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Summary

This Thesis is devoted to the circuit theory of mesoscopic transport. The empha-
sis is put on its extension which provides a method to obtain the complete statistics
of the transferred charge. To accomplish this task, several topics have to be com-
bined: a mathematical description of the charge transfer statistics, the scattering
approach to mesoscopic transport, and the nonequilibrium Keldysh-Green’s function
technique. Although the underlying theory is rather complex, the circuit-theory rules
which are obtained at the end are in fact very simple. They resemble Kirchhoft’s
laws for conventional macroscopic conductors, with currents and voltages replaced
by their mesoscopic counterparts. An important difference is that the mesoscopic
“currents” and “voltages” acquire matrix structure, and that the “current”-“voltage”
relation is in general nonlinear. The matrix structure originates from the Keldysh-
Green’s function formalism which is needed to account for the many-body quantum
state of the electrons in the system. The circuit theory is applicable to multiterminal
mesoscopic structures with terminals of different types, e.g., normal metals, super-
conductors, and ferromagnets. The junctions within the structure can be different
also, e.g., transparent quantum point contacts, tunnel barriers, disordered interfaces,
diffusive wires, etc.

The Thesis is organized as follows. In Chapter I, we provide introductory in-
formation on noise. We discuss early experiments on noise in vacuum tubes and
the Schottky result which relates the spectral density of current fluctuations and
the average current. We summarize some important results on noise in mesoscopic
conductors which can be obtained within circuit theory. Chapters II and III are
devoted to theoretical prerequisites needed for the circuit theory. In Chapter II, we
define the notion of the cumulant generating function and its relation to statisti-
cally independent processes. In Chapter III, we introduce the scattering approach
to mesoscopic transport and the method of Keldysh-Green’s functions. The circuit
theory is presented in Chapter IV focusing on the extension which provides com-
plete information on the charge transfer statistics. The method is illustrated by
calculation of the transmission distribution in 2-terminal junctions, and by studying
current cross correlations in a superconductor-beam splitter geometry. In Chapters
V — VII we apply the general template of the circuit theory and obtain the charge
transfer statistics in several physical systems of interest: a cavity coupled to a super-
conductor and a normal terminal, several junctions in series, and a voltage driven
mesoscopic junction. The knowledge of the charge transfer statistics enables us to
identify the elementary charge transfer processes in these systems. The conclusion
is given in Chapter VIII.
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CHAPTER 1

Charge fluctuations in electrical conductors

§ 1. Noise in vacuum tubes

The current I(t) in electrical conductors fluctuates due to the stochastic na-
ture of electron emission and transport. These fluctuations constitute a stochastic
process with I(¢) being a random variable at each instant of time. An ensemble of
identical physical systems prepared in the same macroscopic state at the initial time
to will result in different realizations of the current I(¢). The quantity measured
experimentally is the average value (I(t)) where (- --) denotes statistical averaging.
The averaging is present in any measuring device which interacts with the system
during a finite measurement time. In the ideal case, the back action of the classical
measurement apparatus on the system is negligible. The measurement time should
be small with respect to the characteristic time scale on which the statistics of I(t)
changes due to the time evolution of the system, but large enough to provide suffi-
cient sampling of I(¢). In this case the time averaging during the measurement is
the same as the statistical averaging of I(t) over the corresponding probability dis-
tribution. This assumption, called the ergodic hypothesis, is inherent in statistical
physics [1].

Current fluctuations can be characterized by the correlation function

(AI(t +T)AL(L) | (1.1)

where AI(t) = I(t) — (I(t)) is the deviation of the current with respect to the
average value.! In the stationary state, the average current does not depend on
time, while the correlation function depends only on the time difference 7 and not
on the overall time shift ¢. In this case the correlation function is an even function
of i (AI(t+7)AI(t)) = (AI(t —7)AI(t)). It is convenient to analyze current
fluctuations in the frequency domain, in terms of the Fourier transform S;(v) of the
correlation function:

~—

[e.e]

(AI(t + 7)AI(E)) = / dv Sy (v) e=i27, (1.2)

—00

The Fourier transform S;(v) is real and even function of frequency, S;(v) = S;(—v).
For 7 = 0 we obtain

(AI()]?) = (12) — ()2 = /_OO dv S;(v) = 2/000 dv Si(v). (1.3)

Therefore, S;(v) represents the spectral density of current fluctuations at any instant
of time. [Equation (1.3) is independent of ¢.]

1) Here we assume that the system 1is classical. The correlation function for a quantum system
is defined as a symmetrized product (1/2)(AI(t + 7)AI(t) + AI(t)AI(t + 7)) where I(t) is the
current operator and the average is taken with respect to a quantum state.

7



8 I. Charge fluctuations in electrical conductors

The first theoretical study of current fluctuations in vacuum tubes was carried
out by Schottky in 1918 [2]. The assumption used by Schottky is that the elec-
tron transfer events are rare and uncorrelated, in which case the total number of
transmitted electrons is distributed according to the Poisson distribution

P(N) = U]VV—>|N e, (1.4)

Schottky found that the spectral density of current fluctuations is independent of
frequency in a wide frequency range and is proportional to the unit charge e and the
mean electric current (I):

St = le{D)]. (1.5)
In this case the current fluctuations at different times are uncorrelated (white noise).
The variance of current fluctuations is proportional to the average current and the
bandwidth, (I?) —(I)? = 2]e(I)|Av. Here Av includes the positive frequencies only.

An immediate consequence of the Schottky’s formula, Eq. (1.5), is the possibility
to measure the electron charge by measuring the average current and the dissipated
power which is proportional to (7?). This is an altogether different and independent
approach than the one used by Millikan in the oil-drop experiment [3]. The first
noise measurements in vacuum tubes have been performed by Hartmann in 1921 [4]
(see also [5]). In these experiments Hartmann observed the existence of fluctuations
and obtained values of e of the right order of magnitude. In an improved setup, Hull
and Williams obtained the correct value of e with accuracy of a few percents [6,7].
Further measurements reduced the error to less than one percent [8,9].

Already these early experiments showed that the noise in vacuum tubes is affected
by the parameters of the system, such as the anode voltage and the frequency of
the detection circuit. The agreement with the Schottky theory is achieved only at
large enough anode voltages when the anode current saturates. In this case there
is no space charge accumulated in the tube. This results in a linear decrease of the
potential between the electrodes with all electrons emitted by the cathode being
collected at the anode. At lower anode voltages, the space charge piles up in the
vicinity of cathode, where the emitted electrons are attracted back by the ionized
atoms. As a result, not all emitted electrons reach the anode and the noise is
suppressed below the Schottky value.

Concerning the frequency dependence, all experiments which confirmed the result
of Schottky have been performed at frequencies above 100kHz [6-9]. In an early
experiment by Johnson [5], the frequency has been varied in the range 8Hz — 6kHz.
Johnson found a noise result that was modified 0.7 — 100 times with respect to
the Schottky value, depending on the frequency and the material of the cathode.
In general, as the frequency is decreased, the noise spectral density increases as
Sr o< 1/v* (0 < a < 2) which is known as the flicker or 1/f noise [10]. Johnson
attributed the effect to irregular temporal changes in the cathode emissivity which
cause the emission of electrons to deviate from a strictly random one. At higher
frequencies these changes are not effective and the electron emission is random.
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§ 2. Thermal noise

In contrast to the noise in vacuum tubes which is proportional to the average
current, there exists another type of electrical noise which is present even in con-
ductors in thermal equilibrium with no voltage applied and no current flowing. This
noise has been experimentally observed by Johnson [11] and explained theoretically
by Nyquist [12] and is called thermal or Johnson-Nyquist noise. The source of this
noise is thermal fluctuation of the potential difference across a conductor. Since
there is no net charge transfer, these fluctuations have a vanishing mean but non-
zero variance. The spectral densities of the thermal current and voltage fluctuations
are given by [1]

o hv hv

Slq(V) = QG(V) (7 + ehl//kB—Te_l) (210,)
o hv hv

qu(V) = QR(I/) (7 + ehl//kB—Te_l) . (2.1())

Here T, is the temperature of the conductor, G(v) = Re[l/Z(v)] is the conductance,
R(v) = Re[Z(v)] is the resistance, and Z(v) is the impedance. At room temperature
and frequencies up to a few terahertz, hlv|/kpT. < 1, the quantum effects are
negligible and the spectrum of thermal fluctuations reduces to

SY(v) = 2%pT.G(v),  SS(v) = 2kpT.R(v). (2.2)

For example, in a conductor which consists of an ohmic resistance R, and an
inductance Ly in series, the spectral density of current fluctuations is given by
S (v) = 2kpT.Ry/|R: + (2mLov)?]. From Eq. (1.3) we obtain Lo(I?)/2 = kpT,/2,
i.e., the current fluctuates in such a way that the average energy stored in the system
equals the thermal energy quantum. Similarly, for the conductor which consists of an
ohmic resistance Ry and a capacitance Cy in parallel, voltage fluctuations are given
by Co(V?)/2 = kgT,/2, which is the average energy stored in the capacitor. From
the engineering point of view, identifying the sources of noise and modelling the
noise propagation in electronic circuits is important in order to ensure the stability
of operation and the quality of the output signal [13]. In practical circuit analysis,
it is convenient to model the thermal noise generated in a resistor by replacing the
noisy resistor with an ideal noiseless one in series with a noisy voltage source, or,
in parallel with a noisy current source (Fig. 1). Ideal capacitors and inductors do

(a) (b) (c)

R

R (noiseless) R I
(noisy) (noiseless) n
|4

Fig. 1: Equivalent circuits for thermal noise generated in a resistor.
A realistic resistor which generates thermal noise (a) can be replaced by an ideal
one which is noiseless in series with a noisy voltage source (b) or in parallel with
a noisy current source (c). The noise sources have white spectral densities given
by Sf,fi =2kgT.R and S?:} = 2kgT.R~'. Noise sources of different resistors in
a circuit are uncorrelated.
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not generate thermal noise but do affect the noise propagation through the circuit.
Current and voltage fluctuations at the output are calculated assuming that different
thermal noise sources are uncorrelated.

The general quantum mechanical theory of thermal fluctuations has been for-
mulated by Callen and Welton [14]. According to this theory, Eqs. (2.1) are just
a special case of a much more general relationship between thermal fluctuations of
macroscopic quantities and the dissipative response of the system upon the corre-
sponding perturbations. More details on this important result are given in § 25 in
the Appendix.

§ 3. Noise in mesoscopic conductors

The advancements in microfabrication technology and experimental techniques
over the last two decades opened a new field of research in physics — the field of
mesoscopic transport [15,16]. Mesoscopic conductors are fabricated typically by
electrostatic confinement of a 2-dimensional electron gas (2DEG) on a semiconductor
chip, with linear dimensions so small that quantum effects are pronounced. The
characteristic length scales of these systems are the coherence length l4, the energy
relaxation length [;,, the elastic mean free path [, the Fermi wavelength Ap, the
atomic Bohr radius ag, and the sample size L. At low temperatures, typically from
50mK to 4K, these structures enter the mesoscopic regime with the length scales

fulfilling
a0<<)\p§l<L<l¢§lin. (31)

The Fermi wavelength in metals is in the range Ap = 3 — 10A, i.e., of the order
of the atomic radius, which makes them difficult to bring into this regime. In the
following we briefly describe the most important effects which are visible already in
the conductance, and then discuss more recent studies of the current fluctuations in
mesoscopic conductors.

The phase coherence of mesoscopic conductors makes the quantum effects pro-
nounced. The most notable effects are the conductance quantization, the Aharonov-
Bohm oscillations of conductance, the weak localization correction, and the universal
conductance fluctuations. The conductance quantization, first observed experimen-
tally by van Wees et al. [17] and Wharam et al. [18], is the effect due to strong
lateral confinement of the electronic wave functions in a narrow constrictions of the
width comparable to the Fermi wavelength. As the width of the constriction is in-
creased, new transversal modes become propagating and the conductance increases
in steps of Gg = 2¢%/h (in spin-degenerate system). The effects of the contact
geometry on the accuracy of conductance quantization have been studied theoret-
ically in [19,20]. The Aharonov-Bohm effect [21] is the interference effect between
electronic wave functions traversing two branches of a mesoscopic ring-like structure
threaded by a magnetic flux. The phase difference acquired by the electron propa-
gating along the two arms of the ring in the presence of the external vector potential
A is given by Ap = ¢o + (e/h) § A - dl = py + 2nP/Py. Here ¢y is the phase
difference in the absence of the field, ® is the magnetic flux through the ring, and
®y = h/e is the flux quantum. The transmission probability through the system is
given by 7' =Ty + Ty + 2/T1T5 cos(po + 27D/ Dy), with T o being the transmission
probabilities of individual arms which we assumed to be single-channel conductors.
Therefore, the conductance oscillates as a function of external flux ® with period .
The Aharonov-Bohm oscillations were observed in small metallic rings of diameter
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d ~ 200 — 800nm and width W ~ 40nm by Webb et al. [22] and in rings fabricated
on semiconductor heterostructures by Timp et al. [23].

Weak localization is the effect of enhanced backscattering in coherent disordered
conductors due to constructive interference of time-reversed paths [15]. An exter-
nal magnetic field perpendicular to the sample breaks time reversal symmetry and
suppresses weak localization. Therefore, the weak localization manifests itself as
decrease of conductance of the order G = 2¢?/h in coherent samples at zero mag-
netic field. The effect is also visible in the samples of linear dimensions larger than
the phase coherence length, [, < L. In this case the conductivity decreases by
Ao = (2¢*/h)l,/W for a wire of width W < [ and by Ao = (2¢2/7h)In(l,/1) for
a 2-dimensional sample. The effect is suppressed by a magnetic field of the order
B. = h/(el}) which corresponds to one flux quantum through the largest coherent
loop of area l;. For a wire geometry, the magnetic field B. which destroys the weak
localization is larger, B, = h/(eWl,). For W ~ 40nm and [, ~ 1pm this field is of
order B, ~ 0.17T.

Universal conductance fluctuations [24,25] are characteristic to coherent samples,
in which case the transmission depends on microscopic positions of scatterers due
to interference effects. Different samples of the same geometry inevitably have a
different microscopic configuration of scatterers, which causes random conductance
fluctuations from one sample to another, with the standard deviation of the order
AG ~ Gg independent of the average conductance (G). The effect can be studied
experimentally in the same sample by changing the phase shifts by applying a mag-
netic field or by changing the Fermi wavelength by using gates to modify the electron
density. For samples larger than the phase coherence length, the conductance fluctu-
ations are reduced due to uncorrelated contributions of independent phase-coherent
parts. The reduction factor for a wire of length L and width W (W <« [, < L) is
given by (I,/L)*?.

The field of research of current fluctuations in mesoscopic conductors is very
broad. The results on noise have been reviewed by Blanter and Biittiker [26, 27].
We also mention previous reviews on noise by de Jong and Beenakker [28] and
Reznikov et al. [29]. The Keldysh approach to noise in Luttinger liquids and the
relation between noise and entanglement are discussed by Martin [30]. The book by
Kogan [31] covers a broad range of topics, including noise in superconductors and a
thorough discussion of 1/f noise. The experimental progress in measuring higher-
order current correlations is discussed by Reulet [32]. In the following we present
just a small selection of theoretical and experimental results.

The current noise power S;(r = 0) in a coherent mesoscopic junction between
two terminals is given by [33-35]

S, = 2—22 Z/dé’ (T A= f) + (1= )]+ Tu(1 = T)(fL = f2)°}. (3:2)

Here f15(&) are the electron occupation numbers in the terminals and {7, } are the
transmission probabilities of the junction. In thermal equilibrium the distributions
f; are given by the Fermi functions f;(€) = [e(6—#)/ksTe 1 1]7! with y; being the
chemical potentials and T, the electronic temperature. The energy integration in
Eq. (3.2) can be performed explicitly if the transmission probabilities 7,, do not
depend on energy in the energy range set by the applied voltage and temperature.
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After integration, the current noise power reduces to

2¢? eV
o {ﬂ2@ﬂﬁﬂul—ﬂ)Fme<y%ﬂ>—2@ﬂi} (3.3)

Sr =

n

where V' is the bias voltage (e = py + €V'). At high temperatures, kg7, > eV,

thermal fluctuations are the dominant source of noise and St reduces to the Johnson-

Nyquist expressions given by Eq. (2.2). At temperatures much smaller then the

applied bias, kT, < eV, thermal fluctuations of electron occupation numbers in

the leads give a negligible contribution with respect to the noise generated by the

partitioning of the incoming stream of electrons at the junction. The noise in this

case is due to the stochastic nature of the charge transport (shot noise). The shot
noise power is given by

2e?
shot __

This result, obtained by Biittiker [33], is the multi-channel generalization of the
single-channel formulas of Khlus [36], Lesovik [37], and Yurke and Kochanski [38].

A convenient way to quantify the shot noise in the system is to compare it to the
noise of the rare and uncorrelated electron transfers given by the Schottky formula,
Eq. (1.5). The ratio of the two is called Fano factor [39] and is given by
. S?hOt _ Zn Tn(l B Tn)

le{I)] 2 Th
Therefore, the noise is suppressed with respect to the Schottky value, which reflects
the way the electron stream is partitioned at the contact. For a tunnel junction
with low transmission probabilities 7;, < 1 in all channels, the noise coincides with
the Schottky value, ' = 1. For a completely open contact, 7,, = 1, all emitted
electrons are transferred. In this case both emission and transport are noiseless
which results in F' = 0. The noise suppression in quantum point contacts has
been studied experimentally in [40-42]. At intermediate junction transparencies, the
suppression of the shot noise depends on the distribution of transmission channels.
This information is beyond reach of the conductance measurements which reveal the
average transmission only.

In some cases transport properties of coherent conductors are universal, i.e., do
not depend on details like the geometry of the sample or the microscopic distribution
of impurities [43-45]. Examples include diffusive conductors and chaotic cavities
with a large number of transport channels. The transmission distributions in these
cases can be obtained using random matrix theory [46].

The transmission distribution of diffusive wires has been obtained by Dorokhov [47,
48] and Mello and Pichard [49]. Using this distribution, a F' = 1/3 suppression of the
noise has been predicted in the coherent case [50]. Interestingly, the same suppres-
sion is obtained in incoherent diffusive wires [51] shorter than the electron-electron
and electron-phonon scattering lengths, Iy < L < e, le—pn, using the semiclassical
Boltzmann-Langevin approach [52,53]. This suppression occurs also in arrays of
many tunnel junctions in series [52], and in arrays of many chaotic cavities con-
nected with arbitrary contacts [54]. However, the enhanced value F' = /3/4 has
been found in wires longer than the electron-electron scattering length but shorter
than the electron-phonon length, l.. < L < l._pp [55-57]. This result is also univer-
sal, i.e., it is valid not only for quasi one-dimensional diffusive wires but for arbitrary

F (3.5)
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geometries, as shown by Sukhorukov and Loss [44,45]. The difference between these
two regimes can be understood by considering the electronic distribution function
f(&,x) at a distance x from the left lead along the wire. For L < [._,p, the electrons
exhibit only elastic scattering at impurities or energy-conserving electron-electron
collisions. Therefore, the total energy of electronic subsystem within the wire is con-
served. The distribution f(&, z) has to fulfill the current and the energy conservation
conditions, Iy + I, = 0 and Ig; + Ige = 0, with the charge and the heat currents
given by

6]1 == /Oo d&€ Gl(fl - f), 6]2 = /OO d& GQ(f - fg), (36)
0 0

and

621Q1 = /OO dg 5 Gl(fl — f), 62_[@2 = /OO dg g Gg(f — fQ) (37)
0

0
Here fi(£) = [el®—#)/kBTe 1 1]71 are the Fermi distributions in the leads, the bias
voltage V' is taken into account by the shift of the chemical potential ps = py + eV,
G112 are the conductances of the junction left and right from the point x, and 7
is the electronic temperature in the leads equal to the lattice temperature. For
L < lee,le—pn, the total energy of each injected electron is conserved within the
wire. Therefore, the current and energy conservations hold for each energy slice,
which gives
1+ Gy

Taking into account that Gy o« 1/z and Gy « 1/(L — z) we obtain f(z) = fi +
(x/L)(fa — f1). The distribution f(£) is a nonequilibrium one, with two steps at
€ =y and € = po. On the other hand, for I, < L < l._pn the electrons which
traverse the wire exhibit many electron-electron collisions which thermalize the elec-
tron subsystem. Now the distribution f(€,x) is given by the Fermi distribution
with effective chemical potential p(z) and the effective electronic temperature 7. ()
which characterize the local equilibrium. From the current conservation we obtain

G + Gaopg

= 3.9
() = DL, 39)
i.e., u(x) = py + (x/L)eV. The energy conservation gives?
3 GG
kpT; (2))* = (ksT.)* + 2 (eV)?, (3.10)

72 (Gy + Go)

ie., kgTH(x) = [(kpT,)? + (3/7%)(eV)%x(L — x)/L?)"/?. Therefore, the effective
electronic temperature is larger than the lattice temperature. This is the so-called
“hot electron” regime. Since the electronic subsystem is in local equilibrium, we
can apply the model of noisy resistors described in § 2 to calculate the total noise.
We divide the wire into a large number N of resistors with resistance Ry = R/N,
where R is the total resistance. Each resistor contains a fluctuating voltage source
V; in series, with the spectral density given by Sy, = 2kpT R;. The total current
through the system is given by I = (V; + --- 4+ Vy)/R. Taking into account that
thermal fluctuations of voltages at different resistors are independent, we find S; =
(Sv, + -+ + Svy)/R?> = (2kp/R)(T}, + --- + Ty)/N. In the continuous limit we

2) The integration in Eq. (3.7) can be performed using the Sommerfeld asymptotic expansion
Jo dz g(z) /(e +1) = [ g(2)dz+ (72 /6)g' (o) + (Tn*/360)g" () + - - -, which is valid for a > 1
(see §58 in Ref. [1]).
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obtain S; = (2/R)L™! fOL kgT*(x)dx. At low lattice temperature in the leads, the

first term in Eq. (3.10) can be neglected and we find S; = (v/3/4)|e(I)|. Therefore,
the noise in the hot electron regime is due to thermal voltage fluctuations across
the wire. Unlike the usual thermal noise which is current-independent, in this case
thermal noise does depend on the current because of voltage dependence of the
effective temperature induced by heating.

The suppression of noise in diffusive wires has been studied experimentally by
several authors [58-60]. The value F' = 1/3 has been found in short wires and a
value close to F' = v/3/4 in long ones, in agreement with theoretical predictions.
In diffusive wires of length much larger than the electron-phonon scattering length,
L > I, ., the shot noise vanishes® as S§°t/|e(I)| o l._pn/L [50,56,57,61,62]. This
happens because the electrons are thermalized by phonons to the lattice temperature
T,. Therefore, macroscopic conductors exhibit current-independent thermal noise
and no shot noise. The shot noise as a function of the wire length is schematically
shown in Fig. 2.

The sample-to-sample fluctuations of the shot noise power in coherent diffusive
wires have been studied by de Jong and Beenakker [63]. These noise fluctuations
are also universal, i.e., independent of the length and geometry of the conductor.
The weak localization correction of the average noise power was also obtained. Both
the average shot noise power and the sample-to-sample fluctuations vanish for a
conductor much larger than the electron-phonon scattering length.

The transmission distribution in a chaotic cavity coupled to the leads by quantum
point contacts supporting the same number of transport channels, N; = Ny > 1, has
been obtained by Baranger and Mello [64] and Jalabert et al. [65]. The transmission
distribution in the more general case of asymmetric coupling N; # N, has been
obtained by Nazarov [66] (see also [46]). Using this distribution, the suppression of
shot noise F' = N1 N,/(N; + N,)? is obtained. For the symmetric coupling N; = N,
the suppression is F' = 1/4. The same suppression has been obtained by Blanter
and Sukhorukov [67] using the semiclassical theory with no phase coherence. The
analysis of Ref. [67] also shows how the universality of chaotic transport is broken
as the openings of the contacts are increased, in which case direct transmission from
one contact to another becomes possible.

In the following we outline the derivation of the noise suppression in a chaotic cav-
ity using the discrete circuit representation of the system. This is a simple example of
the circuit theory of mesoscopic transport, which is discussed in more detail in Chap-
ter IV. The electronic distribution function f(€) inside the cavity does not depend
on position and direction of propagation due to the chaotic dynamics which provides
good isotropization. In the absence of electron-electron and electron-phonon scatter-
ing, the distribution f(&) is the nonequilibrium one given by Eq. (3.8) with G5 =
(2¢%/h) Ny 5 being the conductances of the contacts. Since the cavity is an additional
electron reservoir, the fluctuations at different contacts are independent. Therefore,
the current noise power through the system is given by R%S; = R?Sy, + R2S7,, where
R = R; + Ry and R; and S}, are the resistances and current noise powers of individ-
ual contacts. From Eq. (3.2) we obtain S;, = [G;/(G1 + G2)]|e{I)| at T, = 0 in the
reservoirs. The total current noise power is given by S; = Fle(I)| with the Fano
factor F' = G1G4/(G1 + G2)? = N1 Ny/(Ny + Ny)?. The effect of electron heating in

3) Reference [57] predicts a different dependence S5M°t/|e(I)| oc L~2/5.



§ 3. Noise in mesoscopic conductors 15

F ! l¢ ee e-ph
| }
V3/4 t —_— -
1/3 b — Vo
0 4" 1 1 1 1 .\‘
10 10°  10* 10°  10°
L (nm)

Fig. 2: Shot noise power suppression in a diffusive wire as a function of
length. (The figure is adapted from Ref. [59].) The orders of magnitude of the
length scales I, lg, lce, and l._pn are indicated by arrows. Shot noise is present
both in coherent and in incoherent conductors smaller than the electron-phonon
scattering length. Macroscopic conductors larger than the electron-phonon
scattering length do not exhibit shot noise. Solid lines represent theoretical
predictions and dashed lines are the interpolations expected in the crossover
regions. For ly < L < l¢, the electronic subsystem in the wire is out of
equilibrium with the two-step distribution function given by Eq. (3.8). For
lee € L < lo_pn the electrons in the wire are in local equilibrium characterized
by the Fermi distribution function with the local chemical potential and the
local effective temperature given by Eqgs. (3.9) and (3.10). Notice that the
effective temperature depends on the applied bias and is increased with respect
to the lattice temperature. This is the so-called “hot electron” regime.

the cavity (lee < L < lc_pn) can be analyzed similarly. Electron-electron interac-
tions bring the electrons in the cavity in local thermal equilibrium. In this case the
distribution f(&) in the cavity is a Fermi function with the chemical potential ;1 and
the effective temperature T given by Egs. (3.9) and (3.10). From Eq. (3.2) we ob-
tain the current noise powers at contacts S;, = G;kpT, at T, = 0 in the reservoirs.
Using that the fluctuations at the contacts are independent, we obtain the total cur-
rent noise power S; = Fle(I)| with the Fano factor F' = (v/3/7)v/NiNa/ (N, + No)
which is increased with respect to the noninteracting case [28]. For a symmetric
cavity F' = 0.276 which corresponds to an increase of about 10%, much smaller than
the heating-induced increase in diffusive wires (about 30%, see Fig. 2).

Shot noise in chaotic cavities has been studied experimentally by Oberholzer
et al. [68] for different sizes of cavities and openings of the contacts. The results
for smaller cavities with large contact openings show no electron heating because
the dwell time is smaller than the electron-electron collision time. However, elec-
tron heating becomes important in larger cavities with smaller contact openings, in
agreement with theoretical predictions. The shot noise of several cavities in series
has been studied both theoretically and experimentally in [69]. The results are in
agreement with the semiclassical model which takes into account the “cavity noise”
and show clear deviations from the one-dimensional model of scattering in the chain
of barriers with no cavities present [52]. The difference is that the electron which
enters the cavity can exhibit the next scattering event at either cavity contact due
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to randomization of the direction of propagation. On the other hand, in the absence
of the cavity, the next scattering event happens at the adjacent barrier in chain. Al-
though both models give the same suppression F' = 1/3 in the limit of large chains,
they differ for the chains of finite size. Recently, the transmission distribution of an
array of cavities is series has been obtained quantum mechanically [54]. The noise
suppression using this distribution coincides with the result of [69].

The transmission distribution of a strongly disordered interface with impurities
arranged at a length scale comparable or smaller than the Fermi wavelength, L < Ag,
has been obtained by Schep and Bauer [70]. This distribution results in a noise
suppression given by F' = 1/2. Interestingly, the same distribution is obtained in
the case of two tunnel junctions in series [52, 71].

Shot noise can be used to study the crossover from stochastic to deterministic
transport. Stochastic transport occurs, e.g., in a cavity with an electron dwell time
larger than the Ehrenfest time needed for the wave packet to spread over the cav-
ity [72-74]. In this case the Fano factor is given by Eq. (3.5). If the electron dwell
time is much smaller than the Ehrenfest time, then the wave packet stays local-
ized and the electrons are transferred as classical particles. The classical particle is
either transmitted or reflected with unit probability and the Fano factor vanishes.
The crossover from stochastic to deterministic transport in a cavity has been studied
experimentally by Oberholzer et al. [75]. The electron dwell time is varied by chang-
ing the openings of the contacts. As the dwell time is decreased, the Fano factor
is suppressed below the value F' = 1/4 for the stochastic transport in a symmetric
cavity. The stochastic-to-deterministic crossover in the charge transfer statistics has
been studied theoretically in [76].

An interesting application of the shot noise is the observation of fractional charges
e* = ¢/3 and e* = ¢/5 in experiments in the quantum Hall regime [77-79], see
also [29]. These experiments confirmed that the current is carried by quasiparticles
of fractional charge, in agreement with theoretical predictions of Lauglin [80] and
Kane and Fisher [81].

Another example in which shot noise is used to identify the effective charge
involved in elementary transport processes is in normal-metal /superconductor junc-
tions. In this case the charges are transferred in pairs at subgap temperatures and
bias voltages due to the Andreev process [82]. Since there are no quasiparticle states
in the superconductor at energies below the gap, the electron which is incident from
the normal metal couples with another one below the Fermi level and both enter
the superconductor as a Cooper pair, with the hole being reflected in the normal
metal (Andreev reflection). The scattering approach has been extended to take into
account superconducting terminals in [83] and the shot noise has been obtained
in [84] (see also [46]). At low temperatures and bias voltages much smaller than the
superconducting gap (kgT. < eV < |A|) the conductance and the shot noise power
of the normal-metal/superconductor junction are given by

G—4—€QZRA (3.11)
=T ,

and

3
spo = SVIS R - R, (312
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where R4 = T?/(2 — T,)?* is the coefficient of the Andreev reflection in the nth
transport channel. The Fano factor in this case is given by
shot A A

le{1)] > B
Equation (3.12) is the multichannel extension of the single channel result of Khlus [36].
For the completely open junction 7;, = 1, all incident electrons are Andreev reflected
(R} = 1) and the conductance is doubled with respect to the normal state case. How-
ever, the transport is noiseless and the Fano factor vanishes. In the tunnel limit, at
low Andreev reflection probabilities RZ < 1, the charge transfer events are rare but
the shot noise is doubled with respect to the Poisson value. This is a signature of the
doubled effective charge involved in elementary transport events. At intermediate
transparencies, the shot noise power is related to the distribution of transmission
eigenvalues of the junction. We emphasize that Egs. (3.11) and (3.12) hold for the
coherent junction. Using the distributions of transmission eigenchannels p(T') of a
diffusive wire, chaotic cavity, and strongly disordered interface, we can calculate the
conductances and the Fano factors in the case in which one lead is superconducting.
The results are summarized in a table given below.

p(T)/Gx Gns/Gn Fy Fs

diffusive wire T 1 1/3 2/3
chaotic cavity M/%_T) 22— V2) = 1.17 | 1/4 | (1 +v/2)/4 = 0.604

disordered interface Wﬁ 1/v/2 1/2 3/4

Here Gn (Gns) and Fy (Fyg) refer to the normal (superconducting) state and
Gy =Gy /Gg. The values for the chaotic cavity are given for the case of symmetric
coupling to the leads. The results for disordered interface coincide with the ones
for a double tunnel junction. We observe that the changes in conductance and
Fano factor due to the presence of a superconducting lead are not generic, with the
twofold increase achieved only in special cases. The conductance of a diffusive wire
in contact with a superconductor is the same as in the normal state, whereas for the
cavity it is slightly enhanced and for the disordered interface it is decreased with
respect to the normal state value. On the other hand, the Fano factors are increased
with respect to the normal-state case. A twofold increase is obtained for a diffusive
wire, while for the disordered interface the increase is by a factor of 1.5. The Fano
factor of a cavity in contact with a superconductor is more than two times larger
than in the normal state (Fs/Fxn =~ 2.4).

The doubling of shot noise in a diffusive normal metal/ superconductor junction
has been experimentally observed in [85,86]. The results are in excellent agreement
with the semiclassical theory of noise in the incoherent regime [87] at voltages both
below and above the gap. The noise in a coherent diffusive normal metal/ super-
conductor junction with a tunnel barrier at the interface has been measured in [88]
for bias voltages both below and above the gap. The noise above the gap is Pois-
sonian and below the gap is doubled, which is the signature of the charge doubling
in the crossover from the normal to the Andreev transport. More recently, noise
measurements have been performed in a cavity coupled to a superconducting lead
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with relatively high transparency of the contacts [89]. The measured Fano factor is
more than two times larger than in the normal state, in agreement with theoretical
predictions.

The effects of phase coherence on the conductance in diffusive normal metal/
superconductor junctions have been studied theoretically by Nazarov and Stoof [90].
The effects of coherence on noise and higher-order current correlators have been
studied by Belzig and Nazarov [91] and Samuelsson et al. [92]. The result is that
all transport properties exhibit reentrant behavior: they are the same in the com-
pletely coherent (L < &x) and the completely incoherent (L > £y) regime. Here
& = /hD/max(kgT,,|eV]|) is the length scale on which the proximity-induced
superconducting correlations between the electrons in diffusive normal metal sur-
vive and D = vpl/3 is the diffusion constant. However, in the intermediate regime
L ~ &y the coherence does affect the transport: both the conductance and noise are
increased by about 10%. The effect in a chaotic cavity coupled to a superconductor
has been studied in [93].

So far we have discussed noise in normal and superconducting mesoscopic junc-
tions with a dc voltage applied. An ac voltage drive couples electron states of dif-
ferent energies which results in so-called photon-assisted effects visible in noise and
higher even-order current correlators. The effect is not present in the conductance
in the linear regime with transmission probabilities independent of energy. The first
theoretical study of photon-assisted noise in a quantum point contact with both dc
and ac voltages applied was done by Lesovik and Levitov [94]. The shot noise power
is a piecewise linear function of the dc voltage bias with kinks which correspond to
integer multiples of the driving frequency and slopes which depend on the shape of
the ac voltage component. The scattering theory of photon-assisted noise has been
developed by Pedersen and Biittiker [95]. An interpretation of the noise and current
cross-correlations in terms of excited electron-hole pairs has been given by Rychkov
et al. [96] for the case of an ac drive of low amplitude |eVy| < Aw, where w is the
driving frequency. In this case at most one electron-hole pair can be created per
period. The elementary transport events in the full range of driving voltages have
been identified in [97] and are discussed in detail in Chapter VII. Photon-assisted
noise has been observed experimentally in normal coherent conductors [42,98] and
in diffusive normal metal — superconductor junctions [99].

We conclude this paragraph by a brief account of experimental progress in mea-
suring higher-order current correlators. For example, the zero-frequency component
of the third-order current correlator (AI(t+ 7 + 1) AI(t +71)AI(t)),, _, — is Pro-
portional to the third moment ((AN)3) of the number of charges N transmitted
within the measurement time ¢3. In the voltage-biased normal-state junction the
third moment is given by ((AN)?) = (2to/h)eV Y., T,(1 — T,) for |eV| < kgpT.,
and by ((AN)?) = (2to/h)[6kpT. Y., T2(1 —T,) + eV >, T,(1—T,)(1 —2T,)] for
|eV| > kgT,.. Therefore, unlike the noise which is at high temperatures dominated
by Johnson-Nyquist noise, the thermal fluctuations do not contribute to the third-
order current correlator at high temperatures. The third-order current correlator is
proportional to the current and carries information on the distribution of transmis-
sion channels both at temperatures much lower and much higher than the bias. Low
bias measurements are preferable because the junction is in the linear regime and
the effects of electron heating are decreased. On the other hand, low bias gives a low
output signal. Also, accurate measurements of the higher-order current correlators
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are increasingly more difficult. The first measurement of the third-order current
correlator in a tunnel junction was done by Reulet et al. [100], see also [32]. In this
experiment the junction was neither in the voltage- nor in the current-bias regime
with results deviating from the ideal theoretical model due to fluctuations induced
in the environment [101-103]. In a more recent experiment [104] the environmental
effects are suppressed with the results being in agreement with the Poisson statistics
of rare electron transport across the tunnel junction, ((AN)?) = (N).






CHAPTER II

Elements of probability theory

In this chapter we define the characteristic and cumulant generating functions
for a set of random variables in terms of the joint probability distribution and review
their basic properties. The concept of cumulant generating function is particularly
important because in many cases it can be obtained much easier and more directly
than the characteristic function or the probability distribution. The reason for this
lies in the fact that independent random variables give additive contributions to the
joint cumulant generating function. Therefore, the analysis of composite processes
reduces to the analysis of independent elementary ones, which is, in general, a much
simpler task. We illustrate this approach in § 6 by constructing the binomial and
Pascal distributions starting from the elementary processes. To make a better con-
nection with the rest of the Thesis, we do this using the toy-model of electron
transport across a scatterer, although any other stochastic process (like, e.g., toss-
ing a coin) could serve the purpose equally well. In § 7 and § 8 we illustrate how the
analysis of elementary events can be used to obtain multiparticle and multiterminal
transfer statistics.

In some situations it may be difficult to recognize what are the independent ele-
mentary processes, while it may still be possible to obtain the generating function for
the composite process. In this case the elementary processes can be identified from
the decomposition of the total generating function, which often provides additional
physical understanding. In § 9 we illustrate this situation by studying the statistics
of the total number of particles in the ideal classical and quantum gases in thermal
equilibrium.

§ 4. Moments and cumulants

Let z4,...,z, be real and continuous random variables characterized by the joint
probability density function f(xi,...,z,). An alternative way to characterize the
set of random variables is to use the characteristic function which is defined by

Pn .
(b(Xlu cee 7Xn> = <e a=1 lonma>
Pn .
= /dfﬂld:[jn f(l’l,...,:[jn) e azllxaxa' (41)

The normalization of the probability distribution implies ¢(x = 0) = 1. If the
characteristic function is known, the probability density can be obtained by the
inverse Fourier transformation

dx1  dxn P
n) = = ... sy Xn uzlzXal'ce‘ 42
f(xh y & ) o o Cb(Xl X ) € ( )

A more direct insight into the properties of the probability distribution can be gained
through the moments M., ., of the distribution, which are defined as the averages

Mal...am - <xo¢1 te mozm> . (43)
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Here the indices oy, assume values from the set {1,...,n} and can be mutually equal.
The different moments can be obtained by taking the derivatives of the characteristic
function:

Mal...am = [aixal e aixam ¢(X17 cee 7Xn):| x=0" (44)

The expression for the characteristic function in terms of the moments is obtained
by the series expansion of Eq. (4.1):

oo /l:m n
¢(X1> cee 7Xn) =1+ Z % Z M ..am Xar " Xam- (4'5)

m=1 al,...,am=1

Equation (4.5) implicitly assumes that the real numbers M, ., constitute mo-
ments of a well-defined probability measure and that such measure is unique. The
question under what conditions a set of real numbers constitutes moments of a prob-
ability measure is known as the moment problem. It turns out that, in general, the
probability measure is not determined uniquely by its moments. In § 26 we sum-
marize the results on existence and uniqueness of probability measure and provide
further references on the subject.

Another useful characterization of the probability distribution is by the cumulant
generating function S(x1, ..., X») which is defined by S =1In ¢, i.e.,

P,
eS(Xl"'an) — <e a=1 ’LXQ$Q> . (46)

The normalization of the probability distribution implies S(x = 0) = 0. If the
cumulant generating function is known, the probability density can be obtained
from Eq. (4.2). The cumulants C,, ., are defined as derivatives of S:

Cal...am = [8@(&1 te &XMS(Xl, . ,Xn)} Y=0" (47)
If the cumulants are known, then S is given by the series expansion
S(le"'?Xn) = Zl% Z 1Ca1,..ozm Xo1 """ Xam - (48)
m= Q1. =

Similarly as before, here we assume that the set of cumulants C,,. ,,, corresponds
to a well-defined and unique probability measure.

An important property of the cumulants is that C,, ., = 0 if the set of different
random variables z,,, .. ., Z,,, can be split into two statistically independent subsets.
For example, let us assume that the subsets zq,,...,7q, and zq, ;... %y, are
statistically independent for some k (1 < k < m—1). In this case the joint probability
density and the characteristic function factorize,

f(@ays Tan) = [(@ars s Tay) F(@agyrs s Tam) (4.9)
and
¢(XQI7 tee 7Xa'm> = (b(Xal? tte 7Xak) ¢<Xak+l7 tte 7Xam>7 (410)
while the cumulant generating function is the sum
S(Xars > Xam) = S(Xars -5 Xar) ¥ SXappas - > Xam)- (4.11)

From Egs. (4.7) and (4.11) we obtain Cq,. ., = 0. If all variables z,,,...,Za,,
are independent, the probability density and the characteristic function factorize
completely, and the cumulant generating function is the sum of the contributions of
the individual variables.
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Fig. 3: The interpretation of the first four cumulants [panel (a)]: The first
cumulant is equal to the mean of the probability distribution. The second
cumulant is equal to the variance and characterizes the width of distribution.
The third cumulant is related to the asymmetry of distribution and is positive
(negative) when the long tail is at large (small) values [C3 > 0 for the case
shown in panel (a)]. For symmetric distributions C3 = 0 [panel (b)]. The
fourth cumulant is related to the sharpness of distribution, parametrized by the
kurtosis excess o = C4/C3. The normal distribution has zero excess, 72 = 0. A
positive excess signifies that the distribution of a continuous random variable
is more peaked at the center and has fatter tails [dashed curve in panel (b)]
with respect to the normal distribution with the same mean and variance [solid
curve in panel (b)].

In the following we focus on a single random variable z. From Egs. (4.5) and (4.8)
we obtain relations which express the higher-order cumulants C,, = [0}, S(X)]y=0 in
terms of central moments:

Cl - <QZ> ’
CZ = /27
Cy = M), (4.12)

Ci= My — 3M4?,
Cs = M} — 10MHMS,

where M/, = ((x — (x))™). The interpretation of the first four cumulants is depicted
in Fig. 3. The first cumulant is equal to the mean value of the probability distri-
bution. The second cumulant is equal to the variance and characterizes the width
of the distribution, i.e., the dispersion of the random variable. The third cumulant
is related to the so-called skewness, 73 = Cs3/ C23/ 2, which measures the asymmetry
of the probability distribution. It is positive (negative) when the long tail of dis-
tribution is at large (small) values, and vanishes for probability distributions which
are symmetric around the mean value. The fourth cumulant is related to the kur-
tosis excess defined by v, = C;/C2. The kurtosis excess vanishes for the normal
distribution. For distributions with the same mean and variance, a positive kurtosis
excess signifies that the distribution is more peaked at the center and has fatter tails
[dashed curve in Fig. 3(b)].

The above definitions are given for continuous random variables. For the case of
discrete random variables all formulas remain the same, with the joint probability
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density given by
Fanoa) = S PN N 8oy = Ny - 0laa = Na). (413)

Ni,....Nn

Here P(Ny,...,N,) is the joint probability distribution and the summations are
performed over the discrete values N, of the corresponding variables. From Eq. (4.1)
we obtain the characteristic function for a set of discrete random variables

P, N
B0t ) = S PNy, Ny e smirele, (4.14)
Ny Ny,

[ARR)

and similar for the cumulant generating function S. In the applications we encounter
in this Thesis, the random variables x,, represent the number of charges which enter
the terminal o of a mesoscopic sample within the measurement time. Therefore,
N, are discrete and can assume positive or negative integer values only. In this
case ¢ and S are 2m-periodic functions of the arguments, and the joint probability
distribution is given by

™ d dx, P,
7)(]\[17 .. 7NTL) — / ﬁ [ L es(Xl,...,Xn)e_ a=1 lXaNa' (415)

o 2T 27

§ 5. Functions of random variables. Central limit theorem

Let us consider a random variable y = g(x1,...,x,) which is a function of the
set of random variables x1, ..., x, with the joint probability density f(z1,...,z,).
The probability density f(y) for the variable y can be obtained from the requirement
that the averages (h(y)), with respect to y and (h[g(z1,...,Zn)]) j(ay, 4, With
respect to (z1,...,x,) coincide for an arbitrary function h. From this requirement
we obtain

fly) = /dxln-dxn flxe, ..o xn) 8y — g(xy, ... )] (5.1)

In the case of a single random variable x, the above formula reduces to
1
) = [ do f(a) by = 9(@) = o (). 5:2)

where the summation goes over all simple roots z; of g(z) = y.

A particulary important example is the special case y = x1+- - -+, in which the
cumulant generating function S(x) of y is simply related to the cumulant generating
function S(x1,- .-, Xn) of (z1,...,2,). By choosing h(y) = ¢X¥ we obtain

S i ix(r1+--+an _ S(x1=x,-xXn=
eSO — <€ xy>f(y) - <e x(z1+-+ )>f($1’m7xn) — SOa=xxn=x) (5.3)

Therefore, the cumulant generating function for a sum of random variables is ob-
tained by putting all counting fields y, equal:

S =SXx1=X:---:Xn = X)- (5.4)

In the special case of independent random variables x,, with probability densities
fa(zo) and generating functions S, (xa), Eq. (5.4) reduces to the sum of contributions
of individual variables

S(x) =Si(x) + -+ Su(x). (5.5)
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In this case the higher-order cumulants are also additive. From Eq. (5.1) we obtain
that the probability density of y is the convolution of the densities of individual
variables,

fly) = /dﬂfl cedrno fi(mn) s a1 (o) fu(@n), (5.6)
where ©, =y —xy —--- — x,_1. For discrete random variables N = N; 4+ --- 4+ N,
the similar expression holds in terms of probability distributions,
P(N)= > Pi(N1)+ Paca(Nuo1)Pu(Na), (5.7)
NiyoyNp—1
WlthNn:N—Nl—— n—1-

The central limit theorem states that an important universal limit is reached for
a sum of a large number of independent variables. Here we formulate the theorem for
equally distributed variables, while in the more general form the theorem holds also
for random variables which may have different distributions. Let {x,} be a sequence
of equally distributed independent random variables with finite mean m = (z,) and
dispersion 0 = /((zo —m)?). Let y, = 1+ - -+, denote the n-th partial sum of
the random variables z,. The central limit theorem states that the random variable
Zn = (yn — nm)/(o+/n) is asymptotically normal for n — oo, with the probability
density f(z) = 1/v/2m e **/2. To prove the theorem we calculate the characteristic
function ¢(x) which corresponds to f(z,) for large n. Using that z, are independent
and equally distributed we obtain

600 = Tim, (5N iy (s

n—oo n—oo

= lim [1 — x*/2n + o(1/n)]" = e /2, (5.8)
which is the characteristic function of the normal distribution.

§ 6. Basic probability distributions

In this paragraph we study a single discrete random variable and review the basic
probability distributions such as binomial, Poisson, and Pascal. To introduce these
distributions we consider a mesoscopic system depicted in Fig. 4 which consists of
the electron source at the left lead and the barrier of transmission 7" in the central
region. The source emits uncorrelated electrons, each having the same probability
T to be transmitted to the right. The probability distribution of the total number
of electrons N which enter the right lead is binomial and given by

P(N) = (%) ™1 —T)yM=N (6.1)

for N = 0,...,M and P(N) = 0 otherwise. Here M is the number of emitted
electrons within the measurement time and (}/) = M!/[N!{(M — N)!] is the number
of ways to choose N electrons which are transmitted among M emitted. The cor-
responding cumulant generating function S() is defined by eS® = <eiXN > After
taking the average by using Eq. (6.1) we obtain

S(x) = M1In[1+T(eX —1)]. (6.2)
The first four cumulants C,, = [0} S(x)]y=o of the binomial distribution are given by

C,=MT, Co=MT(1-T),
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Fig. 4: A simple model of electron transport. The electron source at the left
lead emits uncorrelated electrons. At constant voltage bias, the total number
of emitted electrons within the measurement time is fixed. The electrons are
independently transmitted to the drain with probability T'. The statistics of the
number N of transmitted electrons is binomial. For a large number of emitted
electrons and rare transfer events T' < 1, the statistics of N is Poissonian.

Co=MT(1-T)(1-2T), Cy=MT(1—T)[1-6T(1—T). (6.3)

Now let us consider the limit of low transparency 7' < 1 and a large number of
emitted electrons M > 1, such that the product MT stays finite. In this case the
cumulant generating function reduces to

S(x) = (N)(e™ — 1), (6.4)

which corresponds to the Poisson probability distribution

NN

P = T - 6.5)
with (N) = MT and N =0,1,2,.... The Poisson distribution describes the process
of rare uncorrelated electron transfer events. From Eq. (6.4) follows that all cu-
mulants of the Poisson distribution are the same and equal to the average value,
Cn = (N).

It is instructive to approach the problem on the level of elementary transfer
processes. The total number of transmitted electrons is given by N = Ny+- - -+ Ny,
where N, = 0,1 is the number of electrons transmitted in a single attempt. Since
the attempts are uncorrelated, the random variables N, are independent and the
total cumulant generating function is the sum of contributions of different attempts
[see Eq. (5.5)]. Because all attempts are equivalent, we have S(x) = MS;i(x). The
cumulant generating function & for a single attempt is given by et = <eixN1> =
Tex! + (1 —T)eXY = 1+ T(e — 1), and we recover Eq. (6.2). The elementary
processes could be inferred from Eq. (6.2) immediately, by noting that S(x) is the
sum of M well-defined generating functions. This illustrates an important point:
If we know the cumulant generating function for the whole process, then we can
identify the underlying elementary processes by decomposing it into a sum of simpler
generating functions. The constitutive generating functions may differ since the
elementary processes do not have to be equivalent, in general.

The central limit theorem applied to the decomposition N = Ny + --- + Ny,
states that the binomial and Poisson probability distributions given by Egs. (6.1)
and (6.5) approach the normal distribution for a large number of attempts M. More
precisely, for the random variable N with binomial distribution, the random variable
z defined by z = (N — MT)//MT(1 —T) is asymptotically normal for large M
such that MT, M(1—T) > 1. Similarly, the random variable z = (N — (N))//(N)
is asymptotically normal for large (N), where N is a random variable with Poisson
distribution.
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In the previous examples we considered the case of an electron source at the
left lead with a positive number of electrons N transferred from left to right. For
the case of a 'hole source’ in the left lead, the electrons are transferred in opposite
direction, which corresponds to N < 0. The cumulant generating functions for this
case are given by Egs. (6.2) and (6.4) with e’X replaced by e~X. Therefore, the sign
of x is related to direction of charge transfer.

So far we have discussed the case in which the number of attempts M is constant,
and the number of transmitted electrons NV fluctuates. Physically, this corresponds
to the voltage-biased junction with M = eV'ty/m, where e is the electron charge, V' is
the bias voltage, and ¢y is the preset measurement time. The transmitted charge is,
of course, related to the current. The higher-order cumulants of charge transferred
can be obtained by measuring higher-order correlations of current fluctuations.

1 3 0 3
- — - —>

CeO0OO0OO0C@e@e O0OO0OO0e

Fig. 5: Decomposition of the number of attempts M needed to transfer N
electrons into a series of attempts needed to transfer the single one. Open
(filled) dots represent reflection (transmission) events. The numbers indicate
reflection events between two successive transmissions. The statistics of M is
Pascal.

In the case of current bias, the situation is the opposite: the current is kept
constant and the voltage fluctuates. In a simple model this corresponds to a constat
number of electrons N transmitted within the measurement time and a fluctuating
number of attempts M needed. The probability distribution P (M) can be obtained
by considering elementary processes which consist of a series of attempts needed
to transfer a single electron. Let the random variables M/ denote the numbers
of reflections between successive transmissions of a — 1 and « electrons, as shown
in Fig. 5. For N electrons transmitted, the total number of reflections is given
by M’ = M] + --- M}, with the total number of attempts M = M’ + N. The
random variables M, are independent and equally distributed with P(M!) = RMaT,
which describes M/, successive reflections and transmission in the next attempt. The
cumulant generating function for M’ is given by

S'(x) =Nl <ei><Mi> ~Nln (%) . (6.6)

The corresponding probability distribution is called the Pascal (or negative binomial,

waiting time) distribution and reads
M +N -1
M) =
pary = (M3

for M’ > 0 and P(M’) = 0 otherwise. The distribution of the total number of
attempts M (M > N) is given by

>TNRM’ (6.7)

P(M) = (Aj\{ - 11)TNRM‘N. (6.8)

In this Thesis we focus on current fluctuations in the voltage-biased junction. For a
discussion of voltage fluctuations in a current-biased junction we refer to [101-103].
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Fig. 6: Panel (a): Unidirectional multiparticle transfer processes. Charges are
transmitted in groups of n with probability T. The signature of n-particle uni-
directional transport is 2w /n periodicity of the cumulant generating function,
or the ratio C2/Cy = n in the limit of rare transfer events (T’ < 1). Panel (b):
A bidirectional 2-particle transfer process. Electron-hole pairs are created by
an external perturbation with probability p and move towards the scatterer.
Charge transport occurs if one particle is transmitted and the other is reflected.
For p = 1 the electrons and holes contribute separately and the statistics of the
transmitted charges is of single-particle type. For intermediate p, the statistics
can not be decomposed into independent contributions of electrons and holes.

§ 7. Multiparticle transfer processes

Let us consider the charge transfer process which consists of M attempts, such
that in each attempt a cluster of m particles can be transmitted with probability
Pm (O pm = 1). Depending on the sign of m, transfer can occur in either
direction. The cumulant generating function §; for a single attempt is given by
eI = (eixm) = N~ pe™X. For M attempts we obtain

S(x) =MIn < i Dim eimx) : (7.1)

m=—0Q0

In the following we analyze two important special cases of Eq. (7.1).
Let us consider the case depicted in Fig. 6(a), in which only n-particle transfers
oceur, Py, = T0pmy,. In this case Eq. (7.1) reduces to

S(x) = M1In[1 + T(e™ —1)]. (7.2)
The corresponding probability distribution is given by

P(N) = (f) TF(1 — T)M* (7.3)

for N =kn (k=0,...,M) and P(IN) = 0 otherwise. As expected, the particles
are transferred in multiples of n, with a binomial distribution of the number k of
transmitted clusters. The signature of unidirectional n-particle transfers is the 27 /n
periodicity of the cumulant generating function. The higher-order cumulants of N
are given by

Ci=nMT, Co=n*MT(1-1T),
C3=n*MT(1-T)(1-2T), Ci=n'MTA-T)1-6T(1-T). (74)

Therefore, the existence of unidirectional n-particle processes can also be inferred
from the ratio Co/C; = n in the limit 7' < 1 of rare transport events. Unidirectional
two-particle charge transfers occur in relatively transparent superconductor-normal
metal junctions at subgap voltages and low temperatures. In this case the mechanism
of charge transport is given by the Andreev process: an electron in the normal metal
couples with another one of the opposite spin, and both enter the superconductor
as a Cooper pair.
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In the following we consider a different situation depicted in Fig. 6(b) in which
charges are transferred in both directions. Due to an external time-dependent drive,
electron-hole (e~h) pairs are created in the left lead with probability p. The total
number of attempts for e-h pair creation during the measurement time is denoted
by M. We assume that both particles move towards the scatterer and are transmit-
ted (reflected) independently from each other with probability 7" (R =1 —T). We
are interested in the statistics of the number of transmitted charges N to the right
within the measurement time. As before, the analysis can be reduced to indepen-
dent attempts, in which m = 1,0, —1 charges can be transferred. In the course of
an attempt, the charge m = 41 is transferred with probability py; = pT' R, which
corresponds to e~h pair generation, electron (hole) transmission and the hole (elec-
tron) reflection. On the other hand, no charges are transferred (m = 0) either if the
e—h pair is not created, or, if the pair is created and both particles are transmitted.
This happens with probability py = (1 — p) + p(T? + R?). Therefore, the cumulant
generating function given by Eq. (7.1) reduces to

S(x) = M In[1 + pTR(e™ + e~ — 2)]. (7.5)

Since electrons and holes are transmitted with equal probabilities, the average trans-
mitted charge and all odd-order cumulants vanish, Cs,,1 = 0. However, the signa-
tures of charge fluctuations caused by bidirectional transport can be seen in the
even-order cumulants, with the lowest two given by

Cy =2M pTR, Cy =2M pTR(1 — 6pTR). (7.6)

For p = 1, e~h pairs are always created and the cumulant generating function decom-
poses into independent contributions of electrons and holes, S () = In[1 + T'(e™X —
1)] + In[1 + T'(e=™ — 1)]. This corresponds to independent binomial electron and
hole transmission events. Similarly, for pT'R < 1 the charge transfer events are
rare and we have S;(x) &~ pTR(e’X — 1) + pT'R(e~X — 1). The statistics is again
decomposed into single-particle electron and hole transfers. For intermediate values
of pT R, the elementary processes are of two-particle type and cannot be split into
separate electron and hole contributions.

The probability distribution for the total charge transferred can be obtained from
Egs. (4.15) and (7.5):

P(N) :/ d_X [1 +’y(eiX/2 _6—ix/2)2}Me—ixN

. 2m
M
- T dx M n( ix/2 —ix/2\2n _—ixN
[ R (e
M 2n
M\ (2
=35 () () om &
n=0 m=0 n m

Here we assume that the number of attempts M is integer and introduce v = pT R
(0 <~ < 1/4) for brevity. For |N| > M the probability P(/N) vanishes, while for
|N| < M we have

P(N) = (-1)" ni (éf) (n 2_”N) ()" (7.8)
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This sum can be expressed in terms of the hypergeometric function oF; [105], and
we obtain

M 2|N|+1

P00 = ()1 a8 (PN - 2N L) @)
for |IN| = 0,...,M and P(N) = 0 otherwise. For noninteger M, the summation
over n in Eq. (7.7) goes to infinity, and we find

B I'(M+1) sin(M) (
TIN'T(M + 1 — [N sin[(M — [N)a]* !

P(N)

)\N\

2N 1
X o F (% IN| = M,2|N| + 1,47> (7.10)

for IN| < M and P(N) = 0 otherwise. As already discussed, the probability dis-
tribution P(N) is symmetric with respect to N = 0 and has vanishing odd-order
cumulants. The kurtosis excess of P(N) is positive for 0 < pT'R < 1/6 and negative
for 1/6 < pTR < 1/4 [Eq. (7.6)]. Bidirectional processes of this type are created by
time-dependent bias voltage, with probabilities which depend on the shape of the
driving (Chapter VII).

§ 8. Multiterminal geometry

In the following we study the system depicted in Fig. 7, in which e-h pairs
are created with probability p and are directed towards the scatterer which has
transmission probability T. After traversing the scatterer, particles enter one of the
leads with probability g; » without reflection (g, + g2 = 1). We are interested in the
statistics of transmitted charge in the terminals within the measurement time. The
total number of attempts for the e-h pair creation is M.

at

D ®
ol

source

Fig. 7: An example of a multiterminal geometry. The e—h pair is created with
probability p and directed towards the scatterer of transmission T'. After tra-
versing the scatterer, particles enter the outgoing terminals 1 or 2 with proba-
bilities g1,2, without reflection (g1 + g2 = 1).

Let (N7, Nj) denote the charge transmitted into the corresponding terminals in
a single attempt. The possible outcomes and their probabilities are listed in the
following table:

Ny | Ny P(N7, Ny)

0 | 0|1—p)+pR*+pT*; +35)
+1 10 TR,

0 |=+1 T Ris
+1 | F1 pT? G102
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For example, no charge is transferred into the terminals if the pair is not created
in the first place (probability 1 — p), or, if the pair is created and both particles
are reflected (probability pR?), or, if the pair is created and both particles are
transmitted into the same outgoing terminal [probability pT?(g? + g3)]. Similarly,
P(+1,—1) = pT?§1go describes the creation of the e-h pair (probability p), and
transmission of both particles with the electron entering lead 1 and the hole entering
lead 2 (probability T2§;g»). The cumulant generating function S'(x1, x2) for the
single attempt is given by

eSI(XhXQ) _ <eiX1N{€ix2N§> _ Z ’P(N{,Né) eix1N{€ixQN§, (8.1)
N{,N},

Using the probabilities P(N, N}) given in the table, we obtain
S'(x1;x2) = In[1 — p + pR? + pT*(g; + 33)
+ pTRG1 (€™ + X)) 4+ pT Ry (e™* + ¢?)
+ pT?G1Go (X e™ ™2 4 o7 X1eX2)] (8.2)

Here we note that the electron (hole) transfers are described by terms in which
the counting field x enters with positive (negative) sign. The cumulant gener-
ating function for the transmitted charge (Ni, No) after M attempts is given by
S(x1,x2) = MS'(x1,x2). The cumulant generating function for the total charge
N = Nj + N, which enters any of the two terminals is given by S(x) = S(x, x) [see
Eq. (5.4)] and we recover Eq. (7.5) for the two-terminal case.

§ 9. Example: Particle number statistics in equilibrium

In the following we provide yet another illustration of the mathematical con-
cepts introduced in the previous paragraphs. We obtain the statistics of equilibrium
particle number fluctuations in ideal classical and quantum gases described by the
grand canonical ensemble. For the classical Boltzmann and quantum Fermi gas,
the statistics can be readily interpreted in terms of elementary single-particle ex-
change processes with the reservoir. On the other hand, in the case of the Bose gas
multiparticle exchange processes occur.

Let us consider a quantum system of constant volume V' being part of the larger
system at temperature 7, which serves as the heat and particle reservoir. The
system is described by a Hamiltonian H which conserves the number of particles,
[H,N] = 0. The state of the system is given by the grand canonical ensemble
p = e e=BH=IN) “where Qq(p, T, V) = —T,In Tr(e PH=#N)) is the grand ther-
modynamic potential. The number of particles N in the system fluctuates due to
exchange of particles with the reservoir. It is easy to verify that the higher-order
moments of the particle number are given by

. on .
Ny = efhall) _~ e BalptixTe) 9.1
(™) S o CRY
From Eq. (4.4) we obtain that the cumulant generating function of the particle
number statistics is given by the thermodynamic potential

S(x) = =BQa(p + ixTe) + Ba(p). (9.2)

The last term in Eq. (9.2) ensures the normalization S(x = 0) = 0 of the particle
number distribution and has no effect on the higher-order cumulants of the particle
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number statistics. Equation (9.2) is valid also for a classical system in the grand
canonical ensemble.

In the following we obtain the particle number statistics of the ideal classical and
quantum gases in equilibrium. The grand thermodynamic potential of the classical
Boltzmann gas is given by QE(C;) = —T.e?V/X\3, [106], where Ay, = /27h?/mkgT,
is the thermal wavelength. The average number of particles in the system is (N) =
—(0a/Op) 7, v = €”"V/AS, . From Eq. (9.2) we obtain S (y) = (N)(e™ — 1).
Therefore, the particle number statistics of the classical gas in thermal equilibrium
is Poissoninan, with the probability distribution P (N) = (N)Ne=N) /N1 (see § 6).
All cumulants of the particle number are the same and equal to the average value,
c\ = ¢l = ... = (N). To obtain a physical interpretation of this result we rewrite
S (y) = >-p (np) (e — 1), where the momentum p labels single-particle states of
energy £, = p2/2m and (n,) = e ¥ are the average occupation numbers. This
decomposition shows that the statistics of the total number of particles N = Zp Np
consists of the independent population of the single-particle levels via one-particle
transfers from the reservoir. The statistics of the population of the single-particle
levels is also Poissonian.

Now we consider quantum systems. The grand thermodynamic potential of the
ideal quantum gas is given by

Q™ = £ In(1 F e 7Em), (9.3)

p

where the upper and lower signs correspond to bosons and fermions, respectively.®
From Eq. (9.2) we obtain

SEH) (y }:m1¢n¢ - 1)], (9.4)

with nf = [e#E =1 £ 1]~ being the corresponding average occupation numbers.
Equation (9.4) can be readily interpreted in terms of elementary processes. For
the Fermi gas, the population of the single-particle levels follows from SIS,F)(X) =
In[1+4n;} (e —1)]. Therefore, the single-particle states can accommodate maximally
one electron and are occupied with probabilities n , independently from each other.
The particle transfers between the system and the reservoir are of the single-particle
type. For the Bose gas, the population of single-particle levels follows from Sz(,B) (x) =
—In[l — ny (e — 1)] = In[rp /(1 — tpe™)], where t, = e P& and r, = 1 — t,.
Like before, the single-particle levels are populated independently, but now can
accommodate any number of particles, n, > 0. The statistics of occupation numbers
is negative binomial and is given by P(n,) = tp’r, [c.f. with Egs. (6.6) and (6.7)].
We can rewrite S5°) in the form S5 (y) = In(rp +t,rpe' + U rpe? X et X 4. ).
This shows that the level is occupied through a single multiparticle transfer process
from the reservoir (§ 7). Bosons emitted from the reservoir bunch into the level
as long as they are absorbed (with ¢, being the probability of absorption). The
bunching process stops when the next boson is reflected.

The statistics of the total number of particles can be obtained by performing the
summations over the single-particle states in Eqs (9.3) and (9.4). For the grand

thermodynamic potential we obtain Q(B ) —(T.V/ N3, )G5i/2(eﬁ“), where G (2) =

4) For simplicity we neglect the spin degeneracy.
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>0 (£1)"Hz"/n® is the polylogarithm function. The average particle number in
the system is (N) = (V/ )\E‘TE)GjE (e##). The cumulant generating function is given

3/2
by
Vv i
SER(y) = 15 |Gane ) = (™)) (9:5)
Te

For high temperatures (e”* < 1) all results approach the classical limit. At low
temperatures at which the thermal wavelength becomes comparable to the average
interparticle distance, quantum correlations due to the Bose and Fermi nature of the
particles become important, and the total particle number statistics is no longer Pois-

sonian. For example, the second cumulant is given by €% = (V/ )\3E)Gf/2(eﬁ“) ~

(N)[L =+ (1/2v2)A3, (N)/V], where the expansion in the last step holds for small
quantum corrections A}, < V/(N). For the same average number of particles, the
equilibrium fluctuations satisfy CéF) < Céd) < CéB).‘r’) The total probability distribu-
tion function P(N) can be obtained from Eq. (4.15).

The cumulant generating function for the Bose gas can be rewritten as S¥)(y) =

Yo S (x), where S () = M, (e™ — 1) and M, = eV /n®2 )3, . Each term
ST(LB)(X) corresponds to an n-particle transfer process with the probability distribu-
tion function given by

Pu(V) - {

and the mean value (N) = nM,. Therefore, the equilibrium particle number fluc-
tuations in the ideal Bose gas consist of independent Poisson n-particle transfer
processes between the system and environment. These processes include simulta-
neous many-particle transfers to different single-particle states. The total particle
number distribution is given by the convolution P(N) = 3"y 1 [[72; Pa(Nn), where
N = > N, (see § 5). In the classical limit only single-particle transfers remain,
P(N) =Pi1(N).

The concept of particle-number statistics has been used to study trapped ultra-
cold atomic Fermi gases in the crossover regime from weak (BCS) to strong (BEC)
attractive interaction. For a discussion we refer to [107] and the references therein.

MPFe=Mn [k for N =kn, k=0,1,...

0, otherwise,

(9.6)

5) The results for the Bose gas are valid for temperatures above the critical temperature of

Bose-Einstein condensation. Approaching the critical temperature, the fluctuations CéB) diverge.
However, any interaction, no matter how weak, will render these fluctuations finite [1].






CHAPTER III

Introduction to mesoscopic transport

§ 10. Scattering formalism

In this section we briefly describe the scattering approach to mesoscopic trans-
port introduced by Landauer [108,109] and further developed by Imry [110] and
Biittiker [34,111,112]. We start with the formulation of the scattering problem
in § 10.1 and define the scattering matrix and scattering states for a coherent 2-
terminal junction. In § 10.2 we show that the scattering matrix is unitary and
discuss its properties for a system with and without time reversal symmetry. We
outline the generalizations of 2-terminal scattering theory to multiterminal geome-
tries in § 10.3, with the possibility of including superconducting leads and dephasing.
In § 10.4 we apply the scattering theory and derive the famous Landauer formula
for conductance. In § 10.5 we obtain the general expression for noise in 2-terminal
coherent conductors, focusing on the nonequilibrium contribution which carries addi-
tional information on the charge transfer statistics and the transmission distribution
of the junction. Finally, in § 10.6 we discuss the role of phase averaging due to
finite voltage and temperature, as well as the phase self-averaging in conductors
with many transport channels. We show how phase averaging restores Ohm’s law
of adding resistances in series and leads to universality of transport properties in
multichannel diffusive conductors [113].

§ 10.1. Scattering matrix and scattering states. Let us consider a 2-
terminal coherent junction which consists of a central scattering region connected to
macroscopic electron reservoirs via ballistic leads, as depicted in Fig. 8. We assume
elastic spin-independent scattering in the junction while inelastic processes provide
the equilibration in the reservoirs. For simplicity, we consider a single-electron prob-
lem and assume that the electron propagation along the leads is free, i.e., that the
confining potential does not depend on 2.9 The electron wave functions in the leads
are given by

1 .
+ (r) = — ei’p""‘zxom(x,y), (10.1)

aén
Van

where a = L, R labels the leads, po, = v/2m(€ — €1 an) is the longitudinal momen-
tum, &£ is the electron energy with respect to the bottom of the conduction band
and &, are the energies of the transversal modes X, (z,y) labeled by mode index
n. The wave functions are orthogonal

/ dr ¢ Qe = SO 2m0(E" — E"), (10.2)

6) This assumption can be relaxed by using the adiabatic approximation in which the width of
the leads d(z) changes slowly with z, |0d/0z| < 1.

35
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Fig. 8: Schematic representation of a mesoscopic conductor.The con-
ductor is divided into the central scattering region and the ballistic leads (L
and R) connected to the reservoirs by reflectionless contacts. The scattering
matrix relates the amplitudes by, r of the outgoing waves and the amplitudes
ar, g of the incoming waves.

with &' k" = {4, —}, and normalized to the unit particle flux over the cross-section

—1
o [ dody [652,(0.0%,) — (0:0%,)0%,) = %1 (10.3)

The number of transversal modes is finite and given by &£,,, < &, with the explicit
form of the modes and their energies being dependent on the details of the lat-
eral confining potential. For hard-wall leads of rectangular cross section L, x L,,
transversal modes are given by Xy, n,(2,y) = (4/LyL,)"/?sin(g,, z) sin(g,,y), where
ey = Tay/Loy and E1nn, = (qi, +q; )/2m. For a junction patterned on a
2DEG, the confinement in y-direction is much stronger than the one in z-direction,
which results in a large spacing between the energies of y-modes. Therefore, for
the voltages and temperatures of interest, only one y-mode is populated, and the
problem reduces effectively to a 2-dimensional one.

An arbitrary eigenstate of energy £ can be expanded over the basis set of func-
tions in the leads

arendie, + brentre, , 2z €L,
wg(,r,) — Zn LE Qb[_/gn Zn LE ¢[fn (104)
Zn aR5n¢R5n + Zn bR5n¢R€n7 S R’

where ar p and by p are the amplitudes of the incoming and outgoing states with
respect to the scatterer, Fig. 8. The precise form of the eigenstate in the scattering
region is in general very complicated and depends on the details of the scatterer.
The incoming and outgoing amplitudes are related by a linear transformation [114]
which can be obtained, in principle, by matching the solution in the middle region
with the solutions at the leads given by Eq. (10.4). This linear dependence is usually
expressed in terms of the energy-dependent scattering matrix S = S(&) defined by

b= Sa, (10.5)

where
a=(apy,...,aLN,,QR1, - -, GRNG) (10.6a)
b= (bLla~~->bLNL7bR1>--~abRNR)T7 (10.60)

with N g = N r(€) being the number of modes in the leads. In the block-matrix
notation
S — (T'NLXNL QVLXNR> (107)
UNgxNL  TNpxNg
where subscripts indicate the dimensions of matrices.
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It is useful to define the so called scattering states which are characterized by a
single wave in the mode n incoming from the left (right): ar, = 1, armz, = 0, and
agm =0 (agn =1, agmzn =0, and ar,, = 0), for all m. From Egs. (10.4) and (10.5)
we find that the left and right scattering states are given by

* - L
Yren(r) = Oien Z;” rmn@rem 2 € L (10.84)
Zm tmn¢R£m7 KAS Rv
and
— / +
Vren(r) = Oren * Z_m Fmn@rem: 2 € 1 (10.8b)
Zm t/mn¢L€m7 z € L.

The matrix elements 7,,,,(E) [tmn(E)] are the probability amplitudes for the incoming
state ¢7,, from the left to be reflected (transmitted) into the outgoing state ¢ g,
(¢fer)- Similarly, v, (€) [th.,(E)] are the amplitudes of the reflection (transmission)
for the state ¢, incoming from the right.

§ 10.2. Unitarity of the scattering matrix. The unitarity of the scatter-
ing matrix follows from current conservation, which holds in the stationary state
when there is no charge accumulation in the scattering region. For a general eigen-
state given by Eq. (10.4), the incoming (outgoing) particle flux is proportional to
S lan?+3, larm|? = ata (3, |bral>+3,, [brm|*> = b'b). From current conser-
vation and Eq. (10.5) we find that b'b = a'STSa = a'a for arbitrary amplitudes
a, which proves the unitarity of the S-matrix:

SSt=81§ =1. (10.9)
In block matrix form we obtain
rrl T = rlr +tTt = 1y, (10.10a)
ettt =T T = 1y, (10.100)
rtt +t'rT =Tt + T = Oy, vy (10.10¢)

Further properties of the S-matrix can be obtained by analyzing the trans-
formation of the Hamiltonian under time reversal.” In the presence of a time-
independent external magnetic field B = rot A, the Hamiltonian in the leads is
given by Hg = (1/2m)[p — (e/c)A(7)]? + V(r), where V(r) is the electrostatic
confining potential, A(r) is the vector potential, and p = —iV. An eigenstate ¢
satisfies the Schrodinger equation in the leads

Hp Pe(r) = Ee(r), (10.11)
with the incoming (a) and the outgoing (b) amplitudes related by
b=Sgpa. (10.12)

7) The operator of time reversal 7 is antilinear, J (|9} +8]¢)) = a* T [} +5*T|¢), hermitian,
and involutive J = J1 = 7~ [115]. The action on the coordinate (momentum) basis is given by
Jlry = |r) (J|p) = | — p)). In the coordinate (momentum) representation we have Ji(r) =
V*(r) [JY(p) = ¥*(—p)]. The basic set of observables transforms according to J#J = # and

JIpJ = —b.
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Applying the time reversal operation® J on Eq. (10.11), we obtain that ¢f(r) =
Je(r) is the eigenstate of the Hamiltonian H_p = J HgJ. Time reversal changes
the direction of propagation, i.e., the incoming and the outgoing amplitudes of ¢
are given by b* and a*, respectively, with

a* = S,Bb*. (1013)

From Egs. (10.9), (10.12), and (10.13) we obtain that the S-matrix in the presence
of a magnetic field satisfies

S p=25%. (10.14)

For B = 0 the system is invariant under time reversal, [f[ B-0,J | = 0, and the
S-matrix is symmetric

Sp_o=8%_,. (10.15)

§ 10.3. Generalizations. The scattering approach introduced in the previous
sections has been formulated for a coherent 2-terminal normal junction with spin-
independent scattering. However, these assumptions can be relaxed, i.e., the theory
can be generalized for a multiterminal geometry [111,116] with one or more super-
conducting reservoirs [83,117,118]. The loss of phase coherence can be modeled by
fictitious voltage probes which act as dephasing terminals [50,53,119,120] (for an
alternative model of dephasing, the so called dephasing stub, see [121]). The details
of these generalizations are beyond the scope of this Thesis, and we refer the reader
to the literature [26,28,30,46] for a more elaborate discussion.

§ 10.4. Landauer formula. In § 10.1 we introduced the scattering approach
using a single-electron picture. This is clearly an oversimplification because many
electrons can populate transversal modes in the leads simultaneously and the effect
of the Pauli principle has to be taken into account even in the noninteracting case.
The most efficient way to do this is by introducing field operators using the single-
particle basis given by Eq. (10.1). The field operators in the Heisenberg picture are
given by
Np(€)

, e )

pp(r,t) = / ey (@rendten(r) + brendien(r)) (10.164)
n=1

A & Nr(€) .

Dr(r,t) = / ey (aRgngb,ggn(r) +bRgn¢;§5n(7‘)>. (10.160)
n=1

~

Here a,, (bs) are the annihilation operators of the incoming (outgoing) states in lead
a which satisfy the usual anticommutation relations

{daé"n/, &Lg//n//} = On/n 27T5(5/ - g,/)7 (1017(1’)
{dag’n’a daS”n”} = {dLg/n/y dLg//n//} =0 (1017b)

(and similar for b,). Elastic scattering is characterized by the S-matrix which relates

the incoming and the outgoing operators @ and b in analogy with Eq. (10.5). The
field operators satisfy

{al(r' 1), 0 (r" 1)} = 8(r — r"), (10.184)

8) The time reversal is applied on the system which consists of electrons, scatterer and leads.
It leaves the external magnetic field invariant (JAJ = A) since it does not act on the sources of
the field.
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{a(r, 1), 0alr” )} = {dL(r, 1), 0L(r" )} = 0. (10.180)

The current operator in lead « in the Heisenberg picture is given by

fa(et) =2, [ dwdy [9hr,0) (0:0a(r, 1)) — (0-0L0m,8)) (1) (10.19)

where the prefactor 2, accounts for the spin degeneracy. Substituting the field
operators for the left lead from Eq. (10.16a), we obtain

- e [dEAE o o R P
IL(t) = — / 7 62(5_5 )t Z (azgna,;g/n — bTLgnbLS’n> . (1020)

n

Here we used that the transport is governed by electrons in the vicinity of the Fermi
surface and neglected the energy dependence of momentum in the energy window
given by temperature and applied bias.

The observable current is obtained by averaging I 1(t) over the appropriate many-
body electron state in the left lead. However, in the presence of bias, the leads are
out of equilibrium and the electron state in the leads is not known a priori. Since
the leads are ballistic and the scattering in the middle region is elastic, there are no
inelastic processes available to provide equilibration in the junction. On the other
hand, the terminals which act as electron reservoirs are macroscopic and inelastic
processes are present. The terminals support many transport modes which carry
infinitesimal currents per mode. The current perturbs the state of the electrons in
terminals only weakly, and the electrons are in thermal equilibrium. Because the
contacts are reflectionless, the incoming states in the leads can be populated only
by electrons emerging from the nearby terminals. This means that the electrons in
the incoming states are in equilibrium with the corresponding terminals, regardless
of the applied bias. The outgoing states are populated by electrons emerging from
both terminals and are characterized by some nonequilibrium distribution functions.
Therefore, the proper way to average I (1) is first to express it entirely in terms of a-
operators of incoming states with the help of the scattering matrix, and then average
with respect to the equilibrium state using

(Al g tagmmn) = Opnn 216 (E — E") ful(E"). (10.21)

Here f,(€) = {exp|(€ — pa)/T] + 1}71 is the Fermi distribution with y, being the
chemical potential of the lead o and T, the temperature. For a discussion of other
subtle points of the scattering formalism we refer to [15].

After averaging of Eq. (10.20) and using the unitarity of the scattering matrix
we obtain

I = %/ds Te(tt) [f1(E) — fr(E)]. (10.22)

Here t and t' are energy-dependent. Introducing the probability 7,,(£) = (¢7¢),, =
> mn(E)|? that the incoming state ¢}, is transmitted into any outgoing state
Lo, we find

=" [ S TE) (£le) - fale) (10.23)

From Eq. (10.10a) follows 7,(€) + R,(£) = 1 and 7,,, R, < 1, where R, (§) =
(r'r),, is the reflection probability for the incoming state ¢}, . Another useful
representation of I is in terms of the eigenvalues T,(£) of the matrix ¢'¢, which
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are also real numbers between 0 and 1 [not to be confused with 7,,(£)]. The average
current in terms of 7,,(€) reads

=" [de Y16 11uE) - ulé)) (10.24)

Equations (10.23) and (10.24) give the average current through the phase co-
herent conductor in terms of its microscopic scattering properties characterized by
T.(E) or T,,(£). These transmissions contain complicated interference effects within
the scatterer which are very sensitive on the energies of the incoming electrons. For a
large number of scattering channels, they change as a function of energy on the scale
A& which is much smaller than the transport energy scale set by applied voltage and
temperature. Therefore, the transmissions in Eqgs. (10.23) and (10.24) can be re-
placed by their coarse-grained values, (1,,) = (T,,(£)) o, Which vary smoothly with
energy. At low temperatures and bias voltages (T, |eV| < g, with pp, = pg+eV),
we can neglect the energy dependence of the averaged eigenvalues (T,). In this case
Eq. (10.24) reduces to I, = GV, where

o2
G=— Zn: (T,). (10.25)
Equation (10.25) is the multichannel Landauer formula for conductance.

The separation of energy scales present in Eq. (10.24) persists in other transport
properties as well, as long as the number of channels is sufficiently large. The coarse-
grained powers of transmission eigenvalues (T)¥(£)) oo are important because they
determine not only the average current but the noise and the full charge transfer
statistics as well. These quantities can be efficiently calculated using the circuit
theory of mesoscopic transport, which we present in Chapter IV.")

In the following we consider a completely open junction without scattering, hav-
ing N transport channels with 7,, = 1. From Eq. (10.25) we find that the resistance
of such a junction is finite and given by G5! = m/e?N ~ 13kQ/N, which certainly is
not negligible. This resistance originates from the contacts between terminals and
leads. In our model we have assumed reflectionless contacts, which means that the
electrons in the outgoing states in the leads enter the terminals without backscat-
tering. However, this is not true for the electrons emerging from the terminals into
the leads. These electrons have to be redistributed from the many current-carrying
modes in the terminals to just a few such modes in the leads on the length scale of
the contact constriction. This gives rise to significant backscattering at the contacts,
characterized by the contact resistance Gal. Therefore, the total resistance of the
junction is the sum of the contact resistance and resistance due to the scatterer,
G~ = Gg' + Gg', where the latter vanishes for the completely open junction [15].

An important result of Eq. (10.25) is the prediction of conductance quantization
in mesoscopic conductors. The number of transversal modes in a hard-wall junction
of width W can be estimated as N = 2W/Ap. Increasing the width of the contact,
more and more transversal modes contribute to the transport and the conductance
increases in steps of €2 /7 (for T,, = 1). The effect has been observed experimentally

9 The averages of transmission eigenvalues (T*) can be obtained also by using random matrix
theory [46]. In this case the averaging is performed by taking the scattering matrix as random, while
preserving the corresponding symmetry properties [Egs. (10.9) and (10.15)]. However, the proce-
dure is less straightforward than the circuit theory and becomes involved when several junctions
are combined to form a network.
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in a 2DEG layer formed at the interface of GaAs/AlGaAs heterostructure with
Ap = 42nm [17,18,122]. The contact is defined electrostatically by depleting the
2DEG below the split-gate on top of the heterostructure. Up to 16 conductance
steps have been observed by changing the width of the contact from W = 0 to
Wnax = 360nm at temperature 0.6K. The effect is not visible in metallic contacts
due to the small Fermi wavelength Ay = 3 — 10A.

§ 10.5. Current noise power. By using the scattering approach it is possi-
ble to address not only the average current through the junction, but also current
correlations. First we give some general definitions and then focus on the particular
2-terminal scattering problem.

For a 2-terminal junction, the current correlation function is defined by

St ") = % <{Af(t’), Af(t”)}> , (10.26)

where AI(t) = I(t) — (I), and the average is taken over the incoming states in
equilibrium with the reservoirs, as discussed in § 10.4. Taking the Fourier transform
of Eq. (10.26) we obtain

Sy (S, Q) = % ({AL(@), A1)}, (10.27)

with the convention S;(€, Q") = [dt'dt" Si(t',t") e e*""". The zero-frequency
component (the so called current noise power) is of a particular interest because it
is proportional to the fluctuation of the number of charges N transmitted through
the junction within the measurement time

SHQ = Q' =0) = 62<(N - (N))2>. (10.28)

Here N is a classical stochastic variable and the averaging is over the probability
distribution P(N).
For a static bias, S; depends only on the time difference, Sy(t',t") = S;(t' — t"),
which results in S7(€, Q") = 2mo (Y + Q") S;(§Y) and
/ " 1 T(4l Tl < d —iQ(t'—t"")
Silt' ") = 3 <{Al(t ), ALt )}> = [ TS . (10.29)
oo 2T
The quantity S;(2) is the spectral weight of current fluctuations at any instant of
time
< 0 dQ
(i) = [ 52 sie) (10.30)
Coo 2T
with the left-hand side being independent of ¢. Similarly as before, the zero-frequency
component is related to the fluctuation of the number of transmitted charges by

62

0

<(N— <N>)2>. (10.31)
Here t; is the preset measurement time which is much larger than the characteristic
time scale on which the current fluctuations are correlated.

In the following we consider a coherent 2-terminal scatterer and a static applied
bias voltage (ur = pr+€V). From Egs. (10.20) and (10.26) we obtain the following
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result for S7(2 = 0) [26,34]

5i=5 [ (T(E18) (1 = fu) + Fnlt = f) + Tele(1 — £10)) (1~ )

(10.32)
Here we used the unitarity of the S-matrix and Wick’s theorem for the average of
products of a-operators. We note that all matrix elements (£'t),,, take part in the
current noise power, in contrast to just the diagonal ones which contribute to the
average current [Eq. (10.23)]. In other words, current fluctuations depend on the
transmission amplitudes %, while the current itself depends just on the transmission
probabilities |t,,,|. After coarse-graining in energy, the current noise power reads

-</ 0 ST U= o) S0+ a1 =T0) (s fal?) (1033)

where we denote (T¥) = (T¥(£)) o¢ for brevity. For low temperatures and applied
voltages we can neglect the energy dependence of (T) and perform the integration.
The current noise power reduces to

Sy = ‘;Z (T,,) 2T, + 6; S (Tl - To)) {choth (;;) - 2Te] . (10.34)

In the equilibrium state, for no bias applied, the number of transmitted charges
fluctuates only due to the thermal fluctuations of occupation numbers (the so called
thermal, equilibrium, or Johnson-Nyquist noise [11,12]). In this case S; is given by

5% = 2T.G, (10.35)

which is a manifestation of the fluctuation-dissipation theorem [1,14,123] (see § 25 in
the Appendix). In the limit of large applied bias |eV'| > T, thermal fluctuations are
negligible and the noise originates from the stochastic nature of charge transmission
through the scatterer (the so called shot noise)

Shot — Z (T,(1—=T,)) |eV]. (10.36)

The magnitude of the shot noise power is usually characterized by the Fano factor
S?hot

= 10.37

o (10.37)

where |e!| is the Schottky formula [2] for the noise power of rare uncorrelated transfer

events described by the Poisson distribution P(N) = (N)Ve= (") /N1, For the system
which we consider, the Fano factor is given by

S (G -T)
F==5 Ty

The nonequilibrium shot noise power carries information which is not contained
in the conductance, as discussed in ChapterI. Here we focus on just two aspects.
If the measured shot noise power coincides with the Schottky value (F' = 1), then
the variance of the transmitted charge is equal to its mean, (N — (N))?) = (N),
which is an indication of rare uncorrelated electron transfers (Poisson process). For
the scattering problem which we consider, this happens for low transmission prob-
abilities (T,,) < 1 in all eigenchannels. However, to confirm that the process is
indeed Poissoninan, it is necessary to check that the higher-order cumulants are all

(10.38)
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equal to the mean. In § 13.2 we will obtain this result using the circuit theory of
charge transport. Experimentally, this has been done for the variance and the third
cumulant in a highly resistive tunnel junction [104].

The shot noise power provides more information about transmission eigenvalues.
From Eq. (10.36) we see that the shot noise contains the averaged sum of squares
(T?), while the conductance is proportional to (7},). This motivates the following
definition of the distribution of transmission eigenvalues

AT.E) =) (O[T = T(E))) e (10.39)

which satisfies

/1 dT T*p(T) =Y (T}, (10.40)

0 n

for k =1,2,.... We emphasize that the averaging in Eq. (10.39) smears the delta-
like singularities, resulting in a continuous 7-dependence of p(T") (see also § 10.6).
For example, the transmission distributions for a diffusive wire [46], an open chaotic
cavity [64-66], and disordered interface [70] are given by

G

pull) = S (10.41)
2G

pe(T) = TA=T) (10.42)

oi(T) ¢ (10.43)

T I -T

with Fano factors F; = 1/3, F. = 1/4, and F; = 1/2, respectively. Here the
distributions are normalized to dimensionless conductance G = f; dT Tp(T). In
§ 13.4 we will obtain these results easily within the circuit-theory formalism.

The transmission distribution and the noise are shown on Fig. 9 (a,b) for dif-
ferent junctions. Surprisingly, the distributions are bimodal instead of bell-shaped,
with a large density of open and closed channels and a suppressed density of chan-
nels of intermediate transparency. The fact that the main part of the electronic
states is localized in metals with dimensions exceeding the mean free path, and the
conduction is due to a relatively small number of open channels, has been shown
first by Dorokhov [47,48]. The contribution of channels with different transparencies
to the current is shown in Fig. 9 (c). We see that the transport in diffusive wires
and chaotic cavities is dominated by open channels. For a disordered interface, the
low-transparency and high-transparency channels participate in transport equally.
This is because of the increased number of closed channels which compensates for
their low transparency. The situation concerning noise is quite different, as shown
in Fig. 9 (d). Here the channels of intermediate transparencies give the dominant
contribution in the case of an open cavity, while for the diffusive wire and the dis-
ordered interface the noise is predominantly due to the large number of scattering
events in closed channels. Further information on the distribution of transmission
eigenvalues p(7T') can be obtained, at least in principle, from the higher-order current
correlators which contain higher-order averages my, = >, (T*). For a diffusive wire,
chaotic cavity, and disordered interface, the moments my, (in units of G) are given
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Fig. 9: The distribution of transmission eigenvalues (a) and current noise power
(b) are shown for different junctions: diffusive wire (solid curve), symmetric
chaotic cavity (dashed curve), strongly disordered interface (dotted curve), and
tunnel junction [T,, < 1, dash-dotted curve in panel (b)]. The transmission
distribution is normalized to the dimensionless conductance G = fol dT Tp(T)
and the current noise power to the thermal value S7% = 2T.G. The transmission
distributions are bimodal, with increased densities of closed and open transport
channels and suppressed densities of the intermediate ones. The contributions
of various transmission channels to the current I = (e2V/x) [dT Tp(T) and

shot noise power S5t = (|e3V|/x) [ dT T(1 — T)p(T) are shown in panels (c)
and (d), respectively.

by mgcd) =21k —1)/(2k — 1), méc) = (k m,&d))*l, and m,(j) = [(2k—1) mgfd)]*l, re-
spectively, where k = 1,2, .... From the experimental point of view, the higher-order
current correlators are increasingly more difficult to measure.

Equation (10.38) for the Fano factor is valid in the limit of many transport
channels in which case the averaging of transmission probabilities takes place. For
a short ballistic contact with a few open channels the averaging is not effective.
The Fano factor in this case is given by F' = T(1 — T)/(N + T), where N is the
number of fully open channels and 7' is the transmission of the channel which is
partially open. The conductance of such a junction is given by G = N + T (in units
of €2/m) and the Fano factor becomes F = (G — |G])(|G] + 1 — G)/G where the
integer part |G] = N denotes the number of open channels. The Fano factor as a
function of conductance is shown in Fig. 10. In the pinch-off region, as the point
contact is closed, the Fano factor approaches the classical Schottky value F' = 1. At
the conductance plateaus, the contact is open and the shot noise vanishes (F' = 0).
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Fig. 10: Fano factor F as a function of conductance G (in units of €? /) for a
short ballistic contact with a few open channels. In this case no averaging of
transmission eigenvalues takes place. The shot noise vanishes at the conduc-
tance plateaus when the contact is completely open. At the transitions between
the plateaus, the last transport channel is partially open and the shot noise is
non-zero.

In the simplest model which we consider here, only one channel can be partially
open while all the others are either completely open or completely closed. The
noise suppression at the conductance plateaus is very sensitive on the presence of
partially open channels. For example, if two channels with T} = 0.9 and 75 = 0.1
are present at the conductance plateau, the noise is suppressed by 80% only. The
Fano factor in ballistic quantum point contacts has been measured as a function of
the conductance in [40-42]. In experiments, the heat dissipated at the contact raises
the effective temperature of the electronic subsystem and results in a thermal noise
contribution which is proportional to the current and can be mistaken for shot noise
(§ 3). After correcting for the heating effects, the results of Ref. [41] are in good
agreement with the simple model presented here. In the more recent experiment [42],
the Fano factor has been measured for an ac driven quantum point contact with a
zero net dc current. The noise in this case originates from the stochastic transport
of electrons and holes generated by an ac voltage. After correcting for the heating
effects, the results are in perfect agreement with the Fano factor shown in Fig. 10.

§ 10.6. Universality of transport properties. In this paragraph we will
analyze the effect of energy averaging in Eq. (10.39). This averaging appears because
of the difference between the energy scale relevant for transport (which is set by the
temperature and applied voltage) and the one on which transmission eigenvalues
T,(£) change. The latter is much smaller because the transmissions fluctuate as a
function of energy due to interference effects within the scatterer. Therefore, energy
averaging will lead to phase averaging. We will analyze this effect using a double-
barrier toy model with a single transport channel. Already this simple system will
provide interesting insights. We will see how phase averaging restores Ohm’s law
of adding resistances in series. It also leads to a transmission probability which
is a stochastic variable with a continuous distribution, even for a single channel
scattering at barriers. In the tunnel limit, the double-barrier junction behaves like a
strongly disordered interface [70] with random scattering potential which is localized
on a length scale comparable to the Fermi wavelength. Finally, in the limit of a
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Fig. 11: Schematic representation of a double-barrier junction.The total
transmission amplitude is composed of processes with different numbers of
reflections between the barriers. The transmission through the system is perfect
for electrons with resonant energies corresponding to a phase of 2wn acquired
in one scattering cycle.

large number of scattering channels, phase self-averaging takes place. The averaged
transmission distribution becomes universal, i.e., independent of microscopic details
of the junction [113].

Let us consider a system of two identical junctions in series positioned at distance
d, as shown in Fig. 11. For simplicity we assume energy-independent transmission
amplitudes and consider longitudinal electron propagation with only one transversal
quantization mode. The total transmission coefficient through the structure is given
by

T(E) = &
( )_ 1+R%—2RQCOS[¢(5)]’

(10.44)

where Ty = 1 — Ry is the transmission coefficient of a single junction, & = p?/2m is
the energy of the incoming electron, and ¢(€) = 2pd is the phase acquired during
one scattering cycle between the barriers. At resonant energies corresponding to
¢ = 2mn (with integer n) the transmission through the structure is perfect with
T=1.

Now we analyze what happens if we have a beam of incoming electrons with
energies equally distributed in the interval AE around £. Monoenergetic electrons
are transmitted with probability T (&), with the total transmission for the beam

being the average (T(€)) e = (AE)~ ngrAA;/; E"dE'. Because of the linear re-
lation between energy and momentum in the Vlcmlty of the Fermi surface, we can
replace energy-averaging (1'(£)) ¢ by phase-averaging (T'(¢)), over the interval
A¢ = 2n(EpArp/d)"AE. For a sufficiently large interval AE > EpAr/d (but still
much smaller than the applied voltage and temperature), the average can be taken

over one period

W [ do T,
(T) —/0 o T(¢p) = 5T (10.45)
Equation (10.45) represents Ohm’s law of adding resistances in series. We emphasize
that the resistances of the scatterers are the ones which add up, i.e., we have to
correct for the contact resistance of one propagation mode present in our system (cf.
page 40). Indeed, from Eq. (10.45) we obtain (T) ' —Re = (Ty ' —Re)+(Ty ' = Re),
with Rc = 1 being the contact resistance in units of 7/e*. In the tunnel limit
(Tp < 1) the contact resistance is negligible and we have simply (T) " = Ty ' +T; %,
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Therefore, the averaging of interference effects over the energies of incoming electrons
recovers Ohm’s law.'?) )

To obtain the average values of higher-order powers (T*), it is convenient first
to calculate the distribution function

D) = BT = T(@ay = | 55 9T =00 (10.46)

For a given p(T'), the averages (T*) can be obtained by integration
1
(T*) :/ dT T* p(T). (10.47)
0

The function p(T") has a direct physical interpretation. Let us consider ¢ as a classical
stochastic variable, equally distributed over the interval (0,27). In this case T(¢)
is also a stochastic variable, with probability distribution p(T") given by Eq. (10.46)
[cf. Eq. (5.2)]. This corresponds to the following picture: Instead of taking the
energy-phase relation ¢ = ¢(€) as deterministic and performing the averaging of
transport properties over phases acquired by the incoming electrons of different
energies, we can treat the phase as a stochastic variable. In the latter case each
electron is transmitted with probability T, which is a stochastic variable distributed
according to p(7"). This analysis shows that the very origin of phase averaging is
often irrelevant: it may occur due to energy uncertainties in the incoming electron
beam, or because of intrinsic imperfections or fluctuations within the device.
Performing the integration in Eq. (10.46) we obtain [52,71]

p(T) = <T> (10.48)

WT\/ (1-1)

for T > (T)? and p(T) = 0 otherwise, where (T) is the dimensionless conductance
given by Eq. (10.45).'" We see that phase averaging smears the delta-like singular-
ities in Eq. (10.46), giving a continuous 7-dependence of p(T"). Another important
feature of p(T") is the bimodality: the transport channels are predominantly either
open or closed, with diverging densities. The distribution p(7") is shown in Fig. 12
in comparison with the statistics of T'(¢) obtained from 10° realizations of the ran-
dom phase ¢. In the tunnel limit 7y < 1, the transmission distribution p(T") of a
double-barrier system reduces to the one of a strongly disordered interface given by
Eq. (10.43).12) In § 13.4 we will obtain the same result by using the circuit-theory
approach.

The phase averaging of the conductance as a function of temperature and applied
voltage has been studied experimentally in [122]. The quantum point contact is
defined by a split-gate on high mobility GaAs/AlGaAs heterostructure with the
Fermi energy & ~ 12meV corresponding to the wavelength Ap &~ 40nm. The

10) For different junctions with transmission probabilities Ty and Ty we have T'(¢) = T T /[1 +
R1 Ry — 24/R1 Ry cos(9)]. After averaging we obtain (T) =TNTs/(Ty +To — T1T5) and Ohm’s law
again holds, (T) ™' —1 = (T7 = 1)+ (T; ' — 1).

11) If the junctions are different, then p(T) = T1To/[xT\/AT1ToT — (TA + T, T»)?] for T_ <
T < Ty, and p(T) = 0 otherwise. The cutoffs at low and high transmissions are given by Ty =
T1T2/(1 F \/1 — A)2 with A = T1 + T2 — TlTQ.

12) The low-transmission cutoff at 7 = (T')? is important for the normalization fol dTp(T) = 1.

However, it gives a negligible contribution in the averages (T'*) (k> 1) and can be ignored.
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Fig. 12: The distributions of transmission eigenvalues for a double-barrier junc-
tion shown in Fig. 11. The barrier transparencies are Ty = 0.1 [panel (a)] and
To = 0.5 [panel (b)]. The distribution is normalized to the dimensionless con-
ductance G = Ty /(2 — Ty). The histograms show the statistics of T(¢) for 10°
realizations of the random phase ¢. For low barrier transparency the distrib-
ution coincides with the one of a strongly disordered interface, while for more
transparent barriers it shifts towards open channels with a low-transmission
cutoff at T = G2.

lithographic width of the contact is W = 250nm and is much smaller than the elastic
mean free path (I = 9um at T, = 4.2K). At subkelvin temperatures (7, = 0.6K)
the authors observe up to 16 conductance steps as the point contact is widened.
In the transition regions between the quantized plateaus conductance oscillations
are visible, which are attributed to resonant transmission in the highest occupied
channel. These oscillations are most pronounced on the transition between the first
and the second conductance plateau. The length of the second channel d ~ 140nm
is estimated from the number of resonances, in agreement with the expected size
of the depleted region around the gates (about 200nm). As the transport energy
scale increases above 0.5meV (which corresponds to 47, for temperature-dominated
transport and to eV for a bias-dominated one), the resonances in the conductance
disappear due to phase averaging in Eq. (10.24). If the temperature is increased
even more, 47, > 1.5meV, the thermal energy becomes comparable to the channel
spacing and the conductance quantization is also destroyed. The previous analysis
has been made for a junction with just a few transport channels. The measured
energy scale of 0.5meV for the onset of the phase averaging in this case is much
smaller than the estimate EpAp/d =~ 3.5meV from our double-barrier model, which
is needed to justify the coarse-graining of transmission probabilities TF — (T*) in
Egs. (10.25) and (10.33). Thus, for a contact with a small number of channels, the
exact expressions given by Egs. (10.24) and (10.32) have to be used.

In multichannel junctions there is yet another source of phase averaging. The
transmission distribution has to be summed over independent eigenchannels, each
having in principle a different phase offset. Therefore, the summation over many
transverse channels results in phase self-averaging, Y. TF — Y (T*). An impor-
tant consequence is that the transmission distribution p(7") becomes universal, i.e.,
independent on microscopic details such as shape of the conductor or the spatial
dependence of the resistivity. For example, the transmission distribution for a dis-
ordered bulk conductor in the diffusive (metallic) regime with [ < L < NI is given
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by pa(T) = G/(2T/T = T) [46], where L is the length of a wire, [ is the mean free
path, N > 1 is the number of propagating modes, and G is the dimensionless con-
ductance. This distribution leads to the universal F' = 1/3 suppression of the shot
noise power with respect to the classical Poissonian value, regardless of microscopic
details (§ 3). Another signature of universality is the existence of universal conduc-
tance fluctuations [24, 25], where the conductance changes from sample to sample
by a value of the order of €?/m, again regardless of the shape and resistivity distrib-
ution. Recent experiments show that the universal diffusive limit is reached also in
lead contacts of width much smaller than the mean free path, supporting just a few
transport modes [124]. In this case the band structure of the lead results in an effect
similar to averaging and the universality is restored even in the absence of many
channels or disorder. Chaotic cavities also exhibit universal transport properties.
For sufficiently small contact openings, the electron dwell time in the cavity is larger
than the time needed for a localized wave packet to spread over the cavity. In this
case the electron momentum in the cavity is isotropized, i.e., the information about
the initial direction of propagation is lost. The transmission distribution through
the cavity is given by p.(T) = 2G/[x/T(1 — T)] [64-66], with universal shot noise
power suppression of F' = 1/4 [68,69]. In general, the universality can be broken
by extended defects such as tunnel barriers, grain boundaries, or interfaces [43] at
which the voltage changes abruptly, or by the presence of ballistic regions in which
the transport is not diffusive. In the case of the cavity, the universality can be bro-
ken also by relatively large openings which enable direct transmission from one lead
to another. In this case transport depends on the geometry of the system, like the
position and size of the contacts [67].

§ 11. Green’s functions

In this paragraph we introduce the formalism of Green’s functions in the form
which is used in solid-state physics. The formalism comes in different variants,
depending on the system under consideration. Interacting many-body systems in
thermal equilibrium can be described by zero-temperature or finite-temperature
(imaginary time, Matsubara) Green’s functions. Systems out of equilibrium can
be described by nonequilibrium (Keldysh) Green’s functions. A complete intro-
duction to the formalism, including all different techniques, is beyond the scope of
this Thesis and we refer the reader to the more specialized books [125-132] and
articles [133-136] on the subject. In the following we focus on the nonequilibrium
Keldysh technique.'?

§ 11.1. Definition of the Green’s functions. The Green’s function tech-
nique, being a perturbative method, has a wide range of applications in various
branches of physics. In contrast to the ordinary theory of perturbations, which is
in practice usually limited just to a few low orders, in the Green’s functions for-
malism it is possible to take into account certain processes in all orders. This is
usually done by construction of the appropriate diagrammatic technique, in which
certain diagrams recursively appear as subdiagrams of larger ones. In this case, an
exact summation of the entire class of diagrams is possible. The remaining dia-
grams, which cannot be summed in this way, are calculated to some finite order.
Various classes of diagrams often have a direct physical interpretation. Therefore,

13) For a comprehensive and less formal introduction to nonequilibrium Green’s functions see,
e.g., Ref. [15].
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the diagrammatic technique has a twofold importance: On one hand it points out
the different physical processes relevant for the problem under consideration, and,
on the other, it takes into account some of the processes exactly while providing a
controlled and systematic way of including the rest approximately. The price to be
paid is that although the general layout of the theory is common, the corresponding
diagrammatic rules are different for each class of systems (i.e., Hamiltonians) and
have to be constructed separately. In the following we give the general definitions
of the Green’s functions and in § 27 we provide more specific formulas used in the
BCS theory of superconductivity.

Let us consider a macroscopic system of interacting particles in an external field
described by the Hamiltonian

H(t) = H+ H'(1). (11.1)

Here H = H, O—i—j':[im, where IEIO is the Hamiltonian of noninteracting particles, Hyyis a
time-independent interaction, and H’ (t) is an external time-dependent perturbation.
We work in the grand canonical ensemble in which Hy includes the term — uN , With
1 being the chemical potential and N the particle number operator. We assume that
there is no external perturbation at times ¢ < t, [H'(t < t;) = 0] and the system
is in equilibrium with the thermostat at temperature 7.. The equilibrium state is
described by the statistical operator
= % e PH, (11.2)
where Z = Tr(e ##) and 3 = 1/T,. At t = t, the external perturbation is switched
on and the system evolves according to the full Hamiltonian 7:((15)
The goal of nonequilibrium statistical mechanics is the calculation of expectation
values of observables at times ¢t > t,:

(Art)) g = Tr (prdlt)) (11.3)

Here Ay (t) = UT(t,to) AU (t, t,) is the Heisenberg picture of an observable A and the
average Is taken with respect to the interacting equilibrium state pg. The evolution
operator U is given by the Schrodinger equation

AU (t,t " .
i% = H(U(t,to),  Ulto,to) = 1. (11.4)
A formal solution of Eq. (11.4) is given by
Ry - N
U(t,to) = Te " w0 (11.5)

where T denotes time ordering.'® In the absence of a time-dependent perturba-
tion, the Hamiltonian does not depend on time explicitly and Eq. (11.5) reduces to
Ult, ty) = e it-t0),

From Eq. (11.3) it is apparent where the main difficulty in the many-body theory
of interacting systems lies: The trace in Eq. (11.3) can be calculated by using Wick’s
theorem only for noninteracting particles with H = H,. For the interacting system
Wick’s theorem fails, and the trace cannot be calculated by simple means. The
problem can be avoided by using the interaction picture for observables (instead

14)

~ ~ ~ -Rt » ~
The inverse operator is given by Uf(t,ty) = [U(t,to)]T = Te' to "% where T denotes

anti-time ordering.
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of the Heisenberg picture) in which they evolve according to the noninteracting
Hamiltonian Hy. In addition, it is necessary to express the average (- --), over the
interacting state in terms of the average (---), over the noninteracting one. In
the following we define the Green’s functions which are auxiliary objects used to
efficiently implement the above procedure.

§ 11.2. Real-time Green’s functions. The time-ordered Green’s function
Gop(2',2") for a system of particles described by Eq. (11.1) is defined by*®

Gas(a',a") = =i (Thar(a)lpe(a"))

_ i@ )l () g >t
- ST AW / " ’- (11'6)
iZ(%H(fv JWar (') g, ">t
Here 13, are the field operators in the Heisenberg picture, o and [ are the spin
indices, x = (t, r) is the short notation for the space and time arguments, and the
upper (lower) sign refers to fermions (bosons). When performing the time ordering
in Eq. (11.6), the quantum statistics of the system should be taken into account: the
transposition of 1& and &T changes the sign for fermions and leaves the sign unchanged
for bosons. The time-ordered Green’s function is often denoted as G5 (', z").
Besides the time-ordered Green’s function G, several other Green’s functions
are used in the nonequilibrium theory: the anti-time-ordered (G*%), the lesser
(G=7), the greater (G*7), the retarded (GF), the advanced (G4), and the Keldysh
(GX) Green’s functions. Below we list all definitions, with the spin indices included
inz=(tr a):

G (', 2") = —i <T¢H(x')¢;(x")>H, (11.74)
G (1) = =i (Tin(@ ), (a")) (11.70)
G+ (', 2") = G<(z/, 2") = +i <¢;(w")¢ﬁ(x')>H, (11.7¢)
Gt (!, 2") = G7 (o, ") = —i <¢H<x')¢;(x")>H, (11.7d)
and
GR(a',a") = —i O(t — ") <[¢H(a;'), @;(x'f)]i>H , (11.80)
G2y = i 0" — 1) ([n(@’) Pl ) (11.8b)
G (@', a") = =i ([la), Bl(a" )]z ) (11.58¢)
In the previous formulas T is the anti-time ordering, 6 is the step function, the
upper (lower) sign corresponds to fermions (bosons) and [, |+ denotes the (anti)

commutator. The Green’s functions defined by Egs. (11.7) and (11.8) satisfy the
following relations:

Gt vt ")y = GLo (vt r") = ibgand (P — 7"), (11.94)
G (2,2") = —[GTH (2", 2], (11.9b)

15) We follow the convention which is usually used in the literature [126-132]. The definition
given in Ref. [125] uses a different sign convention.
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1, (11.9¢)
Gt (2, 2") = —[GT (2", 2")]", (11.94)

and
GA(2, ") = [G* (", 2")]", (11.10a)
GK=G+G"=G"1T+G", (11.100)
Gh=G~ -G "T=G" -G, (11.10¢)
GA=G -G =G"-G". (11.10d)

The definitions and properties listed above are valid both for fermions and bosons.
In the following we focus only on fermions, having in mind the application of the
theory to electron transport in mesoscopic devices.

The equilibrium zero-temperature theory is formulated in terms of the time-
ordered Green’s function G~~ only. In the nonequilibrium theory, the four different
Green’s functions G** appear originally. However, because of the linear relation
G~ 4+ G =G " + GT, only three of them are linearly independent. Therefore,
without loss of generality, we can choose to work with G®4%_ Furthermore, because
of the symmetry relation between G® and G4 given by Eq. (11.10a), the complete
theory can be formulated, in principle, in terms of just two Green’s functions, say G4
and G¥. However, in practice, one usually uses either the full set G** or the reduced
one G™AK  because the equations can be cast in a compact matrix form. At the
end of a calculation, it is easy to switch between various Green’s functions using the
properties given by Egs. (11.9) and (11.10). In § 11.4 we introduce the equilibrium
zero-temperature theory and in § 11.6 we generalize it to the nonequilibrium case.

For the stationary and spatially homogeneous system, the Green’s functions de-
pend only on the difference of arguments ¢t = ¢ — t” and » = ' — r” and can be
Fourier transformed with respect to ¢ and = (see § 29 in Appendix). The transformed
functions satisfy:!®

G (& p)=—[G" (& ), (11.11a)

GA(E,p) = [GT(E p), (11.11b)

Re[GT7(€,p)] =Re[G™F(€,p)] = (11.11¢)
The poles of the Green’s function G~ (&€,p) = G(&, p) determlne the spectrum
E(p) of quasiparticle excitations of the system by [G (5 w,p)] "t =0.

For the stationary (not necessary homogeneous) system, the spectral function
Ay (&, 7) is defined by'"

Ay(E,7) = =2 Im[GE (&;7, 7). (11.12)

In equilibrium, the spectral function reads: A,(E,r) = —iG_F(E;r,r)/f(E) =
iGEZ(Er ) /[1 — f(E)], where f(€) = (eP + 1)7! is the Fermi distribution. The
spectral function is real and positive, A, (€, r) > 0, and satisfies

Na(r) = (dlatriendttor)) = [~ 5 Au(EmIs ) (1113

H

16) For simplicity we assume spin-independent scattering.
17) We define the spectral function with respect to the coordinate single-particle basis {|r)}.
For a different choice of the basis, the definition and subsequent formulas are analogous.
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with N, () being the particle density. From Eq. (11.13) we conclude that the quan-
tity Vo(E,7) = (2m)7 1AL (€, r) is the local density of states (i.e., the number of
states per unit energy and volume in vicinity of r), with each state of energy &
being occupied with probability f(£). The global density of states (the number of
states per unit energy) is given by

1

™

Va(€) / dr A€, 7). (11.14)

The Green’s functions for the noninteracting Fermi gas in equilibrium are given

by

GO (€, p) =pv. 5 —16 +il2f(p) — 1] 76(E — &), (11.150)
GO, p) = if(p) 2m8(€ - &), (11.15b)
GO (€, p) = —i[l - f(p)] 2n6(€ — &), (11.15¢)
GO (E p) = —p.v. 5 —16 +i2f(p) — 1] 76(E — &), (11.15d)
and
o I
GORE p) = & 1i0 (11.16a)
4 __ 1
GOAE, p) = a— (11.16b)
GOK(E p)=i[2f(p) — 1] 2n6(E — &,). (11.16¢)

Here f(p) = (e +1)71, £, = p?/2m — p, the principal value is denoted by p.v.,
and the spin factors d,3 are omitted for brevity. The infinitesimal imaginary parts
in denominators appear due to the shifts in energy & — &£ + 10 needed to ensure
the convergence of the Fourier transformations of GE(¢' — ¢") [GA(#' — t")]. From
Eq. (11.16a) and using (€ — &, +1i0)™' = p.v.(€ — &)~ —imd(E — &) we recover
the usual result for the density of states of a noninteracting homogeneous system

©) (E,r)=(2m)73 [dp 6(€ —&p), independent of @ and r. In the interacting case,
the lifetime of single-particle states of energy £, is finite. In the vicinity of the Fermi
surface, the effect can be taken into account by adding a small imaginary term to the
energy &, — & —i, ' (with 7, being the lifetime, 7,1 < [£p]). From Egs. (11.12) and
(11.16a) we obtain that an interaction results in a broadening of the spectral function
which assumes the form of a Lorentzian A, (€, p) = 21V (77,) (€ —&p)* + 7,271,
where V' is the volume.

§ 11.3. One-particle averages. In this paragraph we obtain the expression
for averages of one-particle observables in terms of the Green’s functions. Let F' =
Yoo f (@) be a one-particle operator in the Schrodinger picture, where f(® act on the

individual particles labelled by a. The second-quantized form of Fin the Heisenberg
picture is given by

Bty =Y / dr 9Lt ) fO () Dt 7). (11.17)
af

Here f(ilﬁ)(r) is the operator for an individual particle in coordinate representation

(Schrodinger picture) which acts on 7 in gy (t, ). The average F(t) = (FH(t))H is
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given by

. 21
F(t) = —zZ/d’r‘ [féﬁ)(T)G/ga@, rit+0,7") L (11.18)
af
Here félﬁ)(r) acts only on 7 in G(¢,r;t + 0,7') and the limit ' = = is taken after
the action of f . For example, the particle-number density and momentum density
operators in the Schrodinger picture are given by

N(r) = dL(r)da(r) (11.19)

and

P(r) =~ 3" [0h(r) (Vda(r)) — (ViL(r)) du(r)]. (11.20)

The corresponding averages can be expressed in terms of the time-ordered Green’s
function by

N(t,r)=—=i) _ Goalt,rit+0,7) (11.21)

and .

P(t.r) =~ [(v' v Xa: Goalt, 7’5t 40, r”)} o (11.22)
In the stationary state (when the Hamiltonian does not depend on time explicitly)
the Green’s functions depend only on the time difference t = ¢ — ¢”, and N and P
become time-independent. Equations (11.20) and (11.22) are valid in the absence
of an external electromagnetic field. If a field with the vector potential A(¢, r) is
present, the V operators should be replaced by V Fi(e/c) A when acting on ¢ (¢7).

§ 11.4. Diagrammatic technique at zero temperature. The analysis in the
previous paragraph shows the importance of the Green’s functions: If the Green’s
function is known, then the averages of arbitrary one-particle operators are given by
Eq. (11.18). Therefore, the main goal of many-body theory is to provide a method
for obtaining Green’s functions.

In the following we illustrate the method in the simplest case of a system of
interacting particles at zero temperature without an external time-dependent per-
turbation [H = Hy + Hyy, H'(t) = 0]. Let us assume that the system was initially
noninteracting and in a nondegenerate ground state |¢g). The interaction is adia-
batically switched on at t = —oo and adiabatically switched off at t = co. Since an
adiabatic evolution does not introduce transitions to states of different energy, the
final state is the same as the initial ground state, up to a phase factor: |¢) = ¢?|¢y).
The zero-temperature Green’s function is given by

Gz, ") = —i <T¢H(:p')z@;(ag">>o, (11.23)

where we have suppressed spin indices and (---), = (¢o| - - - |¢o) denotes averaging
over the initial ground state of the noninteracting system. It is convenient to change
to the interaction picture, in which ¢-operators evolve with respect to the noninter-
acting Hamiltonian Hy. The operators 1y in the Heisenberg picture are related to
the operators ¢y, in the interaction picture by

Up(t,r) = ST(t, —00) by, (t, ) S(t, —o0), (11.244)
(¢, ) = ST(t, —00) Py (¢, 7) S(t, —00). (11.24b)
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Here S denotes the evolution operator in the interaction picture which is given by

~Rt / Frint (47
S(t,te) = Te " 1o ™ Hilg ™), (11.25)
with A A o
W(t) = Uk, (t, —00) Hie Uy, (t, —00) (11.26)

and Ug, (t,1y) = e o= For a system with single- and two-particle interac-
tions UM (r) and U®(r; — ry) (which describe, for example, interactions with
a static inhomogeneous external field and interparticle interactions, respectively),
equation (11.26) reads

15(0) = [ dr Gl (6,7) V() g (1.7)

+ % / drdr’ Ol (6, m)h, () UP (1 — ') oy (8, 7 )b, (8, 7). (11.27)

Equations (11.25) and (11.27) express the evolution operator S in terms of the
noninteracting field operators ¢, .
Substituting Eqgs. (11.24) into Eq. (11.23) we find

G 2"y = —i <§T T [y () () S] >O . (11.28)

Here S = S (00, —00) and we used the following properties of the evolution operator
g(tg,tl) = S(tg,tg)g(tg,tl), (11290,)
St(ts, 1) = ST(tg, )5 (ts, 1) (11.295)

The Green’s function can be further simplified using that the whole evolution changes
the ground state only by a phase factor: |¢) = S(oco, —00)|dg) = €¥|¢y). Finally,
we obtain

=i (T [, (2"}, (=) S] )

G2, 2") = - (11.30)
(5o
For the noninteractig system S =1 and the Green’s function reduces to
GO (2! 2"y = —i <T¢Ho(g:’)ﬂ{0(a;”)> . (11.31)
0

Equation (11.30) is the starting point of a diagrammatic method to calculate
the Green’s function G. An important property of Eq. (11.30) is that G(2',2") is
expressed entirely in terms of field operators of a moninteracting system and the
averaging is also performed with respect to a moninteracting ground state. There-
fore, it is possible to expand the evolution operator S in powers of the interaction
potential and apply Wick’s theorem for the averages of products of 1 y,-operators.
For example, expanding the numerator of iG given by Eq. (11.30) we obtain

(T [duoa' b (2") S]) =

0

Z <—i!)n /dtl <o dty, <T12}H0(x/)772;[0(33//)1€[2;(t1) - F[Eg(tn)> ) (11_32)

n 0
n=0

After substituting ]:I}?g from Eq. (11.27) and applying the Wick’s theorem, we
end up with an expression which contains just the following types of averages:
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e b e ©
iGO(z,y)  —iUD(r)  —iUO(z-y) n%)

Fig. 13: Basic diagram elements. The solid line represents the noninteracting
Green’s function iG®)(z,y). The end points (so-called vertices) are associated
with the arguments x and y. The order of arguments is indicated by the arrow
which points in the direction of time propagation. The dashed line with a single
vertex x represents the interaction with an external field and corresponds to
—U (1)(7'), The dashed line with two vertices x and y represents a two-particle
interaction term —iU ) (z —y) = —id(t, —t,) U (r, —r,). [In this case there
is no need to specify the order of arguments because U?) (x —y) = U (y —x).]
The simple solid-line loop stands for the noninteracting particle density n(%).

(Ta, ()1, (1)) = 1G O (2,9), (T, () ng (1)) = —iGO (), and (s, (2) x
V, (2)), =nl® = NO/V = (2mu)3?/(3n?). Therefore, the exact Green’s function
G is expressed in terms of the Green’s functions of a noninteracting system G© and
the noninteracting particle density n(©).

The summation in Eq. (11.32) can be performed systematically by using a dia-
grammatic representation of different terms. The basic diagram elements are shown
in Fig. 13. By expansion of Eq. (11.32), it is easy to see that each diagram consists of
two outer G(¥-lines with vertices 2’ and 2", and a number of inner vertices z1, s, . . .
in which two G(®-lines and one interaction line meet. A few low-order diagrams are

shown in Fig. 14. They correspond to the following terms on the right hand side of
Eq. (11.32):

(a): i/dm UD(r) GO 2)GO(z, "), (11.33a)
(b): — /dmldazg U (21 — x3) GOz, 21) GO (21, 29) GO (24, "), (11.33b)
(¢): in® /dxldxg U (21 — x3) GO, 21) GO (2, 2"), (11.33¢)
(d): GO 2" /dl’ldl'g U (21 — 25) GOz, 21)GO (21, 35). (11.33d)

The diagrams shown in Fig. 14 (a) — (¢) are connected, while the one shown in (d)
is disconnected. The disconnected diagram contains a closed loop unattached to the
connected part with the outer vertices ' and z”. Higher-order disconnected dia-
grams may contain one or more disconnected parts. These parts give multiplicative
contributions to the diagram.

The important property of a diagrammatic technique is that the contribution
of all disconnected parts, in all orders of perturbation theory, exactly cancels the
denominator (S), in Eq. (11.30) [126]. Therefore, to calculate G it is sufficient to
consider only connected diagrams. Furthermore, all diagrams of the same form,
which differ in a permutation of labels of internal vertices, give the same contribu-
tion and cancel the factor 1/n! on the right hand side of Eq. (11.32). Thus, only
topologically nonequivalent diagrams should be taken into account. We summarize
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Fig. 14: Several first-order diagrams which illustrate the usage of the basic dia-
gram elements shown in Fig. 13. The outer G\°)-lines contain outer vertices x’
and x”. In the inner vertices, two G()-lines and one interaction line meet. The
corresponding analytical expressions are given by Eq. (11.33). The diagrams
(a) — (c¢) are connected while (d) is disconnected. Note that the disconnected
parts give a multiplicative contributions to the diagram, Eq. (11.33d).
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Fig. 15: The second-order diagrams for the case of two-particle interactions.
The labels of vertices are suppressed for simplicity. The diagrams shown in
panels (a) — (f) are irreducible because they cannot be split into 2 subdiagrams
connected with a single solid line. The diagrams (g) — (j) are reducible.

this by writing symbolically
Gla!, ") = =i (T [ ()0 (=) S]) . (11.34)

where ”con” denotes that the perturbation expansion is done in terms of connected
and topologically nonequivalent diagrams only.
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We now formulate the set of rules which are used to calculate the correction
iG™ (2’ 2") of order n [127):

(1) Form all connected, topologically nonequivalent diagrams with external po-
ints 2’ and 2” and n dashed lines, where in each vertex one dashed and two
solid lines meet.

(2) Associate the diagram elements with the corresponding Green’s functions
and interaction potentials as shown in Fig. 13.

(3) Integrate over all internal vertex coordinates z (dx = dtdr), and sum over
all internal spin variables.

(4) Multiply the result with (—1)*, where L denotes the number of closed solid-
line loops with more than one vertex.

As an illustration, we show in Fig. 15 all 10 diagrams of second-order for the case
of a two-particle interaction. The first-order diagrams are shown in Fig. 14 (b) and

(c)-

§ 11.5. Self-energy. The most important property of a diagrammatic tech-
nique, which makes it advantageous over the ordinary perturbation theory, is the
possibility of a partial summation of diagrams in blocks. According to the general
rules discussed in the previous paragraph, the coefficient which multiplies a diagram
does not depend on its order.'® Therefore, the subdiagrams have analytical repre-
sentations which are independent of the properties of the composite (total) diagram,
and can be calculated separately. Furthermore, it is possible to sum up several
subdiagrams and form new diagrammatic blocks which can be used to build more
complicated ones." One of these blocks is the self-energy.

In order to define the self-energy let us divide all diagrams for GG into two groups:
the reducible diagrams which can be split into 2 subdiagrams connected with a single
solid line, and the rest which are the irreducible ones. Among the second-order
diagrams shown in Fig. 15, the diagrams (a) — (f) are irreducible, while (g) — (j)
are reducible. The contribution dG of all irreducible diagrams can be written in the
following form

§[iG (2!, 2")]) = /dxld:cg iGO (2! xy) [—i8(xy, 22)] iGO (24, ). (11.35)

Here we explicitly denote the outer G(©-lines, while the self-energy term —i¥ stands
for the sum of all inner irreducible parts.

It is convenient to associate the exact Green’s function and the self-energy with
a diagram elements as shown in Fig. 16 (a,b). Since all irreducible diagrams are
contained in the self-energy, the exact Green’s function consists of self-energy parts
connected with G(*-lines [Fig. 16 (c)]. Therefore, the exact Green’s function is given

18) This is because the factor 1/n! on the right hand side of Eq. (11.32) is cancelled by n! equal
contributions of different pairings of w-operators. This is taken into account by considering only
topologically nonequivalent diagrams.

19) Here we note that in the finite-temperature Green’s functions technique, the thermodynamic
potential Qg can also be represented in terms of connected topologically nonequivalent diagrams.
In contrast to the diagrams for G which are open (with two outer vertices), the diagrams for Qg
are closed (with no outer vertices). In this case the analytical representations do depend on the
order of the diagrams, which makes the block-summations inconvenient [126].
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(a) (b)

—— O

T Y T Y

iG(z,y) —i%(z,y)
(c)
_—— = < + < O < + —( < )—e— + -

= < + < O
= < + O <

Fig. 16: The exact Green’s function [panel (a)] and the self-energy [panel (b)]
are associated with the double solid line and the circle, respectively. The dia-
grammatic expansion of the exact Green’s function in terms of the self-energy
is shown in panel (c).

by the following left and right Dyson equations:

Gz, 2") = GO/, 2") + /dazldxg GO 21)2 (21, m2) G (g, 2") (11.36a)

=GO ") + /dﬁldxz G(2, 1) 5 (w1, 22) GO (w9, 2").  (11.36b)

Equations (11.36) express the exact Green’s function G in terms of the self-energy >
which contains just irreducible diagrams. The exact summation of ¥ is not possible
in general since this would represent an exact solution of the interacting problem.
Various approximation schemes are used instead, depending on the system under
consideration [125,129,130].

§ 11.6. Nonequilibrium (Keldysh) Green’s functions. In the previous
paragraphs we have introduced the diagrammatic technique for the calculation of
the Green’s function G in equilibrium at zero temperature. The starting point was
Eq. (11.30) in which G was expressed in terms of the field operators and the ini-
tial state of a moninteracting system. In this paragraph we outline the Keldysh
Green’s functions technique which is applicable both at finite temperatures and out
of equilibrium [128,130, 133].

First we generalize the notion of evolution by assuming that the time arguments
lie on the ordered Keldysh contour C' depicted in Fig. 17. The contour C' consists

C=C_+0C4 C_
—01 > \—I—ook "
—002 < J+002

o

Fig. 17: Definition of the Keldysh contour.The contour consists of the
forward propagation branch C_ and the backward propagation branch C
which are connected at t = +o00.
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of the forward branch C'_ and the backward branch C which are connected at
t = +00. The generalized evolution operator along the contour is defined by
R,/

Up( ") = T, e e DL (11.37)
Here t', " € C and the time-ordering T, and the integration [ dt are performed along

the contour. The time-ordering 7T, coincides with 7' (T') on the C_ (C) branch. For
example, if the initial time " € C'_ and the final time ¢’ € C'; we have

N P N = fiRt'm H(t)dt —iRﬁmlﬂ(t)dt
Un(t',t") = (Te ™+ Te™
(T@ J 7aww><7%fjm7awm>_ (11.38)

The Hamiltonian ﬂ(t) is taken to be the same on both branches. The evolution of the
field operators along the contour is defined by ¢y () = (A]?T_[ (t, —o01) (1) Up(t, —o01)
and Yl (z) = U] 1 (t, —001) Ut (r) Up(t, —00y) where t € C. From Eq. (11.37) we ob-
tain UH(t ,—001) = Texp|—i ffm?:{(t)dt], i.e., the contour-ordered evolution from
the initial time ¢’ = —o0; to t’ € C coincides with the usual evolution from —oo
to t', regardless the branch of t'. Therefore, the field operators 1y (z) also coincide
with the usual ones, regardless the branch. This is because the forward evolution
from ¢’ to oo on C_ is cancelled by the backward evolution from oo to t' on C..2")

A quantity which possesses a simple diagrammatic expansion is the contour-
ordered Green’s function defined by

W e

where ¢/,#" € C. Rewriting 1 in the interaction picture with respect to H, we
obtain

Go(o,2") = —i <Tc [@;H(x')z;;(x")é%w . (11.40)

H

Here S Hy, = S Y, (—00g, —001) is the contour-ordered evolution operator in the inter-
action picture, defined in analogy with Eq. (11.37). Next we express the averaging
(---)p over the interacting state in terms of the averaging ( ) ) 1, OVOT the non-

interacting one. To do this, we consider the decomposition H = Hy+ Hyy and use
the definition of the evolution operator S pine 1 the interaction picture with respect
0

to Hy: Ugl(t,to) = UHO(t,tO)S'HiI% (t,to). Since H and Hy do not depend on time we
have e~ (t—to) — €_iHO(t_tO)SHint (t,to). Putting t = to—1i3 we find e=BH — ¢=BHoG(0)
where we denote S@ = § gt (to —1i0,1y) and assume ordering along the imaginary
time axis as depicted in Fig. 18 (a). The contour-ordered Green’s function becomes

i (SOT. [ () )5 )
<gm>
Hy

0) In § 13.1 we present an extension of the Keldysh technique in which the Hamiltonian ﬂ(t)
is different at C_ and C. branches. In this case the contour-ordered evolution Upy/(t,—001) and
operators ¥ (x) also differ at different branches of t.

(11.41)
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(a) (b)

to —001 ~ To01
t —002 J +002 t
!
to =P —002 — 43

Fig. 18: Panel (a): The ordering on the imaginary time axis which is used
to express the average () in terms of (---)y . Panel (b): The complete
contour C' which is used in the Keldysh technique. The time dependent part
of Hamiltonian H'(t) is defined to vanish on the imaginary branch of C".

Finally, it is necessary to express the ¥y operators in terms of ¢p,. For ¢ >.t" we
obtain

T. WH(?U/WL(J?")SH;J = gH;,(—Oozu t/)SLi}?t (', —001)15110(?5')31{;?3 (t', —o01)

x Sy ()8! (t”,—ool)zﬁgo(t")éf,gg(t",—ool)g%(t",_ool). (11.42)

The product of operators S Fint and S 71, can be transformed in the following way. Let
0

us consider the two ways of decomposing the total Hamiltonian, ﬂ(t) =H+H (1)
and H(t) = Hy + V(t), where H = Hy + Hyy and V(t) = Hyy + H'(t). The Heise-
nberg evolution UH which corresponds to the first decomposition is given by UH =
UnS ", = U HOS Higt S my,, while the one which corresponds to the second is UH =

U HogVHO- Therefore, we find S Higt S'H}{ = S‘VHO. Substituting into Eq. (11.42) and us-
0
ing that Sy (t',t") = Sp, (¥, —ool)SL,H (", —001) and Spy (—00s,t') = SL@ (t', —o01)
we obtain
1. [Q;H(xl)@;[(IJ/I)SH}I] = 5'VHO (_0027 tgzﬁH@ (t/)SVHO (tlv t”)@}{o (t//)SVHO (t”7 —001).
(11.43)

If we define H' (t) = 0 on the imaginary part of the contour depicted in Fig. 18 (a),
we can write in a compact form

ST [ (2011 (@) S, ) = T [y () (2) S, ) (11.44)
Here SVHO = SVHO(—OOQ — i3, —001) and the ordering T, is performed along the
contour C” depicted in Fig. 18 (b). A similar analysis shows that the result holds
also for t” >, t. The operator S® can be written as S = Ty, Svy, and the contour-
ordered Green’s function reduces to

—i (T [y ("), (&) Sy,
Go(z', 2") = < P " i DHO. (11.45)

<TC, St >H0

Equation (11.45) is the starting point of the Keldysh diagrammatic technique.
It expresses G, in terms of the noninteracting field operators averaged over the
initial equilibrium state of a noninteracting system. The diagrammatic technique
is obtained by expanding SVHO and applying the statistical Wick theorem. The
result is obtained readily by noting that Eq. (11.45) has the same structure as
Eq. (11.30) which has been discussed in the zero-temperature case. Therefore, the
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diagrams in the Keldysh technique are exactly the same as in the zero-temperature
case. In particular, the denominator of Eq. (11.45) cancels the contribution of all
disconnected diagrams in all orders, which allows to restrict the consideration just
to connected and topologically nonequivalent ones:
GC(CL'/, x//) = — <TC’ [q/)HO (‘KL‘/),@Z)LO ('ZL‘H)SVHO} >HO o . (1146)

The only modification in the Keldysh technique is the different analytical repre-
sentation of diagrams which takes into account that the time arguments can be on
different branches.

The contour-ordered Green’s function G. reduces to G=* given by Eq. (11.7),
depending on the branch of time arguments:?"

e, t"eC; = GJ(d,2") =G, 2"), (11.47)
where 7,5 € {—,+}. The last equation establishes a mapping between the contour-
ordered and the matrix Keldysh Green’s function G defined by

o G__(]?/, l’”) G-+ (]3/, l’”)

GC(.:CI,:E//> — G(x x ) <G+ (‘T,7x,/> G++(Z‘,’x”) . (1148)
The rules which are used to calculate correction iG™% (2/, 2 of order n are similar as
in the zero-temperature case, with the following modifications [128]. In the Keldysh
technique, vertices acquire an additional branch index k = {—, +}. A solid line with
vertices (wk;yl) is associated with iG(®* (z,y). A dashed line with the single vertex
(zk) is associated with the single-particle interaction potential sgn(k)iU® (z). A
dashed line with two vertices is labelled with equal branch indices, (zk;yk), and
corresponds to the two-particle interaction potential sgn(k)iU® (z —y). A solid line
loop with the vertex (zk) corresponds to n(?), irrespective of the branch index. The
correction iG(™% (z', 2"") is calculated by summing up all connected and topologically
nonequivalent diagrams of nth order with outer vertices (2'i;2”j) and all possible
branch labellings of inner vertices.??

§ 11.7. Dyson equations. The self-energy in the Keldysh technique is intro-
duced in analogy with the zero-temperature case, with G and ¥ replaced by Keldysh
matrices G and Y. The matrix components of Y are denoted as

. (o nt
zz(2+ z++> (11.49)

and satisfy X7~ + X T+ X7 4+ X+ =0 [128]. The exact Keldysh Green’s function
is given by Dyson equations

Gz’ 2"y = GO, 2") + /dxldxg GO 21)5 (1, 22) G (9, 2") (11.50a)
= GO ") + / drydey G(a', 210)5 (21, 1) GO (g, 2").  (11.500)

21) The imaginary part of the contour € takes into account correlations in the initial state
introduced by ﬁint before the external perturbation H' (t) is turned on. If the initial correlations
are negligible [e.g., if the system is in the equilibrium state pp, before switching on H' ()], then
the imaginary part of the contour C’ can be neglected [133].

22) In an alternative formulation [133], the diagrammatic technique is performed in terms of the
Keldysh matrices rather than matrix components. In this case the diagram elements and vertices
acquire matrix structure which takes account of the branch labelling.
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By applying Gy} = id, — ho(z) on Eq. (11.50) we obtain the left and right Dyson
equations in integro-differential form:

Gl G(a' 2"y = 70 (z' — ) + /dx F3(2, 2) Gz, 2"), (11.51a)
Golr Qo' 2") = #o(a’ — 2”) + / dz G(z', 2)S(z, )75 (11.51b)

Here ho(z) = —V2/2m — p and we used that G5t GO (2, 2") = Glr GO(a/, 2") =
730(z" — 2).

Equations (11.50) and (11.51) contain a redundancy which is associated with
the linear dependence of the matrix components. Without loss of generality we
can choose the linearly independent components GF4X given by Eq. (11.10), and
introduce a new matrix representation by

G = DaGIT = ((ff g’j) R (EOR gﬁ) )

Here L = (1 —i%)/v/2 and
Y=g 42t = (BF -, (11.53a)
YR=yT 4T = (T 4 z+ ), (11.53b)

A=Y 4T = —(ZTT 42T (11.53¢)

)
In the new representation, the Dyson equations (11.50) and (11.51) become

Gz, 2") = GO>2/, 2") + /d.TleEQ GOz, 1) 5y, 22) G (22, 2") (11.54a)

= G(O)<xlax”) +/d$1dx2 é(xlaxl)i](xlax?)G (xz, /) (1154b)
and

Gyl G 2") = 16(2' — ") +/dw Y(2', x)G(x, 2", (11.55a)

@axlf G2, 2") = 16(2' — 2") +/dx é(x/,x)i(x,x”). (11.55b)

The four Dyson equations (11.54) and (11.55) are equivalent. Each of them
constitutes a complete set of equations for the components GF4¥ . Furthermore,
because of the symmetry relation between G and G# given by Eq. (11.10a), the
whole theory can be formulated in terms of G4 and G¥ only. However, the two
coupled equations for G4 and G¥ are difficult to solve because of the complicated
integral (or integro-differential) structure and the presence of the self-energy term.
The equations simplify considerably in the quasiclassical approximation which ne-
glects the fast oscillations of Green’s functions with respect to the relative coordinate
r’ — r” (on the scale of Fermi wavelength A\r) and keeps the slow change with re-
spect to the center of mass coordinate » = (7' + r”)/2. The quasiclassical theory
is elaborated in detail in Ref. [125]. The self-energy is usually calculated approxi-
mately, depending on the interaction in question. For example, the averaging over
nonmagnetic impurities with potential u(r) is described by

. dp =
Zg/gu(p,p — k) = nimp/@T)lg |u(p — p1)|2 GS/5”<p17pl — k) (1156)
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in the self-consistent Born approximation, where nj,, is the impurity concentration.
The expression for ¥ can be further simplified by taking into account that trans-
port properties are governed by the electrons in the vicinity of the Fermi surface,
|p|, |p:| = pr. In this case |u(p — py)| = |u(f)| where § = Z(p,p,). For isotropic

scattering |u(f)| = |u| = const and we obtain
1 dp, -
Neren k Gergn — k). 11.57
gen(p,p— k)= 27V(0 )Timp/(27T)3 gen(P1s Py ) ( )

The characteristic time for impurity scattering Timp is given by 71 = 21V(0)imp|ul?,
where V(0) = mpp/27? is the density of states per spin per volume at the Fermi
level.??) We note that ¥ for isotropic scattering does not depend on direction of the
incoming momentum p.

§ 11.8. Averages in the Keldysh technique. Distribution function. To
complete the introduction to the nonequilibrium Keldysh technique, we have to
specify the relationship between the Green’s functions G5 and observable quan-
tities. As already discussed in § 11.3, the one-particle averages can be obtained
from Eq. (11.18) using the time-ordered Green’s function G, (t, r;t + 0, 7). This
way of expressing one-particle averages is particularly useful in the equilibrium zero-
temperature technique in which only the time-ordered Green’s function appears. In
the nonequilibrium technique it is more convenient to use the lesser Green’s func-
tion which is continuous at equal time arguments and reduces to the time-ordered
one, G (t,r;t,7') = Gpal(t, 7;t 4+ 0,7). The lesser Green’s function G~* can be
expressed in terms of G®4X using Egs. (11.10):

Gt= %(GK +GY = GH). (11.58)

Equations (11.18) and (11.58) give the prescription of how to calculate one-particle
averages in terms of GBAK,

In the following we consider the occupation numbers of single-particle states
for the many-body system out of equilibrium. Let {|f)|a)} be the uncorrelated
single-particle basis with « being the spin index and f the set of discrete orbital
quantum numbers. The occupation numbers of orbital states are given by ny(t) =
Y (d}aH(t)d rar(t)) 7, with the sum taken over both spin orientations. The total
number of particles is given by N = 3 ny. Transforming Eq. (11.21) to the f-basis,
we find

np(t) = / dr'dr” &5 (r) () S [iGa (873t 7)), (11.59)
where ¢;(r) = (r|f). Substituting G~ from Eq. (11.58) and using that G4 —GF =
G~ — GT and the relation (11.9a) between the lesser and the greater Green’s
functions at equal times we obtain

ny(t) = L=yl

5 , (11.60)

23) The mean free path and diffusion constant are defined by | = vp7imp and D = vgl/3. The
normal-state Drude conductivity is given by o, = ne?rimp/m = 2V(0)e?D where n = p%./3n? is
the electron density. The self-consistent Born approximation is the lowest order approximation in
u/Er,1/(prl) < 1.
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where

he(t) = /dr’dr" i(r")or(r") Z [GE (¢, 75t v")]. (11.61)
Therefore, the average occupations of the single-particle states out of equilibrium
are completely determined by the Keldysh component G¥.
Often it is convenient to choose the momentum single-particle eigenbasis {|p)}.
In this case it is useful to define the generalized particle distribution function n(¢, 7, p)
as the Fourier transform of —iG~1 with respect to the relative coordinate (the so
called mixed coordinate-momentum or Wigner representation):

/ /
n(t,r,p) = /dr/ P Z [_Z‘G;;r (t, r+ %;t, r— %)] : (11.62)

From Eq. (11.21) we find that the particle number density N (¢, r) and the average
occupation numbers N (¢, p) are given by

N(t,r)= /(2dTp>3 n(t,r, p), N(t,p) = /d’r‘ n(t,r,p), (11.63a,b)

with the normalization to the total number of particles given by

N = /dr N(t,r) = / (2‘2’)3 N(t, p). (11.64)

For the noninteracting gas in equilibrium, the lesser Green’s function is given by
Eq. (11.15b) and the generalized distribution n(¢, 7, p) reduces to the Fermi function
f(p), independent on ¢ and r. We emphasize that, in general, n(t, r, p) is not posi-
tive definite and therefore cannot be interpreted as the joint coordinate-momentum
distribution function. (Such an interpretation is forbidden by the quantum me-
chanical uncertainty relations.) Only the integrated quantities N(t,r) and N(t, p)
given by Eq. (11.63) represent the true coordinate and momentum distributions,
respectively. Similarly as before, the generalized distribution n(t, 7, p) is completely
determined by the Keldysh component G¥ by

1— h(t,'f',p)
2 )

/ /
h(t,r,p) = /dr/ e 3 {@Gga (t, T+ %;t, r— %)1 . (11.66)

«

n(t,r,p) = (11.65)

where

In general, the presence of time-dependent terms in the Hamiltonian also affects
the density of states. The effect is important in bulk semiconductors in strong ac
fields and is known as dynamical Franz-Keldysh effect [137,138]. In the presence
of a time-dependent drive, the Green’s functions depend on two time arguments ¢’
and " and the spectral function and the density of states given by Egs. (11.12)
and (11.14) have to be generalized such that the Fourier transform is performed
with respect to the relative time t = ¢’ — t”, while keeping the dependence on
the center-of-mass time coordinate 7' = (¢’ 4+ t”)/2. The generalized density of
states V(&,T) develops drive-dependent features both in time and energy, which is
seen experimentally by the modified absorption spectra in a semiconductor near the
optical absorption edge [139]. An efficient truncation method for the calculation of
Green’s functions in time-dependent fields has been developed by Brandes [140].






CHAPTER IV

Circuit theory and full counting statistics

In ChapterII, the cumulant generating function has been introduced as an effi-
cient way to characterize a set of random variables and obtain the joint probability
distribution. Furthermore, the decomposition of a total cumulant generating func-
tion into a sum of simpler ones reveals the independent constitutive processes, thus
leading to a novel physical understanding. While this concept is general and inde-
pendent on the particular stochastic system under consideration, the very technique
to obtain the cumulant generating function depends on microscopic properties of the
system and is system specific. In § 6 — § 9 we gave examples in which it was possible
to identify the cumulant generating functions directly.

In this Chapter we present the theory which enables the calculation of statistics
of charge transfer in mesoscopic conductors: the formalism of full counting statistics.
The field has been pioneered more than a decade ago by Levitov and Lesovik [141]
for the case of dc biased multiterminal junctions and generalized to the case of
ac bias by Ivanov and Levitov [142] and Levitov, Lee, and Lesovik [143]. Nowa-
days the research in the field of full counting statistics is very active and several
theoretical approaches exist. The reason for this increased interest is that the full
counting statistics provides the most detailed information on the charge transfer,
which becomes accessible due to advancements of nanofabrication technology and
experimental techniques. The semiclassical cascade approach to higher-order cur-
rent correlators based on the Boltzmann-Langevin equations has been developed
by Nagaev et al. [144,145]. The stochastic path integral theory of full counting
statistics was introduced by Pilgram et al. [146,147]. In this chapter we present
the quantum-mechanical theory of full counting statistics based on extension of the
Keldysh-Green’s function technique [91,92,148,149]. The theory has been formu-
lated in a discretized form of the circuit theory [66,150] which provides the efficient
method of calculation with the least computational effort. A generalization for mul-
titerminal circuits has been put forward by Nazarov and Bagrets [151]. The theory
has been reviewed by Belzig [152] and Nazarov [113].

This chapter is organized as follows. In § 12 we make the connection between
the Keldysh-Green’s function technique in mesoscopic transport and the scattering
formalism. The central result is given by Egs. (12.1) and (12.3) which express the
current through a generic conductor in terms of its scattering properties and the
Keldysh-Green’s functions of the leads. These important relations are the starting
point for the discrete version of the theory which is a quantum counterpart of the
traditional circuit theory. The solution strategy is also discussed in § 12. In § 13 we
present the extension of the formalism which enables the calculation of the higher-
order current correlators and charge transfer statistics. The method is described in
more detail for two-terminal junctions in § 13.2 and generalized to multiterminal
circuits in § 13.3. In the case of two-terminal junctions, the method reduces to a set
of coupled scalar equations: the scalar circuit theory (§ 13.4). It provides an efficient
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technique to calculate the transmission distribution of the composite junction if the
scattering properties of the constitutive elements are known. An illustration of the
full circuit theory is given in § 13.5 in which the current cross correlations are studied
in a 3-terminal beam splitter geometry. Further examples can be found in the review
articles [113,152] and the references therein.

§ 12. Circuit theory

The Green’s function formalism described in § 11 is a powerful method of calcu-
lation of thermodynamic and transport properties of many-body systems. Starting
from the microscopic Hamiltonian, the theory provides a system of Dyson equations
for the exact Green’s functions. If the Green’s functions are known, the averages
of one-particle observables can be obtained easily. However, the system of Dyson
equations is very difficult to solve. This is because of the complicated integral (or
integro-differential) structure of these equations and the presence of a self-energy
term which is not known analytically. The self-energy is usually calculated approx-
imately within a certain accuracy and the equations are further simplified using
the quasiclassical approximation [125]. This results in a set of partial differential
equations which have to be solved numerically with appropriate boundary condi-
tions [134]. Although much simpler than the full theory, the quasiclassical approach
also becomes involved when applied to complicated mesoscopic structures which can
contain many different junctions and more than two terminals.

The circuit theory of mesoscopic transport developed by Nazarov [150] is a con-
venient theoretical framework which captures the main results of the full theory and
is easily applicable to mesoscopic structures of arbitrary complex geometry. The
starting point of the circuit theory is the expression for the current through the
coherent mesoscopic conductor sandwiched between two terminals. The current is
expressed in terms of a matrix current which is defined by

B 2,T,[G1, G
Z4+T ({G1,Gy} —2) (12.1)

Here I, flows from the terminal 1 into the terminal 2 and the summation is performed
over the set of transmission eigenvalues {7),} of the conductor with the factor 2,
taking into account spin degeneracy. The terminals are macroscopic and provide
good isotropization of the quasiparticle distribution function. They are described
by the quasiclassical Keldysh-Green’s functions GLQ(S’ ,&€") which do not depend on
coordinates and satisfy the following normalization condition:

G?=1. (12.2)

The normalization implies that GLQ commute with {Gl, G2}, which justifies the no-
tation used in Eq. (12.1). In the presence of a time-dependent drive acting on a
terminal, the corresponding Green’s function depends on both energy arguments
and the products of Green’s functions in Eqgs. (12.1) and (12.2) have to be in-
terpreted in terms of a convolution over internal indices, e.g., (G1G2)(E',E") =

1 [dE,GL(E',E1)Ga(E1,E"). In this case the energy (or time) coordinates rep-
resent additional matrix indices. In the stationary state, the Green’s functions G;
and the matrix currents I; are diagonal in energy, Gy(&', ") = 2r6(E" — £")G4(E")
(and similar for [;). Explicit formulas for the Green’s functions G of terminals in
the normal and superconducting states are given in § 27 in Appendix.
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The average current which flows into terminal 2 is given by

1
L= — —Tre (7 h) . (12.3a)
o 4

Here t; is the measurement time and 7x = 7; ® 73 is the matrix in the Keldysh(")
® Nambu(") space. The trace operation in Eq. (12.3a) is taken both in Keldysh-
Nambu and energy indices. Equation (12.3a) is given for the case in which the
superconducting terminal is present. If the junction is in the normal state, then it
is sufficient to consider the electron component only because the particles and holes
decouple and give equal contributions. In this case the Nambu matrix structure can
be ignored and the expression for the average current becomes

I, = — = Tre(7x L), (12.30)
tg 2
where 7i = 71 in Keldysh(") space.

As an example, we calculate the average currents for a junction sandwiched
between two terminals. Each terminal can be in the normal or in the superconducting
state. First we consider normal terminals, with the terminal 1 biased by the voltage
eV > 0 with respect to the terminal 2. The Green’s functions G‘LQ in the normal
state are given by Eq. (27.4). From Egs. (12.1) and (12.3a) we obtain

ZT /dg n1(€) — ny(E)] = (;;T,Jv (12.4)

which coincides with Eq. (10.24) obtained within scattering approach.
_ For the case of superconducting terminal 2, the Green’s function G5 reduces to
(5 = 17, at subgap voltages and temperatures (|eV|, T, < |A|) and we find

— (%QZQRn)V, (12.5)

Here R, = T?/(2 —Ty,)? is the coefficient of Andreev reflection [82] in nth transport
channel. The additional factor of two which appears in Eq. (12.5) signifies that the
charge is transferred in pairs in each channel. Equation (12.5) has been obtained
previously using the scattering approach and the explicit coupling between the elec-
tron and hole states [83,153]. The conductance of a completely open junction (with
T,, = 1) in the presence of a superconducting terminal is doubled with respect to its
normal-state value, Gyg = 2Gy. Interestingly, the conductance of a diffusive wire
stays the same, Gyg = G, because of [dT 2R(T)pa(T) = [dT Tpa(T) with the
distribution of transmission eigenvalues py(7") given by Eq. (10.41). The derivation
of Gnys = Gy presented here assumes that the junction is in the metallic diffusive
regime and coherent. However, the result holds also for the incoherent diffusive
junction [83].

In the following we consider two superconducting terminals with the pair poten-
tials Aj» = |Ale™12 and no bias applied. The corresponding Green’s functions are
given by Eqs. (27.5) and (27.7). In this case some extra care has to be taken regard-
ing the infinitesimal shifts of the poles of the Green’s functions. From Eq. (12.1) we

obtain
27 sin(@)h(E)|A|T, J 1 9
[ - — . 12.
(k) Z\/1—T sin?(¢/2) <7r52—|—a2_ 752"'(&) (12)
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Here the trace is performed in the Keldysh-Nambu space only, ¢ = ¢o — ¢ is
the phase difference between the superconductors, h(€) = tanh(€/2T,), and ay =
E+|A|\/1 — T, sin’*(¢/2). The terms in brackets reduce to the Dirac delta functions,

715/(6% + ai) — 0(ay) for § — 0+. Performing the integration over energy we

obtain
6|A] T, sm(qb) |A|\/1 — T, sin*(¢/2)
Z /1 — T, sin? ¢/2) < 2Te ) ' (12.7)

Equation (12.7) is the generalization of the Josephson current-phase relation for the
case of a short junction®® with arbitrary distribution of transmission eigenvalues
[154]. In the tunnel limit (7,, < 1) Eq. (12.7) reduces to the well-known result for the

temperature dependence of Josephson current [155] Io(¢) = 1 sin(¢) tanh(|A|/2T,),

first obtained by Ambegaokar and Baratoff [156]. Here 10 = Gnm|Al/2e and Gy
is the normal—state conductance. For completely open junction (7, = 1) we obtain
L(¢) = 21 sm(qﬁ/2)tanh[|A|cos(¢/2)/2T], in agreement with Ref. [157]. For a
diffusive junction, the summation over transport channels has to be replaced by in-
tegration over transmission distribution py(7) given by Eq. (10.41). At zero temper-

ature we obtain I(¢) = 21" cos(¢/2) atanhsin(¢/2)], in agreement with Ref. [158).

The examples given above illustrate the importance of Egs. (12.1) and (12.3):
they summarize the knowledge on coherent mesoscopic conductors in a general and
very compact way. The conductances in the normal and superconducting states, as
well as different forms of the Josephson current-phase relations are all obtained from
the same formula, supplied with the corresponding Green’s functions at the terminals
as boundary conditions. The matrix inversion in Eq. (12.1) automatically takes into
account proper coupling between the electron and hole states, which otherwise has
to be performed explicitly within the scattering approach.

The method allows generalization to the more complicated networks of meso-
scopic junctions. The central concept in this generalization is the notion of node as
a part of a junction in which the quasiparticle distribution is isotropic, i.e., indepen-
dent on the direction of propagation. The nodes are described by the quasiclassical
Keldysh-Green’s functions which depend only on energy and satisfy the normaliza-
tion condition G2 = 1. In this respect the nodes are similar to terminals, except
for the distribution functions which are the nonequilibrium ones. Different nodes
are coupled through connectors, each being characterized by the set of transmission
eigenvalues. After specifying the nodes and connectors, the full theory reduces to
the finite number of discrete elements. For the given Green’s functions of terminals,
the Green’s functions of internal nodes are determined from the matrix current con-
servations and the normalization conditions [150]. After the Green’s functions of
nodes are obtained, the average currents are computed using Eq. (12.3).

The solution strategy for the 'quantum circuits’ very much resembles the use of
Kirchhoff laws for the classical electrical circuits. In the classical case, internal nodes
are characterized by voltages to be determined from the current conservations. In the
quantum case, the role of voltages is taken by the matrix Green’s functions (which
are subject to the normalization constraint) and the scalar currents are replaced by

24) The length of the junction should be much smaller than the coherence length, L <« £. The
coherence length in the clean limit (I > 27&) is given by &(T.) = fiwp/mA(T,) and in the dirty
limit (I < 27&) by &(T,) = 1/€0(0)I(1—T,/T.)~'/2. Here [ is the mean free path and T, = Ay/1.76
is the critical temperature.
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the matrix currents. The important difference is that the matrix currents depend
on the Green’s functions in a complicated nonlinear way, which involves matrix
inversion [Eq. (12.1)]. In practice, the set of circuit-theory matrix equations can
be solved numerically using the method of iterations [113,150]. For example, the
matrix current conservation at the node G, is given by [M,G.] = 0 with

velde)
M = ZZ (12.8)

4+ TG, G —2)

Here the summation is performed over all nodes and terminals G; connected to
the node G.. Starting from the initial guess for {GZ} and G., we first find the
transformation P~!... P which brings M into diagonal form: M’ = P~'MP. The
matrix P contains the eigenvectors of M as its columns. The updated matrix G,
is given by G = Psgn[Re(M’)]P~'. The matrix G commutes with M and
satisfies the normalization condition (G"*")? = 1. The procedure is then repeated
for all internal nodes and iterated until the predefined accuracy is reached. The
integration over energy in Eq. (12.3) requires repeated computation for many slightly
different values of energy. This integration can be significantly speeded up by using
the results for the previous energy slice as the initial guess for the next one.

In the following we discuss the assumptions which justify the discretization of the
system into the set of nodes and connectors. The disretization is heuristic, similarly
as in the classical electric circuits. The parts of a device in which the voltage is nearly
constant can be regarded as nodes. The constrictions, interfaces, and disordered
regions over which the voltage drops are significant are connectors. However, the
quantum nature of mesoscopic junctions brings more stringent conditions on the
nodes and connectors, which are not present in the classical case. Equation (12.1)
for the matrix current through the connector assumes that the connector is coherent.
Therefore, the connectors should be short enough, such that all transport energy
scales (given by the applied voltage, temperature, and the pair potential) are much
smaller than the Thouless energy: |eV|,T., |A| < Et, = hD/L*. Concerning nodes,
the essential requirement is that the quasiparticle distribution function is isotropic.
An example of the node is the chaotic cavity with openings small enough such that
the particle dwell time Tgqwen is much larger than the time 7, needed for the wave
packet to spread over the cavity. In this way the information on the initial direction
of propagation is lost and the quasiparticle distribution is isotropized. The time
Te is given by the inverse Thouless energy, 7, ' ~ Er, = (hvg/L*) min(l, L) where
[ is the mean free path and L is the linear dimension of a cavity. The particle
dwell time is given by Td_“}en ~ (3§ /e? where G is the total conductance of all cavity
contacts and § < FEry, is the mean level spacing in the cavity [46]. Here, G and
0 take into account both spin orientations. The average level spacing is defined by
§d=VVo)™' [0 = (AVy)7!] in the case of a 3D (2D) cavity, where Vy = m?vp/m?h?
(Vo = m/mh?) is the density of states per unit volume (area) at the Fermi energy.
For Tgwen > 7. good isotropization is achieved irrespective microscopic details such
as the shape of a cavity or whether the motion in the cavity is ballistic or diffusive.
Therefore, the diffusive parts of the junction can be regarded as nodes, provided they
are sandwiched between connectors of not too large conductance, Gh/e* < Ety/8
(En/0 > 1). This condition does not require G to be smaller than the conductance
quantum. For the sufficiently large ratio Ery,/d, the circuit theory (which requires
many transport channels) is applicable even for the completely open contacts.
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§ 13. Full counting statistics

§ 13.1. Extended Keldysh technique. The cumulant generating function of
the statistics of transferred charge in a general quantum system has been obtained
by Nazarov and Kindermann [159], see also [103,143]. In some situations, which
include conductors in the normal state and normal-superconductor junctions, the
cumulant generating function S(x) is given by

oS00 — <<j—v6i R 10 gy [ﬁz+(x/ge)f]> <T€_iRgo d [ﬁ_(x/2e)f]>> ‘ (13.1)

Hop

Here H = ]:10 + ]:Iint is the Hamiltonian of the electronic subsystem in the Schrodin-
ger picture where Hy is the noninteracting part (which includes the term — ,uN ) and
ﬁint is the interaction which takes into account scattering at impurities, interaction
with external fields, and interparticle interactions. The system can be driven by
time-dependent external fields in which case H = H(t). The current operator in the
Schrodinger picture is denoted by I and X is the counting field. The time integration
is performed over the measurement time ¢, which is the largest time scale in the
problem, much larger than the characteristic time of the system dynamics. The
proof that S(x) given by Eq. (13.1) represents the cumulant generating function of
the number of charges transferred within measurement time is beyond the scope of
this Thesis. The detailed derivation and analysis can be found in [159] and [103]. In
this paragraph we present an extension of the Keldysh-Green’s function technique
which provides a method to calculate the S(x) and can be cast in the form of the
circuit theory [152]. For simplicity we consider a junction in the normal state. The
derivation for a normal-superconductor junction is analogous.

First, let us denote H,, = H+H + Where I—if;c — —(x/2€)I. The cumulant generat-

ing function S(x) can be expressed in terms of the evolution operator UHX (t0,0) as
eSH) = <(UH_X)T 0HX>H . In the interaction picture UHX = UHS’H;;( and we obtain
0
N T
2S00 — <(SH,HX> S > ie.,
Hy

SO0 <<T€z‘ROtO dt <X/ze)fH<t>> (Te—z'RJO dt(—x/2e>fH<t>>> ' (13.2)
Hy

Now, let us formally define the operator H'(t) which is different at two branches of

the Keldysh contour,
. —X] teC.
H.(t) = Ze ’ 13.3
) {Jr%], teC,. (13:3)

Using the contour-ordered evolution operator S e, = Toe™" ¥ H'5 (1) we find

S0 = <SHH>H . (13.4)

0
In order to formulate the diagrammatic technique for the calculation of S(y) it
is convenient to define the contour-ordered Green’s function with respect to Sgre :

i (T [ba !y (xS, ] )

(o

G.(2' 2" x) = Mo (13.5a)
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—i { T, [, ()b, (") Sye
) (T [ (0!l (1) H0]>HO_ s

(v,

Here G. depends on the counting field x as a parameter. In the last step we have
defined

Vi(t) = Hiw + H.(1) (13.6)

and disregarded the initial correlations which correspond to imaginary part of the
Keldysh contour?" (cf. § 11.6). Equation (13.5b) is the starting point of the extended
Keldysh technique. It has the identical structure as Eq. (11.45) of the usual Keldysh
technique but now with different Hamiltonians at the forward and backward branches
of the contour. Therefore, the diagrams in the extended technique remain the same
as in the standard one, including cancellation of disconnected diagrams and the
denominator of Eq. (13.5b),

Gelw,a"5x) = =i (T.[dna (@), (") Sz ]) . (13.7)
0 con
The analytical representation of diagrams changes in the sense that different values
of V,(t) have to be taken into account depending on the branch of t.
As before, it is convenient to define the matrix function G",
. —
Ge(2', 2" x) — G2, 2" x) = <g+— g++) ) (13.8)
where G (2, 2"; x) = G.(2/,2"; x) for t' € C; and t” € C;. Here we emphasize that
the simple relations between the matrix components given by Eqgs. (11.9) no longer
hold in the extended technique. In particular G™ + G*F # G™F + G, ie, all
components G* have to be taken into account. Thus, the formulas for averages in
the extended Keldysh technique cannot be inferred from the ones in the standard
technique. The meaningful formulas for averages in the extended technique have to
be re-derived using the definition given by Eq. (13.5).
From Egs. (13.2) and (13.54a) follows that

9S(x) —i/ / j
d(ix) 2 o SdS /)
< [G(t, it + 0,7 x) + GHE (7t — 0,775 x)], (13.9)

where § (1) = 2,[—(ie/2m) (V' = V") — (€2 /mc) A]ys—pr—y is the current density oper-
ator. Let us define the extended matrix current I(#',t"; x) and the extended current
I(x) by

v - o v 1 .

) = J/ds G G2t x),  I) =< 2Tel,  (13.10a.b)

€ S to 2
where the trace operation is taken both in the matrix and in the time (or energy)
indices. In the G-matrix representation defined by G' = L#iGLT with L = (1 —
ity)/v/2 we have
=t e 1

It x) = . /dS g (r) G, 2" x), I(x) = & §Tr (71).  (13.11a,b)
s
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Fig. 19: The charges transferred through the cross section S are counted. The
generalized step function 6g(r) is defined such that 0g(r) = 0 [0s(r) = 1] at
positions left (right) from S. Function 0g(r) is continuous and changes from 0
to 1 in the vicinity of S on the length scale larger than the Fermi wavelength
but much smaller than the mean free path.

The expression for the cumulant generating function reduces to

oS t 1 .

8(2%) = 21(x) = 5 T (A). (13.12)
Equation (13.12) gives the physical meaning to the formally introduced extended
Keldysh-Green’s functions: the statistics of the charge transferred through the cross
section S over the long time interval is expressed in terms of the components of
G(2',2";x). In the case in which there is no charge accumulation in the parts of the
system the current is conserved and the result does not depend on the choice of the
cross section.

In the following we discuss how to efficiently calculate the extended Keldysh
Green’s function G(z',2"; x) when the current is conserved. First, let us notice that
Egs. (13.10) and (13.11) have exactly the same form as in the standard Keldysh
technique which is obtained for y = 0. This suggests that the standard circuit
theory for the average current developed in § 12 can be used also in the extended
case without modification. However, we have to check that the extended Green’s
functions G/(x) in the terminals satisfy the normalization condition [G(x)]*> = 1. To
do so we first obtain the Dyson equation in the extended technique. The single-

particle operator A (t, ) whose second-quantized form is given by Eq. (13.3) is

it ) =X g5 (13.13)
Here
-3, ted.,
Xelt) = {+ o (13.14)

and O5(r) is a generalized step function introduced as shown in Fig. 19. The gener-
alized step function fg(r) is continuous over the cross section S and takes the value
Os =0 (0s = 1) at the left (right) side of S. The length scale at which 05(7) changes
continuously from 0 to 1 in the vicinity of .S is assumed to be larger than the Fermi
wavelength but much smaller than the mean free path (it is convenient to choose the

cross section in the terminal). Therefore [ dr [-VOgs(r)]- = [, dS- and we obtain
H.(0) = [ dr i (r)i( )i (r). (13.15)

The Dyson equations in the extended technique can be obtained from the standard
ones given by Egs. (11.51a) and (11.55a) with the substitution

ho(r) — ho(r) + #4 ;—e[vesm] 5(r) (13.16)
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in the G(x) representation, and

~

ho(r) = ho(r) + 71 5-[V8s(r)] - 5 (r) (13.17)

in the G(x) representation. In Eqs. (11.51b) and (11.55b) these operators are acting
on the Green’s functions from the right. Here we emphasize again that all com-
ponents of G(x) and X(x) are nonzero in general. The term &, contains a d-like
singularity Vg (r) which can be incorporated into the Green’s function by match-
ing the solutions across S. The Green’s functions in the terminals are quasiclassical
G = G,yyz(p 7, T;x) and we can use the stationary Eilenberger or the nonstationary
Eliashberg equation [125] to match the solutions. In both cases it is sufficient to
keep only the singular term and the term with the spatial derivative in the vicinity
of S [152]

—ivp - VGy(pp, ™ X) + %[ves(r)] gy, Gp (P, 75 X)| = 0. (13.18)
The solution in the vicinity of S is given by
ét’,t” (Pr.TiX) = e~ XOs(n /2 ét’,t” (Pp, T x =0) eXOsrn/2, (13.19)

At the distances several mean free paths away from the interface, the diffusive ap-
proximation is valid and the quasiclassical Green’s function is independent on the
position. Finally, we obtain

Gt 1" x) = e X2 Gt 1" x = 0) eX/2, (13.20)

Equation (13.20) expresses the extended quasiclassical Keldysh-Green’s function
G(x) at the right hand side of S towards the junction in terms of the standard
Keldysh-Green’s function G (x = 0) at the left hand side of S towards the terminal.
Since the standard quasiclassical functions satisfy [G(y = 0)]> = 1, the same is true
for the extended ones,

(GO =1, (13.21)

where we assume the convolution over time (or energy) indices. Therefore, the circuit
theory of § 12 is directly applicable in the extended technique with the Green’s
functions of the terminals modified according to Eq. (13.20).

§ 13.2. Two-terminal junctions. In this paragraph we specify the cumulant
generating function for the two-terminal junction in the normal state, characterized
by transmission eigenchannels {7,,}. We choose to count charges which enter the
left terminal. The extended Green’s function of the left terminal is given by

Gi(x) = e X2 Gy(x = 0) X7/2, (13.22)

The Green’s function of the right terminal coincides with the standard one, Gy =
Ga(x2 = 0). The extended matrix current which enters the left terminal is given by
Eq. (12.1):

3 - 2,T,[G1(x), G2(0)]
Li(x) = ; 4+ Tn({él<X)7 62(0)} - 2)‘ 152

The cumulant generating function of the transferred charge is given by

oS(x) 1 .
ix) =5 Tr [7‘1]1()()}. (13.24)
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Fig. 20: The schematic representation of the extended circuit theory for the
two terminal junction. The charges which enter the left terminal are counted.
The extended matrix current I,(x) is given by the extended Green’s function
G1(x) of the left terminal and the standard Green’s function G5 (0) of the right
terminal.

Using that G (x) and G5(0) commute with {G;(x), G2(0)} and the invariance of the
trace under cyclic permutations, it is straightforward to verify

IS(x) _ . 1,05, {G1(x), G(0)}
iy =2 (5 To{Ch (), Cal0)} — 2>> ' (1.25)

This equation can be integrated under the trace, and we obtain

S(x) = ;Trln [1 + % <{é1<X)’é2(0)} — 1)] : (13.26)

2

The S(x) given by Eq. (13.26) is normalized, S(x = 0) = 0, because the standard
Keldysh-Green’s functions of normal terminals satisfy {G1(0), G2(0)} = 2 (see § 27).
The trace operation is taken both in the Keldysh and in time (or energy) indices.
The convolution over the internal time (or energy) indices is assumed.

In the case of a normal-superconductor junction the Green’s functions 61,2 are
4 x 4 matrices in the Keldysh(")-Nambu(") space (§ 27). The extended Green’s
function G () is given by

Gi(x) = e /2 Gy (x = 0) e/ (13.27)

where 7 = 7; ®73. The extended matrix current () is again given by Eq. (13.23).
The extended current is defined by Eq. (12.3a) with the factor of 1/2 with respect
to the normal-state case, which corrects for the doubled matrix size. Therefore, the
cumulant generating function for the normal-superconductor junction is given by

S(y) = %;Trln [i + % ({GI(XZGZ(O)} - 1>] : (13.28)

with the trace taken in Keldysh, Nambu, and time (or energy) indices. The x-
independent normalization constant is omitted for brevity.

Equivalence with the Levitov determinant formula. The cumulant generating
function of the charge transferred in the multiterminal junctions is given by the
determinant formula

S({x}) = Indet [1 tn (STAh}SA{X} - 1)} (13.294)
—Trin |1+ n (STA] SA —1)]. (13.295)

This equation has been first obtained by Levitov and Lesovik [141] (see also [143]
and [160]). A more elementary derivation has been given by Klich [161]. Some math-
ematical aspects of the determinant regularization which is needed in the presence
of a time dependent drive have been discussed in [162].
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In Eq. (13.29), the set of counting fields {x} is assigned to different terminals.
Here n represents the matrix of occupation numbers of the terminals which is di-
agonal in the terminal indices and scalar in transport channels, S is the scattering
matrix of the multiterminal junction, and Ay, is the transformation which incor-
porates the counting fields. The determinant (or trace) is taken with respect to
terminal, channel, energy, and spin indices. For the two-terminal junction we have

_(m O o (r T _fe™Xx 0
() s (D) A (DY) ww

Here n; o are the occupation numbers of the left and right leads which are scalars in
channel and spin indices. The counting field x is assigned to the left lead. It is scalar
in channel and spin indices, which corresponds to the charge counting irrespective
the channel or spin. In the case of dc voltage bias n;» are diagonal in energy with
ni(E,E") = [eSE 1) 1-1]71 276(E" — £"). In the presence of time-dependent drive
the occupation numbers n;(£’, £”) are not diagonal in energy and do not commute.
The voltage drive V(¢) can be incorporated via the gauge transformation in time

representation n — UnU' with U(#,¢") = e~ 0 VWU — "), where we assume
the convolution over internal time indices (see § 27). It is convenient to perform the
polar decomposition of the scattering matrix [46]

S = <IO] ‘O,) S’ ((0]/ ‘9,), S = (_\/‘/Tﬁ \/\/%) (13.31)

Here U, V, U’, and V' are unitary matrices in transport channels and T =
diag(T,Ts,...) and R =1 — T are diagonal matrices of transmission and reflection
eigenchannels. Equation (13.29a) for the two-terminal junction reduces to

S(x) =2sIndet [1+ n (S'ATS'A —1)]

L+n(eX =0T —ny(eX—1)vVTR
= 2;Indet . , ,
na(e™™X —1)vVTR 1+ng(eXx—-1)T

where 2, takes into account the spin degree of freedom. Since the operators in the
first (the second) row commute, the determinant can be calculated by blocks. Using
Eq. (28.1) we obtain

S(x) =2 Treln [1+ (1= n)naTp(e™ — 1) +ny(1 — ng)Tp(e™™ — 1)] (13.330a)

(13.32)

=2 Z Treln [14 no(1 — ng)T,(eX — 1) 4+ (1 — no)ni T (e”* — 1)] .
P

(13.33b)

Here we also used the matrix identity Indet(M) = Trin(M).

Equations (13.33) are valid for a dc bias applied and energy-dependent transmis-
sion probabilities. In this case the occupation numbers n, o are diagonal in energy
and commute with each other and with 7,,(£). The trace over energy reduces simply
to the integration and we obtain

S(x) = %OZ / d€ Tn (14 [1 — m(E)]na(€)Ty(e™ — 1)

+n1(E)[1 — na(E)|T,(e7™ = 1)). (13.34)
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Here we used n;(E,€) = ny(E) 2m6(E = 0), where 6(€ = 0) = t,/(2m) with ¢
being the measurement time. The form of S(x) shows that the electron transfers at
different energies are independent. The probability for the electron transfer from the
right to the left lead at energy £ is proportional to the probability ny(€) that the
state in the right lead is occupied, the probability 1 —n4(€) that the state in the left
lead is empty, and the probability 7},(€) of transfer across the scatterer. A similar
analysis holds for the electron transfer from left to right. The average current and
the current noise power are given by I = (e/t0)0S|y—o and S; = (€*/t0)93,. S|y o,
in agreement with Eqs. (10.24) and (10.33).

Equations (13.33) are also valid for the time-dependent voltage applied and
energy-independent transmission probabilities. In this case ny2(E',E”) do not com-
mute with each other. However, the order of ny and ny can be exchanged, as shown
by Egs. (13.33a) and (13.33b). The logarithm has to be calculated with the matrix
structure of n; o in energy indices taken into account. This is because time-dependent
drive mixes the electron states with different energies. The statistics of charge trans-
fer in the presence of time-dependent drive is discussed in detail in Chapter VII.

In the following we calculate S(x) using the circuit-theory expression given by
Eq. (13.26). As before, it is convenient to rewrite the equation in terms of Indet(- - - ),
then take the determinant by blocks using Eq. (28.1), and restore Trin(---) at the
end. The result is

S(x) = ZTIg In [1+ (1= ny)noTy(e™ — 1) 4+ ny (1 — no) T, (e7X — 1)]

p

+ ) Treln (14 na(1 = mi)Tp(eX = 1) + (1 = np)m Tp(e "X = 1)] . (13.35)

p

Since both terms give the same contribution, the result coincides with the Levitov
formula given by Eq. (13.33).

§ 13.3. Multiterminal circuits. In order to apply the Levitov determinant
formula given by Eq. (13.29) it is necessary to know the scattering matrix of the
multiterminal junction. Obtaining the scattering matrix of a complex mesoscopic
structure is a nontrivial task. In practice, the junction often consists of the scattering
regions (connectors) and the isotropization regions (nodes). In this case it is more
convenient to use the circuit theory to combine connectors and nodes together to
form the junction. The cumulant generating function in a multiterminal circuit is
given by the sum of the contributions of all connected pairs of nodes [163]

SV =S, (13.36)

(i5)
where each connection is counted only once. Here ¥ = (x1,...,xn) is the set of the
counting fields of terminals. The indices i and j label terminals (with¢,5 = 1,..., N)

and all internal nodes (with ¢,j = N +1,...). The S;;(X) of the connected pair of
nodes is given by

() /1 (9). (¥
1+T2 <{Gi(x) Gj(x)}_i)] (13.37)
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with the transmission eigenvalues T being independent on the direction of the
charge propagation, T, = 7" [114]. The prefactor 1/2 is used in the case in
which a superconducting terminal is present.

The solution strategy is the following. First, the Green’s functions of terminals
are known. They are given by the gauge-like transformatlons of the standard qua-
siclassical Green’s functions G;(x;) = e ™7%/2 G;(0) eXi™s/2 § = 1,... N. We
emphasize that the Green’s functions of terminals depend on the corresponding
counting field only. The Green’s functions of internal nodes G;(Y) (i = N +1,...)
depend on all counting fields. They are obtained from the set of matrix current
conservation equations

F ) - P 2,157 [Gi(X), G (V)]
2A0=0 O e amary s Y

and the normalization conditions [G;(Y)]> = 1. Here the summation goes over
all terminals and internal nodes connected to the internal node i. The system of
equations can be solved by iteration, as discussed in § 12. Once the Green’s functions
of internal nodes are known, the cumulant generating function S(x) is given by
Eq. (13.36).

Proof of the summation formula. The charge transferred in the terminal j is
given by the state G of the terminal and the state Gc of the adjacent internal
node c¢; coupled to it. Therefore, to prove Eq. (13.36) we have to verify that S(X)
satisfies?”)

jei

OS(x ) 1
—Tr (71.(%). 13.39
for all terminals j = 1,..., N. First we give a proof for the circuit which consists

of a single internal node ¢ coupled to several terminals, and then extend it to the
arbitrary circuit. The following mathematical property is useful: If G(¥)?> = 1 and
[A, G(Y)] = 0, then
Tr{A, 8;,,G(X)} = 0. (13.40)
This property follows after taking the derivative of G/(¥)? = 1, multiplying both
sides by AG(Y) and taking the trace.
From Eq. (13.36) we obtain

T(k {azx]Gka G } + {Gk’ aZXJG })
ZX] Z Z ( n Tnk)<{Gk, Gc} —9) ) ; (13.41)

where k labels termlnals and n labels transport channels. The second term in
Eq. (13.41), with {Gy, 0iy, G}, can be written as Tr{A4, §;,,G.} where

k)Gk
ZZ4+T J({Cr, G} —2) (13.42)

The matrix A commutes with G due to matrix current conservation Dok I, =0=
[A,G.]. This implies Tr{A, 0;,G.} = 0 [Eq. (13.40)], and the term vanishes from
Eq. (13.41). Concerning the first term in Eq. (13.41), we notice that 9;,,G) =
8171, G4]/2 because the Green’s function G, in the terminal depends on the counting

25) We consider the circuit in the normal state. The proof for the superconducting circuit is
analogous.
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Fig. 21: The proof of the summation formula given by Eq. (13.36). The sta-
tistics of the charge transferred into terminal 1 depends on the state G of
the terminal and the state Gp of the node coupled to it. The terms enclosed
in circles vanish due to matrix current conservation. The terms enclosed in
rectangles are zero because the corresponding Green'’s functions do not depend
on xi.

field xx only. Using the invariance of the trace upon cyclic permutations, Eq. (13.41)
reduces to Eq. (13.39).

Extension to the arbitrary circuit. In the case of multiterminal circuit with sev-
eral internal nodes, the sum over k in Eq. (13.41) has to be replaced by the sum
over all connected pairs of nodes. Let us consider dS(x)/d(ix1). Figure 21 shows
numerators of Eq. (13.41) for one particular circuit. Terms enclosed in circles around
internal nodes give zero after summation in Eq. (13.41) because of the matrix current
conservation. Terms enclosed in rectangles at terminals k = 2,3, ... are zero because
the Green’s functions of terminals do not depend on y;. The only non-zero term in
Eq. (13.41) is the one with {9;,,G1,Gp} at the terminal j = 1, which reduces to
Eq. (13.39).

§ 13.4. Distribution of transmission eigenvalues. The circuit-theory equa-
tions simplify considerably in the case of a two-terminal junction in the normal
state [66,113]. First, let us consider a junction with two connectors with transmis-
sion eigenvalues {T )} and {T } in series. The Green’s functions of the terminals
are Gy and G5 and the Green’s function of the central node is G.. In general, G,
can be written as a linear combination G, = ¢ + g, - 7 where 7 = (71, T2, 73). From
G? =2+ 7+ 2.7 =1 we obtain that ¢ = 0 and §> = 1. The vector §. can
be expanded as g. = ag + 3¢, + 7, where § o are given by G5 = Gz -7 and §
is perpendicular to ¢ 5. From the matrix current conservation we obtain ¢ = 0.
Therefore, G, can be expressed as a linear combination of the Green’s functions of
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terminals, G, = aG1 + $G,. Because éf = 1, the products of the Green’s func-
tions G,G] (1,7 = 1,2,¢) commute with each other and can be treated as scalars,
effectively. From GGy = (G1G.)(G. Gg) we see that it is convenient to introduce a
'voltage drop’ across the connector by qblg = —Zln(Gng) The voltage drops com-
mute with each other and are additive, gblg = gblc + gbcg A similar discussion holds
for the case of several junctions in series.

The matrix current and the cumulant generating function of a connector can be
expressed in terms of the scalar functions I(¢) and S(¢):

=il[p = —iln(G1Gy)], S =TrS[p=—iln(G,1G)], (13.43)

where

1(¢) = ; 1 _%ssi;(j&/z)’ Z In[1 — T, sin(¢/2)]. (13.44)

For the tunnel junction (7, < 1), ballistic point contact (7,, = 1), and diffusive
wire [113]:

Toun(9) = G% sin(¢), Stun(9) = —G% sin?(4/2), (13.45q)
Tpe(9) = 6%2 tan(¢/2), Sqpe(9) = G%an[cos(gb/Q)], (13.45b)
Tan(6) = G% 5, Su(6) = —G% 62 /4, (13.45¢)

where G is the conductance and G = e?/m. Equations (13.44) can be rewritten in
terms of the distribution of transmission eigenvalues [c.f. Eq. (10.39)]:

e T sin(¢)
1(6) = / AT s

S(0) = / AT p(T) In[1 — Tsin®(6/2)],

(13.46)
with p(T) being normalized to the total conductance, [dTTp(T) = G/Gq. If
the current I(¢) is known, the distribution p(T') can be obtained from the inverse
transformation. Let us put ¢ = i0 +

—isinh(6)

1(i0 +7) = /0 ATp(T)—— s (6/3)

Choosing cosh?(6/2) = T'~' 440 and using that (z £i0)~" = (p.v.2~!) Find(z) we
obtain

(13.47)

p(T) = %T\/% Rel {qﬁ =7 — 0 + 2i arccosh (%)} : (13.48)

The solution strategy for the two-terminal junctions is the following. For the
given voltage drop ¢ across the junction, the voltages ¢; = ¢;(¢) of internal nodes
are determined from the current conservation. The current /(¢) is then calculated
between a pair of neighboring nodes. The transmission distribution p(7") for the
composite junction is obtained from Eq. (13.48). The statistics of charge transfer
is given by Eq. (13.33), with the summation over transport channels replaced by
integration over p(T"). Alternatively, the statistics of charge transfer can be obtained
from S(x1, Xg) TrS{¢ = —iIn[G(x1)Ga(x2)]} with S(¢) given by integration of
current, S(¢) = — [ d¢ I(¢)/2, or by summation of the contributions of the adjacent
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L
1.

Fig. 22: The circuit-theory representation of two tunnel junctions (a) and two
ballistic contacts (b) in series. The ’voltage’ § = 6(¢) of internal node is
obtained from the current conservation I,(0) = I2(¢ — ). The transmission
distribution of the composite junction is obtained from I(¢) = I;[0(¢)] using
Eq. (13.48).

pairs of nodes S(¢) = > . S;[¢i+1(¢) — ¢i(¢)]. This approach can be advantageous
because it avoids the integration over the transmission distribution p(7').

To illustrate the method, we obtain the distribution p(7") for the cases of two
tunnel junctions and two ballistic contacts in series, as shown in Fig. 22 [66, 113].

The conductances of the junctions are GGy and G,. From the current conservation
I(¢) = I,(0) = Is(¢ — 0) we obtain

I(¢) = GGy sin(g) (13.49)
Go/G? + G2 + 2G 1G4 cos(9)
for the double tunnel junction. From Eq. (13.48) we find
G/G
p?tun(T) / Q (1350)

/13Ty — T)
for T < Ty = 4G1G5/(G1 + Gs)?, and payun(T) = 0 otherwise, with G = G1Go/ (G +
(3). The Fano factor for the double tunnel junction is given by Fhyy = (GF +
G3)/(Gy1 + G2)*. The distribution po,(T) is shown in Fig. 23 (a) for different
values of the junction asymmetry G;/Gs. For asymmetric junction G; # Go, a gap
in the transmission distribution exists at high transmission probabilities. For the
symmetric case G; = (5, the resonances open highly transmissive channels. The
same distribution has been obtained previously in § 10.6 using the simple ballistic
double-barrier model of low transparency and averaging over the phase shifts.

For the double point contact we have

I(¢) = GlGLQGQ cot(¢/2) <\/1 + %tm?(d)m - 1) . (13.51)

The distribution of the transmission eigenvalues for the composite junction is given
by [66]

T G+ Gy 1 T —"Ty

proe(T) = = =57\ 77
for T > Ty = (G1 — G2)?/(G1+ G2)?, and pagpe(T) = 0 otherwise. This distribution
results in the Fano factor Fyqpe = G1G2/(Gy + Go)?. The distribution pagpe(7) is
shown in Fig. 23 (b) for different values of the junction asymmetry G;/Gs. The
node coupled to the terminals by ballistic contacts represents a circuit-theory model

(13.52)
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Fig. 23: The distributions of transmission eigenvalues for two tunnel junctions
(a) and two ballistic contacts (b) in series. Numbers indicate the ratio G1/Gs.
Transmission distributions are normalized to the same value of the total con-
ductance, [dT Tp(T) = G/Gq = G.

of a chaotic cavity. The diffusive scattering in the cavity or the chaotic scattering
at the boundaries provide the isotropization of the electronic motion. Indeed, the
same result can be obtained using the random matrix theory [46] with the scattering
matrix being a member of the Dyson circular ensemble.

We conclude this paragraph by a remark on diffusive connectors. Because of
the linear I — ¢ relation, the concatenation of the diffusive connectors does not
change the shape of the overall transmission distribution: the combined junction is
again diffusive. Furthermore, the diffusive limit is universal in the sense that it is
reached for the large number of junctions in series (for the fixed total conductance),
independent on the individual properties of the junctions. This is because the voltage
drops across the junctions are small and the I — ¢ relations can be linearized. The
representation of a diffusive wire as an array of tunnel junctions can be beneficial
computationally in the problems which require dephasing [91] or heating effects
distributed within the junction to be taken into account.

§ 13.5. Current cross correlations. Current cross correlations in different
terminals of a multiterminal circuit in normal state are negative at any tempera-
ture [34]. However, in the presence of a superconducting terminal, the current cross
correlations in normal terminals can be of either sign. The current in a normal ter-
minal is the sum of electron and hole contributions. The current cross correlation
between normal terminals a and § is given by (Al Alg) =3, (AIFAIE) where
i, v = e, h label electron and hole currents. As shown by Anantram and Datta [164],
the electron-electron and the hole-hole cross correlation term (Al 2Af§) + (AIEAJCE)
is negative, while the mixed electron-hole term (AISAT 5) + (AIRATS) is positive
(v # (). The overall sign of the current cross correlation depends on the relative
strength of the two terms and can be of either sign depending on the interplay
between normal and Andreev reflection probability at the superconductor and the
proximity effect induced within the junction [26]. In the normal state junction, the
mixed electron-hole term vanishes and the cross correlations at different terminals
are negative.

In the following we study a chaotic cavity coupled to a superconductor and the
two normal terminals. The normal terminals (drains) are biased by the voltage
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Fig. 24: The circuit theory representation of a cavity coupled to the supercon-
ductor and two normal terminals. The coupling to the superconductor is via
quantum point contact with M channels of transparency I's and to the normal
terminals via ballistic point contacts with N channels. The Green’s function
of a cavity has to be obtained from the matrix current conservation and the
normalization condition. The matrix current Iy models the suppression of the
proximity effect in the cavity and carries no charge current.

V' with respect to the superconductor (source). We are interested in the current
cross correlations in the drain leads. This system has been studied by Samuelsson
and Biittiker [165, 166] as a function of the normal backscattering at the cavity-
superconductor interface in the limits of fully developed and fully suppressed prox-
imity effect in the cavity. The charge transfer statistics has been obtained by Borlin
et al. [167] for the tunnel couplings of the cavity to the leads in the presence of
the proximity effect. The charge transfer statistics in the absence of the proximity
effect in the cavity has been obtained by Belzig and Samuelsson [168]. The noise
and charge transfer statistics in a two terminal double junction have been studied
by Bignon et al. [169] and Samuelsson [93] as a function of the quasiparticle dwell
time in the cavity, giving rise to the partially suppressed proximity effect.

In this paragraph we study current cross correlations in a 3-terminal setup taking
into account finite quasiparticle dwell time. Alternatively, the suppression of the
proximity effect can be varied by applying a small magnetic field. The circuit theory
representation of the system is depicted in Fig. 24. The cavity is coupled to the
superconductor via quantum point contact with M channels of transparency I'g
and to the normal terminals via ballistic contacts with N channels. The normal
terminals are biased by voltage V' with respect to the superconductor. In the limit
of low temperatures and bias voltages smaller than the superconducting gap, T, <
leV| < |A], the Green’s functions of the superconductor and the normal terminals
are given by

Gs=1®%n, G; = e XTK/2 (63 __2> eXiTK/2, (13.53)

Here G, are given for the energy interval |€] < |eV/]| relevant for transport and
T = 71 ® T3. The matrix currents which flow from the terminals into the cavity are
given by
§ 2MT5[Gg, G|
S = = = )
44+ Ts({Gs,G.} — 2)

(13.540a)
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I = ﬁ (13.54b)
+1{Gi, Ge}

Iy = — £(2N + MT'g)[1®75,G.). (13.54¢)
Here I is the so called coherence leakage current [150]. It takes into account breaking
of the electron-hole correlations in the cavity, i.e., the suppression of the proximity
effect due to the fact that the electron and hole at the same energy £ from the
Fermi level have a slightly different wave vectors. The parameter Fq is equal to the
inverse quasiparticle dwell time in the cavity (§ 12). For Eq > [eV] (Eq < |eV|) the
proximity effect is fully developed (suppressed). The Green’s function of the cavity
G. = G’C(E; X1, X2) is obtained from the matrix current conservation Is+ L+ 1+1; =
[M,G.] = 0 and the normalization condition G2 = 1 using the method of iterations
described in § 12. Here

Y 2Mrsés + QNGI
T4+ Ts({Gs, Gl —2) 2+ {Gy, G}
ING, &

" —i— Q2N+ Ml 1®7 13.55
2+ {Ga, G} By )17 (13.55)
The convergence of the method can be improved by adding a term proportional to
the Green’s function of the cavity, M — M + AG., which does not change the fixed
point. After the G.(&;x1, x2) is obtained, the matrix currents can be calculated
using Eqs. (13.54). The current cross correlation in the normal terminals is given by

e? 9°S(x1,
Spp = — (X1: X2)

to O(ix1)0(ix2)

x1,2=0

_ ( 0 < / e T (€ :o;x2>)> (13.56)

O(ix2) 87 J_jev|

x2=0
where the trace is taken in the Keldysh-Nambu space. An analogous formula in
terms of I, is obtained by taking the derivative over y, first.

The current cross correlation Sy is shown in Fig. 25 for negligible normal backscat-
tering between the cavity and the superconductor (I's = 1). The suppression
of the proximity effect in the cavity is controlled by varying the inverse quasi-
particle dwell time E4. The limits of developed (top curve) and fully suppressed
proximity effect (bottom curve) coincide with analytical results of Samuelsson and
Biittiker [165, 166]:

512 (1 + ’Y)Z 1 2’}/ f2 16’7

Sz _ _ 2 13.

So 292 \1+~y f 12 (13.57a)
for Eq/|eV| > 1, and

Gt = —M (13.57b)
So (2+7)*
for Eq/leV] < 1. Here f(y) = 1+ 6y + 92, v = 2N/M, and Sy = GgNleV|.
In the presence of the proximity effect, the current cross correlation Sis is positive
(negative) for v < 0.5 (7 2 0.5). In the former case the positive electron-hole cross
correlation term gives the dominant contribution while in the latter case the negative

electron-electron and hole-hole cross correlation term is the dominant one [165]. In
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Fig. 25: The current cross correlation Si2 in units of Sy = GgNleV| in the
limit of negligible normal backscattering at the cavity-superconductor contact,
I's = 1. Different curves show the crossover from the developed proximity effect
(top) to the fully suppressed one (bottom) as the parameter Eq is decreased:
Eq/|eV]|=3,25,2,15,1,0.5,0.01.
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Fig. 26: Current cross correlations Si2 are shown as a function of the normal
backscattering I's at the cavity-superconductor interface for fully developed
proximity effect (E4 > |eV'|). The curves in panel (a) correspond toI's = 0.01,
0.1,0.2,...,0.9, 1, from top to bottom. The crossover from S12 < 0 to S12 > 0
as a function of T'g is shown in panel (b) with the solid line denoting S12 = 0.
In the limit 2N/MTg > 1 the results do not depend on the proximity effect
and S12/Sy = (M/2N)R4(1 — 2R4) with Ra =T%/(2 —T's)?. The crossover
from S12 < 0 to S12 > 0isat Ry =1/2, ie, I's ~ 0.83.

the absence of the proximity effect, the cross correlations S, are always negative for
['s = 1, independent of ~.

The effect of the normal backscattering I'g at the cavity-superconductor interface
is shown in Fig. 26 (a) for the case of developed proximity effect. As the normal
backscattering increases, the current cross correlations S5 become positive. Fig-
ure 26 (b) shows the crossover from Sj2 < 0 to S > 0 as a function of I's. The
normal backscattering at the superconductor shifts Sis towards the positive values
also in the absence of the proximity effect [166]. In the limit of the dominant cou-
pling to the normal terminals 2N/MT's > 1, the charges transferred across the
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junction exhibit only one Andreev reflection at the cavity-superconductor interface.
The transfer from the cavity to the normal leads is practically reflectionless. In this
case the results do not depend on the proximity effect. The charge transfer statistics
can be obtained from the simple counting, as in § 8. The electrons are transferred
from the superconductor to the cavity in pairs with probability Ra = T'%/(2 — I's)?
in each transport channel. The electrons are then independently partitioned into
the normal terminals with probability 1/4 to end up in the same branch and 1/2 to
end up in different branches. Therefore, the cumulant generating function is given
by S(x1, x2) = (eVto/m)M In[1 — Ry + (Ra/4) (2 +e2X2) 4 (R4 /2)e'0a+X2)] where
eVty/m is the number of attempts and M is the number of channels. The current
cross correlation is given by Sio = (€% /tg) Sly=0 = (GoM|eV|/2)R4(1—2Ry),
with 512 < 0 for Ry > 1/2

In conclusion, we have analyzed current cross correlations in a 3-terminal beam
splitter geometry using circuit theory of charge transport. The advantage of the
approach is in straightforward application of the method and direct numerical im-
plementation of the circuit-theory rules. Also, the calculation can be easily extended
to access the higher-order current correlations at finite temperatures and the prob-
ability distribution of transferred charge.

2
aim X2






CHAPTER V

Counting statistics of Andreev scattering in a cavity

§ 14. Introduction

In this Chapter we study the full counting statistics of coherent charge transport
in a chaotic cavity using the circuit theory of mesoscopic transport. We show that
the system of matrix equations for the Green’s function of the cavity can be solved,
effectively, as a system of scalar equations independently of the type of leads and
without resorting to the matrix components or parametrizations. As an application
we find the Green’s function for an open asymmetric cavity between arbitrary leads.
For the special case of a cavity between the superconductor and normal metal, we
find the cumulant generating function and the first three cumulants and discuss the
interplay between superconducting proximity effect and scattering properties of the
junction. The results are compared with those for a normal-state junction [170] and
for different couplings of a cavity to the leads. Current correlations in a structure
with high-quality contacts between a cavity and superconductor have been studied
experimentally by Choi et al. [89] recently.

§ 15. Model

The system we consider is a chaotic cavity coupled to two terminals by meso-
scopic junctions characterized by the transmission eigenvalues {7, TEI)} and {T\?},
respectively. Charging of the cavity is negligible if the cavity is large enough and the
conductances of the junctions g; » are much larger than the conductance quantum
Ggo = €*/m. We assume an isotropic quasiparticle distribution function inside the
cavity due to chaotic scattering. The decoherence effects as well as the energy de-
pendence of transmission eigenvalues can be neglected if the total dwell time in the
cavity is small with respect to time scales set by the inverse temperature and bias
voltage. We apply the circuit theory of mesoscopic transport with the specific parts
of the system represented by the corresponding discrete circuit elements, as shown
in Fig. 27. The terminals are characterized by known quasiclassical matrix Green’s
functions Gl,g which depend on the quasiparticle energy, temperature, chemical po-
tential, and counting field and satisfy the normalization condition G? = G3 = 1.
The Green’s functions of terminals are not necessarily the ones of bulk electrodes —
for example, they can be nodes that are part of a larger circuit. In the following we
will refer to these nodes as terminals. The formulation below is independent of the
matrix structure, provided the 'terminal’ Green’s functions obey the normalization
conditions. The chaotic cavity is represented as an internal node associated with
an unknown Green’s function G., which will be obtained from the matrix current
conservation and the normalization condition G2 = 1. Left and right junctions
(1 =1,2), depicted as connectors, carry matrix currents (see § 12)

P 2,13 [G
' — 4+ TV ({G;

89

i7éc]
Y (15.1)



90 V. Counting statistics of Andreev scattering in a cavity
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Fig. 27: A chaotic cavity coupled to the leads by two junctions with transmission
eigenvalues {T,(Ll)} and {T,EZ)} (top). The discrete circuit-theory representation
of the system is shown in the lower part. The leads and cavity are characterized
by the corresponding matrix Green’s functions. The junctions, depicted as
connectors, carry conserved matrix currents.

which flow from the cavity into the leads. The current conservation I; + I = 0 for
the Green’s function G. of the cavity reduces to

[91G1 + P2Ga, Ge] =0, (15.2)
with

T(i)
= Z oy (15.3)
Here we have used the commutation of p; (2 Wlth Gl and G, which is a consequence
of the normalization G’f = ég = 1, and the matrix property

A2=1 = [A{4A B} =0 (15.4)

We can solve Eq. (15.2) assuming that p; and p, depend only on the anticom-
mutator of the Green’s functions of the terminals, p; = p;({G1, G2}), and commute
with Gy, G, and G. in accordance with Eq. (15.4). As a result, the Green’s function
of the cavity can be expressed in terms of Green’s functions of the terminals in the
form

G, = Gl 2 Gg, (15.5)

where the matrix ¢ = &({G1,Ga}) accounts for the normalization of G.. From
Eq. (15.5) and by using the normalization conditions G? = G? = G2 = 1 we obtain
the system of equations

= P} + D5 + 01520 (15.6)
¢G1 = 2p, + PG, (15.7)
¢Gy = 2Py + 11§, (15.8)

where G; = {G;, G} and G = {G, G5} This system can be treated, effectively, as
a system of scalar equations because all matrices that appear in Egs. (15.6)—(15.8)
depend only on G and commute with each other.

The cumulant generating function S(y) of charge transfer can be obtained as a
sum of the actions of the connected pairs of nodes (§ 13.3)

ZZ/dé’ Trln 1+T (%—1)] (15.9)

112n
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where the total measurement time ¢y is much larger than the characteristic time
scale on which the current fluctuations are correlated. The y-independent term in the
cumulant generating function [given by the normalization requirement S(x = 0) = 0]
is omitted for brevity throughout this Chapter. Also, we recall that because of
current conservation, it is sufficient to introduce a counting field y at one lead only,
while the full counting field dependence can be obtained by setting x = x1 — Xe.

The cumulant generating function S depends only on the anticommutator G ()
and is invariant to the exchange of the leads Gy < G5 or, equivalently, to exchange
of the junctions {T,gl)} - {T,Ez)} [see Egs. (15.2) and (15.3)]. Therefore, the same
invariance persists [152,169,170] in all coherent (or low bias) transport properties of
two-terminal double junctions — such as current (conductance), noise (Fano factor),
and higher cumulants — independently of the type of leads or specific properties of
the junctions. This invariance does not hold in the presence of dephasing [93, 169]
which can be modelled by an additional lead that carries the coherence leakage
current [26,28,46, 150].

In the following we consider an analytically tractable case of a chaotic cavity
coupled to the terminals by two quantum point contacts with N; and N, open
channels, respectively. The transmission eigenvalues of the contacts are T =1 for
n=1,...,N; and T\ = 0 otherwise. From Eq. (15.3) and Egs. (15.6)—(15.8) we
find

-1

. N1+ N, AN;N, G —2
f=2T 21— ! 15.10
2 \/ (N1 +No)2 G +2 (15.10)
and
Pz 1 N=No AN, G2 (15.11)
¢ 2 Ni + Ny (N1 + N2)2G +2

The Green’s function of the cavity and cumulant generating function are given by
Egs. (15.5) and (15.9), respectively. A formally similar result has been obtained
recently by Bulashenko [170] using 2 x 2 Green’s functions in Keldysh space which
can be expanded over the Pauli matrices. Physically, this implies that the whole
circuit is in the normal state, although it is permitted that the terminals are nodes
of a larger (normal-state) mesoscopic network. In our approach we do not rely
on this expansion and make no assumptions on the particular matrix structure,
except for the usual normalization condition. Therefore, Egs. (15.10) and (15.11) are
valid for any type of terminals. For example, one terminal can be superconducting,
with the Green’s function having Keldysh-Nambu matrix structure, or the chaotic
cavity can be a part of the larger multiterminal network which consists of different
heterojunctions. Additional degrees of freedom — for instance, spin — can be included
as well. We emphasize, again, that our solution only resorts to the normalization
condition of the terminals. In the case in which the cavity is part of a larger network,
Green’s functions GLQ have to be determined by circuit rules. The result for G, is
valid in this case as well, which can simplify the numerical solution of larger circuits.

It is interesting to check that an alternative approach can give the same result.
Coherent connectors in the circuit theory are described by a cumulant generating
function of the form

S(x) = i—;/dé’ /01 dT p(T) Trln {1 +% (@ — 1)] : (15.12)
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where p(7) is the distribution of transmission eigenvalues {7} for the composite
junction. Using the distribution of transmission eigenvalues for an open chaotic
cavity [46, 66]
Ny + Ny, 1 |T =7,

pu@) = LR L [T (15.13)
for 7o < 7 < 1 and p.(7T) = 0 otherwise, with 7y = (N; — No)?/(N1 + Na)?, we
obtain S(x) as given by Egs. (15.9)—(15.11). This demonstrates the consistency of
the circuit-theory approach with the random matrix theory of scattering matrices.

§ 16. Superconductor — cavity — normal metal junction

In the following we calculate the statistics of charge transport through a chaotic
cavity sandwiched between a superconductor and a normal-metal. We present a
detailed analysis of the first three cumulants — current, current noise power, and
the third cumulant of the current — for an open chaotic cavity at temperatures
and bias voltages well below the superconducting gap A, when Andreev scattering
is the dominant process of the charge transfer. At low energies and temperatures
the 4 x 4 matrix Green’s function of the superconductor is Gs =G, = 172 in the
Keldysh(")®@Nambu(") space. The Green’s function Gy = Gn(E,x) = Gy of the
normal terminal incorporates the counting field according to

Gy = e XK GY D Te/?, (16.1)

where 7 = 7173 and 7; and 7; are Pauli matrices. The bare Green’s function of the
normal-metal lead is given by

o (T3 2K ~  [(1=2f% 0

G’N—(O _7__3), K-( 0 1—2fc ) (16.2)
where f5 = {exp[(£E£+¢eV)/kpT.]+1}~! accounts for the voltage bias of the normal-
metal lead, with the energy £ measured in respect to the chemical potential of the

superconductor. From Eqgs. (15.9)—(15.11), we find the following expression for the
cumulant generating function:

S(x) = o /dé’ Z N;In (rj \/7“32 — 64N (1 + a)) : (16.3)

where

r1(2) = a(N1 - N2)2 + (3N1(2) + Ng(l))2

/(1 @)a(Ny — Noyt+ (N + N3 + 6N, No)2] . (16.4)

Here, a = (¢*X — 1) f} fy + (e72X — 1) f{ fx and f¥ =1 — fi with a being related
to the double-degenerate eigenvalues of G = {Ggs, Gy} given by Ao = £2iv/a.
From Eq. (16.3) we obtain the average current, the current noise power, and the
third cumulant according to I = (e/t0)0i Sly=0, St = (€*/t0)07S|y=0, and C; =
(€/t0)0},Sly=0, respectively. They are given by

Gs

1=22 [ de (Fify = Fifv). (16.5)

S =G / 0E [(Fefs + Fifw) — (i Fs — fh 1)), (16.6)
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and
a:mﬂg/%aﬁﬁ—ﬁwm

X [1=3v(fify + [hfy) + 2%(f5fy — frfy)?], (16.7)

with the total conductance of S-cavity-N junction,

2¢? Ny + N.
GS::_i{ﬁh—%A@)(1———11;—3>, (16.8)
h q
and the low-temperature Fano factor [28]
2 72
p, — JONENZ(N, 4 Ny) (16.9)

¢l — (N1 + No)] -

Here q = \/(Nl + N2)2 + 4N1N2, Y1 = 1-— F5/2, and Yo = 1— Fs[l — 2N1N2<2N1 +
No) (N1 + 2N5)/q']. After the energy integration in Eq. (16.5), the usual relation
I = G4V is obtained, while the integration in Eqgs. (16.6) and (16.7) yields

St
SGoT. 14+ (Fs/2) [vcoth(v) — 1] (16.10)
2

{14 (Fe/6) 02, o < 1, .

1= Fs/2+ (Fs/2) |v], |v] > 1,

and
. oo 0 (5,22 - o)

=12 — coth(v) + v — coth?(v 16.12
GGsTe (71 ’72) ( ) 3(71 — 72) ( ) ( )
_ s vl <1, (16.13)

+£12(y1 —72) +4(1 =371 +2%) v, £v>1,

respectively, with v = eV/T,.

The cumulant generating function, Eq. (16.3), takes into account the supercon-
ductor proximity effect in the quasiclassical approximation as well as interchannel
mixing inside the cavity in the presence of quantum point contacts. In comparison
with the normal-state junction (see [170]), Egs. (16.5)—(16.7) contain products of
electron and hole distribution functions due to the Andreev process, which is the
mechanism of the charge transport. For example, the term f3 fy = [ (1 — f N) can
be interpreted as the probability for an electron emerging from the lead N to be
reflected back as a hole, where f3 and fy are the electron- and hole-state occupa-
tion numbers. The energy-independent prefactors Gg, 71, and v, are also modified
by the electron-hole correlations introduced by the superconductor. This change
of transport properties due to superconductor proximity effect can be revealed by
considering a general S/N junction with transmission distribution p(7), at low tem-
peratures and bias voltages (T, |eV| < A). In this case Eq. (15.12) reduces to

S(y) = i—jr / de /0 dRA pa(Ra) [l + Ra a(x)], (16.14)

where \;» = #2iy/a are double-degenerate eigenvalues of G. Equation (16.14) is a
multichannel generalization of the single-channel result for an S/N contact obtained
by Muzykantskii and Khmelnitskii [171]. In the fully coherent regime, which we
consider here, the distribution of Andreev reflection eigenvalues ps(R4) is simply
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related to the distribution of transmissions p(7") of the corresponding normal-state
junction: pa(Ra) = 2p(7)dT /dR4. The probability of the Andreev reflection is
given by Ry = 72/(2 — T)? and appears in Eq. (16.14) due to electron-hole sym-
metry at energies well below the superconducting gap and the inverse dwell time
in the cavity. Normal scattering processes are suppressed, and S(x) depends on
the counting field through e*?, which accounts for the effective charge of 2e that
is transferred across the structure in each elementary event of Andreev scattering.
In the case of strong electron-hole dephasing within the structure, electrons and
holes decouple and the system can be mapped onto an effective normal-state junc-
tion [166,168,169] for which the cumulant generating function is given by Eq. (15.12)
with the corresponding modification of transmission distribution p(7") and boundary
conditions G. In the crossover regime, transport through the structure is not sim-
ply related to the normal-state transmission properties and can be described by an
effective energy-dependent distribution p4 [92] which takes into account the effects
of dephasing (coherence leakage currents) at characteristic energies of the order of
Thouless energy.

Expanding Eq. (16.14) in the x field and taking the derivatives, we obtain the
current, current noise power, and the third cumulant in the coherent regime as given
by Egs. (16.5)—(16.7), with conductance

1
Gs = 2/ dTp(T) Ra, (16.15)

0
v = 2G5! fol dT p(T)R?, and vy, = 2G5! fol dT p(T)R%, where Gg = G5/Gg. In

particular, the Fano factor and the slope of the third cumulant at high bias are given
by

Fs = Gis/o dTp(T) Ra(1 — Ra) (16.16)
and
oc; 8 [ B )
a(el) @S/O dTp(T) Ra(1— Ra)(1 - 2Ry), (16.17)

respectively. These expressions are similar to the normal-state ones except for the
effective charge doubling and the presence of the Andreev reflection probability
R, instead of normal transmission 7, in agreement with previous results obtained
within the scattering approach [84]. Using the transmission distribution p.(7") given
by Eq. (15.13), we recover the results for an open asymmetric cavity, which were
obtained from the circuit theory without the explicit knowledge of p(7") for the
composite junction.

The total conductance Gs [normalized to the normal-state value G = g1g2/(g1+
g2)] and the Fano factor Fs of the S-cavity-N junction are shown in Fig. 28 as
functions of the junction asymmetry and for different couplings between the cavity
and terminals. For the symmetric quantum-point-contact coupling g1/g> = 1, the
conductance ratio has the minimal value Gg/Gy = 2(2 — v/2) ~ 1.17, while the
Fano factor is maximal, Fg = (v/2 4 1)/4 =~ 0.60. In the highly asymmetric limit,
Gs/Gy = 2 and Fs = 8¢min/Gmae = 0 (Fig. 28, solid curves). The vanishing of
the shot noise in this case is due to the perfect transparency of the dominant (the
one which is weakly coupled) quantum point contact. For the case of two tunnel
junctions [93,152] instead of quantum point contacts, the trend is opposite: for the
symmetric coupling, Gg/Gn = 1/v/2 ~ 0.71 is maximal and Fg = 3/4 is minimal,
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Fig. 28: Conductance Gg [panel (a)] and the Fano factor Fs [panel (b)] of the
S-cavity-N junction as a function of the junction asymmetry 1/(1 + g1/g2).
Results for three different couplings of a cavity to the leads are shown for com-
parison: coupling by quantum point contacts (solid curves), tunnel junctions
(dashed curves), and coupling by tunnel junction from the S side and quantum
point contact from the N side (dotted curves). The conductance is normalized
to the normal-state value Gn = g192/(g1 + g2), with g; = GgN; for quantum

point contacts and g; = Gg TT(f) for tunnel junctions. The Fano factors
Fy for the corresponding normal-state junctions are shown in panel (b) for
comparison.

and for the highly asymmetric coupling, Gs/GN = gmin/Imaz = 0 and Fg = 2 (see
Fig. 28, dashed curves). We point out that these different trends can be used to probe
the quality of the contacts. The dotted curves in Fig. 28 show numerical results for
the conductance and the Fano factor of a cavity coupled to a superconductor by a
tunnel junction and to a normal lead by quantum point contact. We find that the
transport properties of the system are not affected by the type of coupling to the
superconductor when the quantum point contact on the normal side dominates. This
limit is reached at the conductance ratio g; /g, 2 5 of the tunnel- and quantum-point-
contact coupling of the cavity to the leads. Therefore, the junction that corresponds
to the model of an open chaotic cavity can be realized either with two good quality
quantum point contacts from the both sides or it can be an asymmetric junction with
only the normal-side quantum point contact of a high quality. The latter is easier to
fabricate, and the required asymmetry can be achieved by increasing the contact area
of the cavity to the superconductor. Experimentally, the conductance and current
noise power have been measured recently by Choi et al. [89] in a setup which is very
similar to the system we have analyzed. As the estimates from Ref. [89] show, it is
possible to fabricate a high-quality contact between cavity and superconductor. The
measured values of the Fano factors Fg = 0.58 = 0.10 and Fy = 0.25 & 0.04 across
the junction in the superconducting- and normal-state regimes, respectively, are in
agreement with the model of a symmetric open chaotic cavity [compare with the solid
curves in Fig. 28 (b)]. However, the measured conductance ratio Gg/Gy =~ 0.90 is
in discrepancy with the conductance ratio Gs/Gy = 1.17 predicted by this simple
model. The difference may originate from the inelastic quasiparticle scattering at
the disordered superconductor interface, nonuniversal correction due to relatively
large openings of the cavity [67] or dephasing of quasiparticles due to an additional
lead which is left floating in the experiment.
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Fig. 29: The third cumulant as a function of bias-to-temperature ratio [panel
(a)], shown for three characteristic junction asymmetries: Ct has the maximal
positive slope at high biases for symmetric coupling 1 = gmin/9maz = 1, satu-
rates at high biases for n ~ 0.22, and has maximal negative slope for n ~ 0.046.
The high-bias slope of the third cumulant is shown in panel (b) as a function
of the junction asymmetry, with the normal-state value given for comparison.
Effective charge is e* = 2e and e* = e for the superconducting and normal-state
junction, respectively.

At high temperatures T, > |eV|, current noise power is thermally dominated
and linear in conductance and temperature [see Eq. (16.11)], as expected from the
fluctuation-dissipation theorem. Thus, to extract the Fano factor from the current
noise power measurement, it is necessary to be in the low-temperature, shot noise
regime T, < |eV|. Experimentally, this requires high bias voltages at which nonlin-
ear I — V' characteristics occur, especially in a strongly interacting electron systems,
with a difficulty how to distinguish the shot noise contribution from the contribution
of thermal noise modified by nonlinear conductance.

Finally, we point out the difference between the superconducting and normal-
state asymptotic behavior of the third cumulant at high biases. For an asymmetric
open cavity coupled to normal-metal leads, the slope of the voltage-dependent third
cumulant is negative, reaching zero for the symmetric cavity [170]. When one lead
is superconducting, this slope is negative for highly asymmetric couplings and pos-
itive for symmetric couplings [Fig. 29 (b)], with the crossover at 7 = gmin/Gmaz =

V3+2vV2-V2+2V2 ~0.22. Thus, in the normal-state regime the third cumulant
changes sign at high enough biases, while in the superconducting case this hap-
pens only if the junction is sufficiently asymmetric. This difference originates from
the interchannel mixing inside the cavity in the presence of the superconducting
proximity effect [152] and can be attributed to the skewness [170] of the Andreev
reflection probability distribution function ps(Ra) = 2p.(7)d7 /dR 4 [compare with
Egs. (16.15)—(16.17)]. For the normal-state symmetric cavity, the transmission dis-
tribution is symmetric — i.e., p.(7) = p.(1 —7T) (Fig. 30) — leading to the saturation
of the third cumulant at high bias. If the junction is asymmetric, then the gap at low
transmissions opens at 0 < 7 < 7y, shifting the weight of the distribution towards
the open channels, p.(7) < p.(1 —7) for 0 < 7 < 1/2, and the high-bias slope of
the third cumulant becomes negative. When one lead is superconducting, the weight
of distribution p4(R4) for the symmetric cavity is at low values of the Andreev re-
flection probabilities, pa(Ra) > pa(l — R4) for 0 < Ry < 1/2 (Fig. 30), leading
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Fig. 30: Distribution of the Andreev reflection probabilities pa(Ra) =
20.(T)dT /dR4 (solid curves) and the distribution of transmission eigenval-
ues p.(T) (dash-dotted curves) for an open chaotic cavity, shown for different
asymmetries of the junction 1 = gmin/Gmaz (from top to bottom).

to the positive high-bias slope of the third cumulant. Only for large asymmetries
of the junction does the gap that opens at low R4 prevail and the distribution pa
shifts towards the open Andreev channels and the third cumulant becomes negative
(Fig. 29). It is interesting to note that the maximally negative slopes of the third
cumulant in the normal and in the Andreev case are approximately equal (if the
latter are corrected for the effective charge). From Fig. 30 it is seen that indeed
the eigenvalue distributions are very similar for these values, with the effect of a
superconductor being the change of a junction asymmetry. We believe it would be
interesting to confirm these predictions experimentally. They provide much more
detailed information on the transmission eigenvalue and Andreev reflection eigen-
value distributions, which go beyond the information obtained from conductance
and noise measurements.

§ 17. Summary

In this Chapter, we have studied the charge transport statistics in coherent two-
terminal double junctions within the circuit theory of mesoscopic transport. We have
shown that the system of circuit-theory matrix equations for the Green’s function
of the central cavity can be solved, effectively, as a system of scalar equations inde-
pendently on the type of the leads. For an asymmetric cavity coupled to the leads
by quantum point contacts, the Green’s function is expressed in a closed analytical
form in terms of the matrix Green’s functions of the leads. The full counting statis-
tics and the first three cumulants are obtained for a special case of an open cavity
between a superconductor and a normal metal, at temperatures and bias voltages
below the superconducting gap.

The same results can be obtained by applying the circuit theory while consider-
ing the whole structure as a single connector, with the cumulant generating function
integrated over the distribution of transmission eigenvalues of the composite junc-
tion. This approach manifestly reveals how the subgap transport in S/N structures
is affected both by the effective charge doubling due to the Andreev process and by



98 V. Counting statistics of Andreev scattering in a cavity

modification of the transmission properties due to electron-hole correlations intro-
duced by the superconductor.

For an open cavity, the Fano factor is enhanced with respect to the correspond-
ing normal-state junction, in agreement with the experimental results by Choi et
al. [89] where the high-quality contacts between a cavity and superconductor have
been made. In comparison to the tunnel coupling, the conductance and Fano factor
exhibit opposite trends as a function of the junction asymmetry, which can be used
to experimentally probe the quality of the contacts. The third cumulant is strongly
affected by the presence of a superconductor. In contrast to the normal-state case,
in which the third cumulant changes the sign at high enough biases, in the case in
which one lead is superconducting this happens only if the junction is sufficiently
asymmetric. This difference originates from the skewness [170] of the Andreev re-
flection distribution function, which is in favor of closed Andreev channels for a
moderate asymmetries of the junction.



CHAPTER VI

Transport in arrays of chaotic cavities

§ 18. Introduction

Higher-order correlators of current fluctuations in mesoscopic conductors have
been studied extensively over the last decade both theoretically [26-28,34,46,172,173]
and experimentally [60,68,69,85,86,88,89,99,100,104,174-176]. The reason is that
they contain, in general, additional information to the usual differential conductance
such as higher moments of the transmission eigenvalue distribution, the value of the
effective charge involved in transport processes, the size of internal energy scales of
the system or the correlations intrinsic to the many-body state of entangled systems
[30,32,177]. While the conductance is proportional to the average transmission
probability of the structure at low temperatures, the current noise power S; depends
on the second moment of transmission eigenvalue distribution which is characterized
by the Fano factor F' = S;/lel| = >, T,(1 —T1,)]/>_, T,. Here e is the electron
charge, I is the average current through the sample, and 7, are the transmission
eigenvalues. Recent experiments on noise confirmed the theoretical predictions [28,
46] on the universal distributions of transmission eigenvalues in a metallic diffusive
wire [60, 174] and in an open chaotic cavity [68,69] with Fano factors F' = 1/3
and F' = 1/4, respectively. The crossover from a single cavity to the diffusive wire
limit as the number of internal junctions increases was studied experimentally by
Oberholzer et al. [68,69] and Song et al. [175] recently.

Particle-hole correlations introduced by a superconducting terminal also modify
the noise. The low temperature noise of the subgap transport is doubled for tunnel
junctions [88] and in diffusive normal wires in contact with a superconductor [85,
86,99]. The noise in an open cavity is found to be more than two times larger in
the superconducting state [89] than in the corresponding normal state junction, in
agreement with theoretical predictions [28].

The third correlator contains the first three moments of transmission eigenvalue
distribution and is related to the asymmetry of the distribution [170]. In contrast to
the current noise which is thermally dominated at temperatures larger than the bias
voltage according to the fluctuation-dissipation theorem, the third correlator is in
this regime proportional to the current, without the need to correct for the thermal
noise. However, higher-order correlators are increasingly more difficult to measure
because of the statistical fluctuations [178] and the influence of environment [32,100].
Recent measurements of the third-order correlations of voltage fluctuations across
the nonsuperconducting tunnel junctions by Bomze et al. [104] confirmed the Poisson
statistics of electron transfer at negligible coupling of the system to environment.

The statistical theory of transport, full counting statistics [141, 143,179, 180],
provides the most detailed description of charge transfer in mesoscopic conduc-
tors. The semiclassical cascade approach to higher-order cumulants based on the
Boltzmann-Langevin equations has been developed by Nagaev et al. [144,145]. The
stochastic path integral theory of full counting statistics was introduced by Pilgram
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et al. [146,147]. The quantum-mechanical theory of full counting statistics based on
the extended Keldysh-Green’s function technique [91,92,148,149] in the discretized
form of the circuit theory [66,150] was put forward for multiterminal circuits by
Nazarov and Bagrets [151]. In this Chapter we use the circuit theory [113,152] to
study the elastic quasiparticle transport in arrays of chaotic cavities focusing on the
crossover from a single cavity to the universal limit of a diffusive wire [43,45] as the
number of inner contacts increases. We find the analytical expressions for the distri-
bution of transmission eigenvalues, the cumulant generating function and the first
three cumulants both in the normal and in the superconducting state, generalizing
the previous results on noise [68,69] in such a system to all higher-order correlations.
The similar finite-size effects on the noise and the third correlator have been stud-
ied numerically by Roche and Dougot [181] within an exclusion model. Ballistic to
diffusive crossover in metallic conductors with obstacles as a function of increasing
disorder has been studied by Macédo [182,183] within the scaling theory of transport
combined with the circuit theory. The effects of Coulomb interaction on the current
and noise in chaotic cavities and diffusive wires have been studied by Golubev et
al. [184-186]. The noise in series of junctions has been measured by Oberholzer et
al. [68,69] and Song et al. [175] recently.

§ 19. Transport in arrays of cavities

The system we consider consists of chaotic cavities in series between N identical
junctions characterized by N, transverse channels with transmission eigenvalues
{T,,}. We can neglect the energy dependence of the transmission eigenvalues of the
system if the electron dwell time is small with respect to time scales set by the inverse
temperature and applied voltage. Also we neglect the charging effects assuming that
the conductances of the junctions are much larger than the conductance quantum
Gg = €*/m. The quasiparticle distribution function is isotropic between junctions
due to chaotic scattering in the cavities. We apply the circuit theory of mesoscopic
transport and represent the specific parts of the system by the corresponding discrete
circuit elements, as shown in Fig. 31. The Greens functions of the leads are denoted
as G(0) = G1(0) and Gn(x) = Gr(x), while the Greens functions of the internal
nodes are Gi(X), t=1,..., N—1. The counting field y can be incorporated through
the boundary condition [152] at the right lead according to

Gn(x) = e ¥&/2 Gy (0) eXTr/2, (19.1)

Here G n(0) are the bare Greens functions of the Fermi leads in the Keldysh(") ®
Nambu(~) space, 7; and 7; are the Pauli matrices and 75 = 7;73. The connection
between adjacent nodes is described in general by a matrix current [150]

Necn

Lii=-Y QST”[VGZ’“’VG"] (19.2)
’ — 4+ T,({Gi1, Gi} — 2)

which flows from the node 7 to the node i+ 1. The set of circuit-theory equations for
the Greens functions of the internal nodes consists of matrix current conservations
I i+1 = const and normalization conditions G2 = 1. As shown in Ref. [187] we can
seek for the solution in the form G; = Ejz({Go, Gn}) Go—i-ER({GO, Gn}) Gy, where
the functions FlL r depend only on the anticommutator {GO,G N} and therefore
commute with all G, ;. As a consequence, the anticommutators {G,, G]} depend only
on {Go, Gx} and commute with all G,. We emphasize that the above consideration
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GO(O) ......... GN(X)
Gi(x) Ga(x) Grn-1(x)

Fig. 31: An array of chaotic cavities in series between the Fermi leads (top) and
the discrete circuit-theory representation of the system (bottom). The leads
and the cavities are associated with the corresponding matrix Greens functions
G;. The junctions are characterized by a set of transmission eigenvalues {T},}.
The matrix current is conserved throughout the circuit.

is independent of the particular matrix structure of the Greens functions and relies
only on the quasiclassical normalization conditions G? = 1. Because the junctions
are identical, the matrix current conservation reduces to [187]

C = Gio1+ Gip
\/{Gi—la Gy} +2
Taking the anticommutator of Eq. (19.3) with G; and Giiq, respectively, we find
that {G;_1,G;} = {G;,Gi1} = G, for all i. Our aim is to find G’ in terms of

G = {Gy,Gn}. Now we take the anticommutator of Eq. (19.3) with G and obtain
the following difference equation

Yiv1 — G + o1 = 0, (19.4)

where %; = {GO, G;}. After solving Eq. (19.4) with the boundary conditions %y = 2
and 4y = G, and using that 5, = G’, we find

=[G+ VG —4)/2]"N +[(G — VG —4)/2'/". (19.5)

(19.3)

The cumulant generating function S(x) of charge transfer through the structure
can be obtained as a sum of the actions of the connected pairs of nodes (§ 13.3).
For identical junctions in series S(x) reduces to the contribution of a single junction
multiplied by N:
lo

Sx) = .

/ d€ Tr[S(x)], (19.6)

with

NZln {H—(g—i)}. (19.7)

Here t is the total measurement time which is much larger than the characteristic
time scale on which the current fluctuations are correlated. For a large number of
junctions, N > 1, the cumulant generating function given by Eq. (19.6) approaches
the universal limit of a diffusive wire [66, 180]

S(y) = fgi/dg Tr{arccoshz (g)] (19.8)
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Fig. 32: Distribution of transmission eigenvalues for N open contacts in series
(left panel) and for contacts of lower transparency T,, = 0.4 and T,, < 1 (right
panel), normalized to the transmission distribution of a diffusive wire pp (7).
The ballistic to diffusive crossover in a metallic disordered wire is shown for
comparison (left panel, dash-dotted curves) as a function of increasing disorder
L/l=N-1.

which does not depend on the specific scattering properties {T,,} of a single junction,
the shape of the conductor or the impurity distribution [43,45,113]. Here g =
(-, T,)/N is the total conductance of a wire in units of Gg.

The distribution of transmission eigenvalues of a composite junction py ¢1,1(7)
is directly related to the cumulant generating function by [66]

() = o w (5], (19.9)
where ¢ = (G — 2)/4. From Egs. (19.5), (19.7) and (19.9) we find
(1) = po7) 22T
AT, [(0YN + b~ YNY(2 = T,) + 2T, cos(m/N)]
< (BN + b= 1UN)(2 = T,,) + 2T, cos(x /N2 — 4(1 — T,,) (b'/N — b—l/N)2> '
(19.10)

Here pp(7) = (§/2)(1/T /1 — T) is the transmission distribution of a diffusive wire,

b=(14+vV1-T)*/T,and (---) = (>, ---)/(3, T,) denotes the averaging over the
transmission eigenvalues of a single junction. For N open contacts in series (T,, = 1)

Eq. (19.10) reduces to

pn(T) = pp(T) Sm:;#

4TI/N
A+ VI=—T)2N 1 (1= VI =T)!N + 2T N cos(n/N)’

The crossover from a single cavity to the diffusive regime as the number of junctions
N increases is shown in Fig. 32 for open contacts (left panel) and for contacts of lower
transparency 7, = 0.4 and 7,, < 1 (right panel). The transmission distribution of
a metallic disordered wire of the length L and the mean free path [ is shown for
comparison (dash-dotted curves in Fig. 32; cf. Ref. [46]).

(19.11)
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The transmission eigenvalue distributions given by Egs. (19.10) and (19.11) can
be probed experimentally by measuring higher-order correlators of current fluctua-
tions across the junction at low temperatures. The first three moments of charge
transport statistics are related to the average current, the current noise power
and the third correlator according to I = (e/t)diySly=0, S1 = (€*/t0)03S|y=0,
and C; = (€®/t9)9}, S| =0, respectively. In the linear regime, which we consider
here, the current is proportional to the bias voltage with conductance given by
g=>_,T,)/N = fol dT pn 1,3 (T) T in units of Gg. At temperatures much lower
than the bias voltage, the current noise power and the third correlator are linear in
the current, with the slopes given by the Fano factor

L) 1/1 AT p 2y (T) T(1 = T) (19.12)
- a(eI) - g 0 pN{Tn} :
and the "skewness”
c—ﬂ—lfﬂ (T) T(1—T)(1-2T) (19.13)
Sa@n) gy | |
respectively. For the normal-state junction the two parameters are given by
1 2 — 3(T2)
F=—-{14+—12™ 19.14
3 ( * N2 ) (19.14)
and 1/ 5(2—3(T2)  4—30(T2(1—T))
C=1 (1 e i > . (19.15)

The Fano factor given by Eq. (19.14) coincides with the result previously obtained
within Boltzmann-Langevin approach which takes into account both cavity noise and
partition noise at the contacts and was confirmed experimentally for up to three open
contacts in series [68,69]. The sign of C' is related to the asymmetry of transmission
distribution [170], being negative (positive) when the weight of the distribution is
shifted towards open (closed) transmission channels. Equation (19.15) shows that
closed channels prevail in the composite junction for N > 2 even for completely open
inner contacts, in agreement with Eq. (19.11).

Now we focus on the junction sandwiched between a normal-metal and a super-
conductor in the coherent regime in which we can neglect the particle-hole dephas-
ing (Eqn > |eV],T., A where Ery, is the inverse dwell time). At temperatures and
bias voltages smaller than the superconducting gap A, the transport properties can
be obtained by integrating the Andreev reflection probability Ry = 72/(2 — T)?
over the transmission distribution [28,187] and correcting for the effective charge
e* = 2e. The conductance, the Fano factor and the skewness are given by gg =
fol dT pn1,3(T) Ra (in units of 2Gg),

dS; I
Fq = = — T T 1-— 19.1
o= gy =2 [ T RA0- R, (1910
and
OCy I
= ——— = — dT T 1-—- 1—-2 19.1
Cs = gt = == [ T (T) Ral= R0 =2Ry). (1917

respectively. For N open contacts in series we find

o : ; [1 a 4]1\f2 (cosQ(:'/éLN) a 2)}’ (19.18)

0o = F = —
95 = 9N cos?(m/4N)’ 573
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Fig. 33: The Fano factor F (left panel) and the skewness C (right panel) as

a function of the number of contacts in series N, shown for different contact

transparencies. The corresponding distributions of transmission eigenvalues

of the composite junctions are shown in Fig. 33. The Fano factors Fs and

the skewnesses C's (normalized by e* = 2e) of the superconducting junctions

are given for comparison. Ballistic to diffusive crossover in a disordered wire
(L/1 = N — 1) is shown by dash-dotted curves.

and

Cs =

2
i[ 5 ( 3 _2>+L<2+15sm (7r/4N)>]
15 4N? \cos?(m/4AN) 8N4 cos*(m/4N)

The skewness Cg given by eq. (19.19) is positive for N > 1 which indicates that
the asymmetry of the Andreev reflection distribution pya(Ra) = pn(7)d7T /dR4 is
in favor of closed Andreev channels [187]. For the more general case of N contacts
characterized by transmission eigenvalues {7},} we obtain gs = (>, a,)/N and

Fs=1- (>, an6,)/(>., o), where
_ R+ /R cos(m/2N)
" 1+ /Ricos(n/2N)]*

2 1 3,/RA
8, =2——[1-6a, + , (19.21)
R+ cos(m/2N)

and R4 = T2/(2 — T;,)?. Fano factors and skewnesses for the normal-state and
superconducting junctions are shown in Fig. 33 as a function of the number of
contacts in series and for different contact transparencies. It is interesting to note
that in the coherent superconducting regime, which we consider here, the higher-
order correlators satisfy the approximate scaling relations Fg(N) ~ F(2N) and
Cs(N) ~ C(2N) which are exact for incoherent Andreev transport [168]. For large
N this results in the full reentrance of transport properties of a diffusive wire in
contact with a superconductor [91,92] as a function of the particle-hole coherence.

(19.19)

(19.20)

§ 20. Summary

In this Chapter, we have studied the transport properties of several chaotic cav-
ities in series using the circuit theory of mesoscopic transport. We obtained the
analytical expression for the distribution of transmission eigenvalues of the compos-
ite junction as a function of the number of contacts and the scattering properties of
a single contact. This distribution generalizes the previous results on noise in such a
system [68,69] to all higher-order cumulants. As an example we found the first three
cumulants of the charge transfer statistics both for the normal-state junction and in
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the case when one lead is superconducting. The sign of the third cumulant at high
bias can be used to probe the asymmetry of the transmission eigenvalue distribution:
it is negative (positive) when the weight of the distribution is more on open (closed)
transport channels. As the number of contacts increases, all transport properties
approach the universal limit of a diffusive wire [43,45]. While the crossover from a
few cavities to the diffusive-wire limit has already been studied through the noise
in the normal state [68,69,175], experimental investigations of either higher-order
correlators or cavities in contact with a superconductor are still to come.






CHAPTER VII

Elementary transport processes in a voltage-driven junction

§ 21. Introduction

The most detailed description of the charge transfer in coherent conductors is
a statistical one. At constant bias, the full counting statistics (FCS) of electron
transfer [141] can be directly interpreted in terms of elementary events independent
at different energies. The FCS approach is readily generalized to the case of a
time-dependent voltage bias [142,143]. The current fluctuations in coherent systems
driven by a periodic voltage strongly depend on the shape of the driving [94], which
frequently is not apparent in the average current [95]. The noise power, for instance,
exhibits at low temperatures a piecewise linear dependence on the dc voltage with
kinks corresponding to integer multiples of the ac drive frequency and slopes which
depend on the shape and the amplitude of the ac component. This dependence has
been observed experimentally in normal coherent conductors [42, 98] and diffusive
normal metal-superconductor junctions [99].

The question which we address in this Chapter is: What are the elementary
processes of charge transfer driven by a general time-dependent voltage? The time
dependence mixes the electron states at different energies [95] which makes this ques-
tion both interesting and non-trivial. The first step in this research has been made
in [188] for a special choice of the time-dependent voltage. The authors have consid-
ered a superposition of overlapping Lorentzian pulses of the same sign (”solitons”),
with each pulse carrying a single charge quantum. The resulting charge transfer is
unidirectional with a binomial distribution of transmitted charges. The number of
attempts per unit time for quasiparticles to traverse the junction is given by the dc
component of the voltage, independent of the overlap between the pulses and their
duration [160]. It has been shown that such superposition minimizes the noise reduc-
ing it to that of a corresponding dc bias. A microscopic picture behind the soliton
pulses has been revealed only recently [189]. In contrast to a general voltage pulse
which can in principle create a random number of electron-hole pairs with random
directions, a soliton pulse at zero temperature always creates a single electron-hole
pair with quasiparticles moving in opposite directions. One of the quasiparticles
(say, electron) comes to the contact and takes part in the transport while the hole
goes away. This results in the charge transfer statistics which is of a single-particle
type. Therefore, soliton pulses can be used to create minimal excitation states with
"pure” electrons excited from the filled Fermi sea and no holes left below. The
existence of such states can be probed by noise measurements [96, 189-191].

The simplest multi-particle charge transfer statistics is obtained for the soliton-
antisoliton voltage pulses of opposite signs and without dc offset [160]. The charge
transfer in this case is bidirectional with zero mean and vanishing higher-order odd
cumulants. The width of distribution and higher-order even cumulants strongly de-
pend on the relative position of the pulses and their duration. Thus, the statistics of
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charge transfer cannot be interpreted in terms of independent elementary excitations
associated with individual pulses.

In [97] we have identified the independent elementary processes for an arbitrary
time-dependent driving applied to a generic conductor. The details of calculation and
the physical interpretation are presented in the following. Recently, the constraints
on the charge transfer statistics have been obtained for instant time dependent scat-
tering at zero temperature [192].

§ 22. Full counting statistics and elementary processes

The system we consider is the coherent mesoscopic junction sandwiched between
two terminals with a time-dependent voltage applied. We neglect charging effects
and assume instantaneous scattering at the contact with quasiparticle dwell times
much smaller than the characteristic time scale of the voltage variations. Since a
generic conductor at low energies can be represented as a collection of independent
transport channels, it is enough to specify elementary events for a single channel of
transmission 7. The cumulant generating function for a multichannel junction is
obtained by summation over channels, S(x) = > S (x,T). The approach we use
is the nonequilibrium Keldysh-Green’s function technique, extended to access the
full counting statistics, as described in § 13. The Green’s functions of the left (1)
and right (2) leads are given by

Gy = e X11/2 ((1) E]i) eix%1/27 Gy = ((1) E}i) ; (22.1)
01

where 7 = (1 0) is a matrix in Keldysh(") space. Hereafter we use a compact oper-
ator notation in which the time (or energy) indices are suppressed and the products
are interpreted in terms of convolution over internal indices, e.g., (G1G2)(t',t") =
i dtlél(t’ , tl)ég(tl, t") (and similar in the energy representation). The equilibrium
Green’s function Go(t' —t”) depends only on time difference. In the energy represen-
tation Go(&’, £") is diagonal in energy indices with h(£’, ") = tanh(E'/2T.) 2r6(E'—
E"). Here the quasiparticle energy £ is measured with respect to the chemical po-
tential in the absence of the bias and T, is the temperature. The Green’s function
G1(t',t") depends on two time (or energy) arguments. It takes into account the
effect of applied voltage V' (t) across the junction through the gauge transformation
h = URU' which makes G, nondiagonal in energy representation. The unitary op-
erator U is given by U(t',t") = f(¢)d(t' — t”) in the time representation, where
f(t") = exp[—i fotl eV (t)dt]. The cumulant generating function S() of the charge
transfer through the junction is given by Eq. (13.26):

S(x) =Trln {i + % (% - 1)] : (22.2)

Here the trace and products of Green’s functions include both summation in Keldysh
indices and integration over time (energy). For a dc voltage bias, G, and G, are
diagonal in energy indices and S(y) is readily interpreted in terms of elementary
events independent at different energies [152]. To deduce the elementary events in the
presence of time-dependent voltage drive it is necessary to diagonalize {G, Go}eren.
The diagonalization procedure is described in the following.
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For the anticommutator of the Green’s functions we find {G1,G}/)2 -1 =
—2sin(x/2)(A + B), with

y 1 b 5 0 —b

A:(O 0)®A and B:(O 1)®B. (22.3)
Here A = (1 — hh)sin(x/2) + i(h — h)cos(x/2), B = (1 — ﬁh) sin(x/2) + (
h) cos(x/2), b = —icot(x/2), and ® is the tensor product. Since AB = BA =0, the

operators A and B commute and satisfy for integer n:
s 1 b n 0 —b n
(A+B)" = (0 0)®A +(0 1)@B. (22.4)
Therefore, S(x) given by Eq. (22.2) reduces to?®
S="Trln [1 — T'sin (%) A} +Trln [1 — T'sin (%) B] . (22.5)

A further simplification of S(x) is possible in the zero temperature limit, in which
the hermitian h-operators are involutive: h? = h? = 1. The operators hh and
hh are mutually inverse and commute with each other. Because hh is unitary, it
has the eigenvalues of the form e’ with real oy, and possesses an orthonormal
eigenbasis {vq, }. The typical eigenvalues of hh (or hh) appear in pairs e*® with
the corresponding eigenvectors v, and v_, = hv,. In the basis (va, V_q) operators
hh and hh are diagonal and given by hh = diag(e®, ') and hh = diag(e ™, e').
The eigensubspaces span(ve,v_o) of the anticommutator {h, h} are invariant Wlth
respect to h, h, and A because of [h,{h,h}] = [h,{h,h}] = 0. The operators h
and h are anti-diagonal in the basis (Va,V_o), with matrix components hiy = 1,
hor =1, h12 = e and h21 = ¢'*. The operator A can be diagonalized in invariant
Subspaces, with typlcal eigenvalues given by

A = 2sin(a/2) (sin(a/Q) sin(x/2) & i\/l — sin®(a/2) sinz(X/Q)). (22.6)

Similarly, we obtain the same eigenvalues of the operator B. From Egs. (22.5) and
(22.6) we obtain the contribution S; to the generating function,

Si(x) =2 Z In [1 + T R sin® (%) (X +e ™ — 2)} (22.7)
i

(with R =1 —T') which is associated with the paired eigenvalues e***.

There are, however, some special eigenvectors of hh which do not appear in
pairs. The pair property discussed above was based on the assumption that v,
and hv, = v_, are linearly independent vectors. In the special case, these vectors
are the same apart from a coefficient. Therefore, the special eigenvectors of hh are
the eigenvectors of both h and h with eigenvalues +1. This means that the special
eigenvectors posses chirality, with positive (negative) chirality defined by Av = v
and hv = —v (hv = —v and hv = v). From Eq. (22.5) we obtain the contribution
Ss given by

Sa(x) =2 In[l 4 T(e " —1)] (22.8)

26) BEquation (22.5) is equivalent to Eq. (13.35) with n = (1 — h)/2.
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(c) r

position

Fig. 34: Schematic representation of elementary events: bidirectional (a, b) and
unidirectional (c). Shifts of the effective chemical potential in the left lead due
to time-dependent voltage drive are indicated by shading. For periodic drive,
the dc voltage component [panel (d), dash-dotted line] describes unidirectional
charge transfer, while the ac component (dashed curve) describes bidirectional
events affecting the noise and higher-order even cumulants.

which is associated with the special eigenvectors. Here [ labels the special eigenvec-
tors and &y is the chirality.

The total cumulant generating function of the charge transfer for arbitrary volt-
age drive is given by S(x) = Si(x) + S2(x). The elementary transfer events can
be inferred from the form of S, as it has been done in [193,194]. The answer is
surprisingly simple. There are two kinds of such events: The bidirectional events
which are described by & and the unidirectional events which are described by Ss.
These events are discussed in detail in § 7. In the course of a bidirectional event k an
electron-hole pair is created with probability sin®(ay/2), with a; being determined
by the details of the time-dependent voltage. The electron and hole move in the
same direction reaching the scatterer. The charge transfer occurs if the electron is
transmitted and the hole is reflected, or vice versa [Fig. 34(a,b)]. The probabilities
of both outcomes, TR (R being reflection coefficient), are the same. Therefore, the
bidirectional events do not contribute to the average current and odd cumulants of
the charge transferred although they do contribute to the noise and higher-order
even cumulants. A specific example of a bidirectional event for a soliton-antisoliton
pulse was given in [160].

The unidirectional events are the same as for a constant bias or a soliton pulse.
They are characterized by chirality x; = £1 which gives the direction of the charge
transfer. An electron-hole pair is always created in the course of the event, with
electron and hole moving in opposite directions [Fig. 34(c)]. Either electron (k; = 1)
or hole (k; = —1) passes the contact with probability 7', thus contributing to the
current.

The cumulant-generating function given by Eqgs. (22.7) and (22.8), together with
the interpretation, is the main result of this Chapter. It holds at zero temper-
ature only: since the elementary events are the electron-hole pairs created by the
applied voltage, the presence of thermally excited pairs will smear the picture. Equa-
tions (22.7) and (22.8) contain the complete y-field dependence in explicit form which
allows for the calculation of higher-order cumulants and charge transfer statistics for
arbitrary time-dependent voltage. The probability that N charges are transmitted
within the time of measurement is given by P(N) = (2)~" ["_dx exp[S(x) — iNx]
[cf. Eq. (4.15)]. Higher-order derivatives of S with respect to x are proportional to
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the cumulants of transmitted charge, or equivalently, to higher-order current corre-
lators at zero frequency. The details of the driving are contained in the set of para-
meters {a} and separated from the y-field dependence. This opens an interesting
possibility to excite the specific elementary processes and design the charge transfer
statistics by appropriate time dependence of the applied voltage, with possible appli-
cations in production and detection of the many-body entangled states [177,194,195].

§ 23. Periodic voltage drive

In the following we focus on a periodic voltage drive V(¢ + 7) = V(¢) with
the period 7 = 27/w. In this case the probabilities of bidirectional events p, =
sin?(ay,/2), given by the eigenvalues e of hh, can be easily obtained by matrix
diagonalization.

The operator h couples only energies which differ by an integer multiple of w,
which allows to map the problem into the energy interval 0 < £ < w while retaining
the discrete matrix structure in steps of w. Therefore, the trace operation in Eq.
(22.2) becomes an integral over £ and the trace in discrete matrix indices. The
operator hh in the energy representation is given by

(hR)um (€) = sgn(€ +1w) > farrfipsen(€ —kw —eV),  (23.1)
k=—o00
with
- 1 [7 Ry, N
fn — _/ dt e o dt’ eAV (t )6MWt. (232)
T Jo

Here V = (1/7) [V(t)dt is the dc voltage offset and AV (t) = V(t) — V is the ac
voltage component. The coefficients f,, satisfy

S Fukfpir =0 and > nlfP=0. (23.3)

k=—o00 n=-—00

To evaluate S(x) for a given periodic voltage drive V (¢) it is necessary to di-
agonalize (hh)nm(€). First we analyze the contribution of typical eigenvalues e
The matrix (hh)m,(€) is piecewise constant for € € (0,w;) and € € (wy,w), where
w; = eV — Nw and N = |eV /w] is the largest integer less than or equal eV /w.
The eigenvalues e of (hh)y,, are calculated for £ € (0,w;) [€ € (w1,w)] using
finite-dimensional matrices, with the cutoff in indices n and m being much larger
than the characteristic scale on which |f,| vanish. Further increase of the size of
matrix just brings more eigenvalues with o = 0 which do not contribute to S(x),
and does not change the rest with oy # 0. This is a signature that all important
Fourier components of the drive are taken into account. The eigenvalues e**¥xL(r)
give rise to two terms, S; = Sz, + Sig, with

Sin() = Men Y In [1+ TRsin? (P20) (¢ 4 e - 2)] (23.4)
k

Here M) = towy/m, Mr = to(w — wq)/m, and ty is the total measurement time
which is much larger than 7 and the characteristic time scale on which the current
fluctuations are correlated.

The special eigenvectors all have the same chirality which is given by the sign of
the dc offset V. For eV > 0, there are N; = N +1 special eigenvectors for € € (0, w;)



112 VII. Elementary transport processes in a voltage-driven junction

1.0 T T —_—-F T LENP Cb |
‘ .
§ : k: 1 "' -~ l"’
_ -,
~— 0.5 = ! k_ 2,' k: .’ -
C\lg L I, . R
L 4 ’
- 4 . ’ _
’ L L k=
0.0 L= lwe==t 1 az=-1 4---"3
].0 T T v I I
< \ x(¢/=) T (1-1)]
S \ .
Q 0 5 \“ sCER Ny JETTN R
N— - -
g \\ " \‘\ :/ \\‘ .
w Y v >
< N0 L’ “~ . Sy
’ -~ .
L4 -~ Pid Se P
0.0 N =r° N [ L PR CR
0 6 8 10
eV, /o

Fig. 35: The probabilities of elementary events for harmonic drive V(t) =
Vo cos(wt) are shown in the upper panel. With increasing amplitude V;y more
and more eigenvalues oy come into play and contribute to transport. The
derivative of the noise power with respect to Vg (solid line) decomposed into
contributions (dashed line) of elementary events is shown in the lower panel.

and Ny = N for £ € (w;,w). Because eV = Nyw; + Ny(w — wy), the effect of the
special eigenvectors is the same as of the dc bias

toeV
Sz(X): o

™
Comparing Eqgs. (22.8) and (23.5) we see that unidirectional events for periodic
drive are uncountable. The summation in Eq. (22.8) stands both for the energy
integration in the interval w and the trace in the discrete matrix indices. In the
limit of a single pulse w — 0 unidirectional events remain uncountable for a generic
voltage, while being countable, e.g., for soliton pulses carrying integer number of
charge quanta [160].

Equations (23.4) and (23.5) determine the charge transfer statistics at zero tem-
perature for an arbitrary periodic voltage applied. The generating function consists
of a binomial part (S,) which depends on the dc offset V only, and a contribution of
the ac voltage component (S7) [Fig. 34(d)]. The latter is the sum of two terms which
depend on the number of unidirectional attempts per period eV /w. The simplest
statistics is obtained for an integer number of attempts for which Sy, vanishes [142].
The parameters {f,} for the optimal Lorentzian pulses

Vi(t) = 21y, 1 _2r sinh(277 /7) (23.6)
e (t —kT)2+ 7%  ercosh(2mr/T) — cos(2mt/T)

k=—o00

In[1+ T(e ™ —1)]. (23.5)

o

of width 7, > 0 are given by

_ —2mnTL /T _ ,—2n(n+2)TL /T >0
{e c = (23.7)

o =277 /T o
-1 = —¢€ ) n —
f 4 0, n<-—1

(see § 23.2). In this case S;;, = S1g = 0 and the statistics is ezactly binomial with
one electron-hole excitation per period, in agreement with Refs. [160, 189].
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We conclude this paragraph by noting that the elementary events at zero tem-
perature can be probed by noise measurements. For example, in the case of an ac
drive with V' = 0, only bidirectional events of R-type remain [S(x) = Sir(x)]. The
current noise power is given by>"

S = 20—y Y sin? (%) . (23.8)

™

Both the number of events and their probabilities increase with increasing the driving
amplitude Vy, which results in the characteristic oscillatory change of the slope of 7.
The decomposition of 9S7/dV; into contributions of elementary events for harmonic
drive V(t) = Vj cos(wt) is shown in Fig. 35.

The interpretation of the shot noise in terms of electron-hole pair excitations
has been discussed in Ref. [96] in the regime of low-amplitude driving eV < w.
In this case only one electron-hole pair is excited per period with probability p; =
sin®(a/2) ~ [Ji(eVy/w)]?. Remarkably, Fig. 35 shows that the single electron-hole
pair is excited not only for small amplitudes but also for amplitudes comparable or
even larger than the drive frequency, up to eV < 2w. This extended range of validity
can be covered by taking into account the higher-order terms in the expression for
probability: p; &~ > 7 n[J,(eVp/w)]?. The first 3 terms approximate the exact p;
shown in Fig. 35 to accuracy better than 0.3% for eV < 2w.

§ 23.1. Cumulants at finite temperatures. The full counting statistics and
the corresponding elementary transport processes obtained in the previous para-
graph are valid description in the low temperature limit only, in which electron-hole
pairs are created by the applied voltage and no thermally excited pairs exist. For-
mally, the diagonalization of the anticommutator {G, Gy}erer in energy indices,
which is needed to deduce the elementary processes, is based on the involution prop-
erty of h-operators, h?> = h? = 1. This property no longer holds at finite tempera-
tures which are comparable to the applied voltage. Nevertheless, the method we use
enables the efficient and systematic analytic calculation of the higher-order cumu-
lants at finite temperatures. The cumulants can be obtained directly from Eq. (22.5)
by expansion in the counting field to the certain order before taking the trace. The
trace of a finite number of terms can be taken in the original basis in which G; and
G4 are defined. In the following we illustrate the approach by calculation of the av-
erage current I = (e/tg)d;S|y—o, the current noise power S; = (¢*/t9)97,S|y—o and
the third cumulant C; = (€% /t0)0;, S|y=o at finite temperatures. From Eq. (22.5) we
obtain

O Sy=o =T Tre(h — h), (23.90)
02.S|y—0 =T Tre(1 — hh) — (T?/2) Tre[(h — h)?], (23.9b)
03 Sly—o =(T%/2) Tre(h® — h*) + (3/2)T*(1 — T) Tre[hh(h — h)]

+T[1 — (37/2)] Tre(h — h). (23.9¢)

In energy representation, the operators h and h are given by
h(E'E") = h(&)2ms(E = E") =Y fifirmh(E) 276(E" — €' —mw),  (23.10a)
k,m

27) Throughout this Thesis we use the definition for the current correlation function given by

Eq. (10.26). In [97] the current correlation function is defined with an additional prefactor of 2.
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hE'E") = Z Frfinh(E —kw —eV) 2m6(E" — £ — mw). (23.100)

Here h(E) = tanh(€/27T,) and we used the properties of {f,} given by Eq. (23.3).
After integration over energy in Egs. (23.9) we obtain the average current [ =
(e2/m)( > T,)V. The current noise power and the third cumulant are given by

2

Si==3%"

p

T22T, + T,(1 — T,) Z | ful?(eV + nw) coth ( (23.11)

n=—oo

eV + nw
2T,

and

e 2 2
Cr = ?{GVZTp(l—Tp)%—SZTp(l—T
p p

© = eV + nw e, 9 eV + nw
x> |l {2Tecoth <—2Te ) (eV 4 nw) coth <—2Te )] } (23.12)

n=—oo

Here we restored the summation over transport channels 7}, for clarity.

The average current is linear in dc voltage offset, which is consistent with the ini-
tial assumption of energy-independent transmission eigenvalues and instant scatter-
ing at the contact. The result for the current noise power, Eq. (23.11), describes the
photon-assisted noise for arbitrary periodic voltage drive. The coefficients £, for har-
monic drive V (t) = V +Vj cos(wt) are given by the Bessel functions, f, = J,(eVo/w),
and Eq. (23.11) reduces to the previous results obtained by Lesovik and Levitov [94]
and Pedersen and Biittiker [95] (see also [26]). The accurate noise measurements at
finite temperatures in the presence of the harmonic driving are performed in [42].
The results are in excellent agreement with Eq. (23.11).

In the following we discuss the low- and high-temperature limits of S; and Cj. At
high temperatures T, >> |eV|, now, with now being the characteristic energy scale on
which | fno\ vanish, the current noise power reduces to the thermal equilibrium value
St = 2T.G, which is just a manifestation of the fluctuation-dissipation theorem. The
third cumulant is in this regime proportional to the average current, C; = e?F1,
where F' = [ T,(1 —T,)]/(3_,T,) is the Fano factor. At high temperatures Sy
and C carry no information on the details of the time-dependent voltage drive.

At low temperatures T, < |eV|, now, the current noise power reduces to

= ?ZTp(l — 1) Z | £nl?(eV + nw) sgn(eV + nw). (23.13)

n=—oo

In this case Sy is a piecewise linear function of the dc voltage offset V with kinks
corresponding to integer multiples of the driving frequency eV /w = N and slopes
which depend on the shape and the amplitude of the ac voltage component. The
derivative 0S;/0V consists of a series of steps given by

aSI aSI 35’1 )
A7 v T,(1 =1, 23.14
( W)evzm oV (Z )If N2 (23.14)

Nro OV |y
All steps add up to (2¢*/m) 32, T,(1 — T,) because of 3 |fu]?2 = 1. The steps in
dS1/0V were measured for harmonic drive in normal [98] and normal-superconductor
[99] junctions. In the superconducting state they appear at integer values of 2eV /w,
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Fig. 36: The slope 0S1/d(eV) of the current noise power S as a function of the
dc voltage offset V' is shown for the square-shaped voltage drive of amplitude Vj.
In general, the slope changes at integer values of €V /w according to Eq. (23.14).
However, for the square-shaped drive with integer amplitude eVy/w = N, the
slope remains unchanged at eV /w = N + 2k, k # 0.

which can be interpreted as a signature of the elementary charge transport processes
in units of e* = 2e. The effective charge is doubled in the superconducting state due
to the Andreev process. We point out that for a general voltage drive, certain steps
at integer values of e*V /w = N may vanish if the corresponding coefficient f_y = 0.
For example, for a square-shaped drive with integer amplitude e*Vy/w = N, the
steps at ¢*V /w = N + 2k (k # 0) vanish. This is illustrated in Fig. 36 for a normal-
state junction. Since S;(V) is an even function of V, only the positive part with
eV > 0 is shown.

At low temperatures, the third cumulant reduces to C; = e?F3I, where Fy =
>, T,(1=T,)(1-2T,)]/(3_,Tp). Unlike the current noise power, the third cumulant
at low temperatures does not depend on the ac component of the voltage drive. This
is because the bidirectional processes, which are created by the ac voltage component,
do not contribute to odd-order cumulants at low temperatures [Eq. (23.4)].

We conclude this paragraph by comparison of two formulas for the current noise
power at zero temperature. For simplicity we take V' = 0 and consider a single
transport channel. Equation (23.13) for the current noise power reduces to

2¢2w S
= T(1-T 2, 23.1
S1="—T( >n§jln|fn| (23.15)

Here we used Eq. (23.3) to restrict the summation to the positive n only. On the
other hand, the current noise power is also given by Eq. (23.8). Regardless the similar
form, the physical content of these two equations is very different. Both equations
give the same result for S; as a consequence of the invariance of trace. However,
Eq. (23.8) has been obtained by taking the trace in Eq. (22.2) in the basis in which
{Gl, Gg} is diagonal. Therefore, the cumulant generating function is decomposed
into contributions of elementary and statistically independent processes. The terms
which appear in Eq. (23.8) are the contributions of these processes to the noise.
Equation (23.15) has been obtained by taking the trace in a basis in which {G1, G}
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Fig. 37: Different periodic bias voltages: cosine, square, triangle, sawtooth, and
Lorentzian pulses (top to bottom). The bias voltages are characterized by the
dc offset voltage V, the amplitude V| of the ac component, and the period
T =2m/w.

is not diagonal. Although the end result for S; is the same, the individual terms
which appear in Eq. (23.15) have no direct physical interpretation.

In the limit of small-amplitude voltage drive, eV < w, only one electron-hole
pair is excited per period with probability p; = sin®(a;/2). Comparing Egs. (23.8)
and (23.15) we obtain that in this case p; = .00, n|fu]|> In fact, as shown in
Fig. 35 for harmonic drive, the assumption of small amplitudes can be relaxed to
the amplitudes comparable or even larger than the drive frequency. The accuracy

of this approximation depends on the shape of time-dependent voltage drive (cf.
Fig. 35 and Fig. 41).

§ 23.2. Comparison of different time-dependent voltages. In the follow-
ing we compare the elementary events and the noise generated by different time-
dependent bias voltages. The bias voltage V(t) = V + AV/(t) consists of the dc
voltage component V and the periodic ac component AV (t) = AV (t + 7) with the
period 7 = 27 /w and zero mean value. We focus on standard voltage signals such as
cosine, square, triangle, and sawtooth, as depicted in Fig. 37. We also present results
for Lorentzian voltage pulses which provide the simplest charge transfer statistics for
certain amplitudes. The ac voltage component is characterized by the parameters
fn given by Eq. (23.2). In the following we obtain these parameters for the driving
voltages of interest.

The cosine voltage drive of amplitude Vj is given by

AV (t) = Vj cos(wt). (23.16)

The coefficients fn can be calculated using the Jacobi-Anger expansion [105]

eizsin(0) _ Z Jn(z) eme’ (23‘17)

n=—oo
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where J, are the Bessel functions of the first kind. The coefficients f, are given by
P 1%

Fo=, (Q> . (23.18)
w

The square voltage drive is given by

% 0<t<T/2
AV(t) =" /2, (23.19)
Vo, T/2<t<T
For noninteger values of eV} /w, the coefficients fn are given by
inl= (n — .
jo—2dhsm 5 (=] ig(n-e0) (23.20)

TR e ()

For integer values of eVy/w, the coefficients f,. are obtained by taking the limit of
the above formula.
The sawtooth voltage drive is given by
AV (t) =2Vpt/T — Vo (23.21)
for 0 <t < 7. In this case

~ 1 €_i7r/4 .

fo=—— 6%@/@% {erf (\/E pim/4 (eVo/w) —n)
n 2\/5 /6%/w 2 1/6%/(,()
T . (eVo/w)+n
+ erf (\/j em/A 0 L ) L (23.22

Here erf(z) = (2/y/7) [, dt exp(—t?) is the error function.
The triangle voltage drive is characterized by

4 — 2
AV(t):{ Vot/T — Vo, 0<t<T1/2,

23.23
—4AVot /T +3Vh, T/2<t<T. ( )

In this case

- et x (Vo /w)n)?
= ¢4 eVy/w

INAAE

iefiﬂ-/4 T (eVo/w)276(eV0n/w)+n2
_ e 4 eVy/w

4y/eVy/w

X {erf (g gidm/4 %) +erf (? ei3m/4 %)} (23.24)

The voltage drive which consists of Lorentzian voltage pulses of width 77, is given

[e.e]

Yo TTL
AV(t) = Vo4 2§ Tt
(*) O+7T ;m(t—kT)Q—i-Tg
~ Wiy Vo sinh(277, /7) (23.25)

cosh(277y /7) — cos(2mt/T)
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Fig. 38: The current noise power Sy as a function of the dc offset voltage V at
constant ac amplitude Vj is shown for different time-dependent driving voltages
(top row). The width of Lorentzian pulses is 7, = 0.17. The slopes 0S7/0V
are shown in the bottom row.

The total voltage V (t) = V + AV (¢) varies between Vi, = V + Voltanh(rr /7) — 1]

and Viax = V + Vplcotanh(n7p,/7) — 1]. The coefficients f,, are given by
f~ _ efiﬁeVo/w /1/2 dr {Sin[ﬂ'(l' + iy)]}EVO/w eiQﬂ(#—s—n)x
" {sin[r(z — dy)]}evo/v ’

N > 0 we obtain the simplified

(23.26)
—-1/2

where y = 71 /7. For integer values eVy/w =

expressions:
fn _ (—1)N27Ti RQS <{S?H[7T(l’ -+ Zy)]} 6127r n+N)ac) (23‘27)
e=iy \ {sin[r(x — iy)]}V
for n > =N, f, = 0 for n < =N, and f,—_y = (=1)Ne ?"M¥. In particular, the

1
coefficients f, for eVy/w = 1 are given by Eq. (23.7).
fo=e ™ (1— e "™)n+1— (n+3)e
otherwise.

The current noise power S; at low temperatures is given by Eq. (23.13). The S;
is a piecewise linear function of the offset voltage V', with kinks at integer values of
eV Jw. At zero offset voltage, the current noise power S;(V = 0) is non-zero and
is given by Eq. (23.15). The dependence S;(V) at constant amplitude V; and for
different time-dependent bias voltages is shown in Fig. 38 (top). The slopes 05;/0V
are shown in Fig. 38 (bottom). For all bias voltages considered here (except for
Lorentzian pulses) the coefficients f, satisfy |f,| = |f_n| which results in S; being

For eVy/w = 2 we obtain
) for n > =2, f_y = e ¥ and f, = 0
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Fig. 39: The excess noise S; — Sq. with respect to the dc noise level Sq. =
(e2/m)T(1 — T)eV is shown for different time-dependent bias voltages: square
(dashed), cosine (dotted), triangle (dash-dotted), sawtooth (short-dashed), and
Lorentzian pulses (solid line).

an even function of the offset voltage V. It is interesting to note that fo = 0 for
a square-shaped voltage drive of amplitude eVy/w = 2k, where k is an integer. In
this case the noise does not depend on V for |eV /w| < 1 and the step in 9S;/0V
vanishes at V' = 0. This effect is within the reach of the present experimental
technology. In [98] the steps at eV /w = 0,%1 have been observed for the cosine
drive with amplitudes ranging between eVy/w = 1 and eV /w = 2. The steps have
been observed also in the diffusive wire in contact with a superconductor [99] at
offset voltages e*V /w = 0, %1 for the cosine drive with amplitudes ranging between
e*Vo/w =1 and e*Vy/w = 2. Here e* = 2e accounts for the doubled effective charge
involved in the Andreev process.

The Lorentzian voltage drive is characteristic because it provides the simplest
one-particle charge transfer statistics given by Eq. (23.5). This is achieved for
impulses carrying an integer number of charge quanta eVy/w = N and at offset
voltages V > Vi. The noise is reduced to the minimal noise level of the effective
dc bias Sq. = (€2/7)T(1 — T)eV. A formal reason for this is the vanishing of the
coefficients f,, = 0 for n < —N [cf. Egs. (23.13) and (23.14)]. A possibility to
observe the noise minimization is to consider voltage drive with Vi = V. The excess
noise S7 — Sq. is shown in Fig. 39 for different time-dependent bias voltages. In the
case of Lorentzian pulses, the noise is minimal and equal to Sy. at integer values of
eVo/w = eV Jw [160,188].

The excess noise S; — Sq. is due to bidirectional transport events which are
described by Eq. (23.4). There are two types of bidirectional events labelled by L and
R with different numbers of attempts given by M, = tow; /7 and Mg = to(w—wy) /7.
Here w; = eV — |eV /w|w and eV /w] is the largest integer less than or equal eV /w.
The elementary events occur with probabilities pirr) = sinz(akL( r)/2) which are

obtained by diagonalization of (hh)um () for £ € (0,w) [ € (wy,w)] as discussed
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Fig. 40: The probabilities pyy, (dotted lines) and pyr (dashed lines) of elemen-
tary events are shown for the cosine time-dependent voltage bias and Lorentzian
voltage pulses (top). For the cosine drive, one elementary event of the L-type
and one of the R-type can be created per period (k = 1). For the Lorentzian
pulses, only one R-type event can be created. The decomposition of the excess
noise into contributions of elementary events is shown below.

in § 23. The excess noise is given by S; — Sqc = (€*/t0)93 Saly=0:

262
St — Sde = 7T(1 —T7) | w ZpkL + (W —w1) Zka . (23.28)
k k

The probabilities pyrr) for the cosine voltage bias and the Lorentzian voltage pulses
as a function of voltage V = V; are shown in Fig. 40 (top). The decomposition of the
excess noise into contributions of elementary events is shown in Fig. 40 (bottom).
For the cosine voltage drive with V' = Vj, the two bidirectional events (one of L-
type and another of R-type) are excited per period with significant probability. The
L-type events transform continuously into R-type ones at integer values of eV /w,
while the R-type events disappear. The step-like evolution of the probabilities of R-
type events as a function of voltage does not introduce discontinuities in the current
noise because the corresponding number of attempts vanishes. Instead, the interplay
between L and R events results in kinks and the local minima at integer values of
eV Jw, as shown in Fig. 40 (bottom). The L-type (R-type) events give the dominant
contributions as eV /w approaches the integer values from the left (right) because
of the number of attempts which is proportional to w; (w — wy). In the case of the
Lorentzian voltage drive with V' = V{, only one bidirectional R-type event can be
excited. At integer values eV /w = eV/w = N the excess noise vanishes.
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Fig. 41: The probabilities of elementary events for a square-shaped ac voltage
drive of amplitude Vi are shown in the upper panel. The derivative of the noise
power with respect to Vy (solid line) decomposed into contributions (dashed
lines) of elementary events is shown in the lower panel.

95,/0(eV,) [(€’/) T(1-T)]

eV /w

Fig. 42: The slope of the current noise power 0S1/d(eVy) as a function of the
amplitude V; for different ac driving voltages (V = 0): square (dashed), co-
sine (dotted), triangle (dash-dotted), sawtooth (short-dashed), and Lorentzian
pulses (solid line). The oscillations are due to elementary events which are
created as the voltage amplitude is increased.

In the following we consider a voltage drive with V' = 0 which creates bidirec-
tional events only. A bidirectional event represents an electron-hole excitation in
which both particles are injected towards the scatterer. These events contribute to
the noise and even-order cumulants at low temperatures. The average current and
odd-order cumulants vanish. The cumulant generating function reduces to Sir(x)
which is given by Eq. (23.4). The elementary events can be seen in the slope of the
current noise power 05;7/0V;, which exhibits oscillatory behavior as a function of the
amplitude V) due to new events entering the transport. The probabilities p;. of ele-
mentary events and the decomposition of 9S;/0V, into contributions of elementary
events for the cosine voltage drive are shown in Fig. 35. The probabilities p; and
the slope 05;/0V, for the square voltage drive are shown in Fig. 41. A comparison
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of different time-dependent voltages is shown in Fig. 42.

Bidirectional events with the unit probability p, = 1 represent electron-hole pairs
which are created and injected towards the scatterer in each voltage cycle. In this
case the electron and the hole transfers are statistically independent:

t . ,
Sl(x) = 07“’ In[l + TR(e™ + e — 2)]
_ b In[1+T(e™ —1)] + fow In[1+T(e™™ —1)]. (23.29)
s m

Bidirectional events which are created with the probability 0 < p, < 1 are described
by the cumulant generating function Si(x) = (tow/7)In[l + T Rpy(e™X + e~ — 2)]
which cannot be interpreted in terms of independent electron and hole transfers.

The noninteracting theory which we use is applicable for the frequency w of the
applied voltage much smaller than the time scales set by the inverse dwell time 7 !
and the inverse RC' time T}gé of the contact. In a typical experimental situation®
Tre < Tq. Therefore, the applicability of the noninteracting theory is expected to
be limited by the dwell time, w < 7;'. However, as shown in [191], the photon-
assisted noise Sy(w) in the leading order (eVy/w)? < 1 does not depend on the dwell
time. Therefore, in a weakly-driven normal junction the noninteracting theory is
applicable in a larger frequency range w < T};é.

The effect of a finite dwell time on the photon assisted noise has been stud-
ied in [196] for arbitrary strength of the voltage drive. At the constant amplitude
eVp/w 2 1, a maximum in 0S57/0w develops at the frequency w ~ 7 1. The fre-
quency dependence of the noise on the scale of the inverse dwell time can be un-
derstood as follows. When an electron enters the cavity, after a very short time
~ Trc, the charge rearranges to keep the cavity neutral. The distribution function
n(&;t) = [drn(t+7/2,t — 7/2) €T relaxes on a much longer time scale given by
74. The photon-assisted noise S;(w) probes the electronic distribution function and
depends on the frequency w on the same scale.

At the finite value of wry, the differential noise 0S5;/0V, as a function of Vj is
increased with respect to the case wrqy < 1 which is shown in Fig. 42. The increase
is of the order of 20% for wrq ~ 1. The positions of the maxima and the minima
are only slightly shifted. This is consistent with the experiments of Schoelkopf et
al. [98] and Kozhevnikov et al. [99] which can be described by the noninteracting
theory even though the frequency of the ac signal applied is comparable or larger
than the inverse dwell time.

§ 23.3. Multiterminal charge transfer statistics. In the previous para-
graphs we have discussed the charge transfer statistic and the elementary transport
processes in a voltage-driven 2-terminal junction. In the following we study a multi-
terminal beam splitter geometry depicted in Fig. 43. The source terminal is biased
with a time-dependent periodic voltage V(¢) and through a mesoscopic conductor
attached to several outgoing terminals. The conductor is characterized by a set
of transmission eigenvalues {7},}. The outgoing leads are characterized by conduc-
tances g;. We are interested in the limit in which the outgoing leads play a role of

a detector and only weakly perturb the charge transfer across the conductor. This

28) For example, for a cavity of a linear dimension L with the mean level spacing § and the
charging energy Ec = €?/Cx, the ratio Tre/7q =~ 0/Ec ~ (Ap/L)¥' < 1. Here the charging
energy is estimated as Ec ~ €?/L. The parameter d = 2 for a cavity formed in a 2DEG and d = 3
for a metallic grain.
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Fig. 43: Schematic representation of a multiterminal beam splitter.
The source terminal is biased with a time-dependent voltage V (t) with respect
to the outgoing terminals. The total conductance g = ), g; of the outgoing
leads is assumed to be much larger than the conductance (e?/m) " T, of the
source contact.

is achieved when the conductance g = ). ¢; to the outgoing leads is much larger
than the conductance (e?/m) > T, of a conductor. In this case the particles which
traverse the conductor enter the outgoing terminals with negligible backreflection
into the source terminal. A similar setup with spin-selective outgoing contacts has
been used in [194] to reveal singlet electron states.

The cumulant generating function is calculated similarly as in § 22 for the 2-
terminal case. In contrast to § 22, here we assign the counting fields y; to the out-
going terminals. The Green’s function G(0) of the source terminal and the Green’s
functions G;(x;) of the outgoing ones are given by

o= (3 ). G —enn (f M) e (23.30)

Here h and h are the matrices in time (or energy) indices defined in § 22. The
Green’s function G, of the internal node has to be obtained from matrix current
conservation and normalization condition G? = 1. In the limit g > (e?/7) >, T,
the node C is strongly coupled to the outgoing terminals and the G, can be obtained
in the lowest order with the terminal G unattached. For simplicity we assume that
the node C is coupled to the outgoing terminals via tunnel junctions. In this case
matrix current conservation reduces to

[Z giéi(Xi)7 Gc

In the following we work in the low-temperature limit in which h?
convenient to seek for the solution in the form G. = p. - T where
From Egs. (23.30) and (23.31) we obtain

Pe = (h,ihc — s,ihs + c¢) (23.32)

where ¢ =37, g; cos(x;), s = >, gisin(x;), and g; = gi/g.
The cumulant generating function of the charge transferred is given by

S(x}) = ;Tr In [1 + % ({G(O)’ ic({X})} _ 1)] | (23.33)

— 0. (23.31)

h? = 1. Tt is
- (7:1’7:2’7:3).

S|

where the summation over internal Keldysh and time (or energy) indices is assumed.
The diagonalization of {G,G.}/2 — 1 is performed along the lines of § 22. First we
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rewrite {G, G} /2 — 1 = A+ B where

1 . (0 —b
A—(O 0)®A, B-(O 1>®B, (23.34)

A=(1- fzh)(c— 1) +i(h— h)s, B = (1— hh)(c— 1) +i(h—h)s, and b =is/(c—1).
Because AB = BA = 0, the operators A and B commute and satisfy for integer n:
1 b n 0 —b n
(A+B)" = <0 0)®A +(O 1>®B. (23.35)

The cumulant generating function given by Eq. (23.33) reduces to
T, Ty
S = ;Tr In (1 + 7A> + ;Tr In (1 + 73) . (23.36)

The operators A and B can be diagonalized in the eigensubspaces of {h, ;L} which
are invariant with respect to h, h, A, and B. By repeating the procedure of § 22 we
obtain the cumulant generating function in the form

S({x}) = Sit + Sip + Se. (23.37)

Here &1 r are the contributions of bidirectional processes and Sy is the contribution
of the unidirectional ones. The unidirectional processes are described by

S:({x}) = toev Zln (1 + T, Zgz i ) , (23.38)

where fo is the measurement time and V is the dc voltage offset. Here we assume
that eV > 0. The bidirectional processes are described by

S1a({x}) = M, ZZIH 1+, R, (Z gi(eiXi 4 e i 2))
+praTy (Z Gigj(e™Xie™ X 4 g7 — 2))] . (23.39)

1<)

Here k labels the bidirectional processes, n labels transport channels, ¢ and j label
the outgoing terminals, and « = L, R. The number of attempts M r and the
probabilities py, are the same as in § 22.

Equations (23.37) — (23.39) give the statistics of the charge transfer in a multiter-
minal beam splitter at low temperatures in the presence of a periodic time-dependent
drive at the source terminal. Equations (23.38) and (23.39) have a direct physical
interpretation. The unidirectional events, which are described by S, are the single-
electron transfers across the structure due to the dc offset voltage V applied to the
source terminal. The term 7},g;e"™ in Eq. (23.38) represents the process in which an
electron in the nth transport channel traverses the conductor with probability 7,,
and enters the outgoing terminal ¢ with probability §; = g;/g.

On the other hand, the bidirectional processes represent the electron-hole pairs
which are created in the source terminal and are injected towards the conductor.
The probabilities of such excitations are given by pir,. The interpretation of the
cumulant generating function given by Eq. (23.39) can be obtained from a simple
counting argument as in § 8. The term pi T, R, g;e™ in (23.39) represents the process
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in which electron-hole excitation is created, hole is reflected, and electron is trans-
mitted into the outgoing terminal 7. Similarly, the term p, T, R,g;e~"Xi represents
the process in which the electron is reflected and the hole is transmitted. Finally,
the term ppT72g;geie i (i # j) represents the process in which both particles are
transmitted with electron entering terminal ¢ and hole entering terminal j.

Charge transfer statistics and current correlations can be obtained using the
cumulant generating function S({x}). For example, the current cross correlation

between different terminals ¢ and j is given by Si; = (€?/t0)03, ;.S |y=o:

2e? .
Sij = T <Z TT%) 9i9j <W1 ZpkL + (W —w1) Zpk3> . (23.40)
n k k

We find that only bidirectional processes in which both particles are transferred (one
into the terminal ¢ and another into the terminal j) give the contributions to the
cross correlation S;;. This result has been obtained previously by Rychkov et al. [96]
in the limit of small driving amplitudes (V = 0 and eVp/w < 1).

The cross correlation .S;; depends on bidirectional processes and is proportional
to the excess noise S; — Sg. in a 2-terminal junction [Eq. (23.28)]. The excess
noise is just a small correction to the Sy generated by unidirectional processes for
a bias voltage with V =~ V4 (Fig. 39). The contribution of the Sy. component
can be reduced by measuring current cross correlations between different outgoing
terminals in the beam splitter geometry with negligible backscattering [152]. This
is achieved for the total conductance of the outgoing contacts much larger than the
conductance of the source contact.

§ 24. Summary

In this Chapter, we have studied the statistics of the charge transfer in a quantum
point contact driven by a time-dependent voltage. We have deduced the elementary
transport processes at zero temperature from an analytical result for the cumu-
lant generating function. The transport consists of unidirectional and bidirectional
charge transfer events. The unidirectional events represent electrons which emerge
from the source terminal because of excess dc bias voltage. The bidirectional events
represent electron-hole pairs which are created in the source terminal by the ac volt-
age and are injected towards the contact. This interpretation is further supported
by the charge transfer statistics of a multiterminal beam splitter, in which case the
injected particles can be partitioned into different outgoing terminals.

The unidirectional events are described by binomial cumulant generating func-
tion. The number of attempts is proportional to the dc voltage offset. For an ac
voltage bias without dc offset, only bidirectional events remain. A bidirectional
event is characterized by the probability of a pair creation which is related to the
time-dependence of the ac voltage bias. In general, in the presence of both dc and
ac potentials, the statistics of charge transfer is the simplest for a dc potential which
corresponds to an integer number of attempts per period per spin. For Lorentzian-
shaped voltage pulses with amplitudes quantized in integer multiples of the drive
frequency the electron-hole pairs are not created. In this case the charge transfer
statistics is the same as the one of the effective dc voltage bias.

Unidirectional events account for the net charge transfer. Bidirectional events
contribute only to even cumulants of charge transfer at zero temperature and can be
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probed by noise measurements. For an ac voltage bias and no dc offset, the differ-
ential photon assisted noise 95;/0V} oscillates as a function of the drive amplitude
Vo due to new bidirectional events which are created as V4 is increased. The bidi-
rectional events can be probed also in the presence of both dc and ac potentials by
current cross correlations in a multiterminal beam splitter geometry with negligible
backscattering.



CHAPTER VIII

Conclusion and outlook

In this Thesis we have presented the circuit theory of mesoscopic transport.
The theory provides an efficient description of transport in mesoscopic structures
with conductances much larger than the conductance quantum, G' > G. We have
focused on the noninteracting case which is a valid approximation at energies and
temperatures smaller than the inverse dwell time needed for an electron to traverse
the junction and the inverse RC time of the charge relaxation. A comprehensive
list of references on developments of the circuit theory, including those which take
into account interaction effects, is given in [113]. The G¢g-corrections to various
transport characteristics (e.g., weak localization effect on conductance and universal
conductance fluctuations) have been incorporated into the circuit-theory formalism
in [197].

In the following we summarize the structure of the circuit theory. The mesoscopic
circuit theory is applicable for multiterminal mesoscopic junctions of arbitrary com-
plex geometry and different types of contacts and terminals, including superconduc-
tors and ferromagnets. The method of calculation is as follows. The junction is first
divided into a discrete set of nodes and connectors. The nodes are usually cavities
or diffusive parts of the system which provide the isotropization of the electronic
distribution function. Interfaces, barriers, and regions in which the transport is not
diffusive are modelled as connectors with the corresponding scattering properties.
Usually very complex mesoscopic structures can be represented by using only a few
discrete circuit elements. The states of internal nodes are determined from current
conservation equations, with the properties of the terminals supplied as boundary
conditions. In this sense the mesoscopic circuit theory resembles the traditional
circuit theory of macroscopic conductors (Kirchhoff’s laws). However, in the meso-
scopic case, the currents and the states of terminals and nodes are described by
matrices instead of scalars.

Since the mesoscopic circuit theory is a finite-element method, the set of matrix
equations can be solved numerically by simple iteration. The accuracy of the method
can be improved, if necessary, by increasing the number of discrete elements. In
some cases, including 2-terminal junctions with arbitrary contacts and multiterminal
structures with tunnel couplings, the set of circuit theory matrix equations simplifies
considerably, and analytical results can be obtained.

The circuit theory describes a variety of different physical systems within the
same formalism. For example, the conductance in coherent normal conductors,
the Andreev conductance in normal-superconductor heterojunctions, and various
Josephson current-phase relations for the supercurrent between superconductors are
all obtained from the same circuit-theory formula supplied with different boundary
conditions. The appropriate coupling between electron and hole states within the
system is automatically taken into account by the matrix structure of the theory.

127
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Effects such as dephasing and inelastic scattering can be taken into account by in-
troducing fictitious dephasing and voltage probes. Furthermore, the theory can be
generalized to access not only the current but the complete statistics of charge trans-
fer in a multiterminal setup. Remarkably, the structure of the theory remains the
same, with the only change being the simple modification of the boundary conditions
at the terminals. This modification consists of a gauge-like transformation of the
quasiclassical Keldysh-Green’s functions of the terminals to incorporate the so-called
counting fields. For the cases in which the system of the circuit-theory equations
can be solved analytically, this results in the complete charge transfer statistics. If
an analytical solution is not possible, the higher-order current correlations can be
obtained in a systematic way by expansion of the circuit-theory equations in the
counting fields. In general, the results are obtained much simpler than using the
standard Keldysh-Green’s functions theory of nonequilibrium and nonhomogeneous
systems. The circuit theory uses the advantage of the discretization of the system
into nodes and connectors and captures the relevant physics in the limit G > Gy
with the minimal computational overhead.

Although the circuit-theory rules are simple to formulate and apply, the un-
derlying theory is quite complex. The central equation for the matrix current be-
tween 2 terminals (§ 12) is obtained by combining the scattering formalism and the
nonequilibrium Keldysh-Green’s functions technique [113,150]. The charge transfer
statistics is introduced by modelling the charge detector which interacts with the sys-
tem. After tracing out the detector degrees of freedom, an effective action (influence
functional) is obtained which determines the charge transfer statistics [103,143,159].
This action can be included in the circuit theory by extending the concept of time
evolution on the Keldysh contour: In the extended formulation, the forward and
the backward evolutions are governed by different hamiltonians (§ 13). Remarkably,
this change can be incorporated in the boundary conditions of the quasiclassical
Keldysh-Green’s functions of terminals, without altering the structure of the circuit
theory. Furthermore, the generalization to multiterminal circuits is straightforward
(§ 13.3).

In § 13.4, we have shown that the general template of the circuit theory simplifies
considerably in the case of coherent 2-terminal junctions with several contacts in
series. The circuit-theory matrix equations can be treated, effectively, as scalar
ones. The transmission distribution of the composite system can be obtained in a
simple way from the scattering properties of individual contacts [66,113].

In § 13.5, we provided an example of a full circuit-theory calculation. We have
studied a beam splitter geometry which consists of a cavity coupled to a super-
conductor and two normal terminals. The current cross correlations in the normal
terminals are studied as a function of dephasing between electrons and holes due to
the finite dwell time through the cavity. In the incoherent case, the current cross
correlations in normal terminals are negative irrespective of the conductance of the
contacts. In the coherent case, the cross correlations are positive (negative) for the
cavity strongly coupled to the superconductor (normal terminals). The presence of
normal backscattering at the cavity-superconductor contact shifts the cross correla-
tions in the normal terminals towards positive values [165, 166].

In Chapter V, we have studied the charge transfer statistics for an open cavity
between a superconductor and a normal metal at temperatures and bias voltages
below the superconducting gap. At finite temperatures, the charge is transferred in
pairs in both directions. The probability of pair transfer through the cavity is given
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by the distribution of Andreev reflection eigenvalues. The form of the cumulant
generating function manifestly reveals how the subgap transport in superconductor-
normal metal structures is affected both by the effective charge doubling due to
the Andreev process and by the modification of the transmission properties due to
electron-hole correlations introduced by the superconductor. In an open cavity, the
Fano factor is enhanced with respect to the corresponding normal-state junction in
agreement with experimental results [89]. In comparison to the tunnel coupling, the
conductance and Fano factor exhibit opposite trends as a function of the junction
asymmetry, which can be used to experimentally probe the quality of the contacts.
The third cumulant is also affected by the presence of a superconductor. It probes
the asymmetry of the Andreev reflection distribution function.

In Chapter VI, we have studied quasiparticle transport in arrays of chaotic cavi-
ties focusing on the crossover from a single cavity to the universal limit of a diffusive
wire as the number of inner contacts is increased. We have obtained the distribution
of transmission eigenvalues, the cumulant generating function, and the first three
cumulants both in the normal and in the superconducting state, generalizing the
previous results on noise [68,69] in such a system to all higher-order correlations.

In Chapter VII, we have studied a generic mesoscopic contact driven by a time-
dependent voltage. The cumulant generating function of the charge transfer sta-
tistics is obtained analytically at zero temperature. The elementary charge trans-
fer events consist of single-particle and two-particle processes. The single-particle
processes represent electrons which are injected from the source terminal due to ex-
cess dc bias voltage. The two-particle processes represent electron-hole pairs which
are created by the time-dependent voltage bias and are injected towards the contact.
The probabilities of these electron-hole pair creations are obtained in terms of the
properties of the driving voltage.

Two-particle processes do not contribute to the average current and higher-order
odd cumulants of the charge transferred at low temperature. However, they do con-
tribute to the noise and higher-order even cumulants. We have calculated the noise
generated by different time-dependent driving signals. For an ac potential applied,
the noise is entirely due to two-particle processes. The individual processes can be
identified from the oscillations of the differential noise 0.5;/0V; as the amplitude Vj
of the drive is increased. For both dc and ac potentials present, the two-particle
processes give rise to the excess noise St — Sy, with respect to the dc level Sy.. For a
voltage drive with ac amplitude comparable to dc voltage offset, the excess noise is
just a small correction with respect to Sg.. The contribution of the Sq. component
can be reduced by measuring current cross correlations between different outgoing
terminals in the beam splitter geometry with negligible backscattering [152]. In
this case the cross correlations are only due to two-particle processes in which the
incoming electron-hole pair is split and the particles enter different terminals.

Several open questions remain to be addressed concerning the charge transfer
statistics in the presence of time-dependent driving. One question concerns the
many-body electronic state incident to the contact. This state has been obtained
for Lorentzian voltage pulses which correspond to integer charge transfers [189]. For
an ac voltage drive with the amplitude much smaller than the driving frequency,
the incident many-body state has been obtained in [96]. The structure of such
states is not known for a time-dependent dive of arbitrary amplitude. It would be
interesting to extend the theory to include nonperiodic driving signals and to analyze
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the structure of elementary processes in the case in which the driving signal itself is
a random process.

Another question concerns the charge transfer statistics at finite temperatures.
For a dc bias voltage, the elementary transport processes can be obtained in the
full temperature range: from unidirectional binomial charge transport processes at
low temperatures to bidirectional transport processes due to thermal fluctuations
at high temperatures. The elementary transport processes at finite temperatures in
the presence of a time-dependent voltage drive have not been identified so far.



CHAPTER IX
Appendix

§ 25. Fluctuation-dissipation theorem

Here we give a short account of equilibrium fluctuations and their relation to the
dissipative response of the system in the presence of external time-dependent per-
turbation. This important result is known as fluctuation-dissipation theorem [14].
First we formulate the theorem in a more general form which is common in the liter-
ature [1,129], and then apply it to the particular two-terminal mesoscopic junction.
As a result we obtain Eq. (10.35) which relates thermal current fluctuations and
conductance of the system. Although the same formula follows from the scattering
formalism, it is actually just a manifestation of the much more general relationship
between equilibrium fluctuations and the corresponding response to external driving,
valid for any system.

Let us consider an isolated quantum system described by the unperturbed hamil-
tonian H. We are interested in equilibrium fluctuations of an observable A which
characterizes the system and does not depend on time in the Schrodinger picture.
The fluctuations are characterized by the correlation function

Sa(t — 1) = % ({8An(t), AAu()) (25.1)
where Ay (t) are operators in the Heisenberg picture, AAg(t) = Ay(t) — (Ay,, is
the deviation from the average value, and the average (---), is taken with respect
to the equilibrium state py = e /T / Tr(e~H/7¢). Because H does not depend on
time, the correlator S4 depends only on time difference ¢’ — t”. Taking the Fourier
transformation we obtain

Sa(t —t") = / g SA(Q) e =, (25.2)

where S4(Q2) is the spectral weight of fluctuations given by

(184u(0F), = [ 52 54, (25.3)

Note that the left hand side of Eq. (25.3) actually does not depend on time. Some-

times it is more convenient to deal with the correlation of the observable A alone,
defined by

~ 1 ~ ~

St =1") = 5 ({Au(t), Au(")}) . (25.4)
H
In this case the correlation of fluctuations and the spectral weight are given by
Sa(t! —t") = Sa(t' —t") — (A)3, and S4(Q) = Sa(Q) — 275(Q) (A)2,, respectively.
Now let us consider the response of the system to a time-dependent perturbation
given by

H'(t) = —A f(1), (25.5)
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where f(t) is some external force which is adiabatically switched on at ¢ = —oco. Due
to the time-dependent perturbation, the average of A changes with time and differs
from its equilibrium value by §A(t) = (Ax (1)), — (A, where H = H + H'(t). For
sufficiently weak perturbations, JA(¢) can be expressed in terms of f up to linear
order:

SA(t) = /0 S dr a(n)f(t— 7). (25.6)

Here we have introduced the generalized susceptibility «(7) which describes the
response of the system at time ¢ due to external force acting at previous times t — 7
The causality condition a(7) = 0 for 7 < 0 is taken into account in Eq. (25.6)
explicitly. Taking the Fourier transform we obtain

SA(Q) = a(Q) (), (25.7)
where .
a() = / dr afr) 7. (25.8)
0
Because «(7) is real, the Fourier components satisfy
(-0 = (), a"(-0) = —a"(Q), (25.9)

where o/ and o’ denote real and imaginary parts, respectively. Relations analogous
to Eq. (25.9) hold for f(£2).

In the following we show that the imaginary part o’ () of the generalized sus-
ceptibility is related to dissipation. The system changes its state by absorbtion of
energy from an external driving force f. After absorption, the energy is dissipated
in the system, i.e., converted into heat distributed over many degrees of freedom.
The rate of energy change due to time-dependent perturbation is given by

dE_ e Do <87;§t)> = —(An(®) %_ (25.10)
H(t)

If the expression for dE/dt is known, then by comparison with Eq. (25.10) it is
possible to identify the generalized force f which corresponds to the observable A of
interest. From Eqs. (25.6) — (25.10) we obtain the total energy dissipated over time
of perturbation [f(t) = 0 for t — :l:oo]:

Q= / ar & :/Ooog 2a"(Q) | £(Q)%. (25.11)

Since any realistic process is accompanied with some dissipation, we conclude that
a”(2) > 0 for Q> 0.

The generalized susceptibility «a(€2) possesses a number of properties which follow
from causality and hold independently of the system under consideration. To obtain
these properties we generalize Eq. (25.8) by allowing €2 to be complex, 2 = Q' +iQ".
In the upper half plane the integral in Eq. (25.8) converges, while in the lower half
plane we define «(2) by analytic continuation. In the following we list some of
the properties of «(£2) without proof, and refer to [1] for a more discussion. First,
a(Q) is single-valued and nonsingular in the upper half plane. On the real axis,
a(f2) is also nonsingular, except possibly at = 0. From Eq. (25.8) we obtain
that a(—Q*) = a*(Q2). Therefore, a(f2) is real on the upper imaginary semiaxis.
It monotonically decays from some positive value a(+i0) to 0 as 2 — +ioco. In
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Imé

/1\ £\

0 Q Retf

Fig. 44: Contour of integration used in the derivation of the Kramers-Kronig
relations. The radius of the semicircle is taken in the limit |£| — oo. The
generalized susceptibility a(€) is analytic in the upper half plane and on the
real axis, with the possible singularity at the coordinate origin. The function
a(&)/ (€ — Q) is analytic inside the contour C.

the upper half plane, away from the imaginary semiaxis, «({2) is purely imaginary.
Therefore, «(£2) has no zeros in the upper half plane.

The properties listed above enable us to relate real and imaginary parts of «/(f2).
Let us consider the function a(€)/(¢ — ), with € real. This function is analytic
inside the contour C depicted on Fig. 44 and satisfies ¢, d¢ a(€)/(§ — Q) = 0. Using
(E—Q+i0) ' =pv.(6—Q) ! —ind (€ — Q) we obtain

d¢ — 25.12
L (25.12)
Therefore, the real and imaginary parts of «({2) are related by
1 oo Oé”(f)
Q) == 25.1
o' () ]Zoof Qd{’ (25.13a)
1 [ d(§) C
! _ -
o"(Q) = w][_mf—ﬁ dE+ o (25.130)

The integration in Eqs. (25.12) and (25.13) is taken in the sense of a principal value,
avoiding the singularity at £ = (2 and the one which may be present at £ =
The later (if present) is taken into account by the term C/Q, where a(§) = iC/¢
in the vicinity £ = 0. Equations (25.12) and (25.13) are the famous Kramers-
Kronig relations. They follow from the casuality of a(7) and hold quite generally,
independent of the system under consideration.

Another useful relation can be derived between «(i€2) on the upper imaginary
semiaxis and o’(€2) on the real axis. Let us integrate the function £a(€)/(£2 + Q?)
over ¢ at the semicircle of large radius in the upper half plane. Using that o/(§) is
an even function for real &, we find

. B 2 e} 5 @/,(5)
=2 ere

where 2 > 0. After integration of both sides over {2 we obtain

/OOO a(i) dQ2 = /Ooo a”(Q) dQ. (25.15)

The generalized susceptibility has been introduced in Eq. (25.6) phenomenolog-
ically. To relate a(7) to the microscopic properties of the system we calculate § A(t)

dg, (25.14)
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using the Kubo linear response formula [198]

t

SA(L) = —i / at” ([An(e), (1)) (25.16)
to

where the perturbation is switched on at time ¢,. Comparing Eqgs. (25.6) and (25.16)

we obtain

alt’ —t") = if(t' — ") <[AH(t’), AH(t")]> . (25.17)

H

Equations (25.16) and (25.17) express the linear response of the system in a non-
equilibrium state in terms of its equilibrium properties. From Eq. (25.17) we obtain

o(9) = M _ %/w dr & (|An(r), An(0)])

oUTe _

L[~ iQr /A A
:T/Oodm (Ap(0)Ag(r)) . (25.18)

—00

where in the last step we used (A (t)Ag(t")),, = (Ag(t")Ap(t' +iT")) . Simi-
larly, from Eq. (25.4) we obtain

o
~

) (I, -
5A<Q):T+1 /_ a7 ¢ (A1(0)Ag (7)) . (25.19)

o0

From Egs. (25.18) and (25.19) we obtain the result known as a fluctuation-dissipation
theorem [14]

SA(Q) = a”(Q) coth <2£;) : (25.20)

which relates the equilibrium fluctuations of the observable A and the dissipative
response of the system upon time-dependent perturbation H’ = —Af (). This result
has been obtained in the linear response regime, i.e., for sufficiently weak pertur-
bations f. However, the size of perturbation does not appear in Eq. (25.20) and
therefore makes no restriction on the possible values of the equilibrium fluctuations.
The properties of equilibrium fluctuations are completely determined by the linear
response of the system to an external drive, no matter how weak it is.
In the classical limit Q < T¢, Eq. (25.20) reduces to

SA(Q) = 2T.a"(Q) /9. (25.21)
If Q <« T, for all frequencies 2 for which o’(2) is nonvanishing, we have
. SO
Ap(t)?) = [ ——=549Q)=T 25.22
(Anep), = [~ 52 54 = Tao) (25.22)

where in the last step we used Eq. (25.14). In this case the equilibrium fluctuations
are determined by the static response (€2 = 0).

In the following we apply the general formalism of the fluctuation-dissipation
theorem to the mesoscopic two-terminal junction described in § 10.5. The rate of
energy dissipation for the applied voltage V (t) is given by dE/dt = V(t){I(t)). By
comparing with Eq. (25.10) we obtain A = I and identify the generalized force
f = —V(t) which is related to the current fluctuations. Equation (25.7) reduces to
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1(Q) =V (2)/Z(Q), where we introduced the impedance Z(£2) = iQ/«a(f2) and used
that (/) = 0 in equilibrium. From the fluctuation-dissipation theorem we obtain

S1(Q) = G(Q) Qeoth (;;) — 2G(Q) (g + GQ/TL_l) , (25.23)

with the conductance defined by G(2) = Re[1/Z(Q2)]. At large temperatures we
recover the result for the thermal current noise power given by Eq. (10.35) which
has been obtained from the scattering formalism.
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§ 26. Moment problem

The formulation of the moment problem in one dimension is the following: Given

a sequence My, My, ... of real numbers, find necessary and sufficient conditions for
the existence of a measure f on support®” S such that
./\/ln:/x" df (z), forn=20,1,.... (26.1)
S

Depending on the choice of support, there are three types of moment problems:
the Hamburger [199] moment problem in which the support is the whole real axis
S = (—00,400), the Stieltjes [200] moment problem in which the support is the
positive semiaxis S = [0, +00), and the Hausdorff [201] moment problem in which
the support is a finite interval (which can be taken as S = [0, 1] without loss of
generality). In general, the sequence of moments does not determine the probability
measure uniquely. For example, Stieltjes showed that

/ 2" sin(27 Inx) de = 0 (26.2)
0

for n = 0,1, ..., which implies that all probability densities on the half-line of the
form fy(r) = 27"%[1 + Asin(2rInz)] with A € [0, 1] have the same sequence of
moments M,, = exp[(n+1)?/4]y/7 (Fig. 45). Therefore, the conditions of uniqueness
are also nontrivial.

Fig. 45: The normalized Stieltjes probability density fx(x) = (mv/€)~ /2 fx(x)

for different values of the parameter A. All probability densities fy have the
same moments {xz") = e™("+2/4 independent of \.

First we give the results on the existence of a solution [202-204]. Let {M,,}
be a sequence of real numbers and let us define the determinants h, = det h,, and
sp, = det s,,, where (hy,);; = Mij_o and (8,)i; = M;yjo1, with i, =1,...,n. A
necessary and sufficient condition for the existence of a measure f on the support
S = (—o00, 00) obeying Eq. (26.1) is that h,, > 0 for alln =1,2,.... A necessary and
sufficient condition for the existence of a measure f supported on S = [0, +0c0) is
that both A, > 0and s,, > O foralln = 1,2,.... In the case of the Hausdorff moment
problem with finite support S = [0, 1], the probability measure exists if and only if

29) The support S of a measure f: X — R is the set of all points x € X for which every open

neighborhood of = has a positive measure.
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all finite differences are nonnegative, A*¥M,, > 0, where AM,, = M,, — M, .. The
probability measure in the Hausdorff case, if it exists, is always unique.

In the following we give the results on the uniqueness of the measure in the
Hamburger and Stieltjes moment problem. Let {M,} be a set of Hamburger
(Stieltjes) moments for which the probability measure exists. If the moments fulfill
IM,| < CR"™! [|M,] < CR"(2n)!] for some C, R > 0, then the measure in the
Hamburger (Stieltjes) problem is unique. The following Carleman’s criterion is also
useful: If >, My = 400 >, M *" = 400] then the Hamburger (Stielt-
jes) probability measure is unique [204]. The above criteria state that a not too
rapid growth of moments implies the uniqueness of the probability measure. The
drawback is that they represent sufficient conditions for uniqueness only, i.e., we
cannot conclude that the moment problem has multiple solutions just because the
moment sequence increases very rapidly. In fact, there are sequences of moments of
arbitrary rapid growth with unique probability measures [202].

A necessary and sufficient condition for uniqueness in the Hamburger moment
problem can be formulated in terms of the determinants h, and t, = det t,,, with
(tn)ij = Miyjyo (4,5 = 1,...,n). The probability measure in the Hamburger prob-
lem is unique if and only if lim, .. (h,/t,—2) = 0. An alternative necessary and
sufficient condition is that the smallest eigenvalue of h,, tends to 0 as n — oo.

In this paragraph we summarized some results on the moment problem in one
dimension which illustrate that recovering the probability measure from a given
sequence of moments is, in general, a nontrivial mathematical task. In the multidi-
mensional case, the moment problem becomes even more involved [203].
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§ 27. Quasiclassical Green’s functions

The method of quasiclassical Green’s functions is explained in detail in [125] in
the context of the Bardeen-Cooper-Schrieffer theory of superconductivity [155] (see
also [130,133]). In this paragraph we give a general definition of the quasiclassical
Green’s functions and provide results for homogeneous normal and superconducting
states. These quasiclassical Green’s functions characterize the terminals of a mul-
titerminal mesoscopic junction and are used as boundary conditions in the circuit
theory (Chapter IV).

The quasiclassical Green’s functions are introduced as follows. First we recall
that single-particle averages are expressed in terms of an exact Green’s function
G(r', r") by taking the limit " — 7" [Eq. (11.18)]. In the momentum representation,
the limit ' — 7" reduces to an integration over momentum. Therefore, physical
quantities are given by products of functions of momentum and exact Green’s func-
tions, integrated over momentum. The properties of the system are determined by
quasiparticles in the vicinity of the Fermi surface and we can put p =~ p in all pref-
actors of the Green’s functions. Here pr = ppp/|p| is the Fermi momentum in di-
rection of propagation. The integration over momentum (27)~* [ dp can be parame-
trized using the Fermi surface in the normal state, dp/(27)* = (d€,/vr) dSr/(27).
Here d§, /vp is the increase of momentum in the direction perpendicular to the Fermi
surface and dSp is the element of the Fermi surface. For a spherical Fermi surface
with &, = p?/2m — p and dSr = p%dQ), we obtain

/(;Tp)g...:v(())/dgp/%.._ (27.1)

Here V(0) = mpr/(27?) is the density of states per spin at the Fermi energy. Since
we take p = pp in the prefactors of the Green’s functions, the integration f dé,
acts only on the Green’s functions and can be included into the definition of the

quasiclassical Green’s functions. The quasiclassical counterparts of the exact Green’s
functions G** and G4 are defined by

¢, . k k
Gg/ﬁ//(I)F7 k:) = %% ZG5/751/ (p -+ §,p — 5) . (2720/)

Here Ge gn(p + k/2,p — k/2) is an exact Green’s function in the momentum rep-
resentation and § d€, denotes the contour integration as shown in Fig. 46. The
quasiclassical Green’s functions in the coordinate representation are given by

dk

Crygr’g//(z)F7 ’l”) = / W G8175//(pF7 k) €ikr. (272b)

Fast oscillations on the scale of \p with respect to the relative coordinate v’ — r”
are integrated out in the quasiclassical Green’s functions. A dependence on the
center of mass coordinate r = (7' + r”)/2 is preserved because of the much larger
characteristic length scale. In the superconducting state this length scale is of the
order of the coherence length £ ~ vp/|A| > Ap. Fast oscillations on the scale Ap are
not relevant for the superconducting properties. The accuracy of the quasiclassical
approximation is of the order of Ay/Ep ~ 1073 for conventional superconductors
and Ag/Ep ~ 1071 — 1072 for the high-temperature ones.
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Fig. 46: The integration | fooo d&p is decomposed into 4 contour integrals in the

—_—

1 1
2 2

£,
N

complex &, plane. The integral § d, which appears in the definition of the
quasiclassical Green’s functions corresponds to the first term on the right hand
side of the figure, i.e., it denotes the average of the integrals taken over the
closed semicircles in the upper and the lower half planes. The radius of the
contour is taken to be finite but much larger than any characteristic energy scale
of the system. This cutoff at large energies is needed to ensure the convergence
of the diagonal components in G4 [125].

In the following we provide expressions for the quasiclassical Keldysh-Green’s
functions of normal and superconducting terminals. The quasiclassical Keldysh-
Green’s function ég/’gﬂ(p 7, T) in a homogeneous state does not depend on the direc-
tion of propagation and the coordinate, Ge gn(pp, ) = G(£',E") . In equilibrium,

G(&',E") is diagonal in energy:
G(E,E") =2m6(E — ") G(E). (27.3)
In the normal state G(&) is given by

G(€) = (é 3@) : (27.4)

where h(£) = 1—2n(&) and n(€) = (#€=¢V) +-1)~1. Here eV takes into account the
shift of the chemical potential by an external dc voltage applied. In the Keldysh(")-
Nambu(") space, the normal terminals are described by

G(€) = (%R gf) , (27.5)

where G = —G4 = 73 and

GE (&) = (2h((]8) 2h(0— 5)) . (27.6)

Here h(+E) = 1—2n(£E) with n(&) = (#E=*V) 4 1)L and 1 —n(—&) = (’E+V) 4
1)~! being the electron and the hole state occupation numbers [164].

The quasiclassical Keldysh-Green’s function of a superconducting terminal in
equilibrium is given by Eqs. (27.3) and (27.5), with G®4 given by

R,A R,A
GR,A &) = ( g f )
( ) _f’[R,A _gR,A
+1 ELid A (27.7)

Exid T [ADEE £ A2 \ —A —(E+i8)) -

1/2

where § — 0+. Taking into account that the branch cut of z'/* is along the negative

real axis, we obtain
£l
R(g) = —gA(e) = — L ;o fRE) = —fAE) = ——=—=
g7(€) g (&) *52—]%2 fH(E) () N
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for |€] > |A] and

—i€ —1A

BE)=g(8) = ———, fHE) = 1Y) = ——m—es 27.9
E) = NE) = s PO =S = e (7Y
for |€] < |A|. The components fif4 are given by normalization (GF4)? = 1.

In the equilibrium state, the Keldysh component G¥ is given by G¥ = (GF —
G4)tanh(&/2T,). Here we assume that no external voltage is applied to the super-
conducting terminal, eV = 0.

In the presence of a time-dependent voltage drive, the Keldysh-Green’s functions
of the corresponding terminals are no longer diagonal in energy. In the following we
use the quasiclassical Green’s functions in the time domain G(#,t") and suppress
time indices for brevity. The products are interpreted in terms of a convolution over
internal indices, e.g., (G1G2)(¥,t") = [dtG1(t',t1)Ga(t1,t"). The time-dependent
voltage drive V (t) applied to a normal terminal is taken into account by the gauge

transformation [160, 196]
. T
G = ((1) QU_hlU ) . (27.10)

Here U is an unitary operator which is given by U(t',t") = exp[—i fot/ eV (t)dt] é(t' —
t") in time representation and h(&’, £") = tanh(E'/2T,)2m0(E" — E") in energy repre-
sentation. In the Keldysh(")-Nambu(") space, the normal terminals in the presence
of a time dependent voltage drive are described by

. (73 GE
G = (O _7__3) , (27.11)
where ;
~x _ (2UhU 0
G* = ( 0 _oUthy | (27.12)

For a dc voltage applied V (t) = const, Egs. (27.10) and (27.11) reduce to Egs. (27.4)
and (27.5), respectively.
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§ 28. Determinants of block matrices

Let A, B, C, and D be the quadratic matrices of the same size. Then the
following equalities hold:

det(AD — BC), [C,D]=0,

A B det(DA — BC), [B,D]=0,
det = 28.1
¢ (C D) det(DA — CB), [A,B]=0, (28.1)

det(AD — CB), [A,C]=0.

In the case in which more than two blocks commute with each other, the correspond-
ing determinants on the right hand side of Eq. (28.1) coincide.

In the literature, usually a special case of Eq. (28.1) is given in which one of the
blocks is equal to zero, e.g.,

det (‘3 g) — det <‘é g) _ det(A) det(D), (28.2)

and similar when one of the diagonal blocks is zero [205]. Here we prove the more
general statement given by Eq. (28.1), following Ref. [206].
Suppose that [C, D] = 0. In this case we have

A B D o0 AD—-BC B
(C D) (—C 1) = ( 0 D) ' (28.3)
Taking the determinant of the left and right hand side and using Eq. (28.2) we find
(det D) [det (21, IB)) —det(AD — BC)} = 0. (28.4)

For a nonsingular D we obtain the first equality given by Eq. (28.1). From continuity,
the equality holds even if D is singular. To see this more formally, let us substitute
D —- D, = D +z1 in Eq. (283) ([C,D,] = 0 still holds). Equation (28.4)
becomes the product of two polynomials equal to the zero polynomial. The first
factor, det D, is not a zero polynomial, which means that the second factor must
be the zero polynomial:

C D,

Taking x = 0 we obtain the first equality in Eq. (28.1). The proof of other equalities
is analogous.

det (A B ) —det(AD, — BC) =0. (28.5)
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Physical constants:

e=—le]=-1.602x 1071 C

kp = 1.381 x 102 J /K= 0.0862 meV /K
hi=h/(2r) = 1.054 x 1073 Js

Go = 2.62/h ~ (13kQ)~!

§ 29. Notation

electron charge
Boltzmann constant
reduced Planck’s constant

conductance quantum

We put h = kg = 1 for brevity in all chapters except in the introductory Chapter I.

List of frequently used symbols:

A

B

D =wvpl/3

By = hD/L?

&

&r

= S/ le(T)|

G(CL’/, IH), é(l", [E”)
G(x)
I

R} =T7/(2—T,)?
p(T)

vector potential

magnetic field

diffusion coefficient

Thouless energy (p.71, § 13.5)
single particle energy

Fermi energy

Fano factor

conductance

Keldysh-Green’s functions, where x = (¢, ) (p.63, p.73)
extended Keldysh-Green’s function
current

matrix current

system size (length)

elastic mean free path

phase coherence length
electron-electron scattering length
electron-phonon scattering length
Fermi wavelength

Fermi momentum

probability distribution function of the number
of charges transferred

probability of the Andreev reflection
distribution of transmission eigenvalues (p.43, p.47, § 13.4)

Si(t ") = (1/2)({AI(t"), AI(t")}) current correlation function (p.41, p.131)

S1(€2)

spectral weight of current fluctuations;
Q2 can take both positive and negative values



29. Notation 143
§

S;=5S1(2=0) current noise power

Sihot shot noise power

S(x) cumulant generating function

T, temperature

T, transmission eigenvalues

T Pauli matrices in the Keldysh space,
a=006)2=07)=(")

V voltage

VE Fermi velocity

W system size (width)

X counting field

Throughout this Thesis we use the following conventions for the Fourier transfor-
mation of functions of space-time argumentS'

o(t, ) p) ' Pr=ED, (29.1a)

o€, p) /dt/d’r‘cpt 1) e P&, (29.1b)

By putting ¢(7) = (r|p) we obtain the following relations between the single-
particle coordinate and momentum eigenvectors:

(rlp) =€ (29.2a)
(r'|lr) =d(r —r'), (29.2b)
(p'lp) = (27)°6(p — '), (29.2¢)

_ [ dp _
[ar iyl = [ 5B 1wl =1 (2024)

The field operators can be expressed in terms of creation and annihilation operators
by

=> (rlf) ay, Z (flry al, (29.3a,b)
f

where the quantum numbers f label states in the smgle—partlcle basis {|f)}. From
Egs. (11.6) and (29.3) we obtain the transformation rules between the Green’s func-
tions in space-time and energy-momentum representations:

d&,d€ dp.d
G(th?“l;tg,rg):/ (2;)22/ g;;:g a

(51, P 82, p2) ei(l’lm—gltl) e—i(p2r2_g2t2)’

(29.4a)

G(gl, pl’ 82, p2) = /dtldtg / d’l"ld’l"g G(tl, T, tg, 7”2) e—i(p1T1—51t1) ei(p2r2—52t2)‘
(29.4)

The same transformation rules hold for all Green’s functions defined by Egs. (11.7)
and (11.8).
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