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Manuela Mally 

Summary 

We show that C. canimorsus (Cc) can serve as a recipient for RP4 mediated 

conjugation but there is neither replication of broad host range plasmid vectors nor 

expression of commonly used E. coli markers in C. canimorsus.  We identified three 

selection markers, ermF, tetQ and cfxA leading to resistance against erythromycin, 

tetracycline and cefoxitin, respectively, that can be used in C. canimorsus.  We 

engineered expression shuttle vectors using the replicon of a endogenous plasmid 

found in strain Cc7 and the promoter of one of the selection markers for gene 

expression.  We developed a transposon mutagenesis strategy based on Tn4351 

from Bacteroides fragilis and protocols for allelic exchange and electrotransformation.  

We carried out an extensive transposon mutagenesis and screened these mutants 

for different properties. 

 We demonstrate that presence of mammalian cells, including phagocytes, 

favors growth of C. canimorsus 5 and this property was found to be dependent on 

direct cellular contacts.  We isolated a Tn mutant unable to grow in presence of 

mammalian cells.  The mutation occurred in a gene encoding a sialidase.  The 

surface-exposed sialidase allows Cc5 to feed on internal aminosugars of glycan 

chains from host cell glycans.  In addition, sialidase confers resistance to 

complement by promoting the binding of factor H.  We developed an experimental 

mouse infection in which the read-out is bacterial persistence.  In this infection 

model, Cc5, but not the sialidase deficient mutant, grew and persisted, showing the 

importance of this metabolic pathway in vivo. 

C. canimorsus by itself does not elicit the onset of an inflammatory response 

from macrophages.  One strain, Cc5 turned out to have a mechanism that actively 

blocks the pro-inflammatory signaling of macrophages upon stimulation with 

endotoxic LPS.  We screened the Tn mutant library for clones of Cc5 affected in this 

active mechanism.  Isolated mutants have been mapped, characterized and 

complemented.  The function of the mutated genes is presently under investigation 

as well as the mode of action of its gene product(s). 

The prevalence of C. canimorsus in dogs has not been clarified at present. 

We therefore sampled dog swabs to isolate C. canimorsus strains in Swiss dogs.  

We could identify 61 C. canimorsus isolates from 103 dogs, which represents 

59.22% of the dogs tested.  

Besides this I also contributed to the analysis of LPS, to the study of 

resistance of Cc5 to complement mediated lysis, to sequencing of the genome, the 

assembly of the reads and the annotation. 
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Infections caused by Capnocytophaga canimorsus  

It has been estimated that every second person is bitten by an animal or by 

another human once per lifetime in the US (Griego et al., 1995).  Although the 

majority of bite wounds are minor and do not need medical treatment, 1% of the 

total costs from emergency treatments result from bite wound cases.  Infections of 

bite wounds are rare (5- 10%) and the overall mortality is around 6 out of 100 

millions of cases annually in the US.  Most of the infections are due to Pasteurella, 

Streptococcus and Staphylococcus sp.  80- 90% of all bite wounds are inflicted by 

dogs and this statistically accounts for 1 out of 20 dogs that will bite a human 

being during a dog’s lifetime (Griego et al., 1995).  The second most common type 

of mammalian bite wounds are caused by cats, leading to an estimated 400,000 

incidents per year (Griego et al., 1995). 

Capnocytophaga canimorsus (formerly Centers for Disease Control group 

DF-2) is rarely but regularly isolated from dog or cat bite infections since its 

discovery in 1976 (Bobo and Newton, 1976; Brenner et al., 1989).  C. canimorsus 

is a fastidious, thin, gram-negative rod, found as part of the normal oral flora of 

dogs and cats.  Clinical infections by C. canimorsus generally appears as 

fulminant septicemia and peripheral gangrene (Pers et al., 1996).  The initial 

symptoms are fever, vomiting, diarrhea, malaise, myalgia, abdominal pain, 

dyspnea, confusion and headache.  Symptoms of skin manifestations such as 

maculopapular rash and purpura are commonly associated to C. canimorsus 

infections (Hermann et al., 1998; Lion et al., 1996).  Renal failure can be caused 

by disseminated intravascular coagulation or hypotension resulting from systemic 

infection (Mulder et al., 2001).  Meningitis is not as common as septicemia but well 

documented in the literature.  Meningitis is accompanied by headache and 

meningism, but rarely by fever (Le Moal et al., 2003).  C. canimorsus can also, but 

less commonly, lead to endocarditis and myocarditis with a mortality rate of 25% 

(Sandoe, 2004).  Fatality rate of systemic infections is as high as 30% (Lion et al., 

1996), while the mortality rate for meningitis is lower (5% [1 of 19]) (Le Moal et al., 

2003).  C. canimorsus could be also identified from cultures of pleural fluid from a 

patient that had developed pneumonia (Chambers and Westblom, 1992). 

Approximately 60% of the patients had a predisposing condition and the 

most prevalent was splenectomy (33% of systemic cases).  Other cases have 

been associated with alcohol abuse (24%) or other immunosuppression (5%).  
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Trauma, Hodgkin’s disease, idiopathic thrombocytopenic purpura, steroid therapy 

and chronic lung disease have been described as identifiable factors for increased 

risk.  However, 40% of infections occurred in patients without any known risk 

factor.  Although the majority of infections are associated to immunocompromised 

hosts, mortality is actually higher in patients without the predisposing conditions 

mentioned before (32% versus 28%).  The reason for this phenomenon is unclear 

(Lion et al., 1996).  Thus, infections with C. canimorsus have to be considered not 

only as opportunistic infections.  In one case, a patient died from a secondary 

infection by Aspergillus niger, suggesting that C. canimorsus may have induced 

some sort of immunosuppression (lePolain JB, personal communication). 

Every year in Switzerland there are several cases of C. canimorsus 

infections (Trampuz A, personal communication) but no statistics are available for 

this disease.  It has been estimated that every fourth dog carries C. canimorsus in 

its normal oral flora (Westwell et al., 1989).  There are more than 160 described 

cases of human patients infected with C. canimorsus and only one case of a dog 

infected with C. canimorsus followed by a dog bite has been reported recently 

(Meyers et al., 2007). 

Although there is a high occurrence of C. canimorsus in dogs, the number 

of documented clinical infections remains very low.  Low virulence and 

susceptibility to antibiotics frequently used for post-dog bite prophylaxis may result 

in fast clearance after infection.  At present, dramatic infections are well known by 

clinicians and are therefore less frequently reported in the literature.  Nonetheless, 

there have been increasing reports of cases described in the past years (Janda et 

al., 2006).  In Denmark already between 1982 and 1995, the incidence was 

estimated to be 0.5 to 1 case annually per million (Pers et al., 1996).  This infers 

that a country like Switzerland faces around one fatal case per year. 

What finally discriminates a virulent strain isolated from fatal cases from 

strains found in the dogs oral cavity needs to be elucidated.  It is unclear how C. 

canimorsus can manipulate immune recognition after transmission and how 

bacteria can multiply up to a number, which finally results in fatal disease after 

silent entry without obvious symptoms.  Taken together, this emphasizes the need 

for molecular studies on pathogenesis of C. canimorsus. 
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Taxonomic position of Capnocytophaga canimorsus  

Capnocytophaga belongs to the phylum of Bacteroidetes.  Taxonomically, 

the Bacteroidetes phylum is far remote from Proteobacteria and the common 

human pathogens.  The phylum of Bacteroidetes includes Porphyromonas 

gingivalis, bacteria from human oral flora often associated to periodontal disease.  

The family of Bacteroidaceae contains many commensals of the mammalian 

intestinal system such as Bacteroides fragilis, Bacteroides thetaiotaomicron and 

Bacteroides fragilis.  Prevotella ruminicola represents a ruminal inhabitant.  The 

family of Flavobacteriaceae includes a variety of environmental and marine 

bacteria (Fig. 1) (Coyne and Comstock, 2008), among which Flavobacterium 

johnsoniae a common soil and freshwater bacterium is studied for gliding motility 

(McBride, 2004).  There are only a few examples of pathogenic bacteria belonging 

to this family.  These are Flavobacterium psychrophilum the causative agent of 

cold water disease in salmonid fish (Duchaud et al., 2007), Ornithobacterium 

rhinotracheale a bacterial pathogen known for causing respiratory disease in 

poultry (Schuijffel et al., 2005) and Riemerella anatipestifer leading to “duckling 

disease” in waterfowl and turkeys (Segers et al., 1993; Subramaniam et al., 2000).  

Finally, the family of Flavobacteriaceae includes the genus of Capnocytophaga.  

Nine species belong to Capnocytophaga and seven of them are found in normal 

human oral flora.  C. canimorsus and C. cynodegmi are canine and feline 

commensals, but only C. canimorsus is associated with severe human infections. 
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Fig. 1 16S rRNA gene cladogram of members of the Bacteroidetes phylum for which there is a 

partial or complete genome sequence.  Members of the Bacteroidales order are shown in color.  

The three families of Bacteroidales present in this cladogram are indicated on the right.  Within the 

Bacteroidales order, oral species are in blue, the ruminal species is in green, and the intestinal 

species are in red (Coyne and Comstock, 2008). 

 

Studies on the pathogenesis of Capnocytophaga canimorsus  

Few studies so far investigated the molecular basis underlying severe 

infections caused by C. canimorsus (Fischer et al., 1995; Shin et al., 2007).  Since 

2003, the group of G. Cornelis undertook elucidation of the molecular basis 

underlying C. canimorsus infections.  The first finding was that C. canimorsus by 

itself does not elicit the onset of an inflammatory response.  We showed that 

extracellular C. canimorsus did not lead to release of signals like IL1-alpha, IL1-

beta, IL-6, IL-8, MIB-1beta, RANTES and TNF-alpha, from either naïve or 

activated murine macrophage cell line J774.1, bone-marrow derived 

macrophages, human macrophage cell line and human monocytes.  This could be 

explained by the absence of Toll like receptor 4 (TLR4) recognition, presumably 

due to a hypo-reactive LPS structure.  Even more, one strains, Cc5 turned out to 

have a mechanism that actively blocks the pro-inflammatory signaling upon 

stimulation with endotoxic LPS.  Live Cc5 has been shown to down-regulate TLR4 

expression and to dephosphorylate p38 mitogen-activated protein kinase (Shin et 

al., 2007).  The study on the pathogenesis of C. canimorsus could however not be 

done without efficient genetic tools.  It was my task to develop the methods that 

allow genetic manipulation of C. canimorsus to be performed.  This thesis 

describes all the necessary tools and the progress they allowed to do. 
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Chapter 1       Development of genetic tools for Capnocytophaga canimorsus 

 

1.1. Manuscript in preparation 

 

 

Genetic tools for Capnocytophaga canimorsus 

 

Manuela Mally and Guy R. Cornelis 

 

Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH- 

4056 Basel, Switzerland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondence: Professor Guy R. Cornelis 

Biozentrum, Klingelbergstrasse 50-70, CH-4056, Basel, 

Tel. secret + 41 61 267 21 21 

Tel. direct + 41 61 267 21 10 

Fax +41 61 267 21 18 

E-mail: guy.cornelis@unibas.ch 

 



 

-8- 

Abstract 

 Capnocytophaga canimorsus, commensal bacteria from canine oral flora, 

have been isolated throughout the world from severe human infections, caused by 

dog bites.  Due to the low evolutionary relation to Proteobacteria, genetic methods 

suitable for the genus Capnocytophaga needed to be established.  Here we show 

that Tn4351 derived from Bacteroides fragilis could be introduced by conjugation 

in C. canimorsus and conferred resistance to erythromycin.  By mapping and 

sequencing a naturally occurring plasmid isolated from a clinical isolate of C. 

canimorsus, we identified a repA gene, which allowed us to construct E. coli - 

Capnocytophaga shuttle vectors.  Most commonly used antibiotic markers were 

not functional in C. canimorsus but cefoxitin (cfxA), tetracycline (tetQ) and 

erythromycin (ermF) resistances could be used as markers for plasmid 

maintenance in Capnocytophaga.  Shuttle vectors were introduced into C. 

canimorsus either by conjugation using the origin of transfer (oriT) of RP4 or by 

electrotransformation.  Taking advantage of the promoter of ermF, an expression 

vector was constructed.  Finally, a method that allows site directed mutagenesis is 

described.  All these genetic tools pave the way for molecular studies on the 

pathogenesis of C. canimorsus. 

 

Introduction  

Capnocytophaga canimorsus is a commensal bacterium found in the oral 

cavity of dogs and cats.  Since its discovery in a patient that had developed 

septicemia and meningitis after a dog bite in 1976 (5), more than 160 cases of 

severe human infections by Capnocytophaga canimorsus have been reported 

(35).  Human infections can result in septicemia or meningitis with mortality rates 

of 30% and 5%, respectively (19).  Bacteria from the genus Capnocytophaga form 

part of the resident oral flora of humans and domestic animals (7).  Seven species 

including C. ochracea and C. gingivalis are found in normal human oral flora, 

whereas the dog’s oral flora contains C. canimorsus and C. cynodegmi.  In spite of 

this diversity, C. canimorsus is the only Capnocytophaga that has been associated 

to severe human infections.  Recently, we started to unravel the molecular 

mechanisms underlying C. canimorsus infections (23, 30), but we had to establish 

genetic methods adapted to this group of bacteria.  Capnocytophaga belongs to 

the family of Flavobacteriaceae in the phylum of Bacteroidetes.  Many genetic 
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methods that function in Proteobacteria have been shown to fail in Bacteroidetes 

(28) and commonly used broad host range plasmids did not result in ampicillin 

resistant (Apr), tetracycline resistant (Tcr) or kanamycin resistant (Kmr) colonies of 

Flavobacterium johnsoniae (21).  However, transposons and selectable markers 

identified and used in Bacteroides sp. (32, 34) have been successfully adapted for 

the family of Flavobacteriaceae (3, 20, 21).   

In the present work, we describe the tools necessary to genetically 

manipulate Capnocytophaga sp.  Taking advantage of genetic methods originating 

from Bacteroides sp., we established ways to introduce DNA using functional 

selection markers and to perform transposon mutagenesis.  Finally, we identified 

an endogenous plasmid in a clinical isolate of C. canimorsus and we generated 

the first shuttle vectors that allow plasmid replication in Capnocytophaga sp.  

 

Materials and Methods  

Bacterial strains, growth conditions and selective agents 

The strains and plasmids used in this study are shown in Table 1.  E. coli strains were 

routinely grown in LB broth at 37°C. Capnocytophaga sp. were grown on plates of Heart Infusion 

Agar (HIA, Difco) supplemented with 5% sheep blood  (Oxoid) (SB plates) for 2 days at 37°C in 

presence of 5% CO2.  Bacteria were harvested by gently scraping colonies off the agar surface, 

washed and resuspended in PBS.  C. canimorsus was alternatively grown in 50 ml Heart Infusion 

Broth (HIB, Difco) supplemented with 10 % (v/v) fetal bovine serum (FBS, Invitrogen) for 

approximately 24 h without shaking in an 37°C incubator with 5% CO2 using Erlenmeyer flasks.  To 

select for plasmids or transposons, antibiotics were added at the following concentrations: 10 μg/ 

ml erythromycin (Em); 10 μg/ ml cefoxitin (Cf); 20 μg/ ml gentamicin (Gm); 100 μg/ ml ampicillin 

(Ap); 5 μg/ ml tetracycline (Tc); 50 μg/ ml kanamycin (Km) and 10 μg/ ml chloramphenicol (Cm). 

 

Conjugation 

E. coli strains BW19581 and S17-1 used for conjugative transfer of mobilizable plasmids 

were grown without antibiotics to early exponential phase in LB.  C. canimorsus, which are 

naturally resistant against Gm, were grown for 2 days on SB plates at 37°C and harvested by 

scraping.  Bacteria were washed and resuspended in PBS.  Donor and recipient were mixed in 

1:10 ratio, centrifuged for 2 min at 8 000 x g, resuspended in 50 μl of PBS, and 2.2 x 10
8
 cfu were 

spotted on 22 μm mesh nitrocellulose filters (Millipore) laid on the surface of a SB plate.  The plates 

were incubated overnight in 5 % CO2 at 37°C.  Each filter was washed with 2 ml of HIB and 10% 

FBS containing Gm, kept for 1 h at room temperature and bacteria were diluted and plated on 

selective SB plates containing Gm and the appropriate antibiotic to select for plasmid or transposon 

transfer.  Plates were incubated for 2 to 3 days. 
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Electroporation 

C. canimorsus was grown in HIB and 10% FBS overnight to early or mid exponential phase 

without shaking, cooled to 4°C and harvested by centrifugation at 5 500 x g for 15 min at 4°C, 

washed 3 x in ice cold, double distilled (dd) H2O and twice in dd H2O plus 10% glycerol, and 

resuspended to a cell density of approximately 1x 10
10

/ml in 10% glycerol.  After shock freezing in 

liquid nitrogen, bacteria were either thawed and used for transformation or stored at -80°C.  

Plasmid DNA was added to 100 μl of bacterial suspension in BioRad Genepulser cuvettes with 0.2 

cm electrodes and pulsed with 2.5 kV.  After electroporation, bacteria were transferred to 900 μl 

prewarmed HIB and 10% FBS and incubated at 37°C for 2 to 3 h to allow expression of antibiotic 

resistance.  Bacteria were plated on SB plates with the appropriate antibiotic and incubated for 2 to 

3 days. 

 

Analysis of Tn4351 insertions 

Tn4351 was introduced into C. canimorsus by conjugation as described above.  Genomic 

DNA from Em
r
 colonies was isolated with the GenElute

TM
 Bacterial Genomic DNA kit (Sigma) 

following the manufacturer's instructions, digested with HindIII and analyzed by Southern 

hybridization using standard procedures (29).  IS4351 probes were prepared by PCR amplification 

using primers 3505 and 3506, plasmid pEP4351 DNA as a template and DIG -11- dUTP (Roche) 

according to the manufacturer’s recommendations.  To test for vector cointegration, the 

chloramphenicol acetyltransferase gene (cat), which is present on the Tn4351 delivery vector 

pEP4351, was amplified as a 633-bp PCR product from genomic DNA using primers 3576 and 

3577.  All primers used are listed in Table 5. 

 

Isolation and identification of naturally occurring plasmids in C. canimorsus 

Plasmids were isolated from Capnocytophaga sp. by hot alkaline lysis (14) or alkaline lysis 

in combination with Qiagen columns (QIAprep® Spin Miniprep Kit, Quiagen).  For analysis of 

pCC7, a 1.95-kb HindIII - EcoRI fragment was inserted into the corresponding restriction sites of 

the cloning vector pBSIIKS+ resulting in pMM7 that was subsequently sequenced.  Based on the 

sequence information obtained, the native pCC7 plasmid was sequenced by primer walking (Fig. 

1A) using BigDye Terminator Ready Reaction (PE Biosystems) and primers (3574, 3575, 3601, 

3623, 3625, 3626, 3639, 3641, 3675, 3676, 3677 and 3678) described in Table 5.  Results were 

analyzed using the Vector NTI 10.0 software (Invitrogen). 

 

Directed gene replacement by allelic exchange 

The replacement cassette with flanking regions spanning approximately 500 bp 

homologous to the siaC gene was constructed with a 3 fragment overlapping PCR strategy (Fig. 

3A).  First, two PCR reactions were performed on 100 ng genomic DNA of C. canimorsus 5 with 

primers 4783 + 4784 for the upstream flanking region of siaC and with primers 4787 + 4788 for the 

downstream homologous regions to siaC.  Primer 4784 for the upstream siaC region and primer 

4787 for amplification of the downstream siaC region contained 20 bp homology sequence to the 
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ermF insertion cassette as 5’ extension.  The ermF resistance cassette was amplified from 

pEP4351 with primers 4785 + 4786, which contained as 5’ extensions 30 bp of the siaC gene.  All 

three PCR products were cleaned and then mixed in equal amounts for a PCR reaction using 

PhusionTM polymerase (Finnzymes).  The initial denaturation was at 98°C for 2 min, followed by 12 

cycles without primers to allow annealing and elongation of the overlapping fragments (98°C 30 

sec, 50°C 40 sec, 72°C 2 min).  After addition of external primers (4783 and 4788), program 

continued with 20 cycles (98°C 30 sec, 50°C 40 sec, 72°C 2 min 30 sec) and final 10 min at 72°C.  

The final PCR product linking the three initial fragments led to the siaC::ermF insertion cassette 

and was then digested with the PstI and SpeI for cloning into the appropriate sites of C. canimorsus 

suicide vector pMM25.  The resulting plasmid pMM106 was transferred by RP4 mediated 

conjugative DNA transfer from E. coli S17-1 to C. canimorsus 5 as previously described to allow 

integration of the insertion cassette by its homologous regions to siaC. 

 

Immunoblotting 

Total cell extracts were analyzed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunoblotted according to standard procedures.  Monoclonal 

antibody against C-terminal His was purchased from Invitrogen and polyclonal anti-SiaC serum is 

described elsewhere (Manuscript in preparation). 

 

Nucleotide sequence accession number 

The sequence of pCC7, which is reported here, has been deposited in the GenBank database 

under accession number EU741249. 

 

Results 

Conjugative DNA transfer 

We first tried to introduce IncP and pBBR1 broad host range vectors into C. 

canimorsus 5 (Table 1) by conjugative DNA transfer.  Conjugation proficient E. coli 

strains (Table 1) were used to mobilize pMR20 (IncP; Tcr), pBBR1MSC3 (Tcr) or 

pBBR1MSC4 (Apr), but no C. canimorsus transconjugant could be isolated.  Next 

we constructed pBBR1 derivatives (pMM2 and pMM3) with randomly cloned 

genomic DNA (500- 650 bp) of C. canimorsus 5 in order to allow plasmid 

integration by cross over, but no Apr colonies were found, hinting that either 

conjugation did not occur or that the selection marker was not expressed in C. 

canimorsus.  Since C. canimorsus belongs to the family of Flavobacteriaceae, we 

tested plasmid pCP29 derived from a natural plasmid of Flavobacterium 

psychrophilum and containing the Emr gene ermF.  This plasmid, which has been 

shown to replicate in F. johnsoniae, was transferred by a RP4 mediated system 
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from E. coli S17-1 to E. coli recipient strains and to F. johnsoniae but no Emr C. 

canimorsus transconjugant colony could be obtained.  To ensure that this failure 

was due to the replication origin and not to the selection marker or the DNA 

transfer itself, we turned to transposon Tn4351.  Tn4351 carrying the ermF gene 

was isolated in 1985 from pBF4, a self-transmissible plasmid from Bacteroides 

fragilis (32).  As a delivery vector for Tn4351 we used plasmid pEP4351, which 

can be mobilized from E. coli BW19851 by the chromosome encoded RP4 

conjugation machinery.  Emr transconjugants of C. canimorsus 5 could be isolated 

in this way, showing first that conjugation works as a method to transfer DNA into 

C. canimorsus and second, that ermF is expressed and can be used as a 

selection marker.  This result also suggested that pCP29 from F. psychrophilum 

did not replicate in C. canimorsus 5.  We then cloned the ermF gene including its 

own promoter into pBBR1MCS4 giving pMM5 and used E. coli S17-1 as a donor 

strain to transfer pMM5 to C. canimorsus 5.  No Emr colonies of C. canimorsus 

appeared after conjugation demonstrating that the pBBR replicon is not functional 

in C. canimorsus. 

 

Generation of replicating shuttle vectors for C. canimorsus 

In order to find a plasmid that can replicate in C. canimorsus, we screened 

eight C. canimorsus strains (Table 1) for the presence of endogenous plasmids.  

Two plasmids were identified in strain C. canimorsus 7 (not shown).  The smaller 

plasmid designated pCC7 was sequenced (4579 bp) (Fig. 1A).  Blast homology 

search revealed a gene encoding a putative replication protein with homology to 

replicases of C. ochracea, B. fragilis and B. vulgatus (repA, 1074 bp) (Table 2).  

The gene product of a 1125-bp long open reading frame (designated orf CC7p_3) 

showed homology to ISPg1 transposase from Porphyromonas gingivalis 

(ref|NP_904520.1|). 

We generated shuttle vectors by amplifying this repA gene including 408 bp 

of its upstream region and inserting into pLYL03 that contains ermF and the origin 

of transfer of RK2.  The resulting vector pMM105.A could be mobilized by the RP4 

mediated conjugation machinery from E. coli S17-1 to C. canimorsus 5 with 

transfer frequencies of around 10-4 per recipient (Table 3).  This plasmid could also 

be transferred to C. canimorsus 12, but the frequency of transfer was significantly 

lower than in C. canimorsus 5 (Table 3).  The replicase gene and upstream region 
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that we isolated were thus sufficient for autonomous plasmid replication in C. 

canimorsus.   

Finally, we constructed similar shuttle vectors for C. canimorsus with a Tc 

selection marker (tetQ gene, pMM104.A) or a Cfr marker (cfxA gene, pMM45.A) 

(Table 3). 

 

Construction of an E. coli - C. canimorsus shuttle expression vector  

To generate an expression vector for C. canimorsus, a 257-bp fragment 

upstream of ermF containing the canonical -33 and -7 boxes of Bacteroides 

promoters was amplified by PCR.  Additionally, the primers used for amplification 

of the promoter region incorporated unique NcoI, XbaI and XhoI restriction sites for 

cloning purposes as well as 6 histidine codons, which allows the insertion of a 

coding sequence in or out of frame with a C-terminal His tag (Fig. 1B and 1C).  

The PCR product was digested with appropriate restriction enzymes and inserted 

in pMM41.A, creating the shuttle expression vector pMM47.A (Fig. 1B).  To test 

this vector, we cloned the promoterless siaC gene encoding a sialidase from C. 

canimorsus 5 (manuscript in preparation) into pMM47.A resulting in pMM52.  As 

shown in Fig. 3B, sialidase could be detected in crude extracts of a sialidase-

deficient Tn4351 mutant of C. canimorsus 5 ( siaC) harboring pMM52 or of a site-

directed mutant of siaC (siaC::ermF) complemented with pMM52, indicating the 

functionality of the expression vector pMM47.A. 

 

Electrotransformation as method to transfer DNA 

The shuttle vectors described above allowed us to test if 

electrotransformation could be applied as an alternative way of introducing DNA 

into C. canimorsus.  Competent bacteria were prepared by washing in ice cold 

water and 10% glycerol and giving a final cold shock by freezing in liquid N2.  In 

this way, plasmid DNA (pMM47.A) isolated from an E coli host strain could be 

transformed into C. canimorsus 5 with an efficiency of 2.1 x 103 clones per μg of 

DNA (Table 4).  A 2 min heat treatment at 56°C before electroporation was tested 

in order to prevent degradation of DNA by intracellular restriction systems but this 

treatment turned out to reduce the transformation efficiency.  The same decrease 

was observed when using MgCl2 or NaCl during the washing steps (data not 
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shown). Hence, sufficient transformation efficiency could be reached using 

electrotransformation of DNA isolated from E. coli.  

 

E. coli - C. canimorsus shuttle vectors can be introduced to C. cynodegmi, 

C. ochracea and C. gingivalis by a RP4 mediated conjugation machinery of 

E. coli 

E. coli S17-1 carrying plasmids pMM45.A (Cfr), pMM104.A (Tcr) or 

pMM105.A (Emr) were mated with C. cynodegmi, C. ochracea or C. gingivalis. 

(Table 3).  All three shuttle vectors (ermF, tetQ and cfxA) were functional in C. 

cynodegmi.  In contrast, only tetQ and ermF were functional in C. ochracea, and 

tetQ and cfxA were functional in C. gingivalis.  Although conjugation frequencies 

varied from 10-4 to 10-8 transconjugants per recipient cell depending on the 

species (Table 3), tools developed for C. canimorsus can thus be used for other 

species in this genus. 

 

Tn4351 transposition in C. canimorsus  

As shown before, Tn4351, derived from B. fragilis, could be introduced to C. 

canimorsus 5 using E. coli BW19851 to mobilize the delivery vector pEP4351 by 

conjugation.  Emr colonies of C. canimorsus 5 appeared at a frequency of 10-6 to 

10-8 per recipient.  Genomic DNA was thereafter analyzed by Southern Blot after 

HindIII restriction (Fig. 2).  For C. canimorsus 5 mutants W2E9, X7B9 and Y2F12, 

two bands hybridized with DIG labeled IS4351, while for mutant X2E4 three bands 

hybridized (Fig. 2A).  In mutant X2E4, the cat gene from the delivery vector could 

also be detected by PCR amplification indicating that a cointegration event took 

place (Fig. 2B).  We conclude that clones W2E9, X7B9 and Y2F12 contained one 

copy of Tn4351 flanked by the IS4351 sequences, while X2E4 contained one copy 

of the Tn4351, but cointegrated with the vector resulting in 3 copies of the IS4351 

as schematically represented in Figure 2C.  

 

Site-directed gene replacement using an antibiotic resistance cassette 

Taking advantage of the DNA transfer procedures and selection markers 

that we had established, we next tried to perform site-directed gene replacement.  

For the proof of principle, we selected the siaC gene as a target.  A replacement 

cassette consisting of ermF flanked by approximately 500 bp regions homologous 
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to siaC was constructed as schematically shown in Figure 3A.  The resulting 

plasmid pMM106 lacking the replicon for C. canimorsus was introduced by E. coli 

S17-1 into C. canimorsus 5.  Transconjugants selected on Em were assumed to 

have integrated pMM106 by a single recombination event at the homologous 

regions of siaC into the chromosome.  Colonies were replicated on Cf and Em, 

and Cf sensitive and Emr colonies assumed to have undergone an excising event 

of the vector backbone were picked.  The disruption of the sialidase (siaC::ermF) 

was confirmed by PCR, sequencing and immunoblotting against SiaC (Fig. 3B) as 

well as by testing the loss of sialidase activity using 2 -(4-Methylumbelliferyl)- -D-

N-acetylneuraminic acid (MUAN) as substrate (Fig. 3C).  Activity and sialidase 

expression could be restored by introducing in trans the full length gene cloned 

into the expression shuttle vector pMM47.A (Fig. 3B and 3C). 

 

Discussion 

The availability of genetic methods is crucial for the study of molecular 

mechanisms associated with the pathogenesis of bacterial infections.  In this 

study, techniques that allow the genetic manipulation of C. canimorsus were 

developed, opening the possibility of genetic analysis to bacteria of the genus 

Capnocytophaga.  We show that C. canimorsus can serve as a recipient for RP4 

mediated conjugation, but we found that the classical broad host range replicon 

pBBR1 is not functional in C. canimorsus.  The replicon from a natural plasmid of 

the closely related F. psychrophilum did not lead to plasmid replication in C. 

canimorsus either.  Therefore, we isolated and sequenced an endogenous 

plasmid from C. canimorsus 7 and identified a replication region that could be 

used to engineer shuttle vectors.  These vectors could also be used in other 

species of the genus Capnocytophaga.  Selection markers ermF, cfxA and tetQ 

originating from Bacteroides sp. could be successfully used in C. canimorsus, 

suggesting that the promoter region and the sigma factor resemble those found in 

Bacteroides sp. rather than those from E. coli (4).  This is in line with the 

assumption that the classical selection markers used in E. coli could not be used 

in C. canimorsus, presumably due to the lack of promoter recognition.  We thus 

engineered an expression vector for C. canimorsus using the promoter region of 

IS4351 with the Bacteroides consensus for -33 and -7 boxes located upstream 

from the ermF gene in Tn4351 (25). 
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For a Tn mutagenesis approach, we tested Tn4351, a transposon widely 

used in Bacteroides sp. (31), Flavobacterium sp. (20) and P. gingivalis (9-11).  

Southern Blot analysis showed that Tn4351 integrated in the C. canimorsus 

genome, either alone or as a cointegrate with its vector.  This vector coinsertion 

has been previously reported to occur in a strain dependent manner in bacteria of 

the Bacteroidetes phylum.  It has been also reported that Tn4351 does not 

integrate in a random manner (12).  For these reasons, a mariner-based 

transposon for Flavobacterium sp. was constructed by Braun et al. using ermF as 

a selectable marker (6). Although Himar insertions are reported to occur at 

positions containing the target nucleotide sequence "TA" and are usually described 

as being otherwise random (38), Himar insertions were not completely random in 

F. johnsoniae (6).  In spite of these limitations, the mariner Tn could be another 

approach for Tn mutagenesis of C. canimorsus. 

A method for directed gene disruption by allelic exchange with a resistance 

marker cassette was also developed, demonstrating that homologous 

recombination occurs in C. canimorsus.  Inserting a resistance marker cassette 

into the chromosome might influence expression of downstream genes located in 

an operon and thus limit this method in some instances.  More work has to be 

performed to generate clean knock-outs without the availability of negative 

selections markers like the levan sucrase that have been widely used in 

Proteobacteria (15, 27). 

Taken together, a collection of techniques allowing genetic manipulations in 

C. canimorsus has been established.  This will provide the basis for new 

approaches to understand the mechanisms underlying pathogenesis of C. 

canimorsus infections. 
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Figures  

 

 

Figure 1. Engineering of an expression shuttle vector from a natural C. canimorsus plasmid. 

(A) Genetic and restriction map of the endogenous plasmid pCC7 showing the primer binding sites 

used for amplification of the replicon (3601 and 4274).  The nucleotide sequence was deposited at 

GenBank under accession number EU741249.  (B) Map of the shuttle expression vector pMM47.A 

containing the cfxA gene (Cfr) for selection in C. canimorsus, the repA replicon  of pCC7 and the 

promoter of ermF (-33, -7 boxes) upstream from the NcoI, XbaI and XhoI restriction sites that allow 

insertion of a coding sequence in frame or out of frame with 6 histidine codons. Unique restriction 

sites are shown in red. (C) Partial nucleotide sequence of pMM47.A showing the promoter with its -

33 and -7 boxes (bold, underlined), the transcription initiation site (TIS, bold, italics) and the Shine 

Dalgarno (bold) (25).  Restriction sites (italics) that are unique are shown in red.  The ATG codon 

within the NcoI site can be used as the start codon giving the translation shown below the 

nucleotide sequence.  
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Figure 2.  Integration of Tn4351 into the chromosome of C. canimorsus 5.  

(A) Southern blot hybridization.  Genomic DNA from wt (Cc5) and four insertion mutants (W2E9, 

X7B9, Y2F12, X2E4) as well as DNA from pMM13 and pEP4351 were digested with HindIII and 

hybridized with DIG-labeled IS4351. Plasmids pMM13, containing one copy of IS4351 and 

pEP4351, containing Tn4351 (2 copies of IS4351) served as positive controls. (B) PCR 

amplification of the 633-bp cat gene from the vector pEP4351, to identify vector cointegration 

events.  (C) Top: schematic representation of Tn4351 integrated into the chromosome (open bars) 

with the IS4351 insertion sequences flanking ermF and tetX.  Bottom: schematic representation of 

a cointegrate with the cat gene and the mobilization (mob) site of the vector. 
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Figure 3. Generation of a C. canimorsus 5 sialidase knock-out and complementation in trans 

by siaCHis cloned in expression shuttle vector pMM47.A. 

(A) Schematic representation of the deletion strategy.  The upstream flanking region was amplified 

from genomic C. canimorsus 5 DNA with primers 4783 (PstI, black) and 4784 containing an 

additional 5’ 20 nt extension homologous to the resistance cassette ermF (magenta) (PCR 1).  The 

same was done for the downstream flanking region with primers 4787 including 20 nt 

complementary to the resistance cassette in 5’ (magenta) and 4788 including a SpeI restriction site 

(black) (PCR 2).  The ermF resistance cassette (magenta) was amplified with primer 4785 which 
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included the 30 bp homology to the end of the upstream flanking region at 5’ (green) and primer 

4786 with 30 bp homology to the downstream flanking region (green)(PCR 3).  All three PCR 

products were subjected in equal amounts to another PCR reaction after addition of external 

primers (4783 and 4788). The final PCR product linking the three initial fragments was digested 

with PstI and SpeI and cloned into the suicide vector pMM25, giving pMM106.  (B) Immunoblot 

analysis of crude cell extracts of wt (Cc5), siaC deficient Tn4351 mutant ( siaC), the site-directed 

mutant of siaC (siaC::ermF) and both mutants ( siaC and siaC::ermF) complemented in trans with 

pMM52, using a polyclonal serum against SiaC (top) and a monoclonal antibody against the C-

terminal His tag encoded by pMM52 (psiaCHis) (bottom).  (C) Sialidase activity was measured by 

monitoring the fluorescence at 445 nm generated by the cleavage of 2 -(4-Methylumbelliferyl)- -D-

N-acetylneuraminic acid (MUAN) (mean +/- SD of a representative experiment). 

 
Tables 

Table 1. Strains and Plasmids 

Strain or 

Plasmid 
Genotype or Description Reference or Source 

Bacterial strains   

E. coli   

   

BW19851 S17-1 derivative, RP4-2-tet:Mu-1kan::Tn7, recA1 

creC510 hsdR17 endA1 zbf-5 uidA::pir+ thi. Smr 

ATCC 47083 

(22) 

S17-1 hsdR17 recA1 RP4-2-tet::Mu-1kan::Tn7 . Smr (33) 

Top10 F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15 

lacX74 recA1 araD139 (araleu)7697 galU galK 

rpsL, endA1 nupG. Smr 

Invitrogen 

C. canimorsus   

C. canimorsus 2 Human septicemia 1989. (30) 

C. canimorsus 3 Human septicemia 1990. (30) 

C. canimorsus 5 Human septicemia 1995. (30) 

C. canimorsus 5 

siaC 

C. canimorsus 5 siaC::Tn4351; Emr Manuscript in 

preparation 

C. canimorsus 5 

siaC::ermF 

Site directed mutation of siaC by replacement of an 

internal part by ermF; Emr 

This study 

C. canimorsus 7  Human septicemia 1998. (30) 

C. canimorsus 9 Human septicemia 1965 (30) 

C. canimorsus 10 Human septicemia (30) 

C. canimorsus 11 Human septicemia (30) 

C. canimorsus 12 Human septicemia 

ATCC 35979 

(30) 

C. cynodegmi Dog’s mouth; USA, Virginia 1979 ATCC 49044 
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C. cynodegmi 2 Hand wound; United States LMG 11538. (36) 

C. gingivalis Human isolate G. Wauters, University 

of Louvain, Belgium 

C. ochracea Human isolate G. Wauters, University 

of Louvain, Belgium 

Plasmids
a
 Description  

pBBR1MCS3 Broad host range ori from Bordetella bronchiseptica 

S87, Tcr 

(17) 

pBBR1MCS4 Broad host range ori from Bordetella bronchiseptica 

S87, Apr 

(17) 

pBSIIKS (+) ColE1 ori, Apr Stratagene 

pCC7 Endogenous plasmid of C. canimorsus 7 This study 

pCP23 ColE1 ori; (pCP1 ori); Apr (Tcr); E. coli - F. johnsoniae 

shuttle plasmid 

(1) 

pCP29 ColE1 ori (pCP1 ori); Apr (Cfr, Emr); E. coli - F. 

johnsoniae shuttle plasmid 

(16) 

pEP4351 pir requiring R6K oriV; RP4 oriT; Cmr Tcr (Emr); vector 

used for Tn4351 mutagenesis 

(8) 

pK18 ColE1 ori, Kmr (24) 

pLYL001 ColE1 ori; Apr (Tcr) (26) 

pLYL03 ColE1 ori; Apr (Emr) (18) 

pMM2 pBBR ori; Apr; Random 650-bp Sau3A chromosomal 

fragment of C. canimorsus 5 inserted in BamHI site of 

pBBR1MCS4 

This study 

pMM3 pBBR ori; Apr; Random 500-bp Sau3A chromosomal 

fragment of C. canimorsus 5 inserted in BamHI site of 

pBBR1MCS4 

This study 

pMM5 pBBR ori ; Apr, (Emr); ermF from pEP4351 amplified 

by PCR using primers 3505 and 3506 cut with 

EcoRI/PstI and inserted into the corresponding sites of 

pBBR1MCS4 

This study 

pMM7 ColE1 ori; Apr; 1.95-kb EcoRI/HindIII fragment of 

pCC7 inserted into corresponding sites of pBSIIKS(+) 

This study 

pMM12 ColE1 ori; Kmr (Cfr); cfxA gene from pCP29 cloned as 

a BamHI/SpeI fragment into corresponding sites of 

pK18 

This study 

pMM13 ColE1 ori; Apr (Emr); ermF from pEP4351 amplified by 

PCR as a 1.95-kb fragment using primers 3505 and 

3506, cut with EcoRI/PstI and inserted into the 

corresponding sites of pBSIIKS(+) 

This study 
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pMM25 ColE1 ori; Kmr (Cfr); Suicide vector for C. canimorsus. 

RP4 oriT amplified by PCR using primers 4416 and 

4417 inserted into BamHI site of pMM12. 

This study 

pMM40.A ColE1 ori (pCC7 ori); Kmr (Cfr); E. coli - C. canimorsus 

shuttle plasmid. The repA gene from pCC7 was 

amplified by PCR using primers 3601 + 4274, 

digested with PstI and inserted into the corresponding 

site of pMM12.  

This study 

pMM41.A ColE1 ori (pCC7 ori); Apr (Cfr); E. coli - C. canimorsus 

shuttle plasmid. The cfxA and repA genes as a 

BamHI/SphI fragment from pMM40.A inserted into 

corresponding sites of pUC19. 

This study 

pMM45.A ColE1 ori (pCC7 ori); Kmr (Cfr); E. coli - C. canimorsus 

shuttle plasmid, RP4 oriT.  The 1.58-kb PstI fragment 

of pMM47.A containing repA inserted into PstI site of 

pMM25. 

This study 

pMM47.A ColE1 ori (pCC7 ori); Apr (Cfr); E. coli - C. canimorsus 

expression shuttle plasmid. -33 and -7 of the ermF 

promoter was amplified from pEP4351 as a 257-bp 

fragment by PCR using 3868 and 4128. Unique NcoI, 

XhoI, XbaI sites and 6 histidine codons were 

incorporated by reverse primer 4128.  SalI/SpeI 

digested PCR fragment inserted into corresponding 

sites of pMM41.A. 

This study 

pMM52 ColE1 ori (pCC7 ori); Apr (Cfr); siaC full length inserted 

in NcoI/XbaI sites of pMM47.A in frame with a C-

terminal His tag. 

Manuscript in 

preparation 

pMM104.A ColE1 ori (pCC7 ori); Apr (Tcr); E. coli - C. canimorsus 

shuttle plasmid, RP4 oriT.  PstI fragment of pMM47.A 

containing repA inserted into PstI site of pLYL001.  

This study 

pMM105.A ColE1 ori (pCC7 ori); Apr (Emr); E. coli - C. 

canimorsus shuttle plasmid, RP4 oriT.  PstI fragment 

of pMM47.A containing repA inserted into PstI site of 

pLYL03. 

This study 
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pMM106 ColE1 ori; Kmr (Cfr); To create siaC::ermF three initial 

PCR products were amplified with 4783 + 4784 and 

4787+ 4788 from Cc5 chromosomal DNA and 4785 + 

4786 from pEP4351. siaC::ermF was then amplified 

by overlapping PCR using external primers 4783 and 

4788, cut with PstI/SpeI  and inserted into 

corresponding sites of pMM25. 

This study 

pMR20  Tcr derivative of pGLlO, RK2-based broad host-range 

vector; IncP 

(13) (Chris Mohr and 

Rick Roberts) 

pUC19 ColE1 ori, Apr (37) 
a Antibiotic resistance phenotypes: ampicillin, Apr; cefoxitin, Cfr; chloramphenicol, Cmr; 

erythromycin, Emr; streptomycin, Smr; tetracycline, Tcr.  Antibiotic resistance phenotypes and other 

features listed in parentheses are those expressed by secondary host (F. johnsoniae or C. 

canimorsus) but not by E. coli. 

 

Table 2. Best matches of RepA of C. canimorsus 7 to known protein sequences of non 

redundant database (June 2008) using a blast algorithm (2) 

Species Accession Score  E value 

Capnocytophaga ochracea gb|AAY78540.1| 304 5e-81 

Bacteroides vulgatus emb|CAA60389.1| 300 1e-79 

Bacteroides fragilis emb|CAA60390.1| 299 3e-79 

Bifidobacterium bifidum gb|AAZ79481.1| 292 2e-77 

Ornithobacterium rhinotracheale gb|AAT09350.1| 266 6e-69 

Prevotella intermedia gb|AAL73041.1|AF454701_2 263 5e-68 

 

Table 3. Frequencies of Transfer of E. coli - Capnocytophaga shuttle vectors, in matings 

with E. coli S17-1 (transconjugants / recipient) 

Strain Frequency of transfer 

 Plasmid pMM45.A pMM104.A pMM105.A 

 Meana SD Meana SD Meana SD 

C. canimorsus 5 4.8 x 10-4 4.1 x 10-4 1.1 x 10-3 9.6 x 10-4 5.9 x 10-4 4.3 x 10-4 

C. canimorsus 12 2.7 x 10-7 2.5 x 10-7 2.0 x 10-6 1.8 x 10-6 4.4 x 10-8 6.8 x 10-10 

C. cynodegmi 1.7 x 10-4 2.7 x 10-4 9.1 x 10-5 6.2 x 10-5 5.8 x 10-5 8.0 x 10-5 

C. cynodegmi 2 3.8 x 10-5 1.0 x 10-5 5.4 x 10-6 2.8 x 10-6 2.3 x 10-5 3.2 x 10-5 

C. ochracea (< 2.7 x 10-7)  1.9 x 10-4 2.7 x 10-4 1.4 x 10-1 1.8 x 10-1 

C. gingivalis 3.9 x 10-6 3.3 x 10-6 1.4 x 10-5 8.4 x 10-6 (< 4.5 x 10-8)  
a mean values from at least 3 independent experiments 
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Table 4. Quantification of DNA transfer into C. canimorsus by electroporation 

Strain Plasmid Transformants / μg DNA Transformants / viable Cc5 

  Meana SD Meana SD 

C. canimorsus 5 pMM47.A 2.1 x 103 +/- 2.3 x 103 4.4 x 10-7 +/- 4.0 x 10-7 
a mean values from at least 3 independent experiments 

 

Table 5. Oligonucleotides used in this study 

Collection 

number 

Sequence 

3505 GCAACAGAATTCTGATTAATAA 

3506 TTTTCTGCAGCTACGAAGGATGAA 

3574 TTCAAATCTCTTAAAACCCCAG 

3575 TCTAAGGCGAATAGGGAATATC 

3576 CACTGGATATACCACCG 

3577 TGCCACTCATCGCAGTA 

3601 TTTTCTGCAGGTTAAAATCGGCCGCC 

3623 ATGTAGATATACAAATGCCTG 

3625 ACCCACCATTTCCTTTCCCTAAC 

3626 CAGCCACTTCCTTGAAGAAATG 

3639 GAAGTATTTTTGTTCGATACCAAGG 

3641 TAATACTGGCATCGACCTTTACGCC 

3675 CATTTCGGTTACATCCCATAATAGC 

3676 AATTTCTAATGTCAAGGAAAAACCG 

3677 TTACCTTCTTGTTGGTTTTAACTG 

3678 TTTATCGTGCACAGGTCTCATTAG 

3868 TCATGTCGACGCTCATCGGTATTTGCAACA 

4128 TTACTAGTTCAATGATGATGATGATGATGCTCGAGTTCTAGAGCCATGGGG 

4274 ATGGCTGCAGAGTTCCTACGATTGCCATA 

4416 CCGGATCCCTTGGTTTCATCAGCCATC 

4417 GCGGATCCATCAGTAATTTCCTGCATTTG 

4783 CCCTGCAGATTTGTCGGCTTGTGGAAGCC 

4784 GAGTAGATAAAAGCACTGTTGTGCTTCGACTCATTCCTAC 

4785 AGATGTAAACGTAGGAATGAGTCGAAGCACAACAGTGCTTTTATCTACTCCGA

TAGCTTC 

4786 AGCTCCCGTTCCACAATGCCACGTTTTTCCCTACGAAGGATGAAATTTTTCAGG

GACAAC 

4787 AAAAATTTCATCCTTCGTAGGGAAAAACGTGGCATTGTGG 

4788 CCACTAGTTTAGTTCTTGATAAATTCCTCAACTGG 
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1.2. Additional results 

1.2.1. Reporters for C. canimorsus 

 There have only been few publications addressing use of fluorescent 

proteins for markers in the Bacteroidetes phylum.  Only one report described a 

successful use of GFP in this phylum.  In this recent study, a promoter-trap system 

was successfully used to isolate and analyze several strong promoters, and 

GFPmut3 was shown to be functional as a reporter in Flavobacterium hibernum 

(Chen et al., 2007). 

We earlier used different approaches to introduce reporters to the collection 

of genetic tools for C. canimorsus.  First, we used the Bacteroides ermF promoter 

of the IS4351 (“IS-33”) to transcribe egfp with the mammalian codon usage or 

gfpmut2 using codon usage from Aequorea victoria but resulting in an optimized 

GFP in E. coli.  Transcript analysis by reverse transcription confirmed presence of 

the mRNA of the corresponding constructs (Fig 4A).  However, no GFP protein 

could be detected by immunoblotting against GFP (Fig. 4B).  By fluorescence 

microscopy or FACS analysis, no fluorescent C. canimorsus could be identified 

(not shown).  IS-33egfp in trans of E. coli was not expressed (Fig. 4B), therefore 

we suggest that the IS-33 promoter is not recognized by the E. coli sigma factors.  

Notably, one study addressing reporters in Porphyromonas gingivalis 

showed that luciferase was functional in this species, while GFP could not be 

expressed (Liu et al., 2000).  We therefore constructed plasmids with luciferase 

genes (luxAB) transcribed by the IS-33 promoter.  While all the plasmids 

containing luxAB could be transcribed (Fig. 4C), no luminescence could be 

detected in a luciferase assay, while the positive control Y. enterocolitica 

KNG22703 (Kaniga et al., 1992) was functional (Fig. 4D).   

To test for promoter activity we next used the chloramphenicol acetyl 

transferase (cat) from E. coli transcribed by the IS-33 promoter in C. canimorsus 

(Fig. 4E).  We assessed the specific activity of Cat and found that it was about 3-

fold enhanced in Cc5 harboring the reporter construct in trans as compared to the 

empty vector control (Fig 4F).  However, the positive control of plasmid encoded 

Cat in E. coli showed about 30-fold higher activity.  This suggests that the IS-33 

promoter is weak in Cc5.  The Shine Dalgarno site might also result in poor 

expression. 
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 It is conceivable that the promoter from the IS sequence identified in 

Bacteroides sp. (Shoemaker et al., 1985; Shoemaker et al., 1986) used in this 

study is sufficient for use in C. canimorsus but a strong promoter might improve 

certain applications.  The results from the publication aforementioned (Chen et al., 

2007) suggests that promoter strength might be a limiting factor for GFP 

expression in Cc5.  Shine Dalgarno sites as well as codon usage suitable for use 

in C. canimorsus further need to be carefully evaluated, and the completion of the 

Cc5 genome will provide access to this information.   

 

Fig. 4 GFP and Luciferase are transcribed by the IS-33 promoter in Cc5, but were not 

functional, only Cat could be used as reporter. 

Transcript analysis was performed by RT PCR with (cDNA) or without (w/o RT) reverse 

transcriptase or on control plasmid DNA (+) using primer 3578 + 3852 (IS-33egfp) or 3578 + 3869 

(IS-33gfpmut2) (A) and immunoblotting using anti-GFP (Invitrogen) (B).  RT PCR was used to 

assess transcript levels in luciferase constructs using primers 3578 + 3952 (C) and luciferase 

activity was determined as luminescence including as a positive control Y. enterocolitica strain 

KNG22703 (D).  Transcript was analyzed for cat using primers 3578 and 3972 (E) and the specific 
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activity of Cat in Cc5 was assessed by the Chloramphenicol acetyl transferase assay in 

comparison to plasmid encoded Cat of E. coli (F). 

 

1.2.2. Methods section 

RNA isolation and reverse transcription (RT) PCR 

RNA was isolated from bacteria grown for 2 days on HIA blood plates by a hot phenol/ 

chloroform extraction method followed by DNase I (Amersham Pharmacia) treatment (0.5 U / μg 

RNA) for 2 h at 37°C.  RNA was further cleaned by using a RNeasy kit (Quiagen) and stored at -

80°C until use.  An additional DNase I digest was introduced with 0.25 U / μg RNA for 15 min at 

37°C and stopped by addition of final 2.5 mM EDTA and heat inactivation at 75°C for 10 min.  

Subsequent reverse transcription was performed with 50 U Superscript II / μg RNA in RT buffer 

(Invitrogen), 10 mM DTT and 50 μM specific primer for 60 min at 42°C and stopped at 70°C for 10 

min. 

 

Luciferase assay luciferase NADH/ FMN oxidoreductase coupled assay 

Bacteria were resuspended in PBS, lysed by sonication (Yersinia and C. canimorsus 

strains) or with triton 0.5% (C. canimorsus strains).  N-decanal was added at 0.1%.  The reaction 

mix contained 0.0005% mercaptoethanol, 1.3 mM NADH, 0.042 mM FMN (flavin mononucleotide) 

in 0.065 M final sodium phosphate buffer pH 6.8.  Samples were normalized against protein 

content of the lysates determined by Bradford.  All chemicals were purchased from Sigma Aldrich 

unless otherwise stated. 

 

Chloramphenicol acetyl transferase assay 

Cc5 bacteria were lysed with 0.5% triton for 5 min at RT and E coli strains were sonicated.  

10 μl lysate was mixed with 100 μM 5, 5 -Dithiobis 2-nitrobenzoic acid (DTNB) and 5 mM acetyl 

coenzyme A in 1 M Tris HCl pH 8.  Background reading was recorded for 2 min.  After addition of 

chloramphenicol to 0.1 mM final concentration, absorbance at 412 nm was measured for 5 min in 

30 sec intervals.  Specific activity of cat ( mol/min/mg) was calculated by A412 / (min x 0.0136 x 

mg protein).  As positive control, E.coli BW19851 [pEP4351] was included in the assay resulting in 

plasmid encoded Cat. 

 

GFP expression 

GFP expression was tested by immunoblotting against GFP (Invitrogen) according to 

manufacturer’s suggestions.  Fluorescence was tested by microscopy and FACS. 

 

Plasmids 

All plasmids are described in Table 12. 
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Abstract 

 Capnocytophaga canimorsus, commensal bacteria from canine oral flora, 

have been repeatedly isolated since 1976 from severe human infections 

transmitted by dog bites.  Here we show that C. canimorsus grows better when it 

is in direct contact with animal cells, including phagocytes.  This unique property 

was dependent on a surface-exposed sialidase allowing C. canimorsus to feed on 

internal aminosugars of glycan chains from host cell glycoproteins.  In addition, 

sialidase conferred resistance to complement by promoting the binding of factor H. 

In a murine infection model, the wild type, but not the sialidase deficient mutant, 

grew and persisted, both when infected singly or in competition. This study 

unravels a unique example of pathogenic bacteria feeding on phagocytes and it 

illustrates how the adaptation of a commensal to its ecological niche in the host, 

here the dog’s oral cavity, inevitably contributes to being a potential pathogen. 

 

Introduction 

C. canimorsus, a Gram-negative commensal of dogs and cats mouth, has 

been reported since its discovery in 1976 to cause peripheral gangrene, fulminant 

septicemia or meningitis in humans that have been bitten, scratched or simply 

licked by a dog, less commonly by a cat (Brenner et al., 1989).  Splenectomy, 

alcohol abuse and immunosuppression history have been associated with a 

number of cases, but more than 40% of the patients had no obvious risk factor 

(Lion et al., 1996).  More than 160 cases of C. canimorsus infections have been 

reported (Tierney et al., 2006) but so far very few studies have addressed the 

molecular mechanisms of C. canimorsus pathogenesis. 

Recently, we showed that murine or human macrophage cells infected with 

C. canimorsus remain viable and do not release pro-inflammatory cytokines.  This 

lack of response results from an absence of Toll like receptor 4 (TLR4) stimulation 

and one strain isolated from a human fatal septicemia, turned out to even actively 

block the onset of the inflammatory response (Shin et al., 2007).  Most 

interestingly, in the experimental set up of that study, C. canimorsus 5 (Cc5) could 

only grow in the presence of cultured macrophages and contact to cells was a 

prerequisite to sustain bacterial replication during the 24 h infection assay (Shin et 

al., 2007).  In the present study, we aimed at identifying the essential nutrients 

from cells that are used by C. canimorsus.  To address this question, we 
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engineered and screened a transposon mutant library.  A Tn mutant unable to 

multiply in vitro in the presence of cells but fully proficient for growth on blood agar 

was isolated.  The mutant turned out to be affected in a surface-exposed sialidase 

and could be rescued by exogenously added sialidase but surprisingly not by sialic 

acids.  However, addition of N- acetyl glucosamine (GlcNAc) or N- 

acetylgalactosamine (GalNAc) rescued growth, showing that sialidase allows C. 

canimorsus to feed on glycans from the host cell surface glycoproteins.  

Furthermore, the surface-exposed sialidase conferred resistance to killing by 

human complement by binding factor H.  In agreement with these two 

observations, the sialidase deficient mutant turned out to be hypo-virulent in a 

mouse model and we provide evidence that C. canimorsus also feeds on 

phagocytes in vivo. 

 

Results 

Growth of C. canimorsus 5 (Cc5) requires serum and direct contact with 

cells 

When inoculated at a multiplicity of infection (moi) of 20 to J774.1 

macrophages cultured in complete RPMI (cRPMI), which includes 10% fetal 

bovine serum (FBS), Cc5 multiplied about 100-fold during the 24 h of infection.  

This bacterial growth was reduced when FBS was omitted during infection but 

more surprisingly, it was abolished when J774.1 macrophages were omitted (Fig. 

1A).  Using a transwell system, we next tested whether direct contact between 

Cc5 and J774.1 macrophages is required for bacterial growth.  Cc5 was unable to 

grow in this experimental setup where a membrane prevented physical contact 

between bacteria and J774.1, while the culture medium (cRPMI) remained the 

same (Fig. 1A).  These data imply that Cc5 may take advantage of some nutrient 

that is present at the cell’s surface.  In order to investigate this intriguing property, 

we generated a transposon (Tn) mutant library using transposon Tn4351 from 

Bacteroides fragilis (Cooper et al., 1997).  We screened 6700 mutants and 

isolated a clone that was unable to grow in the presence of J774.1 cells, but grew 

normally on blood agar plates.  The impaired growth of this Tn mutant was not due 

to an increased phagocytic uptake by J774.1 since addition of cytochalasin D had 

little effect on bacterial growth.  Moreover, the observation could be repeated with 

non-phagocytic cells: wt Cc5 could also grow in the presence of HeLa cells while 
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the mutant could not (Fig. 1B).  In contrast, growth of Cc5 and the Tn mutant was 

comparable in serum enriched heart infusion medium (Fig. 1C), indicating that the 

mutant had no central metabolic deficiency. 

 

Surface localized sialidase is required for the growth of Cc5 

Arbitrarily primed PCR analysis of the mutant showed that the transposon 

inserted within a gene encoding a protein with similarity to bacterial sialidases, 

glycosylhydrolases that cleave a terminal sialic acid from glycoconjugates (Fig. 

2A).  This hypothetical sialidase (designated SiaC) contains Asp box motifs known 

to be conserved among sialidases of microbial origin and a putative catalytic site 

(Fig. 2A) (Roggentin et al., 1989).  The sequence starts with a putative N-terminal 

signal peptide (Sigrist et al., 2002), indicating that SiaC could be either periplasmic 

or surface exposed. 

Sialidase activity was tested by incubating wt or mutant Cc5 bacteria with 

2 -(4-Methylumbelliferyl)- -D-N-acetylneuraminic acid (MUAN).  While intact Cc5 

bacteria cleaved MUAN, the Tn mutant could not, indicating that the mutated gene 

does indeed encode a sialidase (Fig. 2B). 

In order to complement the mutation, we engineered an expression shuttle 

vector by taking advantage of the replicon from a endogenous plasmid isolated in 

another strain of C. canimorsus and the promoter of an insertion sequence from B. 

fragilis (Manuscript in preparation).  We constructed plasmids encoding full length 

(FL) SiaC, a variant deprived of its predicted signal sequence ( 1-21) and a 

catalytic mutant (Y488C) (Fig. 2B).  Three constructs were expressed in 

comparable amounts in C. canimorsus as assessed by immunoblotting of crude 

extracts with a polyclonal serum directed against recombinant SiaC (Fig. 2C).  

Sialidase activity of intact Tn mutant ( siaC) bacteria could be restored by 

introducing siaCFL, but not siaC 1-21 or siaCY488C in trans (Fig. 2B).  Impaired 

growth of siaC in the presence of J774.1 cells was also complemented by 

introducing siaCFL, but not siaC 1-21 or siaCY488C (Fig. 2C). 

We next determined the localization of SiaC in Cc5 and in siaC 

complemented with three siaC genes.  SiaCFL and SiaCY488C were found in the 

outer membrane fraction (Fig. 2D), whereas SiaC 1-21 was only detected in total 

cells (Fig. 2C).  Analysis of fixed but unpermeabilized bacteria by indirect 
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immunofluorescence using polyclonal anti-SiaC serum confirmed that SiaC is 

indeed exposed on the bacterial surface.  Deletion of the predicted signal 

prevented surface exposure (Fig. 2E).  Although it is surface exposed, no SiaC 

could be detected in the supernatant of cultured J774.1 that have been infected 

with Cc5 for 24 h (Fig. 2D).  Hence, surface-anchored sialidase is required for the 

growth of Cc5 at the expenses of J774.1 macrophages or HeLa cells. 

 

Growth is sustained by GlcNAc and GalNAc but not by sialic acids 

Since sialidases cleave terminal sialic acid from glycoconjugates, we first 

investigated whether the addition of sialic acids could restore growth of siaC.  

Surprisingly, the addition of neither Neu5Ac nor CMP-Neu5Ac restored growth of 

siaC in the presence of J774.1.  In contrast, addition of purified recombinant 

sialidase SiaC, but not the catalytic mutant SiaCY488C, to the culture medium 

restored growth.  Even addition of neuraminidase NanH from Clostridium 

perfringens could restore growth of siaC mutant bacteria (Fig. 3A).  This 

suggests that removal of terminal sialic acids from glycoconjugates could be the 

key element.  Since this removal is expected to make other carbohydrates 

accessible, we next tested whether GlcNAc and GalNAc, common carbohydrate 

moieties of glycoconjugates, would not allow growth of siaC in the presence of 

macrophages.  As shown in Fig. 3B, these aminosugars indeed rescued siaC 

bacteria.  We also tested addition of 0.1% glucose (Glc), galactose (Gal) or 

mannose (Man), which are known to be utilized by Cc (Brenner et al., 1989) and 

commonly found in glycoconjugates but none of these carbohydrates could restore 

growth of siaC.  Supplementation with Gal even decreased the number of viable 

counts of siaC (Fig. 3B). 

 

Sialidase desialylates macrophage surfaces 

We next investigated the effect of SiaC on the cells. We treated J774.1 cells 

with recombinant SiaC and analyzed them using Sambucus nigra agglutinin (SNA) 

and a fluorescent labeling.  This lectin, which recognizes terminal sialic acids (2- 6 

or 2- 3) linked to Gal or to GalNAc (Fig. 4A), did not bind to SiaC treated cells, 

indicating that SiaC desialylates the surface of J774.1 (Fig. 4B).  We then tested 

cells that were infected with Cc5 and observed that the signal for terminal sialic 
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acids was reduced after 15 h of infection with wt Cc5 but not with siaC (Fig. 4B).  

We next tested binding of peanut agglutinin (PNA), a lectin specific for Gal (  1-3) 

GalNAc (Fig. 4A), a disaccharide often forming the core unit in glycoconjugates.  

Binding of PNA to J774.1 was only detected after adding SiaC to J774.1, 

confirming that the core of glycoconjugates needed to be unmasked by the action 

of sialidase (Fig. 4B).  In contrast, no PNA binding could be detected after 

incubation of J774.1 with live siaC or Cc5 at any time point.  This shows first that 

siaC is deficient in cleaving terminal sialic acids on glycoconjugates and 

therefore unable to reveal the disaccharide Gal (  1-3) GalNAc.  Secondly, the 

absence of a PNA signal after Cc5 infection suggests that live Cc5 bacteria 

remove sialic acids and further deglycosylate the surface glycoconjugates.  To test 

this hypothesis, macrophages were infected with siaC in the presence of 

recombinant SiaC at a concentration 10 ng/ml, giving the same activity as 2x 106 

Cc5 bacteria.  As expected, cell surfaces were desialylated by the recombinant 

enzyme as indicated by a decrease of the SNA signal after 15 h.  In addition, no 

PNA fluorescence was observed after 15 h meaning that unmasked Gal (  1-3) 

GalNAc was not detectable.  This suggests that siaC is still proficient in extensive 

deglycosylation of unprotected glycans chains.  We also tested HeLa cells as an 

example for epithelial cells and monitored the same deglycosylation of cell 

surfaces as observed for J774.1 macrophages (Fig. 4C). 

 

Sialidase confers resistance to complement-mediated killing 

Our preliminary experiments have shown that Cc5 resists the bactericidal 

action of human complement (unpublished data and Fig. 5A).  Since complement 

resistance can be due to surface exposed proteins, we tested in parallel wt Cc5 

and siaC.  While Cc5 survived 3 h of incubation in 10% human serum, siaC 

viable counts went down by 3 logs.  There was no significant difference in the 

survival of both strains in heat-inactivated (HI) serum (Fig. 5A).  The ability to 

resist complement was restored in siaC by introducing siaCFL, but not by    

siaC 1-21.  In agreement with our previous result, addition of Neu5Ac did not 

restore complement resistance in siaC.  Hence, surface-exposed sialidase 

contributes to the very high resistance of C. canimorsus to killing by complement. 

One mechanism that contributes to complement resistance is the binding of 

the complement regulatory protein factor H (fH) to the cell surface.  Cc5 or siaC 
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bacteria were mixed with HI serum as a source of fH, and fH binding was 

measured by immunoblotting using anti-fH.  As shown in Figure 5B, Cc5 recruited 

fH to its surface but siaC did not.  Binding of fH by siaC was however restored 

by introducing in trans siaCFL, but not by siaC 1-21.  We next asked whether SiaC 

alone is competent to confer complement resistance by recruiting fH.  To test this 

idea, we took advantage of E. coli expressing FL SiaC (Fig. 5C).  E. coli with 

surface localized SiaC was then assayed for complement killing and fH binding 

(Fig. 5D and 5E).  There was no increase in complement resistance or fH binding 

after SiaC expression in E. coli, indicating that SiaC alone is not sufficient to confer 

fH binding and complement resistance.   

 

siaC is attenuated in a mouse localized infection model 

We next tested whether SiaC is essential for survival during animal 

infection.  No animal model has been developed so far for C. canimorsus.  We 

selected a murine tissue cage model, which is commonly used with Staphylococci 

and mimics a localized infection (Kristian et al., 2003).  Teflon tissue cages were 

subcutaneously implanted in C57BL/6 mice; two weeks later, 107 wt Cc5 or siaC 

mutant bacteria were injected directly into the cages of five mice each.  Prior to 

infection, the extracellular fluid accumulating in tissue cages was analyzed for its 

leukocyte content (1.8 x 104 +/- 1.3 x 104 leukocytes / l).  The cell population 

consisted of 68% +/- 4.8% polymorphonuclear neutrophils (PMNs), 18% +/- 3.2 % 

monocytes and 9.1% +/- 3.7 % macrophages. 

Bacterial growth was monitored over a time period of 27 days.  Cfu 

numbers of wt Cc5 decreased on day 2 and 5.  However, on day 9 they increased 

by 1 to 3 logs in 4 out of 5 mice, and were able to persist in 3 of 5 mice after 27 

days post infection with more than 107 bacteria per ml of tissue cage fluid.  siaC 

bacteria were already undetectable after the second day (<20 bacteria /ml) in 5 out 

of 5 infected mice (Fig. 6A).  After infection, the total number of leukocytes in 

tissue cage fluid did not significantly increase and was not related to the bacterial 

load, suggesting that Cc5 infection did not lead to strong leukocyte recruitment. 

In a competition experiment where 107 cfu of Cc5 and siaC were 

inoculated at a 1:1 ratio, siaC was out-competed by Cc5.  siaC bacteria could 

be detected in only 1 out of 5 mice with 20 to 140 cfu/ml on days 5 to 14, while the 

corresponding wt Cc5 cfu numbers rose to 108/ml.  This represents a competitive 
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index of 9.7 x 10-4, 5.8 x 10-7 and 4.7 x 10-7 on day 5, 9 and 14, respectively.  As 

observed during infection with wt Cc5 alone, 3 mice out of 5 developed a 

persistent infection (Fig. 6B). 

To test whether Cc5 in vivo feeds on cells, we collected leukocytes from 

uninfected tissue cages, suspended them in RPMI and added 2x 106 or 2x 104 

bacteria.  We monitored bacterial growth in vitro and observed that Cc5 also grew 

in presence of ex vivo isolated cells while siaC did not (Fig. 6C).  This experiment 

suggests that growth in the presence of cells may represent an essential feature 

during infection. 

Both strains grew equally well in HIB supplemented with 10% FBS, 

indicating a similar fitness in vitro (Fig. 1C).  When tested in a competition 

experiment in vitro using 100 cfu/ml of wt Cc5 and siaC, their growth curves were 

comparable measured at 2, 6, 10 and 24 h.  Both strains reached 106 cfu/ml after 

24 h (Fig. 6D).  This clearly demonstrates that SiaC plays an essential role in 

establishing infection by Cc5 and that clearance of siaC is not due to a growth 

defect per se but to an altered host interaction of the mutant. 

 

Discussion 

In the present study we showed that extracellular C. canimorsus replicate 

very efficiently when they are in direct contact with macrophages or epithelial cells.  

A surface-exposed sialidase is a key feature for this behaviour and in good 

agreement with this, C. canimorsus desialylates glycoproteins from the cellular 

surface.  Bacterial sialidases have been thought since a long time to contribute to 

virulence in pathogenic bacteria that colonize mucosal surfaces such as Vibrio 

cholerae, Streptococcus pneumoniae, group B streptococci, Clostridium 

perfringens and Bacteroides fragilis but the exact impact of sialidase on virulence 

has been difficult to assess (Corfield, 1992).  Recently it was shown that a 

sialidase is involved in the formation of Pseudomonas aeruginosa biofilms and 

hence contributes to colonization of the lungs during the initial stages of infection 

in cystic fibrosis patients (Soong et al., 2006).  Besides a role of sialidase as a 

direct virulence factor, there is evidence that sialidase could play a nutritional role 

for the pathogen during infection.  King et al. demonstrated that exoglycosidases 

are responsible for growth of S. pneumoniae on human -1 acid glycoprotein and 

that S. pneumoniae causes an extensive deglycosylation of different host proteins 
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including IgA1 and human secretory component (Burnaugh et al., 2007) (King et 

al., 2006). 

While the impact of sialidase in microbial pathogenesis is still debated, the 

role of sialic acids is very well documented (Vimr et al., 2004).  Several pathogens 

have evolved ways to expose sialic acid on their surface and hence to escape 

complement killing and opsonisation by mimicry.  Sialic acids are incorporated into 

capsules by E. coli K1 (Barry, 1959), Group B Streptococcus (Wessels et al., 

1989), Serotype B and C Neisseria meningitidis (Bhattacharjee et al., 1975).  The 

lipooligosaccharide of Neisseria gonorrhoeae, Neisseria meningitidis and 

Haemophilus influenzae are also sialylated.  In this case, the key enzyme is not a 

sialidase but a sialyltransferase using as a substrate CMP-Neu5Ac from the host 

(Mandrell and Apicella, 1993).  Alternatively, sialic acids can be synthesized by 

Neisseria itself, from lactate, demonstrating a close link between metabolism and 

evading innate immune defenses (Exley et al., 2005).  Here, we provide evidence, 

that sialic acids are not used by C. canimorsus to replicate or to contribute to 

complement resistance by mimicry.  In agreement with this, the LPS and capsular 

polysaccharide of C. canimorsus cultivated on blood agar plates do not contain 

sialic acids (manuscript in preparation).  Thus, the role of sialidase is not to supply 

sialic acid for growth or mimicry but to provide access to masked carbohydrates of 

surface exposed glycoproteins. 

Taking into account the ecology of C. canimorsus, this observation 

suggests that this commensal bacterium feeds on live buccal cells and/or on saliva 

which is rich in glycopeptides (Larsen et al., 2007).  This observation of 

extracellular bacteria specifically feeding on the surface of host cells is uncommon 

but not unprecedented.  Somehow, this reminds of Bacteroides thetaiotaomicron, 

another major commensal, but from the intestine, which feeds on fucosylated 

intestinal cells.  Colonization by B. thetaiotaomicron even triggers the appearance 

of fucosyltransferase and fucosylated glycan expression (Bry et al., 1996).  Recent 

studies showed that host acquired fucose is incorporated by B. fragilis, another 

intestinal commensal into capsular polysaccharide or glycoproteins, which in turn 

provides a survival advantage in the mammalian intestinal ecosystem (Coyne et 

al., 2005).  However, in the present study, we observed that C. canimorsus feed 

on epithelial cells and even on phagocytes, and this to our knowledge has never 

been shown before. 
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It is remarkable that the sialidase from C. canimorsus is anchored at the 

bacterial surface.  The N-terminal signal sequence suggests that it crosses the 

plasma membrane by the Sec pathway but we have at present no explanation on 

how it crosses the outer-membrane and remains anchored.  It is probably not by a 

C. canimorsus specific mechanism since SiaC appeared to be also surface-

exposed when expressed in E .coli.  This observation somehow evokes the 

surface-anchored auto-transporter proteins like the Y. enterocolitica YadA 

(Koretke et al., 2006) and it raises an important question which will be addressed 

at some stage.  Whatever the mechanism by which this protein is anchored, our 

data indicate that extremely little is released into the culture supernatant and this 

fits with the fact that C. canimorsus needs to be in direct contact with cells to feed 

on them.  This makes sense in the context of the mouth commensal microflora.  

Indeed, the oral cavity is occupied by some 500 different bacterial strains (Kroes et 

al., 1999; Paster et al., 2001), creating a fierce competition for nutrition.  The fact 

that C. canimorsus does not release this enzyme suggests that C. canimorsus 

maximizes the benefit of sialidase by not sharing this fitness factor with competing 

bacteria.  Since sialic acid itself is not the main resource, one would predict that 

other glycan-hydrolyzing enzymes must also be surface-associated.  One would 

even envision that they form a surface-anchored multi-enzyme complex arranged 

in such a way that they can process cellular glycans in a sequential manner as it is 

proposed for S. pneumoniae (King et al., 2006).  Ongoing work in the laboratory is 

testing this hypothesis.   

 C. canimorsus is resistant to killing by complement and this resistance 

results, at least to some extent, from binding human factor H.  Interestingly, 

sialidase contributes to this binding but other proteins are also required, possibly 

the other components of the hypothetical complex digesting cellular glycan chains.  

Complement resistance in a mouth commensal is not surprising.  Indeed, some 

complement components like C3 have been detected in human saliva (Andoh et 

al., 1997) and we infer that the same might be true for dog's saliva.  In terms of 

evolution, it is very interesting to observe that metabolic enzymes of commensals 

have evolved to also confer protection against components of the innate immunity 

system.  The observation the C. canimorsus binds fH strongly suggests that there 

is fH in saliva but, to our knowledge, this has not been reported so far. 
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 Since our in vitro experiments showed the importance of sialidase for 

growth in the presence of cells, we tested whether sialidase would not also behave 

as a "virulence" factor in patients infected after a dog bite.  We used a mouse 

tissue cage model in which the readout is bacterial persistence and we observed a 

dramatic persistence difference between wt and sialidase-deficient C. canimorsus.  

Even more, we gained evidence that in vivo C. canimorsus also feeds on 

phagocytes. Thus, sialidase represents a virulence factor.  To our knowledge, this 

is one of the very first cases where it appears so clearly that one metabolic 

pathway is the key to persistence in vivo.  It is also interesting to observe that 

nutrition in vivo may be quite specific in spite of a very rich nutritional environment.  

Indeed, only GlcNAc and GalNAc could rescue growth while Glc had no effect and 

Gal was even deleterious.  This specialization is probably the hallmark of a 

bacterium which is primarily a commensal and only rarely a pathogen.  The 

situation appears to be different for bacteria which essentially multiply and evolve 

as pathogens.  A recent analysis of Salmonella infections using an in vivo 

proteomics approach showed that the large majority of metabolic enzymes are 

critical but non essential and hence Salmonella is remarkably robust during host 

colonization (Becker et al., 2006).  Using direct microinjection of intracellular 

pathogens into the host cytosol, bacterial growth was dependent on metabolic 

enzymes (Goetz et al., 2001).  Finally, C. canimorsus represents one more 

example illustrating that the distinction between commensals and pathogens is 

illusive.  Commensalism and pathogenicity are two facets of host-bacteria 

interaction.  Most factors that allow a commensal to adapt to its niche by 

colonizing, feeding and resisting local immune defences inevitably represent 

potential virulence factors if the commensal breaches the barrier from its host or 

maybe more likely from another host. 
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Material and Methods 

Bacterial strains and growth conditions 

C. canimorsus 5 (Shin et al., 2007) was routinely grown on Heart Infusion Agar (Difco) 

supplemented with 5% sheep blood (Oxoid) for 2 days at 37°C in presence of 5% CO2.  Bacteria 

were harvested by gently scraping colonies off the agar surface, washed and resuspended in PBS.  

C. canimorsus was also grown in Heart Infusion Broth (Difco) supplemented with 10% (v/v) fetal 

bovine serum (FBS; Invitrogen) for approximately 24 h without shaking in an 37°C incubator with 

5% CO2.  Selective agents were added at the following concentrations: erythromycin, 10 μg/ml; 

cefoxitin, 10 μg/ml; gentamicin, 20 μg/ml; ampicillin, 100 μg/ml. 

 

Cell Culture and Infection 

Murine monocyte-macrophage J774A.1 cells (ATCC TIB-67) were cultured in RPMI 1640 

(Invitrogen) supplemented with 10 % (v/v) fetal bovine serum (Invitrogen), 2 mM L-glutamine and 1 

mM sodium pyruvate.  HeLa cells (ATCC CCL-2) were grown in DMEM (Invitrogen) with 10% (v/v) 

fetal bovine serum.  Cells were seeded in medium without antibiotics at a density of 10
5
/cm

2
 

cultured at 37°C in humidified atmosphere containing 5% CO2.  Unless otherwise indicated, 

infection was performed after 15h at a moi of 20 at 37°C. 

Monosaccharides (Sigma Aldrich) were added to 0.1% (w/v) final concentration. Neu5Ac 

and CMP- NeuAc were added to 0.01% final concentration.  

 

Arbitrarily Primed PCR 

Primers specific to the ends of the transposon and primers of random sequence that may 

anneal to chromosomal DNA sequences in close proximity to the transposon insertions were used 

in two rounds of PCR before sequencing.  The first round of amplification was carried out in 50 μl 

containing 100 ng of genomic DNA, 1.5 mM MgCl2, 200 μM  of primers 5’ 

CAGAATTCTGTTGCATTTGCAAGTTG 3’ complementary to Tn4351 and 

5’ggccacgcgtcgactagtacNNNNNNNNNNacgcc3’, 2.5 U of DNA polymerase (DyNAzymeII, 

Finnzymes), 200 μM of each dNTP, in 10 mM Tris HCl (pH 8.3) for 6 cycles (94°C for 1 min, 30°C 

for 1 min, 72°C for 2 min) and 30 cycles (94°C for 1 min, 45°C for 1 min, 72°C for 2 min) and final 

10 min at 72°C.  10 μl of PCR product containing random fragments was used as template in a 

second round of 30 cycles of amplification (94°C for 30 sec, 45°C for 30 sec, 72°C for 1 min) using 

primers 5’ CAGAATTCTGTTGCATTTGCAAGTTG 3’ and 5’ GGCCACGCGTCGACTAGTAC 3’, 

from the 5’ of the random primer.  PCR products were purified using NucleoSpin® from Machery 

Nagel. 20- 50 ng of random sized products were sequenced using ABI sequencer.  The Tn 

integration site was further confirmed by using primers on chromosomal DNA by sequencing 

towards the Tn integration site.  Primers used were 5’ AATTGTTGTAACGATTGTCG 3’ or 5’ 

GCGAAGCGTTATCCCAAAGC 3’ complementary to the siaC sequence in a sequencing reaction 

containing 2 μg genomic DNA of siaC, betaine 0.25 M and BigDye Terminator Ready Reaction 

(PE Biosystems) with an initial denaturation step for 5 min and subsequent 99 cycles (95°C for 30 

sec, 50 °C for 20 sec, 60°C for 4 min). 
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Construction of complementation and expression plasmids 

Full length siaC was amplified with 5’CATACCATGGGAAATCGAATTTTTTATCTT3’ and 

5’GTTCTAGAGAGTTCTTGATAAATTCCTCAACTG3’ primers and cloned into the E. coli- C. 

canimorsus shuttle vector pMM47.A with NcoI and XbaI, leading to the insertion of a glycin at 

position 2 and a C- terminal histidine 6x tag (plasmid) pMM52 (siaCFL).  Forward primer 

5’AAAGCCATGGGAAACGTAATCGGCGGAGGCG 3’ was used with the same reverse primer to 

construct pMM50 (siaC 1-21), deleting the first 63 bp of siaC, but still including methionin and glycin 

at position 1 and 2, respectively, and using a C- terminal His 6x tag.  The catalytic mutation in siaC 

of was introduced by site directed mutagenesis with an inverse PCR on pMM52, using primers 

5’GAAGGATTTGGGTGTTCGTGTATGTCG3’ 

and 5’CGACATACACGAACACCCAAATCCTTC3’ leading to pMM59 (siaCY488C).  The cDNAs 

encoding SiaCFL (pHS1) and SiaC 1-21 (pHS2) were subsequently amplified using 

5’GGAATTCCATATGAATCGAATTTTTTATC3’ 

and 5’CGCGGATCCCTAGTTCTTGATAAATTCCTC3’  

and 5’GGAATTCCATATGAACGTAATCGGCGGAGGC3’  

plus 5’CGCGGATCCCTAGTTCTTGATAAATTCCTC3’, respectively and cloned into the expression 

vector pET15b(+) (Novagen).  Plasmid pHS3 encoding SiaC 1-21,Y488C was constructed by site 

directed mutagenesis on template pHS2 using the same primers as described for pMM59.  All 

constructs were sequenced with ABI sequencer.  The sequence of SiaC was deposited at 

GenBank (accession number: EU329392 ). 

 

Purification of recombinant SiaC and immunoblotting 

Expression of siaC constructs in E.coli BL21(DE3) was induced with 0.5 mM isopropyl- -D-

1-thiogalactopyranoside at A600 = 0.5 for 3 h.  Proteins were purified by affinity chromatography 

using chelating Sepharose (Pharmacia) charged with NiSO4 according to the manufacturer’s 

instructions.  Samples were analyzed by SDS-PAGE by the system of Laemmli, and 

immunoblotted.  Antibody against C-terminal His was purchased from Invitrogen.  Polyclonal serum 

from rabbit was generated against recombinant SiaC 1-21. 

 

MUAN hydrolysis  

10
7
 bacteria were incubated with 0.006% 2 -(4-Methylumbelliferyl)- -D-N-acetylneuraminic 

acid (MUAN) in 0.25 M sodium acetate pH 7.5 at 37°C for 3 min. Reactions were stopped with 

50mM Na2CO3 pH 9.6 and fluorescence was determined at 445 nm was detected with a Wallac 

Victor
2
 1420 Multilabel counter (Perkin Elmer). 

 

Outer Membrane Preparation 

 Bacterial cells resuspended in PBS containing DNase and RNase (10 μg/ml), were 

sonicated on ice, unbroken cells were removed at 3000 x g for 15 min, and total membranes were 

collected at 20 000 x g for 30 min at 4°C.  The membranes were suspended in PBS and sarcosyl 

(N-Lauroylsarcosine sodium salt, Sigma) was added to a final concentration of 1% (v/v).  After 
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incubation on ice for 1 h, membranes were collected at 20 000 x g for 30 min and resuspended in 

electrophoresis sample buffer and analyzed by SDS-PAGE by the system of Laemmli. 

 

Immunofluorescence of bacteria 

10
7 

bacteria were incubated on poly-D-lysine (BD) coated glass slides for 1 h at 37°C and 

subsequently fixed with 3% paraformaldehyde for 15 min.  Anti- SiaC polyclonal serum (1:500) and 

a FITC conjugated secondary antibody (Goat Anti- Rabbit IgG, Southern Biotech) was used at 1 

μg/ ml and fluorescence was measured with a Leica DMIRE2 microscope.  Pictures were taken 

with a digital camera (Hamamatsu Photonics) and OpenLab software (version 3.1.2). 

 

Lectin Staining 

10
5
 J774.1 macrophages were seeded on poly-D-lysine coated slides.  Infection was 

carried out with 2 x 10
6
 bacteria at indicated time points.  Macrophages were alternatively treated 

with recombinant SiaC for 15 h at 10 ng/ ml.  Cells were fixed with 3% paraformaldehyde for 15 

min.  Biotinylated lectins SNA (Vector Laboratories) and PNA (kindly provided by Daniela Finke) 

were incubated with cells at 5 μg/ ml for 1 h.  After washing with PBS, cells were treated with 1 μg/ 

ml fluorescein conjugated streptavidin (Vector Laboratories) and fluorescence was determined on 

mounted slides. 

 

Sensitivity to human Complement and fH binding 

10
7 

bacteria were incubated with normal human serum (10% final) for 3 h at 37°C.  The 

number of cfu in the inoculum and after incubation with serum was determined by plating on sheep 

blood agar plates.  Heat-inactivated serum (56°C for 1 h) was used in control assays.  For fH 

binding assays, 7 x 10
8
 bacteria were mixed with heat-inactivated serum for 1 h at room 

temperature.  Bacteria were washed five times with PBS/0.05% Tween-20 and bound proteins 

were eluted with 0.1 M glycine-HCl, pH 2.2 for 15 min at room temperature.  After removal of 

bacteria by centrifugation, eluates were neutralized with 1 M Tris, pH 8.0 and analyzed by SDS-

PAGE followed by immunoblotting with anti-factor H antibody (Calbiochem). 

 

Mice and tissue cage infection model 

12 week-old male C57BL/6 mice were maintained under pathogen-free conditions in the 

Animal Facility of the Department of Research, University Hospital Basel.  Animal experiments 

were performed in accordance with the guidelines of the Swiss veterinary law.  Teflon tissue cages 

were implanted subcutaneously in the back of anesthetized mice as previously described (Kristian 

et al., 2003).  The cages consisted of closed Teflon cylinders (10 mm diameter, 30mm length, 

internal volume 1.84 ml) with 130 regularly spaced 0.2 mm holes.  2 weeks after surgery, 200 μl of 

bacterial suspension was injected percutaneously into the cage.  Prior to infection, sterility of the 

tissue cage was verified.  Tissue cage fluid (TCF) was sampled at day 2, 5, 9, 14 and 27 and 

examined for leukocytes and bacterial viable counts.  Leukocytes from TCF were quantified with a 

Coulter counter (Coulter Electronics) and differentiated by Diff-Quick (Medion Diagnostics) Wright 
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staining of cytospins and examined under light microscopy.  The percentage of viable leukocytes 

was assessed by trypan blue exclusion. 

The survival of the siaC mutant in the competition experiment was compared directly with 

Cc5 in individual animals giving a 1:1 ratio of wild-type to mutant bacteria.  The number of mutant 

(Emr) and wild-type bacteria recovered from the TCF of animals was established by plating to 

media with and without erythromycin.  The competitive index was calculated as the (number of 

mutant/ wild-type bacteria recovered from animals) / (number of mutant/ wild-type bacteria in the 

inoculum). 

 

Statistical analysis 

For growth experiments, means and standard deviations were calculated and statistical 

significance was evaluated by using a two- tailed, unpaired Student’s t test.  Differences were 

determined to be significant when p < 0.05.  For in vivo experiments, individual mouse values are 

shown including the median value of each group.  Mann Whitney test with the post hoc Bonferroni 

correction was used for comparison between Cc5 and siaC CFU numbers during infection.  
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Figures 

 

 

Fig. 1 Growth of Cc5 is dependent on serum and contact to cells 

(A) Viable counts of 2 x 106 Cc5 monitored after 24 h of culture in the in presence of J774.1 

macrophages in RPMI supplemented with 10% FBS (moi = 20) (black); in the same condition 

without FBS (dark grey), in RPMI with FBS but no cells (light grey); in a transwell system 

preventing physical contact between bacteria and macrophages in RPMI with FBS.  (B) Viable 

counts of wt Cc5 and Tn mutant after 24 h culture with macrophages in RPMI and FBS (black), with 

macrophages in RPMI and FBS in addition of cytochalasin D (light grey) and with HeLa cells in 

DMEM and FBS (white).  The difference in the growth of the strains is statistically significant 

between wt and Tn mutant (Student’s t test p < 0.05) in 3 or more experiments. (C) Growth curve of 

wt Cc5 (triangles) and Tn mutant (squares) in heart infusion broth supplemented with 10% FBS, 

represented as the mean of 3 or more experiments with the error bars showing the standard 

deviation (SD). 
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Fig. 2 Surface localized sialidase is required for growth 

(A) Amino acid sequence of the C. canimorsus sialidase showing the signal peptide (italics) and the 

BNR/asp repeats (Ser/Thr-X-Asp-X-Gly-X-Thr-Trp/Phe) of bacterial sialidases (boxed).  Domain 

predictions were analyzed by InterProScan.  The residues conserved in sialidases at the C 

terminus are underlined and the tyrosine 488 is bold (Roggentin et al., 1989).  (B) Sialidase activity 

of intact bacteria was measured with the substrate 2 -(4-Methylumbelliferyl)- -D-N-

acetylneuraminic acid (MUAN).  Data show the mean of triplicate measurements and SD of a 

representative experiment.  (C) Viable counts of 2x 106 Cc5 (black), siaC mutant (light grey) or 

siaC mutant complemented with plasmids containing siaCFL, siaC 1-21 and siaCY488C after 24 h in 

the presence of J774.1 infection.  Sialidase was detected by immunoblotting with a polyclonal 

antibody against SiaC in total cells (TC).  (D) Outer membrane protein fractions (OMP) and cell free 

supernatants of the J774.1 cultures shown in (B) were analyzed by immunoblotting for the 

presence of SiaC.  (E) Surface localization of SiaC was tested by immunofluorescence on 

paraformaldehyde fixed but not permeabilized bacteria using anti-SiaC followed by anti- rabbit IgG 

conjugated to FITC. 
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Fig. 3 Addition of GlcNAc and GalNAc but not Neu5Ac rescues the growth defect of siaC  

(A) Viable counts of 2x 106 Cc5 (black) or siaC (grey) grown for 24h with J774.1 in cRPMI and 

FBS 24 h (control) or in the same condition with the addition of Neu5Ac, Neu5Ac- CMP or 12.5 

ng/ml enzyme  SiaCFL, SiaCY488C or NanH from C. perfringens.  (B) Viable counts of 2x 106 Cc5 

(black) or siaC (grey) after culturing in the presence of J774.1, RPMI, FBS (control) and 

supplemented with Man, Gal, Glc, GalNAc or GlcNAc.  Mean values from 3 or more experiments 

and SD are shown.  Unpaired Student’s t test was used to show statistical difference between wt 

Cc5 and siaC with * p< 0.05, ** p< 0.01 and *** p< 0.001 for each pair of columns. 
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Fig. 4 Cc5 desialylates macrophage and epithelial cells surfaces 

(A) The targets of the lectins used in this study are schematically represented (adapted from (Varki, 

2007)).  Surface carbohydrates of (B) J774.1 macrophages and (C) HeLa cells were analyzed by 

lectin binding after 15 h of infection with wt Cc5 or siaC mutant.  Cells were fixed with 

paraformaldehyde and incubated for 1h with SNA, which recognizes terminal sialic acids or PNA 

that binds to the oligosaccharide Gal 1-3 linked to GalNAc.  Biotinylated lectins were then 

visualized by FITC conjugated streptavidin. 
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Fig. 5 Sialidase confers resistance to complement-mediated killing 

(A) Viable counts of each bacterial strains after incubation with 10% normal (grey) or heat-

inactivated serum (black) for 3 h at 37°C.  Mean values from 3 or more experiments and SD are 

shown.  Unpaired Student’s t test was used to show statistical difference between wt Cc5 and 

different siaC strains with p< 0.05.  (B) Bacteria were mixed with heat-inactivated serum for 1 h at 

37°C.  Bound proteins were eluted and the eluates were subjected to immunoblot analysis using 

anti-factor H antibody.  (C) Immunofluorescence analysis of fixed but unpermeabilized E. coli 

expressing SiaC with anti-SiaC followed by anti- rabbit IgG conjugated to FITC.  Viable count assay 

(D) and factor H binding assay (E) were performed as in (A and B). 
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Fig. 6 The sialidase mutant is hypo-virulent in a tissue cage mouse infection model 

Infection of tissue cages in C57BL/6 mice with Cc5 and siaC singly (A) or in competition (B), 

analysis of tissue cage fluid for bacterial growth.  (A) Bacterial load (cfu/ml) after infection with 107 

Cc5 bacteria (n = 5), black circles, or siaC bacteria (open circles) during 27 days.  Individual 

values are shown; horizontal lines indicate the median value of each group.  The dotted line is the 

detection limit of 20 bacteria per ml fluid examined.  Cfu numbers between groups were 

significantly different on days 2, 5 and 9 with p < 0.01 and on days 14 and 27 with p <0.05.  (B) 107 

cfu wt Cc5 and erythromycin resistant mutant siaC bacteria were inoculated at a 1:1 ratio.  

Bacterial numbers were analyzed for 27 days (n = 5).  Viable counts between Cc5 and siaC were 

significantly different on day 2, 5 and 9 with p < 0.01 and on day 14 p <0.05.  (C) Ex vivo isolated 

total leukocytes were resuspended in serum free RPMI and inoculated at a moi of 20 (2x 106 

bacteria) or 0.2 (2x104 bacteria) and bacterial viable count was monitored after 24h.  Values are 

represented as the mean from three independent experiments using TCF cells from 3 uninfected 

mice.  Cc5 and siaC numbers were significantly different with p < 0.05 (*) and p < 0.001 (**).  (D) 

In vitro, Cc5 and siaC were tested in HIB with FBS inoculated at a 1:1 ratio with approximately 

100 bacteria total and bacterial growth was monitored for 2, 6, 10 and 24 h. 
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2.2. Additional Results 

2.2.1. Sialidase desialylates serum proteins 

In order to extend our observations and see whether sialidase would favor 

multiplication of C. canimorsus during the septic phase of infection, we 

investigated the effect of Cc5 on human serum proteins.  We therefore tested if 

serum proteins are desialylated by Cc5.  Serum was incubated with Cc5 for 90 min 

and the sialylation pattern of proteins was analyzed by SDS PAGE followed by 

lectin detection.  Lectins SNA and Maackia amurensis agglutinin (MAA), both 

recognizing sialic acid were used (Fig. 7A).  The glycosylation pattern of serum 

proteins incubated with siaC was identical to that of untreated serum control.  In 

contrast, Cc5 and complemented siaC mutant bacteria desialylated total serum 

proteins.  Removal of terminal sialic acids by Cc5 was further demonstrated by 

unmasking internal carbohydrate Gal (  1- 3) GalNAc and carbohydrate Gal-(1-4) 

GlcNAc recognized by PNA and Datura stramonium agglutinin (DSA), 

respectively, exposed after removal of terminal sialic acids (Fig. 7A). 

We previously provided evidence for sequential deglycosylation of host 

glycans by Cc5. We therefore examined deglycosylation of purified serum 

glycoproteins, human transferrin and bovine fetuin.  Recombinant SiaC but not 

SiaCY488C desialylated both human transferrin and bovine fetuin after 5 and 18 h of 

incubation, respectively, whereas live Cc5 desialylated these proteins after 18 h 

(Fig. 7B).  The appearance of a signal using lectin PNA for fetuin and DSA for 

transferrin after incubation with recombinant SiaC demonstrates removal of 

terminal sialic acids.  The lack of signal with the same lectins after treatment of 

transferrin or fetuin by Cc5 suggests a more extensive deglycosylation process.  

These results showing a different outcome from PNA staining after incubation with 

recombinant SiaC or Cc5 are consistent with the results observed on macrophage 

surfaces (Fig. 4B).  

We then tested whether deglycosylation of serum proteins by Cc5 could in 

turn promote growth of siaC.  Live Cc5 and siaC bacteria were therefore 

incubated with heat inactivated human serum (Fig. 7C) or bovine serum (data not 

shown) for 1 h and the resulting conditioned sera were added during infection of 

J774.1 in serum free RPMI.  Interestingly, addition of serum conditioned by 

incubation with Cc5 enabled siaC to grow in the presence of cells.  Serum 

conditioned by incubation with siaC bacteria on the other hand could not restore 
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growth of siaC (Fig. 7C).  Taken together, we conclude that SiaC plays a crucial 

role by revealing oligosaccharides usually masked by terminal sialic acids present 

on serum proteins as well as in glycoconjugates present on cell surfaces.  Thus, 

deglycosylation results in release of available GlcNAc and GalNAc necessary for 

replication and survival of Cc5. 

 

 

Fig. 7 Cc5 desialylates and deglycosylates serum proteins 

(A) HI serum was incubated with bacteria, separated by SDS PAGE, blotted and protein 

glycosylation pattern was subsequently examined by DIG labeled lectin binding.  Lectins (Roche) 

used were SNA that recognizes terminal sialic acids (2- 6 or 2- 3) linked to Gal or to GalNAc; DSA, 

that binds to Gal-(1-4) GlcNAc in N- or O-glycans and/or GlcNAc (O-glycans); MAA which binds to 

sialic acid linked (2- 3) to Gal and PNA that is specific for Gal (  1- 3) GalNAc.  (B) Lectin detection 

was used to determine changes in glycosylation state of bovine fetuin or human transferrin upon 

treatment with bacteria or purified SiaC. (C)  Bacteria were incubated with HI serum for 1 h and the 

resulting conditioned sera were filter sterilized and added during infection of J774.1 in serum free 

RPMI.  Bacterial growth was monitored after 24 h. 
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We next analyzed growth behavior of Cc5 and siaC in heat inactivated 

serum and found that Cc5 but not siaC grew well on heat-inactivated human 

serum (Fig. 8). 

 

 

Fig. 8 Growth behavior of Cc5 and siaC in HI serum 

Cc5 and siaC were inoculated with approximately 150 cfu/ ml in 100% HI serum and bacterial 

growth was monitored for 24 h.  

 

 

2.2.2. Analysis of sugars on the bacterial surface reveals no difference 

between siaC and Cc5 

Molecular mimicry, such as sialylation of LPS or CPS, is a way for several 

bacterial pathogens to evade complement killing and opsonisation.  Therefore, we 

wanted to exclude that sialic acid is used by C. canimorsus for surface decoration.  

An extensive biochemical analysis of C. canimorsus LPS and capsular 

polysaccharide did not identify sialic acids on wt Cc5 grown on blood plates (U. 

Zähringer).  In addition to these observations, we analyzed the proteins for 

glycosylation.  We tested in parallel crude extracts or proteinase K digests of Cc5 

and siaC bacteria by SDS PAGE followed by stainings with silver periodic acid 

(Fig. 9A), Alcian Blue/Coomassie (Fig. 9B) or Stains-all/silver (Fig. 9C).  No 

difference in the pattern could be observed.  We also stained proteinase K 

digested extracts of bacteria that were pre-incubated with fetal bovine serum 

(FBS) in order to see if incubation with FBS would result in glycosylation.  There 
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was no difference visible in the pattern of the samples stained with by Alcian 

blue/Coomassie or Stains-all/silver stain (Fig. 9D and 9E).  Next, outer membrane 

preparations from bacteria that were treated before with FBS were analyzed and 

no clear difference could be observed (Fig. 9F and 9G).  Additionally, outer 

membrane proteins or crude extracts derived from bacteria that had been 

incubated with FBS were analyzed with lectins SNA, GNA, DSA or PNA and no 

binding could be observed (data not shown).  Immunoblotting with an antibody that 

was generated against heat killed Cc5 bacteria did not reveal any difference 

between Cc5 and siaC either, indicating that no epitope is missing in siaC 

(Hwain Shin, data not shown).  It would be interesting to perform experiments 

chasing incorporation of tritium labeled sialic acids.  However, such experiments 

are hampered by the unavailability of a minimal medium suitable for C. 

canimorsus. 

Taken together, we conclude that sialidase provides access to internal 

aminosugars of eukaryotic glycans by cleaving terminal sialic acids, whereas sialic 

acids are not used for bacterial replication or for molecular mimicry. 
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Fig. 9 Analysis of bacterial carbohydrates reveals no difference between siaC and Cc5 

Bacterial carbohydrates of total cells (TC) or proteinase K digests were analyzed by (A) periodic 

acid, (B) Alcian blue/Coomassie or (C) Stains-all/silver staining.  Bacteria were incubated with HI 

serum prior to analysis of bacterial extracts digested with proteinase K using (D) Alcian 

blue/Coomassie or (E) Stains-all/silver staining.  Outer membrane proteins (OMP) prepared from 

bacteria incubated with serum were analyzed with (F) Alcian blue/Coomassie or (G) Stains-

all/silver staining.  Bacteria used were Cc5, siaC or siaC complemented with plasmids encoding 

SiaC in trans, or Tn mutant Y4G6 (G and H) (Chapter 2). 
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2.2.3. Dog’s saliva can complement impaired growth of siaC in presence of 

cells 

 We next wanted to test, if growth of Cc5 in saliva, which represents a part 

of the ecological niche of C. canimorsus, is dependent on the action of sialidase or 

if nutrients present could complement impaired growth of siaC.  Saliva was 

sampled from a dog that contained C. canimorsus in its normal flora (Chapter 4, 

dog 018).  Saliva was prepared by removing aggregates and cells.  Filter-sterilized 

saliva was added to cultured J774.1 at 5 or 10% final concentration.  Growth of 

siaC after 24 h in this experimental set up, which included cells and FBS, was 

restored in a dose dependent manner.  Saliva samples derived from different 

preparations led to differences when added at 5%, but 10% was enough to sustain 

bacterial growth.  When cells were cultured without serum, the addition of saliva 

also rescued impaired growth of siaC.  We suspect that free aminosugars are 

present in sufficient amounts in dog’s saliva for C. canimorsus to multiply.  Hence 

sialidase would be required to grow at the expenses of cells but not on saliva.  

 

 

 

Fig. 10 Dog’s saliva can rescue impaired growth of siaC in presence of J774.1 

Filter sterilized and cell free dog’s saliva was added to cultured J774.1 at 5 or 10%.  Bacteria were 

inoculated at a moi 20 (2x 106 cfu/ ml) and viable counts were determined after 24 h. 
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2.2.4. A second mutant displaying impaired growth in presence of 

macrophages can be complemented by aminosugars 

A Tn mutant screen led to the identification of two mutants that were 

defective in growth in the presence of J774.1 macrophages but proficient in growth 

on blood agar.  One of these mutants turned out to be affected in the surface-

exposed sialidase.  Here, we analyzed Y4G6, the second mutant.  

We tested whether the addition of aminosugars would restore growth of 

mutant Y4G6 in the presence of macrophages.  GlcNAc and GalNAc restored 

growth of mutant Y4G6 (Fig. 11) as demonstrated for siaC (Fig. 3B).  This 

suggests that the gene disrupted in mutant Y4G6 plays a role in the acquisition of 

the aminosugars GlcNAc and GalNAc.  Surprisingly, both mutants siaC and 

mutant Y4G6, could grow in presence of cells and ManNAc, which is not present 

in eukaryotic glycans.  

 

 

Fig. 11 Mutant Y4G6 has a growth defect in presence of macrophages and aminosugars can 

rescue impaired growth of siaC or Tn Y4G6. 

Viable counts of 2 x 106 Cc5 (black), siaC (grey) or TnY4G6 (white), monitored after 24 h of 

culture in the in presence of J774.1 macrophages in cRPMI (moi = 20); and in the same condition 

supplemented with 0.1% GlcNAc, GalNAc or ManNAc.  Mean values from 3 or more experiments 

and SD are shown. 
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2.2.5. Identification of the mutant Y4G6 

Mapping of the transposon integration site identified a gene (“yfg” for Y four 

G six, gene “A”) encoding for a protein with homology to the hypothetical protein 

BF3612 of B. fragilis (Table 5).  Using domain predictions by InterProScan 

(Quevillon et al., 2005) there was no further hint on its function except for a 

predicted signal sequence.  The operon contains one predicted outer membrane 

protein (“ompY”) upstream of yfgA.  InterProScan predicted the gene product of 

yfgB with a glycoside hydrolase domain (IPR001579).  The downstream genes 

called yfgCD encode for proteins with unknown function. 

In order to exclude polar effects of the Tn integration, several plasmids 

were constructed to complement the growth defect (Fig. 12).  The gene yfgA was 

cloned with and without C-terminal His tag into the shuttle expression plasmid 

pMM47.A, leading to constructs pMM57 and pMM56, respectively.  Introduction of 

both constructs in trans of mutant Y4G6 did not complement the growth defect in 

presence of J774.1, suggesting a polar effect of the transposon insertion.  

Therefore, we cloned yfgA with its downstream gene yfgB (pMM76), but this 

construct introduced in trans did not rescue the Tn mutant for growth.  YfgBHis 

(pMM76) was however expressed as assessed by immunoblotting against its C-

terminal His tag (not shown).  In addition, we constructed plasmids including ompY 

(upstream gene), yfgA with or without yfgB (Fig. 12).  The plasmid pMMP98 

contained ompY and yfgA without any modification, while in pMMP99 yfgA was in 

frame with a C-terminal His tag.  Plasmid pMMP100 contained the upstream gene 

ompY, yfgA and the downstream gene yfgB.  Introduction of pMMP98 and 

pMMP100 in trans of Y4G6 rescued the growth defect in presence of cultured 

cells, while pMMP99 did not, suggesting the C-terminal modification disturbed 

function of yfgA.  Growth of Y4G6 could be rescued by introducing pMMP98 

(ompYyfgA) but not by pMMP99 (ompYyfgAHis) (Fig. 13).  This indicates that there 

is no or only little polar effect in Y4G6.  We therefore conclude that the yfgA gene 

without modification of the Shine Dalgarno site N-terminus or C-terminus is 

necessary for growth with cells. 
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Fig. 12 Schematic representation of the Y4G6 locus and the genes cloned for 

complementation. 

(A) Tn4351 inserted in a locus resembling an operon, called Y4G6 according to the Tn mutant.  (B) 

Genes cloned for complementation are schematically represented for the corresponding plasmids.  

(C) + or - indicates positive or negative results of complementation during growth in presence of 

macrophages. 

 
Table 5 Blast comparisons of the gene products of locus Y4G6 (February 2008, nr database) 

ID Annotation Species score E value 

OmpY     
ref|YP_100888.1| putative outer membrane protein Bacteroides fragilis 916 0.0 
ref|YP_213018.1| putative outer membrane protein Omp117 Bacteroides fragilis 916 0.0 
ref|NP_813315.1| putative outer membrane protein Bacteroides thetaiotaomicron 890 0.0 
(Tn hit) YfgA     
ref|YP_100889.1| hypothetical protein BF3612 Bacteroides fragilis 347 1e-93 
ref|YP_213019.1| hypothetical protein BF3413 Bacteroides fragilis 346 3e-93 
ref|NP_813316.1| hypothetical protein BT_4405 Bacteroides thetaiotaomicron 308 5e-82  
YfgB     
ref|NP_813317.1| hypothetical protein BT_4406 Bacteroides thetaiotaomicron 92.4 5e-17 
gb|EDO10923.1| hypothetical protein BACOVA_03558 Bacteroides ovatus 77.0 2e-12 
ref|NP_812664.1| endo-beta-N-acetylglucosaminidase Bacteroides thetaiotaomicron 73.6 3e-11 
YfgC     
gb|EDO10657.1| hypothetical protein BACOVA_04106 Bacteroides ovatus 68.9 7e-10 
ref|YP_100891.1| hypothetical protein BF3614 Bacteroides fragilis 67.8 1e-09 
ref|YP_213021.1| putative lipoprotein Bacteroides fragilis  65.1 8e-09 
YfgD     
Emb|CAG38650.1| hypothetical protein Ornithobacterium rhinotracheale 42.7 0.022 
ref|ZP_01926445.1| hypothetical protein LMHG_01920 Listeria monocytogenes 40.4 0.11 
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Fig. 13 Gene yfgA in trans of Tn mutant Y4G6 is required to restore impaired growth in 

presence of macrophages 

Bacterial viable counts of Cc5, Tn mutant Y4G6 (Tn Y4G6) alone or harboring different plasmids in 

trans inoculated at a moi of 20 (2x 106 bacteria) were monitored after 24 h in presence of J774.1 in 

cRPMI.  Mean values from 3 experiments and SD are shown, except for pMMP99. 

 

2.2.6. Serum sensitivity 

We next tested the bactericidal action of human serum by incubating 107 

bacteria in normal or heat inactivated (HI) human serum for 3 h.  Y4G6 was more 

sensitive to complement mediated lysis than wt Cc5 (Fig. 14A).  As shown for 

siaC (Fig. 5A), complement sensitivity correlated to a lack of factor H binding 

(Hwain Shin, not shown).  Serum sensitivity was restored by introducing pMMP100 

and to a lesser extent by pMMP98 in trans of Y4G6.  This suggests that 

expression of the downstream gene yfgB enhances the ability of Y4G6 to resist 

complement (Fig. 14A). 

We next tested if addition of aminosugars changed surface properties of the 

serum sensitive mutants siaC and Y4G6 (Fig. 14B).  We observed that addition 

of aminosugars did not confer protection against human serum when added at 1% 

to siaC or Y4G6.  However, GlcNAc or ManNAc did increase the total viable 

counts of siaC or Y4G6 in heat-inactivated serum, indicating that even in 

conditions in which serum is the only nutritional source, addition of aminosugars 
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sustains bacterial growth of mutants, at least to some extent comparable to wt 

levels. 

To summarize, aminosugars added to siaC or Y4G6 did not confer 

protection against the bactericidal action of human complement.  This suggests 

that aminosugars are not used by the bacteria to modify the carbohydrate surface 

structures. 

 

 

Fig. 14 Analysis of serum sensitivity and effects of aminosugars 

(A) Viable counts of each bacterial strain after incubation with 10% normal (grey) or HI serum 

(black) for 3 h at 37°C.  Mean values from 3 or more experiments and SD are shown.  (B) Effects of 

aminosugars was tested by monitoring viable counts as described in (A) and in addition of 1% 

ManNAc or GlcNAc 
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2.2.7. Serum proteins are bound by Cc5 and desialylated 

 We showed previously that bacterial growth was dependent on contact to 

host cells.  However, serum also influenced growth, at least to some extent (Fig. 

1A).  In addition, we showed that Cc5 bacteria not only desialylated but also 

deglycosylated serum proteins (Fig. 7).  We next tested whether serum derived 

host glycoproteins are recruited to the bacterial surface of Cc5. 

With immunofluorescence on fixed but unpermeabilized bacteria that were 

pre-treated with HI serum, we tested binding of lectin SNA that recognizes terminal 

sialic acids.  We observed the presence of sialic acids on the surface siaC but 

not on the wt Cc5 bacterial surface or on mutant Y4G6 (Fig. 15.). The signal from 

SNA binding disappeared after the addition of SiaC, confirming that terminal sialic 

acids can be removed by sialidase treatment.  This observation suggests that Cc5, 

siaC + siaCFL and mutant Y4G6 might bind the same glycosylated components 

as siaC or siaC + siaC 1-21 after serum treatment but desialylation by a 

functional sialidase in those strains leads to a lack of signal.  Immunofluorescence 

indicates that the surface of siaC becomes sialylated after incubation with HI 

serum.  No fluorescence was observed when bacteria were not incubated with HI 

serum but with buffer instead (data not shown). 

We next wanted to identify the source for the sialic acid signal on siaC.  

We asked if host derived factors could be bound and subsequently deglycosylated 

by C. canimorsus.  We therefore performed a serum absorption experiment, 

detached bound serum proteins from the bacterial surface by low pH and analyzed 

eluates by lectin binding.  Lectin SNA recognized terminal sialic acids, while lectins 

GNA (Galanthus nivalis agglutinin, recognizing mannose), PNA (specific for Gal-

GalNAc); or DSA (Gal-GlcNAc / GlcNAc) can only bind to these internal 

carbohydrates if they are exposed after removal of terminal sialic acids.  We could 

detect signals for lectins GNA (Fig. 16B) and PNA (Fig. 16C) in eluted protein 

supernatants from Cc5.  This shows that bound serum proteins were desialylated 

by wt Cc5, or, even subsequently deglycosylated as indicated by a decrease of 

DSA signal (Fig. 16D).  Notably, serum proteins eluted off from mutant Y4G6 

clearly showed more binding to DSA (Fig. 16D) and GNA (Fig. 16B) (n=3), as 

compared to proteins detached from wt Cc5.  This shows that sialic acids are 

removed by mutant Y4G6.  More interestingly, this suggests that sugars Gal-
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GlcNAc / GlcNAc (DSA) and mannose (GNA) on the glycoproteins bound by the 

mutant Y4G6 can not be deglycosylated. 

 

Taken together, mutant Y4G6 is clearly affected in the deglycosylation 

process as shown by the inability to further hydrolyze internal Gal-GlcNAc / 

GlcNAc and/or mannose. 

 

 

Fig. 15 Sialic acids can be detected after serum treatment on sialidase-deficient bacteria 

Lectin SNA was used on fixed but unpermeabilized bacteria that were pretreated with HI serum to 

detect terminal sialic acids.  Biotinylated lectin was visualized by fluorescein conjugated 

streptavidin and examined by microscopy. 

 

 



 

-65- 

 

 

Fig. 16 Bacteria bind serum proteins and subsequent deglycosylation is dependent on the 

action of sialidase. 

5x 109 bacteria were incubated with HI serum and bound serum proteins were detached from the 

bacteria by glycine pH 2.2.  Eluted proteins were separated by SDS PAGE and analyzed by lectin 

staining.  Lectins (Roche) used were SNA that recognizes terminal sialic acids (2- 6 or 2- 3) linked 

to Gal or to GalNAc (A); GNA (Galanthus nivalis agglutinin) recognizing terminal mannose, (1-3), 

(1-6) or (1-2) linked to mannose (B); PNA that is specific for Gal (  1- 3) GalNAc (C); or DSA, that 

binds to Gal-(1-4) GlcNAc in N- or O-glycans and/or GlcNAc (O-glycans). 
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We next asked which serum proteins are recruited to the bacterial surface 

of C. canimorsus.  As shown in Fig. 15 and Fig. 16, siaC is able to bind serum 

derived proteins and due to the inability of siaC to remove terminal sialic acids, 

the bound glycoproteins can not be deglycosylated.  We therefore used lectin SNA 

bound to agarose beads to affinity purify fully sialylated glycoproteins bound on 

siaC bacteria.  By mass spectrometry, a 50 kDa could be identified as the human 

beta-2 glycoprotein I ( 2GPI) from plasma (Fig. 17) and a 64 kDa band was 

identified as the heavy chain from IgA (Fig. 17B). 

 

 

Fig. 17 Affinity chromatography using lectin SNA reveals sialylated serum proteins bound 

by siaC 

(A) siaC was pretreated with HI serum (“with serum”) or with buffer only (“without serum”) and 

bound proteins were detached from bacteria by glycine pH 2.2.  Eluates were incubated with SNA 

bound on agarose that was used to bind sialylated proteins which were then eluted by 500 mM 

lactose (“eluate 1”) followed by 500 mM lactose in acetic acid (“eluate 2”) and separated by SDS 

PAGE and stained with silver.  (B) The same conditions were applied as shown in (A) but with 

increased sample size.  Asterisks indicate (*) human beta-2 glycoprotein I and (**) heavy chain 

from IgA1. 

 

A deglycosylation process of bound host proteins was dependent on 

presence of sialidase and our experiments strongly suggest that mutant Y4G6 is 

also involved in the deglycosylation process on unprotected carbohydrates after 

the removal of terminal sialic acids. 
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2.2.8. Methods Section 

Deglycosylation of serum proteins and lectin blotting 

Total pooled human serum was heat inactivated at 55°C for 60 min, and incubated with 5x 

10
9
 bacteria in PBS for 90 min at 37°C.  Bacteria were removed by centrifugation at 20 000 x g for 

5 min and serum supernatant was cleared by filtering though a 0.22 μm filter (Sarstedt) and diluted 

100 x.  Serum proteins were precipitated by trichloroacetic acid for 1 h and pellets were washed 

with acetone and dissolved in electrophoresis sample buffer.  1 μg transferrin or fetuin (Roche) 

were incubated with 10
7
 bacteria or with 1 μg purified sialidase at 37°C for 5 or 18 h. Reactions 

were stopped by adding sample buffer and samples were boiled for 10 min.  To examine 

deglycosylation of serum proteins, samples with a protein concentration of approximately 0.2 μg 

were electrophoresed on an SDS-PAGE gel (12.5%), transferred onto nylon C+ membranes 

(Nucleobond), and detected using GNA, SNA, MAA, DSA or PNA lectins from the DIG glycan 

differentiation kit (Roche), according to manufacturers instructions.  

 

Silver periodic staining 

SDS gels were fixed in 40% EtOH, 5% acetic acid for at least 4 h.  0.7% periodic acid in 

40% EtOH and 5% acetic acid was used to oxidize sugars for 5 min.  Gels were washed 

extensively for 3x 15 min with H2O and subsequently stained for 10 min with a reagent containing 

1.34% concentrated ammonium hydroxide, 18.67% 0.1 M NaOH and 0.67% AgNO3 followed by 

three washing steps in H2O for 10 min.  Developer containing 0.05% formaldehyde and 0.005% 

citric acid, stained sugars as LPS dark brown in 2 to 5 min. Reaction was terminated by 10% acetic 

acid. 

 

Stains-all staining and combined Stains-all/silver 

 SDS gels were fixed for Stains-all (Fluka) over night in 10% acetic acid and 25% 

isopropanol to remove residual SDS.  The gels were stained for up to 48 h in the dark at room 

temperature with freshly prepared working solution from Stains-all stock solution with final 0.01% 

Stains-all in 7.5% formamide, 25% isopropanol, 45 mM Tris- HCl, pH 9.2.  The background stain 

was removed by several changes of 25% isopropanol in the dark and scanned for documentation.  

The gels were finally destained in 25% isopropanol in the dark.  For the combined Stains-all/ silver 

staining, Stains-all destained gels were washed 3 x in H2O and subsequently stained with 0.1% 

AgNO3 for 20 min.  Developer contained 2.5 % sodium carbonate and 0.04 % formaldehyde and 

reaction was stopped by 7 % acetic acid. 

 

Alcian Blue 8GX staining 

 After staining with Coomassie Blue (0.25 % Coomassie Blue R-250 8% acetic acid and 

46% EtOH), gels were extensively destained with 5% acetic acid, 35% EtOH to remove SDS and 

unspecific bindings.  Gels were shaken in 7% acetic acid for 1 h with changes of the solution 

several times.  0.5% w/v Alcian Blue 8GX (Sigma) in 7% acetic acid was used for 30 min to stain 



 

-68- 

glycans and gels were washed in 7% acetic acid for 12- 24 h.  After destaining, gels were kept 1- 2 

h in 5% acetic acid, 35% EtOH and stored in water (Wardi and Michos, 1972). 

 

Preparation of dog’s saliva 

 Saliva was sampled from a healthy dog, immediately stirred with 2.5 mM DTT for at least 

20 min or up to 1 h at RT to remove aggregates.  Cells and aggregates were removed by high 

speed centrifugation at 40 000 x g for 10 min at 4°C and supernatants were filtered though 0.20 

μm.  Sterility was verified in infection assays. 

 

Serum absorption 

 After incubating 5x 10
9
 bacterial strains Cc5, siaC or mutant Y4G6 with HI human serum 

for 90 min, serum supernatant was removed and loosely attached serum proteins were washed off 

with 0.05% PBS Tween-20.  Proteins bound by the bacteria were eluted using glycine pH 2.2 and 

the neutralized supernatants were analyzed by SDS PAGE by lectin binding. 

 

SNA Affinity Chromatography 

C. canimorsus siaC was grown on HIA plates, harvested by scraping and resuspended in 

PBS.  HI human serum was incubated with 5x 10
9
 bacteria in PBS for 90 min at 37°C.  Bacteria 

were washed five times with PBS/0.05% Tween-20 and bound proteins were eluted with 0.1 M 

glycine-HCl, pH 2.2 for 5 min at room temperature.  After removal of bacteria by centrifugation, 

eluates were neutralized with 1 M Tris, pH 8.0 and mixed with SNA-agarose (Vector Laboratories).  

Beads were incubated on a stirring wheel over night at 4°C followed by extensive washes and 

bound molecules were eluted with 500 mM lactose in buffered saline followed by 500 mM lactose 

in acetic acid.  Eluates were separated on SDS PAGE and subsequently stained with silver.  

Alternatively, Coomassie stained proteins contained in gel slices were digested with trypsin and 

subjected to mass spectroscopy analysis. 
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2.3. Discussion  

We could demonstrate that unmasking of carbohydrates by SiaC results in 

production of accessible aminosugars necessary for multiplication of C. 

canimorsus.  Addition of GlcNAc and GalNAc could restore the growth defect of 

Y4G6 and siaC.  We therefore expect a sequential deglycosylation process of 

host glycans either present on cell surfaces or on circulating host glycoproteins by 

wt Cc5.  A sequential action of exoglycosidases was previously described for S. 

pneumoniae and a similar mode of action may be also involved during C. 

canimorsus growth in vivo.  We demonstrated that C. canimorsus bound and 

deglycosylated serum derived host proteins.  This deglycosylation process was 

altered in siaC at the first step, which is cleavage of terminal sialic acids, and we 

suggest that the gene disrupted in mutant Y4G6 encodes an enzyme involved in 

the subsequent steps of deglycosylation.  This hypothesis is supported by lectin 

stainings on serum proteins bound on the bacterial surface.  More biochemical 

analysis on the protein needs to be performed to understand its properties in vitro.  

Even though we excluded polar effects on yfgB, more genetic and biochemical 

analysis on yfgB should be performed in addition.  YfgB was predicted to have a 

glycoside hydrolase domain by using InterProScan. 

It also has to be addressed in the future if alteration in the glycosylation 

state of host clearance proteins affects their function.  Many proteins of the 

adaptive and innate immune systems are glycosylated and it has been shown that 

altering the glycosylation of a protein modifies its functions (Schauer, 2000).  It has 

already been proposed that pathogenic bacteria modulate the activity of host 

clearance proteins by deglycosylation.  EndoS, S. pyogenes extracellular enzyme, 

hydrolyzes conserved N- linked oligosaccharides from the heavy chain of IgG.  

This deglycosylation in turn alters the binding of IgG to FcR II and EndoS treated 

IgG were shown to significantly reduce activation of the classical pathway of 

complement (Collin et al., 2002).  Similarly, in S. pneumoniae, sialidase (NanA), - 

galactosidase (BgaA) and -N-acetylglucosaminidase (StrH) have been shown to 

sequentially deglycosylate human secretory component hSC, human lactoferrin 

and hIgA1 (King et al., 2006).  However, there is no proof that this contributes to 

pathogenesis.  In the case of C. canimorsus, we could demonstrate that the lack of 

one metabolic pathway leads to increased sensitivity to human complement.  One 

mechanism leading to complement resistance is the recruitment of fH, but if the 
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deglycosylation process itself contributes to serum resistance or to fH binding 

remains an open question.  One could envision that a surface localized multi-

enzyme complex that deglycosylates host glycans itself binds heavily glycosylated 

fH.  Experiments testing this hypothesis are currently ongoing. 

Interestingly, we found during this study that Y4G6 and siaC could be 

rescued for growth in presence of cells by addition of ManNAc, which is not found 

in eukaryotic glycoproteins.  This raises several questions about metabolism of 

Cc5.  ManNAc and pyruvate are the products of sialic acid catalyzed by the 

neuraminiate lyase NanA from E. coli, Salmonella sp. or Haemophilus influenza, 

all known for sialic acid catabolism (Vimr et al., 2004).  In case of C. canimorsus, 

we provide strong evidence against sialic acid catabolism: First, sialic acid is not 

the source for growth in C. canimorsus.  Neither Neu5Ac nor CMP-Neu5Ac could 

restore the growth defect of siaC.  Moreover, biochemical analysis by U. 

Zähringer did not show any sialic acid in CPS, LPS or glycans on C. canimorsus 

grown on blood plates.  This furthermore excludes that serum resistance is due to 

molecular mimicry by acquisition on sialic acids in surface structures of C. 

canimorsus.  A possible reason for the usage of ManNAc may be explained from 

the sialidase locus in the genome.  We could identify a gene with domain 

prediction of an N- acyl epimerase in a putative operon with the sialidase.  Looking 

at the metabolic pathways, we could therefore suggest that this enzyme 

epimerizes GlcNAc to ManNAc and vice versa.  This would not involve a 

neuraminiate lyase converting pyruvate and ManNAc from Neu5Ac (Vimr et al., 

2004; Walters et al., 1999) in C. canimorsus for generating ManNAc or GlcNAc.  

However, the question whether GlcNAc, GalNAc or ManNAc are incorporated in 

LPS or CPS has to be addressed in the future.  GlcNAc may be the main source to 

be involved in LPS, CPS and peptidoglycan structure or biosynthesis and 

therefore renders C. canimorsus dependent on the uptake of host derived 

aminosugars.  Again, this would clearly indicate the close link between host 

adaptation and bacterial metabolism.  If this deglycosylation process is related to 

resistance against complement and fH binding remains poorly understood and 

requires more experiments to be performed.  One possible theory as discussed 

before would be that changes in glycosylation of host proteins results in altered 

functions.  On the other hand, one can exclude that alteration of the capsular 
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structure or LPS on C. canimorsus mutants, siaC and Y4G6, leads to serum 

sensitivity, for instance by the inability to recruit fH.  

In a recent study, peptides from human beta-2 glycoprotein I upon cleavage 

by PMN-derived proteinases have been shown to have a broad antibacterial 

activity.  S. pyogenes was able to counteract this activity by binding human beta-2 

glycoprotein I via the M1 and H protein (Nilsson et al., 2008).  It has to be 

addressed in the future what role the recruitment of human beta-2 glycoprotein I to 

the surface of C. canimorsus plays in pathogenesis or in serum resistance. 

To summarize, we provide evidence that the gene yfgA encodes a protein 

involved in deglycosylation of host-derived glycans on cell surfaces or soluble 

glycoproteins.  This contributes to the efficient replication of C. canimorsus 5 in 

presence of phagocytes.  Moreover, serum proteins, presumably IgA or human 

beta-2 glycoprotein I, are recruited to the bacterial surface and subsequently 

deglycosylated.  This deglycosylation required the action of the sialidase and yfgA. 
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Chapter 3        Isolation of mutants affected in the anti-inflammatory mechanism of  

C. canimorsus 5 

 

Author contributions. HS, MM and GC designed the experiments and HS, MM, and CP 

performed the experiments. 

Statement of my work.  My contribution was the development of the genetic methodology; I 

contributed to the Tn mutant library and the screen with HS and CP.  I mapped and characterized 

the mutants.  I generated the tools such as complementation plasmids and antibodies.  Data from 

HS is indicated. 

 

3.1. Summary 

We applied an extensive Tn mutagenesis approach to screen for mutants of 

Cc5 that are defective in the active anti-inflammatory mechanism that we observed 

during infections of stimulated J774.1 macrophages.  Four mutants were 

associated to a defect in blocking NO release during co-infection of J774.1 

macrophages.  Of these mutants, three were deficient in blocking tumor necrosis 

factor (TNF) -alpha release upon LPS stimulation of J774.1, whereas one could 

still inhibit TNF-alpha release as wt Cc5.  We identified the disrupted genes in 

three Tn mutants.  We further analyzed one locus in more detail and found that at 

least two other genes in the same operon are involved in the active mechanism of 

blocking LPS induced NO release of macrophages.  Despite exhaustive genetic 

analysis, the functions of the gene products involved remain to be understood. 
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3.2. Screening the Tn4351 library for defects in the anti-inflammatory 

mechanism 

Infection of murine or human macrophages with C. canimorsus does not 

lead to proinflammatory response (Shin et al., 2007).  First, there is a lack of TLR 

4 stimulation by live or heat-killed (hk) C. canimorsus, which could be explained by 

a hypo-reactive LPS structure (Shin et al., 2007).  Secondly, when macrophages 

were stimulated with a potent LPS derived from E. coli, two strains, Cc5 (Shin et 

al., 2007) and Cc11, actively down-regulated release of NO and TNF-alpha.  To 

investigate this intriguing property of manipulating host cell inflammatory signals, 

we screened the Tn4351 mutant library.  We infected J774.1 macrophages in 96-

well plates with either wt or the Tn mutants adjusted to a moi of 20.  

Simultaneously a source of endotoxic LPS was added to stimulate pro-

inflammatory response of J774.1.  We used in parallel two different stimuli either 

hk E. coli or hk Y. enterocolitica as a source of LPS to validate the results of the 

screen.  After 24 h of co-infection with either hk E. coli or from hk Y. enterocolitica, 

cell free supernatants were then analyzed with a colorimetric assay using Griess 

reagent for measuring the amount of NO release.  We isolated mutants that lost 

the ability to actively inhibit proinflammatory signals (Fig. 18A). 

 

Of 6 719 mutants screened, we isolated six mutants that were unable to 

block NO release after stimulation of J774.1 macrophages with hk E. coli or hk Y. 

enterocolitica.  Four out of six mutants (Y2F12, X7B9, Y4B5 and X2E4) displayed 

normal growth in presence of macrophages 24 h post infection but had a defect in 

the active anti-inflammatory mechanism (Fig. 18B).  We then tested their ability to 

inhibit TNF-alpha release by macrophages upon LPS stimulation and found that 

three of four mutants (Y2F12, X7B9 and X2E4) were also unable to block TNF-

alpha release, meaning that only one mutant (Y4B5) was still proficient in inhibiting 

TNF-alpha (Fig. 18C). 
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Fig. 18 Screening a Tn4351 mutant library based on co-infection of macrophages identified 

mutants defective in inhibition of LPS-induced NO release 

(A) J774.1 cells were co-infected with Tn mutants by simultaneous addition of a source of 

stimulatory LPS (hk Y. enterocolitica) for 24 h in a 96 well format.  Cell free supernatants were 

analyzed for NO in form of stable nitrite using Griess reagent.  Cells were stimulated with hk Y. 

enterocolitica only (1) or infected in addition with wt Cc5 (2) or a Tn mutant defected (3). (B) 

Isolated mutants could not inhibit hk Y. enterocolitica induced NO release in one representative 

experiment (Hwain Shin).  (C) TNF-alpha release was tested after co-infection with hk Y. 

enterocolitica for the same mutants as indicated by one representative experiment shown (Hwain 

Shin). 
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3.3. Mutant Y2F12 maps in an operon of 4 genes 

By an arbitrarily primed PCR, we located the Tn disruption in front of the 

stop codon of an ORF in a locus that resembled an operon.  To finalize the 

mapping of the region, we first needed to sequence gaps in the draft sequence of 

a shotgun library of the Cc5 genome.  Gaps were closed by primer walking on 

genomic DNA to find the upstream genes and the putative promoter region. 

We refer to the genes in this locus as “cam” for canimorsus active 

mechanism N, O, A and B (Fig. 19).  A blast analysis of gene products of the locus 

is shown in Table 6.  Protein CamN encoded by the first gene in the operon shows 

high similarities to outer membrane proteins of the Bacteroides genus.  Using 

InterProScan (Quevillon et al., 2005), CamN showed a signature of a TonB-

dependent receptor with the conserved part of the beta-barrel structure 

(IPR000531).  Domain prediction using InterProScan indicated signal peptides in 

the other Cam proteins.  However, other predictions only located a zinc binding 

motif (IPR006025) in CamA.  Using blast algorithms, CamO, CamA and CamB 

appear to have no homologues with known functions.  However, they share many 

homologues to conserved hypothetical proteins in the Bacteroides genus even in 

the same operon organization.  We found one locus in B. thetaiotaomicron with a 

putative outer membrane protein followed by hypothetical proteins BT_3241, 

BT_3242 and BT_3243 with similarities to CamOAB.  Another homologues locus 

of B. thetaiotaomicron consisted of a gene encoding an outer membrane protein 

followed by BT_ 3238, BT_3237 and BT_3236.  Interestingly, three loci in B.ovatus 

shared a similar organization as the cam genes: (1) hypothetical proteins 

BACOVA_01405 to _01409; (2) hypothetical proteins BACOVA_2729 to _2732 

and (3) hypothetical proteins BACOVA_2817 to _2820.  In B. fragilis only CamO 

shares 2 homologues (BF_1925 and BF_1933) and CamA only one (BF_1926). 
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Fig. 19 Schematic representation of the locus Y2F12 and genes cloned for complementation 

(A) Tn integration is indicated in locus identified in mutant Y2F12 with the genes designated “cam”.  

(B) cam genes used for construction of complementation vectors are represented with IS-33 

(IS4351) ermF promoter in expression shuttle vector pMM47.A.  (C) Site directed mutations at 

positions indicated were constructed by replacing an internal part by an ermF cassette. 
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Table 6 Blast result of gene products of locus Y2F12 (February 2008, nr database) 

ID Annotation species score E value 

CamN     
ref|ZP_02065743.1| hypothetical protein 

BACOVA_02729 
Bacteroides ovatus  
ATCC 8483 

1258 0 

ref|NP_812151.1| putative outer membrane protein, 
probably involved in nutrient binding 

Bacteroides thetaiotaomicron  
VPI-5482 

1257 0 

ref|NP_812152.1| putative outer membrane protein, 
probably involved in nutrient binding 

Bacteroides thetaiotaomicron VPI-
5482 

1245 0 

ref|ZP_02064439.1| hypothetical protein 
BACOVA_01405 

Bacteroides ovatus  
ATCC 8483 

1181 0 

ref|ZP_01959819.1| hypothetical protein 
BACCAC_01429 

Bacteroides caccae 

ATCC 43185 
1149 0 

ref|ZP_02065830.1| hypothetical protein 
BACOVA_02817 

Bacteroides ovatus  
ATCC 8483 

859 0 

ref|YP_001195234.1| TonB-dependent receptor, plug Flavobacterium johnsoniae UW101 829 0 
ref|YP_211624.1| putative outer membrane protein Bacteroides fragilis  

NCTC 9343 
791 0 

ref|YP_099206.1| putative outer membrane protein 
probably involved in nutrient binding 

Bacteroides fragilis  
YCH46 

790 0 

ref|NP_812191.1| putative outer membrane protein, 
probably involved in nutrient binding 

Bacteroides thetaiotaomicron VPI-
5482 

414 2e-113 

CamO     
ref|NP_812150.1| hypothetical protein BT_3238 Bacteroides thetaiotaomicron VPI-

5482 
380 2e-103 

ref|ZP_02065744.1| hypothetical protein 
BACOVA_02730 

Bacteroides ovatus  
ATCC 8483 

379 2e-103 

ref|NP_812153.1| hypothetical protein BT_3241 Bacteroides thetaiotaomicron VPI-
5482 

371 7e-101 

ref|ZP_02064440.1| hypothetical protein 
BACOVA_01406 

Bacteroides ovatus  
ATCC 8483 

357 1e-96 

ref|ZP_01959820.1| hypothetical protein 
BACCAC_01430 

Bacteroides caccae  
ATCC 43185 

310 2e-82 

ref|YP_001195233.1| hypothetical protein Fjoh_2893 Flavobacterium johnsoniae UW101 266 2e-69 
ref|YP_211625.1| hypothetical protein BF1993 Bacteroides fragilis  

NCTC 9343 
220 2e-55 

ref|YP_099207.1| hypothetical protein BF1925 Bacteroides fragilis  
YCH46 

220 2e-55 

ref|ZP_02065831.1| hypothetical protein 
BACOVA_02818 

Bacteroides ovatus  
ATCC 8483 

201 9e-50 

ref|YP_001196990.1| RagB/SusD domain protein Flavobacterium johnsoniae UW101 96.7 4e-18 
CamA     
ref|ZP_02065745.1| hypothetical protein 

BACOVA_02731 
Bacteroides ovatus  
ATCC 8483 

236 2e-60 

ref|NP_812154.1| hypothetical protein BT_3242 Bacteroides thetaiotaomicron VPI-
5482 

228 5e-58 

ref|NP_812149.1| hypothetical protein BT_3237 Bacteroides thetaiotaomicron VPI-
5482 

208 3e-52 

ref|ZP_01959821.1| hypothetical protein 
BACCAC_01431 

Bacteroides caccae  
ATCC 43185 

206 2e-51 

ref|ZP_02064441.1| hypothetical protein 
BACOVA_01407 

Bacteroides ovatus  
ATCC 8483 

179 2e-43 

ref|ZP_02065832.1| hypothetical protein 
BACOVA_02819 

Bacteroides ovatus  
ATCC 8483 

133 1e-29 

ref|YP_001195232.1| hypothetical protein Fjoh_2892 Flavobacterium johnsoniae UW101 114 8e-24 
ref|YP_099208.1| hypothetical protein BF1926 Bacteroides fragilis  

YCH46 
69.7 2e-10 

CamB     
emb|CAG38649.1| hypothetical protein Ornithobacterium rhinotracheale 152 6e-35 
ref|NP_812155.1| hypothetical protein BT_3243 Bacteroides thetaiotaomicron VPI-

5482 
103 2e-20 

ref|ZP_01959822.1| hypothetical protein 
BACCAC_01432 

Bacteroides caccae  
ATCC 43185 

95.1 8e-18 

ref|NP_812148.1| hypothetical protein BT_3236 Bacteroides thetaiotaomicron VPI-
5482 

93.6 2e-17 

ref|ZP_02064443.1| hypothetical protein 
BACOVA_01409 

Bacteroides ovatus  
ATCC 8483 

88.6 8e-16 

ref|ZP_02065746.1| hypothetical protein 
BACOVA_02732 

Bacteroides ovatus  
ATCC 8483 

77.8 1e-12 

ref|ZP_02065833.1| hypothetical protein 
BACOVA_02820 

Bacteroides ovatus  
ATCC 8483 

52.8 5e-05 
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We first wanted to test whether the Tn insertion affected camA or its 

downstream gene camB.  Tn4351 integration occurred at nucleotide position 879 

of camA after the last codon (Asn) and before the stop codon.  This suggested a 

modification on the C-terminus of CamA due to a frameshift, stopping translation 

only after a 12 additional amino-acids.  We constructed the complementation 

plasmids, schematically shown in Fig. 19B, to analyze the genes responsible for 

blocking NO release in response to LPS.  We then generated antibodies against 

the gene products involved in the active mechanism.  To this end, CamO, CamA 

and CamB were cloned in E. coli expression vectors including a C-terminal His tag 

(CamO and CamB) or a N-terminal His tag (CamA, performed by Hwain Shin) to 

purify the recombinant proteins.  The proteins were excised from polyacrylamide 

gels and used for immunization of rabbits (Table 14).  

 

We first analyzed expression of the proteins in the mutant Y2F12 and 

observed that CamA and CamB were both expressed (Fig. 20).  However, the 

amount of CamA in Y2F12 as compared to wt Cc5 was reduced and we 

speculated that this could account for a defect in blocking NO release (Fig. 21A).  

We could observe that both genes, camA and camB, were required to restore the 

phenotype of Y2F12.  Indeed, pMM60 (camABHis), pMM82 (camOABHis), pMM89 

(camAB) or pMM103 (camNOAB) could complement the mutation, while pMM55 

(camAHis), pMM68 (camBHis), pMM86 (camA), pMM90 (camB) or pMM102 

(camOA) could not (Fig. 21A).  A polar effect on CamB would explain the 

requirement of camB on the complementation plasmid.  However, as shown in Fig. 

20B, CamB was expressed in the mutant Y2F12, indicating only little polar effects.  

To clarify the role of CamB, we also analyzed a site-directed knock-out of camB 

which is described in the following section. 

The Tn insertion at the C-terminus of CamA presumably leads to reduced 

stability but the mutation may also alter the functionality of CamA.  We propose 

that the modification of CamA leads to the defect in inhibition of LPS induced NO 

release.   
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Fig. 20 Expression Cam A, CamB and CamO in mutant Y2F12 

Immunoblotting using polyclonal antisera generated against CamA (A), CamB (B) and CamO (C) to 

test expression of Y2F12 harboring different complementation plasmids. 
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Fig. 21 Analysis of Y2F12 locus by NO release after LPS induced co-infection of 

macrophages 

J774.1 were co-infected with different strains by simultaneous addition of stimulatory LPS (hk Y. 

enterocolitica) for 24 h.  Cell free supernatants were analyzed for NO as nitrite using Griess 

reagent.  (A) Mutant Y2F12 and complemented mutant, (B) camB::ermF including complemented 

strains, (C) camA::ermF including complemented strains and (D) camO::ermF including 

complemented strains are analyzed for blocking NO release.  Mean values from 3 experiments are 

shown with the SD. 

 

 To determine whether other cam genes are involved, we next generated a 

site directed knock-out by replacing an internal part of the last gene of the operon 

camB with ermF (methodology is described in Chapter 1) resulting in a deletion of 

amino-acids 107 to 237 in CamB (Fig. 19C).  The mutant camB::ermF was not 

able to block NO release during co-infection of macrophages and we could restore 

the phenotype by introducing the gene camB in trans using pMM90 (Fig. 21B).  

We also found that the addition of a His tag at the C-terminus of CamB prevents 

complementation (pMM60, pMM68, pMM82), even though the recombinant protein 

was expressed in crude cell extracts (Fig. 22).  As shown in Fig. 21B, all 

constructs that insert a C-terminal His tag on CamB were not functional in blocking 

NO release during LPS co-infection. 
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Fig. 22 Expression of CamA and CamB in mutant camB::ermF 

Immunoblotting using polyclonal antisera anti-CamA and anti-CamB was used to test expression of 

camB::ermF harboring different complementation plasmids. 

 

As CamB was predicted to have a N- terminal signal peptide, we therefore 

tested whether CamB was exposed at the bacterial surface.  Indirect 

immunofluorescence on fixed but unpermeabilized bacteria demonstrated that 

CamB was surface associated in wt Cc5 and in Cc5 camB::ermF harboring 

pMM90 (camB) (Fig. 23).  Interestingly, the non-functional versions of CamBHis 

could also be detected on the surface as summarized in Table 7. 

 

 

Fig. 23 CamB is surface localized 

Indirect immunofluorescence was used to detect CamB on the surface of fixed but unpermeabilized 

bacteria using anti-CamB with a FITC conjugated secondary antibody. 
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We next analyzed the site-directed mutant camA::ermF, which had a 

complete deletion of CamA (Fig. 19C).  First we observed that this mutant was 

unable to block NO release like mutant Y2F12 and camB::ermF.  The mutant 

camA::ermF could be complemented in blocking NO release by introducing 

pMM82 that contains camOABHis, but not by introducing camA alone (pMM86) 

(Fig. 21C).  In contrast, the construct pMM82 leading to overexpression of CamA 

(Fig. 24) complemented the mutation (Fig. 21C).  The non-functional CamBHis of 

pMM82 had no dominant negative effect.  A polar effect on CamB could be 

excluded since introducing pMM89 (camAB) did not rescue the mutant.  Analysis 

of strains harboring different constructs in trans (pMM60, 82 or 89, Fig. 24) 

suggests that the amount of CamA is crucial to the outcome during co-infection.  

For instance, CamA was severely reduced in camA::ermF harboring pMM89 

(camAB), even though CamB was well expressed (Fig. 24).  Taken together, if 

CamA was encoded on pMM82 that contains camOABHis, it was well expressed.  

In contrast, camA downstream from the IS-33 promoter resulted in reduced 

amounts.  Therefore we suggest that the amount of CamA is critical to rescue the 

phenotype in inhibition of induced NO release (Fig. 21C). 

 

 

Fig. 24 Expression analysis of CamA and CamB in mutant camA::ermF 

Immunoblotting directed against CamA or CamB was used to test expression of camA::ermF 

harboring different complementation plasmids. 

 

Taken together, we showed that deletion of camA or camB results in the 

same phenotype as mutant Y2F12 which is presumably deficient in CamA. 
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We next wanted to test if camO, the gene upstream from the Tn integration 

site of mutant Y2F12, plays a role in the active mechanism.  Therefore, we 

mutated camO leading to an internal deletion of amino-acids 146- 354 leaving the 

C-terminus out of frame (Fig. 19C).  The deletion of camO resulted in a defect of 

blocking NO release during co-infection (Fig. 21D).  If the mutant was 

complemented in trans with pMM82 (camOABHis) or pMM103 (camNOAB), the 

phenotype was restored (Fig. 21D).  Amounts of CamO in camO::ermF harboring 

pMM82, pMM83 or pMM102 were much lower compared to CamO encoded on 

pMM103 in trans (Fig. 25A), which contains the native promoter instead of the IS-

33 promoter (Fig. 19C).  CamA and CamB were expressed in camO::ermF, 

however, we can not exclude polar effects (Fig. 25A).  A plasmid containing 

camNO under the native promoter should be constructed to clarify this question. 

To summarize, CamO could be involved in inhibiting LPS induced NO 

release of macrophages, but this is not formally shown yet. 

 

 

 

Fig. 25 Expression analysis of CamA, CamB and CamO in mutant camO::ermF 

Immunoblotting against CamA or CamB (A) or against CamO (B) was used to analyze expression 

of camO::ermF and complemented strains 
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We therefore summarize that the genes of the locus identified in Tn Y2F12 

are organized in an operon and are required for inhibition of NO release during co-

infection of macrophages.   

 

Table 7 Summary of the phenotypes from the analysis of locus Y2F12 

Designation 
Compl. 

genes 

Expression 

CamA 

Expression 

CamB 

block NO 

release  

Surface 

CamA
a 

Surface 

CamB
b
 

wt Cc5 NOAB Yes yes yes yes yes 

camA::ermF  No yes no no no 

camA::ermF 55 camAHis No yes no no no 

camA::ermF 60 camABHis 
Low 
expression yes no no yes 

camA::ermF 82 camOABHis Yes yes yes yes yes 

camA::ermF 86 camA 
Low 
expression yes no no no 

camA::ermF 89 camAB 
Low 
expression yes no nd. nd. 

camA::ermF 102 camOA Yes yes no yes no 

camB::ermF  Yes no no yes no 

camB::ermF 60 camABHis Yes yes no yes yes 

camB::ermF 68 camBHis Yes yes no yes yes 

camB::ermF 82 camOABHis Yes yes no yes yes 

camB::ermF 89 camAB Yes yes yes yes yes 

camB::ermF 90 camB Yes yes yes yes yes 

Y2F12 
Tn 
integration 

Low 
expression yes no no no 

Y2F12 55 camAHis 
Low 
expression yes no nd. nd. 

Y2F12 60 camABHis  Yes yes yes yes yes 

Y2F12 68 camBHis  
Low 
expression yes no nd. nd. 

Y2F12 82 camOABHis  Yes yes yes yes yes 

Y2F12 83 camOHis  
low 
expression yes nd. nd. nd. 

Y2F12 86 camA Yes yes no no not clear 

Y2F12 89 camAB Yes yes yes yes yes 

Y2F12 90 camB 
low 
expression yes no (HS) nd. nd. 

Y2F12 102 camOA Yes yes no yes no 

Y2F12 103 camNOAB Yes yes yes yes yes 

camO::ermF  
low 
expression yes no no yes 

camO::ermF 82 camOABHis  Yes yes nd. nd. nd. 

camO::ermF 83 camOHis Yes yes nd. nd. nd. 

camO::ermF 102 camOA Yes yes nd. nd. nd. 

camO::ermF 103 camNOAB  Yes yes nd. nd. nd. 
 

a, b tested by indirect immunofluorescence on fixed but unpermeabilized bacteria using anti-

CamA (a) or anti-CamB (b). nd. not determined. 
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3.4. CamA and CamB are only present in strains Cc5 and Cc11 which 

actively inhibit the onset of pro-inflammatory response 

We analyzed the presence of proteins CamA and CamB in all C. 

canimorsus strains by immunoblotting analysis (Fig. 26A and 26B).  CamA and 

CamB were only observed in strains Cc5 and Cc11.  However, CamO was present 

in all strains tested (Fig. 26C).  We also tested the presence of the genes camA, 

camB and camA+B by PCR on genomic DNA of the strains available in the 

collection (Fig. 26D).  In agreement with the presence of proteins, only strains Cc5 

and Cc11 contained the genes camA and camB.  Notably, only these two strains 

are able to block pro-inflammatory signals in these two strains, while none of the 

other strains can (Hwain Shin).  All strains except Cc14 contained camO as 

analyzed by PCR (Fig. 26D). 
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Fig. 26 Detection of genes and gene products of the Y2F12 locus in C. canimorsus strains 

Immunoblotting against CamA (A) or CamB (B) or against CamO (C) was used to analyze 

expression of gene products present locus Y2F12 in different C. canimorsus strains.  (D) PCR 

amplification of camA, camAB, camB or camO using primers 4200 + 4201, 4200 + 4254, 4332 + 

4254 or 4571 + 4572, respectively.  
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3.5. Identification of other mutants affected in blocking NO release 

Mutant X7B9 that was defective in inhibition of NO and TNF-alpha release 

was disrupted in a putative glutamine synthetase (Fig. 27A).  We tested if we could 

rescue the mutant by complementation (Fig. 27B).  The complementation plasmids 

contained the gene, which we further called glnA, either with its own promoter 

region (pMM44) or transcribed from the IS4351 (“IS-33”) ermF promoter (pMM42).  

Both fully restored the ability to block NO release during co-infection of J774.1 

(Hwain Shin, not shown).  We also constructed glnA with a C-terminal His tag 

(pMM74).  This construct in trans did not complement the mutation of X7B9, even 

though it was expressed as assessed by immunoblotting against the C-terminal 

His (Fig. 27D).  Using a polyclonal serum directed against GlnA (protein 

purification was performed by Hwain Shin), a significantly lower amount was 

detected as compared to Cc5 wt or X7B9 harboring pMM42 or pMM44 (Fig. 27C).  

This observation suggests that the amount of GlnA is critical for C. canimorsus to 

inhibit NO release during co-infection.  As the Bacteroides sp. -33 and -10 

promoter consensus was located upstream of glnA in pMM42, one can assume 

equal amounts of transcript in both cases, IS-33 glnA (pMM42) and IS-33 glnAHis 

(pMM74).  In contrast, immunoblotting against GlnA showed that there is less 

protein, which might have resulted from instability or reduced expression levels. 

 

Fig. 27 Identification of the glutamine synthetase gene (glnA) disrupted by Tn4351 in mutant 

X7B9 

Tn integration (A) and gene cloned for complementation plasmids (B) are schematically depicted.  

Immunoblot analysis of different strains was performed using a polyclonal antiserum generated 

against GlnA (C) or using anti-C terminal His (D). 



 

-89- 

Tn integration in mutant Y4B5, localized in a gene “yfbA” (=Y4B5) (Fig. 

28A), lead to a different phenotype (Fig. 18C).  This mutant showed no defect in 

inhibiting TNF-alpha release.  The gene product of yfbA showed similarities to a 

hypothetical conserved protein of a Flavobacteriales bacterium 

(ref|ZP_01107615.1|).  When we introduced a plasmid containing yfbA in trans 

(pMM63) (Fig. 28B), we could not complement the mutant Y4B5 (Hwain Shin, data 

not shown).  Expression of the yfbA with C-terminal His tag showed a protein with 

a molecular weight lower than the calculated weight (Fig. 28C).  pMM63 was 

constructed by inserting yfbA into the shuttle expression vector which used the 

IS4351 (“IS-33”) ermF promoter, however in pMM71 the native promoter of yfbA 

was used (Fig. 28B).  We have not been able to restore the ability to inhibit NO 

release of Y4B5 using plasmids pMM63 and pMM71 in trans.  Possible reasons 

are the C-terminal His tag that influences stability and/or function or polar effects 

of the Tn integration on expression of the downstream gene yfbB.  Therefore more 

plasmids containing the downstream gene need to be constructed and C-terminal 

modifications should be avoided. 

 

 

Fig. 28 Identification of the gene (yfbA) disrupted by Tn4351 in mutant Y4B5 

Tn integration (A) and gene cloned for complementation plasmids (B) are schematically depicted.  

(C) Immunoblot analysis of different strains was performed using anti- C terminal His. 
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Mutant X2E4 was deficient in blocking both, NO and TNF-alpha release 

upon macrophage co-infection.  The mutation in X2E4 consisted of a vector co-

integration along with the transposon (Chapter 1, Fig. 2C).  It could not be mapped 

by arbitrarily primed PCR and remains to be identified. 

 

3.6. Methods section 

Screening of Tn mutants for defect in anti-inflammatory mechanism 

Tn4351 mutagenesis of Cc5 was carried out as described (Chapter 1).  Obtained Tn 

mutants were replicated after conjugation on HIA plates containing selective agents 20 μg/ml Gm 

and 10 μg/ml Em.  After one passage, clones were inoculated in HIB + 10% FBS in 96-well plates 

and incubated at 37°C in humidified atmosphere containing 5% CO2 for 48 h without shaking.  

J774.1 macrophages were then infected with Tn mutants at a moi adjusted to approximately 20.  

Co-infection was based on simultaneous addition of either hk E. coli or hk Y. enterocolitica as a 

source for stimulatory LPS.  After 24 h of infection, cell free supernatants were analyzed using 

Griess reagent as previously described (Shin et al., 2007).  

 

Plasmids 

All plasmids are described in Table 12. 
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3.7. Discussion 

Four mutants of Cc5 were associated with the inability to block LPS induced 

NO release of macrophages.  The presence of the locus disrupted in mutant 

Y2F12 was detected only in strains Cc5 and Cc11, hinting an important role during 

active inhibition of NO release.  Interestingly, Blast analysis indicated that there 

are some homologues in the Bacteroides genus which are located in the same 

operon organization.  Notably, either CamB is the protein with the lowest 

homologies or the homologue of CamB is not present at all (B. fragilis). 

Despite our extensive genetic characterization of mutants, we are still not 

able to understand the function of the gene products involved in inhibition of LPS 

induced NO release of macrophages.  The question arises if the inhibition of LPS 

induced NO release of macrophages by Cc5 requires direct contact.  The cell free 

supernatant of macrophages that have been infected with Cc5 should be tested for 

activity on stimulated macrophages.  If the supernatant on fresh but stimulated 

cells allowed inhibition of the induced pro-inflammatory response measured by NO 

release, this would indicate a factor secreted by Cc5 responsible for the observed 

effect.  On the other hand if Cc5 bacteria need to be in contact with macrophages 

to block induced NO release, one should try to identify interaction partners from 

the host, for instance by two hybrid analysis or co-immunoprecipitation.  

Independent of this, biochemical analysis could be performed to investigate 

protein-protein interactions between the Cam proteins.  Approaches using domain 

predictions like InterProScan gave only little indication about the function of gene 

products identified in locus Y2F12.  Other algorithms could be applied to extend 

current predictions.  Further experiments could also address the presence of the 

genes identified in our screen and the gene products in more strains and in the C. 

canimorsus strains isolated during the dog survey (Chapter 4).  More genetic 

analysis could be performed, ideally with a comparison between the clinical 

isolates of C. canimorsus and isolates from healthy dog’s saliva using comparative 

genome analysis.  However, the mechanism(s) and bacterial factors involved in 

inhibition of pro-inflammatory response remain to be identified. 
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Chapter 4                Prevalence of C. canimorsus in dogs in Switzerland 

 

Author contributions.  MM and GC designed the experiments, CP and MM performed the 

characterization.  Swabs were isolated by Dr. med. vet. Caroline Saillen-Paroz and Ueli 

Schmidiger. 

Statement of my work.  My contribution was the culturing of the isolates, data and sequence 

analysis, the supervision of CP who sequenced 16S RNA genes and evaluated the primary 

sequences. 

 

4.1. Introduction 

At present, only two studies addressed the prevalence of C. canimorsus in 

dog mouths (Bailie et al., 1978; Westwell et al., 1989).  Westwell and colleagues 

demonstrated in the U.K. that out of 180 dogs, 44 (24%) contained DF-2 (C. 

canimorsus) and 20 (11%) contained DF-2 like (C. cynodegmi).  C. canimorsus 

was found in 42 (17%) of 249 tested cats, and 19 cats (8%) had C. cynodegmi.  

None of those species were detected in 13 pigs, whereas out of 12 sheep tested, 

3 (25%) contained C. canimorsus.  Furthermore, 5 (33%) C. canimorsus was 

isolated from 15 cattle tested.  The identity of suspected isolates was established 

by sugar fermentation previously used to identify C. canimorsus and C. cynodegmi 

(Brenner et al., 1989), including additional rapid enzyme tests (Westwell et al., 

1989).  According to this study, every fourth dog carries C. canimorsus in its oral 

flora.  This number was actually higher than what had been described previously 

(Bailie et al., 1978). In this earlier study, only 5 C. canimorsus strains could be 

detected in 50 dogs tested.  However, since then, identification methods have 

dramatically improved by introducing 16S rRNA sequence analysis. 

 

4.2. Isolation and identification of C. canimorsus and C. cynodegmi of Swiss 

dogs 

Oral swabs of 103 dogs were examined during our survey.  Isolation was 

performed using a medium optimal for C. canimorsus growth (HIA and 5% sheep 

blood) containing gentamicin to select for aminoglycoside resistant 

Capnocytophaga sp.  Colonies with morphology resembling Capnocytophaga sp. 

were then selected for 16S RNA sequencing. 

By using the Vector NTI software package, raw data was aligned using 

ContigExpress and AlignX and consensus sequence was compared to 16S RNA 
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genes from either C. canimorsus ATCC 35979 (Cc12) with its accession number 

L14637 or C. cynodegmi ATCC 49044 using accession number X97245.  In cases 

where neither of those sequences was close, blast algorithms were applied to 

identify other bacterial species.  The Ribosomal Database Project II- Release 9 

tool “Sequence match” (http://rdp.cme.msu.edu/) was further used for C. 

canimorsus strains to compare 16S RNA gene sequences to the deposited 

sequences (Wang et al., 2007). 

We could identify 61 C. canimorsus isolates from 103 dogs, which 

represents 59.22 % (Table 8).  62 C. cynodegmi strains (60.19 %) were isolated 

and 33 % of the dogs contained both species in their oral cavity.  We observed 

more dogs from urban area carrying C. canimorsus than dogs from a rural 

environment (39.81% vs. 18.45%).  However, this result is not representative as 

we tested about 2 times more dogs from city areas.  The percentage of healthy 

dogs, which contained C. canimorsus in their oral flora was 2.46 fold higher than 

what was previously reported by Westwell et al.  This raises the question about the 

incidence of C. canimorsus related infections in Switzerland, where no statistics 

has been available yet.  However, a compulsory registration of dog bites 

(http://www.bs.ch/mm/2006-05-02-sd-001.htm) could support studies in the future. 

 

Table 8 Summary of canine isolates after dog survey 

Description Number  Percent  

C. canimorsus  61 59.22 % 

C. cynodegmi 62 60.19 % 

C. canimorsus alone 27 26.21 % 

C. cynodegmi alone 28 27.18 % 

C. canimorsus and C. cynodegmi 34 33.01 % 

C. canimorsus from dogs in city 41 39.81 % 

C. canimorsus from dogs in country 19 18.45 % 

Male dogs 45 43.69 % 

C. canimorsus in male dogs 26 57.78 % 

Female dogs  56 55.37 % 

C. canimorsus in female dogs 33 58.93 % 

Dogs with C. canimorsus, C. cyndegmi or both 89 86.41  % 
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4.3. Methods section 

Isolation and identification of C. canimorsus sampled from dog mouths 

Cotton pads were swabbed from dog mouths and subsequently streaked on HIA containing 

5% sheep blood with 20 μg/ ml gentamicin and allowed for growth at 37°C in presence of 5% CO2 

for 2 to 3 days.  Several single colonies were then passaged once on the same medium.  Isolates 

were frozen for collection linked to the dog number and isolate number.  A single colony per isolate 

was resuspended in 100 l H20 and incubated 12- 15 min at 95- 98°C.  One μl was then used as a 

template for PCR using primers 27F (3451) and 1100R (3454) at 0.4 M concentration, including 

200 μM dNTP and 1U Taq polymerase (NEB) in the corresponding buffer conditions (1x).  PCR 

was carried out after denaturation step for 5 cycles ( 94°C for 30 sec, 60°C- 1.5°C /cycle for 2 min, 

72°C for 3 min) followed by 30 cycles (94°C for 30 sec, 52°C 1 min 30 sec, 72°C for 3 min) and 

final elongation for 10 min at 72°C.  The PCR product was loaded on a 1.2% agarose gel and the 

1.5 kb band was excised and cleaned by a NucleoSpin® from Machery Nagel. 20- 50 ng DNA was 

used for sequencing using BigDye Terminator Ready Reaction (PE Biosystems) with primers 27F 

(3451), 1100R (3454) and 685R (3455) for the ABI sequencer.   

The extended Table of the survey is included as appendix (asterisk symbolize sterilized 

individuals.) 

 

4.4. Appendix 

 

Table 9 C. canimorsus isolates from Swiss dogs 

Cc 

Strain 

* RDP HIT RDP 

score 

Dog 

Nr. 

Race 

1.4 Capnocytophaga canimorsus; 24231; AY643078N.d. 0.833 001 n.d. 

3.4 Capnocytophaga canimorsus; 24231; AY643077 0.952 003 Belgian German Sheppard 

4.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.795 004 Coton de Tulear 

5.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.95 005 Labrador 

6.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.919 006 Hound dog mix 

7.4 Capnocytophaga canimorsus; 24231; AY643078 0.87 007 Collie mix 

10.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.939 010 Bischon frisé 

11.3 Capnocytophaga canimorsus; 24231; AY643078 0.839 011 Hound dog mix 

13.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.952 013 Pekinese 

15.2 Capnocytophaga canimorsus; 24231; AY643078 0.802 015 Yorkshire-Jack Russell 

16.1 Capnocytophaga canimorsus; ATCC 35979; X97246 0.76 016 Yorkshire-Jack Russell 

18.5 Capnocytophaga canimorsus; 24231; AY643077 0.933 018 Labrador 

19.1 Capnocytophaga canimorsus; 24231; AY643078 0.817 019 Shih-Tzu 

20.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.963 020 Yorkshire 

25.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.922 025 Labrador 

33.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.945 033 Hound dog mix 

34.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.981 034 Tivet-Terrier mix 

35.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.95 035 Berger Pyrenée 

36.1 Capnocytophaga canimorsus; 24231; AY643078 0.848 036 Terrier mix  
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37.4 Capnocytophaga canimorsus; CIP 103936; AY643075 0.977 037 Terrier mix 

38.2 Capnocytophaga canimorsus; 24231; AY643078 0.846 038 Labrador 

39.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.94 039 Border Collie 

40.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.925 040 Husky 

43.1 Capnocytophaga canimorsus; 24231; AY643077 0.91 043 Cane corso 

44.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.93 044 Bong Nhat 

46.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.718 046 Carlin 

47.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.886 047 Border Collie 

50.1 Capnocytophaga canimorsus; 24231; AY643078 0.801 050 Cavalier King Charles 

51.3 Capnocytophaga canimorsus; 24231; AY643077 0.907 051 Golden Retriever 

52.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.84 052 Espagnol tibetain 

53.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.932 053 Golden Retriever mix 

54.2 Capnocytophaga canimorsus; 24231; AY643078 0.635 054 Bouvier mix 

57.1 Capnocytophaga canimorsus; 24231; AY643077 0.856 057 Appenzeller mix 

58.1 
Capnocytophaga canimorsus; CIP 103936; AY643075; 

and Capnocytophaga canimorsus; 24231; AY643077  

0.898 

both 
058 Shetland mini 

63.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.943 063 Terrier mix 

64.1 Capnocytophaga canimorsus; 24231; AY643078 0.684 064 Westie 

66.2 Capnocytophaga canimorsus; 24231; AY643078 0.839 066 Cavalier King Charles 

68 Capnocytophaga canimorsus; CIP 103936; AY643075 0.923 068 Golden Retriever 

69.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.914 069 German Sheppard 

71.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.933 071 Labrador mix 

73.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.914 073 German Sheppard 

74.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.95 074 Border Terrier 

75.1 Capnocytophaga canimorsus; 24231; AY643078 0.797 075 German Sheppard 

76.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.833 076 French Bulldog  

77.3 Capnocytophaga canimorsus; CIP 103936; AY643075 0.859 077 German Sheppard 

79.2 Capnocytophaga canimorsus; 24231; AY643077 0.702 079 Spaniel mix 

80.2 Capnocytophaga canimorsus; 24231; AY643077 0.91 080 Golden Retriever 

81.1 Capnocytophaga canimorsus; 24231; AY643077 0.894 081 Malinois 

82.1 Capnocytophaga canimorsus; 24231; AY643078 0.774 082 Pinscher mix 

84.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.831 084 BSH 

85.1 Capnocytophaga canimorsus; 24231; AY643078 0.758 085 Collie mix 

88.2 Capnocytophaga canimorsus; 24231; AY643078 0.831 088 Jack Russell 

89.2 Capnocytophaga canimorsus; CIP 103936; AY643075 0.956 089 Yorkshire-Malteser 

93.1 Capnocytophaga canimorsus; 24231; AY643078 0.794 093 Golden Retriever 

94.2 Capnocytophaga canimorsus; 24231; AY643078 0.81 094 Hawanesian 

95.1 Capnocytophaga canimorsus; 24231; AY643078 0.83 095 Mittelschnauzer 

96.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.947 096 Terrier 

97.1 Capnocytophaga canimorsus; 24231; AY643078 0.758 097 Terrier 

101.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.928 101 English Cocker Spaniel  

102.1 Capnocytophaga canimorsus; CIP 103936; AY643075 0.887 102 Malamut Husky  

103.3 Capnocytophaga canimorsus; 24231; AY643078 0.822 103  n.d. 

* RDP, Ribosomal Database Project II- Release 9 tool “Sequence match” (http://rdp.cme.msu.edu/) 

grey box: presence of CamA and CamB tested b immunoblotting. 
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Chapter 5  The LPS and/or capsular polysaccharide protects C. canimorsus against the 

bactericidal action of complement. 

 

Author contributions. HS, MM and CF designed the experiments and CF and HS performed the 

experiments.  UZ and co-workers analyzed LPS, CPS and carbohydrate structures of Cc5, Y1C12 

and M1C12.   

Statement of my work.  My contribution was the supervision and analysis of the genetic 

experiments performed by Chantal Fiechter for her master thesis (Tn mutant library, mapping, 

sequence analysis, cloning and complementation) and I provided protocols and advice for 

carbohydrate staining procedures.  

 

5.1. Study of the resistance of Capnocytophaga canimorsus to the killing 

action of complement 

We observed that Cc5 was highly resistant against human complement 

(Chapter 2).  We therefore screened our Tn4351 mutant library on survival in 10% 

human serum and twenty serum sensitive mutants could be isolated.  Mapping of 

one highly serum sensitive mutant, called Y1C12, identified a gene with homology 

to glycosyltransferase (Table 10).  The mutation could be complemented by 

introducing the glycosyltransferase gene in trans.  Y1C12 showed increased 

surface deposition of C3b, hinting increased opsonization.  In contrast to siaC 

and Y4G6, mutant Y1C12 still recruited fH to its surface as the wt Cc5.  Addition of 

Ca2+ chelators to inhibit the classical and/or lectin pathway led to a less sensitive 

phenotype of Y1C12, suggesting that the classical and/or lectin pathway are 

responsible for complement activation in case of Y1C12.  During infections of 

macrophages, the mutant was readily phagocytosed, which could be inhibited by 

the addition of cytochalasin D, suggesting that the increased phagocytosis of 

Y1C12 could be dependent on antibody opsonization.  Analysis of the 

carbohydrate surface structures was performed with an antibody generated 

against heat-killed (hk) Cc5 and the result showed an antigenic determinant 

missing in Y1C12.  The antiserum was absorbed against the mutant Y1C12, 

providing an antiserum that specifically recognized the antigenic determinant 

present on Cc5 that was missing in Y1C12.  In addition, proteinase K digests of 

crude extracts were analyzed by different stainings including silver periodic acid 

staining and confirmed the same determinant missing in Y1C12.  To summarize, 
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these data imply that the antigenic determinant missing in Y1C12 was part of a 

carbohydrate structure on C. canimorsus. 

Analysis of carbohydrates from Cc5 carried out by U. Zähringer 

demonstrated that wt Cc5 contained two different LPS molecules, in addition one 

polymeric glucan in high concentration and one capsular polysaccharide.  

Biochemical analysis and comparison of LPS derived from Cc5 and Y1C12 

cultivated on blood plates showed that part of the O-antigen was missing in the 

mutant Y1C12.  Indeed, the same carbohydrate structure was also part of the wt 

Cc5 extracellular capsular polysaccharide (CPS) and this extracellular 

carbohydrate structure was missing in mutant Y1C12.  Another mutant, designated 

M1C12, was isolated from the serum sensitivity Tn screen.  M1C12 showed the 

same LPS structure as wt Cc5.  In contrast to Y1C12, the O-chain of M1C12 was 

still present but the structural identical capsule was lacking.  Interestingly, in this 

mutant the third carbohydrate glucan found in Cc5 was also lacking.  Increased 

phagocytosis and complement opsonization presumably resulted from a missing 

capsular structure and/or altered O-antigen composition.  In respect to this, we 

suggest that the surface carbohydrates are responsible for the very high 

resistance against human complement. 

Taken together, we hypothesize that at least 2 mechanisms contribute to 

the high resistance of Cc5 against bactericidal action of complement.  fH 

recruitment to the bacterial surface is one mechanism of Cc5 to resist 

complement.  In addition, bacterial surface carbohydrates protect Cc5 from 

complement mediated killing.   

 

Table 10 Blast result of gene disrupted in Tn mutant Y1C12 

ID Annotation species score E value 

Gene product of Y1C12     
ref|YP_099128.1| putative glycosyltransferase Bacteroides fragilis 382 2e-104 
ref|YP_001301973.1| glycosyltransferase family 4 Parabacteroides distasonis 386 3e-100 
ref|ZP_01774118.1| glycosyl transferase, group 1 Geobacter bemidjiensis 359 2e-97 
ref|YP_001353950.1| glycosyltransferase Janthinobacterium sp. 320 2e-85 
ref|ZP_02165391.1| glycosyltransferase, group 1 Hoeflea phototrophica 314 6e-84 
ref|ZP_01713950.1| glycosyl transferase, group 1 Pseudomonas putida 307 7e-82 
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Strains and Plasmids 

 

Table 11 Strains 

Bacterial Strains Genotype or Description Reference or Source 

E. coli   

BW19851 S17-1 derivative, pir+ RP4-2-tet:Mu-1kan::Tn7 

(Smr)recA1 creC510 hsdR17 endA1 zbf-5 

uidA(DMluI):pir/ thi 

ATCC 47083 

(Metcalf et al., 1996) 

2155 thrB1004 pro thi strA hsdS lacZDM15 (F9 lacZDM15 laclq 

traD36 proA1 proB1) DdapA::erm (Emr) pir::RP4 [::kan 

(Kmr) from SM10] 

(Dehio and Meyer, 1997) 

S17-1 hsdR17 recA RP4-2-tet::Mu-1kan::Tn7 (Smr) (Simon et al., 1983) 

SM10 pir thi-1, thr, leu, tonA, lacY, supE, recA::RP4-2-tet::Mu1 kan 

(Kmr) 

(Miller and Mekalanos, 

1988) 

Top10 F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15 lacX74 

recA1 araD139 (ara leu)7697 galU galK rpsL (Smr) 

endA1 nupG 

Invitrogen 

C. canimorsus   

C. canimorsus 2 Human fatal septicemia after dog bite 1989. (Hantson et al., 1991) 

C. canimorsus 3 Human septicemia 1990. (Vanhonsebrouck et al., 

1991) 

C. canimorsus 5 Human fatal septicemia after dog bite1995. (Shin et al., 2007) 

C. canimorsus 6 Human isolate 1996  KUL Leuven 

C. canimorsus 7  Human septicemia 1998. (Shin et al., 2007) 

C. canimorsus 9 Human septicemia 1965 (Vandamme et al., 1996) 

C. canimorsus 10 Human septicemia after dog bite (Vandamme et al., 1996) 

C. canimorsus 11 Human septicemia (BCCM/LMG 11551 MCCM 01373) A. von Graevenitz, Univ. 

Zürich, Switzerland 

C. canimorsus 12 Human septicemia after dog bite ATCC 35979, CDC 7120 

C. canimorsus 13 Isolate from healthy dog’s saliva (Jackie) 2005 (Shin et al., 2007) 

C. canimorsus 14 Isolate from healthy dog’s saliva (Pouchka) 2005 (Shin et al., 2007) 

C. cynodegmi   

C. cynodegmi Isolate of a dog’s mouth; USA, Virginia 1979 ATCC 49044 

C. cynodegmi 2 Human hand wound (LMG 11538; BCCM/LMG; 

CCUG30624; CDC E679; MCCM 00262) 

(Vandamme et al., 1996) 

C. gingivalis   

C. gingivalis Human isolate B. Wauters, Belgium 

C. ochracea   

C. ochracea Human isolate B. Wauters, Belgium 
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Table 12 Plasmids 

Plasmids Description
a
 Reference or Source 

Plasmids   

   

pBBR1MCS3 Broad host range ori from Bordetella bronchiseptica S87, Tcr
 (Kovach et al., 1995) 

pBBR1MCS4 Broad host range ori from Bordetella bronchiseptica S87, Apr (Kovach et al., 1995) 

pBSIIKS (+) ColE1 ori, Apr Stratagene 

pCC7 Endogenous plasmid of Cc7 This study 

pCP23 ColE1 ori; (pCP1 ori); Apr (Tcr); E.coli-F.johnsoniae shuttle 

plasmid 

(Agarwal et al., 1997) 

pCP29 ColE1 ori (pCP1 ori); Apr (Cfr Emr); E.coli-F.johnsoniae shuttle 

plasmid 

(Kempf and McBride, 2000) 

pEP4351 pir requiring R6K oriV; RP4 oriT; Cmr Tcr (Emr); vector used for 

Tn4351 mutagenesis 

(Cooper et al., 1997) 

pK18 ColE1 ori, Kmr (Pridmore, 1987) 

pLYL001 ColE1 ori; Apr (Tcr); not replicating in Bacteroides sp., 

Flavobacterium sp. and Capnocytophaga sp. 

(Reeves et al., 1996) 

pLYL03 ColE1 ori; Apr (Emr); not replicating in Bacteroides sp., 

Flavobacterium sp. and Capnocytophaga sp. 

(Li et al., 1995) 

pMMB206 Cmr Tra  mob+ oriRSF1010 (IncQ), ptac-lac, lacI
Q (Morales et al., 1991) 

pMR20 Tcr derivative of pGLlO, RK2 based broad host-range vector 

(IncP) 

(Jenal and Shapiro, 1996) (Chris 

Mohr and Rick Roberts) 

pUC19 ColE1 ori, Apr (Yanisch-Perron et al., 1985) 

 
Chapter 1   

pMM2 pBBR ori; Apr; Random 650-bp Sau3A chromosomal fragment of Cc5 inserted in 

BamHI site of pBBR1MCS4 

This study, 1 

pMM3 pBBR ori; Apr; Random 500-bp Sau3A chromosomal fragment of Cc5 inserted in 

BamHI site of pBBR1MCS4 

This study, 1 

pMM5 pBBR ori ; Apr, (Emr); ermF from pEP4351 amplified by PCR using primers 3505 

and 3506 cut with EcoRI/PstI and inserted into the corresponding sites of 

pBBR1MCS4 

This study, 1 

pMM7 ColE1 ori; Apr; 1.95-kb EcoRI/HindIII fragment of pCC7 inserted into 

corresponding sites of pBSIIKS(+) 

This study, 1 

pMM12 ColE1 ori; Kmr (Cfr); cfxA gene from pCP29 cloned as a BamHI/SpeI fragment 

into corresponding sites of pK18 

This study, 1 

pMM13 ColE1 ori; Apr (Emr); ermF from pEP4351 amplified by PCR as a 1.95-kb 

fragment using primers 3505 and 3506, cut with EcoRI/PstI and inserted into the 

corresponding sites of pBSIIKS(+) 

This study, 1 

pMM25 ColE1 ori; Kmr (Cfr); Suicide vector for C. canimorsus. RP4 oriT amplified by PCR 

using primers 4416 and 4417 inserted into BamHI site of pMM12. 

This study, 1 

pMM40.A ColE1 ori (pCC7 ori); Kmr (Cfr); E. coli - C. canimorsus shuttle plasmid. The repA 

gene from pCC7 was amplified by PCR using primers 3601 + 4274, digested with 

PstI and inserted into the corresponding site of pMM12.  

This study, 1 

pMM41.A ColE1 ori (pCC7 ori); Apr (Cfr); E. coli - C. canimorsus shuttle plasmid. The cfxA 

and repA genes as a BamHI/SphI fragment from pMM40.A inserted into 

corresponding sites of pUC19. 

This study, 1 

pMM45.A ColE1 ori (pCC7 ori); Kmr (Cfr); E. coli - C. canimorsus shuttle plasmid, RP4 oriT.  

The 1.58-kb PstI fragment of pMM47.A containing repA inserted into PstI site of 

pMM25. 

This study, 1 
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pMM47.A ColE1 ori (pCC7 ori); Apr (Cfr); E. coli - C. canimorsus expression shuttle plasmid. 

-33 and -7 of the ermF promoter was amplified from pEP4351 as a 257-bp 

fragment by PCR using 3868 and 4128. Unique NcoI, XhoI, XbaI sites and 6 

histidine codons were incorporated by reverse primer 4128.  SalI/SpeI digested 

PCR fragment inserted into corresponding sites of pMM41.A. 

This study, 1 

pMM104.A ColE1 ori (pCC7 ori); Apr (Tcr); E. coli - C. canimorsus shuttle plasmid, RP4 oriT.  

PstI fragment of pMM47.A containing repA inserted into PstI site of pLYL001.  

This study, 1 

pMM105.A ColE1 ori (pCC7 ori); Apr (Emr); E. coli - C. canimorsus shuttle plasmid, RP4 oriT.  

PstI fragment of pMM47.A containing repA inserted into PstI site of pLYL03. 

This study, 1 

pMM106 ColE1 ori; Kmr (Cfr); To create siaC::ermF three initial PCR products were 

amplified with 4783 + 4784 and 4787+ 4788 from Cc5 chromosomal DNA and 

4785 + 4786 from pEP4351. siaC::ermF was then amplified by overlapping PCR 

using external primers 4783 and 4788, cut with PstI/SpeI  and inserted into 

corresponding sites of pMM25. 

This study, 1 

Chapter 1 Appendix  

pMM16 ColE1 ori, Apr; IS4351 cut with XmaI/NcoI and inserted in front of egfp into the 

corresponding sites of pEGFP using 3755 + 3756 

This study, 1 

pMM19.a ColE1 ori, (pCC7 ori); Kmr (Cfr); First shuttle vector based on pMM12 (Cfr), 

replicating in C. canimorsus but has a frame shift in repA; amplified with primers 

3640 + 3601, cut with PstI and inserted into the corresponding sites of pMM12, 

resulting in truncated RepA 

This study, 1 

pMM21 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33egfp”: egfp with IS-33 promoter of pMM16 

inserted into shuttle pMM19.a using SalI/SpeI restriction 

This study, 1 

pMM22 ColE1 ori, Apr; IS-33 promoter amplification using 3851 + 3756, cut with 

XbaI/NcoI an insertion into the corresponding sites upstream of gfpmut2 in pGS-

GFP3 

This study, 1 

pMM23 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33gfpmut2”: Fragment IS-33gfpmut2 from 

pMM22 was amplified by 3868 + 3869, cut with SalI/SpeI and inserted into the 

corresponding sites of shuttle pMM19.a 

This study, 1 

pMM24 ColE1 ori, Apr; Amplification of luxAB by 3872 an 3873 from pHSK728 inserted 

into pMM13 downstream ermF 

This study, 1 

pMM26 ColE1 ori, Apr; “luxAAla2B”: Amplification of luxAB by 3875 + 3873 from pHSK728 

inserted downstream of the IS-33 promoter in pMM16 

This study, 1 

pMM27 ColE1 ori, (pCC7 ori); Kmr (Cfr); SalI/SpeI IS-33ermF luxAAla2B fragment of 

pMM24 inserted into the corresponding sites of shuttle pMM19.a 

This study, 1 

pMM28 ColE1 ori, (pCC7 ori); Kmr (Cfr); IS-33luxAB cloned by overlapping PCR with 

primers 3868 + 3952 on products 3868 + 4041 and 4042 + 3952; inserted by 

SalI/SpeI into shuttle pMM19.a 

This study, 1 

pMM29 ColE1 ori, (pCC7 ori); Kmr (Cfr); SalI/SpeI IS-33luxAAla2B fragment of pMM26 

inserted into the corresponding sites of shuttle pMM19.a 

This study, 1 

pMM32 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33 ermF-luxA luxB”:  fusion of ermF and 

luxAB cloned by overlapping PCR (3868 + 3909; 3910 + 3873) and introduced 

into pMM19.a using SalI/SpeI restriction 

This study, 1 

pMM33 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33gfpmut2-luxAB”: gfpmut2-luxAB fusion cloned 

by overlapping PCR (3868 + 3911; 3912 + 3873) into shuttle pMM19.a using 

SalI/SpeI restriction 

This study, 1 

pMM34 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33egfp-luxAB”: egfp-luxAB fusion amplified 

by overlapping PCR (3950 + 3952; 3951 + 3952) digested with SalI/SpeI and 

inserted into the corresponding sites of shuttle pMM19.a  

This study, 1 
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pMM36 ColE1 ori, (pCC7 ori); Kmr (Cfr); “IS-33cat”: amplified by overlapping PCR (3868 

+ 3970; 3971 + 3972), cut with SalI/SpeI and introduced in the corresponding 

sites of shuttle pMM19.a 

This study, 1 

 
Chapter 2   

pMM46 ColE1 ori (pCC7 ori); Kmr (Cfr); 4078 + 4052 amplified fragment cut with SalI  and 

inserted into the corresponding sites of pMM19.a; contains the putative 

transcription regulator and the N- acyl glucosamine epimerase upstream of siaC 

This study, 2 

pMM50 ColE1 ori (pCC7 ori); Apr (Cfr); siaC 1-21 was amplified using primers 4156 + 4158, 

cut with NcoI/XbaI and inserted into the corresponding sites of pMM47.A, 

deleting the first 63 bp of siaC, but including codons for methionine and glycine at 

position 1 and 2, in frame with a C-terminal His tag. 

This study, 2 

pMM52 ColE1 ori (pCC7 ori); Apr (Cfr); siaCFL was amplified with primers 4159 + 4158 

and cut with NcoI/XbaI and inserted into the corresponding sites of shuttle 

pMM47.A, leading to the insertion of a glycine at position 2 and a C- terminal His 

tag (siaCFL) 

This study, 2 

pMM59 ColE1 ori (pCC7 ori); Apr (Cfr); The catalytic mutation in siaC of was introduced 

by site directed mutagenesis with an inverse PCR on pMM52, using primers 

4171 + 4172 (siaCY488C) 

This study, 2 

pMM56 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 yfgA amplified with 4202 + 4203, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A 

This study, 2 

pMM57 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 yfgA amplified with 4202 + 4204, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame with a 

C-terminal His, not expressed. 

This study, 2 

pMM76 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 yfgAB amplified with 4202 + 4438, digested 

with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame 

with a C-terminal His in yfgB 

This study, 2 

pMMP98 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 ompYyfgA amplified with 4396 + 4203, cut 

with NcoI/XbaI and inserted into the corresponding sites of pMM47.A 

This study, 2 

pMMP99 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 ompYyfgA amplified with 4396 + 4202, cut 

with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame 

with a C-terminal His  

This study, 2 

pMMP100 ColE1 ori (pCC7 ori); Apr (Cfr); Y4G6 ompYyfgAB amplified with 4396 + 4438, 

digested with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in 

frame with a C-terminal His on YfgB  

This study, 2 
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Y2F12   

pMM55 ColE1 ori (pCC7 ori); Apr (Cfr); camA amplified with primers 4200 + 4201, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame with C-

terminal His.  

This study, 3 

pMM60 ColE1 ori (pCC7 ori); Apr (Cfr); camA camB amplified with primers 4200 + 4254, 

cut with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame 

with C-terminal His in camB 

This study, 3 

pMM67 ColE1 ori; Apr; camB 1-25 amplified with 4333 + 4334 and inserted into pET22b+ 

using NdeI/XhoI restriction; for expression of CamB 1-25 His 

This study, 3 

pMM68 ColE1 ori (pCC7 ori); Apr (Cfr); camB amplified with primers 4339 + 4254, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame with C-

terminal His. 

This study, 3 
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pMM81 ColE1 ori; Kmr (Cfr, Emr); To create camB::ermF three initial PCR products were 

amplified with 4551 + 4552 and 4555 + 4556 from Cc5 chromosomal DNA and 

4553 + 4554 from pEP4351. camB::ermF was then amplified by overlapping PCR 

using external primers 4551+ 4556, cut with PstI/SpeI  and inserted into 

corresponding sites of pMM25. Leading to deletion of amino-acids 107-237. 

This study, 3 

pMM82 ColE1 ori (pCC7 ori); Apr (Cfr); camO camA camB amplified with primers 4571 + 

4254, cut with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in 

frame with C-terminal His on camB  

This study, 3 

pMM83 ColE1 ori (pCC7 ori); Apr (Cfr); camO amplified with primers 4571 + 4572, cut 

with NcoI/XbaI and inserted into the corresponding sites of pMM47.A in frame 

with C-terminal His 

This study, 3 

pMM86 ColE1 ori (pCC7 ori); Apr (Cfr); camA amplified with primers 4200 + 4661, 

digested with NcoI/XbaI and inserted into the corresponding sites of pMM47.A  

This study, 3 

pMM89 ColE1 ori (pCC7 ori); Apr (Cfr); camO camA camB amplified with primers 4200 + 

4662 cut with NcoI/XbaI and inserted into the corresponding sites of pMM47.A 

This study, 3 

pMM90 ColE1 ori (pCC7 ori); Apr (Cfr); camB amplified with 4339 +4662, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A  

This study, 3 

pMM93 ColE1 ori; Kmr (Cfr, Emr); To create camA::ermF three initial PCR products were 

amplified with 4664 + 4665 and 4668 + 4669 from Cc5 chromosomal DNA and 

4666 + 4667 from pEP4351. camA::ermF was then amplified by overlapping PCR 

using external primers 4664 + 4669, cut with PstI/SpeI  and inserted into 

corresponding sites of pMM25. Leading to complete deletion of camA 

This study, 3 

pMMP94 ColE1 ori; Kmr (Cfr, Emr); To create camO::ermF three initial PCR products were 

amplified with 4731 + 4732 and 4735 + 4736 from Cc5 chromosomal DNA and 

4733 + 4734 from pEP4351. camO::ermF was then amplified by overlapping 

PCR using external primers 4731+ 4736, cut with PstI/SpeI  and inserted into 

corresponding sites of pMM25. Leading to deletion of amino-acids 146-354. 

This study, 3 

pMMP102 ColE1 ori (pCC7 ori); Apr (Cfr); camO camA amplified with 4361 + 4661, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A  

This study, 3 

pMMP103 ColE1 ori (pCC7 ori); Apr (Cfr); camN camO camA camB amplified with 4487 + 

4662, cut with SalI/XbaI and inserted into the corresponding sites of pMM47.A.  

Contains native promoter upstream camN 

This study, 3 

pMM107 ColE1 ori, Apr; Y2F12 camO delta 1-25 amplified with 4790 + 4791, cut with 

NdeI/XhoI and inserted into the corresponding sites of pET22b+ 

This study, 3 

X7B9   

pMM39 ColE1 ori, Apr; glnA amplified with 4053 + 4054, cut with EcoRI and inserted into 

the corresponding sites of pUC19  

This study, 3 

pMM42 ColE1 ori, (pCC7 ori); Kmr (Cfr); IS-33 glnA amplified by overlapping PCR (3868 

+ 4063; 4064 + 4065), digested with SalI/SpeI and inserted into the 

corresponding sites of pMM19.a  

This study, 3 

pMM44 ColE1 ori, (pCC7 ori); Apr (Cfr); cfxA and repA containing BamHI/SphI fragment 

from pMM19.a and inserted into the corresponding sites of pMM39 

This study, 3 

pMM74 ColE1 ori, (pCC7 ori); Apr (Cfr); glnA amplified by 4444 + 4445, cut with 

NcoI/XbaI and inserted into the corresponding sites of pMM47.A, including a C-

terminal His tag  

This study, 3 

Y4B5   

pMM63 ColE1 ori (pCC7 ori); Apr (Cfr); Y4B5 yfbA amplified with 4272 + 4273, digested 

with NcoI/XbaI and inserted into the corresponding sites of pMM47, including a 

C-terminal His tag 

This study, 3 
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pMM71 ColE1 ori (pCC7 ori); Apr (Cfr); Y4B5 yfbA amplified with 4154 + 4155 containing 

its native promoter, cut with SalI/SpeI and inserted into the corresponding sites of 

pMM47.A, leading to a C-terminal His tag. 

This study, 3 

 

a Antibiotic resistance phenotypes: ampicillin, Apr; cefoxitin, Cfr; chloramphenicol, Cmr; 

erythromycin, Emr; gentamicin, Gmr; kanamycin, Kmr; streptomycin, Smr; tetracycline, Tcr.  

Antibiotic resistance phenotypes and other features listed in parentheses are those expressed by 

Capnocytophaga sp. but not by E. coli. 

 

 

Oligonucleotides 

 

Table 13 Oligonucleotides 

Number Sequence 

3402 AATTAACCCTCACTAAAGGG 

3288 TAATACGACTCACTATAGGG 

3574 TTCAAATCTCTTAAAACCCCAG 

3575 TCTAAGGCGAATAGGGAATATC 

3576 CACTGGATATACCACCG 

3577 TGCCACTCATCGCAGTA 

3578 GCTCTAGAGCCGCACCCAAAAAG 

3579 CAGAATTCTGTTGCATTTGCAAGTTG 

3580 GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT 

3581 GGCCACGCGTCGACTAGTACNNNNNNNNNNACGCC 

3582 GGCCACGCGTCGACTAGTAC 

3601 TTTTCTGCAGGTTAAAATCGGCCGCC 

3623 ATGTAGATATACAAATGCCTG 

3625 ACCCACCATTTCCTTTCCCTAAC 

3626 CAGCCACTTCCTTGAAGAAATG 

3639 GAAGTATTTTTGTTCGATACCAAGG 

3640 TTTCTGCAGGACATAGAAATTCAGGAGTG 

3641 TAATACTGGCATCGACCTTTACGCC 

3675 CATTTCGGTTACATCCCATAATAGC 

3676 AATTTCTAATGTCAAGGAAAAACCG 

3677 TTACCTTCTTGTTGGTTTTAACTGC  

3678 TTTATCGTGCACAGGTCTCATTAG 

3755 ATAACCCGGGAACTTGCAAATGCAACA 

3756 GGTGCCATGGGTAACTTCTTACAGGTG 

3815 TGCTTATTATCCGCACCCAA 

3818 GTTTTCCCAGTCACGAC 

3819 CAGGAAACAGCTATGAC 

3851 GCTCTAGAGCTCATCGGTATTTGCAACA 

3868 TCATGTCGACGCTCATCGGTATTTGCAACA 

3869 GACTAGTAGGGTTTTCCCAGTCACGACGTT 

3872 AACTGCAGAAGAAGTAGAGTATGAAGTTTGGA 

3873 GGACTAGTTTGCCTTTAATTTTATTATGGTA 

3875 AGGTCCATGGCTAAGTTTGGAAATATTTG 

3909 ATATTTCCAAACTTAGCCATCGAAGGATGAAAT 

3910 CTGAAAAATTTCATCCTTCGATGGCTAAGTTTG 

3911 TATTTCCAAACTTAGCCATTTTGTATAGTTCA 

3912 GCATGGATGAACTATACAAAATGGCTAAGTTTG 

3913 GTAAATGCGACCAATATCTTTAATG 

3914 TTGGATAATATGGTAAAGACTGTC 

3915 AAGTGGGAGGATAATTTAGAAACC 

3950 CTGAAAAATTTCATCCTTCGATGAAGTTTGGAAATAT 

3951 GCATGGATGAACTATACAAAATGAAGTTTGGAAATAT 

3952 GGACTAGTTTATGGTAAATTCATTTCGATTTTTTGGTTC 

3953 ATATTTGTTTTTCGTATCAAC 

3954 ATTAGCTCTGATAGTGATTAC 

3970 CCAGTGATTTTTTTCTCCATTAGTAACTTCTTAC 

3971 TCACCTGTAAGAAGTTACTAATGGAGAAAAAAATC 

3972 ATACTAGTTTACGCCCCGCCCTGCC 

4010 TCACACATTATGCACCAAAC 

4011 TTGGATAAAGGATTTGTAAG 
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4012 AATTGTTGTAACGATTGTCG 

4013 GCGAAGCGTTATCCCAAAGC 

4029 TACCATTATGGCAAAACAAC 

4030 AACCGAACCTCATCTTTCGC 

4041 ATATTTCCAAACTTCATTAGTAACTTCTTAC 

4042 ATTCACCTGTAAGAAGTTACTAATGAAGTTTGG 

4047 TTGTTGCGCTTGTTGAAATTTTC 

4048 CCAAATATTACCAATATAACAAC 

4049 CGCCCATCAGTAGACATTATAG 

4050 ATTGAACCGTTACAGCAGAAG 

4051 GATAGGGTTTCAACTCCATTGG 

4052 GGCGGTCGACGATTGGTTTAGTTCTTG 

4053 CAAGGAATTCTGCAAAATCTGATTTAGTAG 

4054 CGGCGAATTCTATATTACATATGAAATGC 

4063 TGAAATCTTAAAGTGGGCATTAGTAACTTCTTAC 

4064 ACCTGTAAGAAGTTACTAATGCCCACTTTAAG 

4065 GCACTAGTATATGAAATGCTTTTTAGTGTG 

4075 AATACCAGTTGAGGAATTTATC 

4076 GTTCAATGGAACAAGAAGCA 

4078 AACGGTCGACGCTCAAAAACACTCCCTAAA 

4128 TTACTAGTTCAATGATGATGATGATGATGCTCGAGTTCTAGAGCCATGGGG 

4130 GGGTAACAACAAAAACCACTG 

4132 TATAAGAATAATTGGTGGGC 

4133 TCTCTGCCTAATGAGAATAAC 

4151 CCCCACAGGAAGTAATAAAC 

4152 ATCAATAATATAGGCGTACC 

4153 GCAACTTAGCGTTAGTATAG 

4154 AACGGTCGACGGTATATTTGGCATTTGCG 

4155 CGACTAGTGTATTTCTTTGACGGTCAACATC 

4156 AAAGCCATGGGAAACGTAATCGGCGGAGGCG 

4157 GTTCTAGAGTTAGTTCTTGATAAATTCCTCAACTG 

4158 GTTCTAGAGAGTTCTTGATAAATTCCTCAACTG 

4159 CATACCATGGGAAATCGAATTTTTTATCTT 

4171 GAAGGATTTGGGTGTTCGTGTATGTCG 

4172 CGACATACACGAACACCCAAATCCTTC 

4200 CATGCCATGGTGATGAAAAAATTTAG 

4201 GTTCTAGATTGTTAATGTTATCTAAATCTAC 

4202 CGTCCCATGGTGAAAAAATACTTTATG 

4203 CGTCTAGATTATCTTGTATTAGGATTCAC 

4254 GTTCTAGATTTTTGTTGAGAATAATCC 

4272 ATCCATGGGAGTGTTATATTTGCCAAAGGC 

4273 AGTCTAGAAATTTTTTCTCTTGAGGAAGGAATTTG 

4274 ATGGCTGCAGAGTTCCTACGATTGCCATA 

4275 ATTCTATAAAGTTAAGAATG 

4276 TCAGGGTACATCAATAATAC 

4277 ATCAAACGGGTCACGATACG 

4278 AAATGAGAGAAGTAATGGAG 

4279 TTGAAGGTAAAACAACAGAG 

4280 ATGGAAATTGATGGAGCAGA 

4332 GGGAATTGCATATGAAAAAAATAAAACAAC 

4333 GGGAATTGCATATGGACAAAGAGTCCGTTTTTG 

4334 CCGCTCGAGTTTGTTGAGAATAATCCAAAAATC 

4339 CATACCATGGGAAAAAAAATAAAACAACTAATAG 

4361 CATACCATGGGAAAACATAAAATTTTAACATA 

4362 ACTCTAGAACGGATTATTTGTTGAGAATAATC 

4363 GTTCTAGATTTTTTGAATCCAATTCTTTTC 

4364 GTTCTAGATTTTACCCCCTCTTACAAGTTTG 

4395 AGAAAGGTACTTCGCCCAAAG 

4396 CATACCATGGGAATAGATTTGCTAAGTAGATC 

4416 CCGGATCCCTTGGTTTCATCAGCCATC 

4417 GCGGATCCATCAGTAATTTCCTGCATTTG 

4436 CTCCGGCTTGGCATAGGGGT 

4437 CTTGAAAACGAACATCTACC 

4438 TGTCTAGAGCTTTTTTAGGTAATCTGATAA 

4439 TGTCTAGAGCAAATTCTACTTTGGTATTAA 

4440 TGTCTAGAGCCAAGTTTGGTTCAGAGAAAG 

4444 CATACCATGGGACCCACTTTAAGATTTCAC 

4445 TGTCTAGAGCGTGTGTAAAAAGCATTTC 

4472 CCTGCATACACATTCACAATA 

4473 GATGATCTATATTGGAGTTT 

4474 TACCTGGTGCTCTTTGTTTTC 

4475 TGGGTCCACCAAGGCACTAA 

4484 GTCGCGTTAGCAAAGAATGC 

4485 ATCGGCGCTTATTTACAGGA 

4486 AACTATTCCAACGAAACGAC 
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4487 ACTTGTCGACGATAATATAACTTTGCTGC 

4546 TATTGTGAATGTGTATGCAGG 

4547 CGACCTAATTTATTCGTTC 

4548 GTAGTACAAACTGTTGTCTT 

4549 AGCAATTTTTTGGTTATTGA 

4550 ATCAAAACCATTATGGGTTG 

4551 ATCTGCAGTCACACATTATGCACCAAAC 

4552 GAGTAGATAAAAGCACTGTT/AAGAGTAGGACCTCCGTTTG  

4553 GATATTATTCCAAACGGAGGTCCTACTCTT/AACAGTGCTTTTATCTACTCCGATAGCTTC 

4554 AGGTTCCTTCACTGGTATTTAAAACCATCT/CTACGAAGGATGAAATTTTTCAGGGACAAC 

4555 AAAAATTTCATCCTTCGTAG/AGATGGTTTTAAATACCAGT 

4556 CCACTAGTAGAATAATCCAAAAATCTGCATCG 

4571 CATACCATGGGAAAACATAAAATTTTA 

4572 GATCTAGATATCTTGGGTTAGGGGTTA 

4573 TTGGATACCTCACGCCAAAC 

4574 GGACATTGTCTCTCTTTCC 

4661 GGTCTAGAGCCACCAATACGCCTATTAG 

4662 GGTCTAGAAAGTGTAAATGATGTTATCTTC 

4664 CCCTGCAGATATAGTAGCTCAAATTGGTTAC 

4665 GAGTAGATAAAAGCACTGTT/CTATCTTGGGTTAGGGGTTA 

4666 AAAGCAGGTTTAACCCCTAACCCAAGATAG/AACAGTGCTTTTATCTACTCCGATAGCTTC 

4667 GTTTTATTTTTTTCATAGGTATTTTAGTTA/CTACGAAGGATGAAATTTTTCAGGGACAAC 

4668 AAAAATTTCATCCTTCGTAG/TAACTAAAATACCTATGAAA 

4669 CCACTAGTAAGTAATTGGCATTTTGGAGTTTTAC 

4730 GGCACGTTCCAGTTCTTTCAG 

4731 CCCTGCAGAAACTCAGGAGGAGTAGCCGTAC 

4732 GAGTAGATAAAAGCACTGTT /TGTACGCTCGCGCTACCAAG 

4733 GAGGTGAAGGCTTGGTAGCGCGAGCGTACA/ AACAGTGCTTTTATCTACTCCGATAGCTTC 

4734 TGTCGGTAACCAATTTGAGCTACTATATCA/CTACGAAGGATGAAATTTTTCAGGGACAAC 

4735 AAAAATTTCATCCTTCGTAG/TGATATAGTAGCTCAAATTG 

4736 CCACTAGTTCTTGGGTTAGGGGTTAAACCTGC 

4783 CCCTGCAGATTTGTCGGCTTGTGGAAGCC 

4784 GAGTAGATAAAAGCACTGTT / GTGCTTCGACTCATTCCTAC 

4785 AGATGTAAACGTAGGAATGAGTCGAAGCAC/AACAGTGCTTTTATCTACTCCGATAGCTTC 

4786 AGCTCCCGTTCCACAATGCCACGTTTTTCC /CTACGAAGGATGAAATTTTTCAGGGACAAC 

4787 AAAAATTTCATCCTTCGTAG /GGAAAAACGTGGCATTGTGG 

4788 CCACTAGTTTAGTTCTTGATAAATTCCTCAACTGG 

4789 GGGAATTGCATATGAAACATAAAATTTTAACATATAGT 

4790 GGGAATTGCATATGGATGAATTACCTGACAACCGC 

4791 CCGCTCGAGTCTTGGGTTAGGGGTTAAACCTG 

4856 CAGCGGTGGCAGCAGCCAAC 

 

 

Antisera 

 

Table 14 Polyclonal antisera 

MIPA Number Name Antigen Source  

226 Anti-SiaC SiaC 1-21 (58 kDa) Rabbit Laboratoire d’Hormonologie, Marloie, Belgium 
228 Anti-GlnA GlnA (82 kDa) Rabbit Laboratoire d’Hormonologie, Marloie, Belgium 
233 Anti-CamB CamB 1-22 (44.5 kDa) Rabbit Laboratoire d’Hormonologie, Marloie, Belgium 
234 Anti-CamA CamA (34 kDa) Rabbit Laboratoire d’Hormonologie, Marloie, Belgium 
240 Anti-CamO CamO 1-25 (57.6 kDa) Rabbit Laboratoire d’Hormonologie, Marloie, Belgium 

 

 

Dog survey 

 

Table 15 Survey of C. canimorsus and C. cynodegmi in Swiss dogs 

Nr. Race Sex Born on 
Isolation 
date Location Area Results 

001 n.d. n.d. n.d. 15.01.2007 Zürich country 
C.c, 
C.cyno 

002 Belgian Sheppard male 24.10.2006 23.01.2007 
St- Gallen, 
BL country C.cyno 
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003 
Belgian German 
Sheppard male 30.03.2005 23.01.2007 Lucern, BL country C.c 

004 Coton de Tulear male 14.09.2002 23.01.2007 
France, 
CH-BL country 

C.c, 
C.cyno 

005 Labrador male 03.12.1995 23.01.2007 Lucern, BL country 
C.c, 

C.cyno 

006 Hound dog mix female 2005 29.01.2007 BL country 
C.c, 
C.cyno 

007 Collie mix male 2005 29.01.2007 BL country C.c 

008 Appenzeller mix male* 5.2004 30.01.2007 BL city C.cyno 

009 Labrador mix female 27.11.1999 30.01.2007 BL city other 

010 Bischon frisé female* 2003 30.01.2007 BS city C.c 

011 Hound dog mix female* 2002 30.01.2007 BS city 
C.c, 
C.cyno 

012 Jack Russell Terrier  male 25.10.2006 30.01.2007 BS city C.cyno 

013 Pekinese female 1999 30.01.2007 BS city C.c 

014 middle Poodle male 2006 31.01.2007 BL city other 

015 
Yorkshire-Jack Russell 
Terrier female* 2001 31.01.2007 BS city C.c 

016 
Yorkshire-Jack Russell 
Terrier female* 2001 31.01.2007 BS city C.c 

017 Pekinese female 2006 31.01.2007 BS city C.cyno 

018 Labrador male*   30.01.2007 DE/CH-BL country 
C.c, 
C.cyno 

019 Shih-Tzu male 1995 05.02.2007 BS city C.cyno 

020 Yorkshire female* 2004 05.02.2007 BS city C.c 

021 French bulldog male 2005 05.02.2007 BS city other 

022 Labrador female* 1994 13.02.2007 BL city other 

023 Pekinese mix female 01.05.2001 13.02.2007 JU country C.cyno 

024 German Sheppard female 01.11.2001 13.02.2007 BS city C.cyno 

025 Labrador male 01.01.2003 13.02.2007 BS city 
C.c, 
C.cyno 

026 Bischon frisé mix male 26.10.2006 14.02.2007 BL country other 

027 
West High-Land-
Terrier female* 1996 14.02.2007 BL country C.cyno 

028 
Sennen- 
Newfoundland mix male 2006 14.02.2007 BL country C.cyno 

029 Schipperke female* 1992 14.02.2007 BL country C.cyno 

030 Schipperke male* 1986 14.02.2007 BL country C.cyno 

031 Pekinese mix female 1995 14.02.2007 BS city other 

032 Dingo female* 20.11.1999 14.02.2007 BL country C.cyno 

033 Hound mix male 2004 14.02.2007 BL country 
C.c, 

C.cyno 

034 Tivet-Terrier mix male 2004 19.02.2007 BL city 
C.c, 
C.cyno 

035 Berger Pyrenée male* 1994 20.02.2007 BS city C.c 

036 Terrier mix  female 2001 20.02.2007 BS city C.c 

037 Terrier mix female* 01.09.2004 20.02.2007 BS city 
C.c, 
C.cyno 

038 Labrador female* 14.10.1999 23.02.2007 VS mountain C.c 

039 Border Collie male* 30.05.2005 23.02.2007 VS country C.c 

040 Husky male 01.09.2006 23.02.2007 VD city C.c 

041 Labrador male 03.11.2006 23.02.2007 VD mountain other 

042 English Cocker  female* 21.12.2002 23.02.2007 VD city C.cyno 

043 Cane corso female 11.06.2002 23.02.2007 VD country C.c 
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044 Bong Nhat female* 01.09.2000 23.02.2007 VD mountain 
C.c, 
C.cyno 

045 Carlin female* 23.04.1998 23.02.2007 VD mountain 
C.c, 
C.cyno 

046 Carlin female* 01.03.1998 23.02.2007 VD mountain C.c 

047 Border Collie male* 13.09.2004 23.02.2007 VD mountain 
C.c, 
C.cyno 

048 Labrador mix male* 1995 24.02.2007 VD city C.cyno 

049 Malinois male 10.05.2004 24.02.2007 VD mountain 
C.c, 

C.cyno 

050 Cavalier King Charles male* 24.05.1994 24.02.2007 VS country C.c 

051 Golden retriever male 04.08.2002 24.02.2007 VD city 
C.c, 
C.cyno 

052 Espagnol tibetain male 01.06.2001 24.02.2007 VS country 
C.c, 

C.cyno 

053 Golden Retriever mix female 12.11.2006 24.02.2007 VD city 
C.c, 
C.cyno 

054 Bouvier mix female 13.10.2006 24.02.2007 VD city 
C.c, 

C.cyno 

055 Samoyede male 01.06.2003 24.02.2007 VD country C.cyno 

056 Shi-Tzu male 02.12.1999 24.02.2007 VD country C.c 

057 Appenzeller mix female* 22.07.1998 24.02.2007 VD city 
C.c, 

C.cyno 

058 Shetland mini male 07.06.2006 27.02.2007 VD city 
C.c, 
C.cyno 

059 Podenco female 01.01.2003 27.02.2007 VD mountain C.cyno 

060 Yorkshire male 25.10.2003 27.02.2007 VD city C.cyno 

061 Westie female* 12.11.2000 27.02.2007 VS country C.cyno 

062 Bouvier Bernois male 02.06.2000 27.02.2007 VS city C.cyno 

063 Terrier mix female 29.11.1998 27.02.2007 VD city 
C.c, 

C.cyno 

064 Westie female* 02.01.2001 27.02.2007 VD city 
C.c, 
C.cyno 

065 Border Appenzeller mix female* 06.10.2001 27.02.2007 VD city other 

066 Cavalier King Charles male 26.08.2004 27.02.2007 
France, 
Paris city 

C.c, 

C.cyno 

067 St-Bernard male 01.08.1997 27.02.2007 VS country other 

068 Golden retriever female 09.09.2005 02.03.2007 BS city C.c 

069 German Sheppard female* 10.07.2000 02.03.2007 BS city C.c 

070 
Belgian& German 
Sheppard female 31.07.2000 02.03.2007 BS city C.c 

071 Labrador mix female* 6.1997 05.03.2007 BS city C.c 

072 German Sheppard female* 1996 05.03.2007 BS city C.cyno 

073 German Sheppard female* 24.09.2005 05.03.2007 BS city C.c 

074 Border Terrier female* 2003 05.03.2007 BL country 
C.c, 

C.cyno 

075 German Sheppard female 1.2003 05.03.2007 BL country 
C.c, 
C.cyno 

076 Bulldog  female 2006 06.03.2007 BS city C.c 

077 German Sheppard male 19.09.2002 06.03.2007 BS city 
C.c, 

C.cyno 

078 Golden retriever female* 1.06 09.03.2007 BL country other 

079 Spaniel mix female* 1993 09.03.2007 BL city 
C.c, 
C.cyno 

080 Golden retriever female* 26.11.2003 10.03.2007 BS city C.c 

081 Malinois female* 2003 11.03.2007 BL country 
C.c, 
C.cyno 

082 
Lappi-BSH-Pinscher 
mix female* 2004 12.03.2007 BS city 

C.c, 
C.cyno 

083 Lhasa-Apso female 1994 12.03.2007 BL city C.cyno 
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084 BSH male 1999 13.03.2007 BS city 
C.c, 
C.cyno 

085 Collie mix male* 01.08.2002 14.03.2007 BL city C.c 

086 Terrier female* 23.10.2000 16.03.2007 BL city other 

087 Greek hound male* 8.2003 16.03.2007 BL city C.cyno 

088 Jack Russell Terrier female* 15.06.1993 16.03.2007 BS city 
C.c, 
C.cyno 

089 Yorkshire-Malteser male 01.05.2002 17.03.2007 BS city C.c ? 

090 Poodle male 1998 18.03.2007 BS city C.cyno 

091 Chinese female 02.02.1996 19.03.2007 BS city other 

092 Malinois female* 8.1995 20.03.2007 BS city C.cyno 

093 Golden retriever female* 1998 20.03.2007 BL city 
C.c, 
C.cyno 

094 Hawaneser female* 2005 20.03.2007 BS city 
C.c, 

C.cyno 

095 Schnauzer male 2000 20.03.2007 BS city C.c 

096 Terrier female* 03.01.1999 20.03.2007 BL city C.c 

097 Terrier male 7.1998 20.03.2007 BS city C.c 

098 Tibet Terrier female* 1991 21.03.2007 BS city C.cyno 

099 Poodle male* 15.08.2006 21.03.2007 BL city C.cyno 

100 Bichon frisé female* 03.05.1995 21.03.2007 BS city C.cyno 

101 English Cocker Spaniel  male 17.01.1999 21.03.2007 BL city 
C.c, 
C.cyno 

102 Malamut Husky  male* 04.11.2004 23.03.2007 BL city 
C.c, 
C.cyno 

103 n.d. n.d. n.d. 02.04.2007 DE n.d. 
C.c, 

C.cyno 

* indicates sterile individuals; C.c., C. canimorsus ; C. cyno, C. cynodegmi. 

 

 

Abbreviations.  

Apr
, ampicillin resistance; Cc, C. canimorsus; cfu, colony forming units; Cfr, cefoxitin resistance; 

CMP-Neu5Ac, Cytidine-5 -monophospho-N-acetylneuraminic acid; Cmr, chloramphenicol 

resistance, DSA, Datura stramonium agglutinin; Emr
, erythromycin resistance; EtOH, ethanol; FBS, 

fetal bovine serum; fH, factor H; Gal, galactose; Glc, glucose; GlcNAc, N-acetyl glucosamine; 

GalNAc, N-acetyl galactosamine; GNA, Galanthus nivalis agglutinin; HI, heat-inactivated; hk, heat-

killed; Neu5Ac, N-acetylneuraminic acid; Man, mannose; moi, multiplicity of infection, MUAN, 2 -(4-

Methylumbelliferyl)- -D-N-acetylneuraminic acid; nr, non redundant; SNA, Sambucus nigra 

agglutinin; PNA, peanut agglutinin; Tcr, tetracycline resistance; Tn, transposon.  
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Conclusion and Outlooks 

The development of a gene transfer system, selectable markers, a 

replicating shuttle vector and a transposition mutagenesis system allowed to 

perform the very first genetic manipulations of C. canimorsus.  Establishment of 

the genetic system was the basis for molecular studies on C. canimorsus -host 

interactions. 

We found that C. canimorsus multiplies efficiently in presence of 

mammalian cells including phagocytes.  We isolated two mutants unable to grow 

in contact to cells but fully proficient for growth on blood agar.  One mutant turned 

out to be affected in a surface-exposed sialidase and could be rescued by 

exogenously added sialidase but surprisingly not by sialic acids.  However, 

addition of GlcNAc or GalNAc rescued growth, showing that sialidase allows C. 

canimorsus to feed on glycans from host cell surface glycoproteins.  The sialidase 

deficient mutant turned out to be hypo-virulent in a mouse model and we provided 

evidence that C. canimorsus also feeds on phagocytes in vivo.  Another Tn 

integration was localized in a gene encoding for a hypothetical conserved protein.  

Notably, we could rescue growth of this second mutant (Y4G6) in presence of 

macrophages by introducing the gene in trans or by adding GlcNAc or GalNAc.  

Mutant Y4G6 is presumably deficient in the deglycosylation process of host glycan 

structures.  Using lectin stainings we demonstrated that siaC is deficient in the 

first step of hydrolyzing terminal sialic acids to expose internal carbohydrates, 

while the mutant Y4G6 is blocked in the subsequent deglycosylation process.  The 

role of yfgA disrupted in mutant Y4G6 needs to be clarified for instance by using 

enzyme substrates.  Cc5 uses its surface-exposed sialidase to reveal internal 

GalNAc and GlcNAc residues on host glycoconjugates, which are then 

presumably released by hexoseaminidase(s).  We propose that 

glycosylhydrolases are part of an extracellular "degradosome."  However, we 

further need direct evidence that supports the existence of this complex and the 

extracellular localization of the enzymes. 

We observed that Cc5 was resistant against human complement which 

resulted at least to some extent, from binding fH.  The sialidase-deficient mutant 

and mutant Y4G6 were sensitive to killing by human complement.  This sensitivity 

correlated to a lack of fH binding.  We also showed that SiaC alone does not 

promote binding of fH therefore we are investigating if other proteins are involved 
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in the recruitment of fH.  It remains to be determined if the hypothetical 

“degradasome” complex of the deglycosylation process is involved in binding fH.  

Serum sensitivity of both mutants could however not be restored by the addition of 

aminosugars.  This indicates that there is no surface modification upon addition of 

GlcNAc or GalNAc.  It has to be addressed if the deglycosylation per se is related 

to resistance against complement and/or fH binding. 

Cc5 evades and even down-regulates the onset of pro-inflammatory 

signaling.  In a Tn mutagenesis approach, we screened for Cc5 mutants that were 

unable to inhibit the pro-inflammatory response of macrophage upon co-infection 

by heat-killed E. coli.  Mutants have been mapped, characterized and 

complemented but despite our extensive analysis of the genes, their function 

remains to be understood.  Interestingly, many of the genes identified are also 

found in commensal bacteria of the Bacteroides genus.  Little is known how 

commensal bacteria highly adapted to their niche are influencing the host.  

However, a few examples nicely highlight that commensals not only induce or 

suppress immune responses but also modulate immune response.  The obligate 

anaerobe B. fragilis, which is present in all mammals, has an extensively variable 

surface structure by expressing many different capsular polysaccharides 

(Cerdeno-Tarraga et al., 2005; Kuwahara et al., 2004).  Remarkably, 

polysaccharide A (PSA) of B. fragilis was shown to stimulate the balance between 

TH cells during gut homeostasis.  This zwitterionic polysaccharide was not only 

able to stimulate T cells, but also played a role in the development and maturation 

of the immune system (Mazmanian et al., 2005).  B. fragilis clearly influences the 

immune response that is aimed at neutralizing most, if not all, other 

microorganisms (Mazmanian and Kasper, 2006).  Another intestinal commensal B. 

thetaiotaiomicron induces the expression of antimicrobial molecules that directly 

bind and eliminate potentially pathogenic bacteria (Cash et al., 2006).  Other 

studies using zebrafish- commensal interactions showed that LPS is necessary 

and sufficient to trigger expression and activity of alkaline phosphatase.  This host 

enzyme played a crucial role in promoting mucosal tolerance to resident intestinal 

bacteria which prevented inflammatory responses (Bates et al., 2007).  C. 

canimorsus primarily evolved as a commensal in canine and feline oral cavities but 

it can turn into a pathogen if it is accidentally introduced into the tissues of another 

host.  It is not known if commensal C. canimorsus carry the same “virulence 
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factors” as those isolated from septic patients.  Somehow this resembles the 

situation of Neisseria meningitidis which is present in the naso-pharynx of 5- 30% 

of the human population but causes only a few cases of fatal infections.  The 

functional analysis and presence of genes involved in the active inhibition of pro-

inflammatory signals in different isolates of C. canimorsus could provide more 

explanation. 

Commensalism and pathogenesis represent different facets of microbial-

host interactions.  Our results show how a commensal can turn into a pathogen by 

using features presumably evolved for host adaptation.  Our results will provide 

the basis for further molecular studies to be performed on the pathogenesis of C. 

canimorsus, a bacterium, which is of great medical interest. 
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