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ABSTRACT: The evolution of parent-offspring interactions for the
provisioning of care is usually explained as the phenotypic outcome
of resolved conflicting selection pressures. However, parental care
and offspring solicitation are expected to have complex patterns of
inheritance. Here we present a quantitative genetic model of parent-
offspring interactions that allows us to investigate the evolutionary
maintenance of a state of resolved conflict. We show that offspring
solicitation and parental provisioning are expected to become ge-
netically correlated through coadaptation and that their genetic ar-
chitecture is dictated by an interaction between patterns of selection
and the proximate mechanisms regulating supply and demand. When
selection is predominately on offspring solicitation, our model sug-
gests that the genetic correlations between provisioning and solici-
tation are usually positive if provisioning reduces solicitation. Con-
versely, when selection is predominately on parental provisioning,
the correlations are mostly negative as long as parents show a positive
response to offspring demand. Empirical estimates of the genetic
architecture of traits involved in family interactions fit these predic-
tions. Our model demonstrates how the evolutionary maintenance
of parent-offspring interactions can result in variable patterns of
coadaptation, and it provides an explanation for the diversity of
family interactions within and among species.

Keywords: parental care, begging, coadaptation, family conflicts, in-
direct genetic effect, social evolution.

Living in family groups has consequences for both the
expression of and selection experienced by diverse phe-
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notypic traits (West-Eberhard 1983; Wolf et al. 1999; Kol-
liker 2005). Despite the benefits of extended family life,
the associated dependence of offspring on parental re-
sources and the cost of this investment to parents lead to
potential conflicts among family members. For example,
the continuing provisioning of parental resources through
parts or all of offspring ontogeny gives rise to the evolution
of traits specialized for parent-offspring communication
and the regulation of parental provisioning (Alexander
1974; Trivers 1974; Godfray 1995a; Mock and Parker 1997;
Wright and Leonard 2002). Simultaneously, such inter-
actions create the possibility for conflicting selection pres-
sures to modify the evolution of these traits and behaviors
(Trivers 1974). The optimal level of parental provisioning
and offspring demand is predicted to differ among indi-
vidual family members (Trivers 1974; Godfray 1995a;
Mock and Parker 1997).

A considerable number of formal game-theoretic mod-
els have been developed to predict the evolutionary res-
olution of parent-offspring conflict (reviews in Godfray
19954; Kilner and Johnstone 1997; Mock and Parker 1997;
Godfray and Johnstone 2000; Budden and Wright 2001;
Parker et al. 20025; Royle et al. 2002). These treatments
usually demonstrate that the phenotypic outcome of this
resolution is a combination of costly begging by offspring
and parental investment in relation to offspring begging.
Conlflict resolution is usually modeled as selection on oft-
spring to outcompete siblings for parental resources
(“scramble models”; Parker and Macnair 1979; Parker et
al. 2002b) or as selection on parents to maximize fitness
returns on investment (“honest signaling models”; God-
fray 1991; Godfray and Johnstone 2000). Resolution mod-
els have proven difficult to test and distinguish experi-
mentally because they often yield common predictions
(Mock and Parker 1997; Parker et al. 2002a; Royle et al.
2002). The derivation of testable predictions capable of
discriminating between scenarios of conflict resolution is
critical to furthering an understanding of the evolution of
family interactions (Mock and Parker 1997; Royle et al.
2002, 2004).

A relatively unstudied aspect of the resolution models
concerns consequences of a state of resolved conflict for
the genetic structure of traits involved in family interac-



tions (Lynch 1987; Cheverud and Moore 1994; Mock and
Parker 1997; Kolliker and Richner 2001; Kolliker 2005).
Cheverud (1984), Lynch (1987), Kirkpatrick and Lande
(1989), and Cheverud and Moore (1994) were the first to
use a quantitative genetic approach to study potential con-
sequences of the genetic architecture of such traits on their
evolution. These authors highlight how social traits, which
are both genetically variable and have environmental con-
sequences, show complex patterns of inheritance (Wolf et
al. 1998; Linksvayer and Wade 2005). In the example of
parent-offspring interactions, parents provide to offspring
both genes and the environment that influences trait ex-
pression (e.g., the level of solicitation), but the parental
environment may also vary as a result of heritable differ-
ences among parents (Cheverud and Moore 1994). Sim-
ilarly, offspring represent an environment that may alter
parental trait expression (e.g., the level of provisioning)
through behaviors such as solicitation (Kolliker 2005).
Purely phenotypic approaches fail to capture the genetic
complexity that can arise in the evolution of social
interactions.

The first quantitative genetic model to explicitly address
the genetic architecture of traits involved in parent-
offspring interactions incorporated an indirect maternal
genetic effect on an offspring trait (Wolf and Brodie 1998).
This model showed that in the simple parent-offspring
interaction considered, the offspring trait is expected to
become coadapted with the maternal performance for this
trait. Selectively favored combinations of breeding values
for the offspring and parental traits yield, on average,
higher fitness than random combinations generating a ge-
netic correlation between them. On the basis of this model,
Agrawal et al. (2001) predicted and showed in the bur-
rower bug (Sehirus cinctus) a negative genetic correlation
between parental provisioning and offspring elicitation.
However, other empirical studies estimated the genetic
correlation and found that there may be a positive, neg-
ative, or even zero correlation (Kolliker et al. 2000; Kolliker
and Richner 2001; Hunt and Simmons 2002; Rauter and
Moore 2002; Hager and Johnstone 2003; Curley et al. 2004;
Lock et al. 2004; Maestripieri 2004; Kolliker 2005). Thus,
the ability to generalize about genetic architecture under-
lying parent-offspring interactions remains uncertain.

The coadaptation model by Wolf and Brodie (1998)
assumes that offspring are passive recipients of parental
provisioning and that selection does not impact provi-
sioning. This approach fails to capture much of the dy-
namic nature of parent-offspring interactions more com-
monly addressed by optimality models (Kilner and
Johnstone 1997; Mock and Parker 1997; Budden and
Wright 2001; Royle et al. 2004). Here, we extended the
quantitative genetic approach to account for the reciprocal
interactions of parent-offspring relations and allow for se-
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lection to act during both the offspring and the parental
life-history stage. We hypothesized that the pattern of
coadaptation between offspring solicitation and parental
provisioning may reflect whether selection on offspring
(analogous to scramble models) or on parents (analogous
to honest signaling models) predominates in the evolu-
tionary maintenance of parent-offspring interactions.

A Quantitative Genetic Model of
Parent-Offspring Coadaptation

The modeling approach used here incorporates the inter-
actions of parents and offspring as indirect genetic effects
(Moore et al. 1997; Wolf and Brodie 1998; Wolf et al. 1998).
The expressions of supply in parents and demand in off-
spring are modeled as quantitative genetic definitions for
linear “effect of supply on demand” and “effect of demand
on supply” mechanisms (Mock and Parker 1997; Parker
et al. 2002b; Kolliker 2003; Royle et al. 2004). The objective
of our study was to model the evolutionary maintenance
of a state of resolved conflict when new behavioral variants
tend to emerge continuously, for example, through mu-
tation. This perspective differs from conflict resolution
models and makes no prediction regarding how the
parent-offspring conflict was resolved.

In our model, selection is defined in a quantitative ge-
netic framework as stabilizing selection (Lande and Arnold
1983; Lynch and Walsh 1998; Wolf et al. 1998). Selection
gradients define the net relation between relative fitness
and (combinations) of trait values and summarize the total
fitness cost and benefit schedule (i.e., the partitioning of
fitness usually used in resolution models). We use these
gradients to describe the average relationship between phe-
notypes and fitness evaluated at the population mean
(Lande and Arnold 1983).

We assume, for simplicity, a single parent cares for a
single offspring or batch of noncompeting offspring. Var-
iation in initial offspring condition (Godfray 1991) is not
explicitly incorporated but may arise through variation in
parental provisioning as mediated by the assumed prox-
imate mechanisms regulating the interaction. We further
make the standard assumptions for quantitative genetic
models, including adequate additive genetic variation in
the traits (i.e., variation based on many loci yielding con-
tinuous phenotypic variation and maintained by mutation
selection balance), weak selection, random mating, and
random environmental deviations that are independent of
the additive genetic trait value (Lynch and Walsh 1998;
Wolf et al. 1998).

We allow individuals to experience two life-history
stages: the offspring stage, during which the solicitation
trait is expressed and subject to selection, and a parental
stage for those that survive and reproduce, during which
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the provisioning trait is expressed subject to selection.
When individuals of the focal generation t are in the off-
spring stage, they interact with their parents (individuals
from the previous generation, t — 1) and experience their
provisioning. When these individuals mature and become
parents, they interact with their offspring (individuals from
the subsequent generation, ¢+ 1) and are exposed to so-
licitation. Our model allows for the evolution of a genetic
correlation through the generation of linkage disequilib-
rium (Tallis and Leppart 1988; Lynch and Walsh 1998;
Wolf and Brodie 1998) between solicitation and provi-
sioning loci expressed within a genome. It does not directly
consider the effects of pleiotropic mutations or physical
linkage that might arise and yield stronger correlations
than predicted here. Therefore, the model provides con-
servative predictions for the genetic correlation (Lande
1984).

Trait Expression

Let z, be the phenotypic and a, be the additive genetic
value for offspring solicitation, and let z, be the expressed
phenotypic and a, be the additive genetic value for parental
provisioning. Furthermore, m,, is a parental effect coef-
ficient mediating the indirect effect of parental provision-
ing (p) on offspring solicitation (s), and o,, is an offspring
effect coefficient mediating the indirect effect of offspring
solicitation on parental provisioning. The phenotypic val-
ues for offspring solicitation and parental provisioning can
then be defined as z,, = a,, + m,z,,, and z,, =
a,) F 0,241y Tespectively. The simultaneous solution to
the two recursive equations represents a proximate inter-
action equilibrium and, thus, the expected expressed levels
of z, and z, (Moore et al. 1997; Kolliker 2003):

_ Oy + m,a,,- 1
Zs(t) - > ( a)

1 —m,o,

Apy 05,041
2y = D (1b)
1 — mgo0,

Fitness and Selection

Because we are interested in the maintenance of levels of
solicitation and parental provisioning reflecting a state of
resolved conflict, we assumed that the conflict was resolved
constraint-free and that the population mean behaviors
are expressed near their ecological optimum (a common
assumption in optimality models). Our model addresses
the evolutionary maintenance of such an optimum and
how it affects the genetic architecture and diversity of

parent-offspring interactions. Thus, it is a static coadap-
tation model and is not designed to provide a solution for
the evolutionary dynamics of parent-offspring interac-
tions. Under these conditions, net directional selection can
be assumed to be negligible (Gomulkiewicz 1998), and
stabilizing selection maintains the parent-offspring inter-
action near the ecological optimum. Note that this as-
sumption does not require that traits do not experience
directional selection during some episodes or life-history
stages (Arnold and Wade 1984).

As a consequence, the population means for the traits
are taken to remain constant across generations, and only
the variances and covariances are allowed to change. The
traits z, and z, (as well as their additive genetic values, a,
and a, respectively) are defined as deviations from the
population mean (z = z; — z), normally distributed with
a mean of 0 and variance of 1. The quadratic regression
of total relative fitness on offspring solicitation and pa-
rental provisioning (w(z,, z,)) is then given by

1 1
wliz,z,) = a+ qszvszf + qpivaf,, )

where « is a baseline fitness component, g, is the fraction
of soliciting individuals in the offspring population, g, is
the fraction of provisioning individuals in the parent pop-
ulation, and v, and vy, are the quadratic regression coef-
ficients relating relative fitness to solicitation and provi-
sioning, respectively. The values for v, and v, are negative
(i.e., selection is stabilizing rather than disruptive). We
further assume for simplicity that all offspring solicit and
that only one parent cares for the offspring (i.e., either
male-only or female-only care). Thus, ¢ is equal to 1, and
g, is equal to 1/2, with a population sex ratio of unity.

Substituting the trait definitions for z, and z, (eqq. [1])
into equation (2) and expanding yield total fitness as a
function of combinations of additive genetic values for
solicitation and provisioning:

1

wiz,z) =a+——
5 S e

2 2 .2
X IYsas(t) + Z’YSmspas(r)ap(t—l) + ’Ysmspap(r—l) (3)
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2 2 2
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Because the additive genetic value for a particular trait
expressed in a different individual is predictable among
interacting family members through their degree of genetic
relatedness (Cheverud 1984; Kirkpatrick and Lande 1989;



Cheverud and Moore 1994; Moore et al. 1997), the sub-
scripts + — 1 and t+ 1 can be replaced by the coefficient
of relatedness r (Cheverud 1984; Cheverud and Moore
1994). This yields the equation for total lifetime fitness in
relation to additive genetic values for solicitation and pro-
visioning expressed within an individual over its lifetime:

wa,a) =a+————
) = T S 0,

x |y.al + 2rymga.a, + r’yma, 4)
1 2 1 2 2 2
+ E'ypap + ry,0,a,a, t Er Yp0ps s |-

This fitness equation can be translated into an equation
describing selection influencing genetic variances and co-
variances (Lande and Arnold 1983). The parameter a’ cor-
responds to the direct additive genetic variance in solici-
tation G, a, corresponds to the direct additive genetic
variance in provisioning G,, and a4, and a,a, correspond
to the additive genetic covariances between solicitation and
provisioning, G,, and G,, (Wolf and Brodie 1998).

Coadaptation

The derivation of the genetic correlation among offspring
solicitation and parental provisioning requires the extrac-
tion of the G matrix and the matrix of stabilizing selection
gradients from equation (4). The G matrix in our model
is defined as

G. G
G=|2 27| (5)
(GP$ GPP)

Extracting the terms remaining after the G matrix has
been taken into account and arranging them in matrix
form give the matrix of selection gradients y (Lande and
Arnold 1983; Brodie and Janzen 1996; Wolf and Brodie
1998), which defines the stabilizing selection on offspring
solicitation and parental provisioning:

1 2y, + rloyy, 2rmyy, + 1oy,

_ . (6
201 = m,0,)* \ro,, + 2rmyy, 2y, + 2r’miy, ©

’y:

Coadaptation can then be modeled as an incremental
cross-generational change in linkage disequilibrium re-
sulting from selection. The within-generational change in
the G matrix is given by AG = G(y — 38")G (Lande and

Parent-Offspring Coadaptation 509

Arnold 1983; Tallis and Leppart 1988; Phillips and Arnold
1989), where (3 is the vector of directional selection gra-
dients and the superscript T denotes matrix transposition.
Given our focus on the maintenance of parenting or so-
licitation at or near an optimum (see above), 3 is set to
0, yielding AG = G+vG. By substituting into this equation
the matrix of stabilizing selection gradients (eq. [6]) and
the G matrix (eq. [5]) and expanding, we obtain the equa-
tions for the within-generational changes in the additive
genetic variances (AG, and AG,,) as the diagonal elements
and covariances (AG,, = AG,) as the off-diagonal ele-
ments of the resulting matrix:

1

AG, =T——
1 —my0,)
x [v(G:+ 2rm,G G, + r’m}G.) (7a)
+ oy F 0262 + 10,G,G, + G2
Y 2r 0,6 70,6, Gy, sp ||
7= myo,)
x |y(r*m}G;, + 2rm,G,,G, + G3) (7b)

+v,|G, + 10,G, G, Jrl 202G2
Yo| Gpp T 10545 Zr 0,.Go |

1
AG, = ——
T - my0,)’

x |v(G,G, + rm,G: + rm, GG, + r’m;G,G,,) (7¢)

spTsp spTpp

7, GGy 2

1 , 1 1.,
G,G,, +-ro, G, + EropsGHGpp + Er 0,G,G,|[-

Note that AG,, is equal to AG,, because we use stan-
dardized trait definitions corresponding to N(0, 1) for both
solicitation and provisioning. Assuming random mating
with respect to the genes regulating the expression of pa-
rental provisioning and offspring solicitation, the matrix
of linkage disequilibrium D at generation ¢+ 1 can be
defined as D,,, = /D, + rAG, (Tallis and Leppart 1988;
Wolf and Brodie 1998). The parameter AG, is the within-
generational change in the G matrix during generation ¢
due to stabilizing selection, D, is the matrix of linkage
disequilibrium present before selection in generation ¢, and
r is the coefficient of relatedness among parent and off-
spring. It follows that the G matrix at generation ¢+ 1
and before selection is G,,, = G, + D,,,, where G, is the
initial G matrix.

We approximated the equilibrium genetic covariances
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Figure 1: Genetic correlations, p, resulting from stabilizing selection on offspring solicitation (A, B;y, = —0.7, v, = 0) and parental provisioning
(G D; y, =0, y, = —0.7), maintaining provisioning at an intermediate level. The values for the resulting genetic correlation are plotted against

0,, the offspring effect coefficient representing a parental response to variation in offspring solicitation. In A and C, results for negative values for

the parental effect coefficient m,, are shown (solid line, m,,

and variances iteratively (Wolf and Brodie 1998). The ini-
tial genetic covariances G, and G, were set to 0. The
cumulative change in the G matrix was simulated over 50
generations. Linkage disequilibrium in all cases stabilized
within a few generations. Using 50 generations for the
approximation was therefore a sufficiently robust simu-
lation rule. The equilibrium genetic correlation, p, could
then be calculated from the equilibrium genetic covari-
ances and variances as p = G,/(G,,G,)"” (Lynch and
Walsh 1998).

Numerical Results of the Model

Under a first scenario, we assumed that selection on off-
spring solicitation maintains provisioning at an interme-
diate level, as expected when selection on offspring to
outcompete siblings for parental resources drives coad-
aptation (analogous to scramble resolution models; Mock
and Parker 1997; Parker et al. 2002b). Under a second
scenario, stabilizing selection on parental provisioning
keeps this trait at an intermediate level of expression, re-
flecting the maintenance of the parent-offspring interac-

= —0.9; dotted line, m
positive values of m,, are shown (solid line, m,, = 0.9; dotted line, m,, = 0.5; dashed line, m

= —0.5; dashed line, m
= 0.1).

= —0.1). In B and D, results for

sp sp

sp

tion through selection on parents to maximize fitness re-
turns on investment (analogous to signaling resolution
models; Godfray 1991, 19954, 1995b). These two scenarios
represent the two extremes on a power continuum of rel-
ative evolutionary control by offspring and their parents
(Mock and Parker 1997; Godfray and Johnstone 2000;
Parker et al. 2002b). Finally, the generality of the findings
from the two scenarios is investigated under simultaneous
stabilizing selection on both traits.

Scenario 1: Stabilizing Selection on Offspring Solicitation

The equations for the within-generational change in the
G matrix (eqq. [7]) simplify considerably because the se-
lection gradient for parental provisioning v, is set to 0.
Because of the critical importance of m,, and o,, as pa-
rameters defining the proximate nature of the parent-
offspring interaction, we investigated coadaptation of oft-
spring solicitation and parental provisioning over a wide
range of values for m,, and o, (fig. 1A, 1B). If parental
provisioning had a decreasing effect on offspring solici-
tation (m,, <0), p was always positive (fig. 1A). As the



inhibiting effect of provisioning on solicitation becomes
stronger (i.e., the more negative m,), the value of the
positive genetic correlation becomes larger. The offspring
effect on provisioning (o, the parental response to solic-
itation) had under this scenario a modulating effect on
the value of p but did not affect its sign. Conversely, if
parental provisioning had an enhancing effect on offspring
solicitation (m,, > 0), p was always negative. The param-
eter 0,, had a modulating effect on the value of p but not
its sign (fig. 1B).

Scenario 2: Stabilizing Selection on Parental Provisioning

Proceeding as above, it can be shown that under this sec-
ond scenario, the sign of the offspring effect coefficient o,
now determines the sign of ) (fig. 1C, 1D). If 0,,is positive,
p is predicted to be negative and vice versa. This conclusion
holds regardless of the value of m,, which affects the value
of p but not its sign (fig. 1C, 1D).

Simultaneous Selection on Solicitation and Provisioning

In reality, most parent-offspring interactions are likely to
lie somewhere in between the two scenarios explored above
(Godfray and Johnstone 2000; Parker et al. 2002b). This
raises the question, what are the general conditions for the
evolution of a positive versus negative genetic correlation?
We find that the genetic correlation switches sign when
the parameter values are such that there is no buildup of
linkage disequilibrium from an initial evolutionary stage.
The parameter AG,, (eq. [7c]) needs to be equal to 0 after
setting G, to 0 (i.e., no initial covariance):

1
7(1 S virm,G.G,, + 'ypiropsGsstp =0. (8
spYps.

Rearranging so that all the parameters associated with se-
lection during the offspring stage are on the left-hand side
(LHS) and all the parameters associated with selection
during the parental stage are on the right-hand side (RHS)
of the equation, recalling that we earlier set g, = 1 and
g, = 1/2 and simplifying yield the threshold for the switch
from a positive to a negative genetic correlation:
Vet = ~Yp 40 ©)
If the LHS > RHS, parent-offspring coadaptation gener-
ates a positive genetic correlation, and if LHS < RHS, a
negative genetic correlation is predicted to evolve.
Comparison of our two scenarios suggests that, with
opposing signs for m,, and o,, the sign of p depends on
the patterns of stabilizing selection driving the coadap-
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tation. Equation (9) allows us to evaluate the generality
of this finding with simultaneous selection on both traits.
Rearranging this equation and plotting the ratio of selec-
tion gradients v,q,/v,q, against the ratio of interaction
coefficients o,,/m,, reveals that this generalization holds for
75% of the parameter space (fig. 2). A positive p is pre-
dicted if selection on solicitation predominates, particu-
larly so if |m,| > |o,.| (fig. 2, top right corner). Conversely,
a negative p is predicted if selection on provisioning is
stronger, especially if |m,| < |o,| (fig. 2, bottom left
corner).

Alignment of the G Matrix to the Fitness Surface

When stabilizing selection acts either solely on offspring
solicitation or solely on parental provisioning, the fitness
surface is characterized by a ridge that reflects combina-
tions of trait values that yield equally high fitness. The
genetic correlation is expected to evolve so that it ap-
proaches an alignment of trait combinations along that
ridge (Blows et al. 2004). We present a numerical example
in figure 3A (see also Wolf and Brodie 1998). Although

0 Scenario 1
p>0
=
Ny
~ 1
o
=2
p<0
0+ = - Scenario 2
-0 -1
O.Us/msp

Figure 2: Conditions under which the genetic correlation between so-
licitation and provisioning, p, reflects patterns of selection maintaining
the parent-offspring interaction. The parameter space shown is limited
to the range comprising o,, and m,, of opposite sign, and it is plotted as
the ratio of stabilizing selection gradients on solicitation and provisioning
(Y-axis) against the ratio of the coefficients mediating the parent-offspring
interaction, o,, and m,, (X-axis). The diagonal shows where the model
predicts p to be 0 (eq. [9]); p is predicted to be negative below the
diagonal and positive above. The horizontal line depicts the hypothetical
separation if the genetic correlation reflects patterns of selection. The
dashed areas represent the range under which the sign of p predicted by
the model is the opposite of what would be predicted from patterns of
selection alone. The top horizontal line represents our scenario 1 (pure
selection on solicitation), and the bottom horizontal line represents our
scenario 2 (pure selection on provisioning).
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Additive genetic value for
offspirng solicitation (a,)

3 2 1 0 1 2 3
Additive genetic value for
parental provisioning (ap)

3 2 1 0 1 2 3
Additive genetic value for
offspring solicitation (a,)

Relative lifetime fitness (w,) or frequency

3 2 1 0 1 2 3
Additive genetic value for
parental provisioning (a,)

Figure 3: Numerical example of a fitness surface (A) describing relative
fitness as a function of all possible combinations of additive genetic values
for offspring solicitation and parental provisioning when v, = —0.7,
¥, = 0, m, = —0.9, and o, = 0.3. Light color indicates high fitness;
dark color indicates low fitness. The dashed lines represent average trait
combinations in the absence of a genetic correlation and from the per-
spective of both solicitation (vertical line) and provisioning (horizontal
line). The bold solid line stands for trait combinations due to the genetic
correlation, p, calculated on the basis of the same parameter values. The
individual fitness plots corresponding to the cross sections along these
lines are shown from an up-front perspective for (B) offspring solicitation
and (C) parental provisioning. In these two figures, solid lines represent
fitness functions with the genetic correlation, and the dashed lines rep-
resent the fitness function in the absence of a genetic correlation. The
dotted lines represent the normal distribution of additive genetic values
for solicitation (in B) and provisioning (in C). The axes are in units of
standard deviations from the trait means.

the genetic correlation in our model is always in the di-
rection of the ridge’s orientation, the two never fully match
under the assumptions of our model. Comparing the in-
dividual fitness functions with and without genetic cor-
relation shows that coadaptation nevertheless always leads
to higher average fitness of a hypothetical population both
during the offspring (fig. 3B) and during the parental stage
(fig. 3C). The total beneficial effect of coadaptation on
individual fitness over a lifetime corresponds to a com-
bined effect of the two life-history stages. Although figure
3 depicts a numerical example under which a positive
genetic correlation evolves, the same conclusion holds for
situations favoring negative genetic correlations, that is,
that the coadaptation relaxes stabilizing selection on the
traits.

Discussion

Our understanding of the evolution of behavioral inter-
actions has been well informed by investigations of how
selection influences phenotypic outcomes, but compara-
tively little attention has been paid to how the genetic
architecture of behavioral traits evolves. Recent theoretical
work addressing the evolution of social interactions sug-
gests that a consideration of genetic influences will yield
additional insights because social traits are inherited and
also act as environments (Moore et al. 1997; Wolf et al.
1998; Kolliker 2005; Linksvayer and Wade 2005). Here, we
present the first quantitative genetic model of parental
supply and offspring demand incorporating reciprocal
parent-offspring interactions as indirect genetic effects
(Moore et al. 1997; Wolf et al. 1998). The model shows
that patterns of stabilizing selection involved in the evo-
lutionary maintenance of parent-offspring interactions af-
fect the genetic architecture of parental provisioning and
offspring solicitation.

Parents, through their provisioning, may be a partially
heritable social environmental component to the expres-
sion of solicitation (Wolf et al. 1998); offspring, through
their solicitation, may act as a partially heritable social
environment to the expression of provisioning (Kolliker
2005). If selection acts purely on offspring solicitation, the
genetic correlation will reflect offspring adaptation to the
genetic variation in the parental provisioning environ-
ment. Because only offspring of strongly provisioning par-
ents can afford to express high demand (which under this
scenario is costly), a positive correlation is expected. Con-
versely, if stabilizing selection acts purely on parental pro-
visioning, the correlation reflects parental adaptation to
the variation in the offspring solicitation environment.
With selection on provisioning, strongly provisioning par-
ents with less demanding offspring fare better because the
combination prevents overly costly investment, and the



high demand of offspring (which under this scenario is
not costly) from low-provisioning parents ensures ade-
quate food supply (Wolf and Brodie 1998). This scenario
suggests that a negative genetic correlation will evolve.

These verbal arguments are partly confirmed by our
model, but the results are more complex, in particular
under the more realistic scenario of simultaneous selection
on solicitation and provisioning. The sign of the emerging
genetic correlation depends on an interaction between the
proximate mechanisms regulating the parent-offspring in-
teraction and the relative strengths of stabilizing selection
during the offspring versus parental life-history stages. The
proximate nature of the parent-offspring interaction was
incorporated in our model as a reciprocal feedback inter-
action (Hussell 1988; Moore et al. 1997; Parker et al. 2002b;
Kolliker 2003), where the parental effect coefficient m,,
mediates the effect of provisioning on solicitation, and the
offspring effect coefficient o,, mediates the effect of solic-
itation on provisioning (Kolliker 2005). As in previous
models (Kirkpatrick and Lande 1989; Moore et al. 1997;
Wolf and Brodie 1998), we set these coefficients as fixed
model parameters. Allowing m,, and o, to be part of the
evolutionary coadaptation between parental supply and off-
spring demand adds considerable complexity to the model
(Kolliker 2005) and is an interesting future extension.

We performed a broad numerical exploration of our
model. Because an overall positive response by parents
(0,,> 0) is usual for interactions among begging offspring
and provisioning parents, we concentrate our discussion
on the model’s predictions for positive values of o,. If
parental provisioning tends to decrease offspring demand
(i.e., m,, is negative), the genetic correlation, p, is predicted
to be positive when stabilizing selection acts purely on
offspring solicitation (fig. 1A, upper right quadrant) and
negative when stabilizing selection acts purely on parental
provisioning (fig. 1C, lower right quadrant). Such a phe-
notypic feedback is expected, for example, if parental food
provisioning leads to satiation in the offspring, and sati-
ation reduces the intensity of solicitation (Godfray 1991;
Parker et al. 20024). Such hunger/satiation effects on oft-
spring solicitation have been reported widely in birds,
mammals, and insects (Weary and Fraser 1995; Kilner and
Johnstone 1997; Mock and Parker 1997; Agrawal et al.
2001; Budden and Wright 2001; Royle et al. 2002; Wright
and Leonard 2002; Smiseth and Moore 2004), and many
systems with parent-offspring interactions involving de-
mand and supply may fall into this range of parameter
values of our model (Parker et al. 2002b; Kolliker 2003).

The predictions of our model differ to some extent if
the coefficient describing the effect of parental provision-
ing on offspring solicitation, m,, is positive, for example,
if provisioning results in enhanced growth, and larger off-
spring beg more because they may be more competitive
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and pay lower begging costs (Mock and Parker 1997; Kil-
ner 2001), or if parents maximize fitness returns on in-
vestment by preferentially provisioning high-quality off-
spring rather than “needy” ones (Cotton et al. 1999). The
sign of p is predicted to be negative under these conditions,
irrespective of whether stabilizing selection acts during the
offspring (fig. 1B, lower right quadrant) or the parental
stage (fig. 1D, lower right quadrant).

Effects of Coadaptation on Individual Fitness

The genetic correlation that evolves through coadaptation
increases individual mean fitness during both the offspring
and the parental stage. If the parameter values are such
that a negative p is favored, the negative genetic correlation
relaxes stabilizing selection, and if parameters are such that
a positive p is favored, the positive genetic correlation
relaxes stabilizing selection. A few studies using cross-
fostering experiments show that, as predicted, genetic (co-
adapted) parent-offspring combinations do better on av-
erage than fostered parent-offspring combinations (Hager
and Johnstone 2003; Lock et al. 2004).

In our model, p was generated only through linkage
disequilibrium, but this process was not strong enough to
allow full alignment of the G matrix to the ridge of the
fitness surface. It is likely that lack of alignment is influ-
enced by our assumption of random mating, which dis-
rupts linkage disequilibrium each generation (Lande 1984;
Tallis and Leppart 1988; Wolf and Brodie 1998). Relaxing
this assumption by allowing for assortative mating with
respect to one or both traits or allowing for some inbreed-
ing, either of which increases the magnitude of covariation
among traits and the cross-generational transmission of
linkage disequilibrium (Tallis and Leppart 1988), will en-
hance the buildup of p (Lande 1984). To illustrate this
point, we simulated the genetic correlation under the pa-
rameter values used for figure 3 but altering the coefficient
of relatedness, r, from 0.5 to 0.7. As a result, the predicted
value for p increased from 0.1 to 0.26, which represents
a quite substantially enhanced alignment to the fitness
surface.

Our model does not address how pleiotropic mutations
or physical linkage among loci might add to the genetic
correlation (Lande 1984). However, pleiotropic mutations
affecting the expression of offspring solicitation and pa-
rental provisioning simultaneously (or physical linkage
among those loci) would be favored if their effects are
congruous with the orientation of the fitness surface
(Lande 1984). A recent study in mice has demonstrated
positive pleiotropic effects of the gene Peg3 on maternal
care behaviors including milk letdown and pup suckling
efficiency (Curley et al. 2004). A special class of pleiotropic
genes potentially enhancing parent-offspring coadaptation
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is maternal effect genes that are solely expressed in the
mother but affect both the mother’s provisioning and the
offspring’s solicitation. The effect on solicitation may be
passed on to the offspring through cytoplasmatic com-
ponents in the oocyte (Wade 1998) and/or hormones
(Schwabl and Lipar 2002). A potential example may be
the maternal hormones deposited in egg yolk of many bird
species (Schwabl and Lipar 2002), although little is known
about the covariance between provisioning and begging
caused by genetic variation in maternal hormone titers.

The Genetic Correlation as a Testable Signature
for Patterns of Selection?

The predictions of our model suggest that the sign of the
genetic correlation under certain conditions reflects pat-
terns of selection involved in the maintenance of parent-
offspring interactions. Given that selection can be difficult
to measure under field conditions, such an indicator could
be very useful to help indirectly infer patterns of selection
involved in parent-offspring interactions and to suggest
when investigating stabilizing selection might prove in-
formative. Thus, our model provides a testable hypothesis
of how selection maintains traits in parent-offspring in-
teractions and influences the genetic architecture under-
lying such phenotypes.

Because the predicted sign of p is also critically depen-
dent on m,, and o,, a detailed knowledge of the proximate
mechanisms regulating the parent-offspring interaction is
required. Currently available empirical estimates of m,and
0, are often restricted to short-term effects that may be
weakened, or even countered, in the long run because of
age, body condition, sibling competition, or learning
(Price et al. 1996; Kolliker 2003; Wells 2003; Royle et al.
2004). In our model, m,, and o, are net measures of the
effects of parents on offspring and offspring on parents
over the total time the parent and its (batch of) offspring
interact (Kolliker 2003). A detailed discussion on exper-
imental design for estimating m,, and o,, is provided by
Kolliker (2003).

Even with knowledge of the signs of these parameters,
there is still 25% of the parameter space of our model
where the sign of p does not simply reflect selection (fig.
2). The ability to infer patterns of selection based on p
depends on the ratio o,,/m,, With the additional infor-
mation on the population means for m,, and o,, the like-
lihood for the sign of the correlation acting as a signature
of selection can be increased. If a positive p co-occurs with
an absolute value for o, equal to or larger than m,, se-
lection on solicitation must dominate coadaptation. Con-
versely, if a negative p and |o,,| < |m,,| are found, p cor-
rectly identifies that selection on provisioning prevails.
Experiments that estimate the genetic correlation gain con-

siderable interpretational strength by investigating in detail
the potentially complex proximate mechanisms regulating
parent-offspring interactions.

As in any empirical test of a theoretical model, exper-
imental estimation of the genetic correlation requires con-
trolling for potential confounding factors. In addition to
the usual and critical dissection of environmental and ge-
netic components of the covariation (e.g., Lynch and Walsh
1998), the genetic correlation between solicitation and
provisioning is potentially confounded by genetic covari-
ation with other traits, for example, clutch size, offspring
body condition, or parental body condition (Kolliker et
al. 2000; Lock et al. 2004).

Coadaptation and Variation in Life Histories

We expect stabilizing selection on offspring solicitation to
be stronger when brood/littermates compete for parental
resources because of the usually greater solicitation costs
involved with direct sibling rivalry (Rodriguez-Gironés
1999; Parker et al. 20024; Royle et al. 2004). Although our
model does not explicitly incorporate sibling competition
as a factor shaping stabilizing selection on offspring so-
licitation, it is an unspecified component of the total sta-
bilizing selection gradient <. The (still few) empirical
studies that estimate the genetic correlation between so-
licitation and provisioning fit this expectation and the pre-
dictions of our model. In species with the potential for
scramble competition through solicitation (i.e., multiple
offspring families), including great tits (Parus major; Kol-
liker et al. 2000), mice (Hager and Johnstone 2003; Curley
et al. 2004), and burying beetles (Nicrophorus vespilloides;
Lock et al. 2004), positive genetic associations are found.
Conversely, in species with very few (often a single) off-
spring per reproductive attempt, including rhesus ma-
caques (Macaca mulatta; Maestripieri 2004) and sheep
(Dwyer and Lawrence 1998), or in species where the pa-
rental resource is provided to the clutch as a whole, pre-
cluding scramble competition through solicitation (bur-
rower bugs, Sehirus cinctus; Agrawal et al. 2001), negative
genetic associations are reported.

On the other hand, stabilizing selection on parental pro-
visioning may depend in part on whether the species is
long-lived and iteroparous, where parents must carefully
allocate their resources among multiple reproductive at-
tempts to maximize lifetime reproductive success. This
trade-off may be less important in short-lived species tend-
ing toward semelparity. The prediction for a positive p
would be particularly strong in short-lived species with
direct sibling rivalry directed at parents through solicita-
tion. A negative genetic correlation would seem most likely
to occur in long-lived species with single offspring per
reproductive attempt.



Additional factors not considered in our model can po-
tentially affect the pattern of coadaptation between solic-
itation and provisioning. For instance, it has been pro-
posed that a positive genetic correlation might arise
because of antagonistic coevolution between the sexes
driven by sexual conflict over parental investment (Hager
and Johnstone 2003; Royle et al. 2004). Also, the genetic
correlation does not necessarily always follow patterns of
selection as predicted by our model if pleiotropy or close
physical linkage is present. In such cases, genetic corre-
lations are expected to respond slowly to changes in se-
lection patterns (contrary to a genetic correlation due to
linkage disequilibrium) and thus may constrain parent-
offspring coadaptation at least in the shorter term. Finally,
close physical linkage of solicitation, provisioning, or both
with other traits could constrain coadaptation and affect
the genetic correlation. Nevertheless, our model provides
new insights into how patterns of stabilizing selection in-
volved in the maintenance of parent-offspring interactions
may shape the genetic architecture of parental supply and
offspring demand.

Conclusions

Current theory for the evolution of family interactions is
derived predominately from phenotypic models and em-
phasizes the evolutionary resolvability of parent-offspring
and sibling conflicts (Godfray 19954; Mock and Parker
1997; Royle et al. 2002). The consequences of continuous
regeneration of variation (e.g., through mutation) on the
evolutionary maintenance of a state of resolved conflict
have not been studied in detail (Cheverud and Moore
1994; Godfray and Johnstone 2000). Our indirect genetic
effect model complements current theory by focusing on
this aspect and explores the impact of patterns of selection
on the genetic variance-covariance structure of solicitation
and provisioning traits. It provides a theoretical basis to
account for the diversity in family interactions observed
within and between species as well as testable hypotheses
for the genetics and evolution of social interactions within
families.
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