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Summary

The spin of the electron leads to many effects in solid state physics. These
effects provide the base for spintronics and promise many applications. One
prominent proposal is to use individual electron spins as carriers of quantum
information, as qubits, to build a quantum computer. Conversely, these ef-
fects can be used to assess the quantum mechanical properties of the spin
using the well developed technologies of solid state physics. In this thesis,
we consider semiconducting and metallic nanostructures and identify setups
where new spin effects can be found. The main part of the thesis is focussed
on quantum dots. These dots are small structures in which one can confine a
single electron via its charge. Then, the spin of this electron can be addressed
in a controlled way. One can apply an oscillating magnetic field which re-
sults in electron spin resonance (ESR) and drives the spin dynamics of the
dot. We propose to assess the spin state of the dot by coupling to leads and
driving an electrical current through the dot. This setup probes the quan-
tum mechanical features of the single spin. In particular, the coherent Rabi
oscillations and the decoherence time of the spin can be observed via the
current through the dot. Furthermore, we describe how the electron spin on
a dot can be assessed without requiring contact to leads. The combination
of ESR and laser excitation with polarized light enables us to define schemes
where the spin coherence and Rabi oscillations can be measured optically. In
the absence of ESR, we consider the fluctuations (noise) of the dot current.
Noise provides information on quantum effects which do not appear in the
d.c. current itself. We study the asymmetric noise of dots in the quantum
limit of high noise frequencies w, where non-Markovian effects have to be
taken into account. A further question is how to measure the state of a spin
on a quantum dot, i.e., to detect if it is “up” or “down.” We propose several
schemes for such a read out, including measuring the current through the
dot coupled to spin-polarized leads and implementations based on a double



dot which electrostatically influences the current through a nearby quantum
point contact. We also analyze the read-out statistics of an arbitrary two level
system (qubit), taking into account possible imperfections of the measure-
ment apparatus. Defining a measurement efficiency allows us to characterize
a reliable n-shot read out. In the last part of this thesis, we consider electron
spins in rings. In electron currents through mesoscopic rings one observes
that each electron moves as a superposition simultaneously through the up-
per and lower arm of the ring and then interferes with itself. Additional
interference effects can occur when the spins of the electrons evolve adiabati-
cally and acquires a Berry phase, due to an inhomogeneous magnetic field or
spin-orbit interaction. We study diffusive rings and determine the required
field strength for the Berry phase to emerge and show that this phase leads to
a suppression of the Aharonov-Bohm oscillations at certain magic angles of
the magnetic field. Finally, for all setups proposed in this thesis, we discuss
the experimental requirements and show that they can be satisfied under
realistic conditions.
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Chapter 1

Introduction

The electron has spin, in addition to its charge and its mass. This electron
spin leads to many effects in solid state systems and possibly to new appli-
cations. While control of the charge of the electron has been mastered in
conventional electronics, the control and use of its spin are still emerging.
Nevertheless, the enormous potential for using spin in electronic devices has
been recognized [1] and has led to ongoing research in spintronics. First,
conventional devices can be significantly improved by electron spin effects,
e.g., magnetic read-out heads for computer hard drives [widely in use, based
on the giant magnetoresistance (GMR) effect], non-volatile memories (e.g.,
MRAM which should be commercially available within two years), and future
devices such as a spin transistor or memories based on single spins. Second,
coherent properties of electron spins could be used for radically new designs
in the field of quantum information [2]. In particular, the spins of electrons
on arrays of quantum dots could be used for creating a quantum computer
as proposed by D. Loss and D. DiVincenzo [3]. Such a quantum computer
would provide large computational resources if it could eventually be built.
It would also allow for a convincing test of properties of quantum mechanics
such as phase coherence, non-locality, and entanglement. However, before
that long term goal can be reached, a better understanding and control of
spins in quantum dots is required.

The idea to use spins for electronics is strongly supported by experi-
ments [4, 5, 6, 7, 8] showing unusually long spin dephasing times [4] in semi-
conductors (approaching microseconds in bulk and probably much longer in
quantum dots), the injection of spin-polarized currents from a magnetic- to
a non-magnetic semiconductor [5, 6], as well as by the phase-coherent spin
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12 1. Introduction

transport over distances of up to 100 ym [4]. Additionally, since the motion
of the electron can be controlled through its charge, an electron spin can be
transported along conducting wires [9]. This allows using spin-entangled elec-
trons forming Einstein-Podolsky-Rosen (EPR) pairs, which can be created
(e.g., in coupled quantum dots or near a superconductor-normal interface
[10, 11]), transported, and detected [9, 12]. Such EPR pairs represent a
fundamental prerequisite for quantum communication [13, 14].

1.1 The electron spin

Since this thesis deals with electron spins in solid state systems, we first
review some basic properties of spin dynamics and introduce some standard
notations. The electron has an “intrinsic” magnetic moment which takes the
values :I:% guph. This corresponds to a spin % having the two states “up”,
|T), and “down”, ||), aligned parallel and antiparallel, resp., to a magnetic
field, say, in the z direction. The general state |1)) of the spin is an arbitrary
superposition of up and down,

) = T) + I L) (1.1)

Now we consider the operators which act on the spin system. They can
be conveniently represented in terms of the identity operator and the Pauli

matrices o = (0, 0y, 0,), with o, = ( (1) (1) >, o, = ( 0 _OZ ), and o, =
1

( (1) _01 ) and which obey 0;0; = d;; +1 ), €;x0,. We can use these opera-
tors to depict the spin state as a vector of unit length pointing in a particular
direction, (o) = (¢ |o| 1), corresponding to a point on the so-called Bloch
sphere [15] (see Fig. 1.2). Indeed, (|| T) points in the positive z direction.
(This definition of the Bloch sphere is equivalent to geometrically represent-
ing the state of completely polarized light on the Poincaré sphere.) This
picture implies the parametrization of an arbitrary spin state in terms of an
azimuthal angle ¢ and a polar angle 6,

) = cosg |7) + e sing |1). (1.2)

So far we have assumed that the spin is in a pure state [1)). More generally,
the spin state is described by a statistical ensemble which can be represented
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in terms of the density matrix, p = pi| (1 |+p| 1) (L |+pi| (T 4071 LI
The Bloch-vector then becomes r = (o) = Trop, with length less than one

for a mixed state.!
We now consider the dynamics of the spin. Placed in an magnetic field
B(t), the spin is subjected to the Zeeman interaction,

1
H(t) = —59usB(t) - o, (1.3)
where g is the electron g factor and ug = eh/2mc is the Bohr magneton.? We
now evaluate the time derivative of the Bloch vector, r, using the Heisenberg
equation (with & = 1) and find

i = —gun([B(1) - 0, o]) = —gup B(t) x . (1.4)
where we have evaluated the k™ component of the commutator as [ ;i Bjoj,
o] = 2i Zj Bjejro; = —2i(B x o). Equation (1.4) is the coherent part
of the Bloch equation [15, 16] (we discuss the incoherent contributions in
Sec. 1.3 below). It shows that the spin, pictured as a Bloch vector, precesses
around the magnetic field B(¢). This is like the precession of a classical
magnetic moment in a magnetic field.

For a static magnetic field in the z direction, the spin precesses clockwise
around the z axis with Larmor frequency wg = gupB,. To create mag-
netic resonance [17], one applies an additional rotating field in the zy plane
which approximately follows the spin precession, B,(t) = B, cos(wit) and
B,(t) = —B, sin(wyt). When transformed to the system which rotates at
frequency wy, with U = exp{—iw;to,/2}, one obtains the Hamiltonian in
the rotating frame, H = UHU' + ihUU! = —%guB B" - o, with a time-
independent field By = By, B, = 0, and gugB] = wo — w;. Thus, the
rotating field component in the lab frame becomes, in the rotating frame, a
static field in the x direction. In the z direction, the field is reduced by the
frequency of rotation, wy, i.e., the remaining field B is given by the detuning

1One can easily recover the density matrix from r with p; = (1-7.)/2, p; = (1+7.)/2,
and pjy = (ry +1iry)/2.

2Here, e < 0 is the electron charge, i.e., we define pug < 0. In bulk GaAs, g = —0.44,
thus gug > 0 and the spin ground state | 1) is aligned parallel to the magnetic field. An
arbitrary spin will precess clockwise around the field axis. The sign of g is reversed in
vacuum, g = 2.0023. Then, the spin ground state is antiparallel to the magnetic field and
the spin precession is anticlockwise.
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wo — wi. At the resonance, wy = wy, only the field B] remains. An initial
spin | 1) will rotate around B to the state | |) and then back to |T) and so
forth. These rotations are called the Rabi oscillations of the spin.

1.2 Quantum dots

Semiconductor quantum dots are structures where charge carriers are con-
fined in all three spatial dimensions. The dot size, typically between 10 nm
and 1 pm [18], is on the order of the Fermi wavelength in the host material.
The confinement of the quantum dots is usually achieved by electrical gating
of a two-dimensional electron gas (2DEG), possibly combined with etching
techniques. Small dots have charging energies in the meV range, resulting in
quantization of charge on the dot (Coulomb blockade). This allows precise
control of the number of electrons and of the spin ground state on the dot.
Such a control of the number of electrons in the conduction band of a quan-
tum dot (starting from zero) has been achieved with GaAs heterostructures,
e.g., for vertical dots [19] and lateral dots [20]. Quantum dots have vari-
ous tunable parameters. These include geometry, energy spectrum, coupling
between dots, etc., which open up many possibilities by providing a versa-
tile system for manipulation of electronic states, in particular the spin state.
Further, the electronic dot-orbitals are highly sensitive to external magnetic
and electric fields [18, 19], since the magnetic length corresponding to fields
of B ~ 1T is comparable to typical dot sizes. In coupled quantum dots
Coulomb blockade effects [21], tunneling between neighboring dots [18, 21],
and magnetization [22] have been observed as well as the formation of a
delocalized single-particle state [23] and coherent charge oscillations [24].

Since the spin state of quantum dots can be controlled, it is possible to
produce a spin % ground state of the quantum dot. This can be achieved, e.g.,
if a single excess electron is left on the dot or if the dot has anti-ferromagnetic
filling and contains an odd number of electrons. This system promises many
applications, such as quantum computation [3] or single spin memory [25],
and it also allows to probe single spin properties, such as dynamics and
coherence.
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Figure 1.1: Schematic picture of a quantum dot. The electrodes (gray)
confine electrons to the dot region (circle). The dot can be coupled to leads,
allowing a current I; 5 to flow through the dot. The spin state of the dot can
be manipulated with external magnetic fields, shown by the wavy line.

1.3 Decoherence

The issue of decoherence is a fundamental problem in quantum physics, lead-
ing to the transition from quantum to classical behavior. It is an important
issue in mesoscopic physics, since it puts an upper bound on the length and
time scales on which electrons in small structures still show coherent effects.
Due to this importance, there are many efforts to better understand and
characterize decoherence. However, most of what has been probed, say, with
weak localization or Aharonov-Bohm effects, is the orbital coherence of elec-
trons. Orbital coherence stands for the preservation of the phase coherence
if an electron is in a superposition of spatially separated states such as in the
upper and lower arm of an Aharonov-Bohm ring. The corresponding coher-
ence times, up to a few nanoseconds, found in such experiments are generally
not related to the spin coherence time. Therefore, studies of the latter are a
separate issue. If there are strong spin-orbit interaction effects, the spin and
orbital decoherence are related. However, for some systems these effects can
be small and thus there is a much longer spin than charge decoherence time,
see below.

Now let us consider spin dynamics in the presence of decoherence. This
can be described with the coherent time evolution, Eq. (1.4) and with addi-
tional (incoherent) damping terms. This leads to the standard Bloch equa-
tions [15, 16], where decoherence is characterized by two time scales: the
(longitudinal) relaxation time 7} and the decoherence (transverse relaxation)
time T5, see Fig. 1.2. The spin relaxation time T} describes the lifetime of an
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Figure 1.2: Spin in an external magnetic field, shown here on the Bloch
sphere. Relaxation from the excited spin state to the ground state occurs on
the time scale T}. The phase information of a superposition is lost after the
decoherence time T5.

excited spin state aligned along the external field, and is classical in the sense
of not involving the concept of quantum superpositions in its definition. On
the other hand, the spin decoherence time T3 gives the time over which a
superposition of opposite spin states of a single electron remains coherent,
i.e., the time it takes for a superposition a| )+ (3| |) to decay into a mixture
|| )T+ 18?1 1){]]. Thus, coherent manipulations of electron spins, e.g.,
gate operations for quantum computation, must be performed faster than 75,
cf. Sec. 1.4. We note that Ty < 27} and typically even T < 17 [16]. Thus,
from the sole knowledge of T} no lower bound for 7T, follows. Therefore, it
is of fundamental interest to investigate ways of measuring the decoherence
time T, for a single spin. In particular, we are interested in spins on quan-
tum dots (cf. Sec. 1.2) since this is a very versatile system and has promising
applications as explained above. Finally, the loss of phase coherence of many
but independent spins is described by the dephasing time 7% [4]. There, due
to inhomogeneities in the Zeeman terms, the spins precess with a different
period and eventually the precessions of different spins become out of phase.
This results in a further suppression of phase coherence for an ensemble of
(uncorrelated) spins but not necessarily for an individual spin, thus T35 < T5.

For spins on quantum dots, a possible source of decoherence is due to spin-
orbit interaction. There are calculations which show that phonon-assisted
spin-flip rates (1/77) [26, 27] in quantum dots are unusually low. Coupling
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to other electrons, which are for example present in gates, can lead to stronger
relaxation in some regimes [28]. Also, the decoherence rates (1/73) are very
low, since it turns out that T, = 27} for decoherence due to spin-orbit inter-
action [29]. Another source of decoherence is the hyperfine coupling between
electron spin and nuclear spins in a quantum dot [30, 31, 32]. The hyperfine
interaction is always present in GaAs semiconductors, since all naturally oc-
curring Ga and As isotopes have a nuclear spin I = 3/2. It is known that
such decoherence can be controlled by an Overhauser field [30].

That spin coherence times can be orders of magnitude longer than charge
coherence times has been shown in magneto-optical measurements, based
on time-resolved Faraday rotation experiments on doped GaAs in the bulk
[4]. At vanishing magnetic field and 7' = 5 K, a T3 time exceeding 100 ns
was measured. For an ensemble of chemically synthesized semiconductor
quantum dots, one has only found relatively small T times (a few ns at
vanishing magnetic field), probably due to a large g factor inhomogeneity [33].
For single quantum dots, the 77 time of a spin on the dot has been measured
recently via transport and was shown to be longer than 50 microseconds
(34, 35].

However, there are no experiments yet for the decoherence time T, of
single electron spins in quantum dots. Due to this lack of experimental evi-
dence, the existing results on somewhat different systems can not be viewed
as conclusive for 75 on dots. This makes experiments which determine the
decoherence time highly desirable. In this thesis, we propose several schemes
for how this time can be measured: in chapters 2 and 5 we describe how the
T, time and the dynamics of single electron spins on quantum dots can be
accessed via current or via photoluminescence.

1.4 Quantum computing

In quantum information, one makes use of the peculiarities of quantum me-
chanics to address tasks which are not feasible with conventional computing
and communication devices [2, 13, 14]. Central in this field is the quantum
computer. In contrast to the classical computer (based on bits with states 0
or 1), the quantum computer is based on quantum bits (qubits), which can
be in an arbitrary superposition of 0 and 1: «|0) + $|1). These qubits in
combination with controlled unitary time evolution allow a quantum com-
puter to outperform classical computation through new and more powerful
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quantum algorithms. Still, a classical computer can be used to simulate any
quantum algorithm, using an (at most) exponentially increased amount of
time relative to running the algorithm on a quantum computer. This implies
that a quantum computer can speed up any task not more than exponen-
tially.® Is this upper limit of exponential speed up ever reached? There are
two popular examples of quantum algorithms. First, for database searches,
the Grover [36] algorithm only requires the square root of the time which is
consumed by a classical algorithm. Second, for factorization of large numbers
N, the speed up with the Shor [37] algorithm is even larger than any polyno-
mial in the number of digits n = log N. However, the speed up remains less
than exponential, since the classical factorization algorithms [number field
sieve (NFS) and multiple polynomial quadratic sieve (MPQS)] only need a
sub-exponential amount of time, cf. table 1.1. Still, factorization remains
a computationally hard problem which is required to ensure security of the
RSA public key cryptosystems [38]. This security would be compromised by
a quantum computer running the Shor algorithm. We now provide an exam-
ple, where the speed gain of a quantum computer is even larger. Namely, one
can also use Shor’s algorithm to calculate discrete logarithms on arbitrary
groups in polynomial time [2]. It can thus also be applied to the group which
one defines on elliptic curves. However, the best currently known (classical)
algorithm for finding discrete logarithms on this group* requires an exponen-
tial amount of time [38, 39]. (This fact is used to build cryptosystems based
on elliptic curves, using Diffie-Hellman key exchange.) Thus, for discrete log-
arithms on elliptic curves, the speed gain of the quantum computer is indeed
exponential.

In addition to these computational advantages, there is a long list of other
quantum tasks [13] such as cryptography [14], error correction schemes, quan-
tum teleportation, etc. which indicates even more the desirability of physical
implementations of quantum schemes. Still, a quantum computer does not
yet exist,” since a radically new approach to the design of the necessary

30therwise, there exists a task for which the best known classical algorithm could be
sped up more than exponentially with a quantum algorithm. That quantum algorithm
could then be simulated on a classical computer which would slow it down exponentially.
Thus, in total, this simulation would still be faster than the original classical algorithm.
This contradicts to the assumption that the classical algorithm was the best one known.

4This holds for “good” elliptic curves where the number of points contained in the
curve satisfies some security conditions.

5In a liquid state NMR experiment, a new record of seven qubits was realized and the
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‘ ‘ classical ‘ quantum ‘
search n N4D
factorization exp{cn'/?log??n} | n*logn loglogn
DL on elliptic curves exp{n/2} n?

Table 1.1: Time consumption of different problems as a function of input
size n, using the best known classical and quantum algorithms. For database
search, n is the number of database entries. For factorization of a number
N and for finding a discrete logarithm (DL) on an elliptic curve with group
order N, we set n = log, N. Note that the speed gain of the problems listed
here is y/n, sub-exponential, and exponential, respectively.

hardware is required. Experimental progress as well as theoretical investi-
gations are needed to provide guidance and support in the search for real-
izable implementations There is a large number of proposed experimental
implementations of qubits and quantum gates. A few examples are trapped
ions [41], cavity QED [42], nuclear spins [43, 44, 45], superconducting de-
vices [46, 47, 48, 49], and the already mentioned proposal based on the spin
of the electron in quantum-confined nanostructures [3].

What physical systems can be used as a quantum computer? Any physical
implementation must satisfy all five criteria of DiVincenzo’s checklist for a
quantum computer [50, 51].

i) A scalable system with well characterized qubits.

For implementing calculations on a quantum computer with the advan-
tage of its speed up, one needs a large number of qubits, i.e., on the order
of 10°. Thus, the underlying physical system must be scalable to such
a number and allow gate operations [see iv) below] to be carried out in
parallel (parallelism is required in known error correction schemes [2]).
For characterizing a qubit, one can map any two-level system onto the
qubit. Further, one can use a system with more degrees of freedom and
map only a subspace of its Hilbert space onto the qubit. There, however
it is important that the remaining part of the Hilbert space is not visited
at the end of any gate operation, since this would correspond to leakage
to an undefined state.

number 15 was factorized with the Shor algorithm [40]. However, this setup cannot be
scaled to a higher number of qubits and thus does not satisfy criterion i) given below.
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i) The ability to initialize the state of the qubits.
The quantum registers must be initialized to a known value at the be-
ginning of a computation.

iii) Long decoherence times, much longer than the gate operation time.

The concrete goal is to have an error rate not larger than one part in
10*. From that point on, an error-correction scheme [2] can remove the
remaining errors and the quantum computer can be up-scaled. It is
important to note that for most quantum computer proposals, this is
the most difficult criterion to satisfy. Since any interaction can lead to
decoherence, the qubits must be very isolated from their environment
to obtain long coherence times. At the same time, a strong coupling to
some controlled external degrees of freedom is required to produce fast
quantum gate operations (see below).

iv) A universal set of gates.
The physical system must provide mechanisms to control a particular
unitary evolution of the involved qubits. These unitary evolutions are
called quantum gates. It turns out that all quantum algorithms can be
implemented by concatenating single-qubit gates and a universal two-
qubit gate (e.g., XOR or square root of SWAP).

v) A qubit-specific measurement capability.
At the end of the computation, its result must be read out by measuring
specific qubits. Further, some error correcting schemes also require that
qubits are read out during the computation.

We can now check if the proposal of using electron spins on quantum dots
[3] can be used as quantum computer. It seems plausible that this proposal
satisfies every item on this checklist. We summarize the most important facts
for each item and refer to Ref. [52] for more details.

i) The electron’s spin % provides a natural qubit, setting |0) = |T) and
1) = |]), cf. Eq. (1.1). Further, quantum dots provide a scalable system,
say, lithographically defined quantum dots can be scaled with state-of-the-art
techniques for defining nanostructures in semiconductors.

ii) To initialize spin qubits, one can apply a large magnetic field gupB > kT
that allows them to relax to the thermal ground state. Alternatively, one can
inject polarized electrons into the dot by using spin-polarizing materials [5, 6]
or by spin-filtering with the help of another dot [25], see also Sec. 2.5.1.
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iii) We can estimate the gate operation time, which for the spin qubits can be
as low as 7, &~ 30ps [52]. However, for the decoherence time of the spin qubit
it would be desirable if it would be determined experimentally, as we have
indicated in Sec. 1.3. So we propose simple schemes for accessing decoherence
via current or via optical measurements.

iv) Single qubit gates can be produced by controlling the local magnetic fields
or the local g factor (or g tensor), which can be achieved with a semiconductor
heterostructure and electrical gating [52, 53, 54]. To build two qubit gates,
one can use the exchange interaction of the spins on two neighboring dots,
which can be controlled by tuning the tunnel coupling between the dots
[3, 30, 55].

v) There are several proposals for measuring the spin in quantum dots. A
very promising concept is to transfer the information from the spin to the
charge state [3], e.g., by making use of the Pauli principle [25, 56, 57], via
the spin-orbit interaction [28], or by making use of the Zeeman splitting [58].
We discuss the measurement efficiency for general qubit read out in Sec. 3.2
and concrete read-out schemes for spin qubits in Sec. 2.9 and chapter 3.

1.5 Current fluctuations—quantum noise

The electrical current and its fluctuations provide useful information about
conducting systems. Let us consider the current operator I from a (quantum)
statistical point of view. The quantity of primary interest is the expectation
value, (I(t)) = TrI(t)p = TrIp(t). Here, the state of the system (including
current leads) is described by the density matrix p(t), corresponding to a
pure state or to a statistical ensemble. We assume that the system has had
sufficient time to relax to a stationary state, p(t) = p. In this case, the
expectation value becomes time-independent, (I(t)) = (I). What are further
interesting properties of the current beyond the expectation value? In the
course of time, the current will fluctuate around its expectation value, i.e.,
at a given time ¢, the difference is d1(t) = I(t) — ([). We consider how
the fluctuations evolve in time, i.e., if there is a fluctuation at time ¢’ is it
still present at time ¢. This is described by the (auto-)correlation function
(SI()SI(t)) = (8I(t —t)oI) = (I(t)I) — (I)®. This definition makes sense
for a classical stochastic process, where for a given realization, the value of
01(t) is known at every time t. For a quantum system, physical observables
are described by Hermitian operators (ensuring real expectation values), e.g.,
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01(t). However, since 61(t) and 0/ do not necessarily commute, 01(¢)01 is
non-Hermitian and is thus not an observable. Still, we find a physically
relevant quantity by Fourier transforming the correlation function. This is
the current noise,

S(w) :/ dt e (51(t)01), (1.5)
which is a real quantity and can be regarded as (an expectation value of)
an observable. Alternatively, one can avoid the non-Hermitian operator by
symmetrizing it, 61(¢£)01 — $[01(t)61 + 6161(t)]. With this replacement in
Eq. (1.5), one obtains the symmetrized noise, S¥™ = 1[S(w) + S(—w)] [59].
However, now one has removed the quantum property of non-commutating
operator; in chapter 4 we show that conversely the unsymmetrized noise con-
tains more information about quantum effects. Another common definition
of noise uses an additional factor of two, S'(w) = 25%™(w). This is the noise
power density which is measured after filtering the fluctuations at frequency
f = w/2m with some bandwidth Af. Since the filter is assumed to pass both
positive and negative frequencies, £ f, this increases the noise power by a
factor 2.9

A simple system for studying noise is a tunnel junction which can be
described with two tunnel-coupled leads (reservoirs). Since the tunneling
is weak, each of the leads remains at thermal equilibrium, even if a bias is
applied across the junction. There are two limiting cases for noise which we
now consider in the classical regime, w < kT'. First, if the temperature 7" is
larger than the bias, the directed tunneling events due to the bias give only
negligible fluctuations while the thermal fluctuations across the junction will
dominate. This is the Johnson-Nyquist noise S(w) = 2kT'G [60] with conduc-
tance GG, and contains no additional information to what is already known
from current measurements. Second, for a bias larger than temperature, the
discrete charge of the electrons becomes important; each time an electron
with charge e tunnels across the junction, this leads to a large fluctuation
of the current, 0I(t) = e/At when averaged over an arbitrarily short time
interval At. These fluctuations lead to so-called shot noise, S(w) = e(I),
the name inspired by the “discrete” pellets coming out of a shotgun [61].
It is remarkable that by measuring current and shot noise of a tunnel junc-
tion, one can determine the charge of the electron. The crossover of these

6This prefactor, inconsistent in the literature, is eliminated when one regards the Fano
factor which is defined as F' = S/e(I) in the former case and F = S’/2¢e(I) in the latter.
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two regimes is given by the nonequilibrium fluctuation-dissipation theorem
(FDT), relating noise with the current through the junction for arbitrary
bias.”

More generally, shot noise of mesoscopic systems provides a rich field of
research [65, 66]. Since it allows to measure the charge of particles tunnelling
across a junction, one can used it to access the charge of quasi particles, e.g.,
Cooper pairs tunneling between a superconductor and a normal metal. For
systems with some correlations between different electrons, shot noise usually
becomes suppressed, e.g., by a factor of % in diffusive conductors [67]. The
correlation effects become even richer if there is a part of the system which
has some memory effects which is the case for quantum dots in the Coulomb
blockade regime. There the correlations do not always lead to a suppression of
noise. If an internal state of the dot switches the current from one to another
value, this can even lead to super-Poissonian noise, i.e., S > e(I) [68, 63, 69].

Let us now go beyond shot noise. The counting statistics provides a
generalization of the current fluctuations [70, 71]. There, one “counts” the
charge which have been transferred since time ¢ = 0 by a probability distri-
bution P,(¢). (In chapter 2, we use this description for quantum dots [72]
to determine the statistics of the spin read out.) If the counting statistics is
not calculated directly one can, e.g., use a nonequilibrium Green’s function
method [73, 74]. The counting statistics is a generalization of shot noise,
since the zero frequency noise S(0) is recovered from the charge distribution,
namely (dq(t)?) =t S(0) for sufficiently long ¢. Further, the higher moments
of the current can be calculated. In particular, for the 3rd moment it was
found in the tunneling regime that a similar effect as for shot noise appears,
(613) = €*(I) [75]. Remarkably, in contrast to shot noise, this relation holds
even for arbitrary bias. This prediction was confirmed in a recent experiment
[76], where also the contributions due to fluctuations in the measurement ap-
paratus itself were taken into account [77].

Another interesting situation is the noise in the quantum limit of high
frequencies w. For tunneling junctions, this case is already described by the
FDT (see footnote 7). There, one only considers the fluctuations between

"The FDT was derived for symmetrized noise S¥™ [62]. For non-symmetrized noise,
we evaluate current and noise in the spectral (Lehmann) representation and in lowest
order in tunneling across the junction. For an applied bias Ap/e, we find the FDT

Sw) =534 [coth (AQ“kiTw) + 1} (I(Ap £ w)). The antisymmetric noise contribution is

given by the term +1 in the brackets. It can be rewritten using the linear response ac
conductance G, [63], S(w) — S¥™(w) = wRe G, (Ap), recovering a known result [64].
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two thermal reservoirs. However, the quantum effects become more appar-
ent when the high-frequency fluctuations between a discrete system and a
reservoir are considered, e.g., a quantum dot is coupled to leads. We show in
chapter 4 that these quantum fluctuations leads to striking non-Markovian
effects in (unsymmetrized) noise.

1.6 Berry phase

Just short of two decades old, Berry’s phase [78] is a remarkably recent
finding in quantum mechanics, considering that it follows directly from the
fundamental laws of quantum mechanics. Even though it has been observed
in single-particle experiments, the manifestation of the Berry phase in con-
densed matter systems is still under investigation and there are even some
recent reports that the Berry phase might have been observed in such systems
[79, 80, 81].

Let us now look for the origin of the Berry phase and consider a quantum
system which depends on some external parameter R(t), e.g., a magnetic
field. We make the important assumption [78] that the state of the system
evolves adiabatically, i.e., it always remains in the nth eigenstate |n, R(t))
of the Hamiltonian H. This assumption is satisfied if H varies slowly on
time scales of the inverse energy level spacing. Then, the state is |1, (t)) =
cn(t)|n, R(t)) with a phase factor c,(t). We insert it into the Schrodinger
equation and get ¢, (t)E,(t) = ihé,(t) +ihc,(t)(n, R(t)| 0 |n, R(t)), which
we integrate to obtain c¢,(t) = exp {(—z/h) fot E,(t)dt" + ivg}. Thus, the
time evolution of the system contains the usual dynamical phase but also an
additional phase,

R(?)
vy = —Im (n,R| Vg |n,R)dR. (1.6)
R(0)

This phase was ignored for a long time, since it can be eliminated by a basis
change. Namely, in the basis |7, R(t)) = ¢®®) |n, R(t)), the additional
phase of ¢, (t) becomes 7, = 7, — [¢(R(t)) — ¢(R(0))] and vanishes for the
proper choice of ¢(R(t)). However, for a closed contour, R(0) = R(T),
this argument obviously breaks down! Now, the phase v, is independent of
»(R) and can no longer be eliminated. This observation has led Berry to
the remarkable conclusion that the phase 7y, can be observed. Note that the
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Figure 1.3: The Berry phase 7, of a spin 3 is half of the solid angle (gray)
which is enclosed by the magnetic field B; the sign of 7, is given by the
parallel or antiparallel alignment of the spin.

phase only depends on the contour R(t) [cf. Eq. (1.6)] but does not depend
how it is followed (adiabatically) in time.

To get a geometrical description of the Berry phase, we consider a spin %
in a time-dependent magnetic field B(t), which results, e.g., from an electron
moving through an inhomogeneous magnetic field. The adiabatic assump-
tion requires that the electron moves sufficiently slowly such that the spin
of the electron retains its alignment (i.e., “up” or “down”) along the local
field direction. This assumption is satisfied if the spin precesses many times
around the local field. For a closed contour B(t), we can evaluate Eq. (1.6)
using Stokes’ theorem and inserting the spin eigenstate of the local Zeeman
field, Eq. (1.2), where the angles 0, ¢ are given by the direction of B(¢). We
find® that the acquired Berry-Phase is half the solid angle spanned by B(t)
(78], see Fig. 1.3, thus v, is indeed a geometrical object.

How can the Berry phase be observed experimentally? Even before
Berry’s work, effects due to geometrical phases were known, see Ref. [82].
For mesoscopic systems, D. Loss, P.M. Goldbart and A.V. Balatsky have

8The line integral, ds = e,dr + egrdf + e,r sinfdyp, becomes a surface integral over a
part of the unit sphere, dA, and we use curl V = e, ﬁ { %(sin@ Vo) — %—‘;9} + ... to find

Yg = f(f dt/(/b(COSG— 1) = %fds cosf—1 e, = _1 dA-e, _ _%Idﬂ

7 sin 6 2 T2
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N

Figure 1.4: Electron in diffusive conductor with spin-orbit coupling. When
the electron scatters while the motion is one dimensional and no external
magnetic field is present, the spin remains aligned along the local effective
field, parallel or antiparallel. If the external field is turned on, the effective
field will change its direction abruptly at each scattering event and the picture
of an electron moving adiabatically is no longer valid.

shown that the Berry phase can be observed [83]. They have proposed to
consider the electrical current through a phase coherent ring (i.e., not larger
than a few pm). The ring is placed in an inhomogeneous magnetic field,
which changes direction but not magnitude, e.g., the field found above a bar
magnet perpendicular to the ring plane. Each electron that enters from one
side of the ring flows through both arms of the ring, analogous to the double
slit experiment. During the passage through the inhomogeneous field, the
electron spin acquires a Berry phase. This process is reminiscent of a charge
moving through a vector potential and thereby collecting an Aharonov-Bohm
phase. Finally, the contributions from both arms, which have acquired dif-
ferent phases, interfere at the other side of the ring, resulting in an increased
or decreased current. This interference pattern in the current then contains
effects of the Berry phase.

Besides having a spin following the direction of an inhomogeneous exter-
nal field, there is another scenario which produces a Berry phase: spin-orbit
coupling [84]. If an electron moves through an electric field perpendicular
to the ring plane, an effective magnetic field, which is produced in the rest
frame of the electron, couples to the electron spin. As this effective field
is in the radial direction of the ring and perpendicular to the direction of
motion, the field rotates while the electron moves around the ring and can
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therefore produce a Berry phase. By additionally switching on an external
(homogeneous) magnetic field, an arbitrary tilt angle of the total effective
field can be realized and this Berry phase can be tuned. For ballistic mo-
tion, the Berry phase manifests itself in precisely the same way [84] as in the
case with an inhomogeneous external magnetic field [83, 85, 86]. However,
for diffusive motion the situation becomes more complicated, as the change
of the direction of motion of the electron due to an elastic scattering event
abruptly changes the effective field direction, see Fig. 1.4. Now the picture of
a spin, moving adiabatically through a slowly varying field, is no longer valid
and needs to be modified. This leads to a new physical situation which has
to be considered separately from the situation with inhomogeneous fields.

Berry phase effects appear to their full extent only in the adiabatic limit
described above. For semiconducting rings this assumption can be satisfied
with experimentally achievable field strengths. However, in metals the Fermi
velocity of electrons is much larger and a much larger field strength would be
required. For diffusive rings (in the weak localization regime), this restriction
can be overcome since the electrons remain much longer in an area with a
given direction of the magnetic field [87]. The diffusive motion due to elastic
scattering at an impurity potential does not destroy the phase coherence of
the electrons and thus the interference effects are still present.
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Chapter 2

Single Spin Dynamics and
Decoherence in a Quantum Dot
via Charge Transport

In this chapter, we investigate the spin dynamics of a quantum dot with a
spin—% ground state in the Coulomb blockade regime and in the presence of
a magnetic rf field leading to electron spin resonance (ESR). We show that
by coupling the dot to leads, spin properties on the dot can be accessed via
the charge current in the stationary and nonstationary limits. We present a
microscopic derivation of the current and the master equation of the dot us-
ing superoperators, including contributions to decoherence and energy shifts
due to the tunnel coupling. We give a detailed analysis of sequential and co-
tunneling currents, for linearly and circularly oscillating ESR fields, applied
in cw and pulsed modes. We show that the sequential tunneling current
exhibits a spin satellite peak whose linewidth gives a lower bound on the
decoherence time T5 of the spin—% state on the dot. Similarly, the spin deco-
herence can be accessed also in the cotunneling regime via ESR-induced spin
flips. We show that the conductance ratio of the spin satellite peak and the
conventional peak due to sequential tunneling saturates at the universal con-
ductance ratio of 0.71 for strong ESR fields. We describe a double-dot setup
which generates spin-dependent tunneling and acts as a current pump (at zero
bias) and as a spin inverter which inverts the spin polarization of the current,
even in a homogeneous magnetic field. We show that Rabi oscillations of the
dot spin induce coherent oscillations in the time-dependent current. These
oscillations are observable in the time-averaged current as function of ESR

29
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pulse duration, and they allow the spin coherence to be accessed directly in
the time domain. We analyze the measurement and read-out process of the
dot spin via currents in spin-polarized leads and identify measurement time
and efficiency by calculating the counting statistics, noise, and the Fano fac-
tor. We point out that single spin dynamics can also be accessed with STM
techniques.

2.1 Introduction

The coherent control and manipulation of the electron spin has become the
focus of an increasing number of experiments [4, 33, 89, 7, 5, 8, 34, 90]. From
measurements it has become evident that the phase coherence of electron
spins in semiconductors can be robust over unusually long times, exceeding
hundreds of nanoseconds [4]. Thus, spins of electrons are suitable candidates
for applications in the field of spintronics, in particular for quantum infor-
mation processing [3, 30, 52, 44, 45, 91, 92, 93, 94, 95]. This has made it
desirable to understand in more detail the coherent behavior of single electron
spins which are confined to nanostructures such as quantum dots, molecules,
or atoms, and to point to ways of how to access the coherence time T3 (cf.
Sec. 1.3) of a single spin experimentally. It is the goal of this chapter to
address this issue and to propose and analyze transport scenarios involving
a quantum dot attached to leads and with a spin-1/2 ground state.

In recent experiments, 75 was measured in bulk GaAs by using ultrafast
time-resolved optical methods, yielding values for T3 exceeding 100 ns [4].
However, the measurement of the decoherence time T5 for a single spin has—
to our knowledge—mnot been reported yet. A first step into this direction are
spin echo measurements on an ensemble of spins, where dephasing due to
inhomogeneities of the magnetic field is eliminated. Indeed, such measure-
ments being performed more than 30 years ago on P donors in Si, reported
T, times up to 500 us[96]. However, it appears desirable to have a more direct
method for single-spin measurements. To achieve this via direct coupling to
the magnetic moment of the spin is rather challenging due to the extremely
small magnetic moment, although it is believed to be within reach using can-
tilever techniques [97]. Here we concentrate on a further approach based on
transport measurements. The key idea is to exploit the Pauli principle which
connects spin and charge of the electron so intimately that all spin properties
can be accessed via charge and charge currents, especially in the Coulomb
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blockade regime [18] of a quantum dot attached to leads. Indeed, concrete
scenarios based on such a spin-to-charge conversion have been proposed in
the past [3, 25, 56, 52, 98|, and it is our goal here to further elaborate on
these concepts and to report on a variety of new results we have obtained.
There are two classes of spin decoherence contributions we have to distin-
guish in the following. First, rare tunneling events of electrons onto and off
the dot change the spin state on the dot and in this way contribute to the de-
coherence of the dot spin. We account for this decoherence microscopically
in terms of a tunneling Hamiltonian. Second, there are intrinsic decoher-
ence contributions from processes which persist even if the dot is completely
isolated from the leads. This decoherence is taken into account phenomeno-
logically in the master equation developed in this thesis, with an intrinsic
decoherence rate T, *. The goal then is to show that this 75 time can be
extracted via current measurements, regardless of the microscopic processes
leading to T5. Such a phenomenological approach to intrinsic decoherence
makes the purpose of our considerations clearer and is applicable to differ-
ent types of decoherence mechanisms, e.g., based on hyperfine and spin-orbit
couplings. The microscopic study of such intrinsic decoherence, being an
important subject in its own right, is not addressed in the present thesis.
The outline of this chapter is as follows. In Sec. 2.2, we define the system
of interest, a quantum dot with spin-1/2 ground state in the Coulomb block-
ade regime tunnel coupled to leads and in the presence of an electron spin
resonance (ESR) field. We derive the (generalized) master equation for the
low-energy dot states in the sequential and cotunneling regime by evaluating
the tunnel coupling to the leads microscopically in order to obtain tunnel-
ing rates, decoherence rates, and energy (Stark) shifts. For this we need
to include diagonal and off-diagonal matrix elements of the reduced density
operator. The stationary current through the dot and its dependence on the
ESR field is discussed in Sec. 2.3. We find a spin satellite peak in the se-
quential tunneling current, whose linewidth as function of the ESR frequency
gives a lower bound for the T, time. Thus, via the stationary current, the 15
time can be measured in a regime that is experimentally accessible, as will
be demonstrated by concrete numerical examples. We show that the ratio of
this satellite peak and the main peak saturates at a universal conductance
ratio for strong ESR fields. In Sec. 2.4, we extend our results to the even-
to-odd transition, i.e., for the case where there is (on average) one electron
less on the dot. In Sec. 2.5, we explain a mechanism for a spin-inverter de-
vice which inverts the spin polarization of the current passing through two
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dots coupled in series in the presence of a homogeneous magnetic field. In
Sec. 2.6, we discuss how spin-dependent tunneling can be used to pump a
current through a system in the absence of a bias, where the ESR field pro-
vides the required energy. In Sec. 2.7, we consider rotating ESR fields which
allows us to obtain the exact time evolution of the dot states and their decay
rates. In Sec. 2.8, the cotunneling current through the quantum dot away
from the sequential tunneling peak is discussed. We show that the T, time
can also be accessed in this regime. Invoking spin-polarized leads, a read-
out procedure for the dot spin is proposed and analyzed in Sec. 2.9, where
counting statistics, noise, and the Fano factor are calculated, which allow us
then to estimate the measurement time. In Sec. 2.10, we discuss coherent
Rabi oscillations of the dot spin and their occurrence in the time-dependent
current. In Sec. 2.11, we show that Rabi oscillations can also be observed
in the time-averaged current if pulsed ESR fields are applied. In Sec. 2.12,
we point out that our results also apply to scanning tunneling microscopy
(STM) devices, and we finally conclude in Sec. 2.13.

2.2 Quantum dot in ESR Field

2.2.1 Model Hamiltonian

We consider a quantum dot in the Coulomb blockade regime [18], which has
a spin—% ground state. The dot is assumed to be tunnel coupled to two
Fermi-liquid leads [ = 1, 2, at chemical potentials y;. We start from the full
Hamiltonian

H = Hyepa + Haot + Hesr(t) + Hr, (2.1)

which describes leads, dot, ESR field, and the tunnel coupling between leads
and dot, respectively. For the leads we take Hicada = > 1, elkc;koclka, where
clT,w creates an electron in lead [ with orbital state k, spin o, and energy €.
We describe the coupling with the standard tunnel Hamiltonian

Hy = 17,0liptpo + hoc., (2.2)

Ilpko

with tunneling amplitude ¢7, and where d]TM creates an electron on the dot in
orbital state p. In Eq. (2.1), Hget is time independent and includes charging
and interaction energies of the electrons on the dot and coupling to a static
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magnetic field B, in z direction. The dot spin is coupled to a magnetic
ESR field, B,(t) = BYcos(wt), linearly oscillating in the z direction with
frequency w, thus Hgsp = —39p5Bx(t) 0,. Such an oscillating field produces
Rabi spin flips when its frequency is tuned to resonance, w = A, as shown
below. Then, the total Zeeman coupling of the dot spin is
1 1 1

—59Hs B(t)- o= —§Azaz — iAxcos (wt) oy (2.3)
with electron g factor g, Bohr magneton pg, and Pauli matrices ;. We have
defined A, = gugB? and the Zeeman splitting A, = gugB.. Ideally, we
assume that the Zeeman splitting of the leads Al** is different from A.,
and Al** < ep where ep is the Fermi energy, such that the effects of the
fields B, and B,(t) on the leads are negligible (see below). Such a situation
can be achieved by using materials of different g factors [5] and/or with local
magnetic fields (B, or B,).

We are neglecting photon-assisted tunneling (PAT) processes [18, 99], in
which oscillating electric potentials of the leads provide additional energy to
electrons tunneling onto the dot. We note that PAT contributions to the
current can be distinguished from ESR effects since the former contributions
do not show resonant behavior as a function of B, and/or w, and they lead to
several satellite peaks instead of one as for ESR effects (see below). Further, if
one avoids electrical rf components parallel to the current, i.e., along the axis
lead-dot-lead, no potential oscillations are produced, and thus PAT effects are
excluded. Finally, electric rf fields can be avoided altogether, using a setup
as in Ref. [49]. There, the oscillating current induced in a superconducting
wire (via an rf source) generates only a magnetic rf component in the near-
field region [100], with an the electric component that is negligibly small for
w < wp, where wy, is the plasma frequency. Finally, for transport and ESR
experiments in quantum Hall samples with and without quantum dots we
refer to Refs. [101] and [102].

2.2.2 Dot spectrum and energetics

The electronic states of the quantum dot can be assumed as follows. For
an odd number N of electrons on a dot with antiferromagnetic filling, the
dot has a spin—% ground state. The topmost (excess) electron can be either
in the spin ground state |T) (o, eigenstate) or in the excited state ||) (see
Fig. 2.1). This assumption is automatically satisfied if N = 1. Otherwise,
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Figure 2.1: Quantum dot coupled to (unpolarized) leads [ = 1, 2 with chem-
ical potentials ;. The sequential tunneling regime Fg > p; > Eg — A, > s
(for £y =0) shown here corresponds to the satellite peak in the sequential tun-
neling current; cf. Sec. 2.3.1 and 2.3.2 and Figs. 2.2 and 2.3. Here, Eg (Er,)
are the singlet (triplet) levels and the Zeeman splitting is A, = gugB, > kT.
(a) If the dot is initially in the spin ground state |T), sequential tunneling is
blocked by energy conservation. (b) If the dot spin is excited by an ESR field
(Rabi flip), spin up electrons can tunnel from lead 1 onto the dot, forming a
singlet. Then, spin-up or -down electrons can tunnel into lead 2.

to obtain antiferromagnetic filling, Hund’s rule must not apply. This can
be achieved by breaking the orbital degeneracy on the dot, e.g., by using
asymmetrically shaped dots or an appropriate magnetic field B,[103]. For
an additional electron on the dot, we assume for N + 1 the ground state to
be the singlet |S) = (|T]) — | 11))/V/2; i.e., the triplet state |T%.) = [11) has
higher energy, which again can be achieved by tuning B,[103]. The energy
E,, of the dot, including charging energy, is defined by Hge|m) = E,,,|m).

We shall give a brief overview of the energetics involved in tunneling
through quantum dots in the Coulomb blockade regime [18] and in the pres-
ence of the Zeeman splitting and an ESR field. For simplicity, we assume that
there is no electron-electron interaction on the dot apart from the classical
charging effect. (Our work is not restricted to such an assumption, since we
only require a Spin—% ground state and a large enough singlet-triplet spacing
on the dot.) The total ground-state energy of a dot with antiferromagnetic
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filling is

N
UN) =Y el +EY, (2.4)
k=1

for N electrons on the dot. Here, the single-particle energy of the kth elec-
tron, €7 = g+ (—1)*A_ /2, contains orbital and Zeeman energy contributions.
The charging energy is EY = (Ne — Qg)?/2C, with gate charge Qg, and dot
capacitance C'. It is convenient to define the chemical potential of the dot,
faot(N+1) = U(N +1) —U(N), which is the energy required for an electron
of lead [ to tunnel onto the dot, which contains N electrons initially, i.e.,
tunneling onto the dot occurs for u; > pqot[104]. In the Coulomb blockade
regime, kT' < €?/C (k: Boltzmann constant), no sequential tunneling cur-
rent flows through the dot if the chemical potentials of dot and leads are such
that paot(N) < p1, 2 < paot (N + 1). However, in the sequential tunneling
regime ft1 > figot(INV 4+ 1) > o, single electrons tunnel from lead 1 onto the
dot and then on into lead 2, producing a sequential tunneling current.

In the presence of an ESR field, these concepts must be extended. Exci-
tations of the dot states must be taken into account, since now the energy
of the dot changes in time due to B,(t). A full analytical description of the
current flow is derived in the following sections based on a time-dependent
master equation. Here, we just intend to give a qualitative picture to pro-
vide some intuition for the underlying physical mechanism (it will not be
needed later on). We define a time-dependent chemical potential of the
dot, given as the energy required to add an electron at time t. We con-
sider the two chemical potentials ug,, for initial spin—% dot state |o), i.e.,
AST = ,ugot(N—F 1) = Es — ET and Agl = ,ugot(]\/' + 1) = Es - El? which
simplify to Ag; = Eg, and Ag) = Eg — A,, respectively, for E; = 0. Note
that the ug,, is lowered if the dot is excited into state | |), since the Zeeman
energy A, has already been provided by a Rabi spin flip due to the ESR
field. Therefore, we can identify the regime Agy > p1 > Ag| > o, where a
sequential tunneling current will flow through the dot only after exciting the
dot spin by a spin flip (see Fig. 2.1). In other words, the dot can be opened
and closed via the ESR field, which thus allows one to modulate the current.
This (dynamical) dependence of the current on the dot spin can be exploited
to measure the T time and the Rabi oscillations of the dot spin [56], as we
will explain in detail in the following.
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2.2.3 Systematic treatment of sequential tunneling

The electronic states on a quantum dot interact with their environment (heat
bath), in particular with the Fermi leads, which provide and take up elec-
trons. The state of the combined system, dot and environment, is given by
the full density matrix p(t). The states of interest are the electronic states
on the dot, described by the reduced density matrix of the dot, pp = Trg p.
Here, Trg is the trace taken over the leads (environment), averaging over the
(unobserved) degrees of freedom of the environment. The diagonal elements
pn = (n]pp|n) of the density matrix of the dot describe the occupation prob-
abilities of the dot levels, with Hyw|n) = E,|n). The off-diagonal elements
Prm = (n|pp|m) = pZ,,, describe the coherence and the phase of superposi-
tions of dot states.

The tunnel coupling Hy between leads and dot is switched on at ¢ = 0.
Prior to this, the dot and leads are assumed to be uncorrelated such that the
full initial density matrix factorizes as p(0) = p%p%, where p% is the density
matrix of the leads in thermal equilibrium at j; 2, and at temperature 7'
Next we derive the master equation for the reduced density matrix pp by
making use of the superoperator formalism [105]. In the following, we set
h = 1. Starting from the von Neumann equation p = —i[H, p] for the full
density matrix and using standard manipulations [105], one finds the time
evolution of the reduced density matrix

po(t) = —i[Hao + Hesr(t), po(t)] - /0 dt'M(t, t')pp(t), (2.5)

M(t, t/) = TI"B LV (76_i ftt' dt”QL(t”)) vaOB, (26)

with time ordering 7 and the Liouville operators (superoperators) defined
by L(t)X = [H(t), X], LyX = [Hr, X|, and equivalently for Lgo, Lieaq,
and Lgsgr(t). The projectors are defined as Q = 1—P and PX = p%Trg X.
The kernel M [Eq. (2.6)] is a superoperator describing processes involving
tunneling of electrons to and from the leads. We consider here only sequential
tunneling processes and refer for a discussion of cotunneling contributions to
Secs. 2.2.6 and 2.8. Thus, we work in Born approximation by retaining only
the terms in lowest order of Ly; i.e., we replace L by Ly = L— Ly in Eq. (2.6).
For further evaluation of M, it is self-consistent (see below) to neglect the
effect of the ESR field, Lgsr(t); i.e., we replace Ly by Lqot + Lieaq in M. This
removes explicitly the time dependence of M, making it time translation
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invariant, M(t, t') = M(t —t'). We find that M(7) decays on a time scale
7. ~ 1/kT}; i.e., the correlations induced in the leads by Hp decay rapidly.
Since this decay is typically much faster than the Rabi flips produced by the
ESR field, 7. < 1/A,, we may indeed neglect the contribution of Lgsg () to
M. With these approximations, Eq. (2.5) becomes in the interaction picture

() = il (Dph(t) - / dr M(r)ph (t — 7). 2.7)

The rapid decay of M(7) also justifies the Markovian assumption that the
system has no memory about its past, i.e., that pp(t) depends only on
pp(t) and not on pp(t — 7). This approximation is performed in the in-
teraction picture, to keep track of the dynamical phase of the off-diagonal
elements of pp. Systematically we proceed as follows. Since the integrand
in Eq. (2.7) only contributes for small 7, we may expand the integrand in 7,
M(T)ph(t—7) = M(7)[ph(t) — 7p% (t) + O(7?)]. We then replace pf,(t) in the
integrand by using Eq. (2.7) iteratively. However, since M(7) ~ O(Ly?),
we can neglect the part of pk(¢) which is O(Ly?), since it corresponds
to a higher-order term in our Born approximation. The remaining part
of ph(t) results from Lgsg, which can also be disregarded since, in the
integrand, the ESR field only acts on the time scale 7. < 1/A,. We
then extend the upper integration limit in Eq. (2.7) to oo, with negligi-
ble contributions due to the decay of M(7). Therefore, the second term in
Eq. (2.7) becomes —{ [;"dr M'(7)} pp(t). Next, we evaluate the matrix ele-

ments Mpcjpm = (0] (M |n) <m\> |c) explicitly in the interaction picture, which
yields [106]

- / dr Mgclnm(7-> = Obe O (ch — Opn Z Wlm)
0 k
) 1
—(1 = Grm) bn Orme [wenm +35 zk: (Wi + ka)] . (2.8)

with the rates W (see below) and energy shifts de,, (Stark shifts). These
shifts are small; e.g., the one between | |) and |T) is given by

dep = 1 Z P/Oode fi(e) i — n (2.9)
2m ] 0 E—Agl E_AST ’
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and similarly for deg) and degy. For |y —Ag,| > kT, the energy shift becomes
bey = i ‘ Ast (2.10)
€ = Ln | —2— , .
. 21 | — Ag

I
which, for 7, = v}, reduces to dej; ~ So(w/2m) I (| — Asy| /| — Asyl]
and, thus, to a small correction |de|;| S vIn(A,/kT), for Ap < A,.

The sequential tunneling rates in Eq. (2.8) are

/N
2T

e
 — Agy

Wsi =) Wiy, Wi = filAsy), (2.11)
.

Wis=> Wi, Wis = [1 = filAsy)], (2.12)
l

with the Fermi function fi(Ag)) = [1+ e(ASi_”l)/kT]_l of lead [. The rates

Wsy, Wis, Wi, and W/g are defined analogously as functions of ~; and
fi(Agy), and W,,,, = 0. The transition rates

2 2

v =2multlT. A =2my Y] (2.13)

consist of (possibly) spin-dependent densities of states vy | at the Fermi en-

ergy and tunneling amplitude tlm . (Spin-dependent densities of states are

considered in Sec. 2.9 for spin read out.) For later convenience, we define for

o=T1

V=07 +98)/2,  r=0"+1h/2. (2.14)

2.2.4 Master equation

So far we have considered only coupling to an environment consisting of
Fermi leads. However, the electronic dot states are affected also by intrin-
sic degrees of freedom such as hyperfine coupling, spin-orbit interaction, or
spin-phonon coupling, which lead to intrinsic spin relaxation and decoher-
ence. Treating such couplings microscopically is beyond the present scope
(see, e.g., Ref. [26]). Thus, we treat these couplings phenomenologically
by introducing corresponding rates in the master equation. First, the spin
relazation rates Wi and W, describe processes in which the dot spin is
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flipped. We can assume Wy > W)y, for A, > kT (consistent with detailed
balance, Wy /W = e2</kT). These relaxation processes correspond to the
phenomenological rate 1/T} = Wy + Wiy; see also Sec. 2.2.5. Second, the
rate 1/T, describes the intrinsic decoherence of the spin on the dot, which
is present even in the absence of coupling to the leads. This type of deco-
herence destroys the information about the relative phase in a superposition
of |T) and | |), without changing the populations of the opposite spin states.
Formally, this leads to a decay of the off-diagonal matrix element p;;. In-
cluding the decoherence contribution of Hr [Egs. (2.8) and (2.11)], the total
spin decoherence rate is

V=2 (2.15)

i.e.; electrons tunneling onto the dot further destroy spin coherence on the
dot (see Sec. 2.2.5 for an interpretation).

With the above results, we obtain from Eq. (2.5) the master equation of
the dot,

pro= (Wi +Wsp) pr + Wiy pp + Wis ps — Ay cos (wt) Im(pyy],
(2.16)
pro= Wirpr = Wi+ Wsp) pp+ Wis ps + A cos (wt) Im[py4], (2.17)
ps = Wsppr+Wsipp — (Wis + Wis) ps, (2.18)

: . A,

pri = —ileopy +i—cos (wt)(pr = p1) = Vit pur, (2.19)
psy = —ilQgipst = Vsi ps (2.20)
psy = —ilAsips) — Vs ps. (2.21)
Here, the time evolution of the matrix elements p,,, = (n|pp|m) of the

density matrix of the dot is described for the states [n) = |1), | 1), |9); e.g.,
for the diagonal element we write p; = (1 |pp| 1), for the off-diagonal element,
pst = (S|pp| 1), etc. The rate W,,, describes transitions from state |n) to
|m). Equations (2.16)—(2.18) are rate equations with gain and loss terms, up
to the contributions from the ESR field. Then, the population of, say, state
| T) is changed by dp; after time dt by the following contributions [Eq. (2.16)].
The population p; is increased when the dot is previously in state |S) (with
probability pg), and a spin | electron tunnels out of the dot with probability
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W, g dt. However, the population p; is decreased when the system was already
in state |T), and a spin | electron tunnels onto the dot with probability
Wsydt. The spin-flip rates Wy and W), enter Eq. (2.16) analogously. In
the absence of an ESR field, the off-diagonal elements [Egs. (2.19)—(2.21)]
of the density matrix decouple from the diagonal ones and decay with the
decoherence rates V,,,,, = V.

In the presence of an ESR field, the diagonal [Egs. (2.16) and (2.17)] and
the off-diagonal [Eq. (2.19)] matrix elements become coupled by the term
proportional to A,. This coupling of populations (p; and p;) and coherence
(p;1) shows the coherent nature of Rabi spin flips and makes it apparent that
we are studying a resonant process, which requires that we take Hggr fully
into account.

The current I, = e(dq/dt) from the dot into lead 2 is defined by the num-
ber of charges dgq that accumulate in lead 2 after time dt. With probability
ps, the dot is in state |S) and a charge e will tunnel into lead 2 with prob-
ability (W72 + W) dt. However, if the dot is in state | T) or | ), a charge
may tunnel from lead 2 onto the dot, reducing the number of charges in lead
2. Thus, in total we obtain for the current in lead 2

L =e(Wis+Wig) ps —eWapy —e W3 p. (2.22)

The current in lead 1, I, is obtained analogously and is given by Eq. (2.22)
after changing sign and replacing the index 2 by 1. We show in Sec. 2.3 that
I, = I5 in the stationary limit, due to charge conservation.

Finally we note that Eqgs. (2.20) and (2.21), which describe a superposi-
tion of an odd and an even number of electrons on the dot, decouple from
Egs. (2.16)—(2.19) and are thus not of relevance for our considerations. Fur-
ther, since the coupling to the leads is switched on only at ¢ = 0, initially
the number of particles on the dot is well defined. Therefore pg; and pg
vanish at ¢ = 0 and at all later times, as seen from Egs. (2.20) and (2.21).
In particular, no superposition of a state with an even and a state with an
odd number of electrons on the dot is produced by the coupling to the leads,
since this would require a coherent superposition of corresponding states in
the leads; however, for times larger than 7. (which is typically the case), we
can safely neglect any coherence in the Fermi-liquid leads.



2.2 Quantum Dot in ESR Field 41

2.2.5 Decoherence and measurement process

We elucidate the connection between spin decoherence and measurement,
first in the absence of leads and ESR field. We consider a coherent super-
position «|T) + (|]) as the initial state of the dot. This pure state cor-
responds to the reduced density matrix p;(0) = |af?, p;(0) = |B]?, and
p11(0) = o*f, and the master equation contains only the rates Wy, Wy,
and V|3 = 1/T;. The off-diagonal terms p|; = pi|, decay with the decoher-
ence time Ty, py1(t) = e /T27A= 5 (0), while the diagonal terms (occupa-
tion probabilities) decay with the spin relaxation time Ty = (W, + W);)~!
and p(t) = p{* + e/ [p(0) — p}%] toward their stationary value p{* =
Wi /(Wy +Wy) and py =1 — p;. In total, for T, < T, we can picture the
decay of pp as

o ) Tl 0 Y I8,
(5 e 0o )i B

i.e., the off-diagonal terms vanish first on the time scale T, and then the
diagonal ones equilibrate on the time scale T7.

As shown in Sec. 2.2.3, when electrons tunnel onto the dot, the decoher-
ence rate V|; [Eq. (2.15)] and thus the decay of the off-diagonal elements
are increased further. We note now the formal equivalence to the quantum
measurement process (in the o, basis), where the dot spin is projected onto
|T) or |]), and thus the off-diagonal matrix elements vanish. This projection
can be understood as a decoherence process. Conversely, we can consider the
decoherence due to tunneling as a measurement performed by the tunneling
electrons. We note that this process is a weak measurement in the following
sense. The electrons in the leads attempt to tunnel on the dot, but only with
small probability o« Wg, are these attempts successful. Thus, the current
I, which carries away the information of the dot state to the observer, is
formed by these successful electrons, while the unsuccessful electrons are not
detected. Another way to say this is that a given electron from the lead has
only a small probability o« W, to “measure” (i.e., decohere) the dot state.

2.2.6 Cotunneling contribution to the sequential tun-
neling regime

We work in the sequential tunneling regime, defined by 1 > Ag| > po.
One can see that higher-order—cotunneling—contributions can be neglected
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[18, 25] for v, < A,, kKT, and Ap < A, the regime of interest here. Most
importantly, the cotunneling contributions to V|; are of the order 72 /A, (see
Sec. 2.8); i.e., they are suppressed compared to the sequential tunneling con-
tributions by a factor of v;/A, (= 5 x 107 for the parameters of Fig. 2.3).
Formally, the cotunneling contributions to the master equation can be ab-
sorbed into T} and T5. For a discussion of cotunneling currents away from
the sequential tunneling resonance see Sec. 2.8.

2.3 Stationary current

We now consider the stationary current [ in the presence of a continuous-wave
(cw) ESR field. Therefore we calculate the stationary solution p(t — o0)
of the master equation [Egs. (2.16)—(2.21)]. We will apply the rotating-
wave approximation (RWA)[107], where only the leading frequency contri-
butions of Hgsg are retained. Higher-order contributions would include the
simultaneous absorption of two photons and the emission of another pho-
ton. In lowest order, only single photons can be absorbed or emitted, pro-
ducing a spin flip on the dot. To perform this approximation, we write
Agcos (wt) = 1A, (€' + e7™*); ie., we decompose the linearly oscillating
magnetic field into a superposition of a clockwise and an anticlockwise ro-
tating field. Integrating Egs. (2.16), (2.17), and (2.19), one finds that for
w =~ A,, the anticlockwise rotating field leads to rapidly oscillating terms in
the integrands, which nearly average to zero. Therefore, we retain only the
clockwise rotating field, which is given by the term proportional to e™* (see
also Sec. 2.7). Note that since only one field component contributes, the field
amplitude is halved. This leads to the period Ty of one Rabi oscillation,

A
=3
The RWA is valid for A,, V), |A, —w| < w (see, e.g., Ref. [108]) and is
well justified for the parameters considered here. In the stationary case and
using the RWA | the dependence of p; and p; [Egs. (2.16) and (2.17)] on p;
is eliminated, leading to the effective spin-flip rate
A, Vi

8 (w—A)2+VE

Ty (2.24)

W, = (2.25)

which is a Lorentzian as a function of w with maximum W» = A, ?/8V|;
at resonance w = A,.
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Now it is straightforward to find the stationary solution of the effective
rate equations for p;, p; and pg,

pr = 1 [WisWs + (W + W,) (Wis + Wis)], (2.26)
pr = 0 [WisWsp + (Wi + W) (Wis + Wis)], (2.27)
ps = n[WsiWs + Wsy (Wi + Wo) + Ws (Wi +W,)],  (2.28)
where the normalization factor n is such that ) p, = 1. We see from

Eqgs. (2.26)—(2.28) that the effective spin-flip rates are Wy + W, and W +
W,,; i.e., the ESR field flips up and down spin with equal rate W,,.

We can now calculate the spin-T polarized current in lead 2, I 2T =e WfS pPs—
e ng p, [cf. Eq. (2.22)]. The result is displayed in Eq. (B.1) in the Appendix.

The spin-| polarized current ]2l is obtained from Eq. (B.1) by interchanging
1 with | in the numerator (the denominator remains unaffected by such an
interchange). The currents in lead 1, I]**, are obtained from the formulas for
I2T ok by changing sign and interchanging indices 1 with 2. Note that generally
[1T #+ I2T , since the ESR field generates spin flips on the dot, and thus the
spin on the dot is not a conserved quantity. However, the stationary charge
current [; = > I/ is the same in both leads, I = I; = I, due to charge
conservation.

2.3.1 Spin satellite peak

In this subsection we discuss the stationary current /I through the dot, in
particular, its behavior as function of u = (uy + u2)/2 or, equivalently, as a
function of the gate voltage V,. We will see that an additional sequential tun-
neling peak (satellite peak) will appear due to the ESR field. Before explicit
evaluation of the current, we briefly describe this situation in qualitative
terms. We assume a large Zeeman splitting A, > Apu, kT, with applied bias
Ap = pg — pg > 0. If the potentials are such that jq > Agy > po—i.e., the
chemical potential of the dot (relative to the ground state |T)) is between the
chemical potentials of the leads—the state of the dot changes between |T)
and |S) due to sequential tunneling events, leading to the standard sequential
tunneling peak in I(u) at g~ Agy.

However, we also have to consider the regime Agy > 1 > Agp > pa,
as shown in Fig. 2.1. Without an ESR field, the dot relaxes into its ground
state | 1) (since W3 < W;)), and the sequential tunneling current through
the dot is blocked since the chemical potential Ag; of the dot is higher than
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those of the leads. However, if an ESR field generates Rabi spin flips (on the
dot only), the current flows through the dot involving the state ||}, since
Ag) is lower than j,. Therefore, a sequential tunneling current appears also
for gate voltages V, corresponding to Agy; i.e., I(u) exhibits a spin satellite
peak due to the ESR field at  ~ Ag). This new peak is shifted away
from the main peak by A, (Fig. 2.2). The presence of such a satellite peak
and its sensitivity to changes in B, allows identification of spin effects [109].
Further, we note that via the position of the peak in I(w), I(B,), or I(u), the
Zeeman splitting and also the g factor of a single dot can be measured. Such
a measurement could provide a useful technique to study g-factor-modulated
materials, where the g factor can be controlled by shifting the equilibrium
position of the electrons in the dot from one layer to another by electrical
gating [52]. Note that measurement of the peak position would also allow to
access the Stark shifts [Eq. (2.9)].

We consider now the analytic expression for the current I, as given in
Eq. (B.1), for the regime of the spin satellite peak. In this regime, Ag; —p =
Ag +A, —po—Ap > A, —Ap~ A, > kT, and thus f;(Ag;) =0, WéT =0,
and WTlS = %l . For simplicity, we consider v, = ,le = fyll here (cf. Sec. 2.6
for pumping due to %T #+ fyll) The expression for the stationary current
[Eq. (B.1)] considerably simplifies to

Iw, p) = 2e(Wy + W) melfi(As)) — fz(ASi)]{ (2y =Wy = W)

X [71f1(Asy) +72f2(As))] + 4y (Why + Wi + 2W,,) }_1-
(2.29)

For a plot of I vs w and p and some explanations of its characteristics, see
Fig. 2.2.

2.3.2 Spin decoherence time 75

Around the spin satellite peak, it is possible to measure W, via the current
and thereby access the spin decoherence time of the spin—% state on the dot.
For this, we identify a regime where the Rabi spin flips on the dot become
the bottleneck for electron transport through the quantum dot such that the
current becomes proportional to the spin-flip rate W,,. For kT < Ap and
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Figure 2.2: The stationary current I [Eq. (B.1)] vs = (1 + p2)/2 and ESR
frequency w. We take T' = 7T0mK, Ap/e =6uV, B, = 0.5T, g =2, T} = 1pus,
Ty =100mns, v, = 5 x 10°s7!, and v, = 57y, i.e., A, = 10kT and Ap = kT.
The width of the sequential tunneling peaks in I(u) is determined by the
temperature; see Eq. (2.31). (a) The current I(u, w) shows a spin satellite
peak near ;1 = Eg—A, (for £y, =0) due to the ESR field. Note that the spin
satellite peak is slightly shifted from this position [see Eq. (2.35)], which is
indicated by the line at Eg—A, (light gray line) in (a). Here, BY = 1.5 G,
ie., WX =~ at resonance and p = Ag. (b) The current I(u) for W, =0
(dotted line), v1/5 (solid line), ;1 (dashed line), and 9v; (dash-dotted line).
The position of the spin satellite peak as function of W, is shown as black
dots and the connecting solid line.
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Wrex < max{W;, 71} we obtain for the stationary current [Eq. (2.29)]

2e 172 (Wi + W)

I(w ;
@) Y (y1+92) + Wiy (11+272)

(2.30)

see Fig. 2.3. We have used W|; < Wy, here. In the linear response regime
ET > Ap and for W2 < max{W;, vfi1(As; + Ap/2)}, the current is

_emr (Wi + W) Ap o As —p
I(w) = 2001 + o) KT I(T) cosh T (2.31)

The current I(u) shows the standard sequential tunneling peak shape, de-
termined by the usual cosh dependence on temperature, which is slightly
modified by

B(T) = 2W;, + (27 =Wy) fi(Asy+Au/2). (2.32)

Most importantly, the current I(w) of the satellite peak [Egs. (2.30) and
(2.31)] is proportional to the spin-flip rate W,. Thus, I(w) or, equivalently,
I(B,) has a Lorentzian shape with resonance peak at w = A, of width 2V/;.
Since V| > 1/T5, this width provides a lower bound on the intrinsic spin
decoherence time Ty of a single dot spin. For weak tunneling ~v; <2/T5, this
bound saturates; i.e., the width 2V, becomes 2/T5. Note that the current
also shows resonant behavior for Ay = 0 and 7/ # 7/ [Eq. (B.2)]; i.e., a
lower bound for 75 can also be measured via a current due to pumping.

We point out the similarity of our proposal to ESR spectroscopy [16],
where absorption or emission linewidths of the ESR field provide information
on decoherence. In contrast to these techniques, we are considering here
linewidths in resonances of the current, which allows us to access even single
spins, since very low currents can be measured accurately.

For Egs. (2.30) and (2.31) we have assumed that W, is small compared
to the tunneling or the spin relaxation rates. Therefore, we have neglected
the contributions of W, in the denominator of these expressions. To take
these contributions into account, we note that W, /(a4 W,,) as a function of
w is still a Lorentzian, but with an increased width w = 2V |;4/1 + Wmax /o,
Therefore, the current I(w) has the linewidth

Wmax 3 4
w=2V 1+ 2 (371 442)
Y1(v1+92) + Wiy (71+272)

, (2.33)
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Figure 2.3: The stationary current I(w) [Eq. (2.30)] for kT < Ap, B, = 0.5T,
BY=045G, Ty = 1us, Ty = 100 ns, 73 = 5 x 10571 and v, = 57y, i.e.,
satisfying W < ~; < 1/T5. Here, the linewidth gives a lower bound for the
intrinsic spin decoherence time 75 (shown schematically by the arrow), while
it becomes equal to 2/T, for B? = 0.08 G and WM™ < v, =5 x 10°s7! <«
2/Ty, where I(w = A,) ~ 1.3 fA.

for kT < Ap [Eq. (2.30)], and

w=2Vi\ L+ I — fi(As A/ /M(T) . (2.34)

for kT > Ap [Eq. (2.31)]. Since the linewidth is increased by this correction,
the inverse linewidth is still a lower bound for T5.

2.3.3 Universal conductance ratio

For increasing W,,, the satellite peak in the current I(u) increases while the
main peak decreases, as shown in Fig. 2.2(b). Further, as function of k7', the
peak is slightly shifted. Explicitly, for %T = fyll and A, > Ap, kT, we find
from Eq. (2.29) the position of the satellite peak

kT WT1/2+WLT+3WL«)/2+7
=Ag — —1 ) 2.35
HESR 5l 2 . { Wi + Wiy + 2, ( )
The position of the main peak is
kT Wiy +2WH—|—3WW—|—2’)/}
=Ag + —1 . 2.36
fo =251 H{WTL+WLT+2WW+27 (2:36)
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Figure 2.4: The current ratio r of the main and the satellite peak as a
function of the effective spin-flip rate W,, [Eq. (2.37)]. The dashed line shows
the saturation of r for W, > ~ at the universal conductance ratio ry ~ 0.71
[Eq. (2.38)].

An experimentally accessible quantity is the ratio of the two current peaks
or, equivalently (for linear response Ap < kT'), the ratio of the conductances
r(W.) = I(pesr)/I(ro) = G(ursr)/G(po). For this, we evaluate the sta-
tionary current at the gate voltages defined by Egs. (2.35) and (2.36), and
find, for Ay < KT and Wy < W,

o o, (1+/1+ ngfiz»y)z .

T LB, 2y + (TW,, + 27) ;

see Fig. 2.4. On the one hand, for small spin-flip rates, W, < =, the
ratio r is 4W,/v; i.e., at ESR resonance, r(B2) = (gupBY)?/(2V}17y). If
the tunneling rates and field strengths are known, this provides a further
method for measuring a lower bound of the single-spin decoherence time.
On the other hand, this peak ratio [Eq. (2.37)] can be used to measure
the ratio W, /7, useful for estimating the additional peak broadening due to
other limiting processes, as discussed in Sec. 2.3.2; cf. Egs. (2.33) and (2.34).

It is noteworthy that the ratio r saturates for W, > ~ at the universal
conductance ratio

54+2V6

ro = — Y2 ~0.71. 2.38
T 143 (2.38)
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For a larger bias, but still Ay < A, and for W, > ~, the ratio becomes

O ) RSO
kT (2+\/§e§?>2vl+(\/§+2e§?>2vg

For 41 = 79, the numerical value of ry remains 0.71 for all values Au. Gen-
erally, o is between 2/3 (for v; > v2) and 3/4 (for 71 < 72), where r( takes
these extremal values for Ap > kT.

Note that the current at the satellite peak is never larger than at the
main peak. This asymmetry is best explained in the limit Ay > k7', when
the ratio becomes 79(0c0) = (271 + 372)/(371 + 47,). Since W, > =, the
Rabi spin flips equilibrate the populations p; and p;. Thus, the stationary
populations of the states are ps = nWi,, and p; = p; = nWsy, where
n = 1/(Wiy + 2Wyy) is a normalization factor, ngsg at the satellite peak,
and 7o at the main peak. The rates Wi, ur) include all processes of electrons
tunneling into (out of) the dot. Note that at the satellite peak p = pggg, a
spin-up electron tunneling from lead 1 is the only process where an electron
tunnels onto the dot, i.e., Wi, (ugsr) = 71, whereas at the main peak, p = po,
the only tunnel process out of the dot is an electron with spin down into the
right lead, i.e., Wy (o) = 2. At the satellite peak, both spin-up and -down
electrons can tunnel from the dot to lead 2; thus, the current is given by
I(pesr) = 27205 = 271727EsR, With 7esr = 1/(371+472). At the main peak,
electrons can tunnel from lead 1 onto the dot, and the current is I(ug) =
Y (pr + p1) = 27v172m0, With n9 = 1/(271 + 372). Thus, the conductance ratio
is given as 19 = MEsr/Mo, and we immediately obtain rq(c0) in accordance
with Eq. (2.39). Therefore, the reason for 7y < 1 is that at the satellite peak
three out of four tunnel processes contribute to Wy, and thus ngsg < 7o,
while only one contributes at the main peak.

2.4 Even-to-odd sequential tunneling

Up to now we have considered sequential tunneling currents with odd-to-even
transitions of the number of electrons on the dot. Now we consider a different
filling on the dot, with even-to-odd transitions. The state with N even is
|S) (involving different orbital states as for |S)), and the states with N + 1
are |T) and | |). This system can be described with the same formalism as
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before, but with the tunneling rates Wg =3, Wf?l Wis=2> Wfﬁ ,

W = [1— fuld9)], Wis = filA3), (2.40)
and with Wg;, Wyg, Wi, and Wig defined analogously. The master equation

of this system is given by Eqs. (2.16)—(2.21) upon replacing the subscripts
S by S. Since W g describes an electron tunneling onto the dot, whereas
W, g describes an electron tunneling out of the dot, the stationary current
through the dot is given by Eq. (2.22) after changing its sign and replacing
the subscripts, resulting in

L= —e(Wis+Wis)ps +eWiipp +e W5 py . (2.41)

By comparing Egs. (2.11) and (2.12) with Eq. (2.40) and Eq. (2.22) with
Eq. (2.41), we find that the formulas for the current are modified by the
replacements f;(Ag)) — [1 — fi(A5)], v =}, I] — —I}, and analogously
for opposite spins. For completeness, we give in the Appendix the formula
for the stationary current I3 [Eq. (B.3)], which is obtained by applying the
above replacements to Eq. (B.1).

In Sec. 2.3.2 we have identified the regime of the spin satellite peak, which
can be used to measure the decoherence time 75. For the setup considered
here, an analogous regime is p11 > A5 > o > Ag; see Fig. 2.5(a). The
current at the spin satellite peak is then given by Egs. (2.30) and (2.31) in the
corresponding regimes, after interchanging v, with s, replacing f; — (1—f1)
and AS 1 A 13-

For antiferromagnetic filling of the dot, one can use particle-hole sym-
metry to show that the two cases, odd-to-even and even-to-odd transitions,
are equivalent. Indeed, the tunneling from, say, a spin T electron from the
dot into the lead, |T) — |S), can be regarded as a spin T hole which tunnels
from the lead onto the dot, which was initially occupied by a spin | hole and
now forms a hole singlet, i.e., | |,) — |Sy). With this picture in mind, above
modifications become obvious.

2.5 Spin Inverter

In this section we describe a setup with which spin-dependent tunneling
711 + %T can be achieved. Alternatively, spin-polarized leads (see Sec. 2.9
for details) or spin-dependent tunneling barriers could be used. This setup,
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(a) (b)
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Figure 2.5: (a) Setup for measuring T, with g > E| > py (for E5 = 0). A
lower-lying state occupied by a singlet (corresponding to state |S)) illustrates
the antiferromagnetic filling of the dot. (b) Dot which should act as spin filter,
allowing only spin 1 to pass. However, in the setup (b), the singlet-triplet
spacing Ep, — Eg is too small compared to Ay = i1 — p1o. Here, if the initial
dot state is | T) (shown in gray), an electron with spin | from a lower-lying
state can tunnel onto the right dot, leaving a triplet on the dot (black), thus
the spin filter does not operate properly. This problem disappears if the
number of electrons on the dot can be reduced down to zero.

shown in Fig. 2.6, consist of two dots, “dot 1”7 and “dot 2,” which are coupled
in series with interdot tunneling amplitude tpp. Dot 2 acts as a spin filter
[25] and is coupled to the lead 2 with tunneling amplitude tpy,. We write the
Zeeman splitting A? the energy E¢ of state |n), and the chemical potential
Al with an index for dot d = 1, 2. We assume that dot 2 remains unaffected
by the ESR field, which can be achieved, e.g., by applying B, and/or B,
locally or with different g factors for dot 1 and dot 2. This assumption is
taken into account by choosing Al 5 A2

2.5.1 Spin filter

We briefly review the concept of using a quantum dot as spin filter [25],
as it is important for the description of the spin inverter. If the dot is
initially in state | T), only a spin | electron can tunnel onto the dot, forming
a singlet. Most importantly, the Zeeman splitting in the dot should be such
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Figure 2.6:

Spin-inverter setup, where the ESR field generates spin flips on dot 1 and
the (additional) dot 2 acts as a spin filter, allowing only spin-| electrons to
tunnel into lead 2. We consider the regime |tpp| < |tpr|, ES ~ E%, Al 2 A%
and FY > p; > E5 — A, for i = 1,2. The allowed transition sequence is

schematically given by T @1@2 =R @1®2 — ®1®2 — ®1®2 — ®1®2

| (see text), where “—~” means a coherent tunneling process.

that A, > Ag| —po. This ensures proper operation of the spin filter: because
of energy conservation, only the electron with spin | can tunnel from the
dot to the lead, leaving the dot always in state |T) after an electron has
passed. Therefore, the sequential tunneling current is spin | polarized. There
is a small spin-T cotunneling current, however, which is suppressed by a
factor [25] y max{kT, Au}/(Er, — Es)?. Note that for efficient spin filtering,
it is favorable to have the singlet state |S) as ground state with an even
number of electrons on the dot, since the denominator of the suppression
factor can become large, i.e., By, — Eg > A,. Otherwise, if the triplet state
|T.) = |11) is the ground state, only spin-1 sequential tunneling current can
flow through the dot. However, the spin-| cotunneling current involves the
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triplet state |Th) = (|T1) +|17))/v/2, and the suppression factor is given
by ymax{kT, Au}/(A.)? i.e., the cotunneling current is not suppressed
efficiently [110].

2.5.2 Implementation of the spin inverter

For implementation of the spin inverter, the Zeeman splitting in dot 2 should
be such that A% > Ag,' — i, ensuring that dot 2 acts as a spin filter. The
coupling of dot 2 to the lead shall be strong such that electrons escape rapidly
from dot 2 into lead 2. This leads to resonant tunneling with resonance width
Iy = 27y |tpr|?. We require T'y < ASTz — g, i.e., that the broadened level
of dot 2 be above ps. This excludes contributions from electrons tunneling
from lead 2 onto dot 2, as shown in Ref. [10].

We calculate the rates 47 and 4! for tunneling from dot 1 via dot 2 into
lead 2 in a T-matrix approach [111, 10]. We use the tunnel Hamiltonian Hy =
Hpp+ Hpy,, where Hpp describes tunneling from dot 1 to dot 2 and Hpy, from
dot 2 to lead 2. The transition rates are Wy, = 27r|(f|T(€i)\i>|25(ef — &),
where lead 2 is initially at equilibrium and with the T" matrix

o 1 n

T(e;)) = lim H _ H ) 2.42
( ) Tn:() <5i+l77_Hd0t _Hlead T) ( )
We take the leading order in Hpp and sum up the contributions from all
orders in Hpr,. We then integrate over the final states in lead 2 and obtain
the Breit-Wigner transition rate of an electron with spin | to tunnel from

dot 1 to lead 2 via the resonant level FZ of dot 2,

tpp|T
A= tool T (2.43)

(Asi' = Agi?)” + (T2/2)"

In the spin filter regime considered here, dot 2 is always in state | T). Thus,
tunneling of an electron with spin T would involve the triplet level £z, on
dot 2, which is out of resonance, and thus ' is suppressed to zero (up to
cotunneling contributions, see Sec. 2.2.6). The state of dot 1 and the current
through the setup is again described by the master equation [Eqgs. (2.16)-
(2.21)] with the tunneling rates W§, = W7, = Wg, = 0 and W7 = 4*. Thus,
we can use all previous results for one dot in Sec. 2.3.1, but with 72l — A
vy — 0, and fo(Ag;) = 0. Note that even for zero bias Ay = 0, a pumping
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current flows from lead 1 via the dots 1 and 2 to lead 2; see Eq. (2.44) and
Sec. 2.6. We point out that this setup (see Fig. 2.6) acts as a spin inverter;
i.e., only spin-T electrons are taken as input (lead 1), while the output (lead 2)
consists of spin-| electrons. In particular, the spin inverter does not require
a change in the direction of the external magnetic field [56].

2.6 Pumping

The ESR field provides energy to the system by exciting the spin state on the
dot. When the dot is initially in the excited state | |), a spin up electron can
tunnel onto the dot, followed by the spin down tunneling out of the dot. In
total, the Zeeman energy A, is gained. This energy input can be exploited
to induce a current through the dot, even at zero bias Ay = 0. However,
to obtain a directed current, the spin symmetry between lead 1 and 2 must
be broken. This can be achieved by spin-dependent tunneling, fyll #* %T , e.g.,
produced with a double-dot, see Sec. 2.5. At the spin satellite peak and for
zero bias, i.e., fi = fa, there is a finite current [Eq. (B.2)] due to “pumping”
[112] by the ESR source,

1(@) = (Wi +Wo) (413 = 3 i ds) 29 i As)

1
X (29 =W =W,) + 4’7(WTL‘|’WH+2W&))} : (2.44)

Here, sgn(vl74 —~{74) determines the direction of the current. Note that for
spin-independent tunneling, fyll = %T , and the pumping current vanishes.

2.7 Rotating ESR fields

It is interesting to study rotating magnetic fields in addition to linearly oscil-
lating fields as studied above. With rotating fields, it is possible to calculate
the time evolution of the density matrix of the dot exactly. In particular,
the stationary solution of the master equation is obtained in a controlled ap-
proach and no rotating wave approximation is necessary. However, rotating
fields are experimentally more difficult to produce than linearly oscillating
fields.
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We consider a clockwise rotating field with amplitude BY, described by
1
Hgsg = ~4 A [0, cos(wt) — o, sin(wt)], (2.45)

where A} = 2gupBY. Thus, for A, = A we have chosen the amplitude of
the rotating field to be only half the amplitude of the linearly oscillating field,
since both lead to the same effective spin-flip rate W,,. Using Eq. (2.5) we
immediately obtain the master equation, which is given by Egs. (2.16)—(2.21)
after the following replacements. The last terms in Eqs. (2.16) and (2.17)
become F(A, /2) Im [emp ”], respectively. Equation (2.19) is replaced by

. . .AJ_ —iw
pi = —ilzpyy +i—me ™ (pr = p)) = Vig i - (2.46)

We transform to the rotating frame | 1), = e*2| 1) and | ), = e~*!/2| |) such
that p;; = e‘mpIT. This transformation removes the time dependence of the
coefficients in the master equation, which we shall now write as pp, = Mpj,.
The equations for pg; and pjg, decouple and we write the remaining part of
the superoperator M as matrix in the basis {p;", p,", ps”, Re[p];], Im[p],]},

~(Wpy + Wey) Wi Wis 0 —Ay/2
Wi — (W +Ws)) Wis 0 AL/2
Wy Ws, —(Wis + Wys) 0 0
0 0 0 V(A —w)
AJ_/4 _AJ_/4 0 —(Az—w) _‘/lT
(2.47)

The master equation can now be solved exactly by calculating the eigenvalues
A; of M. Since the total probability is conserved, Y p, =0=>"_ Mppm,
where n is summed over the diagonal elements, and m over diagonal and
off-diagonal elements of p. By considering linearly independent initial con-
ditions for pp, we see that > M,,, = 0, for every m. Thus, adding up
the rows in M for the diagonal elements of pp gives zero, which is satisfied
explicitly by adding the first three rows in Eq. (2.47). Therefore, M does
not have full row rank and there is an eigenvalue Ay = 0 with eigenspace
describing the stationary solution. The eigenvalues of M are

1
{07 —Vir, =3W, —5 <ZW +Vy* \/(EW —Vip)? - Ai) } (2.48)
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with Xy = W+W;, +W); and where we have considered W = Wgy = Wy =
W;s = Ws and resonance A, = w for simplicity. If all \; are different, the
time evolution of the density matrix is pp(t) = Y, ;e p,[113]. The decay
of the contribution of the eigenvectors p, is exponential and generally all
decay rates \; are involved. Further, we see from the last two eigenvalues
in Eq. (2.48) that the decay rates of p, may be a nontrivial function of the
rates involved in the master equation. This should be kept in mind when
one uses time-dependent ensemble properties, i.e., pp (), to measure intrinsic
rates, e.g., T7 and T;. We point out that the presence of very small decay
rates does not necessarily prevent a decay of the initial conditions. If, say,
the tunneling rates are smaller than the spin relaxation rate, W < Wy,
it would be interesting to study a density matrix which is described as a
linear combination of the eigenvector with eigenvalue —3W [Eq. (2.48)] and
the stationary solution py, i.e., pp(t) = py + ceWip,yy,, where the decay
rate 3W is independent of W;,. However, such an initial condition always
contains contributions from state |S) such that, in particular, it is not possible
to construct an initial Spin—% state which would decay only with the slow rate
3W.

The (exact) stationary solution of the master equation can be readily
obtained from Eq. (2.47). By eliminating p; from the coupled equations, we
obtain the effective spin-flip rate

Al Vig
8 (w—A)2+ V3’

W, = (2.49)

which is equivalent to Eq. (2.25). Thus, all the results for the stationary
currents from Sec. 2.3 apply and are exact for the case of rotating magnetic
fields.

2.8 Cotunneling

We now consider the cotunneling regime [114, 115, 63] Agy, Ag| > f1, fo >
E,, E;, where the number of electrons on the dot is odd; thus the state on the
dot is described by | 1) and | |). The leading-order tunnel processes is now the
tunneling of electrons from lead [ onto the dot, forming a virtual state |n),
followed by tunneling into lead [’. The spin state on the dot changes o — o”.
This process is called elastic cotunneling for o = ¢’ and inelastic cotunneling
for 0 # o’. Note that in the absence of an ESR field, the dot relaxes into
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Figure 2.7: Cotunneling processes involving |S) for A, > Apu. (a) Elastic
cotunneling. The cotunneling sequence [() — ) — (]!, involving the
virtual state |.S) on the dot with virtual energy cost Ag; — 1. An equivalent
process is possible when the initial and final dot state is | |), however, with
a virtual energy cost reduced by A,. These elastic cotunneling processes
contribute to transport and to spin decoherence, while they do not contribute
to spin relaxation (i.e., 7T7). (b) Inelastic cotunneling from lead 1 into lead
2 via the sequence () — ) — (D]. Note that tunneling of an electron
from lead 2 into lead 1 is also possible, since the energy gain A, from the
dot relaxation is larger than the bias Ap. (c) Inelastic cotunneling, where
only one lead is involved. The process shown here leads to a particle-hole
excitation in lead 1. While it does not directly contribute to transport, it
contributes to spin relaxation and spin decoherence of the dot.

2

79

its spin ground state and no inelastic cotunneling processes, exciting the dot
spin, occur for Ay < A,. However, if an ESR field is present, the dot spin can
be excited by spin flips. Then, inelastic cotunneling processes, which relax
the dot spin, can occur. These processes either contribute to transport or
produce a particle-hole excitation in lead 1 or 2 [see Figs. 2.7(b) and 2.7(c)].

These cotunneling rates are calculated in a “golden rule” approach [25],
which is known to be consistent with a microscopic derivation [63],

2

! tl// to_n
Wi, = 2m07 [de 60 L= fite= B \Z tonllen | (250

where the possible spin dependence of v has been absorbed into ¢, Ay, =
E, — E, is the change of Zeeman energy on the dot, and A,, = E,, — E, is
the energy cost of the virtual intermediate state. Here, t;,, are the tunneling
amplitudes, where ;¢ = tlT has already been introduced in Eq. (2.13). The
cotunneling current through the dot can be calculated by summing up the
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contributing tunneling rates, as we have done for Eq. (2.22),

Ior=eY (W2, —W2)p,. (2.51)

We point out that by treating the cotunneling processes with golden rule
rates, only classically allowed dot states are considered. Thus, the number
of charges on the dot is fixed and no charge can temporarily accumulate as
for sequential tunneling. In particular, we have neglected quantum charge
fluctuations on the dot. Therefore, within our master equation approach
for cotunneling, the charge currents in both leads are equal, I1(t) = I,(t).
This equality is valid for “coarse-grained” expectation values of the current
(and other physical observables). In this approximation, one smoothens out
the quantum fluctuations by averaging over the short-time behavior; i.e., one
considers only the behavior on time scales larger than the lifetime 1/(Ag, —p)
of the virtual states on the dot. However, when the charge imbalance due to
the virtual states is taken into account in a microscopic treatment, one can
find pronounced peaks in the noise S(w) for |w| corresponding to the virtual
energy cost, as was shown in Ref. [116].

The inelastic cotunneling provides spin relaxation processes in addition
to those contributing to T, totaling in WT = Wy +3,, WTl'll For processes
with I’ = [, particle-hole excitations are produced in lead [. We are interested
in the regime Ap < A,, where (inelastic) cotunneling does not excite the dot
spin, i.e., WET = W ;. In analogy to Eq. (2.15), we take a phenomenological
total spin decoherence rate

1 1 ,
Vel = — 4 = Wk 2.52
17 T2 + 2 ”/2:/ olo ( )

where all spin relaxation and tunneling processes are taken into account. The
master equation for the dot in the cotunneling regime and in the presence of
a linearly polarized ESR field becomes

pr = =W pr + W p) — A, cos (wt) Im[p], (2.53)
pro= W pr = Wit pp + A, cos (wit) Im[py], (2.54)
. . A
pr = —ilapyy Figreos (@) (pr —p) = Vit (2.55)

Note that away from the sequential tunneling regime, the master equation
becomes much simpler while the formulas for the rates are more involved.
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For the time-averaged current we evaluate the stationary solution of the
master equation in the rotating wave approximation (see Sec. 2.3) for linearly
or exactly (see Sec. 2.7) for circularly polarized ESR fields. This yields an
effective spin-flip rate W, [Egs. (2.25) and (2.49), respectively] and eliminates
Eq. (2.55). We obtain

B W, + Wiy
2W, + W” + Wu + Z”, WTllll

Pl (2.56)

and p; = 1 — p;. We consider the case close to a sequential tunneling res-
onance (but still in the cotunneling regime), Ag, — iy < Ep, — Eg, such
that the virtual energy cost of an intermediate triplet state is much higher
than that for a singlet state. Since (Er, — E; — p)/(Es — E, — ) < 1, with
= (p1 + p2)/2, we have to consider only cotunneling processes involving
state |S) in Eq. (2.50). For Ay, kT' < Agy, — pn < Ep, — Eg, the relevant
elastic rates are

Ap

2l = e . 2.57
oo o (ASO' _ ,u)g ( )

The inelastic rates are, for lead indices I, I’ =1, 2,
Wit = 122 : 2.58
BT o e — (s A=) (23%)

A+ (I'=D)Ap

v Dot D g (2:59)

Ap

where Eq. (2.59) is valid for A, < Ag; — . Note that for Ay < A, the
inelastic rates can be much larger (by a factor of A,/Apu) than the elastic
ones, while their contribution to the current, W2' — W}i? = 2W 7, is of the
same order as for the elastic rates.

For W2, Wy < Wi, we obtain the cotunneling current from Eqs. (2.51)
and (2.56)—(2.58),

e Apmr Ap Ag| — A,
Ior = ———22_ 41 eW, 3— + 2.60
or 21 (Agy — p)? 4A, Agr—p  Ag—p ( )
e Apmny Ap
— PR oW, ——. 2.61
2w (AST - ,u)2 te QAZ ( )

The first term in Eq. (2.60) results from elastic cotunneling with spin ground
state | T) on the dot. The second term represents the increased current if the
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spin is flipped into state | | ) before cotunneling occurs, since then both elastic
and inelastic cotunneling processes contribute to the current. The current
Ict is proportional to W, up to a constant background and thus shows,
as a function of w, a resonant peak at w = A, of width 2V|;. Thus, the
intrinsic spin decoherence time 75 is accessible in the cotunneling current as
well as in the sequential tunneling (see Sec. 2.3.2). Generally, the cotunneling
current is much smaller than the sequential tunneling current, and thus it
might seem more difficult to detect T3 in the cotunneling regime. However,
since the current and the decoherence rate due to tunneling are proportional
to v2, the small currents can be compensated by choosing more transparent
tunnel barriers, i.e., larger . Then, the current and the decoherence rate in
the cotunneling regime can become comparable to the sequential tunneling
values given in Sec. 2.3.2. For illustration we give the following estimates.
For B,=1T,B=2G,g=2, 71 =% =5x10s7!, T} = 1 us, T, = 100ns,
Agy—p=A,, and Ay = A,/5, the cotunneling current as a function of the
ESR frequency w is 0.18 pA away from resonance and exhibits a resonance
peak of /&7 = 0.28 pA, with half-width VﬁT =35x107s7.

2.9 Spin read out with spin-polarized leads

An electron spin on a quantum dot can be used as a single spin memory (or as
a quantum bit for quantum computation [52]) if the spin state of the quantum
dot can be measured. It was shown that a quantum dot connected to fully
spin-polarized leads, Al**% > ¢ > A, can be used for reading the spin
state of the quantum dot via the charge current [25]. Such a situation can
be realized with magnetic semiconductors (with effective g factors exceeding
100) [5] or in the quantum Hall regime where spin-polarized edge states are
coupled to a quantum dot [117]. If the spin polarization in both leads is T, no
electron with spin | can be provided or taken by the leads (since v| = 0), and
the rates Wsy and W;g vanish. Thus, if the dot is initially in state |T), no
electron can tunnel onto the dot (the formation of the triplet is forbidden by
energy conservation) and I = 0, up to negligible cotunneling contributions.
However, if the dot is in state |]), a current can flow via the sequential
tunneling transitions 7(]) — )) — ({)1. Therefore, the initial spin state of
the quantum dot can be detected by measuring the current through the dot.
Note that for this read-out scheme, it is not necessary to have A, > kT on
the dot; the constraint of having spin-polarized leads is already sufficiently
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strong.

In the stationary regime and for A, > kT, the current becomes blocked
due to spin relaxation (W, ). However, this blocking can be removed by the
ESR field producing spin flips on the dot (with rate W,). For W, < Wy,
this competition leads again to a stationary current with resonant structure,

V172
IHw)=e(W; +W,) , (2.62)
" Ve Wi+ (n+72) Wiy
from which V|; (and 1/73) can be measured. Note that the relaxation rate
W, is rather small; thus only small ESR fields can be used, which leads to
small currents.

2.9.1 Counting statistics and signal-to-noise ratio

We analyze now the time dynamics of the read out of a dot spin via spin-
polarized currents. The goal is to obtain the full counting statistics and to
characterize a measurement time t,,.,s for the spin read out. While we have
considered only averaged currents so far, we now need to keep track of the
number of electrons ¢ which have accumulated in lead 2 since t = 0[70, 71,
72]. The time evolution of pp(q, t), now charge dependent, is described by
Egs. (2.16)~(2.21), but with replacements Wg ps(q) — Wis ps(q— 1) in Eq.
(2.17) and W3, p (q) — W&, py(¢+ 1) in Eq. (2.18). Next, we consider the
distribution function P;(q, t) = " pn(q, t) that g charges have accumulated
in lead 2 after time ¢ when the dot was in state |i) at t = 0. For a meaningful
measurement of the dot spin, the spin-flip times W; l_l, W”_l and 1/A,
must be smaller than t,,.,s and are neglected. Equations (2.16)—(2.21) then
decouple except Egs. (2.17) and (2.18), which we solve for p; = 1 and for
p; = 1 at ¢ = 0. The general solution follows by linear combination. First, if
the dot is initially in state | T), no charges tunnel through the dot, and thus
Pi(q, t) = 64. Second, for the initial state ||), we consider k7" < Ap and
equal rates Wy = W7, = W. We relabel the density matrix p;(q) — pm=2q
and ps(q) — pm=2q+1, and Egs. (2.17) and (2.18) become

Pm = W(pm—l - pm)v (2'63>

with solution p,,(t) = (Wt)me="!/m! (Poissonian distribution). We obtain
the counting statistics

Pi(q, t) =

(Wt)2ae=t <1+ Wt ) (2.64)

(29)! 2q+1
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Experimentally, P|(q, t) can be determined by time series measurements or

by using an array of independent dots (see Sec. 2.10.1). The inverse signal-

to-noise ratio is defined as the Fano factor [65, 118], which we calculate as
(6g(t)?) 1 3—2eWHAWt+1) — e W

i = ey 2T a@Wioitewy (2.65)

with F| decreasing monotonically from F|(0) = 1 to F|(t — co0) = 3. Note
that for dot spin |T), only weak cotunneling occurs with Fano factor F; =
1[63].

If we are interested in the current and noise for long times ¢t > W=, we
can follow the steps used in Ref. [119]. We decouple the differential equa-
tions with respect to ¢ by taking the inverse Fourier transform pp(k) =
> e~ pp(q). Note that, for & = 0, we recover the density matrix pp =
pp(k = 0), where the accumulated charge is not taken into account. The
probability P(q, t) is then approximated by a Gaussian wave packet in

g space with group velocity I /e = Wg Wig/(Wg +W /) and width \/2F (I /e)t,

and
o W32+ (172 266)
(Wsl‘l + Wfs)2 ‘
is the Fano factor [119]. However, within this approximation, valid for Wt >
1, we cannot access the short-time behavior where only a few electrons have
tunneled through the dot, which is of importance for the read-out process
considered here.

2.9.2 Measurement time

Using the counting statistics, we can now quantify the measurement effi-
ciency. If, after time t,c.s, Some charges ¢ > 0 have tunneled through the
dot, the initial state of the dot was ||) with probability 1 [assuming that
single charges can be detected via a single electron transistor (SET) (Ref.
[118])]. However, if no charges were detected (¢ = 0), the initial state of the
spin memory was | 1) with probability

—W?2 _Wwl
W§l6 Wist - Wfse Wslt

1—P(0,t)=1— (2.67)

which reduces to 1 —e~W(1 + W), for equal rates. Thus, roughly speaking,
we find that tyeas = 2W 1, as expected, while the Fano factor is 0.5 < F| <
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0.72. If, more generally, the threshold for detection is at m charges, m > 1,
Eq. (2.67) is replaced by 1 — S " Py(q, t).

We insert now realistic numbers to obtain an estimate of the fastest pos-
sible measurement time which can be achieved with this setup. For a fast
spin read out, the tunneling rates and the current through the dot should be
large, limited by the fact that the conductance of the dot should not exceed
the single-channel conductance e?/h. In the linear response regime and for a
small bias Ay /e, the current is I = ey Ap/S8kT < (Ap/e)(e®/h) for 41 = 1.
Thus, the tunneling rates are limited by v < 8kT'/h = 1.66 x 10! (T'/K)s~*.
For W = 41 = 1.25 x 109 s7! (corresponding to kT < Ay and a current
I = 1nA) and m = 1, the spin state can be determined with more than 95%
probability for a measurement time of t,..s = 400 ps and with more than
99.99% probability for s = 1 ns [120].

2.10 Rabi Oscillations of a single spin in the
time domain

2.10.1 Observing Rabi oscillations via current

The ESR field generates coherent Rabi oscillations of the dot spin, leading to
oscillations in pp(t). Since the time-dependent currents I(t) in the leads are
given by the populations p,(t) [Eq. (2.22)], current measurements give access
to these Rabi oscillations. First, we consider a dot coupled to unpolarized
leads in the regime of the spin satellite peak (see Fig. 2.1 and Sec. 2.3.1). For
kT < Ap, the current in lead 2 is I (t) = e(y4 +73) ps(t); ie., pg is directly
accessible via measurement of I5(t)[121]. Further, for 7] =/, the current in
lead 1 is I1(t) = ev1(p, — ps), which gives access to p;(t), if the ratio v; /72
is known. We calculate the oscillations of Ij o(t) explicitly by numerical
integration of the master equation [Eqs. (2.16)—(2.19)]; see Fig. 2.8(b).

The measurement of pp can be refined by using the spin read-out setup
with spin-polarized leads (Sec. 2.9). For kT < Ap, the current is I1(t) =
I1(t) = eyl p,(t) in lead 1 and I,(t) = I} (t) = eyl ps(t) in lead 2 [121]. Thus,
the time dependence of p; and pg (and also of p; = 1 — p; — ps) can be
directly measured via the currents I; o; see Fig. 2.8(a).

Note that the electrons which tunnel onto the dot decohere the spin state
on the dot (see Sec. 2.2.5). Thus, to observe Rabi oscillations in I (%)
experimentally, the Rabi frequency A, must be larger than the coupling to
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Figure 2.8: Rabi oscillations of the electron spin on the dot in the time
domain. We consider the regime at the spin satellite peak, Ag; > pg >
Ag| > g, (see Fig. 2.1), and take Ty = 1 us, Ty, = 300 ns, A, = bWy
(corresponding to BY = 11G for g = 2), and p; = 1 at t = 0. During the time
span shown here, fewer than three electrons have tunneled through the dot on
average. Here, the spin decoherence is dominated by the tunneling process,
i.e., Wg; > 1/T5. (a) Spin-polarized leads with the only nonvanishing tunnel
rates W, = W s =4 x 10”s™!. The Rabi oscillations show up in p; (dotted
line), p; (dashed line), and pg (solid line), which is directly visible in the
current, since I} (t) oc p; and I} (t) o pg, for kT < Ap. In the inset, we show
the case of large tunneling, Ws; = W|s = 10°s™! > A,. As a consequence of
the Zeno effect (see Sec. 2.10.3), the Rabi oscillations are suppressed. Further,
p, and pg are indistinguishable since | |) and |S) equilibrate rapidly due to
the increased tunneling. (b) The time-dependent currents in unpolarized
leads, I;(t) = evi(p; — ps) and Ix(t) = 2evaps, for KT < Ap, and fle = %l =
4%x107s7! forl=1,2.
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the leads Wg,; otherwise, the strong decoherence (equivalent to a continuous
measurement) suppresses the Rabi oscillations (Zeno effect; see Sec. 2.10.3).
Then, however, only very few electrons tunnel per Rabi oscillation period
through the dot. To overcome the limitations of such a weak current signal
and to obtain [; 5(t) experimentally, an ensemble average is required.

There are two possibilities to obtain averages: namely, using many dots
or performing a time series measurement. First, many independent dots can
be measured simultaneously by arranging the dots in parallel to increase the
total current. For example, an array (ensemble) of dots and leads could
be produced with standard techniques for defining nanostructures or self-
assembled, or chemically synthesized dots could be placed within an insulat-
ing barrier between two electrodes. Second, time series measurement over a
single dot can be performed. For this, the procedure of preparing the dot to
the desired initial state—applying an ESR field and measuring the current—
has to be repeated many times (see Sec. 2.9.1 for counting statistics of the
read-out process). Then, assuming ergodicity, the current average of all these
individual measurements corresponds to the ensemble-averaged value.

2.10.2 Decoherence in the time domain

In Fig. 2.8, we plot the numerical solution of Egs. (2.16)—(2.21), showing the
coherent oscillations of pp and [, for (a) spin-polarized and (b) unpolarized
leads. The decay of these oscillations is dominated by the spin decoherence
rate V|;. Since this decay can be measured via the current, V|; (and 1/7%)
can be accessed directly in the time domain (see also Sec. 2.11, Ref. [122]
and Fig. 2.9).

2.10.3 Zeno effect

When the rate for electrons tunneling onto the dot, W, is increased, the co-
herent oscillations of p;, p; become suppressed [see inset of Fig. 2.8(a)]. This
suppression is caused by the increased spin decoherence rate V|; [Eq. (2.15)]
and can be interpreted as a continuous strong measurement of the dot spin,
performed by an increased number of charges tunneling onto the dot. This
suppression of coherent oscillations is known as the Zeno effect [123]. Since
it is visible in pp, it can be observed via the currents Iy »(t).
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2.11 Pulsed ESR and Rabi oscillations

We now show that it is possible to observe the coherent Rabi oscillations of a
single electron spin even without the requirement of measuring time-resolved
currents. This can be achieved by applying ESR pulses of length ¢, and by
measuring time-averaged currents (over arbitrarily long times). Then, the
time-averaged current I(t,) as function of ¢, gives access to the time evolution
of the spin state on the dot for both polarized and unpolarized leads [124]. In
particular, since arbitrarily long times, and thus a large number of electrons,
can be used to measure I, the required experimental setups are significantly
simpler compared to setups which aim at measuring time-dependent currents
with high resolution.

We assume a rectangular envelope for the ESR pulse with length ¢, and
repetition time ¢, (thus t, < t,). The time when no ESR field is present,
t,—1p, should be long enough such that the dot can relax into its ground state
|T); i.e., at the beginning of the next pulse, we have p; = 1. We calculate
I(t,) by numerical integration of the master equation [Eqgs. (2.16)—(2.19)] and
by subsequently averaging the (time-dependent) current [Eq. (2.22)] over the
time interval [0, ¢,]. The results are shown in Fig. 2.9(b) for unpolarized leads
at the spin satellite peak (see Sec. 2.3.1) and in Fig. 2.9(c) for spin-polarized
leads in the regime for spin read out (see Sec. 2.9). In both cases, I(t,)
as a function of pulse length ¢, shows the Rabi oscillations of the dot spin;
i.e., the Rabi oscillations can be observed in the time domain even without
time-resolved measurements.

In addition to the exact numerical evaluation of the master equation (see
Fig. 2.9), we now give an approximate analytical expression for I(t,). We first
consider the case of unpolarized leads at the spin satellite peak (Sec. 2.3.1);
for the case of spin-polarized leads, see below. For this, we need to evaluate
the time average of Eq. (2.22). For kT < Apu, we get

) =eGh+a 1 | "t pslt) (2.68)

First, we consider times ¢ with 0 <¢ <t,, for which an ESR field is present,
and pp oscillates with Rabi frequency A, [see Fig. 2.9(a) for ¢ < 200 ns].
Qualitatively speaking, when pg(t) is integrated in Eq. (2.68) up to t,, the
oscillating contribution averages nearly to zero, and we obtain a background
contribution I, approximately proportional to 6(’}/2 +72) »/tr, 1.e., linearin t,,
in agreement with Fig. 2.9(b). For experiments, this linearity of Iy provides
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Figure 2.9: Single-spin Rabi oscillations in the current I(t,) generated by
ESR pulses of length t,. Here, Ay > kT, Rabi frequency A, = 4 x 108 s™!
(corresponding to g = 2 and BY = 23G), 1 = 2x107s™!, vy =5y, Ty = 1ps,
and T» = 150 ns. (a) Evolution of the density matrix for unpolarized leads
where a pulse of length ¢, = 200 ns is switched on at ¢ = 0, obtained by
numerical integration of the master equation [Egs. (2.16)—(2.19)]. (b) Time-
averaged current I(t,) (solid line) for unpolarized leads and a pulse repetition
time ¢, = 500 ns. We also show the current where v, and 7, are increased
by a factor of 1.5 (dotted line) and 2 (dash-dotted line). (c) Time-averaged
current I(t,) (solid line) for spin-polarized leads, 7] = 2 x 107s™!, 44 = 541,
7%,2 = 0. The pulse repetition time ¢, = 10 us is chosen larger than T}.

Again, we show the current for tunneling rates 7{72 increased by a factor of
1.5 (dotted line) and 2 (dash-dotted line). Note that in this figure ¢, < T7;
i.e., most electrons tunnel through the dot after the pulse is switched off,
thus the linear background is negligibly small.
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a first check that ¢, is sufficiently long such that the dot has indeed relaxed
into its ground state before the next pulse is applied. We also give an upper
bound for Iy by using the inequality ps < p&ax = Ws /(Ws| + Wsy + Wis).
This is seen as follows. For pg(t) > p%®, we would have pg(t) < 0, and
thus pg(t') > p3, for all 0 < ¢ < ¢, which would be in contradiction to
the initial condition pg(0) = 0; hence indeed pg(t) < p&**. From Eq. (2.68),
we then obtain Iy < emin{y], v} +~5}t,/t.. Note that for pulse lengths t,,
over which the dot spin evolves coherently, tpﬂ < 1. Thus, by comparing
the upper bound with Eq. (2.69), we see that for 'le < 72 the background
current I, never becomes dominant.

Second, we consider ¢, <t < {,; i.e., the ESR field is switched off, and the
dot state relaxes into its ground state | T). Making the reasonable assumption
that the tunnel processes dominate the spin relaxation, v > W3, we neglect
W, here. We then calculate the contribution for ¢ > ¢, to the integral in
Eq. (2.68) analytically and obtain

T 1

SN 7 e 73+
I(t,) = Io(tp) = i jl_'_f;
rn 2

[p(ty) + ps(tp)] o< 1 —pi(ty). (2.69)

We now give a physical explanation for Eq. (2.69). We consider different
tunneling events (after the pulse is switched off) and their contributions to
the current, ft': dt ps(t). Since we assume that at ¢, the dot has relaxed into
its ground state |T) and thus pg(t,.) = p,(t,) = 0, it is sufficient to consider
only one pulse and to extend the upper integration limit to infinity. For
the population p,(t,) of state ||), the only allowed transition is ||) — |S)
(neglecting again the intrinsic spin relaxation rate W;|). Thus, eventually
this population p; will be transfered to ps and thus to the current. Note that
sequences with |S) — | |) contribute to the current at a later time again, since
the only possible decay into the ground state |T) involves |S). Therefore,
concerning current contributions, we introduce the effective population p; =
p; + ps, which is the probability that at some later time an electron can
still tunnel from the dot to lead 2. This p; decays to state |T) with the rate
vs = 71 +74, i.e., with the rate for the process |S) — |1). In total, integrating
over pg(t) for t > ¢, yields [;° dt pr(t,)e” 75" = [p|(t,) + ps(tp)]/7s, and with
Eq. (2.68) we immediately recover Eq. (2.69), as expected.

Next, we consider the case for spin-polarized leads. Here, no spin relax-
ation process due to tunneling occurs and the dot spin can only relax via
intrinsic spin flips, given by the rate W; (corresponding to the relaxation
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time 77; we neglect Wy for Wy < W;)). Thus, we now consider the relax-
ation rate Wy instead of vg. The relaxation occurs only from | |) to |1); i.e.,
the roles of |S) and |]) are interchanged compared to the case for unpolar-
ized leads considered above. The above argument now applies analogously
by considering the (spin-polarized) current in lead 1, I} (t) = e~] p|(t). We
obtain

I'(t,) ~ — (1= py (1)), (2.70)

with equality for ¢, < T;. We point out that for 4] > 1/T}, the (total) de-
coherence of the dot spin occurs much faster than its (intrinsic) relaxation.
Then, pulse lengths ¢, for which Rabi oscillations can be observed, are lim-
ited, 1/t, > Vi1 > ~] > Wj,. In this case, the current contribution for ¢t < t,
can be neglected since it is suppressed by a factor of ¢,JW;| < 1 compared to
the contribution for ¢ > t, [Eq. (2.70)], see Fig. 2.9(c). Note that for spin-
polarized leads, the relaxation time W; ™" is usually much longer than for
unpolarized leads, 751; thus the required pulse repetition time ¢, > W; l_l
might become very long. However, if one chooses a pulse repetition time
t, = c¢/v, for ¢ > 1, and with the relevant relaxation rate -y, the current is
proportional to (1/¢,) fooodt e " =1/c, i.e., independent of v. Thus, roughly
speaking, the slow relaxation rate in the case of spin-polarized leads has no
influence on the attainable maximum current since the decay from pg and p;
is much slower and thus per pulse there are more electrons passing the dot.

To conclude, we would like to emphasize again that the Rabi oscillations
of the dot spin can be observed directly in the time domain by using pulsed
ESR and measuring time-averaged currents (see Fig. 2.9). Observing Rabi
oscillations also allows one to determine 75 in the time domain; see Sec. 2.10.2

[122].

2.12 STM Techniques and ESR

So far, we have considered a quantum dot coupled to leads. In this section,
we would like to note that our description applies to more general structures
showing Coulomb blockade behavior, such as Au nanoparticles [125] or Cg
molecules [126], which has been observed with STM techniques. This justifies
that instead of a quantum dot, we now consider a localized surface state or an
atom, molecule, or nanoparticle adsorbed on a substrate. This particle can
then be probed with the STM tip by measuring the tunnel current through
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the particle. The current arises from electrons tunneling from the STM
tip onto the particle and further tunneling, possibly through an insulating
overlayer, into the bulk of the substrate.

In standard STM theory, the tunneling from the STM tip to the sam-
ple is treated pertubatively [127]. Evaluation of the golden rule matrix el-
ement, in the simplest model of a one-dimensional tunnel barrier, gives a
tunneling amplitude, which is dominated by an exponential decay of the
electronic wave function into the barrier; thus t7 oc e [cf. Eq. (2.13)], with
K = v/2ma, tip-particle distance d, and barrier height ¢ (roughly given by the
work function of the tip and sample). In particular, the perturbative descrip-
tion of STM is equivalent to our treatment of the tunneling Hamiltonian in
first (sequential tunneling) order. Therefore, if the particle of interest shows
Coulomb blockade behavior and has a spin—% ground state, the master equa-
tion [Egs. (2.16)—(2.21)] applies. Thus, using an ESR field, coherent Rabi
oscillations and the T3 time of the spin state of the particle can be accessed
via the current. Further, if spin-polarized tips and/or substrates are avail-
able (spin-polarized STM), such a particle can act as single spin memory with
read out via current. Note that the tunneling rates from the STM tip into
the particle can be controlled by changing the distance d; thus the total de-
coherence V|; [Eq. (2.15)], containing tunneling contributions, can be varied.
This allows one, e.g., to vary the current linewidth 2V}, (Sec. 2.3.2) and to
suppress the Rabi spin flips for strong decoherence (Zeno effect, Sec. 2.10.3).
One apparent restriction of atomic or molecular systems is that it is difficult
to apply a gate voltage to the particle, shifting its energy levels. However,
the same effect can be achieved if the Fermi energies in the STM tip and the
substrate can be shifted, such as by varying electron densities.

2.13 Conclusion

We have shown how the single-spin dynamics of quantum dots can be ac-
cessed by current measurements. We have derived and analyzed coupled
master equations of a quantum dot, which is tunnel coupled to leads, in the
presence of an ESR field. The current through the dot in the sequential tun-
neling regime shows a new resonance peak (satellite peak) whose linewidth
provides a lower bound on the single-spin decoherence time 7. We have
shown that also the cotunneling current has a resonant current contribution,
giving access to 1. The coherent Rabi oscillations of the dot spin can be
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observed by charge measurements, since they lead to oscillations in the time-
dependent current and in the time-averaged current as function of ESR pulse
length. We have shown how the ESR field can pump current through a dot
at zero bias if spin-dependent tunneling or a spin inverter is available. We
have discussed the concept of measuring a single spin via charge in detail.
We have identified the measurement time of the dot spin via spin-polarized
leads. Finally, we have noted that the concepts presented here are not only
valid for quantum dots but also for “real” atoms or molecules if they are
contacted with an STM tip.
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Chapter 3

Measurement Efficiency and
n-shot Read Out of Spin Qubits

In this chapter, we consider a general apparatus for measuring a qubit and
define a measurement efficiency e to characterize reliable measurements via n-
shot read outs. We consider electron spin qubits in quantum dots and propose
various read-out implementations based on a double dot and quantum point
contact (QPC). We show that the associated efficiencies e vary between 50%
and 100%, allowing single-shot read out in the latter case. We model the read
out microscopically and derive its time dynamics in terms of a generalized
master equation, calculate the QPC current and show that it allows spin read
out under realistic conditions.

3.1 Introduction

The read out of a qubit state is of central importance for quantum infor-
mation processing [2], see Sec. 1.4. In special cases, the qubit state can be
determined in a single measurement, referred to as single shot read out. In
general, however, the measurement needs to be performed not only once but
n times, where n depends on the qubit, the efficiency e of the measurement
device, and on the tolerated inaccuracy (infidelity) «. In the next section, we
analyze such n-shot read outs for general qubit implementations and derive a
lower bound on n in terms of e and «. In Sec. 3.3, we then turn to spin-based
qubits and GaAs quantum dots [3, 128] and analyze their n-shot read out
based on a spin-charge conversion and charge measurement via QPCs.

73
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3.2 n-shot read out and measurement efficiency e

How many times n do the preparation and measurement need to be performed
until the state of the qubit is known with some given infidelity « (n-shot read
out)? We consider a well-defined qubit, i.e., we take only a two-dimensional
qubit Hilbert space into account and exclude leakage to other degrees of
freedom. We define a set of positive operator-valued measure (POVM) oper-
ators [123], E4, = po|0){0|+ (1 —p1)|1)(1]| and Ea, = (1—po)|0){0]+p1|1)(1],
where py and p; are probabilities. These operators describe measurements
with outcomes Ay and A;, resp. They are positive and Ey, + E4, = 1.
This model of the measurement process can be pictured as follows. First,
the qubit is coupled to some other device (e.g., to a reference dot, see be-
low). Then this coupled system is measured and thereby projected onto some
internal state. That state is accessed via an external “pointer” observable
A [123] (e.g., a particular charge distribution, a time-averaged current, or
noise). We assume that only two measurement outcomes are possible, either
Ap or Ay, which are classically distinguishable [129]. For initial qubit state
|0) the expectation value is (A), = pyAg + (1 — po) A1, while for initial state
1) it is (A), = (1 — p1)Ag + p1A;. Let us take an initial qubit state [0)and
consider a single measurement. With probability py, the measurement out-
come is Ay which one would interpret as “qubit was in state |0)”. However,
with probability 1 — pg, the outcome is A; and one might incorrectly con-
clude that “qubit was in state |1)”. Conversely, the initial state |1) leads
with probability p; to A; and with 1 — p; to Apg. We now determine n for a
given «, for a qubit either in state |0) or |1) (no superposition allowed [130]).
For an accurate read out we need, roughly speaking, that (A), and (A), are
separated by more than the sum of the corresponding standard deviations.
More precisely [131], we consider a parameter test of a binomial distribution
of the measurement outcomes, one of which is Ay with probability p. The
null hypothesis is that the qubit is in state |0), thus p = py. The alternative
is a qubit in state |1), thus p = 1 — p;. For sufficiently large n, namely
npo1(l —po1) > 9, one can approximate the binomial with a normal distri-
bution [132]. The state of the qubit can then be determined with significance
level (“infidelity”) a for

n o> zf_a<é —1), (3.1)

e = (vim - V-0 -m) - 32
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with the quantile (critical value) z;_, of the standard normal distribution
function, ®(21_4) = 1 — a = [1 + erf(z1_4/v2)]. We interpret e as mea-
surement efficiency. Indeed, it is a single parameter e € [0, 1] which tells
us if n-shot read out is possible. For pg = p; = 1, the efficiency is maxi-
mal, e = 100%, and single-shot read out is possible (n = 1). Conversely, for
pr=1—p (e.g., po=p1 = %), the state of the qubit cannot be determined,
not even for an arbitrarily large n, and the efficiency is ¢ = 0%. For the
intermediate regime, 0% < e < 100%, the state of the qubit is known after
several measurements, with n satisfying Eq. (3.1).

3.2.1 Visibility v

When coherent oscillations between |0) and |1) are considered, the amplitude
of the oscillating signal is ‘<A>1 - (fl>0}, i.e., smaller than the value |A; — Ao|
by a factor of v = |pg+ p1 — 1|. Thus, we can take v as a measure of the
visibility of the coherent oscillations. With v and the shift of the oscillations,
s=1(pi—po) = L((A), + (A), — Ao — A1) /(A1 — Ap), we can get e. We
find the general relation v? < e < v, where the left inequality becomes exact
for pp = p; and the right for pg = 1 or p; = 1. Further, for every 0 < e < 1
we can take py = % and p; = % + 5, thus e < ev. Hence, given these natural
interpretations of e and v, we see that somewhat unexpectedly the efficiency

can be much smaller than the visibility (of course, e = 0 < v = 0).

3.3 Single spin read out

We now discuss several concrete read-out setups and their measurement ef-
ficiency. We consider a promising qubit, which is an electron spin confined
in a quantum dot [3, 128]. For the read out of such a spin qubit, the time
scale is limited by the spin-flip time T}, which has a lower bound of ~ 100 us
[133, 35] (while T3 is not of relevance here). One setup proposed in Ref. [3] is
read out via a neighboring paramagnetic dot, where the qubit spin nucleates
formation of a ferromagnetic domain. This leads to py = p1 = % and thus
e = 25%. Another idea is to transfer the qubit information from spin to
charge [3, 128, 134, 25, 56, 57]. For this, we propose to couple the qubit
dot to a second (“reference”) dot [135] and discuss several possibilities how
that coupling can be made spin-dependent, see also Fig 3.1. The resulting
charge distribution on the double dot will then depend on the qubit spin state
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Figure 3.1: Electron spin read-out setup consisting of a double dot. The right
“reference” dot is coupled capacitively to a QPC shown on the right. (a) Read
out using different Zeeman splittings. For T, the electron tunnels between the
two dots. For |, tunneling is suppressed by the detuning and the stationary
state has a large contribution of the left dot since it has lower energy. This
allows single-shot read out, i.e., e = 100%. (b) Spin-dependent tunneling
amplitudes, t; < t|, also enable efficient read out. (c) Read out with the
singlet state. Tunneling of spin T to the reference dot is blocked due to the
Pauli principle. (d) Schematic current vs. time during a single measurement.
Here, 74q is the time scale for tunneling and we assume 'y > tq4, i.e., that
the tunneling events can be resolved in the current.

and can be detected by coupling the double dot to an electrometer, such as
a quantum point contact (QPC) [136, 20], see Fig 3.1 (or, alternatively, a
single-electron transistor [137]).

3.3.1 Read out with different Zeeman splittings.

First, we propose a setup where efficiencies up to 100 % can be reached, see
Fig. 3.1a. We take a double dot with different Zeeman splittings, ALE =
E i R—E; r» in each dot [138] and consider a single electron on the double dot.

For initial qubit state |1), the electron can tunnel from state |L1)= (Th( s
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Figure 3.2: QPC current [Eq. (3.12)] as function of detuning ¢ where € > 0
(lower curve) and ¢ < 0 (upper curve) and for small ¢4. Note that for
le] > Ap,the factor n [Eq. (3.10)] ensures saturation of the current at the
values Iy, p.

to state |R1)= (O1(T), and vice versa, and analogously for qubit state | |).
We consider time scales shorter than 77, thus the states with different spins
are not coupled. Next, we define the detunings e, = E}"* — EL', which are
different for the up and down states, e; —e; = AL — A =£ (0. The stationary
state of the double dot depends on &1 and so does the QPC current I; |
[we show this below, see Eq. (3.12) and I[iyeon]. Therefore, initial states |1)
and ||) can be identified through distinguishable stationary currents [129],
I # I, thus e = 100% and single-shot read out is possible.

3.3.2 Spin-dependent tunneling

Spin-dependent tunneling provides another read-out scheme, see Fig. 3.1b,
which we describe with spin-dependent tunneling amplitudes t;’l. For té <
t(g, only spin T tunnels onto the reference dot while tunneling of spin | is
suppressed. We assume the same Zeeman splitting in both dots and reso-
nance ¢ = 0. It turns out [Eq. (3.12)] that I;,| depends on ¢ and thus the
state of the qubit can be measured. However, the decay to the stationary
state is quite slow in case the qubit is | |), due to the suppressed tunneling
amplitude té . Since the difference in charge distribution between qubit | 1)
and | |) is larger at short timescales, it can thus be advantageous to measure



78 3. Measurement efficiency and n-shot read out of spin qubits

the time-dependent current (discussed toward the end).

3.3.3 Read out with Pauli principle

We now consider the case where the reference dot contains initially an elec-
tron in spin up ground state, see Fig. 3.1c. We assume gate voltages such that
there are either two electrons on the right dot or one electron on each dot.
Thus, we consider the 5 dimensional Hilbert space |Sg)= (Oi)e, |T1)=
DiDe, [11)= OiDe, [T)= DD, 1T-)= DiD2. We define the “delo-
calized” singlet |Szr) = (|T1) — |11))/Vv2 and the triplet |Tp) = (| 1) +
| 11))/+/2. In the absence of tunneling, the corresponding energies are Eg, =
2¢g + U and Es,, = Er,, = €1 + eg with charging energy U and single
particle energies €;, . We can neglect states with two electrons on the qubit
dot and the triplet states with two electrons on the reference dot, since they
have a much larger energy (their admixture due to tunneling is small). We
denote the state with an “extra” electron on the right dot as |R) = |Sg)
with corresponding QPC current Ir. For state |L) = |Spgr) and for all triplet
states, |To.+), the current is Ir. When tunneling is switched on and the qubit
is initially in state |T), tunneling to the reference dot is blocked due to the
Pauli exclusion principle [139]. Thus, the double dot will remain in the (sta-
tionary) state |1y ) (T | and the current in the quantum dot remains (I) = I,
(a so-called non-demolition measurement). On the other hand, for an initial
qubit state | ), the initial state of the double dot is [|1) = (|To) —|SLr))/V2.
The contribution |Spg) of this superposition is tunnel coupled to |Sg) and
will decay to the stationary state p with corresponding QPC current I (see
below for an explicit evaluation). In contrast, the triplet contribution |7p) is
not tunnel-coupled to |Sg) due to spin conservation and does not decay. In
total, the density matrix of the double dot decays into the stationary value
s(|To)(To| + p). For e = 0, the ensemble-averaged QPC current for qubit | |)
is (I) = $(Ip + I) ~ (31, + Ig) and can thus be distinguished from I, for
qubit |T). However, in a single run of such a measurement, an initial qubit
| 1) decays either into |Ty)(Tp| or into p, with 50% probability each. Since
|To)(To| and |T1)(T| lead to the same QPC current I, these two states are
not distinguishable within this read-out scheme and single-shot read-out is
not possible. The read out can now be described with the POVM model
given above, with 1) = |0) and ||) = |1) and A; = I1; A = I[; p; = 1;
and p| = % Thus, the measurement efficiency is e = 50%, i.e., to achieve a
fidelity of 1 — a = 99%, we need n > 7 read outs [132].
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An analogous read out is possible if the ground state of the reference dot
is a triplet, say | RT, )= (O1(D2 which is lower than the other triplets (|RTp ),
|RT_)) due to Zeeman splitting. Again, we assume that the reference dot is
initially |1). First, for a qubit state |T) and at resonance, ¢ = 0, tunneling
into |RT,) always occurs and p; = 1. Second, the qubit state ||) has an
increased energy by the Zeeman splitting A, and is thus at resonance with
|RTy) (which has also an increased energy). If the double dot is not projected
onto the singlet (in 50 % of the cases), tunneling onto the reference dot will
also occur, ie., p; = % Thus, when one detects an additional charge on
the reference dot, the initial state of the qubit is not known. We find again

e = 50%.

3.4 Read-out model

So far we have introduced various spin read out schemes and the correspond-
ing measurement efficiencies. In order to evaluate the signal strength Ay — A,
for these schemes, we now calculate the stationary charge distribution p and
QPC current I for the case when the electron can tunnel coherently between
the two dots (as a function of the detuning and the tunnel coupling). We
describe the read-out setup with the Hamiltonian

H:Hdot+‘/:j+HQpc+V (33)

Here, Hgpc contains the energies of the (uncoupled) Fermi leads of the QPC.
Further, Hy,; describes the double dot in the absence of tunneling, including
orbital and electrostatic charging energies, Hqot|n) = E,|n). It thus con-
tains € = Ej, — ER, the detuning of the tunneling resonance. The inter-dot
tunneling Hamiltonian is defined as

Va = ta(|R) (L] + L) (R]). (3.4)

(Note that for tunneling between |Spr) and [Sg), tq is V2 times the one-
particle tunneling amplitude, since both states |T|) and |[T) are involved).
V is a tunneling Hamiltonian describing transport through the QPC. The
tunneling amplitudes, t% and t%, will be influenced by electrostatic effects,
in particular by the charge distribution on the double dot. Thus, we model
the measurement of the dot state via the QPC with [140, 141, 142]

V= ((2IL) (L] + ER)(R]) S (chiCous + D). (3.5)
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Here, ¢/ and ¢, create electrons in the incoming and the outgoing leads of
the QPC, where the sum is taken over all momentum and spin states. We
derive the master equation for the reduced density matrix p of the double
dot. We use standard techniques and make a Born-Markov approximation
in V' [107, 143]. We allow for an arbitrary inter-dot tunnel coupling, i.e., we
keep Vg exactly, with energy splitting E = (/4¢3 + €2 in the eigenbasis of

Hgaor + Va. We obtain the master equation [144]

pr = —pr=2tqIm[pgr], (3.6)
) ) I'oe
PrL = |ilg+ td%(gZ —2g0) | (pr — pL)
tq I
— dA,uQ — (FLFQ + I — iE) PRL (37)

for p, = (n|p|n) and prr = (R|p|L). In comparison to previous work [140,
141, 142], we find an additional term, —tq I'q/Ap, which comes from treating
V, exactly. We find that the current through the QPC is I}, = 2mv2e Aultd|?
for state |L) and analogously Ig for state |R), and we choose I, I > 0.
Here, Ay > 0 is the applied bias across the QPC and v is the DOS at the
Fermi energy of the leads connecting to the QPC. We define g+ = g(Au+FE),
gs = g9+ + g- and go = g(Ap) with g(z) = x/Ap(e**T — 1). The values
g+x0 vanish for Ap+FE > ET'. In this case, the decay rate due to the current
assumes the known value [140, 141, 142],

T = (\/Z . \/E)Q/ze. (3.8)

Generally, the factor kK = 1 + (4t3gs + 2e%gy)/E?* accounts for additional re-
laxation/dephasing due to particle hole excitations, induced, e.g., by thermal
fluctuations of the QPC current. For almost equal currents, I, g = I (1+1z),
we have ['q = I2?/8¢+ O(z*). Finally, by introducing the phenomenological
rate I'; we have allowed for some intrinsic charge dephasing, which occurs
on the time scale of nanoseconds [24]. For an initial state in the subspace
{|L), |R)}, we find the stationary solution of the double dot,

p = 5 (105 ) I+ 5 (140, ) IRNA

-ng—;uw + |L)(R)), (3.9)
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where

_ Iq
Lo(l+gs) + 1%

Positivity of p is satisfied since n < Au/E. The time decay to p is described

by three rates, given as the roots of P(X) = X3+ 20 X?+ (E* +T2,) X +

413 [T + Dqgs — 290)e%/ E?], with Ty = £T'q + I, The stationary current

through the QPC is given by

U] (3.10)

[_: ﬁL[L+ﬁR[R+2etd)\(FQ/AH) ReﬁRL (311)
and thus becomes
= IL + IR 3 2e FQti
I = Ip—1;) —n) 3.12

where A =1 — Au(g- — g+)/E. We note that n quantifies the effect of the
detuning ¢ on the QPC current. To reach maximal sensitivity, n = 1, we
need Igr < I5/10 for I ~ 1nA and Ty ~ 10° s7'. In linear response, the
current becomes

I = IL+IR+(IR—IL)itanh<£> [1—FiA’utanh<£)]

2 °2F okT ToE kT
h(—) - 2| |1- tanh | ——
T B cosh®(BJKT) {Sm (kT) kT] [ ToE U\ 2kT
2T E
—9ed=Q |y _ . 1
“E? { kTsinh(E/k:T)] (3.13)

Note that the second term in Eq. (3.12) depends on &, a property which
can be used for read out, as we have discussed above. For example, for
different Zeeman splittings and ;| = +Ap/2, Ty = 10°s7!, I, = 1nA,
and Iz = 0, the current difference is I| — I; = 0.4nA, which reduces to
0.05nA for Ir = 0.5nA. However, typical QPC currents currently reachable
are I;, = 10nA and Ir = 9.9nA, i.e., the relaxation of the double dot due
to the QPC is suppressed, n < 1073, and other relaxation channels become
important.

3.4.1 Incoherent tunneling

So far, we have discussed coherent tunneling. We can also take incoherent
tunneling into account, e.g., phonon assisted tunneling, by introducing re-
laxation rates in Egs. (3.6),(3.7). For example, for detailed balance rates
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and neglecting coherent tunneling, we find the stationary current [icon =
(I + Ig) + 3(Ig — I) tanh(e/2kT) (which becomes I for € > kT'). The
QPC current again depends on € and can be used for spin read out. The
current can also be measured on shorter time scales as we discuss now.

3.5 Read out with time-dependent currents

Read out with time-dependent currents is possible if there is sufficient time to
distinguish [, from Iz between two tunneling events to or from the reference
dot, i.e., we consider ',y > tq. In this incoherent regime, the tunneling from
qubit to reference dot occurs with a rate W, or W, depending on the qubit
state, with, say, W < W;. Such rates arise from spin-dependent tunneling,
tll’l, or from different Zeeman splittings and tuning to tunneling resonance
for, say, qubit |T) while qubit |]) is off-resonant, see Figs. 3.1a and 3.1b.
For read out, the electron is initially on the left dot and the QPC current is
I;,. Then, if the electron tunnels onto the reference dot within time ¢ and
thus changes the QPC current to I, such a change would be interpreted as
qubit in state | 1), otherwise as qubit ||). For calculating the measurement
efficiency e, we note that p; = pp = 1 —e™™1 and p; = p; = e~ (with this
type of read out, W| corresponds to a loss of the information, i.e., describes
“mixing” [119]). We then maximize e by choosing a suitable ¢ and find
efficiencies e 2 50 % for W, /W, 2 8.75 and e 2 90 % for W, /W, 2 80.

A more involved read out is to measure the current through the QPC at
different times. The current as function of time switches between the values
I;, and Iy, i.e., shows telegraph noise, as sketched in Fig. 3.1d. Since the
frequency of these switching events (roughly W} or W) depends on the spin,
the QPC noise reveals the state of the qubit. Finally, at times of the order of
the spin relaxation time 77, the information about the qubit is lost. At each
spin flip, the switching frequency changes (W, < W), which thus provides
a way to measure 7.

3.5.1 Read-out using a single dot only

Finally, we consider the qubit dot coupled to a lead instead of a reference
dot. Due to Zeeman splitting, the energy levels can be tuned such that only
the qubit | (electron) can tunnel to the lead [56, 57] with rate 7oy (spin T
electrons can tunnel only onto the dot). This produces a pulse in the QPC
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current, whose duration must exceed t,, to be detected (given by the time-
resolution of the current measurement), until a spin 1 electron tunnels onto
the dot, with rate v;,. After waiting a time ¢ to detect such a signal, we have
py=1and e = p| = e (] — e out),

3.6 Conclusion

In conclusion, we have given the criterion when n-shot measurements are
possible and have introduced the measurement efficiency e. For electron spin
qubits, we have proposed several read-out schemes and have found efficiencies
up to 100%, which allow single-shot read out. Other schemes, which are based
on the Pauli principle (Sec. 3.3.3), have a lower efficiency, e = 50%.
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Chapter 4

Asymmetric Quantum Shot
Noise and non-Markovian
effects in Quantum Dots

We analyze the frequency-dependent noise correlation of a current through a
quantum dot that is coupled to Fermi leads and is in the Coulomb blockade
regime. We show that asymmetric shot noise as function of frequency shows
steps and becomes super-Poissonian. This provides experimental access to
quantum fluctuations. We present an exact calculation for a single dot level
and a systematic calculation of the noise in lowest-order Born approxima-
tion (sequential tunneling regime) for the general case of many levels with
charging interaction.

4.1 Introduction

Shot noise is a striking consequence of charge quantization and allows to
characterize the transport of individual electrons [65]. The symmetry of the
noise S(w) is important: For a classical stationary system, noise (for autocor-
relations) is always symmetric in the frequency w. However, for a quantum
system, noise can by asymmetric due to the non-commutativity of current
operators at different times. It was recently found that such an asymmetric
noise can be detected since the noise frequency w corresponds a quantum of
energy hw which is transferred from the system to the measurement appara-
tus [64, 145, 146]. This means that antisymmetric quantum effects in noise

85
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can be measured and isolated from the classical (symmetric) effects [147]. In
this work, we show that striking asymmetric effects appear in the shot noise
S(w) of a quantum dot with steps as function of w, giving a super-Poissonian
Fano factor. Our analysis is based on a systematic microscopic theory which
remains valid in the quantum limit, w > k7" (where a Markov approximation
typically involved would not be valid). We verify our theory by exactly cal-
culating the noise of a dot with a single level. We note that quantum dots
are good candidates for an experimental test of our predictions since such
systems have been studied extensively over the years, both experimentally
and theoretically [148, 149, 150, 151, 116, 63].

We consider the operator I; which describes the current in a lead . We
define the current noise,

Sw(w) = /_Oodt e (L) Ir) — (TI){In)] (4.1)

[e.e]

in terms of the (non-symmetrized) correlation function, (I;(t) 1) = Tr I;(t) Iy p.
Here, p is the stationary density matrix (of the full quantum system). Note
that [;(t)Iy is not a Hermitian operator and thus does not correspond to a
classical observable. How should we interpret Eq. (4.1)? On the one hand,
one can avoid the non-Hermitian operator by arguing heuristically that Eq.
(4.1) is “unphysical” and by instead considering the correlation function in
terms of the symmetrized operator 3 [I,(t)Iy + I/ 1;(t)] [59]. One then obtains
the symmetrized noise, Sj" (w) = 3 [Sw(w) + Sy(—w)]. For | =I', this noise
does not depend on the sign of w. This corresponds to a measurement ap-
paratus [64, 145, 146] which does not discriminate between absorption and
emission of energy by the system, and thus cannot detect all noise char-
acteristics. On the other hand, we have (I;(—t)Iy) = (I;(t);)" and thus
Sy (w) = Sp(w)*, since I; is Hermitian and p stationary. Thus, Sy(w) is
a real quantity which can be regarded as an observable. Indeed, there are
setups, where Sy(w) can be accessed experimentally [64, 145, 146]. This
justifies to consider asymmetric quantum noise [Eq. (4.1)] as we do in the
following.

4.2 Quantum dots

To illustrate the presence of asymmetric shot noise contributions due to quan-
tum effects, we consider now a concrete system of a quantum dot in the
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Coulomb blockade regime [18], coupled to Fermi leads | = 1,2, ... at chemical
potentials 1;. When only a single dot level is present, the noise can be calcu-
lated even exactly [149] (see below). This is however not possible for systems
with many levels and charging interaction, for which we now develop a pertur-
bative approach. We assume weak coupling such that current and noise are
dominated by the sequential tunneling (ST) contributions, valid for k7" > ~
with temperature T" and level width v. We model the combined system with
the Hamiltonian H = Hieaq + Haot + Hr, which describes leads, dot, and the
tunnel coupling between leads and dot, resp., and with Hy = Hieaq+Haot- We
let Hiead = Y 130 elkcjkgclka, where clT,w creates an electron in lead [ with orbital
state k, spin o, and energy €;. The electronic dot states |n) are described
by Hget|n) = E,|n), including charging and interaction energies. We use the
standard tunneling Hamiltonian Hy = lekg tg,cjkadpo +H.c., with tunneling
amplitude ¢7, and where d;a creates an electron on the dot with orbital state
p and spin o. The state of the combined system is given by the full density
matrix p, while the electronic states of the dot are described by the reduced
density matrix, p = Trg p, where the trace is taken over the leads. We assume
that at some initial time o the full density matrix factorizes, p(to) = p°p%,
with the equilibrium density matrix of the leads, p%. From the von Neumann
equation p = —i[H, p| one finds [105] the generalized master equation for
the reduced density matrix, pp(t) = —i Lpp(t) — ftz dt' M (t')p(t—t'), where
the kernel M is the self-energy superoperator. Since we consider the weak
coupling regime, we proceed with a systematic lowest-order expansion in Hrp.
We obtain M(7) = Trg Ly e~07 L1p%, where we define the superoperators
LpX = [Hyot, X], LoX = [Ho, X], and Ly X = [Hr, X]|. In the following, we
work in the Laplace space, f(t) — f(w) = [;° dte™ f(t) (we take Imw > 0
but our results remain well-defined for Imw — 0). Then, the time evolution
of p reads

—p(to) — iwp(w) = M(w) p(w), (4.2)

~

with M(w) = —iLp — M(w) and with the lower boundary of the Laplace
transformation shifted to t,. We take tg — —oo and assume that the system
has relaxed at the much later time ¢ = 0 into its stationary state p = p(0) =
lim,,_o(—iw)p(w). We multiply Eq. (4.2) by —iw, take w — 0, and find the
equation M(0) p = 0 from which we get p.
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4.3 Current

We calculate the current I; flowing from the dot into lead [ and vice versa.
The current operators are I;(t) = (—1)'eq(t) = (—1)lie[Hr, q(t)] where
U= 1y c}kgclko is the number of electrons in lead I. We choose the sign
of I, such that (I;) = (I3) in the case of two leads. We now introduce the
projectors P = p%Trg and ) = 1 — P with the properties PLyP = 0 = PI;P
and PLy = LoP. We evaluate (I;) by inserting P+ @ = 1 and find ([;(¢)) =
Tr IlQe—i(Lo—l—LT)(t—to)p(tO) = —iTr ] fti dt/Qe_iLo(t_tl)LTPp(t/)—FO(H%). This
motivates introducing the following superoperators, Wf = W7 + W< with

VVl> (T) = —i'Trg I e~ o Ly p% and VVl< (7') = —iTrg LTe_iLOT]l pOR, and
Wi (1) = Trg [ e 5071 p% . Note that these superoperators act only on the
dot space, which considerably simplifies further evaluations.  In the ST

regime, the current is

(1) = Trp W} (w=0) p. (4.3)

This indicates that the superoperator W} accounts for the current through
the dot. This interpretation becomes very apparent if we keep track of the
number of electrons in the leads, ¢;, by including them into the reduced
density matrix and using the canonical ensemble for the leads. We then
find the identity W} = (=1)'e[q, M] for arbitrary frequency w, which in
Markovian approximation can be interpreted as follows. The superoperator
for the master equation corresponds to M(w = 0) ~ (U(dt) —1)/dt, where U
stands for the time evolution of the system density matrix. Thus, W} (w =
0) ~ (=1)eq, U(dt)] /dt ~ (—=1)leq(t), which is just our definition of the
current.

4.4 Quantum shot noise

Next, we evaluate the noise [Eq. (4.1)] in lowest order in Hy but without any
further approximation. It is sufficient to consider t > 0, since ([;(—t)Iy) =
(In(t);)*. Using again P+ Q = 1 we get (I;(t) Iy) = Tr [[Qe ' PI,Qp +
Tr [;Qe QI P p, while we neglect the higher-order term Tr ;Qe QI Q p
in Hr. The goal is to factor out one of the following expressions. First, we
expand Qe LR'Q = Qe~o!'Q) + O(Hr) to leading order. Second, we evalu-
ate the conditional time evolution p$(¢) := Trg e L% p%. We find that pg, is
the formal solution of Eq. (4.2) with initial value 1, thus pf(w) = —[iw +
M(w)]7! [152]. Finally, we use Trg [;Q e 0% = fot dt' W7 (t —t') p& (t)
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and Trg [;Qe "M QI p% = Wy (t)+fg at’ fotloh‘”VVl> (t—1t")p5 (¢ —t") W (7).
We obtain the noise correlation in ST regime,

Su(w) = 2Tep { W (@) pp () W7 (0) + Wy ()] +
W) (=) [ (0) + 7 (—w)

+ VVl,l/(w) +Wl/,l(—w)}ﬁ. (44)

Here, w is real and the limit w — 0 is well behaved [the §(w) contribution is
cancelled by (I;){Iy) in Eq. (4.1)]. For a superoperator S, we have defined
S such that (SA)T = SAT, thus Speppm = (b|(S|n)(m|)|c) = (Sepjmn)*, and
S(w)A = [Jdt e [S(t)A].

For deriving Egs. (4.3)-(4.4), we have made no Markov approximation
where we would evaluate M (t)e™ at w = 0 and equivalently for the other
superoperators [153]. We note that for the current [Eq. (4.3)], M and W are
both evaluated at w = 0, thus the stationary current does not contain non-
Markovian effects. We now show how the Markov approximation changes
the noise. We obtain for the noise correlator,

SMEY () = 2Trp | — W (iw + M) Wi
—WE (—iw + MY WE Wi + Wy | b (4.5)

Note that (iw + ./\/l)_1 corresponds to e in time space, which transforms a
given initial system state p(t;) to the state at a later time, p(t;+t) = eMip(t;),
and is thus called conditional time evolution. Now, the first term in Eq. (4.5)
can be interpreted by reading from right to left as follows. After equilibration,
the dot is in the stationary state p, then an electron tunnels to/from lead I’
and the dot is in state proportional to W p, the state now evolves for a time
t and finally an electron tunnels to/from lead [. The second term in Eq. (4.5)
arises from ¢t < 0 and the third and the fourth term is due to the instantaneous
correlation of a single electron with itself, i.e., corresponds to shot noise.
We stress that the Markov approximation changes the noise, which for [ =
I' becomes symmetrized, S (w) = SHEV(—w) [154]. In particular, the
antisymmetric noise contribution showing pure quantum effects cannot be
obtained in the Markov approximation. We can decompose the noise, S; =
Shikov 1§ l? RS l? antisym o here the antisymmetric part, S l(f’antisym, is purely
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due to quantum effects, while the symmetric part consists of a Markovian
and a non-Markovian contribution.

We now return to the exact expression of the noise in Born approxima-
tion [Eq. (4.4)] and explicitly calculate the matrix elements of the various
superoperators,

M (t)ettop = Z (G'.p—d'.p) +he, (4.6)
l

WEnet = (—1e(Gh - ¢1), (4.7)

W7 et = (~1)e(GL + ¢L), (4.8)

I/Vl’l/(t)eit[/o = 5”/ 62 gi_, (49)

with Gy, = GHomt(t) £ G5 (t) and ¢ = 3, [b)(n| Trp { GL|n)(b] } [155]. We
define 17, = \/2mv, 3 17 (n|dye|m), with spin dependent density of states
v, in lead [. The matrix elements of the remaining superoperators are

l,in tlg tl": +
Gbc|nm Z = (fl Abn - ) T ) y (410)
ou tlo‘ tlo i T_L

(o

with Ay, = E, — E,, and pl:fn log{2nkT/[(1 F 1)e./2 £ Ay — w]} +
Rew[ —l—z (Apy Fw — 1) /27T]{3T} Here, 1 is the digamma function. The
terms pi° arlse from the principal values P [ defi(€)/(e — Ay, + w) and
P [iode[1 — file)] /(Apy — € + w) with bandwidth cutoff e.. If we neglect
w with respect to the large energies Ay, and €, — A,;, the first term of p*
(and thus €.) drops out in Sy (w). We note that the contribution correspond-
ing to Eq. (4.9) has been calculated for the symmetrized noise of a single
electron transistor with a continuous spectrum, using a phenomenological
Langevin approach [156]. With these results, Eqs. (4.4) and (4.6)-(4.11),
it is straightforward to find Sy (w) for an arbitrary dot spectrum; one only
needs to evaluate simple algebraic expressions.

We now identify the regime where the asymmetric noise properties be-
come most apparent. Asymmetries arise from the w dependence of Egs.
(4.10)-(4.11), i.e., are most prominent for |w| > k7. In this regime, the
Markov approximation breaks down [153] and noise probes non-Markovian
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Figure 4.1: Quantum dot coupled to two leads and in the sequential tunneling
regime. (a) Large Zeeman splitting, A, > Ap + w. When the dot is empty
and w > E; — o, an electron from lead 2 absorbs energy w and tunnels
for a short time onto the dot, contributing to the noise Sss. Similarly, for
w > py — By, the electron on the dot can tunnel into lead 1, contributing
to Sp1. (b) Smaller Zeeman splitting, here A, = Ap/4. The noise in this
regime is shown in Fig. 4.2 (solid line).

effects. Further, since the ST regime is valid for kT > |t|?, we have w > |¢|?.
Thus, the conditional time evolution becomes p$ (w) & i/w, since M(w) ~ t2.
For the noise [Eq. (4.4)] only the two last terms are relevant, since they are
of order t* while the other terms are of order ¢ /w and can be neglected. Less
formally, this is because multiple tunneling processes [described by pf,(w)] do
not occur on the short time scales corresponding to large w. Thus, only the
individual (uncorrelated) tunneling events contribute, leading to shot noise.

4.5 Asymmetric steps in shot noise

Let us now consider a specific case, see Fig. 4.1, where a dot is coupled to two
leads [ = 1,2 and a voltage bias Au = 1 — pg is applied. We assume single
energy level spacing and Coulomb charging energy larger than temperature,
bias, and noise frequency. We consider the dot states |0), with an even
number of electrons and state |o) where an electron with spin ¢ =7, | is
added to the dot [157]. For an applied magnetic field B, the Zeeman splitting
is A, = gupB = E| — E; > 0. We consider the ST regime, p1qy > E; > po,
and define the tunneling rates 77 = |ti |2,
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4.5.1 Quantum dot with single level

First, we assume a large Zeeman splitting such that only the spin ground state
| T) is relevant, see Fig. 4.1(a), and we omit the index 7. Since in this regime
only one dot level is involved, there are no charging effects between different
levels. Thus, Hyo: = ETde and so the full Hamiltonian H is bilinear and can
be solved exactly. The symmetrized noise was calculated for this system and
discussed for w = 0 [149]. We now calculate the asymmetric noise for finite
w exactly. For this, we solve the Heisenberg equations for d(t) and c;(t)

and evaluate the current operator, I;(t)/e(—=1)' = >, [jk/cj,k,clk + H.c.} +

S v 0/ [01?) G j,j,,clT,k,clnku. Here, the lead operators ¢, are evaluated at
time ¢y (i.e., when the leads are at equilibrium) and we have defined j, =
itity el —ar)t=t) / (e, — By —iy) and v = (71 + 72)/2. Now we insert
this into Eq. (4.1) and readily obtain the asymmetric noise, containing all
quantum effects. We consider the coherent non-perturbative regime of strong
coupling to the leads in the quantum limit of large frequencies, w > v > kT.
The shot noise becomes

4+ /
i) = 3 T 0w F ) () — A F )] (4.12)
U, +

where h(e) = arctan[(e — E;)/v]. Note that the noise shows steps at w =
+|E) — | with width ~ [158]. Furthermore, for w > |E} — |, Ap, the noise
is asymmetric and saturates at Si(w) = e?y;, while S3(—w) = 0.

Let us now return to the ST regime k7T > ~. For large frequencies, w > =,
we find the (asymmetric) shot noise

Si() =3 G Brer = Ju(B)] Bun F By ). (4.13)
U, +

We can now compare this result [Eq. (4.13)] with the noise in our systematic
lowest order expansion. Indeed, in this regime, the result from Eq. (4.4)
agrees with Eq. (4.13). Again, the noise shows a pronounced asymmetry. For
simplicity, we take w > Au+ kT (thus, also w > ;) such that f;(E;+w) =0
and fj(Ey—w) = 1, leaving f;(E;) unrestricted. In this case, the (asymmetric)
shot noise is

S (w) = ey (4.14)

whereas Sfj(—w) = 5% (£w) = 0; this is the same result as we have found for
strong coupling. The interpretation is that for Sj(—w) the detector absorbs
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energy w, which, however, cannot be provided by any tunneling process.
On the other hand, for Sjj(w) the detector provides energy w. Thus, if the
dot is empty, an electron with energy E; — w can tunnel from the Fermi
sea [ into the dot, and, if the dot is filled, an electron can tunnel from the
dot into an unoccupied lead state of energy E; + w, see Fig. 4.1(a). In
both cases, the tunneling occurs with rate 7; and thus the contribution to
the autocorrelation is e*y;§(t). Note that for |E; — | > kT, the noise
is S (w) = e(I) (71 + 72)/72. Thus, the frequency dependent Fano factor,
Fii1(w) = Sii(w)/e(l), is 2 for large w and 71 = 72, and can even become
larger for v; > 7, in contrast to the Markovian case where we find it to be 1.
Thus, we find that the quantum shot noise is super-Poissonian. Moreover,
away from the ST regime, say for £y + kKT >y, the dot remains always in
state |0) and only a small (higher-order in Hr) cotunneling current (I) flows
through the dot [63]. However, the noise can still be of lower order, it is

2(w) = e?y fi( By — w) for large |w|, resulting in a large Fano factor Fy(w).

Finally, in Markov approximation the noise [Eq. (4.5)] is S)""*(w) =

e* 12/ (11 +72) {1 = 2712/ [w? + (71 +72)?)}, for |Ey — | > kT, in accor-
dance with [150]. We point out that S}}*"*(w) = Sy *(w) is not generally
true; it holds only if either k7" < Ay or if w = 0. Now, for large |w|, the noise
is Poissonian, e€*y;72/(71 + 72) = e(I), which can be interpreted as follows.
The electrons with charge e tunnel onto the dot with rate v, leading to a
shot noise contribution of e?y;4(¢). This can only occur if the dot is empty,
reducing noise with a probability factor v,/(y1 + 72). However, the energy
transfer to or from the detector is not taken into account in the Markovian

approximation Sh*ov.

4.5.2 Quantum dot with two and more levels

Second, we consider the regime where the state ||) becomes relevant and
charging interaction enters (here no exact solution is available). Within the
Markov approximation and neglecting temperature effects, this regime cor-
responds to pg > Ep | > pe with fi(Ey) = fi(E)) = on, see Fig. 4.1(b). If
tunneling out of the dot is spin-independent, v, = 'y; = 7%, this system is
equivalent to the case discussed above, but with an increased rate for tun-

neling onto the dot, replacing v; — ,le + 7%. The noise (S}}/I kV’b) is given by
Ch k2 after this replacement. We plot the noise in Markov approximation,

see the dotted line in Fig. 4.2, whose single feature is a dip near w = 0, which



94 4. Asymmetric Quantum Shot Noise in Quantum Dots

w/2m [GHz

Figure 4.2: The Fano factor Fi;(w) = Si1(w)/e(I) in the shot noise regime
Ap > kT as function of noise frequency w. (Asymmetric noise at frequencies
up to 90 GHz has been measured [159].) We consider 7" = 100 mK, Au/e =
460 1V, By = (1 + p2)/2, 1 = 72 = 5 x 10°s7!, and g = 2. We use the
full expression for the noise SP; [Eq. (4.4)] (solid line) and within Markov
approximation, SPM*, (dotted line), for B = 1T [see Fig. 4.1(b)], thus
A, = Ap/4 and (I) = 530 pA. Note that the steps disappear when the noise
SP, is symmetrized (some features remain for v, # 7). We also show S
(dashed line), being strongly asymmetric, where B = 3T, A, = 3Au/4, and
(I' = 400 pA. The dip near w = 0 is due to the charging effect of the dot,
while the steps arise from additional transitions for increasing w, see text.

is due the charging effect of the dot and described by a Lorentzian. Without
Markov approximation, we have the additional energy scale w which leads
to new features. Now, two regimes are relevant. We consider again a small
Zeeman splitting such that py > Ey| > po and fi(Ey) = fi(E}). We plot the
noise SP, (w) in Fig. 4.2 (solid line). For increasing w, more energy is available
and more tunneling processes are allowed. Namely, if w > —(u; — E}), an
electron with spin T from lead 1 can emit energy w and tunnel onto the dot,
and if w > py — B4, an electron on the dot with spin T can absorb energy
w and tunnel into lead 1. Analogous processes occur for spin |. Thus, the
noise SP, shows four steps at w; = #(uy — Ey,|), corresponding to the dashed
lines in Fig. 4.1(b). These steps are broadened due to finite v, and temper-
ature, and for small 7; the step is o tanh [(w — w;)/2kT]. The height of the
steps changes for spin-dependent tunneling, %T + %l. For large |w|, such that
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fi(Ey +|w|) =0 and fi(E, — |w|) = 1, the noise vanishes for w < 0 while for
w > 0 it saturates at

Y1+ 72
N[l + fi(ED)] + 2l + fo(Ey)]

Next, we consider an intermediate Zeeman splitting, £/| > p; + k7. In this
regime (c), the dot is either in state |0) or |T), while the state |T) is never
occupied and so no additional tunneling process occurs for w > —(E| — 11).
Thus, the steps in the noise are at w = +(u; — Ey) and at w = E| — 1, see
Fig. 4.2 (dashed line). For large w, the noise saturates at

Sh(w) = 2y, (4.15)

1— (B
'=1,2 71+72

Here, we have allowed for spin-dependent tunneling. If we exclude the con-
tributions involving state | |) by setting 7; = 0, we recover Eq. (4.14). Gen-
erally, we see that the noise Sy(w) of a quantum dot consists of a series of
steps and is monotonically increasing, apart from features near w = 0. We
stress that the highly asymmetric Sy(w) can be observed with an appro-
priate measurement apparatus [64, 145, 146]. For sufficiently large |w|, the
antisymmetric contribution becomes % [Sy(w) — Sy(—w)] = Lsign(w)Sy(|w])
and is given by Eqs. (4.13)-(4.16).

4.6 Conclusion

In this chapter, we have derived the asymmetric shot noise of a quantum dot
exactly for a single dot level and in the weak coupling regime for many dot
levels. We have shown that the noise exhibits striking asymmetric and super-
Poissonian effects in the quantum limit, see Fig. 4.2. In particular, the noise
shows steps a function of frequency, with step positions depending on the
bias and on the level spectrum. Since these parameters can be determined in
independent transport measurements, this allows a prediction of shot noise
features for a given experimental implementation. These features can then
be accessed in a realistic experiment and the quantum fluctuations beyond
the classical limit can be measured.
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Chapter 5

Optical Detection of
Single-Electron Spin
Decoherence in a Quantum Dot

We propose a method based on optically detected magnetic resonance (ODMR)
to measure the decoherence time 75 of a single electron spin in a semicon-
ductor quantum dot. The electron spin resonance (ESR) of a single excess
electron on a quantum dot is probed by circularly polarized laser excitation.
Due to Pauli blocking, optical excitation is only possible for one of the elec-
tron spin states. The photoluminescence is modulated due to the ESR which
enables the measurement of electron spin decoherence. We study different
possible schemes for such an ODMR setup.

5.1 Introduction

As we have explained in chapter 1, experimental measurement of the T, time
of single spins in quantum dots are highly desirable. In chapter 2 we have
proposed a setup how 75 and the Rabi oscillations of the spin can be accessed
via current measurements. An alternative method to access quantum dots are
optical measurement. Recent optical experiments have even demonstrated
the coherent control and the detection of excitonic states of single quantum
dots [161]. Is it then possible to measure the 75 time of a single electron spin
in a quantum dot using optical methods? However, this has turned out to be
an intricate problem. This is mainly due to the interaction of the electron and

97
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the hole inside an exciton.? The electron and hole spin are decoupled only if

the hole spin couples (via spin-orbit interaction) stronger to the environment
than to the electron spin. Recent experiments, measuring Faraday rotation,
have suggested that this does not apply to excitons in quantum dots [162].
Alternatively, if electron-hole pairs are excited inside the barrier material of
a quantum dot heterostructure, the carriers diffuse after their creation to the
dots and are captured inside them within typically tens of ps [163, 164]. By
that time, electron and hole spins have decoupled. In such an experiment,
the Hanle effect would allow the measurement of electron spin decoherence.
However, this approach has not yet given conclusive results for 75 [165].

What is a promising approach to measure the electron spin decoherence
time 75 by optical methods? For this, initially some coherence of the electron
spin must be produced, preferably in the absence of holes. This can be
done using ESR. The coherence decays and, after some time, the remaining
coherence is measured optically. This implies using ODMR. Such ODMR
schemes have been applied to single nitrogen-vacancy centers in diamond
[166]. For quantum dots, ODMR has recently been applied to electrons and
holes in CdSe dots [167] and to excitons in InAs/GaAs dots [168]. While these
two experiments have not considered single spin coherence, the feasibility of
the combination of ESR and optical methods in quantum dot experiments
has been demonstrated.

In this chapter, we we make use of Pauli blocking of exciton creation [169]
in an ODMR setup. We show that the linewidth of the photoluminescence as
function of the ESR field frequency provides a lower bound on T5. Further, if
pulsed laser and cw ESR excitation is applied, electron spin Rabi oscillations
can be detected via the photoluminescence.

5.2 Charged excitons in quantum dots

We consider quantum dots which confine electrons as well as holes (type I
dots). We assume a ground state where the dot is charged with one single
electron. This can be achieved, e.g., by n-doping [170] or by electrical injec-
tion [171]. Such a single electron state can be optically excited, which leads

! Alternatively, one can measure Th via currents through quantum dots in an ESR field,
see Chapter 2. However, using an optical detection scheme there is no need for contacting
dots with current leads (thus reducing decoherence) and one can benefit from the high
sensitivity of photodetectors.
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holes — -

Figure 5.1: The states of a single quantum dot in a static magnetic field, (a)
11), (b) [1), (¢) | X[ ), and (d) | X[ ). The Zeeman splittings are A = gZup B,
for the electron and A" = g7, ug B, for the hole. Coherent transitions occur
between (a) and (b) due to the ESR field and between (a) and (c) due to the
o~ -polarized laser field. The arrows in (¢) and (d) indicate which electron-
hole pair couples with the photon field of polarization o*.
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to the formation of a negatively charged exciton, consisting of two electrons
and one hole. Recent experiments on InAs dots [172, 173] and GaAs dots
[174] have shown that in the charged exciton ground state, the two electrons
form a spin singlet in the lowest (conduction-band) electron level and the hole
occupies the lowest (valence-band) hole level. Note that single-electron level
spacings can be relatively large, e.g., on the order of 50 meV for InAs dots
[175]. Typically, the level spacing of confined hole states is smaller than the
one of electrons [176]. We assume that the lowest heavy hole (hh, with total
angular momentum projection J, ==43/2) and light hole (lh, J,=+1/2) dot
levels are split by an energy &,,_;,. Additionally, mixing of hh and lh states
should be negligible [177]. These conditions are satisfied for several types of
quantum dots [172, 173, 174, 178, 179]. Then, circularly polarized optical
excitation that is restricted to either hh or lh states excites spin-polarized
electrons. In this chapter, we first assume a hh ground state for holes. We
discuss then different hole configurations.

The states of a quantum dot, in a static magnetic field B, in z direction,
can be taken as follows, see also Fig. 5.1. A single electron in the lowest
orbital state is either in the spin ground state, | 1), or in the excited spin
state, | |). Adding an electron-hole pair, the negatively charged exciton (in
the orbital ground state) is either in the excited spin state, | X ), or in the
spin ground state, |XT_ ). For these excitonic states, the subscript |, T refers
to the hh spin and we apply the usual time-inverted notation for hole spins.
For simplicity, we assume sign(gZ) = sign (g;,) for the electron and the hh g
factors in z direction. Note that the very same scheme can also be applied
if the sign of g7, is reversed. Then, one would use a o™ laser field and all
results apply after interchanging |X7) and |X;).?

5.3 Dynamics and Pauli blockade

We describe the coherent dynamics of a quantum dot, charged with a single
excess electron, in this ODMR setup with the Hamiltonian

H = Hgo, + Hygsr + Hy, + Hy—1,, (5.1)

coupling the three states | T), | ]), and |X|"). Here, Hqo comprises the quan-
tum dot potential, the Zeeman energies due to a constant magnetic field in

2 Alternatively, one could still use a o~ laser, as long as the rate Wxq x| remains
sufficiently large, i.e., for large enough k7T in comparison to the hole Zeeman splitting.
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z direction, and the Coulomb interaction of electrons and holes. It defines
the dot energy E, by Hge|n) = E,|n). Here, the electron Zeeman splitting
is g’upB. = E| — E;, where pp is the Bohr magneton [180]. The ESR term
Hgsr(t) couples | 1) and ||) via B (t), which rotates with frequency wgsr
in the zy plane [181, 56, 57]. The ESR Rabi frequency is Qrsr = g usBi,
with g factor g&. Even if the ESR field is also resonant with the hole Zee-
man splitting, it has a negligible effect on the charged exciton states since
they recombine quickly. An oscillating field, up ‘g B, can also be produced
with voltage-controlled modulation of the electron g-tensor ‘g’ [54]. A o~ -
polarized laser beam is applied in z direction (typically parallel to [001]),
with free laser field Hamiltonian Hy, = wLaiaL, where the laser frequency
is wr,, ag)are photon operators, and we set & = 1. The coupling of ||) and
|X|") to the laser field is described by Hy_, which introduces the complex
optical Rabi frequency, Qr, [182]. Since the dot is only coupled to a sin-
gle circularly polarized laser mode via Hqy_p,, the terms that violate energy
conservation vanish due to selection rules. If the laser bandwidth is smaller
than &5, the absorption of a ¢~ photon in the spin ground state, |T), is
excluded due to Pauli blocking [183]. We neglect all multi-photon processes
via other levels since they are only relevant to high-intensity laser fields. For
this configuration, the ¢~ photon absorption is switched “on” and “oft” by
the ESR-induced electron spin flips. Here, the laser bandwidth and the tem-
perature can safely exceed the electron Zeeman splitting. We transform H
into the rotating frame with respect to wgsg and wy,. The laser detuning is
5L = (EXL - El) — WL and the ESR detuning 5ESR = gj/J/BBz — WESR - The
coupling of the described system to its environment is taken into account in
the next section.

5.4 Master equation

We next consider the reduced density matrix for the dot, p = Trg pr, where
pr is the full density matrix and Trg is the trace taken over the environment
(or reservoir). In the von Neumann equation, pp = —i[H, pr|, we treat the
interaction with the ESR and laser fields exactly with the Hamiltonian in the
rotating frame. We describe the coupling with the environment (radiation
field, nuclear spins, phonons, spin-orbit interaction, etc.) with phenomeno-
logical rates. We write W,,,,, = W, for (incoherent) transitions from state
|m) to |n) and V,,, for the decay of off-diagonal elements of p. Note that
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usually V,,,, > %Zk (Win + Wim). The electron spin relaxation time [184]
is Ty = (W 4+ Wy;) ™", with spin flip rates W, W};. In the absence of the
ESR and laser excitations, the off-diagonal matrix elements of the electron
spin decay with the (intrinsic) single-spin decoherence rate V|; = 1/T5. The
linewidth of the optical o~ transition is denoted by Vx = Vx| . We use the
notation p, = (n|p|n) and p, = (n|p|m). The master equation is given in
the rotated basis | 1), [ 1), [X;), [X|) as pp = Mp, where M is a superop-
erator. Explicitly,

pr = Qpsrlmpj+Wempx1+Wi o —Wiipy, (5.2)
pp = —Qpsglmp;; + §(QLpX1,1 — Q1 px1,) + Wem px|
Wi pr = Wappy, (5.3)
Px| = _§(QLle7l — QLle,l) + WXl,XT Px1 — (Wem + WXT)Q) Px|,
(5.4)
px1 = Wxrxypx) — Wem + Wx| x1) pxr, (5.5)
) 1 (I ) _
P = §QESR (py —p1) — §QLPX1,T — (i6psr +15") put, (5.6)
px1 = §QESR px|| — QQLﬂn — [i(dgsr + 0L) + Vx 1] px1.15 (5.7)
px) = §QESRﬂX1,T - §QL(pl —px1) — (1L + Vx)pxy,)- (5.8)

The remaining matrix elements of p are decoupled and are not important
here.

5.5 Spin decoherence time 7, via cw excita-
tion

We first consider the photoluminescence for a cw ESR and laser field. For
this, we calculate the stationary density matrix pp with pp = 0. We introduce
the rate

o W
2 VE+ 8
for the optical excitation, with maximum value W{"** at d;, = 0. We first solve
pxy+ = 0 and find that the coupling to the laser field produces an additional

W

(5.9)
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Figure 5.2: Scheme of the transitions between |7), []), [X{), and |X ).
Wavy arrows describe the transitions driven by the ESR field and the laser
field with frequencies wgsg and wy,, respectively. The corresponding Rabi
frequencies are Qrsg and ||, respectively. A detuning dgsp = A¢ — wrsr
is shown for the ESR field, with Zeeman splitting A¢. Incoherent transitions

are depicted with arrows and occur at rates W,,,. We consider W| x| =
WT7 X1 == Wem-

decoherence channel to the electron spin. We obtain the renormalized spin
decoherence rate Vggg which satisfies

1|2 11
Visg < — A — o ZJymax 5.10
ESR =T + Wy T *3 (5.10)

Further, the ESR detuning is also renormalized, dpsp > Opsr [1—|QL|2 /(Wem+
Wxt,x1)?]. We assume that these renormalizations and d;, are small com-
pared to the linewidth of the optical transition, i.e., W™ |SESR~_5ESR| < k.
Then, if both transitions are near resonance, o, < Vx and |dgsr| < Visr,

no additional terms appear in the renormalized master equation. We solve
pxy1,, =0 and p;; = 0 and introduce the rate

Q2 V
ESR ESR
W ESR —

S (5.11)
2 Visr® + 0ksr
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Figure 5.3: The total photoluminescence rate I' is a Lorentzian as function
of the ESR detuning dgsg. Its linewidth w gives an upper bound for 2 [Ts.
Here, we use g. = 0.5, By = 1 G, Ty = 100 ns, Wy = W}y = (20 ps)™!,
Wem = 10? S_l, WXT,XL = WXLXT = Wem/2, o, = 0, VleT =Vx = (Wem +
Wxi x1)/2, and Qr, = 2Qpsry/15Vx. With these parameters, the requirement
Wi STyt < Viggr is satisfied.

which together with Wi, eliminates €, Vx, 01, Qgsr, Vesr, and SESR from
the remaining equations for the diagonal elements of p. These now contain
the effective spin flip rates Wy, = Wy, + Wgsg and Wy = Wy + Wasg. We
find the stationary solution

pr = Wi Wem Wt x| + 1 Wiy Wem Wit x + 10 Wiy (We, 4 Wer)

X (Wem +Wx | x1) (5.12)

P, = UWH (WL 4+ Wem) Wem + Wx | x1) +1 WlT Wem Wx1.x1, (5.13)
pxy = nWLWy Wem + Wy x1), (5.14)
pxi = WL Wy W x|, (5.15)

where the normalization factor 7 is such that > p, = 1. Note that p; > p,
is satisfied for W5, > W,;. Thus, electron spin polarization is achieved
due to the hole spin relaxation channel, analogously to an optical pumping
scheme. Now, photons with ¢~ (¢7) polarization are emitted from the dot
at the rate I'" = Wenpx) (I'M = Wempxy). These rates are proportional
to Wgsr/ (v + Wgsr) for a given 7, up to a constant background which is
negligible for Wy < Wggr. In particular, the total rate I' = I'” + 't as
function of dggr is a Lorentzian with linewidth w = 2 Vggr+/1 + WESK /7,
see Fig. 5.3. Analyzing the expression for v, we find the relevant parameter
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regime with the inequality

2 Whax Wem W 3 Wihiax
< 9V 1 4 VVESR 1 em X1, X7 ESR
w < ESR |1 + —— 3 ( + W + W, + W,
max 3W
o <1+7Xl XT ] (5.16)

which saturates for vanishing W; and Wy . Here, the rate W, = Wx; x| +
Wi (14 Wem /W1,) describes different relaxation channels, all leading to the
ground state | 1), and thus correspond to “switching off” the laser excitations.
If W, is large, e.g., due to efficient hole spin relaxation [185], w ~ 2 Vggg.
From the linewidth w one can extract a lower bound for Ty: Ty > 1/Vgsg >
2/w. Further, this lower bound saturates when the expression in brackets in
Eq. (5.16) becomes close to 1 and thus T, ' ~ Visr [see Eq. (5.10)], i.e., the
T, time is given by the linewidth. Comparing with the exact solution, we find
that our analytical approximation gives the value of I' within 0.2 % for the
parameters of Fig. 5.3. Due to possible imperfections in this ODMR scheme,
e.g., mixing of hh and lh states or a small contribution of the o™ polarization
in the laser light, also the state | T) can be optically excited. We describe this
with the effective rate Wi, ; which leads to an additional linewidth broadening
[similar to Eq. (5.16)]. This effect is small for Wy, ; < Wggg. Detection of
the laser stray light can be avoided by only measuring I'". Otherwise, the
laser could be distinguished from I'”™ by using two-photon absorption. As an
alternative, the optical excitation could be tuned to an excited hole state (hh
or 1h),? possibly with a reversal of laser polarization. A pulsed laser, finally,
would enable the distinction between luminescence and laser light by time
gated detection.

3 After excitation, the hole relaxes into its ground state within an intraband relaxation
time less than a few hundred ps [164]. Recombination mostly takes place at a later time,
typically after 1 ns. Thus, the emission is red-shifted and can be discriminated from
the stray light of the laser. However, excitations into higher electron levels must still be
excluded. This is possible for the first few excited hole levels, since the level spacing is
smaller for holes than for electrons.
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Figure 5.4: Average number N of photons emitted per period 7, as func-
tion of the laser pulse repetition time for (a) 7 pulses with At = 5ps and
Qp = 7/At, and (b) pulses with At = 20ns and p, = 7/(500 ps). We have
set 0gsg = 0. The other parameters are as in Fig. 5.3. The decay of the
oscillation is given by Vgsg and therefore depends on T5.

5.6 Pulsed excitations and spin Rabi oscilla-
tions

For a pulsed o~ laser, one can also measure the photoluminescence, I, as
function of the pulse repetition time 7, instead of dggr. We still use cw
ESR (or, alternatively, a static transverse magnetic field, i.e., in the Voigt
geometry). We stress that the same restrictions on the laser bandwidth
as in the cw case apply. Due to hole spin flips, followed by emission of a
photon, the dot is preferably in the state |1) rather than |]) at the end
of a laser pulse. The magnetic field then acts on the electron spin until
the next laser pulse arrives. Finally, the spin state ||) is read out optically
and, therefore, the Rabi oscillations (or spin precessions) can be observed
in the photoluminescence as function of 7., see Fig. 5.4. For simplicity,
we consider square pulses of length At. We write in the master equation
M(t) = My, during a laser pulse and otherwise M(t) = M,, setting Qp, = 0.
We find the steady-state density matrix p., of the dot just after the pulse
with Uppss = poo, Where U, = exp(MAt) exp[Mo(Trep — At)] describes the
time evolution during Tep.

The photoluminescence rate is now evaluated by I' = Wemm,
where the bar designates time averaging over many periods Tyep,. For At >
7/Qr, WL, the spin oscillations become more pronounced, see Fig. 5.4 (b).

m
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This results from an enhanced relaxation to the state | T) during each pulse
and thus from a much larger p; than p; just after the pulse. (Alternatively,
a group of short pulses can be used to simulate the long pulse.)

The same cw and pulsed optical detection schemes can be combined with
pulsed instead of cw ESR, allowing spin echo and similar techniques. Such
pulses can, e.g., be produced via the AC Stark effect [90, 186].

5.7 Conclusion

We have proposed an ODMR setup with ESR and polarized optical exci-
tation. We have shown that this setup allows the optical measurement of
the single electron spin decoherence time 75 in semiconductor quantum dots.
The discussed cw and pulsed optical detection schemes can also be combined
with pulsed instead of cw ESR, allowing spin echo and similar standard
techniques. Such pulses can, e.g., be produced via the AC Stark effect [186].
Further, as an alternative to photoluminescence detection, photocurrent can
be used to read out the charged exciton[171], and the same ODMR scheme
can be applied.
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Chapter 6

Conductance fluctuations in
diffusive rings: Berry phase
effects and criteria for
adiabaticity

We study Berry phase effects on conductance properties of diffusive meso-
scopic conductors, which are caused by an electron spin moving through an
orientationally inhomogeneous magnetic field. Extending previous work by
D. Loss et al. [87], we start with an exact, i.e. not assuming adiabaticity, cal-
culation of the universal conductance fluctuations in a diffusive ring within
the weak localization regime. As part of this calculation, we derive a dif-
ferential equation for the diffuson in the presence of Zeeman coupling to an
inhomogeneous magnetic field. We calculate the field strength required for
adiabaticity and show that this strength is reduced by the diffusive motion.
We demonstrate that not only the phases but also the amplitudes of the
h/2e Aharonov-Bohm oscillations are strongly affected by the Berry phase.
In particular, we show that these amplitudes are completely suppressed at
certain magic tilt angles of the external fields, and thereby provide a useful
criterion for experimental searches. We also discuss Berry phase-like effects
resulting from spin-orbit interaction in diffusive conductors and derive exact
formulas for both magnetoconductance and conductance fluctuations. We
discuss the power spectra of the magnetoconductance and the conductance
fluctuations for inhomogeneous magnetic fields and for spin-orbit interaction.

109



110 6. Berry phase effects in diffusive rings

6.1 Introduction and overview

Since its discovery, the Berry phase [78] has been a subject of continued inter-
est. As this geometrical phase emerges from the very basic laws of quantum
mechanics, see Sec. 1.6, it has implications for a broad range of physical sys-
tems [82]. Even though the Berry phase has been observed in single-particle
experiments, its manifestation in condensed matter systems is still under in-
vestigation. Some settings were proposed [83, 85, 86, 87, 187], where the
Berry phase, resulting from the motion of a spin-carrying particle through
an inhomogeneous magnetic field B(x), can be observed in mesoscopic struc-
tures. The expected effects are measurable as persistent currents [83, 86, 188]
as well as in the magnetoconductance [85, 87, 189, 190, 191] and the universal
conductance fluctuations (UCFs) [85, 87]. The first experiments reporting
such effects were realized with semiconductor structures: the conductance
was investigated in an InAs sample [79], where the Berry phase can emerge
through the Rashba effect [84], in a very similar way as produced by an inho-
mogeneous field. Magnetoconductance measurements were performed where
a ferromagnetic dot, placed slightly above a GaAs sample, produced an inho-
mogeneous field [192]. Measurements on metallic systems also showed effects,
which have been explained in terms of the Berry phase [193, 194, 195]. Fur-
ther experiments on metallic systems are in progress [196]. An additional
scenario was proposed, where domain walls of mesoscopic ferromagnets lead
to a Berry phase [187].

During orbital motion in a magnetic field, a spin acquires a Berry phase in
a similar way as a charge collects an Aharonov-Bohm phase. Thus, these two
phases lead to similar implications for interference phenomena in mesoscopic
samples. However, in the first case the phase originates from the change in
local field direction, whereas in the second case it results from an enclosed
magnetic flux. As these field properties can be varied individually, the in-
terplay of the two phases yields a rich variety of behaviour. These quantum
phases are distinguished by another important difference: while Aharonov-
Bohm effects appear for arbitrarily small magnitudes B of the magnetic field,
Berry phase effects appear to their full extent only in the adiabatic limit, i.e.
for large enough fields (specified below). The physical situation required
for this limit to be satisfied can be pictured [87, 191] as a spin which must
complete many precessions wgt,/2m around the local magnetic field, while
it moves during a time t, through a region of size {g over which the direc-
tion of the field changes significantly. Here we have introduced the Bohr
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frequency wg = gupB/2h, where g is the Landé g-factor and up is the Bohr
magneton. For ballistic motion as it occurs in clean semiconductors, one has
vrt, ~ (g and there is general consensus about the criterion for adiabaticity,
i.e. wplp/vp > 21, with vp being the Fermi velocity. However, for diffusive
systems there were recently some discussions [189, 87, 190, 191] whether ¢,
can be correctly set as the diffusion time t4 = % /D or if one should replace it
by the elastic scattering time 7. The first criterion is more optimistic, in the
sense that much lower field magnitudes are required to reach adiabaticity,
as due to diffusive motion the electrons effectively move more slowly (com-
pared to the ballistic motion) through the changing magnetic field and thus
have more time to adjust their spins to the local field orientation. For mag-
netoconductance quantitative values for the required field magnitudes have
been obtained [191]. Solving the special case of a cylindrically symmetrical
texture exactly, it was confirmed [191] that the more favorable criterion is
indeed sufficient. We remark that, if the ballistic criterion was appropriate
for diffusive systems, the large fields required for adiabaticity would imply a
strong curvature of the semiclassical trajectories (apart from the case of very
large ¢ factors). This curvature in turn is in conflict with the approxima-
tion of the orbital motion by its zero-field value and therefore an approach
beyond weak localization theory would be required for a self-consistent the-
ory. At this point it should also be noted that Berry phase effects occur
even if the adiabatic limit is not fully reached; there is no sharp cutoff where
the Berry phase disappears completely. Thus, calculations without assuming
adiabaticity are very desirable, as they can be used to study how the Berry
phase effects gradually emerge while the magnetic field is increased from low
to adiabatic strengths. The adiabatic limit can still be taken at the end of the
calculation, so the formal appearance of the Berry phase and the associated
dephasing [191] can be identified.

Besides having a spin following the direction of an inhomogeneous exter-
nal field, there is another scenario which produces a Berry phase: spin-orbit
coupling [84]. If an electron moves through an electrical field perpendicular
to the ring plane, an effective magnetic field, which is produced in the rest
frame of the electron, couples to the electron spin. As this effective field is in
radial direction of the ring and perpendicular to the direction of motion, the
field rotates while the electron moves around the ring and can therefore pro-
duce a Berry phase. By switching on, in addition, an external magnetic field,
an arbitrary tilt angle of the total effective field can be realized and so this
Berry phase can be tuned. For ballistic motion, the Berry phase manifests
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itself in precisely the same way [84] as in the case with an inhomogeneous
external magnetic field [83, 85, 86]. However, for diffusive motion the situa-
tion becomes more complicated, as the change of the direction of motion of
the electron due to a elastic scattering event abruptly changes the effective
field direction. Now the picture of a spin, moving adiabatically through a
slowly varying field, is no longer valid and needs to be modified. This leads
to a new physical situation which has to be considered separately from the
situation with inhomogeneous fields.

The outline of this chapter is as follows. In Sec. 6.2 we study the conduc-
tance fluctuations 6¢® of quasi-1D diffusive rings in inhomogeneous magnetic
fields. While §¢® has already been calculated within the adiabatic approxi-
mation [87], i.e. for strong magnetic fields, the behavior outside the adiabatic
limit and the influence of inhomogeneous fields on dephasing were not dis-
cussed so far. We address these issues in this thesis, starting in Sec. 6.2.1 with
a calculation of an exact expression for dg® (i.e. allowing arbitrarily small
field magnitudes) for a special texture [see Eq. (6.1)] of the magnetic field. In
this process we derive a new form of the diffuson differential equation, which
includes inhomogeneous magnetic fields. We evaluate the adiabatic limit of
the UCFs, 5g§?, in Sec. 6.2.2 and compare our results with those derived in
previous work [87]. Further, we investigate in Sec. 6.2.3 the finite tempera-
ture behavior of the conductance fluctuations. In Sec. 6.3 the effects of the
Berry phase on the UCFs and their dependence on magnetic field strengths
are discussed in detail. We identify in Sec. 6.3.1 a new effect of the Berry
phase by showing that the amplitudes of the h/2e Aharonov-Bohm oscilla-
tions depend directly on the value of the Berry phase. In particular, we find
some magic tilt angles of the magnetic field, where these Aharonov-Bohm
oscillations are completely suppressed. This effect provides a tool for experi-
mental searches of the Berry phase. We use this observation to illustrate the
gradually appearing effects of the Berry phase for increasing field strengths
and thus give a direct demonstration of the onset of adiabaticity. Then, in
Sec. 6.3.2, we give quantitative values of the fields strengths needed for reach-
ing adiabaticity. We show that the criterion for adiabaticity is less stringent
for diffusive than for ballistic motion. An exact evaluation of magnetocon-
ductance dgg, and conductance fluctuations o ggo) in the presence of spin-orbit
coupling and homogeneous magnetic fields is given in Sec. 6.4. These results
show how the amplitudes of the Aharonov-Bohm oscillations in d g§2o) depend
non-monotonously on the direction of an effective field, similarly as it is the
case for inhomogeneous magnetic fields. In Sec. 6.5.1 we show how frequency
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shift of the Aharonov-Bohm oscillations appear in 6¢ and §¢® caused by the
Berry phase. We then point out in Sec. 6.5.2 that the Zeeman term can also
produce frequency shifts even in the case of homogeneous fields. In Sec. 6.5.3
we plot and discuss the exact expressions for 6g and §¢® for inhomogeneous
fields and for spin-orbit coupling as well as the corresponding power spectra.
In three appendices we provide details of our calculations.

6.2 Conductance fluctuations

As foundation for further discussions of Berry phase effects and adiabatic-
ity, we will first calculate the conductance fluctuations dg® in the weak-
localization regime. To motivate the analysis of the conductance fluctuations,
we would like to emphasize the advantage of studying the UCFs instead of
the magnetoconductance. The latter quantity has only contributions from
the cooperon, which are suppressed by moderately large magnetic fields pen-
etrating the ring arms [197]. This suppression is in direct competition with
the requirement of having large fields to satisfy adiabaticity. In contrast, the
conductance fluctuations also have contributions from the diffuson, which
is only sensitive to the difference of the two magnetic fields, for which the
conductance correlator is considered. Therefore, if both fields are taken of
similar magnitude, Aharonov-Bohm oscillations and Berry phase effects in
the UCFs will still be visible at high magnetic fields where the adiabatic
criterion is certainly satisfied.

6.2.1 Exact solution

We shall concentrate on rings with circumference L and study the conductance-
conductance correlator §¢? (B,~E~3) = < Ip 9B> — < gB> < 9B>’ where we have two
different magnetic fields B and B. We consider a special texture [86, 190, 191]
for which we obtain exact results (i.e. without making the adiabatic assump-
tion of strong magnetic fields). We assume the magnetic fields to be applied
in such a way that they wind f times around the z-axis in one turn around
the ring, with tilt angles n, 1, see Fig. 6.1. The position along the direction of
the ring is described by the coordinate x, varying from 0 to L, so the special
texture of the magnetic field is expressed as

B = Bn=DB(sinn cos(zWfo—l—Q), sinn sin(zWfo—l—Q), cosn), (6.1)
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SN

Figure 6.1: A mesoscopic ring of width a and height b in an inhomogeneous
magnetic field with tilt angle , winding once around the z-Axis. The texture
of the magnetic field drawn here corresponds to Eq. (6.1) with f = 1 and
0=0.

and similarly for B. We have introduced 6, so we can describe the textures
with a field component radial to the ring, i.e. 8 = 0, as well as textures with
a field component tangential to the ring, i.e. § = 7/2.

The starting point of our calculation is the conductance correlator derived
in Ref. [87] and given by

262D 2 1
@ _— 1! re ) Imy. o CoCt
dg <h 2) /deden(e)n(e){ Tr X X

+2Re Tr {535 + [X© — %7}, (6.2)

where n/(¢) is the derivative of the Fermi function and fww = ¢ — ¢/. The
dimensionality of the system with respect to the diffusive motion is denoted
by d, which describes the relation of the mean free path ¢ to the diffusion co-
efficient D, i.e. D = vpf/d. The propagators Y“/? can be evaluated explicitly
by using the operator equation Eq. (G.5):

L? 1
)A(C/D — )
(272D iw + /0 — KO/D

We have defined w = (L/27Lr)? (e—¢') /kT, with the thermal diffusion length

(6.3)
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Ly = +/Dhf.[198] The (non-hermitian) Hamiltonian is given by

c/D o e (%)
= 2 027 +ikn -0 —ikn- oy, (6.4)

where the star means complex conjugation in A” and where we have intro-
duced an adiabaticity parameter [87, 191, 190]
. wB L2

k=5 o (6.5)

and equivalently for £ and wg. We have inserted a phenomenological damping

constant ¥“/P = (L/2rLoyp)? expressed in terms of the magnetic dephasing

length L¢/p[197, 87):

~ 2
L? 1 Al|B, + B,

(2m)2L2  3(4m)? 21y

The first term of this damping constant incorporates the loss of phase due
to inelastic scattering events. The second term takes into account magnetic
flux penetration into the arms of the ring with a finite width a and a surface
area A = alL, while the height b is assumed to be small compared to a. This
field penetration leads to averaging over closed paths of different lengths,
each of which collects a different Aharonov-Bohm phase, resulting finally in
dephasing.

Next we define the basis in which we evaluate the Hamiltonian h¢/P.
As done in Ref. [190] for the cooperon propagator, we now introduce the
operators I s .
2—71_2,%4—5]0(012:&022), (67)
which commute with A“/P [199).

We will now go to the basis of eigenvectors |j, af)q,p of J C/D  This basis
is orthonormal with the following wave functions:

JC/D _

. 50&'066/ T
(. 0’35, 0B)¢)p = ﬁﬁ O exp {miz(; — LaxLp)). (6.8)

Because of the periodic boundary conditions in z, the eigenvalues j of J¢/P
have to be integers. The matrix elements of h/? in the basis {|7, 1), /D

‘j? Tl>C/D7 ‘j? lT>C/D7 |], l’l>C/D} become:

orp (G aB (0P| 7,8 oyp = 8y (<017 £ REPY . (69)
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where h§ and b are diagonal 4 x4 matrices with the entries {(j—f)?, j2, 7%, (j+
)2}, and {52, (5 — )% (G + f)?, 4%}, resp., and the 1, 77 dependent matrices
are

he'P =
ik cosn—ik cosn) —ikeT? sinf ike " sinn 0
—ike™ sinf ik cosn+ik cosq 0 ike™ sinn
irke sinn 0 —iKk cosn—ik cos)  —ikeT? sing
0 irke sinn —ikeT? sinf]  —ik cosn+ik cosT

(6.10)
To take the Aharonov-Bohm flux into account, we replace j — m = j —
(/o £ &/ o), where ¢, ¢ are the fluxes of the fields B, B through the ring
and ¢y = h/e is the magnetic flux quantum [200]. Now it is straightforward
to evaluate the exact conductance fluctuations §¢® by calculating the prop-
agators by matrix inversion and inserting the result into Eq. (6.2). This can
be done with the help of the computer program Mathematica, which however
leads to lengthy expressions which we will not reproduce here. We merely
point out that the phase factors in § cancel each other in §¢® and dg.

6.2.2 Adiabatic approximation

To evaluate the adiabatic limit, we shall consider the regime of large magnetic
fields with B and B of similar magnitude. If we define Ax = £ — &, this
adiabatic regime is described by

k>1 and k> |Ak| (6.11)

The exact propagators /P turn out to be rational functions which are of
order two in k in both numerator and denominator. Now we will keep only
the terms of highest order in k; terms with large j can be neglected as the
sum over j converges rapidly. This leads us to the UCFs in the adiabatic
regime:
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j=—ocoa==%1

59l = (e—;)Q 471T4 /dede Z > (G ) (6.12)
G, = % {(w —alw) 6P GY 4 P} { [(w —alk) +
EPG) = P [0+ adnt + 67267 -

-1
+4P [w® + f?m? (cosn % cos 17)2} }

+2Re[{ [Zw—zaA/-@—l—(SC/D( )]2+P} {[zw—zaAm+5C/D( )

-2
X [iw+i0&Al€+5S/D(j)] —P} ], (6.13)
where
f4
P = T sin? 7 sin? 7, (6.14)
¢/p f f ’
55/D(j) = Fpn + (m—ga cosn:F§a cosﬁ) , (6.15)
with
2 2
FoP = AOP 4 fz sin 7 + fz sin? 7. (6.16)

The sum over « has been introduced here artificially to facilitate the
following interpretation. As it is also seen in Ref. [191] for the case of the
magnetoconductance dg, the terms f2(sin®7n + sin?7)/4 in Eq. (6.16) act as
additional dephasing sources and are here absorbed in the phenomenological
dephasing parameter '?S QD. However, in Eq. (6.13) there are further n, -

dependent terms P, which cannot be formally absorbed in 7 n . P reduces
the effect of the additional dephasing terms in Eq. (6.16), as we can see by
the following numerical evaluation. We consider equal fields B = B and low
temperatures, thus Ax, w = 0, and assume 7, 77 to be close to /2. Then
we estimate the amplitude of the Aharonov-Bohm oscillations by taking the
difference between the values of G2l [Eq. (6.13)] for the two phases m = 0
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and m = £1/2 (i.e. we are considering only the main contributions in the sum
over j [Eq. (6.12)]). We then see by numerical evaluation that the oscillations
are suppressed if we set P = 0 instead of using Eq. (6.14), thus P indeed
reduces dephasing.

We can compare now with previous calculations [87] where the UCFs
5g£25)G have been derived for arbitrary textures and adiabatic evolution of
the spin. These results can be recovered from Eq. (6.12) by the replacement
75 %D — fyfs/é) and P — 0. The dephasing terms due to inhomogeneous fields
coupling to the spin [see Egs. (6.14), (6.16)] were not explicitly given in
Ref. [87]; to account for such dephasing these terms must be included in the
phenomenological parameter fyfs/g , and thus fyfs/é) £ ~%/P and yfs/g f: /ﬁD

in general [191].

We also recognize a strong simplification in the special case where one

field is homogeneous, n = 0, i.e., P vanishes. Thus the comparison of
595? vgi/tg the g/oéution for arbitrary textures 5988)@ yields the simple rela-

tion yrgq = 7,5 - Finally we note that in this case the dephasing due to

the orientational inhomogeneity of B measured by the winding f grows like
f? sin?j [cf. Eq. (6.16)].

6.2.3 Finite temperatures

Now we consider the effects of finite temperatures 7'>0 on the UCFs o g;i) in
the adiabatic regime. In the case of n = 0, i.e. P = 0, the factors containing
6P (5) in Eq. (6.13) cancel, so we obtain

1 21!
ad _ 2 2 C/Dy
Glerpl,y = 7 {(w+ann)+07/2()’}

+2Re {iw + ia Ak + S/ ()} (6.17)

This strong simplification allows us to evaluate the integrals over € and € in
Eq. (6.12) explicitly by using standard Matsubara techniques, as described
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in App. H, and we obtain for the UCFs 5g3(fi) = 593(30 + 59;(131),07

5 2) . 62 21 L2 2
siem| =% ) 5 Iz

/ 1
xRe Z Z oo 3

a==%1 jn,m d5g/D(j) ' [47522 (m+n)+da’ " (j) —iaAk

6

4
L2 (m—l—n)—l—ég/D(j)—iaAff]

_|_
[4@%

(6.18)

Here n and m are odd, positive integers. For plotting, it is advantageous
to calculate the sum in Eq. (6.18) analytically, which gives an expression
containing Psi-functions.

We can now obtain a qualitative criterion when the thermal dephasing
effects can be ignored. If we ignore thermal effects, i.e. assume low tempera-
tures, we can simplify our calculation leading to Eq. (6.18) by replacing n/(¢)
by a delta function d(€) in Eq. (6.12). This yields for n = 0 the same result
as applying Poisson’s summation formula to Eq. (6.18) in order to replace
the summations over n and m by integrations. We are only allowed to per-
form this step if the summand varies slowly in n, m, which is the case for
L3> 2n L2, /p- Froma physical point of view, this is an evident requirement:
the smearing of the conductance fluctuations due to nonzero temperatures,
described by the thermal diffusion length L, can only be neglected if the de-
phasing lengths related to inelastic scattering or penetrating magnetic fields
are much shorter than L.

In App. I we evaluate the dephasing behavior of the UCFs 5g£i)n] for
homogeneous fields and finite temperatures. Then we confirm the result of
Ref. [87] [Eq. (6.2)] and show that our calculation in the homogeneous limit
indeed reproduces known results [198, 201, 202].
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6.3 Berry phase and Adiabaticity

6.3.1 Magic Angles—Qualitative criterion for Adiabatic-
ity

We now consider the qualitative effects of the Berry phase on the conduc-
tance fluctuations §¢®. They emerge from the Berry phase in s&/ D( j) in the
adiabatic solution [Eq. (6.12)] and lead to vanishing Aharonov-Bohm oscil-
lations at special “magic” tilt angles of the magnetic fields. This effect has
some similarities with the phenomenon of beating, where the superposition
of two oscillations with different but fixed frequencies leads to a periodic
vanishing of the envelope. However, in our case we have two frequencies
which will change when the perpendicular field B, is increased, since then
the Berry phase is altered, too. Thus a suppression of the Aharonov-Bohm
oscillations can only be observed at two special tilt angles of the magnetic
field, i.e. the Berry phase has a highly non-periodic effect on the envelope of
these oscillations as a function of B,.

From now on we shall only study the experimentally realizable field tex-
ture with one winding, f = 1. The other configurations with f > 1 are
solely of academic interest. To illustrate expected experimental results, we
will use some material parameters recently determined [203]. The sample
Au-1 given in Table T of Ref. [203] has the values D = 9 x 1073 m?s™!
and L, = /D7, = 5.54 pm. We assume a ring with diameter of 4 ym, so
L =12.6um, and an arm width a = 60 nm, which lies well within present-day
experimental reach. Finally we assume low temperatures, i.e. Ly > L, L,
so we can ignore the dephasing due to thermal fluctuations.

Now we shall consider two equal fields, so no phase terms appear in the
diffuson contribution 5gg). The cooperon contribution 59(02 Vis h /2e periodic
in the magnetic flux, as a shift of m = ¢/¢o + ¢/do + j = 20/ + j by
1 is absorbed in the sum over j in Eq. (6.12). For the next argument we
take the dephasing due to inhomogeneous fields only phenomenologically into
account, i.e. we use the result o gI(JZS)G from Ref. [87] or equivalently set P =0
[Egs. (6.12, 6.17)], so the factors containing 6%/3(]‘) cancel in Eq. (6.13). If

the tilt angle 7 is such that cosn = 1/4, the phase dependent term in 85 / P
[Eq. (6.15)] becomes m — «/4. One sees that in this special case shifting m
by 1/2 does not affect the value of 59(02 ), as it leads solely to an exchange
a — —a. The very same argument applies to cosn = 3/4. Thus, for these
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magic angles 1, where cosn = 1/4,3/4, the UCFs dg® are h/4e periodic and
therefore their power spectrum shows a vanishing h/2e amplitude. 1f we take
the exact solution in the adiabatic regime 599(51) instead of 5g£2S)G, the magic
angles are still present, but at shifted values. The angle at cosn = 3/4 is
nearly unaffected, as P ~ 0.05 is very small at this angle. The suppression of
the Aharonov-Bohm oscillations is illustrated in Fig. 6.2 (see also Sec. 6.5.3
and Fig. 6.9) by plotting the h/2e amplitude of the exact solution §g®
with varying tilt angle n and for different radial field components. As one
can readily see from Fig. 6.2, the effect described here is fully developed for
B > 200G. For smaller fields, the h/2e amplitude does not completely vanish
at the magic angles, as adiabaticity is not yet reached. It should be noted
that even if the adiabatic regime is not fully reached, an effect of the Berry
phase is still visible as a distinct non-monotonic behavior of the UCFs 6¢(%
as a function of the tilt angle 1, unlike the UCFs for a configuration with a
homogeneous field texture (also shown in Fig. 6.2).

Another interesting situation arises for B # B. Now, phase effects from
the diffuson contribution to 6g® emerge and remain present even for large
fields, since the dephasing due to flux penetrating the arms of the ring de-
pends only on the difference of the fields and not on the sum as for the
cooperon contribution, see Eq. (6.6). For illustration, we consider the config-
uration where B is homogeneous with 7 = 0. The other field B is assumed
to have a radial component so that for a tilt angle 7 = 7/3 the magnitudes
of both fields are equal, i.e. BII = (v/3/2)B.. In the adiabatic approximation

595(21) [Eq. (6.12)] P vanishes, yielding the simple relation Eq. (6.16) between
the dephasing due to the inhomogeneous field textures and v“/?: the effective
dephasing will be increased by 3/16 at the most interesting angle, 7 = 7/3,
in the situation considered here. The contribution of the penetrating fields to
7¢/P will be three times larger for the cooperon than for the diffuson, as can
be seen from Eq. (6.6). Varying B. changes the Aharonov-Bohm phase ¢/,
while ¢/¢, = const., leading to h/e oscillations. At B, = B./2 two features
are worth mentioning. First, the magnitudes of both fields become equal,
therefore Ax vanishes and so the second part of the criterion in Eq. (6.11) is
fulfilled and we can use the adiabatic approximation 6g$) [Eq. (6.12)]. Sec-
ond, we have cos77 = 1/2, so the phase dependent terms m F «/4 arise in
5§/D(j), as can be seen from Eq. (6.15). With the same argument as above,
the UCFs d¢g® become h/2e periodic at this magic angle /3, so the h/e
amplitude vanishes in the power spectrum. We note that, in the adiabatic
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Figure 6.2: The normalized amplitudes of the h/2e oscillations in the UCFs
d¢g?, as a function of the tilt angle n. The magnetic fields are chosen equal,
i.e. B =B, and wind once around the ring (i.e. f = 1). The power spectrum
of the exact UCFs §¢® has been calculated at every tilt angle n by varying
the Aharonov-Bohm flux 0 < ¢ = ¢ < 1. The component of the h/2e
oscillation in this spectrum was then normalized by the Oth order Fourier
component and is plotted here as a function of 7. Four configurations of
radial fields B} = BII are shown; the perpendicular field components B, = B,
are determined by the tilt angles n = 7). These field components and so also
7Y, as it depends on the arm-penetrating field, increase for small . The
strong dephasing 7¢ at 1 ~ 0 can be observed as vanishing oscillations. The
most remarkable effects show up for the stronger fields B} = 200G, 300G at
the magic angles n = 0.72, 1.15. Here the Berry phase eliminates the h/2e
oscillations, as it is described in Section 6.3.1. For comparison, we also show
the conductance fluctuations for a homogeneous field, i.e. setting f = 0. We
here set T' = 0 and used the material parameters L = 12.6 um, a = 60 nm,
D=9x10"m?s"!, and L, = 5.54 um.
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Figure 6.3: The normalized amplitudes of the h/e oscillations in the UCFs
69, with n = 0, as a function of the tilt angle 7. The field were taken
as B = (2/\/3)3” e, B” = const., and B, was determined through the tilt
angle 7. We use the same methods and parameters as described in Fig. 6.2
for B” = 50G, 200G, and 400 G. We notice that the h/e oscillations become
suppressed by the Berry phase at the magic angle cosf = /3.
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regime, this magic angle is exact, since for the configuration n = 0 we have
599(51) = 5g~£2S)G. This is shown in Fig. 6.3, again as a function of the tilt angle
n = cot (B,/B,), see also Sec. 6.5.3 and Fig. 6.10.

6.3.2 Quantitative criterion for Adiabaticity

In order to obtain a quantitative criterion for adiabaticity, we numerically
compare the exact solution of the conductance fluctuations §¢® with the
adiabatic approximation 59,{&? [Eq. (6.12)]. We take equal magnitudes for
both fields, i.e. B = B. We search for a minimal kyy, so that the rela-
tive difference }59(2) — 595(21)‘ / 59 is below a certain value. This is done
with a bisection algorithm (in ) and by sampling over the parameter sub-
space [0,7/2]* x [0,1]* x [555,10]* C {(n, 71, &/¢o, &/, 7, ¥} with a
grid resolution of 10 intersections in the first four dimensions. A finer
resolution has been chosen for v¢/P. As can be seen from Fig. 6.4, for
0.01 <~P <1, 4P < 4% and a field strength such that x > 3, the numerical
values for 6g® and § gﬁ) are already within five percent of each other.
However, as we are interested in the Aharonov-Bohm oscillations rather
than in the absolute value of the UCFs §¢®, we now use a different method of
comparison: We consider the oscillations in the conductance fluctuations re-
sulting from different Aharonov-Bohm fluxes through the ring. As a measure

for accuracy we take the relative error of these amplitudes, i.e.

ma| (09 — 0] ,-5-0) = (093 ~ 06(3)sm5-0)

Ak, %P n,0) =
G/ N7) ng%x ‘59(2) _ 59(2)|¢:5’:0}n,ﬁ=0
(6.19)
Again we search for a minimal Ky, so that A is bounded from above by
a certain percentage over the whole parameter subspace. We notice from
the results shown in Fig. 6.5 that in the regime with only moderate damping
7Y = ~P = 0.1, adiabaticity is already reached at k ~ 2. If we put this in the
context of the experimental parameters given in the beginning of Sec. 6.3.1,
we expect adiabaticity to be fully reached at magnetic fields of magnitude
larger than 500 G. By comparing this value with Fig. 6.2, we note that the
qualitative effect of the Berry phase can already be seen for fields which are
an order of a magnitude smaller, i.e. for B, B > 50 G.
We now discuss the effects of different parameters on x and on the mini-
mal magnetic fields required to reach adiabaticity, thus indicating favorable
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Figure 6.4: This plot shows the minimal k,;, required so that the normalized
difference |59 — 593(51) | /69 is smaller than 0.01, 0.05, and 0.5; i.e. the plot
shows for which magnitudes of the magnetic field the exact solution of the
UCFs §¢g® agrees with the adiabatic approximation 595(21) [Eq. (6.12)] to a
certain accuracy. Kmp, is plotted against Yy, = min{’yc, AP }; as the two
fields B, B may have different orientations, 7” can become larger than v¢.
As 6g® vanishes for large v¢/P, our normalization is no longer well defined
for v¢/P > 1 and the value for fp;, diverges.

experimental setups. If we consider rings of increasing circumference L, we
can see from Eq. (6.5) that the minimal magnetic field strength needed de-
creases as B,q o< L~2. However, to observe the Berry phase, dephasing must
not be too strong, so the condition L < 2L¢/p should still be met. We note
that for two equal fields, the first term of v“ oc L;? in Eq. (6.6) depends
on L? which restrains us from taking L > 2L,, whereas the second one
depends for B = B,q on L~2. So not only the high magnetic fields needed
for adiabaticity, but also the small arm widths a required to minimize strong
dephasing due to the penetrating flux, disfavors experimental setups with
very small L.
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Figure 6.5: Here the quality of the adiabatic approximation ¢§ géi) [Eq. (6.12)]
in describing the Aharonov-Bohm oscillations is shown. We used Eq. (6.19)
and set 7¢ = v” = 0.1. The surfaces shown are, from top to bottom, the
minimal value of k,;, required for an agreement A < 0.01, 0.05, 0.1, and 0.2
[Eq. (6.19)]. As expected, for n = ij = 0 we have 6g(?) = 593(51)- For tilt angles
n, 1 =~ 7/2, the agreement is obtained at low K;,, whereas at n = 77 ~ 0.25
larger fields are necessary.



6.4 Exact calculations with spin-orbit interaction in diffusive limit 127

Introducing more impurities and thus decreasing the diffusion coefficient
D leads to slower motion of the electrons around the ring, giving their spins
more time to adjust to the local magnetic texture. Thus, the field strengths
required for adiabaticity to occur decrease as B,q o< D, which can be seen
from Eq. (6.5). However, such slow diffusion also leads to shorter dephasing
lengths Ly, L, D'2: assuming that 7, remains constant. To avoid such an
additional dephasing, i.e. leaving /P unaffected, the sample size must also
be decreased as L oc D'/2. Thus, because of K o« D~'L?, no net decrease of
the required fields for adiabaticity can be gained by decreasing the diffusion
coefficient.

6.4 Exact calculations with spin-orbit inter-
action in diffusive limit

We turn now to the discussion of Berry phases induced by spin-orbit interac-
tion. Instead of considering an inhomogeneous field, we use here an effective
(non-hermitian) Hamiltonian

2 a L2

L
P = + 1Ko, — 1KO9, + Zh2 D(2n

0T (2n)2 0x?

E 5 (e x o). p,  (6.20)

with spin-orbit interaction, using a coupling constant « as defined in Ref. [204],
and with a Zeeman term from an external magnetic field, which is perpendic-
ular to the ring plane. One arrives at this Hamiltonian by starting from the
Feynman path integral representation of the transition amplitude with spin-
orbit coupling, as it is given in Ref. [205]. One can then formally decouple
orbital and spin motion, and following the steps given in App. A of Ref. [87],
one arrives at the effective Schrodinger equation for the cooperon propagator
with the Hamiltonian hS,. The equation with kL) for the diffuson, which
will be required in Sec. 6.4.2, can be obtained by applying the techniques
explained in App. G.

Note that in Eq. (6.20) the momentum operator is still in the Cartesian
coordinate system. Now we adopt a polar coordinate system, with (2, y') =

(r cos 22, r sin %) and (9, 0y ) = (—3{sin &=, 9,}, +{cos £, 9,}), where

x denotes the position along the ring and runs from 0 to L. The curly braces
denote the anticommutator, which ensures the hermiticity of the momentum
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operator. We now have

2 2 2
cp _ L : . a L7 1 oma
hso = (271_)2@—'—7,%0'12—7,&0'22—'—%@ 5 leCOST
0
+01y sin %Tw — 09y COS 2”7”” F 09y sin 2’%, %} ) (6.21)

To diagonalize the Hamiltonian, we follow the ideas used above and use the
operators defined in Eq. (6.7), but now with f = f = 1:

JOP .= = 4“5, £ —0,, (6.22)

which commute with the Hamiltonians 5.7, as can be seen using {n(x), 0.},

0;) = —{n/(x), 0.}. We can now calculate the matrix elements of hSIP in
the basis defined in Eq. (6.8), with f = f =1, as

(. B |hS, | 3, o/ ") = 050

—(j-1)?*+ir—ik  iS(j—3) iS (—j+1) 0
iS (j—3) —j% +ik + ik 0 is (—j—1)
i8 (=j+3) 0 P —ik—ikiS(+Y) |
0 iS(—j—4) S+ -G+ —ik+iR
(6.23)
and
<j7 of }hé)o}j’,a’ﬁ’> = 5]']'/
— 2 tik—ik iS (j—1) iS (—j—1) 0
iS(j—%)  —(—-1)?+ik+ik 0 iS (—j+1)
i5 (=j=3) 0 —(jH1)2 —in—ik  iS(j+ 1)
0 i (=j+3) iS(j+3) = —intiR
(6.24)

In Egs. (6.23) and (6.24), we have introduced a dimensionless spin-orbit

coupling parameter
a L

" D27

By comparing Egs. (6.5) and (6.25), we note that while  is quadratic in
L, the parameter S is only linearly dependent on L. If we define an effective
field angle for diffusive motion with spin-orbit coupling

S (6.25)
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tanngo = S/k, (6.26)

and anticipate the Berry phase to be of the form &9 = cosn, we obtain for
S > k the dependency ®9 ~ r/S o L. Thus the phase can now be enhanced
by increasing the size of the ring. However, the phase cannot be increased
arbitrarily; for large L, the assumption S > k becomes invalid.

6.4.1 Magnetoconductance

We shall now calculate the magnetoconductance with the formula from Ref. [87]

e L 1
0gso = e Z <:B, a, B '7 —he x, B3, a>. (6.27)

a,f==%1

With Eq. (6.23), we obtain the magnetoconductance

0950 = —i% Z { [45 + (m* +7) ] (m* +~+1)

]_—OO

+5? [8m4+2m2 A4y —1)+2v+ 1} } % { [452 + (m2 +7)2}
x [m* +2m? (y — 1) + (v + 1)7]

+5% (m* +7) [4m* +m® (4y = 3) + v + 1] } : (6.28)

where m = j — 2¢/¢o contains the Aharonov-Bohm flux. In Sec. 6.5 we will
see that in the “adiabatic” limit x, S > 1 the magnetoconductance dgso
will show some similar properties as for inhomogeneous fields, in particular
a peak-splitting in the power spectrum, see Fig. 6.11.

6.4.2 Conductance fluctuations

We turn now to a discussion of the recent experiment by Morpurgo et al [79].

by specifying the parameters of the effective Hamiltonian hgo/D, as given
in Egs. (6.20), (6.23), and (6.24). In Ref. [79], conductance measurements
were performed on an InAs ring, with nearly ballistic transport. For the
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Figure 6.6: The normalized amplitudes of the h/2e oscillations of the UCFs
with spin-orbit coupling, 5g§%). The power spectrum of the Aharonov-Bohm
oscillations was calculated at different values k = & of the perpendicular
fields by varying the Aharonov-Bohm flux 0 < ¢ = ¢ < 1. From the power
spectrum, the frequency contribution of the h/2e oscillation was normalized
by the zero frequency contribution and is shown here as a function of k/S.
We have assumed T'= 0 and v =7 = 0.1.

parameters given [79], a = 5.5 x 107 eV cm, L = 6.6 um, vp = 9.8 X
10" em/s, ¢ = 1.0 pm, and D = vpl/2 = 4.9 x 103 cm?/s, we calculate
with Eq. (6.25) a numerical value of S ~ 1/50. Compared to this, the
strength of the Zeeman term x ~ 1/2 (with |g| = 15) is much larger. Within
the diffusive approximation, this spin-orbit coupling S < k gives only a
negligible contribution to the effective Hamiltonian h“/P [Eq. (6.20)] and
thus does not produce any Berry phase effects. This very same finding has
also been obtained in Ref. [206], based on a slightly different reasoning. Still,
we show in Sec. 6.5 that a spin-splitting produced by spin-orbit interaction
can be obtained in the “adiabatic regime” k, S > 1, which, however, is in
the opposite limit to the one reported in Ref. [79]. So although we cannot
give a quantitative explanation of the experiment [79] here, we can offer a
qualitative interpretation, see Fig. 6.13. Further, there is an uncertainty
in the spin-orbit coupling parameter « in InAs, as it was recently pointed
out[207], and more experiments might be needed to clarify this issue.
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To this end we calculate the exact, i.e. without assuming any form of adi-
abaticity, expression for the conductance fluctuations 59220 in the presence
of spin-orbit interaction. With the block-diagonalization of the Hamilto-
nian h5.” [Egs. (6.23), (6.24)] we obtain the propagators required in the
formula for the conductance correlator [Eq. (6.2)]. We use Mathematica to
obtain an explicit algebraic expression for 5g§20) (which is lengthy and thus
not reproduced here) and plot it in Fig. 6.6 (see also Figs. 6.12 and 6.13).
From this plot we deduce that in a configuration with spin-orbit coupling,
the Aharonov-Bohm oscillations vanish for certain values of S and k. It
is remarkable that this happens, for S > 2, at the fixed ratios £/S = 0.2
and 0.5, which can be ascribed again to some effective magic angles. Thus
we see that Berry phase-like effects occur in 59220) as the amplitudes of the
Aharonov-Bohm oscillations become dependent on x/S. This resembles the
case for inhomogeneous fields, where the amplitudes of the Aharonov-Bohm
oscillations became dependent on the tilt angle 7 of the magnetic field due
to the Berry phase, as it was shown in Sec. 6.3.1.

6.5 Peak splittings in power spectra

6.5.1 Frequency shifts in §¢g and 6¢®

We discuss now the emergence of the Berry phase in terms of a splitting of the
frequencies of the Aharonov-Bohm oscillations in the magnetoconductance
[87, 189] dg and in the UCFs [87] §g®®, which can be made visible in the
power spectrum [79]. Both quantities depend on the spin-dependent total
phase ®,, given here for the special case of the texture defined in Eq. (6.1)
and for two equal fields B = B,

1
1+ (B)/B.)?
20/60 % B./B) = B. (2B} + B}"). (6.29)

Py = 2¢/doEcosn=2¢/py+

Q

The approximation used here is valid for small perpendicular fields B, < Bj.
We have introduced By, = ¢y/A as the perpendicular field which produces a
flux of one flux quantum ¢ through the ring, i.e. the period of an Aharonov-
Bohm oscillation in ¢. The Berry phase is not sensitive to the area enclosed
by the ring; thus we prefer here to describe oscillations in B, rather than in
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¢. As both §¢g and §¢® contain periodic terms in ®; and ®_;, they exhibit
oscillations in B, with the Aharonov-Bohm frequency for homogeneous fields,
2B(;Ol, shifted (at B, = 0) by the frequency

1 1
e j:—
AB, " B/’

(6.30)

which results in a peak splitting in the power spectrum.

These splittings are, however, generally on the order of the resolution of
the spectrum, which makes it difficult to make them visible. If the perpen-
dicular field is varied from — B, t0 Bmax, the discrete Fourier transform
(DFT) of such an interval has a resolution of 1/2By.y, i.e. the sampling fre-
quencies are separated by this value. Thus, the peak-splitting term can only
be made visible if this resolution is high enough, i.e. 1/2B .« < 1/Bj, or

1

We note that this restriction is still consistent with the approximation
made in Eq. (6.29), since for B, = B)/2 the approximated value of the Berry
phase is larger than the exact value by only a factor of v/5/2 ~ 1.1.

Now we consider the case beyond the above approximation. Here, an es-
timate for the frequency shifts can be obtained by counting the additional os-
cillations upon increasing B.. In this estimation we again neglect the change
in frequency of the Aharonov-Bohm oscillations while B, is increased. How-
ever, now we take the mean value of the frequency instead of the frequency
at B, = 0 as in Eq. (6.30). Varying B, from 0 to Bp.x changes the Berry
phase contribution to ®4; [Eq. (6.29)] from 0 to % cosn|p,—p,.., and so we
obtain the mean frequency shift

L U (6.32)
AB, Bl +B B 2Bj
When we have calculated the DFT of §¢g and 6g®, we have confirmed the
predictions given above, i.e. we do not observe a peak splitting in the 2B(;O1
frequency for low Bi,.x, due to an insufficient resolution of the DFT. However,
we do see a peak splitting in the DFT for higher fields (see Figs. 6.8, 6.9),
which vanishes again for By,.c > B). Since studies of the DFT suffer from
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a restricted resolution, it might be more promising to search for the Berry
phase via the effects discussed in Sec. 6.3.1.

Finally, we point out that an anisotropic g factor affects the size of the
frequency splitting. If the g factor perpendicular to the ring, g., is larger
than the one in the plane of the ring, g, the Berry phase dependence on B,
increases while the Aharonov-Bohm phase remains unaffected. As the total
phase is @41 ~ 2¢/p £ g.B./g) B, the frequency splitting is increased by a
factor of g./g.

6.5.2 Frequency shifts in 59}(12]& for homogeneous fields

At this point it is important to realize that frequency shifts can also appear
in the conductance fluctuations 6¢® for homogeneous fields, i.e. even when
there is no Berry phase present. For homogeneous fields the evaluation of
Eq. (6.2) is straightforward, as h®/P [Eq. (6.10)] becomes diagonal, see also
App. I. We evaluate the DOS terms, i.e. the terms containing Re Tr X, in
Eq. (6.2), in the low temperature limit for n =7 = 0:

1
e < Re 6.33
9pos Z [y + (j—0/P)2 + i(ar+ak))? 03
a,a==+1
2 = 27°n —2mny/q 2mn | /P aftOn

where we have defined ®/P = ¢/¢y + ¢/do. The approximation on the
second line of Eq. (6.33) is valid for v > 1/47% ak + ak. From Eq. (6.33),
we see that the Zeeman term itself already leads to a frequency splitting. So,
for instance, if we take the Fourier transform of d¢® (B,, —B.) with respect
to B,, we can observe a frequency splitting of the h/e oscillations of the

diffuson contribution in the DOS term o gg)o s p» given by

1 _ j:9/~LB LpL
ABzeeman 4hD 27

(6.34)

We checked numerically that the estimated frequency splitting [Eq. (6.34)] is
correct within 20 percent even for parameters beyond the assumptions made
for the second line of Eq. (6.33). It is important to keep this property of
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Figure 6.7: The magnetoconductance dg in units of —2e%/h as a function
of the Aharonov-Bohm flux 2¢/¢,, for different tilt angles 7 of the external
field. We have chosen the dephasing v = 0.1 and the field B) parallel to
the ring plane to be constant, defined through B o k| = k sinn = 2.0.
The magnetoconductance is shown in black, while its contribution from the
different spins o = +1 are scaled by a factor of two and drawn in gray.

the conductance fluctuations d¢® in mind, when searching for Berry phase
effects. If vanishing Aharonov-Bohm oscillations or peak splittings in the
power spectrum are used to identify the presence of a Berry phase, one
has to rule out effects coming from the Zeeman term in the UCFSs, e.g. by
comparison with the results for homogeneous fields.

6.5.3 Numerical evaluations

We shall now numerically evaluate the magnetoconductance d¢g for a ring
in an inhomogeneous field. We base our analysis on the calculations from
Ref. [191]. In Fig. 6.7 we show the Aharonov-Bohm oscillations for different
tilt angles n of the external field B, which is set so strong that we are well
within the adiabatic regime. We can readily see that for n ~ 7/3 a phase
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shift of m occurs, which comes directly from the Berry phase, compared to the
oscillations at n = 0 and n = 7/2. For the intermediate tilt angles the effect
of the Berry phase is only visible in the amplitude of the Aharonov-Bohm
oscillations, as the phase shifts for the two spin directions occur with opposite
signs and thus—if both spin directions contribute equally—no phase-shift
effect is visible.

As such a phase shift at 7/3 might not be easy to observe, studying signs
in the power spectrum provides an interesting alternative [79], even though it
requires a sufficiently high resolution, as discussed in Sec. 6.5.1. Indeed, we
can observe a peak splitting in the spectrum of the magnetoconductance, as
shown in the inset of Fig. 6.8. We notice an even more distinct feature: the
Aharonov-Bohm oscillations vanish at two magic tilt angles, cosn = 0.4, 0.75,
of the field. The mechanism for this effect is exhibited in Fig. 6.7, where
it is shown how the two contributions of the different spins suppress the
oscillations.

At this point, we would like to stress that the peak splitting depends
strongly on the different dephasing terms. In particular, one cannot rely on
calculations where the dephasing due to the inhomogeneous fields is not prop-
erly taken into account. So if the dephasing v due to homogeneous effects is
very small, e.g. on the order of 1/100, the amplitude of the oscillations gets
reduced drastically as soon as the tilt angle n changes from 7/2 to a smaller,
nonzero value, since the field inhomogeneity causes additional dephasing.
Thus the Fourier transform of such oscillations has a dominant contribution
only from the first few oscillations close to /2. This suppression of the re-
maining oscillations acts as a narrowing of the data window [209] and leads to
a widening of the peaks in the power spectrum, masking the peak splitting.
The oscillations are further suppressed by the additional dephasing arising
from an increasing perpendicular field, which penetrates the ring arms. Of
course, it is possible to remove this unwanted over-emphasizing of certain os-
cillations from experimental data in a post-processing step; using a standard
windowing function (we used the Hann window [209] for the inset of Fig. 6.8)
for DF'Ts greatly reduces this problem, in addition to the usual reduction of
components leakage of neighboring frequencies in the power spectrum [209].

For the conductance fluctuations 6g®, we will further illustrate the ef-
fects of the two configurations discussed in Section 6.3.1. In Fig. 6.9 we
show the Aharonov-Bohm oscillations occurring in 6g® when the fields are
equal, i.e. B = B. Taking the discrete Fourier transform of ¢ over the
range B, = 0,...,1 T, yields a clear peak splitting of the contribution of
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Figure 6.8: The Aharonov-Bohm oscillations in the magnetoconductance dg
as a function of the perpendicular field B,, shown here as k, = Kk cosn.
The radial field component has a magnitude of By o« x| = ksinn = 2.0
and v = 0.1. The vanishing oscillations near s, =~ 0.9, 2.3 (for the magic
angle cosn = 0.4, 0.75) are striking; this a direct consequence of the Berry
phase, arising from a canceling of the oscillating contributions of opposite
spin directions. The inset shows the power spectrum [208] where a peak
splitting is visible.

the h/2e oscillations to the power spectrum, see left inset in Fig. 6.9. We
notice a splitting into four peaks of the contribution of the h/4e oscillations
(right inset of Fig. 6.9). They only occur in the exact solution §¢g(®, whereas
595? exhibits only two peaks if we ignore the 7, 7-dependent dephasing,

i.e. set ’yi%D — 4P and P — 0 in Eq. (6.12). We point out that the
frequency shifts for the nth harmonics of the Aharonov-Bohm oscillations
increase with n and are thus are better resolved in the power spectrum with
increasing n.

We plot g (B) in Fig. 6.10 for the special case B = (0, 0, B,) homoge-
neous (see also Sec. 6.3.1).
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Figure 6.9: The UCFs 6¢g® for B = B plotted as function of B, (see first
part of Sec. 6.3.1). While the printing resolution is not high enough to show
the Aharonov-Bohm oscillations, the envelope clearly illustrates the non-
monotonic behavior of their amplitudes, which vanish at the magic angles
n = 0.72,1.15. We have taken a fixed radial component for both fields
of By = By = 0.5T. We have assumed L = 3 ym, D = 65 cm?/s, and
T = 0. The dephasing was taken into account according to Eq. (6.6), with
the parameters L, = 1.5 um, and a = 60 nm. The two insets show the
contributions of the h/2e and h/4e oscillations to the power spectrum [208]
in arbitrary units plotted against the frequency in units of ¢;'. The right
inset was scaled by a factor of 10. For the particular range of B, chosen here,
there is a peak splitting visible for the h/2e oscillations, while we observe four
peaks around the h/4e frequency.
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Finally, we consider the power spectrum of the magnetoconductance dggo
in the presence of spin-orbit coupling. We use Eq. (6.28) and ignore for
simplicity dephasing due to the external magnetic fields penetrating the arms
of the ring. Indeed, taking the Fourier transform of the magnetoconductance,
a spin splitting can be observed. However, the splitting is not as pronounced
as in the case for inhomogeneous fields. Especially important, the splitting
is only visible for sufficiently large dephasing parameters v (produced by
inelastic scattering), which can be seen in Fig. 6.11. In contrast to the
effects discussed before, using a windowing function was not sufficient to
identify a peak splitting for moderately small dephasing parameters v < 0.3.
Qualitatively, however, the power spectra of the magnetoconductance for
inhomogeneous magnetic fields and for spin-orbit coupling agree, with both
showing a peak splitting.

The UCFs with spin-obit interaction 5g§2o) are plotted in Fig. 6.12 as a
function of the perpendicular fields B, = B,. We observe a Berry phase-
like frequency splitting in the power spectrum. However, as this splitting is
rather small, it is only visible in the h/4e oscillations, where the splitting
is twice as large as in the h/2e oscillations. Again, the suppression of the
Aharonov-Bohm oscillations at x/S ~ 0.25 is a distinct feature of a Berry
phase-like effect.

A quantity, which was subject of recent studies [79, 206], is the disorder-
averaged squared power spectrum of the conductance

(Ja0)[*) = L))"+ (ls@) = (g@)[*). (6.35)

On the one hand, we recognize that the first term contains the Fourier
transform of the (averaged) magnetoconductance dg, which has frequency
contributions from its h/2e oscillations. On the other hand, the second
term of Eq. (6.35) is given through the conductance fluctuations 6g® as
[ [ dB.dB. exp {2riv(B, — B.)}5g®(B, B). This term contributes frequen-
cies corresponding to h/e oscillations, coming from the diffuson term § gg) in
the conductance fluctuations. Thus, if we now investigate h/e oscillations,
we can restrict our studies to the second term of Eq. (6.35). We have eval-
uated {(|g(v)|?) for inhomogeneous fields, with the parameters given in the
caption of Fig. 6.9. A splitting of the frequency corresponding to the h/e
oscillations was observed and was identified not to result from the Berry
phase but from the Zeeman term already present in the case of homogeneous
fields [Eq. (6.34)]. Then we examined (|gso(r)|?) with spin-orbit coupling
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Figure 6.10: The UCFs 6¢g® for a homogeneous texture of B plotted as func-
tion of B, (see second part of Sec. 6.3.1). We have taken the homogeneous
field as B, = 0.5 T, and B = 0 G and have fixed the radial component for
the other field as B” = 0.43 T. The remaining parameters are chosen as in
Fig. 6.9. The inset shows the power spectrum [208] in arbitrary units plotted
against the frequency in units of ¢, ! which exhibits a splitting in the h/e
contributions.

for various parameters. An additional peak splitting to the one produced
by the Zeeman term [Eq. (6.34)] appears for some specific parameters, i.e.
for S large enough to reach “adiabaticity” and for large enough sampling
intervals of B,, B, to obtain a sufficiently high resolution in the power spec-
trum. In Fig. 6.13 we see such a splitting of the h/e contribution into four
peaks. However, using the parameters given in Ref. [79], we have S ~ 1/50
and k =~ 1/2 (see Sec. 6.4.2) and in this regime we do not observe any peak
splitting, in accordance with Ref. [206].
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Figure 6.11: The power spectrum of the magnetoconductance dgso(B) with
spin-orbit coupling, Eq. (6.28), in arbitrary units plotted against the fre-
quency in units of ¢;'. We have chosen S = 4 and taken the Fourier trans-
form of the magnetoconductance for 0 < xk < 4. We show the power spectrum
for three different values of the dephasing parameter v, where we have down-
scaled the values for v = 0.1 by a factor of 10. Note that a peak splitting
occurs only for the cases with larger dephasing.

6.6 Berry phase controlled Spin Filter

An Aharonov-Bohm ring in an orientationally inhomogeneous magnetic field
can be used as a spin filter (cf. Sec. 2.5.1). The idea of this proposal is to use
a quantum interference effect, where one component of the spin current is
filtered out via destructive interference while the other component remains
unaffected. We first consider a ballistic ring in the adiabatic regime where the
spin « acquires a Berry phase ®9 when it moves once around the ring. For
instance, for the crown-shaped field texture [Eq. (6.1)] with tilt angle 7 of the
magnetic field, the Berry phase is ® = +7(1—cosn). To obtain a spin filter,
71 is tuned such that cosn = %, e.g., by varying in addition a homogeneous
external field in z direction. Thus, the Berry phase difference of the two spin
components is ®? — &% = 7. Further, the Aharonov-Bohm phase 2m¢/dg
can be tuned independently of 7, since generally only a small modulation of
the magnetic field in z direction is required to change the flux ¢ through the
ring on the order of ¢pg = h/e. The spin filter effect is then obtained, when ¢
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Figure 6.12: The UCF's 59%) with spin-orbit interaction for B = B plotted
as function of B,. We have taken @ = 1.0 x 1072 eV cm, L = 12.5 um,
D = 2.0 x 1072 m?/s, g = 15, and have assumed 7" = 0. This gives us
S = 1.6 [Eq. (6.25)], and (B, = 300G) = 4.2 [Eq. (6.5)]. The dephasing was
taken into account according to Eq. (6.6), with the parameters L, = 5.0 ym,
and a = 120 nm. The envelope of the Aharonov-Bohm oscillations shows a
non-monotonic behavior, which also appears in the UCFs for inhomogeneous
fields 69 (see Fig. 6.9). The h/2e oscillations are strongly suppressed at
B, =~ 30 G, which corresponds to /S & 0.25, as can also be seen from
Fig. 6.6. However, this suppression is not very obvious in this figure, since
h/4e oscillations are present for B, ~ 30 G. The two insets show the contri-
butions of the h/2e and h/4e oscillations to the power spectrum in arbitrary
units [208] plotted against the frequency in units of ¢;*'. The right inset was
scaled by a factor of 10. For the particular range of B, chosen here, there is
only a single peak visible for the h/2e oscillations, while we observe a small
peak splitting around the h/4e frequency.
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is tuned such that one spin channel interferes constructively; the other spin
channel is offset by a phase m and thus will be suppressed due to destructive
interference. A similar effect occurs for diffusive rings in an inhomogeneous
magnetic field, the system which we have studied in this chapter. In the
impurity-averaged magnetoconductance dg, coherence effects occur with a
period h/2e and the Berry phase contribution is £27(1 — cosn). Then, to
obtain a phase difference of 7 for the two spin channels, n must be tuned to
a “magic angles”, i.e., cosn = 1/4, 3/4. For these angles 7, a spin filtering
effect is again possible [88]. This becomes apparent in Fig. 6.7, where the two
contributions of spin @ = +£1 to the conductance (gray lines) are different for
specific values of the Aharonov-Bohm flux.

6.7 Conclusion

We have calculated the exact conductance fluctuations d¢® for a special
texture [Eq. (6.1)] and given its adiabatic approximation 59;21). In addition
to the already known differential equations for the cooperon we have de-
rived the ones for the diffuson in inhomogeneous magnetic fields (App. G).
With the result o gﬁ) the dephasing due to inhomogeneous fields became ex-
plicit and could be compared with previous calculations [87] where adiabatic
eigenstates were used and this dephasing was only implemented with a phe-
nomenological parameter. Then we have described some magic tilt angles of
the magnetic field at which the Berry phase suppresses the Aharonov-Bohm
oscillations. We have used this effect to illustrate how the adiabatic criterion
becomes gradually satisfied. We have calculated numerically the required
magnetic field strength for which the adiabatic approximation becomes valid
and have shown that the adiabatic criterion is less stringent for diffusive than
for ballistic motion, thus confirming previous findings [87, 191].

Furthermore, we have calculated the magnetoconductance and the con-
ductance fluctuations for a diffusive conductor in the presence of spin-orbit
coupling. A numerical analysis revealed a non-monotonic behavior of the am-
plitudes of the Aharonov-Bohm oscillations and peak-splittings in the power
spectrum—observations that are similar to the Berry phase effects we have
found for inhomogeneous magnetic fields.

Finally, we have described the mechanisms which lead to peak splittings
in the power spectrum of magnetoconductance and UCFs and have discussed
numerical requirements to make such peaks splittings visible.
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Figure 6.13: The disorder-averaged squared power spectrum of the conduc-
tance (|gso(v)[*) [Eq. (6.35)] with spin-orbit interaction plotted as func-
tion of v in units of ¢;', normalized by the zero frequency contribu-
tion. We have taken the same parameters as in Fig. 6.12, but now with
a = 2.0x 107 eV cm, and thus S = 3.2 [Eq. (6.25)]. We have cal-
culated the second term of Eq. (6.35) explicitly (see text), while taking
B., B. € [~Bumax; Bumax] With Bpa = 0.1 T, which gives us a maximal value
Kmax = 14 [Eq. (6.5)]. The peak splitting into the inner two peaks is produced

by the spin-orbit interaction, while the larger satellite peaks result from the
Zeeman term [Eqgs. (6.33) and (6.34)].
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Appendix A

Energy Shifts due to Tunneling
Hr

In this appendix, we evaluate the integrals over the Fermi function f(e) =
1/[1 4 el<#/kT] which appear in chapter 2 and 4. We calculate

R it(e—A) _ o [T T
/Odt/o de f(e) et A)—7Tf(A)+z73/0 dee—A (A.1)

for real A and where P denotes the Cauchy principal value. We assume that
A is near the Fermi energy, thus SA, fu > 1 with § = 1/kT. To evaluate
the principal value in Eq. (A.1), we now symmetrize the integrand,

> fle)de A+ A /°° de 1 1
P _
e o €—A e A P o 1+efle=m le—A e+ A
_ p+A © 1 1 A
— log A +P/;Oo |:1 —l—eﬁ(e—ﬂ) - 1 —I—eﬁ(eﬂt)} 2 _ A2 de.

(A.2)

We can now close the integration contour at +ioco, see App. H for details.
We see that that the contribution from the poles at ¢ = £A cancel and the
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remaining poles are at min/( for odd n,

oof(e)de_ M+A . __1 A
77/0 _A—logiA +2mm;d>oﬁ (,u+m’n/ﬁ)2—A2
B A
(—p+min/B)" — A?
gk tA T (1 i (mpt A 1 B (—pu—A)
B a L R o R o )
1 i (u+A) 1 B (u—A)
_T/J(i‘FT)—F??/)(i—FT)
A 3 IA — . A
A )

(A.3)

We have introduced the psi (or digamma) function ¢ and we have used
Sorsoty/ly? + (@ +ak)’] = (Yl +iy)/a] = ¢[(x — iy)/al} )20 with & =
tu+mi/B, y =iA, a = 2mi/F and ¢¥(z*) = ¥(2)*. For large arguments z,
we use (z) = logz+ O(1/z) and we obtain

*° d 2 kT 1 A —
73/0 f(j); — log = +Rew<§+iiﬂ). (A.4)

A 2wkT

This energy shift [Eq. (A.4)] becomes log(kT/A) — v +log § ~ log(kKT/A) —
0.1256, for |u — A| < kT (“Stark shift”), and log(|px — Al /A) for | — A| >
kT (“Lamb shift”). Inserting in Eq. (A.1), we arrive at our final result,

T . 1 A—-pu
+iRev <§+1727rk:T)'
(A.5)

/ dt/ de f(e) 1 = xf(A) + i log —
0 0
We also evaluate

/OO dt /Ec de [1— f(e)] e =711 — f(A)] +ilog
0 0

o [ )

—273/0 de A

= 7[1— f(A)] —ilog fﬂ_k’i — iRe) (%H gﬂ;;f) . (A.6)

€c —

A
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Here, we have introduced an upper bandwith cutoff €. to ensure convergence
of the integral.
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Appendix B

Stationary Current for cw ESR

Here, we give the various formulas for the stationary current through the
dot in the sequential tunneling regime and in the presence of an ESR field
as discussed in chapter 2. We have calculated the current by evaluating the
stationary solution of the master equation (Sec. 2.3) and with Eq. (2.22).
For odd-to-even sequential tunneling, the spin T polarized current in lead 2
is

Wy =W
L = 672( > (=DM fi(As)) fr(Dsy) — Z%
Ll l

X {(_1)171Tfl(ASl) + 7} [f2(Asy) + fiAsy) — 2f2(ASl)fl(AST)]}

2W, + Wu + W”
+> 5

{(-Ulﬂfl(ﬁm) + 7 [f2(Asy) — fl(AST)]})

l

x (Z Ak = = f(AsI = foBsl} + S (We+ W)

L [
1
X {%0 +7 1 - fz(A%)]}) : (B.1)

The spin-| polarized current 121 is obtained from Eq. (B.1) by exchanging
all T and | in the numerator (the denominator remains unaffected by such
an exchange). The currents in lead 1, I 1T L are obtained from the formulas
for I2T 't by exchanging indices 1 and 2 and by a global change of sign. The
charge current is [; = > _ I and is equal in both leads, I = I = I, due to
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charge conservation. For large Zeeman splitting, A, > Apu, kT, and around
the spin satellite peak, 1 > Ag| > s (see Sec. 2.3.1), we have fj(Ag;) =0,
and the current is

I = e(W,+Wpy) [(717; +9178) fi(Asy) — (1 + 1) fo(Asy)
X{ (QVl - WTL - Ww) [’VIfl(ASl) + 72Tf2(Asi)}

-1

+2 (Wi + Wy +2W,) (" +47) } : (B.2)

for which we have given special cases in Eqgs. (2.29), (2.30), (2.31) and (2.44).

For completeness, we also give the results for even-to-odd sequential tun-
neling, as discussed in Sec. 2.4. By applying the replacements given in Sec. 2.4
to Eq. (B.1), we obtain the spin-| polarized stationary current in lead 2,

L l

I = %< S (-1 Rl - foldgg)] - 30 T

< {(CDMAALs) = 3 1F(A05) + filArs) — 262(8,8) ilAs)]}

W, + Wy + W
+Z 1l i

5 {0 (B 5) + ] [f2(Ass) - ﬁ(ATg)]})

l

x (Z%l%T {1-AA ) fr(Aa)} + ) (W + War)

INA l,o#0’!

< {a +%Ufz(Aa§)})_ - (B.3)



Appendix C

Exact Current and Noise for a
Quantum Dot

We consider a quantum dot which is coupled to Fermi leads and which has
only a single level. We model this system with the Hamiltonian

H=Hy+ Hr = edaTa + Z elkc;kclk + Z(tlcjka + t}kclkaT), (Cl)
lk lk

where af creates an electron on the dot and clTk an electroninlead [ =1,2,...
with orbital state k. (Since there is only a single level, only one spin direction
is involved and we drop the spin index here.) This model can be solved
exactly, since the Hamiltonian [Eq. (C.1)] is bilinear. We assume that the
interaction Hr is switched on at the time ty, and that at ty the full density
matrix is p(tg) = p%p%, where p¥ is the density matrix of the leads in thermal
equilibrium. Now, we calculate the time evolution of the dot and the lead
operators. Using the Heisenberg equation, we find ¢ (t) = i [H, ci(t)] =
—iegey(t) — itia(t). We integrate and obtain

t
ar(t) = e‘ielk(t_t“)clk(to)—z'tl/ dr e~ wt=") g (7). (C.2)

to

For these Heisenberg operators at the initial time t,, we have <c}k(to)clk(t0)> =

Tr c;fkclkp(to) =Tr c}kclkp%p% = fi(ey,) with the Fermi function f; of lead [.
This motivates denoting ¢ (to) = ¢ from now on. For the dot annihilation
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operator a, we get

a(t) = —ieqal(t —zZthk = (—iea—7)a(t)—i Yy _tie " wle,  (C.3)

lk

Here, we have inserted Eq. (C.2) and assumed a constant density of states
v, of the leads. We define the width ~ of the dot level, v = %Zl v, and the
tunneling rates v, = 27y [t;>.  We integrate Eq. (C.3) and let t; — —oo !

to obtain
—ZElk (t—to)

tf ———— .. C4
Z €k — €4 + 1Y Uk (C4)

Ik
Finally, we insert Eq. (C.4) into (C.2) which yields

—zelk (t— T)e—isl/k/(r—to)

Clk(t) = e_ielk(t to) Cl. — ’L/ dr Ztltl’ Crrg!. (C5>
to

7Y €y — €4+ 17

C.1 Current

The current operator [; is defined as the time derivative of the charge of the
electrons in the lead [, e ), c}kclk, ie.,

= je [H > cjk(t)c,k(t)] = ietial (t)en(t) + Hee (C.6)

k
To simplify the further evaluation of I;(t), we define

( ) ei(el/k/—ﬁlk)(t—to) (C 7)
(t) =ity — .
Ik . €U — &4 — VY

g = gi(0), and i := gw|e — €] which have the properties gi(t) = g
and g (t)g;5(t) = grwgy. We can now evaluate the current [Eq. (C.6)] by
inserting a(t) and c;(t) [Egs. (C.4) and (C.5)]. We decompose the current,
I, = I* + IP, corresponding to the two terms in Eq. (C.5). We find

el’k’ Elk)(t to)

I'Nt) = e ztt/—cT, .+ H.c.
[ (t) ;}; 1u € — 4 — 17 Uk Clk

= e ng/ t Cl’k'Clk -+ gz; (t)Cg‘kCl/k/7 (CS)
kUK

! An oscillatory factor in g remains in Eqs. (C.4) and (C.5). This factor will be cancelled
when we evaluate the averaged current and the noise.
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i€y (t—t0) —ieprn (t—to)
’yl e Uk e
[lb(t) = et E tl’tzk// ; - C}L/k,Cl//k// + H.c.
2 VK K" €k — Ed — Yy €urgn — &d + 7y
"
= e —t 3 Z gg (t)g;;// (t)C;r,k,Cl//kn_ (Cg)
| l| l/k/l”k//

We finally get the (exact) current operator

L(t)y=e) [Qk’ (D) el + gis (t)ClTkCl'k'] +e % > gw (g ()c e
kUK ! VE K
(C.10)

Equation (C.10) is a good starting point for evaluating the average current,
the noise, and higher order correlations.

C.1.1 Averaged current (I))

Using Eq. (C.10), it is straightforward to find the ensemble averaged current,

(L) =e>" (gr+ i) filew) +e ﬁ S gwginfolen). (C.11)
k

UK

For two leads, [ = 1,2, we find

(n) = el [ de [—(%ifl(eHZ#ﬁ(E)

2m e—ea)’ +7? v d4)® +7?
o fi(e) — fa(e)
= —e— de =Pt (C.12)

C.2 Asymmetric shot noise

We consider the asymmetric noise, defined as

Sll(w) = /;oo dt 6Wt [<Il(t)]l> — <Il><Il>] . (013)

[e.e]

We now calculate the various contributions from I* and IP to (I;(t)I;). To
make our results more compact, we define f; = fi(ex); fr = fr(epp); and



154 C. Exact Current and Noise for a Quantum Dot
fi = fi(e;z). Using Wick’s theorem, we find

2

+e” Y [ar(t)gr + gi(1)gr] L1 — £

(17 (t [62 (9 + g&) i
K

kk
+> {ogwOgi foll = Al + gi (g il = fo]}- (C.14)
kUK’
(M1 (0) + IP () 17(0)) | . |2 5 2 20090 (9 + 90) fify
kUK

L& = 5 2 Ao (LSl = i+ gk (Oaw AL = fol} (g + ) (C.15)

klU'E!
ey
ORO) = S oeaiowsinfof
U !
‘t |4 Z gk/gk’ k”gk”( )fl/[l - f”] (016)

llkllllk//

When we sum the first terms of each of Egs. (C.14)-(C.16), we obtain (I;)(1;).
Thus, these terms are cancelled in Eq. (C.13). We get the correlation function
in time space,

(L(O)1(0) = (I)(D) = >y {gk'(t)QZ/fl'[l — Jil + g (O g fil1 — fl']}

kUK’
X {1 + %} + €2 Z [gk(t)g,; + gz(t)gﬂ fill = 1
kk
+ﬁ > gu ()i gGin(E)gir frll = fir]. (C.17)

l/kllllk//

Finally, we resolve the symbols g/ (t) [Eq. (C.7)] and evaluate the Fourier
transform of the correlation function. We find the (exact) asymmetric shot



C.2 Asymmetric shot noise 155

noise,

dedé’
S | (e — 2
u(w) 2W// e—sd) +7][(€—€d ) + 2] (Z%% [e ea)’ +19

297 {8 (e = € =) ful@)[1 = fule)] +6 (e = € +w) fi(e)[1 = fi ()]}
+2770 (e — € + w) [v* = (€ — ea) (¢ — ca)] file)[1 = ful€)]

70 (e — € +w) Y e ful€)[L - f~(€')]> : (C.18)

l/l//

C.2.1 Symmetrized noise

For comparison with the literature [149], let us consider the symmetrized
noise, Sp"(w) = 3 [Sw(w) + Sy(w)] and evaluate S3}™ in the case of two
leads. For this, we use that S} is composed of expressions of the form
oo [[ dede (e — € £ w) F(e)G(€'), which are invariant under the replace-
ment F(e)G(e) — F(¢')G(e). In the following, we separately discuss the
different contributions to S7}". We first collect the terms containing the
factor fi(e)[1 — fi(€)], i.e., set I' =1" =1 in Eq. (C.18). We find two contri-
butions, which are proportional to (€' — £4)°+(€ — £4)°—2 (e — £q) (¢ — £4) =
(e —€)* = w? and to 2(7% — 271 + 7% + 192) = 12, resp. Second, we take
the term for I’ = [” = 2 in last line of Eq. (C.18). Finally, for the term
with I/ = 2 in the first and I’ # [” in the last line of Eq. (C.18), we use

Y12 (72 — 2971 + ’Y%) =y (71 — 72)2 /4. In total, we obtain

sy B dede d(e—€ tw) O — (¢
S T 4rm Z// (e — e’:?d 2} [(E — €d)2 +72} <fl( = nte)
X% (W +73) + a1 = fale)]ris + {f2(€/)[1 — fi(e)]

+fi(e)[1 — f2(€')]} M2 [(e —ea)® + (71— 2)% /4] ) . (C19)

This result [Eq. (C.19)] agrees with Eq. (9) of [149], apart that our last
term of Eq. (C.19) is larger by factor 4 and has exchanged energies ¢ and
€ in fo(€)[1 — fi(e)], with respect to the result from Ref. [47]. We think
that our result is correct since in the regime |y —eq| > kKT > 7 > w, the
noise is given by this term and we obtain the well-known result S1;(0) =
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e2y172(VE +73) /(71 +72)? from Eq. (C.19). Furthermore, note the difference
of a global factor 2, since in Ref. [47], the definition S},(w) = 257 (w) was
used for the noise (see Sec. 1.5).

C.2.2 Quantum noise in sequential tunneling regime

We next consider the sequential tunneling regime, £7" > 7, and evaluate the
shot noise in the quantum limit, w > . Here, v is the smaller energy scale
and we use 1/(E?+~%) — (7/7)d(E). The highest order contribution in w/~y
to the noise is

Sutw) = 2 ff e {ite e @ el - )
8 (e~ ¢ +w) fillL - ﬁ(e')}} (C.20)

= 35 (el = e +)) + filea — W)L~ (e} (C:21)
;
This result [Eq. (C.21)] is displayed in Eq. (4.13).

C.2.3 Quantum noise in coherent regime

Finally, we analyze the case when tunneling through the dot is coherent,
v > kT, and again evaluate the shot noise in the quantum limit, w > ~. In
this low temperature limit, we can set f(e) — 0(u—e) and 1— f(e) — O(e—p)
and we use [ de/ [(e — ca)’ + 7% = h(e) = arctan (6 €d> /7. We can now

evaluate the highest order contribution in w/v to the noise, Eq. (C.20), and
find

MV Hur de’
Sulw) = Y1 [e«u s —m) [ 0w+ i — )
2 2 p1—w (6/ - Ed)2 + 72

/‘“W de' }
X 2
oy (6, - Ed) + 72

4 ,
= 3 T kg ) () — i F ). (C.22)
U, +

We display this result in Eq. (4.12).



Appendix D

Sequential Tunneling Quantum
Noise

In this appendix, we give the explicit expression for the quantum shot noise
in the sequential tunneling regime. We consider the regime (a) of chapter 4,
where the dot has only a single dot level with energy E;. To calculate the
noise, we use Eqs. (4.4) and (4.6)-(4.11) and obtain

Stiw) = 300, U EDIL = A + ] + A(E — W)l = fr(E)])
Kl (71 + 1) {AED[L - fl(ET +w)] + fi(E —w)[1 = A(E)]}
2+ (n+ )’

B Z e*ivs Lhi(Ey) — fZ(ET)] [f1(Er £ w) — fo(B) £ w)]
(m +72) [w2 + (1 +72)°]
29793 [fi(Ey) = fo(BD] [p1(By £ w) — pa( By £ w)]
"2 mw [+ (1 £ 70)]
i {p(B) = [1 = AED)I(E —w) = A(E)p (B + w)} (D.1)
mw? + (n + 72)2} ’

where pi(€) = Rew[$ +i(e — )/2nkT]. In the quantum limit w > v, only
the first term in Eq. (D.1) does not vanish and we recover Eq. (4.13).
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Appendix E

Double dot and QPC:
Master Equation and Current

We consider a double quantum dot coupled to a QPC, cf. chapter 3. We
will now derive the master equation for this system and calculate the QPC
current. Using standard superoperators techniques [105, 56, 57|, we write
H = Hy+V [Eq. (3.3)] and find the contribution of V' in Born-Markov
approximation to the r.h.s. of the master equation,

—/ dr Trq [V, e 7 [V, pdp] €7] . (E.1)
0

Here, ,0% is the equilibrium density matrix of the leads of the QPC, at chem-
ical potentials fin oy and temperature 7', with applied bias Ay = ftin — ftout-
The trace Trq is taken over these leads. We allow for an arbitrary inter-dot

tunnel coupling, i.e. we keep Vg exactly. We now evaluate the kernel in the
eigenbasis of Hy = Haot + Vg which is |£) = ax|L) + f+|R) with

et \/4tg® + e (£.2)
2tq )

oy /By =
and with energies
1 1
E:t = 5 (EL + ER) + 5\/4td2 + e2.

The expectation values, Trq .. .p%, of the QPC contributions to the kernel
gives rise to a product of Fermi functions, one for each QPC leads, integrated
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over the states in both leads. We evaluate the d-function (neglecting the
principal value contribution) which arises from the time integration in Eq.
(E.1) and one integration over the states in the leads remains,

o “du 1 1 A
F@) = [ aeron—seral= [ G o - e
(E.3)
with F(A) — F(—=A) = A and F(—A) = g(A) Ap in the notation of Ch.
3. We define s(z) = [F(z + Ap) + F(x — Ap)|/Ap =1+ 2/Ap+ g(Ap +
x) + g(Ap — x). Evaluating all the matrix elements of Eq. (E.1), we find the
master equation,

p- = Wols(E)ps — 5(— — 5(0)/2VoWq Re[p,_] (E.4)
pr = Wols(=E)p- —s(E)ps] + s(0)y/2VoWo Re[p—] (E.5)
b (O 4] pe i S(E) 4 o(—E) W i

+/ValWa/2 [S(E) ps — s(~E) p_], (E6)

where p,_ = (+|p|—). We have defined Wq = 27v* Ap [{+|Vaor|—)|? and

Va =5 (VT ~ VIV, (E7)

where 7, = 2m1%e Ap |(£|Van|£)|?. Rotating to the basis {|L), |R)}, we
find Egs. (3.6)-(3.7)

For evaluating the QPC current, we count the number of electrons ¢
which have accumulated since ¢ = 0 in the outgoing lead of the QPC.
Thus, the time evolution of p(g, t) is now depends on ¢q. We find the
master equation by observing that the matrix elements of Eq. (E.1) from
the contributions VVp%p or p%,oVV do not change ¢, while those contain-
ing Vp%pv will increase or decrease ¢ by one. Thus, the master equa-
tion is of the form p(q) = Mip(q — 1) + Mop(q) + M_p(q + 1). Using
p=>_,p(q), we can easily go back to the charge-independent master equa-
tion, p = > p(q) = (M- + Mo+ M) p=: Mp, ie, M is given by Egs.
(3.6)-(3.7). We now give the contribution M p(¢—1) to the master equation
explicitly,
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pula) = Lty - ORI,y
+talf [(142:) + (2904;3292)5} Re[pre(q— D] +..., (ES8)
prlq) = %R (1+ g0) prlg — 1) + 41 (22202_ 92) ) (g~ 1)
—tal'; [(ZZ:) — (2904_Egz) E} Re[prr(=1+¢q)] +...,(E.9)
pri(q) = tdF?@goég_ng)E lor(q = 1) + pr(g — 1)]
—tql'} (182:) lor(g —1) — pr(g — D] + o _éf) o
_(1+90) (2622_IL_[R)]pRL(q—1)+..., (E.10)

with ['T = (I — Ig)/e + 2. The remaining contributions are M, =
M — M, — M_ and the matrix elements of M_ are given by M with
the replacement Ay — —Ap. The current through the QPC is defined as
(I = e{q). We find,
(I = edlq)=ed > Trap(q)
q
= ¢ _ Trq [Mip(g—1)+ Mop(q) + M_p(q+1)]

= eZTr My =M )p(g) =eTr My —M_)p, (E.11)

where we have used Tr M = 0. Evaluating Tr (M, — M_), we find Eq.
(3.11).
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Appendix F

Two-level system in an
electromagnetic field

We consider the interaction of a two-level system in an electromagnetic field.
For example, in the system studied in chapter 5, the two levels are a quantum
dot with a single spin, |]), and the dot after creation of a (charged) exciton,
|X|). Transitions between these states are then produced by the field of a
circularly polarized laser.

F.1 Light-matter interaction with a classical
field

In a semi-classical picture, we use a classical (non-quantized) description for
the electromagnetic field, while we keep a quantum mechanical description
for the other parts of the system. There are two ways to describe coupling
between light and matter:

1. We consider coupling of electric or magnetic fields to a (transition)
dipole operator, Hiyy = —ptg - E or Hipy = —py,, - B. For example, this
description is appropriate for the electron spin, where the coupling to the
magnetic field is given by the Zeeman term, Eq. (1.3). Generally, however,
it is not obvious how to define the dipole moment. (Below, we see that the
dipole approximation corresponds to take e’** ~ 1.)

2. We can avoid this dipole picture and use a more microscopical descrip-
tion. We consider a charged particle, e.g., an electron with mass my and

163



164 F. Two-level system in an electromagnetic field

charge e in a electromagnetic field. The corresponding Hamiltonian,
1 2
(P— A1) +eo(rt) + Vir,e), (F.1)

2m0
depends on the vector potential A(r,t), the electrostatic potential ¢(r,t),
and an external potential V' (r,t) for the electron. We choose the Coulomb
(or transverse) gauge, divA(r,t) = 0, and obtain

2 2

p
H = —+V ~SA
2m0+ (r,?) mc (rt)- p+2mc
We consider a cubic volume of length L, with L much bigger than the photon
wavelength A (i.e., in the far-field regime). Then, the vector potential A(r,t)
can be decomposed in plane waves,

A(r,t) + ed(r,t). (F.2)

A(r,t) = (F.3)

1 )
- AL (t ezk-r’
Veoe L3 Zk: w(t)
with Fourier coefficients Ay(t). The components of the vector k take the
values k, = 2mn, /L, where a = z,y,z and n,, € Z. In the Coulomb gauge,
A(r,t) satisfies the homogeneous wave equation [210]

10
V2A(r,t) — gﬁA(r,t) = 0.

This leads to Ax(t) = ck exp(—iwt) + ¢*, exp(iwt) with w = ck. We in-
troduce two orthogonal unit polarization vectors €y (s = 1,2) which satisfy
transversally k - ey, = 0 (s = 1,2), orthonormality €}, - €y = 0500%(k — k'),
and right-handedness €y; X exo = k/k = k. Then, we can write ¢y as
Cx = Zi:l Cks€ks since Ayp L k. The basis ey, is understood as follows.
When both ey are real, this corresponds to two orthogonal linear polar-
izations (which are by definition parallel to the electric field vector). For a
circular polarization, one chooses complex unit polarization vectors ey, =
(1, £4)/V2.

We write Ag(t) in terms of gy, define the complex amplitudes uy(t) =
Cks exp(—iwt), and obtain

A(r,t) = Z Unes (1) E1cs€™ ™ + (1) ey ™T) (F.4)

RV eoerL3

This is an expansion of A(r,t) in the fundamental vector mode functions
exs exp(ik - r).
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F.2 Canonical quantization of the electromag-
netic field

We now quantize the electromagnetic field. For this, we introduce a pair of
real canonical variables, qus(t) = uks(t) + up,(t) and pys(t) = —iw [uks(t) —
uy.(t)]. Expressed in these canonical variables, the vector potential reads

Alr, 1) { [qks<t> ¥ gpksu)} . } ¥

1
h Veoe L3 ;

The Hamiltonian of the electromagnetic field can be expressed in terms of
the field energy [210] and becomes, in terms of gis(t) and pys(t),

1
Hy =5 37 [Ra0) + &P (0)] (F.6)
k,s
which is the energy of a system of uncoupled harmonic oscillators. So every
mode k with polarization s corresponds to one of these independent harmonic
oscillators.

We now replace the canonically conjugate variables qys(t) and pys(t) by
operators (i (t) and py,(t) which satisfy [Gus(t), Py (t)] = thdse0®(k — K'),
and [Gks(t), Grs (t)] = [Pxs(t), Dws ()] = 0 [since according to Eq. (F.6) the
classical modes are uncoupled|. We then define the non-Hermitian operators

R S L
aks(t> - \/% [Wka(t> + 1Pxks (t)] - CLkS(O) € )
G = e [wie(t) — ira(8)] = 4L, (0) e,

V2hw

These operators é,(t) and af () satisfy the usual commutation relations
of the annihilaton and the creation operator of a harmonic oscillator, i.e.,
[anes (t), &L,S,(t)} = 0(k — k')ds¢. The Hamiltonian of the quantized electro-
magnetic field in the Heisenberg picture can finally be written as

Hi = Y o [0+ 5 (F.7)
k,s

with the usual term proportional to 1/2 due to the zero-point contribution.
The quantized form of the vector potential is
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1 . .
A(r,t) = > [aks(mgkseﬂk'r—wt)+aLs(0) ep eTilkr=w) | (R g)

Veoe L3 "

Note that this is just Eq. (F.6) after replacing u(t) — a(t), u*(t) — af(t) and
thus dLs creates a fundamental vector mode. In the following, we will omit
the hat for the operators @ and af.

F.3 Interaction of a two-level system with the
electromagnetic field

We consider an atom with two electronic levels |1) and |2). In the following,
we describe how the coupling to the electromagnetic field leads to transitions
between these levels. We describe the system with the Hamiltonian given in
Eq. (F.2), but with a quantized vector potential [Eq. (F.8)],

H — H0+Hf+Hint,

where,
p2
HO = 2—% +V(I’,t),
e e?
Hint = —%A(r, t) ‘P -+ chzAz(r, t),

and we have set the electrostatic potential to zero for simplicity. The field
energy H; is given by Eq. (F.7). We now neglect the term e?A?(r,t)/2mc?
in Hiy, assuming that it is small compared to the one linear in A. This is
a good approximation for most optical experiments. For optical interactions
one can usually expand exp(%ik - r) in the decomposition of A [Eq. (F.8)]
because the wavelength of the radiation field is much larger than the atomic
wave function extension. This is the so-called multipole expansion. We now
transform to the Schrodinger picture [removing exp(fiwt)] and apply the
electric dipole approximation, exp(+ik - r) ~ 1. We obtain

e
Hyy = —— A |: s ks * ek ]a F.9
¢ mc; k |Oks€ks " P T Oy €y P (F.9)

)
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where Ay = \/h/2weyL3.

We consider Hj, in the subspace spanned by |1) and [2) and only one
mode of the field with a given polarization. We obtain

Hipe = _%Ak[aks (12)(1{2lews - pI1) + 1) 2[(1ews - PI2))
g (12)(11(2leg, - pIL) + [1)(2I(Llek, - pI2))] -

For coupling to a general polarization mode, one usually makes the rotat-
ing wave approximation, i.e., only keeping the energy conserving interaction
terms. If we restrict ourselves to only one circular polarization mode that
couples the transition |2) < |1) and transitions to other levels (which are
possible in real atoms) are excluded, angular momentum conservation re-
moves the energy non-conserving terms. We then obtain the interaction
Hamiltonian

€ *
Hin = = A (e 201 2lesc - PI1) + al, [1){21(1[ei - pI2))

Finally, we define the optical Rabi frequency Ay, = —eAx(2|exs-p|1)/me =

—e(2lexs - pI1) VR/2m3c2V eqw.
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Appendix G

Differential equations for
Cooperon and Diffuson

In this appendix, we transform the exact conductance correlator for diffu-
sive systems and arbitrary magnetic textures to make a Schrodinger equation
approach [86] possible. Further, we will derive the explicit differential equa-
tion for the diffuson propagator (the one for the cooperon has been derived
previously [87]).

The conductance correlator has been derived in Ref. [87], using diagram-
matic techniques, and is given by

2¢2D\”
2 _ 1! 1t /
dg (hLz) /deden(e)n(e)/dxdx

1
X Z {8 ‘ngzzugcm(xv lew)‘z

a1,02,03,04

+2 R‘e [Xglag,a'g,ou; (X7 Xl? W)ngal,ou;ag (X,7 X7 CU):|

+[XCHXD] }, (G.1)

where n/(€) is the derivative of the Fermi function, iw = e—¢’, and d describes
the dimension of the system with respect to the mean free path [. The inverse
Fourier transform of the cooperon/diffuson propagators x¢/?(x’,x, w) were
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obtained [87, 205] as

Rt )=x'

IR
Xgl/Og,agou; (X/> X, t/? t) = e(t/ o t) /R(t)— DR €exXp {_E t d7'|R|2}

X exp {Z% /tt/ dr [R A (R(7)) + RE. Aem(Ri(T»} }

X <Oé40é2

where R™(7) = R(t' + ¢ — 7) is the time-reversed path of R™ = R.

For explicit evaluation it is convenient to transform this path-integral
representation into a differential equation. In the case of the diffuson we
first have to eliminate the time-reversed paths. As a result of reverting
the time integration, an additional sign appears in the second term of the
electromagnetic vector potential. For the Zeeman interaction we can use the

relation
<a2 Texp{—i% /j dTB(R_(T))U} a1>

_ <a1 T exp {z% /tt, dTB(R(T»a} oz2>*

_ <a1 Texp{—fig;—; /jl dTB(R(T))a*} a2>. (G.3)

The latter equation can be proven by writing the time-ordered product as
a Dyson series and by inserting a resolution of unity in spin space between all
products (B(z;)o)(B(xj11)0), thereby arriving at an expression with terms
of the form (a|B;(x;)o;] 3)*. Such terms are the complex conjugate of Pauli
matrix elements multiplied by the real number B;(z;). So we can rewrite
them as (« | B;(z;)o}| 3), remove the previously inserted unities, and go back
to the time-ordered product.

T exp {z% /tt/ dr [B(R(r)) Loy

~BR*(7)) az]}

0430é1>, (G.2)
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Now we can give the differential equations for the propagators

=5(x' —x)6(t' — )1, (G.4)

where Y¢/P(x/, x;t',t) is a matrix in four-dimensional spin space. The upper
sign is for the cooperon [87], the lower sign and the complex conjugate of o
for the diffuson. Passing to Fourier space and operator notation, the above
equation becomes

2 .
(z’w - (L”) hC/D) KO0 =1, (G.5)
where the effective Hamiltonian h¢/? is defined in Eq. (6.4).

o Finally we express the conductance correlation in terms of the operators
D : * ~ *
Y&'P. We note that with XS amazas (K X, W) = (X, auan| XS X, azon)* =
(x, a3a1|wa|x ayas) , and Xglamm(x, X w)* = (X, g [XD|x, azan)* =

(x, s XPT|X', ayr) we can simplify the terms in Eq. (G.1):

/dxdx’ Z ‘Xgl/oz,agm(x,x’,w)‘ —T:UXC/DXC/DT (G.6)

QL ,y..e, 4

and

/dX dX Z Xgl/o?g,agoq X X,a w)ng/aDl agas (X/a X, w) Tr XC/DXC/D

QAL,...,004

(G.7)
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Appendix H

Finite Temperature Integrals
for UCF's

We shall explain here the integrals used in Sec. 6.2.3 to obtain Eq. (6.18).
We are interested in

I = / de'n/(¢')J = / de'n/(¢) / dw’(e)(é@_g —|—1a)2+c2

+2Re ! ) (HL.1)

(i€ — i€’ +ia — c)?

with a, creal and ¢ > 0. We consider a rectangular integration contour I' with
one side lying on the real axis, extending M = 2rl/[ towards the positive
imaginary axis and the same amount on each side of the real axis. For any
positive integer [, the absolute value of the Fermi function is bounded above
on such a contour: |n(z)|’ < 2. The integrands considered further below
are a product of the Fermi function and a rational function decaying with at
least |z|72. The integral of these products over the section of I" in the upper
half plane, will thus vanish for M — oo, as we have |z| > M on this contour.
We further note, that the complex expansion of the Fermi function n(z) has
its poles at z = iw,, where w,, = mn/f are the Matsubara frequencies and n
is an odd integer.

We expand the first rational function in Eq. (H.1) into partial fractions
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and then integrate J by parts:

11 1 1
J = /alen(e){afC <(€_€/+a—ic)2_(€—€’+a+ic)2>

-2
2R
* e(e—e’+a+ic)3}

B Re/den(e){éc(e—e’ja—l—ic)? - (e—e’+4a—|—ic)3}' (H.2)

We now evaluate the integral along the contour described above. As the poles
of the rational functions in Eq. (H.2) are in the lower half plane at ¢ —a —
ic, they are not within the integration contour. Applying Cauchy’s residue
theorem and accounting for the residues of the Fermi function res n(z)|,—i,, =

(—1/p) yields

2m 1 1 43
_ 2 1 . (H
/ ﬂRe Z {dc(iwn—e’+a+i0)2+(iwn—e’+a+ic)3} (H.3)

nodd>0

For the second integration in Eq. (H.1), we replace the expression in
braces in the above equation by its complex conjugate. As before, we first
integrate by parts over ¢ and apply the residue theorem afterwards. This
results in

1 67
I = —R deé
¢ Z / “n { zwn+6’—a+ic)3+(iwn+6’—a—i—ic)4}

nodd>0

8> 1 1 6
_ R - .(H.4
32 ¢ Z {dc(wn—i—wm—i—m—i—c)3+(wn+wm+ia—|—c)4}( )

n,modd>0




Appendix 1

UCFs (59}(1211 for Homogeneous
Fields

We evaluate the UCFs for homogeneous fields to compare the results which
we have used in chapter 6 from Ref. [87] [used in Eq. (6.2)] with earlier calcu-
lations [198, 201, 202]. For homogeneous fields we have n =7 =0 and f =0,
thus the Hamiltonians h¢/? [Eq. (6.9)] become diagonal with the matrix ele-
ments j2 4 iak —idk. Now we evaluate the propagators Y“/? [Eq. (6.3)] and
by evaluating the integrals over the Fermi functions in Eq. (6.2) explicitly by
using standard Matsubara techniques, as explained in App. H. We obtain
OGhem = OGom, + Ohom, p» Where

2\? 1 L%\’ N
iy = (%) (i) © 2 2%

c/p a,a==%1 j=—00 n,m
1 . P 13
{—d(yC/D—l— 7%) [bnm +~CP 4 §2+i(ak — om)}

48 [brm + 7P+ P +i(ar — d/%)rl} : (L.1)

and we have introduced b, = (n + m)(L/L7)*/4x. Here n and m are
positive, odd integers. The Aharonov-Bohm flux is implemented by replacing
j— j—(¢/do£d/do). For further evaluation we now set x = . We describe
the summation of cooperon and diffuson terms with a prefactor 3, which is
1 if both terms contribute and 2 if time-reversal symmetry is broken, so

the cooperon contribution vanishes. Thus we have 5g}(120)m ~ (2/ ﬁ)égfosm I
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and from now on we only consider the dephasing parameter v = ~v” =

L?/(27L,)?, according to Eq. (6.6).

If the spin-channel mixing is suppressed (i.e. k> «) in Eq. (I.1), we can
replace the sum over the spins ) . by the number of spin states g,. For
weaker magnetic fields (k < ) we have full spin degeneracy and obtain the
factor g2. Accounting for valley degeneracy yields a factor g2.

Since we will check our results against the ones given in Ref. [202], where
one-dimensional systems were considered, we take d = 1. Since we will
evaluate some limiting cases below, where L > 2L, we have v > 1 and
can therefore replace the j-sum in Eq. (I.1) by an integral. The Aharonov-
Bohm phase can then be removed by shifting the integration variable j and
we finally obtain

5o@ _ (L2008 (L2
Ihom h) 8x6 3 L2
A 1 6
X dj + . (12
n,zm /-oo j{d<v+j2) [bun + 7 + 57 [bnm+v+9'2]4} -

In the limit (27)*L2 < L?, 27 L%, we have

2r L3 L2

(0 +i) 2

Thus, we can use Poisson’s summation formula to replace the summation
over n and m in Eq. (I.2) by integration to arrive at

ot = e B (2 [T g () (L)
Ihom it B h . (fy+j2)2 3 h I : :

We now consider another limit, 2rL7 < L?, (27)°L}. Again, we start
from Eq. (1.2), but now we first calculate the integral over j, which has the
dominant contribution 7y~/2b73 since 1 < v < bpm. Thus we obtain

4g2g2 (e2\° L2 L / 1
o = () Y
T f h L* L n,m [i(n_‘_m)}

2
_ 2mgig, (¢ Li Ly (L5)
35 8 \n) I°L
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Indeed, our results 591(1211 given in Egs. (I.4) and (1.5) agrees with these
of Ref. [202]. Thus, on the one hand, we have confirmed that the result
from Ref. [87] [used in Eq. (6.2)] is consistent with earlier calculations [198,
201, 202]. On the other hand, in Eq. (I.1) we have given an explicit formula
(not known before as far as we are aware of)) describing how the spin-channel
mixing becomes suppressed for increasing magnetic fields, such that 59&)}@1
contains a prefactor g2 for low and g, for high magnetic fields.
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Appendix J

Energy Scales

For an electron spin in a magnetic field of a few Tesla, one typically needs
to know the Zeeman splitting in meV or the Larmor frequency in s~!. For
estimating these and similar numerical values, Table J.1 is useful. We obtain
it by equating the energies g|ug|B, kT, hw, hv, and E pairwise and using
g=2,|us| =9.27x107J/T, k = 1.38 x 1073 J /K, and h = 1.05 x 10734 Js.
For the rows, we set B = 1 T (Tesla), T = 1 K (Kelvin), w = 1rad s™!,
v =1Hz, and E = 1meV = 1.60 x 107" mJ, resp., and fill the obtained
values of the parameters B, T, w, v, and F into the corresponding columns.

- Tesla Kelvin rad s—! GHz meV
Tesla 1.3 1.8 x 10! 28 0.12
Kelvin 0.74 1.3 x 10M 21 0.086
rads™! | 5.7x107!% | 7.6 x 1071 1.6x1071 | 6.6 x 107"
GHz 0.036 0.048 6.3 x 10° 0.0041
meV 8.6 12 1.5 x 1012 242

Table J.1: Comparing parameters. For example, the Zeeman splitting in a
magnetic field B = 1T corresponds to the thermal energy at T'= 1.3 K.
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