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Abstract

This thesis presents novel techniques to address the challenge of outlier detec-
tion and removal in the context of face analysis from photographs. Given a face
image, under arbitrary scene conditions, our goal is to automatically compute
a binary map that indicates the locations of facial occlusions, such as hairstyle,
beard, clothing or glasses, and other atypical elements. The motivation is that
this information can help other face processing methods, which do not tackle
this problem on their own, to improve their results with minimal algortihmic
adjustments. The 3D Morphable Model is a good example for such a method,
and serves as testbed for our findings.

Usually outliers are difficult to capture. By definition they represent unpre-
dictable deviations from facial appearance, which elude a systematical analysis.
The problem is, that outliers impair a face description by perturbing extracted
features. This can lead to wrong classifications or otherwise defective outputs.
Therefore, in the face recognition literature, several methods have been devised
to deal with this phenomenon. However, these solutions are neither compara-
ble to our approach, nor applicable to our target applications, as they are often
suited to a specific feature representation and not comprehensive.

We address the outlier problem, for the first time, as a classical segmena-
tion task. The main contribution of our work is an algortihm, which determines
the location of outliers on a pixel scale, by partitioning a face image into skin
and “non-skin” regions. The algortihm is designed to work completely auto-
matic and, unlike conventional skin detection techinques, it does not depend
on color input. The latter is accomplished by means of a novel low-level texture
analysis procedure, which comprises an illumination compensation step and a
subsequent matching of image regions with respect to a given sample of skin
texture. The resulting texture features are segmented with a customized ver-
sion of the supervised GrabCut method. In order to facilitate automation, we
incorporate structural knowledge on faces from the 3D Morphable Model. It al-
lows us to mark specific facial areas, which are utilized as skin samples as well
as to initialize the actual segmentation routine.

We demonstrate the significance of the skin segmentation on three applica-
tions. First, it serves as main component to create an outlier map, that works in
combination with a slightly modified fitting algorithm, to greatly improve the
visual quality of 3D Morphable Model reconstructions. The second application
extends this capability and reuses the image content, associated with the out-
liers, to realize a high level photo manipulation, called Face Exchange. The aim
here is to substitute faces between different images, without affecting the rest
of the scene. The last contribution represents a novel approach to face recog-
nition. We localize prominent irregularities in facial skin, particularly moles, in
order to use their characteristic configuration within a face for identification.
For this task the skin segments are of utmost importance, to ensure high detec-
tion accuracy, and expressiveness of the extracted features.
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Chapter 1

Introduction

The task of an automated face analysis system is to infer from acquired sensory
data, like digital photographs or videos, some higher level knowledge, based on
which the computer can make application specific decisions and perhaps control
real-world processes. Human faces communicate a multitude of informations
that can be targeted by such a system. They range from mere measurements
like pose (position, scale, orientation) and shape, over descriptive attributes in-
cluding gender, race and age to concepts like identity and expression/emotion.
Within this field the problem of face recognition has always been of major inter-
est. Compared to other biometric characteristics, which can be used for identifi-
cation and which are more accurate, such as fingerprints or iris and retina scans,
only faces can be recorded in a non-intrusive manner and from greater distance
without the subject’s cooperation. Besides the practical importance, face recog-
nition is also the humans’ primary method of person identification. Since the
advent of computer vision it has inspired innumerable contributions and popu-
larized many of today’s established pattern recognition and learning techniques.
Still, after over thirty years of research, the problem is not yet solved generally.

The generic face recognition task can be formulated as simple as follows:
Given two face images, decide whether the depicted persons are the same. In
practice one has to differentiate between gallery and probe sets. The gallery
provides a list of known people, i.e. faces with associated identity labels, from
which the face recognition system is supposed to derive individual and discrimi-
native features as an abstract mathematical representation of the identity. From
a probe (query) face, the same features are extracted and compared to those
in the gallery. The result is a similarity score, based on which the identity can
be determined (identification) respectively confirmed (verification). Unfortu-
nately the task is complicated by the fact that, in real-world scenarios, where
the gallery and probe image have been acquired under different conditions,
faces may exhibit dramatic intra-subject appearance variations. The main rea-
son is the relatively complex 3D structure which, combined with changed pose
and illumination, affects a face’s shading, partial visibility and self-shadowing.
Other internal factors of change are expressions (non-rigid motion), aging and
presence or absence of facial hair. Besides illumination, occlusions and back-
ground clutter are common external sources of image variation. In particular
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10 CHAPTER 1. INTRODUCTION

occlusions can be a significant handicap, for robust recognition and face analysis
in general, because the location, extent and appearance of the affected image
areas is usually impossible to predict. Current systems have advanced to be
fairly accurate only under constrained scenarios. That means they are at best
able to cope with a few less pronounced variations simultaneously without ma-
jor degradation in matching quality. The ultimate challenge of face recognition
systems is to find features that are invariant with respect to all the extrinsic
imaging parameters and truly capture a person’s identity.

A very promising way to master the problem are generative face models,
such as the 3D Morphable Model (3DMM). This approach represents a face as a
linear combination of facial prototypes between which a dense correspondence
is defined and which span the whole object class. In association with additional
parameters for pose and illumination, realistic artificial views of a modelled
face can be created. Given an image, the depicted face is reconstructed as a 3D
model by means of an iterative analysis-by-synthesis procedure which adjusts
the model’s parameters such that the generated 2D projection matches the in-
put image. In the result the estimated linear model coefficients capture specific
facial properties of shape and texture. These can be used as features for iden-
tification, while the rendering parameters independently describe the extrinsic
conditions. A 3DMM reconstruction also establishes a dense mapping between
the image pixels and the model’s vertices. Along with the possibility to synthe-
size realistic novel views of a face, this capability renders the 3DMM a powerful
tool for several applications, beyond mere face recognition.

However, the method also has its drawbacks. One of them is a sensitivity
to outliers. In terms of the 3DMM, outliers are observations which lie outside
the range of modeled and thereby expected appearance. This notion comprises
in particular facial occlusions such as glasses, clothing and hairstyle. But also
an open mouth or raised eyebrows may be included in this definition, since the
original 3DMM approach does not support facial expressions. In the presence
of outliers in the input face, a reconstruction is corrupted because of poorly
estimated model parameters. The problem is reflected in degraded visual qual-
ity and under severe conditions in bad correspondence. The impairment grows
with the affected areas and increasing divergence from normal facial appear-
ance. Without going into depth (for now), there are two main causes for this
behaviour, both of which are intrinsic to the model’s design and not easily elim-
inated. Hence, the question arises, whether there are alternative and ideally
non-intrusive methods to compensate for the lack of robust occlusion/outlier
handling. That is the starting point for this thesis.

1.1 Motivation & Overview

Our work was motivated by two applications which utilize the aforementioned
3DMM capabilities. The first application represents a novel approach to face
recognition [ ]. Our aim is to localize irregularities like moles or birth-
marks in facial skin and to use their individually characteristic configuration
across a face for identification. Here the 3DMM provides the means to com-
pare feature point locations between faces in different images. One central
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problem of the idea is that the desired features only have a simple blob-like
appearance. Without constraining the search to regions that actually display
skin, the corresponding feature detector would report false positives all over
the face. Therefore a binary segmentation of the face into skin and non-skin
areas is required. In this case the non-skin part comprises hair (beard, hairstyle,
eyebrows), eyes, nostrils, lips and potential occlusions, since all of these ele-
ments may exhibit blob-like structures at various scales. As we detail later, the
3DMM cannot directly and reliably deliver such a segmentation, partly due to
the outlier problematic, so that a customized solution must be found.

The second application represents a type of high-level photo manipulation,
called “Face Exchange” (e.g. [ 1. Given an image, the goal is to replace
the depicted face with that of another person or with modified features, while
retaining certain aspects of the original image like the hairstyle, clothing and
the scene background. For this task the 3DMM is used to represent faces and
the extrinsic parameters independently, such that they can be re-synthesized
under different scene conditions. In order to obtain convincing outputs, an
additional segmentation into foreground and background layers is needed to
correctly handle changing object occlusions which appear as result of the ma-
nipulation. As opposed to the hard skin segmentation in the first application,
this scenario demands for a soft image decomposition. That means each layer
and pixel is associated with a “coverage” value that defines its opacity. Only
with that, one can seamlessly blend multiple layers, in particular hair, to create
photo-realistic manipulated face images. Also here the 3DMM is not suited to
directly determine the occluded areas.

Despite completely different objectives, it turns out that both applications
share a common problem. The first one depends on an explicit labeling of all
pixels not belonging to facial skin, the second involves special treatment of facial
occlusions, which also mostly affect skin regions. Apparently both tasks demand
for a procedure that separates outliers respectively occlusions from skin. There-
fore, this work addresses the outlier problematic as a classical binary image
segmentation problem. To our knowledge such an approach is unprecedented
in the domain of face analysis applications. In order to be useful for the two
described applications, our solution has to meet certain requirements. Most im-
portantly, the segmentation should be performed automatically. This is essen-
tial for the mole detection and recognition scenario, where hundreds of images
from a large face database have to be processed. A second request is support
for gray scale images, which is a novelty among techniques dealing with skin
detection/segmentation. While the conventional methods rely entirely on dis-
crimination of color information per pixel, the gray scale setting demands for
more elaborate texture based algorithms. Naturally the segmentation has also
to be accurate. These design goals contribute considerably to the complexity
of the segmentation task. We will show that, although established and well
understood off-the-shelf methods are employed, in order to obtain high quality
solutions, additional effort has to be made to adequately pre-process the face
images and to develop the “right” interplay between the specialized algorithms.

The expertise concerning face representation is provided by the 3DMM. It is
a key component in this work, since all applications utilize some of the model’s
capabilities. Chapter 2 introduces the basics of the face model and of the ded-
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icated fitting algorithm. This work touches two distinct topics in computer vi-
sion, namely face analysis and segmentation. Since there is only little intersec-
tion between the methodologies adopted in these fields, Chapter 3 provides a
brief review of segmentation techniques, with strong emphasis on graph-based
methods, which is addressed to readers who are less familiar with this topic.
Chapter 5 details the Spectral Matting technique for soft segmentation, which
is required to compute opacity values of layers in the Face Exchange application.
The main contribution of this thesis is presented in Chapter 4. We develop a ro-
bust skin segmentation procedure by extending the GrabCut approach with au-
tomatic initialization, specifically designed texture features and a novel method
to reduce the influence of illumination on these features. Another novelty, pre-
sented in Chapter 6, is the aforementioned identification method that exploits
small mole-like details in facial skin. Furthermore, this chapter explains how
the skin segments can be used to realize 3DMM fittings without corruption by
outliers and how they facilitate an automatic and artefact-free Face Exchange.
Finally, Chapter 7 concludes our work.

1.2 Related Work

In the face recognition community it is well known that in holistic representa-
tion schemes, the changes of facial appearance, as caused by illumination, non-
rigid motion and occlusion, affect the entire set of feature descriptors, even if
the actual image variations are local. The classical Eigenfaces [ ] approach,
like most PCA-based methods, is a perfect example for this lack of robustness.
One way to deal with the issue, is to build more complex models that incor-
porate the sources of possible appearance variations. This has been done for
illumination and facial expression. In practically relevant scenarios, however,
occlusions are merely a spatially coherent form of outliers and elude such a
systematical analysis.

A widespread paradigm for robust recognition relies on sparse representa-
tion. The underlying argument is, that local features, computed only from a
fraction of the image pixels, are less likely to be corrupted by occlusions than
holistic features. An early attempt at deriving local features [ ] was purely
based on measured geometric configurations as the size of facial organs and
their relative positions. More recently, EBGM [ ] successfully com-
bined geometric properties with image based features. This method represents
faces as planar labeled graphs. Their nodes are placed consistently on cer-
tain landmark points and associated with bundles of Gabor Wavelet responses,
called jets, which are extracted from the underlying image at the node locations.
Graphs from multiple (training) faces are stacked into a bunch graph. This struc-
ture can be matched to novel faces by constrained geometrical transformations
of the nodes and simultaneous combinatorial selection of the best fitting jet
for each node respectively. Within the appearance based domain various ap-
proaches, such as SPCA, ICA and LNMF, adopt sparseness by projecting the face
image into subspaces with locally concentrated bases. The idea of SPCA [ 1
is to create a sparse basis only by transforming a conventional PCA basis with
a suitable rotation matrix. Le. the orthonormality property is retained. Driven
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by a simple cost function, the algorithm iteratively rotates hyperplanes in the
principal subspace such that directions with little correlation in the data set be-
come maximally sparse. This comes at the cost of introducing correlations in the
output coefficients. The ICA technique [ ] is a generalization of PCA that
decorrelates the higher order statistics in addition to second-order moments,
and treats the input face images as linear combination of statistically indepen-

dent basis images [ , 1. The sparseness of the ICA basis images
results as side-effect of the employed non-Gaussianity maximization. The ra-
tionale behind LNMF [ ] is that for certain processes a non-negative

representation is “natural”. For example, gray scale images or firing rates of
neural cells have non-negative intensities. In contrast to ICA, LNMF explicitly
seeks a decomposition of such data into non-negative factors with additional
constraints for locality and orthogonality.

Another form of locality is realized through component-based approaches,
where the standard holistic techniques are only applied to certain parts of the
face. Usually the motivation for such representations is to accommodate pose
variations, quite similar to EBGM, by allowing a flexible geometrical relation
between the individually modelled components, e.g. [ , 1. A pop-
ular probabilistic approach to the part-based concept is proposed in [ 1.
The authors divide a face into six fixed elliptic shaped local areas. From the
training faces all patches within one region are grouped into a corresponding
eigenspace which is modelled by means of a Gaussian Mixture Model. In or-
der to compensate for localization errors (the local areas are static) additional
virtual training samples are generated using an image perturbation method. In
the identification stage, the test images are also divided into the same six areas
and are projected onto the above computed eigenspaces respectively. A global
probability of a test face is computed by adding all local probabilities as defined
by the Gaussian distribution.

The last category of algorithms, we want to consider here, is based on

classical robust regression techniques [ ], such as random sampling (e.g.
RANSAC) or M-estimators. Although it has not been demonstrated on faces,
Leonardis and Bischof [ 1 proposed an interesting general object recogni-

tion approach within the eigenimage framework. Instead of computing coeffi-
cients through direct projection of the data, they use a random subset of pixels
to robustly generate a representation hypothesis. This is done by iteratively ex-
amining the error distribution and discarding a certain fraction of pixels with
the highest errors, thus many outliers are rejected. Moreover, several hypothe-
ses are created and then selected according to the MDL principle. In connection
with the 3DMM an alternative to the original Stochastic Newton Descent fit-
ting algorithm was developed [ , ]. While the prime focus was to
improve efficiency, this work also addressed the outlier problematic by intro-
ducing an iteratively reweighted least squares scheme into the cost function
with the aim of limiting the influence of large residuals. Last but not least, most
methods, including those mentioned above, are concerned with robustness in
the recognition stage, i.e. they assume that the images in the training set are
“ideal” and that the visual model is essentially correct. De la Torre and Black
[ ] presented a method for robust PCA learning, also by incorporating the
concept of M-estimation into the definition of the reconstruction error, which
leads to an iterative minimization algorithm.



14

CHAPTER 1. INTRODUCTION



Chapter 2

Face Representation with the
3D Morphable Model

2.1 Model Construction

The 3D Morphable Model (3DMM) is constructed from a set of 200 example
faces, provided in form of 3D laser scans. These samples capture (and also
limit) the variation of facial attributes, which the model is able to represent. A
semi-automatic procedure first removes scanning artefacts and unwanted data
like the back of the head and aligns the faces in 3D. After this preprocessing the
central step of model creation is to establish a dense point-to-point correspon-
dence between each face and a single arbitrary reference face. The laser scanner
records facial data as radius r (i.e. depth) and RGB color in a cylindrical rep-
resentation I(h,¢) = (r(h,¢),R(h, ¢),G(h,¢),B(h,¢))T using respectively 512
vertical and angular sampling steps. Correspondence between two scans is de-
fined through a vector field v(h, ¢) = (Ah(h, ¢), A¢p(h, $))T such that each point
in the first scan I,(h, ¢) corresponds to the point I,(h+ Ah, ¢ + A¢) in a second
scan. A modified optical flow algorithm [ ] is used to estimate v.

2.1.1 Correspondence using Optical Flow

The majority of optical flow methods adopt the notion of brightness constancy,
i.e. in a gray scale image sequence I(x, y, t) pixels are assumed to conserve their
intensity between frames: I(x(t),y(t),t) = I(x(ty),y(to),to). In differential

form this yields the following condition on the velocity components v, = % and

_dy.
Vy = E
d ol +8[ +8I_0 @1
dt ox * Ty Y e '
Equation (2.1) is under-determined, therefore an additional constraint [ ]

is introduced which assumes that the flow is constant within a small neighbor-
hood R (generally a 5 x5 window) of each pixel. A unique least-squares solution
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16 CHAPTER 2. 3DMM FACE REPRESENTATION

is then obtained by minimizing at each point (x,, y,) the expression:

oI(x,y)  3I(x,y)  aI(x,y)\*
E(xq,Y0) = Z ( E vy t+ 3y vy + o ) (2.2)
X,y €R(x0,¥0)

For pairs of images I,, I, the partial derivatives are approximated by finite
differences, in particular % = AI = I, —I,. In order to also capture larger
displacements a coarse-to-fine strategy can be implemented by applying the
described method on a Gaussian pyramid, starting from the lowest resolution

and refining the estimated flow on each subsequent level.

For the 3D laser scans this procedure is generalized to multi-channel data by
replacing the squared bracket in (2.2) with a weighted norm on vector-valued
pixels, ||I(h, ¢)||* = w,r? + wrR% + w;G? + wzB?:

8I(h,¢>)v +3I(h,¢)
oh " o¢

2
. (2.3)

h,¢€R

The heuristically chosen weights compensate for the different value ranges be-
tween the channels and control the influence of shape versus texture. The op-
tical flow algorithm [ ] includes two more enhancements. A Laplacian
pyramid is used to improve correspondence between scans which differ in over-
all size or brightness. To obtain reliable results even in regions of the face with
no salient structures, a specifically designed smoothing and interpolation algo-
rithm is added to the matching procedure on each level of resolution.

2.1.2 Face Vectors

After all scans have been registered to a common reference frame, they contain
the same number n = 75972 of vertices and each vertex (ideally) represents the
same "semantic" location in every sample face. The 3D Cartesian coordinates
and associated colors (RGB-tuples) of a face’s vertices are stored as shape vector
S € R3" respectively texture vector T € R®", (for the remainder of the chapter
we refer by the term sample face/scan to this form of representation):

X1 Y1 & rn & b
Xo Y2 2 ry & by

S =vec . , T =vec . . 2.9
xn yTl Zn rn gn bn

The reference frame defines a 2D parametrization for those vectors. It thereby
also provides a natural way to derive a triangulation of the vertices required to
render the faces. By means of the dense correspondence it is possible to com-
bine properly registered scans to produce previously unseen faces and further
to "learn" how to generalize from a few samples to the whole object class of
human faces.

An important observation is that a linear combination of two registered face
scans again represents a human face, i.e. given two sample shapes S; and S,, it
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(x
&1 1
b, 21
T'i Xi
&i Yi
b; 2
T, S;

Reference frame Sample scan

Figure 2.1: By means of the reference frame a dense correspondence between 3D
scans is established that relates a vertex (x;, y;,2;; i, i, b;) from different scans to
the same semantic location within the face. The reference also defines a common
2D parametrization for the sample shape/texture vectors.

is possible to create a morph:
S=(1-a)-S;+a-S, with 0<a<1. (2.5)

By repeatedly morphing additional shapes, Equation (2.5) can be generalized
to create new faces from any convex combination of m samples:

m m
§=>a;-5 with 0<q<1, Y q=1 (2.6)

i=1 i=1

If one considers 7 = R®" as the space of all possible 3D objects composed
of n vertices, then apparently facial shapes populate only an affine subspace,
spanned by the vectors S;, with very low dimensionality (< m — 1) compared
to V. This property analogously holds for the texture vectors which can be
morphed in the same manner, either in combination with or independent of
the shape, as shown in Figure 2.2. The linearity assumption imposed in the
construction in Equation (2.6) does not necessarily reflect the true nature of a
"face space", which is unknown. However, due to the high dimensionality of
7V compared to the small number of available face samples it would be very
difficult and unreasonable to conjecture on a more complex structure of this
space.
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2.1.3 Statistical Analysis

In Equation (2.5) and (2.6) the composition of faces with hard constrained
coefficients is arbitrary. For one the crossover between plausible faces and ex-
aggerations is not clearly defined and also varies individually. Secondly those
limits are mathematically circumstantial to handle. It would be better to model
faces in a probabilistic framework. The simplest way to do that would be to
discard the constraints and assume that shape and texture are distributed uni-
formly. This, however, does not lead to a realistic model, since it allows the
generation of very unlikely faces. Instead the 3DMM is based on the presump-
tion that the underlying data follows a Gaussian distribution. In the following
we briefly recapitulate the construction of the model, exemplary for shapes,
using principal-component analysis (PCA) as a statistical analysis tool and we
discuss some of it’s properties.

Principal-component analysis (also referred to as Karhunen-Loéve Transform,
KLT) is commonly motivated as the search for a transformation on a group of
random variables, such that the transformed variables are decorrelated. Math-
ematically this is achieved by using the eigenvectors of the sample covariance
matrix as new basis for representation of the data set. In order to apply PCA to
our given ensemble of training shapes (with 3n random variables and m sam-
ples) we calculate the mean

1
s=—>s, 2.7)
subtract 5§ from the samples and stack the resulting vectors into a data matrix

I |
X=|x; x5 - x,|eR™m (2.8)

Then the covariance matrix can be written as

1 T
¢=—xx". (2.9)

The high dimensionality of C forbids direct computation ® of its eigenvectors.
Instead, first an "economic" form of singular-value decomposition (SVD) of the
data matrix is computed. It accounts for the fact that rank(C) < m < 3n and
results in orthogonal matrices U € R*™>™, V € R™™ and diagonal matrix A =
diag(Aq,...,Ay) € R™™:

X=UAV". (2.10)

With that the covariance matrix can be expressed as:

1 1 1
C=—-xxX"=-U0AvTVvATUT = —UuA?UT". (2.11)
m m m

The column vectors of U, called principal components are mutually orthonormal
(by definition of SVD) and Equation (2.11) shows that they are the eigenvectors

I Already storage of C would require (3n)? - sizeof (float) ~ 200Gb of memory.
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Shape

OO®

Texture

Figure 2.2: lllustrates the ability to morph between properly registered 3D scans
independently for shape and texture.

of C, with corresponding eigenvalues A?/m. If we define by B = U’X the pro-
jection of all mean-free shape vectors into the space spanned by the principal
components, it is easily verified that the resulting coordinates are decorrelated:

1 1 1 1
cov(B)= —BBT = —UTXX"U = —UTUAU"U = — A2, (2.12)
m m m m

We denote the principal component vectors by s; and the variances of the
projected data B by o = 2?/m. Without loss of generality we can assume that
the A; and thereby also the o; are sorted in descending order,

01205220,

with the corresponding s; arranged accordingly within U. It can be shown that
of all subspaces, the one spanned by the principal components minimizes the
mean square error between a vector x, sampled from the same population as the
x; in Equation (2.8), and its approximation X in this subspace. In particular, if
x =Y b;s; and X is the projection of x onto the first k principal components,
then:

2

i b;s;

i=k+1

E[lx - %|"] =E

=E ZZ(bisi)T(sjbj)
v 5 (2.13)

S5 S

i=k+1 i=k+1

This property shows that the described subspace is optimal (for the given train-
ing data) for dimensionality reduction, since the last k + 1 components, which
are left out in an approximation, are the ones with smallest variance and there-
fore carry the least information.
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As mentioned above, the 3DMM approach assumes that the facial shape
comes from a Gaussian distribution A (u, ¥). Its maximume-likelihood param-
eter estimates for the available samples are = § and ¥ = C. With that the
probability distribution for shape vectors x € R3" can be expressed:

1 e
p(x) = ——— s, (2.14)

V(2m)*r(C|

Inversion of the covariance matrix is realized via Equation (2.11) which implies
that directions outside the principal component subspace span{s;} attain a prob-
ability of zero. For mean-free shape vectors x € span{s;},x = Ub the exponent
in (2.14) can be simplified,

(x.c %) = (b, (00T ub) = (b, A7B) =T 2%, @
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and so the pdf basically reduces to a product of one-dimensional normal distri-
butions directly parameterized by the vector’s coefficients:

%

N
Q|
Sk

pl)=p(b)~e =TT (2.16)

i

The previous analysis applies analogously to the scanned textures and is per-
formed independently of the shapes. Now, instead of interpreting a (novel) face
(8, T) as a morph between examples, the face is encoded as linear combination
of mg principal components s; for shape and m principal components t; for
texture (mg,m; <m—1):

1 I
§+Zal i ;Z p(S) ~e 27 (2.17)
i=1
1 & v
+Z/o: b E=— T p(T)~e 1T (2.18)
i=1

Figure 2.3 shows the first three principal components of the shape and tex-
ture model as well as their influence on facial appearance. The latter is visu-
alized by adding or subtracting a multiple of the respective component to the
average face while leaving all other modes unchanged. Based on these images
we make two observations. First, some principal components correspond to
meaningful facial attributes, e.g. s; and t, appear to model gender, s, repre-
sents fullness of a face and t4 seems to affect the hairline and overall skin tone.
This no longer holds for components with smaller variance. Secondly, the com-
ponents have global support. That means, changing any of the coefficients a;
or f3; will have an effect on every vertex of the face. Conversely, encoding only
a local change in a face, still requires the adaptation of all coefficients of the
respective model.

This last-mentioned property is desirable from a theoretical point of view,
as it ensures that only uncorrelated sets of features can be altered individually.
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Figure 2.3: First three principal components of the shape and texture model. The
component vectors are visualized (shape as range, texture as RGB) in the refer-
ence frame, normalized to [0,1]. The right columns show their effect on facial
appearance by subtraction/addition of the respective component, scaled by a mul-
tiple of its corresponding standard deviation, on the average face (s, t).



22 CHAPTER 2. 3DMM FACE REPRESENTATION

Thereby unnatural constellations, e.g. enlarging only one side of a face, are pre-
vented. However, in practice the number of training faces is far too small to
represent the full spectrum of facial diversity and thus to model the true de-
pendencies between local facial regions. To overcome this limitation the Mor-
phable Model is segmented (in the reference domain) into four regions: eyes,
nose, mouth and surrounding area. Each of these regions can be encoded by a
different set of model coefficients. The results are assembled using a multi-scale
blending procedure [ 1.

2.2 3D Morphable Model Fitting

The Morphable Model can be used to estimate the 3D structure of a novel face
from a single photograph. To accomplish this goal, an iterative analysis-by-
synthesis scheme is used to adapt the model’s parameters @ and 8 such that
the assembled shape and texture, projected into the image frame, match the
depicted face. The reconstruction obtained by this procedure also provides ap-
pearance estimates for facial regions which are occluded in the photograph.

2.2.1 Rendering Parameters

In order to obtain photo realistic renderings of face models additional parame-
ters are required. We distinguish between two sets of image formation (render-
ing) parameters:

e Pose Parameters
The object-centered vertex coordinates v, = (xy, Yk, %)’ are mapped to a
position relative to the virtual camera (located at the origin) subject to the
rigid transformation:

(Wx,k’ Wy,k’ WZ,k)T =R7R9R¢vk + t,. (219)

The angles ¢ and 6 define in-depth rotations about the vertical (yaw) and
horizontal (pitch) axis, y represents a rotation in the image plane (roll).
t,, acts as 3D translation. The world coordinates are then perspectively
projected to the image plane, parameterized by the cameras focal length
f and the principal point (P,,P,) (position of optical axis in the image
plane):

Wy k W)’,k
px,k:Px +f_’ py,k:Py +f . (2.20)
Wz,k Wz,k
e Illumination Parameters
Mlumination of the 3D model requires surface normals n,; to be defined
per-vertex. The triangulation (obtained in the reference frame) allows
straight-forward computation of one normal per triangle. Vertex normals
are then simply averaged from the normals of adjacent triangles.
The fitting procedure employs the standard Phong illumination model, see
for example [ ] and [ 1, assuming only one directed light
source with ambient (L,,;), diffuse and specular (Ly,) intensities and
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hard cast shadows. The lights’ direction vector 1 is specified ? through
azimuth and elevation angles 6; and ¢;:

1 = (sin(¢;) cos(6;), sin(6;), cos(¢;) cos(6;)) . (2.21)

For each vertex with color ¢, = (4, g, bx)” the amount of reflected light
is computed as:

Ly = ¢ - (Lamp + Lair (N 1)) + kg - Lagy (20, Dng — 1L, —vy ) (2.22)

The material parameter a influences the "hardness" of the specular reflec-
tion. Finally the lit mesh is rasterized, using a z-buffer for hidden surface
removal and Gouraud shading to interpolate vertex colors inside triangles.
After rendering a global color transformation is applied to the image pixels
I, . ,(x,y) to compensate for scene specific conditions like tint or contrast.
An important application of this measure is to facilitate matching of the
face model to gray scale images which otherwise would require modifica-
tion of the underlying sample textures and retraining of the model. The
color adjustment includes offset (o,,0,,0;), gain (g;, g,,&p) and contrast
c. With the luminance of a pixel denoted by Y = 0.3I, +0.59I, + 0.111,,
the transformation is defined individually for each color channel as:

ir,g,b(x; J’) = gr,g,b (CIr,g,b(x: .Y) + (1 - C)Y(X, J’)) + Or,g,b (223)

In all there are 22 parameters, concatenated in a vector p, which control the
rendering output.

2.2.2 Formulation as Minimization Problem

Given an input image I;,,,(x,y), a 3D reconstruction is obtained by search-
ing for the most likely model and rendering parameters that can explain the
observed scene. This approach is formally expressed as maximization of the
conditional probability

p (az [3: plIinput(xa .Y)) . (224)

According to Bayes rule, and under the presumption that the parameter sets are
independent, it is equivalent to maximize

P (Linpue(x, ¥)la, B, p) - P(@) - P(B) - P(p). (2.25)

The prior probabilities P(a) and P(f3) were already estimated by PCA (2.17),
(2.18). For the p; the fitting process assumes individual normal distributions
with ad-hoc values for mean and variance. The leftmost term in Equation
(2.25) models the deviation per pixel between the input image and the im-
age I,,,40/(x, y) synthesized from the parameters, again assuming independent
Gaussian noise with standard deviation o;. Altogether, maximization of the
posterior probability (2.24) can be reformulated as minimization problem with
the cost function:

E(a:ﬁ’p):EI—i_n’EP (2~26)

2 We use a right-hand oriented coordinate system with y-axis pointing up.
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where

Ep = —2log (P(a)P(B)P(p))
a B? (p; — p:)° (2.27)
=25+ 2. T ) oz
T, R,i

i S,i i o i
and

E; = —2logp (Iinput(x;y)la,ﬁ,p)
=S (B 3) = Tyt 1))’ (2.28)

o1 X,y A=r,g,b

E; describes the Euclidean distance between two color images while E, is an
expression for the plausibility of the parameter estimates. The factor 7 is used
to bias the influence of the priors, either towards more likely reconstructions,
closer to the average face, or towards more accurate fittings which might exhibit
artefacts when viewed under different pose or illumination.

The cost function is minimized with a stochastic version of Newton’s method
[ 1 which evaluates E and it’s analytical derivatives in each iteration only
for a small random subset of pixels resp. triangles. Additionally, to avoid local
minima, a coarse-to-fine strategy is employed. In the beginning only a few coef-
ficients are optimized and 7 is set to put high weight on the prior probabilities
(2.27). Later, the number of fitted principal components is increased, the bias
is changed in favor of matching quality and in the final iterations the eye, nose,
mouth and surround segments are optimized individually, while the rendering
parameters remain unchanged.

2.2.3 Landmark Assisted Fitting

An extension [ ] to this algorithm also incorporates externally defined fea-
ture point locations, like the tip of the nose or the corners of the eyes, to improve
fitting performance. The cost function is augmented with a term, that encodes
the discrepancy between the locations of user/software provided feature coor-
dinates (q,,qy) and the projected locations (p, x,p, ) of the corresponding
vertices, based on the current pose and shape parameters:

(qx,k) _ (px,k)
q ¥,k p ¥,k

Provided that the landmark positions are determined manually, they represent
the only available ground-truth information in the fitting process. In such cases
the average distance between the q, and p, can be utilized as an indicator for
the quality of the 3D reconstruction in terms of correspondence, e.g. to obtain a

suitable search range when matching local point features between faces. In the
following we shall refer to this measure as alignment error.

2
(2.29)

E(a,B,p)=E +n-Ep+
k
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Figure 2.4: lllustration of the point/region mapping technique between the 3DMM
reference coordinates (sketched as white grid lines) and image coordinates. In this
example a binary mask, marking the cheeks, was selected in the reference frame.
Via a fitting of the 3DMM this mask can be mapped to the photograph and vice
versa the true facial texture can be mapped to the model.

2.2.4 Dense Mapping to/from Image

Amongst other outcomes, the fitting algorithm realizes a dense correspondence
between the fixed reference frame of the model and the input image frame,
whereby the 3DMM reconstruction serves as intermediary between the two dis-
tinct coordinate systems. A mapping from model to image is realized by pro-
jecting vertices, either as points or as triangular mesh, via the estimated shape
and pose parameters to their corresponding locations in the image. Standard
rendering techniques then provide the means to determine their visibility. With
this mapping it is possible to transfer pre-selected sets of vertices to the image in
order to mark specific facial areas, for example the facial organs or the cheeks,
which is illustrated in Figure 2.4. The reverse mapping can be performed in-
directly, by first rendering the reconstruction and then using a look-up table to
determine which visible triangle (and associated vertices) projects onto a query
location in the image.

2.2.5 Texture Extraction

The linear combination of facial prototypes is not nearly flexible enough to cap-
ture many of the skin’s local characteristics like varying pigmentation (moles,
freckles), wrinkles or scars. While modeling of such details remains an unsolved
problem, it is possible to transfer this information from the image to the 3DMM
reconstruction, in a post-processing, for later reproduction. This capability adds
considerably to the photo-realistic appearance of re-synthesized faces.

Given a fitting result, the position and visibility (in the image) of each vertex
can be computed, as stated above. For visible vertices the underlying color value
from I;,,,, can be retrieved and mapped into a texture in the reference frame.
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In order to render the extracted texture independent of the input’s specific pose
and illumination, the “true” albedo has to be separated from shading and shad-
owing effects. Using the estimated parameters from the fitting result, this is
accomplished by processing the extracted colors through the inverted equations
for lighting (2.22) and color adjustment (2.23). The albedo in hidden parts of
the face is filled in from the modeled texture. Note, that the extracted albedo
is always a color value, i.e. illumination inversion also maps gray scale inputs
to the canonical color space of the model’s original texture samples. Hence, the
extracted textures are colored and usually visualized in the reference frame as
shown in Figure 2.4.



Chapter 3

Review on Segmentation
Techniques

3.1 Segmentation with Graph Theoretic Methods

In recent years many researchers in the field of image segmentation have fo-
cused on methods utilizing various graph-theoretical results that aim at parti-
tioning a graph into disjoint branches which then represent separate regions
in the image. While there exists a number of partitioning techniques, they all
share the same underlying representation. An image is interpreted as undi-
rected weighted graph G = (7, E). The nodes/vertices ¥ represent the image’s
basic elements, usually pixels or feature descriptors. Sometimes pixels with
similar properties are combined in a pre-processing step to form small coherent
patches (known as super-pixels [ D). Using these as building blocks of the
image, reduces the associated graph complexity. £ is the set of edges connecting
the nodes to a graph. Each edge is associated with a weight w;; which encodes
the affinity, essentially a notion of similarity, between the linked nodes v; and
v;. A precise definition of which pixels are connected by edges depends on the
particular method. The graph topology given by £ and the link weights can be

stored as sparse and symmetric adjacency (affinity) matrix:

3.1
0 otherwise 3.1

A {WU if v, is linked with v,

1] *

Node affinities can be derived from various visual cues, like intensity, color,

texture and so on. Commonly the edge weights also include a distance term to

attenuate or annul links between nodes that do not lie close to each other. This

ensures sparsity in the adjacency matrix, with considerable impact on the com-

putational costs. Once the image has been translated into a graph the segmen-

tation is performed by grouping the graph nodes according to their affinities.

The rationale is that pixels with strong edges are similar and belong to homoge-

neous image regions while pixels connected via weak links probably originate
from structurally different regions.

27
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3.1.1 Unsupervised Clustering Techniques

For many applications segmentation is an intermediary step, serving merely as
a method to form meaningful clusters of pixels for further bottom-up analysis.
Often no problem specific knowledge is available at this level and the segmen-
tation algorithms are expected to work unsupervised, driven only by generic
cues.

With the introduction of the minimum cut criterion Wu and Leahy [ ]
founded a whole class of segmentation methods suitable for this purpose. Their
common approach is to minimize the similarity between pixels that are assigned
to different regions, based on a global criterion of the according node links.
Formally, a graph G can be partitioned into two disjoint sets by removing the
links connecting both parts. The set of capped edges ¢ C £ defines a cut and
induces a new graph G(C) = (¥, €\ C). Each cut is associated with a cost value,
measuring the degree of dissimilarity between the severed sets:

cut(A,B) = Z Wij:ZWe. (3.2)

V; eA,vjeB eeC

Wu and Leahy define an optimal bi-partitioning as the one minimizing this cost
term. For K-way partitions the same criterion is applied recursively to the pre-
viously obtained subgraphs.

In order to find the minimum cut efficiently, they translate the problem into
one of computing a network’s maximum flow [ ]. This formulation uses a
graph G’ augmented by two special terminal nodes, called source S and sink T,
which are each connected to one of the original nodes. In such a graph edges
between pixels are called n-links (n stands for “neighbor”) and edges connecting
pixels to terminal nodes are called t-links. The task is then to find the cheapest
cut that disconnects source from sink. High weights on the t-links ensure that
the cut comprises only edges found in the original graph G. The Ford-Fulkerson
Theorem [ ] states that this problem is equivalent to finding the maximum
flow from source to sink through G’. A vivid analogy of this process is a net-
work of pipes carrying water. Each pipe has a transport capacity given by the
corresponding edge strength. Pumping sufficient quantities of water from S to
T will eventually saturate some of the pipes. Once the amount of pumped water
cannot be further increased, the flow through the saturated pipes corresponds
to the maximum flow from source to sink in this network and the saturated lines
compose the minimum cut. The maximum flow can be computed efficiently in
low-order polynomial time [ LI 1.

In their work, Wu and Leahy determine the optimal cut by testing the ST-
minimum cut for all pixel pairs. Even with an efficient algorithm available also
for this task, the number of nodes required in real-world segmentation problems
is still to large. Therefore the authors further reduce the graph complexity by
condensing branches that are likely not to share any edges with the min-cut.

Despite the innovative methodology in this work —many aspects can still be
found in todays state-of-the-art segmentation techniques— there remains one
particular problem. As the authors mention themselves, the minimum cut crite-
rion is strongly biased towards cutting small sets of isolated nodes in the graph,
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Figure 3.1: Example when the minimum cut criterion creates unwanted partitions.
Assuming the edge weights are inversely proportional to the nodes’ distances, sev-
ering the individual nodes on the right side results in a smaller cost value than the
cut that separates the right and left sides.

resulting in either meaningless segments or in a massive over-segmentation.
Apparently, when optimizing equation (3.2), it is often cheaper to cut a few
strong links than many weak ones. Figure 3.1 illustrates this behaviour.

In [ ] Shi and Malik address this problem and propose a different cost
function. Instead of looking at the value of total edge weight connecting two
partitions, their measure computes the cut cost as a fraction of the connectivity
wrt. to the whole graph. They call this the normalized cut:

cut(A,B) cut(A, B)

Ncut(A,B) = s
(4.B) assoc(A, V)  assoc(B,V)

3.3)

where

assoc(A, V) = Z Wpq (3.4

vpeA,quV
is the total affinity from nodes in A to all graph nodes V, and assoc(B,V) is
similarly defined. With this definition a cut receives small cost if it separates
two components that have few edges of low weight between them, and many
internal edges of high weight. For the example cuts in Figure 3.1, the Ncut value
will be high, since the unnormalized cut is 100% of the total connection of the
capped nodes. Shi and Malik show that computing an optimal Ncut exactly is
equivalent to the NP-complete problem:
_y'(D-A)y

min ————
y y'Dy (3.5)
st. y;€{1,-b},0<b<1,y'D1=0

where A is the graph’s affinity matrix and the diagonal degree matrix D;; =
Z]. w;;. Further, if these conditions are relaxed and y is allowed to take on
real values, then approximate minimization can be achieved by solving for the
second smallest eigenvalue of the generalized eigenvalue problem:

(D —A)y = ADy. (3.6)

In order to obtain a partition of the graph the corresponding eigenvector is
thresholded, using several test values and the one yielding the minimum Ncut
value is chosen.
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Compared to [ ] the normalized cut criterion represents a substantial
progress in terms of segmentation quality. Yet, the computational complexity for
an exact solution is prohibitively high and the errors introduced by the approxi-
mate solution are not well understood. In practice even the approximations are
costly to compute. The number of non-zero entries in A is equal to the num-
ber of pixels times the size of the affinity neighborhood (distance term), which
has to be fairly large for this algorithm to work. This limits normalized cuts to
relatively small images.

Fowlkes et al. [ ] propose an extension that makes the framework
applicable to large images. It relies on the Nistrom method to find an approxi-
mation to the eigenvalue problem, based on a small number of randomly sam-
pled pixels. These pixels are used to build a reduced, non-square affinity matrix.
The leading eigenvectors of this matrix, which can be computed at significantly
lower costs, are then linearly combined to derive the approximative solution to
a normalized cut. Their experiments show that about one percent of the total
image pixels is sufficient to obtain stable segmentations comparable to the ones
obtained with the original method.

Another approach to reduce the complexity of normalized cut problem is
presented by Cour et al. [ ]. Based on a statistic analysis of link proper-
ties on random images, the authors propose to decompose the graph links into
disjoint scales, according to their underlying spatial separation. The result is
a graph with multiple layers, similar to an image pyramid, where the links on
higher levels represent larger scale connections and the nodes are defined by
subsampling of the image pixels at the corresponding distances. Compared to
other multi-scale simplification schemes (which handle each scale sequentially),
the key idea is here to process the layers in parallel, i.e. to seek a consistent seg-
mentation simultaneously across all scales. That is achieved by specifying cross-
scale constraints, which enforce the propagation of information through all lev-
els. This approach leads to a more constrained formulation of the optimization
problem (3.5) and to a more complex numerical approximation scheme. How-
ever, the authors show that it can be solved much faster than the direct method.

Several alternative minimum-cut objectives have been proposed ([ 1,
[ L, I L, I 1) which, in contrast to Ncut, are exactly solvable. For
example, Wang and Siskind [ ] consider a minimum mean cut to alleviate
the bias of minimum-cut towards small boundaries:
_ cut(A, B)
¢(AB)= — 3.7)

where L is the length of the boundary dividing A and B. They present a poly-
nomial time algorithm for 2-way cuts and like related methods apply the same
procedure recursively to produce finer segmentations. Since their method may
result in cuts that do not correspond to any image edges, a region merging step
based on equation (3.7) is applied: neighboring regions s; and s; with maxi-
mum cut ¢(s;,s;) are successively joined, until the cut falls below a (manual)
threshold.

Other approaches utilize the original minimum-cut framework (including
maximum flow solver) and work around the associated shortcomings by differ-
ent ST-graph composition ([ 1L, [ D.
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Ishikawa and Geiger [ ] seek a classification of pixels into a small set of
gray level labels (posterization). First their algorithm detects image junctions.
Then it finds the smallest number of gray level thresholds, such that the junc-
tions in the segmented image are preserved. The authors reason that, due to
image noise, simply classifying pixels to the closest gray level would be use-
less. Instead they re-interpret the problem as one of energy minimization with
an assignment error term and a smoothness constraint that encourages nearby
pixels to share the same label. This formulation is translated onto a directed
graph structure, with a cut representing an assignment function, and using the
maximum-flow algorithm to compute the global minimum.

In the algorithm introduced by Veksler [ 1, the idea is to place the sink
node T “outside” the image and link it with appropriately small weights to all
image boundary pixels. For every pixel p inside the image a minimum cost con-
tour separating p from the image can be found by means of the minimum-cut
framework that disconnects p from T. Veksler argues that for two different pix-
els p and q the resulting cuts are either nested or disjoint and therefore represent
a natural partition of the image. The proposed segmentation algorithm would
compute a pT-cut for every pixel p (selecting it as the current source node).
However, several optimizations to reduce the number of processed pixels and
to reduce the graph size are discussed.

Another strategy for unsupervised segmentation is adopted by agglomera-
tive algorithms ([ 1) which start with a trivial partition of n clusters with
size one and then subsequently merge pairs of clusters according to some simi-
larity measure.

In Felzenszwalb and Huttenlocher [ ] the similarity criterion for image
regions is based on two measures of image variation. Internal variation of a
region is defined as

Int(A)= max w, (3.8)
e€MST(A,E)
with MST(A, E) denoting the minimum spanning tree of A wrt. the edges in
E. And external variation is defined as the lowest edge weight connecting two
segments:
viEA,v/-GB
The submitted algorithm works by merging together regions, if the external vari-
ation between them is small compared to their respective internal variations, i.e.
if:
Ext(A, B) < min(Int(A) + 1(A), Int(B) + ©(B)) (3.10)

with a threshold function 7(A) = k/|A| that controls to which extent the external
variation can actually be larger than the internal ones and still be considered
equal. The authors claim that, although this procedure uses a greedy decision
criterion, the resulting segmentation satisfies certain global criteria for not being
an over- or under-segmentation. Their runtime analysis indicates near linear
complexity.

Gdalyahu et al. [ ] present an interesting randomized agglomera-
tive clustering variant. Based on an algorithm by Karger and Stein [ ]
which approximates the minimum cut in a probabilistic fashion, they generate
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slightly different candidate segmentations. The set of regions provides informa-
tion about how often pairs of pixels share the same cluster. From this they can
estimate the probability that a given edge is a bridging link in a “typical” cut.
Edges with more than 50% probability of linking regions are finally removed to
obtain the segmentation.

3.1.2 Supervised Segmentation Techniques

Often the ambiguities emerging in automatic segmentation techniques can be
alleviated or even resolved by a small amount of user input. In recent years
the potential of such expertise has received more attention and the focus within
the segmentation community has shifted towards semi-automatic methods, not
least thanks to new developments on efficient optimization procedures. In par-
ticular applications for medical segmentation and photo editing seem to readily
accept supervision as a minor drawback, given the remarkable improvements in
segmentation speed and quality. Supervised segmentation usually implements
one of two paradigms for guidance: 1) Specification of either boundary ele-
ments on the object of interest or a roughly localized boundary template that
evolves towards the desired object contours. 2) Specification of pixels belonging
to the desired object and/or pixels that are part of the background.

The Intelligent Scissors algorithm by Mortensen and Barrett [ ] is an
example for a boundary-driven interactive image cutout tool. They define the
cost between two connected pixels as a weighted sum of three edge sensitive
image features, Laplacian zero-crossing, gradient magnitude and gradient di-
rection, such that graph links along an image edge have low weights and links
crossing an edge receive high weights. To start a segmentation the user has to
select a starting point on an object contour. The system then employs Dijkstra’s
algorithm ([ LI 1) to compute the shortest (=cheapest) path from
every other node to the seed pixel. As soon as the user moves the mouse away,
the optimal path from the current position to the starting point is known and
instantly displayed. If the computed path deviates from the desired boundary,
further seed points can be placed, each time holding the current path fixed and
initiating a new search from the last provided seed.

In 2001 Boykov and Jolly [ ] (detailed journal version [ D pre-
sented a new segmentation principle that explores the use of minimum cuts
in the augmented ST-graph representation for binary image labeling and un-
der the condition that some knowledge about the location and extent of the
two image regions is available. Although based on the same techniques that
were used in [ 1, their work represented a major breakthrough. They re-
stated the segmentation objective in a more general framework of energy min-
imization, capable of exploiting a wide range of model-specific boundary- and
region-related cues as well as topological constraints. One particular novelty
was that their method generalizes easily to n-dimensional application domains
(e.g. segmenting volume data from computer tomography).

Given a set P of (n-dimensional) data elements and a neighborhood system

A[, a segmentation is represented as a binary vector A = (Ay,...,A),...,Ajp|)

whose components specify the assignment of each pixel in 2 to either one of two
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Image with seeds Segmentation result

Graph Cut

Figure 3.2: Principle of binary segmentation via ST-graph cuts, illustrated for an
example 3 x 3 pixel image. The cost of cutting n-links is defined by the boundary
term, encoding the similarity of neighboring pixels, and reflected in the respective
edge thickness. The regional term and hard constraints for both labels ([ O]bject,
[‘B]ackground) are encoded in the t-links. Inexpensive edges are attractive choices
for the minimum cost cut.

labels “object” or “background”. The segmentation is driven by soft constraints,
which impose certain boundary and regional properties of A and are expressed
in a combined cost function:

E(A) = A-R(A) + B(A) 3.11)
with
(regional term) R(A) = ZRP(AP) (3.12)
PEP
(boundary term) B(A) = Z B{p,q} . 6Ap;£Aq (3.13)
{p.qteN
and

1 ifA, #4A,

Ga s, = 3.14
A7, {o ifA, =A4,. (319
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The term B(A) influences the boundary attributes of the segmentation. Each
By, g3 is non-negative and should be interpreted as a penalty for discontinuity
between p and g, i.e. By, g; is large if pixels p and q are similar and close to zero
otherwise. If the elements in 2 are not spatially evenly distributed, it might be
useful to let the boundary term decrease as a function of distance between p
and q. A simple and frequently used ad-hoc boundary cost measure is given by:

(I, - Iq)z) 1

. . 3.15
202 dist(p,q) ( )

Bypqp ~ €Xp (_

This expression strongly penalizes unequal labeling between pixels with in-
tensity differences smaller than o and intuitively models the amount of noise
among neighboring pixels, wherein o can be estimated as camera noise. The
regional term R(A) introduces individual penalties for the assignment of either
label to pixel p. Typically this measure incorporates some knowledge about the
element distribution within each region and correspondingly constitutes two
parts, R,(“obj”) and R,(“bkg”). For example, given two models of the pixel
intensities in the object and the background, (3.12) could be defined by:

R,(“0bj") = —InP(I,|“0bj") (3.16)
R,(“bkg”) = — In P(I,|“bkg”) (3.17)

The coefficient A > 0 in (3.11) specifies the relative importance of the regional
properties versus the boundary term. In addition to these cost terms which
act as segmentation guidelines, the formulation also adopts hard constraints in
form of a pre-labeling of pixels. Given two subsets O C P, B C P with ON‘B =10
for which the assignment of labels is known a priori, the goal is then to find the
global minimum of (3.11) among all segmentations that satisfy:

VpeO: A,="“obj”

VpeB: A,="Dkg". (3.18)
Boykov and Jolly prove that, by imposing appropriate edge weights, this ob-
jective can be projected into an ST-graph, such that a standard minimum-
cut/maximum-flow algorithm will efficiently solve (in polynomial time) the
global minimization problem with respect to the hard constraints. Figure 3.2
shows the principle of this approach. The authors also suggest that, besides
enforcing a fixed labeling on a subset of pixels, the seed regions O and ‘B may
serve as training samples for models used to derive the regional term (3.12). For
example in [ ] the respective pixel intensities are used to build histograms
for the “object” and the “background” regions.

The powerful concept of object segmentation via binary graph cuts entailed
a large number of recent publications building on the outlined principles. We
here only mention some of the proposed extensions, which are relevant or re-
lated to our work. For a comprehensive overview of related publications, refer
to [ ]. One particularly intriguing enhancement, called GrabCut, aims at
including regional cues based on Gaussian Mixture Models and at reducing the
placement of seeds to only one label ([ 1, see also Section 4.3). Another
approach incorporates a priori knowledge of the segment shapes to improve
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boundary accuracy in gray level images where “object” and “background” re-
gions display similar intensity profiles ([ 1. The LazySnapping [ 1
method employs pre-computed over-segmentation (superpixels based on water-
sheds) for improved speed and combines object marking and boundary editing
in the same user interface. It should be noted that for more than two labels
minimization of an energy function of the type in (3.11) is generally NP-hard.
However, Boykov et al. [ ] present an extension, applicable for multi-way
cuts, which efficiently finds a local minimum (and thus only an approximative
solution) within a known bound of the global minimum.

Grady and Funka-Lea [ ] (journal version [ 1) pursuit an interest-
ing premise for a seed-based and multi-label segmentation using random walks.
The underlying principle assumes a hypothetical disoriented person starting to
walk from a given location and moving randomly, one step at a time and inde-
pendently of previous decisions, into one of a given number of possible direc-
tions. The actual “choice” is governed by probabilities assigned to the possible
paths. A typical question that arises from such behaviour is: will the walker
ever reach a designated target point ? This concept can be used to describe var-
ious physical phenomena, such as Brownian motion. Random walks are applied
in [ ] to image graphs. Each edge is assigned a weight corresponding to
the likelihood of the walker crossing that edge (a value of zero would render
the link impassable). Similar to (3.15) the weight is derived from the intensity
difference of the adjoining pixels. The question then is: starting a random walk
from any of the unlabeled pixels, what is the probability that it first reaches one
of the seed pixels ? The authors show that a solution to this problem can be
found analytically, without actually having to conduct the simulated walk, by
solving a sparse linear equation system for each label. Random walk segmen-
tations have several appealing properties: 1) Each unlabeled pixel is assigned a
k-tuple of probabilities that a random walk starting from this pixel first reaches
one of the k label seeds. In addition these values are a weighted average of the
k-tuples of neighboring pixels. 2) Each segment is guaranteed to be connected
to seed points with the same label. 3) Weak boundaries (e.g. small gaps) can be
found if they are part of a consistent boundary.

3.1.3 Advanced Affinity Measures

The popularity of graph based segmentation methods can be accredited to their
high capability of customization. For one, they readily adopt arbitrary topolo-
gies which extends graph formulations to many important application domains,
e.g. space variant imaging, volumetric data and 3D meshes. Secondly, they only
rely on the evaluation of an affinity function between each pair of nodes. That
means in particular that an embedding of the segmentation cues into a com-
mon vector space with “meaningful” distance measure is not required. Despite
this flexibility, only a few algorithms use more than one cue in their similarity
measure and most applications employ affinity functions of the form:

_ 2
_lf,p) = FU g ) 3.19)

aﬁcf,af (I:P’ Q) ~ €xp ( 20_2
f
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where f is responsible for extracting features like color or local texture prop-
erties. This is in contrast to common agreement that integration of multiple
cues and image specific measures increases the robustness of segmentations. In
this section we review three advanced techniques, two of which are themselves
based on graph algorithms, that demonstrate how the affinity measure can be
improved by adapting to global image characteristics or by combining region,
contour and texture based cues.

In [ ] Grady et al. use a random walks approach to tackle the al-
pha matting problem for color images, which is closely related to segmentation.
Instead of using the Euclidean norm in (3.19), they propose to apply Locality
Preserving Projections (LPP), developed by He and Niyogi ([ 1), in order to
distinguish object boundaries as good as possible. The goal of LPP is to find a
linear projection for dimensionality reduction similar to PCA or Linear Discrim-
inant Analysis (LDA). While the two latter aim at maximizing the remaining
variance respectively the between-class scatter over intra-class scatter, LPP has
the objective to preserve local structure. Le. it tries to keep elements in prox-
imity to each other if they are nearby in the original space. This is achieved by
mapping the spatial relationships of the data points (in the input feature space)
to an adjacency graph. The projection is found as solution to a generalized
eigenvalue problem, based on this graph’s Laplacian. With Q denoting the LPP
projection and c; the color at pixel i, Grady et al. replace the Euclidean norm
inside the affinity function (3.19) by: (¢; —¢;)"Q"Q(c; —¢)).

Omer and Werman [ ] present an affinity function based on distance
and densities in feature space. Their motivation is that two points lying in one
dense region are more likely to originate from the same source than two points
with the same Euclidean distance, but which are separated by a sparsely popu-
lated region. Formally this notion is expressed as a trade-off between finding a
geodesic that connects two feature points (by definition it has minimal length)
and on the other hand avoids low density regions (bottlenecks). The authors
translate this problem to a graph construction by connecting each data point
to a fixed number of its nearest neighbors with an edge weight proportional to
their respective distance. A local density estimate for each node is obtained by
averaging the adjoining edge weights. Then, in order to (locally) couple dis-
tance and density information, each edge weight is divided by the minimum
density of the two linked nodes. This creates expensive bottlenecks for edges
passing sparse regions. Dijkstra’s algorithm is utilized to determine a shortest
path between any two points and the cost of this path defines their affinity.
Judging from a comparison of normalized cut segmentations on color images,
this new affinity measure results is significantly better object separation com-
pared to simple Euclidean metric based affinities.

Probably the most established techniques for unsupervised image clustering

originate from the contributions on normalized cuts ([ 1), providing the
underlying segmentation framework, and on contour ([ D and texture cue
integration [ LI ] by Malik et al., providing a robust and ver-

satile affinity measure. The combination of these two techniques has become
a reference for segmentation evaluation and ranges among the most cited ap-
proaches in relevant literature.
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Malik et al. derive their affinity from a scale and orientation selective analysis
of the image. For this purpose it is first convolved with a filter bank composed
of elongated even- and odd-symmetric filters, based on Gaussian derivatives,
at three different scales and six orientations, as well as center-surround (DoG)
filters at four scales. The vector of filter outputs on each pixel is a multi-scale
characterization of its local neighborhood and serves as input to the contour
and texture analysis.

Contour The even and odd filters f; _ resp. f; = are devised to form quadra-
ture pairs. Their responses are sensitive to edge like intensity profiles at a spe-
cific scale and orientation, so that an oriented contour “energy” can be defined
as

OFg, = (1x£5,) "+ (1%£2,)" (3.20)

Comparing this measure over all scales yields the dominant orientation 6* =
argmaxy OE, , and a corresponding energy OE" for every pixel. Potential con-
tours are precisely localized, using non-maximal suppression, and then assigned
an ad-hoc probability: p., = 1 — exp(—OE*/o ). Based on this definition the
authors propose one component of the affinity measure to be:

aﬁIC(i’j) =1- ma,)(pcon(x)~ (321)

X€ij

The intuition behind (3.21) is that two pixels should receive a high link weight
only if the line connecting them crosses no significant intervening contours.

Texture In terms of intensity variation due to texture, the filter response vec-
tors constitute an overly redundant encoding. Malik et al. therefore suggest to
extract a representative set of these feature by clustering the responses using
k-means. The resulting cluster centers, called textons, can be interpreted as pro-
totypes of local textural appearance. After that each pixel is assigned the index
(texton channel) of its nearest cluster center. Using this integer-valued image
representation, the similarity between two textured regions centered over pixel
i and j is compared by means of the y? statistic on the respective texton his-
tograms h; and h;. The texture related affinity component becomes:

aff rx(i, J) = exp (=2 *(hi, hy) /o) - (3.22)

Combined Cues Both affinity measures are modulated by a weighting com-
ponent p,, that depends on the image’s texturedness. Le. on a measure that
indicates whether a pixel is part of one uniformly textured region or if it is lo-
cated on a boundary between two differently textured regions. It is obtained
in two steps. 1) First the local scale is estimated, by measuring the median of
distances between a pixel and its Delaunay neighbors that belong to the same
texton channel and still lie within a larger scale (relative to image size) ra-
dius of this pixel. 2) Then a disk-shaped window is placed over every pixel
and partitioned in two halves, such that the border between them is aligned
with the contour orientation OE*. Its size is given by the local scale. From a
x? comparison of the texton distribution in both halves the authors define the
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probability-like texturedness value p,,,. For the final combined affinity the con-
tour cue p,,, in (3.21) is multiplied by 1 — p,,, and the texture cue (3.22) is
computed on modified histograms which use p,,, to suppress pixels near region
boundaries. Then aff;; and aff are multiplied.

Several related approaches have been proposed. For example Martin et al.
[ 1 adopt the methodologies to measure contour energy and texture dis-
continuities and extend them to color and patch-based features. Their goal is
to derive an image P, that estimates the posterior probability of a pixel belong-
ing to a boundary. Instead of combining the available cues heuristically, they
attempt to learn the necessary parameters for an optimal fusion from human
hand labeled segmentations.

3.2 C(Clustering in Feature Space

The methods presented in Section 3.1.1 use a representation of pairwise rela-
tionships between pixels, i.e. affinities, for grouping. A second class of unsuper-
vised segmentation algorithms is derived from well established general purpose
clustering techniques and operates directly on vectorial representations of the
image features (color, filter responses, spatial location, etc.). These methods ex-
pect that points/pixels being similar with regard to the image cues will lie close
to each other in feature space. Segmentation then is equivalent with identifying
clusters of feature vectors.

The image retrieval system, presented by Carson et al. in [ 1, is
based on grouping pixels in an 8-dimensional feature space. It is composed
of three color coordinates (in L*a*b* space), three texture descriptors (contrast,
anisotropy, polarity) and the actual (x,y) pixel coordinates as positional fea-
tures. The distribution of pixels in this space is modelled as a mixture of Gaus-
sians, using the EM-algorithm ([ 1L, 1) to estimate their parameters.
The final segmentation is obtained by assigning to each pixel the label cor-
responding to the Gaussian mixture component responsible for the measured
vector.

In[ ] and [ ] Comaniciu and Meer propose the application of the
mean shift algorithm to detect clusters a of 5-dimensional joint spatial-range
domain (three colors and two normalized pixel coordinates). The mean shift
procedure ([ 1, [ D is a non-parametric technique designed to lo-
cate the modes, i.e. the regions of highest density in feature space, of an un-
known multivariate distribution, without having to estimate the density itself.
Its formulation is based on estimating density gradients. Given n sample points
{x;}i21_,x; € R, akernel density estimate with kernel K(-) and window radius
h, is expressed as:

. 1< x —Xx;
f(x):@iZK( - ) (3.23)

Comaniciu and Meer show that, when using the Epanechnikov kernel, the den-
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sity gradient can be estimated as:

) od+2( 1
Vi) =fe) =5 | — D oxi-x | (3.24)
Mx x;€8p(x)
My, (x)

Here S;(x) is a hypersphere of radius h centered on x and n, is the number of
feature vectors within the sphere. Equation (3.24) shows that the mean shift
vector My(x) has the same direction as the estimated gradient density, thus it
points towards the direction of maximum increase of the density. This property
leads to an iterative search scheme. Starting from an initial guess of a cluster
center at position x, successively:

1. compute the mean shift vector Mj,(x)

2. translate the window S, (x) by this vector, i.e. x — x + My(x)

The authors prove that the density along this path increases monotonically and
that the procedure converges. For segmentation purposes the mean shift proce-
dure is applied to each pixel, resulting in a set of convergence points. If these
cluster center candidates lie in close proximity (in feature space), they are fused.
The pixels are relabeled according to which cluster the iterative procedure con-
verged to. Compared to clustering techniques like k-means or Gaussian mixture
models, this approach has the advantage that the number of clusters is obtained
automatically. On the downside, a good choice of the only free parameter, the
bandwidth h, is not trivial.

The algorithm presented by Vezhnevets and Konouchine in [ ] also aims
at a labeling of d-dimensional image data. It belongs to the group of semi-
automatic cutout methods, since it is driven by user-provided seeds and allows
(but does not require) interaction. The authors employ a cellular automaton
([ 1) to solve the labeling task, which is unique compared to previously
published methods. The automaton represents each pixel p as a cell with an
associated state tuple (I,, 8,, c,), holding the cell’s label [, its current “strength”
6, and the pixel’s feature vector c, (here simply the RGB values). Initially the
cell labels are distributed corresponding to the given seed labels. Unseeded
pixels receive a “void” label and zero strength. The strength of seeded pixels
can be set (user-defined) to values in the range (0,1], where a value of one
reflects a hard constraint, i.e. unchangeable labeling, and values smaller than
one reflect soft constraints. The segmentation is obtained iteratively by letting
each cell p evolve, influenced by its direct neighbors N(p), according to the rule:

VqeN(p):if g(llc, —c4ll2) - th > 0; then
=1, 0% = g(lle, —cgll,) -
else

lt+1:lt 9t+1=9t
p p’ p p

(3.25)

with a monotonous decreasing function g(x), bounded by [0,1]. An intuitive
interpretation of this labeling process is the struggle for domination of differ-
ent bacteria. At each time step a cell “attacks” its neighbors with a force given
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by the cell’s strength and the attack distance between the offender’s and the
defender’s feature vectors. If the attacking force is greater than the defender’s
strength the cell is invaded and its label and strength are changed. The proce-
dure continues until a stable condition is reached, which is guaranteed due to
the monotonically increasing and bounded strength values. Remarkable proper-
ties of this approach are its simplicity (straightforward implementation) as well
as independence of computation time from the number of processed labels.

3.3 Deformable Contours

The last group of segmentation algorithms considered in this chapter falls un-
der the category of deformable contour models (also called active contours). In
essence one can distinguish two main approaches based on their mathematical
construction: snakes, using explicit and level set methods using implicit bound-
ary representations. We here only outline the fundamentals of both concepts.
For a broad overview and related extensions, further references can be found in

[ 1, [ 1and [ 1.

The explicit form of active contours was originally introduced by Kass et al.
[ ]. A snake is a closed parametric curve v(s) = {(x(s),y(s)) |0<s <L}
that changes its shape and location, driven by internal and external forces, in
order to reach a minimum-energy state. The energy of the curve incorporates
two components:

Esnake(v) = J Eint(v(s)) + Eimage(v(s)) + Econ(v(s)) ds. (3.26)
0

The term E,,, is responsible for the contour’s intrinsic properties, such as elas-
ticity, smoothness and curvature. A common choice is given by:

Egne(v) = alv'(s)I> + Blv"(s)? (3.27)

where a controls the curve’s tension and f its rigidity. The force that actually
lets the contour evolve, by attracting it to certain image features, is expressed
through the external term E;,,,.. For example, an energy changing inversely
with respect to the image’s gradient magnitude will “pull” the contour towards
edges:

Eimage(xxy)z —|V1(X,y)|2- (3.28)

E,,, denotes a constraint energy, used to incorporate higher level information to
control the snake. The curve energy is minimized using an iterative procedure
based on gradient descent. Since the functional (3.26) typically exhibits many
local minima, this method depends on a reasonable initialization of the snake’s
position in order to converge to a desired object boundary. On the other hand,
once a snake has adapted to a boundary of interest, if this boundary moves
slightly, the energy minimization procedure will draw the snake towards the
new boundary location and thereby offers a way to track moving objects. An-
other interesting feature of this technique is the ability to reconstruct subjective
contours, i.e. edges that are not actually present in an image, but are perceived
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nevertheless (e.g. the well known Kanizsa triangle). Besides the sensitivity to
proper initialization, an important shortcoming of the classic snakes formula-
tion is the inability to change topology (split or merge) during evolution.

Active contours based on level set formulations ([ LI D avoid
this problem. The idea is to represent the curve implicitly through a higher
dimensional function ¢ : R? — R such that a particular level (usually the zero
level) defines the contour: v = {x € R?|¢(x) = 0}. A frequently used choice for
such a function is the signed distance to the initial curve:

dist(x,v), if x is inside v
¢(x)= 0, ifxisonv (3.29)
—dist(x,v), if x is outisde v.

As in the explicit case, contour evolution is caused by certain forces, denoted by
a speed function F that specifies how each point on the curve moves along its
normal direction. The movement of the level set function ¢ that matches the
evolving contour is then described by a partial differential equation:

¢

— 4+F-|V¢|=0. (3.30)

ot
Within the speed function many criteria like physically motivated or image
based influences on the curve’s behaviour can be implemented. For example
in [ ] the authors consider the function F = g(I)(c + x) for boundary de-
tection. This term comprises three contributions: 1)The constant velocity c is
similar to a balloon force, pushing the curve inwards or outwards. 2)The term

Vo

k = div (W) introduces a regularizing component by generating a flow that

decreases the total curvature and at the same time shortens and smoothes the
contour. Together (c+«) act as an intrinsic force comparable to E;,, in the energy
based snake model. 3)The stopping function g(I) = (1+|VG, *I(x,y)|) (G,
is a Gaussian filter) represents an external image dependent force. Its goal is to
stop the evolving curve when it reaches prominent object boundaries.

An outstanding characteristic of the level set approach is that any topologi-
cal configurations are handled naturally. That means merging, splitting, initial
placement and detection of any number of contours is possible without taking
extra care, since actually all points are always connected (by the same topology)
through the level set function ¢. Also, in contrast to snakes, this method can be
generalized for hyper-surfaces (e.g. in 3D). This flexibility of course comes at the
price of extra complexity, introduced by the PDE formulation in a higher dimen-
sional space. Early level set implementations suffered from low performance, as
they required computations on the whole image plane (¢ updated everywhere).
With the invention of more efficient narrow band techniques (computing only
within a confined thin region around the evolving contour) and fast marching
methods (applicable if the contour is guaranteed to move only in one direction)
this is no longer a handicap.
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Chapter 4

Skin Segmentation for Faces

In this chapter we develop a novel framework for automatic binary segmenta-
tion of facial images into skin and other facial components. The resulting maps
serve as indicators for outliers respectively occlusions and can be used to per-
form further in-depth analysis of meaningful regions like facial organs or hair.
Although our methods are partly based on established segmentation algorithms,

we enforce two design goals that make this work non-trivial.

e The framework should be applicable to gray scale images. This stands in
contrast to many existing techniques dealing e.g. with skin detection or
segmentation (not necessarily faces), which usually only classify individ-
ual pixels based on their color, e.g. [ , ]. The requirement for
gray scale skin segmentation originated from the demand to work with a
certain subset of the FERET face database on which the Morphable Model
had already been extensively tested. However, it also represents an ideal-
istic point of view. For human observers the luminance channel contains
sufficient features to deliver a detailed labeling of all components in a
face image. It is therefore desirable to develop segmentation procedures
which attempt to make best use of the same information before depend-
ing on additional color input. Such algorithms then have a wider field of

application and hopefully can perform even better if color is available.

e A strong emphasis is put on the ability to obtain a decomposition of a
face automatically, i.e. without the need for human guidance. Prior to this
work, several face manipulation tasks based on the Morphable Model re-
quired tedious manual image masking in order to give satisfactory results.
This meant a strong limitation. For one, because manual input is always
subjective and not exactly reproducible, and more important, because of
the substantial amount of work involved in large scale experiments. By
employing automated masking procedures these manipulations suddenly
become interesting for laymen users and for off-line applications like face

recognition.

Our segmentation results have several potential fields of application. Yet, to
motivate and develop the necessary processing steps in detail, we concentrate

43
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in the following on the two exemplary challenges that were mentioned in the
introduction:

e Face recognition from mole-like irregularities in the skin.
e Face exchange for automated high-level photo manipulation.

The Morphable Model plays a key role throughout this work since each of the
proposed applications accesses at least one of its special capabilities (face de-
scription, rendering, dense mapping). It therefore suggests itself to also employ
the model for segmentation. This, however, is not straight-forward. In the next
section we study some of the weaknesses of the Morphable Model with respect
to our objectives and demonstrate why a fitting result obtained by this tech-
nique alone is not sufficient to directly derive a reliable segmentation of a face
image. The main contribution of our work, consisting of the three subtopics
texture features, illumination compensation and segmentation, is presented in
Section 4.2.

4.1 3D Morphable Model Deficiencies

One of the applications discussed before, depends on a binary segmentation of
a face into skin and non-skin components. The non-skin region can be seen
as composition of two contributions. Part one comprises the characteristic fa-
cial organs which do not appear as "normal" skin: eyebrows, eyes, nostrils and
mouth. Part two comprises outliers. By that term we refer to all kind of unex-
pected objects in the sense, that they do not appear in every face. This definition
includes beard, hairstyle, glasses, etc.

Ideally, we should be able to derive the first contribution from a Morphable
Model reconstruction. It would allow us to mark the corresponding vertices in
the reference frame and then via the estimated shape and pose to project this
selection to the original image domain. Unfortunately, as we show in section
4.1.1, this approach is often not perfectly reliable.

The second non-skin region is even more difficult to handle, since the Mor-
phable Model offers no clear strategy how to deal with outliers. On one hand
for example beard and the hairline can be reproduced in the texture since they
are part of several training samples. Therefore they usually do not provoke
high matching errors. Yet, if such a feature is encoded in the model parameters,
but it is not consistently outlined in the reference frame, then the segmentation
problem for this feature is simply deferred to the reference domain and we gain
no advantage. On the other hand hairstyle or appearance changes due to facial
expressions are not represented by the model. Even worse, if larger areas of the
face contain such outliers, they can seriously perturb the model parameters and
corrupt a reconstruction in several ways.

4.1.1 Causes of Bad Reconstructions

Usually a bad fitting occurs when the matching algorithm encounters unknown
factors, i.e. when it attempts to fit the parameters to structures or conditions
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(a) Input & proj. features (b) Reconst. & contours (c) Extracted texture

Figure 4.1: Example of a bad fitting result due to facial expression. The left
image shows the input marked with the estimated outlines of eyebrows, eyes, lips
and cheeks, given by the reconstruction. In the right image the same regions are
marked in the reference frame on top of the extracted texture. The center image
shows the actual rendered model with its contours highlighted.

(a) Input & proj. features (b) Reconst. & contours (c) Extracted texture

Figure 4.2: Example for a facial feature, namely thick lips, that is not part of the
training set and therefore cannot be represented adequately by a Morphable Model
fitting.

that were not anticipated in its design and setup.

The Morphable Model was trained entirely from scans of Caucasian faces
with neutral expression and of middle range age. Consequently it is not suited
to represent deformations that appear due to aging, under varying expressions
(e.g. open mouth, closed eyes, lifting eyebrows) or features which are specific
for other races (e.g. thick lips). Figures 4.1 and 4.2 display the extent of cor-
respondence errors we have to deal with in such situations. For the portrait
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(a) Input & proj. features (b) Reconst. & contours (c) Matching error

Figure 4.3: A fitting result impaired by the outlier hair patch on the forehead, no-
ticeable from the blotchy appearance of the modeled skin. The locations of higher
(darker) matching errors do not correspond to the real locations of the outliers.
The well reconstructed beard in this example shows how differently the Morphable
Model matching handles facial hair from hairstyle.

in 4.1(a) it is obvious that a segmentation of skin and facial organs cannot be
derived from the locations predicted by this model. The fitting result in Figure
4.2(b) appears to match the original face (apart from the ears and neck). How-
ever, the visualized outline of the mouth, taken only from the estimated shape,
here also reveals that the lips are still misaligned.

Another form of disturbance are occlusions from hairstyle and glasses. Such
outliers can cover significant areas of the face and thereby cause the following
problems: 1) Due to the holistic representation, adapting the modeled texture
to outliers comes at the cost of higher reconstruction errors in other regions.
As result differences between the real and the rendered image "even out". We
observe this phenomenon in Figure 4.3. Note, that the reconstruction error on
the forehead is not consistently (e.g. high for outliers, low for normal facial area)
distributed. 2) Considerably lighter or darker areas might be mis-interpreted
as illumination effect instead of an unexpected change of the face’s albedo.
Thus the estimated light parameters are diverted, most likely resulting in a less
realistic approximation, and with the risk of introducing wrong cast shadows
into the synthesized image. 3) The reconstructed shape deteriorates and leads
to bad correspondence and thereby misaligned features. We emphasize again,
that this perception of deviations from the model is not equivalent to our notion
of outliers in the search for skin segments, because the hairline and beard are
part of the texture model, see Figure 4.3.

Besides these foreseeable cases, the matching algorithm sometimes produces
misaligned results in particular at the eyebrows, even in the absence of such
deviations. This behaviour is illustrated by two examples in Figure 4.4. Direct
comparison of the input image and the rendered model shows no discrepancies.
The eyebrows’ appearance seems to be adequately modeled. Yet, a closer look
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Figure 4.4: The displaced eyebrows derived from visually correct reconstructions
indicate a problem with the correspondence of the Morphable Model and necessi-
tate alternative methods to robustly segment this region.

on their back-projected shape reveals that they are displaced. This indicates a
problem in the registration of the 3D scans prior to the model building phase.
Apparently for some of the face scans the correspondence is not correct. The
problem may be fortified by the fact, that the fitting procedure optimizes texture
and shape parameters independently and also separately for the four model
segments.

4.1.2 Segmentation Hints

Our conclusion from the demonstrated shortcomings is that we cannot trust on
the Morphable Model approach to deliver estimates for the locations of all the
prominent facial features with the required accuracy. We can also not rely on the
matching error per pixel to indicate the existence or location of outliers. In fact
there exists not even a viable criterion to determine if a fitting result is actually
good or bad. Furthermore the Morphable Model has by design a limited domain
which does not extend beyond ears and forehead. Consequently it is not suited
to directly draw any conclusions on such areas like the top or the back of the
head which generally contain the hairstyle.

The situation is still not entirely hopeless. By experience we know that the
estimated pose (position, scale and orientation) and parts of the shape are very
reliable contributions. Figures 4.1 to 4.4 show that in particular the cheek area
can be robustly localized, even under adverse conditions. That is not surprising,
since this region exhibits no distinctive features which could disclose a displace-
ment between model and image (the dense correspondence is here somewhat
arbitrary). While the same is valid for the forehead, the key advantage of the
cheeks is that we can expect them to be “unharmed” by the typical outliers like
hairstyle, beard and so on.

To summarize: from a 3DMM fitting we cannot infer the location of all non-
skin pixels but we can robustly and automatically estimate the location of two
regions which very likely belong to the skin segment. These are now usable
as image specific hints for skin appearance and as so-called seeds to initialize a
general purpose supervised segmentation algorithm.
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4.2 Skin Features for Gray Level Images

In gray scale, skin and non-skin are only distinguishable by luminosity and/or
texture. Skin typically appears as smooth area with more or less pronounced in-
tensity gradients. Its albedo can be assumed constant which means the varying
pixel intensities can be accredited to shading of the curved facial surface. In this
simplified view, details like folds and wrinkles are treated as deviations in the
skin’s texture and not as attributes of the face’s 3D shape. The most frequent
non-skin segments feature a multitude of visual patterns:

e Nostrils, most predictable non-skin component with simple blob-like ap-
pearance.

e Lips, albedo varies according to skin type (i.e. lightness due to amount of
contained melanin). Lips appear usually darker than “normal” skin, but
depending on lighting conditions they can have a significantly brighter
glossy reflection.

e Eyes, complex appearance due to composition of eyelids, eyelashes and
eyeball with pupil and iris. In simple terms it is made of small patches
with nearly constant brightness separated by high intensity edges and in-
termittent sharp specular highlights (often the brightest and the darkest
pixels in a face are located on the eyes).

e Hair (eyebrows, beard, hairstyle), for most people “facial hair” is darker
than surrounding skin while the color (and geometry) of hairstyle is not
directly correlated with any facial feature. The appearance depends on
hair length and density. Due to the complex interaction of several light-
ing phenomena (e.g. diffuse/specular reflection, translucency and self-
shadowing on multiple layers) it ranges from patches of constant bright-
ness over structured texture with curvilinear aligned wisps to stochastic
texture in areas with stubble. Because of the small scale details of hair,
compared to the image resolution, matting plays an important role. This
effect manifests itself among other things as a blending between the actual
hair and skin regions involving pixels with intermediary gray levels.

Other non-skin contributions (glasses, teeth, etc.) have been omitted from this
list, as they share similar issues and occur only infrequently.

While the 3DMM provides a model based prediction for the facial organs (in-
cluding eyebrows and beard), subject to the aforementioned restrictions, there
exists no equivalent technique to deal with the complex appearance of hairstyle.
Considering the above listing we conclude that the best alternative approach for
gray scale skin segmentation is a rather simple strategy. Skin regions should be
identified by asserting a certain relatively narrow brightness range and a min-
imum smoothness respectively typical skin texture. Areas which do not meet
either of these conditions should be rejected as the “anti-case” to skin, without
actually knowing which element caused the deviation. The parameters of this
process should be obtained from image samples.

Due to shading and blending effects on the two segments their respective
histograms overlap. That means, they cannot be expected to be separable on
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basis of per-pixel decisions in the input image domain. Instead, the measure-
ment we use to characterize skin, both relate to texture properties and therefore
require consideration of the pixels’ local neighborhoods. In the next section we
propose a simple procedure to find skin regions by example using the cheeks
as texture template. Then, in Section 4.2.2, we introduce a novel technique
for illumination compensation to level out slowly changing intensity gradients
and thereby render the texture comparison results more robust against lighting
effects.

4.2.1 Distinguishing Texture by Analogy

In Section 4.1.2 we argued that the 3DMM fitting of a face can be used to re-
liably indicate where in the image the cheeks’ skin patches are located. This
knowledge can now be used to evaluate the remainder of the face in terms of
texture similarity. The simple approach we follow here was inspired by a tech-
nique for texture synthesis, developed by Efros and Leung [ ]. In the par-
ticular setting they address, the problem is to generalize from a relatively small
sample of a texture a larger image while avoiding visible seams and blunt patch
copies which easily lead to a noticeable tiling effect. Efros and Leung synthesize
a texture one pixel at a time by repeatedly matching the neighborhoods around
unprocessed pixels in the synthesis image against all possible source patches ex-
tracted from a sample texture. The center pixels of the minimum error patches
then build up the synthesized texture.

With modifications this idea can be used as analysis tool to compute a fea-
ture of texture similarity for an image (target) with respect to a given sample of
the texture (source). Let I, be the target image for which the similarity should
be computed. Further we denote with I,. a source image and with £2,,.; an asso-
ciated binary mask, both defining a texture sample region. The similarity is then
computed for each pixel p € I,,, independently by taking its local neighborhood
Nf;t and searching within the seed region of I, for the best matching patch NI .
We use the sum of squared distances (SSD) as perceptual distance measure be-
tween two patches, unlike [ 1, without imposing different weights on the
neighborhood’s pixels. The texture similarity error per target pixel p is:

N¢

src )

Ey(p):= min  dgsp (NG 4.1)
aING (L7 seea)

This measurement does not yet take the statistics of the sample texture into

account. In order to determine how likely a target pixel may originate from this

texture we actually compute the k-nearest-neighbors to Nf;t. The error Efs is

then defined, analogous to equation (4.1), as the average of the corresponding

closest-patch distances:

1
Ef(p):= —Z min;  dggp (Nfg’t, N{

J src
j:l qlNg‘cC(Isrcn‘Qsced)

4.2)

Figure 4.5 depicts a schematic view of the process, described by equation
(4.2). It is controlled by two parameters: the number k of closest matches to
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query image Iz,

source image I, sample patches N,

k closest
matches

Texture Similarity

Figure 4.5: lllustration of the procedure that is used to compute a measure of
texture similarity, as defined in equation (4.2), using a dictionary of small sample
image patches.

consider during averaging and the size and shape of the local neighborhoods. In
practice we implement the latter as square image patches. Their size should be
chosen such that the patches capture the building blocks of the sample texture.
The influence of the size parameter on El‘s is demonstrated on a toy example
in Figure 4.6. It reproduces matching errors obtained by using neighborhoods
of varying size on a multi-textured target image and given texture sample. The
associated histograms on the right side display the distribution of EX separated
in two segments, the one actually containing the sample texture (blue) and the
one containing all other textures (red), based on a ground-truth segmentation.
The amount of overlap between the red and blue histograms is a negative in-
dicator for the discriminative power of the respective texture feature. It can be
computed by means of the histogram intersection [ ] similarity measure for
two histograms g and h:

2;; min (h[i], g[i])

D= T i (e )
where |h| and |g| denote the magnitudes of each histogram, i.e. the total number
of binned samples. For this particular case the numerous low values in the
texture similarity image 4.6(b) and the large histogram overlap 4.6(c) clearly
point out that 3 x 3 pixel patches do not yet adequately represent the unique
structure of the sample texture. This is especially noticeable on the hexagonal
pattern in the lower right section. By increasing the neighborhood size in 4.6(d)
to 4.6(g) we achieve a much better distinction between regions containing the
seeded texture and those which are dissimilar. This is expressed in the larger
contrast between the respective segments in the EX images as well as in the
better separated histograms. However, using too large neighborhoods is also
not advisable. Apart from the quadratically growing computational effort, this
comes at the cost of smoothing out the desired texture segment boundaries (also
indicated by the larger histogram intersection of dy = 0.106 using a 11% sized
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Figure 4.6: Texture similarity procedure (with k = 5) applied to multi-textured
image of 256 x 128 pixels (a), which serves simultaneously as target and source.
The seed region 2.4 (24 X 24 pixels) is highlighted in color. Images (b), (d) and (f)
show the resulting matching error Efs (darker pixels correspond to smaller error, i.e.
higher similarity) obtained by using square neighborhood patches of varying sizes.
The plots on the right show the respective distribution of Efs separated according
to the ground-truth segmentation. In (b) and (c) the distribution of errors shows
that patches of 3 x 3 pixels are insufficient to capture the intrinsic structure of this
particular sample texture. For larger neighborhoods the measure distinguishes
much better between the sample and other textures, but increasing the patch size
comes at the cost of smoothing out the boundaries between different textures.
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patches versus d = 0.085 for 7 patches).

As for the second parameter k, the impact on the results is less obvious.
Let us assume the case k = 1 (respectively no averaging is performed) and
Iy = Iy That means the sample texture holds exact patch copies of parts of
the target image. In such a situation the corresponding similarity error will
equal to zero for all seed pixels, while for natural (not completely regular)
textures perfectly matching patches are very unlikely. If the seed area is moved
to another location belonging to the same texture, then suddenly the previously
seeded pixels receive higher EX values and the new seed pixels drop to zero.
This behaviour is not desirable because the feature in the seed regions does not
anymore reflect the stochastic properties of the texture. Usually small values
of k > 2 (we use k = 5 in all experiments) are already sufficient to ensure that
EX becomes robust against this effect. Setting k to much higher values (e.g.
~ 20) does not yield any significant improvement but renders the procedure
computationally a lot more expensive.

4.2.1.1 Application to Faces

The texture similarity method is easily adopted to our binary skin segmentation
problem. As explained earlier, the cheeks constitute a facial area which is un-
likely to contain outliers and which holds samples of typical skin texture. We
are able to robustly determine the corresponding region in a novel face from its
3DMM reconstruction which provides the skin seed mask (2,,.;. Recall that the
exemplary application requiring a hard skin segmentation also depends on the
dense mapping of the 3DMM. Therefore, at this stage, we do not yet care for
results outside the estimated facial area which is defined by the support of the
Morphable Model fitted to the given input image. Let 2, denote this domain.
The algorithm is applied to the face image (again I, = I,,), but constrained to
target pixels within the model’s support.

Under the assumption that the selected seeds contain only skin, the output
EX inside these areas defines the range of matching errors one can expect for
similarly textured regions. A basic segmentation can then be obtained by using
the maximum of this range as threshold to the whole E fs image:

; k k
1 if Ei(p) < max E(q) A p € Sy .

Iskin(p) = (44)

0 otherwise

It should be noted that without averaging over the k-nearest-neighbors in (4.2)
all errors inside (2, would be zero. This in turn means we could not derive a
suitable threshold for the segmentation approach of (4.4).

Figures 4.7 and 4.8 display segmentation results obtained by this technique.
The images in 4.7 demonstrate that under ideal conditions the texture similar-
ity feature is indeed capable of separating major non-skin components from the
rest of the face. By using a patch size of only 3 x 3 pixels, thus minimizing the
associated smoothing effect, we further attain a fairly precise masking of sev-
eral small scale outliers, e.g. the hair strand (top row) and certain moles. On the
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other hand the skin segment gaps near each face’s right side and chin as well
as on the necks suggest that the method can be negatively affected by shading.
That is to be expected because, strictly speaking, the EX feature does not purely
measure texture resemblance but also the overall gray level difference between
the compared patches. Consequently, if the intensity of shaded respectively illu-
minated skin areas in the face differs to much from the “learned” range within
the seed region, Efs will be high, despite them actually exhibiting the same tex-
ture. This behaviour is confirmed by the negative examples in Figure 4.8. In the
next section we propose a complementary method to circumvent this problem.

Input, 2., EX (inverted) Segmentation I,

01022ba

01035ba

Figure 4.7: Examples of successful binary segmentation, obtained by thresholding
the output of our texture similarity algorithm which has been applied directly on the
unprocessed face images. Despite the simplicity of this approach, prominent non-
skin components as well as small scale details like a hair strand, several moles and
a specular highlight could be excluded from the skin.

4.2.2 Tlumination Compensation

In the previous section we pointed out that significant changes in the skin’s lu-
minosity have a negative impact on the performance of the texture similarity
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Input, 2y, EX (inverted) Segmentation Iy,

01039ba

01034bk

Figure 4.8: Examples for the negative impact of illumination effects on the perfor-
mance of our segmentation approach (4.4). The results were obtained analogous
to Figure 4.7. In both cases the overall brightness in 2,4 does not reflect the gray
level range in skin areas that are affected by illumination / shading. This leads to
higher matching errors in the respective regions and to an underestimation of the
threshold value.

algorithm. Later (in Chapter 6) we will see that the mole detector employed
in our novel face recognition scheme is also susceptible to skin shading. There-
fore we introduce a method to counteract this effect by performing illumination
compensation, based on a variant of homomorphic filtering [GWO1].

The underlying simplified reflectance model assumes that for each pixel lo-
cation (x, y) the image can be described by the product of reflectance and illu-
mination: I(x,y) =R(x,y)  L(x,y). Thus, to recover R one would simply need
to divide the image by the illumination. Unfortunately L is unknown. However,
the model further suggests that lighting changes slowly and smoothly across
an image while reflectance manifests itself in high frequency components. The
idea is now to approximate L by a low-pass filtered version of the image, here
denoted by #;,(I). Since the frequencies of function products are not directly
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separable [ 1, this is done in the log-domain. The reflectance becomes:
I (x,y))
log (R(x, =lo
g (R(x,y)) =log (L(x,y)

=log (I(x,y)) — log (L(x, y)) (4.5)

~log (I(x,y)) — [ #, (log(D) ] (x, ¥)-

The exact type and application (spectral or spacial domain) of filter vary among
different homomorphic filtering methods. Here we pursue a novel technique in
which an approximation to the illumination contribution is computed by locally
fitting bivariate quadratic functions to the logarithm of the image’s brightness
surface. This variant is related to solutions for curvature estimation in polygo-
nal meshes (e.g. [ 1). The goal is to locally approximate a surface by smooth
(usually polynomial) functions, in order to facilitate the computation of the sur-
face’s differential characteristics such as the principal directions. Our approach
differs from this view in the sense, that we are actually only interested in those
contributions of the surface respectively image which can not be explained by
the approximation.

Given an image I, the fitting procedure works as follows. For each pixel
p we interpret pixels in it's neighborhood N, as points on a 3D surface. N, is
translated into local coordinates (x;, y;,I;)i=1. |y, such that the center pixel p

becomes (0,0, 0). Then we compute a least-squares fit of the quadratic function
z2=f(x,y)=ax*+bxy+cy*+dx+ey+f (4.6)

to these points. Let z,(q) denote the least-squares solution for patch N, eval-
uated at pixel ¢ € N,. The approximation induces an error on each pixel of
the fitted patch. As this procedure is repeated for the whole image, every pixel
p € I receives errors from several patches, namely those neighborhoods which
somewhere overlap with p. We accumulate these error contributions, separated
into positive and negative components:

1
ELp)i= | > (max(0,1(p)—2,(p))’ 4.7)
LA P
respectively
1
Eup):= [ Y. (min(0.1(p)~2,(p)))" 4.8)
[N | oioeiy

If this procedure is applied to the logarithm of an image, the errors can be in-
terpreted as the right side in equation (4.5), where the low-pass filter has been
implemented as average of smooth function approximations of the neighbor-
hood. Taking the exponential, brings us back to the image domain and results
in two reflectance images. For further reference we denote

R (D)(x,y) = exp (E; (log(I(x, y)))) (4.9)



56 CHAPTER 4. SKIN SEGMENTATION FOR FACES

Frame-01 Frame-02 Frame-04

e (1(x)

——1(1)

f(z
—neg. error

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Frame-06 Frame-08 Frame-10

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Frame-12 Frame-14 Frame-16

n
-15 -10 -5 0 5 10 15

Frame-18 Frame-20 Frame-21

n -I In_m,
10

-15 -10 -5 0 5

15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Figure 4.9: lllumination compensation, illustrated on a 1D example. The black
line represents an image (here an intensity profile passing through shaded skin
with a mole in the center) with some high frequency details and a superimposed
shading gradient. A quadratic function is successively fitted (green line) to the local
neighborhoods surrounding each pixel. For a given fitting window this results in
approximation errors on each of the enclosed pixels. As this scheme progresses
through the entire image, the errors are accumulated, separately, according to their
sign. Here red lines visualize the negative error component and blue bars the
associated accumulated error. The latter is the desired shading free image.

and R*(I) analogous. The reason for separating positive and negative errors
in Equation (4.7) and (4.8) is that we can isolate different reflectance contri-
butions. For example R (I) represents the details with darker appearance like
creases, moles or pupils, whereas R*(I) captures brightness peaks like sharp
specular highlights.

Figure 4.9 illustrates the described algorithm in a one dimensional sample
setting. The objective is to eliminate the global intensity gradient while re-
taining the distinctive “valleys”. For instance these could represent important
skin pigmentation features. The consecutive frames show how the quadratic
function template locally adapts to the image intensity profile. They mark the
location and magnitude of associated approximation errors and show how the
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accumulated errors evolve as the pixel of interest p (marked as dotted cross)
respectively its local neighborhood N, traverse the image. Notice in particular
the behaviour between Frame-06 and Frame-16 where the fitting window passes
through the most prominent dent. From a fitting point of view such a detail rep-
resents an outlier. Since we only perform standard least squares approximation,
the fit f (x) is perturbed by such outliers. However, due to its quite large support
the function still has a strong tendency to match the overall shape of the image
profile rather than the details spanning only a few pixels. Therefore in average,
i.e. considering the overlapping neighborhoods, all small scale deviations from
the ideal linear or quadratic image gradient will be registered in the cumulative
E; (x).

An important aspect of this way of collecting errors is the precise localiza-
tion of outliers in the resulting image. After the completed procedure the error
peaks (blue bars) clearly coincide in position and scale with the corresponding
valleys in the input image. Compared to other methods, e.g. such employing
the euclidean distance per patch, the extracted errors here do not blur out. This
preservation of sharpness is to a large extent independent of the size of the
sliding neighborhoods — the algorithm’s only parameter. Figure 4.10 documents
the influence of |N,| by plotting the cumulative errors obtained on the same rep-
resentative image intensity profile versus increasing neighborhood sizes. Two
tendencies can be observed. For one, using too small [N,| values delivers very
prominent and sharp errors but comes at the cost of introducing noise in form
of erratic peaks. Secondly, for a quite large range of |N, | values the ridges rep-
resenting pronounced errors (and thereby interesting features) remain stable
and well delimited, despite an overall decrease of contrast. Since the process-
ing of larger neighborhoods also entails much higher computational cost, the
parameter choice is a trade-off between feature stability and runtime.

Figure 4.10: Plot of the influence of increasing the neighborhood size parame-
ter in illumination compensation with respect to the resulting cumulative errors, all
computed on the same image intensity profile.
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(a) Artificially shaded image provided as input to texture similarity algorithm, Iy.. = Iigs, 25.cq
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(b) Tex. sim. on shaded image EfS(I) (c) EfS(I) histograms, dg = 0.563

(d) lllumination compensation R*(I)
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(f) Tex. sim. after compensation Efs(RJr(I)) (9) Ei‘s(RJr(I)) histograms, dg = 0.112

Figure 4.11: Demonstrates the potential of combined application of illumination
compensation and texture similarity in situations where the latter alone fails. A
multi-texture image (see also Figure 4.6) is subjected to shading (a), to simulate
the conditions encountered in faces. If this modified image is presented as input
to texture similarity, the algorithm fails to deliver the desired discriminative texture
features ((b), (c)). After illumination compensation the resulting reflectance images
((d), (e)) are shading free. Texture similarity can now be computed on these im-
ages, which yields outputs comparable to those obtained on the original unshaded
image. In other words: illumination compensation makes the texture similarity al-
gorithm robust against certain lighting artefacts.
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Input, 2gp» EX(R (D)) Segmentation Iy,

01022ba

01035ba

01039ba

01034bk

Figure 4.12: Examples of binary skin segmentation by thresholding the output of
the texture similarity algorithm which has been computed on illumination compen-
sated images R (I). Compared to previous results in Figure 4.7 and 4.8, without
illumination compensation, the combined approach leads to more robust and accu-
rate segmentations.
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4.2.2.1 Combined Application with Texture Similarity

The practical benefit of the illumination compensation algorithm can be easily
demonstrated on the same multi-texture image that previously served as test
case for texture similarity (see page 51). This time the image is first multiplied
with a circular intensity gradient (see Figure 4.11(a)) to simulate the shading
caused by diffuse reflection on a curved surface. For the same reasons as dis-
cussed in conjunction with the application on faces, texture similarity computed
on this image (4.11(b), 4.11(c)) does not produce the anticipated discrimina-
tive texture features. The corresponding histogram points out, that the range
of EX values in the darker shaded segment of the sample texture overlaps with
those of “foreign” texture. To prevent this, the image is preprocessed with the
illumination compensation procedure which outputs the two reflectance images
R*(I) (4.11(d)) and R"(I) (4.11(e)). As intended the results are free of shading
and they both retain the distinctive texture patterns found in the original image
before the illumination component has been imposed. Actually the results are
virtually identical to the outcome we get if illumination compensation operates
on the original image. Hence, the algorithm appears to be invariant to this kind
of blending with smooth gradients. After preprocessing, texture similarity can
be employed as usual. It depends on the field of application, whether the pos-
itive or negative reflectance component should be used for further processing.
In this example both alternatives lead to similar performance. In Figure 4.11(f)
we show the output of EX(R*(I)) since it yields slightly better texture separa-
tion, i.e. smaller histogram intersection. When dealing with faces, the negative
reflectance part clearly carries the more useful information, because all impor-
tant facial and skin features appear darker than the surrounding skin and thus
turn up in R(I). As for the results of the example: illumination compensation
manages to effectively cancel out the artificially introduced shading and enables
the texture similarity algorithm to deliver nearly as discriminative features for
segmentation as in the unmodified case.

4.2.2.2 Application to Skin Segmentation

We now have the means to refine the binary skin segmentation results simply
by replacing the input of the texture similarity algorithm with the illumination
compensated reflectance image R (I). Figure 4.12 presents the intermediary
outputs and novel segmentations for the same faces used earlier in Figure 4.7
and 4.8. A direct comparison reveals significant changes in segmentation qual-
ity. For the faces in the two top rows (01022ba, 01035ba) the skin segments
now extend into the darker area on the right side of the face and on the neck.
For the other two faces (01039ba, 01034bk) the improvement is more dramatic.
Because of illumination compensation the large gaps, caused by major discrep-
ancies between skin shading in the seed region and the remaining face, have
been removed. It is further noteworthy, that in two cases several small holes in
the skin segments, introduced by specular highlights, are gone as well. Since
we only pass on the negative reflectance component such phenomena can be
effectively suppressed. Unfortunately the new combined approach also has a
downside. The same principle that urged us to introduce illumination compen-
sation has its benefit in other situations. As explained earlier, EX is not purely
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a measure of texture resemblance. It is sensitive to any kind of gray level mis-
match (clearly, two patches of constant but different gray level can lead to the
same error value as two differently textured patches). By eliminating the shad-
ing component from an image, we essentially level out the gray scale differences
between all patches in favor of pure texture comparisons. This can pose a prob-
lem, if an object that should be segmented out, differs from skin primarily by its
gray value. One such example is the fuzzy hair on the forehead in face 01035ba
where segmentation results are actually better without performing illumination
compensation.

While the thresholding method served us to motivate useful texture features,
it is not the final answer to the segmentation task. Instead of attempting to fur-
ther tune performance on the feature level, we investigate in the next section a
more sophisticated alternative segmentation technique, called GrabCut. Among
all methods, mentioned in the review in Chapter 3, only this algorithm is suited
to deal with supervision (in the sense of guiding constraints), based on the cur-
rently available skin seeds.

4.3 GrabCut

GrabCut [ ] is a segmentation method designed primarily as interactive
image cutout tool. Its purpose is to serve as powerful alternative to established
selection procedures like Magic Wand or Intelligent Scissors [ ] which are
commonly distributed with professional image manipulation programs. The
GrabCut framework is based on the efficient Graph Cuts formulation of Boykov
and Jolly [ ] for optimal binary image labeling, but extends their approach
through several enhancements. First, the monochrome image model, imple-
mented via histograms, is substituted with a Gaussian Mixture Model (GMM)
to facilitate multi-feature based (e.g. color channels) segmentations. Secondly,
the “single-shot” minimum cut solver is embedded into an iterative energy min-
imization scheme which alternates between estimation and parameter learning.
This contribution is very useful because it enables the algorithm to revise a pre-
viously computed segmentation according to changed evidence in the model
or the externally defined constraints. A particularly striking consequence of this
ability is that it simplifies the interface for (human) guidance. To be precise, that
means for GrabCut, contrary to other supervised graph cut methods, it suffices
to provide seeds only for either the object or the background segment. Thanks
to this “relaxed” prerequisite the algorithm is predestined for our problem set-
ting. The third extension targets the issue of matting. In order to produce more
realistic results (e.g. when pasting cutout objects into other images) for objects
with intricate boundaries a novel scheme for border matting is applied, once
the object’s outline has been determined. Since this approach only operates on
narrow strips around the hard segment boundaries, it fails to deal with translu-
cency effects within the objects.

The remainder of this section details the principles of the GrabCut algorithm,
with regard to our implementation, and explains problem specific extensions
and adjustments. We do not perceive the border matting extension as an intrin-
sic part of the framework. It is merely a post processing of the actual segmen-
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tation result that can be replaced by several alternative solutions to the general
matting problem, with more convincing results. Therefore this contribution is
omitted here. However, the issue of image matting will be revived in the next
chapter and in Section 6.2.3.

4.3.1 Problem Formulation

A multi-feature image is an array Z = (21,...,2,,.. ., 2y ) of d-dimensional vector
valued pixels (e.g. RGB-tuples), addressed by a single index n. The spacial rela-
tionship, i.e. connectivity, between pixels is represented in a set C of unordered
pairs {p, q} denoting the neighboring elements’ indices. The segmentation of an
image is expressed as an array of opacity values a = (ay,...,ay) at each pixel.
For hard segmentations these values are limited to a, € {0,1} and interpreted
as labels for background respectively foreground (object). The color/feature
distribution in the image is described by two Gaussian Mixture Models (one
for each region) with K components. Their parameters, in dependency of the
selected segment, are

@k,a = {Tck,a’ nu'k,a: Z'k,a} and O = U ek,a (410)

k=1..K
a=0,1

where m; , are mixture weighting coefficients, subject to the constraints: 0 <
Mo < 1 and 2115:1 Ty = 1. The weights act as a priori probabilities that a pixel
2, was generated by component k so that the mixture density is

K
p(zn|9: an) = Z nk,a" p (znlek,a") (411)
k=1
with
p (zn|@k,a) =N (an.UJk,an; Ek,an) . (4.12)

Following the exemplar approach of Boykov and Jolly, an energy function is
defined in such a way that its minimum corresponds to a good segmentation.
The function expresses conditions which characterize the desired segment prop-
erties in terms of regional coherence and of conformity with a given model, in
the form:

E(a,0,Z)=1-U(a,0,Z)+V(a,Z). (4.13)

The data term U(-) evaluates how well a particular choice of opacity values a
reflects the observed pixels Z, taking into account the prediction made by the
current models:

U(a,0,Z)=—logp(Z|O,a)

N (4.14)
= Z - IOgP(Zn|@, an)-

n=1

The second term V(-) encodes boundary properties of the segmentation. It is
composed of individual penalties for neighboring pixels which have been as-
signed to different segments although they are similar (measured in Euclidean
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distance):

_ ”zp—zqnz 1
V(@,2)= Y. 8, zq - €Xp (— 53 D (4.15)

{p.qteC

In this definition, dist(:,-) denotes the Euclidean distance between two pixel co-
ordinates, and § is an indicator function (true — 1, false — 0) for the property
a, # a,. The variance o controls the extent to which discontinuities are pe-
nalized and can be interpreted as the image’s noise floor. The coefficient A > 0
in (4.13) specifies the relative importance of the data term versus the boundary
term.

4.3.2 Algorithm

The task is now to compute a segmentation by minimizing the energy function
E(-). In contrast to the original Graph Cuts formulation, not only the opacity
values are unknown but also the true image model parameters. Moreover ©
and a are non-trivially coupled. The key to solve this dilemma is to temporarily
assume a fixed segmentation. Then the data term (4.14) becomes simply a (neg-
ative) log-likelihood function of the parameters, given the data Z. The classical
“stand-alone” approach to find Maximum Likelihood estimates of a GMM (resp.
minimize U(-)) is the Expectation Maximization (EM) algorithm [ s 1.
In order to make the optimization problem analytically tractable this method
posits the existence of unobserved data, namely the values which specify which
mixture component is responsible for each data item. The algorithm then breaks
the likelihood maximization into two steps. In the E-step an expectation value of
the hidden data is computed, using a current estimate of the model parameters.
In the second M-step the likelihood function is maximized under the assumption
that the unobserved data is known. This scheme guarantees a monotonically in-
creasing likelihood and thereby convergence, at least to a local maximum.

The idea of GrabCut is to combine this two-step iterative procedure with an
additional graph cut optimization step such that each subtask only minimizes
E(-) with respect to either set of unknowns. In detail the sequence of operations
is:

0. Initialization
The algorithm expects an initial labeling of the image, a so-called trimap,
which assigns each pixel to one of three regions: T (foreground), Ty (back-
ground) or Ty (unknown). T and Ty constitute the seed regions, which
serve a double purpose. First, they represent hard constraints, i.e. they spec-
ify a fixed assignment on the respective subsets of opacity values (a, = 0 if
n € Ty, a, = 1 if n € Ty) which remains untouched in the following itera-
tions. Secondly, the corresponding pixel values are used to obtain an initial
estimate of the GMM parameters. An important feature of GrabCut is that
incomplete labeling is supported. That means, instead of a full trimap only
one of the regions Tp or Tz needs to be provided. Let’s assume only pixels
in the foreground were marked, i.e. T; = @ and Ty, = Tr . Then a provi-
sional initialization is performed, by setting a, = 0 for n € T; and estimating
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© accordingly. In this case, however, no hard constraints are used for the
background. The iterative minimization will take care of adjusting the pre-
liminary labels, based on constantly refined model parameters (see step 3).
. E-step

Based on the current model parameter estimates, an expression for the dis-
tribution of the unobserved data is evaluated to determine the responsibility
P(k|z,) of each mixture component for each data element

Prn = P(klz,) = IM. (4.16)
p(z,)

This is done separately for the foreground and background model, using only
the pixels in the respective segment as indicated by the current a estimate.
The results are two sets of component probabilities (indexed by a):
nk,an N (zn; nu'k,an: Z'k,utn)
e .
Zi:l T[i,an% (Zn; Au‘i,an’ Z"i,ct,l

pk,n,a = (417)

. M-step

The component responsibilities are used as data weights to obtain new pa-
rameter updates (which maximize the likelihood of the joint density of data
and hidden values):

1 N
Tha = 3 2Phna (4.18)
n=1

N
/ Zn:1 pk,n,azn

Wo="n (4.19)

anl Pk,n,a

T
N
, Zn:l Pi.na (zn - ‘u7l<a) (zn - 'u7/<a)

e = N : (4.20)

Zn=1 pk,n,a

Steps 1 and 2 combined correspond to computing:
@ =argminU(a, ®,Z). (4.21)
e

. Segmentation
In this step the energy function is minimized with respect to the opacity
values, given the preliminary @’:

a’ = argminE(a,®’,Z). (4.22)
a

As shown by Boykov an Jolly this can be efficiently achieved by conveying the
problem into an ST-graph (compare Section 3.1.2, page 32) and then using
a standard min-cut algorithm on this graph to find the global minimum.

. Repeat from step 1

Each minimization step is designed to decrease the energy E(-) with respect
to one set of variables ©, a in turn. Hence, E(-) must decrease monotoni-
cally and convergence to a local minimum (this limitation is inherited from
the EM-algorithm) is guaranteed. In oder to define a good stop-condition
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it would be unnecessarily costly to explicitly evaluate the energy term at
each iteration. Instead one can simply measure the rate of change in either
set of parameters. For example, our implementation uses the log likelihood
L =log(Z) and stops, if:

Lcurr - Lprev
L

AL = <1le 3. (4.23)

prev

4.3.3 Implementation Specifics

This section summarizes some algorithmic details, which are not mentioned
in the original GrabCut paper [ ] or which deviate from the proposed
workflow.

e A major difference is the implementation of “true” soft assignments, i.e. of
probabilities, of mixture components on given pixels, as a result of incorporat-
ing a full-fledged EM-scheme. The authors of GrabCut state that EM involves
too high computational expenses for negligible practical benefit and therefore
use hard assignments, i.e. each pixel is associated only to one unique GMM
component. While their argument concerning speed may be true, our exper-
iments with an exact re-implementation of the presented theory could not
reproduce their claim of decreasing the energy in each step and thus reaching
a stable segmentation.

o In both versions the boundary energy depends on a constant which ensures
that the exponential term switches appropriately between high and low con-
trast. The corresponding value f in GrabCut is fixed (chosen by optimizing
segmentation performance on a small training set of image). In our imple-
mentation this noise parameter o2 varies in each image and every pixel and is
estimated as the sample variance within a 5 x5 window around the respective
pixel. This approach is particularly useful when the algorithm is confronted
with non-color features where value range, contrast ratios and therefore a
good global noise threshold are not known in advance.

o The initial foreground and background model are each constructed by a self-
contained pass of the EM-algorithm, which in turn uses randomized k-means
to obtain a first clustering. The resulting (hard) cluster assignments are then
used to compute component priors and sample covariances in both data seg-
ments (indicated by a). Note, that despite all efforts, the EM-algorithm is
sensitive to the choice of starting parameters and may get stuck in a local
maximum.

o Another vulnerable point of the EM-scheme is that it’s possible to run into
degenerative situations. For example, if too few data points are (softly) as-
signed to a certain component it may cause the associated covariance matrix
to become singular or ill-conditioned. In such cases it is useful to impose
constraints in form of a minimum diagonal covariance A (e.g. the smallest
possible pixel value difference). This is done via eigen-decomposition of X} ,,

1 Of course it is impossible to rule out coding errors (sample code was not provided). However,
the crossover to soft clustering resulted in the desired properties.
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after completing the M-step:

1. US?UT < svD(%) 4.24)
2. S =max(S;,A;), i=1...d (4.25)
3. ¥=UsU". (4.26)

Whenever covariance constraints are applied, the monotonic behaviour of the
likelihood function may be disrupted. A possible alternative could have been
to discard offending components in the first place, thereby reducing K.

e Extensions for interactive editing of the segmentation (adding additional con-
straints) were not implemented, as the purpose in this work is to apply the
algorithm only in unsupervised scenarios.

4.3.4 Results

It is straight-forward to apply GrabCut to the skin segmentation problem. First,
the image domain is constrained to the support {2, of the 3D Morphable Model
reconstruction. This is achieved simply by re-indexing the pixels within 2,
and by eliminating all connections from the neighborhood set ¢ where at least
one pixel lies outside this region. In essence, it means that the outer image parts
are hidden from the algorithm. This is necessary in order to prevent pixels from
the background (clothes, etc.) to “pollute” the statistics associated with the two
segments. Secondly, the foreground region Ty is defined as the skin seed 2.4
and the background region T implicitly encompasses all remaining pixels, i.e.
Ty = Q4pp \ Tp. Then GrabCut is run, with A = 1, until the stop-condition is
reached.

Results on the same set of four faces, used already in earlier demonstrations,
are shown in Figure 4.13. A few more faces with a greater variety (and diffi-
culty) of hair appearances are depicted in Figure 4.14 and results for occlusions
by glasses are shown in Figure 4.15. In Figure 4.13 GrabCut was applied once
on the output EX(R™(I)) and once on the original gray scale images. For the
latter, the algorithm is unable to produce one good segmentation, although it
can be considered state-of-the-art. This points out once more how much better
the developed image features are suited to describe the skin region than the
raw gray scale data. Besides that, a more interesting question is: How does
the algorithm perform in direct competition, i.e. given the same input, with the
simple thresholding method ?

We observe that GrabCut tends to generate less scattered segments with
smoother segment boundaries. This is a direct consequence of the influence
of the boundary energy term. In particular there are far less false positives (pix-
els wrongly assigned to skin) so that the outcome can be best characterized as
a “safe” expansion of the seed regions over the entire face. On the downside,
however, GrabCut cuts off too many pixels in highly shaded regions, especially
around nose and chin, and thus produces larger gaps in the skin segment. In
the end, it depends on the field of application whether thresholding or GrabCut
should be favored. Concerning the two exemplary applications which motivated
this work, the requirements are as different as the methods’ results. For mole-
based face recognition the segmentation is only one of three steps to extract the



4.3. GRABCUT 67
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Figure 4.13: Comparison of skin segments obtained from thresholding of texture
similarity EX (R™(I)) (top row) and from our implementation of GrabCut (2" and 3™
row). The center row shows GrabCut’s results, applied to the original face image
I. In the bottom row the algorithm operated on Efs(R‘(I)). In all images the 3DMM
support and seed regions are highlighted. Compared to thresholding, GrabCut has
the advantage of producing fewer small and isolated segments with the downside
that it is too conservative in shaded regions.

relevant features: detector, skin filter and saliency filter. Each step can be seen
as a high sensitivity; i.e.

#{true positives}
#{true positives} + #{false negatives}’

pixel classifier that produces as few as possible false negatives at the cost of
more false positives. The latter are only ruled out by combining several such
classifiers. Obviously, the skin segments obtained with thresholding match this
profile much better than the conservative GrabCut results. In the “Face Ex-
change” application a major subtask is to derive a soft segmentation between
skin and hair. The class of algorithms that target this problem is reviewed in
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Thresholding

GrabCut

Figure 4.14: More segmentation results comparing the thresholding and the Grab-
Cut method, both applied on the texture similarity output EfS(R‘(I)). The image
samples were chosen with focus on the problem of segmenting out different kinds
of hair.

Chapter 5. It will then become clear that the seed regions available from the
3DMM are insufficient to guide this process. Instead the knowledge of skin seg-
ments from a hard segmentation can be used as intermediary result to constrain
the soft segmentation. This approach, however, only works if the skin segments
exhibit as few as possible false positives, which is exactly what GrabCut appears
to deliver.

The illumination compensation procedure is motivated by the desire to level
out smoothly varying intensity gradients in order to match otherwise simi-
larly textured image areas. The argumentation is, that the combined feature
Efs(R‘(I )) is then able to discriminate the presumed smooth skin from other,
not necessarily repetitive, image structures. Figure 4.14 demonstrates that this
idea works well for the common outliers from hair and facial organs, especially
in connection with the GrabCut algorithm. In Figure 4.15 we show some results
for faces wearing glasses. It is striking that our method manages to capture the
narrow rims of normal glasses in the two left images quite accurately, while it
fails to completely segment the far more prominent occlusions by sunglasses
in the two right images. This behaviour is caused mainly by the illumination
compensation. The R™(I) measure only registers negative intensity deviations
with respect to the surrounding area and up to a certain width (related to the
support size [N,| of the local quadratic function). The absolute gray level in-
formation is discarded. As consequence, lighter regions (from reflections or
specular highlights) as well as near constant dark areas in the sunglasses’ inte-
rior attain similarly high values in the R™(I) image; the first due to suppression
of positive error contributions, the latter due to local smoothness. The same
problem emerges for outliers from uniformly colored clothing.
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Figure 4.15: GrabCut skin segmentation results for faces with glasses.
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Chapter 5

Soft Segmentation by Alpha
Matting

In image composition tasks, such as our second reference application, “Face Ex-
change”, an adequate representation of the object at hand requires a combined
description of its color and opacity. While hard segmentations provide only an
on/off switch for each pixel, a soft segmentation (usually referred to as matte)
can assume any value between 1 (opaque) and O (fully transparent). This is
especially important when dealing with fuzzy objects like smoke or hair, be-
cause such objects can only be convincingly mixed with other image material
by smooth cross-fading operations. Essentially a matte has to capture the blend-
ing effects caused by transparency, aliasing, blur and motion blur during image
formation. To demonstrate this necessity, Figure 5.1 compares two composit-
ing results, one obtained using a hard segmentation and exhibiting artefacts,
the second one based on a matte. This chapter first provides a brief overview
on the natural image matting problem and on a selection of popular solution
techniques. Sections 5.2 to 5.5 then focus on the derivation and qualities of the
Spectral Matting approach.

5.1 Background

In general the process of image matting takes as input an image I which is as-
sumed to be a composite of a foreground image F and a background image B.
The underlying compositional model specifies that the i" pixel is a convex com-
bination of the corresponding foreground and background colors (also known
as the over-operation for image blending):

Ii:aiFi+(1—ai)Bi. (51)

The task is to reconstruct the @, F and sometimes B images, from the source
image I. For 3-channel color images this formulation thus involves determina-
tion of 7 unknowns from only 3 equations per pixel, which means the matting

71
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Hard Segmentation

Input

Substitute

(a-matte)

pd
. L
_
Soft Segmentation
i &

Figure 5.1: Image composition task: a part of the input image is to be replaced by
an object (substitute) from another source. Using a hard segmentation to describe
the original image occlusions produces artefacts, like visible seams and loss of fine
details, while a soft segmentation defines proper cross-fading coefficients.

problem is heavily under-constrained. In order to make it tractable, constraints
have to be imposed, usually involving user defined pre-segmentations or ad-hoc
assumptions on the components’ distribution and smoothness properties. For
example, the well known Blue Screen technique for live action matting basi-
cally works by placing the object against a known constant-color background
and by adding simple constraints based on thresholds of color ratios. In the
more general scenario of natural image matting, the recording conditions are
not controllable and so the problem becomes a lot more difficult. For most re-
cent matting methods the starting point is always a user defined trimap which
is supposed to provide a rough segmentation of the image into three regions:
foreground, background and unknown (i.e. blending of colors).

In the early commercial package Knockout [BVDOO] F and B from pixels in
the unknown region are first extrapolated from colors along the border of prox-
imate foreground/background regions (makes use of smoothness assumption).
The a value is then calculated as weighted average of the alleged known colors.
This algorithm is quick but is known to perform poorly when the true colors
in the unknown region are not consistent with those along the corresponding
region boundary, which is often the case.

Ruzon and Tomasi [RT00] introduced simple local color statistics into the
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matting process. They partition the unknown segment into sub-regions each
of which also encompasses some pixels from the known foreground and back-
ground. In these local areas the known colors are then clustered and mod-
eled as mixtures of non-oriented Gaussians. The a value is calculated under
the assumption that the observed color C stems from an intermediate distribu-
tion which is an interpolation between pairs of clusters from the foreground
and background distributions. The algorithm maximizes the probability den-
sity of this distribution (in point C). The related Bayesian Matting approach of
Chuang et al. [ 1 also uses color statistics but employs per pixel estima-
tion of color distributions. A circular sliding window is used to determine for
each pixel a subset of neighboring known colors which are then modeled by
mixtures of oriented Gaussians. Pixels are processed in a scanning order that
marches from the known foreground and background region borders inward,
so that previously computed values can be taken into account in the current es-
timates. The algorithm formulates the search for the optimal matte parameters
as a maximum a posteriori problem,

P(C|F,B,a)P(F)P(B)P(a)

argmax P(F, B, a|C ) =argmax 5.2
I%B,a ( | ) Fg,B,a P(C) ( )
=argmax L(C|F,B,a)+ L(F)+ L(B), (5.3)

F.B,a

with log likelihood L(-). The conditional probability is defined through the dif-
ference between the observed color C and a prediction by the parameters, the
terms L(F) and L(B) are obtained as described from labeled image data, and
P(a) and P(C) are assumed constant. Such methods, which assume relatively
simple color distributions for either known region, are reported to work quite
well if the distributions do not overlap and if the unknown region in the trimap
is small enough.

In Poisson Matting [ 1 F and B are assumed to be smooth in the un-
known region. Their values are initially guessed at each pixel by propagating
colors from the foreground/background regions boundary and blurring the re-
sult. Then the matte gradient field is approximated as VI/(F — B), by taking
the gradient of (5.1) and neglecting the gradient contributions in F and B (due
to smoothness). A matte is then reconstructed by solving the Poisson equation
(with Dirichlet boundary conditions given by the trimap labeling) for a function
whose gradients are similar to the approximated matte gradient field. The result
is used to contract the unknown region by reassigning pixels which are close (in
terms of a) to either foreground or background and the procedure is repeated
until convergence. In practice the kind of smoothness assumption, Sun et al. use
here, is often not met. In these cases the global matte might be erroneous and
expensive interactive local manipulations are required to obtain good solutions.

The next section gives a more detailed view on a very recent approach
that has several advantages (theoretical as well as practical) over the outlined
methods and which we use in Chapter 6 to obtain mattes for the face and the
hairstyle.
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5.2 Closed-Form Solution

Levinetal. [ ] suggest as smoothness constraints that the foreground and
background values should be assumed approximately constant within a small
neighborhood of each pixel, typically a 3 x 3 pixel window. By that proposition,
the representation of discontinuities in the mixture image is implicitly deferred
to the matte channel. The key is to realize that for the case of gray scale images
this notion can be used to rewrite Equation (5.1) and directly express a in each
window w as linear function of the image:

I;+b, Vi ith ! b B 5.4)

a;~al;+b, View with a=——b=———. .
' ' F-B F-B

Using this relation, it is now possible to translate the matting problem into one
of global minimization of the cost function:

J(a,a,b)zz Z(a —b; )2+ea . (5.5)
JjeI iew;
®
The last part is a regularization term on a which improves numerical stability
and biases the solutions towards smoother a. For the practically more relevant
case of color images, Levin et al. replace the linear model of (5.4) with a 4D
linear function:

Q; wZaclf—Fb, View. (5.6)
C

On closer examination this model turns out to be more than a transition to
multiple color channels. It is shown [ ] that (5.6) also generalizes the
assumption of constant F and B in each window to one where the foreground
and background are each merely linear mixtures of two colors. That means,
(5.6) holds as long as all F; in w (the same for B;) lie on a single line in RGB
space. Based on this color line model, a cost function similar to (5.5) is defined,
only with ®' replaced by a; — X, aSI{ — b; and the regularization term el|a;||*.

The construction principle of the cost function (we now always refer to the
color case) via overlapping windows couples the parameter values of each pixel
to its neighbors and so allows information to propagate through the image. In
its original form the function is quadratic in @, a and b with 5N unknowns
for an RGB-image of N pixels. Fortunately, the model coefficients a, b can be
eliminated, which yields a quadratic cost function of a only:

J(a)=a'La. (5.7)

Here L is a sparse and symmetric N x N matrix whose (i, ) entry is given by:

®2

1 €
Do | 14T - (B 1) 0 - ) | |, (5.8)
KI(h)ew, lwl lwil
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with ., ¥ denoting mean and covariance of colors in window wy, |wy| count-
ing the number of pixels in this window and Id; being the 3 x 3 identity ma-
trix. This formulation, remarkably, does not involve the unknown foreground
or background colors, i.e. it depends only on the observed (mixed) colors.

In order to better understand the properties of L, we look at the matrix
entries (5.8) while holding a fixed neighborhood w;. From this point of view
the pixel indices i and j each vary independently so that expression ®* describes
all pairwise normalized correlations between the colors in this window. These
form a symmetric |w;| X |w,| matrix whose rows (and columns) sum to zero.
Adding 1/|wg| to each entry then yields row-sums of one. The contents of this
matrix are distributed throughout L by adding them to the respective entries
belonging to pixel (i,j). Hence, for each time a window comprises a certain
pixel I, the corresponding row Ly ,, representing all neighborhood relations
with this pixel, receives values which increment the total row-sum by one. The
term Zkl(i,j)ewk 0;; counts just how often this happens and therefore is equal.
Consequently each row of L sums to zero.

Due to this property, every constant vector is part of the null space of L
and thus trivially minimizes J(a). In order to obtain meaningful solutions the
matte has to be constrained, usually by a user, by pre-determination of some «;
values. The constraints are here supplied as black (a; = 0) and white (a; = 1)
brush strokes, so-called “scribbles”. In essence this is equivalent to the trimap
interface used in other matting algorithms, only that the scribbles can be much
more sparse and therefore their definition requires less effort. Given an image
S with scribbled pixels, the constrained matte is extracted as:

a=argmina’La st a;=s;,ViES. (5.9)

Let bg be the vector containing the specified alpha values for the constrained
pixels and zeros otherwise and Dy be a diagonal matrix whose diagonal entries
indicate by 1 or 0 whether the corresponding pixel is constrained. Then, for
a large number A, the matte solution to (5.9) can be computed by solving the
sparse linear system:

(L+A.Ds)a=},bs. (5.10)

5.3 Spectral Matting

The structure of L corresponds to that of a graph’s Laplacian. The right part
of (5.8), i.e. the sum over only expression ®3, can be interpreted as affin-
ity function W, ; between two pixels. If D denotes the diagonal matrix with
D;; = Zj W, ;, which measures the degree of each node/pixel in the graph,
then the matrix can be written as L = D — W. Suitably, L is also referred to as
matting Laplacian. In analogy to hard segmentation methods like Normalized
Cuts [ ] (see also 3.1.1) an extension to the described algorithm, called
Spectral Matting [ 1, performs a spectral analysis of the Laplacian to re-
veal the image’s connectivity structure and to facilitate the extraction of better
image mattes.
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The aim of Spectral Matting is to find a decomposition of the image (similar
to an over-segmentation) into matting components a*, which represent ele-
mentary building blocks and can be used to express the image as composite of
multiple layers instead of only foreground and background: I; = ZIk(:l afFk. It
is shown that La* = 0 also holds for the individual matting components, if one
of the following (ideal) conditions is met in every local window:

1. Only a single component is active.

2. Two components are active and the colors in the corresponding layers
obey the color-line model.

3. Three components are active and the colors in each layer are constant and
linearly independent.

In practice images hardly ever fulfill these assumptions exactly, which means
that the matting Laplacian might not have multiple eigenvectors with eigen-
value 0. However, the authors observe that the smallest eigenvectors of L often
suffice to extract an approximation of the desired decomposition.

The eigenvectors E = [e!...eX] corresponding to the K smallest eigenvalues
of L form an orthonormal basis which is unique only up to rotations. Thus the
matting components are in the span of E but unlikely to coincide with these
vectors. In order to recover the components, Levin et al. propose to search
for a linear transformation of the eigenvectors subject to the constraints that
the resulting vectors sum to one and that the individual components should be
sparse (i.e. as close as possible to binary vectors). The associated cost function
is non-convex and optimized iteratively via Newton’s method. Unfortunately
this procedure is computationally very expensive and therefore not used in our
implementation. A simpler alternative is to apply only a k-means algorithm on
E. The resulting clusters can be expressed as binary indicator vectors m* and
projected into the span of the eigenvectors:

ak = EE"m*. (5.11)

All eigenvectors (except of course the constant vector) exhibit the typical fuzzy
structure of a matte. The a* are the closest possible (in the sense of minimum
Euclidean distance) points to the associated cluster indicators, which are still
contained in the space of eigenvectors. Correspondingly, they inherit the fuzzy
boundary property and their “activity” concentrates around the pixels comprised
in a given cluster. However, without explicitly enforcing sparseness, the matting
components may yet have a global support. Since Y, m* =1, and by exploiting
the fact that the constant vector (with unit length) is part of E and orthogonal to
all other e, it is easy to verify that the a* in (5.11) still satisfy the prerequisite
that their sum on each pixel is one:

K K
Dlak=EE" > m* | =EE"1=1. (5.12)
k=1 k=1

The matting components themselves are only an intermediate result. The
final task is to group them in such a way that the combined matte exposes some
desired object or image region. A grouping is defined through a K-dimensional
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vector b, with b, € {0,1}, that indicates whether a component contributes to
the final matte, i.e. b, = 1 <= a* belongs to the foreground component:

K
a=> bea. (5.13)

k=1

For any given b, the associated matting cost can now be written as:
J(@) = ba )L (O ba)=b"¢b (5.14)
K P

with
¢ =a"La. (5.15)

Since the K x K matrix ¢ can be pre-computed, this concept provides a very
efficient way to evaluate the cost function for a great number of “hypothesis”
b. The total number of possible constellations is 2X. For small K these could be
tested systematically for the optimal cost, and by including some heuristics on
the expected number of pixels in foreground and background, a matte could be
drawn without supervision. In most scenarios this is not an option. First, K may
be too high (e.g. we use ~ 40 components). Secondly, a global minimum formu-
lation via Equation (5.14) does not incorporate higher level knowledge on the
image. Therefore the unsupervised matting task is ambiguous if multiple visu-
ally complex objects are to be separated, as it is the case for faces and hairstyle.
Like in the Closed-Form Solution setting (5.9) a small amount of (user defined)
guidance, provided as scribbles, is required to direct and constrain the group-
ing. Instead of probing all valid combinations of b, the idea is to convert the
cost (5.14) to an energy function over an ST-graph, which can be minimized
in polynomial time. In this approach the b, (and thereby the corresponding
matting components) are interpreted as nodes for which an optimal binary seg-
mentation is sought. As explained in Section 3.1.2 (page 32), the associated
cost involves sums over regional and boundary properties of the nodes,

E(b) =Y E(b)+ Y Ey;(by, by), (5.16)
k k,l

where the regional penalties are E,(0) = oo if the k™ component is constrained
to belong to the foreground, E,(1) = oo if it is constrained to be background
and 0 otherwise. Note, that the nodes b; are not spatially arranged, so the only
sensible topology in the second term includes all pairwise combinations. By
defining

Eyi(by, b)) = —max(0, ¢ ) )(by — b)? (5.17)

one can show [ ] that the boundary cost term approximates, under cer-
tain conditions even equals, the original cost function J(a). The maximum in
the last equation ensures non-negative pairwise energies which is a requirement
of the min-cut algorithm that is now used to solve (5.16) and yields the final
grouping b and by (5.13) also the @ matte.
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(b) Constraints (trimap) (c) Closed-form a-matte

(d) Matting comp. a!---a* (e) Matting comp. a@®---a®

(f) Spectral a-matte

Figure 5.2: Compares a matte obtained by Closed-Form Solution with one ob-
tained by Spectral Matting on the same input data. Due to conceptually different
handling of constraints the two results are very different. In particular these im-
ages demonstrate the superiority of the spectral approach when the problem is
“mis-constrained”.

5.4 A Practical Assessment

A legitimate question is, how or even if Spectral Matting is superior to the closed-
form approach. After all, the additional, and for larger images very expensive,
eigenvalue decomposition must be justified. One obvious advantage is that the
main computational work is separated from the actual quick matte solver which
processes the constraints. It allows many different constraints to be tested in a
short time. This is ideal for interactive applications where the user edits scrib-
bles and then immediately gets an updated matting result. Since our aim is
to develop an unsupervised system, this property is of little value to us. There
is, however, another issue concerning the conceptually different way of how
constraints affect the matting which makes this algorithm our first choice.

Consider the input image in Figure 5.2(a) with matting constraints specified
as trimap 5.2(b) (white indicates foreground and black background). Provided
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with this data, the closed-form matting solution outputs the result in 5.2(c).
The spectral method, on the other hand, generates a completely different matte
5.2(f), which is already very close to a true segmentation from background to
face. Why are the two results so different ?

In the closed-form approach the constraints are hard-coded directly, as Dg
and bg, into the solver (5.10). The factor A is chosen so large, as to insure
that the least squares approximation adopts the corresponding values virtually
untouched into @. In contrast to this, in the Spectral Matting method con-
straints merely act as guides. To understand this, recall the regional penalties
from Equation (5.16). Each summand E,(b;) depends on whether the respec-
tive matting component is constrained and if so to which region. That is a
binary predicate which is computed by correlating a* with indicator vectors for
foreground and background constraints respectively and afterwards comparing
which is higher. If we neglect other factors (like the boundary term), it means
that the final result basically originates from majority votes on the number of
overlapping pixels of each matting component with either constraint region.
For example in Figure 5.2 there are two components (a* and a®) which have
a high correlation with the object marker, and are consequently selected for
the matte, while the main support of the remaining components is close to the
edge/background.

The fact that Spectral Matting does not treat constraints as hard evidence
is very convenient for us. It means that we have the option to solve mis-
constrained matting problems, i.e. cases where the region markers are not guar-
anteed to be located entirely within their respective segment (an example is the
background in 5.2(b) which overlaps with a hair patch of the anticipated fore-
ground). In particular, the extreme condition where the constraints leave no
pixel undecided (see Section 6.2.3) remains manageable.

5.5 Reconstruction of Foreground & Background

Typically, an application that depends on a matte also requires the foreground
colors to depict an extracted fuzzy object in another context or the background
colors to reveal occluded image regions after object removal, and sometimes
both. Neither the Closed-Form Solution nor the Spectral Matting approach com-
pute the colors along with the matte. Instead, they formulate a subsequent
minimization problem over F and B, given a fixed @. The conditions which
guide the reconstruction are defined by the compositing equation (5.1) and by
a smoothness prior which is proportional to the strength of edges in the matte.
This corresponds to the notion of the color-line model, where colors are as-
sumed locally smooth, and sudden color changes are attributed to a change in
opacity. A cost function based on these terms is:

S5 (@F - -a)B - 1)

ot | (P + (B )?) + e | (P2 )% + (BS)?)

(5.18)
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(a) Input + Scribbles (c) Reconst. foreground (e) Composite with new bg.

(b) Matte (d) Reconst. background (f) Composite with modified fg.

Figure 5.3: Results obtained with the Closed-Form Solution a-matting (b) and sub-
sequent color reconstruction (c),(d) procedures. The manually defined constraints
are shown along with the input image (a) as white (object) and black (background)
brush strokes. Two novel composite images demonstrate the “correctness” of the
recovered F and B. In (e) the object is placed over a new background, yet structure
and color of the transparent hair strands appear as in the original. In (f) the hair
color is changed, simply by shifting the hue of the entire F and blending it again
with B.

where ¢ indexes the color channel and -; and -; denote the derivatives in x and
y direction at the respective i pixel. The cost is quadratic in its variables and
can be minimized by solving a sparse linear system. Figure 5.3 displays a matte
and the F and B images recovered by this procedure.



Chapter 6

Applications

In this chapter we explore a series of higher-level applications which can greatly
benefit from the custom gray scale image features and the segmentation proce-
dures derived in the preceding chapters. First, a new face recognition scheme
is presented, that relies entirely on local skin features for identification [ 1.
Since masking of non-skin areas is crucial to this approach and eventually a
large number of images has to be processed, its practicability adheres directly
to the ability to automatically compute such segmentations. For the other ap-
plications, presented below, automation is not a prerequisite but rather a con-
venience. Basically the results demonstrated in this chapter could as well be
obtained with the aid of human input. This, however, is usually tedious and
time consuming work. Section 6.2 presents a method for the 3DMM to deal
with outliers. A simple, yet very effective, modification to the original 3DMM
fitting algorithm is introduced, that allows us to prevent certain image regions
from affecting a reconstruction. Combined with the ability to automatically seg-
ment outliers, we manage to render the model robust to such influences. This
capability is further exploited in Section 6.3 for the purpose of photo realistic
editing of face images, specifically the exchange of faces. Besides handling of
occlusions, the focus here lies on methods to counteract artefacts that would
give away the manipulation.

6.1 Face Recognition from Skin Details

Facial skin exhibits various small scale structures in the surface (wrinkles, scars)
and the texture (nevi — a general term for pigment lesions like birthmarks and
moles) that stand out from normal skin appearance and represent potentially
valuable references for individual distinction. Among such skin irregularities
moles are especially suited for identification. Their predictable appearance,
also under changing illumination, facilitates detection. And their numerous
appearance in conjunction with unique distribution patterns scales well with
extensive galleries. Furthermore moles require no abstract encoding, in contrast
to most other facial features. For one, this property allows for a straightforward
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handling in terms of comparisons, storage, etc., since the encoding is basically
transparent and independent of the generating algorithm. Secondly, mole-based
features could contribute to an automated facial annotation in human-readable
form. This, in turn, could be exploited to search a face database without having
to provide a sample face, for example, by formulating a query such as: “search
all faces with a birthmark near the upper right lip”.

6.1.1 Overview

By combining one of the presented segmentation algorithms with additional
techniques for detection and validation of moles, we will expose skin features
spanning only a few pixels, that are still prominent enough to be used for iden-
tification. Relying on such small scale variations is an unusual approach in face
recognition. Conventional recognition algorithms are designed to work on low
resolution images. For example the well known Eigenfaces approach [ 1,
representative for linear appearance based subspace methods, performs dimen-
sionality reduction using PCA on the raw image data and thereby implicitly
treats local variations as noise. Also model based algorithms like the Active
Appearance Model in 2D [ ] or the Morphable Model in 3D [ ] use
PCA to model intra class variations. These methods cannot capture small un-
expected details in their reconstruction without severe overfitting, which would
render the whole method useless. There exist many techniques based on lo-
cal descriptors using e.g. textons, DCT coefficients or Gabor wavelet features.
However, none of these methods involve an explicit representation of one of the
aforementioned skin features.

Currently the only other known attempt to exploit mole-like features for
identification comes from Lin and Tang [ 1. Their work comprises a multi-
layer representation of a face in global appearance, facial features (organs), skin
texture and irregularities, which all contribute to the identity. The SIFT frame-
work [ ] is used for detection and description of irregular skin details
which are then combined in an elastic graph for recognition. Their approach
tackles stability and distinctiveness issues by validating interest regions using
multiple gallery samples per person and by ensuring dissimilarity to normal
skin regions. Therein lie the main differences and also drawbacks, compared to
the method we develop in this section. For one, the requirement of more than
one gallery sample constrains the applicability in many recognition scenarios.
Secondly, Lin and Tang neglect to mention how they obtain the partitioning and
correspondence for the local regions (organs and skin). It is not clear whether
human guided or automated methods are used for this step. Furthermore, all
experiments are conducted on frontal views which suggests that their method
cannot deal with significant pose variations.

In order to avoid such limitations, our recognition system is designed to take
advantage of the 3DMM for face representation, which provides unsupervised
(except for the landmark points required to initialize a fitting), pose indepen-
dent and, to a large degree, illumination independent processing of faces. While
the 3DMM itself delivers features that can be used for recognition [ 1, it
is here primarily utilized as a preprocessing to establish the dense correspon-
dence between image pixels and the model’s vertices. The reference frame then



6.1. FACE RECOGNITION FROM SKIN DETAILS 83

Morphable Model
3D Reconstruction

Rendering
A Skin Seed
Shading
Compensation

Image

Reference Frame Mapping

Texture
Similarity
A
Mole Skin
Localization Segmentation
Validation -
Skin Facial
i [— i +
Saliency Area Outliers Organs
Mole
Configuration

Figure 6.1: Diagram of processing steps and dependencies in the mole detection
framework. The left lane shows the main actions to obtain locations and saliency
measures for moles. Starting from a Morphable Model reconstruction, the right
lanes illustrate how the prior knowledge of the 3D face model is incorporated into
the system. Subtasks involved in the skin segmentation chain are highlighted by
red borders.

acts as intermediary “universal” coordinate system, so that locations of feature
points in different images can be encoded and compared in a pose independent
manner. On the downside this dependency on the 3DMM forces us to work
around some of its flaws, namely the lack of consistent handling of hair and the
occasionally faulty correspondence.

The system to extract mole-like features is divided into three main steps cor-
responding to the three properties that characterize a local region as birthmark,
see also Figure 6.1:

e Appearance From distance a mole appears simply as small dark region of
circular shape surrounded by a brighter area, i.e. a so called “blob”. This de-
scription also holds under varying viewing conditions (pose/illumination). A
very sensitive multi scale detection scheme is employed, see Section 6.1.2, to
identify even the most subtle mole candidates.

e Location Due to its sensitivity, the detector also responds to typical facial
features such as nostrils, corners of eyes, eyebrows and mouth as well as to
unexpected deviations like hair strands. These points are not discriminative
across individuals, and it is crucial for this recognition scheme that they are
rejected. In order to rule out points in such non-skin areas a binary segmenta-
tion of the face is computed, using the algorithm delineated in Section 4.2. As
opposed to other popular skin detection/segmentation schemes [ ], this
approach is entirely texture based and therefor requires no color input. Thus
we avoid to impose an additional constraint on the input imagery merely for
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this step (all other components are already perfectly suited to handle gray
scale data).

e Context Finally the notion of saliency is introduced in Section 6.1.4 which
allows the system to assess the importance of each birthmark candidate for
recognition. This procedure takes the relationship between a point’s size and
contrast and the texture of it’s neighborhood into account. In essence it rep-
resents a combined measure of uniqueness and confidence. Points below a
certain saliency threshold are immediately discarded.

6.1.2 Mole Candidate Detection

Moles are detected by means of normalized cross correlation (NCC) matching.
A Laplacian-of-Gaussian filter mask serves as template, because of its very close
resemblance to the blob-like appearance of moles. NCC is not scale invariant
and the object size is not known a priori. Consequently the matching has to
be computed for several resolutions, using templates of varying scale. With
a growing number of resolutions a straight forward implementation becomes
very inefficient. A theoretically more appealing alternative would be to apply
the Lindeberg blob detector [ 1 which is also used in the SIFT framework
and directly searches in scale-space for extrema of differences of Gaussians. In
practice the problem with that approach is that there is no minimal spacing of
samples (in scale) that will detect all extrema as they can be arbitrarily close
together. Given the relatively low image resolution of the database used in the
experiments, this means: 1) Using a small number of scale samples, the Lin-
deberg detector hits only very obvious blobs. 2) In order to detect small but
still prominent moles (sometimes consisting only of a few pixels) scale would
have to be sampled more densely, up to 30 samples per octave in our experi-
ments. This turned out to be too expensive. Therefore, inspired by Mikolajczyk
and Schmid [ 1, the matching here is carried out in separated steps for
candidate point localization in space and scale respectively.

At first NCC is computed for a small subset of scales, distributed evenly
across the desired search range. Then all local maxima (x;, y;;s;) in the output
image of each scale s, are determined in order to pinpoint candidate positions
in 2D. Only these points are further considered. In the second step correlation
coefficients for the remaining points are computed, using templates that cor-
respond to mole sizes in the range [0.5-s;,2-s;]. If the maximum response
across these scales is below a fixed threshold the point is discarded. Otherwise
the template with maximal correlation defines the points scale for subsequent
processing. Handling scale and space independently, has the drawback of caus-
ing duplicate point detections, meaning candidates located at different scales
and/or coordinates but actually responding to the same feature in the image.
Such cases are easy to identify so that all duplicates except for the one with
largest scale can be removed.

Another problem arises in areas of changing brightness as cause of shading
(changing shape or illumination). The intensity gradients surrounding a mole
conflict with the uniform area assumption coded in the mole templates. An ex-
ample for which the described method fails, can be seen in Figure 6.2. The two
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Figure 6.2: Example of two prominent moles where detection in the original image
(left) fails. The corresponding magnified section shows multiple gradients in vicinity
of both moles, especially noticeable in the depicted horizontal pixel profile passing
through the top mole. After applying illumination compensation to this region the
detector succeeds on both moles. Intensities in the magnified sections have been
normalized for visual clarity.

obvious solutions to handle such situations are not applicable in this scenario.
Lowering the correlation threshold would produce too many false positives in
less problematic facial regions. Matching against additional templates on mul-
tiple scales that also incorporate skin shading, would dramatically increase the
computational effort. Instead, the input image is compensated for shading by
the previously introduced illumination compensation technique. Since this im-
age transformation removes only gradients and not details, the mole detector
can then simply be applied to the output of this procedure, with significantly
better results.

Before conducting the experiments, a few gallery images were manually
labeled for the locations of subjectively salient moles. The number of scales
(range & sample steps) and the NCC threshold were then chosen such that
all marked points could be located. Template detection typically reduced the
number of candidates for further processing to 1-2%. of the pixels representing
a face.

6.1.3 Skin Segmentation

The template detector does not incorporate any specific knowledge as to where
moles can appear. As consequence it may nominate any facial feature with
similar appearance, e.g. pupils, nostrils or corners of the mouth. Moreover one
must expect sporadic hits in areas with hair (beard, hairstyle). Since none of
these findings are characteristic for a person, they have a negative impact on
the recognition performance and must therefore be eliminated.

This problem is counteracted by incorporating a hard segmentation of the
face into skin and non-skin. Mole candidates lying outside the skin segment
can then be rejected. The non-skin region is composed of two parts. One part
is directly derived from the 3D reconstruction with the Morphable Model, by
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defining the subset of vertices which belong to eyes, nostrils and lips, and then
projecting this selection to the image domain. Due to imperfect reconstructions
the resulting mask may not be very precise. This is taken into account by di-
lating the mask according to the face’s specific measured alignment error. The
mask is supplemented by a narrow margin (width also taken from the align-
ment error) along each side of the model’s predicted contours. Detected points
in these areas would be problematic because the respective image edges inter-
fere with the saliency computation, and moreover because the correspondence
near the contours is less accurate as a consequence of perspective distortion.
The second component marks outliers. Chapter 4 proposed two possible solu-
tions for this task: segmentation by thresholding and GrabCut. An important
point to notice is that both methods also treat larger moles as outliers. There-
fore a simple heuristic is employed to prevent such areas from being excluded
from further processing: If a mole candidate is located inside a hole of the skin
segment, it is still accepted if the gap’s size is less than two times larger than the
candidate’s scale. Note that because of this rule it is not possible to reverse the
execution order of detection and then rejection. Of the two available algorithms
the simpler thresholding approach was chosen for this job. Although the Grab-
Cut-based segmentations generally possess the more favorable properties (see
4.3.4) this method still cuts off too many pixels in highly shaded regions (espe-
cially around the nose) and thus produces larger gaps in the skin segment. This
is unacceptable for the current application, since it may cause loss of impor-
tant moles, also due to the aforementioned heuristic, implemented on segment
holes.

6.1.4 Local Saliency

Saliency is commonly used as synonym for discriminative power. The more
salient a feature is, the better it should be distinguishable from others. The exact
definition, however, depends on the actual application. Walker et al. [ ]
formulate this notion over the probability density in feature space and reason
that salient features should lie in low density areas. Hence, intuitively saliency
corresponds to rarity. In their paper the probability density function (PDF) is
approximated by mixtures of Gaussian kernels. Hall et al. [ ] take on the
same definition but use a more accurate Parzen windows technique for density
estimation, which is also adopted here.

Having constrained the detected mole candidates to skin regions, the goal is
now to define a measure that makes it possible to differentiate between promi-
nent and more or less coincidental hits. The latter may occur in “noisy” regions,
e.g. in the presence of freckles or stubble, where a single dark spot has no signif-
icance. A point’s scale and correlation coefficient (from detection) contribute to
this assessment but are not sufficient. We therefore combine two more proper-
ties, the contrast and the uniqueness of a point with respect to it’s neighborhood,
into a saliency value.

Consider a mole candidate composed of a group of d pixels, e.g. defined by
a circular or a square mask centered on the candidate’s position (x;, y;) with the
radius given by its intrinsic scale s;. The pixel group is stored as a d-dimensional
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vector q. Further assume a square neighborhood N, centered around the same
location. This neighborhood defines the domain over which the saliency of a
given candidate should be determined. In the conducted experiments its width
remains constant for all images and corresponds roughly to the pixel distance
between both nostrils in a frontal view. This minor limitation is tolerable since
all images used in the recognition experiments have similar resolutions. From
N, all possible shifted and mirrored regions r; = T(q) are extracted (where T(-)
denotes the combined transformation of translation and rotation by 90°, 180°
or 270° around the midpoint), under the condition that r; C N, r;nq = 0.
That means the transformed regions have the same shape as g but should not
share any pixels with it. Let’s assume there are M such regions, which populate
a d-dimensional feature space. We then consider a hypersphere with radius e
and volume V, around q and determine the number k of feature points lying

within the sphere, as shown in Figure 6.3. The ratio ¥ is then an estimate for

the probability density at q. Based on the measurement of k, saliency is defined
here as:

min M=l for =1
sal (q) := { riNg.rjng=0

€ (6.1)
M=k fork > 1.

The radius is chosen as € = d - 02, , with oy, denoting the standard deviation
q

of all pixels in N; but not in q. Let us take a closer look at the two cases in
Equation (6.1):

e k>1: As more points fall within the e-sphere, the estimated density
around q increases by the ratio <. The saliency simply decreases by the
same rate, taking values in the range [0, 1).

e k=1: No other feature is closer than € to q. The distance to it’s nearest
neighbor in multiples of the sphere radius is computed. Since € is related
to the sample variance in N, the saliency becomes a normalized measure
of how much the pixel ensemble in g stands out from the noise in it’s

neighborhood, ranging from [1, o).

The described procedure is applied on every mole candidate location using
the illumination compensated image R (I), however, constrained to skin seg-
ments. It is important to mask other potentially blob-like structures from N, in
order to prevent them from interfering with the noise and density estimates. An
example of evaluated points is shown in Figure 6.4. In the left image all points
delivered by the mole detection process have been highlighted. The red squares
mark candidates which lie either in non-skin regions or which have a computed
saliency sal, < 1. The remaining points are deemed salient and will be used
for identification. Of course not all accepted points are equally “interesting”.
Figure 6.4 also depicts the processed patches (right column) of the three most
salient moles and one of the rejected points. The non-skin parts are masked out
(green) and the remaining pixels are normalized. Clearly the saliency correlates
with mole size and is higher for points with less variation respectively noise in
the surrounding.
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Figure 6.3: lllustration of density estimation for saliency. A pixel group q (red)
and all other similarly shaped constellations (green) within it's neighborhood N,
populate a multidimensional feature space. The density is estimated by the number
of samples lying within a spherical Parzen window around the feature point q.
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Figure 6.4: Filtering of mole candidates according to saliency. Circles mark points
with saliency sal. > 1 which are later used to identify this face. Zoomed neighbor-
hoods of four candidates with corresponding patches from R™(I) show that this
saliency measure indeed relates a point’s size and contrast to the surrounding
noise and delivers an intuitive measure of importance.

6.1.5 Identification Experiments

This section presents experiments that utilize the described framework for face
recognition. For demonstration purposes identification is performed purely
based on the previously detected moles on a subset (reported in [BV03a]) of
the FERET [PWHRO98] face database. This subset consists of gray level images
with resolutions in the range of 50-80 pixels eye distance. It contains images of
194 individuals in 11 poses from which the set ba (frontal view) serves as the
gallery and the sets bc-bh (head rotated by +40°,4+25°,+15°) and bk (frontal
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view with different illumination) provide the probe faces. Most recognition ex-
periments are limited to persons for which the respective gallery image contains
at least one mole with a saliency greater than some threshold. The similarity
measure between two faces F and G is an ad hoc definition, based on the mole
locations in 3DMM reference coordinates and their associated saliency values.
It is computed as follows:

1. A proximity threshold oy, is defined as the average of the alignment er-
rors of both faces (recall Section 2.2, page 24).

2. The saliency values of all moles of a face are transformed to relative

weights
sal;

Dy sal; '

This maps the theoretically unbounded sal; values to a common range,
equal for all faces, and relates a mole’s importance to the other points.

(6.2)

Wi=

3. For each mole location i in F the closest point j from G is determined.
If the distance between both positions is smaller than 3o, the point i is
considered matched and a matching value

min(wF, WJG)
V= ————— (6.3)

e max(wf,wf)

is defined. In this case the point j is removed from G so that it cannot
match any other locations in face F. Otherwise (distance greater than
proximity threshold) i remains unmatched, the corresponding v; is set to
zero and the evaluation continues with the next mole. The rationale be-
hind Equation (6.3) is to ensure that matched feature points contribute
more to the final score if they have similar prominence. If, on the other
hand, the values w{ and WjG differ significantly, this could indicate that
two different moles were matched. That is likely to occur if one face ex-
hibits many proximate moles, or if a second face happens to have a mole
on/near the same location as the first one. In any case such erroneous
allocations must be penalized by a lower score.

4. After a v; has been assigned to every mole in F, the similarity score is
computed as
2iil1 Vi
i=1Vi

sim(F,G) = ———,
max(ng,ng)

(6.4)
where ny and ng denote the number of salient moles in the respective
face. Normalization by their maximum takes care of situations, where
face G contains much more feature points than F, which clearly cannot all
be matched. The larger the number of unmatched points is, the less likely
the two faces are assumed to be identical. The other case (ny > ng) is
already implicitly covered by point 3, since unmatched moles cause v; = 0.

For a given probe face the gallery face with the highest similarity score is at-
tributed with the inquired identity. Tables 6.1 to 6.3 report various identifica-
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Saliency threshold (Gallery subset size of 194)
5 (156) I 10 (107) I 15 (83)
| Probe | Fail | Performance || Fail | Performance || Fail | Performance |
be 69 55.77 39 63.55 26 68.67
bd 34 78.20 13 87.85 8 90.36
be 17 89.10 7 93.45 4 95.18
bf 20 87.18 5 95.32 5 93.97
bg 47 69.87 24 77.57 17 79.51
bh 68 56.41 30 71.96 21 74.70
bk 42 73.07 22 79.44 13 84.33

Table 6.1: Performance of identification purely based on detected moles. The
gallery (frontal view, ba) and probes are limited to faces, which contain at least one
mole in the gallery with a saliency greater than the denoted threshold. Performance
is listed as number of unidentified faces from the respective gallery subset (Fail)
and in percent.

Saliency threshold (Gallery subset size of 194)
5 (156) I 10 (107) (| 15 (83)
| Probe | Fail | Performance || Fail | Performance || Fail | Performance |
bc | 86 44.87 49 54.21 34 59.04
bd | 75 51.92 42 60.75 26 68.67
be 52 66.67 26 75.70 20 75.90
bf 64 58.97 34 68.22 25 69.88
bg 91 41.67 51 52.34 37 55.42
bh 98 37.18 58 45.79 40 51.81
bk 87 44,23 51 52.34 34 59.04

Table 6.2: Displays identification results based on detected moles, analogous to
Table 6.1, however without employing skin segmentation. Thereby the overall
quality (reliability) of the alleged salient moles is reduced, which leads to an im-
mense decline in recognition performance.

Saliency Gallery
Gallery / Probe threshold subset size Fail Performance
(194=complete)

ba / be 1 194 42 (65) | 78.35 (66.49)
ba / bf 46 (64) | 76.28 (67.01)

1 194 23 (40) 88.14 (79.83)

bb / be 5 180 17 32) | 90.55 (8222

. 1 194 24 (39) 87.63 (79.90)
bi/ bh 5 184 21 (32) | 88.58 (82.60)

Table 6.3: Identification results using only moles as features. The performances
were determined for the complete gallery set (ba) and for two non-frontal galleries
versus probe sets with the respective rotationally closest pose (£15° and +20°).
The red numbers in brackets denote the results obtained without skin segmenta-
tion.
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Figure 6.5: ROCs for identification tasks on the FERET face database. In the
left plot the gallery is from a frontal view with standard illumination and the probes
vary with respect to the pose angle. The recognition rate was measured, using
all available salient moles. That means the full gallery could be processed. For
the right plot two opposing side-views serve as gallery and the respective probe
faces are rotated by 20° towards the camera. These two constellation were tested
without and with a low saliency threshold.

tion results and Figure 6.5 plots the according ROCs. A few observations can be
made on behalf of these findings:

e The recognition rate drops with increasing rotation angle between gallery

and probe, independent of the gallery pose. This is to be expected, since
the overlapping area in which moles from both faces can be matched
shrinks. Table 6.3 also compares two side-view galleries (bb and bi, az-
imuth = +60°) with their respective probes selected to have the rotation-
ally closest pose (off by 20°). The results are even better than for the
frontal gallery, both, in terms of the number of available faces for a given
saliency threshold and in terms of recognition rate. A likely explanation
is that such side views simply offer a larger surface so that more salient
moles can be detected, as this table shows:

| Number of detected salient (sal, > 1) moles per database subset |
Pose bi bh bg bf ba be bd bc bb

Angle —60 —40 —25 —15 0 +15 +25 +40 +60
Moles 3174 | 3010 | 2312 | 2203 2179 | 2277 | 2380 | 3104 | 3225

Recognition under different illumination (bk set) suffers from the lower
contrast between moles and skin which results in lower saliency values
and thus more rejections. The total number of detected moles is ~1600,
whereas in all other sets one can account for more than 2100 moles.

At least 80% of the faces have some prominent moles (saliency > 5) for
which we obtain recognition performances above 87%. This is quite re-
markable, considering that in average about 5-10 locations, representing
less than 0.3% of the pixels in a face, determine it’s identity. Enforcing
more prominent moles leads to better performance but greatly reduces the
number of usable faces. Somewhere between saliency thresholds of 10-15
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is the limit beyond which the number of misclassified faces decreases less
than the number of usable faces.

A very important conclusion from the experiments is that skin segmentation
indeed has a strong (positive) impact on recognition performances. The actual
improvement was evaluated by repeating each experiment without using the
outlier components in the non-skin mask. That means in this setting candidate
points were only rejected as indicated by the Morphable Model prediction of
eyes, eyebrows, nostrils and lips. Indirectly the omitted outlier segments also
influenced the saliency computations (unmasked outliers affect the neighbor-
hood sample noise and thereby ¢, see Equation 6.1). Wherever a gallery/probe
constellation included a constraint by a minimum saliency, the correspond-
ing subset of faces was determined under standard conditions (i.e., using the
moles obtained with skin segmentation) and reused in the experiments without
skin segmentation. For the application on a frontal gallery and three different
saliency thresholds a comparison of Table 6.1 versus Table 6.2 shows that skin
segmentation can lead to performance boosts of over 25%. For unconstrained
sets and non-frontals galleries (Table 6.3) the improvement is less pronounced
but nonetheless significant.

6.2 Outlier Masking for 3DMM Fitting

As explained earlier in Section 4.1.1, a 3DMM reconstruction can be corrupted
by the presence of unexpected respectively unrepresented features in the input
face, such as large hair patches or other occluding objects. Since the fitting
procedure attempts to adjust the globally acting model parameters in order to
also capture such outliers, the overall quality of the fit suffers. This affects shape
(visible as misalignment of facial features and contours) as well as texture (lead-
ing to noisy/blotchy skin areas and strong visible seams between a rendered
reconstruction and the input image). We believe that the lack of proper out-
lier handling is the greatest weakness of the original 3DMM approach. As a
workaround, this section presents a simple and robust method to “hide” prob-
lematic areas from the fitting algorithm, based on our previous skin segmenta-
tion results.

6.2.1 Selective Fitting

Let us assume for the moment, that the locations of facial outliers in the image
are already known and provided as binary image £2,,,;(x, y), which indicates by
the values 1 or O for each pixel, whether it should be considered in the 3DMM
reconstruction or not. In order to confine the reconstruction to certain image
areas, it is necessary to alter the fitting algorithm. A minimally invasive way to
do this, is to replace the image dependent part E; of the cost function (2.26)
with a new term

1 2
EI,Qom =3 Z (1 - ‘Qoutl(x; .Y)) (Ik,input(x’ y) - Il,model(xa }’)) . (65)
o1 X, YA
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Image + outlier mask 2,4 Conventional fitting Selective fitting

Figure 6.6: Example for quality improvement by selective fitting. The left column
shows the input face and a manually defined outlier mask. The center and right
column show the 3DMM reconstruction obtained conventionally (without masking)
respectively through selective fitting with the depicted 2.

That means we simply suppress the contribution of matching errors in masked
regions. This approach is consistent with the optimization scheme. Recall, that
minimization is performed by a stochastic version of Newton’s method which
evaluates the derivatives of the cost function only for a very small number of
randomly selected points in each iteration. If any of these points is marked
in the outlier mask (2,,; our modified implementation sets the corresponding
gradients to zero, thus effectively eliminating their influence on the param-
eter update. With a well defined outlier mask this method can lead to dra-
matic improvements in fitting quality. Figure 6.6 compares a fitting result from
the original algorithm with one obtained by selective fitting with manually
generated 2,,;. Note, that the overall texture appearance is much smoother
and more realistic. Moreover the average reconstruction error (I, (x,y) —
Iodel(X, ¥))? within the unmasked region is considerably smaller (drop from
0.0239 to 0.0058 gray scale units, i.e. difference factor of 4).
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B i P -

(a) Coarse fit (b) Skin + organs (c) Selective fit (d) Conventional fit

Figure 6.7: Three stages are involved in fitting faces without influence of outliers.
A coarse fit (a) is used to estimate locations of facial organs and seeds for skin
segmentation (b). All remaining pixels are assumed outliers. A second complete
run of the selective fitting algorithm yields the improved result (c). For comparison
(d) also shows results obtained without outlier masking.

6.2.2 Automatic Outlier Mask Generation

The question remains: how do we generate outlier masks automatically? The
idea is of course to derive them from our skin segmentation solution based on
GrabCut. So far we are only able to provide a “negative” mask, specifying which
pixels are definitely not outliers. By design it does not include eyes, eyebrows,
nostrils and lips. For the current application this is too restrictive. These features
are crucial for a realistic 3DMM reconstruction, especially when is it supposed
to represent the identity of the input face !, and therefore have to be visible
to the fitting algorithm. The easiest way to accomplish that is to render the
corresponding (preselected and fixed) set of vertices from the 3DMM reference
frame into the image domain and then simply merge the resulting mask with
the skin segments.

The attentive reader should have noticed by now that our masking approach
seems to conflict with the aim of this section: We want to fit a face using an out-
lier mask which is to be derived from a skin segmentation and projected facial
features which in turn both rely on an existing Morphable Model reconstruc-
tion. Currently the only way to cope with this dilemma is to fit the model twice.
In a first run we compute only a coarse reconstruction. That means the fitting
process is stopped before entering the last phase of iterations in which the indi-
vidual segments are optimized. This takes about 50-60% less time than a full re-

! That is exactly why the 3DMM fitting concentrates in its last phase on these areas by adapting
shape and texture individually for eyes, nose and mouth.
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construction. A coarsely fitted model already captures many of the face’s global
attributes. In particular it provides quite good estimates for the head’s pose
and overall shape so that it is appropriate to derive the seed (£2,,.4) and support
(£2,,,,) regions, as required by GrabCut, from such a result. On a pixel/vertex
level, a coarse reconstruction is usually still inaccurate. Hence, projected fea-
ture locations can be seen only as rough estimates. We compensate for the
uncertainty by enlarging (morphological dilatation) the facial organs mask by a
small empirically determined amount. After the skin segments and outlier mask
have been computed, a second complete run of the fitting procedure then yields
the final and improved 3D reconstruction. These three stages are displayed in
Figure 6.7.

6.2.3 Alpha Matting for Outliers

An outlier mask (more precisely its inverse) combined from skin and organ
segments cannot be expected to be very accurate, due to the following sources
of errors:

e The conservative segmentation policy of our GrabCut implementation pri-
oritizes correct foreground over false background assignments (for exam-
ple strongly shaded skin regions are often not classified as such).

e The dense correspondence established by a coarse fitting is still incorrect.
As result the projected feature locations may be off by several pixels.

e The dilatation heuristic used to overcome bad correspondence may cover
too few or too many pixels. In the latter case it would even override
the outlier labeling from the skin segments, because both “opinions” are
simply merged by an or operation.

As far as the 3DMM fitting is concerned these are minor flaws. For a good
reconstruction it only counts that we ruled out the majority of outliers. The
fitting algorithm respectively the holistic model representation are then robust
against a small number of potentially remaining misclassified pixels.

Basically this means our initial task is solved. However, the now achievable
high quality results implicate a novel problem. Let’s assume a reconstructed
face model is to be used in a graphical application that needs to replace the
input face with a synthesized version while keeping the original image context
like background, hair and clothing intact. There are several such tasks, e.g.
facial manipulation for psychological experiments or pose normalization (see
also 6.3), which demand for a realistic composite of the two sources. Realistic
here means that a human observer should not be able to notice the artificial
nature of the manipulation or even of the synthesis. The last image in Figure
6.6 demonstrates that in the presence of facial occlusions (which are the main
cause for outliers) a rendered 3DMM reconstruction will no longer “blend in”,
simply by pasting it over the image. Instead we ask for a seamless fusion by
means of the compositing equation and an appropriate matte.
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The aim to find a matte which blends between the face (object/foreground)
and the outliers (background) is very similar to the initial masking problem.
Actually a soft segmentation has richer information and it can be always turned
into a binary outlier mask by thresholding. The converse way is also possible but
requires more effort as we explain below. Note that the previously introduced
outlier mask cannot be used directly as the a-channel. Because of its binary
state and the inherent inaccuracies, it produces visible seams to which human
observers are very sensitive.

We employ the Spectral Matting method to generate an outlier matte. For
the current purpose it suffices to compute a solution only within the support
25, Of the 3DMM reconstruction. Beyond that occlusions are undefined. The
results are governed by the following inputs.

e Parameters In our implementation the only free parameter is the number
K of matting components to use. It should amount at least to the number of
independent (in terms of appearance) object units. A higher value produces
an over segmentation which then gives the algorithm more freedom in the
grouping phase. Above a certain number the results are no longer sensitive
to this parameter. To be on the safe side we set K = 40.

e Image data The matte has to discriminate between skin and outliers just
like the skin segmentation. It is therefore reasonable to assume that the algo-
rithm should yield better results if provided with the same input as GrabCut,
instead of the original image. This was confirmed by many tests. We still
introduce two small enhancements specifically for this task. First, the error
which represents texture similarity (4.2) is split into accumulated positive and
negative components analogous to (4.7) and (4.8). The positive component
is discarded while its complementary part constitutes a sharpened version
of texture similarity. By replacing E fs (R (1)) with this input we achieve better
reproduction of fine details in the resulting matte. Furthermore, we add a sec-
ond feature channel that holds texture similarity values (again the sharpened
version), computed directly on the original image. Thereby we integrate in-
formation on regions which differ from the skin seeds primarily by gray level
(e.g. this would emphasize patches of dark hair with no apparent texture,
see also Section 4.2.2.2). A combined input of these two image features has
proven to deliver very good matting results.

e Constraints The key ingredients for a usable a-matte are the right con-
straints. In this application the same problem occurs as during skin segmen-
tation: Somewhat reliable seeds are only available for the foreground region.
These are the skin mask and with less confidence the facial organs mask. We
have no solid indicators for any outlier region whatsoever. Our solution is
also comparable to the approach GrabCut takes. We use the automatically
computed binary outlier mask as marker for foreground and simply assign
its complement to the background constraint. Hence, the constraints cover
the entire domain. Still, as detailed in Section 5.4, Spectral Matting will be
able to derive a valid and meaningful matte thanks to the employed grouping
technique.
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Figures 6.8 and 6.9 display matting results on gray scale and on color images.
The first and second column show several faces with various overlapping hair
styles and their respective outlier matte. The third column presents the final
composite of original image and 3DMM reconstruction which was computed
via selective fitting with an outlier mask derived directly from the matte (by
thresholding at a fixed value of 0.75). In the fourth column a conventional fit-
ting result is shown. By means of the features we supply, the matting process
handles monochrome and color images identically. Therefore, the results ex-
hibit no significant differences in quality. The only place in our implementation
where color has an influence is the skin segmentation with GrabCut, to which
the color channels and the El‘s(R’(I )) image are simply presented as combined
input. This sometimes helps to better discriminate skin from occluding areas
without distinctive texture.

6.3 Face Exchange

The term Face Exchange [ ] designates a group of image manipulation
tasks which involve the transfer of faces or some of their attributes between two
arbitrary images. Besides the objective of the exchange itself the main attention
lies usually on obtaining photo realistic results. With traditional tools for image
editing such a process is limited to sources with nearly identical viewpoints
and illumination conditions. But even then the retouch of details like tonal
balance and changing occlusions remains time consuming work. With aid of
the 3D Morphable Model it is possible to acquire higher-level knowledge on
a scene’s content, specifically on illumination, pose and unseen facial regions,
which facilitates the automatized transfer of faces. Despite this potential, until
now all applications that used the 3DMM capabilities for face exchange had to
revert to manual input to fix problems with hair and other outliers. Thanks to
the skin segmentation and the derived outlier matte we are, for the first time,
able to implement the process completely off-line.

6.3.1 Overview

Three applications have been reported, that implement variants of face ex-
change by means of the 3DMM.

In-place Morphs Shape and texture features of a 3DMM reconstruction can
be used to control the appearance of a face in terms of specific descriptive at-
tributes. This is done by interpreting the PCA coefficients as point and the at-
tribute as direction in the face space spanned by the model’s 200 training sam-
ples. A linear morph then moves the point along the given direction to obtain
the desired change. For example, a morph of a face along the line that connects
it with the model’s mean face in the direction pointing away from the mean, em-
phasizes individually characteristic features without changing the face’s identity,
thereby creating a caricature. Other possible directions encode race, age or gen-
der transformations. The latter has been used to create subtle more masculine



98 CHAPTER 6. APPLICATIONS

Input Outlier matte Composite Conventional fit

L

¥
¢

“

.

Figure 6.8: Results for the outlier matting problem. The columns from left to right
display: 1) input image, 2) outlier matte derived from a coarse fit of the input, 3)
composite of input image and a 3DMM reconstruction generated by selective fitting
(with outlier mask converted from the matte), 4) conventionally reconstructed face
model overlaid on input image.
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Input Outlier matte Composite Conventional fit

Figure 6.9: Results for outlier matting problem on color images. The denotation of
the columns is equal to Figure 6.8.



100 CHAPTER 6. APPLICATIONS

and feminine variations of a face to serve as stimuli in psychological experi-
ments. Their aim was to determine the influence of gender-specific features on
the assessment of applicants. Generating the modified images for the experi-
ments involved considerable human supervision and a specialized software to
hide artefacts introduced by the manipulation.

Pose Normalization Most face recognition systems are designed to process
frontal views of faces and their performance drops significantly if the faces are
rotated. In the Face Recognition Vendor Test (FRTV2002) this issue was ad-
dressed in an unconventional way by investigating whether a pre-processing
step which normalizes the pose [ ] could improve the results. Normaliza-
tion is performed by fitting the non-frontal face with the Morphable Model, so
that the 3D structure is recovered and hidden areas can be completed by the
model’s estimate. Then an image with a frontal view of the reconstruction is
synthesized. In the FRTV2002 experiments a standard frontal face image of one
person was selected as target. The 3D faces were rendered to this image using
its pose, scale and illumination parameters (these were determined by fitting
the target face). Finally the target’s hair layer was superimposed. The normal-
ization technique proved to be very effective. Provided with the pre-processed
faces of 87 individuals, nine out of ten of tested systems showed increased per-
formances compared to unprocessed inputs.

Virtual Hairstyle A generalized notion of pose normalization also supports
target images with arbitrarily oriented faces. The transfer procedure is identi-
cal: the target image must be fitted to obtain the scene’s rendering parameters,
the source face to be moved is fitted to recover shape and texture and then ren-
dered into the target scene. However, additional measures have to be adopted
to deal with occlusions on both faces and with “uncovered” regions in the tar-
get. Blanz et al. [ ] proposed such a system to implement virtual try-on
for hairstyles. While they used the 3DMM to automatically conduct the face
transfer, the actual novelty of creating convincing composites of hair and face
relied on manual segmentation.

No matter what the purpose of a manipulation is, all applications are con-
fronted with artefacts that are introduced by pasting a face (i.e. its rendered
reconstruction) into a foreign image (or in the originating image). The follow-
ing list gives an overview of the related problems.

e Facial occlusions are the prime cause for corruptions in face exchange
results. We must distinguish between those occurring in the source and in
the target face. An occlusion (e.g. a patch of clothing) of the source face is
unwanted information and needs only to be concealed so that it does not
impair the 3DMM reconstruction. The same holds, if the extracted texture
of the source is to be used. Ideally, the source should always provide a
“clean” face model. In contrast, an occlusion in the target image usually
represents important contextual information. While it might be necessary
to hide such areas from the fitting which determined the target’s scene
parameters, the main concern is to preserve the respective areas during
the transfer. This is more difficult than the masking problem, as it requires
higher precision and might involve a soft segmentation step with little or
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no prior knowledge on the nature of the occlusion.

e If the novel face is smaller or has a considerably different shape than the
target face, the synthesized replacement layer might leave some parts of
the original face uncovered. This results in double contours.

e Visible seams may appear between the target image and the mesh bound-
aries of the pasted source face, since the domain of the Morphable Model
only reaches until the forehead and about over half of the neck. Usually
the seams are caused by mismatching textures (e.g. smooth skin combined
with skin that has freckles or wrinkles) or by discrepancies in the illumi-
nation. The latter are a consequence of employing in the 3DMM the rel-
atively simple Phong model which can only coarsely approximate many
real world lighting conditions and material properties, in particular that
of skin. In addition, differences of lower level image characteristics such
as the noise print can be perceived.

6.3.2 Counteracting Artefacts

This section is concerned with fully automatized measures that prevent or at
least extenuate the above mentioned artefacts. Essentially we have to reproduce
the actions a human user would undertake to manipulate critical areas with
image editing software. For that task we can only resort to the “knowledge” of
the face models and the computed segmentations.

6.3.2.1 Seamless Blending

Visible seams on mesh boundaries can be effectively suppressed by blending
the synthesized source face and the target image with a so-called feather mask.
Similar to a matte, this is an a-channel to be used for compositing (5.1). It
represents a linear transition over a fixed distance (feather radius) ranging from
transparent on the edge to fully opaque on the interior of the foreground object
(here the source face). The feather mask for neck and forehead boundaries was
defined once for all in the 3DMM reference frame. For a specific face exchange
it is then projected with the source face’s shape into the target image. In that
way the actual width of the transition area can vary and is always proportional
to the face’s size. The used mask and the attained blending are displayed in
Figure 6.10.

6.3.2.2 Shape Scale Adjustment

To compensate for differences in overall shape and size, we slightly adjust the
source shape by a global translation and scaling operation in the 3DMM canon-
ical coordinate system. Let S,(i) and T, (i) (A = x,y,2) denote the i™ vertex’
coordinate of source respectively target shape. The approach is to find, for each
axis independently, scalar parameters a and b such that the transformed source
shape S’ meets the conditions:

Sj=a-S,()+b st. §,=T, and |s}|=]T,]- 6.6
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Feather mask Feather mask
in reference frame projected to target Without blending With blending
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Figure 6.10: lllustration of the feather mask used to seamlessly blending the fore-
head and neck region of the source face into the target image.

Le. we want the source shape to have the same mean and magnitude as the
target face before it is processed in the rendering pipeline with the target’s scene
parameters. The solution to (6.6) is determined by a simple quadratic equation.
Since the transformation is not necessarily isotropic, it can, for example, adjust
a round face to better match an oval shaped face in order to reduce the risk of
double contours in the chin region. This is shown in Figure 6.11.

Target face and source contour Target face and source contour
Source face without shape adjustment with shape adjustment

Figure 6.11: A simple shape adjustment can help to prevent double contours dur-
ing face exchange. Without this procedure the chin contours of the pasted source
(left) and the rather longish target face don’t match (center). With the adjustment
the pasted face will cover the target’s original contours (right).

6.3.2.3 Facial Occlusions

In all documented face exchange applications occlusions of the target face need
only to be preserved within the support of 3DMM reconstructions, i.e. in the area
which is actually overwritten by the source face. The solution to this problem is
already given by the outlier matte (Section 6.2.3), which we compute anyway in
order to derive outlier masks and thus avoid corrupted fitting results. The face
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exchange is then realized as a composite of the source face as background and
the foreground, reconstructed from the matte and the target image as explained
in Section 5.5.

For the source image the respective outlier matte is equally helpful in hid-
ing occlusions, not only from the fitting algorithm but also in the extracted
texture. Since texture extraction simply maps to each visible triangle of the re-
constructed mesh the underlying portion of the input image, outliers are always
extracted, even if they were masked from the fitting algorithm. We did not mod-
ify the responsible code in the course of implementing selective fitting because
this behaviour is sometimes desired. Instead, we fix the texture retroactively.
For this purpose the extraction procedure is also applied to the matte. In the
3DMM reference frame the result is then converted to a binary mask that indi-
cates which parts of the extracted texture are invalid and should be replaced by
the estimated texture from the 3DMM reconstruction. A smooth blending be-
tween the valid and the replaced region prevents artificial seams. This approach
is ultimately only an extension of the default handling for invisible facial areas
which are also replenished from the Morphable Model. An example for the
technique, and the impact it has on the final exchange result, is shown in Figure
6.12.

Extracted texture ~ Extracted texture,  Face exchange, =~ Face exchange,
Source face with outliers outliers replaced  default extr. tex. ~ Purged extr. tex.

Figure 6.12: Example for the use of an outlier matte to conceal facial occlusions
in the extracted texture of a 3DMM reconstruction. The conventionally extracted
texture of the depicted source face takes over all outliers. The matte, mapped to
the reference frame, indicates which areas should be replaced (displayed trans-
parent) by the model’s estimate. While the unmodified extracted texture used in a
face exchange will most likely yield unrealistic results, the purged texture can be
combined with any target face and context.

6.3.2.4 Background Restoration

Another occlusion related issue emerges if and where the pasted source face
is smaller than the target face, which causes the corresponding areas in the
original image to “peek through”. This leads to distracting double contours.
Using the 3DMM reconstructions of both faces, the extent of the uncovered
region can be measured as the set difference between pixels in the model’s
support of target face and replacement face 2. Actually not all image parts in

2 Of course this depends very much on a precise 3DMM estimate of the target’s shape. If the
contours of the reconstruction do not match the true facial contours, the determined region will be
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(a) Restoration task (b) Attempt with blending (¢) Mirroring method (d) Elastic method

Figure 6.13: Comparison of methods to deal with uncovered original facial areas
in a face exchange. The problematic area is located between the outlines of source
(green) and target (red), (a). Conventional blending (b) can only conceal the inner
contour which impairs the characteristic appearance of the source face. The mirror-
ing method (c) sometimes produces very disturbing artefacts at contour endpoints
or mis-aligned 3DMM model contours. Our approach overcomes these flaws at the
cost of modifying the background image in a wider area (d).

this set are critical. The shape boundaries of forehead and neck (which do
not constitute contours) are artificial and it can be safely assumed that the real
face/head of the source extends beyond these limits. It is therefore not harmful
if these boundaries lie somewhere within the target’s support, since this simply
means that the target image delivers the natural continuation of the pasted
face/head. Here only a blending (see above) is required to compensate for
seams due to surface discrepancies (skin texture, surface normals, etc.). For
the truly problematic region, located within the target’s support but outside
the source face’s contour (Figure 6.13(a)), blending can only help to reduce
or eliminate the visible discontinuity if it hides the source’s contour, see Figure
6.13(b). The consequence would be that the resulting image does not correctly
reflect the characteristic shape of the novel face. Clearly this contradicts the aim
of face exchange. Instead the problem is dealt with by extending the target’s
background in a mostly texture preserving fashion into the relevant areas.

Given the target face contours, a straight-forward technique for background
restoration reflects pixels from the region outside the face along its boundary to
the inside by means of a smooth warp field [BBVPO3]. Let d(x,y) denote the
distance of all pixels to the closest point on the contour. Then the normalized
gradient g of this distance map is orthogonal to the contour and defines the
reflection direction. For each pixel in the uncovered region the warp is com-
puted as A(x,y) = —2d(x,y)-g(x,y). In many situations, in particular if the
background is relatively unstructured, this method works very well. However,
there are some notorious conditions where the method introduces further arte-
facts. Figure 6.13(c) shows such an example. Two problems are noticeable: 1)
Although the crossover from background to mirrored content is continuous, a
seam appears if the texture on either side has a predominant orientation which
does not coincide with the reflection direction (i.e. not continuous in gradient
domain). 2) The critical area is defined through contours. At intersection points
to shape boundaries the warp field therefore abruptly ends which can lead to

misaligned and our corrective measures operate in the wrong place.
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Figure 6.14: Visualization of our “elastic” background restoration method. The
area between the inner contour of the source face (green line) and an outer con-
tour of the target face (red line) must be covered by content from the target image
background (checker pattern). The left image displays the downscaled warp field
(backwards warp) and the right image the resulting effect on the background.

sharp cuts between prior and replaced content. A continuation along the entire
target shape boundary is no option. Amongst other reasons, the location of the
hair line is unpredictable which could cause verbatim inwardly shaded copies
to be used.

We invented an alternative technique which solves both issues by renouncing
the properties that texture should be replicated exactly and that the image out-
side the problematic area is not modified. Our method also employs a smooth
image warp. The idea is to treat the background image as an elastic cloth (with
the image/texture overlaid) which is pulled into the uncovered region. In order
to adapt to the new shape the material has then to stretch within a certain ra-
dius of the pulling force. This results in a continuous and smooth displacement
of the image content. The whole process is simulated heuristically without the
need for complex physical models.

Initially the (backwards) warp is defined only for pixels within the fill re-
gion. The direction is computed as gradient in the distance map from the inner
(i.e. the source’s) contour. The length is computed as the distance between the
two closest points of either contour (inner and outer) to the current pixel. In
that way we adapt the warp magnitude and accordingly the subsequently intro-
duced image distortion to be proportional to the width of the uncovered region.
In this state the warp would fill the uncovered region but also produce hard
seams at the outer contour like the mirror method. A second stage of the algo-
rithm simulates the elastic stretch by iteratively propagating the field outward.
The propagation front is determined as the outer perimeter of the currently de-
fined warp field. For each pixel in the front we compute a weighted (Gaussian
kernel) average of the available vectors within a 5 x 5 window and scale the
resulting warp vector with a constant smaller than one (here 0.9). This factor
represents the material’s elasticity: the lower it is, the faster the field will dissi-
pate. Eventually the magnitude of the warp vectors becomes too small to have
an effect, and the iteration stops. The method is visualized in Figure 6.14.
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By design our technique prevents any hard edges in the warped image. An-
other advantage is that it is robust against mis-located contours. As one can
see in Figure 6.13(a) the true facial contour on the lower right cheek is slightly
outside the model’s prediction. With mirroring this part remains in its original
position and is even emphasized. Our method, instead, pulls the entire contour
towards the face (i.e. under the pasted source face) and thereby out of sight,
Figure 6.13(d). The drawback is that this manipulation is invasive in the sense
that it also changes the target image outside of the necessary region. The visible
effects are blurring and distortion of linear structures.

6.3.3 Workflow & Results

With the presented counter measures it suffices to establish one fixed sequence
of operations to implement all of the mentioned face exchange applications.
The inputs are the fitting results and original images of source and target face.
We assume here, that the reconstructions are computed through the three-stage
process (see Section 6.2.2): coarse fit, skin segmentation and outlier matting,
selective fit. Starting from this point a face exchange is generated in the follow-
ing order.

1. Occlusions (outliers) in the source’s extracted texture are removed by
means of the respective outlier matte. Since selective fitting usually pro-
vides good quality reconstructions, also in the texture, the use of the ex-
tracted texture is optional.

2. If the application involves a specific face manipulation, e.g. gender trans-
form, it is performed.

3. The source face’s scale is adjusted globally to improve the overall match
of support and contours between both faces.

4. Exposed areas of the original face are filled in by our elastic background
restoration method. We reduce the impact of the manipulation on non-
critical parts of the target’s image by limiting it to areas in the proximity of
a visible source contour. The visibility in turn is defined by the matte. That
means, even if the facial contours predict that parts of the overwritten
target face will be uncovered, this “opinion” can be overridden if the matte
indicates that the respective area is actually occluded. The result replaces
the prior target image in all subsequent steps.

5. The source face is rendered with the target’s pose and illumination param-
eters into the target domain as separate layer B.

6. Based on the matte, a compositing foreground F is reconstructed from
the target image. Then the original occlusions are restored by creating
the face exchange composite with the matte, F and B.

7. Using a feather mask for forehead and neck the composite is smoothly
blended into the target image. In occluded regions (i.e. high a values) the
composite is nearly identical to F so that the effect of the blending is only
visible in non-occluded skin parts of the source face.

In Figure 6.15 we show the individual image components which participate in
the final composition steps. Figures 6.16 and 6.17 display several face exchange
results for different poses (also across source and target), lighting and color
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(b) Target Matte — a (c) Reconst. Backg. — F

AW

(d) Source Face — B (e) Occl. Layer — aF

/

(f) Fm%l Composite‘
aF+(1—a)B

Figure 6.15: Display of the image components involved the three final steps of the
face exchange workflow.

conditions and a variety of facial occlusions by hair and clothing. In all images
we used the source’s extracted texture (with substituted outliers).

Besides certain technical details of how artefacts are resolved, there is a
conceptual difference in the way we address face exchange, compared to the
“virtual hairstyle” approach of Blanz et al. [BSVS04].

In their method three layers are distinguished: the background (with ap-
plied restoration), the intermediate novel face and the top occlusion layer. This
notion of scene composition is physically plausible but can also be tricky to han-
dle correctly. There are situations when parts of the novel face model must not
overwrite the background image in order to give satisfactory results. Examples
can be seen in Figure 6.9 (page 99) on the first and second last row in the 4™
column (even though the images do not show actual face exchanges the effects
are the same). In both cases the synthesized neck significantly protrudes the tar-
get’s skin region. Blending does usually not hide this problem entirely. Instead,
the affected region in the target image should be included in the occlusion layer,
although it belongs in fact to the scene background. Apparently the method of
[BSVS04] delegates this responsibility to the human user and manual editing.

In our approach the outlier matte provides exactly the missing information,
as it realizes a soft segmentation from skin to any other region, including the
image background. Formally, matte and blending mask are defined with respect
to the same foreground channel and therefore can be multiplied to combine
both effects in one compositing step. All together that means, we only have to
deal with two layers: the novel face below and the target image on top with a
combined a-channel that defines which areas of the novel face show through.
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Figure 6.16: Automatically computed face exchange results for male subjects.
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Figure 6.17: Automatically computed face exchange results for female subjects.
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Chapter 7

Conclusion

This thesis presented novel techniques to automatically compute segmentations
of face images into areas composed of either skin or of facial organs and extrin-
sic parts. As a link between pixel-level detail information and high-level object
description, these segmentations were devised to provide valuable guidance to
enhance existing face processing algorithms as well as to help establish com-
pletely new approaches for face analysis. We demonstrated the practical impact
of our results on the basis of three applications. In conjunction with the 3D
Morphable Model, the non-skin segments served as main component to create
outlier maps. Combined with a modification of the 3DMM fitting algorithm,
that we introduced, these maps were used to significantly improve the visual
quality of 3DMM reconstructions in the presence of outliers. This capability
was reapplied and extended for the Face Exchange scenario. In order to mix
hairstyle or other occlusions from the image context of one person with the face
of another person, a proper blending, based on the occluding segments, was
computed with the aid of a general purpose matting algorithm. The key benefit
was here, that our segmentation could act as substitute for user supervision to
this algorithm. Together with the improved 3DMM reconstructions, this method
represents a substantial contribution to Face Exchange applications, because it
allows, for the first time, to perform this type of manipulation automatically, for
a large variety of face images, and without qualitative losses. Our third accom-
plishment is a novel approach to face recognition. The idea was, to exploit the
distribution of local skin irregularities across a face as personal features. For
this purpose, we developed a framework for mole detection and validation, in
which the segmentation of skin regions constituted an essential step, to sup-
press false positives. We evaluated the discriminative power of the mole-based
features by conducting identification experiments across pose and illumination
on a subset of the FERET face database, containing 194 individuals. The results
confirmed that it is possible to determine a person’s identity, based on only a
few well-chosen pixels, provided that the face exhibits sufficiently prominent
moles.

As stated earlier, the skin segmentation procedure and subsequent applica-
tions rely on prior knowledge of facial structure, that is incorporated through
the 3DMM. In connection with these hints we have to consider certain technical
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and methodical restrictions. An important piece of structural information is the
model’s support region £2,,,. It is used in GrabCut, to ensure that the statistics
for skin and non-skin models are not influenced by unrelated and unpredictable
image areas, like the background. The downside of this dependency is, that all
results are also confined to the model’s domain. Currently we cannot offer a
generally reliable strategy to extend the segmentation beyond these borders (at
least not without resorting to user input), which means that the field of further
application is rather limited.

Another element of prior knowledge, that we employ, is £2;,. The skin seeds
play a central role in the derivation of our texture features and in the initializa-
tion of the hard segmentation techniques. Strictly speaking, they are the key
to automation. Their size and location on the cheeks was manually selected,
with regard to our target applications, such that, in the majority of faces, they
would not be corrupted by the anticipated outliers. In other problem settings,
alternative selection schemes may be more appropriate. As an example, let us
consider a subset of the AR face database [ 1 which is often used as bench-
mark for face recognition under occlusion. It contains disguised face images,
wearing either dark sunglasses (e.g. page 69, Figure 4.15, 3" image) or scarfs
that cover the lower half of the face. In order to prevent overlap with these
outliers, in addition to hair etc., the seeds would have to be chosen adaptively.
One way to tackle this problem could be to define a larger number of small can-
didate cells, similar to an over-segmentation, in typical skin regions (including
chin and forehead). A certain number or percentage of individual cells could
then be selected according to a best-match criterion, based on skin related im-
age properties, such as smoothness, within the cells’ support. Also cell selection
itself could be approached as an unsupervised binary segmentation task, with a
graph based formulation.

The third 3DMM hint is the facial organs mask. It is utilized during outlier
masking, to reinstate the represented areas as accepted facial “inliers”, before
the image and the segmentation are further processed, either by fitting or by
matting. Since we know that the organs mask is inaccurate, this can be prob-
lematic. For example, compare the segmentation of the second face in Figure
4.15 with its corresponding matting result in Figure 6.9 (page 99): GrabCut
managed to extract the detailed structure of the eyebrows and glasses, but the
mask then canceled out some of this information, so that the matting algorithm
perceived the whole area as belonging to the face. Conversely, if the prediction
of the organs covers too few (or even none) of the actual associated pixels, the
resulting matte in these areas will be incomplete. This in turn can impair a face
exchange, because the affected part in the target face is not overwritten by the
source face. In practice, these effects only occur infrequently. Still, the concept,
that inaccurate model predictions are used to override potentially pixel-precise
segmentations, remains unsatisfactory.

The same problem can be interpreted from a different perspective. Within
the set of non-skin components we would like to further identify which pix-
els originate from facial organs and label them accordingly. This knowledge
would bring us closer to a complete semantic decomposition of a face and in
particular circumvent the aforementioned drawbacks. In order to discriminate
between true outliers and organs, we believe, that a model-based segmentation
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step should be adopted, which is more flexible than the 3DMM and takes shape
constraints into account. Under such premises, a popular choice would be an
Active Shape Model (ASM) [ 1. The implementation could be accommo-
dated to our setting as follows:

e Sample shapes of the facial organs are extracted from the 3DMM training
data, projected (via 3DMM reconstruction) into the current image, and
used to learn the Point Distribution Model (PDM). This avoids manual
labeling and definition of correspondence for the training points.

e For the ASM fitting, the initial shape points can be taken from the 3DMM
reconstruction of the current face. Here, wrong locations are not critical,
since the fitting adapts scale and translation independently of the shape.
This facilitates automatic initialization.

e The statistical model of image appearance around each model point is re-
placed with a constant target profile in normal direction, which matches
image edges with specific gradient sign (e.g. dark inside the shape and
bright on the outside). Accordingly, instead of the original face photo-
graph, the illumination compensated image R (I) or even the segmenta-
tion (i.e. its binary image) are used to fit the model. This forces the shapes
to adapt to the prominent edges in either image, but only within the limits
of the PDM constraints.

We successfully tested this idea for exact segmentation of eyebrows in frontal
images. However, further research and experimentation would be required to
make it applicable under non-frontal poses and to obtain reliable results for the
other facial parts.

Our mole-based recognition framework leaves room for improvements, as
well. In the current state it should only be taken as proof of concept because it
cannot perform in the same way as conventional methods. The critical issue is
the lack of a backup solution to support cases where no moles are present. In
practice it is clearly not an option to constrain a face database only to people
which have such prominent features. Hence, the true potential of our frame-
work lies in the fusion with a complementary method. In the simplest form
this could be setup as a cascade: The mole features would be used to narrow
down the number of candidate faces in the gallery, which is then processed by
a default face recognition routine. Basically, two criteria for pre-selection are
conceivable.

1. The probe face has salient moles. In this case all gallery faces are matched
against these features, and a certain percentage of best matches (i.e. low-
est ranks) is passed on to the second method. In this context it could be
beneficial to investigate other robust means of measuring the similarity
between two mole distributions, for instance by employing some form of
graph matching.

2. The probe face has no salient moles. Assuming that the detection accuracy
is high enough, it makes then sense to drop all gallery faces which do have
moles in the area corresponding to the visible parts of the probe face.

Faces with too many moles would have to be handled differently. ! With grow-
ing numbers (and denser arrangement), the assignment between two point sets

! For example, in the bb set from our experiments there are nine faces which exhibit more than
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with inherent uncertainty of correct localization becomes ambiguous. There-
fore, such faces in the gallery should always be presented to the default method,
independent of their status in the list of best matches. For probe faces with this
problem one should only resort to the backup solution. The outlined approach
would have the advantage of supporting collaboration with any conventional
face recognition technique. However, a real fusion, on the feature level or by
using a theoretically sound probabilistic formulation, is still out of reach.

The mole recognition framework is not the only contribution which could
qualify as an advancement in the field of face recognition. Compared to related
methods which address the outlier problematic, our outlier masking approach
has a conceptual advantage. The outcome is neither encoded on a feature level
nor does it adhere to a particular local partitioning. Instead, we simply provide
a comprehensive binary indicator image. This independence of a specialized
representation provides the opportunity to extend its application to face recog-
nition methods, other than the 3DMM. Given that an algorithm can be modified
to incorporate the outlier map, our hope would be that the additional informa-
tion helps to improve its recognition performance. It might even be possible to
establish outlier masking on a grand scale, as a general preprocessing step for
face recognition. Inspired by pose normalization, the idea would be, to synthe-
size a novel image of a face, in which all occluded areas have been replenished
with reasonable “face-like” content. This would have the benefit of being non-
intrusive.

10 moles of saliency sal. > 5, one face even counts 27 such moles. For lower thresholds it rises up
to 53. These are not false detections. The affected faces actually have conspicuous pigmentations,
e.g. strong freckles, which are partly responsible for the high false alarm rates in the corresponding
ROC:s (see Figure 6.5, page 91).
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