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Abstract. In this paper, we compute the essential dimension of the functor of cubics in three
variables up to linear changes of coordinates when the base field has characteristic different from

2 and 3. For this, we use canonical pencils of cubics, Galois descent techniques, and the basic

material on essential dimension developed in [BeF] which is based on Merkurjev’s notes [M].

§0 Introduction

Let C be a polynomial in n variables with coefficients in a ring or a field. A question one may
ask is whether it is possible, by linearly changing the variables, to drop some of its coefficients
or make it “nicer”. For instance, the quadratic polynomial X2 + bX + c can always be brought,
by a change of variables, to the form X2 +d as soon as one can divide by 2. Similarly the cubic
polynomial X3 + aX2 + bX + c can be reduced to X3 + dX + d when 1

3 makes sense. In both
cases one feels that “only one parameter is needed” to describe these polynomials. We shall
say in these cases that the essential dimension is 1.
Essential dimension makes precise the notion of “how many parameters are needed to describe
a given structure” in some general context. This was first introduced by Reichstein and Buhler
in [BR] and by Reichstein in [Re]. Later Merkurjev in [M] developed some general functorial
context for essential dimension. Since [M] is unpublished, we refer to [BeF] for all the generalities
on essential dimension.
The aim of this paper is to use some techniques, which can be found in [BeF], for the com-
putation of the essential dimension of the functor Cub3 of homogenous cubic polynomials in
three variables up to linear changes of coordinates. This functor associates to a field L the set
of equivalence classes of cubic curves in P2 defined over L, where two curves are considered
equivalent if they differ by a linear change of coordinates in P2(L).
We will show the following result:

Theorem. Let k be a field of characteristic different from 2 and 3. Then

edk(Cub3) = 3.

The proof of this result is based on the following geometric idea: informally speaking, defining
a non-singular cubic over a field L up to projective equivalence is equivalent to specifying (i) a
configuration of nine (unordered) flex points in P2(Ls) (where Ls is a separable closure of L)
and (ii) a value of the j-invariant. We show that these two choices are independent and that
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(i) requires two parameters. For this, we compute the essential dimension of the functor of
cubics with prescribed j-invariant and of the functor of cubics with prescribed flex points. The
advantage of this approach is that these two functors can be described as Galois cohomology
functors of some suitable algebraic groups; we then use crucially generically free representations
of these groups to compute their essential dimensions.
In §1, we introduce the basic material on essential dimension which will be needed in the sequel.
We then recall in §2 the basic definitions and classical results on cubics in 3 variables. In §3, we
state and prove a Galois descent lemma for functors, which generalize a little bit the classical
one, and apply it to classify pencils of cubics and cubics with prescribed j-invariant. Along
the way, we also compute the essential dimension of cubics in 2 variables. Finally, the two last
sections are devoted to the proof of the main result, by separate computations of the essential
dimension of the functors of singular and non-singular cubics.
We will assume that the reader is familiar with the theory of affine group schemes, and we will
refer to [KMRT] for all the basic material we could use on this topic.
The authors would thank warmly Philippe Chabloz, Manuel Ojanguren, Zinovy Reichstein and
Armin Rigo for helpful conversation. The first named author also gratefully acknowledges
support from the Swiss National Science Foundation, grant No 2100-065128.01/1. Finally the
authors would also thank the referee for his/her careful reading and constructive remarks, which
have permitted in particular to shorten considerably the proof of Proposition 4.2.

§1 Essential dimension of functors: some definitions and results

Let k be a field. We denote by Ck the category of field extensions of k, i.e. the category whose
objects are field extensions K over k and whose morphisms are field homomorphisms which fix
k. We write Fk for the category of all covariant functors from Ck to the category of sets. If F
is such a functor in Fk and K/k −→ L/k is a morphism in Ck, for every element a ∈ F(K/k)
its image under the map F(K/k) −→ F(L/k) will be denoted by aL. When no confusion is
possible, we will write F(K) instead of F(K/k).
By ks we will always mean a separable closure of k. If k has characteristic different from 3, we
will denote by ε ∈ ks a primitive third root of unity.

We recall the definition of the essential dimension of a functor F : Ck −→ Sets due to Merkurjev
as introduced in [M] and [BeF, Definition 1.2].

Definition 1.1. Let F be an object of Fk, K/k a field extension and a ∈ F(K). For n ∈ N,
we say that the essential dimension of a is ≤ n (and we write ed(a) ≤ n), if there exists a
subextension E/k of K/k such that :
i) trdeg(E : k) ≤ n,
ii) the element a is in the image of the map F(E) −→ F(K).
We say that ed(a) = n if ed(a) ≤ n and ed(a) 6≤ n − 1. The essential dimension of F is
the supremum of ed(a) for all a ∈ F(K) and for all K/k. The essential dimension of F will be
denoted by edk(F).

For a group scheme G of finite type over k the essential dimension of the Galois cohomology
functor H1(−, G) will be denoted by edk(G). This is the case of main interest in [BR],[Re],[M]
and [BeF] since many functors can be viewed as Galois cohomology functors.
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Let us recall some results proved in [BeF]:

For any field extension k′/k, any functor F : Ck −→ Sets gives rise to an element of Fk′ . We
denote by edk′(F) its essential dimension. It is easily checked that edk′(F) ≤ edk(F) holds.
We will often use this fact. For example to give lower bounds of the essential dimension of a
functor one can suppose k algebraically closed.

The following result will be useful for our purpose. It relates the essential dimension of an
algebraic group to that of a closed subgroup.

Proposition 1.2. Let G be an algebraic group defined over k, and let H be a closed subgroup.
Then

edk(H) + dim(H) ≤ edk(G) + dim(G).

Proof. See [Re],[M] or [BeF, Theorem 6.19].

We now recall some facts on free actions.

Let G be an algebraic group defined over k acting on a k-scheme X of finite type. We say that
G acts freely on X if for any k-algebra R the group G(R) acts freely on X(R), that is the
stabilizer of any element x ∈ X(R) under the action of G(R) is trivial.

Recall that, for an algebraic group G over k, the Lie algebra can be defined as the kernel of the
map G(k[τ ]) → G(k) where k[τ ] is the algebra k[t]/t2 and the map k[τ ] → k is given by τ 7→ 0.

For a point x of a scheme X its residue field will be denoted by k(x). The point x is then
viewed as an element of X(k(x)) = Hom(Spec(k(x)), X) and thus as an element of X(k(x)[τ ])
which we will denote by xk(x)[τ ].

Now consider the two following conditions:

(i) The group G(k̄) acts freely on X(k̄)

(i′) The group G(k̄) acts freely on X(k̄), and for any closed point x ∈ X, the Lie algebra
Lie(Gx) is trivial, where Gx denotes of the scheme-theoretic stabilizer of x.

By [DG], III, §2 Corollary 2.5 and Corollary 2.8, G acts freely on X if and only if (i) (resp.
(i′)) holds if char(k) = 0 (resp. char(k) 6= 0).

The second part of condition (i′) can be checked easily using the following description of Lie(Gx)
(see [DeGa], III, §2, proof of Prop. 2.6.): let k(x) be the residue field of x. Then we have

Lie(Gx) = {g ∈ Lie(G)⊗ k(x)[τ ] | g · xk(x)[τ ] = xk(x)[τ ]}.

We say that G acts generically freely on X if there exists a dense G-stable open subset of X on
which G acts freely.
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Proposition 1.3. Let G be an algebraic group over k acting linearly an generically freely on
an affine space A(V ). Then there exists a non-empty G-stable open subset U of A(V ) such that
the geometric quotient U/G exists and is a classifying scheme for H1(−, G). In particular, we
have

edk(G) ≤ dim(V )− dim(G).

Proof. See [BeF, Proposition 4.10] or [M].

Notice that, if k is an algebraically closed field of characteristic zero, the above proposition is
the original definition of Reichstein (see [Re, Definition 3.5]) and that Proposition 1.2 is a direct
consequence of that definition.

We now give an application of Proposition 1.3. Recall that a group scheme G is called étale if
G is finite and smooth.

Proposition 1.4. Let G be an étale subgroup of PGLn defined over k, and let G̃ be the inverse
image of G under the canonical projection π : GLn −→ PGLn. Then

edk(G̃) ≤ n− 1.

Proof. The inclusion G̃ ⊂ GLn induces a natural action of G̃ on An. The idea is to show that
this action is generically free. We will now go into the details.

By [BeF, Proposition 4.13], the group G acts generically freely on Pn−1. Let U be a G-stable
dense open subset of Pn−1 on which G acts freely. Let Ũ be the inverse image of U under the
quotient map An − {0} −→ Pn−1. Clearly this is a G̃-dense open subset of An. We now show
that G̃ acts freely on Ũ .

Let ũ ∈ Ũ(ks) and g̃ ∈ G̃(ks) such that g̃ ·ũ = ũ. Now let g = π(g̃) ∈ G(ks) and let u ∈ Pn−1(ks)
be the image of ũ under the quotient map. Then we have g · u = u, so g = 1 by assumption
on U and g̃ is then a scalar matrix, which is easily seen to be the identity using the relation
g̃ · ũ = ũ, so G̃(ks) acts freely on Ũ(ks).

We now have to check the condition on the Lie algebra. Recall that the Lie algebra of G̃ is the
Lie algebra of its connected component, which is Gm, so Lie(G̃) = k, where k is identified with
the subgroup of scalar matrices. It readily follows that condition (i′) above is satisfied.
Thus the action of G̃ on An

k satisfy the conditions of Proposition 1.3. Hence

ed(G̃) ≤ dim(An)− dim(G̃) = n− 1.
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§2 Some considerations on cubics

Warm up

Let k be a field and let d ≥ 2, n ≥ 1 be two integers. We consider Cd,n the functor of
nonzero homogeneous polynomials of degree d in n variables up to a scalar. Elements of Cd,n

are called degree d hypersurfaces in n variables. We will often use the same notation
for a hypersurface and its defining polynomial. We also will have to consider non-singular
hypersurfaces in the sequel. Let’s denote by C+

d,n (resp. C−
d,n) the functor of non-singular

(resp. singular) degree d hypersurfaces in n variables.

We want to discuss the following general question. Take C a degree d polynomial in n variables
and write it down C =

∑
ai1,... ,in

Xi1
1 · · ·Xin

n (where i1 + · · · + in = d) for some coefficients

ai1,... ,in
in a field extension of k. In general it has

(
d+n−1

n−1

)
coefficients. But as soon as

one makes a linear change of variables some of these coefficients may become algebraically
dependent. Hence we would like to know how many parameters are needed to describe the
hypersurface C as soon as we allow ourselves to change a little the equation defining it.

The group GLn acts on Cd,n as described above by linear change of variables. More precisely,
if C ∈ Cd,n(L) and ϕ ∈ GLn(L), define ϕ(C) to be the hypersurface defined by C ◦ ϕ. Since
scalar matrices do nothing on hypersurfaces this action induces an action of PGLn on Cd,n.
We shall say that two hypersurfaces are equivalent if they are in the same orbit under this
action.

We denote by Fd,n the functor of hypersurfaces up to this action, and sometimes by [C] the
class of C ∈ Cd,n(L). The action of GLn clearly restricts to C+

d,n and C−
d,n. We then denote

by F+
d,n the functor C+

d,n/GLn, and by F−d,n the functor C−
d,n/GLn. These are exactly the

functors we are interested in (at least for small values of d and n) since we would like to count
the minimal number of parameters needed to describe a degree d hypersurface up to a linear
change of variables. In other words we would like to compute its essential dimension. It is
shown in [BeF, Examples 1.20] that the following inequalities hold

m− n2 ≤ ed(Fd,n) ≤ m− 1

where m is the binomial coefficient
(

d+n−1
n−1

)
.

First of all remark that we have Fd,n = F+
d,n

∐
F−d,n and hence

edk(Fd,n) = max{ed(F+
d,n), edk(F−d,n)}

since the equality edk(F
∐

G) = max{edk(F), edk(G)} holds for two objects F,G of Fk (see
[BeF, Lemma 1.10]). We will thus treat singular hypersurfaces and non-singular ones separetely.

For d = 3, elements of Cd,n are called cubics, and the functor Fd,n (resp. F+
d,n, F−d,n) is simply

denoted by Cubn (resp. by Cub+
n , Cub−n ). Our aim is to compute edk(Cub3).
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Basic facts about cubics in three variables

From now on we will consider the case n = 3. Assume until the end of this section that
char(k) 6= 3.

For any field extension L/k and any λ ∈ L, let

Cλ = X3
1 + X3

2 + X3
3 − 3λX1X2X3.

We also define C∞ = X1X2X3. It is easy to see that Cλ for λ ∈ L is non-singular if and only
if λ is not a third root of unity.

We recall some well-known facts about cubics in 3 variables, which can be easily found in the
literature.

We begin with the following classical result:

Lemma 2.0. Assume that k = ks. Then every non-singular cubic C over k is equivalent to
some Cλ for some λ ∈ k.

For a non-singular cubic C with coefficients in a field L the j-invariant is well defined. We
denote it by j(C). This is a rational expression with coefficients in L of the coefficients of C.
It depends only on the equivalence class of the cubic and it is a non-constant invariant. One
possible way to define it is the following: let C be a non-singular cubic over L. By the previous
lemma, C is equivalent over Ls to some Cλ. Then we set j(C) = λ3(λ3+8)3

(λ3−1)3 . One can show that
this is in fact an element of L, which is well-defined and which only depends on [C].

We recall now the definition of a flex point. If C is a cubic polynomial in 3 variables with
coefficients in L, let HC = det

(
∂2C

∂Xi∂Xj

)
, the Hessian of C. This is again a cubic polynomial

with coefficients in L. A flex point of a given cubic C is a point P ∈ P2(Ls) which satisfies
C(P ) = HC(P ) = 0.

Any non-singular cubic of the form Cλ (and hence any non-singular cubic) has exactly nine flex
points.

We denote the flex points of Cλ by x00, . . . , x22. We then have

x00 = (0 : −1 : 1), x01 = (0 : −ε : 1), x02 = (0 : −ε2 : 1),

x10 = (1 : 0 : −1), x11 = (1 : 0 : −ε), x12 = (1 : 0 : −ε2),

x20 = (−1 : 1 : 0), x21 = (−ε : 1 : 0), x22 = (−ε2 : 1 : 0),

where ε denotes a primitive cubic root of unity.

If C = C1, Cε, Cε2 or C∞, then C consists in three distincts lines in P2(ks). We then get a
configuration of 9 points and 12 lines, each line passing exactly through 3 of these points.

We recall the definition of the Hessian group, which plays a crucial rule in our work.
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The Hessian group, that is denoted by G216 in [BK], and that we will denote here by G is
the group of elements of PGL3(ks) which preserves the configuration above. This group is
isomorphic to the group of special affinities SA2(F3), which is generated by the translations
of the plane F2

3 and the elements of SL2(F3). It has 216 elements and is isomorphic to the
semidirect product F2

3 n SL2(F3). The isomorphism in one direction is given as follows:

If g ∈ SA2(F3), then g induces a permutation σg of these nine points as follows:

If g(ā, b̄) = (c̄, d̄) (where a, b, c, d ∈ {0, 1, 2}), then set σg(xab) = xcd.

Computation then shows that there exists a unique element Mg ∈ PGL3(ks) which induces the
permutation σg on the points xab (the image of the point xab is computed by left multiplication
by xab, since we use the row convention).

The two translations T(20) and T(02) then correspond respectively to A and C, where

A =

 0 0 1
1 0 0
0 1 0

 and C =

 1 0 0
0 ε 0
0 0 ε2

 .

The three generators
(

1 0
1 1

)
,
(

0 1
−1 0

)
and

(
2 1
1 1

)
correspond to D,E and E′, where

D =

 1 0 0
0 ε 0
0 0 ε

 , E =

 1 1 1
1 ε ε2

1 ε2 ε

 and E′ =

 ε2 1 1
ε 1 ε
ε ε 1

 .

Notice that the set of generators for SA2(F3) in [BK] is not completely correct. Indeed, the
2-Sylow subgroup of G is the quaternion group, so it is generated by 2 elements of order 4,

but the element
(

2 0
0 2

)
, which corresponds to the class of B =

 1 0 0
0 0 1
0 1 0

 given in [BK] p. 297,

has order 2. Notice also that G is in fact a subgroup of PGL3(k(ε)).

Let us recall some results proved in [BK], p. 292–298:

Lemma 2.1. Assume that k = ks. Then:

1) Two cubics are equivalent if and only if they have same j-invariant.

2) Let λ ∈ k ∪ {∞}. For any ϕ ∈ PGL3(k), ϕ maps Cλ to some Cµ if and only if ϕ ∈ G.

3) Let λ ∈ k ∪ {∞}. For any ϕ ∈ PGL3(k), ϕ maps the cubic Cλ to itself if and only if ϕ
belongs to the subgroup H = 〈A,B,C〉.

Lemma 2.0 and the two first statements of Lemma 2.1 are proved in [BK], in the case where k
is the field of complex numbers, but it is easy to check that they are still true when k is a
separably closed field of characteristic different from 3. The third one is only mentionned in
[BK] without proof, but can be obtained by easy computation. Notice that in the two last
statements, Cλ is not assumed to be non-singular.
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Canonical pencils of cubics

As we have pointed out in the introduction, we would like to show that the choice of flex points
and of the j-invariant is sufficient to describe a cubic up to equivalence. In particular, we have
to study cubics with prescribed flex points. This can be done using pencils.

If C is a cubic polynomial in 3 variables with coefficients in L, let FC be the set of cubic
hypersurfaces of the form αC + βHC ∈ C3,3(L), for some α, β ∈ L not both zero. The set FC

is called the canonical pencil associated to C. Since HαC = α3HC for any α ∈ L×, this
set does only depend on the cubic defined by C.

If P ∈ P2(Ls) is a flex point of the cubic C, then it is also a point of any cubic belonging to
the pencil FC . In particular, if C is non-singular, any non-singular cubic C ′ ∈ FC has the same
flex points as C. In fact FC is, in this case, the set of all cubics (singular or not) which pass
through the nine flex points of C.

Let P(L) denote the set {FC | C ∈ C3,3(L)}. For any k-morphism L → L′ we define a
map P(L) −→ P(L′) by sending the pencil FC to the pencil FC

L′ . We then obtain a func-
tor P : Ck −→ Sets. The association C 7→ FC gives rise to a surjective map of functors
C3,3 // // P . Consider the natural action of GL3 on P: for ϕ ∈ GL3(L) and C ∈ C3,3(L)
we set ϕ(FC) = Fϕ(C). One checks that this does not depend on the choice of C (that is if
C ′ is such that FC′ = FC then Fϕ(C′) = Fϕ(C)) using the formula HC◦ϕ = (det ϕ)2HC ◦ϕ. The
proof of this formula is left to the reader.

We say that FC and FC′ are isomorphic over L if they are in the same orbit under this
action. We denote by [FC ] the isomorphism class of FC and we denote by Pen3 the functor of
isomorphism classes of such pencils.

Corollary 2.2. Sending the class of a cubic in three variables C to the class of its pencil FC

induces a well defined morphism of functors Cub3 −→ Pen3.

A L-isomorphism f between FC and FC′ maps the flex points of C to the flex points of C ′.
Hence F[C] can be thought roughly speaking as the set of isomorphism classes of cubics [C ′]
such that the flex points of C can be mapped to those of C ′ via an element of GL3(L).

Lemma 2.0 tells us that, over a separably closed field, one can bring every non-singular cubic
to some canonical form depending on one parameter. However, unlike quadratic forms, there
are infinitely many cubics defined over L which are not equivalent over Ls. Hence one cannot
classify cubics using Galois cohomology like in the quadratic form case. However the next
lemma shows that pencils of cubics can, indeed, be classified in this manner, as we will see in
the next section.

Lemma 2.3. Assume that char(k) 6= 2, 3 and let L/k be a field extension. For any λ ∈ L with
λ3 6= 1, we have

FCλ
=

{
Cµ | µ ∈ L ∪ {∞}

}
.

In particular, for all [C], [C ′] ∈ Cub+
3 (Ls), the pencils FC and FC′ are isomorphic.
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Proof. Computation shows that HCλ
= −54λ2(X3

1 + X3
2 + X3

3 )− 3(18λ3 − 72)X1X2X3.
Hence we get

αCλ + βHCλ
= (α− 54λ2β)(X3

1 + X3
2 + X3

3 )− 3(αλ + 18λ3β − 72β)X1X2X3.

Let µ ∈ L. If µ = λ, take α = 1 and β = 0.

Assume now that µ 6= λ. Take β = 1 and α =
72− 54λ2µ− 18λ3

λ− µ
.

We claim that α−54λ2 6= 0. Indeed, assume the contrary. Then we easily get that 72(1−λ3) = 0.
Since char(k) 6= 2, 3, this implies that λ3 = 1, which is not the case.

Thus, with these choices of α and β, we get αCλ+βHCλ
= (α−54λ2)Cµ, hence the polynomials

αCλ + βHCλ
and Cµ belong to the same class.

If µ = ∞, take α = − λ2

4(λ3 − 1)
and β = − 1

216(λ3 − 1)
.

Remark 2.4. If λ3 = 1, the lemma is not true. Indeed, it is easy to see that in this case
FCλ

= {Cλ}. Since we want to apply Galois descent to pencils of cubics, we have to restrict
ourselves to pencils generated by non-singular cubics.

We will denote by P+ and Pen+
3 the corresponding functors.

Roughly speaking, Lemma 2.3 suggests that an element of FC can have any prescribed value
for its j-invariant since, after scalar extension, one obtains all the cubics Cµ. The next lemma
shows that at most only one more parameter is needed to define [C] once the flex points are
prescribed:

Lemma 2.5. Let L/k be a field extension and let [C] ∈ Cub+
3 (L). Then

ed([FC ]) ≤ ed([C]) ≤ ed([FC ]) + 1.

Proof. Let K/k be such that [C] is defined over K and trdeg(K : k) = edk([C]). Then clearly
FC is defined over K, hence ed([FC ]) ≤ ed([C]). Assume now that ed([FC ]) = n. Then there
exists a field extension E/k of transcendence degree equal to n, and [C ′] ∈ C3,3(E) such that
[FC ] = [FC′

K
]. By definition, there exists ϕ ∈ GL3(K) such that Fϕ(C) = FC′

K
. In particular,

there exists α, β ∈ K such that the polynomials C ◦ϕ and αC ′+βHC′ are proportional. Hence
[C] = [αC ′ + βHC′ ]. Since α or β is non zero, [C] is then defined over E(α

β ) or E(β
α ). Thus [C]

is defined over a field of transcendence degree at most n + 1.

§3 Galois descent for functors. Applications to cubics

We just dealt with pencils of cubics and saw how all pencils become isomorphic over a separably
closed field. A natural idea is then to classify them using Galois cohomology set. The problem
is that the objects we want to classify are not standard “algebraic structures”. In this section,
we prove a Galois descent lemma for reasonable functors which is a slight generalization of
[BOI], Proposition (29.1). This lemma will apply to our situation.
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Let k be any field, and let F : Ck → Sets be a functor. We denote by Aut(F) the functor
defined by

Aut(F)(L) = {η : FL −→ FL | η is an isomorphism of functors}

for any L/k. Notice that for any extension L/k, the action of the absolute Galois group ΓL on
Ls induces an action on F(Ls) by functoriality.

Let G be a group scheme of finite type defined over k and ρ : G −→ Aut(F) be a morphism of
group-valued functors which is Γ-equivariant. For each E/k we define an equivalence relation
on F(E) saying that b, b′ ∈ F(E) are equivalent if there exists g ∈ G(E) such that ρE(g)(b) = b′.
We note this by b ∼E b′.

Let k′/k be a field extension, and a ∈ F(k′). For every extension L/k′ set

X(L) = {b ∈ F(L) | b ∼Ls
a}.

Denote by StabG(a) the subfunctor of G defined by

StabG(a)(R) = {g ∈ G(R) | ρR(g)(aR) = aR}

for any k′-algebra R. This is a closed group subscheme of Gk′ (not necessarily affine).

Finally, we denote by Fa(L) the set of equivalence classes of elements of X(L) under the relation
b ∼L b′. This defines an object of Fk′ , denoted by Fa.

We now state the Galois descent lemma:

Galois Descent Lemma. Let ρ : G −→ Aut(F) as above. Assume that for any extension L/k,
the following conditions hold:

1) H1(L,G(Ls)) = 1

2) F(Ls)ΓL = F(L).

Then for any k′/k and for any a ∈ F(k′), there is a natural isomorphism of functors of Fk′

Fa−̃→H1(−,StabG(a)).

Moreover, this isomorphism maps the class of aL to the base point of H1(L,StabG(a)(Ls)).

Proof. We fix once for all an extension k′/k and an element a ∈ F(k′). Let L/k′ be an
extension of k′. For the proof we will denote by Γ instead of ΓL the Galois group of L. We set
A = StabG(a)(Ls) and B = G(Ls).
It is well-known that there is a natural bijection between ker(H1(L,A) −→ H1(L, B)) and the
orbit set of the group BΓ in (B/A)Γ (see [BOI], Corollary 28.2 for example).

Since the group G(Ls) acts transitively on X(Ls), the Γ-set X(Ls) can be identified with the
set of left cosets of G(Ls) modulo StabG(a)(Ls), hence B/A ' X(Ls). By assumption on F,
the set (B/A)Γ is then equal to X(L). Moreover, BΓ = G(Ls)Γ = G(L). It follows that the
orbit set of BΓ in (B/A)Γ is precisely Fa(L).

Since H1(L,G(Ls)) is trivial, we then obtain is a natural a bijection of pointed sets between
H1(L,StabG(a)(Ls)) and Fa(L). The functoriality is left to the reader.
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Example 3.0. (Cubics in 2 variables). Let k be a field of characteristic not equal to 3.
Denote by F the functor C3,2 and let G be the group GL2. A cubic in 2 variables with
coefficients in k determines a set of three (non necessarly distinct) points in P1(ks). Since
PGL2(ks) acts transitively on triples of distinct points in P1(ks) it follows that all non-singular
cubics in 2 variables are equivalent over ks. Thus if a ∈ C+

3,2(k) is a fixed non-singular cubic
then Fa(L) = Cub+

2 (L) for every L/k. We then get an isomorphism of functors

Cub+
2 ' H1(−,StabG(a))

for every non-singular cubic a defined over k.

Notice that in this case, StabG(a) is affine. Moreover, an easy computation shows that the Lie
algebra of π(StabG(a)) ⊂ PGL2 is trivial, hence this last group scheme is finite and smooth.

Consequently, StabG(a) is the inverse image of an étale subgroup of PGL2. To determine this
étale subgroup, it suffices to determine its ks-points. For example, if a = XY (X +Y ), it is easy
to see that π(StabG(a))(ks) is the subgroup of PGL2(ks) isomorphic to S3 (as an abstract

group) generated by the classes of
(

1 1
−1 0

)
and

(
0 1
1 0

)
. Notice that Γk acts trivially on

this group, so π(Stab(a)) is isomorphic to the constant group scheme S3. Thus

Cub+
2 ' H1(−, S̃3).

In particular, edk(Cub+
2 ) = edk(S̃3). Applying Proposition 1.4 we get that edk(S̃3) ≤ 1.

Now S̃3 contains a subgroup isomorphic to Gm ×Z/2, which has essential dimension 1. Propo-
sition 1.2 then shows the edk(S̃3) ≥ 1, so edk(Cub+

2 ) = 1.

Singular cubics are dealt with similarly. Every singular cubic in 2 variables defined over k is
equivalent over ks to either X3 or X2Y . Thus we have an isomorphism of functors

Cub−2 ' H1(−,StabG(X3))
∐

H1(−,StabG(X2Y )).

Now the groups H = StabG(X3) and K = StabG(X2Y ) are easily computed to be equal

respectively to
(
∗ 0
∗ ∗

)
and

(
∗ 0
0 ∗

)
. Thus K = Gm ×Gm and H fits into an exact sequence

0 → Ga → H → Gm ×Gm → 0.

It follows easily that H1(−,H) = H1(−,K) = 1, hence Cub−2 is reduced to two points, so
edk(Cub−2 ) = 0.

Hence we have proved

Proposition 3.1. Let k be a field of characteristic different from 3. Then

edk(Cub2) = 1.
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Example 3.2. Assume that char(k) 6= 2, 3. Take F = P+ and let the group G = GL3 act on
P+. Take λ ∈ k with λ3 6= 1 and set a = FCλ

. Then Lemma 2.3 tells us that Fa(L) = Pen+
3 (L)

for any extension L/k.

Since FCλ
can be viewed as a point in a suitable grassmanian, its stabilizer is affine. As

previously, one can check that this stabilizer is the inverse image of an étale closed subgroup
of PGL3. Since over ks the pencil FCλ

is equal to {Cµ | µ ∈ ks ∪ {∞}} it follows easily from

Lemma 2.1 that the π
(
StabG(FCλ

)
)
(ks) = G, hence StabG(FCλ

) ' G̃ét, where Gét is the
étale group scheme associated to the finite group G. Since the hypotheses of the Galois Descent
Lemma are clearly fullfilled, we get

Pen+
3 ' H1(−, G̃ét).

Example 3.3. Under the same hypotheses, take F = C+
3,3 and let G = GL3 act on it as

usual. Let k′/k be a field extension and take a = Cλ for some λ ∈ k′ ∪ {∞}. Then Fa(L) is
the set of cubics in L which are equivalent to Cλ over Ls for any field extension L/k′. Arguing
as previously, one can see that the k′-group scheme StabG(a) is isomorphic to H̃ét, where H
is the subgroup of G described in Lemma 2.1. Hence, for any field extension k′/k, for any
λ ∈ k′ ∪ {∞}, and for any field extension L/k′, we have a one-to-one correspondence

Fa(L) =
{
[C] ∈ Cub+

3 (L) | C ∼Ls Cλ

}
' H1(L, H̃ét).

The functor Fa with a = Cλ will be denoted by Fλ. Hence edk′(Fλ) = edk′(H̃ét).
This means in particular that the essential dimension of Fλ does not depend on λ. Again we
have classified cubics which become isomorphic to a fixed cubic Cλ by a Galois cohomology set.

§4 Essential dimension of non-singular cubics

We can finally state and prove our main result:

Theorem 4.1. Let k be a field. Assume that char(k) 6= 2, 3. Then

edk(Cub+
3 ) = 3.

We prove first the upper bound. Lemma 2.5 implies in particular that

edk(Cub+
3 ) ≤ edk(Pen+

3 ) + 1.

By Example 3.2, we have edk(Pen+
3 ) = edk(G̃ét). By Proposition 1.4 we have edk(G̃ét) ≤ 2.

Moreover, G̃ét contains a subgroup isomorphic to Gm ×µ3×µ3 (the inverse image of the étale
subgroup of PGL3 corresponding to the subgroup generated by the classes of C and D). This
group has essential dimension 2 (see [BeF, Corollary 3.9]). Then Proposition 1.2 shows that

edk(G̃ét) = 2. We then get edk(Pen+
3 ) = 2 (this tells that one needs two parameters to choose

nine flex points). In particular, edk(Cub+
3 ) ≤ 3.

We now show the opposite inequality.

Let k′/k be a field extension, λ ∈ k′ with λ3 6= 1 and consider Fλ the functor defined in
Example 3.2.

Our task is to compute the essential dimension of Fλ, that is the essential dimension of H̃ét.
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Proposition 4.2. Let k′ be a field with char(k′) 6= 2, 3. Then

edk′(H̃ét) = 2.

Proof. We begin with some easy observations on the group H̃ét. First of all, we have the
following exact sequence of group schemes:

1 −→ Gm −→ H̃ét −→ Hét −→ 1,

hence dim(H̃ét) = 1. Moreover, the connected component of H̃ét is Gm and the quotient
H̃ét/Gm is isomorphic to the étale group scheme Hét = (Z/3× µ3) n Z/2. Finally, notice that
H̃ét contains the closed subgroup π−1(〈B〉) ' Gm × Z/2.

We now compute the essential dimension of H̃ét. Applying Proposition 1.4 we get edk′(H̃ét) ≤ 2.
Moreover, since dim(Gm × Z/2) = 1 and edk′(Gm × Z/2) = edk′(Z/2) = 1, we get that
edk′(H̃ét) ≥ 1 by Proposition 1.2.

We finally prove that edk′(H̃ét) 6= 1. If edk′(H̃ét) = 1 then, by [BeF, Proposition 6.21], the
quotient H̃ét/H̃0

ét = H̃ét/Gm will be a subgroup of PGL2. This would show that Hét(k′) is,
as an abstract group, isomorphic to a subgroup of PGL2(k′). In particular, PGL2(k′) would
contain a subgroup isomorphic to (Z/3Z)2, which is not the case.

This proposition shows that cubics with prescribed j-invariant can be described with two pa-
rameters.

We are now able to finish the proof of Theorem 4.1 using Proposition 4.2. The idea is to show
that the j-invariant can be choosen independently from the flex points. This is why we consider
now the functor of cubics with a transcendental j-invariant.

Let t be an indeterminate over k, let k(t) be an algebraic closure of k(t). Let i be the composite
k → k(t) → k(t), where the first map is the natural inclusion, and k(t) → k(t) is a fixed k-linear
morphism which maps t to itself.
Let λ ∈ k(t) such that j(Cλ) = t and consider the functor Fλ of Example 3.2. By Proposition
4.2 we have ed

k(t)
(Fλ) = 2. Thus there exists a field extension L/k(t) with trdeg(L : k(t)) = 2

and and an element [C] ∈ Fλ(L) which cannot be defined over a subextension of L of a smaller
transcendence degree over k(t).

We will show that indeed for the element [C] ∈ Cub+
3 (L/k) we have ed([C]) = 3 over k.

Assume that there exists a subextension K ′/k of L/k with trdeg(K ′ : k) ≤ 2 and [C ′] ∈
Cub+

3 (K ′) such that [C ′]L = [C].

Since [C] ∈ Fλ(L/k(t)), we have j(C ′
L) = j(C) = j((Cλ)L) = image of t in L. Hence j(C ′

L) is
transcendental over k. Consequently, j(C ′) ∈ K ′ is transcendental over k and we can define a
k-morphism k(t) → K ′ sending t to j(C ′).
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Now the diagram of k-morphisms

k(t)

���
L

???
?

k(t)

??
K ′

��
�

clearly commutes and hence we can define the compositum E of k(t) and K ′ in L.

Take now the element [C ′′] := [C ′]E ∈ Cub+
3 (E). Then clearly [C ′′]L = [C] and [C ′′] ∈ Fλ(E).

But trdeg(K ′ : k) ≤ 2 and trdeg(k(t) : k) = 1 so we have trdeg(K ′ : k(t)) ≤ 1. It follows that
trdeg(E : k(t)) ≤ 1. Consequently, [C] is defined over a subextension of L/k(t) of transcendence
degree at most 1 which is absurd.

We then get edk(Cub+
3 ) ≥ ed([C]) = 3 and this concludes the proof of Theorem 4.1.

§5 The case of singular cubics

In the previous section, we have computed the essential dimension of the functor of non-singular
cubics. In order to give the essential dimension of Cub3, it remains to compute ed(Cub−3 ).
That is the purpose of this section. In fact, we have the following result:

Theorem 5.1. Let k be a field with char(k) 6= 2, 3. Then

edk(Cub−3 ) = 2.

Proof. We first recall the well-known list of the eight geometric types of singular cubics over
a separably closed field, and a possible equation for each of them (see [Kr], Chapter I, §7 for
example):

1) The triple line: C1 = X3,

2) The union of a double line and of a tranverse line: C2 = X2Y ,

3) The union of three distincts concurrent lines: C3 = XY (X + Y ),

4) The union of three non concurrent lines: C4 = XY Z,

5) The union of a non-degenerate conic and of a line tangent to it: C5 = (Y 2 −XZ)Z,

6) The union of a non-degenerate conic and of a transverse line: C6 = (X2 − Y Z)X,

7) The cuspidal cubic: C7 = Y 2Z −X3,

8) The nodal cubic: C8 = Y 2Z −X3 −X2Z.

Notice that in [Kr], the equation given for C5 is not exactly the same, but the one given above
is more convenient here. Since all these cubics are defined over k, any singular cubic defined
over a field extension L/k is equivalent to one of the Ci’s over Ls. Applying the Galois Descent
Lemma shows that the equivalence classes of L-forms of Ci are classified by H1(L,Stab(Ci)),
where Stab(Ci) is the stabilizer of the cubic Ci under the action of GL3.
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We then get
Cub−3 '

∐
1≤i≤8

H1(−,Stab(Ci)).

In particular, we have
edk(Cub−3 ) = max

1≤i≤8
edk(Stab(Ci)).

We now estimate the essential dimension of each stabilizer. To do this, we will apply in most
of cases the following method:

we compute first Stab(Ci)(Ls) for any field L containing k. We then find an algebraic group
scheme Gi such that Gi(Ls) = Stab(Ci)(Ls) for any field extension L/k. The functors
H1(−, Gi) and H1(−,Stab(Ci)) are then equal, so they have same essential dimension.

1) The triple line C1 in P2(Ls) corresponds to the point (1 : 0 : 0) in the dual space. Hence,
any element of PGL2(Ls) which stabilizes C1 corresponds to an automorphism of the dual
space which fixes this point. Dualizing again, we then obtain that Stab(C1) coincide on the
Ls-points with the group scheme G1 defined by

G1(R) =


 a 0 0

b c d
e f g

 ∈ GL3(R)


for any k-algebra R. Let also H1 and K1 be the group schemes defined respectively by

H1(R) =


 1 0 0

b 1 0
e 0 1

 ∈ GL3(R)

 and K1(R) =


 a 0 0

0 c d
0 f g

 ∈ GL3(R)

 .

We easily have H1 ' Ga ×Ga and K1 ' Gm ×GL2. We then get the following exact sequence

1 −→ Ga ×Ga −→ G1 −→ Gm ×GL2 −→ 1,

hence the exact sequence in cohomology then gives H1(−, G1) = 1, so edk(G1) = 0.

2) Here the cubic C2 corresponds in the dual space to the union of the double point (1 : 0 : 0)
and the simple point (0 : 1 : 0). Since multiplicities have to be preserved, an automorphism of
P2(ks) which stabilizes C2 corresponds to an automorphism of the dual space which fixes these
two points. After dualization, we then obtain that the stabilizer of C2 (in GL3) coincides on
the L-points with the group scheme G2 defined by

G2(R) =


 a 0 0

0 b 0
c d e

 ∈ GL3(R)

 .

We then have
1 −→ Ga ×Ga −→ G2 −→ Gm ×Gm ×Gm −→ 1,

which gives again H1(−, G2) = 1 and edk(G2) = 0.
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3) It is easy to see that an element of PGL3(Ls) stabilizing C3 stabilizes the intersection point
(0 : 0 : 1) and induces an automorphism of the cubic curve XY (X +Y ) viewed in P1(ks). Then,
by Example 3.0, one can take for G3 the group scheme defined by

G3(R) =


 a b 0

c d 0
e g h

 ∈ GL3(R),
(

a b
c d

)
∈ S̃3(R)

 .

We then have

1 // Ga ×Ga
// G3

f // Gm × S̃3
// 1 ,

where f is the obvious map.

Since this sequence is split, the map f∗ : H1(L,G3) → H1(L, Gm×S̃3) ' H1(L, S̃3) is surjective
for any L/k. We now proceed to show that f∗ is injective.

Let A = (Ga × Ga)(Ls), B = G3(Ls) and C = (Gm × S̃3)(Ls). Let β be a cocycle with
values in G3(Ls), and γ = f∗(β). They induce respectively cocycles with values in Aut(B) and
Aut(C). Let α be the cocycle with values in Aut(A) induced by conjugation by β. By [KMRT,
Proposition 28.11], the fiber of [γ] under f∗ is in one-to-one correspondence with the orbit set
of the group (Cγ)ΓL in H1(L,Aα). Since the group scheme (Ga × Ga)α, defined over L, is
isomorphic to Ga ×Ga over Ls, it is smooth connected and unipotent.
Hence H1(L,Aα) = H1(L, (Ga × Ga)α(Ls)) = 1. Thus the fiber of [γ] = f∗([β]) is {[β]}, for
any [β] ∈ H1(L,B), so f∗ is injective.
Consequently, we get

H1(−, G3) ' H1(−, S̃3)

which shows that edk(G3) = edk(S̃3) = 1.

4) Here C4 corresponds in the dual space to the union of the points (1 : 0 : 0), (0 : 1 : 0) and
(0 : 1 : 0). An element of PGL3(Ls) which stabilizes C4 corresponds to an automorphism
of the dual space which permutes these 3 points. Hence, one can easily see an element of
Stab(C4)(Ls) as a product of a diagonal invertible matrix D and of an element of S3 (where
S3 is viewed in GL3(Ks) via the representation by permutation matrices). This gives an
isomorphism Stab(C4)(Ls) ' L×3

s n S3.
Let G4 = G3

m n S3 (where S3 is considered as a constant group scheme here). The inclusion
G4 ⊂ GL3 then gives rise to a linear action of G4 on A3

k. Letting G3
m act trivially on A2

k, the
natural action of S3 on A2

k then extends to a linear action of G4 on A2
k.

We then obtain naturally a linear action of G4 on A5
k, which is generically free (details are left

to the reader). By Proposition 1.3, we get edk(G4) ≤ 2.

5) An element f ∈ Stab(C5)(Ls) has to preserve the affine plane Z = 0 and the quadric
q := Y 2 − XZ. In particular f is a similitude of q. Since the image of f in PGL3(Ls) has
to fix the point of tangency (1 : 0 : 0), it follows that f is an upper triangular matrix. Easy
computations then show that Stab(C5)(Ls) coincide on the Ls-points with the group scheme
defined by

G5(R) =


 u2

v
2uw

v
w2

v
0 u w
0 0 v

 ∣∣∣∣ u, v ∈ R×, w ∈ R

 .
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Let H and K be the group schemes defined by

H(R) =


 1 2w w2

0 1 w
0 0 1

 ∣∣∣∣ w ∈ R

 , and K(R) =


 u2

v 0 0
0 u 0
0 0 v

 ∣∣∣∣ u, v ∈ R×

 .

Then one can easily check that H and K are respectively isomorphic to Ga and G2
m, and that

we have an exact sequence
1 −→ Ga −→ G5 −→ G2

m −→ 1.

Applying Galois cohomology then shows that H1(−, G5) = 1, so edk(G5) = 0.

6) An element f ∈ Stab(C6)(Ls) has to preserve the hyperplane H of L3
s given by the equation

X = 0 and the quadric q := X2 − Y Z. In particular, f is a similitude of q. It is easy to see
that the decomposition L3

s = H⊕ Fe1 is orthogonal, so f preserves the line Fe1 and f ′ = f|H
is a similitude of q′ = q|H (where e1 denotes the first vector of the canonical basis of L3

s). Easy
computations show that if f(e1) = λe1 then λ−1f ′ belongs to the orthogonal group O(q′)(Ls),
hence Stab(C6)(Ls) = (Gm ×O(q′))(Ls).
Thus if one takes G6 = Gm ×O(q′), one has H1(−,Stab(C6)) = H1(−, G6) ' H1(−,O(q′)).
Hence we get edk(G6) = edk(O(q′)) = 2 (see [BeF, Theorem 3.10] or [Re] for example).

7) and 8) One can easily check that π(Stab(Ci)) for i = 7, 8 is an étale group scheme (showing
that the Lie algebra is trivial). Then we get ed(Stab(Ci)) ≤ 2 using Proposition 1.4.

This concludes the proof.

Theorem 5.1 proves also that edk(Cub3) = edk(Cub+
3 ) and that ed(Cub−3 ) < edk(Cub+

3 ).
As we have seen in a previous section it is also true for cubics in two variables.

It seems reasonable to expect that edk(Fd,n) = edk(F+
d,n) and ed(F−d,n) < ed(F+

d,n), since
singular hypersurfaces are not “general enough” to maximize essential dimension. However, we
are not able to prove it at this moment.
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