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Summary

Hyperfine interaction is a typical example of a topic in physics, that, due to
technological advances, experiences a revival. Originally, hyperfine interaction
was studied in atomic physics. In atoms, the interaction between the magnetic
moments of the electrons and the nucleus leads to the hyperfine structure. The
name hyperfine is historically due to the fact that the energy level splittings
in atoms due to spin-orbit interaction were discovered first, and referred to
as the atomic fine structure. The further splitting of these levels was then
named hyperfine structure and the interaction that gives rise to it hyperfine
interaction.

In recent years, with the rise of nanotechnology, new structures have been
created, one of them being so-called quantum dots. Quantum dots are also
called artificial atoms, since, like atoms, they confine electrons to tiny (nanome-
ter-size) regions. As for atoms, there is also hyperfine interaction in quantum
dots: the spin of an electron confined to a quantum dot interacts with the
lattice nuclei. In contrast to atoms, which have properties that are “given”
by nature, the properties of quantum dots can be designed and thus allow to
not only study new phenomena, but also open the way for new applications.
Quantum computing is one of these applications where quantum dots could
play an important role. The basic building block for a quantum computer
is a quantum bit (qubit). Like a classical bit a qubit is an ideal two-level
system. However, a qubit is a quantum mechanical two-level system instead
of a classical one. There are several requirements a quantum-mechanical two-
level system has to fulfill to be a good qubit. The requirement central in this
thesis is that the two states of the qubit and their superpositions should be
long lived. More precisely it is crucial that coherent superpositions of the two
states remain coherent for a long time compared to the manipulation time,
i.e., that decoherence (the loss of coherence) is sufficiently slow.

One promising candidate for the physical implementation of a qubit is the
spin of an electron confined in a quantum dot. In an applied magnetic field
the spin component along the field direction forms a natural two-level system.
Research in the last few years, parts of which are being presented in this thesis,
has shown that the main source of decoherence for spins in quantum dots is the
hyperfine interaction with the surrounding nuclei in the host material. Since
the wave function of an electron confined to a quantum dot extends over many
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vi Summary

sites of the underlying cristal lattice, the electron spin also interacts with many
nuclei, in sharp contrast to an electron spin in an atom, which only interacts
with a single nucleus.

In this thesis we address several aspects of hyperfine interaction and deco-
herence in quantum dots. First, we analyze some aspects of the decoherence
that arises from the hyperfine interaction. In the case of driven single-spin
oscillations we show that hyperfine interaction leads to a universal phase shift
and a power-law decay. Both of these effects have been confirmed experimen-
tally. We also find a universal phase shift and a power-law decay for the case
of two electron spins in a double quantum dot in the subspace with total spin
zero along the quantization axis. The appearance of the these effects both
in single and in double quantum dots is a consequence of the non-Markovian
nature of the nuclear spin bath.

Since the main effect of hyperfine-induced decoherence can be attributed to
the uncertainty in the Overhauser field, the effective magnetic field generated
by the nuclei at the position of the electron, one strategy to reduce decoherence
is to prepare the nuclei in a state with a narrow Overhauser field distribution,
i.e., to narrow the nuclear spin state. We propose a method to measure the
Overhauser field using the dynamics of the electron spins as a probe. More
specifically, we propose to narrow the nuclear spin state by monitoring Rabi
oscillations in a double quantum dot.

Hyperfine interaction not only leads to decoherence of the electron spin
state, it also provides a mechanism for interaction between the nuclei in the
quantum dot. We study the dynamics of the Overhauser field under the mutual
interaction between nuclear spins that is mediated by the electron via the
hyperfine interaction. At high magnetic fields we find an incomplete decay of
the Overhauser field. We further show that the decay of the Overhauser field
can be suppressed by measuring the Overhauser field, a clear manifestation of
the quantum Zeno effect.



Contents

Acknowledgements iii

Summary v

1 Hyperfine interaction and spin decoherence in quantum dots

reviewed 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basics of hyperfine interaction . . . . . . . . . . . . . . . . . . . 2

1.2.1 Isotropic hyperfine interaction . . . . . . . . . . . . . . . 4

1.2.2 Fermi contact hyperfine interaction in quantum dots . . 5

1.2.3 Anisotropic hyperfine interaction . . . . . . . . . . . . . 6

1.3 Structures and materials . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Electron spin decoherence in single quantum dots . . . . . . . . 9

1.5 Singlet-triplet decoherence in double quantum dots . . . . . . . 12

1.6 Suppression of hyperfine induced decoherence . . . . . . . . . . 13

1.6.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.2 Spin echo . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.3 Nuclear spin state narrowing . . . . . . . . . . . . . . . . 14

1.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Nuclear spin state narrowing via gate-controlled Rabi oscilla-

tions in a double quantum dot 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Oscillating exchange and ESR . . . . . . . . . . . . . . . . . . . 19

2.2.1 Superposition of nuclear-spin eigenstates . . . . . . . . . 21

2.3 State narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Description of state narrowing by consecutive
pseudo-spin measurements . . . . . . . . . . . . . . . . 25

2.3.2 Measurement schemes . . . . . . . . . . . . . . . . . . . 27

2.4 Correlation functions in the Sz = 0 subspace . . . . . . . . . . . 31

2.5 Analysis of
√

SWAP . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



viii Summary

3 Universal phase shift and non-exponential decay of driven

single-spin oscillations 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Single-spin ESR – theory . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Power-law decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Phase shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Nuclear spin dynamics and Zeno effect in quantum dots and

defect centers 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Zeno effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Short-time expansion . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Special case: full polarization . . . . . . . . . . . . . . . 60
4.5 Dyson-series expansion . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Generalized master equation . . . . . . . . . . . . . . . . . . . . 64
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Drift in δhz 67

B Measurement 69

C Fit procedures 73

D Asymptotic expansion 77

E Estimation of dipole-dipole contribution 79

F Measurement accuracy 81

Bibliography 85

Curriculum Vitae 95



Chapter 1

Hyperfine interaction and spin

decoherence in quantum dots

reviewed

1.1 Introduction

In this chapter we review some of the important aspects of hyperfine interaction
for spins in quantum dots. Quantum dots are nanostructures that confine
electrons in all spatial directions, leading to quantized energy levels like in
an atom. The spin of the confined electrons plays a crucial role in many
possible technological applications in the fields of quantum computation [1, 2]
and spintronics [3, 4]. The successful implementation of a quantum computer
demands that some basic requirements be fulfilled. These are known as the five
DiVincenzo criteria [5]. One of these criteria is to have sufficient isolation of
the qubit from the environment to reduce the effects of decoherence. A qubit
(quantum bit) is quantum mechanical two-level system that serves as the basic
building block of a quantum computer, like the bit in a classical computer.
When using the spin of an electron confined to quantum dot as a qubit [1], the
two spin states along the quantization axis, spin-up and spin-down, form the
qubit. The state of the qubit can be destroyed by the environment in two ways:
First, the environment can lead to relaxation of the qubit on a timescale T1,
which is the timescale for spin-flip processes. Secondly, the environment can
limit the lifetime of a coherent superposition of spin-up and spin-down states,
and the corresponding lifetime T2 is referred to as the decoherence time.

In the context of spin qubits in quantum dots, the environment is the
host material in which the dot is created. The two main mechanisms for
decoherence and relaxation in quantum dots are hyperfine interaction and
spin-orbit interaction. For the relaxation of spins in quantum dots, hyperfine
interaction is not an efficient mechanism since a spin-flip process between the
electron spin and a nuclear spin requires the emission of a phonon due to
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2 Hyperfine interaction and spin decoherence

the difference in magnetic moments of electron and nuclei [6, 7]. The main
mechanism responsible for relaxation is spin-orbit interaction. Theoretical
calculations show that in GaAs T1 varies little for B-fields larger than ∼ 5T
and is on the order of 10 − 100µs [8]. At lower fields the spin-orbit-induced
relaxation rate is suppressed by ∼ 1/B5 [8,9] and vanishes at B = 0 due to the
Kramers degeneracy. The phonon-assisted electron-nuclear spin-flip processes
lead to a relaxation rate that varies as 1/B3 at low fields. Thus, below a certain
crossover field, relaxation is dominated by hyperfine-induced relaxation. The
crossover was estimated to occur at B ≈ 0.3T and the corresponding T1 varies
between 102−104s for B < 0.3T [7]. The predicted long T1 has been confirmed
in experiments with the longest T1 time measured so far being longer than 1s
at B = 1T [10].

For the decoherence time T2 the situation is very different and hyperfine in-
teraction does play an important role. It was shown in Ref. [8] that, to leading
order in spin-orbit interaction, T2 = 2T1 and thus that the decoherence time
due to spin-orbit coupling is also very long. Hyperfine interaction, however,
leads to much faster decoherence and it is this hyperfine-induced decoherence
which is the focus of this chapter. We start introducing the basics of hyperfine
interaction in quantum dots in Sec. 1.2 and discuss material issues in Sec. 1.3.
In Sec. 1.4 we discuss decoherence for a single spin in a single dot and in Sec.
1.5 for a double dot with one electron in each dot. Suppression of hyperfine-
induced decoherence plays an important role in this thesis and is reviewed in
Sec. 1.6.

1.2 Basics of hyperfine interaction

Hyperfine interaction is well known in atomic physics: the magnetic moments
of the electrons bound to a nucleus interact with the magnetic moment of that
nucleus. This leads to the so-called hyperfine structure, i.e., a small shift of
the electron energy levels. Quantum dots, referred to as artificial atoms [11],
also confine single electrons. In contrast to atoms, where the nucleus provides
the confinement for the electrons, for quantum dots, materials are artificially
structured to confine the electrons. This is done by using heterostructures
and/or electrostatic gates (see Sec. 1.3 for details). Since the host material for
the quantum dots contains many nuclei, the electron confined in a quantum
dot interacts with all these nuclei via the hyperfine interaction. The hyperfine
interaction is a relativistic correction to the non-relativistic Pauli equation. To
derive the relevant hyperfine Hamiltonian we start from the Dirac equation for
a relativistic electron in a potential V (~r)

H = ~α · ~π + βmc2 − eV (~r). (1.1)



1.2 Basics of hyperfine interaction 3

Here, m is the electron rest mass, −e the electron charge, ~π = c(p + eA) and

~α =









0 ~σ

~σ 0









, β =









1 0

0 −1









, (1.2)

are the standard 4× 4 Dirac matrices (~σ is the vector of Pauli matrices and 1

is the 2 × 2 identity matrix). The Dirac Hamiltonian acts on a 4-component
spinor ψ, which we write as being composed of two two-component (Pauli)
spinors χ1 and χ2: ψ = (χ1, χ2)

T . The Dirac equation Hψ = Eψ, with energy
E = mc2 + ǫ may now be written as a pair of coupled linear equations for the
Pauli spinors χ1 and χ2:

[ǫ+ eV (~r)]χ1 − ~σ · ~πχ2 = 0, (1.3)

−~σ · ~πχ1 + [2mc2 + eV (~r) + ǫ]χ2 = 0. (1.4)

From these equations one finds immediately χ2 in terms of χ1

χ2 =
1

2mc2 + eV (~r) + ǫ
~σ · ~πχ1, (1.5)

and for χ1 the eigenvalue equation is

[

~σ · ~π 1

2mc2 + eV (~r) + ǫ
~σ · ~π − eV (~r)

]

χ1 = ǫχ1. (1.6)

In the non-relativistic regime χ1 is much larger than χ2 and they are thus
referred to as large and small components, respectively. In the limit (ǫ +
eV (~r))/mc2 → 0 the small component can be neglected (i.e., χ1 and χ2 decou-
ple) and by replacing 2mc2 + eV (~r)+ ǫ ≈ 2mc2 one obtains the Pauli equation
HPauliχ1 = ǫχ1, with

HPauli =
1

2m

(

~p+ e ~A
)2

+
e~

2m

(

~∇× ~A
)

· ~σ − eV (~r). (1.7)

In general, χ2 is nonzero and couples with χ1. It is, however, possible to
systematically decouple χ1 and χ2 order by order in 1/mc2 by successive uni-
tary transformations and thus to derive a Pauli equation that takes into ac-
count relativistic corrections. The corresponding method, is known as Foldy-
Wouthuysen-transformation [12, 13]. This leads to HFWχ1 = ǫχ1, with

HFW = HPauli +
e~

4m2c2

[

~E × (~p+ e ~A)
]

· ~σ +
e~2

8m2c2
~∇ · ~E. (1.8)

Here, we have introduced the electric field ~E = −~∇V (~r). The Hamilto-
nian HFW contains the standard kinetic term plus three spin dependent terms



4 Hyperfine interaction and spin decoherence

Hspin = Hihf +Hahf +Hso:

Hihf =
e2~c2

D2
( ~E × ~A) · ~σ, (1.9)

Hahf =
e~c2

D
(~∇× ~A) · ~σ, (1.10)

Hso =
e~c2

D2
( ~E × ~p) · ~σ, (1.11)

with D = 2mc2. These three terms describe isotropic hyperfine interaction,
anisotropic hyperfine interaction and spin-orbit interaction, respectively. The
last term in HFW is the well known Darwin term [14].

For an electron bound to a nucleus the electrostatic potential is of the form

V (~r) =
kZe

r
, (1.12)

with k = 1/4πǫ0, where ǫ0 ≈ 8.85·10−12CV−1m−1 is the dielectric constant. For
distances shorter than the dimension of the nucleus the electrostatic potential
deviates from Eq.(1.12), which will play an important role later on. The vector
potential due to the nuclear magnetic moment ~µ is

~A =
µ0

4π

~µ× ~r

r3
, (1.13)

with µ0 = 4π · 10−7VsA−1m−1. There could, of course, also be an additional
term to ~A due to an externally applied magnetic field, which we neglect for
the moment.

A more direct but less rigorous way to derive Hspin is to solve Eq. (1.6)

directly, using the identity (~σ · ~A)(~σ · ~B) = ~A· ~B+i( ~A× ~B)·~σ. This immediately
yields Hspin with the only difference that D = 2mc2 + ǫ+eV (~r) ≈ 2mc2, where
we have again assumed (ǫ+ eV (~r))/mc2 ≪ 1. There is one problem, though,
with this direct derivation: Although it leads to the correct spin-dependent
terms, it also yields a non-hermitian term. This term arises because χ1 and χ2

have not been decoupled and thus |χ1|2 is not fully conserved. In the following
we want to look at the two terms describing hyperfine interaction in a bit
more detail. We start with the isotropic term which leads to the Fermi contact
hyperfine interaction that describes the hyperfine interaction for electrons in
an s-type conduction band.

1.2.1 Isotropic hyperfine interaction

To obtain an explicit form for the isotropic hyperfine term we insert the expres-
sions V (~r) and ~A, and use the vector identity ~r× (~µ× ~r) = ~µ(~r · ~r) − ~r(~µ · ~r).
For D we use the form obtained in the direct derivation of Hspin, i.e., D =
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2mc2 + ǫ+kZe2/r. By introducing the nuclear length scale r0 = kZe2/2mc2 ≈
1.5 · 10−15Zm we may write for ǫ≪ mc2

Hihf =
µ0µB

4πr6

r0
(

1 + r0

r

)2

[

r2~µ · ~σ − (~σ · ~r)(~µ · ~r)
]

, (1.14)

with the Bohr magneton µB = e~/2m. Evaluating the matrix elements for
Hihf with respect to the electron wave functions φi(~r) and φj(~r) gives

〈φi|Hihf |φj〉 =
µ0µB

4π

∫ ∞

0

dr
r0

(r + r0)2
f(~r) (1.15)

f(~r) =

∫

dΩφ⋆
i (~r)[~σ · ~µ− (~σ · ~r)(~µ · ~r)/r2φj(~r). (1.16)

Under the assumption that the wave functions φi(~r) vary slowly on the nuclear
length scale, we may write

∫ ∞

0

dr
r0

(r + r0)2
f(~r) ≈ f(r = 0)

∫ ∞

0

dr
r0

(r + r0)2
= f(0). (1.17)

The angular integrals in Eq. (1.16) give 4π and 4π~σ · ~µ/3, respectively, for
s-type orbitals φi, leading to

〈φi|Hihf |φj〉 ≈
2µ0µB

3
~σ · ~µ. (1.18)

Thus, for s-type orbitals we may rewrite Hihf in a simplified form that leads
to the same matrix elements and is referred to as the Fermi contact hyperfine
interaction [15]:

HFhf =
2µ0

3
gIµNµBδ(~r)~σ · ~I. (1.19)

Here, we have used ~µ = gIµN
~I, with the nuclear g-factor gI and the nuclear

magneton µN = e~/2mp = 5.05×10−27J/T. We note that for p-orbitals f(0) =
0 and thus 〈φi|Hihf |φj〉 ≈ 0. For the derivation of HFhf we used D = 2mc2 +
ǫ + kZe2/r, as obtained in the direct derivation of Hspin. In this way the
divergence of the Coulomb potential at small r is automatically regularized. If
one works from HFW this has to be done by hand by adjusting the electrostatic
potential to V (~r) = kZe/(r + r0).

1.2.2 Fermi contact hyperfine interaction in quantum

dots

In contrast to an atom, an electron confined to a quantum dot interacts with
many lattice nuclei. Thus, the Hamiltonian describing the Fermi contact hy-
perfine interaction with all these nuclei is of the form (~S = ~σ/2)

HFhf =
4µ0

3
gIµNµB

∑

l

δ(~rl)~S · ~Il. (1.20)
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The most relevant case on which we will focus in this thesis, is an electron in
the orbital ground state φ0(~r) of a quantum dot with an orbital level spacing
that is much larger than the typical hyperfine energy scale. In this case, it is
appropriate to derive an effective hyperfine spin Hamiltonian for the subspace
of the orbital ground state

HQDhf = 〈φ0|Hihf |φ0〉 =
4µ0

3
gIµNµB

∑

l

|φ0(~rl)|2~S · ~Il (1.21)

The electron ground-state wave function φ0(~r) may now be written as the

product of the ~k = 0 Bloch function amplitude u0 and a slowly varying envelope
part F (~r): φ0(~rl) = u0F (~rl), where the envelope wave function satisfies the
normalization condition

∫

d3r|F (~r)|2 = 1. With this the effective hyperfine
spin Hamiltonian may be written as

HQDhf = ~S · ~h; ~h =
∑

l

Al
~Il; Al = Av0|F (~rl)|2, (1.22)

where v0 is the volume of a primitive crystal unit cell and the hyperfine coupling
strength A is given by

A =
4µ0

3
gIµNµB|u0|2. (1.23)

The hyperfine interaction in a quantum dot with s-type conduction band elec-
trons is thus of a Heisenberg form ~S · ~h, where the effective magnetic field ~h
induced by the nuclei is referred to as the Overhauser field.

1.2.3 Anisotropic hyperfine interaction

For s-type conduction band electrons the anisotropic termHahf is small relative
to the isotropic termHihf . The studies of electron spin decoherence in quantum
dots have thus been focused on the effect of the Fermi contact interaction as
given in HQDhf . The situation is different for hole spins confined in quantum
dots, since the p-type valence band both reduces the contact term and enhances
the anisotropic interaction.

1.3 Structures and materials

In the last fifteen years many different types of quantum dots in various mate-
rials have been developed [16–37]. A review on quantum dots can be found in
Ref. [22] and a more recent review focussing on spins in few-electron quantum
dot in Ref. [37]. In the context of hyperfine interaction two properties of a
quantum dot play an important role. One is the host material, which, through
the nuclear magnetic moment µI = gII and the type of Bloch functions, deter-
mines the strength of the hyperfine coupling A. The other one is the spatial
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Figure 1.1: A double quantum dot. Top-gates are set to a voltage configura-
tion that confines the electrons in the two-dimensional electron gas (green) to
quantum dots (yellow). The blue line indicates the envelope wave function of
the electron (blue arrow). The hyperfine interaction with a particular nuclear
spins (red arrows) is proportional to the envelope wave function squared at the
position of the nuclei. Thus the nuclear spins in the center are drawn bigger
since they couple stronger to the electron spin.

dependence of the hyperfine coupling constants Al. The spatial dependence of
the Al is determined by the envelope wave function of the confined electron.

Let us first dwell on the properties of the host material. In Table 1.1 we
give the important properties for spin-carrying stable nuclei that are relevant
to semiconductor materials [38]. Both the total nuclear spin quantum number
I and the nuclear magnetic moment µI vary considerably. The materials most
frequently used for quantum dots are GaAs and InAs. For these isotopes there
are estimates [39,40] of the hyperfine coupling constant A, also given in Table
1.1.

As mentioned above there are many different types of quantum dots. An
often used structure are so called lateral quantum dots (see Fig. 1.1). A
heterostructure such as GaAs/AlGaAs creates a 2-dimensional electron gas
(2DEG) at the interface. Engineering electrostatic gates on the surface creates
an electrostatic potential that pushes away the electrons underneath the gates
and by this allows to confine single electrons. These lateral quantum dots
are disk-shaped with the thickness of the disk being on the order of 10nm,
while the diameter is typically on the order of 100nm. The harmonic elec-
trostatic potential leads to a Gaussian envelope wavefunction in the plane of
the 2DEG. Another often used structure are self-assembled InAs dots. These
self-assembled dots are in general less symmetric and their size is a few tens
of nanometers in all directions. Recently, single electron quantum dots have
also been achieved in 1-dimensional structures such as nanotubes or nanowires.
In nanowires the dots can either be disk-shaped or rather have the form of a
cylinder. Another quantum-dot related structure are defect centers where the
confinement in all three dimensions is provided by the electrostatic potential
of the center.
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isotope natural abundance (%) I µI/µN A[µeV ]

13C 1.11 1/2 0.7024
14N 99.63 1 0.4038
15N 0.37 1/2 -0.2832
27Al 100 5/2 3.6415
29Si 4.70 1/2 -0.5553 0.1
31P 100 1/2 1.1316
33S 0.76 3/2 0.6433

67Zn 4.11 5/2 0.8754
69Ga 60.4 3/2 2.0166 74
71Ga 39.6 3/2 2.5623 96
73Ge 7.76 9/2 -0.8795
75As 100 3/2 1.4395 86
77Se 7.58 1/2 0.5350

111Cd 12.75 1/2 -0.5949
113Cd 12.26 1/2 -0.6223
113In 4.28 9/2 5.5289 170
115In 95.72 9/2 5.5408 170
121Sb 57.25 5/2 3.3634
123Sb 42.75 7/2 2.5498
123Te 0.87 1/2 -0.7369
125Te 6.99 1/2 -0.8885
199Hg 16.84 1/2 0.5059
201Hg 13.22 3/2 -0.5602

Table 1.1: This table gives the properties for spin-carrying stable nuclei that
are relevant to semiconductor materials [38]. The materials most frequently
used for quantum dots are GaAs, InAs and Si. For these isotopes there are
estimates [39–41] of the hyperfine coupling constant A. For the other materials
we give the nuclear spin quantum number I and the nuclear magnetic moment
µI , which both vary considerably.

Despite the vast variety of structures quantum dots may still be grouped
according to their dimension d: lateral dots are strongly confined in one di-
rection while the movement of the electron in the plane of the 2DEG is less
restricted. These dots are often referred to as 2-dimensional (d = 2). For
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defect centers in contrast we have d = 3. For an isotropic electron envelope
function of the form

ψ(~rl) = ψ(0) exp

[

−1

2

(

rl

r0

)q]

, (1.24)

where r0 is the effective Bohr radius, we define N as the number of nuclear
spins within r0 and refer to N as number of nuclear spins within the dot. If l
is the number of nuclear spins enclosed by rl we have in d dimensions:

volume of l spins

volume of N spins
=

v0l

v0N
=

(

rl

r0

)d

(1.25)

The hyperfine coupling constants are thus of the form

Al = A0 exp

(

− l

N

)q/d

, (1.26)

where A0 is determined by the normalization condition
∑

l Al = A. For a large
number of nuclear spins N ≫ 1 one may turn the sum into an integral and
finds [42]

A0 =
A

N d
q
Γ
(

d
q

) . (1.27)

The simplest case for the coupling constants is are uniform coupling constants
Al = A/N .

1.4 Electron spin decoherence in single quan-

tum dots

To discuss electron spin dynamics under the influence of hyperfine interaction
we first rewrite HQDhf (see Eq.(1.21)) as

HQDhf = Sz · hz +
1

2
(S−h+ + S+h−) , (1.28)

where the raising and lowering operators are defined as S± = Sx ± iSy and
similarly for h±. The first analysis of electron spin dynamics in quantum dots
under HQDhf showed that the long-time longitudinal spin-flip probability is
∼ 1/p2N [43], i.e., this probability is suppressed in the limit of large nuclear
spin polarization p and large number N of nuclear spins in the dot. An exact
solution for the case of full polarization (p = 1) gives, for both transverse and
longitudinal electron spin components, a long-time power-law decay ∼ 1/t3/2

by a fraction ∼ 1/N on a timescale of τ ∼ ~N/A ∼ 1µs (for a GaAs dot with
N ∼ 105) [44]. The fact that this exact solution shows a non-exponential decay
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demonstrates the non-Markovian behavior of the nuclear spin bath. For non-
fully polarized systems p < 1 and in the limit of large magnetic fields (or high
polarization p ≫ 1/

√
N), the transverse electron spin coherence undergoes a

Gaussian decay [44–46] on a timescale

τσ ∼ ~

√
N/A

√

1 − p2 (1.29)

This corresponds to τσ ∼ 10ns for GaAs with p ≪ 1 and N ∼ 105) [46]. This
fast initial decoherence can be seen as the major effect of hyperfine interaction
and it has been confirmed in a number of experiments [28,30,47,48]. The origin
of this Gaussian decay is the uncertainty in z-component hz of the Overhauser
field. The effective Zeeman splitting ω = ǫz + hz, where ǫz = gµBBz, depends
on the value of hz. Since hz is an operator, one must take into account that the
nuclear spin system generally is in a mixture or superposition of hz eigenstates.
Due to the large number of nuclear spins that contribute to the Overhauser
field the eigenvalues of hz are essentially Gaussian distributed [46] for N ≫ 1
width a variance of σ2 = (1/τσ)2, leading to the Gaussian decay. There are
three main strategies to overcome this fast Gaussian decay: 1. Polarizing the
nuclear spins, 2. Performing a spin echo on the electron spin, 3. Narrowing the
distribution of hz eigenvalues. We discuss these three strategies in Sec. 1.6.
Assuming that one of these methods was successful the question arises what
further limits the hyperfine interaction imposes to electron spin coherence.
It was only shown very recently [42] that even for an initial eigenstate of
hz and effective Zeeman splitting ω > A the transverse electron spin decays
exponentially with a rate

1

T2
=

π

4
c+c−f

(

d

q

)(

A

ω

)2
A

N
, (1.30)

f(r) =
1

r

(

1

3

)2r−1
Γ(2r − 1)

[Γ(r)]3
, r > 1/2, (1.31)

with the coefficients c± = I(I+1)−〈〈m(m± 1)〉〉 and the double angle bracket
indicates an average over Iz

l eigenvalues m [42,46]. For GaAs and an external
field of a few Tesla, T2 is ∼ 1 − 10µs. In the same article [42] it was shown
that for a heteronuclear system (such as GaAs or InAs) the total decay rate is
the sum of decay rates per species, weighted with the square of their isotopic
concentration. Thus, e.g. for GaAs with has two naturally occurring Ga
isotopes, spin decay will predominantly be due to flip-flops with As spins.

Let us now look in more detail at some aspects of hyperfine-induced de-
coherence for a single spin in a quantum dot in the regime of large effective
Zeeman splitting ω. If ω is much larger than σ = [Tr{ρI(hz − h0)

2}]1/2, with
h0 = Tr{ρIhz} (where ρI is the density matrix of the nuclear spin system),
we may neglect the transverse term S⊥ · h⊥ and find that the Hamiltonian is
simply

HQDhf,z = (ǫz + hz)Sz. (1.32)
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This Hamiltonian induces precession around the z-axis with a frequency that
is determined by the eigenvalue hn

z of hz, where hz|n〉 = hn
z |n〉 and |n〉 are the

eigenstates of hz. For a large but finite number of nuclear spins (N ∼ 105 for
lateral GaAs dots) the eigenvalues hn

z are Gaussian distributed (due to the cen-
tral limit theorem) with mean h0 and standard deviation σ ≈ ~A

√

1 − p2/
√
N

[46]. Calculating the dynamics under H0 (which is valid up to a timescale of
∼ ǫz/σ

2 ∼ 1µs, where the transverse terms become relevant) leads to a Gaus-
sian decay of the transverse electron spin state |+〉 = (| ↑〉 + | ↓〉)/

√
2 [46]:

CQDhf,z
++ (t) =

1√
2πσ

∫ ∞

−∞
dhn

ze

„

− (hn
z −h0)2

2σ2

«

|〈n| ⊗ 〈+|e(−iH0t)|+〉 ⊗ |n〉|2

=
1

2
+

1

2
e

“

− t2

2τ2

”

cos [(ǫz + h0)t] ; τσ =
1

σ
∼
√

N

1 − p2

~

A
.

(1.33)

Here again, p denotes the polarization, and for an unpolarized GaAs quantum
dot with N ∼ 105 we find τσ ∼ 10ns. Applying an additional ac driving field
with amplitude b along the x-direction leads to electron spin resonance (ESR).
Assuming again that ǫz ≫ σ, we have the Hamiltonian

HESR = HQDhf,z + b cos(ωt)Sx. (1.34)

In a rotating-wave approximation (which is valid for (b/ǫz)
2 ≪ 1) the decay of

the driven Rabi oscillations is given by [49]

CESR
↑↑ (t) ∼ 1 − C +

√

b

8σ2t
cos

(

b

2
t+

π

4

)

+ O
(

1

t3/2

)

, (1.35)

for t & max (1/σ, 1/b, b/2σ2) and ǫz + h0 − ω = 0. Here, CESR
↑↑ (t) is defined

in the same way as CQDhf,z
++ (t) in Eq. (1.33). The time-independent constant

is given by C = exp(b2/8σ2)erfc(b/
√

8σ)
√

2πb/8σ, with erfc(x) = 1 − erf(x)
where erf(x) is the error function. The two interesting features of the decay
are the slow (∼ 1/

√
t) power law and the universal phase shift of π/4. The

fact that the power law already becomes valid after a short time τ ∼ 15ns
(for b ≈ σ) preserves the coherence over a long time, which makes the Rabi
oscillations visible even when the Rabi period is much longer than the timescale
τ ∼ 15ns for transverse spin decay. Both the universal phase shift and the
non-exponential decay have been recently confirmed in experiment [49]. More
details on the phase shift and the power-law decay can be found in Chapter 3,
where also the experimental results are also given.
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1.5 Singlet-triplet decoherence in double quan-

tum dots

We now move on to discuss hyperfine-induced decoherence in a double quantum
dot. The effective Hamiltonian in the subspace of one electron on each dot
is most conveniently written in terms of the sum and difference of electron
spin and collective nuclear spin operators: S = S1 + S2, δS = S1 − S2 and
h = 1

2
(h1 + h2), δh = 1

2
(h1 − h2):

Hdd(t) = ǫzSz + h · S + δh·δS +
J

2
S · S− J. (1.36)

Here, J is the Heisenberg exchange coupling between the two electron spins.
Similar to the single-dot case, we assume that the Zeeman splitting is much
larger than both 〈δh〉rms and 〈hi〉rms, where 〈O〉rms = [Tr{ρI(O− 〈O〉)2}]1/2 is
the root-mean-square expectation value of the operator O with respect to the
nuclear spin state ρI . Under these conditions, the relevant spin Hamiltonian
becomes block diagonal with blocks labeled by the total electron spin projec-
tion along the magnetic field Sz. In the subspace of Sz = 0 (singlet |S〉, and
triplet |T0〉) the Hamiltonian can be written as [50, 51]

Hsz0(t) =
J

2
S · S + (δhz + δbz)δSz (1.37)

Here, δbz is the inhomogeneity of the externally applied classical static mag-
netic field with δbz ≪ ǫz, while the nuclear difference field δhz is Gaussian
distributed, as was hz in the single dot case. A full account of the rich pseudo-
spin dynamics under Hsz0(t) can be found in Refs. [51], [50] and in Chapter
2 of this thesis. Here we only discuss the most prominent features of the SS-
correlator Csz0

SS (t) (defined analogously to C++ in Eq. (1.33)), which gives the
probability to find the singlet |S〉, if the system was initialized to |S〉 at t = 0.
The parameters that determine the dynamics are the exchange coupling J , the
expectation value of the total difference field x0 = δbz+δh0 and the width of the
difference field σδ (with δh0 = 〈ψI|δhz|ψI〉 and σδ = 〈ψI|(δhz − δh0)

2|ψI〉1/2).
For the asymptotics one finds that the singlet probability does not decay to
zero, but goes to a finite, parameter-dependent value [50]. In the case of
strong exchange coupling, |J | ≫ max(|x0|, σδ), the singlet only decays by a
small fraction quadratic in σδ/J or x0/J :

Csz0
SS (t→ ∞) ∼

{

1 − 2
(

σδ

J

)2
, |J | ≫ σδ ≫ |x0|,

1 − 2
(

x0

J

)2
, |J | ≫ |x0| ≫ σδ.

(1.38)

For short times, t ≪ |J |/4σ2
δ , the correlator Csz0

SS (t) undergoes a Gaussian

decay on a timescale
√

J2 + 4x2
0/4|x0|σδ, while at long times, t≫ |J |/4σ2

δ , we
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have a power-law decay

Csz0
SS (t) ∼ Csz0

SS (t→ ∞) + e
− x2

0
2σ2

δ
cos(|J |t+ 3π

4
)

4σδ

√

|J | t 3
2

. (1.39)

As in the case of single-spin ESR, we again have a power-law decay, now with
1/t3/2 and a universal phase shift, in this case: 3π/4. Measurements [52] of
the correlator Csz0

SS (t) confirmed the parameter dependence of the saturation
value and were consistent with the theoretical predictions concerning the decay.
Using the same methods, one may also look at transverse correlators in the
Sz = 0 subspace and find again power-law decays and a universal phase shift,
albeit, with different decay power and different value of the universal phase
shift [51]. Looking at the short-time behavior of the transverse correlators also
allows one to analyze the fidelity of the

√
SWAP gate [51].

1.6 Suppression of hyperfine induced decoher-

ence

As discussed in Sec. 1.4, the decoherence time for the transverse electron spin
is given by

τσ ∼ ~

√
N/A

√

1 − p2, (1.40)

which for p ≪ 1 amounts to τσ ∼ 10ns in GaAs. This exceeds gating times of
two-qubit gates of 180ps [28] by roughly two orders of magnitude. Standard
estimates for error thresholds for quantum error correction demand a ratio of
10−4 [53] for gating time versus decoherence time. For non-Markovian baths
it may even be 10−6 [54–56]. To use electron spins in quantum dots as qubits
in a quantum computer thus requires to reduce hyperfine-induced decoherence
in some way. As mentioned before, the three main strategies to reduce deco-
herence are [43,46]: 1. Polarizing the nuclear spins, 2. Performing a spin echo
on the electron spin. 3. Narrowing the distribution of hz eigenvalues.

1.6.1 Polarization

The first strategy is the most straightforward one: since the decoherence time
τσ scales with 1/

√

1 − p2, where p is the degree of polarization, we see immedi-
ately that for p→ 1 τσ goes to infinity. The degree of polarization required to
achieve an increase of τσ by a factor 100 is p ≈ 0.99995. To induce a high degree
of nuclear spin polarization in quantum dots has turned out to be experimen-
tally challenging. In GaAs quantum dots a polarization of ∼ 60% [57,58] has
been achieved by optical pumping [59] and ∼ 40% by transport [60]. In self-
assembled InAs dots up to 50% [61–63] have been achieved by optical pumping.
There is still a long way to go to reach the required 99.995%. An alternative
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method is to use a ferromagnetic phase transition at low temperatures [64,65].
Very recently it was experimentally verified in NV-Centers that indeed polar-
izing the spin bath leads to an extension of the decoherence time [66]. Since
the spin bath considered in this experiment consist of electrons bound to im-
purities, it was possible to achieve a thermal spin polarization of 99.4% below
2K. For nuclear spins in GaAs this ordering occurs only at a temperature of
∼1mK at a magnetic fields of 10T or higher [67].

1.6.2 Spin echo

Spin echoes were first introduced in NMR [68] to refocus precessing nuclear
spin magnetization by a π-pulse of resonant radiofrequency. In the case of a
spin in a quantum dot the π-pulse is applied to the electron spin. Applying
a spin-echo pulse does not alter the free-induction decay, but it allows to re-
cover a superposition of states for a longer time than the free-induction decay
time. Since the value of the nuclear field determines the precession frequency
of transverse electron spin states, it is clear that by applying a π-pulse to
the electron spin, which changes the sign of Sz, leads to refocussing. This,
however, only applies to the fast decoherence due to the inhomogeneity in the
Overhauser field. Decoherence beyond that is in general not recovered by a
spin echo. Therefore, spin-echo measurements allow to investigate decoher-
ence mechanisms beyond the initial Gaussian decay, which is what would be
left if state narrowing could be successfully implemented. The first spin-echo
measurements for spins in quantum dots were performed in the Sz = 0 sub-
space of two electrons in a double dot [28]. This singlet-triplet spin echo gave
a spin-echo envelope decay of ∼ 1µs compared to the ∼ 10ns initial Gaussian
decay. Theoretically it was claimed [69, 70] that also the decoherence effect
of electron-mediated coupling between nuclear spins can be removed with a
spin-echo. Since the only decoherence mechanism left would then be direct
dipolar interaction between nuclear spins, one would expect a spin-echo en-
velope decay that is independent of the externally applied magnetic field (for
fields larger than ∼ 0.1mT). A recent spin-echo experiment for a single spin in
a single dot [71], however, showed a clear B-field dependence and the spin-echo
envelope decay time found was 0.5µs at 70mT.

1.6.3 Nuclear spin state narrowing

The idea to prepare the nuclear spin system in order to prolong the electron
spin coherence was put forward in Ref. [50]. Specific methods for nuclear spin
state narrowing have been described in Ref. [51] in the context of a double
dot with oscillating exchange interaction, in Ref. [72] for phase-estimation of
a single (undriven) spin in a single dot, and in an optical setup in Ref. [73].
Here, we discuss narrowing for the case of a driven single spin in a single dot,
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for which the details are very similar to the treatment in Ref. [51]. The general
idea behind state narrowing is that the evolution of the electron spin system
depends on the value of the nuclear field since the effective Zeeman splitting is
given by ǫz + hn

z . This leads to a nuclear-field-dependent resonance condition
ǫz +hn

z −ω = 0 for ESR and thus measuring the evolution of the electron spin
system determines hz

n and thus the nuclear spin state.
We start from the Hamiltonian for single-spin ESR as given in Eq. (1.34).

The electron spin is initialized to the | ↑〉 state at time t = 0 and evolves under
Hesr up to a measurement performed at time tm. The probability to find | ↓〉
for a given eigenvalue hn

z of the nuclear field operator (hz|n〉 = hn
z |n〉) is then

given by

P n
↓ (t) =

1

2

b2

b2 + 4δ2
n

[

1 − cos

(

t

2

√

b2 + 4δ2
n

)]

(1.41)

where δn = ǫz+h
n
z −ω and b is the amplitude of the driving field. As mentioned

above, in equilibrium we have a Gaussian distribution for the eigenvalues hn
z ,

i.e., for the diagonal elements of the nuclear spin density matrix ρI(h
n
z , 0) =

〈n|ρI |n〉 = exp (−(hn
z − h0)

2/2σ2) /
√

2πσ. Thus, averaged over the nuclear
distribution we have the probability P↓(t) to find the state |↓〉, i.e., P↓(t) =
∫

dhn
zρI(h

n
z , 0)P n

↓ (t). After one measurement with outcome |↓〉, we thus find
for the diagonal of the nuclear spin density matrix [74]

ρI(h
n
z , 0)

|↓〉−→ ρ
(1,↓)
I (hn

z , tm) = ρI(h
n
z , 0)

P n
↓ (tm)

P↓(tm)
. (1.42)

Assuming now that the measurement is performed in such a way that it gives
the time-averaged value (i.e., with a time resolution less than 1/b) we have for
the probability P n

↓ of measurement result | ↓〉 as a function of the nuclear field

eigenvalue P n
↓ = 1

2
b2

b2+4δ2
n
. Thus, by performing a measurement on the electron

spin (with outcome | ↓〉), the nuclear-spin density matrix is multiplied by a
Lorentzian with width b centered around the hn

z that satisfies the resonance
condition ǫz +hn

z −ω = 0. This results in a narrowed nuclear spin distribution,
and thus an extension of the electron spin coherence, if b < σ. In the case of
measurement outcome | ↑〉 we find

ρI(h
n
z , 0)

|↑〉−→ ρ
(1,↑)
I (hn

z , tm) = ρI(h
n
z , 0)

1 − P n
↓ (tm)

1 − P↓(tm)
, (1.43)

i.e., the Gaussian nuclear spin distribution is multiplied by one minus a Lorentz-
ian, thus reducing the probability for the nuclear field to have a value matching
the resonance condition ǫz + hn

z − ω = 0. Due to the slow dynamics of the
nuclear spin system many such measurements of the electron spin are possible
(with re-initialization of the electron spin between measurements). Under the
assumption of a static nuclear field during M such initialization and measure-
ment cycles, we find

ρI(h
n
z , 0) −→ ρ(M,α↓)(hn

z ) =
1

N
ρI(h

n
z , 0)(P n

↓ )α↓(1 − P n
↓ )M−α↓ , (1.44)
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where α↓ is the number of times the measurement outcome was | ↓〉. The
simplest way to narrow is to perform single measurements with b ≪ σ. If
the outcome is | ↓〉, narrowing has been achieved. Otherwise, the nuclear
system should be allowed to re-equilibrate before the next measurement [75]. In
order to achieve a systematic narrowing, one can envision adapting the driving
frequency (and thus the resonance condition) depending on the outcome of
the previous measurements. Such an adaptive scheme is described in detail in
Refs. [73] and [51].

1.7 Perspectives

While many aspects of electron spin decoherence in quantum dots are now
well understood, there still remain many open questions. An important issue
is the interplay between the electron spin and the nuclear spin system and the
dynamics of the nuclear spin system. On the one hand, the electron spin is
important for the decay of the Overhauser field due to the electron-mediated
coupling between the nuclear spins [76,77]. Chapter 4 of this thesis studies the
effect of this electron-mediated coupling on the dynamics of the Overhauser
field. On the other hand the complex interplay between the nuclear spin
system and the electron spin leads to hysteretic and bistable behavior, as has
been observed in experiments [48, 62, 78–82]. This has triggered theoretical
studies [83–86] in this direction, a detailed microscopic understanding of the
processes behind these bistabilities is, however, still lacking.



Chapter 2

Nuclear spin state narrowing via

gate-controlled Rabi oscillations

in a double quantum dot

[D. Klauser, W.A. Coish, D. Loss, Phys. Rev. B 73, 205302 (2006)]

In this chapter we study spin dynamics for two electrons confined to a double
quantum dot under the influence of an oscillating exchange interaction. This
leads to driven Rabi oscillations between the |↑↓〉-state and the |↓↑〉-state of
the two-electron system. The width of the Rabi resonance is proportional to
the amplitude of the oscillating exchange. A measurement of the Rabi reso-
nance allows one to narrow the distribution of nuclear spin states and thereby
to prolong the spin decoherence time. Further, we study decoherence of the
two-electron states due to the hyperfine interaction and give requirements on
the parameters of the system in order to initialize in the |↑↓〉-state and to
perform a

√
SWAP operation with unit fidelity.

2.1 Introduction

One of the important proposals for quantum information processing in solid-
state systems is the spin-qubit proposal for quantum computing with electron
spins in quantum dots [1]. Much effort has been put into the realization of this
proposal leading to exciting theoretical [87] and experimental achievements
[28, 47, 48, 78, 88–90]. Still many challenges remain such as decoherence and
the implementation of single-qubit gates.

A major obstacle to quantum computation with the quantum-dot spin
qubit is decoherence due to the coupling of the qubit to its environment. The
hyperfine interaction between the electron spin and the nuclear spins present
in all III-V semiconductors [41] leads to the strongest decoherence effect [6, 7,
28, 43–46, 50, 91]. Experiments [28, 48, 58, 92] have yielded values for the free-
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induction spin dephasing time T ∗
2 that are consistent with T ∗

2 ∼
√
N/A ∼ 10ns

[44, 45, 91] for N = 106 and A = 90µeV in GaAs, where N is the number of
nuclei within one quantum dot Bohr radius and A characterizes the hyperfine
coupling strength [39]. This is to be contrasted to potential spin-echo envelope
decay, which may be much larger [70,93,94]. With a two-qubit switching time
of τs ∼ 50ps [43] this only allows ∼ 102 gate operations within T ∗

2 , which falls
short (by a factor of 10 to 102) of current requirements for efficient quantum
error correction [53].

There are several ways to overcome the problem of hyperfine-induced de-
coherence, of which measurement and thus projection of the nuclear spin state
seems to be the most promising one [46]. Other methods include polariza-
tion [43, 46, 59, 91] of the nuclear spins and spin echo techniques [28, 46, 69].
However, in order to extend the decay time by an order of magnitude through
polarization of the nuclear spins, a polarization of above 99% is required [46],
but the best result so far reached is only ∼60% in quantum dots [58, 88].
With spin-echo techniques, gate operations still must be performed within the
single-spin free-induction decay time, which requires faster gate operations. A
projective measurement of the nuclear spin state leads to an extension of the
free-induction decay time for the spin. This extension is only limited by the
ability to do a strong measurement since the longitudinal nuclear spin in a
quantum dot is expected to survive up to the spin diffusion time, which is on
the order of seconds for nuclear spins surrounding donors in GaAs [95].

The implementation of quantum computation schemes requires coherent
control of the qubits. Rabi oscillations between the two qubit states are an
important signature of coherence and thus observation of controlled Rabi os-
cillations is an important intermediate step in the experimental implementa-
tion of quantum information processors. Despite recent experimental achieve-
ments [28,88], there has still been no experimental observation of driven Rabi
oscillations for a system of two quantum-dot spin qubits. What has been
observed is electron spin resonance via g-tensor modulation in a bulk semicon-
ductor [96].

In the quantum-dot spin qubit proposal, two-qubit gates are realized through
tuning of the exchange coupling J between the two spins [1, 43]. The split-
ting between singlet and triplet states of the two-electron system is given by
the exchange coupling J and in devices such as those in Refs. [28] and [48],
J can be controlled through gate voltages. Petta et al. [28] have recently
managed to implement the

√
SWAP-gate in their setup. However, in order to

implement single-qubit gates, control over local magnetic fields or g-factors is
required [43].

As we will show in Sec.2.2, an oscillating exchange J(t) induces Rabi os-
cillations between the states |↑↓〉 and |↓↑〉 of two electron spins (one electron
in each dot). The amplitude of these oscillations is resonant on the splitting
between |↑↓〉 and |↓↑〉 and the width of this resonance is proportional to the
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amplitude j of the oscillating component of J(t) = J0 + j cos(ωt), where ω
is the driving frequency. Since the splitting depends on the state of the nu-
clear system, a measurement of the resonance is also a measurement of the
state of the nuclear spins and thus provides a way to narrow the quantum
distribution of the nuclear spin states. This narrowing of the spin state is one
possible solution to suppress hyperfine-induced decoherence in quantum-dot
spin qubits [46]. It has been proposed to measure the nuclear spin polariza-
tion using a phase estimation method [72]. In the ideal case, phase estimation
yields one bit of information about the nuclear-spin system for each perfectly
measured electron. Optical methods have also been proposed [73]. The all-
electrical method we present here can be applied with current technology.

The rest of this chapter is organized as follows. In Sec. 2.2 we show
that an oscillating exchange leads to driven Rabi oscillations and calculate
the resonance linewidth. In Sec. 2.3 we propose a method to narrow the
distribution of the nuclear spin states. in Sec. 2.4 we consider decoherence
induced through the hyperfine interaction for a static exchange coupling J . We
use these results in Sec.2.5 to analyze under which conditions we reach unit
fidelity for the initialization to the state |↑↓〉 and a

√
SWAP operation [1]. Sec.

2.6 contains a summary of our results.

2.2 Oscillating exchange and ESR

In this section we show that under suitable conditions an oscillating exchange
interaction may be used to induce Rabi oscillations in a system of two electrons
confined to a double quantum dot like those in Refs. [28, 47, 48, 90].

We denote by hi = (hx
i , h

y
i , h

z
i ), i = 1, 2, the collective quantum nuclear

spin operator, the “Overhauser operator”, in dot one and two, respectively,
and write δhz = 1

2
(hz

1 − hz
2). The collective quantum nuclear spin operator

hi is defined as hi =
∑

k A
i
kIk, where Ik is the nuclear spin operator for a

nucleus of total spin I at lattice site k, and the hyperfine coupling constants
are given by Ai

k = vA|ψi
0(rk)|2, where v is the volume of a unit cell containing

one nuclear spin, A characterizes the hyperfine coupling strength, and ψi
0(rk)

is the single-particle envelope wavefunction of the electron evaluated at site k.
Further, 〈O〉rms = 〈ψI | O2 |ψI〉1/2 is the root-mean-square expectation value of
the operator O with respect to the nuclear spin state |ψI〉. We assume that
the Zeeman splitting ǫz = gµBB induced by a uniform applied magnetic field
B = (0, 0, B), B > 0, is much larger than 〈δh〉rms and 〈hi〉rms. Under these
conditions the relevant spin Hamiltonian becomes block diagonal with blocks
labeled by the total electron spin projection along the magnetic field Sz. In
the subspace of Sz = 0 the Hamiltonian can be written as (~ = 1) [50]

H0 =
J

2
(1 + τ z) + δhzτx + δbzτx. (2.1)
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Here, J is the Heisenberg exchange coupling between electron spins on the
two dots and δbz the inhomogeneity of an externally applied classical static
magnetic field which we add in addition to the treatment in Ref. [50]. Further,
τττ = (τx, τ y, τ z) is the vector of Pauli matrices in the basis of Sz = 0 singlet |S〉
and triplet |T0〉 (|S〉 → |τ z = −1〉 , |T0〉 → |τ z = +1〉). It has been proposed
to use two pseudo-spin states such as |S〉 and |T0〉 as a logical qubit [97].

We assume a time-dependent exchange of the form

J = J(t) = J0 + j cos(ωt). (2.2)

The operator δhz commutes with the Hamiltonian at all times. Thus, if the
nuclear-spin system is in an eigenstate |n〉 of δhz with δhz |n〉 = δhz

n |n〉, we
have H |ψ〉 = Hn |ψe〉 ⊗ |n〉, where in Hn the operator δhz has been replaced
by δhz

n and |ψe〉 is the electron spin part of the wave function. In order to
bring Hn to a form that is very similar to the standard ESR (electron spin
resonance) Hamiltonian [98] (HESR = −1

2
ǫzσz − 1

2
∆x cos(ωt)σx) we perform a

unitary transformation U1 = exp(−iπ
4
τ y) which is just a rotation about the

y-axis in a Bloch-sphere picture. Also introducing Ωn = 2(δhz
n + δbz), the

above Hamiltonian becomes

H̃n = U1HnU
†
1 =

J0

2
τx +

j

2
cos(ωt)τx − 1

2
Ωnτ

z. (2.3)

The Pauli matrices are now given in the new basis of |↓↑〉 = |τ z = 1〉 = |+〉 and
|↑↓〉 = |τ z = −1〉 = |−〉. For J0 = 0 this is just the standard ESR Hamiltonian.
We have evaluated pseudo-spin dynamics under this Hamiltonian in a rotating
wave approximation close to resonance for j ≪ Ωn. When we treat the J0-term
as a perturbation and calculate the transition probability between unperturbed
eigenstates of the Hamiltonian we find that it is proportional to J2

0/Ω
2
n and

we may thus neglect this term close to resonance and if J0 ≪ Ωn. Hence, we
are left with the standard ESR Hamiltonian which leads to Rabi oscillations.
Initializing the two-electron system in the state |↓↑〉 = |+〉 (which can be done
as proposed in Sec. 2.5) we obtain for the expectation value of τ z(t):

〈τ z(t)〉n = 〈n| ⊗ 〈+| τ z(t) |+〉 ⊗ |n〉 =
(Ωn − ω)2 + (j/2)2 cos (ω′t)

(Ωn − ω)2 + (j/2)2
, (2.4)

where

ω′ =

√

(Ωn − ω)2 + (j/2)2, j ≪ Ωn, J0 ≪ Ωn, |Ωn − ω| ≪ Ωn. (2.5)

For ω = Ωn the system undergoes coherent Rabi oscillations between the states
|+〉 and |−〉 with a frequency of j. Averaged over time, the expectation value
of τ z is

〈〈τ z〉n〉 = lim
T→∞

1

T

∫ T

0

〈τ z(t)〉ndt =
(Ωn − ω)2

(Ωn − ω)2 + (j/2)2
. (2.6)
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In order to measure the time-averaged value 〈〈τ z〉n〉 the measurement time
must be much larger than the period of Rabi oscillations (∼ 1/j on resonance).
1 − 〈〈τ z〉n〉 has a Lorentzian lineshape with a full width at half maximum
(FWHM) of j. Most importantly, the resonance frequency depends on the
nuclear-spin eigenstate through Ωn = 2(δhz

n + δbz) and thus a measurement of
the resonance will determine δhz

n.

2.2.1 Superposition of nuclear-spin eigenstates

Before a measurement on the nuclear-spin system is performed, there is no
reason for the nuclear-spin system to be in an eigenstate of δhz, but it is
most likely in some generic superposition of these eigenstates. Thus, we now
investigate how the resonance changes if we consider the nuclear-spin system
to be in a superposition of eigenstates of the collective nuclear spin operator
δhz.

At t = 0 we fix the electron system in the state |↓↑〉 = |+〉 while the
nuclear-spin system is in an arbitrary state: ρ(0) = ρe(0) ⊗ ρI(0) with

ρe(0) = |+〉 〈+| , (2.7)

ρI(0) =
∑

i

pi

∣

∣ψi
I

〉 〈

ψi
I

∣

∣ ;
∣

∣ψi
I

〉

=
∑

n

ai
n |n〉 , (2.8)

where the ai
n satisfy the normalization condition

∑

n |ai
n|2 = 1 and

∑

i pi = 1.
Here, ρI(n) =

∑

i pi|ai
n|2 are the diagonal elements of the nuclear-spin density

operator. The Hamiltonian H0 commutes with δhz and thus we find

〈τ z(t)〉 =
∑

n

ρI(n)〈τ z(t)〉n, (2.9)

which defines the overbar.
We assume that for a large number of nuclear spins N ≫ 1 which are in

a superposition of δhz-eigenstates |n〉, ρI(n) describes a continuous Gaussian

distribution of δhz
n values, with mean δhz and variance σ2 =

(

δhz − δhz
)2

. In
the limit of large N the approach to a Gaussian distribution for a sufficiently
randomized nuclear system is guaranteed by the central limit theorem [46].
We perform the continuum limit according to

∑

n

ρI(n)f(n) →
∫

dxρI;x,σ(x)f(x), (2.10)

ρI;x,σ(x) =
1√
2πσ

exp

(

−(x− x)2

2σ2

)

, (2.11)

where x = δhz
n, x = δhz and σ2 = x2 −x2. The only effect of δbz is to shift the

mean value of the Overhauser field inhomogeneity to x0 = x + δbz, whereas
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the width is left unchanged: σ0 = σ. According to this description we obtain

〈τ z(t)〉 =

∫ ∞

−∞
dxρI;x0,σ0(x) (f(x) + g(x, t)) , (2.12)

f(x) =
(2x− ω)2

(2x− ω)2 + (j/2)2
, (2.13)

g(x, t) =
(j/2)2 cos

(

2
√

(2x− ω)2 + (j/2)2t
)

(2x− ω)2 + (j/2)2
. (2.14)

The second term (Eq.(2.14)) vanishes when it is averaged over time and we
find

1 −
〈

〈τ z〉
〉

=
1

2σ0

√
2π

∫ ∞

−∞
dx exp

(

−(x− 2x0)
2

8σ2
0

)

(j/2)2

(x− ω)2 + (j/2)2
. (2.15)

This integral (a convolution of a Lorentzian and Gaussian) is the well-known
Voigt function, [99] and the resulting lineshape is the so-called “Voigt profile”.
The Voigt function may be expressed as (ω̃ = j + 4ix0 − 2iω)

〈

〈τ z〉
〉

= 1 − j

4σ0

√

π

2
Re

[

exp

(

ω̃2

32σ2
0

)

erfc

(

ω̃

4
√

2σ0

)]

,

(2.16)

where erfc(z) is the complementary error function. In the regime where σ0 ≪ j
we may approximate the Lorentzian in the convolution (Eq.(2.15))by its value
at x = 2x0 and obtain

〈

〈τ z〉
〉

≈ (2x0 − ω)2

(2x0 − ω)2 + (j/2)2
; σ0 ≪ j. (2.17)

In this case the resulting resonance has the same FWHM as the Lorentzian,
viz. j. On the other hand, if σ0 ≫ j, we may approximate the Gaussian with
its value at x = ω and thus obtain

〈

〈τ z〉
〉

≈ 1 − j

4σ0

√

π

2
exp

(

−(2x0 − ω)2

8σ2
0

)

; σ0 ≫ j. (2.18)

In this regime the width is twice the width σ0 of the Gaussian distribution of
the nuclear spin states. In order to make a statement about the width of the
Voigt profile in general we look at the peak-to-peak separation ∆V of the first
derivative of the Voigt profile. For a Gaussian with a standard deviation of
2σ0 we find ∆G = 4σ0 for the peak-to-peak separation of the derivative and
for a Lorentzian with FWHM of j we have ∆L = j/

√
3. A Padé approximant

for ∆V in terms of ∆L and ∆G yields [100]

∆V =
∆2

G + a1∆G∆L + a2∆
2
L

∆G + a2∆L

(2.19)

where a1 = 0.9085, a2 = 0.4621. This approximation is accurate to better than
0.01∆V for all values of ∆L,∆G [100]. A similar formula may also be given for
the half width at half maximum (HWHM) of the Voigt profile [101].
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2.3 State narrowing

The general idea behind state narrowing is that the evolution of the two-
electron system is dependent on the nuclear spin state and thus knowing the
evolution of the two-electron system determines the nuclear spin state. Thus,
in this section we describe how the Gaussian superposition ρI;σ0,x0(x) of col-
lective nuclear spin eigenstates |n〉 can be narrowed through a sequence of
measurements performed on a double quantum dot on a time scale much less
than the timescale of variation of δhz and for j . σ0. We first give a general
description of how a complete measurement of the lineshape of the Rabi reso-
nance narrows the Gaussian superposition. Such a complete measurement of
the lineshape consists of many single measurements of the operator τ z. In Sec.
2.3.1 we present a detailed analysis of such a complete measurement and in
Sec. 2.3.2 we discuss different measurement schemes.

The operator δhz was defined in Sec. 2.2 and it describes the difference in
the z-components of total nuclear field in each of the two dots. The total nu-
clear field is the result of N ∼ 106 single nuclear spins and thus the eigenvalues
of δhz will be highly degenerate. In the limit of large N the spectrum of δhz

is quasi-continuous and the probability density of eigenvalues of δhz is given
by a Gaussian distribution, as described in Sec. 2.2.1. For such a Gaussian
superposition of nuclear spin eigenstates, the lineshape of the Rabi resonance
is given by a Voigt profile, as described in Sec. 2.2.1. This Voigt profile can be
seen as a superposition of Lorentzian lineshapes, where each Lorentzian results
from a nuclear spin eigenvalue δhz

n and is centered around Ωn = 2(δhz
n + δbz).

In the Voigt profile, these Lorentzian lineshapes are weighted according to the
amplitude of the corresponding eigenvalue δhz

n in the Gaussian-distributed su-
perposition. Through a perfect complete measurement of the Rabi-resonance
lineshape, the superposition of Lorentzian lineshapes collapses and we are left
with one single Lorentzian (see figure 2.1).

This Lorentzian corresponds to one single eigenvalue of δhz and thus the
Gaussian distribution has been narrowed to zero width; the nuclear-spin system
is in a state with fixed eigenvalue δhz

n.

In principle, we would need to do infinitely many single measurements in
order to completely measure the lineshape of the Rabi resonance with perfect
accuracy, since each point on this resonance curve is a (time-averaged) expec-
tation value of the quantum mechanical operator τ z . Still, we may perform
a finite number M of single measurements (see Sec. 2.3.1) for each of a set
of driving frequencies ω and thus obtain the series of expectation values for
different ω up to some error. This error depends on M . There will then in
general be more than one Lorentzian which can be fit (within error) to these
expectation values and thus we would not narrow to zero width. We would
still have a distribution of nuclear spin eigenstates, but one with smaller width
than before the measurements.
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Figure 2.1: a) This figure illustrates the projection obtained through an ideal
complete measurement of the Rabi-resonance lineshape. All the different
Lorentzian resonances corresponding to different nuclear spin eigenstates add
up to a Gaussian lineshape. b) Through a perfect complete measurement of
the lineshape of the Rabi resonance, which involves many single measurements
of τ z, the superposition collapses and we are left with one single Lorentzian
centered around 2x′0 = Ωn, which in general is different from 2x0.

For such a narrowing through measurement to be successful, the amplitude
j of the oscillating exchange J(t) which determines the width of the Lorentzian
lineshapes should be smaller than the width σ0 of the Gaussian distribution.
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Otherwise, the Rabi resonance would be dominated by the Lorentzian (see
Eq.(2.17)) and the method would not result in narrowing of the nuclear-spin
distribution. The general requirements on the system parameters to narrow
the distribution of nuclear spin eigenvalues are

j, J0, σ0 ≪ x0; j . σ0. (2.20)

We note that, unlike in standard ESR, power absorption is not measured
here, but instead the expectation value of the pseudo-spin τ z, for instance
via a quantum point contact (QPC) nearby one quantum dot (for a detailed
description of the measurement process via such a QPC we refer the interested
reader to Ref. [102]). To determine the expectation value of the pseudo-spin
τ z many single measurements of the pseudo-spin are necessary and we thus
proceed to give a detailed description of the state narrowing by considering
the effect of these single measurements on the nuclear spin state.

2.3.1 Description of state narrowing by consecutive

pseudo-spin measurements

In this subsection we describe in detail how a single measurement of the pseudo-
spin τ z of the two-electron system affects the nuclear-spin system. Further,
we give a general formula for the diagonal elements of the nuclear-spin-system
density operator in the continuum limit after M measurements. The sequence
of M measurements is referred to as a “complete measurement”.

At t = 0 the two-electron system is initialized to the state |+〉 = |↓↑〉 and
we assume that the electron and the nuclear system are initially factorized.
Thus, the total system at t = 0 is described generally by the following density
operator

ρ(0) = ρe(0) ⊗ ρI(0) = |+〉 〈+| ⊗
∑

i

pi

∣

∣ψi
I

〉 〈

ψi
I

∣

∣ , (2.21)

with nuclear-spin state |ψi
I〉 =

∑

n a
i
n |n〉. The diagonal elements of the nuclear-

spin density operator at t = 0 are given by ρI(n) = ρI(n, 0) =
∑

i pi|ai
n|2

and in the continuum limit we obtain the probability density ρI;x,σ(x) for the
eigenvalues δhz

n = x as given in Eq.(2.11). At time tm a measurement of the
two-electron system (at driving frequency ω, where ω is defined in Eq.(2.2))
is performed with two possible outcomes |+〉 and |−〉. The diagonal elements
of the nuclear-spin density operator after the measurement are given by (see
Appendix B)

ρ
(1,±)
I (n, tm) =

ρI(n, 0)

P±(tm)

1

2
(1 ± 〈τ z(tm)〉n) , (2.22)

where 〈τ z(t)〉n is given by Eq.(2.4) and the probabilities P±(tm) to measure
|±〉 are

P±(tm) =
∑

i

∑

n

1

2
(1 ± 〈τ z(tm)〉n) pi|ai

n|2. (2.23)
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In the case where a measurement is performed with a low time resolution1

∆t, i.e., if ∆t ≫ 1/j, the density operator after the measurement is the time
average over the time interval ∆t and the cosine term in 〈τ z(tm)〉n averages
out (note that in the case of a measurement with low time resolution, tm is
arbitrary, as long as ∆t is chosen to be large enough). For the rest of this
subsection we thus assume2 that measurements are performed with low time
resolution ∆t ≫ 1/j. Further, we perform the continuum limit and obtain
for the probability density of eigenvalues, i.e., the diagonal part of the density
operator in the continuum limit (with x = δhz

n + δbz and ρI(x) ≡ ρI;x0,σ0(x),
see Eq.(2.11)):

ρ
(1,+,ω)
I (x) = ρI(x)(1 − Lω(x))

1

P+
ω

, (2.24)

ρ
(1,−,ω)
I (x) = ρI(x)Lω(x)

1

P−
ω

, (2.25)

where the probabilities for measuring |+〉 or |−〉 are given by

P+
ω =

∫ ∞

−∞
dxρI(x)(1 − Lω(x)), (2.26)

P−
ω =

∫ ∞

−∞
dxρI(x)Lω(x), (2.27)

with

Lω(x) =
1

2

(j/4)2

(x− ω
2
)2 + (j/4)2

. (2.28)

After the first measurement, the two-electron system is reinitialized to the
state |+〉 if necessary and a second measurement is performed. Since the initial
density matrix factors out in the above results, it is clear how to generalize
Eqs.(2.24) and (2.25) to the case where M consecutive measurements (with-
out randomization of the nuclear-spin system in between measurements) are
performed: every time |+〉 is measured, the diagonal elements ρI(x) of the
nuclear density matrix is multiplied by 1 − Lω(x) and every time |−〉 is mea-
sured, ρI(x) is multiplied by Lω(x). Thus, we obtain the diagonal elements

ρ
(M,α−,ω)
I (x) of the nuclear density matrix after M measurements, of which α−

times the measurement outcome was |−〉 (and (M − α−)-times |+〉):

ρ
(M,α−,ω)
I (x) =

ρI(x)

Qω(M,α−)
Wω(M,α−; x). (2.29)

1By ”low time resolution”, we mean that the measurement is performed at an unknown
time tm (giving rise to state ρ(tm)) in the interval ∆t = tb − ta, with a uniform probability

density 1/∆t. The state after the measurement is then 1

∆t

∫ tb

ta

dtmρ(tm).
2This assumption is not necessary for our narrowing scheme. However, it does allow

for the derivation of the analytical formulas in this section, which give insight into the
mechanism of narrowing. In the case of perfect time resolution, one would have an additional
factor of (1 − cos(ω′tm)) in Eq. (2.28) (ω′ is given in Eq.(2.5)) and would also have to take
into account the time tm at which each measurement was performed.
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Here, Wω(M,α−; x) and the normalization factor Qω(M,α−) are given by

Wω(M,α−; x) = Lω(x)α−

(1 − Lω(x))M−α−

, (2.30)

Qω(M,α−) =

∫ ∞

−∞
dxρI(x)Wω(M,α−; x). (2.31)

The normalization factor Qω(M,α−) is related to P±
ω through P−

ω = Qω(1, 1),
P+

ω = Qω(1, 0). In the case where measurements are performed at mf different
frequencies, Eq.(2.29) generalizes to

ρ
({Mi},{α−

i },{ωi})
I (x) = ρI(x)

mf
∏

i=1

Wωi
(Mi, α

−
i ; x)

Qωi
(Mi, α

−
i )

. (2.32)

The probability density ρ
({Mi},{α−

i },{ωi})
I (x) after M measurements performed at

mf different driving frequencies depends on the frequencies {ωi} = {ω1, . . . , ωmf
},

the number of measurements at each frequency {Mi} = {M1, . . . ,Mmf
}, and

the number of times |−〉 was measured at each frequency {α−
i } = {α−

1 , . . . , α
−
mf

}.
Eq.(2.32) gives the distribution of nuclear spin eigenvalues for any sequence
of M measurements, i.e., without randomization of the nuclear-spin system in
between measurements.

2.3.2 Measurement schemes

In this subsection we describe different measurement schemes. One main char-
acteristic of the schemes is whether we have unconditional evolution of the
nuclear-spin density matrix between measurements (one waits for the nuclear-
spin system to rerandomize between subsequent measurements), or whether
we have conditional evolution, i.e., the nuclear-spin system is assumed to be
static between measurements.

Unconditional scheme

The simplest scheme is to measure only once at one single driving frequency
ω. If the outcome is |−〉, the nuclear-spin distribution after the measurement
is given by Eq.(2.25); the FWHM (2σ0

√
2 ln 2 ≈ 2σ0) of the initial distribution

will have been narrowed by a factor ≈ j/4σ0 (the nuclear-spin distribution will
approximately be a Lorentzian with FWHM of j/2). For j ≪ σ0 and ω = 2x0,
the probability P−

ω to measure |−〉 in the first measurement is P−
ω=2x0

≈ j/6σ0

(the exact formula is given in Eq.(2.27)). If the measurement outcome is
|−〉, we stop measuring. Otherwise, we wait for the system to rerandomize
(in contrast to the conditional schemes) and perform another measurement.
This is repeated until |−〉 is measured for the first time. On average one
needs to perform M ′ ≈ 6σ0/j measurements in order to narrow by a factor
of ≈ j/4σ0 (we write M ′ because this number of measurements should not
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be confused with the number of measurements M used above in the case of
measurements performed without rerandomization in between). If the driving
frequency ω is far from the center x0 of the initial Gaussian distribution, the
number of required measurements increases by a factor of exp((x0−ω/2)2/2σ2

0).
This always leads to a narrowed distribution which is centered around ω/2.
Thus, with this scheme it is possible to choose the center of the nuclear-spin
distribution after the measurement. This unconditional measurement scheme
is the one which should be easiest to implement in an experiment since one
only needs to measure once at one single frequency. However, if measurements
at several different frequencies can be performed, a systematic narrowing of
the distribution can be implemented as we show next.

Adaptive conditional scheme

The probability of measuring |−〉 in a measurement is determined by the
overlap of the Lorentzian Lω(x) and the probability density of eigenvalues

ρ
(M,α−,ω)
I (x) (for the first measurement this probability is P−

ω , which is given
in Eq.(2.27)). Then, if we have the outcome |−〉 for a measurement at driving

frequency ω, ρ
(M,α−,ω)
I (x) as a function of x becomes peaked around ω/2 (since

Lω(x) is centered around x = ω/2), the overlap of the Lorentzian Lω(x) and

ρ
(M,α−,ω)
I (x) increases and therefore the probability to measure |−〉 in a subse-

quent measurement also grows. If, on the other hand, we have outcome |+〉,
the term 1− Lω(x) causes a dip in ρ

(M,α−,ω)
I (x) at x = ω/2, the overlap of the

Lorentzian Lω(x) and ρ
(M,α−,ω)
I (x) decreases and thus the probability to mea-

sure |−〉 in a subsequent measurement with the same driving frequency ω also
decreases. Since it is the measurement outcome |−〉 that primarily leads to
narrowing, the measurement scheme should maximize the probability to mea-
sure |−〉. This can be achieved by changing the driving frequency ω always in
such a way that before each measurement Lω(x) and the nuclear-spin distri-

bution ρ
(M,α−,ω)
I (x) have their maximum at the same x, i.e., set ω/2 = xmax,

where xmax is the x for which ρ
(M,α−,ω)
I (x) has a maximum. Thanks to the

adaptive driving frequency ω, the probability P−
ω to measure |−〉 is ≈ j/6σ0 in

each measurement until |−〉 is measured for the first time. Without adapting,
i.e., when measuring always at the same driving frequency ω, P−

ω decreases,
as explained above (as long as we do not measure |−〉). After measuring |−〉
for the first time, the probability P−

ω to measure |−〉 increases. Every time

the measurement outcome is |−〉, the distribution ρ
(M,α−,ω)
I (x) is multiplied by

Lω(x) and becomes narrower (since Lω(x)α−

has a FWHM of (j/2)
√

21/α− − 1).

However, the measurement outcome |+〉, for which ρ
(M,α−,ω)
I (x) is multiplied by

1−Lω(x), is still more likely and leads to a small widening of the distribution.
Our simulations of this measurement scheme do, however, show that after |−〉
has been measured several times, the nuclear spin distribution is narrowed by
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more than a factor j/4σ0.
This adaptive scheme was first proposed in an optical setup by Stepanenko

et al. in Ref. [73]. This scheme requires that xmax can be calculated (or
read from a table) between subsequent measurements and that the driving
frequency ω can be tuned with a precision that is better than the width of the
nuclear-spin distribution before each measurement. For this adaptive scheme
(and other conditional schemes) to work, it is important that the nuclear-spin
system does not randomize during the course of the complete measurement,
i.e., the complete measurement must be carried out within a time that is
shorter than the time scale for nuclear spin dynamics. We thus assume that
the nuclear-spin system (viz. δhz) has no internal dynamics between the single
measurements of τ z(t), but only changes due to the measurements performed
on the two-electron system, i.e., due to single measurements of τ z(t). We
expect δhz to vary on the time scale of nuclear spin diffusion out of the dot,
which is on the order of seconds for nuclear spins surrounding donor impurities
in GaAs [95]. However, there may be other sources of nuclear spin dynamics
(see also Appendix A).

In Fig. 2.2 we show a typical3 sequence of nuclear spin distributions for
the adaptive scheme with total number of measurements M = 100 and j/σ0 =
1/10. We see (Fig. 2.2 (a)) that up to M = 50 the measurement outcome
is never |−〉 and thus each measurement “burns a hole” into the distribution
where it previously had its maximum. In the 51st measurement (Fig. 2.2(b))
the outcome is |−〉, which narrows the distribution by a factor of ≈ j/4σ0.
Adapting the driving frequency ω to this peak, i.e., setting ω/2 = xmax in
subsequent measurements, leads to further narrowing, i.e., to a total narrowing
by more than a factor j/4σ0 (Fig. 2.2(c)). In this example we have α− = 22
after M = 100 measurements and the final FWHM is ≈ σ0/100, i.e., the
distribution has been narrowed by a factor ≈ j/10σ0. In figure 2.2(d) the
probability P− to measure |−〉 before each measurement is shown. After the
first time |−〉 is measured, P− jumps up and after several more times |−〉 was
measured, it saturates close to 1/2. P− is a good signature of the distribution’s
width. As the width of the distribution goes to zero, P− approaches 1/2. This
adaptive conditional scheme is more intricate than the unconditional scheme,
but allows one to narrow by more than a factor j/4σ0.

Other conditional schemes

Other possible measurement schemes involve measurements at several frequen-
cies, as in the adaptive scheme. One may either choose a fixed number of
frequencies within one or two σ0 and measure several times at each frequency

3We have performed more than 60 runs of the simulation, varying M and j/σ0
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Figure 2.2: In this figure we show a typical sequence of the rescaled probability

density of eigenvalues π(x) = ρ
({Mi},{α−

i },{ωi})
I (x)/max

(

ρ
({Mi},{α−

i },{ωi})
I (x)

)

for

the adaptive conditional scheme. Here, ρ
({Mi},{α−

i },{ωi})
I (x) is given in Eq.(2.32).

We have x = δhz
n + δbz, j/σ0 = 1/10 and in a)–c) the initial Gaussian distribu-

tion (with FWHM 2σ0

√
2 ln 2 ≈ 2σ0) is plotted for reference. a) Up to M = 50

measurements the outcome is never |−〉 and thus each measurement “burns a
hole” into the distribution where it previously had its maximum. b) In the
51st measurement the outcome is |−〉 which leads to a narrowed distribution
of nuclear spin eigenvalues (peak centered at ≈ 0.5) with a FWHM that is
reduced by a factor ≈ j/4σ0. c) Adapting the driving frequency ω to this
peak, i.e., setting ω/2 = xmax in subsequent measurements, leads to further
narrowing every time |−〉 is measured. In this example the final FWHM is
≈ σ0/100, i.e., the distribution has been narrowed by a factor ≈ j/10σ0. d)
The probability P− to measure |−〉 jumps up after the 51st measurement and
after |−〉 is measured several more times, this probability saturates close to
1/2.

(without randomization between the measurements) or sweep the frequency,
i.e., measure only once at each frequency but vary the frequency only in small
steps. Based on numerical simulations of these schemes, we find that the typ-
ical number of measurements to narrow by a factor of j/σ0 is greater than in
the adaptive or the unconditional (single-frequency) schemes.
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Time-domain measurement scheme

We note that when a complete measurement of one of the correlators discussed
in Sec. 2.4 is performed with perfect resolution in time and perfect accuracy,
this would also determine the state of the nuclear spin system and thus nar-
row the distribution of nuclear spin states. This is because the frequency of
the oscillating correlators is given by

√

J2 + 4(δhz
n)2 and thus measuring the

frequency of the correlator determines the eigenvalue δhz
n of the nuclear-spin

system. However, it may be possible to perform a weak measurement of the
decay of the correlators and thus also to see the prolongation of the decay
after applying a narrowing scheme. To understand in detail the effect of mea-
surements in the time domain, further study is required. Narrowing through
measurement of the correlators is a time-domain measurement. In contrast,
the narrowing schemes we have proposed above are frequency-domain mea-
surements. If the frequency resolution is better than the time resolution, our
method would most likely be more suitable.

2.4 Correlation functions in the Sz = 0 sub-

space

In this section we investigate the Hamiltonian H0 of Eq. (2.1) with static
exchange coupling J . Using this Hamiltonian we wish to calculate correlation
functions for several observables in the subspace of zero total spin in the z-
direction. In our previous work [50] we calculated the time evolution of a
particular correlator involving the states |S〉 and |T0〉. However, there are
four additional independent correlators involving the x and y components of
pseudo-spin which require a separate calculation. Quite surprisingly, it will
turn out that these correlators have different decay behavior in time. The
correlators we calculate here show the decoherence properties of the pseudo-
spin states under the influence of the hyperfine interaction. There may be
additional sources of decoherence which we do not consider here, such as orbital
dephasing, corrections to the effective Hamiltonian [50], the coupling of the
QPC to the dot spins [103], etc. The results of this section will help to give
requirements on the parameters of the system in order to initialize in the state
|↑↓〉 and to assess the fidelity of a

√
SWAP operation with static J (see Sec.

2.5).

Diagonalizing H0 gives the following eigenvalues and eigenvectors

E±
n =

J

2
± 1

2

√

J2 + Ω2
n, (2.33)

∣

∣E±
n

〉

=
(Ωn/2) |S〉 + E±

n |T0〉
√

(E±
n )2 + (Ωn/2)2

⊗ |n〉 , (2.34)
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where again |n〉 is an eigenstate of the operator δhz with δhz |n〉 = δhz
n |n〉. At

t = 0 we fix the electron system in an arbitrary superposition of |T0〉 and |S〉

|ψe(t = 0)〉 = |A〉 ; |A〉 = cos
θA

2
|S〉 + eiϕA sin

θA

2
|T0〉 . (2.35)

The nuclear-spin system is again in a general state (see Sec. 2.2.1). As will be
shown in Sec. 2.5, it is possible, in principle, to initialize to an arbitrary state
in the subspace spanned by |T0〉 and |S〉. The probability to find the electron
spins in a state |B〉 at t > 0 is given by the correlation function:

CBA(t) =
∑

n

ρI(n)
∣

∣〈n| ⊗ 〈B| e−iH0t |A〉 ⊗ |n〉
∣

∣

2
, (2.36)

where ρI(n) =
∑

i pi|ai
n|2. The correlation function has the following symme-

try: CBA(t) = CAB(−t), and if |B〉 and |D〉 are orthogonal states we have
CBA(t) = 1 − CDA(t). Further, we may decompose CBA(t) into the sum of a
time-independent term Cn

BA and an interference term C int
BA(t):

CBA(t) = Cn
BA + C int

BA(t), (2.37)

where the overbar is defined in Eq. (2.9).
We have further Cn

BA = CBA(δhz
n) = CBA(x). Performing the continuum

limit as described in Eq. (2.10) we obtain for the correlation function

CBA(t) =

∫ ∞

−∞
dxρI;σ0,x0(x)

(

CBA(x) + C int
BA(x, t)

)

(2.38)

= C∞
BA + C int

BA(t). (2.39)

Here, C∞
BA is the assymptotic value of the correlator CBA(t) for t→ ∞.

We have calculated correlation functions for the following states: |S〉 →
|τ z = −1〉 , |T0〉 → |τ z = +1〉 , |X〉 → |τx = +1〉 = 1√

2
(|T0〉 + |S〉) , |Y 〉 →

|τ y = +1〉 = 1√
2
(|T0〉 + i |S〉). The frequency in the interference term is always

given by s(x) =
√
J2 + 4x2. In Table 2.1 we list the integrands according to

the notation in Eq. (2.38). From the Heisenberg equation of motion we find
dτx

dt
= −Jτ y, which leads to relations for the correlators. In the notation used

in Table 2.1 we obtain dCXX

dt
= −J

(

CY X − 1
2

)

, which is satisfied by the results
shown in Table 2.1. Similar relations can be derived for the other correlators
and used to check the results in Table 2.1. We see that CXX(t) is a linear
combination of other correlators: CXX(t) = CY Y (t) + CT0S(t). For CT0X and
CT0Y the interference term is an odd function in x. Thus, the time dependence
vanishes for x0 = 0 and we have CT0X = CT0Y = 1/2 for all t. In general, the
integral in Eq. (2.38) is difficult to solve exactly. Thus, we concentrate on
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CBA(t) CBA(x) C int
BA(x, t)

CT0S(t) 2x2

s(x)2
− 2x2

s(x)2
cos(s(x)t)

CT0X(t) 1
2

+ Jx
s(x)2

− Jx
s(x)2

cos(s(x)t)

CT0Y (t) 1
2

x
s(x)

sin(s(x)t)

CY X(t) 1
2

J
2s(x)

sin(s(x)t)

CY Y (t) 1
2

1
2
cos(s(x)t)

CXX(t) 1
2

+ 2x2

s(x)2
J2

2s(x)2
cos(s(x)t)

Table 2.1: Functions CBA(x) and C int
BA(x, t) according to the notation of Eq.

(2.38) for different correlators (with s(x) =
√
J2 + 4x2). CXX(t) is a linear

combination of other correlators.

several interesting limits. We illustrate this for the case of CY X(t) and give
results for the other correlators. We have

CY X(t) =
1

2
+ Im

[

C̃ int
Y X

]

, (2.40)

C̃ int
Y X =

∫ ∞

−∞
ρI;σ0,x0(x)

J

2s(x)
eis(x)t. (2.41)

In the regime of |x0| ≫ σ0 the main contribution to the integral comes from a
narrow region around x0 and we may approximate J

2s(x)
≈ J

2ω0
where ω0 = s(x0)

and in the frequency term s(x) ≈ ω0 + 4x0

ω0
(x−x0)+ . . . . For this to be a good

approximation, we require 2J2

ω3
0
(x− x0)

2t≪ 1. We use (x− x0)
2 ≈ σ2

0 and thus

obtain for the correlator and the range of validity in this limit

C int
Y X(t) =

J

2ω0

e
− 1

2

„

t
t′′
0

«2

sin(ω0t), (2.42)

t′′0 =
ω0

4|x0|σ0
, ω0 =

√

J2 + 4x2
0, (2.43)

|x0| ≫ σ0, t≪
(J2 + 4x2

0)
3/2

2J2σ2
0

. (2.44)
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The results for the other correlators are (with the same range of validity)

C int
T0S(t) = −2x2

0

ω2
0

e
− 1

2

„

t
t′′
0

«2

cos(ω0t), (2.45)

C int
T0X(t) = −Jx0

ω2
0

e
− 1

2

„

t
t′′
0

«2

cos(ω0t), (2.46)

C int
T0Y (t) =

x0

ω0

e
− 1

2

„

t
t′′
0

«2

sin(ω0t), (2.47)

C int
Y Y (t) =

1

2
e
− 1

2

„

t
t′′
0

«2

cos(ω0t). (2.48)

In this limit we obtain a Gaussian decay for all correlators on a time scale
t′′0 = ω0

4|x0|σ0
which grows with the absolute value of the exchange coupling |J |

and with 1/σ0. The long-time saturation value is 1/2 for CY X . For some of the
other correlators we find non-trivial parameter-dependent saturation values. In
the limit of |x0| ≫ σ0 we obtain these correlators by the same approximation
as for the interference term, i.e. we set CBA(x) = CBA(x0) and obtain

C∞
T0S =

2x2
0

J2 + 4x2
0

; |x0| ≫ σ0, (2.49)

C∞
T0X =

1

2
+

Jx0

J2 + 4x2
0

; |x0| ≫ σ0, (2.50)

C∞
T0Y = C∞

Y X = C∞
Y Y =

1

2
. (2.51)

For large J the saturation value is quadratic in x0/J for CT0S and linear for
CT0X . The saturation value for CT0S goes to zero for |J | ≫ |x0| and for CT0X

approaches 1/2. C∞
T0X reaches extrema equal to 1

2
+ 1

4
sign(Jx0) for |J | = 2|x0|.

Next we consider Eq. (2.38) for |J | ≫ max(|x0|, σ0) and find

s(x) =
√
J2 + 4x2 ≈ |J | + 2x2

|J | , (2.52)

J

2s(x)
=

J

2
√
J2 + 4x2

≈ sign(J)

(

1

2
− x2

J2

)

. (2.53)

For Eq. (2.52) we have the additional requirement that t≪ |J |3
2max(x4

0,σ4
0)

. Under

these approximations we find the following result:

C̃ int
Y X(t) = sign(J)

(

1

2
ξ(t) − σ2

0

J2
ξ3(t) − x2

0

J2
ξ5(t)

)

exp

(

i|J |t− x2
0

2σ2
0

(

1 − ξ2(t)
)

)

,

(2.54)
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with

ξ(t) =

(

1 − i
t

t′0

)−1/2

, t′0 =
|J |
4σ2

0

, |J | ≫ max(|x0|, σ0), t≪
|J |3

2max(x4
0, σ

4
0)
.

(2.55)

At short times we expand ξ2(t) ∼ 1 + i t
t′0
−
(

t
t′0

)2

. Keeping only lowest order

in t/t′0 in the prefactor and second order in the frequency term we obtain

C int
Y X(t) = sign(J)

1

2
e
− 1

2

„

t
t′′
0

«2

sin (ω′
0t) , (2.56)

t′′0 ≈ |J |
4|x0|σ0

, ω′
0 = |J | + 2(x2

0 + σ2
0)

|J | , (2.57)

t≪ t′0 =
|J |
4σ2

0

, |J | ≫ max(|x0|, σ0). (2.58)

The |x0| ≫ σ0 limit of this result agrees with the |J | ≫ |x0| limit of Eq.
(2.42). Again, we have a Gaussian decay on the same time scale t′′0 as in Eq.
(2.42) (ω0 =

√

J2 + 4x2
0 ∼ |J | for |J | ≫ |x0|). One interesting feature of this

correlator is the fact that there is a change of phase by π when the sign of the
exchange coupling J changes. This feature offers the possibility of measuring
J even for small values of J through a measurement of this correlator. We also
list the other correlators in this regime:

C int
T0S(t) = −2(x2

0 + σ2
0)

J2
e
− 1

2

„

t
t′′
0

«2

cos(ω′
0t), (2.59)

C int
T0X(t) = −x0

J
e
− 1

2

„

t
t′′
0

«2

cos(ω′
0t), (2.60)

C int
T0Y (t) =

x0

|J |e
− 1

2

„

t
t′′
0

«2

sin(ω′
0t), (2.61)

C int
Y Y (t) =

1

2
e
− 1

2

„

t
t′′
0

«2

cos(ω′
0t). (2.62)

Finally, we are also interested in the behavior for large t. Thus, we expand
Eq. (2.54) for large times ξ(t≫ t′0) ∼ eiπ/4

√

t′0/t and obtain

C int
Y X(t) ∼ sign(J)e

− x2
0

2σ2
0

√

|J | sin(|J |t+ π
4
)

4σ0t
1
2

, (2.63)

t≫ t′0 =
|J |
4σ2

0

, |J | ≫ max(|x0|, σ0). (2.64)
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For the other correlators we find

C int
T0S(t) ∼ −e−

x2
0

2σ2
0

cos(|J |t+ 3π
4

)

4σ0

√

|J | t 3
2

, (2.65)

C int
T0X(t) ∼ −sign(J)e

− x2
0

2σ2
0

x0

√

|J | cos(|J |t+ 3π
4

)

8σ3
0t

3
2

, (2.66)

C int
T0Y (t) ∼ e

− x2
0

2σ2
0
x0

√

|J | sin(|J |t+ 3π
4

)

8σ3
0t

3
2

, (2.67)

C int
Y Y (t) ∼ e

− x2
0

2σ2
0

√

|J | cos(|J |t+ π
4
)

4σ0t
1
2

. (2.68)

(2.69)

Thus, the transverse components of the pseudo-spin have a slower decay (∼
t−1/2) than the longitudinal component (∼ t−3/2). This results from the fact
that the Hamiltonian only has fluctuations along only one direction.

2.5 Analysis of
√

SWAP

In this section we analyze the
√

SWAP gate using the correlation functions
derived in the previous section, i.e., we analyze the

√
SWAP gate taking into

account the hyperfine-induced decoherence. The
√

SWAP gate and single-
qubit operations can be used to perform the quantum XOR gate (CNOT)
which, in combination with single-qubit operations, is sufficient for universal
quantum computation [1, 104]. In Ref. [28] implementation of

√
SWAP has

been demonstrated. However, in these experiments there was a contrast re-
duction of ∼ 40%. Here we show that taking into account hyperfine induced
decoherence, still near-unit fidelity can be obtained for this operation.

The Hamiltonian of Eq. (2.1) induces unitary time evolution on the states
of the system: |ψ(t)〉 = U(t) |ψ(0)〉 with U(t) = T exp(−i

∫ t

0
H(t′)dt′). We

assume that J and x0 can be switched adiabatically [105] on a time scale that
is much shorter than the time required for the gate operation and thus the
time evolution operator at time τs has the form

Us = exp (−iτsH) . (2.70)

In a Bloch-sphere picture this operator induces a rotation about an axis in
the plane spanned by eigenstates of τx and τ z, |X〉 = |↑↓〉 and |S〉 = (|↑↓〉 −
|↓↑〉)/

√
2 [97]. The axis of rotation is determined by the parameters J and

x0. Through such an operation any state may be rotated into any other state
on the Bloch sphere. Thus, it is possible to rotate from |S〉 to any initial
state in the subspace of Sz = 0 by a single operation. This is important
since initialization to the singlet is feasible by preparing a ground-state singlet
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with both electrons on the same dot and then changing the bias [28]. We now
investigate initialization to the state |X〉 taking into account hyperfine-induced
decoherence.

The scheme we propose here is different from the one used in Ref. [28],
where adiabatic passage from the singlet to the |↑↓〉-state is used. Our scheme
requires control of x0. We assume the system to be in the singlet state |S〉
at t = 0 and then switch J and x0 such that J = −2x0 and |x0| ≫ σ0. In a
Bloch-sphere picture, this corresponds to a rotation about an axis that halves
the angle between |S〉 and |X〉. Since CXS(t) = CSX(−t) = 1 − CT0X(−t) we
have, for the above choice of parameters, according to Eqs. (2.46) and (2.50):

CXS(t) =
1

2
+

1

4

(

1 − cos(
√

2|J |t)e−
1
2

„

t
t′′
0

«2)

, (2.71)

J = −2x0, |x0| ≫ σ0, (2.72)

t′′0 =
1√
2σ0

, t≪ (J2 + 4x2
0)

3/2

2J2x2
0

. (2.73)

This correlator reaches its maximum for
√

2|J |t = π, i.e., at τs = π√
2|J | . The

time scale for the Gaussian decay is t′′ = 1√
2σ0

. To approach unit fidelity

we therefore require |J | ≫ σ0, which is the case in the range of validity of
the above correlator since |x0| ≫ σ0 and J and x0 are of the same order.
At t = τs we switch J to zero and since |X〉 ⊗ |n〉 is an eigenstate of the
remaining Hamiltonian, the system remains in this product state, untouched
by decoherence induced via the nuclear spins. This scheme thus provides a way
to initialize the double quantum dot system to the state |X〉 = 1√

2
(|T0〉+|S〉) =

|↑↓〉, where arrows denote the z-component of the electron spin in each dot. In
the same way, it is also possible to initialize in the state |−X〉 = |τx = −1〉 =
1√
2
(|T0〉 − |S〉) = |↓↑〉 by switching to J = 2x0.

It was already proposed in Ref. [1] to implement the
√

SWAP gate by
pulsing the exchange interaction J between the two dots. Here we give a
detailed analysis of the

√
SWAP gate taking into account hyperfine-induced

decoherence.
The SWAP operation acts on the basis of the two-electron system as:

|↓↓〉 → |↓↓〉 , |↓↑〉 → |↑↓〉 , |↑↓〉 → |↓↑〉 , |↑↑〉 → |↑↑〉. The SWAP is an op-
eration that acts only on the subspace of Sz = 0 and leaves the states |↑↑〉
and |↓↓〉 unchanged. In the system we consider this is naturally implemented
through the large Zeeman splitting that separates |↑↑〉 and |↓↓〉 from the singlet
and the Sz = 0 triplet. In order to analyze the SWAP in the Sz = 0 subspace
we consider the regime of |J | ≫ max(x0, σ0). The correlator C−X,X(t) gives
the probability of being in the state |−X〉 = |↓↑〉 for a system initialized in
|X〉 = |↑↓〉. Due to the symmetry relations for the correlation functions we
have C−X,X(t) = 1−CXX(t) = 1−CY Y (t)−CT0S(t) and thus find (using Eqs.
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(2.59) and (2.62) and neglecting terms of order (σ2
0 + x2

0)/J
2),

C−X,X(t) = 1 − CXX(t) ≈ 1

2
− 1

2
e
− 1

2

„

t
t′′
0

«2

cos(|J |t),
(2.74)

t′′0 =
|J |

4σ0|x0|
, |J | ≫ max(|x0|, σ0), t≪ t′0 =

|J |
4σ2

0

.

(2.75)

We obtain the maximum value for this correlator when τs = π
|J | . The Gaussian

has a decay time of t′′0 = |J |
4σ0|x0| , so for x0 → 0 the Gaussian decay is negligible

and we obtain unit fidelity for this SWAP operation |↑↓〉 → |↓↑〉 up to a global
phase factor (which is not visible in the correlator).

From the SWAP operation it is only a small step towards the
√

SWAP
which we obtain when we let the system evolve with the same parameter
values but for only half the time. Starting in the state |X〉 we obtain |Y 〉 after
applying a

√
SWAP. For large |J | we find for the correlator CY X in the limit

x0 → 0

CY X(t) =
1

2
+ sign(J)

1

2
e
− 1

2

„

t
t′′
0

«2

sin(|J |t), (2.76)

t′′0 =
|J |

4σ0|x0|
, |J | ≫ max(|x0|, σ0), t≪ t′0 =

|J |
4σ2

0

.

(2.77)

Here again the time scale of the Gaussian decay is |J |
4σ0|x0| and approaches

infinity for x0 → 0. The time during which we have to operate with these
values of the parameters J and x0 is now τs = π

2|J | . Our calculations show
that for the time during which J is pulsed high there is a regime in which unit
fidelity may be approached. The reduced visibility in the experiment [28] may
be due to several reasons such as reduced visibility in the readout of |↓↑〉 or
the initialization of |↑↓〉.

2.6 Conclusion

We have developed a method that uses the measurement of a Rabi resonance
in the quantum-dot spin qubit to narrow the distribution of the nuclear spin
states. This method relies on Rabi oscillations induced via an oscillation of the
singlet-triplet splitting J in the subspace Sz = 0 of two electrons in a double
quantum dot forming a two-qubit system. Further, we have calculated several
correlators in the Sz = 0 subspace for static J and found that the transverse
components of pseudo-spin have a slower decay than the longitudinal one. We
have also discussed the implementation and fidelity of the

√
SWAP-gate in this

system and the initialization to the |↑↓〉, |↓↑〉 states.



Chapter 3

Universal phase shift and

non-exponential decay of driven

single-spin oscillations

[F.H.L. Koppens, D.Klauser, W.A. Coish, K.C. Nowack, L.P. Kouwenhoven,
D. Loss and L.M.K. Vandersypen, Phys. Rev. Lett. 99, 106803 (2007)]

In this chapter we study, both theoretically and experimentally, driven Rabi
oscillations of a single electron spin coupled to a nuclear spin bath. Due to
the long correlation time of the bath, two unusual features are observed in the
oscillations. The decay follows a power law, and the oscillations are shifted
in phase by a universal value of ∼ π/4. These properties are well understood
from a theoretical expression that we derive here in the static limit for the
nuclear bath. This improved understanding of the coupled electron-nuclear
system is important for future experiments using the electron spin as a qubit.

3.1 Introduction

A quantum bit is engineered such that its coupling to the disturbing environ-
ment is minimized. Understanding and controlling this coupling is therefore a
major subject in the field of quantum information processing. It is not solely
the coupling strength but also the dynamics of the environment that governs
the quantum coherence. In particular, the limit where these dynamics are
slow compared to the evolution of the quantum system is interesting. The
well-known Markovian Bloch equations that describe the dynamics of a driven
system, including the exponential decay of the longitudinal and transverse
magnetization [106], then lose their validity. Such deviations from the expo-
nential behavior have been studied theoretically [107,108] and experimentally,
for instance in superconducting qubit systems [109].

An electron spin confined in the solid state is affected predominantly by
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phonons via the spin-orbit interaction [8, 110–113], and by nuclear spins in
the host material via the hyperfine interaction. At low temperature, coupling
to the nuclear spins is the dominant decoherence source [28, 44–48, 50, 52].
Although this strong coupling leads to an apparent decoherence time T ∗

2 of the
order of 20 ns when time-averaged over experimental runs, the decoherence
time T2 strongly depends on the dynamics in the nuclear spin bath. This
typical nuclear spin dynamics is very slow, because the nuclear spins are only
weakly coupled with each other and the bath itself is coupled very weakly to its
dissipative environment (like phonons). This implies that here, the Markovian
Bloch equations are not valid.

Here we study the dynamics and decoherence of an electron spin in a quan-
tum dot that is coherently driven via pulsed magnetic resonance, and is coupled
to a nuclear spin bath with a long correlation time. We find experimentally
that, remarkably, the electron spin oscillates coherently, even when the Rabi
period is much longer than T ∗

2 = 10 − 20 ns. In addition, the characteristics
of the driven electron spin dynamics are unusual. The decay of the Rabi oscil-
lations is not exponential but follows a power law and a universal (parameter
independent) phase shift emerges.

A power-law decay is generally difficult to observe because it usually ap-
pears at long timescales. Here, the power-law decay is already valid after a
short time (see below), allowing it to be observed experimentally. In this work,
we present the observation of a power-law decay as well as a universal phase
shift. We compare the experimental results with a theoretical expression, de-
rived in the limit of a static nuclear spin bath.

3.2 Single-spin ESR – theory

We consider a double quantum dot with one electron in each dot and a static
external magnetic field in the z-direction, resulting in a Zeeman splitting
ǫz = gµBBz. The spin transitions are driven by a burst of a transverse oscil-
lating field along the x-direction with amplitude Bac and frequency ω, which
is generated by a current Is through a microfabricated wire close to the double
dot [30]. The interaction between the electron spin and the nuclear bath is

described by the Fermi contact hyperfine interaction ~S ·~h, where ~h is the field
generated by the nuclear spins at the position of the electron. For a large but
finite number of nuclear spins (N ∼ 106 for lateral GaAs dots) hz is Gaus-
sian distributed (due to the central-limit theorem) with mean h0 = hz and
variance σ2 = (hz − h0)2 [44–46]. For a sufficiently large external magnetic
field (ǫz ≫ σ), we may neglect the transverse terms S⊥ · h⊥ of the hyperfine
interaction that give rise to electron-nuclear-spin flip-flops (see below). Fur-
thermore, if the singlet-triplet energy splitting J is much smaller than both
ǫz and gµBBac, we may treat the spin dynamics of the electrons in each dot
independently (valid for times less than 1/J). For each dot we thus have the
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following spin Hamiltonian (~ = 1):

H(t) =
1

2
(ǫz + hz)σz +

b

2
cos(ωt)σx, (3.1)

where σi (with i = x, z) are the Pauli matrices and b = gµBBac (taken to be
equal in both dots).

We note two important points about this Hamiltonian. First, it contains
only one decoherence source: the uncertainty of the longitudinal nuclear field
hz. Second, hz is considered as completely static during the electron spin
time evolution. This is justified because the correlation time of the fluctua-
tions in the nuclear-spin system due to dipole-dipole and hyperfine-mediated
interaction between the nuclear spins, which is predicted to be & 10 − 100µs
[44–46, 51, 70, 93, 114], is much larger than the timescale for electron spin dy-
namics considered here (up to 1µs).

In the experiment, the electron spin state is detected in a regime where
electron transport through the double quantum dot occurs via transitions
from spin states with one electron in each dot (denoted as (1,1)) to the sin-
glet state |S(0, 2)〉 with two electrons in the right dot. These transitions,
governed via the tunnel coupling tc by the tunneling Hamiltonian Htc =
tc |S(1, 1)〉 〈S(0, 2)| + H.c., are only possible for anti-parallel spins, because
〈↑↑|Htc |S(0, 2)〉 = 〈↓↓|Htc |S(0, 2)〉 = 0, while 〈↓↑|Htc |S(0, 2)〉 6= 0 and
〈↑↓|Htc |S(0, 2)〉 6= 0. Therefore, the states with even spin parity (parallel
spins) block transport, while the states with odd spin parity (antiparallel spins)
allow for transport. If the system is initialized to an even spin-parity state, the
oscillating transverse magnetic field (if on resonance) rotates one (or both) of
the two spins and thus lifts the blockade [30]. Initializing to |↑〉 in both dots
(the case with |↓〉 gives the same result), we calculate the probability for an
odd spin parity Podd under time evolution for each of the two spins governed
by the Hamiltonian in Eq.(3.1).

Introducing the detuning from resonance δω = ǫz + hz − ω, the probability
to find spin up for a single value of hz in the rotating wave approximation
(which is valid for (b/ǫz)

2 ≪ 1) is given by

P↑,δω(t) =
1

2

[

1 +
4δ2

ω

b2 + 4δ2
ω

+
b2

b2 + 4δ2
ω

cos

(

t

2

√

b2 + 4δ2
ω

)]

. (3.2)

Assuming that ω = h0 + ǫz , i.e., δω = hz −h0, we find when averaging over the
Gaussian distribution of hz values (see Appendix D)

P↑(t) ∼
1

2
+ C +

√

b

8σ2t
cos

(

b

2
t+

π

4

)

+ O
(

1

t3/2

)

, (3.3)

for t ≫ max( 1
σ
, 1/b, b/2σ2), with C = 1

2
−

√
2πb
8σ

exp
(

b2

8σ2

)

erfc
(

b
2
√

2σ

)

. We

can now calculate the probability of finding an odd spin-parity state taking
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ω = h0 + ǫz for both dots and drawing the value of hz independently from a
distribution with width σ in each dot:

Podd(t) = P↑,L(t)(1 − P↑,R(t)) + (1 − P↑,L(t))P↑,R(t)

=
1

2
− 2C2 − C

f(t)√
t
− g(t)

t
+ O

(

1

t3/2

)

, (3.4)

where

f(t) =

√

2b

σ2
cos

(

bt

2
+
π

4

)

, (3.5)

g(t) =
b

8σ2

[

1 + cos
(

bt+
π

2

)]

. (3.6)

This result is valid for times t & max(1/σ, 1/b, b/2σ2) ∼ 20ns for a 1.4 mT
nuclear field (see below) and b ≤ 2σ (accessible experimental regime). The
1/t-term oscillates with the double Rabi frequency which is the result of both
spins being rotated simultaneously (see also [30]). This term only becomes
important for b > σ, because in that case for both spins most of the nuclear-
spin distribution is within the Lorentzian lineshape of the Rabi resonance. The
1/
√
t-term oscillates with the Rabi frequency and originates from only one of

the two spins being rotated [30]. This term is important when b < σ, i.e., when
only a small fraction of the nuclear-spin distribution is within the lineshape of
the Rabi resonance.

We also give the expression for Podd(t) for the case where only one of the
two spins is on resonance (ǫz +h0 −ω = 0), while the other is far off-resonance
(|ǫz + h0 − ω| ≫ σ). In this case the spin in one dot always remains up while
the spin in the other dot rotates. This leads to

P
(1)
odd(t) = 1 − P↑(t) =

1

2
− C − f(t)

4
√
t

+ O
(

1

t3/2

)

, (3.7)

with the same range of validity as in Eq.(3.4). We see that the 1/t-term, which
oscillates with frequency b, is not present in this case.

The expressions for Podd(t) (Eqs. (3.4) and (3.7)) reveal two interesting
features: the power-law decay and a universal phase shift of π/4 (see Eq. (3.5))
in the oscillations which is independent of all parameters. These features can
both only appear if the nuclear field hz is static during a time much longer than
the Rabi period. This is crucial because only then the driven spin coherence
for one fixed value of hz is fully preserved. Because different values of hz

give different oscillation frequencies, the decay is due to averaging over the
distribution in hz.

The phase shift is closely related to the power-law decay because it also
finds its origin in the off-resonant contributions. These contributions have a
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higher Rabi frequency and shift the average oscillation in phase. This universal
phase shift therefore also characterizes the spin decay, together with the power
law. Interestingly, the specific shape of the distribution in hz (as long as it
is peaked around the resonance) is not crucial for the appearance of both the
power-law decay and the phase shift (see Appendix D. The values of the decay
power and the phase shift are determined by the dependence of the oscillation
frequency on hz (in this case

√

b2 + 4δ2
ω).

A power-law decay has previously been found theoretically in [44, 46, 115,
116] and both a power-law decay (1/t3/2) and a universal phase shift also
appear in double dot correlation functions [50, 51]. In [52] a singlet-triplet
correlation function was measured, but the amplitude of the oscillations was
too small for the phase shift and the power-law decay to be determined. Here,
we consider driven Rabi oscillations of a single electron spin with a power-law
decay of 1/

√
t that is already valid after a short time 1/σ ∼ 20 ns. Therefore,

the amplitude of the driven spin oscillations is still high when the power-law
behavior sets in, even for small driving fields (b < 2σ) which are experimentally
easier to achieve. The power-law decay and the phase shift thus should be
observable in the experiment.

3.3 Power-law decay

We now discuss the observation of the power-law decay in the experimental
data of which a selection is shown in Fig. 3.1. The data are obtained with
the same device and under the same experimental conditions as in [30]. A
fit is carried out to the observed oscillations for four different driving fields
Bac (Fig. 3.1), with three different fit functions: the theoretical expressions
(Eqs. (3.4) and (3.7) with b and a constant scaling factor as fit parameters)
and an exponentially decaying cosine. The width of the nuclear distribution
σ = gµB(1.4 mT) is obtained from a fit of the steady state value 1

2
− 2C2 of

Podd(t) to a dataset obtained at t = 950 ns (Fig. 3.2a).
For the range Bac ≥ 1.9 mT, we find good agreement with the model that

predicts a power-lay decay of 1/
√
t (Eq. (3.4); h0 equal for both dots), while

the fit with an exponentially decaying cosine is poor (blue lines in Fig. 3.1).
The power of the decay is independently verified by means of a fit to the data
with a1 +a2 cos(2πt/a3 +π/4)/td where, besides a1,2,3, the power d of the time
t is a fit parameter as well. We find values of d ∼ 0.6 (Fig. 3.2b), close to the
predicted 1/

√
t-dependence.

We see much better correspondence of the data with Eq. (3.4) than with
Eq. (3.7), from which we can conclude that the mean of the Gaussian distri-
bution h0 is comparable for both dots (in equilibrium, we expect h0 ∼ 0 in
both dots). There might however still be a small difference in h0 between the
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Figure 3.1: (Color online) Rabi oscillations for four different driving fields
Bac (Bz =55 mT, g=0.355 and σ = gµB(1.4 mT)). The gray circles represent
the experimentally measured dot current (averaged over 15 s for each value
of t), which reflects the probability to find an odd spin-parity state after the
RF burst that generates Bac. The dotted, solid and dashed lines represent
the best fit to the data of an exponentially decaying cosine function and the
derived analytical expressions for Podd(t) and P

(1)
odd(t) (Eqs. (3.4) and (3.7))

respectively. For clarity, the dashed line is shown only for the top two panels.
The fit was carried out for the range 60 to 900 ns and the displayed values
for Bac were obtained from the fit with Podd(t) (Eq. (3.4)). We fit the data
with an exponentially decaying cosine with a tunable phase shift that is zero
at t = 0: a1e

−t/a2 [cos(φ)− cos(2πt/a3 +φ)]+a4(1− e−t/a2). The last term was
added such that the saturation value is a fit parameter as well. We note that
the fit is best for φ = π/4, as discussed in the text.

two dots, which we cannot determine quantitatively because the two models
describe only two limiting cases. If present, such a difference in h0 could help
explain the small deviation between data and model at the first oscillation for
Bac = 2.5 mT. It could originate from asymmetric feedback of the electron
spins on the respective nuclear spin baths, e.g. due to unequal dot sizes,
leading to different hyperfine coupling constants. Another observation is that
for small driving fields, Bac < 1.9 mT, we see that the damping is faster
than predicted. Possible explanations for this effect are corrections due to
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Figure 3.2: a) Dot current after an RF burst of 950 ns as a function of Bac,
approximately representing the steady-state value. The solid curve is the best
fit with a1(

1
2
− 2C2): the steady state expression of Eq. (3.4) with a1 and σ

as fit parameters. We find, for the 95%-confidence interval, σ = gµB(1.0− 1.7
mT). b) Decay power obtained from the best fit of the data (partially shown
in Fig. 3.1) with the expression a1 + a2 cos(2πt/a3 + π/4)/td, where a1,2,3 and
d are fit parameters.

electron-nuclear flip-flops (transverse terms in the hyperfine Hamiltonian) or
electric field fluctuations. Electron-nuclear flip-flops may become relevant on
a timescale ∼ ǫz/σ

2 ∼ 1µs in this experiment. Electric field fluctuations can
couple to spin states via the spin-orbit interaction [103] or a finite electric-field
dependent exchange coupling.

3.4 Phase shift

We continue the discussion with the experimental observation of the second
theoretically predicted prominent feature of the Rabi oscillations, i.e., a phase
shift of π/4 in the oscillations, which is independent of all parameters. In
principle, the experimental value of this phase shift φ can be extracted from
single traces like those in Fig. 3.1. However, the precision is poor because
a small uncertainty in the Rabi frequency can lead to a large uncertainty in
φ. A much more precise value of φ can be extracted from the oscillations
measured for a wide range and small steps of Bac, like the data shown in Fig.
3.3a. That is because the Rabi period TRabi = 2π/gµB(1

2
Bac) = 2π/gµB(1

2
KIs)

contains only one unknown parameter K (current to oscillating field amplitude
Bac conversion factor, in units of T/A) which is independent of the current
through the wire Is that generates Bac [30]. The presence of a phase shift is
visible in Fig. 3.3a, where the green and blue lines correspond respectively to
the maxima of a cosine with and without a phase shift of π/4. The green lines
match very well the yellow bands representing high data values. In contrast,
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the blue lines are located on the right side of the yellow bands for small burst
times and more and more on the left side of the bands for increasing burst
times. Thus, a cosine without a phase shift does not match with the observed
Rabi oscillations.
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Figure 3.3: a) The dot current (represented in colorscale) is displayed over a
wide range of Bac (the sweep axis) and burst durations. The green and blue
lines correspond respectively to the maxima of a cosine with and without a
phase shift of π/4. In contrast to the green lines, the blue lines are located
in advance of the maxima of the observed oscillations for small burst times,
and behind the maxima for longer burst times. The current-to-field conversion
factor K is fitted for both cases separately (K=0.568 mT/mA and K=0.60
mT/mA for respectively with and without phase shift; the fit range is t =
60 − 500 ns and Is = 3.6 − 6.3 mA). b) Phase shift for a wide range of Bac,
displayed as a function of stripline current Is. Values obtained from a fit of each
trace of the data in a) (varying burst time, constant Bac) to a damped cosine
a1−a2 cos(1

2
KIsgµBt+a3π)/

√
t, where a1,2,3 are fit parameters and K = 0.568

mT/mA. Is is a known value in the experiment, extracted from the applied
RF power. The gray dashed lines represent the 95% confidence-interval.

In order to determine φ quantitatively, we perform a single two-dimensional
fit of the complete dataset in Fig.3.3a with Podd(t) (Eq. (3.4)), excluding the
1/t-term (see Appendix C). The fit range is t = 100 − 900 ns, such that the
contribution from the 1/t-term of Eq. (3.4) can be neglected. For the 95%
confidence interval we find φ = (0.23 ± 0.01)π, close to the theoretical value.
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The relation between φ and Bac is visible in Fig. 3.3b, where we find no signifi-
cant dependence of φ as a function of Bac, although the accuracy decreases for
smaller Bac (values obtained from fits to single traces, see caption). We have
not compensated for the effects of the finite rise time (<2 ns) of the bursts,
which leads to a small negative phase shift, on top of the expected positive
π/4 shift.

3.5 Conclusion

To conclude, we have experimentally observed a power-law decay and univer-
sal phase shift of driven single electron spin oscillations. These features are
theoretically understood by taking into account the coupling of the spin to the
nuclear spin bath, which is static on the timescale of the electron spin evolu-
tion time. These reported results affect the prospect of making electron-spin
based qubits in GaAs quantum dots. Namely, the slow power-law decay allows
spin manipulation with smaller driving fields, and knowledge of the phase-shift
is relevant for determination of the correct pulse lengths. Furthermore, non-
exponential coherence decay will affect error-correction schemes which usually
account for exponential decays. For future investigation, it remains interesting
to obtain more information about the non-static contributions of the nuclear
bath or other possible decoherence mechanisms. This requires measuring the
driven oscillations at larger external fields, with larger driving powers and
longer evolution times than accessible in this work.





Chapter 4

Nuclear spin dynamics and

Zeno effect in quantum dots and

defect centers

[D. Klauser, W.A. Coish, D. Loss, arXiv:0802.2463]

In this chapter we analyze nuclear spin dynamics in quantum dots and de-
fect centers with a bound electron under electron-mediated coupling between
nuclear spins due to the hyperfine interaction (“J-coupling” in NMR). Our
analysis shows that the Overhauser field generated by the nuclei at the posi-
tion of the electron has short-time dynamics quadratic in time for an initial
nuclear spin state without transverse coherence. The quadratic short-time
behavior allows for an extension of the Overhauser field lifetime through a
sequence of projective measurements (quantum Zeno effect). We analyze the
requirements on the repetition rate of measurements and the measurement ac-
curacy to achieve such an effect. Further, we calculate the long-time behavior
of the Overhauser field for effective electron Zeeman splittings larger than the
hyperfine coupling strength and find, both in a Dyson series expansion and a
generalized master equation approach, that for a nuclear spin system with a
sufficiently smooth polarization the electron-mediated interaction alone leads
only to a partial decay of the Overhauser field by an amount on the order of
the inverse number of nuclear spins interacting with the electron.

4.1 Introduction

Technological advancements have made it possible to confine very few elec-
trons in a variety of nanostructures such as nanowires, quantum dots, donor
impurities, or defect centers [18–20,22–37,117–119]. One driving force behind
these achievements is a series of proposals for using the spin of an electron as
a qubit for quantum computing [1,2,120]. This spin interacts with the nuclear
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spins in the host material via the hyperfine interaction. While this interaction
leads to decoherence of the electron spin state on one hand, it also provides the
opportunity to create a local effective magnetic field (Overhauser field) for the
electron by inducing polarization in the nuclear spin system, which could be
used, e.g., for rapid single-spin rotations [121]. Polarizing the nuclear spin sys-
tem is also one possible way to suppress hyperfine-induced decoherence [43,46]
or it can be used as a source of spin polarization to generate a spin-polarized
current. In any case, controlling the dynamics of the Overhauser field and, in
particular, to prevent its decay, is thus of vital importance in the context of
spintronics and quantum computation [3].

In GaAs quantum dots the Overhauser field can become as large as 5T.
The build-up, decay, and correlation time of the Overhauser field have been
studied in a number of systems [48,58,60,61,77,84–86,95,122–128], suggesting
timescales for the decay on the order of seconds, minutes, or in one case, even
hours [76].

In this article we address the question: How can a large Overhauser field be
preserved? That is, how can the Overhauser-field decay be suppressed or even
prevented. The dynamics of the Overhauser field are governed by the mutual
interaction between the nuclear spins. There is on one hand the direct dipolar
coupling between the nuclear spins. On the other hand, due to the presence
of a confined electron, there is also an indirect interaction: The coupling of
the nuclear spins to the electron via the hyperfine interaction leads to an
effective interaction between the nuclear spins that is known as the electron-
mediated interaction. While the effect of this electron-mediated interaction
on the decoherence of the electron has been studied previously [70, 114, 121],
theoretical studies of the decay of the Overhauser field have so far studied
direct dipole-dipole interaction and the effect of the hyperfine interaction was
taken into account through the Knight shift that the electron induces via
the hyperfine interaction [129]. In this article we investigate the effect of the
electron-mediated interaction between nuclear spins on the dynamics of the
Overhauser field. While the direct dipolar coupling is always present, it can
be weaker than the electron-mediated interaction for magnetic fields that are
not too large and may be further reduced via NMR pulse sequences or by
diluting the concentration of nuclear spins.1 We find in our calculation that,
for effective electron Zeeman splittings ω (sum of Zeeman splittings due to the
external magnetic field and Overhauser field) larger than the hyperfine coupling
strength A, the decay of the Overhauser field due to the electron-mediated
interaction is incomplete, i.e., that only a small fraction of the Overhauser
field decays. In a short-time expansion that is valid for ω larger than A/

√
N ,

1Diluting reduces the dipolar coupling strongly, as it decreases with the third power of
the distance between the nuclei. In contrast, the hyperfine coupling is proportional to the
density of nuclei and thus for a one-dimensional (two-dimensional) system only decreases
with the first (second) power of the distance between the nuclei.



4.2 Zeno effect 51

where N is the number of nuclear spins with which the electron interacts,
we find a quadratic initial decay on a timescale τe = N3/2ω/A2. We show
that, by performing repeated projective measurements on the Overhauser field,
a quantum Zeno effect occurs, which allows one to preserve the Overhauser
field even for relatively small effective electron Zeeman splittings larger than
A/

√
N . Overall, we thus obtain the following picture: The Overhauser field

can be preserved either by applying a large external magnetic field (it only
decays by a small fraction for ω ≫ A) or by performing repeated projective
measurements on the Overhauser field (with our calculation for the short-time
dynamics being valid for ω ≫ A/

√
N).

In Sec. 4.2 we briefly review the quantum Zeno effect and give the corre-
sponding main results for the case of the Overhauser field. We start our de-
tailed discussion in Sec. 4.3 by writing down the Hamiltonian for the hyperfine
interaction and by deriving an effective Hamiltonian for the electron-mediated
interaction. In Sec. 4.4 we derive an expression for the short-time behavior of
the Overhauser field mean value. In Secs. 4.5 and 4.6 we address the long-time
decay of the Overhauser field due to the electron-mediated interaction. Some
technical details are deferred to Appendices E and F.

4.2 Zeno effect

The suppression of the decay of a quantum state due to frequently repeated
measurements is known as the quantum Zeno effect. The concept of the quan-
tum Zeno effect [130] is almost as old as quantum mechanics [74, 131] and it
remains one of the most intriguing quantum effects. It has been studied inten-
sively from the theoretical side [132–134] and also experimental evidence has
been found in recent years [135].

Let us consider a two-level system initialized to the excited state and
assume that a small additional perturbation (e.g. due to interaction with
the environment) leads to decay from the excited state to the ground state.
The survival probability Ps in the excited state as a function of the elapsed
time t is initially given by Ps(t) = 1 − cst

2/τ 2
s , with the constant cs and the

timescale τs being system dependent. A projective measurement at time τm
resets the system to the excited state with probability Ps(τm). Repeating
the measurement m times at intervals τm ≪ τs, the survival probability is
Ps,meas(mτm) = (1− csτ

2
m/τ

2
s )m ≈ 1− csmτm/(τ

2
s /τm), for csmτ

2
m/τ

2
s ≪ 1. The

survival probability at time t = mτm is thus increased due to the frequently
repeated measurements: instead of a quadratic decay on a timescale τs without
measurements, we have a linear decay on a timescale τ 2

s /τm.
A more complex observable such as the mean of the Overhauser-field z-

component 〈hz(t)〉 = Tr{hzρ(t)}, may also show a Zeno effect. That 〈hz(t)〉
shows an initial quadratic decay is, however, not obvious and actually depends
on the initial state of the nuclear spin system ρI(0) (see the first paragraph of
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Sec. 4.4 below for details). For the short-time behavior of 〈hz(t)〉, we expand
in a Taylor series

〈hz(t)〉 = 〈hz(0)〉 + t〈hz〉1 +
t2

2
〈hz〉2 + . . . , (4.1)

with 〈hz〉n = dn〈hz(t)〉/dtn|t=0. If 〈hz〉1 = 0, the t-linear term vanishes and
the initial decay is quadratic in time. In Sec. 4.4 we find that 〈hz〉1 = 0
under the condition that the initial nuclear spin state is diagonal in a basis of
hz-eigenstates. In this case the initial decay is of the form

〈hz(t)〉
〈hz(0)〉 = 1 − c

t2

τ 2
e

. (4.2)

The timescale τe and the constant c are given below in Eq. (4.18) and Eq.
(4.19) respectively.

Let us now consider a sequence of repeated measurements of the Overhauser
field hz(t). In the context of quantum dots, several proposals [51,72,73] to im-
plement such measurements have been put forward. A measurement of hz shall
be performed after a time τm. If this measurement is projective, i.e., if it sets
all the off-diagonal elements of the density matrix in a basis of hz-eigenstates to
zero (we discuss requirements on the accuracy of the measurement in Appendix
F), the dynamics after τm again follow Eq. (4.2). Repeating the measurement
at times 2τm, 3τm, . . . , leads to a change of the decay of the Overhauser field
in the same way as we described it for the two-level system above:

〈hz(t)〉zeno

〈hz(0)〉 = 1 − c
t

τzeno

, τzeno =
τ 2
e

τm
. (4.3)

Instead of a quadratic decay ∝ t2/τ 2
e we have a linear decay ∝ t/τzeno with

τzeno = τ 2
e /τm. We note that the expression for 〈hz(t)〉zeno in Eq. (4.3) is

only strictly valid at times mτm with m being a positive integer. Between
these times 〈hz(t)〉 changes according to Eq.(4.2). The derivation of Eq. (4.3)
requires cmτ 2

m/τ
2
e = ct/τzeno ≪ 1. Fig. 4.1 shows the Zeno effect, i.e., the

difference between 〈hz(t)〉/〈hz(0)〉 and 〈hz(t)〉zeno/〈hz(0)〉.
In addition to requirements on the measurement accuracy (see Appendix

F), the results in this section rest on the following separation of timescales:

τpm ≪ τm ≪ τe, τx, (4.4)

where τpm is the time required to perform a single measurement and τx the
timescale up to which the short-time expansion for 〈hz(t)〉 is valid. In general,
τx can be shorter than τe. A specific case (fully polarized nuclear state), where
the short-time expansion has only a very limited range of validity, is discussed
in Sec. 4.4.1. For the systems studied in experiment, we expect τx to be
comparable to or longer than τe, since the experiments performed so far show
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Figure 4.1: Effect of projective measurements at time intervals τm = τe/10 on
the time evolution of the Overhauser field expectation value 〈hz(t)〉. Due to the
Zeno effect, the decay with measurements is 1−ct/τzeno rather than 1−ct2/τ 2

e

without measurements, where τzeno = τ 2
e /τm. The formula 1 − ct/τzeno for

the decay with measurement is only strictly valid at times t = mτm with m
being a positive integer. After the measurement at t = mτm the decay is again
quadratic with time dependence 〈hz(mτm)〉/〈hz(0)〉 − c(t−mτm)2/τ 2

e (broken
lines).
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timescales for the decay of 〈hz(t)〉 on the order of seconds, minutes, or in one
case, even hours [76]. We note that it may be a demanding task to perform the
fast and precise measurements required to obtain a Zeno effect in the present
context. Still, experimental progress in the control of the nuclear field, such as
that shown in Ref. [76], suggests that such measurements may be within reach
in the near future.

We continue our discussion by deriving the effective Hamiltonian we use
both for calculating short-time dynamics and the long-time behavior of 〈hz(t)〉.

4.3 Hamiltonian

We aim to describe the dynamics of many nuclear spins surrounding a central
confined electron spin in a material with an s-type conduction band (e.g. GaAs,
Si, etc.), where the dominant type of hyperfine interaction is the Fermi contact
hyperfine interaction. The electron may be confined in many nanostructures
such as nanowires, quantum dots or defect centers. Under the assumption that
other possible sources of nuclear spin dynamics, such as nuclear quadrupolar
splitting, are suppressed,2 the two strongest interactions between nuclear spins
in these nanostructures are the electron-mediated interaction (“J-coupling” in
NMR [98,137]) and the direct dipole-dipole interaction. It turns out that, for a
large number of nuclei N and up to magnetic fields of a few Tesla (for GaAs),
the contribution of the electron-mediated interaction to the initial decay of
the Overhauser field is dominant (see Appendix E). The Hamiltonian contains
three parts: The electron and nuclear Zeeman energies and the Fermi contact
hyperfine interaction:

H = He +Hn +Hen = ǫzSz + ηz

∑

k

Iz
k + ~S · ~h. (4.5)

Here, the operator
~h =

∑

k

Ak
~Ik (4.6)

is the Overhauser field. Further, ~S is the electron spin and ~Ik the nuclear spin
at lattice site k that couples with strength Ak = Aν0|ψ(rk)|2 to the electron
spin, where A =

∑

k Ak is the total hyperfine coupling constant, ν0 the volume
occupied by a single-nucleus unit cell and ψ(rk) the electron envelope wave
function. We define the number of nuclear spins N interacting with the elec-
tron as the number of nuclear spins within an envelope-function Bohr radius
of the confined electron [46]. The Bohr radius aB for an isotropic electron
envelope is defined through [46] ψ(rk) = ψ(0)e−(rk/aB)q/2,where q = 1 gives a
hydrogen-like wave function and q = 2 a Gaussian. Finally, ǫz and ηz are the

2In high symmetry lattices, the quadrupolar splitting is often negligible [136], and is
identically zero for nuclear spin I = 1/2.
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electron and nuclear Zeeman splittings, respectively (we consider a homonu-
clear system). We derive an effective Hamiltonian for the electron-mediated
interaction between nuclear spins, which is valid in a sufficiently large magnetic
field. Using a standard Schrieffer-Wolff transformation [138] Heff = eSHe−S,
in lowest order in Hen, with the transformation matrix

S =
1

2

∑

k

Ak

[

(ǫz + hz − ηz + Ak/2)−1S+I
−
k − (ǫz + hz − ηz − Ak/2)−1S−I

+
k

]

,

(4.7)
which eliminates the off-diagonal terms between electron and nuclear spins, we
find the effective Hamiltonian Heff ≃ H0 + V (similar to Refs. [69, 70, 121]),
where:

H0 = ǫzSz + ηz

∑

k

Iz
k + Szhz, (4.8)

V =
1

8

∑

kl

AkAl

[(

1

2
+ Sz

)

(

B+
k I

−
k I

+
l + I−l I

+
k B

+
k

)

−
(

1

2
− Sz

)

(

B−
k I

+
k I

−
l + I+

l I
−
k B

−
k

)

]

. (4.9)

Here, B±
k = 1/(ǫz − ηz + hz ± Ak/2) and the raising and lowering operators

are defined as S± = Sx ± iSy and similarly for h± and I±k . We note that Heff

neglects the transfer of spin polarization from the electron to the nuclei. The
electron transfers an amount of angular momentum to the nuclear system on
the order (A/

√
Nω)2 ≪ 1 for ω ≫ A/

√
N . For ω ∼ A these contributions

are suppressed by a factor of O(1/N) compared to the decay of 〈hz(t)〉 under
Heff . For very special initial states, where Heff leads to no dynamics, e.g., for
uniform polarization, the transfer of spin from the electron to the nuclei is
the only source of nontrivial nuclear spin dynamics and therefore should be
taken into account. We discuss one such initial state, namely, a fully polarized
nuclear system, in Sec. 4.4.1.

In the following we assume I = 1/23 and neglect Ak in B±
k which is valid

up to corrections suppressed by Ak/(ǫz − ηz + hz). We further replace hz in
the denominator of of B±

k by its initial expectation value 〈hz〉 = Tr{hzρ(0)}
and introduce the effective electron Zeeman splitting

ω = ǫz − ηz + 〈hz〉 ≈ ǫz + 〈hz〉. (4.10)

This replacement assumes that the initial state does not change significantly
and is valid up to corrections suppressed by σ/ω, compared to the dynamics
under Heff . Here σ =

√

〈h2
z〉 − 〈hz〉2 is the initial width of hz. For an unpolar-

ized equilibrium (infinite temperature) nuclear spin state we have σ ∝ A/
√
N ,

3A rough estimate suggests that for I > 1/2 the timescales given need to be multiplied
by a factor 1/(2I)2.



56 Nuclear spin dynamics and Zeno effect

limiting the range of validity to ω ≫ A/
√
N .

V ∼= 1

2ω

(

Sz

∑

k 6=l

AkAlI
+
k I

−
l +

1

2

∑

k

A2
k(Sz − Iz

k)

)

, (4.11)

where in the sum over k and l the terms k = l are excluded. In the next sections
we will discuss the dynamics of the Overhauser field both at short and at long
times in the regimes where a perturbative treatment in V is appropriate.

4.4 Short-time expansion

With respect to the Zeno effect as discussed in Sec. 4.2, our main interest lies
in the short-time behavior of the Overhauser field z-component 〈hz(t)〉, where
~h is defined in Eq. (4.6). To calculate 〈hz〉1 and 〈hz〉2 (see Eq. (4.1)), we
expand

〈hz(t)〉 = Tr{hz exp (−iHt)ρ(0) exp (iHt)} (4.12)

at short times. The first term 〈hz(0)〉 = Tr{hzρ(0)} gives the expectation value
at time zero, while the t-linear term is proportional to 〈hz〉1 = −iTr{hz[H, ρ(0)]}.
Using the cyclicity of the trace we find that Tr{hz[H, ρ(0)]} = Tr{[ρ(0), hz]H}.
Writing ρ(0) = ρe(0) ⊗ ρI(0) we have, for an initial nuclear spin state ρI(0)
without transverse coherence, [ρI(0), hz] = 0 and thus the t-linear term van-
ishes. It might be possible to extend this result to more general randomly
correlated initial nuclear spin states, where terms involving transverse coher-
ence or correlations are negligibly small due to a random phase [41, 139].

To determine the frequency of projective measurements required to induce
a Zeno effect, we are interested in 〈hz〉2 = −Tr{hz[H, [H, ρ(0)]]}. We calculate
〈hz〉2 below using the effective Hamiltonian Heff as derived in Sec. 4.3. The
range of validity is limited by higher-order terms in the effective Hamiltonian
which are proportional to (h+h−)n/ω(n+1), n = 2, 4, . . . These higher-order
terms give corrections to 〈hz〉2 which are suppressed by a factor (A/

√
Nω)n.

Thus the results for 〈hz(t)〉 up to O(t2) given below are valid in the regime
ω ≫ A/

√
N . Using that [hz, H0] = 0, we may simplify 〈hz〉2 considerably and

we find for an arbitrary electron spin state:

〈hz〉2 = − 1

8ω2
TrI{hz[ρI(0), h+h−]h+h−}. (4.13)

To further simplify, we assume a product initial state of the form

ρ(0) = ρe(0) ⊗ ρI(0) = ρe(0) ⊗k ρIk
, (4.14)

ρIk
= 1/2 + fkI

z
k ; fk ≡ fk(0) = 2〈Iz

k(0)〉. (4.15)

With this initial state we find

〈hz〉2 = − 1

4ω2

∑

kl

fkA
2
kA

2
l TrI{hz

⊗

j 6=k,l

(
1

2
+ fjI

z
j )(Iz

k − Iz
l )}. (4.16)
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Evaluating the commutators and the trace, we find for the decay of the Over-
hauser field mean value 〈hz(t)〉, up to corrections of O(t4),

〈hz(t)〉 = 〈hz(0)〉 − t2

(8ω)2

∑

kl

A2
kA

2
l (Ak − Al)(fk − fl). (4.17)

We note that both for uniform coupling constants Ak = A/N and for uniform
polarization fk = p, ∀k, the t2-term vanishes. This is, in fact, what one would
expect, since Heff only leads to a redistribution of polarization and both for
uniform polarization and uniform coupling constants, such a redistribution
does not affect hz. Rewriting the sum in Eq. (4.17) we obtain (again up to
corrections of O(t4))

〈hz(t)〉
〈hz(0)〉 = 1 − c

t2

τ 2
e

, τe =
N3/2ω

A2
, (4.18)

with the numerical factor c only depending on the distribution of coupling
constants through αk = NAk/A and the initial polarization distribution fk

through

c =
1

32Nc0

∑

kl

α2
kα

2
l (αk − αl)(fk − fl), (4.19)

where c0 =
∑

k fkαk. We note that, up to the factor c (see Fig. 4.2), the
timescale τe agrees with a previous rough estimate [51] for the timescale of
nuclear-spin dynamics under the electron-mediated nuclear spin interaction.
In Table 4.1 we give τe for a variety of values of the number of nuclear spins
N and of ω = ǫz − ηz + 〈hz〉.

τe at τe at τe at τe at τe at

N A/gµB

√
N ω = A/

√
N 100mT 1T 2mT 5T

103 49mT 3ns 6ns 60ns 119ns 297ns

104 16mT 29ns 188ns 2µs 4µs 9µs

105 4.9mT 292ns 6µs 60µs 119µs 297µs

106 1.6mT 3µs 188µs 2ms 4ms 9ms

Table 4.1: This Table gives explicit values for the timescale τe of the t2 term
in the short-time expansion of 〈hz(t)〉 (see Eq.(4.18)). We give τe for various
values of the number of nuclear spins N and of ω = ǫz − ηz + 〈hz〉 for I = 1/2.
When ω = A/

√
N we are at the lower boundary of ω-values for which the

result for τe is valid. The parameters used are relevant for a lateral GaAs
quantum dot: A = 90µeV, g = −0.4.
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The coupling constants Ak have a different dependence on k, depending
on the dimension d and the exponent q in the electron envelope wave func-
tion through [46] Ak = A0e

−(k/N)q/d
. For a donor impurity with a hydrogen-

like exponential wave function we have d = 3, q = 1, d/q = 3, whereas for
a 2-dimensional quantum dot with a Gaussian envelope function we have
d = 2, q = 2, d/q = 1. In Fig. 4.2 we show the constant c for the case
d/q = 1 and a particular choice of the polarization distribution. We give the
dependence on d/q in the inset of Fig. 4.2. While c is independent of N for
N & 100, it changes considerably depending on the initial nuclear spin state,
which is parameterized by the fk. Since there are neither experimental data
nor theoretical calculations on the shape of the polarization distribution, we
assume for the curves in Fig. 4.2 that it has the same shape as the distribution
of coupling constants Ak, but with a different width, reflected in the number
of nuclear spins Np that are appreciably polarized. The motivation for this
choice is that if polarization is introduced into the nuclear spin system via
electron-nuclear spin flip-flops, the probability for these flip-flops is expected
to be proportional to some power of Ak/A0. The degree of polarization at the

center we denote by p ∈ [−1, 1]. We may thus write fk = pe−(k/Np)q/d
. We

see in Fig. 4.2 that c grows monotonically with N/Np, i.e., a localized polar-
ization distribution (N/Np > 1) decays more quickly than a wide spread one
(N/Np < 1).

In the context of state narrowing, [51,72,73] the short-time behavior of the
width of the Overhauser field σ(t) =

√

〈h2
z(t)〉 − 〈hz(t)〉2 is also of interest.

Nuclear spin state narrowing, i.e., the reduction of σ, extends the electron
spin decoherence time. Repeating the above calculation for 〈h2

z(t)〉 and using
the result for 〈hz(t)〉 we find ( up to corrections of O(t4)) for the variance of
the Overhauser field

σ2(t) = σ2(0)

(

1 + cσ
t2

τ 2
e

)

, (4.20)

with the range of validity ω & A/
√
N , limited by higher-order corrections to

the effective Hamiltonian as in the case of 〈hz(t)〉. Here, the dimensionless
constant cσ is given by

cσ =
1

16Ncσ0

∑

kl

α2
kα

2
l (αk − αl)(fk − fl)(fkαk + flαl), (4.21)

where cσ0 =
∑

k α
2
k(1 − f 2

k ). Taking the square-root of σ2(t) and expanding it
for cσt

2/τ 2
e ≪ 1 we find for the width (up to corrections of O(t4))

σ(t) = σ(0)

(

1 + cσ
t2

2τ 2
e

)

. (4.22)

Thus, also for the width of the Overhauser field the initial dynamics are
quadratic in time, with the same dependence on A, N and ω as the mean.
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Figure 4.2: Numerical prefactor c (given in Eq. (4.19)) of the t2-term in the
decay of the Overhauser field mean value 〈hz(t)〉. While c turns out to be
independent (for N & 100 in the case shown according to numerical summa-
tion) of the number N of nuclear spins within a Bohr radius of the electron
envelope wave function, it does depend on the type of structure and the ini-
tial polarization. We show the case of a 2-d quantum dot with a Gaussian
electron envelope (d/q = 1). The dependence on the initial polarization is
parameterized by N/Np, where Np is the number of nuclear spins that are
polarized substantially (see text). Inset: dependence of c on the ratio d/q for
N/Np = 1. We see that, e.g., for a donor impurity with a hydrogen-like wave
function (d/q = 3) the prefactor c is more than three orders of magnitude
smaller compared to the 2-d lateral quantum dot with d/q = 1.
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4.4.1 Special case: full polarization

In this section we analyze the special case of a fully polarized nuclear spin
system, where the effective Hamiltonian derived in Sec. 4.3 gives no dynamics
and thus the corrections due to the transfer of polarization from the electron
to the nuclei become relevant. We thus must return to the full Hamiltonian in
Eq. (4.5). Using the fact that the total spin Jz = Sz +

∑

k I
z
k is a conserved

quantity, we transform into a rotating frame where the Hamiltonian takes the
form [46]

H ′ = (ǫ̃z + hz)Sz +
1

2
(h+S− + h−S+) , (4.23)

with ǫ̃ = ǫ−ηz . To have any dynamics for a fully polarized nuclear spin system
(all spins |↑〉), the initial state of the electron must be s⇓ |⇓〉 + s⇑ |⇑〉, with
s⇓ 6= 0. Since the |⇑〉 part gives no dynamics we consider |ψ(0)〉 = |⇓; ↑↑ . . . ↑〉.
At any later time we may thus write

|ψ(t)〉 = a(t) |ψ(0)〉 +
∑

k

bk(t) |⇑; ↑↑ . . . ↑↓k↑ . . . ↑〉 , (4.24)

with a(0) = 1 and bk(0) = 0, ∀k. The same case was studied in Refs. [44, 91].
However, this study was performed from the point of view of electron spin
decoherence. For the expectation value of 〈hz(t)〉, we find, in terms of a(t) and
bk(t),

〈hz(t)〉 = 〈ψ(t)|hz |ψ(t)〉 =
A

2
−
∑

k

|bk(t)|2Ak, (4.25)

where we have used the normalization condition |a(t)|2+
∑

k |bk(t)|2 = 1. Using
the time-dependent Schroedinger equation i∂t |ψ(t)〉 = H ′ |ψ(t)〉, we obtain the
differential equations for a(t) and bk(t):

ȧ(t) =
i

4
(2ǫz + A) a(t) − i

2

∑

k

bk(t)Ak, (4.26)

ḃk(t) = −iAk

2
a(t) − i

4
(2ǫz + A− 2Ak) bk(t). (4.27)

Inserting a power-series Ansatz a(t) =
∑

l a
(l)tl and bk(t) =

∑

l b
(l)
k t

l into these
equations and comparing coefficients yields recursion relations of the form

a(l+1) =
i

4(l + 1)
(2ǫz + a) a(l) − i

2(l + 1)

∑

k

b
(l)
k Ak,

(4.28)

b
(l+1)
k = − iAk

2(l + 1)
a(l) − i

4(l + 1)
(2ǫz + A− 2Ak) b

(l)
k .

(4.29)
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Iterating these recursion relations using that a(0) = 1 and bk(0) = 0, ∀k, we
find, neglecting corrections of O(t4),

〈hz(t)〉
〈hz(0)

= 1 − 1

2A

∑

k

A3
kt

2. (4.30)

For the case of a 2-d quantum dot with Gaussian envelope wave function,
where we have Ak = Ae−k/N/N , we find, evaluating

∑

k A
3
k by turning it into

an integral in the continuum limit N ≫ 1, (again up to corrections of O(t4))

〈hz(t)〉
〈hz(0)

= 1 − 1

6

(

t

τc

)2

, (4.31)

where τc = N/A. To obtain the range of validity for this result we go to higher
order in t. Again for the case of a 2-d quantum dot with Gaussian envelope
wave function we find up to O(t4), neglecting terms that are suppressed by
O(1/N) in the t4-term,

〈hz(t)〉
〈hz(0)

= 1 − 1

6

(

t

τc

)2

+
1

18

(

t

τ4

)4

. (4.32)

Here, τ4 = 2
√
N/
√

A(2ǫz + A). This shows that in some cases the higher order
terms in the short-time expansion can have a considerably shorter timescale.
Comparing the short-time expansion with a calculation for 〈Sz〉 in the case
of uniform coupling constants [91] suggests that the full dynamics contain
oscillations with a frequency ∝ ǫz +A/2, thus limiting the range of validity of
the short-time expansion to t≪ (ǫz + A/2)−1.

To finish our discussion of the short-time dynamics and of the Zeno effect,
we point out that the main result of this section, namely the timescale τe and
the constant c (Eqs.(4.18) and (4.19)) for the quadratic term in the short-
time expansion of 〈hz(t)〉, is what sets the condition on the repetition rate
τm as discussed in Sec. 4.2 (see Eq. (4.4)). With this we move on to the
study of the long-time behavior. We first show the results of a Dyson-series
expansion in Sec. 4.5 and in Sec. 4.6 we treat the problem using the generalized
master equation, showing that the Dyson-series expansion gives the leading-
order contribution in A/ω.

4.5 Dyson-series expansion

In this section we calculate the expectation value of the Overhauser field 〈hz(t)〉
in a Dyson-series expansion up to second order in the interaction V . This
allows us to obtain the full time dynamics of 〈hz(t)〉. Since the Dyson-series
expansion is not a controlled expansion (it leads to secular divergences in
time at higher order), we will only see from the generalized master equation
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calculation in Sec. 4.6 that the Dyson series result gives the correct leading
order contribution in A/ω. Thus, the results in this section are expected to be
valid in the regime ω ≫ A. The results in this section can also be obtained
from the generalized master equation approach presented in Sec. 4.6. However,
the Dyson-series calculation is more accessible.

We transform all operators into the interaction picture by Õ = eiH0tOe−iH0t.
In the interaction picture we have 〈hz(t)〉 = Tr{h̃zρ̃(t)}, with h̃z = hz since
[H0, hz] = 0. Expanding ρ̃(t) in a Dyson series we find [140]

ρ̃(t) = ρ(0) − i

∫ t

0

dt′[Ṽ (t′), ρ(0)]

−
∫ t

0

dt′
∫ t′

0

dt′′[Ṽ (t′), [Ṽ (t′′), ρ(0)]] +O(Ṽ 3),

(4.33)

where

Ṽ (t) ≡ eiH0tV e−iH0t =
Sz

2ω

∑

k 6=l

eiSz(Ak−Al)tI+
k I

−
l . (4.34)

We assume again the same initial state as in Sec. 4.4 and thus the term linear
in Ṽ will drop out under the trace as it only contains off-diagonal terms. From
the remaining two terms we find

〈hz(t)〉 = 〈hz(0)〉 +
1

8ω2

∑

k 6=l

A2
kA

2
l (fk − fl)

Ak − Al

(

cos

[

(Ak −Al)
t

2

]

− 1

)

. (4.35)

We first verify that this result is consistent with the short-time expansion in
Sec. 4.4. For this we use that Ak ≤ A0 ∝ A/N and thus for times t ≪ τc =
N/A we may expand the cosine in the above expression, recovering, to second
order in t, the result in Eq. (4.17). For the full time dynamics we note that
the sum over cosines leads to a decay on a timescale of τc = N/A, since for
t > τc the different cosines interfere destructively. We illustrate this with an
example: for a particular choice of the initial polarization distribution (d/q = 1
and Np = N) we may evaluate the sum in Eq. (4.35) in the continuum limit
and find

〈hz(t)〉
〈hz(0)〉 = 1 − p

8N

A2

ω2
g(t/τc). (4.36)

The function g(t) is explicitly given by

g(t) =
1

t4

[

t4 − 16t2 + 64t sin

(

t

2

)

− 256 sin2

(

t

4

)]

, (4.37)

with g(0) = 0 and g(t → ∞) = 1. We thus find a power-law decay on a
timescale τc by an amount of O(1/N). Since the sum of cosines in Eq. (4.35)
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Figure 4.3: In this figure we show the N -dependence of 1 − 〈hz〉stat/〈hz(0)〉
(see Eq.4.38), i.e., the part by which 〈hz〉 decays in units of pA2/Nω2, in the
regime ω ≫ A. This plot is for a 3-d defect center with a hydrogen-like electron
envelope (d/q = 3) and the initial polarization is parameterized by N/Np = 0.5
as described in Sec. 4.4. For this choice of polarization distribution the decay
is of O(1/N). The inset shows the full time dynamics of 〈hz(t)〉/〈hz(0)〉 as
given in Eq.(4.36) for d/q = 1, N ≫ 1, N/Np = 1. We see that the decay
occurs on a timescale of τc = N/A.

decays, the remaining time-independent sum gives the stationary value (up to
the Poincaré recurrence time [141])

〈hz〉stat
〈hz(0)〉 = 1 −

(

A

ω

)2
1

4N2c0

∑

k 6=l

α2
kα

2
l (fk − fl)

αk − αl
. (4.38)

For a system with a large number of nuclear spins N ≫ 1 and a sufficiently
smooth polarization distribution, this stationary value differs only by a term
of O(1/N) from the initial value, i.e., 〈hz〉stat/〈hz(0)〉 = 1−O(1/N). This can
be seen in Fig. 4.3, where we show the N dependence of 1 − 〈hz〉stat/〈hz(0)〉,
i.e., the part by which 〈hz〉 decays. The parameters in Fig. 4.3 are taken
for a 3-d defect center with a hydrogen-like electron envelope (d/q = 3) and
the initial polarization N/Np = 0.5 as described in Sec. 4.4. For this choice
of polarization distribution the decay is of O(1/N). We also find a O(1/N)
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behavior for other values of the parameters d/q and N/Np and thus expect this
to be generally true for a smoothly varying initial polarization distribution.
The inset of Fig. 4.3 shows the full time dynamics of 〈hz(t)〉 as given in
Eq.(4.36) for d/q = 1, N ≫ 1, N/Np = 1.

We note that the 4th order of a Dyson series expansion gives secular terms
(diverging in t). We thus move on to treat the long-time behavior using a
master equation approach which avoids these secular terms and shows that
the Dyson series result gives the correct leading-order term in A/ω.

4.6 Generalized master equation

In this section we study the decay of the Overhauser field mean value 〈hz(t)〉
using the Nakajima-Zwanzig generalized master equation (GME) in a Born
approximation. The results in this section are valid in the regime ω ≫ A,
since higher-order corrections to the Born approximation are suppressed by a
factor (A/ω)2.

We start from the GME, [141] which for Pkρ(0) = ρ(0) reads

Pkρ̇(t) = −iPkLPkρ(t) −
∫ t

0

dt′PkLe
−iQL(t−t′)QLPkρ(t

′), (4.39)

where L = L0 + LV is the Liouville superoperator defined as (L0 + LV )O =
[H0 + V,O]. The projection superoperator Pk must preserve 〈Iz

k(t)〉 and we
choose it to have the form Pk = ρe(0)Tre ⊗ Pdk

⊗

l 6=k ρIl
(0)TrIl

where Pdk

projects onto the diagonal in the subspace of nuclear spin k and is defined as
PdkO =

∑

s=↑,↓ |sk〉 〈sk| 〈sk| O |sk〉. Further, Q = 1 − Pk. In a standard Born
approximation and using the same initial conditions as above, i.e., a product
state and no transverse coherence in the nuclear spin system, we obtain the
following integro-differential equation for 〈Iz

k(t)〉

〈İz
k(t)〉 = − A2

k

8ω2

∫ t

0

dτ
∑

l,l 6=k

A2
l cos

[τ

2
(Ak − Al)

]

(〈Iz
k(t− τ)〉 − 〈Iz

l (0)〉). (4.40)

The Born approximation goes to order L2
V in the expansion of the self-energy.

Higher-order corrections in LV are estimated to give contributions to the right-
hand side of Eq. (4.40) that are suppressed by a factor (A/ω)2. We expect
the results of this section to be valid at least for ω ≫ A, although it could in
principle happen that (as in the case of the decay of 〈Sz(t)〉 [46]) the result
for the stationary value has a larger regime of validity. On the other hand, it
can not be generally excluded that higher-order contributions could dominate
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at sufficiently long times. Integrating Eq. (4.40) we find the formal solution

〈Iz
k(t)〉 = 〈Iz

k(0)〉 − A2

ω2

α2
k

8

∫ t

0

dt′
∫ t′

0

dτ
∑

l,l 6=k

A2
l

× cos
[τ

2
(Ak − Al)

]

(〈Iz
k(t′ − τ)〉 − 〈Iz

l (0)〉).
(4.41)

This shows that 〈Iz
k(t)〉 = 〈Iz

k(0)〉 + O((A/ω)2) and we may thus iterate this
equation and replace 〈Iz

k(t′ − τ)〉 in the integral by 〈Iz
k(0)〉. This implies, up

to corrections of O((A/ω)4),

〈Iz
k(t)〉 = 〈Iz

k(0)〉 − A2
k

16ω2

∑

l,l 6=k

A2
l (fk − fl)

∫ t

0

dt′
∫ t′

0

dτ cos
[τ

2
(Ak −Al)

]

.

(4.42)
Performing the integrals and summing over the 〈Iz

k(t)〉 weighted by their cou-
pling constants Ak, we recover the Dyson series result in Eq. (4.35). This
shows that the Dyson series expansion gives the leading-order contribution in
A/ω.

For the analytical solution of Eq. (4.40) in the stationary limit we perform
a Laplace transformation, solve the resulting equation in Laplace space, and
calculate the residue of the pole at s = 0 which yields (up to the recurrence
time)

〈Iz
k〉stat = lim

T→∞

1

T

∫ T

0

〈Iz
k(t)〉dt = lim

s→0
s〈Iz

k(s)〉

=
1

Zk

∑

l

Pk(l)〈Iz
l (t = 0)〉, (4.43)

with Zk =
∑

l Pk(l). We see that 〈Iz
k〉stat is determined by weighting the

neighboring 〈Iz
l (t = 0)〉 with the probability distribution Pk(l)/Zk, which is

explicitly given by

Pk(l) =

{

A2
l /(Ak −Al)

2 : l 6= k,

2ω2/A2
k : l = k.

(4.44)

We point out that 〈Iz
k〉stat can be either smaller or larger than 〈Iz

l (t = 0)〉 and
that

∑

k〈Iz
k〉stat =

∑

k〈Iz
l (t = 0)〉 since the total spin is a conserved quantity.

Again expanding the result in Eq.(4.43) to leading order in A/ω and summing
over the nuclear spins weighted by their coupling constants Ak, we recover the
same result found in the Dyson series calculation in Eq. (4.38). Intuitively
one would expect a decay even at high fields (although a very slow one) to
a state with uniform polarization. The fact that our calculation shows no
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such decay suggests that the Knight-field gradient, i.e., the gradient in the
additional effective magnetic field seen by the nuclei, due to the presence of
the electron, is strong enough to suppress such a decay if the flip-flop terms
are sufficiently suppressed. Applying a large magnetic field thus seems to be
an efficient strategy to prevent the Overhauser field from decaying.

As a side remark, we would like to point out that in this regime of only
partial decay, repeated measurements on the Overhauser field can actually en-
hance the decay of 〈hz(t)〉. This occurs when the measurements are performed
at intervals longer than the decay time to the stationary value (τc = N/A,
as discussed in Sec. 4.5). Performing a projective measurement at a time
t > τc resets the initial condition and thus again a small decay occurs. Re-
peating these measurements at intervals longer than τc thus allows for a decay
of 〈hz(t)〉 to zero.

4.7 Conclusion

We have studied the dynamics of the Overhauser field generated by the nuclear
spins surrounding a bound electron. We focused our analysis on the effect of
the electron-mediated interaction between nuclei due to the hyperfine inter-
action. At short times we find a quadratic initial decay of the Overhauser
field mean value 〈hz(t)〉 on a timescale τe = N3/2ω/A2. Performing repeated
strong measurements on hz leads to a Zeno effect with the decay changing from
quadratic to linear, with a timescale that is prolonged by a factor τe/τm, where
τm is the time between consecutive measurements. In Secs. 4.5 and 4.6 we have
addressed the long-time decay of 〈hz(t)〉 using a Dyson series expansion and
a generalized master equation approach. Both show that 〈hz(t)〉 only decays
by a fraction of O(1/N) for a sufficiently smooth polarization distribution and
large magnetic field.

Overall, the strategy to preserve the Overhauser field contains two tools.
The first is to apply a strong external magnetic field (ω ≫ A) which limits
the decay to a fraction of O(1/N). In case such a strong magnetic field is not
desirable or achievable, the second tool is to make use of the Zeno effect and
perform repeated projective measurements on the Overhauser field leading to
a slow-down of the decay.

It remains a subject of further study beyond the scope of this work whether,
and on what timescale, the combination of electron-mediated interaction and
direct dipole-dipole interaction may lead to a full decay of the Overhauser field.
Another interesting question concerns the distribution of nuclear polarization
within a quantum dot or defect center and its dependence on the method that
is used to polarize the system.



Appendix A

Drift in δhz

In addition to spin diffusion, driven by the nuclear dipole-dipole interaction,
there may also be a change in δhz due to corrections to the projected effective
Hamiltonian considered here (see Ref. [50], Appendix B for details). After
tracing out the electron pseudo–spin in state ρS, these correction terms give
rise to an electron-mediated nuclear spin-spin interaction which, in general,
takes the form of an anisotropic (XYZ) Heisenberg interaction

Hnn = TrS{ρSH} =
∑

i,j,α={x,y,z}
Jα

ijI
α
i I

α
j . (A.1)

Here, the indices i and j run over all nuclear spin sites.
We use the corrections to leading order in the inverse Zeeman splitting 1/ǫz

(ǫz = gµBB) given in Ref. [50]. This gives the typical value of the exchange
constants

∣

∣Jα
ij

∣

∣ ∼ A2/N2ǫz. Assuming an unpolarized nuclear spin state, each
nuclear spin will therefore precess in an effective mean field generated by all
other spins in the dot of typical magnitude

heff ∼
√
N
∣

∣Jα
ij

∣

∣ ∼ A2/N
3
2 ǫz. (A.2)

This effective field will result in precession of the nuclear spins about an arbi-
trary angle (and hence, may change the value of δhz) on a time scale

τp ∼ N
3
2 ǫz/A

2 ∼ 10−2 s, (A.3)

where we have assumed N = 106 nuclear spins within the quantum dot, and
ǫz/gµB = A/gµB ≃ 3.5 T for the time estimate. This is only a worst–case
estimate, which neglects the effects, e.g., of a Knight-shift gradient (due to
strong confinement of the electron), which may further weaken the dynamical
effect discussed here. We expect the dipolar nuclear spin diffusion time to be
the limiting time scale for nuclear spin dynamics, in light of experiments on
diffusion near donor impurities in GaAs [95]. If the effect giving rise to τp in
Eq. (A.3) were significant, it could be further suppressed by choosing a larger
quantum dot size or stronger magnetic field, thus allowing many electron spin
measurements on the time scale of variation of δhz.

67





Appendix B

Measurement

In this appendix we describe how a single measurement of the two–electron
system affects the nuclear spin state. We give the analytical expression for the
diagonal elements of the nuclear spin density operator after a measurement.

At t=0 the system is described by the following density operator

ρ(0) = ρe(0) ⊗ ρI(0) = |+〉 〈+| ⊗
∑

i

pi

∣

∣ψi
I

〉 〈

ψi
I

∣

∣ , (B.1)

with nuclear spin state |ψi
I〉 =

∑

n a
i
n |n〉. The Hamiltonian H0 of Eq.(2.1)

acts on the the nuclear–spin system as H0 |n〉 = Hn |n〉, where in Hn the
operator δhz has been replaced by δhz

n (because δhz |n〉 = δhz
n |n〉). Since

[H0, δh
z] = 0, only the diagonal elements of the nuclear density operator ρI (in

the basis of δhz) enter in matrix elements for operators acting only on the two–
electron system. As described in Section 2.2.1, these diagonal elements ρI(n) =
ρI(n, 0) = 〈n|Tre{ρ(0)} |n〉 describe a continuous Gaussian distribution in the
continuum limit. The trace over the electron system is defined as Treρ(t) =
〈+| ρ(t) |+〉 + 〈−| ρ(t) |−〉 and for ρI(n, 0) we have

ρI(n, 0) =
∑

i

pi|ai
n|2. (B.2)

The time evolution operators U(t) and Un(t) are defined through iU̇(t) =
H0(t)U(t) and iU̇n(t) = Hn(t)Un(t) and thus the density operator ρ(0) evolves
under the Hamiltonian H0 as

ρ(t) = U(t)ρ(0)U †(t)

= U(t)

(

ρe(0) ⊗
∑

i

∑

n,l

pia
i
na

i
l
∗ |n〉 〈l|

)

U †(t)

=
∑

n,l

(

Un(t)ρe(0)U †
l (t) ⊗

∑

i

pia
i
na

i
l
∗ |n〉 〈l|

)

.

(B.3)
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At time tm a measurement in the basis of |+〉 and |−〉 is performed on one
single two-electron system coupled to nuclear spins. Since the outcome of this
measurement is known, the state of the system after the measurement is1 (the
result depends on whether |+〉 or |−〉 was measured)

ρ(1,±)(tm) =
|±〉 〈±| ρ(tm) |±〉 〈±|

P±(tm)

=
∑

n,l

(

|±〉 〈±|Un(tm)ρe(0)U †
l (tm) |±〉 〈±|

⊗
∑

i

pia
i
na

i
l
∗ |n〉 〈l|

) 1

P±(tm)
,

(B.4)

with

P±(tm) = TrITre{|±〉 〈±| ρ(tm)}

=
∑

i

∑

n

1

2
(1 ± 〈τ z(tm)〉n) pi|ai

n|2,

(B.5)

where TrIA =
∑

n 〈n|A |n〉 and 〈τ z(t)〉n is given in Eq.(2.4). Here, P±(tm) is
the probability to measure |±〉 at time tm. We are mainly interested in the
diagonal elements of the nuclear density operator ρI after the measurement.

ρ
(1,±)
I (n, tm) = 〈n|Treρ

(1,±)(tm) |n〉

=
ρI(n, 0)

P±(tm)
〈±|Un(tm)ρe(0)U †

n(tm) |±〉

=
ρI(n, 0)

P±(tm)

1

2
(1 ± 〈τ z(tm)〉n) . (B.6)

Using Eq.(2.4) we find

ρ
(1,+)
I (n, tm) =

ρI(n, 0)

P+(tm)

1

2

(

2(Ωn − ω)2

(Ωn − ω)2 + (j/2)2
+

(j/2)2(1 + cos(ω′tm))

(Ωn − ω)2 + (j/2)2

)

(B.7)
and

ρ
(1,−)
I (n, tm) =

ρI(n, 0)

P−(tm)

1

2

(j/2)2(1 − cos(ω′tm))

(Ωn − ω)2 + (j/2)2
, (B.8)

1The measurement performed at tm is not sufficient to distinguish the different states
∣

∣ψi

I

〉

. This is because it is a measurement in the two–electron system and it only has an
effect on the nuclear spin system in a way that some eigenstates |n〉 gain weight and some
loose. This happens for all states

∣

∣ψi

I

〉

in the same way and thus from such a measurement

we cannot tell into which of the states
∣

∣ψi

I

〉

the system has collapsed.
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where ω′ is given in Eq.(2.5) and depends on the eigenvalue δhz
n of the nuclear

spin eigenstate through Ωn.
Parenthetically, we note that in the case (not described in this article)

where the measurement is performed on an ensemble of many different double
quantum dots, the state of the ensemble after the measurement is [74]

ρ(1)
ens(tm) =

∑

n,l

(

|+〉 〈+|Un(tm)ρe(0)U †
l (tm) |+〉 〈+|

+ |−〉 〈−|Un(tm)ρe(0)U †
l (tm) |+〉 〈+|

)

⊗
∑

i

pia
i
na

i
l

∗ |n〉 〈l| , (B.9)

and the nuclear–spin distribution has not changed. If a complete measurement
of the Rabi–resonance lineshape would be performed on an ensemble of double
dots, the result would be the Voigt profile described in Sec. 2.2.1.





Appendix C

Fit procedures

Here, we describe the exact procedure of the two-dimensional fit from which the
phase shift φ = (0.23± 0.01) was obtained. The fit function is a simplification
of Podd(t) (Eq. (4)). The first simplification is the exclusion of the 1/t-term
because its contribution is negligible within the fit range of t = 100 − 900
ns. Second, both expressions for C and 0.5 − 2C2 are approximated as being
linear in b, which is justified for the regime we consider (Is = 3.6−6.3 mA), as
can be seen in Fig. C.1. With these simplifications, we obtain the expression
ymodel = a1 + Isa2 + (a3 + Isa4)cos(

1
2
KIsgµBt/~ + φπ)/

√
t, where a1,2,3,4, K

and φ are fit parameters. The Rabi frequency ωRabi is given by 1
2
KIsgµB/~,

with Is the current through the stripline which is known in the experiment.
The constant factor K = Bac/Is is not known in the experiment but can be
obtained from the fit. The behavior of ymodel −ydata around the optimal values
for the fit parameters is seen in Fig. C.2. As a cross-check, we carried out a
fit for each trace of the data in Fig. 3a of the main text (varying burst time,
constant Bac) with a damped cosine a1 − a2 cos(1

2
KIsgµBt/~ +φπ)/

√
t, where

a1,2 and φ are fit parameters, and K is kept at a constant value. This fit is
carried out for a wide range of values for K and Is. The best-fit values for φ
obtained for different Is are averaged and plotted as a function of K in Fig.
C.3. (blue curve), together with the spread in φ (gray dotted lines) and the
fit quality (green curve). The figure shows that the best fit is obtained for
φ = 0.23π, the same value we found from the two-dimensional fit.
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Figure C.1: C and 0.5 − 2C2 as a function of Is, with σ = gµB(1.4 mT) and
b = gµBKIs. K = 0.56 mT/mA for the curves shown here, but the curves
remain linear as well for K=0.5-0.6 mT/mA.
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Figure C.2: Phase shift and fit quality for a range of current-to-field conversion
factors K. Values obtained from a fit with a damped cosine to the single
traces (constant Is) of the data set shown in Fig. 3a of the main text, and
subsequently averaged over all traces for the range t = 100 − 900 ns and
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ȳ = 1
n

∑
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/NtNIs, for a wide range of K

and φ. We sum over the range t = 100 − 900 ns and Is =3.6-6.3 mA.



Appendix D

Asymptotic expansion

Here we give steps and additional justification leading to the asymptotic ex-
pansion given in Eq. (3) of the main text. We consider averaging Eq. (2)
from the main text over a quasicontinuous distribution of hz values for the
case where δω = hz − h0 (with the replacement δω → x):

P↑(t) =

∫ ∞

−∞
dxD(x)P↑,x(t). (D.1)

As a consequence of the central-limit theorem, for a large number of nuclear
spins in a random unpolarized state, the distribution function D(x) is well-
approximated by a Gaussian with standard deviation σ centered at x = 0:

D(x) =
1√
2πσ

e−
x2

2σ2 . (D.2)

Inserting Eq. (D.2) into Eq. (D.1) gives the sum of a time-independent part,
which can be evaluated exactly, and a time-dependent interference term I(t):

P↑(t) =
1

2
+ C + I(t). (D.3)

Here, C is given following Eq. (3) of the main text. With the change of
variables u =

(√
b2 + 4x2 − b

)

/2σ, and using the fact that the integrand is an

even function of x, the interference term becomes I(t) = ReĨ(t), where

Ĩ(t) =

√

b

8πσ
eibt/2

∫ ∞

0

du
exp

(

−u2

2
− bu

2σ
+ iσtu

)

√
u
√

1 + σu
b

(

1 + 2σu
b

) . (D.4)

When σt≫ 1, the time dependence of Ĩ(t) is controlled by the region u . 1/σt.
The integrand simplifies considerably for σu/b ≪ 1, which coincides with
σt≫ 1 for

u .
1

σt
≪ b

σ
, t≫ 1

σ
. (D.5)
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Equivalently, for

t > max

(

1

b
,
1

σ

)

, (D.6)

we expand the integrand for u < min(1, b/σ):

Ĩ(t) =

√

b

8πσ
eibt/2

∫ ∞

0

du
exp (−λu+ O(u2))√

u

(

1 + O
(σu

b

))

, λ =
b

2σ
− iσt.

(D.7)
Neglecting corrections of order u2 in the exponential and order σu/b in the
integrand prefactor, the remaining integral can be evaluated easily, giving

I(t) ∼ cos [bt/2 + arctan(t/τ)/2]

2
[

1 + (t/τ)2]1/4
, τ = b/2σ2, (D.8)

t > max (1/b, 1/σ) . (D.9)

Eq. (D.8) is valid for the time scale indicated for an arbitrary ratio of b/2σ.
Due to the exponential cutoff at u . 2σ/b in Eq. (D.7), Eq. (D.8) is actually
valid for all times in the limit b/2σ ≫ 1. Expanding Eq. (D.8) to leading
order for t/τ ≫ 1 gives the result in Eq. (3) of the main text. Higher-order
contributions to the long-time expansion of Eq. (D.8) and contributions due
to corrections of order σu/b in Eq. (D.7) both lead to more rapidly decaying
behavior of order ∼ 1/t3/2. The reason for the different phase shift here (π/4)
relative to that found in Ref. [50] (3π/4) is that here the fluctuations are lon-

gitudinal, while in Ref. [50] the fluctuations are along the transverse direction.
This leads to a different integrand in Eq. (S4) and thus to a different value for
the phase shift and decay power.

Since the long-time behavior of I(t) is dominated by the form of the inte-
grand near x = 0, the same result can be found after replacing the Gaussian
distribution function by any other distribution function D̃(x) which is analytic
and has a single peak at x = 0. Specifically,

D̃(x) = D̃(0) exp{− x2

2σ2
+ O(x3)}, (D.10)

1

σ2
= − d2 ln D̃(x)

dx2

∣

∣

∣

∣

∣

x=0

. (D.11)

Thus, the universal form of the long-time power-law decay and phase shift are
relatively insensitive to the specific shape of the distribution function.



Appendix E

Estimation of dipole-dipole

contribution

In this appendix we estimate the timescale arising from the direct secular
(terms conserving Iz,tot =

∑

k I
z
k) dipole-dipole interaction in the short-time

expansion of the Overhauser field mean value 〈hz(t)〉. This gives us the range
of validity of our calculation in the main text that only took into account
the electron-mediated interaction between nuclei. Let us thus consider the
situation where the external magnetic field is very high, such that the electron-
mediated flip-flop terms are fully suppressed. In this case the Hamiltonian has
the form Hdd = H0,dd + Vdd, with

H0,dd = ǫzSz + ηz

∑

k

Iz
k + Szhz − 2

∑

k 6=l

bklI
z
kI

z
l ,

(E.1)

Vdd =
∑

k 6=l

bklI
+
k I

−
l . (E.2)

Here, bkl = γ2
I (3 cos2(θkl) − 1)/4r3

kl, with θkl being the angle between a vector
from nucleus k to nucleus l and the z-axis and rkl being the distance between
the two nuclei [98]. Further, γI is the nuclear gyromagnetic ratio. For the
short-time expansion, only the off-diagonal terms are relevant, since [hz, H0] =
[ρ(0), H0] = 0. These off-diagonal terms in the case of the electron-mediated
interaction are Sz

∑

k 6=lAkAlI
+
k I

−
l /2ω (see Eq. (4.11)). Replacing AkAl/2ω by

bkl in the result for the short-time expansion in Eq.(4.17) and also taking into
account the factor of 1/4 that comes from S2

z in the electron-mediated case we
find

〈hz(t)〉dip−dip = 〈hz(0)〉 − t2

4

∑

kl

b2kl(Ak − Al)(fk − fl). (E.3)

To estimate, we restrict the sum to nearest neighbors as the bkl fall off with
the third power of the distance between the two nuclei. Assuming fk =
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(Ak/A0)
N/Np we find up to corrections of O(t4)

〈hz(t)〉dip−dip

〈hz(0)〉 ≈ 1 − t2

τ 2
d

, τd =

√

NpN

b
, (E.4)

with b being the nearest-neighbor dipole-dipole coupling. For GaAs we have
b ∼ 103s−1 (with γI/2π ≈ 10 MHz/T [142]). For NNp ≫ 1 we have τd ≫
10−3s1 In the magnetic field range shown in Table 4.1 we thus have τd ≫ τe/

√
c,

which justifies neglecting the direct dipole-dipole coupling in the short-time
expansion.

1A rough estimate suggests that for I > 1/2 the timescales given need to be multiplied
by a factor 1/(2I)2.



Appendix F

Measurement accuracy

The description of the Zeno effect in Sec. 4.2 relied on the assumption that the
measurements on hz set all off-diagonal elements of the density matrix to zero.
This assumption requires on one hand a perfect measurement accuracy for hz

(we discuss deviations from that below), but on the other hand it also requires
the hz-eigenstates to be non-degenerate. For non-degenerate hz eigenstates
a measurement of hz fully determines the polarization distribution fk and
we may thus write ρI after the measurement again as a direct product with
ρIk

(τm) = 1/2 + fk(τm)Iz
k . After the measurement, we thus again have the

same time evolution for 〈hz(t)〉 as given in Eq. (4.17), but with fk replaced
by fk(τm). Iterating Eq. (4.17) for the case of m consecutive measurements at
intervals τm one obtains Eq. (4.3).

Instead of the idealized assumption of a projective measurement we now
allow for imperfect measurements. To describe these measurements we use a
so-called POVM (positive operator valued measure) [74]. In a general POVM
measurement the density matrix changes according to [74]

ρ→ ρ′ =

∫

√

Fyρ
√

Fydy, (F.1)

when averaging over all possible measurement outcomes y. The probability to
measure outcome y is given by P (y) = Tr{ρFy} and the condition

∫

dyFy = 1
ensures that the probabilities sum to unity. We consider the nuclear density
matrix ρI in a basis of hz eigenstates |n〉 with hz |n〉 = hn

z |n〉. We denote the
matrix elements of ρI by ρI(n,m) = 〈n| ρI |m〉. For the following description
we assume that the diagonal of the nuclear spin density matrix before the
measurement is Gaussian distributed around its mean value 〈hz〉 with a width
σ, i.e.,

ρI(n, n) =
1√
2πσ

exp

[

−(hn
z − 〈hz〉)2

2σ2

]

. (F.2)

For an unpolarized equilibrium (infinite temperature) state, the width is σ ∝
A/

√
N . Here, σ can take any value. Let us now consider a measurement that
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determines the value of hz up to an accuracy η with a Gaussian lineshape. We
refer to η as the measurement accuracy. If the outcome of the measurement is
〈hz〉 + y, the diagonal of the nuclear spin density matrix after a measurement
has the form

ρ′I(n, n; y) =
1√
2πη

exp

[

−(hn
z − 〈hz〉 − y)2

2η2

]

. (F.3)

Since we aim to describe measurements that at least partially project the nu-
clear spin state, we have η < σ. The POVM that describes such a measurement
is given by

Fy =
∑

n

f(n, y) |n〉 〈n| , (F.4)

with

f(n, y) =
σ

η
√

2π(σ2 − η2)
exp

[

−(hn
z − 〈hz〉 − y)2

2η2

]

× exp

[

−(hn
z − 〈hz〉)2

2σ2
− y2

2(σ2 − η2)

]

. (F.5)

We note that for η ≪ σ we have f(n, y) ≈ exp(−(hn
z − 〈hz〉 − y)2/2η2)/

√
2πη.

With f(n, y), the operators Fy are fully determined and it is straightforward
to calculate the probability for obtaining the measurement result 〈hz〉 + y

P (y) =
1

√

2π(σ2 − η2)
exp

[

− y2

2(σ2 − η2)

]

. (F.6)

Clearly, the probabilities add up to one (
∫

P (y)dy = 1) as they should. Also,
when weighting the ρ′I(n, n; y) with their probabilities for occurring, we find
∫

ρ′I(n, n; y)P (y)dy = ρI(n, n). Using Eq. (F.1) we thus find for the matrix
elements after a measurement, when averaging over all possible measurement
outcomes

ρI(n,m) → ρ′I(n,m) = ρI(n,m)

∫

√

f(n, y)f(m, y)dy, (F.7)

with (for η ≪ σ)

f(n, y) ≈ 1√
2πη

exp

[

−(hn
z − hz0 − y)2

2η2

]

. (F.8)

Again, for η ≪ σ, we thus have

ρ′I(n,m) = ρI(n,m) exp

[

−(hn
z − hm

z )2

8η2

]

. (F.9)
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To reduce the off-diagonal elements, the measurement accuracy must be better
than the difference in eigenvalues. In the limit η → 0 a projective measure-
ment is recovered, which sets all off-diagonal elements to zero. Up to t2 in
the short-time expansion, only off-diagonal elements between states that dif-
fer at most by two flip-flops can become non-zero. Thus, to have at least a
partial Zeno effect, [132] resulting from the off-diagonal elements being par-
tially reduced, the requirement on the measurement accuracy is η . |hn

z − hm
z |

with |n〉 = I+
k I

−
l I

+
p I

−
q |m〉. For coupling constants Ak = Ae−k/N/N , we have

typically hn
z − hm

z ∝ A/N and the minimally hn
z − hm

z & A/N2 . Besides
suppressing the off-diagonal elements of ρI through a measurement, there are
also “natural” decoherence mechanisms, such as inhomogeneous quadrupolar
splittings, electron-phonon coupling, or spin-lattice relaxation, that can lead
to a reduction of the off-diagonal elements of ρI .

As mentioned earlier, there are several proposals [51, 72, 73] to implement
a projective measurement of hz. All of these proposed techniques rely on
the fact that the dynamics of the electron spins confined in the dots depend
on the Overhauser field. Thus, a measurement of the electron-spin dynamics
allows one to indirectly measure hz. The proposal in Ref. [73] is designed for
optically active self-assembled quantum dots and makes use of an hz-dependent
frequency shift in an exciton transition. Numerical calculations for this method
[73] show that an increase of the electron spin coherence time by a factor
100 is achievable with a preparation time of 10µs, which corresponds to a
measurement accuracy of η = σ0/100 = A/100

√
N . The proposal in Ref. [51]

considers gate-defined double quantum dots, like the ones in Refs. [28, 47,
48, 90]. The measurements of electron-spin dynamics are achieved through
spin-to-charge conversion and detection of the charge by a nearby QPC. An
experimental recipe in the context of the setup in Ref. [28] is presented in
Ref. [75]. The narrowing (measurement accuracy) achievable with this method
essentially relies on a good time-resolution of the QPC charge detection which
by now has reached a few hundred nanoseconds [143].

An alternative read-out scheme is to use a double dot in the spin-blockade
regime [30], where one spin, say the one in the left dot, is manipulated, while
the one in the right dot is only needed for the readout. The system is initialized
to the triplet |↑↑〉 which is spin-blocked since the triplet T (0, 2) with two elec-
trons on the right dot is energetically not accessible. The |↓↑〉-state, however,
may tunnel to the S(0, 2) singlet and from there one electron can tunnel to the
right lead if energetically allowed, leaving the two-electron system in a (0, 1)-
state. To describe these measurements we again use a set of POVM operators.
There are two possible measurement outcomes which we denote t (tunneling)
and n (no tunneling). The operators corresponding to these measurement re-
sults are Et = ǫ↓ |↓〉 〈↓| + (1 − ǫ↑) |↑〉 〈↑| and En = (1 − ǫ↓) |↓〉 〈↓| + ǫ↑ |↑〉 〈↑|.
Here, ǫ↓ is the probability to have measurement result t for the |↓〉-state, while
ǫ↑ is the probability to have result n for the |↑〉-state. The efficiency of this
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read-out scheme generally depends on a large separation of the tunneling rates
for the |↑〉 state and the |↓〉 state. If such a large separation, i.e., a good
spin-blockade, can be achieved, this read-out method offers the potential for
rapid consecutive electron-spin measurements and thus also for accurate mea-
surements of the Overhauser field. A detailed analysis of this read-out scheme
has, to our knowledge, not been undertaken yet and is beyond the scope of
this work.
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