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ATP    Adenosine-5’-triphosphate 

BBD    γ-butyrobetaine dioxygenase 

BSA    Bovine serum albumin 

BSEP    Bile salt export pump 

CACT    Carnitine-acylcarnitine translocase 

CAT    Carnitine acetyltransferase 

cDNA    Complementary Deoxyribonucleic acid 

CoA-SH   Acetyl conenzyme A 

CPT I    Carnitine palmitoyltransferase I 

CPT II    Carnitine palmitoyltransferase II 

CYP    Cytochrome P450 

DILI    Drug-induced liver injury 

DMEM   Dulbecco’s Modified Eagle Medium 

DMSO   Dimethylsulfoxide 

DNA    Deoxyribonucleic acid 

DNase   Deoxyribonuclease  

EMEA    European Medicines Agency 

FACS    Fluorescence activating cell sorting 

FBS    Foetal bovine serum 

GABA    γ-aminobutyric acid 

GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 
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GSH    Glutathione 

GSSG    Oxidized glutathione 
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HRT    Hormone replacement therapy 

HTML    3-hydroxy-6-N-trimethyl-lysine 

JC-1    5,5’,6,6’-Tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl- 
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    carbocyanide iodide 

JVS    Juvenile visceral steatosis 

LCA Cn   Long-chain-acylcarnitine 

LDH    Lactate dehydrogenase 

LS180    Human colon carcinoma cell line type LS180 

MDR    Multi-drug resistance 

mRNA    Messenger ribonucleic acid 

MRP    Multi-drug resistance associated protein 

MTT    3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NCE    New chemical entity 

NEAA    Non essential amino acids 

OATP    Organic anion transporting polypeptide 

OCT    Organic cation transporter 

OCTN    Carnitine/organic cation transporter 

PCR    Polymerase chain reaction 

PBS    Phosphate buffered saline 

PXR    Pregnane X receptor 

RPMI    Roswell Park Memorial Institute 1640 Medium 

RXR    Retinoic X receptor 

SCA Cn   Short-chain-acylcarnitine 

SCD    Systemic Carnitine Deficiency 

SRB    Sulforhodamine B 

SV40Tag   Simian virus 40 large T antigen 

TAS Cn   Total acid soluble carnitine 

TMBA    4-trimethylaminobutyraldehyde 

TMBA-DH   4-trimethylaminobutyraldehyde dehydrogenase 

TML    6-N-trimethyl-lysine 

TMLD    6-N-trimethyl-lysine dioxygenase 

VPA    Valproic acid  

WEM    Williams E Medium 

WT    Wild type 

zFA-fmk   Z-Phe-Ala-fluoromethylketone 

zVAD-fmk   Z-Val-Ala-Asp-fluoromethylketone 
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3 Summary 

 

The liver is the primary site of drug metabolism and plays a major role in metabolism, 

digestion, detoxification, and elimination of drugs and toxins from the body. 

Consequently, drugs affect the liver more frequently than any other organ and place 

the liver at increased risk for toxic damage. Drug-induced liver injury (DILI) is a 

common cause of acute liver failure and the most frequent reason for the withdrawal 

of approved drugs, representing a serious challenge for the pharmaceutical industry. 

The risk of developing hepatotoxicity is not only due to the chemical properties of the 

drug but also to environmental factors, pre-existing diseases and genetic factors, 

leading to the classification into either predictable (high incidence) or unpredictable 

(low incidence) hepatotoxicity. Drugs that produce predictable liver injury are 

generally a result of direct liver toxicity of the parent drug or its metabolites. However, 

the majority of adverse drug-induced hepatic events are unpredictable and the 

underlying mechanisms are mostly unknown, but assumed to be either immune-

mediated hypersensitivity reactions or idiosyncratic and are able to alter the 

susceptibility to adverse events. In recent years mitochondrial dysfunction has been 

recognized as β-oxidation of fatty acids, inhibition or uncoupling of the respiratory 

chain, or through a primary effect on the mitochondrial genome. 

 

One aim of this thesis was to investigate the juvenile visceral steatosis (jvs) mouse, 

which is characterized by microvesicular steatosis of the liver and to impaired renal 

reabsorption leading to systemic carnitine deficiency. The main focus was put on the 

assessment of the hepatic toxicity of valproate, an antiepileptic drug known to induce 

liver injury, and to investigate whether the underlying carnitine deficiency is a risk 

factor for valproate-associated hepatotoxicity. Furthermore, in vitro studies using 

several hepatic cell lines were performed to estimate the suitability as screening 

systems for hepatic metabolism and CYP induction, and one study was conducted to 

evaluate the hepatotoxic effect of the plant cimicifuga racemosa. 

 

Initially we assessed the carnitine homeostasis and energy metabolism in carnitine-

deficient (jvs-/-) mice after cessation of carnitine substitution (Chapter 6). It is well 

established that sufficient carnitine plasma and tissue levels in jvs mice can be 

obtained by carnitine substitution, correcting carnitine deficiency. We studied the 
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kinetics of carnitine loss from plasma and tissue carnitine stores and markers of 

energy metabolism after carnitine deprivation for a maximum of ten days. The total 

carnitine concentrations in plasma, liver and skeletal muscle were significantly 

decreased, whereas carnitine concentration decreased rapidly in plasma but much 

slower in tissue. Deprivation of carnitine was also associated with a further drop in 

the plasma β-hydroxybutyrate levels and hepatic fat accumulation. 

 

In a second in vivo experiment (Chapter7) we investigated whether carnitine 

deficiency is a risk factor for valproate-associated hepatotoxicity in jvs mice, and we 

assessed the effects of valproate on carnitine plasma and tissue stores in these 

mice. Therefore, we treated heterozygous jvs+/- and the corresponding wild type 

mice with subtoxic oral doses of valproate for two weeks. Our study shows that jvs+/- 

mice treated with VPA have impaired hepatic mitochondrial β-oxidation and 

increased hepatic fat accumulation, findings associated with increased activities of 

serum transaminases and alkaline phosphatase, and hepatocellular damage. 

Furthermore, the effect of VPA treatment on the carnitine plasma and tissue stores 

was much more dramatic in JVS+/- than in wild type mice, leading to additional and 

substantial losses in the plasma and tissue carnitine pools. In conclusion, hepatic 

toxicity of VPA was more pronounced in JVS+/- mice than in corresponding wild type 

mice, and systemic carnitine deficiency can therefore be considered to be a risk 

factor for hepatotoxicity associated with VPA.  

 

In an in vitro study using hepatic cell lines (Chapter 8), drug-induced changes in the 

activity of cytochrome P450 isoforms were assessed. Since the activity of most CYPs 

can be regulated by induction and/or inhibition by specific drugs, and possibly 

affecting the metabolism of other drugs or even their own metabolism, we 

investigated the expression and induction of several CYP isozymes and the human 

pregnane X receptor in immortalized human hepatocytes for their suitability as 

screening systems for hepatic drug metabolism. Our investigations demonstrated that 

hHepLT5 cells contain the main human CYP isozymes CYP1A2 and CYP3A4 which 

are important for drug metabolism. Summarized, hHepLT5 cells appear therefore to 

be a valuable alternative for primary human hepatocytes for studying pharmaco-

logical and toxicological features of new drug entities.  
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The last described study (Chapter 9) was conducted to assess the hepatotoxicity of 

cimicifuga racemosa in experimental animals in vivo, in hepatocyte cultures and in 

isolated liver mitochondria. Ethanolic cimicifuga racemosa extract was administered 

orally to rats and liver sections were analyzed for microvesicular steatosis by electron 

microscopy. Tests for cytotoxicity, mitochondrial toxicity and apoptosis/necrosis were 

performed using HepG2 cells, and mitochondrial toxicity was studied using isolated 

rat liver mitochondria. The main findings in vivo and in vitro were hepatic 

mitochondrial toxicity, as evidenced by microvesicular steatosis and inhibition of β-

oxidation, eventually resulting in apoptotic cell death. These findings suggest that 

inhibition of β-oxidation is the initial hepatotoxic event of cimicifuga extract, which 

eventually may result in apoptosis of the hepatocytes.  
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4 Aim of the thesis 

 

The major purpose was to characterize in vitro and in vivo systems for the evaluation 

of drug-induced hepatotoxicity. For in vivo experiments we used a mouse model with 

systemic carnitine to estimate whether a pre-existing mitochondrial dysfunction due 

to inhibition of the β-oxidation of fatty acids represents a risk factor for susceptibility 

to drug-induced hepatotoxicity. In vitro studies were performed with hepatic cell lines, 

namely hepatocellular carcinoma cells and immortalized human hepatocytes. These 

cells were characterized by studying the expression and induction of drug 

metabolizing enzymes as a useful tool to study the hepatic metabolism of different 

drugs and for toxicological investigations.  

 

Summarized, the following issues were studied: 

 

I) Carnitine homeostasis and energy metabolism in carnitine-deficient (jvs-/-) 

mice after cessation of carnitine substitution 

 

II) Toxicity of valproic acid in jvs mice with impaired β-oxidation associated 

with carnitine deficiency 

 

III) Expression and inducibility of cytochrome P450 isozymes in immortalized 

human hepatocytes 

 

IV) Hepatotoxic effects of cimicifuga racemosa (black cohosh). 
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5 Introduction 

5.1 In vivo investigations 

5.1.1 Carnitine – Functions 
 
Carnitine (β-hydroxy-4-N-trimethylaminobutyric acid) has several important intra-

cellular functions.  

Primarily, it represents an essential cofactor for the transport of activated long-chain 

fatty acids across the inner mitochondrial membrane to the mitochondrial matrix 

(Figure 2), where β-oxidation takes place (Bremer, 1983; Rebouche and Paulson, 

1986). Cytosolic long-chain fatty acids, which are present as CoA esters, are 

activated by a specific acyl-CoA synthase at the outer mitochondrial membrane. The 

long-chain acyl-CoAs (e.g. palmitoyl-CoA) are further conjugated to carnitine by 

carnitine palmitoyltransferase I (CPT I). The resulting long-chain acylcarnitine esters 

are transported over the inner mitochondrial membrane via the specific carrier 

carnitine-acylcarnitine translocase (CACT) and reconverted to long-chain acyl-CoAs 

in the mitochondrial matrix by carnitine palmitoyltransferase II (CPTII). In the 

mitochondria, the long-chain acyl-CoAs undergo β-oxidation, resulting in the 

production of acetyl-CoA. Short and medium-chain acyl-CoAs can be reconverted 

into acylcarnitines by the enzyme carnitine acetyltransferase (CAT) and can then 

leave the mitochondria via CACT for another round of transport.  

 

Carnitine plays also an important role in the transfer of products of the peroxisomal β-

oxidation, e.g. acetyl-CoA, to the mitochondria for the oxidation to CO2 and H20 in 

the Krebs cycle (Wanders et al., 1995). Other functions of carnitine include the 

modulation of the free CoA/acyl-CoA ratio, the storage of energy as acetylcarnitine 

and the detoxification of potentially toxic, poorly metabolized acyl groups by excreting 

them as carnitine esters (Bremer, 1983; Bieber, 1988; Steiber et al., 2004). 
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Figure1: Function of carnitine in the transport of mitochondrial long-chain fatty acid oxidation and 

regulation of the intramitochondrial free CoA/acyl CoA ratio 
 

 

5.1.2 Carnitine – Biosynthesis 
 
 

 
Figure 2: L-Carnitine 

 

 

Carnitine, a water-soluble zwitterion, is a chemically simple substance, physiologi-

cally presented as L-enantiomer and containing a negatively charged carboxylate at 

C1 and a positively charged quaternary nitrogen at C4 at physiological pH (Figure 2). 

Most of the carnitine needed is obtained from the diet, in particular by meat and dairy 

products. The rest is biosynthesized, starting from the amino acids lysine and 

methionine, whereas lysine provides the carbon backbone and the 4-N-methyl 

groups originate from methionine (Tanphaichitr et al., 1971; Horne and Broquist, 

1973).  
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Figure 3: Pathway of carnitine biosynthesis 

 

 

In mammals, the carnitine biosynthesis is initiated by the N-methylation of the protein 

linked L-lysine. This reaction is catalyzed by specific methyltransferases, which use 

S-adenosyl-L-methionine as a methyl donor (Paik and Kim, 1971; Cox and Hoppel, 

1973). Lysosomal hydrolysis of these proteins results in the release of 6-N-trimethyl-

lysine (TML), the first metabolite of carnitine biosynthesis (LaBadie et al., 1976; Dunn 

and Englard, 1981). The following hydroxylation on the 3-position by TML 

dioxygenase (TMLD) yields 3-hydroxy-TML (HTML), which is cleaved to 4-

trimethylaminobutyraldehyde (TMABA) and glycine, a reaction catalysed by the 

HTML aldolase (HTMLA). Dehydrogenation of TMABA by the TMABA 

dehydrogenase (TMABA-DH) results in the formation of 4-N-trimethylaminobutyrate 

(butyrobetaine). In the last step, butyrobetaine is hydroxylated on the 3-position by γ-

butyrobetaine dioxygenase (BBD). Human skeletal muscle, heart, liver, kidney and 

brain are capable to the biosynthesis of carnitine from methionine and lysine to its 

immediate precursor γ-butyrobetaine (Rebouche and Engel, 1980). Final conversion 

of γ-butyrobetaine to L-carnitine by γ-butyrobetaine hydroxylase can only be done in 

liver, kidney and brain in humans (Englard, 1979). The chemical structure of the 
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intermediates and the enzymes of the carnitine biosynthesis are shown in Figure 3 

and 4. 

 

 

 

 
 

Figure 4: Metabolites of the carnitine biosynthesis 
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5.1.3 Carnitine – Absorption, Metabolism and Elimin ation  

In omnivores, approximately 75% of carnitine sources are from the diet and about 

25% from endogenous synthesis, whereas in strict vegetarians, endogenous 

carnitine synthesis provides >90% of the total available carnitine (Rebouche, 1992). 

Carnitine homeostasis in mammals is maintained by a combination of absorption of 

carnitine from dietary sources, a modest rate of endogenous synthesis, efficient 

reabsorption from the glomerular, and mechanisms present in most tissues that 

establish and maintain substantial concentration gradients between intracellular and 

extracellular carnitine pools. The rate of carnitine biosynthesis in humans is 

estimated to be about 1.2 µmol per kg body weight per day, which was evaluated 

from the steady-state rate of excretion of carnitine by strict vegetarian adults and 

children (Lombard et al., 1989). The major dietary sources of carnitine are meat, 

poultry, fish and dairy products (Rebouche and Engel, 1984). An average 

omnivorous diet provide 2 to 12 µmol of carnitine per kilogram of body weight per 

day, in contrast to strict vegetarians consuming less than 0.1 µmol of carnitine per 

kilogram of body weight per day. Skeletal muscle contains over 90% of total body 

carnitine (Rebouche, 1992), and the plasma carnitine concentration is regulated 

largely by the renal threshold, which is approximately 40 µmol/l (Engel et al., 1981).  

Since carnitine is found in very high concentrations in skeletal muscle, heart and 

epididymal fluid – tissues that lack the ability to synthesize carnitine - it is obvious 

that an active transport takes place, which has been reported to be sodium 

dependent (Rebouche and Mack, 1984). Absorption of carnitine results from a two-

component system, namely a linear absorption, probably representing a passive 

diffusion, and a saturable system suggesting the presence of an active transport 

system (Hamilton et al., 1986). Additionally, carnitine absorption was shown to be 

dependent on the intake amount, whereas humans do not absorb all of the 

consumed carnitine, proving the theory that a specific active transporter, which can 

be saturated even with a normal dietary intake, might be involved (Harper et al., 

1988). 

It has been shown that carnitine is extensively metabolized in microorganisms, 

whereas bacteria are able to metabolize the trimethylammonium compound of 

carnitine in three different ways. Depending on the species and the cultivation 
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conditions used (e.g. aerobiosis, anaerobiosis) L-carnitine is catabolized by various 

pathways. Some, especially Pseudomonas species, assimilate carnitine as a unique 

source of carbon and nitrogen. The first catabolic step is the oxidation of the β-

hydroxy group of carnitine with formation of 3-dehydrocarnitine, which is catalyzed by 

the L-carnitine dehydrogenase. 3-dehydrocarnitine is degraded to glycine betaine 

and further metabolized by step demethylation to glycine (Lindstedt et al., 1970; 

Kleber, 1997). Others, for instance, Acinetobacter species are able to degrade only 

the carbon backbone of L-carnitine with formation of trimethylamine (Kleber et al., 

1977). A third group of carnitine metabolizing microorganisms comprises different 

Enterobacteriaccae. These bacteria have the ability to metabolize L-carnitine, via 

crotonbetaine, to γ-butyrobetaine in the presence of carbon and nitrogen sources 

during anaerobic growth (Seim et al., 1980). 

In contrast to microorganisms, mammals lack the enzymes which are responsible for 

the degradation of carnitine (Rebouche et al., 1984; Seim et al., 1985). It was shown, 

after oral administration of radioactive-labeled carnitine in rats, that urine and feces 

contained two radiolabeled metabolites which were identified as trimethylamine N-

oxide and γ-butyrobetaine. For rats that received intravenous labelled carnitine or 

germ-free rats receiving the isotope orally or intravenously, the radioactivity 

recovered was in the form of carnitine and the mentioned metabolites were not found 

(Rebouche et al., 1984; Seim et al., 1985). It was concluded that the indigenous flora, 

but not the tissues of mammals, is responsible for carnitine degradation in the 

gastrointestinal tract. Same results were found in human studies, in which a tracer 

dose of radioactive-labeled carnitine was administered orally. The major metabolites 

found were trimethylamine N-oxide (primarily in urine) and γ-butyrobetaine (primarily 

in feces), whereas the formation of these metabolites was attributed to the bacterial 

flora in the gastrointestinal tract of humans (Rebouche and Chenard, 1991). 

 

Under normal homeostasis conditions, carnitine is mainly eliminated by excretion in 

urine. In rats, 1 to 2 µmol of carnitine is excreted per 100 g body weight per day, 

whereas this amount represents 5 to 7% of the total body pool (Cederblad and 

Lindstedt, 1976; Brass and Hoppel, 1978). In these animals, the glomerular filtration 

rate is about 5 liters per day, contrary to the carnitine clearance with only 5 ml per 

day, which implies that 99.9% of the filtered carnitine is reabsorbed in the kidney 

(Brass and Hoppel, 1978). In healthy humans, the serum clearance of carnitine is 
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about 1 ml per day, the daily excretion in urine is 100 to 300 µmol and the tubular 

reabsorption in the kidney is 90 to 98% (Maebashi et al., 1976). In strict vegetarians, 

dietary carnitine supplementation did not significantly increase plasma carnitine 

concentration and did not alter the glomerular filtration rate. At normal physiological 

plasma carnitine concentrations, the rate of carnitine excretion was increased and the 

rate of carnitine reabsorption was decreased by carnitine supplementation. It was 

concluded that the kidney adapts to carnitine intake by reducing the efficiency of 

carnitine reabsorption (Rebouche et al., 1993). Excretion of carnitine also takes place 

into milk, whereas the carnitine concentration was shown to increase in the first week 

post-partum from 39 to 63 µmol/l and was stabilized at 45 µmol/l after one month 

(Borum, 1981). 

 

 

5.1.4 Carnitine – Transport 
 
Since the cloning of the first organic cation transporter OCT1 from rat kidney in 1994 

many of other transport members belonging to the OCT family have been described. 

A subfamily of the organic cation transporter family, namely the carnitine/organic 

cation OCTN transporters have been isolated and characterized in mice (Tamai et 

al., 2000). The members include the low affinity transporter OCTN1, the high affinity 

transporter OCTN2 and the intermediate affinity transporter OCTN3, which have the 

ability to transport carnitine, but with variable characteristics. The primary function of 

these transporters is the elimination of cationic drugs and other xenobiotics. Carnitine 

transport through cation transporters has a pharmacological importance since the 

OCTN2 transports drugs such as valproate, verapamil and quinidine (Wu et al., 

1999). 

OCTN1, originally cloned from a human fetal kidney library, is widely expressed in 

various tissues (Tamai et al., 1997). Rat OCTN1, cloned from placenta, is expressed 

particularly in liver, intestine, kidney, brain and placenta. There is a very low affinity 

interaction between carnitine and rat OCTN1, and this transporter does not mediate 

Na+-coupled carnitine transport to a significant extent (Wu et al., 2000). However, 

mouse OCTN1 can mediate carnitine transport in a Na+-dependent manner, 

illustrating an apparent species difference in the specifity for the same transporter 

type (Tamai et al., 2000).  
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OCTN2 was first isolated from a human placental trophoblast cell line (Wu et al., 

1998) and from a human kidney cDNA library (Tamai et al., 1998). This transporter is 

widely expressed in human tissues such as heart, skeletal muscle, kidney, placenta, 

small intestine and some brain areas (Tamai et al., 1998; Wu et al., 1998; Wu et al., 

1999). OCTN2 functions as a Na+-dependent carnitine transporter as well as Na+-

independent transporter for other organic cations. The Na+-dependent L-carnitine 

transport by OCTN2 is done with high affinity with the apparent Km value of 4.3 µM 

(Tamai et al., 1998). Several anionic drugs such as valproate, as well as cationic 

drugs (e.g. verapamil, emetine) and short-chain acyl esters of carnitine (e.g. acetyl-L-

carntine), used as therapeutic agents in the treatment of a wide range of disorders, 

are also transported by OCTN2 (Wu et al., 1999) and consequently inhibit the 

OCTN2-mediated carnitine uptake (Figure 5). 

 

 

 
Figure 5: Therapeutic uses of carnitine and certain organic cation drugs transported by OCTN2 

 

 

 

The last member of the OCTN family is termed OCTN3 and was isolated from mice. 

The mouse OCTN3 was expressed predominantly in testis and weakly in kidney. 

Functionally, mouse OCTN3 mediates carnitine transport in a Na+-independent 

manner, contrary to mouse OCTN1 and OCTN2 which transport carnitine in a Na+-

dependent mode, and additionally, OCTN3 has a higher specificity for carnitine 

transport than OCTN1 and OCTN2 (Tamai et al., 2000). 
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5.1.5 Mutations in OCTN2 
 
The physiological significance of the transporters in the body is confirmed by the 

identification of hereditary diseases caused by mutations of genes encoding various 

transporters (Sesaki, 2000). In the case of OCTN2, the ultimate proof of its 

importance derives from mutations in the gene encoding the protein, which cause an 

autosomal recessive disease named primary systemic carnitine deficiency (SCD) 

(Nezu et al., 1999). There are numerous studies describing patients with nonsense or 

missense mutations in OCTN2 and different clinical manifestations. In SCD 

homozygous patients, who manifest symptoms like cardiomyopathy, progressive 

skeletal weakness, non-ketotic hypoglycaemia and hyperammonemia, many 

mutations in the OCTN2 protein have been identified (Figure 6). 

 

 

 
Figure 6: Mutations in the carnitine/organic cation transporter OCTN2 in humans 

 

 

 

5.1.6 Systemic Carnitine Deficiency 
 

Carnitine deficiency can be characterized by low plasma and tissue carnitine 

concentrations and can be defined as a decrease of intracellular carnitine, leading to 

an accumulation of acyl-CoA esters and an inhibition of acyl-transport via the 

mitochondrial inner membrane. Due to the two main functions of carnitine, namely 

the transport of long-chain fatty acids into the mitochondrial matrix for beta-oxidation 

to provide cellular energy and the modulation of the rise in intramitochondrial acyl-
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CoA/CoA ratio, which relieves the inhibition of many intramitochondrial enzymes, the 

main consequence of carnitine deficiency is impaired energy metabolism and 

pathological changes in different tissues such as liver, muscle, heart and brain (Engel 

and Angelini, 1973; Karpati et al., 1975; Pons and De Vivo, 1995). Since the first 

description of human myopathic carnitine deficiency (Engel and Angelini, 1973), 

different forms of carnitine deficiency have been reported. According to their different 

ethiologies, human carnitine deficiency can be either hereditary or acquired. 

Hereditary carnitine deficiency can be grouped into three clinical entities: myopathic 

carnitine deficiency, systemic carnitine deficiency, and organic acidurias. Acquired 

carnitine deficiency is due to inadequate intake, increased requirement, and 

increased loss of carnitine (Angelini et al., 1992; Kerner and Hoppel, 1998).  

 

5.1.6.1 Primary Carnitine Deficiency 
 
Primary carnitine deficiency is defined as a decrease in intracellular carnitine content, 

which is associated with impaired fatty acid oxidation and with no other identifiable 

systemic disease that might deplete tissue carnitine stores (Millington and Roe, 

1989). There are two forms of primary carnitine deficiency, depending on the tissue 

distribution of the low carnitine level: The systemic carnitine deficiency with low 

carnitine levels in plasma and the affected tissues, and the muscle carnitine 

deficiency, with low carnitine concentration restricted to muscle (Engel and Angelini, 

1973; Karpati et al., 1975). 

 

I. Systemic Carnitine Deficiency (SCD) 
 

Primary systemic carnitine deficiency (SCD; OMIM 212140) is an autosomal 

recessive disorder characterized by progressive cardiomyopathy, skeletal myopathy 

hypoglycaemia and hyperammonemia (Karpati et al., 1975; Treem et al., 1988). It 

was first described in 1975 (Karpati et al., 1975), and is differentiated from myopathic 

carnitine deficiency (OMIM 212160). The defects in this disorder result from an 

impaired carnitine uptake into cells and are associated with a deficient renal carnitine 

transporter (Treem et al., 1988). There have been identified numerous point 

mutations in the gene encoding for the high affinity carnitine transporter OCTN2 in 

SCD patients (Nezu et al., 1999; Tang et al., 1999; Vaz et al., 1999; Wang et al., 

1999; Wang et al., 2000). Treatment of SCD consists of daily high doses of orally 
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administered carnitine (100 to 200 mg/kg body weight), to ensure its absorption and 

to reverse or attenuate the clinical symptoms, whereas carnitine concentrations 

increase slightly in skeletal muscle and reach nearly normal levels in the liver, but 

without restoring totally the tissues carnitine stores (Angelini et al., 1992). 

 

II. Myopathic Carnitine Deficiency (MCD) 

 
In muscle carnitine deficiency, lipid storage myopathy occurs with low muscle 

carnitine but normal liver and serum carnitine and affected patients suffer from 

progressive muscle weakness and some of them from lipid storage myopathy (Engel 

and Angelini, 1973; Markesbery et al., 1974; VanDyke et al., 1975). Due to normal 

plasma levels, it has been assumed that MCD is associated with a defect in the low 

affinity muscle-specific carnitine transporter (Martinuzzi et al., 1991), and that this 

form of carnitine deficiency can be inherited as an autosomal recessive disorder, 

since parents also had low muscle carnitine levels (VanDyke et al., 1975). Carnitine 

treatment has been beneficial on muscle strength in some patients only, whereas the 

muscle carnitine content was increased with variable success, but carnitine stores 

were only rarely replenished (Hosking et al., 1977; Shapira et al., 1993). However, in 

order to achieve full recovery the duration of therapy should probably continue for 

longer periods, with a dose of not less than 100 mg/kg body weight/day (Shapira et 

al., 1993). 

 

 

5.1.6.2 Secondary carnitine deficiency 
 
Secondary carnitine deficiency, manifested by decreased plasma or tissue carnitine 

levels, is associated primarily with a wide range of genetic diseases, caused by 

metabolic disorders (Pons and De Vivo, 1995). These disorders are associated with 

impaired oxidation and accumulation of atypical acyl-CoA intermediates, and include 

fatty acid oxidation disorders and amino acid oxidation defects, and are characterized 

by plasma and tissue carnitine levels of 25 to 50% of normal (Stanley, 1987). Fatty 

acid oxidation defects, inherited in an autosomal recessive manner, can be 

subdivided into defects of the carnitine cycle for the transport of the long-chain fatty 

acids into mitochondria and defects of the β-oxidation cycle, that occur within the 
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mitochondria (Pons and De Vivo, 1995). Defects of the enzymes involved in the 

carnitine cycle implicates carnitine-acylcarnitine translocase deficiency (Stanley et al., 

1992) and carnitine palmitoyltransferase I and II deficiencies (Angelini et al., 1981). 

Defeciences due to the enzymes involved in the β-oxidation cycle comprise the short-

chain (Turnbull et al., 1984), the medium-chain (Roe et al., 1986), the long-chain 

(Hale et al., 1985) and the very long-chain acyl-CoA dehydrogenases (Bertrand et al., 

1993). The postulated mechanism of carnitine deficiency in these disorders is an 

imbalance between the urinary excretion of the accumulated acylcarnitines and the 

sum of the dietary intake and biosynthesis of carnitine, resulting in the accumulation 

of the corresponding acyl-CoA esters in mitochondrial matrix and a characteristic 

increase of the acylcarnitine to carnitine ratio (Chalmers et al., 1984; Rebouche and 

Paulson, 1986). 

 

Several drugs such as the branched fatty acid valproic acid (VPA), pivalic acid 

containing pro-drugs, cisplatin or carnitine derivates are involved in secondary 

carnitine deficiency (Opala et al., 1991; Holme et al., 1992; Heuberger et al., 1998; 

Brass et al., 2003). It has been shown that these drugs have inhibitory effect on 

OCTN2-mediated carnitine transport, whereas the most potent blockers were the 

antibiotic emetine and the ion channel blockers quinidine and verapamil (Ohashi et 

al., 1999; Wu et al., 1999; Wagner et al., 2000; Wu et al., 2000). Since no significant 

inhibition of carnitine transport by VPA was found, it was suggested that the 

deficiency induced by valproate therapy is due to a different mode of action. 

 

 

5.1.7 Juvenile Visceral Steatosis (jvs) Mouse 
 

In 1988, Koizumi et al. (Koizumi et al., 1988) described a C3H-H-2° strain of mouse, 

autosomal recessively associated with microvesicular fatty infiltration of viscera. The 

mice, later renamed juvenile visceral steatosis (jvs) mice (Hayakawa, 1990), show, 

beside severe lipid accumulation in the liver, other features of carnitine deficiency 

such as hyperammonemia, hypoglycemia, cardiac hypertrophy, mitochondrial 

abnormalities in skeletal muscle and progressive growth retardation (Horiuchi et al., 

1993; Kaido et al., 1997). The hyperammonemia in jvs mice has been described as a 

consequence of a decrease of all the urea cycle enzyme activities resulting from 
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suppressed transcription during development (Imamura et al., 1990; Tomomura et 

al., 1992; Tomomura et al., 1994).  They also have cardiac hypertrophy that can be 

significantly suppressed after carnitine administration (Horiuchi et al., 1993), and they 

were shown to have a marked decrease of carnitine levels in serum, liver and 

muscle, in comparison with controls (Kuwajima et al., 1991). After carnitine treatment, 

all the symptoms disappear, and carnitine substitution corrects carnitine deficiency 

and also reduces cardiac hypertrophy and hepatic accumulation of fat (Horiuchi et al., 

1992). The jvs mice are therefore established as a model for SCD since they also 

show symptoms similar to those observed in SCD patients (Koizumi et al., 1988). 

 

The metabolic defect in jvs mice was suspected to be primarily due to impairment of 

the renal carnitine transport system, and studies on the renal reabsorptional capacity 

of carnitine in the jvs mice revealed that the affected homozygous mice showed a 

higher rate of carnitine excretion ten days after birth (Horiuchi et al., 1994; Horiuchi et 

al., 1997). Biochemical studies of carnitine transport, using cultured fibroblast from 

normal and mutant jvs mice, indicated that the mutant jvs had significantly lower rates 

of Na+-dependent carnitine uptake than controls (Kuwajima et al., 1996). The jvs 

phenotype is inherited in an autosomal recessive manner (Hayakawa, 1990) and the 

jvs locus has been identified within a 1.6 cM region on mouse chromosome 11 

(Nikaido et al., 1995; Okita et al., 1996). The missense mutation in the jvs mouse was 

identified as L352R and is characterized on the molecular level by a point mutation 

from CTG to CGG that substituted from leucine to arginine at amino acid position 352 

in the mouse homologue of OCTN2 (Lu et al., 1998). All these findings indicate that 

jvs mice represent a valid animal model for human primary carnitine deficiency. 

 

 

5.1.8 Valproic Acid (VPA) 
 
Valproic acid (N-dipropylacetic acid) or valproate (VPA) is a branched, medium-chain 

fatty acid composed of eight carbons (Figure 7), which is structurally unrelated to 

other antiepileptic drugs. VPA is a broad-spectrum antiepileptic drug which was 

introduced into the anticonvulsant market in 1968 in Europe and in 1978 in the United 

States (Zafrani and Berthelot, 1982). It is routinely used for both partial and 

generalized seizures, and it is effective against abscences (typical petit mal) 
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seizures, atypical absence seizures, myoclonic and tonic-clonic (grand mal) seizures 

and can be used as second choice medication in status epilepticus (Koch-Weser and 

Browne, 1980). The most common side effects are gastrointestinal disturbances 

(anorexia, nausea, vomiting), sedation, coagulation disorders (thrombocytopenia, 

decreased serum fibrinogen, prolonged prothrombin time), alopecia and hepatic 

toxicity (Pinder et al., 1977; Bruni and Wilder, 1979; Koch-Weser and Browne, 1980). 

Shortly after introduction, cases of fulminant liver failure in patients treated with VPA 

have been reported (Zafrani and Berthelot, 1982; Zimmerman and Ishak, 1982; 

Dreifuss et al., 1987; Konig et al., 1994; Krahenbuhl et al., 1995), but the underlying 

mechanism of VPA induced hepatotoxicity is still not fully known. 

 

 

 

 

 

 

 

Figure 7: Valproic Acid 

 

 

 

5.1.8.1 Pharmacology of VPA 
 
VPA potentiates γ-aminobutyric acid (GABA) ergic inhibitory effects in some specific 

brain regions that are involved in the control of seizure generation and propagation 

by increasing both GABA synthesis and release (Bolanos and Medina, 1997; 

Loscher, 2002). Additionally, VPA also interacts with the metabolism of γ-

hydroxbutyrate (GHB), a metabolite of GABA, reducing the GHB release and 

attenuating the neuronal excitation induced by N-methyl-D-aspartate type glutamate 

receptors (Loscher, 2002).   

Therapeutic serum concentrations range from 50 to 125 µg/ml. At such therapeutic 

concentrations VPA is 80 to 90% bound to serum proteins. The binding is 

concentration-dependent, whereas the percentage decreases at higher VPA levels 

(Gugler and von Unruh, 1980; Chadwick, 1985). The protein bound fraction is less in 
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patients with renal disease, chronic hepatic disease, in the elderly, during pregnancy 

and in the presence of other protein bound drugs  (Klotz and Antonin, 1977; Davis et 

al., 1994).  

The metabolism of VPA follows at least five main metabolic pathways in the liver 

including glucuronidation, mitochondrial β-oxidation and cytosolic ω-oxidation 

(catalyzed by microsomal cytochrome P450) to produce multiple metabolites (Figure 

8). However, because of their low plasma and brain concentrations, it is unlikely that 

they contribute significantly to the anticonvulsant effects of VPA (Davis et al., 1994; 

Loscher, 2002). Nevertheless, some of them may be involved in toxic effects of VPA, 

whereas the exact mechanism is not fully elucidated.  

 

 

 
Figure 8: Liver metabolism and metabolites of VPA 

 

 
Mitochondrial β-oxidation of VPA involves its transport within the mitochondrial matrix 

using the same pathway as long-chain fatty acids. This pathway consists of several 

steps and is called the “carnitine shuttle” (Figure 9). First, VPA is activated in the 

cytosol and links with coenzyme A (CoA-SH) to form valproyl-CoA. Valproyl-CoA 

then crosses the outer mitochondrial membrane. Under the effect of carnitine 

palmitoyltransferase I, valproylcarnitine is formed. Valproylcarnitine is then 

exchanged for free carnitine by carnitine-acylcarnitine translocase. In the 

mitochondrial matrix, carnitine palmitoyltransferase II transforms valproylcarnitine into 
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valproyl-CoA, which is able to enter a β-oxidation process (Millington et al., 1985; Li 

et al., 1991; Ketter et al., 1999). 

 

 

 
Figure 9: The ‘carnitine shuttle’. ACoAs, acyl-CoA synthetase; CoA, coenzyme A; CPT, carnitine 

palymitoyltransferase; CT, carnitine translocase 
 

 

 

5.1.8.2 VPA-associated hepatotoxicity 
 
The hepatotoxicity associated with VPA has been well documented (Sussman and 

McLain, 1979; Dickinson et al., 1985; Eadie et al., 1988). The type I VPA-mediated 

hepatotoxicity is associated with dose-dependent changes in serum aminotrans-

ferase activity and low plasma fibrinogen levels that are normalized with either dose 

reduction or drug discontinuation. This dose-related toxicity occurs during the first 

three months of therapy in up to 44% of recipients (Sussman and McLain, 1979; 

Coulter et al., 1980). The type II VPA-mediated hepatotoxicity is considered to be 

rare, but often fatal and irreversible idiosyncratic reactions characterized by centri- 

and midzonal microvesicular steatosis that is sometimes accompanied by centrizonal 

necrosis (Zafrani and Berthelot, 1982; Zimmerman and Ishak, 1982; Dreifuss et al., 

1987). This severe form of hepatotoxicity is not clearly dose-dependent, as it can 

arise with either low doses (or low VPA plasma concentrations) or high doses (or 
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high VPA plasma concentrations) (Zimmerman and Ishak, 1982; Dreifuss et al., 

1987). 

 

Although the mechanism of the type II VPA-mediated hepatotoxicity is not fully 

elucidated, mitochondrial dysfunction was considered as principal cause of VPA-

induced liver failure (Fromenty and Pessayre, 1995). In agreement with this concept, 

microvesicular steatosis, the principal histological finding in valproate induced 

hepatotoxicity, is also detected in other types of liver disease with decreased 

mitochondrial β-oxidation such as Reye’s syndrome, Jamaican vomiting sickness, 

mitochondrial cytopathies and acute fatty liver of pregnancy (Bioulac-Sage et al., 

1993; Ponchaut and Veitch, 1993). 

Since VPA is activated to both CoA and carnitine derivates, depletion of hepatic free 

CoA and free carnitine represents a potential mechanism, whereas this sequestration 

of CoA and carnitine is thought to be the major cause for the inhibition of 

mitochondrial β-oxidation by VPA (Ponchaut et al., 1992b). Another mechanism may 

be direct inhibition of mitochondrial β-oxidation by VPA metabolites, namely 4-ene 

VPA (∆4-VPA) and its subsequent metabolite 2,4-diene VPA, resulting in an 

inactivation of mitochondrial β-oxidation enzymes (Thurston et al., 1983; Turnbull et 

al., 1983; Granneman et al., 1984; Rettenmeier et al., 1985; Ponchaut et al., 1992b). 

A third possible mechanism is a decreased activity of complex IV (cytochrome c 

oxidase) of the respiratory chain, associated with a significant loss in cytochrome aa3 

in liver mitochondria (Ponchaut et al., 1991a; Ponchaut et al., 1991b; Ponchaut and 

Veitch, 1993). Furthermore, it has been proposed that pre-existing mitochondrial 

diseases, e.g. impaired β-oxidation and/or impaired function of the respiratory chain, 

may increase susceptibility for VPA-induced mitochondrial dysfunction, in particular 

for liver failure (Chabrol et al., 1994; Lam et al., 1997; Krahenbuhl et al., 2000a). 
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5.2 In vitro investigations 
 

5.2.1 Immortalized human hepatocytes 
 
Primary human hepatocytes are widely used for xenobiotic metabolism, toxicity 

studies and the design for bioartificial liver devices. Nevertheless, there are several 

disadvantages occurring with this screening system. Primary hepatocytes have 

limited and unpredictable availability, restricted growth activity and lifespan, and show 

significant inter-individual differences in the expression of drug metabolizing enzymes 

and responses to toxicants. Huge variations in functional activities, especially P450 

levels, as well as in the magnitude of P450 induction after treatment with prototypical 

inducers, have been reported from one human hepatocyte population to another 

(Guillouzo et al., 1993; Madan et al., 2003). 

 

In contrast to primary human hepatocytes, immortalized hepatocytes could be taken 

into consideration for investigations on hepatic metabolism or drug toxicity. These 

cells are readily available, can be passaged and used over a longer time period, 

retaining the activity of major drug-metabolizing enzymes. On a cellular basis, 

mortality is defined as the death of a lineage of cells, immortality would be defined as 

infinite survival, a life span without time limits, unlimited proliferative potential and 

maintenance of critical liver functions (Cascio, 2001). The most widely used 

immortalizing agent that allow normal cells to overcome senescence signals and 

continue proliferating, is the simian virus 40 large T antigen (SV40TAg). The common 

mode of action of this viral oncogene is the inactivation of the cell cycle regulatory 

proteins pRB and p53 by various mechanisms (Bryan and Reddel, 1994; Mathon and 

Lloyd, 2001).  

 

The development of an immortalized hepatocyte cell line would be beneficial for the 

pharmaceutical industry and an enormous need exists for an in vitro human 

hepatocyte assay system for high throughput testing of the pharmacological 

properties and toxicology of new chemical entities (NCE). A differentiated human 

hepatocyte cell line, especially one which exhibits P450 function, would find 

immediate and widespread application in pharmacology and toxicology. The used 

immortalized human hepatocyte cell line was generated in our laboratory by 
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transducing the SV40TAg gene into primary human hepatocytes, using a HIV-derived 

lentiviral vector as described by Salmon et al. (Salmon et al., 2000). 

 

 

5.2.2 Hepatic cell lines 
 
A frequently used alternative for the screening of hepatic metabolism and toxicity of 

several drugs is the utilization of hepatic cell lines, deriving from hepatoblastoma or 

hepatocellular carcinoma. 

 

5.2.2.1 HepG2 
 
The hepatocellular carcinoma HepG2 cell line is a perpetual adherent cell line which 

has been isolated primarily from a liver tissue of a 15 year old Caucasian male with a 

well differentiated hepatocellular carcinoma. These cells are epithelial in morphology 

and have a model chromosome number of 55. The cells secrete a variety of major 

plasma proteins, e.g. albumin, α-2 macroglobulin, α-1 antitrypsin, transferrin and 

plasminogen, and have provided a tool for extensive studies of biochemical functions 

of liver cells and used to test a wide variety of compounds over the last years (Bouma 

et al., 1989; Javitt, 1990). In our studies this cell line was used as a comparator to 

investigate the expression and induction of several CYP isozymes and the human 

pregnane X receptor (hPXR).  

 

 

5.2.3 Cytochrome P450 enzymes  

Cytochome P450s (CYPs) are a large group of heme-containing monooxygenase 

enzymes responsible for the oxidative metabolism of drugs and other xenobiotics, as 

well as many endogenous compounds, whereas NADPH is required as a coenzyme 

and O2 is used as a  substrate. They are classified in the same family (symbolized by 

an Arabic number) when their amino acid sequence similarity is greater than 40% 

and to the same subfamily (symbolized by an upper case letter) when their amino 

acid sequence similarity is above 55% (Nebert et al., 1987; Nebert and Gonzalez, 

1987). CYPs are located on the membrane of the endoplasmic reticulum and are 
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highly concentrated in the liver and in the small intestine, and they are also found in 

the mitochondrial membrane (Modi et al., 1995). Presently, there are more than 270 

different CYP gene families, with 18 recommended in mammals (Nebert and Russell, 

2002) (Figure 10). Up to now, three main P450 families (1, 2 and 3) have been 

identified as mainly involved in xenobiotic metabolism (Gonzalez, 1988; Nelson et al., 

1993), and drug-drug interacations (DDI) are of increasing interest due to the 

occurrence of adverse drug reactions and/or loss of therapeutic effect (Li et al., 

1997b; Michalets, 1998; Madan et al., 2003). Induction of CYP3A4 gene expression 

is caused by a variety of marketed drugs, including rifampin, phenobarbital, 

clotrimazole and dexamethasone (Meunier et al., 2000; Sahi et al., 2000; Luo et al., 

2002; Madan et al., 2003) and represents the basis for a number of common drug-

drug interactions. CYP1A2 is inducible by 3-methylcholanthrene, β-naphtofavone and 

tetrachlorodibenzodoxin (Li et al., 1998; Breinholt et al., 1999; Meunier et al., 2000; 

Madan et al., 2003). CYP2C9 can be induced by rifampin and phenobarbital, 

whereas the magnitude of induction is less than that for CYP3A4 (Li et al., 1997b; 

Madan et al., 2003). Knowledge of possible CYP-induction or -inhibition potential of 

drug candidates in drug discovery or the early preclinical phase of development 

would be therefore helpful for the prediction of drug-drug interactions. Beside 

involvement in drug metabolism, CYPs also play a major part in cholesterol 

biosynthesis and metabolism, bile-acid biosynthesis, steroid synthesis and 

metabolism, vitamin D3 synthesis and metabolism, and retinoic acid hydroxylation 

(Nebert and Russell, 2002). 
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Figure 10: Substrates and functions of human CYP gene families. 
 
 
 

5.2.3.1 CYP1A enzymes 

Members of the CYP1A (CYP1A1 and CYP1A2) subfamily have been identified in a 

wide range of vertebrates, including fish, amphibians, birds, and mammals, and are 

involved in the oxidation of a wide range of endogenous compounds and xenobiotics. 

The expression of members of the CYP1A family is inducible by polycyclic aromatic 

hydrocarbons, such as those found in charbroiled foods and cigarette smoke acting 

through the aryl hydrocarbon receptor (AHR), a transcription factor (Hahn and 

Stegeman, 1994). CYP1A2 is responsible for about 10 to 15% of the total CYP 

content of human liver and is the major CYP isozyme involved in the metabolism of 

important drugs, e.g. imipramine, propranolol, clozapine, olanzapine, theophylline 
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and caffeine (Brosen, 1995). Figure 11 shows the substrates, inhibitors and inducers 

of CYP1A2. 

Substrates, Inhibitors and Inducers of CYP1A2 

 

Substrates   
Amitriptyline (Elavil)  
Clomipramine (Anafranil)  
Clozapine (Clozaril) 
Imipramine (Tofranil)  
Propranolol (Inderal) 
R-warfarin 
Theophylline  
Tacrine (Cognex)  
 
Inhibitors   
Fluvoxamine (Luvox)  
Grapefruit juice  
Quinolones  

Ciprofloxacin (Cipro)  
Enoxacin (Penetrex) > norfloxacin (Noroxin) >  
ofloxacin (Floxin) > lomefloxacin (Maxaquin) 
 

Inducers   
Omeprazole (Prilosec)  
Phenobarbital  
Phenytoin (Dilantin)  
Rifampin (Rifadin, Rimactane)  
Smoking  
Charcoal-broiled meat 

 

Figure 11: Substrates, inhibitors and inducers of CYP1A2. 

 

5.2.3.2 CYP2C enzymes 
 
The CYP2C subfamily is also important for drug metabolism, accounting for 

approximately 18% of the CYP protein content in human liver and for approximately 

20% of the CYP-mediated metabolism of drugs (Rendic and Di Carlo, 1997). 

CYP2C9 is a member of the CYP2C subfamily, which includes in humans at least 

three other members, e.g. CYP2C8, CYP2C18 and CYP2C19. The CYP2C9 isozyme 

is, among others, responsible for the metabolism of several substrates including 

warfarin, phenytoin and various non-steroidal anti-inflammatory agents (Rettie et al., 

1992; Bajpai et al., 1996; Hamman et al., 1997; Miners and Birkett, 1998). CYP2C19 

has been shown to exhibit genetic polymorphism, and is completely absent in 3 
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percent of Caucasians and 20 percent of Japanese (Wedlund et al., 1984; Nakamura 

et al., 1985). It plays a role in the metabolism of phenytoin (Levy, 1995), and is 

involved in the metabolism of omeprazole and diazepam (Andersson et al., 1993; 

Jung et al., 1997) (Figure 12). 

 

 

Substrates, Inhibitors and 
Inducers of CYP2C9 

 

Substrates   
Nonsteroidal anti-inflammatory drugs  
Phenytoin (Dilantin)  
S-warfarin  
Torsemide (Demadex) 

Inhibitors   
Fluconazole (Diflucan)  
Ketoconazole (Nizoral)  
Metronidazole (Flagyl)  
Itraconazole (Sporanox)  
Ritonavir (Norvir) 

Inducers   
Rifampin (Rifadin, Rimactane) 

 

 
 

 

Substrates and Inhibitors of 
CYP2C19 

 

Substrates   
Clomipramine (Anafranil) 
Diazepam (Valium)  
Imipramine (Tofranil)  
Omeprazole (Prilosec)  
Propranolol (Inderal) 

Inhibitors   
Fluoxetine (Prozac)  
Sertraline (Zoloft)  
Omeprazole  
Ritonavir (Norvir) 

 

 

 
 

 

Figure 12: Substrates, inhibitors and inducers of CYP2C9, and substrates and inhibitors of CYP2C19. 

5.2.3.3 CYP2D6 enzyme 
 
CYP2D6, the only known functional member of the CYP2D subfamily in humans, 

metabolizes a wide variety of substances including many psychotherapeutic agents 

(e.g. amitriptyline, haloperidol, risperidone) and also beta-blockers (e.g. metoprolol). 

This enzyme is genetically polymorphic, leading to impaired metabolism in 5 to 10% 

of Caucasians of many centrally acting drugs and toxins (Steiner et al., 1988; Meyer 

et al., 1990). Individuals with normal CYP2D6 activity are termed extensive 

metabolizers. These ultra-rapid metabolizers show increased metabolism and 

decreased drug effects of CYP2D6 substrates, such as tricyclic antidepressants 

(Dalen et al., 1998). Ethnic differences are indicated in this genetic polymorphism, 
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since Asians and blacks are less likely than Caucasians to be poor metabolizers 

(Relling et al., 1991; Bertilsson et al., 1992). Poor metabolizers are at risk for drug 

accumulation and toxicity from drugs metabolized by this isoform. Conversely, when 

formation of an active metabolite is essential for drug action, poor metabolizers of 

CYP2D6 can exhibit less response to drug therapy compared with extensive 

metabolizers. The substrates and inhibitors of CYP2D6 are shown in Figure 13. 

 

Substrates and inhibitors of CYP2D6 

 

Substrates   
Antidepressants* 

Amitriptyline (Elavil)  
Clomipramine (Anafranil)  
Desipramine (Norpramin)  
Doxepin (Adapin, Sinequan)  
Fluoxetine (Prozac)  
Imipramine (Tofranil)  
Nortriptyline (Pamelor)  
Paroxetine (Paxil)  
Venlafaxine (Effexor)  
 

Antipsychotics  
Haloperidol (Haldol)  
Perphenazine (Etrafon, Trilafon)  
Risperidone (Risperdal)  
Thioridazine (Mellaril) 
  

Beta blockers  
Metoprolol (Lopressor)  
Penbutolol (Levatol)  
Propranolol (Inderal) 
Timolol (Blocadren)  

Narcotics  
Codeine, tramadol (Ultram)  

Inhibitors   
Antidepressants  

Paroxetine > fluoxetine >  
sertraline (Zoloft) > fluvoxamine  
(Luvox),  
Nefazodone (Serzone),  
Venlafaxine > clomipramine  
(Anafranil) > amitriptyline  

Cimetidine (Tagamet)  
Fluphenazine (Prolixin)  
Antipsychotics  

Haloperidol  
Perphenazine  
Thioridazine  

 

Figure 13: Substrates and inhibitors of CYP2D6. 

5.2.3.4 CYP3A enzymes 

CYP3A enzymes are the most abundantly expressed cytochrome P450 enzymes in 

the liver and is considered to be the major drug metabolizing subfamily. Its members 

are localized in the organs most associated with drug disposition, including the liver, 

gastrointestinal tract, and kidney. CYP3A4 is the predominant cytochrome P450 

enzyme, accounting for up to 30% of total hepatic CYP protein content (Shimada et 

al., 1994), and is known to metabolize a large variety of xenobiotics (among them 

amiodarone, lipophilic HMG-CoA reductase inhibitors, cyclosporine, tacrolimus and 

sirolimus, and various anticancer drugs) and endogenous substances, such as 

steroids (Brian et al., 1990; Araya and Wikvall, 1999). Other isoforms are CYP3A43, 
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CYP3A5 and CYP3A7. Among them, it has been estimated that about 60% of all 

clinically used drugs are metabolized by CYP3A4 (Bertz and Granneman, 1997). 

Members of this subfamily are involved in many clinically important drug interactions 

(Slaughter and Edwards, 1995). Several potent inducers of CYP3A are known, 

including rifampicin, dexamethasone and phenorbarbital (Meunier et al., 2000; Sahi 

et al., 2000; Luo et al., 2002; Madan et al., 2003), leading to clinically important drug-

drug interactions when these substances are administered concurrently with drugs, 

which are metabolized by these CYPs. Substrates, inhibitors and inducers of CYP3A 

are listed in Figure 14. 

CYP3A43 gene expression was found in liver, kidney, pancreas, and prostate as well 

as fetal liver and fetal skeletal muscle (Domanski et al., 2001). The highest 

expression level of CYP3A43 mRNA was found in prostate, and in liver it could be 

induced by rifampicin (Gellner et al., 2001). CYP3A43 is expressed at 0.1% and 2% 

of the levels of CYP3A4 and CYP3A5 (Westlind et al., 2001).  

CYP3A5 was isolated from a liver cDNA library and was first termed PCN3, sharing 

85% sequence similarity with CYP3A4 (Aoyama et al., 1989). It is present at only 10 

to 30% of CYP3A4 levels (Kuehl et al., 2001). It is well established that only 

approximately 20% of livers express CYP3A5. The most common reason for the 

absence of expression is a splice site mutation (Kuehl et al., 2001; Lin et al., 2002). 

In individuals who express CYP3A5, the percentage contributed to total hepatic 

CYP3A by this isoform is still unclear, with estimates ranging from 17% to 50%, 

wheras CYP3A5 was more frequently expressed in livers of African Americans (60%) 

than in those of Caucasians (33%) (Kuehl et al., 2001). CYP3A5 is also expressed in 

a range of extrahepatic tissues such as small intestine, colon esophagus and lung 

(Ding and Kaminsky, 2003).  

CYP3A7 is expressed specifically in fetal livers and accounts for up to 50% of the 

total fetal hepatic CYP content (Wrighton and Vandenbranden, 1989). It has been 

shown that CYP3A7 is expressed in placental and endometrial microsomes that 

increases dramatically from the first to the second trimester of pregnancy. An 

increased expression of a CYP3A7 transcript was found in endometria of pregnant 

compared with nonpregnant women as well as an increase from the first to the 

second trimester of pregnancy (Schuetz et al., 1993). The level of expression of 



 - 40 - 

CYP3A7 varies with gestational age and is higher in the 20-week fetus than at 40 

weeks of age, and decreases dramatically after birth (Kitada et al., 1987). Initially, 

CYP3A7 was thought to be unique to the fetal liver (Wrighton and Vandenbranden, 

1989), however, its presence has now been noted in placental, endometrial (Schuetz 

et al., 1993), and adult hepatic tissue (Schuetz et al., 1994). 

Substrates, Inhibitors and Inducers of CYP3A 

 

Substrates   
Amitriptyline (Elavil)  
Benzodiazepines  

Alprazolam (Xanax)  
Triazolam (Halcion)  
Midazolam (Versed)  

Calcium blockers  
Carbamazepine (Tegretol)  
Cisapride (Propulsid)  
Dexamethasone (Decadron)  
Erythromycin  
Ethinyl estradiol (Estraderm, Estrace)  
Glyburide (Glynase, Micronase)  
Imipramine* (Tofranil)  
Ketoconazole (Nizoral)  
Lovastatin (Mevacor)  
Nefazodone (Serzone)  
Terfenadine (Seldane)  
Astemizole (Hismanal)  
Verapamil (Calan, Isoptin)  
Sertraline (Zoloft)  
Testosterone  
Theophylline  
Venlafaxine (Effexor)  
Protease inhibitors  

Ritonavir (Norvir)  
Saquinavir (Invirase)  
Indinavir (Crixivan)  
Nelfinavir (Viracept)  

Inhibitors   
Antidepressants  

Nefazodone > fluvoxamine (Luvox) > fluoxetine  
(Prozac) > sertraline  
Paroxetine (Paxil)  
Venlafaxine  

Azole antifungals  
Ketoconazole (Nizoral) > itraconazole (Sporanox)  
> fluconazole (Diflucan)  

Cimetidine (Tagamet) 
Clarithromycin (Biaxin)  
Diltiazem  
Erythromycin  
Protease inhibitors  
Inducers   
Carbamazepine  
Dexamethasone  
Phenobarbital  
Phenytoin (Dilantin)  
Rifampin (Rifadin, Rimactane)  

 

Figure 14: Substrates, inhibitors and inducers of CYP3A4. 

5.2.4 Human pregnane X receptor (PXR) 
 
The pregnane X receptor (PXR), an orphan nuclear receptor, is one of the key 

transcriptional regulators of cytochrome P450 CYP3A monooxygenases and other 

drug metabolizing enzymes and transporters, such as CYP2B6, CYP2C8/9 and 

CYP3A7, as well as the drug transporters MDR1, OATPC, bile salt export pump 

(BSEP) and MRP2 (Schuetz et al., 2001; Kast et al., 2002; Pascussi et al., 2003; 

Tirona et al., 2003). PXR is a member of the nuclear receptor family of ligand-

activated transcription factors that includes the steroid, retinoid, and thyroid hormone 

receptors as well as many orphan receptors for which physiological ligands have yet 

to be identified (Mangelsdorf et al., 1995; Giguere, 1999), and is highly expressed in 
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the liver and intestine. The human PXR, that binds to the rifampicin/dexamethason 

response element in the CYP3A4 promoter (Lehmann et al., 1998), is activated by a 

variety of endogenous (e.g. steroids and bile acids), and exogenous compounds (e.g. 

rifampicin, phenytoin and hyperforin) through direct interaction with these ligands. 

After activation by the ligand, PXR forms heterodimers with the 9-cis retinoic X 

receptor (RXR), another nuclear receptor. The emerging heterodimer binds to 

specific DNA sequences and regulates the expression of its targets. The elucidation 

of the three-dimensional structure of the PXR ligand binding domain has provided 

important insights into the structural basis for the promiscuous ligand binding 

properties of this nuclear receptor (Watkins et al., 2001). PXR activation assays can 

be used to predict the induction of CYP3A gene expression by drug candidates and 

therefore to predict drug-drug interactions (Lehmann et al., 1998; Goodwin et al., 

2002; Kliewer et al., 2002).  

 

5.2.5 Cimicifuga racemosa (Black cohosh) 
 
 

 
Figure 15: Cimicifuga racemosa – plant and rhizome. 

 
 
Cimicifuga racemosa (Actaea racemosa) (Figure 15), commonly known as black 

cohosh, is an herb native to Eastern North America. Traditionally, the root and 

rhizome was used by North American Indians for joint aches, myalgias, neuralgias 

and rheumatic disorders, but also for menopausal complaints and pain during labour. 
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Nowadays, ethanolic or isopropanolic extracts of cimicifuga racemosa are most 

commonly used in the treatment of menopausal symptoms, menstrual dysfunction 

and other gynaecological disorders, although not all studies have shown a better 

effect than placebo (McKenna et al., 2001; Frei-Kleiner et al., 2005; Nappi et al., 

2005; Pockaj et al., 2006; Uebelhack et al., 2006). 

The therapeutic activity of black cohosh was originally suggested to derive from an 

activation of estrogen receptors (Jarry et al., 1985; Duker et al., 1991; Kruse et al., 

1999; Liu et al., 2001b), however, in other studies, estrogenic or estrogen receptor-

binding effects were not found (Einer-Jensen et al., 1996; Liu et al., 2001a). Since it 

is unclear if black cohosh has an estrogenic effect or not and due to its potential 

ability to stimulate uterine contraction, it is contraindicated during pregnancy (Mahady 

et al., 2002).  

Data from clinical studies and spontaneous reporting programs suggest that adverse 

events associated with cimicifuga racemosa are rare, generally mild and reversible. 

Gastrointestinal upset and rashes were the most common adverse events reported 

(Dog et al., 2003; Huntley and Ernst, 2003). In mostly uncontrolled clinical trials and 

post-marketing studies including more than 2,800 patients, adverse events had an 

incidence of 5.4%. Of the reported adverse events, 97% were minor or mild, none of 

them resulting in discontinuation of the therapy. When higher doses than those 

recommended are used, however, cimicifuga racemosa can cause dizziness, 

headaches, nausea, and vomiting (Dog et al., 2003). In their review, which includes 

all post-marketing programs of cimicifuga extracts, Huntley et al. also described 

patients with hepatic adverse events (Huntley and Ernst, 2003). They reported one 

case with hepatic failure, three cases with hepatitis and three cases with increased 

liver enzymes. In addition, several case reports have been published about patients 

developing acute hepatitis (Whiting et al., 2002; Cohen et al., 2004) or fulminant liver 

failure (Lontos et al., 2003; Levitsky et al., 2005; Lynch et al., 2006) while being 

treated with cimicifuga extracts. Since an association of hepatotoxicity with cimicifuga 

appears to be possible and there are only limited data available, it is of great interest 

to further investigate the toxicological profile and the factors contributing to the 

potential toxicity of black cohosh. 
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6.1 Abstract 
 
Aims: To study carnitine homeostasis and energy metabolism in carnitine-deficient 

(jvs-/-) mice after cessation of carnitine substitution. 

Methods: Homozygous jvs-/- mice starved overnight were studied 3, 6 and 10 days 

after cessation of carnitine substitution and compared to wild-type and heterozygous 

jvs+/- mice. 

Results: In comparison to wild type mice, jvs-/- mice treated with oral carnitine had a 

higher liver weight and hepatic fat accumulation, and decreased plasma β-

hydroxybutyrate levels. The total carnitine concentrations in plasma, liver and skeletal 

muscle were decreased by 58%, 16% and 17%, respectively. After cessation of 

carnitine administration, the plasma carnitine levels fell rapidly, reaching 2.3 µmol/L 

after 10 days. After 10 days of carnitine deprivation, the hepatic and skeletal muscle 

carnitine content had dropped to 51% and 66%, respectively, of carnitine-treated jvs-

/- mice. Carnitine deprivation was associated with a further drop in the plasma β-

hydroxybutyrate levels and hepatic fat accumulation. In skeletal muscle, the glycogen 

content decreased and the lactate levels increased with carnitine deprivation, 

whereas tissue ATP levels were maintained. 

Conclusions: Although the tissue stores of carnitine are quite resistant to carnitine 

deprivation in mice with systemic carnitine deficiency, the margin between adequate 

function and failure of energy metabolism is narrow. 

 

Key words: jvs-/- mice, systemic carnitine deficiency, β-oxidation, glycogen, ATP 

Abbreviations: JVS, juvenile visceral steatosis; OCTN2, organic cation / carnitine 

transporter; SCD, systemic carnitine deficiency 

 

6.2 Introduction 
 
Carnitine (β-hydroxy-4-N-trimethylaminobutyric acid) represents an essential cofactor 

for the transport of activated long-chain fatty acids across the inner mitochondrial 

membrane to the mitochondrial matrix, the place of β-oxidation (Bremer, 1983; 

Rebouche and Paulson, 1986). Since fatty acids are an important energy source for 

many organs, carnitine deficiency is associated with cardiomyopathy, muscle 

weakness, encephalopathy and/or hepatopathy including Reye’s syndrome (Karpati 
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et al., 1975; Chapoy et al., 1980; Treem et al., 1988). Carnitine is a polar molecule 

with a high intracellular concentration, necessitating an active transport from the 

plasma into cells. OCTN2 is a carnitine transporter, which has been characterized 

intensively on both the molecular and on the functional level (Tamai et al., 1998). The 

functional importance of OCTN2 is evidenced in patients with mutations in the 

corresponding gene, leading to primary systemic carnitine deficiency due to a lack of 

renal carnitine reabsorption (Nezu et al., 1999; Seth et al., 1999; Vaz et al., 1999; 

Wang et al., 1999). Primary systemic carnitine deficiency (SCD; OMIM 212140) is an 

autosomal recessive disorder of fatty acid oxidation, clinically characterized by 

progressive cardiomyopathy, skeletal myophathy, hypoglycemia and 

hyperammonemia (Karpati et al., 1975; Treem et al., 1988). C3H.OH (formerly C3H-

H-2°) mice, which are characterized by microvesicul ar steatosis of the liver and 

triglyceride accumulation in other visceral organs, were first described 1988 by 

Koizumi et al. (Koizumi et al., 1988) and were later renamed juvenile visceral 

steatosis (jvs) mice (Hayakawa, 1990). The jvs phenotype is inherited in an 

autosomal manner (Hayakawa, 1990) and is characterized on the molecular level by 

a point mutation in the mouse homologue of OCTN2, leading to an exchange of an 

amino acid (L352R) (Lu et al., 1998). Beside liver steatosis, jvs mice show other 

features of carnitine deficiency such as hyperammonemia, hypoglycemia, cardiac 

hypertrophy, mitochondrial abnormalities in skeletal muscle and progressive growth 

retardation (Horiuchi et al., 1993; Kaido et al., 1997). The accumulation of lipids 

occurs within 5 days of birth whereas hypoglycemia, hyperammonemia and growth 

retardation appear approximately 2 weeks later (Horiuchi et al., 1994). 

Hyperammonemia has been described as a consequence of a decrease in urea cycle 

enzyme activities due to reduced transcription of the corresponding genes (Imamura 

et al., 1990; Tomomura et al., 1992; Tomomura et al., 1994). As expected, as a 

consequence of impaired renal reabsorption of carnitine, plasma and tissue carnitine 

levels are substantially decreased in jvs as compared to wild type mice (Kuwajima et 

al., 1991). Carnitine substitution corrects carnitine deficiency and transcription of the 

urea cycle enzymes at least partially and also reduces cardiac hypertrophy and 

hepatic accumulation of fat (Horiuchi et al., 1992). These findings demonstrate that 

jvs mice represent an excellent animal model for primary systemic carnitine 

deficiency in humans. 
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While it is well established that sufficient carnitine plasma and tissue levels can be 

obtained in jvs mice by carnitine substitution, the kinetics of carnitine loss from 

plasma and tissues after carnitine deprivation and the consequences on energy 

metabolism have not been described so far. We therefore studied plasma and tissue 

carnitine stores and markers of energy metabolism after cessation of carnitine 

substitution in jvs mice. 

 

6.3 Materials and Methods 
 
Animals 

The juvenile visceral steatosis (jvs) mice were obtained from Prof. Masahisa Horiuchi 

from the University of Kagoshima, Japan. The breeding pairs (wild type and 

heterozygous jvs+/-) and the offsprings were supplemented with carnitine (1g/250ml 

drinking water) before weaning to maintain the survival rate. After weaning, the 

supplementation with carnitine was continued for the homozygous jvs-/- mice. For 

genotyping the littermates (wild type, heterozygous jvs+/- and homozygous jvs-/- 

mice), DNA was extracted and purified from a piece of tail using a DNA extraction kit 

(kit No. 740952.250, Macherey-Nagel, Oensingen, Switzerland). A TaqMan allelic 

discrimination method was established which combines PCR and mutation detection 

in a single step. Two allele-specific TaqMan probes were used, one for each allele 

(Applied Biosystems, UK). Each probe consisted of an oligonucleotide with a 5’ 

reporter dye (FAM for the detection of the wild type L352 allele and VIC for the 

detection of the mutant L352R allele) and a 3’ quencher dye (TAMRA for both 

probes). The probes were as follows: FAM, 5’-atatggtcagcctgca-3’ and VIC, 5’-

tatggtccgcctgca-3’. The primers used (Microsynth, Switzerland) were identically for 

both alleles and were designed as follows: forward primer, 5’-tccccatgcaagttaggagtgt-

3’, reversed primer, 5’-tgctgctccagctctcttctg-3’. TaqMan analysis was carried out on a 

7900HT Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland) 

and identification of the mutation in Octn2 was achieved using an allelic 

discrimination plot (Todesco et al., 2003). Cycling conditions were 10 min at 95°C for 

initial denaturation and activation of the DNA polymerase, followed by 40 cycles of 15 

s at 95°C for denaturation and 1 min at 60°C for co mbined annealing and primer 

extension. Fluorescence from the FAM reporter only reflects the presence of wild 

type alleles, whereas fluorescence from the VIC reporter only indicates mutant 
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alleles. Accordingly, fluorescence from both reporters reflects the heterozygous 

population.  

 

Study Design 

All experiments had been reviewed and accepted by the Animal Ethics Committee of 

the State of Basel Stadt. Experiments were performed with animals of 6 to 8 weeks 

old. 

Six groups of jvs mice were studied. Wild type (WT), heterozygous jvs+/- and 

homozygous jvs-/- with carnitine supplementation (n=5 per group) were starved 

overnight before entering the final part of the study. After having obtained a blood 

sample from the tail vein, the mice were killed by decapitation. Tissue samples were 

obtained from the liver and skeletal muscle (quadriceps femoris), frozen rapidly by 

immersion in liquid nitrogen and stored at -70°C un til analysis. These tissue samples 

were analyzed for carnitine and markers of energy metabolism. Frozen liver tissue 

was also used for staining with Sudan Black B (see below). Additional liver and 

skeletal muscle samples were treated with 4% formaldehyde for histological analysis. 

The other 3 groups of animals were homozygous jvs-/- mice deprived from carnitine 

(drinking water without containing carnitine) for 3, 6 or 10 days (n=5 per group). After 

the respective carnitine deprivation period, mice were starved overnight and killed by 

decapitation the next morning. Blood, liver and muscle samples were collected and 

stored as described above. 

 

Characterization of the animals 

The animals were characterized by their body and liver weights, levels of glycogen, 

lactate and ATP in liver and muscle and their plasma concentration of β-

hydroxybutyrate. Lactate, ATP and glycogen were measured spectrophotometrically 

as described by Harris et al. (Harris et al., 1974), after adaptation of the method for a 

SpectraMax 250 absorbance microplate reader (Molecular Devices Corp.). β-

Hydroxybutyrate was determined fluorimetrically according to Olsen (Olsen, 1971), 

after adaptation of the method for a SpectraMax Gemini XS (Molecular Devices 

Corp.) plate reader. 
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Determination of plasma and tissue carnitine 

The carnitine concentrations in plasma, liver and muscle were determined 

radioenzymatically as described by Brass and Hoppel (Brass and Hoppel, 1978). 

Plasma and tissue samples were treated with perchloric acid (final concentration 3%) 

resulting in a supernatant and a pellet. Analysis of the supernatant yields free 

carnitine and, after alkaline hydrolysis, total acid soluble carnitine. The pellet yields 

the long-chain acylcarnitines after alkaline hydrolysis (acyl group chain length ≥10 

carbons). The short-chain acylcarnitine fraction (acyl group chain length <10 

carbons) can be calculated from the difference between total acid soluble and free 

carnitine. The sum of total acid soluble and long-chain acylcarnitines represents the 

total carnitine content. 

 

Histological analysis of liver tissue 

Pieces of liver and skeletal muscle fixed in 4% formaldehyde were used for staining 

with hematoxilin-eosine for histological analysis. The frozen tissue was cut into 

sections and stained with Sudan Black B for the visualization of fat (Lison, 1934). The 

estimation of fat accumulation in the liver was carried out by light microscopy of the 

stained sections.  

 

Statistical analysis 

All analyses were performed in duplicate. For each treatment group (n=5 per group) 

the results are presented as mean ± SD. Significant differences between groups 

were determined by ANOVA/Bonferroni multiple comparison post hoc test. P values 

<0.05 were considered to be statistically significant. 

 

6.4 Results 
 
The aim of the current study was to characterize carnitine homeostasis and energy 

metabolism in OCTN2-deficient (homozygous jvs-/-) mice during carnitine deprivation 

and to compare the findings with heterozygous jvs+/- and wild type mice. 

 

Body and liver weight 

As shown in Table 1, there was no difference in the body weight at the end of the 

study between wild type, heterozygous jvs+/- and homozygous jvs-/- mice, and 
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carnitine deprivation did not affect body weight. Liver weight was increased by 14% in 

homozygous jvs-/- mice as compared to heterozygous jvs+/- mice, but not 

significantly different from wild type mice. Homozygous jvs-/- mice showed a further 

significant increase in their liver weights during carnitine deprivation, reaching 

approximately 15% after 6 or 10 days of carnitine withdrawal compared to jvs-/- mice 

supplemented with carnitine. 

 

Glycogen, lactate and ATP in liver and muscle 

As shown in Table 1, homozygous jvs-/- revealed a 215% increase in the hepatic 

glycogen content as compared to wild type mice and a 108% increase compared to 

heterozygous jvs+/- mice. After carnitine deprivation, the hepatic glycogen content 

did not change significantly. On the other hand, the skeletal muscle glycogen content 

was not significantly different between wild type mice, heterozygous jvs+/- and 

homozygous jvs-/- mice, but was decreased by 53% after 3 and 6 days of carnitine 

deprivation and by 55% after 10 days of carnitine deprivation. The liver lactate 

content was decreased in homozygous jvs-/- mice compared to heterozygous jvs+/- 

(67% decrease) or wild type mice (72% decrease). After carnitine deprivation, the 

liver lactate content showed no further decrease in homozygous jvs-/- mice. In 

contrast, the skeletal muscle lactate content was not different between homozygous 

jvs-/-, heterozygous jvs+/- and wild type mice, and significantly increased during 

carnitine deprivation in homozygous jvs-/- mice. This increase reached 154% after 6 

days and 338% after 10 days of carnitine withdrawal. Hepatic ATP levels were 

approximately doubled in homozygous jvs-/- mice compared to heterozygous jvs+/- 

or wild type mice, and remained constant 6 and 10 days after carnitine withdrawal. In 

contrast, the ATP content in skeletal muscle was slightly decreased in homozygous 

jvs-/- mice compared to wild type mice (decrease by 37%), but not significantly 

different from heterozygous jvs+/- mice. Similar to liver, carnitine deprivation did not 

significantly affect the skeletal muscle ATP content in homozygous jvs-/- mice. 

 

β-Hydroxybutyrate in plasma 

The plasma β-hydroxybutyrate concentration was decreased by 53% in homozygous 

jvs-/- mice compared to wild type or heterozygous jvs+/- mice. As expected, the 

plasma β-hydroxybutyrate concentrations showed a further drop with carnitine 
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deprivation in homozygous jvs-/- mice, reaching almost undetectable levels 10 days 

after carnitine withdrawal (Table 1). 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Plasma carnitine pool 

As shown in table 2, the free carnitine levels in plasma were significantly lower in 

heterozygous jvs+/- mice (decrease by 42%) and homozygous jvs-/- (decrease by 

62%) compared to wild type mice. After carnitine deprivation, the plasma free 

carnitine concentration showed a further decrease in homozygous jvs-/- mice, 

reaching a concentration of 1 µmol/L after carnitine withdrawal for 10 days. Similar 

results were obtained for the other carnitine fractions, namely short- and long-chain 

acylcarnitines and total carnitine. Interestingly, the ratio short-chain acylcarnitines to 

total acid soluble carnitine increased significantly in homozygous jvs-/- mice after 

carnitine withdrawal. 

 

 

 

 

 

 

     Wild type  Heterozygous    Homozygous (jvs-/-)  

     (jvs+/+)  (jvs+/-)   basal  day3  day6  day10 

Free Carnitine    28.9±1.7  16.8±1.5*  11.1±1.0*§ 1.2±0.7† 1.5±0.2† 1.0±0.2† 

SCA Carnitine    4.7±2.1  2.7±1.7  0.4±0.2* 2.0±0.9  1.0±0.4 0.8±0.2 

TAS Carnitine    33.6±0.9  19.5±1.2*  11.5±0.9*§ 3.2±0.6† 2.5±0.3† 1.8±0.2† 

LCA Carnitine    7.6±0.5  7.1±0.5  5.8±0.7*§ 2.7±0. 6 2.6±0.2 0.5±0.3 

SCA/TAS Carnitine   0.14±0.06  0.13±0.08  0.03±0.02 0.54±0.20† 0.39±0.15† 0.46±0.09† 

Total Carnitine   41.2±0.9  26.6±1.5*  17.3±1.2*§ 5.9±0.4† 5.1±0.4† 2.3±0.5† 

*p<0.05 vs. jvs+/+, † p<0.05 vs. jvs-/-, § p<0.05 vs. jvs+/- 

Table 2: Plasma concentration of carnitine. The mice were starved overnight before the final experiments, n = 5 for each group. The carnitine 
concentrations are expressed as µmol/L. Homozygous jvs-/- mice were studied while treated with carnitine (basal), and 3, 6 and 10 days after 
carnitine deprivation. Results are presented as mean±SD. LCA, long-chain-acylcarnitines; SCA, short-chain-acylcarnitines; TAS, total acid soluble 
carnitine. 
 

     Wild type  Heterozygous    Homozygous (jvs-/-)  

     (jvs+/+)  (jvs+/-)   basal  day3  day6  day10 

Body weight (g)   18.1±3.3  18.2±0.7  18.1±2.9 18.4±0.6 18.3±0.9 18.5±2.0 

Liver weight (% body weight)  5.8±0.4  5.4±0.4  6.1±0.4§ 6.1±0.7 7.0±0.3† 7.0±0.4† 

Glycogen in liver (µmoles/g)  35.6±17.2  53.9±14.3  112.1±17.9*§ 107.8±23.9 94.3±26.2 83.4±13.5 

Glycogen in muscle (µmoles/g) 31.1±2.7  34.8±3.5  32.0±1.9 15.1±1.8† 14.9±4.9† 14.5±3.4† 

Lactate in liver (µmoles/g)  12.1±2.4  10.4±4.2  3.4±1.8*§ 5.9±2.8 4.0±2.0 6.3±2.4 

Lactate in muscle (µmoles/g)  3.8±1.4  3.4±1.1  4.8±3.1 10.0±3.0 12.2±1.7† 21.0±3.3† 

ATP in liver (µmoles/g)  1.4±0.2  1.3±0.2  2.5±0.6*§ 1.0±0.2† 3.2±0.6 2.4±0.6 

ATP in muscle (µmoles/g)  3.8±0.9  2.7±0.4  2.4±0.8* 2.0±0.8 2.4±1.1 3.1±1.0 

ß-Hydroxybutyrate in plasma  220±20  230±20  100±20*§ 66±14† 45±7†  27±4† 

(µmol/l) 

* p<0.05 vs. jvs+/+, † p<0.05 vs. jvs-/-, § p<0.05 vs. jvs+/- 

Table 1: Characterization of the animals. The mice were starved overnight before the final experiments, n = 5 for each group. Tissue 
concentrations are expressed per g tissue wet weight. Homozygous jvs-/- mice were studied while treated with carnitine (basal), and 3, 6 and 10 
days after carnitine deprivation. Results are presented as mean±SD. 
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Liver carnitine pool 

As shown in Table 3, the free carnitine content in the liver was not different between 

wild type, heterozygous jvs+/- and homozygous jvs-/- mice. After carnitine  

 

withdrawal, there was a rapid and significant drop in the hepatic free carnitine content 

in homozygous jvs-/- mice, resulting in free carnitine levels in the range of 40 to 50% 

percent of those in homozygous jvs-/- mice. Similar results were obtained for the 

other carnitine fractions, i.e. short- and long-chain acylcarnitines and total carnitine. 

The ratio between free carnitine and short-chain acylcarnitines did not show 

significant differences between wild type, heterozygous jvs+/- and homozygous jvs-/- 

mice, but had a tendency to increase after carnitine withdrawal in homozygous jvs-/- 

mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skeletal muscle carnitine pool 

In contrast to liver, the free carnitine content in skeletal muscle was decreased in 

heterozygous jvs+/- (decrease by 24%) and in homozygous jvs-/- mice (decrease by 

33%) as compared to wild type mice. Similar to liver, carnitine deprivation was 

associated with a significant decrease in the skeletal muscle carnitine content in 

homozygous jvs-/- mice. After 10 days of carnitine withdrawal, the skeletal muscle 

carnitine content had dropped to 35% of the level in homozygous jvs-/- mice 

supplemented with carnitine. Similar results were obtained for the other carnitine 

     Wild type  Heterozygous    Homozygous (jvs-/-)  

     (jvs+/+)  (jvs+/-)   basal  day3  day6  day10 

Free Carnitine    143±22  124±14  133±18  44±19† 37 ±11† 51±7† 

SCA Carnitine    198±38  194±36  176±23 141±18  129±27† 97±26† 

TAS Carnitine    341±20  318±26  309±13 185±10† 166±16† 148±28† 

LCA Carnitine    95±11   79±16   55±12  46±7  41±8  38±7† 

SCA/TAS Carnitine   0.58±0.08  0.61±0.07  0.57±0.06 0.76±0.10† 0.77±0.08† 0.67±0.05 

Total Carnitine   436±11  397±39   363±22* 230±10† 207±16† 186±32† 

*p<0.05 vs. jvs+/+, † p<0.05 vs. jvs-/-, § p<0.05 vs. jvs+/- 

Table 3: Liver carnitine content. The mice were starved overnight before the final experiments, n = 5 for each group. The carnitine content is 
expressed as nmol/g wet tissue. Homozygous jvs-/- mice were studied while treated with carnitine (basal), and 3, 6 and 10 days after carnitine 
deprivation. Results are presented as mean±SD. LCA, long-chain-acylcarnitines; SCA, short-chain-acylcarnitines; TAS, total acid soluble carnitine 
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fractions, i.e. short- and long-chain acylcarnitines and total carnitine. Similar to liver, 

the ratio between free carnitine and total acid soluble carnitine increased with 

carnitine deprivation, reaching significance 10 days after carnitine withdrawal. 

 

Kinetics of total carnitine loss 

As shown in figure 1, the velocity of the drop in the total carnitine levels is different 

between plasma, liver and skeletal muscle. As expected when renal reabsorption of 

carnitine is lacking, the carnitine concentration drops most rapidly in plasma. 

Interestingly, the initial drop in the tissue carnitine content was faster in liver than in 

skeletal muscle, suggesting that export of carnitine and acylcarnitines from 

hepatocytes is easier than from myocytes. Ten days after carnitine withdrawal, the 

tissue content was still in the range of 60-70% percent of the initial values, 

demonstrating that the plasma membranes represent a strong barrier for cellular 

carnitine excretion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Carnitine plasma and tissue stores after cessation of carnitine treatment in homozygous jvs-
/- mice. After carnitine deprivation, there is a rapid fall in the plasma total carnitine content, whereas 
the tissue carnitine content falls less rapidly. The fractional elimination rate of carnitine from skeletal 
muscle is in the order of 4% per day or 0.2% per hour. 
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Microvesicular liver steatosis 

Microvesicular liver steatosis, a consequence of impaired hepatic β-oxidation 

(Fromenty and Pessayre, 1995; Spaniol et al., 2001b), is a hallmark of homozygous 

jvs-/- mice (Koizumi et al., 1988; Kaido et al., 1997). As shown in Figure 2, 

microvesicular steatosis was much more accentuated in homozygous jvs-/- mice as 

compared to wild type or heterozygous jvs+/- mice. After carnitine withdrawal, 

microvesicular liver steatosis increased proportionally with the duration of carnitine 

deprivation. Accordingly, the highest fat content was observed in livers from 

homozygous jvs-/- mice 10 days after carnitine withdrawal. 

 

 
 
Figure 2: Hepatic accumulation of fat in wild type (A), heterozygous jvs+/- (B) and homozygous-/- mice 
before (C) and after carnitine deprivation for 3 (D), 6 (E) and 10 days (F). Homozygous jvs-/- mice 
reveal a slight increase in the hepatic fat content compared to wild type or heterozygous jvs+/- mice. 
Carnitine deprivation is associated with a rapid and massive increase in the hepatic fat content in 
homozygous jvs-/- mice. Sudan Black B stain, magnification 63x, the micron bars represent 25 µm. 
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6.5 Discussion 
 
While the free and total carnitine plasma concentrations were clearly decreased in 

heterozygous jvs+/- and carnitine-treated homozygous jvs-/- mice compared to wild 

type mice, the tissue carnitine pool was not decreased in heterozygous jvs+/- mice 

and only slightly decreased in carnitine-treated homozygous jvs-/- mice. These 

findings suggest that the plasma membranes of hepatocytes and myocytes are quite 

resistant for the transport of carnitine, protecting the tissues from carnitine losses. 

This statement is underscored by the findings during carnitine deprivation in 

homozygous jvs-/- mice. While the plasma carnitine concentration decreased rapidly 

in jvs-/- mice after cessation of carnitine administration, the carnitine tissue levels 

showed a much slower decrease (see Figure 1). 

The rapid fall in the plasma carnitine concentration after carnitine deprivation could 

be expected, since the renal carnitine excretion fraction of carnitine increases from 

<0.05 to approximately 1 in patients or mice with systemic carnitine deficiency 

(Treem et al., 1988; Kuwajima et al., 1991), demonstrating that OCTN2 is the most 

important or even the only carrier for renal reabsorption of carnitine. Since carnitine is 

a polar molecule, transporters are needed for its efficient transition across biological 

membranes. Taking into account the large concentration difference between the 

intracellular and the plasma carnitine levels (between 1 and 2 orders of magnitude) 

and in vitro findings with isolated rat skeletal muscle (Brass et al., 1993), diffusion 

may also play a role. While the transport into cells is mediated by OCTN2 and 

possibly other carriers, which use the sodium gradient between plasma or interstitial 

fluid and the intracellular milieu as a driving force (Stieger et al., 1995; Tamai et al., 

1998; Berardi et al., 2000), the export of carnitine from cells has so far not been 

characterized on the molecular level. In perfused rat livers, an active transport 

mechanism has been described, which can be blocked by mersalyl but not oubain 

and which has a Km in the range of 300 µmol/L and a maximal transport capacity of 

approximately 2.5 nmol/g liver per minute (Sandor et al., 1985). Using these values, 

the livers of the jvs-/- mice (weighing 1 to 1.5 g) should have been completely 

carnitine-depleted in less than 3 hours after carnitine deprivation. In contrast to this 

prediction, the livers of jvs -/- mice had lost only approximately 50% of their carnitine 

stores after carnitine deprivation for 10 days. Assuming that the observations 

reported in the literature are correct and that the data obtained in rats are also valid 

for mice, two explanations can be offered to resolve this apparent discrepancy. The 
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first one is uptake of a sufficient amount of carnitine by the food. Mice eat per day 

approximately 10% of their body weight (approximately 2g per day) and the food for 

rodents used by us contains approximately 15 nmoles carnitine per g (Spaniol et al., 

2003), resulting in a daily carnitine ingestion of approximately 30 nmoles. This 

amount is lower than the daily excretion in the urine, which is in the range of 100 

nmoles/day for wild type or heterozygous jvs -/+ mice (Knapp AC and Krähenbühl S, 

unpublished results) or even higher in jvs -/- mice (Horiuchi et al., 1994). Carnitine 

intake by the food is therefore not sufficient to explain our findings. A second possible 

explanation is hepatic carnitine biosynthesis. In rodents, the liver is the most 

important organ for the final step in carnitine biosynthesis, the conversion of 

butyrobetaine to carnitine (Krahenbuhl et al., 2000b). Butyrobetaine is formed in most 

tissues by trimethylation of protein-bound lysine, which is subsequently transformed 

over several steps (including proteolysis and decarboxylation) to butyrobetaine 

(Hoppel and Davis, 1986; Krahenbuhl et al., 2000b; Vaz and Wanders, 2002). Since 

the highest amount of butyrobetaine is formed in skeletal muscle (Davis and Hoppel, 

1986; Krahenbuhl et al., 2000b), butyrobetaine would have to be transported from 

skeletal muscle into the liver, where it is hydroxylated to carnitine. Similar to carnitine, 

the transport into the liver is active and sodium-dependent, and has a Km in the range 

of 5 µmol/L (Berardi et al., 1998), suggesting that butyrobetaine is transported by a 

carrier similar to or identical with OCTN2. Since jvs -/- mice are able to form carnitine 

from butyrobetaine in vivo (Higashi et al., 2001), it can be assumed, however, that 

other transporters than OCTN2 exist that can transport butyrobetaine at a sufficient 

amount into the liver. Hepatic synthesis of carnitine is therefore a possible 

explanation for the slow decrease of the hepatic carnitine stores in jvs -/- mice. 

On the other hand, the slow decay of the carnitine content in skeletal muscle could 

be expected. Rebouche et al. have investigated the export of carnitine from tissues 

such as skeletal muscle in humans with or without carnitine deficiency and have 

described a fractional elimination rate in the range of 0.5% per hour (Rebouche and 

Engel, 1984). In our studies, the fractional elimination rate of carnitine from skeletal 

muscle is in the range of 4% per day or approximately 0.2% per hour, which is close 

to the values reported by Rebouche et al. (Rebouche and Engel, 1984). These 

observations show directly that the tissue carnitine stores are tried to be kept at a 

high level as long as possible by a high resistance of the plasma membranes for 
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carnitine transport and possibly also by synthesis of carnitine in specific tissues such 

as the liver. 

Nevertheless, these measures are not sufficient to keep the carnitine tissue stores at 

a high enough level to avoid negative consequences on energy metabolism in jvs -/- 

mice. While carnitine-treated jvs-/- mice had lower β-hydroxybutyrate plasma levels 

after starvation for 12 h than wild type or heterozygous jvs-/+ mice (suggesting 

impaired hepatic β-oxidation (Brass and Hoppel, 1978), accumulation of hepatic fat 

was not dramatic and skeletal muscle energy metabolism was not disturbed. After 

cessation of carnitine treatment, however, plasma β-hydroxybutyrate levels fell 

rapidly and hepatic accumulation of fat increased dramatically, suggesting that 

hepatic β-oxidation had almost vanished. Nevertheless, jvs-/- mice were still able to 

maintain the tissue ATP levels up to 10 days of carnitine deprivation. In skeletal 

muscle, glycogenolysis and glycolysis were increased as suggested by the 

decreasing tissue glycogen content and increasing lactate concentrations after 

cessation of carnitine administration. Lactate produced in skeletal muscle may have 

been transported to the liver for gluconeogenesis, possibly explaining the increased 

hepatic glycogen stores in jvs -/- mice, which were quite resistant to carnitine 

deprivation. 

In conclusion, the current studies show directly that the carnitine tissue stores are 

maintained over a long time after cessation of carnitine administration in jvs -/- mice 

due to the tightness of the plasma membranes towards transition of carnitine and 

most probably also due to hepatic carnitine biosynthesis. Nevertheless, the 

consequences of carnitine depletion on fatty acid and carbohydrate metabolism 

appear rapidly after cessation of carnitine administration in jvs -/- mice, showing that 

the margin between apparent well functioning and demise of energy metabolism is 

very narrow in mice, and possibly also humans, with systemic carnitine deficiency. 
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7.1 Abstract 
 
The aims of this study were to investigate whether carnitine deficiency is a risk factor 

for valproate (VPA)-associated hepatotoxicity and to explore the effects of VPA on 

carnitine plasma and tissue stores in mice with carnitine deficiency. Therefore, we 

treated heterozygous jvs+/- mice, an animal model for systemic carnitine deficiency 

due to impaired renal reabsorption of carnitine, and the corresponding wild type mice 

with subtoxic oral doses of VPA (100 mg/kg bw) for 2 weeks. In jvs+/- mice, but not in 

wild type mice, treatment with VPA was associated with increased serum activities of 

aspartate aminotransferase and alkaline phosphatase, reduced palmitate metabolism 

assessed in vivo and microvesicular steatosis of the liver. Creatine kinase activities 

were not affected by treatment with VPA. In isolated liver mitochondria, VPA was 

associated with decreased oxidative metabolism of L-glutamate, succinate and 

palmitate as well as impaired β-oxidation of palmitate, both in wild type and jvs+/- 

mice. In comparison to vehicle-treated wild type mice, vehicle-treated jvs+/- mice had 

decreased carnitine plasma, liver and skeletal muscle levels. Treatment with VPA 

was associated with further substantial decreases in carnitine plasma and tissue 

levels and with a shift of the carnitine pools towards short-chain acylcarnitines. We 

conclude that jvs+/- mice reveal a more accentuated hepatic toxicity by VPA than the 

corresponding wild type mice. Systemic carnitine deficiency can therefore be 

regarded as a risk factor for hepatotoxicity associated with VPA. 

 

7.2 Introduction 
 
Valproic acid (N-dipropylacetic acid) or valproate (VPA) is a branched, medium-chain 

fatty acid composed of eight carbons, which is structurally unrelated to other 

antiepileptic drugs. VPA is a broad-spectrum antiepileptic drug which was introduced 

into the anticonvulsant market in 1968 in Europe and 10 years later in the United 

States (Zafrani and Berthelot, 1982). Shortly after introduction, cases of fulminant 

liver failure in patients treated with VPA have been reported (Zafrani and Berthelot, 

1982; Zimmerman and Ishak, 1982; Dreifuss et al., 1987; Konig et al., 1994; 

Krahenbuhl et al., 1995), but the underlying mechanism of VPA induced 

hepatotoxicity is still not fully understood. One principal cause of liver failure 

associated with VPA therapy is most probably the inhibition of hepatic mitochondrial 

β-oxidation. Microvesicular steatosis of the liver, one of the most important 
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histological findings in VPA-induced liver failure (Zafrani and Berthelot, 1982; 

Zimmerman and Ishak, 1982; Dreifuss et al., 1987; Krahenbuhl et al., 1995), is 

considered to result from impaired hepatic β-oxidation (Fromenty and Pessayre, 

1995; Spaniol et al., 2001b). Different mechanisms have been proposed explaining 

inhibition of mitochondrial β-oxidation by VPA, among them microsomal production of 

toxic metabolites, e.g., 4-ene-VPA and 2,4-diene-VPA (Gram and Bentsen, 1985; 

Tennison et al., 1988; Ponchaut et al., 1992b; Ishikura et al., 1996), decreased 

activity of complex IV of the respiratory chain and/or depletion of the hepatic pools of 

coenzyme A and/or carnitine (Ponchaut and Veitch, 1993; Krahenbuhl et al., 1995). 

Pre-existing mitochondrial diseases, e.g. impaired β-oxidation or impaired function of 

the respiratory chain, have been proposed to represent risk factors for VPA-

associated mitochondrial dysfunction and therefore for liver failure (Chabrol et al., 

1994; Lam et al., 1997; Krahenbuhl et al., 2000a). Since carnitine is an essential 

cofactor for hepatic β-oxidation (Fromenty and Pessayre, 1995), systemic carnitine 

deficiency (SCD; OMIM 212140) is associated, among others, with microvesicular 

steatosis of the liver (Spaniol et al., 2001b). We therefore hypothesized that mice with 

SCD are more susceptible to hepatic and possibly also skeletal muscle adverse 

effects associated with VPA treatment compared to control mice. To test our 

hypothesis, we used juvenile visceral steatosis (jvs) mice (formerly named C3H-H-

2°), which were first described 1988 by Koizumi et al. (Koizumi et al., 1988). Jvs mice 

have a mutation in the gene coding for OCTN2 (Lu et al., 1998), leading to impaired 

renal absorption of carnitine and systemic carnitine deficiency. These mice are 

phenotypically characterized by liver steatosis and other features of carnitine 

deficiency such as hyperammonemia, hypoglycemia, cardiac hypertrophy, 

mitochondrial abnormalities in skeletal muscle and progressive growth retardation 

(Horiuchi et al., 1993; Kaido et al., 1997). For our studies, we used heterozygous 

(jvs+/-) and not homozygous (jvs-/-) mice, since the carnitine tissue levels of jvs+/- 

mice are approximately half of wild type mice and, in contrast to homozygous jvs-/- 

mice, jvs+/- mice can survive without carnitine replacement. An additional question 

that we wanted to address with our studies was the effect of VPA on carnitine 

homeostasis in an animal model with decreased carnitine stores such as jvs-/+ mice. 
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7.3 Materials and Methods 
 
Reagents 

[1-14C] palmitic acid was purchased from Amersham Pharmacia Biotech (Dübendorf,  

Switzerland). Sodium valproate (VPA) and all other chemicals used in this study were 

obtained from Sigma Aldrich (Buchs, Switzerland) and were of the highest purity 

available. 

 

Animals 

The juvenile visceral steatosis (jvs) mice were obtained from Prof. Masahisa Horiuchi 

from the University of Kagoshima, Japan. The breeding pairs (wild type and jvs+/- 

mice) and the offsprings were supplemented with carnitine (1g/250ml drinking water) 

before weaning to maintain an optimal survival rate. After weaning, the 

supplementation with carnitine was continued for the homozygous jvs-/- mice. For 

genotyping the littermates (wild type, jvs+/- and jvs-/- mice), DNA was extracted and 

purified from the mouse tails with a DNA extraction kit (kit No. 740952.250, 

Macherey-Nagel, Oensingen, Switzerland) and analyzed using a TaqMan allelic 

discrimination method, which combines PCR and mutation detection in a single step. 

Two allele-specific TaqMan probes were used, one for each allele (Applied 

Biosystems, UK). Each probe consisted of an oligonucleotide with a 5’ reporter dye 

(FAM for the detection of the wild type L352 allele and VIC for the detection of the 

mutant L352R allele) and a 3’ quencher dye (TAMRA for both probes). The probes 

were as follows: FAM, 5’-atatggtcagcctgca-3’ and VIC, 5’-tatggtccgcctgca-3’. The 

primers used (Microsynth, Switzerland) were identically for both alleles and were 

designed as follows: forward primer, 5’-tccccatgcaagttaggagtgt-3’, reversed primer, 

5’-tgctgctccagctctcttctg-3’. TaqMan analysis was carried out on a 7900HT Sequence 

Detection System (Applied Biosystems, Rotkreuz, Switzerland) and identification of 

the mutation in Octn2 was achieved using an allelic discrimination plot (Todesco et 

al., 2003). Cycling conditions were 10 min at 95°C for initial denaturation and 

activation of the DNA polymerase, followed by 40 cycles of 15 s at 95°C for 

denaturation and 1 min at 60°C for combined anneali ng and primer extension. 

Fluorescence from the FAM reporter only reflects the presence of wild type alleles, 

whereas fluorescence from the VIC reporter only indicates mutant alleles. 

Accordingly, fluorescence from both reporters reflects the heterozygous population.  
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All experiments had been reviewed and accepted by the Animal Ethics Committee of 

the canton Basel Stadt. Experiments were performed with animals 9 to 12 weeks old. 

 

Study design and VPA administration 
 
For this study, 4 groups of jvs mice were investigated. Wild type mice treated with 

VPA or 0.9% NaCl (vehicle), and heterozygous jvs+/- mice treated with VPA or 0.9 % 

NaCl (n=5 per group). VPA (0.1 mg/g body weight/day) or vehicle were administered 

p.o. in a volume of 10 µl/g body weight once a day for 2 weeks. The used VPA dose 

was subtoxic, as established in earlier studies (Letteron et al., 1996; Schnackenberg 

et al., 2006). The mice were starved overnight before being used for the experiments. 

Urine of the mice was collected individually for 24 hours and a blood sample was 

obtained from the tail vein before the mice were killed by decapitation. Tissue 

samples were obtained from the liver and skeletal muscle (quadriceps femoris) for 

carnitine analysis. These samples were quickly frozen in liquid nitrogen and stored at 

-80°C until analysis. Additional liver samples were  treated with 4% formaldehyde for 

histological analysis after staining with hematoxylin-eosin or with Sudan Black B. The 

remainder of the liver was quickly removed, put on ice and used for the isolation of 

mitochondria.  

 

Characterization of the animals 

The animals were characterized by their body and liver weights, activities of 

aspartate aminotransferase, alkaline phosphatase and creatine kinase. These 

parameters were analyzed with commercially available kits on a MODULAR analyzer 

(Hoffmann-La Roche Diagnostics, Basel, Switzerland). 

 

In vivo oxidation of palmitate 

To collect breath of the mice, they were placed in a cylindrical vessel attached to a 

vacuum pump. [1-14C] palmitic acid (3 µCi/kg, 57.0 mCi/mmol) was diluted in thistle 

oil and administered i.p. at 0 min. To collect the 14CO2 resulting from the oxidation of 

[1-14C] palmitate, the exhaled air was pulled through successive solutions of ethanol 

(to dry the exhaled breath) and ethanolamine (4M in ethanol) to trap exhaled 14CO2. 

The exhaled 14CO2 was quantified over 120 min by scintillation spectroscopy. 
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Isolation of liver mitochondria 

The mitochondrial fraction of mouse livers was obtained by differential centrifugation 

according to the method of Hoppel (Hoppel et al., 1979). The mitochondrial protein 

content was determined using the biuret method with BSA as a standard (Gornall et 

al., 1949). 

 

Oxygen consumption and in vitro β-oxidation of intact mitochondria 

Oxygen consumption by freshly isolated liver mitochondria was measured in a 

chamber equipped with a Clark-type oxygen electrode (Yellow Springs Instruments, 

Yellow Springs, OH) at 30°C as described previously  (Hoppel et al., 1979). The 

concentrations of the substrates were 20 mmol/l for L-glutamate and succinate, and 

40 µmol/l for palmitoyl-CoA. The incubation with palmitoyl-CoA contained in addition 

2 mmol/l L-carnitine and 5 mmol/l L-malate.  

 

In vitro β-oxidation of intact mitochondria 

The β-oxidation of [1-14C] palmitic acid by liver mitochondria, which measures the 

formation of acid-soluble products from mitochondrial palmitate metabolism, was 

determined with freshly isolated liver mitochondria according to the method of 

Freneaux et al. (Freneaux et al., 1988) with some modifications as described by 

Spaniol et al. (Spaniol et al., 2001a).  

 

Determination of carnitine in plasma, tissue and urine 

The carnitine concentrations in plasma, liver, muscle and urine were determined 

radioenzymatically as described by Brass and Hoppel (Brass and Hoppel, 1978). 

Plasma and tissue samples were treated with perchloric acid (final concentration 

3%), resulting in a supernatant and a pellet. Analysis of the supernatant yields free 

carnitine and, after alkaline hydrolysis, total acid soluble carnitine. The pellet yields 

the long-chain acylcarnitines (acyl group chain length ≥10 carbons) after alkaline 

hydrolysis. The short-chain acylcarnitine fraction (acyl group chain length <10 

carbons) can be calculated from the difference between total acid soluble and free 

carnitine, and the sum of total acid soluble and long-chain acylcarnitine represents 

total carnitine.  
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Histological analysis of liver tissue 

Pieces of the liver were fixed in 4% formaldehyde for histological analysis after 

staining with hematoxylin-eosin or immunohistochemistry for caspase 3. 

For caspase 3 staining, paraffin sections were rehydrated and heated in EDTA buffer 

(pH 8.0; 100°C/ 5min). Slides were then incubated i n a quench solution (1.0 M 

sodium azide in a solution of 4:1 methanol and 30% hydrogen peroxide, v:v) and 

after that incubated with blocking solution (normal goat serum) for 30min. Next, 

sections were incubated with caspase-3 antibody (cleaved caspase-3 antibody from 

Cell Signalling Technology, Beverly, MA, USA) diluted 1:100 in a phosphate-buffered 

saline pH 7.1–7.3 (Antibody Diluting Buffer, ChemMate, Ventana Medical Systems, 

Illkirch, France) for 1h at room temperature. Negative controls were performed by 

omitting the primary antibody. Following primary antibody incubation, slides were 

washed three times with TBS containing 0.05% Tween 20, and then incubated for 

30min at room temperature with a cocktail of biotinylated secondary antibodies in 

Antibody Dilution Buffer. The slides were again washed and then incubated for 30 

minutes at room temperature with avidin-biotin complex (Vectastain Elite ABC kit, 

Vector, Burlingame, CA, USA). Staining was visualized by incubating for 10min in 

DAB solution (K3466, Dako, Baar, Switzerland), after which the slides were rinsed in 

water, counterstained with hematoxylin, dehydrated and coverslipped.  

The frozen liver tissue was cut into sections and stained with Sudan Black B (Lison, 

1934) for the determination of fat accumulation. The estimation of fat accumulation 

and the investigation of pathological changes in the liver were carried out by light 

microscopy of the stained sections. 

 

Statistical analysis 

All analyses were performed in duplicate. For each treatment group (n=5 per group) 

the results are presented as mean ± SD. Significant differences between groups 

were determined by ANOVA/Bonferroni multiple comparison post hoc test. P values 

<0.05 were considered to be significant. 
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7.4 Results 
 
The aims of this study were to investigate whether moderate carnitine deficiency is a 

risk factor for VPA-associated hepatotoxicity and possibly myotoxicity, and to explore 

the effect of VPA on carnitine homeostasis in jvs-/+ mice. 

 

Body and liver weight, biochemical parameters 

As shown in Table 1, no difference was found in the body weight before and at the 

end of the study between wild type and jvs+/- mice. Treatment with VPA had no 

significant effect on body weight. Liver weight adjusted to body weight was increased 

by 25% in jvs+/- mice treated with VPA compared to jvs+/- mice treated with vehicle. 

In contrast, treatment with VPA did not affect liver weight in wild type mice. In 

comparison to wild type mice treated with VPA, jvs+/- mice treated with VPA showed 

an increase of 49% in aspartate aminotransferase activity and of 50% in alkaline 

phosphatase activity. In comparison to vehicle-treated jvs+/- mice, this increase was 

110% for aspartate aminotransferase and 68% for alkaline phosphatase. Activities of 

creatine kinase were not significantly different between the groups, suggesting that 

carnitine status and/or treatment with VPA had no significant effect on skeletal 

muscle. 

 

 

 

 

 

 

 

 

 

 

 

 

In vivo oxidation of palmitate 

As shown in figure 1, VPA-treated jvs+/- mice showed a lower peak exhalation of 

14CO2 (30 min after injection) compared to vehicle-treated jvs+/- mice (21% 

decrease) and to VPA-treated wild type mice (20 min after injection, 23% decrease). 

 Wild type (jvs+/+)      Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

Body weight (start of study) (g) 20.6 ± 1.8 19.3 ± 1.5 22.7 ± 4.0 17.8 ± 2.5 

Body weight (end of study) (g) 21.0 ± 2.2 19.7 ± 1.4 22.9 ± 3.7 18.0 ± 2.6 

Liver weight (mg per g body weight) 41.6 ± 3.2 45.4 ± 3.5 41.0 ± 4.7 51.2 ± 2.3# 

Aspartate aminotransferase (U/l) 49 ± 14 69 ± 18 49 ± 11 103 ± 8†,# 

Alkaline phosphatase (U/l) 58 ± 10 82 ± 12 73 ± 19 123 ± 17†,# 

Creatine kinase (U/l) 101 ± 50 115 ± 60 95 ± 40 123 ± 47 

† p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 

Table 1: Characterization of the animals. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and jvs+/-
mice were treated orally with normal saline or VPA for 14 days. Results are presented as mean±SD. 
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Additionally, the exhalation of 14CO2 over 2 hours was significantly lower in VPA-

treated jvs+/- mice. The decrease reached 23% compared to vehicle-treated jvs+/- 

mice and 20% compared to VPA-treated wild type mice. On the other hand, there 

was no difference in these parameters between vehicle-treated wild type mice and 

vehicle-treated jvs+/- mice, as well as between vehicle-treated and VPA-treated wild 

type mice. These findings indicate that both carnitine deficiency and treatment with 

VPA are necessary to impair hepatic β-oxidation in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: In vivo palmitate metabolism by wild type or jvs+/- mice treated with oral saline or VPA (100 
mg/kg body weight) for 14 days. A trace amount of [1-14C] palmitic acid was injected intraperitoneally 
and exhalation of 14CO2 was determined over 2 hours. VPA-treated jvs+/- mice show a lower peak 

exhalation of 14CO2 (after 30 min) compared to vehicle-treated jvs+/- mice, vehicle-treated wild type 
mice or VPA-treated wild type mice (8.6 ± 0.3 vs. 10.6 ± 0.4, 11.3 ± 0.8 or 10.7 ± 0.3% of dose per 10 
min, respectively, p<0.05 against all other groups). In addition, the total amount of 14CO2 exhaled over 
2 hours was also less in VPA-treated jvs+/- mice compared to vehicle-treated jvs+/- mice, vehicle-
treated wild type mice or VPA-treated wild type mice (33.5 ± 4.2 vs. 41.8 ± 3.9, 46.5 ± 3.9 or 41.7 ± 
4.8% of dose, respectively, p<0.05 against all other groups). 
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Histological findings in the liver 

In agreement with in vivo β-oxidation, fat accumulation in liver was lowest in vehicle-

treated wild type mice (Figure 2A) and slightly higher in wild type mice treated with 

VPA or in vehicle-treated jvs-/+ mice (Figures 2B and C). The combination of 

carnitine deficiency (jvs-/+ mice) and treatment with VPA was associated with the 

highest extent of fat accumulation (Figure 2D). The accumulated fat was from the 

microvesicular type, compatible with impaired β-oxidation (Fromenty and Pessayre, 

1995; Spaniol et al., 2003). 

Stains with hematoxylin-eosin confirmed the presence of microvesicular steatosis 

predominantly in VPA-treated jvs+/- mice but showed only a small number of cells 

undergoing apoptosis (eosinophilic hepatocytes) (Figure 3A). Accordingly, only few 

cells were caspase-3 positive (Figure 3B), suggesting that apoptosis was rare, even 

in livers from VPA-treated jvs-/+ mice. Similar histological findings have been 

reported in another study (Jezequel et al., 1984). 

 

 
Figure 2: Hepatic accumulation of fat in vehicle-treated wild type (A), VPA-treated wild type (B), 
vehicle-treated jvs+/- mice (C) and VPA-treated jvs+/- mice (D). Vehicle-treated wild type livers contain 
only few hepatocytes with Sudan B stainable material (small intracellular dark droplets, see arrow) (A). 
VPA treatment of wild type mice for two weeks (B) or heterozygousity for OCTN2 (vehicle-treated 
jvs+/- mice) (C) is associated with a slight increase in microvesicular fat. VPA-treated jvs+/- mice show 
the highest accumulation of microvesicular fat, mainly in the pericentral region of liver lobules (D). 
Sudan black B staining, the micron bars represent 20 µm. 
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Figure 3: Histological changes in liver sections stained with hematoxylin-eosin and for caspase-3 in 
liver sections of VPA-treated jvs+/- mice. Staining with hematoxylin-eosin of livers from VPA-treated 
jvs+/- mice shows cytoplasmic vesicles compatible with microvesicular steatosis, mononuclear portal 
infiltrates (not shown) and occasional hypereosinophilic hepatocytes (3A). Staining with caspase-3 is 
slightly positive in such hepatocytes (3B), compatible with hepatocyte apoptosis. In sections of vehicle-
treated wild type livers no such changes could be observed. HE-staining, the micron bars represent 20 
µm. 
 
 

 

Oxygen consumption by isolated liver mitochondria 

Since impairment of mitochondrial function associated with VPA has been shown 

before (Ponchaut and Veitch, 1993), we examined the function of the respiratory 

chain in the presence of different substrates. As shown in table 2, the state 3 

oxidation rate of L-glutamate was decreased by 32% in VPA-treated compared to 

vehicle-treated wild type mice. Similarly, a decrease of 58% was found in VPA-

treated heterozygous jvs+/- versus vehicle-treated jvs+/- mice. The state 3 oxidation 

rate of succinate was also significantly lower in VPA-treated jvs+/- mice (decrease by 

52%) compared to vehicle-treated heterozygous jvs+/- mice, whereas no significant 

decrease was found in VPA-treated wild type compared to vehicle-treated wild type 

mice. Palmitoyl-CoA state 3 oxidation rates were decreased by 43% in VPA-treated 

wild type mice and by 73% in VPA-treated jvs+/- mice compared to their vehicle-

treated controls. 

 

In vitro β-oxidation by intact liver mitochondria  

Due to the fact that VPA has been shown to impair mitochondrial β-oxidation (Levy et 

al., 1990; Ponchaut et al., 1992b; Fromenty and Pessayre, 1995), we also 

investigated the effect of VPA on the metabolism of palmitate by isolated liver 
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mitochondria. As shown in table 2, VPA treatment significantly decreased palmitate 

oxidation by 44% in wild type and by 35% in jvs+/- mice compared to their vehicle-

treated controls. For the interpretation of these results, it is important to take into 

account that the experiments were performed under saturating conditions regarding 

palmitate and in the presence of exogenous L-carnitine, which is different from the in 

vivo palmitate oxidation experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plasma carnitine concentration 

As shown in table 3, the free and total carnitine levels in plasma were significantly 

lower in wild type mice treated with VPA compared to vehicle-treated wild type mice 

(decrease by 58% and 24%, respectively). Similar results were obtained for VPA-

treated jvs+/- mice, where the decrease was 65% for free carnitine and 39% for total 

carnitine, respectively, versus vehicle-treated jvs+/- mice. A comparison of VPA-

treated jvs+/- versus VPA-treated wild type mice revealed a decrease of 40% in free 

carnitine and a decrease of 37% in total carnitine in jvs+/- mice. Treatment with VPA 

was associated with a decrease in the total carnitine concentration in both groups, 

namely by 24% in wild type and by 39% in jvs+/- mice. Remarkably, the short-chain 

acylcarnitine/total acid soluble carnitine ratio showed a 120% increase in VPA-treated 

wild type and a 76% increase in VPA-treated heterozygous jvs+/- mice compared to 

their vehicle-treated controls. 

 

 Wild type (jvs+/+)      Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

State 3 oxidation rates  

L-Glutamate (20 mM) 56 ± 12 38 ± 8* 48 ± 8 28 ± 2# 

Succinate (20 mM) 120 ± 20 88 ± 28 122 ± 28 64 ± 10# 

Palmitoyl-CoA (40 µM) 42 ± 12 24 ± 8* 30 ± 8 8 ± 2†,# 

Mitochondrial ß-Oxidation  

ß-Oxidation of 14C-1-palmitate 0.27 ± 0.04 0.15 ± 0.02* 0.26 ± 0.04 0.17 ± 0.04# 

* p<0.05 Vehicle-treated jvs+/- or VPA-treated wild type vs. vehicle-treated wild type; † p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # 
p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 
 
Table2: Function of mouse liver mitochondria. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and 
jvs+/- mice were treated orally with normal saline or VPA for 14 days. Mitochondria were isolated by differential centrifugation. State 3 oxidation 
rates were determined using different substrates and the in vitro ß-oxidation was measured with 14C-1-palmitate. Units are natoms oxygen/min/mg 
mitochondrial protein for the oxidation rates and nmol/min/mg mitochondrial protein for ß-oxidation. Results are presented as mean±SD. 
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Urinary excretion of carnitine 

As shown in table 4, treatment with VPA over two weeks was associated with an 

increased excretion of free carnitine in wild type and of free and total carnitine in 

jvs+/- mice. In jvs+/- mice treated with VPA, the excretion of free carnitine was 

increased by 114% compared to vehicle-treated jvs+/- mice, whereas the increase in 

total carnitine excretion was 108%. Compared to vehicle-treated control mice, the 

renal clearance of free carnitine was approximately 6-fold higher in VPA-treated 

jvs+/- mice and approximately 3-fold higher in VPA-treated wild type mice. 

 

 

 

 

 

 

 

 

 

 

 

 Wild type (jvs+/+)  Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

Free Carnitine 31.3 ± 2.7 13.1 ± 1.7* 22.4 ± 2.0* 7.9 ± 1.7†,# 

SCA Carnitine 10.1 ± 3.4 14.6 ± 2.1* 11.0 ± 1.5 11.1 ± 1.4 

TAS Carnitine 41.4 ± 1.2 27.6 ± 1.4* 33.6 ± 1.2* 19.0 ± 0.9†,# 

LCA Carnitine 6.6 ± 1.3 9.0 ± 0.9* 4.2 ± 1.2* 4.1 ± 0.5† 

SCA/TAS Carnitine 0.24 ± 0.08 0.53 ± 0.06* 0.33 ± 0.04 0.58 ± 0.08# 

Total Carnitine 48.0 ± 1.2 36.6 ± 2.3* 37.8 ± 2.2* 23.1 ± 1.2†,# 

* p<0.05 Vehicle-treated jvs+/- or VPA-treated wild type vs. vehicle-treated wild type; † p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # 
p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 
 
Table 3: Plasma carnitine content. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and jvs+/- mice 
were treated orally with normal saline or VPA for 14 days. Carnitine was determined using a radioenzymatic method, units are µmol/L. Results are 
presented as mean ± SD. LCA, long-chain-acylcarnitine; SCA, short-chain-acylcarnitine; TAS, total acid soluble carnitine.  
 

 Wild type (jvs+/+)  Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

Free Carnitine 85.1 ± 11.0 102.8 ± 17.5 91.3 ± 25.5 195.8 ± 15.3†,# 

Total Carnitine 144.0 ± 12.1 137.5 ± 14.7 133.2 ± 34.7 277.4 ± 24.7†,# 

SCA Carnitine 58.9 ± 13.1 34.7 ± 7.4 41.9 ± 15.7 81.6 ± 19.1†,# 

Renal clearance, free carnitine 2.8 ± 0.5 8.0 ± 1.4* 4.10 ± 1.2 25.5 ± 5.10†,# 

* p<0.05 Vehicle-treated jvs+/- or VPA-treated wild type vs. vehicle-treated wild type; † p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # 
p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 
 
Table 4: Urinary excretion of carnitine. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and jvs+/-
mice were treated orally with normal saline or VPA for 14 days. Carnitine was determined using a radioenzymatic method. Units are nmol/day for 
carnitine and ml/day for renal clearance of free carnitine. Results are presented as mean ± SD.  
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Liver carnitine content 

As shown in Table 5, the hepatic free carnitine content was 33% lower in vehicle-

treated jvs+/- compared to vehicle-treated wilt type mice. While treatment with VPA 

did not affect significantly the free carnitine content in wild type mice, VPA decreased 

the free carnitine content in jvs+/- mice by 53%. The short chain-acylcarnitine content 

was increased by VPA treatment by a factor of 2 to 3 in both wild type and jvs+/- 

mice compared to the respective vehicle-treated groups. Accordingly, the short-chain 

acylcarnitine/total acid soluble carnitine ratio was increased in both VPA-groups 

versus the vehicle-treated controls, reaching 157% in the wild type and 195% in 

jvs+/- mice, respectively. The total carnitine content was decreased by 26% in 

vehicle-treated jvs+/- compared to wild type mice. In both groups, treatment with VPA 

was not associated in significant changes in the total carnitine content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skeletal muscle carnitine content 

Free carnitine levels were not different between vehicle-treated wild type and jvs+/- 

mice. Treatment with VPA decreased the free carnitine content by 31% in jvs+/- 

mice, but had no significant effect in wild type mice. The short-chain acylcarnitine 

content and the short-chain acylcarnitine/total acid soluble carnitine ratio were not 

different between vehicle-treated wild type and jvs+/- mice and were not affected by 

 Wild type (jvs+/+)  Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

Free Carnitine 200.6 ± 43.1 166.6 ± 40.6 134.3 ± 24.7* 63.7 ± 12.2†,# 

SCA Carnitine 31.8 ± 17.6 93.0 ± 26.9* 31.2 ± 15.3 82.6 ± 16.4# 

TAS Carnitine 232.5 ± 27.0 259.7 ± 32.6 165.8 ± 11.4* 146.3 ± 14.0† 

LCA Carnitine 71.1 ± 4.7 59.6 ± 2.4* 57.8 ± 3.4* 49.7 ± 5.4†,# 

SCA/TAS Carnitine 0.14 ± 0.09 0.36 ± 0.11* 0.19 ± 0.08 0.56 ± 0.07†,# 

Total Carnitine 303.6 ± 33.3 319.3 ± 37.4 223.6 ± 11.7* 196.1 ± 18.9† 

* p<0.05 Vehicle-treated jvs+/- or VPA-treated wild type vs. vehicle-treated wild type; † p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # 
p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 
 
Table 5: Liver carnitine content. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and jvs+/- mice were 
treated orally with normal saline or VPA for 14 days. Carnitine was determined using a radioenzymatic method. Units are nmol/g wet tissue. 
Results are presented as mean ± SD. LCA, long-chain-acylcarnitine; SCA, short-chain-acylcarnitine; TAS, total acid soluble carnitine.  
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VPA treatment. The total carnitine content was 16% lower in vehicle-treated jvs+/- 

mice compared to the respective wild type mice. Treatment with VPA was associated 

with a 15% drop in the total carnitine content in jvs+/- mice, but did not affect 

significantly the total carnitine content in wild type mice (Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

7.5 Discussion 
 
Our study shows that jvs+/- mice treated with VPA have impaired hepatic 

mitochondrial β-oxidation and increased hepatic fat accumulation, findings associated 

with increased activities of serum transaminases and alkaline phosphatase, and 

hepatocellular damage. 

In vivo determination of hepatic β-oxidation revealed a decrease in palmitate 

metabolism in VPA-treated jvs+/- mice, which was not the case for VPA-treated wild 

type or vehicle-treated jvs+/- mice. In combination with the liver enzyme elevations, 

these findings suggest that VPA is more toxic in jvs+/- mice than in wild type mice, 

supporting our initial hypothesis that carnitine deficiency is a risk factor for 

hepatotoxicity associated with VPA. VPA is metabolized primarily by conjugation with 

glucuronic acid or carnitine, and to a lesser extent by mitochondrial β-oxidation, 

microsomal ω-oxidation and ω-1-oxidation (Zaccara et al., 1988). Microsomal VPA 

metabolism has been shown to be catalyzed by various cytochrome P450 (CYP) 

isozymes, among them CYP2C9, 2A6 and 2B6 (Kiang et al., 2006). These oxidative 

 Wild type (jvs+/+)  Heterozygous (jvs+/-) 

 vehicle VPA vehicle VPA 

Free Carnitine 276.5 ± 38.0 283.4 ± 21.9 262.7 ± 54.0 194.7 ± 18.7† 

SCA Carnitine 204.0 ± 24.9 204.2 ± 55.0 147.4 ± 18.3 143.9 ± 22.9 

TAS Carnitine 480.4 ± 14.3 487.6 ± 42.0 410.7 ± 35.6* 338.6 ± 12.4†,# 

LCA Carnitine 140.3 ± 4.4 106.9 ± 17.8* 109.5 ± 20.3* 117.7 ± 7.7 

SCA/TAS Carnitine 0.43 ± 0.06 0.41 ± 0.08 0.36 ± 0.06 0.42 ± 0.06 

Total Carnitine 620.7 ± 12.8 594.5 ± 44.2 520.2 ± 31.6* 443.9 ± 26.1†,# 

* p<0.05 Vehicle-treated jvs+/- or VPA-treated wild type vs. vehicle-treated wild type; † p<0.05 VPA-treated jvs+/- vs. VPA-treated wild type; # 
p<0.05 VPA-treated jvs+/- vs. vehicle-treated jvs+/- 
 
Table 6: Muscle carnitine content. The mice were starved overnight before the final experiments, n = 5 for each group. Wild type and jvs+/- mice 
were treated orally with normal saline or VPA for 14 days. Carnitine was determined using a radioenzymatic method. Units are nmol/g wet tissue. 
Results are presented as mean ± SD. LCA, long-chain-acylcarnitine; SCA, short-chain-acylcarnitine; TAS, total acid soluble carnitine.  
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pathways can yield potentially hepatotoxic products, e.g. pentanoate and propionate, 

as well as 4-en-VPA and others. It is conceivable that a reduction in the hepatic 

availability of carnitine in jvs+/- mice can be associated with reduced conjugation of 

VPA, shifting more VPA into the oxidative pathways and possibly leading to hepatic 

toxicity. The observed decrease in the hepatic free carnitine content in vehicle-

treated jvs+/- versus wild type mice and the even more pronounced decrease in the 

hepatic carnitine content of jvs+/- mice treated with VPA support such a mechanism. 

In addition, a reduction in the free carnitine pool is associated with similar changes in 

the CoA pool (Ponchaut et al., 1992b; Krahenbuhl et al., 1995), because these pools 

are connected with each other by the carnitine acyltransferases. A drop in cellular 

CoASH should impair enzymes and/or metabolic pathways using CoASH, for 

instance pyruvate dehydrogenase and β-oxidation of fatty acids. 

If only production and presence of toxic metabolites were responsible for hepatic 

toxicity of VPA, this toxicity could be expected to decrease or even to disappear in 

isolated mitochondria, due to loss of toxic metabolites during the isolation procedure 

(Spaniol et al., 2003). As shown in Table 2, this was clearly not the case in the 

current investigations, suggesting that mitochondrial changes on the gene expression 

and/or structural level are associated with VPA treatment. Earlier studies by 

Hayasaka et al. (Hayasaka et al., 1986) and by Ponchaut et al (Ponchaut et al., 

1992a) have indeed demonstrated that long-term treatment with VPA is associated 

with changes in the composition of cytochrome c oxidase (complex IV), namely a loss 

cytochrome aa3. A reduced activity of complex IV associated with VPA treatment 

explains not only impaired oxidation of succinate and L-glutamate, but also of 

palmitate, as observed in our studies (table 2). On the other hand, the reduced 

activity of mitochondrial β-oxidation, which has been described in other studies 

assessing hepatic toxicity of VPA (Turnbull et al., 1983; Baldwin et al., 1996), can be 

explained most probably by interactions of toxic metabolites with enzymes involved in 

β-oxidation (Ito et al., 1990; Baldwin et al., 1996). 

A comparison of palmitate oxidation in vivo and in vitro reveals that in vivo, β-

oxidation was impaired only in VPA-treated jvs+/- mice, whereas in vitro, palmitate 

oxidation was reduced also in liver mitochondria from VPA-treated wild-type mice. It 

has to be taken into account that in vivo only a tracer dose was administered 

whereas saturating concentrations of palmitate were used in the in vitro studies. 

Furthermore, palmitate could have been metabolized in vivo to a minor part also by 
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extrahepatic tissues, rendering small differences in hepatic activity of β-oxidation 

more difficult to detect. Finally, it can be argued that reduced in vivo β-oxidation of 

palmitate is primarily due to hepatic carnitine deficiency, which was most accentuated 

in livers from VPA-treated jvs+/- mice (Table 5). 

The fact that the skeletal muscle carnitine pools were much less affected by OCTN2 

activity and by VPA administration than the hepatic carnitine pools may serve as one 

possible explanation for reduced toxicity of VPA in skeletal muscle. In addition, the 

CYPs involved in the metabolism of VPA have the highest expression in liver 

(Gonzalez, 1992), and not in skeletal muscle. Nevertheless, VPA fat accumulation 

and morphological mitochondrial abnormalities have been described both in children 

and in rats with long-term VPA treatment (Melegh and Trombitas, 1997). 

Body carnitine homeostasis was affected by both activity of OCTN2 (jvs+/- vs. wild 

type mice) and treatment with VPA. As expected, jvs+/- mice had clearly reduced 

plasma and liver carnitine pools compared to wild type mice, demonstrating the 

importance of renal carnitine reabsorption associated with OCTN2. Interestingly, the 

effect of partial loss of OCTN2 activity was less accentuated for skeletal muscle than 

for liver, a finding which can at least partially be explained by the resistance of the 

plasmalemmal membrane for transport of carnitine (Rebouche and Engel, 1984). The 

effect of VPA treatment on the carnitine plasma and tissue stores was much more 

dramatic in JVS+/- than in wild type mice, leading to additional and substantial losses 

in the plasma and tissue carnitine pools. As shown in Table 4, this is a consequence 

of a massive increase in the renal excretion of carnitine and of acylcarnitines, in this 

case most probably valproylcarnitine (Muro et al., 1995). Although precise data are 

lacking, the increase in renal carnitine excretion can most probably be explained by 

the competition between valproylcarnitine (and possible other acylcarnitines) with 

carnitine for proximal tubular reabsorption by OCTN2 (Okamura et al., 2006). 

In conclusion, hepatic toxicity of VPA is more pronounced in JVS+/- mice than in 

corresponding wild type mice. Carnitine deficiency can therefore be considered to be 

a risk factor for VPA-associated hepatotoxicity, showing the importance of a sufficient 

hepatic carnitine pool in patients treated with this drug. 
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8.1 Abstract 
 

Drug-induced changes in the activity of drug-metabolizing enzymes, e.g. cytochrome 

P450 (CYP), are an important cause of drug-drug interactions, possibly resulting in 

loss of efficacy. Prediction of such changes is therefore a prerequisite of early drug 

development. Since availability and quality of fresh human hepatocytes is 

problematic, hepatocyte cell lines may serve as an alternative. In this study, we have 

investigated expression and induction of several CYP isozymes and the human 

pregnane X receptor (hPXR) in the immortalized human hepatocyte cell line 

hHepLT5 and in HepG2 cells used as a comparator. hPXR, CYP1A2 and CYP3A4 

expression was observed in HepG2 as well as in hHepLT5. CYP2D6 and CYP2C9 

were detectable only in HepG2 but not in hHepLT5, and CYP2C19 expression could 

not be found in both cell lines. Treatment with 50 µM omeprazole did not affect 

CYP1A2 mRNA induction in both cells. Treatment with 25 µM rifampicin was 

associated with a 3.4-fold increase in CYP3A4 mRNA in HepG2 but no increase in 

hHepLT5 cells. In conclusion, hHepLT5 cells contain the hPXR and the CYP 

isozymes 1A2 and 3A4 but could not be induced by prototypical incucers compared 

to HepG2 cells. 

 

8.2 Introduction 
 

Drug-drug and food-drug interactions caused by changes in the expression of 

cytochrome P450 (CYP) genes play an important role in the occurrence adverse drug 

reactions and/or loss of therapeutic effect of drugs (Li et al., 1997b; Michalets, 1998). 

Therefore, it is of great interest to investigate the inductive, but also the inhibitory 

potential of new chemical entities to predict possible changes in drug metabolism. 

CYPs, representing monooxygenases containing a heme group, are the most 

important group of enzymes involved in phase I metabolism of xenobiotics, primarily 

in the liver (Guengerich, 1990). The activity of most CYPs can be regulated by 

induction and/or inhibition by specific drugs, possibly affecting the metabolism of 

other drugs (Tanaka and Misawa, 1998; Jones et al., 2000; Lin and Lu, 2001) or 

even their own metabolism, e.g. by autoinduction (Strolin Benedetti et al., 1990). 

The pregnane X receptor (PXR), an orphan nuclear receptor, is one of the key 

transcriptional regulators of cytochrome P450 CYP3A monooxygenases and other 
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drug metabolizing enzymes and transporters. PXR is activated by a variety of 

endogenous (e.g. steroids and bile acids), and exogenous compounds (e.g. 

rifampicin, phenytoin and hyperforin) through direct interaction with these 

compounds. PXR activation assays can be used to predict the induction of CYP3A 

gene expression by drug candidates and therefore to predict drug-drug interactions 

(Lehmann et al., 1998; Goodwin et al., 2002; Kliewer et al., 2002).  

Primary human hepatocytes are considered as the gold standard and as a common 

model for the in vitro assessment of cytochrome P450 manipulation by new drug 

candidates (LeCluyse, 2001), and there are several studies using primary human 

hepatocytes for pharmacological and toxicological investigations (Donato et al., 1995; 

Guillouzo et al., 1997; Kern et al., 1997; Li et al., 1997a). Nevertheless, there are 

several disadvantages occurring with this screening system. For instance, primary 

cultures of human hepatocytes lose the expression of CYPs during a short culture 

period, they show interindividual variability and different quality, and the availability is 

limited. A possible alternative is the use of HepG2 or LS180 cells, which are used 

widely as in vitro screening systems. However, it is known that the expression of 

most CYPs in HepG2 cells is very low or even lacking and can change during culture 

(Rodriguez-Antona et al., 2002; Wilkening and Bader, 2003; Wilkening et al., 2003; 

Westerink and Schoonen, 2007).  

In order to circumvent some of these drawbacks, we investigated immortalized 

human hepatocytes, a cell line produced in our laboratory. The cells were 

characterized by studying the mRNA expression and activity of their CYPs and by 

studying CYP induction. 

 

 

8.3 Materials and Methods 
 
Reagents 

Dulbecco’s Modified Eagle Medium (DMEM), phosphate buffered saline (PBS), fetal 

bovine serum (FBS), penicillin/streptomycin, GlutaMAX, HEPES and non essential 

amino acids (NEAA) for the culture of the cell lines were purchased from Invitrogen 

(Basel, Switzerland). Williams E Medium (WEM) was from Cambrex (Verviers, 

Belgium). Rifampicin (RIF), omeprazole (OME), insulin, dimethyl sulfoxide (DMSO) 
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and dexamethason were obtained from Sigma Aldrich (Buchs, Switzerland). All 

chemicals used in this study were of the highest purity available. 

 

Hepatocyte cell lines and cell culture conditions 

HepG2 cells (hepatocellular carcinoma cell line) were kindly provided by Professor 

Dietrich von Schweinitz (University Hospital Basel, Switzerland) and were used 

between passage 4 – 8.  

The hHepLT5 cell line was generated in our laboratory by transducing the simian 

virus 40 large T antigen (SV40TAg) gene into primary human hepatocytes (Becton 

Dickinson, Woburn, US) using a HIV-derived lentiviral vector as described by Salmon 

et al. (Salmon et al., 2000). Clones (named hHepLT) were generated by single cell 

cloning using serial dilution and selected according to their morphological features 

and culture properties. 

hHepLT5 cells were cultured in Biocoat collagen I-coated plates (BD biosciences, 

Allschwil, Switzerland) in Williams E Medium supplemented with 10% (v/v) heat-

inactivated fetal bovine serum, 10 mmol/l HEPES buffer, pH 7.4, 2 mmol/l GlutaMAX, 

penicillin/streptomycin 100 U/ml, insulin 20 mU/ml and dexamethason 100 nmol/l.  

For the investigation of CYP1A2 enzyme activity, both cell lines were plated on 24 

well plates at density of 2x105 cells per well. For mRNA expression studies, the cells 

were used after they reached confluence.  

 

Total RNA extraction and cDNA synthesis 

At the end of the culture period, medium was removed and total RNA was isolated 

from cultured cells using the RNeasy Mini Kit from Qiagen (Hombrechtikon, 

Switzerland) and quantified with a Nano Drop ND-1000 spectrophotometer (Witec 

AG, Littau, Switzerland). The absorption ratio at 260 nm/280 nm (Nano Drop ND-

1000 spectrophotometer) was in the range of 1.8 – 2.0. After DNase I digestion 

(Invitrogen, Basel, Switzerland), synthesis of cDNA was carried out using 1 – 5 µg 

total RNA which was reversed transcribed by Superscript II Reverse Transcriptase 

(Invitrogen, Basel, Switzerland) according to the manufacturer’s protocol using 

random hexamer primers.  
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Real time polymerase chain reaction (TaqMan assay) 

TaqMan analysis was performed using 10 ng of cDNA in a total volume of 10 µl per 

TaqMan reaction as a template for quantitative real time PCR analysis on a 7900HT 

Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland). Primers 

and probes were designed according to the guidelines of Applied Biosystems with 

Primer Express 2.0 software (Applied Biosystems) and were synthesized by 

Eurogentec (Seraing, Belgium). The probes consisted of an oligonucleotide with a 5’ 

reporter dye (FAM) and a 3’ quencher dye (TAMRA). Primers and probes for all 

isoforms were used at concentrations of 900 nm and 200 nm, respectively. 

Sequences of primers and probes are listed in Table 1. TaqMan Universal PCR 

Mastermix was purchased from Eurogentec (Seraing, Belgium). Cycling conditions 

were 10 min at 95°C for initial denaturation and ac tivation of the DNA polymerase, 

followed by 40 cycles of 15 s at 95°C for denaturat ion and 1 min at 60°C for 

combined annealing and primer extension. All samples were run in triplicates and 

were quantified using the ∆∆Ct method. The threshold cycles (Ct) of the genes of 

interest in all samples were normalized to these of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Ctgene of interest – CtGAPDH = 

∆Ct). For induction experiments, the effect of the compounds tested on the genes of 

interest were normalized to the dimethyl sulfoxide (DMSO) control sample 

(∆Ctcompound – ∆CtDMSO = ∆∆Ct). Fold changes in the expression of the genes of 

interest were calculated by taking 2 to the power of the ∆∆Ct value (2- ∆∆Ct) as 

described in the user bulletin of Applied Biosystems.   

 

 

 

 

 

 

 

 

 

 

 

 

Gene Primer sense Sequence (5’? 3’) GenBank 
   accession number 
GAPDH  Forward   GGTGAAGGTCGGAGTCAACG   X01677 
  Probe   CGCCTGGTCACCAGGGCTGC 
  Reverse   ACCATGTAGTTGAGGTCAATGAAGG    
hPXR  Forward   GGCCACTGGCTATCACTTCAA   AF061056   
   Probe   AGCCCTTGCATCCTTCACATGTCATGA 
   Reverse   GTTTCATGGCCCTCCTGAAA 
CYP1A2   Forward   TGTTCAAGCACAGCAAGAAGG   AF182274 
   Probe   CTAGAGCCAGCGGCAACCTCATCCCA 
   Reverse   TGCTCCAAAGACGTCATTGAC 
CYP2C19   Forward   GAACACCAAGAATCGATGGACA   NM_000769 
   Probe   TAATCACTGCAGCTGACTTACTTGGAGCTGGG 
   Reverse   TCAGCAGGAGAAGGAGAGCATA 
CYP2C9   Forward   GACATGAACAACCCTCAGGACTTT   NM_000771 
   Probe   AAAACACTGCAGTTGACTTGTTTGGAGC 
   Reverse   TGCTTGTCGTCTCTGTCCCA 
CYP2D6   Forward   CCTACGCTTCCAAAAGGCTTT   NM_000106 
   Probe   CAGCTGGATGAGCTGCTAACTGAGCACA 
   Reverse   AGAGAACAGGTCAGCCACCACT 
CYP3A4   Forward    GATTGACTCTCAGAATTCAAAAGAAACTGA   AF182273 
   Probe    AGGAGAGAACACTGCTCGTGGTTTCACAG 
   Reverse    GGTGAGTGGCCAGTTCATACATAATG 
 

Table 1: Sequences of gene specific primers and probes used for real time polymerase chain reaction. 
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Statistical analysis 

All analyses were performed in triplicate. The results are presented as mean ± SD 

from four separate experiments. Significant differences between groups were 

determined by ANOVA/Bonferroni multiple comparison post hoc test. P values <0.05 

were considered to be significant. 

 

8.4 Results 
 
The aims of this study were to prepare a cell line of immortalized human hepatocytes 

and to characterize these cells regarding the expression pattern and inducibility of 

different CYP isozymes and of the human pregnane X receptor (hPXR). The results 

from these cell lines were compared to those obtained in HepG2 cells. 

 

Immortalization of human hepatocytes 

Transduction of human hepatocytes with the simian virus 40 large T antigen 

(SV40TAg) gene (Salmon et al., 2000) yielded several clones, which were selected 

according to morphology and culture properties. The clone hHepLT5 showed 

comparable morphological characteristics as primary cultured hepatocytes (see 

Figure 1) and was easy to culture. This clone was therefore used for the current 

studies. 
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Figure 1: Morphology of hHepLT5 cells. The hHepLT cell lines were generated by transducing the 
simian virus 40 large T antigen (SV40TAg) gene into primary human hepatocytes using a HIV-derived 
lentiviral vector. Clones were obtained by single cell cloning using serial dilution as described in 
Methods. The hHepLT5 cell line (Figure 1B) shows morphological features close to human 
hepatocytes (Figure 1A) and was therefore used for CYP characterization. 
 

 
mRNA expression of hPXR 

As shown in Figure 2, hPXR mRNA was expressed in HepG2 and in hHepLT5. The 

hPXR mRNA levels in hHepLT5 cells contained approximately 5 times less hPXR 

mRNA than HepG2 cells. 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure2: mRNA expression of hPXR. Expression of hPXR mRNA could be detected in HepG2 and 
hHepLT5 cells. The hPXR mRNA levels were significantly lower in hHepLT5 cells vs. HepG2 cells. 
***P < 0.001 vs. HepG2 cells.  
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Gene expression of CYP1A2, CYP2D6, CYP3A4, CYP2C9 and CYP2C19 

To compare the CYP isozyme mRNA expression levels in the immortalized human 

hepatocytes cell line, the mRNA expression was normalized to that of untreated 

HepG2 cells. As shown in Figure 3, CYP1A2 was expressed in both cell lines. In 

comparison to HepG2 cells, the mRNA expression levels were elevated 2.7-fold in 

hHepLT5 cells. CYP3A4 mRNA expression could also be detected in HepG2 and in 

hHepLT5 cells, whereas the mRNA levels were approximately 2-fold lower in 

hHepLT5, compared to HepG2 cells. The CYP2D6 and CYP2C9 mRNA expression 

was observed in HepG2, but not in hHepLT5 cells. CYP2C19 mRNA expression was 

not detectable in HepG2 and in hHepLT5 cells (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3: mRNA expression of several CYP isozymes. The immortalized human hepatocyte cell line 
hHepLT5 revealed mRNA expression of CYP1A2 and CYP3A4, but not of CYP2D6 and CYP2C9. *** 
P < 0.001 vs. HepG2 cells. 
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Inducibility of CYP isozymes 

Cells were incubated with medium containing 0.1% DMSO as vehicle control, with 

rifampicin (10 and 25 µM) for the induction of CYP3A4, CYP2C19 and CYP2C9, or 

with omperazole (25 and 50 µM) for the induction of CYP1A2 for 72 hours. After 

treatment with rifampicin, CYP2C9, CYP2C19 and CYP2D6 were not induced in both 

cell lines (results not shown). As shown in Figure 4, HepG2 cells showed a 

concentration-dependent significant increase in CYP3A4 mRNA levels in the cells 

treated with rifampicin as compared to the untreated group. CYP3A4 mRNA levels in 

HepG2 were increased 1.6-fold and 3.4-fold after treatment with 10 µM and 25 µM 

rifampicin, respectively. In hHepLT5 cells no CYP3A4 mRNA induction could be 

observed after treatment with 10 µM and 25 µM rifampicin. Furthermore, the CYP1A2 

mRNA levels were not affected by treatment with omeprazole in HepG2 and in 

hHepLT5 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4: mRNA expression of CYP3A4 after induction with rifampicin. Both cell lines were treated for 
72 hours with medium only, or with rifampicin or omeprazole in different concentrations. The mRNA 
expression is shown relative to the respective control incubations (DMSO 0.1%). Results are 
presented as fold change compared to DMSO 0.1%. OME= omeprazole, RIF = rifampicin. * P < 0.05, 
** P < 0.01, *** P < 0.001 vs. DMSO 0.1%. 
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8.5 Discussion 
 
In the current study, we have investigated the expression and the inducibility of 

several CYP isozymes in a hepatocellular carcinoma cell line and immortalized 

human hepatocytes. Since CYP3A4, 2D6, 1A2 and 2C are the main human CYP 

isozymes associated with drug metabolism, information about inhibitory and/or 

inducing characteristics of chemical substances may be helpful for the prediction of 

drug-drug interactions (Michalets, 1998). 

CYP1A2 is responsible for about 10 to 15% of the total CYP content of human liver 

and is the major CYP isozyme involved in the metabolism of important drugs, e.g. 

imipramine, propranolol, clozapine, olanzapine, theophylline and caffeine (Brosen, 

1995). mRNA expression of CYP1A2 could be detected in both cell lines investigated 

(Figure 2). In comparison to HepG2 cells, the mRNA expression levels were 

significantly higher in hHepLT5 cells. These results are in accordance with previous 

reports, where mRNA levels of CYP1A2 in HepG2 cells were very low (Rodriguez-

Antona et al., 2002; Wilkening et al., 2003; Westerink and Schoonen, 2007). After 

induction with omeprazole, which has been shown to be an efficient CYP1A2 inducer 

(Diaz et al., 1990; Daujat et al., 1992; Curi-Pedrosa et al., 1994), CYP1A2 induction 

could not be detected in both cell lines investigated.  

CYP3A4 is the predominant cytochrome P450 enzyme found in human liver, 

accounting for up to 30% of total hepatic CYP protein content (Shimada et al., 1994). 

CYP3A4 is known to metabolize a large variety of xenobiotics (among them 

amiodarone, lipophilic HMG-CoA reductase inhibitors, cyclosporine, tacrolimus and 

sirolimus, and various anticancer drugs) and endogenous substances, such as 

steroids (Brian et al., 1990; Araya and Wikvall, 1999). The results of our studies 

indicate that CYP3A4 mRNA expression is lower in hHepLT5 cells compared to 

HepG2. Rifampicin, a known inducer of CYP3A4 and other CYP isozymes (Kern et 

al., 1997; Rae et al., 2001; Raucy et al., 2002), was able to induce CYP3A4 mRNA 

levels in a concentration-depending manner in HepG2 cells, but not in hHepLT5 cells. 

CYP3A4 mRNA induction correlates with mRNA expression of hPXR, which showed 

a high expression in HepG2 cells, but a low or even lacking expression in hHepLT5 

cells. In agreement with CYP3A4 mRNA induction, also CYP3A4 activity was induced 

by rifampicin in HepG2.  

The CYP2C subfamily is also important for drug metabolism, accounting for 

approximately 18% of the CYP protein content in human liver and for approximately 
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20% of the CYP-mediated metabolism of drugs (Rendic and Di Carlo, 1997). The 

CYP2C9 isozyme is, among others, responsible for the metabolism of warfarin, 

phenytoin and various non-steroidal anti-inflammatory agents (Rettie et al., 1992; 

Bajpai et al., 1996; Hamman et al., 1997; Miners and Birkett, 1998). CYP2C19 plays 

a role in the metabolism of phenytoin (Levy, 1995), and is involved in the metabolism 

of omeprazole and diazepam (Andersson et al., 1993; Jung et al., 1997). In our 

study, CYP2C9 mRNA was detectable in HepG2, but not in hHepLT5 cells. In 

comparison, CYP2C19 mRNA expression was neither detectable in HepG2 nor in 

hHepLT5 cells. As shown in other studies, the expression of CYP2C9 and 2C19 is 

generally low or even inexistent in HepG2 cells and can change during culture (Ogg 

et al., 1999; Pourreyron et al., 2003; Plant, 2004; Westerink and Schoonen, 2007). 

As discussed above, our results show that the hPXR activator rifampicin is able to 

induce CYP3A4 in HepG2 cells. On the other hand, rifampicin was not able to induce 

CYP2C9 despite the presence of hPXR. This finding differs from other studies with 

cultured hepatocytes (Gerbal-Chaloin et al., 2001; Chen et al., 2004). At least in 

HepG2 cells, hPXR expression is therefore not sufficient for CYP2C9 mRNA 

expression by rifampicin. Regarding CYP2C9 and 2C19, HepG2 cells can be used to 

test drug metabolism, but are not suitable to investigate enzyme induction. 

CYP2D6 is responsible for the metabolism of many psychotherapeutic agents (e.g. 

amitriptyline, haloperidol, risperidone) and also of beta-blockers (e.g. metoprolol). 

Expression of CYP2D6 mRNA could only be detected in HepG2, but not in hHepLT5 

cells. CYP2D6 appears not to be inducible by the hPXR inducer rifampicin, as 

described in other studies (Li et al., 1997b; Edwards et al., 2003; Glaeser et al., 

2005). Similar to our statement regarding CYP2C9 and 2C19, only HepG2 cells could 

possibly be used to test the metabolism of drugs CYP2D6. 

In conclusion, hHepLT5 cells contain the CYP isozymes CYP1A2 and 3A4 which are 

involved in the metabolism of a variety of drugs. The immortalized human 

hepatocytes cell line hHepLT5 appear therefore to be a suitable alternative for 

primary human hepatocytes for studying at least certain pharmacological and 

toxicological features of new drug entities. 
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9.1 Abstract 
 
Extracts of cimicifuga racemosa are used frequently for menopausal complaints. 

Cimicifuga is well tolerated, but can occasionally cause liver injury. To assess 

hepatotoxicity of cimicifuga in more detail, ethanolic cimicifuga racemosa extract was 

administered orally to rats and liver sections were analyzed by electron microscopy. 

Tests for cytotoxicity, mitochondrial toxicity and apoptosis/necrosis were performed 

using HepG2 cells. Mitochondrial toxicity was studied using isolated rat liver 

mitochondria. Microvesicular steatosis was found in rats treated with >500µg/kg body 

weight cimicifuga extract. In vitro, cytotoxicity was apparent at concentrations 

≥75µg/mL and mitochondrial β-oxidation was impaired at concentrations ≥10µg/mL. 

The mitochondrial membrane potential was decreased at concentrations ≥100µg/mL 

and oxidative phosphorylation was impaired at concentrations ≥300µg/mL. The 

mechanism of cell death was predominantly apoptosis. Cimicifuga racemosa exerts 

toxicity in vivo and in vitro, eventually resulting in apoptotic cell death. The results are 

compatible with idiosyncratic hepatotoxicity as observed in patients treated with 

cimicifuga extracts. 

 

Key words: Cimicifuga racemosa, hepatotoxicity, mitochondria, apoptosis, HepG2 

 

9.2 Introduction 
 
Hormone replacement therapy (HRT) has been considered to be the standard 

treatment of menopausal disturbances. The association of HRT with breast and 

uterus cancer (Rossouw et al., 2002) and the desire of many women for a “natural 

treatment” were the main reasons why alternative therapies became increasingly 

popular. Especially extracts of the plant cimicifuga racemosa are currently used for 

this indication. Cimicifuga racemosa, also called actaea racemosa or black cohosh, is 

a member of the buttercup family (ranunculaceae), and originates from the Eastern 

part of the United States and Canada. Traditionally, the rhizome was used by North 

American Indians for joint aches, myalgias, neuralgias and rheumatic disorders, but 

also for menopausal complaints and pain during labour. Nowadays, ethanolic or 

isopropanolic extracts of cimicifuga racemosa are most commonly used for the 

symptomatic treatment of menopausal disorders and of the premenstrual syndrome 
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(McKenna et al., 2001; Frei-Kleiner et al., 2005; Nappi et al., 2005; Uebelhack et al., 

2006), although not all studies have shown a better effect than placebo (Pockaj et al., 

2006). 

Data from clinical studies and spontaneous reporting programs suggest that adverse 

events associated with cimicifuga racemosa are rare, generally mild and reversible. 

Gastrointestinal upset and rashes were the most common adverse events reported 

(Dog et al., 2003; Huntley and Ernst, 2003). In mostly uncontrolled clinical trials and 

post-marketing studies including more than 2,800 patients, adverse events had an 

incidence of 5.4%. Of the reported adverse events, 97% were minor or mild, none of 

them resulting in discontinuation of the therapy. When higher doses than those 

recommended are used, however, cimicifuga racemosa can cause dizziness, 

headaches, nausea, and vomiting (Dog et al., 2003). In their review, which includes 

all post-marketing programs of cimicifuga extracts, Huntley et al. also described 

patients with hepatic adverse events (Huntley and Ernst, 2003). They reported one 

case with hepatic failure, three cases with hepatitis and three cases with increased 

liver enzymes. In addition, several case reports have been published about patients 

developing acute hepatitis (Whiting et al., 2002; Cohen et al., 2004) or fulminant liver 

failure (Lontos et al., 2003; Levitsky et al., 2005; Lynch et al., 2006) while being 

treated with cimicifuga extracts. The European Medicines Agency (EMEA) recently 

assessed the case reports of hepatotoxicity associated with ingestion of cimicifuga 

racemosa root extracts (EMEA/HMPC/88766/2006). The conclusion was that all the 

cases reported in the literature and all pharmacovigilance reports are poorly 

documented and that these adverse events should be interpreted as a signal. 

Systematic investigations and careful assessment of the present and possibly future 

cases by the marketing authorization holders is appreciated by the EMEA. 

Since an association of hepatotoxicity with cimicifuga appears to be possible, we 

decided to investigate the potential for hepatotoxicity of cimicifuga extracts in 

experimental animals in vivo, in hepatocyte cultures and in isolated liver 

mitochondria. 
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9.3 Material and Methods 

Chemicals 

The cimicifuga extract was obtained from Max Zeller Söhne AG (Romanshorn, 

Switzerland, batch number V2009). The extraction solvent was 60% ethanol (v:v) 

with a ratio of native herbal drug to drug preparation of 4.5-8.5:1 (w:w), depending on 

the content of triterpene glycosides (≥6%). Solutions of the extract were made by 

dissolving the extract in DMSO. Caffeic acid and ferulic acid were purchased from 

Fluka (Buchs, Switzerland) and cimiracemoside A was from ChromaDex (Santa Ana, 

CA, USA). JC-1 and propidium iodide were from Molecular Probes (Eugene, OR, 

USA); Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and Z-Phe-Ala-fluoromethyl-

ketone (zFA-fmk) were from Enzyme Systems Products (Livermore, CA, USA). Alexa 

Fluor 633 labelled annexin V was a generous gift of Dr. Felix Bachmann, Aponetics 

Ltd. (Witterswil, Switzerland). [1-14C] palmitic acid was obtained from Amersham 

Pharmacia Biotech (Dübendorf, Switzerland). The scintillation cocktail was from 

Perkin Elmer (Boston, MA, USA). The Cy3TM conjugated anti-sheep IgG was 

purchased from Jackson Laboratories (West Grove, PA, USA). All other chemicals 

were from Sigma (Buchs, Switzerland) and of highest quality available when not 

otherwise stated. 

 

In vivo hepatotoxicity of cimicifuga extract 

Groups of 5 female Wistar rats were fed each with daily doses of 1, 10, 100, 300 or 

1000mg/kg body weight of cimicifuga racemosa extract. The extract was 

administered as a suspension in a solution of Arabic gum in water by means of 

esophageal gavage over a period of 21 days. After anesthesia and decapitation, the 

livers of the animals were perfused for fixation, tissue blocks were excised and 

prepared for electron microscopy as described previously in detail (Spornitz et al., 

1999). The study protocol had been accepted by the Animal Ethics Committee of the 

Canton of Basel. 

 

Cell culture 

The human hepatocarcinoma cell line HepG2 was kindly provided by Dr. Dietrich von 

Schweinitz (Department of Pediatric Surgery, Children’s Hospital, University of 

Basel). The cell line was grown in RPMI 1640 medium supplemented with 
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GlutaMAXTM-I, 25mM HEPES, 10% (v/v) heat-inactivated fetal bovine serum and 

100U/mL penicillin/streptomycin (all from Gibco, Paisley, UK). Culture conditions 

were 5%CO2 and 95% air atmosphere at 37°C. Experiments were p erformed when 

the cells had reached a confluence of about 80%. 

 

Cytotoxicity tests 

To examine cell viability and reductive activity, the MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide] assay was performed in HepG2 as described 

originally by Mosmann (Mosmann, 1983), but including an additional washing step 

(Bruggisser et al., 2002). 

In addition, the sulforhodamine B (SRB) test was performed according to the protocol 

of Skehan (Skehan et al., 1990) and the lactate dehydrogenase (LDH) assay 

according to Vassault (Vassault, 1983). 

 

Isolation of rat liver mitochondria 

Male Sprague Dawley rats (Charles River, Les Onins, France) were anesthetized 

with carbon dioxide and killed by decapitation. Liver mitochondria were isolated by 

differential centrifugation according to the method of Hoppel et al (Hoppel et al., 

1979). The mitochondrial protein content was determined using the biuret method 

with bovine serum albumin as a standard (Gornall, 1949). 

 

In vitro mitochondrial β-oxidation 

Beta-oxidation with freshly isolated liver mitochondria was assessed as the formation 

of 14C-acid-soluble β-oxidation products from [1-14C] palmitic acid in the presence of 

the cimicifuga extracts. Experiments were performed as described initially by 

Freneaux et al. (Freneaux et al., 1988) with the modifications described by Spaniol et 

al (Spaniol et al., 2001a). 

 

Oxygen consumption 

Polarographic monitoring of oxygen consumption in rat liver mitochondria was carried 

out in a 1mL chamber equipped with a Clark-type oxygen electrode (Yellow Springs 
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Instruments, Yellow Springs, OH, USA) at 30°C as de scribed previously (Krahenbuhl 

et al., 1991). Subsequent experiments with the F1F0-ATPase inhibitor oligomycin 

(5µg/mL) were performed to check for uncoupling of oxidative phosphorylation 

(Kaufmann et al., 2005). 

 

Mitochondrial membrane potential 

To determine the mitochondrial membrane potential, the dye JC-1 (5,5',6,6'-

tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide) was used accor-

ding to the protocol of Molecular Probes. Cells were incubated with different 

concentrations of cimicifuga extract for 24 hours. After the addition of JC-1 and 10 

minutes of incubation, cell fluorescence was determined by flow cytometry 

(FACSCalibur, Becton Dickinson, Franklin Lakes, NJ, USA) (Kaufmann et al., 2006). 

 

Determination of intracellular GSH and GSSG content 

In order to assess the redox status of the treated HepG2 cells and possible formation 

of reactive metabolites, determination of GSH (glutathione) and GSSG (oxidized 

glutathione) was performed using the enzymatic recycling assay of Tietze (Tietze, 

1969), with the modifications described by Griffith et al. (Griffith, 1980). 

 

Apoptosis / Necrosis 

Discrimination between apoptosis and necrosis was done with the AnnexinV/ 

propidium iodide stain. HepG2 cells were incubated for 24 hours with the extract. 

After trypsinization and centrifugation, cells were resuspended in RPMI medium 

(adjusted to 2.5mM calcium), stained with Alexa Fluor 633 labelled annexin V and 

propidium iodide (final concentration 1µg/mL) and analyzed by FACS (FACSCalibur, 

Becton Dickinson) (Kaufmann et al., 2005). 

 

ATP determination 

The ATP content of HepG2 cells treated with cimicifuga extract was determined with 

the luciferin/luciferase method using the ATP bioluminescence assay kit from Sigma 

as described previously (Kaufmann et al., 2005). 
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Hoechst staining 

HepG2 cells were incubated with cimicifuga extract for 24 hours, stained with 0.1mM 

Hoechst 33342 dye and visualized with an inverted fluorescent microscope (Olympus 

IX50, Hamburg, Germany). 

 

Cytochrome c staining 

HepG2 cells (105 cells) were seeded into a 8-well chamber slide (Nunc Labtek, 

Naperville, IL, USA) and cultured for two days. Subsequently, cells were incubated 

for 24 hours with cimicifuga extracts as described in the result section. The cells were 

fixed in 4% paraformaldehyde and analyzed for cytochrome c as described 

previously (Kaufmann et al., 2005). 

 

Statistical methods 

Data represent mean ± SEM of at least 4 replicates. Statistical analysis of differences 

between control incubations and incubations with cimicifuga extract was performed 

using analysis of variance (ANOVA) and Dunnett's multiple comparison test as 

posthoc test to localize differences obtained by ANOVA. A p-value <0.05 was 

considered to be statistically significant. 

 

 

9.4 Results 

Our aims were first to find out whether cimicifuga is hepatotoxic in vivo in rats and 

second, if in vivo hepatotoxicity could be demonstrated, to find out its mechanisms by 

in vitro investigations. There were no differences in food consumption and body 

weight increase between the rats treated with cimifuga extract and the respective 

control rats (data not shown). Rats treated with 10mg per kg body weight showed a 

slight increase in the volume of hepatocellular mitochondria (mitochondrial swelling) 

and an enlargement of bile canaliculi (data not shown). Rats fed with 100 or 

300mg/kg body weight showed more marked mitochondrial swelling and alterations 

in mitochondrial morphology such as vacuoles in the matrix (data not shown). Rats 

treated with 1000mg/kg body weight developed microvesicular steatosis of the 
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hepatocytes (see Figure 1), glycogen depletion and fragmentation of the rough 

endoplasmic reticulum. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Semi-thin section of a liver form a rat treated with 1000 mg/kg body weight of cimicifuga 
extract for 21 days. The majority of the intracellular vesicles are small lipid droplets, which are located 
in the cytoplasm of the hepatocytes and do not displace the nuclei, signs typical for microvesicular 
steatosis. The sections have been stained with paraphenylene diamine (PPD) as described in 
methods. 
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Since microvesicular steatosis usually reflects a mitochondrial damage and can be 

associated with cytotoxicity (Fromenty and Pessayre, 1995; Mahler et al., 1997), the 

MTT test was carried out on HepG2 cells. As shown in Figure 2, cimicifuga extract 

displayed a concentration-dependent toxicity starting at 75µg/mL. Cytotoxicity of 

cimicifuga could be confirmed using the LDH and the sulforhodamine B tests (data 

not shown). In contrast, specific components of the cimicifuga extract, namely caffeic 

acid, ferulic acid or cimiracemoside A, which were investigated at concentrations 

calculated to be equivalent to those in the extract, were not cytotoxic (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Reductive capacity and integrity of HepG2 cells investigated using the MTT test after 
incubation with cimicifuga extracts for 24 hours. In intact cells, MTT is metabolically converted to its 
blue formazan form, whose absorption can be measured at 550 nm, which is presented here. 
Cytotoxicity is detectable beginning at a concentration of 75 µg/mL of cimicifuga extract. Results are 
expressed as mean ± SEM of 10 determinations. *P < 0.05, **p < 0.01 vs. control values. 
 

 

Microvesicular steatosis and a signal in the MTT test were compatible with 

mitochondrial toxicity associated with cimicifuga extract. The mitochondrial 

membrane potential was therefore determined in HepG2 cells treated with cimicifuga 

extract using JC-1 as a marker (Kaufmann et al., 2006). These experiments revealed 

a dose-dependent decrease in the membrane potential, starting at a concentration of 

100µg/mL (see Figure 3). 
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Figure 3: Mitochondrial membrane potential in HepG2 cells incubated with cimicifuga extract. Cells 
were incubated with cimicifuga extract for 24 hours. After this incubation, JC-1 was added (final 
concentration 7.5µM), and cell fluorescence was analyzed using a cell sorter after an incubation of 10 
minutes (Kaufmann et al., 2006). The mitochondrial membrane potential starts to drop at a 
concentration of 100 µg/mL cimicifuga extract, corresponding well with the MTT test shown in Figure 
2. Results are expressed as the percentage of the membrane potential compared to control values, 
which was set at 100%. Results are presented as mean ± SEM of 3 determinations. *P < 0.05 vs. 
control values. 
 

 

 

In order to find out the reasons for the observed decrease in the mitochondrial 

membrane potential, specific mitochondrial functions were studied using freshly 

isolated rat liver mitochondria. The investigation of palmitate metabolism revealed 

that cimicifuga racemosa inhibited mitochondrial β-oxidation in a dose-dependent 

fashion, starting at a concentration of 10µg/mL (Figure 4). At a concentration of 

500µg/mL, the residual activity was only 8.5%. 
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Figure 4: Activity of the β-oxidation pathway of isolated rat liver mitochondria in the presence of 
cimicifuga extract. Beta-oxidation was determined as the formation of ketone bodies using [1-
14C]palmitate as a substrate. Cimicifuga extract shows a dose-dependent toxicity starting at a 
concentration of 10µg/mL. Results are expressed as mean ± SEM of 3 determinations. *P < 0.05, **p 
< 0.01 vs. control values. 
 
 

 

Oxidative phosphorylation is another important metabolic process in mitochondria, 

which is sensitive to toxicants (Waldhauser et al., 2006). As shown in Table 1, state 3 

oxidation rates in the presence of L-glutamate were decreased by 20% starting at a 

concentration of 300 µg/mL of the extract, whereas state 4 oxidation rates were 

increased by 53% or 132% at 300 or 500µg/mL, respectively. In contrast, 

cimiracemoside A did affect neither state 3, nor state 4 oxidation rates (Table 1). In 

order to proof uncoupling of oxidative phosphorylation (as suggested by increased 

state 4 oxidation rates), state 4u was induced by the addition of oligomycin, an 

inhibitor of F1F0-ATPase. As shown in Figure 5, 500µg/mL cimicifuga extract led to a 

significant increase in state 4u oxygen consumption, similar to the known uncoupler 

dinitrophenol. In contrast, such an increase could not be shown in the presence of 

cimiracemoside A. 
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Incubation State 3 State 4 

Control (1% DMSO) 70±4 9.3±0.4 

Cimicifuga 10 µg/mL 75±7 9.6±0.5 

Cimicifuga 50 µg/mL 70±7 10.3±0.9 

Cimicifuga 100 µg/mL 61±6 8.6±0.7 

Cimicifuga 200 µg/mL 61±3 11.4±0.5 

Cimicifuga 300 µg/mL 56±4* 14.2±1.1* 

Cimicifuga 500 µg/mL 56±3* 21.6±0.9* 

Cimiracemoside A 0.05 µg/mL 73±7 9.3±1.3 

Cimiracemoside A 0.5 µg/mL 86±20 9.6±1.6 

Cimiracemoside A 5.0 µg/mL 73±15 8.2±1.3 

 
Table 1: Effect of cimicifuga racemosa on mitochondrial oxidative metabolism. L-Glutamate (20 
mmol/L) was used as a substrate. Oxygen consumption by freshly isolated rat liver mitochondria was 
determined using an oxygen electrode as described in methods. Oxygen consumption is expressed as 
natoms/min/mg mitochondrial protein. Data are presented as mean±SEM, n ≥4 individual 
observations. * P < 0.05 vs. control incubations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5: Oxygen consumption in the presence of L-glutamate (20mmol/L) as a substrate and of the 
F1F0-ATPase inhibitor oligomycin (5 µg/mL). In the presence of oligomycin, any increase in oxygen 
consumption has to be due to uncoupling of the respiratory chain, since ADP cannot be 
phosphorylated to ATP. Cimicifuga extract starts to uncouple oxidative phosphorylation at a 
concentration of 300µg/mL, which is in accordance with state 4 oxidation rates shown in Table 1. In 
contrast, cimiracemoside A does not act as an uncoupler. Dinitrophenol was used as a positive 
control. Results are expressed as mean ± SE of 4 determinations. **P < 0.01 vs. control incubations. 
 

na
to

m
s/

m
in

/m
g 

pr
ot

ei
n

0

10

20

30

40

50

Olig
om

yc
in 

5 
µg/

m
L

DM
SO 1

%

+ 
Olig

om
yc

in

Cim
ici

fu
ga

 1
0 

µg/m
L

+ 
Olig

om
yc

in

**

Dini
tro

ph
en

ol 

+ 
Olig

om
yc

in

**

Cim
ici

fu
ga

 5
00

 µg/m
L

+ 
Olig

om
yc

in

Cim
ira

ce
m

os
ide

 A
 5

 µg/
m

L

+ O
lig

om
yc

in



 - 97 - 

Since impairment in mitochondrial function can be associated with increased 

production of ROS (Kaufmann et al., 2005; Kaufmann et al., 2006), the redox status 

of HepG2 cells was assessed by determining their glutathione content. However, 

neither raised GSSG levels, nor an increased GSSG/GSH ratio were detectable in 

the presence of cimicifuga extract up to 500µg/mL, suggesting that ROS do not play 

a significant role in cimicifuga hepatotoxicity (data not shown). 

As it is well established that mitochondrial damage can be associated with apoptosis 

and/or necrosis (Wolvetang et al., 1994; Kaufmann et al., 2005; Kaufmann et al., 

2006), we assessed these possibilities using annexin V and propidium iodide staining 

of HepG2 cells. As shown in Figure 6, cimicifuga extract induced a concentration-

dependent increase in early apoptotic and, to a smaller extent, also late 

apoptotic/necrotic cells, starting at a concentration of 300µg/mL. The specificity of 

this mechanism was shown by adding the pancaspase inhibitor zVAD-fmk to the 

incubations, which was able to prevent early (but not late) apoptosis significantly. In 

contrast, the cysteine protease inhibitor zFA-fmk, which does not affect caspases, 

had no effect on apoptosis associated with cimicifuga extract. To further confirm 

these results, Hoechst 33342 stains were performed, which confirmed that treatment 

with cimicifuga extract is associated with apoptosis of HepG2 (data not shown). 
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Figure 6: Early apoptosis (black, grey or shaded columns) and late apoptotis/necrosis (white columns) 
of HepG2 cells incubated with different concentrations of cimicifuga extract and other test compounds. 
After incubation with the test compounds for 24 hours, cells were stained with annexin V and 
propidium iodide and cell fluorescence was analyzed using a cell sorter as described in methods. This 
method allows allocation of cells into the categories living cells, early apoptotic cells and late 
apoptotic/necrotic cells (Kaufmann et al., 2005). While control incubations contain only a small 
percentage of apoptotic or necrotic cells, incubation with FAS ligand (positive control) is associated 
with a significant increase in early apoptotic cells. This increase can be inhibited by co-incubation with 
zVAD, a pancaspase inhibitor. In contrast, the increase is not inhibited in the presence of zFA, a 
cysteine protease inhibitor without activity against caspases. Cimicifuga extract is associated with 
early apoptosis (and to smaller extent also late apoptosis/necrosis) starting at a concentration of 
300µg/mL. Early apoptosis, but not late apoptosis/necrosis, can at least partially be prevented by the 
addition of zVAD, but not zFA. Results are expressed as mean ± SEM of 3 determinations. *P < 0.05, 
**p < 0.01 vs. the respective control incubations. + P< 0.05 vs. the respective incubation containing no 
zVAD. 
 
 

 

In order to discriminate better between late apoptosis and necrosis in the annexin 

V/propidium iodide stain, the ATP content of HepG2 cells treated with cimicifuga 

extract was determined. For the occurrence of apoptosis, normal levels of ATP are 

necessary, whereas low levels of ATP are indicative for necrosis (Leist et al., 1997). 

The ATP levels of the cells treated with cimicifuga extract were not decreased 

compared to untreated control cells, indicating the occurrence of apoptosis and not 

necrosis (data not shown). 

To investigate the possible contribution of mitochondria in the development of 

apoptosis associated with cimicifuga extract, mitochondrial leakage of cytochrome c 
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was investigated using an immunohistological method (Kaufmann et al., 2005; 

Kaufmann et al., 2006). As shown in Figure 7, cimicifuga extract was associated with 

mitochondrial leakage of cytochrome c into the cytoplasm of HepG2 cells, starting at 

a concentration of 200µg/mL. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Immuno-cytological staining of cytochrome c in HepG2 cells. Cells (n = 105) were incubated 
for 24 hours with cimicifuga extracts as described in methods. After treatment, they were fixed with 4% 
paraformaldehyde, washed, incubated with anti-cytochrome c antibody, and, after washing, with Cy3 
conjugated anti-sheep IgG (Kaufmann et al., 2005). In control incubations (1% DMSO), cytochrome c 
has a granular structure and does not cover the nucleus (arrows). In the presence of 10 µg/mL 
cimicifuga extract, the pattern of cytochrome c does not change. In the presence of 200µg/mL 
cimicifuga extract, the granular appearance of cytochrome c is changing to more diffuse appearance 
and cytochrome c starts to cover the nucleus (arrows). Some cells are completely covered by 
cytochrome c (arrows). In the presence of 500µg/mL cimicifuga extract, these changes are even more 
accentuated (arrows). In comparison, treatment with 100 µmol/L amiodarone (positive control) is 
associated with complete staining of the cells by cytochrome c, but cells detach from the plate, 
indicating loss of cell integrity. Incubation with the second antibody only was used as a negative 
control. 
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9.5 Discussion 

The main findings in vivo and in vitro were hepatic mitochondrial toxicity, as 

evidenced by microvesicular steatosis and inhibition of β-oxidation, eventually 

leading to apoptotic cell death. Severe inhibition of hepatic mitochondrial β-oxidation 

is associated with cellular accumulation of long-chain fatty acids, e.g. palmitate, 

which, depending on the localization of the defect, may still be activated to the 

respective acyl-CoAs and form triglycerides (Spaniol et al., 2003). Triglycerides can 

be stored in hepatocytes, possibly leading to liver steatosis, or can be exported from 

hepatocytes as VLDL particles (Fromenty and Pessayre, 1995; Fromenty and 

Pessayre, 1997; Spaniol et al., 2003). The microvesicular type of steatosis is thought 

to result from accumulation of triglycerides, acyl-CoAs and long-chain fatty acids due 

to inhibited β-oxidation (Fromenty and Pessayre, 1995; Fromenty and Pessayre, 

1997), which is different from the macrovesicular type of liver steatosis, where 

accumulation of triglycerides is predominant. 

Our studies suggest that inhibition of β-oxidation is the initial hepatotoxic event of 

cimicifuga extract, which eventually may result in apoptosis of the hepatocytes. Since 

long-chain acyl-CoAs accumulate in the cytoplasm of hepatocytes when β-oxidation 

is impaired (Spaniol et al., 2003), these fatty acid metabolites may be associated with 

hepatocellular toxicity. Saturated long chain fatty acids such as palmitate have 

indeed been shown to be associated with apoptosis both in vivo (Feldstein et al., 

2003) and in cell cultures including hepatocytes (Sparagna et al., 2000; Feldstein et 

al., 2003; Wei et al., 2006). Palmitoyl-CoA can induce mitochondrial membrane 

permeability transition, release of cytochrome c into the cytoplasm and apoptosis via 

caspase-dependent pathways (Furuno et al., 2001). Many of our findings, e.g. 

prevention of apoptosis by the pancaspase inhibitor zVAD and release of cytochrome 

c into the cytoplasm HepG2 cells, are in agreement with this mechanism. 

Palmitate and/or palmitoyl-CoA can induce apoptosis by different mechanisms. One 

possibility is increased formation of ceramide, which can induce mitochondrial 

membrane permeability transition (Arora et al., 1997) and is important for apoptosis 

associated with TNF-α (Osawa et al., 2005). However, while the addition of palmitate 

was associated with increased ceramide formation by cultured hepatocytes, inhibition 

of ceramide synthesis did not prevent apoptosis (Wei et al., 2006). In addition, in rat 

neonatal cardiomyocytes, decreased cardiolipin synthesis was found in the presence 
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of palmitate, which was associated with increased release of cytochrome c into the 

cytoplasm and initiation of apoptosis (Ostrander et al., 2001). 

The main constituents of cimicifuga racemosa are triterpene glycosides (e.g. actein, 

deoxyactein, cimifugoside, cimiracemosides), aromatic acids and their derivatives 

(e.g. ferulic acid, isoferulic acid, caffeic acid, fukinolic acid, cinnamic acid esters and 

cimicifugic acid A and B), flavonoids, volatile oils and tannins (He et al., 2006; Jiang 

et al., 2006). The components responsible for the pharmacological activity have so 

far not been identified. Regarding toxicity, Hostanska et al. investigated triterpene 

glycosides and cinnamic acid esters for their ability to induce apoptosis (Hostanska et 

al., 2004b; Hostanska et al., 2004a; Hostanska et al., 2005). Both types of 

substances were found to be associated with caspase-dependent apoptosis in breast 

cancer (Hostanska et al., 2004b; Hostanska et al., 2004a) and prostate cancer cell 

lines (Hostanska et al., 2005). In another investigation, the formation of quinine 

metabolites (possibly generated from phenolic acids and derivatives) has been 

proposed to be the cause of cimicifuga toxicity (Johnson and van Breemen, 2003). In 

our investigations, however, we had no evidence for the development of reactive 

metabolites. Furthermore, in the in vitro study performed by Hostanska et al. 

(Hostanska et al., 2004b), addition of microsomes to the incubations did not increase 

the toxicity of cimicifuga constituents, arguing against the formation of toxic 

metabolites. In order to find out precisely which component of cimicifuga extract is 

hepatotoxic, the most important components of cimicifuga extract would have to be 

studied individually, but most of them are not commercially available. 

To assess whether the toxic concentrations are in the range of the blood 

concentrations reached after ingestion of cimicifuga tablets, a rough estimate can be 

made. Assuming that a preparation containing 5-10 mg ethanolic extract is ingested 

and that the entire extract is absorbed rapidly, a maximal plasma concentration in the 

range of 1.5 -3 µg/mL could be reached (assuming rapid intravascular distribution, a 

plasma volume of 3.5 L and absence of significant metabolism). This value almost 

approaches the concentrations found to inhibit β-oxidation in our in vitro experiments 

(lowest inhibitory concentration 10µg/mL), but is 30 or 150 times lower than the 

lowest concentration associated with cytotoxicity (figure 2) or apoptosis (figure 6), 

respectively. On the other hand, in rats in vivo, microvesicular steatosis of the liver 

was observed at 1000mg extract per kg body weight. Assuming a rapid and complete 

absorption of the extract and a plasma volume of 15mL, the maximal plasma 
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concentration would be in the range of 20mg/mL, a concentration too high to be 

tested in vitro due to solubility problems. These considerations suggest that toxic 

concentrations can most probably not be reached in humans treated with the 

recommended doses. This is in agreement with the toxicity profile of the drug, 

showing hepatic adverse events only in a small fraction of patients, possibly with so 

far unknown risk factors (Dog et al., 2003; Huntley and Ernst, 2003). 

In conclusion, ethanolic cimicifuga extract is associated with hepatic mitochondrial 

toxicity, both in vivo in rats and in vitro using cell cultures and isolated rat liver 

mitochondria. This toxicity is in most patients not clinically relevant but may become 

important in patients with underlying risk factors. 
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10 Conclusion and outlook 
 
Drug-induced liver injury (DILI) is a major health problem that challenges not only 

health care professionals but also the pharmaceutical industry. As a consequence, it 

is also the most frequent reason for the withdrawal of approved drugs from the 

market. Although the exact mechanism of DILI remains widely unknown, it appears to 

involve two pathways – direct hepatoxicity and idiosyncratic hepatic injury. In most 

cases, DILI is initiated by the direct action of a drug, or more often a reactive 

metabolite of a drug (e.g. acetaminophen), and is dose-related. Other hepatotoxic 

drugs induce steatoheptatitis (e.g. ethanol, tamoxifen) or cholestasis (cyclosporine A, 

chlorpromazine). Whereas the above forms of hepatotoxicity are to a large extent 

predictable as a result of pre-clinical toxicology, a second category of drugs can 

cause so-called idiosyncratic hepatic injury where hepatotoxicity develops in only 1 in 

500–50,000 of exposed patients (e.g. phenytoin, isoniazid, valproic acid). Little is 

known about the cause of delayed, non-allergic forms of idiosyncratic hepatotoxicity. 

However, in idiosyncratic allergic drug hepatotoxicity, both the innate and adaptive 

immune system play a determinant role in the pathogenesis of liver injury (Larrey, 

2000; Kass, 2006). 

Another major concern in clinical practice and for the pharmaceutical industry in 

multidrug therapy is the Cytochrome P450 induction-mediated interaction. There are 

two crucial issues associated with CYP induction. First, induction may cause a 

reduction in therapeutic efficacy of co-medications. For drugs whose effect is 

produced primarily by the parent drug, induction would increase the drug’s 

elimination, resulting in lower drug concentrations, and decrease the drug’s 

pharmacological effect. Second, induction may create an undesirable imbalance 

between detoxification and activation as a result of increased formation of reactive 

metabolites, leading to an increase in the risk of metabolite-induced toxicity (Lin and 

Lu, 1998; Lin, 2006).  

 

In this thesis, we present an in vivo model for the investigation of new or approved 

drugs on their hepatotoxic potential, especially drugs initiating idiosyncratic hepato-

toxicity. Our mouse model (juvenile visceral steatosis mouse) is characterized by a 

mitochondrial dysfunction due to impaired hepatic β-oxidation, whereas this pre-

existing mitochondrial disease can be considered to be a risk factor for drug-induced 

hepatotoxicity and may increase susceptibility for the occurrence of severe 
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hepatotoxic reactions. Therefore, this in vivo model can be used to screen drugs for 

their capability to initiate idiosyncratic hepatotoxicity and to evaluate the 

mitochondrial involvement in drug-induced hepatic injury.  

 

Several in vitro models have been established to assess the potential of CYP 

induction, including liver slices, immortalized cell lines, and primary human 

hepatocytes (Silva et al., 1998; Kostrubsky et al., 1999; LeCluyse, 2001). Among 

these models, we present an immortalized human hepatocyte cell line, namely 

hHepLT5, which is a suitable screening system for pharmacological and toxicological 

properties of drugs. hHepLT5 cells contain CYP1A2 and 3A4 isozymes involved in 

drug metabolism. Furthermore, hepatic cell lines show several advantages compared 

to primary hepatocytes, including maintenance of the activity of major drug-

metabolizing enzymes, permanent availability, constant quality, and cultivability. 

Consequently, hHepLT5 cells are a useful tool to investigate certain pharmacological 

and toxicological aspects, facilitating the prediction of several effects of new drug 

entities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 105 - 

11 References 
 
Andersson T, Miners JO, Veronese ME, Tassaneeyakul W, Tassaneeyakul W, Meyer 

UA and Birkett DJ (1993) Identification of human liver cytochrome P450 
isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 36:521-530. 

Angelini C, Freddo L, Battistella P, Bresolin N, Pierobon-Bormioli S, Armani M and 
Vergani L (1981) Carnitine palmityl transferase deficiency: clinical variability, 
carrier detection, and autosomal-recessive inheritance. Neurology 31:883-886. 

Angelini C, Vergani L and Martinuzzi A (1992) Clinical and biochemical aspects of 
carnitine deficiency and insufficiency: transport defects and inborn errors of 
beta-oxidation. Crit Rev Clin Lab Sci 29:217-242. 

Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, 
Inaba T, Kalow W, Gelboin HV and et al. (1989) Cytochrome P-450 hPCN3, a 
novel cytochrome P-450 IIIA gene product that is differentially expressed in 
adult human liver. cDNA and deduced amino acid sequence and distinct 
specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of 
steroid hormones and cyclosporine. J Biol Chem 264:10388-10395. 

Araya Z and Wikvall K (1999) 6alpha-hydroxylation of taurochenodeoxycholic acid 
and lithocholic acid by CYP3A4 in human liver microsomes. Biochim Biophys 
Acta 1438:47-54. 

Arora AS, Jones BJ, Patel TC, Bronk SF and Gores GJ (1997) Ceramide induces 
hepatocyte cell death through disruption of mitochondrial function in the rat. 
Hepatology 25:958-963. 

Bajpai M, Roskos LK, Shen DD and Levy RH (1996) Roles of cytochrome P4502C9 
and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to 
its major metabolite. Drug Metab Dispos 24:1401-1403. 

Baldwin GS, Abbott FS and Nau H (1996) Binding of a valproate metabolite to the 
trifunctional protein of fatty acid oxidation. FEBS Lett 384:58-60. 

Berardi S, Stieger B, Hagenbuch B, Carafoli E and Krahenbuhl S (2000) 
Characterization of L-carnitine transport into rat skeletal muscle plasma 
membrane vesicles. Eur J Biochem 267:1985-1994. 

Berardi S, Stieger B, Wachter S, O'Neill B and Krahenbuhl S (1998) Characterization 
of a sodium-dependent transport system for butyrobetaine into rat liver plasma 
membrane vesicles. Hepatology 28:521-525. 

Bertilsson L, Lou YQ, Du YL, Liu Y, Kuang TY, Liao XM, Wang KY, Reviriego J, 
Iselius L and Sjoqvist F (1992) Pronounced differences between native 
Chinese and Swedish populations in the polymorphic hydroxylations of 
debrisoquin and S-mephenytoin. Clin Pharmacol Ther 51:388-397. 

Bertrand C, Largilliere C, Zabot MT, Mathieu M and Vianey-Saban C (1993) Very 
long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn 
error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta 
1180:327-329. 

Bertz RJ and Granneman GR (1997) Use of in vitro and in vivo data to estimate the 
likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 
32:210-258. 

Bieber LL (1988) Carnitine. Annu Rev Biochem 57:261-283. 
Bioulac-Sage P, Parrot-Roulaud F, Mazat JP, Lamireau T, Coquet M, Sandler B, 

Demarquez JL, Cormier V, Munnich A, Carre M and et al. (1993) Fatal 
neonatal liver failure and mitochondrial cytopathy (oxidative phosphorylation 
deficiency): a light and electron microscopic study of the liver. Hepatology 
18:839-846. 



 - 106 - 

Bolanos JP and Medina JM (1997) Effect of valproate on the metabolism of the 
central nervous system. Life Sci 60:1933-1942. 

Borum PR (1981) Possible carnitine requirement of the newborn and the effect of 
genetic disease on the carnitine requirement. Nutr Rev 39:385-390. 

Bouma ME, Rogier E, Verthier N, Labarre C and Feldmann G (1989) Further cellular 
investigation of the human hepatoblastoma-derived cell line HepG2: 
morphology and immunocytochemical studies of hepatic-secreted proteins. In 
Vitro Cell Dev Biol 25:267-275. 

Brass EP and Hoppel CL (1978) Carnitine metabolism in the fasting rat. J Biol Chem 
253:2688-2693. 

Brass EP, Mayer MD, Mulford DJ, Stickler TK and Hoppel CL (2003) Impact on 
carnitine homeostasis of short-term treatment with the pivalate prodrug 
cefditoren pivoxil. Clin Pharmacol Ther 73:338-347. 

Brass EP, Scarrow AM, Ruff LJ, Masterson KA and Van Lunteren E (1993) Carnitine 
delays rat skeletal muscle fatigue in vitro. J Appl Physiol 75:1595-1600. 

Breinholt V, Lauridsen ST and Dragsted LO (1999) Differential effects of dietary 
flavonoids on drug metabolizing and antioxidant enzymes in female rat. 
Xenobiotica 29:1227-1240. 

Bremer J (1983) Carnitine--metabolism and functions. Physiol Rev 63:1420-1480. 
Brian WR, Sari MA, Iwasaki M, Shimada T, Kaminsky LS and Guengerich FP (1990) 

Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in 
Saccharomyces cerevisiae. Biochemistry 29:11280-11292. 

Brosen K (1995) Drug interactions and the cytochrome P450 system. The role of 
cytochrome P450 1A2. Clin Pharmacokinet 29 Suppl 1 :20-25. 

Bruggisser R, von Daeniken K, Jundt G, Schaffner W and Tullberg-Reinert H (2002) 
Interference of plant extracts, phytoestrogens and antioxidants with the MTT 
tetrazolium assay. Planta Med 68:445-448. 

Bruni J and Wilder BJ (1979) Valproic acid. Review of a new antiepileptic drug. Arch 
Neurol 36:393-398. 

Bryan TM and Reddel RR (1994) SV40-induced immortalization of human cells. Crit 
Rev Oncog 5:331-357. 

Cascio SM (2001) Novel strategies for immortalization of human hepatocytes. Artif 
Organs 25:529-538. 

Cederblad G and Lindstedt S (1976) Metabolism of labeled carnitine in the rat. Arch 
Biochem Biophys 175:173-180. 

Chabrol B, Mancini J, Chretien D, Rustin P, Munnich A and Pinsard N (1994) 
Valproate-induced hepatic failure in a case of cytochrome c oxidase 
deficiency. Eur J Pediatr 153:133-135. 

Chadwick DW (1985) Concentration-effect relationships of valproic acid. Clin 
Pharmacokinet 10:155-163. 

Chalmers RA, Roe CR, Stacey TE and Hoppel CL (1984) Urinary excretion of l-
carnitine and acylcarnitines by patients with disorders of organic acid 
metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 
18:1325-1328. 

Chapoy PR, Angelini C, Brown WJ, Stiff JE, Shug AL and Cederbaum SD (1980) 
Systemic carnitine deficiency--a treatable inherited lipid-storage disease 
presenting as Reye's syndrome. N Engl J Med 303:1389-1394. 

Chen Y, Ferguson SS, Negishi M and Goldstein JA (2004) Induction of human 
CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the 
pregnane X receptor. J Pharmacol Exp Ther 308:495-501. 



 - 107 - 

Cohen SM, O'Connor AM, Hart J, Merel NH and Te HS (2004) Autoimmune hepatitis 
associated with the use of black cohosh: a case study. Menopause 11:575-
577. 

Coulter DL, Wu H and Allen RJ (1980) Valproic acid therapy in childhood epilepsy. 
Jama 244:785-788. 

Cox RA and Hoppel CL (1973) Biosynthesis of carnitine and 4-N-
trimethylaminobutyrate from 6-N-trimethyl-lysine. Biochem J 136:1083-1090. 

Curi-Pedrosa R, Daujat M, Pichard L, Ourlin JC, Clair P, Gervot L, Lesca P, 
Domergue J, Joyeux H, Fourtanier G and et al. (1994) Omeprazole and 
lansoprazole are mixed inducers of CYP1A and CYP3A in human hepatocytes 
in primary culture. J Pharmacol Exp Ther 269:384-392. 

Dalen P, Dahl ML, Bernal Ruiz ML, Nordin J and Bertilsson L (1998) 10-
Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional 
CYP2D6 genes. Clin Pharmacol Ther 63:444-452. 

Daujat M, Peryt B, Lesca P, Fourtanier G, Domergue J and Maurel P (1992) 
Omeprazole, an inducer of human CYP1A1 and 1A2, is not a ligand for the Ah 
receptor. Biochem Biophys Res Commun 188:820-825. 

Davis AT and Hoppel CL (1986) Effect of starvation on the disposition of free and 
peptide-linked trimethyllysine in the rat. J Nutr 116:760-767. 

Davis R, Peters DH and McTavish D (1994) Valproic acid. A reappraisal of its 
pharmacological properties and clinical efficacy in epilepsy. Drugs 47:332-372. 

Diaz D, Fabre I, Daujat M, Saint Aubert B, Bories P, Michel H and Maurel P (1990) 
Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome 
P450. Gastroenterology 99:737-747. 

Dickinson RG, Bassett ML, Searle J, Tyrer JH and Eadie MJ (1985) Valproate 
hepatotoxicity: a review and report of two instances in adults. Clin Exp Neurol 
21:79-91. 

Ding X and Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in 
xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory 
and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149-173. 

Dog TL, Powell KL and Weisman SM (2003) Critical evaluation of the safety of 
Cimicifuga racemosa in menopause symptom relief. Menopause 10:299-313. 

Domanski TL, Finta C, Halpert JR and Zaphiropoulos PG (2001) cDNA cloning and 
initial characterization of CYP3A43, a novel human cytochrome P450. Mol 
Pharmacol 59:386-392. 

Donato MT, Castell JV and Gomez-Lechon MJ (1995) Effect of model inducers on 
cytochrome P450 activities of human hepatocytes in primary culture. Drug 
Metab Dispos 23:553-558. 

Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA and Menander KB 
(1987) Valproic acid hepatic fatalities: a retrospective review. Neurology 
37:379-385. 

Duker EM, Kopanski L, Jarry H and Wuttke W (1991) Effects of extracts from 
Cimicifuga racemosa on gonadotropin release in menopausal women and 
ovariectomized rats. Planta Med 57:420-424. 

Dunn WA and Englard S (1981) Carnitine biosynthesis by the perfused rat liver from 
exogenous protein-bound trimethyllysine. Metabolism of methylated lysine 
derivatives arising from the degradation of 6-N-[methyl-3H]lysine-labeled 
glycoproteins. J Biol Chem 256:12437-12444. 

Eadie MJ, Hooper WD and Dickinson RG (1988) Valproate-associated hepatotoxicity 
and its biochemical mechanisms. Med Toxicol Adverse Drug Exp 3:85-106. 



 - 108 - 

Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR and Lake BG 
(2003) Induction of cytochrome P450 enzymes in cultured precision-cut 
human liver slices. Drug Metab Dispos 31:282-288. 

Einer-Jensen N, Zhao J, Andersen KP and Kristoffersen K (1996) Cimicifuga and 
Melbrosia lack oestrogenic effects in mice and rats. Maturitas 25:149-153. 

Engel AG and Angelini C (1973) Carnitine deficiency of human skeletal muscle with 
associated lipid storage myopathy: a new syndrome. Science 179:899-902. 

Engel AG, Rebouche CJ, Wilson DM, Glasgow AM, Romshe CA and Cruse RP 
(1981) Primary systemic carnitine deficiency. II. Renal handling of carnitine. 
Neurology 31:819-825. 

Englard S (1979) Hydroxylation of gamma-butyrobetaine to carnitine in human and 
monkey tissues. FEBS Lett 102:297-300. 

Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF and Gores GJ (2003) 
Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in 
mice. J Hepatol 39:978-983. 

Frei-Kleiner S, Schaffner W, Rahlfs VW, Bodmer C and Birkhauser M (2005) 
Cimicifuga racemosa dried ethanolic extract in menopausal disorders: a 
double-blind placebo-controlled clinical trial. Maturitas 51:397-404. 

Freneaux E, Labbe G, Letteron P, The Le D, Degott C, Geneve J, Larrey D and 
Pessayre D (1988) Inhibition of the mitochondrial oxidation of fatty acids by 
tetracycline in mice and in man: possible role in microvesicular steatosis 
induced by this antibiotic. Hepatology 8:1056-1062. 

Fromenty B and Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a 
mechanism of hepatotoxicity. Pharmacol Ther 67:101-154. 

Fromenty B and Pessayre D (1997) Impaired mitochondrial function in microvesicular 
steatosis. Effects of drugs, ethanol, hormones and cytokines. J Hepatol 26 
Suppl 2 :43-53. 

Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, Inoue M and Utsumi K (2001) 
Roles of long chain fatty acids and carnitine in mitochondrial membrane 
permeability transition. Biochem Pharmacol 62:1037-1046. 

Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, 
Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine 
K, Meyer UA and Wojnowski L (2001) Genomic organization of the human 
CYP3A locus: identification of a new, inducible CYP3A gene. 
Pharmacogenetics 11:111-121. 

Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, 
Carrere N and Maurel P (2001) Induction of CYP2C genes in human 
hepatocytes in primary culture. Drug Metab Dispos 29:242-251. 

Giguere V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 
20:689-725. 

Glaeser H, Drescher S, Eichelbaum M and Fromm MF (2005) Influence of rifampicin 
on the expression and function of human intestinal cytochrome P450 
enzymes. Br J Clin Pharmacol 59:199-206. 

Gonzalez FJ (1988) The molecular biology of cytochrome P450s. Pharmacol Rev 
40:243-288. 

Gonzalez FJ (1992) Human cytochromes P450:problems and prospects. TiPS 
Reviews 13:346-352. 

Goodwin B, Redinbo MR and Kliewer SA (2002) Regulation of cyp3a gene 
transcription by the pregnane x receptor. Annu Rev Pharmacol Toxicol 42:1-
23. 



 - 109 - 

Gornall A, Bardawill G and David M (1949) Determination of serum proteins by 
means of the biuret reaction. Journal of Biological Chemistry 177:751-766. 

Gornall AG (1949) Determination of serum proteins by means of the biuret reaction. J 
Biol Chem 177:751-766. 

Gram L and Bentsen KD (1985) Valproate: an updated review. Acta Neurol Scand 
72:129-139. 

Granneman GR, Wang SI, Kesterson JW and Machinist JM (1984) The 
hepatotoxicity of valproic acid and its metabolites in rats. II. Intermediary and 
valproic acid metabolism. Hepatology 4:1153-1158. 

Griffith OW (1980) Determination of glutathione and glutathione disulfide using 
glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207-212. 

Guengerich FP (1990) Enzymatic oxidation of xenobiotic chemicals. Crit Rev 
Biochem Mol Biol 25:97-153. 

Gugler R and von Unruh GE (1980) Clinical pharmacokinetics of valproic acid. Clin 
Pharmacokinet 5:67-83. 

Guillouzo A, Morel F, Fardel O and Meunier B (1993) Use of human hepatocyte 
cultures for drug metabolism studies. Toxicology 82:209-219. 

Guillouzo A, Morel F, Langouet S, Maheo K and Rissel M (1997) Use of hepatocyte 
cultures for the study of hepatotoxic compounds. J Hepatol 26 Suppl 2 :73-80. 

Hahn ME and Stegeman JJ (1994) Regulation of cytochrome P4501A1 in teleosts: 
sustained induction of CYP1A1 mRNA, protein, and catalytic activity by 
2,3,7,8-tetrachlorodibenzofuran in the marine fish Stenotomus chrysops. 
Toxicol Appl Pharmacol 127:187-198. 

Hale DE, Cruse RP and Engel A (1985) Familial systemic carnitine deficiency. Arch 
Neurol 42:1133. 

Hamilton JW, Li BU, Shug AL and Olsen WA (1986) Carnitine transport in human 
intestinal biopsy specimens. Demonstration of an active transport system. 
Gastroenterology 91:10-16. 

Hamman MA, Thompson GA and Hall SD (1997) Regioselective and stereoselective 
metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 
54:33-41. 

Harper P, Elwin CE and Cederblad G (1988) Pharmacokinetics of intravenous and 
oral bolus doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol 
35:555-562. 

Harris RC, Hultman E and Nordesjo LO (1974) Glycogen, glycolytic intermediates 
and high-energy phosphates determined in biopsy samples of musculus 
quadriceps femoris of man at rest. Methods and variance of values. Scand J 
Clin Lab Invest 33:109-120. 

Hayakawa J, Koizumi, T., Nikaido, H. (1990) Inheritance of juvenile visceral steatosis 
(jvs) found in C3H-H-2° mice. Mouse Genome 86:261. 

Hayasaka K, Takahashi I, Kobayashi Y, Iinuma K, Narisawa K and Tada K (1986) 
Effects of valproate on biogenesis and function of liver mitochondria. 
Neurology 36:351-356. 

He K, Pauli GF, Zheng B, Wang H, Bai N, Peng T, Roller M and Zheng Q (2006) 
Cimicifuga species identification by high performance liquid chromatography-
photodiode array/mass spectrometric/evaporative light scattering detection for 
quality control of black cohosh products. J Chromatogr A 1112:241-254. 

Heuberger W, Berardi S, Jacky E, Pey P and Krahenbuhl S (1998) Increased urinary 
excretion of carnitine in patients treated with cisplatin. Eur J Clin Pharmacol 
54:503-508. 



 - 110 - 

Higashi Y, Yokogawa K, Takeuchi N, Tamai I, Nomura M, Hashimoto N, Hayakawa 
JI, Miyamoto KI and Tsuji A (2001) Effect of gamma-butyrobetaine on fatty 
liver in juvenile visceral steatosis mice. J Pharm Pharmacol 53:527-533. 

Holme E, Jodal U, Linstedt S and Nordin I (1992) Effects of pivalic acid-containing 
prodrugs on carnitine homeostasis and on response to fasting in children. 
Scand J Clin Lab Invest 52:361-372. 

Hoppel C, DiMarco JP and Tandler B (1979) Riboflavin and rat hepatic cell structure 
and function. Mitochondrial oxidative metabolism in deficiency states. J Biol 
Chem 254:4164-4170. 

Hoppel CL and Davis AT (1986) Inter-tissue relationships in the synthesis and 
distribution of carnitine. Biochem Soc Trans 14:673-674. 

Horiuchi M, Kobayashi K, Asaka N and Saheki T (1997) Secondary abnormality of 
carnitine biosynthesis results from carnitine reabsorptional system defect in 
juvenile visceral steatosis mice. Biochim Biophys Acta 1362:263-268. 

Horiuchi M, Kobayashi K, Tomomura M, Kuwajima M, Imamura Y, Koizumi T, Nikaido 
H, Hayakawa J and Saheki T (1992) Carnitine administration to juvenile 
visceral steatosis mice corrects the suppressed expression of urea cycle 
enzymes by normalizing their transcription. J Biol Chem 267:5032-5035. 

Horiuchi M, Kobayashi K, Yamaguchi S, Shimizu N, Koizumi T, Nikaido H, Hayakawa 
J, Kuwajima M and Saheki T (1994) Primary defect of juvenile visceral 
steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal 
carnitine transport system. Biochim Biophys Acta 1226:25-30. 

Horiuchi M, Yoshida H, Kobayashi K, Kuriwaki K, Yoshimine K, Tomomura M, 
Koizumi T, Nikaido H, Hayakawa J, Kuwajima M and et al. (1993) Cardiac 
hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine 
deficiency. FEBS Lett 326:267-271. 

Horne DW and Broquist HP (1973) Role of lysine and -N-trimethyllysine in carnitine 
biosynthesis. I. Studies in Neurospora crassa. J Biol Chem 248:2170-2175. 

Hosking GP, Cavanagh NP, Smyth DP and Wilson J (1977) Oral treatment of 
carnitine myopathy. Lancet 1:853. 

Hostanska K, Nisslein T, Freudenstein J, Reichling J and Saller R (2004a) Cimicifuga 
racemosa extract inhibits proliferation of estrogen receptor-positive and 
negative human breast carcinoma cell lines by induction of apoptosis. Breast 
Cancer Res Treat 84:151-160. 

Hostanska K, Nisslein T, Freudenstein J, Reichling J and Saller R (2004b) Evaluation 
of cell death caused by triterpene glycosides and phenolic substances from 
Cimicifuga racemosa extract in human MCF-7 breast cancer cells. Biol Pharm 
Bull 27:1970-1975. 

Hostanska K, Nisslein T, Freudenstein J, Reichling J and Saller R (2005) Apoptosis 
of human prostate androgen-dependent and -independent carcinoma cells 
induced by an isopropanolic extract of black cohosh involves degradation of 
cytokeratin (CK) 18. Anticancer Res 25:139-147. 

Huntley A and Ernst E (2003) A systematic review of the safety of black cohosh. 
Menopause 10:58-64. 

Imamura Y, Saheki T, Arakawa H, Noda T, Koizumi T, Nikaido H and Hayakawa J 
(1990) Urea cycle disorder in C3H-H-2 degree mice with juvenile steatosis of 
viscera. FEBS Lett 260:119-121. 

Ishikura H, Matsuo N, Matsubara M, Ishihara T, Takeyama N and Tanaka T (1996) 
Valproic acid overdose and L-carnitine therapy. J Anal Toxicol 20:55-58. 

Ito M, Ikeda Y, Arnez JG, Finocchiaro G and Tanaka K (1990) The enzymatic basis 
for the metabolism and inhibitory effects of valproic acid: dehydrogenation of 



 - 111 - 

valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim 
Biophys Acta 1034:213-218. 

Jarry H, Harnischfeger G and Duker E (1985) [The endocrine effects of constituents 
of Cimicifuga racemosa. 2. In vitro binding of constituents to estrogen 
receptors]. Planta Med:316-319. 

Javitt NB (1990) Hep G2 cells as a resource for metabolic studies: lipoprotein, 
cholesterol, and bile acids. Faseb J 4:161-168. 

Jezequel AM, Bonazzi P, Novelli G, Venturini C and Orlandi F (1984) Early structural 
and functional changes in liver of rats treated with a single dose of valproic 
acid. Hepatology 4:1159-1166. 

Jiang B, Kronenberg F, Nuntanakorn P, Qiu MH and Kennelly EJ (2006) Evaluation 
of the botanical authenticity and phytochemical profile of black cohosh 
products by high-performance liquid chromatography with selected ion 
monitoring liquid chromatography-mass spectrometry. J Agric Food Chem 
54:3242-3253. 

Johnson BM and van Breemen RB (2003) In vitro formation of quinoid metabolites of 
the dietary supplement Cimicifuga racemosa (black cohosh). Chem Res 
Toxicol 16:838-846. 

Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, Tomkinson 
NC, LeCluyse EL, Lambert MH, Willson TM, Kliewer SA and Moore JT (2000) 
The pregnane X receptor: a promiscuous xenobiotic receptor that has 
diverged during evolution. Mol Endocrinol 14:27-39. 

Jung F, Richardson TH, Raucy JL and Johnson EF (1997) Diazepam metabolism by 
cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 
as low K(M) diazepam N-demethylases. Drug Metab Dispos 25:133-139. 

Kaido M, Fujimura H, Ono A, Toyooka K, Yoshikawa H, Nishimura T, Ozaki K, 
Narama I and Kuwajima M (1997) Mitochondrial abnormalities in a murine 
model of primary carnitine deficiency. Systemic pathology and trial of 
replacement therapy. Eur Neurol 38:302-309. 

Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S, Klassen G and 
Mamer OA (1975) The syndrome of systemic carnitine deficiency. Clinical, 
morphologic, biochemical, and pathophysiologic features. Neurology 25:16-24. 

Kass GE (2006) Mitochondrial involvement in drug-induced hepatic injury. Chem Biol 
Interact 163:145-159. 

Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, 
Kliewer S, Willson TM and Edwards PA (2002) Regulation of multidrug 
resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X 
receptor, farnesoid X-activated receptor, and constitutive androstane receptor. 
J Biol Chem 277:2908-2915. 

Kaufmann P, Torok M, Hanni A, Roberts P, Gasser R and Krahenbuhl S (2005) 
Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. 
Hepatology 41:925-935. 

Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K and Krahenbuhl S (2006) 
Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 
63:2415-2425. 

Kern A, Bader A, Pichlmayr R and Sewing KF (1997) Drug metabolism in hepatocyte 
sandwich cultures of rats and humans. Biochem Pharmacol 54:761-772. 

Kerner J and Hoppel C (1998) Genetic disorders of carnitine metabolism and their 
nutritional management. Annu Rev Nutr 18:179-206. 



 - 112 - 

Ketter TA, Frye MA, Cora-Locatelli G, Kimbrell TA and Post RM (1999) Metabolism 
and excretion of mood stabilizers and new anticonvulsants. Cell Mol Neurobiol 
19:511-532. 

Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS and Chang TK (2006) Contribution of 
CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic 
microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci 
94:261-271. 

Kitada M, Kamataki T, Itahashi K, Rikihisa T and Kanakubo Y (1987) P-450 HFLa, a 
form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-
hydroxylase of dehydroepiandrosterone 3-sulfate. J Biol Chem 262:13534-
13537. 

Kleber HP (1997) Bacterial carnitine metabolism. FEMS Microbiol Lett 147:1-9. 
Kleber HP, Seim H, Aurich H and Strack E (1977) [Utilization of trimethylammonium-

compounds by Acinetobacter calcoaceticus (author's transl)]. Arch Microbiol 
112:201-206. 

Kliewer SA, Goodwin B and Willson TM (2002) The nuclear pregnane X receptor: a 
key regulator of xenobiotic metabolism. Endocr Rev 23:687-702. 

Klotz U and Antonin KH (1977) Pharmacokinetics and bioavailability of sodium 
valproate. Clin Pharmacol Ther 21:736-743. 

Koch-Weser J and Browne TR (1980) Drug therapy: Valproic acid. N Engl J Med 
302:661-666. 

Koizumi T, Nikaido H, Hayakawa J, Nonomura A and Yoneda T (1988) Infantile 
disease with microvesicular fatty infiltration of viscera spontaneously occurring 
in the C3H-H-2(0) strain of mouse with similarities to Reye's syndrome. Lab 
Anim 22:83-87. 

Konig SA, Siemes H, Blaker F, Boenigk E, Gross-Selbeck G, Hanefeld F, Haas N, 
Kohler B, Koelfen W, Korinthenberg R and et al. (1994) Severe hepatotoxicity 
during valproate therapy: an update and report of eight new fatalities. 
Epilepsia 35:1005-1015. 

Kostrubsky VE, Ramachandran V, Venkataramanan R, Dorko K, Esplen JE, Zhang 
S, Sinclair JF, Wrighton SA and Strom SC (1999) The use of human 
hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab 
Dispos 27:887-894. 

Krahenbuhl S, Brandner S, Kleinle S, Liechti S and Straumann D (2000a) 
Mitochondrial diseases represent a risk factor for valproate-induced fulminant 
liver failure. Liver 20:346-348. 

Krahenbuhl S, Brass EP and Hoppel CL (2000b) Decreased carnitine biosynthesis in 
rats with secondary biliary cirrhosis. Hepatology 31:1217-1223. 

Krahenbuhl S, Chang M, Brass EP and Hoppel CL (1991) Decreased activities of 
ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome 
c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with 
hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 
266:20998-21003. 

Krahenbuhl S, Mang G, Kupferschmidt H, Meier PJ and Krause M (1995) Plasma 
and hepatic carnitine and coenzyme A pools in a patient with fatal, valproate 
induced hepatotoxicity. Gut 37:140-143. 

Kruse SO, Lohning A, Pauli GF, Winterhoff H and Nahrstedt A (1999) Fukiic and 
piscidic acid esters from the rhizome of Cimicifuga racemosa and the in vitro 
estrogenic activity of fukinolic acid. Planta Med 65:763-764. 

Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, 
Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, 



 - 113 - 

Venkataramanan R, Strom S, Thummel K, Boguski MS and Schuetz E (2001) 
Sequence diversity in CYP3A promoters and characterization of the genetic 
basis of polymorphic CYP3A5 expression. Nat Genet 27:383-391. 

Kuwajima M, Kono N, Horiuchi M, Imamura Y, Ono A, Inui Y, Kawata S, Koizumi T, 
Hayakawa J, Saheki T and et al. (1991) Animal model of systemic carnitine 
deficiency: analysis in C3H-H-2 degrees strain of mouse associated with 
juvenile visceral steatosis. Biochem Biophys Res Commun 174:1090-1094. 

Kuwajima M, Lu K, Harashima H, Ono A, Sato I, Mizuno A, Murakami T, Nakajima H, 
Miyagawa J, Namba M, Hanafusa T, Hayakawa J, Matsuzawa Y and Shima K 
(1996) Carnitine transport defect in fibroblasts of juvenile visceral steatosis 
(JVS) mouse. Biochem Biophys Res Commun 223:283-287. 

LaBadie J, Dunn WA and Aronson NN, Jr. (1976) Hepatic synthesis of carnitine from 
protein-bound trimethyl-lysine. Lysosomal digestion of methyl-lysine-labelled 
asialo-fetuin. Biochem J 160:85-95. 

Lam CW, Lau CH, Williams JC, Chan YW and Wong LJ (1997) Mitochondrial 
myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) 
triggered by valproate therapy. Eur J Pediatr 156:562-564. 

Larrey D (2000) Drug-induced liver diseases. J Hepatol 32:77-88. 
LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of 

cytochrome P450 expression and regulation. Eur J Pharm Sci 13:343-368. 
Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT and Kliewer SA (1998) 

The human orphan nuclear receptor PXR is activated by compounds that 
regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 
102:1016-1023. 

Leist M, Single B, Castoldi AF, Kuhnle S and Nicotera P (1997) Intracellular 
adenosine triphosphate (ATP) concentration: a switch in the decision between 
apoptosis and necrosis. J Exp Med 185:1481-1486. 

Letteron P, Fromenty B, Terris B, Degott C and Pessayre D (1996) Acute and chronic 
hepatic steatosis lead to in vivo lipid peroxidation in mice. J Hepatol 24:200-
208. 

Levitsky J, Alli TA, Wisecarver J and Sorrell MF (2005) Fulminant liver failure 
associated with the use of black cohosh. Dig Dis Sci 50:538-539. 

Levy RH (1995) Cytochrome P450 isozymes and antiepileptic drug interactions. 
Epilepsia 36 Suppl 5 :S8-13. 

Levy RH, Rettenmeier AW, Anderson GD, Wilensky AJ, Friel PN, Baillie TA, 
Acheampong A, Tor J, Guyot M and Loiseau P (1990) Effects of polytherapy 
with phenytoin, carbamazepine, and stiripentol on formation of 4-ene-
valproate, a hepatotoxic metabolite of valproic acid. Clin Pharmacol Ther 
48:225-235. 

Li AP, Maurel P, Gomez-Lechon MJ, Cheng LC and Jurima-Romet M (1997a) 
Preclinical evaluation of drug-drug interaction potential: present status of the 
application of primary human hepatocytes in the evaluation of cytochrome 
P450 induction. Chem Biol Interact 107:5-16. 

Li AP, Reith MK, Rasmussen A, Gorski JC, Hall SD, Xu L, Kaminski DL and Cheng 
LK (1997b) Primary human hepatocytes as a tool for the evaluation of 
structure-activity relationship in cytochrome P450 induction potential of 
xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol 
Interact 107:17-30. 

Li J, Norwood DL, Mao LF and Schulz H (1991) Mitochondrial metabolism of valproic 
acid. Biochemistry 30:388-394. 



 - 114 - 

Li W, Harper PA, Tang BK and Okey AB (1998) Regulation of cytochrome P450 
enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in 
the LS180 colon carcinoma cell line after treatment with 2,3,7,8-
tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene. Biochem Pharmacol 
56:599-612. 

Lin JH (2006) CYP induction-mediated drug interactions: in vitro assessment and 
clinical implications. Pharm Res 23:1089-1116. 

Lin JH and Lu AY (1998) Inhibition and induction of cytochrome P450 and the clinical 
implications. Clin Pharmacokinet 35:361-390. 

Lin JH and Lu AY (2001) Interindividual variability in inhibition and induction of 
cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 41:535-567. 

Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG and 
Thummel KE (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution 
to hepatic and intestinal midazolam metabolism. Mol Pharmacol 62:162-172. 

Lindstedt G, Lindstedt S, Midtvedt T and Tofft M (1970) Inducible gamma-
butyrobetaine-degrading enzymes in Pseudomonas species AK 1. J Bacteriol 
101:1094-1095. 

Lison L (1934) Sur des noveaux colorants histologiques spècifiques des lipides. C.R. 
Soc. Biol 115:202-205. 

Liu J, Burdette JE, Xu H, Gu C, van Breemen RB, Bhat KP, Booth N, Constantinou 
AI, Pezzuto JM, Fong HH, Farnsworth NR and Bolton JL (2001a) Evaluation of 
estrogenic activity of plant extracts for the potential treatment of menopausal 
symptoms. J Agric Food Chem 49:2472-2479. 

Liu Z, Yang Z, Zhu M and Huo J (2001b) [Estrogenicity of black cohosh (Cimicifuga 
racemosa) and its effect on estrogen receptor level in human breast cancer 
MCF-7 cells]. Wei Sheng Yan Jiu 30:77-80. 

Lombard KA, Olson AL, Nelson SE and Rebouche CJ (1989) Carnitine status of 
lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 
50:301-306. 

Lontos S, Jones RM, Angus PW and Gow PJ (2003) Acute liver failure associated 
with the use of herbal preparations containing black cohosh. Med J Aust 
179:390-391. 

Loscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical 
use for the treatment of epilepsy. CNS Drugs 16:669-694. 

Lu K, Nishimori H, Nakamura Y, Shima K and Kuwajima M (1998) A missense 
mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the 
juvenile visceral steatosis mouse. Biochem Biophys Res Commun 252:590-
594. 

Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, Hamilton G, Rizzo C, Jolley S, 
Gilbert D, Downey A, Mudra D, Graham R, Carroll K, Xie J, Madan A, 
Parkinson A, Christ D, Selling B, LeCluyse E and Gan LS (2002) CYP3A4 
induction by drugs: correlation between a pregnane X receptor reporter gene 
assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 
30:795-804. 

Lynch CR, Folkers ME and Hutson WR (2006) Fulminant hepatic failure associated 
with the use of black cohosh: a case report. Liver Transpl 12:989-992. 

Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, 
Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, 
Robertson P, Jr., Koch P, Antonian L, Wagner G, Yu L and Parkinson A 
(2003) Effects of prototypical microsomal enzyme inducers on cytochrome 



 - 115 - 

P450 expression in cultured human hepatocytes. Drug Metab Dispos 31:421-
431. 

Maebashi M, Kawamura N, Sato M, Yoshinaga K and Suzuli M (1976) Urinary 
excretion of carnitine in man. J Lab Clin Med 87:260-266. 

Mahady GB, Fabricant D, Chadwick LR and Dietz B (2002) Black cohosh: an 
alternative therapy for menopause? Nutr Clin Care 5:283-289. 

Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W and Krahenbuhl S 
(1997) Fulminant liver failure in association with the emetic toxin of Bacillus 
cereus. N Engl J Med 336:1142-1148. 

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg 
B, Kastner P, Mark M, Chambon P and Evans RM (1995) The nuclear 
receptor superfamily: the second decade. Cell 83:835-839. 

Markesbery WR, McQuillen MP, Procopis PG, Harrison AR and Engel AG (1974) 
Muscle carnitine deficiency. Association with lipid myopathy, vacuolar 
neuropathy, and vacuolated leukocytes. Arch Neurol 31:320-324. 

Martinuzzi A, Vergani L, Rosa M and Angelini C (1991) L-carnitine uptake in 
differentiating human cultured muscle. Biochim Biophys Acta 1095:217-222. 

Mathon NF and Lloyd AC (2001) Cell senescence and cancer. Nat Rev Cancer 
1:203-213. 

McKenna DJ, Jones K, Humphrey S and Hughes K (2001) Black cohosh: efficacy, 
safety, and use in clinical and preclinical applications. Altern Ther Health Med 
7:93-100. 

Melegh B and Trombitas K (1997) Valproate treatment induces lipid globule 
accumulation with ultrastructural abnormalities of mitochondria in skeletal 
muscle. Neuropediatrics 28:257-261. 

Meunier V, Bourrie M, Julian B, Marti E, Guillou F, Berger Y and Fabre G (2000) 
Expression and induction of CYP1A1/1A2, CYP2A6 and CYP3A4 in primary 
cultures of human hepatocytes: a 10-year follow-up. Xenobiotica 30:589-607. 

Meyer UA, Skoda RC and Zanger UM (1990) The genetic polymorphism of 
debrisoquine/sparteine metabolism-molecular mechanisms. Pharmacol Ther 
46:297-308. 

Michalets EL (1998) Update: clinically significant cytochrome P-450 drug interactions. 
Pharmacotherapy 18:84-112. 

Millington DS, Bohan TP, Roe CR, Yergey AL and Liberato DJ (1985) 
Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment 
and thermospray liquid chromatography-mass spectrometry. Clin Chim Acta 
145:69-76. 

Millington DS and Roe CR (1989) Medium-chain acyl-CoA dehydrogenase 
deficiency. N Engl J Med 320:1219. 

Miners JO and Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major 
importance in human drug metabolism. Br J Clin Pharmacol 45:525-538. 

Modi S, Lian LY, Roberts GC, Smith GC, Paine M and Wolf CR (1995) Structural 
studies on FMN domain of cytochrome P450 reductase. Biochem Soc Trans 
23:476S. 

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: 
application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-
63. 

Muro H, Tatsuhara T, Sugimoto T, Woo M, Nishida N, Murakami K and Yamaguchi Y 
(1995) Determination of urinary valproylcarnitine by gas chromatography-mass 
spectrometry with selected-ion monitoring. J Chromatogr B Biomed Appl 
663:83-89. 



 - 116 - 

Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR and Branch RA 
(1985) Interethnic differences in genetic polymorphism of debrisoquin and 
mephenytoin hydroxylation between Japanese and Caucasian populations. 
Clin Pharmacol Ther 38:402-408. 

Nappi RE, Malavasi B, Brundu B and Facchinetti F (2005) Efficacy of Cimicifuga 
racemosa on climacteric complaints: a randomized study versus low-dose 
transdermal estradiol. Gynecol Endocrinol 20:30-35. 

Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, 
Gunsalus IC, Johnson EF, Kemper B, Levin W and et al. (1987) The P450 
gene superfamily: recommended nomenclature. DNA 6:1-11. 

Nebert DW and Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. 
Annu Rev Biochem 56:945-993. 

Nebert DW and Russell DW (2002) Clinical importance of the cytochromes P450. 
Lancet 360:1155-1162. 

Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, 
Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O and et al. (1993) The P450 
superfamily: update on new sequences, gene mapping, accession numbers, 
early trivial names of enzymes, and nomenclature. DNA Cell Biol 12:1-51. 

Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, 
Koizumi A, Shoji Y, Takada G, Matsuishi T, Yoshino M, Kato H, Ohura T, 
Tsujimoto G, Hayakawa J, Shimane M and Tsuji A (1999) Primary systemic 
carnitine deficiency is caused by mutations in a gene encoding sodium ion-
dependent carnitine transporter. Nat Genet 21:91-94. 

Nikaido H, Horiuchi M, Hashimoto N, Saheki T and Hayakawa J (1995) Mapping of 
jvs (juvenile visceral steatosis) gene, which causes systemic carnitine 
deficiency in mice, on chromosome 11. Mamm Genome 6:369-370. 

Ogg MS, Williams JM, Tarbit M, Goldfarb PS, Gray TJ and Gibson GG (1999) A 
reporter gene assay to assess the molecular mechanisms of xenobiotic-
dependent induction of the human CYP3A4 gene in vitro. Xenobiotica 29:269-
279. 

Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M and Tsuji A 
(1999) Na(+)-dependent carnitine transport by organic cation transporter 
(OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp 
Ther 291:778-784. 

Okamura N, Ohnishi S, Shimaoka H, Norikura R and Hasegawa H (2006) 
Involvement of recognition and interaction of carnitine transporter in the 
decrease of L-carnitine concentration induced by pivalic acid and valproic acid. 
Pharm Res 23:1729-1735. 

Okita K, Tokino T, Nishimori H, Miura K, Nikaido H, Hayakawa J, Ono A, Kuwajima 
M, Matsuzawa Y and Nakamura Y (1996) Definition of the locus responsible 
for systemic carnitine deficiency within a 1.6-cM region of mouse chromosome 
11 by detailed linkage analysis. Genomics 33:289-291. 

Olsen C (1971) An enzymatic fluorimetric micromethod for the determination of 
acetoacetate, -hydroxybutyrate, pyruvate and lactate. Clin Chim Acta 33:293-
300. 

Opala G, Winter S, Vance C, Vance H, Hutchison HT and Linn LS (1991) The effect 
of valproic acid on plasma carnitine levels. Am J Dis Child 145:999-1001. 

Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA and Brenner DA 
(2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating 
hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 
280:27879-27887. 



 - 117 - 

Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB and Dowhan W (2001) 
Decreased cardiolipin synthesis corresponds with cytochrome c release in 
palmitate-induced cardiomyocyte apoptosis. J Biol Chem 276:38061-38067. 

Paik WK and Kim S (1971) Protein methylation. Science 174:114-119. 
Pascussi JM, Gerbal-Chaloin S, Drocourt L, Maurel P and Vilarem MJ (2003) The 

expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of 
nuclear and steroid receptors. Biochim Biophys Acta 1619:243-253. 

Pinder RM, Brogden RN, Speight TM and Avery GS (1977) Sodium valproate: a 
review of its pharmacological properties and therapeutic efficacy in epilepsy. 
Drugs 13:81-123. 

Plant N (2004) Strategies for using in vitro screens in drug metabolism. Drug Discov 
Today 9:328-336. 

Pockaj BA, Gallagher JG, Loprinzi CL, Stella PJ, Barton DL, Sloan JA, Lavasseur BI, 
Rao RM, Fitch TR, Rowland KM, Novotny PJ, Flynn PJ, Richelson E and Fauq 
AH (2006) Phase III double-blind, randomized, placebo-controlled crossover 
trial of black cohosh in the management of hot flashes: NCCTG Trial N01CC1. 
J Clin Oncol 24:2836-2841. 

Ponchaut S, Draye JP, Van Hoof F and Veitch K (1991a) Loss of hepatic cytochrome 
aa3 during chronic valproate treatment: dissociation of proton pumping and 
electron transport in Complex IV. Biochem Soc Trans 19:253S. 

Ponchaut S, Draye JP, Veitch K and Van Hoof F (1991b) Influence of chronic 
administration of valproate on ultrastructure and enzyme content of 
peroxisomes in rat liver and kidney. Oxidation of valproate by liver 
peroxisomes. Biochem Pharmacol 41:1419-1428. 

Ponchaut S, van Hoof F and Veitch K (1992a) Cytochrome aa3 depletion is the 
cause of the deficient mitochondrial respiration induced by chronic valproate 
administration. Biochem Pharmacol 43:644-647. 

Ponchaut S, van Hoof F and Veitch K (1992b) In vitro effects of valproate and 
valproate metabolites on mitochondrial oxidations. Relevance of CoA 
sequestration to the observed inhibitions. Biochem Pharmacol 43:2435-2442. 

Ponchaut S and Veitch K (1993) Valproate and mitochondria. Biochem Pharmacol 
46:199-204. 

Pons R and De Vivo DC (1995) Primary and secondary carnitine deficiency 
syndromes. J Child Neurol 10 Suppl 2 :S8-24. 

Pourreyron C, Dumortier J, Ratineau C, Nejjari M, Beatrix O, Jacquier MF, Remy L, 
Chayvialle JA and Scoazec JY (2003) Age-dependent variations of human and 
rat colon myofibroblasts in culture: Influence on their functional interactions 
with colon cancer cells. Int J Cancer 104:28-35. 

Rae JM, Johnson MD, Lippman ME and Flockhart DA (2001) Rifampin is a selective, 
pleiotropic inducer of drug metabolism genes in human hepatocytes: studies 
with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 
299:849-857. 

Raucy JL, Mueller L, Duan K, Allen SW, Strom S and Lasker JM (2002) Expression 
and induction of CYP2C P450 enzymes in primary cultures of human 
hepatocytes. J Pharmacol Exp Ther 302:475-482. 

Rebouche CJ (1992) Carnitine function and requirements during the life cycle. Faseb 
J 6:3379-3386. 

Rebouche CJ and Chenard CA (1991) Metabolic fate of dietary carnitine in human 
adults: identification and quantification of urinary and fecal metabolites. J Nutr 
121:539-546. 



 - 118 - 

Rebouche CJ and Engel AG (1980) Tissue distribution of carnitine biosynthetic 
enzymes in man. Biochim Biophys Acta 630:22-29. 

Rebouche CJ and Engel AG (1984) Kinetic compartmental analysis of carnitine 
metabolism in the human carnitine deficiency syndromes. Evidence for 
alterations in tissue carnitine transport. J Clin Invest 73:857-867. 

Rebouche CJ, Lombard KA and Chenard CA (1993) Renal adaptation to dietary 
carnitine in humans. Am J Clin Nutr 58:660-665. 

Rebouche CJ and Mack DL (1984) Sodium gradient-stimulated transport of L-
carnitine into renal brush border membrane vesicles: kinetics, specificity, and 
regulation by dietary carnitine. Arch Biochem Biophys 235:393-402. 

Rebouche CJ, Mack DL and Edmonson PF (1984) L-Carnitine dissimilation in the 
gastrointestinal tract of the rat. Biochemistry 23:6422-6426. 

Rebouche CJ and Paulson DJ (1986) Carnitine metabolism and function in humans. 
Annu Rev Nutr 6:41-66. 

Relling MV, Cherrie J, Schell MJ, Petros WP, Meyer WH and Evans WE (1991) 
Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in 
American black versus white subjects. Clin Pharmacol Ther 50:308-313. 

Rendic S and Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report 
summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab 
Rev 29:413-580. 

Rettenmeier AW, Prickett KS, Gordon WP, Bjorge SM, Chang SL, Levy RH and 
Baillie TA (1985) Studies on the biotransformation in the perfused rat liver of 2-
n-propyl-4-pentenoic acid, a metabolite of the antiepileptic drug valproic acid. 
Evidence for the formation of chemically reactive intermediates. Drug Metab 
Dispos 13:81-96. 

Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, 
Gonzalez FJ and Trager WF (1992) Hydroxylation of warfarin by human 
cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-
warfarin-drug interactions. Chem Res Toxicol 5:54-59. 

Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV and 
Gomez-Lechon MJ (2002) Cytochrome P450 expression in human 
hepatocytes and hepatoma cell lines: molecular mechanisms that determine 
lower expression in cultured cells. Xenobiotica 32:505-520. 

Roe CR, Millington DS, Maltby DA and Kinnebrew P (1986) Recognition of medium-
chain acyl-CoA dehydrogenase deficiency in asymptomatic siblings of children 
dying of sudden infant death or Reye-like syndromes. J Pediatr 108:13-18. 

Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, 
Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM and 
Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy 
postmenopausal women: principal results From the Women's Health Initiative 
randomized controlled trial. Jama 288:321-333. 

Sahi J, Hamilton G, Sinz M, Barros S, Huang SM, Lesko LJ and LeCluyse EL (2000) 
Effect of troglitazone on cytochrome P450 enzymes in primary cultures of 
human and rat hepatocytes. Xenobiotica 30:273-284. 

Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J and Trono D (2000) 
Reversible immortalization of human primary cells by lentivector-mediated 
transfer of specific genes. Mol Ther 2:404-414. 

Sandor A, Kispal G, Melegh B and Alkonyi I (1985) Release of carnitine from the 
perfused rat liver. Biochim Biophys Acta 835:83-91. 

Schnackenberg LK, Jones RC, Thyparambil S, Taylor JT, Han T, Tong W, Hansen 
DK, Fuscoe JC, Edmondson RD, Beger RD and Dragan YP (2006) An 



 - 119 - 

integrated study of acute effects of valproic acid in the liver using 
metabonomics, proteomics, and transcriptomics platforms. Omics 10:1-14. 

Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, 
Ramachandran V, Komoroski BJ, Venkataramanan R, Cai H, Sinal CJ, 
Gonzalez FJ and Schuetz JD (2001) Disrupted bile acid homeostasis reveals 
an unexpected interaction among nuclear hormone receptors, transporters, 
and cytochrome P450. J Biol Chem 276:39411-39418. 

Schuetz JD, Beach DL and Guzelian PS (1994) Selective expression of cytochrome 
P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 
4:11-20. 

Schuetz JD, Kauma S and Guzelian PS (1993) Identification of the fetal liver 
cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest 
92:1018-1024. 

Seim H, Ezold R, Kleber HP and Strack E (1980) [Metabolism of L-carnitine in 
enterobacteria]. Z Allg Mikrobiol 20:591-594. 

Seim H, Schulze J and Strack E (1985) Catabolic pathways for high-dosed L(-)- or 
D(+)-carnitine in germ-free rats? Biol Chem Hoppe Seyler 366:1017-1021. 

Sesaki S (2000) Molecular basis of organic anion and cation transport. Kidney Int 
57:1772-1773. 

Seth P, Wu X, Huang W, Leibach FH and Ganapathy V (1999) Mutations in novel 
organic cation transporter (OCTN2), an organic cation/carnitine transporter, 
with differential effects on the organic cation transport function and the 
carnitine transport function. J Biol Chem 274:33388-33392. 

Shapira Y, Glick B, Harel S, Vattin JJ and Gutman A (1993) Infantile idiopathic 
myopathic carnitine deficiency: treatment with L-carnitine. Pediatr Neurol 9:35-
38. 

Shimada T, Yamazaki H, Mimura M, Inui Y and Guengerich FP (1994) Interindividual 
variations in human liver cytochrome P-450 enzymes involved in the oxidation 
of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 
Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414-423. 

Silva JM, Morin PE, Day SH, Kennedy BP, Payette P, Rushmore T, Yergey JA and 
Nicoll-Griffith DA (1998) Refinement of an in vitro cell model for cytochrome 
P450 induction. Drug Metab Dispos 26:490-496. 

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, 
Bokesch H, Kenney S and Boyd MR (1990) New colorimetric cytotoxicity 
assay for anticancer-drug screening. J Natl Cancer Inst 82:1107-1112. 

Slaughter RL and Edwards DJ (1995) Recent advances: the cytochrome P450 
enzymes. Ann Pharmacother 29:619-624. 

Spaniol M, Bracher R, Ha HR, Follath F and Krahenbuhl S (2001a) Toxicity of 
amiodarone and amiodarone analogues on isolated rat liver mitochondria. J 
Hepatol 35:628-636. 

Spaniol M, Brooks H, Auer L, Zimmermann A, Solioz M, Stieger B and Krahenbuhl S 
(2001b) Development and characterization of an animal model of carnitine 
deficiency. Eur J Biochem 268:1876-1887. 

Spaniol M, Kaufmann P, Beier K, Wuthrich J, Torok M, Scharnagl H, Marz W and 
Krahenbuhl S (2003) Mechanisms of liver steatosis in rats with systemic 
carnitine deficiency due to treatment with trimethylhydraziniumpropionate. J 
Lipid Res 44:144-153. 

Sparagna GC, Hickson-Bick DL, Buja LM and McMillin JB (2000) A metabolic role for 
mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol 
Heart Circ Physiol 279:H2124-2132. 



 - 120 - 

Spornitz UM, Socin CD and Dravid AA (1999) Estrous stage determination in rats by 
means of scanning electron microscopic images of uterine surface epithelium. 
Anat Rec 254:116-126. 

Stanley CA (1987) New genetic defects in mitochondrial fatty acid oxidation and 
carnitine deficiency. Adv Pediatr 34:59-88. 

Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J and Bonnefont JP (1992) Brief 
report: a deficiency of carnitine-acylcarnitine translocase in the inner 
mitochondrial membrane. N Engl J Med 327:19-23. 

Steiber A, Kerner J and Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and 
functional perspective. Mol Aspects Med 25:455-473. 

Steiner E, Bertilsson L, Sawe J, Bertling I and Sjoqvist F (1988) Polymorphic 
debrisoquin hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 
44:431-435. 

Stieger B, O'Neill B and Krahenbuhl S (1995) Characterization of L-carnitine 
transport by rat kidney brush-border-membrane vesicles. Biochem J 309 ( Pt 
2):643-647. 

Strolin Benedetti M, Efthymiopoulos C, Sassella D, Moro E and Repetto M (1990) 
Autoinduction of rifabutin metabolism in man. Xenobiotica 20:1113-1119. 

Sussman NM and McLain LW, Jr. (1979) A direct hepatotoxic effect of valproic acid. 
Jama 242:1173-1174. 

Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y and Tsuji A (1998) 
Molecular and functional identification of sodium ion-dependent, high affinity 
human carnitine transporter OCTN2. J Biol Chem 273:20378-20382. 

Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M and Tsuji A 
(2000) Molecular and functional characterization of organic cation/carnitine 
transporter family in mice. J Biol Chem 275:40064-40072. 

Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M and Tsuji A (1997) Cloning 
and characterization of a novel human pH-dependent organic cation 
transporter, OCTN1. FEBS Lett 419:107-111. 

Tanaka E and Misawa S (1998) Pharmacokinetic interactions between acute alcohol 
ingestion and single doses of benzodiazepines, and tricyclic and tetracyclic 
antidepressants -- an update. J Clin Pharm Ther 23:331-336. 

Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, Wanders RJ, Fok TF and 
Hjelm NM (1999) Mutations of OCTN2, an organic cation/carnitine transporter, 
lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum 
Mol Genet 8:655-660. 

Tanphaichitr V, Horne DW and Broquist HP (1971) Lysine, a precursor of carnitine in 
the rat. J Biol Chem 246:6364-6366. 

Tennison MB, Miles MV, Pollack GM, Thorn MD and Dupuis RE (1988) Valproate 
metabolites and hepatotoxicity in an epileptic population. Epilepsia 29:543-
547. 

Thurston JH, Carroll JE, Dodson WE, Hauhart RE and Tasch V (1983) Chronic 
valproate administration reduces fasting ketonemia in children. Neurology 
33:1348-1350. 

Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts 
of total and oxidized glutathione: applications to mammalian blood and other 
tissues. Anal Biochem 27:502-522. 

Tirona RG, Leake BF, Wolkoff AW and Kim RB (2003) Human organic anion 
transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-
mediated pregnane X receptor activation. J Pharmacol Exp Ther 304:223-228. 



 - 121 - 

Todesco L, Torok M, Krahenbuhl S and Wenk M (2003) Determination of -3858G-->A 
and -164C-->A genetic polymorphisms of CYP1A2 in blood and saliva by rapid 
allelic discrimination: large difference in the prevalence of the -3858G-->A 
mutation between Caucasians and Asians. Eur J Clin Pharmacol 59:343-346. 

Tomomura M, Imamura Y, Horiuchi M, Koizumi T, Nikaido H, Hayakawa J and 
Saheki T (1992) Abnormal expression of urea cycle enzyme genes in juvenile 
visceral steatosis (jvs) mice. Biochim Biophys Acta 1138:167-171. 

Tomomura M, Imamura Y, Tomomura A, Horiuchi M and Saheki T (1994) Abnormal 
gene expression and regulation in the liver of jvs mice with systemic carnitine 
deficiency. Biochim Biophys Acta 1226:307-314. 

Treem WR, Stanley CA, Finegold DN, Hale DE and Coates PM (1988) Primary 
carnitine deficiency due to a failure of carnitine transport in kidney, muscle, 
and fibroblasts. N Engl J Med 319:1331-1336. 

Turnbull DM, Bartlett K, Stevens DL, Alberti KG, Gibson GJ, Johnson MA, McCulloch 
AJ and Sherratt HS (1984) Short-chain acyl-CoA dehydrogenase deficiency 
associated with a lipid-storage myopathy and secondary carnitine deficiency. 
N Engl J Med 311:1232-1236. 

Turnbull DM, Bone AJ, Bartlett K, Koundakjian PP and Sherratt HS (1983) The 
effects of valproate on intermediary metabolism in isolated rat hepatocytes 
and intact rats. Biochem Pharmacol 32:1887-1892. 

Uebelhack R, Blohmer JU, Graubaum HJ, Busch R, Gruenwald J and Wernecke KD 
(2006) Black cohosh and St. John's wort for climacteric complaints: a 
randomized trial. Obstet Gynecol 107:247-255. 

VanDyke DH, Griggs RC, Markesbery W and Dimauro S (1975) Hereditary carnitine 
deficiency of muscle. Neurology 25:154-159. 

Vassault A ed (1983) Lactate dehydrogenase. VHC, Weinheim. 
Vaz FM, Scholte HR, Ruiter J, Hussaarts-Odijk LM, Pereira RR, Schweitzer S, de 

Klerk JB, Waterham HR and Wanders RJ (1999) Identification of two novel 
mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum 
Genet 105:157-161. 

Vaz FM and Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 
361:417-429. 

Wagner CA, Lukewille U, Kaltenbach S, Moschen I, Broer A, Risler T, Broer S and 
Lang F (2000) Functional and pharmacological characterization of human 
Na(+)-carnitine cotransporter hOCTN2. Am J Physiol Renal Physiol 279:F584-
591. 

Waldhauser KM, Torok M, Ha HR, Thomet U, Konrad D, Brecht K, Follath F and 
Krahenbuhl S (2006) Hepatocellular toxicity and pharmacological effect of 
amiodarone and amiodarone derivatives. J Pharmacol Exp Ther 319:1413-
1423. 

Wanders RJ, Denis S, Ruiter JP, Schutgens RB, van Roermund CW and Jacobs BS 
(1995) Measurement of peroxisomal fatty acid beta-oxidation in cultured 
human skin fibroblasts. J Inherit Metab Dis 18 Suppl 1 :113-124. 

Wang Y, Taroni F, Garavaglia B and Longo N (2000) Functional analysis of 
mutations in the OCTN2 transporter causing primary carnitine deficiency: lack 
of genotype-phenotype correlation. Hum Mutat 16:401-407. 

Wang Y, Ye J, Ganapathy V and Longo N (1999) Mutations in the organic 
cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl 
Acad Sci U S A 96:2356-2360. 

Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, Willson 
TM, Kliewer SA and Redinbo MR (2001) The human nuclear xenobiotic 



 - 122 - 

receptor PXR: structural determinants of directed promiscuity. Science 
292:2329-2333. 

Wedlund PJ, Aslanian WS, McAllister CB, Wilkinson GR and Branch RA (1984) 
Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new 
oxidative drug metabolism polymorphism. Clin Pharmacol Ther 36:773-780. 

Wei Y, Wang D, Topczewski F and Pagliassotti MJ (2006) Saturated fatty acids 
induce endoplasmic reticulum stress and apoptosis independently of ceramide 
in liver cells. Am J Physiol Endocrinol Metab 291:E275-281. 

Westerink WM and Schoonen WG (2007) Cytochrome P450 enzyme levels in HepG2 
cells and cryopreserved primary human hepatocytes and their induction in 
HepG2 cells. Toxicol In Vitro. 

Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M 
and Oscarson M (2001) Cloning and tissue distribution of a novel human 
cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res 
Commun 281:1349-1355. 

Whiting PW, Clouston A and Kerlin P (2002) Black cohosh and other herbal remedies 
associated with acute hepatitis. Med J Aust 177:440-443. 

Wilkening S and Bader A (2003) Influence of culture time on the expression of drug-
metabolizing enzymes in primary human hepatocytes and hepatoma cell line 
HepG2. J Biochem Mol Toxicol 17:207-213. 

Wilkening S, Stahl F and Bader A (2003) Comparison of primary human hepatocytes 
and hepatoma cell line Hepg2 with regard to their biotransformation properties. 
Drug Metab Dispos 31:1035-1042. 

Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ and Linnane AW (1994) 
Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339:40-
44. 

Wrighton SA and Vandenbranden M (1989) Isolation and characterization of human 
fetal liver cytochrome P450HLp2: a third member of the P450III gene family. 
Arch Biochem Biophys 268:144-151. 

Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH and Ganapathy V 
(2000) Structural and functional characteristics and tissue distribution pattern 
of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim 
Biophys Acta 1466:315-327. 

Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ 
and Ganapathy V (1999) Functional characteristics and tissue distribution 
pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine 
transporter. J Pharmacol Exp Ther 290:1482-1492. 

Wu X, Prasad PD, Leibach FH and Ganapathy V (1998) cDNA sequence, transport 
function, and genomic organization of human OCTN2, a new member of the 
organic cation transporter family. Biochem Biophys Res Commun 246:589-
595. 

Zaccara G, Messori A and Moroni F (1988) Clinical pharmacokinetics of valproic 
acid--1988. Clin Pharmacokinet 15:367-389. 

Zafrani ES and Berthelot P (1982) Sodium valproate in the induction of unusual 
hepatotoxicity. Hepatology 2:648-649. 

Zimmerman HJ and Ishak KG (1982) Valproate-induced hepatic injury: analyses of 
23 fatal cases. Hepatology 2:591-597. 

 
 
 
 



 - 123 - 

12 Curriculum Vitae 
 
 
Personal data Andrea-Caroline Knapp 
 Genossenschaftsstrasse 4 
 4132 Muttenz 
 Phone: 0041 61 461 88 20 
 Mobile: 0041 79 772 60 37 
 
 Date of Birth: 02.06.1976 in Basel, Switzerland 
 Citizenship: Austria 
 Marital status: Single 

 
 
 
 

Education 
 
01/2003 – 10/2007 PhD thesis, Division of Clinical Pharmacology and Toxicology, University 

Hospital Basel, Switzerland 
 
  
11/2002 Master of Science (Pharmacy), University of Innsbruck, Austria 
 
 
05/2002 – 09/2002 Diploma Thesis, Institute of Pharmaceutical Chemistry, University of Innsbruck, 

Austria 
• Thesis topic: “Synthesis of thioureas as potential NNRT inhibitors” 
 

 
1995 – 2002  Study of Pharmacy, University of Innsbruck, Austria 
 
 
1990-1995 BHS Commercial School, Feldkirch, Austria 
 
 

 
 

Professional Experiences 
 
11/2007 – current Clinical Research Coordinator, CCRC (Clinical Cancer Research Center), 

Department of Oncology, University Hospital Basel, Switzerland 
 

• Tasks:  
o Participation in planning of local study conduct 
o General conduction of trials 
o Clinical data management 
o In site monitoring 
o Drug accountability, ordering and storage 
o Monitoring of medication administration and dose modifi-

cation 
o Report SAEs and resolve queries 
o Contribute to the preparation of clinical study budget 
o Preparing key documents for submission to Ethics Committee 
o Safeguarding adherence to ICH-GCP, protocol, national 

regulations and local SOPs 
 
 
 



 - 124 - 

01/2003 – 10/2007 PhD student, Division of Clinical Pharmacology and Toxicology, University 
Hospital Basel, Switzerland 

 
• Thesis topic:  “Characterization of in vitro and in vivo models for the 

investigation of hepatotoxicity” 
 

• Other tasks: 
o Clinical Pharmacological Service of the Univerisity Hospital 

Basel (KLIPS) 
� Answering inquiries concerning pharmacological, 

toxicological or drug safety questions  
� Presentation of current pharmacological topics 
 

o Therapeutic Drug Monitoring (TDM) 
� Monitoring and Evaluation of drug concentrations 

and dose adjustments 
 

o Assisting in clinical trials 
 
 
 
2003 – 2006 Assistant at the practical course “Pharmacology and Toxicology”, University 

Hospital Basel, Switerzland 
 
 
05/2005 – 10/2005 Supervisor of a diploma student, Division of Clinical Pharmacology and 

Toxicology, University Hospital Basel, Switzerland 
 
 
06/2003 – 10/2003 Internship at the Division of Clinical Pharmacology and Toxicology, University 

Hospital Basel, Switzerland 
 
 
06/1999 – 11/1999 Research associate, Institute of Pharmaceutical Chemistry, University of 

Innsbruck, Austria 
o Synthesis of antiviral agents 

 
 
1997 & 1998 Part time employee at Hilcona AG, Schaan, Liechtenstein 

o Quality assurance 
o Secreterial work 

 
 
1995 & 1996 Internship at the Hospital Pharmacy of the Liechtensteinisches Landesspital, 

Vaduz, Liechtenstein 
 
 

 

 

Qualifications & Additional Courses 
 
 
2008 SAKK Annual Training for Clinical Research Coordinators 

 
 
 Pharmathemen – New Therapies in Oncology 
 
 
2006 “Good Clinical Practice”, EKBB and University Hospital Basel, Switzerland 
 
 
2003 – 2005 Graduate Study Program and passed exam in “Key Issues in Drug Discovery 

and Development” 



 - 125 - 

 
 
2004 Advanced training course “Strategies and trends in pharmaceutical 

development and production”, Pharmacenter Basel-Zürich, University Basel, 
Switzerland 

 
 
 
 

Computer skills 
 
MS-Office (Word, Excel, Powerpoint), Internet Explorer, Literature retrieval, Corel Draw and Paint, Adobe 
Photoshop, Primer Express, Endnote, GraphPrism, SigmaPlot etc 
 

 
 

 

Languages 
 
German mother tongue 
English good speech and writing abilities 
Spanish intermediate speech and writing abilities 
French basic speech and writing abilities 
Italian basic speech and writing abilities 
 

 

 

Memberships 
 
Since 2003 Member of the SAV (Swiss society of pharmacy) 
Since 2007 Member of the Swiss Group for Clinical Cancer Research (SAKK) 
 

 

 

 

Publication Record 

 

Andrea Caroline Knapp, Liliane Todesco, Michael Török, Konstantin Beier, Stephan Krähenbühl. Effect of 
carnitine deprivation on carnitine  homeostasis and energy metabolism in mice with systemic carnitine 
deficiency. Ann Nutr Metab 2008 Apr; 52:136. 

 
Andrea Caroline Knapp, Liliane Todesco, Konstantin Beier, Luigi Terracciano, Hans Sägesser, Jürg 
Reichen, Stephan Krähenbühl. Toxicity of valproic acid in an animal model with impaired β-oxidation 
associated with carnitine deficiency. J Pharmacol Exp Ther. 2008 Feb;324:568. 

Saskia Lüde, Michael Török, Sandy Dieterle, Andrea Caroline Knapp, Robert Kaeufeler, René Jäggi, Udo 
Spornitz, Stephan Krähenbühl. Hepatic effects of cimicifuga racemosa extract in vivo and in vitro. Cell 
Mol Life Sci. 2007;64:2848. 

 
 


