permissive temperature (Figure II-2- 3).  Third, in the beginning 

of the temperature shift and for up to three hours, the growth curve and the ratio of actin 

depolarized cells in TORC2 deficient cells were not significantly different from the wild 

type (data not shown), suggesting that the initial adaptation to heat stress is similar to 

the wild type.  Taken together, TORC2-mediated sphingolipid biosynthesis is appears 

not to be a secondary result of heat stress response; therefore TORC2 is indeed required 

for sphingolipid biosynthesis.   

To display the phenotypes of TORC2 deficient cells takes at least six hours at the 

non-permissive temperature (Schmidt, Kunz et al. 1996; Loewith, Jacinto et al. 2002; 

Ho, Shiau et al. 2005).  Why does inactivation of TORC2 take such a long time?  

There is no certain answer yet, but it is plausible that TORC2 is very stable; therefore it 

takes a long time to denature its components.  Another possible explanation might be 

that the yeast takes up sphingolipids from the growth media during the first period of 
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incubation, and only when these are no longer available we can detect a reduction in 

intracellular sphingolipids.  We cannot exclude the possibility that the sluggish 

response is allele specific of the tor2ts and avo3-1 mutants, as we previously reported 

several allele-specific differences between TORC2 mutants.  For instance, four classes 

of tor2ts mutants were initially isolated, and each showed different colony size after 2.5 

days at 37°C (Helliwell, Howald et al. 1998).  Another mutant, tor2G2128R, 

demonstrateed an endocytic defect (deHart, Schnell et al. 2003), while tor2ts and avo3-1 

do not show endocytic phenotype (data not shown), suggesting that different mutants 

might be defective in different TORC2 functions.  It appears that TOR has multiple 

functions (Martin and Hall 2005; Wullschleger, Loewith et al. 2006), many of them still 

not well characterized; the different mutants might prove helpful in shedding light on 

these functions, as well as elucidating new readouts.  

How does TORC2 mediate sphingolipid biosynthesis?  So far, the regulation 

mechanism of sphingolipid biogenesis is not well understood.  The only conditions 

known to change sphingolipid synthesis are heat shock and substrate availability, both 

of which appear not to play a role in the crosstalk between TORC2 and sphingolipids.  

Our findings indicate that TORC2 is not likely to control the biosynthesis at the mRNA 

and protein levels of serine palmitoyltransferase.  Previous studies have shown that 

serine and palmitoyl-CoA are rate-limiting factors of the activity of serine 

palmitoyltransferase in yeast (Pinto, Wells et al. 1992) and in mammals (Hanada 2003).  

Therefore, a possible model is that TORC2 acts upstream of serine palmitoyltransferase, 

perhaps on its substrates.  However, the concentration of serine in TORC2 deficient 

cells is similar to the wild type at non-permissive temperature (data not shown), 

suggesting that the decrease in sphingolipid biosynthesis in TORC2 deficient cells is not 

due to a change in serine concentration.  Based on the finding that TORC2 deficient 

cells were not able to utilize palmitate (Figure 5B), it is speculated that TORC2 

deficient cells are defective either in the affinity of the serine palmitoyltransferase to its 

substrate palmitate CoA, or in acyl-CoA transferases, which convert palmitate to 

palmitate-CoA.  FAA1-3 are the yeast acyl-CoA transferases, and FAA1 prefers C12:0 

to C16:0 fatty acids, including palmitate, as substrates in vitro (Johnson, Knoll et al. 

1994).  The regulation mechanism of FAA1 and the other FAAs is not known.   
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Recently it has been proposed that SLM1 and SLM2 may act downstream of sphingoid 

bases, and are required for endocytosis during heat stress (Bultynck, Heath et al. 2006).  

SLM proteins bind TORC2 and are also required for actin cytoskeleton organization 

(Audhya, Loewith et al. 2004; Fadri, Daquinag et al. 2005), suggesting that SLM 

proteins participate in  TORC2 function.  Several observations in these studies 

support our findings.  First, deletion mutants of either slm1 or slm2 are sensitive to 

myriocin (Bultynck, Heath et al. 2006), consistent with our finding that TORC2 

deficiency induces myriocin sensitivity.  Second, heat stress-induced phosphorylation 

of the SLM proteins is independent of TORC2.  Heat stress and phytosphingosine 

treatment can induce phosphorylation of SLM proteins.  In addition, more than 90% of 

the heat-stress-induced phosphorylation of SLM proteins is inhibited by myriocin 

(Bultynck, Heath et al. 2006), suggesting that heat stress-induced phosphorylation of the 

SLM proteins is dependent on de novo sphingolipid biosynthesis, and thereby on 

sphingolipid-dependent protein kinases (Bultynck, Heath et al. 2006).  However, the 

phosphorylation levels of the SLM proteins in tor2ts are similar to the wild type after a 

four hour incubation at 38°C, indicating that the phosphorylation of the SLM proteins 

during heat stress is independent of TORC2 (Bultynck, Heath et al. 2006).  Notably, 

this finding also indicates that the heat stress response of tor2ts is similar to the wild type 

up to at least four hours.  

TOR is a central controller of cell growth, and cell growth implicates mass 

accumulation and surface expansion.  Since sphingolipids are mainly found in the 

plasma membrane (Patton and Lester 1991) and are required for cell growth (Dickson 

and Lester 2002), our finding that sphingolipid biosynthesis is mediated by TOR is 

therefore consistent with the previous findings, and presents further evidence for TOR 

function as a central controller of cell growth.  The detailed mechanism by which 

TORC2 regulates sphingolipid biosynthesis remains to be studied. 
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Materials and methods 

Strains, plasmids and media 

The complete genotypes of yeast strains used in this study are listed in Table I.  

Standard techniques and media were used (Sherman 1991).  Rich media, YPD and 

SDYE, and synthetic complete media with 2% glucose (SD) has been described 

previously (Sherman 1991).  

Spot assay 

Cells in mid-log phase were diluted in a ten-fold dilution series (10x, 100x, 1000x, and 

10000x).   4 µl of each dilution were spotted onto a YPD plate containing the 

indicated drags.  Growth was scored after two or three days at 24°C or the indicated 

temperature.   

Constructions of the domain-specific AVO3 deletion mutants 

The domain-specific deletion mutants of AVO3 were constructed by the two-step 

overlapping PCR method.  For the first PCR, two sets of primers were designed.  The 

N-terminus set was for amplification from -500 bp of the start codon of AVO3 to a 

nucleotide just before the domain to be deleted.  The reverse primer had a 40 bp 

extension at the 3’ end which complements a sequence just after the deletion site.  The 

C-terminal set was for amplification from just after the deletion site to +500 bp of the 

terminal codon.  The forward primer of the C-terminus set contained a 40 bp extension 

at the 3’ end which complements a sequence just before the deletion site.  With a yeast 

genome as a template, the first PCR was performed, and the PCR products were 

subjected to the second PCR.  The second PCR was done with the first PCR products 

as templates and primers.  The second PCR products were purified and inserted into 

the Saccharomyces/ E.coli plasmid vector YCplac33.  

Lipid labeling, extraction, and thin layer chromatography 

[3H]myo-inositol, [3H]palmitate, and [3H]serine labeling of yeast cells was performed 

for two hours at 24°C or 37°C.  Lipids were extracted, and analyzed by thin layer 

chromatography as described (Zanolari, Friant et al. 2000).  Briefly, 20 OD600 

equivalent of cells grown in SD media with [3H]myo-inositol or [3H]palmitate were 
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harvested, and labeling was stopped  by addition of NaN3/NaF mixture. The cells were 

broken by vortex with glass beads and chloroform/methanol/water (10/10/3) to extract 

lipids.  The supernatant were treated with 0.6 M NaOH at 30 min for at least 90 min 

and neutralized by 0.6 M acetic acid.  Lipids in the supernatants were purified by 

BuOH.  Same amounts of [3H], counted by a scintillation counter, were loaded onto a 

thin layer chromatography.   

Mass spectrometry-based lipid profiling 

The mass spectrometry-based approach to profile lipids was performed as described 

(Guan and Wenk 2006).  Briefly, 25 OD600 equivalent of cells were resuspended in 2 

ml of 95% ethanol/water/diethyl ether/pyridine/ammonium hydroxide (15:15:5:1:0.018) 

with internal standards.  Cells were broken by glass beads vortexing, and lipids were 

extracted and desalted by butanol extraction.  The sphingolipid-enriched fraction was 

subjected to mild alkaline hydrolysis to degrade ester bonds of glycerophospholipids.  

Lipids were then extracted with chloroform and dried under nitrogen.  For 

characterization/identification as well as quantification of lipid molecular species, 

electrospray-ionization mass spectrometry and tandem mass spectrometry was 

performed.  Obtained data sets were normalized, and warped against a reference set.  

Relative difference in the lipid compositions of the mixtures can be computed by 

calculating the logarithm (log10) of the ratio of ion intensities relative to control 

samples. 
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Table I.  Strains used in this study 
 

Strain  Genotype        
TB50a   MATa leu2-3,112 ura3-52 trp1 his3 rme1 HMLa leu 

BAS65-1B TB50a avo3-1 

SF43-1C  TB50a tor2::kanMX4 / pRS3143HA-TOR2 

SH121   JK9-3da tor2::ADE2 ade2 / YCplac111::tor2-21ts 

SH229  JK9-3da ade2 his3 HIS4 tor1::HIS3 tor2::ADE2 / YCplac111::tor2-29  

SW70  TB50a 3HA-TOR2 

RS38-4C  TB50a bit2::KanMX bit61::KanMX 

RS88-6D  TB50a avo2::NAT bit2::KanMX bit61::KanMX 
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Conclusions and Perspectives 

Cell growth of yeast, or any organism, is an essential process for its life.  Therefore, 

understanding the mechanisms behind cell growth leads to better comprehension of life, 

one of the ultimate objectives of biology (and human beings).  In addition, cell growth 

is a critical step of cancer proliferation.  Many genes that encode proteins mediating 

cell growth are potential oncogenes, and thereby are possible candidates for drug 

discovery.  In spite of intensive efforts to identify and characterize growth-related 

genes and proteins, we still do not yet have a satisfactory explanation for several 

fundamental questions of cell growth (Broach 2005).  Cell growth is defined as 

accumulation of cell mass, but how does mass accumulation translate into information 

which cells can interpret, or how does a cell sense its size?  Nutrient limitation 

specifically blocks G1/S transition, but how do cells sense nutrient availability in either 

the intercellular or the extracellular environments?  And how do cells translate such 

information into cell cycle progression?  Is cell growth controlled by a central 

processing pathway, or by multiple signaling cascades?  Understanding of cell growth 

is still its way.  

Here, we describe a functional analysis of TORC2 signaling pathway, and reveal that 

TORC2, but not TORC1, mediates sphingolipid biosynthesis.  However, the control 

mechanism has not been elucidated.  Our findings include two major indications.  

One is a crosstalk between TOR and lipid biosyntheses, and the other one is the 

downstream networks of TORC2.   

TORC2 and lipid biosynthesis 

Cell growth implicates mass accumulation and surface expansion.  Therefore, cell has 

to coordinate both processes during cell growth.  Lipid synthesis, degradation, 

recycling, and transport have to be regulated in response to growth.  As a spatial 

controller of cell growth, TORC2 function on sphingolipid biosynthesis fits the idea.  

Then, does TORC2 mediate the other lipid biosyntheses?   
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For this, it is not clear answer yet.  However, our lipid profiling results of TORC2 

deficient cells showed reduction of phosphatidylserine (PS) levels.  This is the first 

indication that TORC2 might mediate phospholipid biogenesis.  PS is a membrane 

phospholipid that is ubiquitously present in membranes of eukaryotic and prokaryotic 

cells.  Unlike mammals, PS in yeast is the major phospholipid, comprising 34% of 

total phospholipid (Zinser, Sperka-Gottlieb et al. 1991).  Reduction of PS in TORC2 

deficient cells indicates downregulation of PS synthesis and/or up-regulation of PS 

lipase.  PS synthesis are carried out by PS synthase, which is one of the most highly 

regulated enzymes of phospholipid metabolism (Carman and Henry 1999).  So far, we 

can found several reports that mention regulation of PS synthase by transcriptional level 

(Carman, Iwata et al. 1982; Poole, Homann et al. 1986; Bailis, Poole et al. 1987; 

Homann, Bailis et al. 1987), by phosphorylation by protein kinase A (Kinney and 

Carman 1988), by the other phospholipids (Bae-Lee and Carman 1990), by sphingoid 

bases (Wu, McDonough et al. 1995), by inositol (Kelley, Bailis et al. 1988), by CTP 

(McDonough, Buxeda et al. 1995), and the availability of zinc (Iwanyshyn, Han et al. 

2004).  In construct, degradation of PS in yeast has been not well-studied.  

Phospholipases, PLB1, PLB2, and PLB3 can hydrolyze PS, but also 

phosphatidylinositol, which does not significantly change both in steady-state level and 

two hour labeling by [3H]-inositol (Figure ).  It remains to elucidate whether these 

factors are the link between PS synthase activity and TORC2.  We should note that 

although reduction of PS is observed, level of phosphatidylcholine (PC) is just slightly 

decreased.  Because PC is produced from PS, reduction of PC could be expected.  

This gap of two phospholipid species is also to be uncovered.   

The other lipid species found in yeast is ergosterol, yeast equivalent to cholesterol of 

mammals.  There is little evidence that indicate connection between TORC2 and 

ergosterol.  However, the genetic interactions of ergosterol genes and sphingolipid 

genes result in a requirement for both lipids for lipid raft formation, and therefore 

changes in composition of each lipid species should affect raft properties.   

, has strong genetic interactions with sphingolipid biosynthesis.  However, several 

reports have proposed that So there is a possibility that TOR mediate ergsterol 

biosynthesis via sphingolipid.  The genetic interaction of ergosterol genes and 
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sphingolipid genes probably result in that both lipids are required for the lipid raft 

formation and thereby changes in composition of each lipid species affect the raft 

property.   An erg26 temperature sensitive mutant that does not synthesize ergosterol 

at non-permissive temperature is defective in complex sphingolipid synthesis and 

hydroxylation of ceramide which SCS7 catalyzes (Swain, E sterol).  Another 

connection of sterol and sphingolipid has been shown in an erg24 mutant.  Although, 

this mutant is lethal, the additional deletion of the fatty acid elongase ELO3 can 

suppress (Veen, M 2005, ergosterol).  In contrast to the erg24 mutant, an erg6 deletion 

mutant is viable, but is synthetic lethal with an ELO3 deletion mutant (Eisnkolb, M  

2002).  A coordination of sphingolipid and sterol biosynthesis has also been described 

that down regulation of ergosterol biosynthesis pathway by azole anti-fungicides 

demonstrates significant reduction of expression of SUR2 and LCB1 (Bammert, GF 

2000, ergosterol).   

The TORC2 downstream networks 

Our findings indicate that sphingolipid biosynthesis is a novel downstream target of the 

TORC2 signaling pathway.  Interestingly, the other TORC2 readout, actin cytoskeleton 

organization and endocytosis, are also mediated by  sphingolipids, specifically 

sphingoid bases, via the mammalian PDK1 homolog PKH proteins (Friant, Lombardi et 

al. 2001; deHart, Schnell et al. 2002).  Furthermore, two known substrates of TORC2, 

YPK kinases and SLM proteins, are involved in actin cytoskeleton organization and 

endocytosis (Chen, Zheng et al. 1995; Roelants, Torrance et al. 2002; Schmelzle, 

Helliwell et al. 2002; Audhya, Loewith et al. 2004; Fadri, Daquinag et al. 2005; Kamada, 

Fujioka et al. 2005).  Although we did not see an endocytosis defect of tor2ts and 

AVO3-1 in our strain background, the piled evidences for a functional connection 

between actin and endocytosis and downstream networks of TORC2 (Figure ) point out 

that TORC2 is a controller of endocytosis.   

There are several evidence that support involvement of TORC2 in regulation of 

endocytosis.  Genetic and microscopic analyses have indicated that the transient 

formation of actin patches at the cell cortex is an important step in endocytosis.  

Screening mutants that are defective in α-factor uptake has resulted in isolation of 



 89

several genes related to actin cytoskeleton; ACT1, the only yeast actin gene; SAC6, 

encoding the F-actin cross-linking protein fimbrin, and SLA2, encoding an actin-binding 

protein important for polarization of the actin cytoskeleton (Kubler and Riezman 1993; 

Raths, Rohrer et al. 1993; Munn, Stevenson et al. 1995).  Deficiency of the Arp2/3 

complex, a highly conserved actin nucleation center for the motility and integrity of 

actin patches (Machesky and Gould 1999), shows abnormal and depolarized actin 

patches.  Temperature sensitive mutants of components of the Arp2/3 complex, either 

ARP2 (arp2-1) or ARC35 (end9), are also defective in uptake of uracil permease and 

α-factor, respectively, indicating that the Arp2/3 complex is also required for endocytic 

internalization (Munn and Riezman 1994; Moreau, Madania et al. 1996; Moreau, Galan 

et al. 1997).  There is strong correlation between genes whose mutation displays in 

actin cytoskeleton defect, i.e., depolarized actin patches, and genes whose mutations 

show endocytic phenotype (Engqvist-Goldstein and Drubin 2003).  These findings 

indicate that actin cytoskeleton organization is tightly connected to endocytosis; 

therefore it is very likely that TORC2 is involved in endocytosis event as well as actin 

cytoskeleton organization. 

So, if TORC2 indeed participates in endocytosis, which step of endocytosis could be 

regulated by TORC2?   

Endocytosis in yeast is supposed to occur at static sites marked by PIL1, LSP1, and 

SUR7 (Walther, Brickner et al. 2006).  It is unknown mechanism, but the early markers 

of endocytosis, clathrin, AP180, EDE1, ENT1, and ENT2 accumulates the site where 

PIL1 localize.  The next step in endocytosis is the recruitment of additional endocytic 

coat proteins SLA1, PAN1, END3, and SLA2, as well as the Arp2/3 activating protein, 

LAS17.  Up to this step, these protein markers are non-motile (Kaksonen, Sun et al. 

2003).  Consequently, LAS17 promotes actin polymerization at the plasma membrane, 

which is also regulated by type I myosin MYO5 and MYO3, and BBC1 from the 

perspective of (Anderson, Boldogh et al. 1998; Evangelista, Klebl et al. 2000; Mochida, 

Yamamoto et al. 2002; Soulard, Lechler et al. 2002; Soulard, Friant et al. 2005).  

During this step, invagination of membrane is supposed to occur, and proteins show 

slow movement.  The amphiphysin-like protein RVS161 and RVS167 are proposed to 

pinch off the endocytic vesicle (Breton, Schaeffer et al. 2001) and then actin 
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polymerization drives the vesicle inward.  This is followed by disassembly of the 

endocytic coat and associated proteins.  In this period, proteins are in fast movement, 

and the patches are moving away from their initial cortical position, toward the cell 

center (Kaksonen, Sun et al. 2003).  

TORC2 deficient cells display actin depolarization, indicating that actin assembly at the 

endocytosis site already begins.  Therefore TORC2 should mediate a step before the 

actin assembly.  A potential target of TORC2 is myosins I, encoded by MYO5 and 

MYO3.  Myosins I regulates actin assembly (Anderson, Boldogh et al. 1998), and is 

phosphorylated by YPK2 (Grosshans, Grotsch et al. 2006), which is a substrate of 

TORC2 (Kamada, Fujioka et al. 2005).  In this context, TORC2 activates MYO5 via 

YPK2, and progress endocytosis.  In contrast, TORC2 deficient cells could loose its 

kinase activity, and thereby be unable to activate myosins I to sustain endocytosis.  

Consistent with this, MYO5 temperature-sensitive allele shows a strong defect in the 

internalization step of endocytosis (Geli and Riezman 1996).  Another potential target 

of TORC2 is PIL1 and LSP1.  The proteins are involved in an immobile protein 

complex that localize at the cell periphery (Walther, Brickner et al. 2006).  These 

proteins are supposed to mark a site of endocytosis, and known to negatively regulate 

PKH and down stream pathways PKC1 and YPK1 (Zhang, Lester et al. 2004).   

If TORC2 is indeed required for endocytosis, it is possible that one of the upstream 

signals toward TORC2 is a cell cycle dependent, since endocytosis i.e., actin 

cytoskeleton are organized in a cell cycle dependent manner.  However, further studies 

on TORC2 would provide useful insights to answer the fundamental questions of cell 

growth, shown in the beginning of this session.   
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