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1. SUMMARY 

Solid-phase peptide synthesis (SPPS) was first developed by Bruce Merrifield for 

the synthesis of polypeptides. In 1984, he was awarded with the Nobel Prize “for his 

development of methodology for chemical synthesis on a solid matrix”. Compared to 

solution-phase methods, solid-phase chemistry offers many advantages in terms of 

efficiency as well as purification procedures. Particularly for longer peptide sequences, 

in solution-phase chemistry the isolation of all peptide intermediates is required, 

whereas in a solid-phase approach simple wash and filter procedures enable the entire 

automation. 

In organic chemistry, there is the goal to produce pure compounds with the 

highest possible efficiency. But the frequent nonexistence of suitable separation and 

purification methods often makes it impossible to fulfill these requirements. Thus, also 

in SPPS purification frequently limits the success of the synthesis. While a number of 

small proteins have been successfully assembled, practical limitations regarding the 

ability to purify and characterize the mixtures that inevitable result from less than 

complete reactions as well as side reactions limit most efforts to synthesize peptides 

with more than 100 amino acid residues. 

Our approach to overcome these limitations is based on affinity purification 

strategies frequently applied to the purification of recombinant proteins. Immobilized 

metal ion affinity chromatography (IMAC) has become the most common method for 

the purification of proteins carrying either a C- or N-terminal histidine (His)-tag. This 

short amino acid sequence is able to bind to Ni2+ immobilized on a nitrilotriacetic acid 

(NTA) column. Despite its broad application in protein purification, only little is 

known about the binding properties of the His-tag, and therefore almost no 

thermodynamic and kinetic data are available. In a first phase, the binding mechanism 

of the His-tag to Ni2+-NTA was investigated. Different series of histidine-containing 

peptide tags were synthesized using automated solid-phase peptide synthesis (SPPS). 

Binding to Ni2+-NTA was analyzed both qualitatively and quantitatively with surface 

plasmon resonance (SPR) using commercially available NTA sensor chips. The 

hexahistidine-tag showed an apparent equilibrium dissociation constant (KD) of 

14 nM. This was the best affinity found for all synthesized peptides. Furthermore, it 
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could be demonstrated that two histidines separated by either one or four residues are 

the preferred binding motifs for Ni2+-NTA. Elongation of such a binding motif led to a 

decrease in binding affinity, probably due to increased entropy costs upon binding. 

To reduce the entropy costs, short three amino acid tags were designed with 

decreased rotational freedom to fix the two histidine residues in the binding 

conformation, as it was the case with His-Aib-His. Compared to the His-Gly-His  

(KD = 54 µM) the binding affinity could be decreased by a factor of 1.5 with the 

aminoisobutyric acid (Aib) at position 2 to a KD of 36 µM. 

1,10-Phenanthroline and derivatives thereof show a high potential as a tag binding 

to Ni2+-NTA and were analyzed in the Biacore assay. The high binding affinity of 

1,10-phenanthroline (KD = 650 nM) is mainly based on a slow dissociation rate 

constant (koff) with a half-life time of about 5 min. Different parameters, such as the 

charge transfer between the binding nitrogen and nickel, rigidity, and additional 

interactions between the binding partners were found to influence the binding affinity. 

Among these factors, solubility played the most crucial role. Ligands establishing on 

the side directed towards the solvent a well-organized solvation shell, showed 

improved binding properties for the Ni2+-surface. Therefore, 5-amino-1,10-

phenanthroline (KD = 407 nm) binds with a 1.6-fold higher affinity to Ni2+-NTA than 

1,10-phenanthroline (KD = 650 nM). On the side involved in binding however, a 

weaker solvation is desired, because the removal of strongly bound solvent molecules 

prior to the binding lowers the gain of enthalpy in the process of the complex 

formation. In parallel to the Biacore assay, a computational approach to predict 

binding affinities of various ligands to Ni2+-NTA was developed by Dr. Martin 

Smiesko, a member of the Institute of Molecular Pharmacy. 

To study the phenanthroline-tag and demonstrate its suitability for SPPS, the 

following simple strategy was chosen: Phenanthroline was coupled via an acrylate 

spacer to the N-terminal of a test peptide. Interestingly, the affinity purification of the 

test peptide proved to be superior to the standard HPLC purification method and 

afforded a pure product with a yield of 43% compared to 34% for the HPLC 

purification. The potential of the new tag could also be demonstrated in a Biacore 

assay with the phenanthroline-tagged peptide, where a stable immobilization could be 
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achieved despite the negative influence of the peptide on the binding affinity, which 

led to a 20-fold increase in KD. 

After Ni2+-NTA purification of a tagged protein, the tag has to be cleaved. For this 

purpose, a photolabile linker was introduced between the phenanthroline and the 

peptide. Due to the poor solubility, the synthesis of the tag-photolinker construct did 

work with only 11% yield. Because only small amounts of the phenanthroline-

photolinker-construct could be purified, the photolinker approach was abandoned. 

Finally, a screen to identify new tags using the Biacore and the computational 

model resulted in a promising scaffold, the picolinic acid. The 6-amino-picolinic acid 

turned out to be the best representative with a KD of 10.9 µM. The aromatic nitrogen 

and one oxygen of the carboxylic acid occupy the two available coordination sites of 

Ni2+-NTA. Compared to picolinic acid, the binding affinity was 1.4-fold increased due 

to the interaction of the anilinic nitrogen with the carboxylic acid of the NTA chelate. 

With this work a new purification strategy using phenanthroline-tags could be 

presented. Furthermore, the knowledge about the binding properties of Ni2+-NTA 

binding tags was increased. This may add to the development of new tags as presented 

for the picolinic acid. 
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2. ABBREVIATIONS 

Aib Aminoisobutyric acid 

Arg L-Arginine 

Asp L-Aspartic acid 

Bipy 2,2’-Bipyridyl 

BOP Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium 

hexafluorophosphate 

CSD Cambridge Structural Database 

DMA N,N-Dimethylacetamide 

DMF N,N-Dimethylformamide 

DABS-Cl 4-(4-Dimethylaminophenylazo)benzenesulfonyl chloride 

dba 1,5-Diphenyl-1,4-pentadien-3-one 

DCC N,N’-Dicyclohexylcarbodiimide 

DCU N,N’-Dicyclohexylurea 

DIPCDI N,N’-Diisopropylcarbodiimide 

DIPEA N,N-Diisopropylethylamine 

Dtt Dithiothreitol 

EDC•HCl 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

Gly Glycine 

HATU 2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium 

hexafluorophosphate 

HBTU 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 

HCTU 5-Chloro-1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-

oxide hexafluorophosphate 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

His L-histidine 

His-tag Hexahistidine-tag 

HMBA 4-Hydroxymethylbenzoic acid 

HOBt 1-Hydroxybenzotriazole 

HPLC High-performance liquid chromatography 
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HR-MS High resolution mass spectrometry 

IDA Iminodiacetic acid 

IFC Integrated fluidic cartridge 

IMAC Immobilized metal (ion) affinity chromatography 

IMAP Immobilized metal (ion) affinity partitioning 

IMAGE Immobilized metal (ion) affinity gel electrophoresis 

IMACE Immobilized metal (ion) affinity capillary electrophoresis 

KA Equilibrium association constant 

KD Equilibrium dissociation constant 

kon Association rate constant 

koff Dissociation rate constant 

Lys L-Lysine 

MBHA 4-Methylbenzhydrylamine 

MS Mass spectrometry 

NAPamide [Nle4, Asp5, D-Phe7, Lys11]-MSH4-11 

Ni-NTA [Ni(II)(nta)] - complex 

Nle L-Norleucine 

NTA Nitrilotriacetic acid 

o/n over night 

PAM 4-hydroxymethyl-phenylacetamidomethyl 

PEG Polyethylene glycol 

Phe L-Phenylalanine 

Phen 1,10-Phenanthroline 

PL Photolinker, photolabile linker 

PPOA 4-Propionylphenoxy-acetic acid 

RAM Rink amide 

rt Room temperature 

Sar Sarcosine 

SD Standard deviation 

S-Phos 2-Dicyclohexylphosphino-2’,6’-dimethoxybiphenyl 

SPR Surface plasmon resonance 

TBAF Tetrabutylammounium fluoride 
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TBTU 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

tetrafluoroborate 

TCTU 1-[Bis(dimethylamino)methylene]-5-chloro-1H-benzotriazolium-3-

oxide tetrafluoroborate 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

tR Retention time 

Trp L-Tryptophan 

T1/2 Half-life time 

µW Microwave 

X-Phos 2-Dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl 
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3. INTRODUCTION 

Proteins form together with carbohydrates, lipids, and nucleic acids the 

“molecules of life”. They are present in various forms in every living cell and structure 

the body of multicellular organisms in the form of skin, hair, callus, cartilage, muscles, 

tendons, and ligaments. As enzymes, hormones, antibodies, and globulins, they are 

involved in the control of chemical processes and transport of biomolecules, e.g. in the 

form of hemoglobin and myoglobin as carrier proteins for oxygen. The vide variety of 

their physiological function is also shown in their physical properties: Silk as a flexible 

fiber, horn as a tough rigid solid, and the enzyme pepsin, which forms water soluble 

crystals. 

Nowadays, large biotechnology-based initiatives, like the Human Genome 

Project [1], as well as the improved understanding of fundamental biological 

processes, provides a huge number of new protein sequences. This leads to a rapid 

increase in the number of novel or important targets for drugs and agricultural 

applications. Therefore, there is a high demand of these new targets in at least micro- 

to multimilligram quantities. Obviously, access to these proteins should be provided 

within the shortest possible time frame. Mainly three different approaches are used to 

fulfill this requirement: (a) Isolation of native proteins, (b) recombinant expression of 

proteins in genetically engineered microorganisms or animals, and (c) chemical 

synthesis. Each approach has its own advantages and disadvantages. The selection of 

the feasible approach is driven by protein size, desired mutants or derivatives (such as 

post-translational modifications and isotopic labeling), time constraints, and 

economics. 

Although most of the proteins have been obtained by recombinant methods, these 

approaches often suffer from the time used to generate milligram quantities. Formation 

of inclusion bodies, misfolding, and low expression levels further decreases the 

efficiency of this method [2]. Additionally, expressed heterogeneity and biological 

contamination (e.g. DNA impurities or endotoxins), may affect their use or activity. 

A good solution to circumvent the above mentioned drawbacks is provided by 

their chemical synthesis. Besides avoiding biological contaminations, such a purely 

synthetic approach offers the possibility to incorporate unnatural amino acids or other 
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chemical modifications that may improve protein efficacy. Finally, introduction of 

biochemical or biophysical probes is facilitated in a fully synthetic approach [3]. 

Nowadays, the synthetic approach allows only the routine synthesis of small 

proteins with up to 50 amino acids. There are few examples of longer chains, such as 

ribonuclease A (124 residues) [4] and human immunodeficiency virus (HIV)-1 TaT 

(86 residues) [5, 6], or the green fluorescent protein, a 238-residue peptide chain [6]. 

Therefore, synthetic methods are mainly restricted to peptides rather than to proteins.  

The name “peptide” was introduced from Emil Fischer [5] and is built from 

“pepton” (cleavage products of digestion of Pepsin; from greek peptos = digested) and 

polysaccharide, which are also built from monomeric building blocks. Therefore, 

peptides are just smaller versions of proteins. A clear dividing line between peptides 

and proteins is not defined, as the numbers of residues vary between 50 and several 

hundreds. In the following section an overview about the current methods used in 

peptide synthesis is given. 
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3.1. Peptide Synthesis 

In 1907, Emil Fischer initiated peptide chemistry by the synthesis of the dipeptide 

glycylglycine, obtained by hydrolysis of the diketopiperazine of glycine. However, 

already twenty years ago, Theodor Curtius synthesized the first N-protected dipeptide, 

benzoylglycylglycine, by treating the silver salt of glycine with benzoyl chloride [7]. 

Furthermore in 1904, he developed the first practical method for peptide synthesis, the 

azide coupling procedure, which enabled the synthesis of benzoylglycine peptides of 

various length [8]. In addition, only one year later, Emil Fischer presented a new 

method for the synthesis of peptides via acylchlorides, prepared from the 

corresponding free amino acid using PCl5 in acetyl chloride as solvent [9].  

 

3.1.1. Solid-phase Peptide Synthesis 

Nowadays, peptides are mainly synthesized applying to the solid-phase strategy 

developed by Merrifield [10]. The genious idea of this strategy is to couple the first 

amino acid via its carboxylic acid to an insoluble and filtratable polymer and then to 

build up the peptide chain from its C-terminal end (Scheme 1).  

The great advantage of this approach compared to solution-phase methods is the 

simplification of the synthetic procedure. In solution-phase methods, the product has 

to be isolated and purified after each reaction, prior to the next coupling step. In solid-

phase peptide synthesis, byproducts are simply removed by washing the product 

immobilized on an insoluble support. Furthermore, the repetitive steps of the 

synthesis, i.e. deprotection, washing, coupling, washing, and again deprotection allows 

the use of a single reaction vessel and the automation of the peptide synthesis. For this 

fundamental contribution to peptide synthesis, Bruce Merrifield was awarded with the 

Nobel Prize in chemistry in 1984. The process of the Merrifield synthesis is now 

performed on automated synthesizers that can assemble sequences of up to 50 amino 

acids in a few days. 
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Scheme 1: Schematic principle of solid-phase peptide synthesis. X: protecting groups of amino acid 
side chains; Y: Nα-protecting group. 

 

Generally, peptide synthesis is based on the appropriate combination of protecting 

groups and an efficient method for the activation of the carboxyl group prior to 

reaction with the amino terminal. Protecting groups have to prevent on one hand bond 

formation between two incoming amino acids (N-terminal protecting group), and on 

the other hand formations between the incoming amino acids and side chain 

functionalities (side chain protecting groups). In the Merrifield synthesis, the C-

terminal is protected by the polymeric carrier. 

For the Merrifield synthesis mainly, two protection schemes have been developed. 

The first one is the tert-butoxycarbonyl (Boc)/benzyl (Bzl) strategy, which depends on 

the different acid lability of the N-terminal protecting group (Boc) and the side-chain 

protecting group (Bzl) as described in the original publication of Merrifield [10]. The 

main drawback of this strategy is the use of hydrogen fluoride (HF) for the final 

cleavage and deprotection of the peptide. This procedure leads to various side 
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reactions, such as Friedel-Crafts reactions between aromatic groups of the resin and 

the side chains of the peptide, and/or promotion of an N→O acyl shift involving the 

side-chain groups of serine and threonine. For this purpose, Tam et al. developed a 

two-stage deprotection protocol. In a first step, low HF concentrations were used, 

followed by a second with higher concentrations, which minimized the occurrence of 

these side-reactions [11].  

The second protection strategy was developed by L. A. Carpino and G. Y. 

Han [12] and is based on the use of the base labile 9-fluorenylmethyloxycarbonyl 

(Fmoc) group for the protection of α–amino groups. This allows the orthogonal 

protection of side-chain functions with acid labile protecting groups (Figure 1). 

 

 
Figure 1: Fmoc strategy in solid-phase peptide synthesis. The Fmoc-group is cleaved under basic conditions with 
piperidine, while the side chain protecting groups and the linker are cleaved under acidic conditions using TFA. 

 

The first solid support used in solid-phase peptide synthesis was a styrene-

divinylbenzene co-polymer, functionalized by chlorination of benzyl groups. The 

benzyl chloride was then be used to anchor the C-terminal amino acid via an ester 

linkage to the solid support. Thus, when the product of the SPPS was cleaved from the 

solid support a carboxylic acid was obtained at the C-terminal. Later on, a broad 

variety of resins were developed leading to different functionalities at the C-terminal 

such as acids (Wang resin, 2-chlorotrityl resin, Merrifield, (4-hydroxymethyl)-
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phenylacetamidomethyl (PAM), oxime resin), amides (Rink amide (RAM), 4-

methylbenzhydrylamine (MBHA) resin), thioesters (4-sulfamylbutyryl resin), or 

alcohols (4-hydroxymethylbenzoic acid (HMBA) resin). Furthermore, oxime resins 

and 4-hydrazinobenzoyl resins are useful to generate esters, whereas the latter is also 

used for C-terminal thioesters and amides depending on the reagents used for the 

cleavage reaction. Finally, brominated PPOA ([4-(2-bromopropionyl)phenoxy]-acetic 

acid) resins are used for the generation of C-terminal peptide hydrazides.  

The following properties of solid supports proposed by Miranda et al. use to be 

crucial for the success [13]: (a) particles should be of consistent shape and size to elicit 

a certain robustness; (b) they should be inert to all reagents and reaction conditions 

applied in the reaction cycles; (c) they should allow a fast solvent and reagent 

diffusion and access to all reactive sites; and finally (d) the particles should contain 

functionality to enable efficient anchoring of the linker or the first amino acid. 

The most widely used resins are made of polystyrene or polyethylene glycol. As 

already mentioned, Merrifield used a polystyrene resin with 1% divinylbenzene 

(PS-DVB) for his synthesis. However, different batch-to-batch results of peptide 

syntheses clearly demonstrated that. slight variations in the swelling properties or the 

degree of functionalization may substantionally influence the synthetic outcome [14]. 

To increase the diffusion rates, a problem that inevitably arises in heterogeneous 

reactions, polyethylene glycol (PEG) spacers are anchored to the polystyrene beads, as 

demonstrated with TentaGel S RAM resin [15]. These resins however, are slightly 

unstable when treated with TFA [16], a problem that can be avoided with polyethylene 

glycolamine linkers (PEGA) [17]. These linkers show improved diffusion rates, but do 

not cause problems upon TFA treatment.  

Thermodynamically, peptide bond formation is not favored, because of the highly 

stable ammonium carboxylate formed by the two starting materials (Scheme 2) [18]. 

 

 

Scheme 2: The carboxylic acid forms a thermodynamically stable salt with the primary amine, which 
inhibits the formation of the amide. 
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A condensation of the salt requires elevated temperatures of 160 – 180°C [19] 

leading to degradation of the growing peptide. Therefore, the acid has to be activated 

by the attachment of a leaving group to support the nucleophilic attack by the amino 

group. Carboxylic acids are generally activated either by carbodiimides, formation of 

symmetrical anhydrides (anhydride formed from equivalent of the same amino acid), 

or formation of active esters. Since low yields, racemization, or degradation often 

accompany amide formation, coupling procedures are optimized not. only to provide 

high yields, but also to prevent racemization.  

In solution-phase peptide synthesis, racemization is encountered upon activation 

of the acid (i – iii ), which might lead to the formation of an oxazolone (iv). Under mild 

basic conditions, the oxazolone is deprotonated into a conjugated anionic 

intermediate (v). Since reprotonation occurs not enantioselectively, racemates of 

oxazolones are obtained (vi and viii ). Because both react with the amino terminal of 

the growing peptide chains, chirality gets lost leading to an DL- (vii ) and a LL-

peptide (ix) (Scheme 3). 

 

 

Scheme 3: Racemization via oxazolone mechanism. R1, R2: side chain residues. 
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In SPPS, this mechanism is prevented due to the fact that peptides are grown at 

the N-terminus and Nα-protected amino acids are used. Nevertheless, racemization 

might also occur due to a reversible proton exchange on the Cα-atom forming the 

carbanion as observed with activated cysteine or histidine residues [20, 21]. Similar to 

the oxazolone mechanism, reattachment of the proton is able to occur from both sides 

leading again to a racemic mixture.  

Activation of the carboxylic acid allows to overcome the thermodynamic 

restrictions of the peptide bond formation as already mentioned above. Carbodiimides 

are highly popular as in situ activating reagents. In 1950, dicyclohexylcarbodiimide 

(DCC) was reported as an excellent coupling reagent for the apolar environment of 

polystyrene resins [22]. The mechanism of the reaction is depicted in Scheme 4 [23]. 

 

 

Scheme 4: Peptide coupling via carbodiimide. R: cyclohexyl residue; 
R1: carboxy moiety; R2: amino moiety. 

 

The anion of the carboxylate (iii ) is added to the protonated carbodiimide (iv) 

forming the highly reactive carbamimidic anhydride (v), which further reacts with 

amine vi to form amide vii  dicyclohexylurea (DCU, viii ) as a byproduct. The major 

drawback of DCC is the poor solubility of DCU in dichloromethane, the most 

common solvent used for the coupling reaction. A solution to this problem are 

modified carbodiimides as diisopropylcarbodiimide (DIPCDI) [24], tert-

butylmethylcarbodiimide [25], or 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride (EDC•HCl), which form more soluble products. 
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Symmetrical anhydrides are mainly used in combination with the Boc 

strategy [26, 27]. They are formed in situ using two equivalents of the protected amino 

acid and one equivalent of the DCC. Therefore, this approach wastes one equivalent of 

the amino acid reagent. As the formation of anhydrides is much faster in DCM than in 

DMF, Boc-protected amino acids are used for solubility reasons. Fmoc-protected 

amino acids, e.g. Gly, Ala, Nle, Cys(Acm), Gln(Mbh) are not soluble in DCM. 

Therefore, the addition of DMF is required for the formation of anhydrides [28]. 

The successful active ester method has been extensively studied [29] and is 

nowadays the most widely used method in solid-phase peptide synthesis. The peptide 

bond is formed via the BAc2-mechanism. The amino group of R1NH2 (i) nucleophilicly 

attacks the carboxyl carbon of ii  leading to the tetrahedral intermediate iii  (Scheme 5).  

 

 

Scheme 5: Formation of peptide bond via BAc2 mechanism. R1: amino moiety; R2: carboxy moiety; 
R3: leaving group. 

 

Formation of iii  is the rate determining step in this reaction. It can be positively 

influenced by activating the carboxy component with electron withdrawing groups. 

The second step, the peptide bond formation, is fast, if the C-X bond in iii  is highly 

polarized. 

The 1-hydroxybenzotriazolyl- (OBt) esters, which are formed in situ for example 

from DIPCDI and HOBt, are the most frequently used active esters following the 

mechanism described above. In situ activating agents are widely accepted in solid-

phase peptide synthesis, as they lead to fast reactions even between sterically hindered 

amino acids. In addition, their use is generally free from side reactions. Most are based 

on phosphonium or aminium (formerly known as uronium) salts. The most commonly 

employed compounds are listed in Figure 2. 
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Figure 2: Structures of the most common coupling reagents to form active esters for peptide coupling. 

 

Castro et al. developed the highly efficient phosphonium reagent benzotriazole-1-

yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) [30]. 

However, BOP has a strong tendency to racemization [31] and during the reaction the 

toxic byproduct hexamethylphosphoramide is formed. As an alternative, 

benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) 

was developed [32]. The cytotoxic aminium salt HBTU is often replaced by the 

tetrafluoro borate TBTU [33]. 

Besides OBt esters, 1H-hydroxy-7-azabenzotriazole (OAt) esters show an 

increased reactivity due to the formation of a transition state stabilized by an additional 

H-bond as suggested by Carpino et al. [34]. This increases the aminolytic reactivity 

and additionally inhibits racemization with a high efficiency. In the transition state the 

amino component is fixed in a certain orientation facilitating the nucleophilic attack, 

whereas the oxazolone formation is significantly reduced due to the low activation of 

the ester group (Scheme 6).  

 



Introduction 

23 

 

Scheme 6: Intramolecular base catalysis of HATU during aminolysis of OAt esters. 
R1: carboxy moiety; R2: amino moiety. 

 

6-chlorobenzotriazole (OCt) esters have demonstrated a reactivity comparable to 

OAt esters. They can be formed with 5-chloro-1-[bis(dimethylamino)methylene]-1H-

benzotriazolium 3-oxide hexafluoro-phosphate (HCTU) or its tetrafluoroborate variant 

TCTU. They were found to be nontoxic, stable in DMF, and available at much lower 

costs [35]. 

Less important as activated species are pentafluorophenyl (OPfp) esters [36]. 

Although they react significantly slower than e.g. symmetrical anhydrides, they 

showed only little side reactions during the amide bond formation. However, with 

some amino acids, the generation of the OPfp esters is cumbersome as they do not 

crystallize and are difficult to purify.  

N-hydroxysuccinimide esters [37] are highly popular as they are easy to 

crystallize and show a high aminolysis activity. Additionally, due to their hydrolytic 

stability, they allow peptide synthesis in mixtures of H2O with organic solvents 

(EtOH/water, dioxane/water, THF/water). 

Finally, the deprotection and cleavage of the crude peptide from the solid-phase is 

accomplished with HF when Boc-strategy is applied and TFA in case of the Fmoc-

strategy. In the latter case, concomitant removal of the side-chain protecting groups is 

possible when highly concentrated TFA solutions are used. When the production of 

protected peptides is addressed, deprotection with less than 10% TFA (e.g. trityl 

linkers) or employment of orthogonal protection groups (e.g. photolabile protection) is 

required. Under acidic conditions, the side-chain protecting groups form stabilized 
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carbocations, which are able to react with the electron-rich side chains of amino acids, 

e.g. present in Cys, Met, Tyr, Thr, Ser, and Trp. This leads to undesired side-products, 

which can be minimized by using scavengers to trap the cations formed by 

deprotection. Commonly used scavengers are thiol-based cocktails as ethane-1,2-

dithiol, or thioanisole [38, 39], or the nonodorous and less toxic silane-based 

compounds as e.g. triisopropyl silane [40]. 

 

3.1.2. Limitations of Solid-phase Peptide Synthesis 

Although the chemistry for SPPS is highly developed and allows high coupling 

efficiencies, the success of the synthesis is still depending on the sequence of the 

synthesized peptide. 

Within so-called “difficult sequences” sequences, inaccessibility of the N-terminal 

amino group due to intermolecular aggregation (β-sheet formation) of the growing 

peptide chains in some cases makes an acylation impossible. These sequences are 

often found 5-15 residues away from the resin [3] Different strategies are known to 

avoid the development of these secondary structures: (a) development of highly 

efficient coupling methods, i.e. in situ neutralization (addition of base during coupling 

step improves swelling properties of the resin) [41], (b) the use of new supports that 

increase interchain separation and peptide chain solvation [17], (c) addition of 

chaotropic salts during or preceding the coupling step [42], (d) attachment of spacer 

units to increase the distance from the resin before synthesis of the target peptide [43], 

and finally (e) modifying the deprotection procedure or the coupling solvents [44]. 

The most powerful strategy to combat these difficult sequences is the introduction 

of secondary amino acid (imino acid) surrogates as analogs of proline or N-alkylamino 

acids, which disrupt the secondary structure. Pseudoprolines [45] and Dmb/Hmb (2,4-

dimethoxybenzyl/2-hydroxy-4-methoxybenzyl) [46] amino acids are the most 

frequently used surrogates, which are cleaved into a physiological amino acid upon 

TFA treatment (Figure 3). 
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Figure 3: Secondary amino acid surrogates to disrupt formation of secondary structure during peptide synthesis. 

 

The probability to encounter intermolecular aggregation in a peptide increases 

with peptide length. Therefore, the synthesis of larger peptides (more than 50 residues) 

or even proteins via SPPS is limited. 

Different ligation strategies have evolved during the last decades for the synthesis 

of small proteins of more than 100 amino acid residues from smaller fragments 

synthesized by SPPS. The most popular method is the chemoselective ligation suitable 

for the preparation of C-terminal thioester and thioacid functionalities [47]. An elegant 

method is the so-called native chemical ligation (NCL) [48] (Scheme 7). 

 

 

Scheme 7: Native chemical ligation (NCL) of the peptide fragments i and ii . 

 

A C-terminal α-thioester (i) is reacted with a second unprotected peptide 

containing an N-terminal cysteine residue (ii ). The reaction occurs via a reversible 
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transthioesterification in aqueous solvents at pH 7 to from the thioester 

intermediate iii . After a spontaneous S→N acyl shift the native peptide bond at the 

ligation site is formed (iv). 

The initial ligations in a solution-phase approach were followed by solid-phase 

ligation strategies from Canne et al. in 1999 [49] (Scheme 8). 

 

 

Scheme 8: General concept of solid-phase chemical ligation. N-terminal cysteines are 
used for the formation of the native peptide bond between the segments. 

 

The advantages of such a solid-phase approach are reduced losses by avoiding a 

series of intermediate purification steps following each ligation. In addition, as 

common for all solid-phase approaches, the use of excess quantities of each segment 

drives the reaction nearly to completion. 

With the increase in efficiency of the synthesis of longer peptides the challenges 

for the purification increases as well. The crude product obtained by 

deprotection/cleavage of a peptide synthesized on solid support contains a variety of 

byproducts. Generally, these impurities consist of shortened peptides with a single 

internal amino acid missing (deletion peptides, formed during chain assembly), and 

peptides with chemical modifications due to side reactions in the final deprotection. 

The key to a successful synthesis is the formation of product as uniform as possible. 

This task becomes more and more difficult for peptides of 50 or more residues. 

Nowadays, most cleavage protocols involve precipitation of the crude product using 
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cold diethylether or tert-butylmethylether prior to the purification by reversed-phase 

high performance liquid chromatography (RP-HPLC). Depending on the peptide 

sequence, an additional treatment with oxidizing agents to form disulfide bonds before 

HPLC purification is necessary. In principle, purification should be carried out by the 

consecutive application of mechanistically different purification methods to lead to a 

high purity of the final product. However, such a multistep purification procedure is 

time consuming and rather expensive. Furthermore, by the increase of the number of 

manipulations the yield can drop significantly. Most of the smaller peptides (2 – 50 

amino acids) can be purified by a single step preparative HPLC. Reversed-phase 

HPLC may not be satisfactory for the purification of products containing a lot of late-

eluting impurities, because the more hydrophobic components can displace the target 

peptide [3]. At a peptide length of about 50 amino acids, a single HPLC approach is no 

longer efficient, due to an onset of relatively stable and slowly exchanging folded 

structures of the peptide chain [50]. As a consequence, a single peptide leads a variety 

of chromatographically separable conformers. If a proper folding of the peptide chain 

prior to the HPLC purification is not possible, conformationally independent methods 

have to be applied, such as isoelectric focusing in immobilized pH gradients, ion 

exchange chromatography, or high-resolution gel filtration.  

Finally, solubilizing a peptide can be quite a challenge. Improper solubilization 

results in the loss of the peptide and/or failure of the purification. Whereas small 

peptides with five or less residues generally are soluble in aqueous media, the situation 

looks different for larger peptides [51]. Peptides containing less than 25% hydrophobic 

and more than 25% charged residues are considered as non-problematic to dissolve 

and to be purified by reversed-phase HPLC purifications. Peptides containing 50 to 

75% hydrophobic residues are only poorly soluble in aqueous solvents, and peptides 

with more than 75% hydrophobic residues will generally not dissolve in water. 

The purification of synthetic products is still one of the biggest challenges in 

chemical peptide synthesis. As peptides and proteins are a heterogeneous class of 

compounds in respect to their physiochemical properties, it is difficult to find a 

“general purification procedure” suitable for all peptides and proteins. Therefore, the 

use of affinity tags for the purification would enable a certain standardization of the 

cumbersome purification protocols. 
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3.2. Affinity Chromatography 

In the post-genomic area, the procedures for the purifications of biomolecules 

became more and more important. Because the focus shifted from high-throughput 

analysis of genome sequences to functional and structural studies of the proteins, 

encoded by these genes. For peptides and proteins synthesized by solid-phase 

methods, the chemical and structural diversity is not different to recombinant proteins. 

Therefore, for the purification of peptides, the same techniques are applied as for 

recombinant protein (Table 1). 

 

Table 1: Common techniques used for the purification of recombinant proteins. 

Purification according to: Technique 

Charge Ion exchange chromatography 

Size Size exclusion chromatography 

Polarity Normal-phase chromatography 

Hydrophobicity Reversed-phase chromatography 

Biorecognition (ligand specific) Affinity chromatography 

 

Affinity chromatography is unique in purification technology since it enables the 

purification of biomolecules according to their biological function or individual 

chemical structure. The pioneering work of Porath and colleagues [52] and cyanogen 

bromide activation initiated the development of ligand immobilization chemistries, 

which allow the specific binding of affinity labels to chromatographic supports. The 

specifically adsorbed biomolecules can then be eluted leading to a product of high 

purity. The first affinity chromatography separation was performed by Anfinsen et 

al. [53], who demonstrated a successful purification of Staphylococial nuclease using 

porous gel technology. 

Affinity chromatography is based on the highly specific and reversible interaction 

of a protein or peptide with a ligand, which is immobilized on a solid support. It is 

performed as a single-step purification and therefore offers immense time savings over 

less selective multistep purification procedures. Due to the concentration effect, large 

volumes of complex crude mixtures can be processed. Some of the specific 

interactions used for affinity purifications are listed in Table 2. 
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Table 2: Common techniques used for the purification of recombinant proteins. 

Immobilized ligand Purification target 

Enzyme substrate analog, inhibitor, cofactor 

Antibody antigen, virus, cell 

Lectin 
polysaccharide, glycoprotein, cell surface 
receptor, cell 

Nucleic acid 
complementary base sequence, histones, 
nucleic acid polymerase, nucleic acid 
binding protein 

Hormone, Vitamin receptor, carrier protein 

Metal ions 
Poly (His) fusion proteins, native proteins 
with histidine, cysteine and/or tryptophan 
residues on their surfaces 

 

In recent years, affinity purification of recombinant proteins has been greatly 

facilitated by the employment of affinity tags, obtained by recombinant expression. 

The protein to purify is expressed together with the tag and is loaded as a crude cell 

lysate onto the affinity column for the purification. Such an affinity tag should share 

the following features [54]: It should (a) allow purification in one single step; (b) have 

a minimal effect on tertiary structure and biological activity of the protein; (c) allow an 

easy and specific removal to produce the native protein; (d) allow a simple and 

accurate detection of the recombinant protein during purification; and finally (e) be 

applicable to a number of different proteins.  

 

3.2.1. Purification Tags 

During the past years, a plethora of different tag systems evolved, which have 

been applied to the production of recombinant proteins on a large scale. The most 

commonly used small peptide tags are the poly-Arg- [55], FLAG- [56], c-myc- [57], 

S- [53, 54], Strep II- [58], and the His-tag [59]. Small tags are thought to interfere less 

with the fused protein and are therefore preferred over bigger tags. When a small tag 

has no effect on the tertiary structure, it may even not be removed from the fusion 

protein. Bucher et al. could demonstrate that the effect of small tags on the tertiary 

structure and therefore on the bioactivity of the recombinant proteins is depending on 

the location and on the amino acid composition [60]. Larger tags, often used to 

increase the solubility of the target protein, may have an impact on the folding 

properties of the protein. Examples of larger tags are HAT (natural histidine affinity 
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tag) [60], the calmodulin-binding peptide [61], the cellulose-binding domain [59, 60], 

the streptavidin-binding protein [62], the chitin-binding domain [63], the glutathione 

S-transferase [64], and the maltose-binding protein [65]. In the following, a selection 

of different tag systems will be briefly discussed. Information about the His-tag will be 

given in section 3.2.4 in more detail. Table 3 presents all tags including their 

purification matrix and elution conditions. 

 

Table 3: Overview about the most frequently used affinity tags for the purification of recombinant proteins (from [54]). 

Affinity tag Matrix  Elution condition 

Poly-Arg Cation-exchange resin NaCl, linear gradient at pH >8.0 

His-tag Ni2+-NTA, Co2+-CMA (Talon) Imidazole or low pH 

FLAG Anti-FLAG monoclonal antibody pH 3.0 or 2 - 5 mM EDTA 

Strep-tag II Strep-Tactin Desthiobiotin 

c-myc Monoclonal antibody Low pH 

S S-fragment of RNase A Guanidine thiocyanate, citrate, MgCl2 

HAT Co2+-CMA (Talon) Imidazole or low pH 

3x FLAG Anti-FLAG monoclonal antibody pH 3.0 or 2 - 5 mM EDTA 

Calmodulin-binding peptide Calmodulin EGTA (additional NaCl) 

Cellulose-binding domain Cellulose 
Family I: guanidine HCl or urea 
Family II/III: ethylene glycol 

Streptavidin-binding 
protein 

Streptavidin Biotin 

Chitin-binding domain Chitin 
Fused with intein: dithiothreitol, β-
mercaptoethanol or cysteine 

Glutathione S-transferase Glutathione Reduced glutathione 

Maltose-binding protein Cross-linked amylase Maltose 

 

For each affinity tag specific buffer conditions are applied, which could affect the 

protein of interest. Therefore, the proper choice of a purification system is crucial for 

the success of the purification. The sequences and sizes of the different tags are shown 

in Table 4. 

The poly-Arg-tag consists of five to six arginine residues, which can be used for 

purification by cation exchange chromatography. Generally, the tag is attached to the 

C-terminal of recombinant proteins expressed in bacterial systems. It leads to proteins 

with a purity of more than 95% and yields of 44% [55]. Elution is performed under 

basic conditions and addition of sodium chloride to compete with the positively 

charged arginine residues. In some cases, the purification is hampered due to a 

hindered accessibility of the tag. In this regard, Sassenfeld et al. reported interactions 
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of the poly-Arg-tag with hydrophobic C-terminal regions of target proteins [55]. The 

poly-Arg-tag is further used for the immobilization of various targets on flat surfaces 

as routinely used in scanning probe microscopy [66]. 

 

Table 4: Sequence and size of affinity tags (from [54]). 

Affinity tag 
No. of 

residues Sequence 
Size 

[kDa] 

Poly-Arg 5 – 6 RRRRR 0.80 

His-tag 5 – 6 HHHHHH 0.84 

FLAG 8 DYKDDDDK 1.01 

Strep-tag II 8 WSHPQFEK 1.06 

c-myc 11 EQKLISEEDL 1.20 

S 15 KETAAAKFERQHMDS 1.75 

HAT 19 KDHLIHNVHKEFHAHAHNK 2.31 

3x FLAG 22 DQKDHDGDYKDHDIDYKDDDDK 2.73 
Calmodulin-
binding 
peptide 

26 KRRWKKNFIAVSAANRFKKISSSGAL 2.96 

Cellulose-
binding 
domain 

27 – 189 Domains 
3.00- 

20.00 

Streptavidin-
binding protein 

38 MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP 4.03 

Chitin-binding 
domain 

51 
TNPGVSAWQVNTATYTAGQLVTYNGKTYKCLQPHTSLA 
GWEPSNVPALWQLQ 

5.59 

Glutathione S-
transferase 

211 Glutathione 26.00 

Maltose-
binding protein 

396 Cross-linked amylase 40.00 

 

The FLAG-tag  is a short, hydrophilic peptide consisting of eight residues. It still 

remains controversial, whether its binding to the monoclonal M1 antibody is calcium-

dependent [67] or not. Since non-denaturing conditions can be used for the 

purification, the isolation of active proteins is possible. Elution can easily be done by 

addition of EDTA or by a transient reduction of the pH. Schuster et al. reported a 

successful purification of FLAG-tagged proteins expressed in yeast cells with a purity 

of 90% [68]. The development of the 3x FLAG system was purely motivated by the 

improvement of the detection limit via antibodies down to 10 fmol of expressed 

protein.  

The Strep-tag II was developed for the purification on Strep-Tactin columns. The 

octapeptide shows an affinity of about 1 µM to Strep-Tactin [69]. The purification 

conditions are highly variable, allowing their specific adoption to the target protein. 
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Additions like chelating agents, mild detergents, reducing detergents, or salt up to 1 M 

do not destroy the specific binding. For the elution, 2.5 mM desthiobiotin is applied. 

The method is suitable for the purifications of native proteins with the tag attached 

either to the N- or the C-terminal [70] and for metal-containing enzymes [71]. The 

application range of the Strep-tag has permanently increased during the past years, 

since the tag is also used in NMR experiments and crystallization [72]. 

N- or C-terminally c-myc-tag-bearing proteins can be purified by covalently 

coupling the monoclonal antibody 9E10 to divinyl sulphone-activated agarose [73]. 

Washing can be achieved under physiological conditions followed by elution at low 

pH, which proved harmful for the target protein. The application of the c-myc-tag is 

predominantly focused to detection than to purification.  

The S-tag is a 15 amino acid-tag derived from RNase A [53, 54]. It interacts with 

a strong KD of 100 nM to the 103 amino acid S-protein, which is also derived from 

RNase A. This strong interaction depends on pH, temperature, and ionic strength [74]. 

Due to four cationic, three anionic, and three polar residues the S-tag is highly soluble 

in aqueous solvents. Due to its high binding affinity, elution has to be performed under 

very harsh conditions such as pH 2. Due to the discovery of a hypersensitive 

fluorogenic substrate for RNase A, the system has gained special interest for detection 

in combination with high-throughput screenings [75]. 

The calmodulin-binding peptide is a widely used tag due to its high specificity 

to calmodulin. This tag is often used for the purification of recombinant proteins 

derived from E. coli, because no endogenous proteins of this organism are known to 

interact with calmodulin. This leads to high recoveries of fusion proteins of 80-90%. 

The tag consists of a 26 amino acids, which binds calmodulin in the nanomolar range 

in presence of 0.2 mM CaCl2 [76]. The tight binding allows stringent wash conditions, 

which lead to only few contaminants after elution with EGTA. The system is not 

suitable for purifications in eukaryotic cells, as many endogenous proteins interact 

with calmodulin in a calcium-dependent manner [77]. 

The main driving forces for the binding of the cellulose-binding domain (CBD) 

to cellulose are hydrogen bond formation and van der Waals interactions [78]. Over 

120 different CBD sequences have been identified and classified into at least 11 

families [79]. Domains belonging to family I, II and III are predominantly used as 
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affinity tags. Tags belonging to family I are inert, available in many different forms, 

and have been approved for many pharmaceutical and human uses. In addition, it can 

be used in a wide pH range from 3.5 up to 9.5. The only disadvantage is the tight 

binding, which requires elution buffers containing urea or guanidine hydrochloride. 

Therefore, the target protein has to be refolded after purification. For this reason, 

McCormick et al. [80] developed a milder purification system using CBDs from 

family II and III, which can be eluted using ethylene glycol. 

The streptavidin-binding peptide (SBP-tag) has a length of 38 amino acids and 

developed from the Strep-tag II. It binds with a high affinity (KD = 2.5 nM) to 

immobilized streptavidin [62], and can therefore be used for stable immobilization of 

proteins on streptavidin coated chips [81]. 

The chitin-binding domain is a 51 amino acid-tag, which is derived from 

Bacillus circulans. The tag suffers from rather high non-specific binding, which can be 

lowered by the use of non-ionic detergents and high salt concentrations. Elution has to 

be done using 1% SDS in 6 M guanidine•HCl leading to unfolded proteins. Therefore, 

it is mostly used together with so-called self-splicing inteins, which will be discussed 

later in this section. 

One of the most frequently used tags is the glutathione S-transferase (GST)-tag. 

The first application with this 26-kDa tag was performed by Taylor et al. [82] with a 

fusion protein expressed in E. coli. In most cases, after elution with 10 mM reduced 

glutathione, the fusion proteins are stable, however they sometimes form dimers. 

However, in some cases, the fusion protein is partially or even totally insoluble, a 

property associated with the presence of hydrophobic regions in the GST sequence. 

Interestingly, insolubility was more pronounced for fusion proteins larger than 

100 kDa. 

Proteins fused to the 40-kDa maltose-binding protein (MBP) can be purified by 

one-step affinity chromatography on cross-linked amylase. Elution is activated with 10 

mM maltose in physiological buffer. The MBP-tag is often used to increase solubility 

in combination with smaller affinity tags for poorly soluble fusion proteins [83].  

Besides their purification task, affinity tags may elicit a number of positive effects 

on the expression of recombinant protein such as enhancement of solubility, efficient 

initiation of translation, or an increased stability against degradation. Thus, some tags 
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are employed for the sole reason to enhance solubility and do not show any affinity to 

the purification matrix (e.g. NusA [84], thioredoxin [85], or SET [86]).  

 

3.2.2. Removal of Tags and Combinatorial Approaches 

Especially large tags have a tendency to interfere with the proper protein folding. 

Therefore, they might have an impact on the biological activity, might impede the 

crystallization, or influence the behavior of the fusion protein. Hence, it is usually 

desirable to remove the tag, to obtain the pure and native protein. Nowadays, highly 

specific endoproteases are available, such as those encoded by the tobacco etch virus 

AcTEV from Invitrogen [87] or the human rhinovirus PreScission from Amersham 

Biotech [88]. Nevertheless, the processing efficiency highly varies for each fusion 

protein leading to time-consuming optimizations of the digestions. 

Factor Xa with the recognition sequence IEGR and enterokinase with DDDDK are 

well suited for the cleavage of N-terminal tags (Table 5). Since they cleave at the C-

terminal end of the recognition sequence, native N-termini of the target protein can be 

generated. Unfortunately both proteases often cleave fusion proteins at locations other 

than the desired site due to low sequence specificity [83, 84]. More stringent proteases 

like TEV and PreScission have recognition sites, leading to one or two amino acid 

truncs on the native protein stemming from the tag. 

 

Table 5:Cleavage site of different proteases. 

Protease Recognition sequence 

Factor Xa 
Tag-IEGR-↓Protein 
Tag-DDDDK↓-Protein 

TEV Tag-ENLYFQ↓S-Protein 

PreScission Tag-LEVLFQ↓GP-Protein 

↓ cleavage site of the protease 

 

Proteolytic methods for the C-terminal cleavage of tags are much more difficult to 

find, as all of them usually leave at least 4-6 extra non-native residues on the C-

terminus of the native protein. Therefore, they have been used only to a limited extent 

to remove short C-terminal tags [89, 90]. 
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An elegant method is the so-called intein method, reported by Chong et al. [91]. 

The idea is to integrate a self-cleaving element, called an intein, between the target 

protein and the tag (Figure 4).  

 

 

Figure 4: Autolytical splicing of intein from host protein. Fusion protein consists of target protein and a C-terminal 
chitin-binding domain (CDB). The tag is linked via the intein to the C-terminal end of the target protein. The intermediate 
thioester is cleaved upon addition of I, II, III, or IV. Final workup depends on the desired C-terminal end; from [91]. 

 

Per definition an intein is a segment of a protein, which is able to excise itself and 

connect the remaining parts, the exteins, by a peptide bond. Most of these inteins 

contain an endonculease domain to cleave the peptide bonds. Therefore, a mutant 

(Asn454Ala) of the VMA intein from Saccharomyces cerevisiae was produced to 

inactivate its splicing and C-terminal cleavage activity. Now, the mutated intein is able 

to catalyze an N-S acyl shift at its N-terminal cysteine residue, which results in a 
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thioester bond. Addition of β-mercaptoethanol, dithiothreitol (dtt), cysteine, or 

hydroxylamine leads finally to the cleavage of the thioester bond.  

Despite the innovative approach, the intein method suffers from the large size of 

the catalytic machinery, which forces the cells to produce this huge construct. As for 

most cleavage methods, the efficiency is highly dependent on the sequence at the 

cleavage site. In addition, the autoprocessing occurs at a very slow rate, a further 

drawback of this strategy. 

As no single tag is ideal for all proteins, a combinatorial approach was developed 

by Tropea et al. [92] using a dual tag system consisting of a His6-MBP affinity 

tag (Figure 5).  

 

 

Figure 5: Schematic illustration of combinatorial tag approach using His6-MBP tag. 
IMAC: immobilized metal ion affinity chromatography; MBP: maltose-binding 
protein; TEV: tobacco etch virus protease. 

 

The MBP part is only attached to improve the yield and enhance the solubility and 

is not used for purification purposes. After a first purification of the fusion protein via 

a Ni-NTA column directed towards the hexahis-tag, the tag is cleaved by the TEV 

protease. This protease is His-tagged as well and can therefore by removed together 

with the His6-MBP tag in a second IMAC. The uncleaved fusion proteins, His6-MBP 

tags, and the His6-TEV will be retained, whereas the pure protein is eluted in the flow-

through. 
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3.2.3. Immobilized Metal Ion Affinity Chromatography (IMAC ) 

A special affinity purification method is the so-called immobilized metal ion 

affinity chromatography (IMAC). This technique was first proposed by Porath et al. in 

1975 [93]. Actually, the principle of IMAC was developed much earlier [94], but 

Porath et al. were the first to apply this purification principle to the separation and 

isolation of proteins. The method is based on different affinities of proteins for metal 

ions, which are tightly bound to a metal chelator, which is immobilized on the solid 

support. Electron-donating groups present on the protein surface coordinate to the 

metal ion. The principle of IMAC is demonstrated in Figure 6. 

 

 

Figure 6: The principle of immobilized metal ion affinity chromatography (IMAC). After loading of the solid 
support with the metal ions, the protein is able to adsorb to the solid support. Elution is performed by addition of a 
displacing molecule. 

 

In a first step, the metal ions are loaded onto the column by coordination with the 

immobilized metal ions. The oligodentate chelator is able to bind the ion tightly to the 

solid support. With its free coordination sites, the metal ion can coordinate with the 

protein. For the final elution of the protein a displacer (e.g. imidazole) is added. The 
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strength of the interaction between protein and metal ions is protein dependent, which 

allows the separation and isolation of a specific target. 

The differences in affinity of the proteins to the metal ion can be explained by the 

hard-soft-acids-base (HSAB) theory [95]. For each interaction formed, one of the 

binding partner acts as a Lewis acid and the other as a Lewis base. The strength of the 

interaction is depending on the atoms rating as “hard” or “soft”. The theory states that 

bonds between atoms with similar ratings, e.g. soft acid combined with soft base, are 

stronger than the one between odd partners. Metal ions such as K+, Ca2+, Mg2+, and 

Fe3+ belong into the group of hard Lewis acids, whereas electron-rich ions like Ag+ 

and Cu+ are classified as soft Lewis acids. In between hard and soft Lewis acids, there 

are the so-called borderline acids, such as the transition metal ions Co2+, Zn2+, Cu2+, 

and Ni2+. According to the HSAB theory, three major types of ligands can be predicted 

for the various metal ions. Ligands containing oxygen (e.g. carboxylate), aliphatic 

nitrogen (e.g. asparagine and glutamine), and phosphor (e.g. phosphorylated amino 

acids) form the group of the hard Lewis bases. Ligands with sulfur (e.g. cysteine) are 

classified as soft Lewis bases, and those with aromatic nitrogens (e.g. histidine, 

tryptophan) belong to the group of borderline bases. Therefore, the transition metals 

mentioned above prefer to coordinate with aromatic nitrogens and to a lesser extent 

with sulfur atoms [96].  

As already stated by Porath et al. [93], His, Trp, and Cys undergo the strongest 

interactions to borderline metal ions and are therefore the key players in IMAC 

technology. In addition, they all provide electrochemical and redox stability under 

chromatographic conditions as well as redox stability [97]. However, a high retention 

on the sold support does not enforcedly correlate with good separation, since a high 

retention capability could also lead to an increased adsorption of impurities [98]. In 

many cases, the retention behavior is largely controlled by histidines exposed on the 

protein surface [99, 100], because His can interact via imidazole with the immobilized 

metal ion. In addition, cysteines also display metal ion affinity, although to a lesser 

extent [98, 101], by an interacting with their sulfhydryl group. Several other 

functionalities present on protein surfaces can influence the retention on metal ion 

matrices: α-amino groups via a direct interaction to the metal ion [102]; Trp, Phe, and 

Tyr acting directly via their aromatic side chains [98]; and Arg, Lys, Asp, and Glu 
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acting indirectly on the accessibility of His residues [98]. Finally, special amino acid 

sequences, folding, and overall surface properties further complicate the prediction of 

the retention behavior of a specific protein. Nevertheless, Kagedal et al. [103] 

proposed a rule for the choice of the correct metal ion based on accessible His und Trp 

residues on the protein surface (Table 6) leading to satisfying results in separation of 

the target protein from the impurities. 

 

Table 6: Protein metal ion affinity prediction based on accessible His and Trp residues. 

Occurrence of accessible His and Trp 
on the protein surface 

Metal ions providing retention 

No His/Trp - 

1 His Cu(II) 

> 1 His Cu(II), Ni(II) 

His clusters Cu(II), Ni(II), Zn(II), Co(II) 

Several Trp, no His Cu(II) 

 

In IMAC, oligodentate chelators are used to immobilize metal ions. The chelators 

are covalently linked to the support by linkers of various length and composition. To 

allow interaction with the protein, the chelators must leave free coordination sites on 

the metal ion. Iminodiacetic acid (IDA) [93] and nitrilotriacetic acid (NTA) [59] are 

the most frequently used chelators in IMAC (Figure 7). 

 

 

Figure 7: Structures of the two commonly used chelators in IMAC. Chelators are covalently attached to a solid support and 
can be loaded with metal ions (e.g. Ni2+, Co2+, Fe2+, Zn2+). 

 

IDA binds a metal ion via two carboxylate oxygens and the central nitrogen. Thus, 

with Ni2+ having an octahedral coordination site, three additional interactions with the 

protein are possible. In NTA, an additional carboxylate leads to a stronger chelation of 
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the metal ion. However, protein retention may be decreased as only two coordination 

sites are left in case of Ni2+ [103]. Due to a stronger metal binding in case of NTA, the 

risk of metal leaching is lowered leading to a more stable surface and less 

contamination of the protein with metal ion. [104]. 

Many other chelators have been designed over the last few decades, all having 

advantages as well as limitations. Some of them are, similar to IDA and NTA, based 

on carboxymethylated amines such as tetraethylene pentamine (TEPA) or 

carboxymethylated aspartic acid (CM-ASP) [101]. Other commonly used chelators 

with different chemical structures are reactive dye light-resistant yellow 2KT [105], 

dipicolylamine (DPA) [106], O-phosophoserine (OPS) [107], and 8-

hydroxyquinoline (8-HQ) [107]. For the structures of the different chelating ligands 

see in Figure 8. 

 

 
Figure 8: Structures of different metal ion chelators used in IMAC technology binding either in a tri- or 
tetradentate manner. 
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The proper combination of chelator and metal ion is crucial in regard to protein 

retention. Chelators were found to influence protein retention, such as complex 

coordination geometry, charge, steric bulk, and chirality [98]. Finally, Lehr et al. 

stated that also the resins can alter protein retention as a result of interactions between 

the protein-metal complex and the chelating resin [108]. 

The transfer of metal ions from the chelators to the protein in solution is called 

“metal ion transfer”. When a protein or solute is able to disrupt the chelator-metal 

binding and therefore to strip off the metal ion from the solid support, the protein will 

be found in the flow through, contaminated with metal ions [109].  

Originally, the column material, to which the chelator is covalently attached, was 

mainly agarose. Nowadays, different supports are used such as cellulose, cross-linked 

agarose, different polymers, silica, or polystyrene [103]. According to Ueda et al. [97], 

the ideal support should meet the following physicochemical characteristics: It should 

(a) be easy to derivatize, (b) not exhibit non-specific adsorption, (c) display good 

physical, mechanical, and chemical stability, (d) possess high porosity to provide easy 

ligand accessibility, (e) allow use of high flow-rates, (f) be stable to eluents including 

denaturing reagents, (g) permit regeneration of columns without degeneration of the 

matrix, and (h) provide a stable gel bed with no shrinking or swelling during the 

chromatographic run. 

The influence of the chelate structure and the metal ions on protein retention were 

already discussed. Other factors altering protein selectivity in IMAC are ionic strength 

of the buffer or pH [103]. When sodium chloride (0.1 – 1.0 M) is used, ionic 

interactions between sample and matrix are suppressed, whereas pH changes alter the 

protonation state of the binding amino acids. Generally, when a pH range between 6 

and 8 is used, the coordination of His and Cys residues is favored. At higher pHs, 

deprotonation of Lys and Arg leading to additional coordination ligands decreases the 

selectivity of the purification process [101]. 

Addition of detergents is widely accepted as selectivity enhancer in IMAC, 

because of their capability to diminish undesirable interactions [103]. A similar effect 

is achieved when the proteins are eluted with displacers showing a higher affinity for 

the adsorption sites than the protein. The monomeric ligand imidazole by can be 
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improved by the formation of imidazole polymers, which show an improved elution 

strength and therefore a better selectivity [110]. 

As all purification methods, IMAC has also its pros and cons. To understand the 

success of IMAC in protein purification, a comparison to other types of affinity 

chromatography, especially immunoaffinity chromatography should be made. 

Although, both techniques are based on the specific interaction between protein and 

ligand, but nevertheless, IMAC elicits a number of advantages as presented in 

Table 7 [97]. 

 

Table 7: Comparison between IMAC and standard affinity chromatography. 

Feature Metal affinity  “Bio-affinity” 

Ligand stability High Low 

Protein loading High Low 

Elution conditions Mild Often extreme 

Ligand recovery after column regeneration Complete Generally incomplete 

Selectivity Low-medium High 

Costs Low High 

 

Since most proteins lack metal affinity and cannot be purified via this technique, 

purification tags are attached to overcome this limitation. Insertion of a N- or C-

terminal oligohistidine-tag, which is exposed on the protein surface, allows a selective 

purification of the target protein [90]. Now, the lack of metal affinity of most proteins 

is beneficial, as they will not undergo unspecific interactions. Nevertheless, some 

proteins do show metal affinity, e.g. superoxide dismutase expressed from E. coli, and 

will therefore disturb the purification process [100].  

Since there is no need for extreme pH conditions during loading, washing and 

elution, IMAC is regarded as a mild purification method. The high selectivity in case 

of an attached affinity tag allows in most cases a single step purification with high 

protein loading capacities of 0.1 – 10 µM per mL of gel [96]. IMAC can also be 

applied to industrial applications, as the costs are low and upscaling fairly easy and 

reproducible [96]. In addition, the same resin can be regenerated several hundred times 

with a high recovery [96]. Upon addition of strong chelators as EDTA or EGTA, metal 

ions can be removed, and the same resin can be loaded with different metal ions 

providing a certain degree of flexibility. This is also ensured because various buffers 
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can be used, as IMAC is known to be compatible with high ionic force and chaotropic 

components [96]. The use of IMAC is not only restricted to the purification of 

recombinant proteins, but can also be used for transient sterilization (removal of metal 

ions essential for bacterial growth) [96], or for the concentration of dilute protein 

solutions [96]. 

Recently, new variants of IMAC have been developed as alternatives to the 

existing technique. One new application is immobilized metal ion affinity partitioning 

(IMAP) in aqueous two-phase systems, where polyethylene glycol (PEG), covalently 

linked to metal chelates and loaded with metal ions, is introduced to increase the 

partitioning of metal binding proteins in the PEG phase [111]. IMAP is also used to 

study surface features among structurally related proteins. Finally, a further 

development of IMAC is immobilized metal ion affinity gel electrophoresis 

(IMAGE) [112, 113] and capillary electrophoresis (IMACE) [114].  

 

3.2.4. The Hexahistidine-Tag (His-tag) 

For the purification of recombinant proteins, IMAC is often used in combination 

with oligohistidine-tags as demonstrated in the pioneering work of Hochuli et al. [90, 

115]. Typically, tags consisting of five to six consecutive histidine residues are used. 

Since it is rather rare that such oligohistidine segments are expressed in naturally 

occurring proteins, 5His- or 6His-tags guarantee high selectivity. Binding of the His-

tag occurs via its imidazole nitrogens, which are able to occupy two coordination sites 

in the Ni-NTA complex. The column material consists of Sepharose covalently linked 

to NTA (Figure 9).  

Besides the successful Ni-NTA resin, BD TALON™ resins are an alternative to 

purify recombinant His-tagged proteins [116]. TALON resins are loaded with Co2+ 

instead of Ni2+, and the tetradentate chelator has a slightly modified structure 

compared to Ni-NTA (Figure 9). Both chelators were mainly introduced due to the 

higher metal ion binding affinity between chelator and metal ion compared to IDA. As 

a consequence, metal ion leaching could be reduced. 
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Figure 9: a: His-tag bound to Ni-NTA via imidazole nitrogens. Ni2+ is complexed by three carboxylic acids and 
the central nitrogen of NTA, which is covalently attached to a solid support. b: TALON resin from Clontech 
Laboratories. 

 

The histidine sequence is introduced on the DNA level to the N- or C-terminal end 

of the target protein. After cell lysis, the crude mixture containing the overexpressed 

protein and all other cell fragments is loaded onto a Ni(II)- or Co(II)-NTA column, 

which retains the His-tagged protein, whereas the rest of the cell content can be eluted. 

In the next step, the bound target protein is eluted by increasing the concentration of 

imidazole. Numerous successful purifications using N- or C-terminally bound His-tags 

were reported, e.g. the purification of glutathione S-transferase P1-1 [117], murine 

interleukin 12 [108], cytochrome b5 [118], green fluorescent protein [119], chicken 

lactate dehydrogenase [120], mitochondrial ADP/ATP carrier protein [121], HTLV-I 

surface envelope glycoprotein fragment [122], just to mention the most prominent 

examples.  

Although the His-tag is mainly used for the separation of recombinant proteins, its 

utilization is much more diverse. A common drawback of protein expression in 

bacteria is the formation of inclusion bodies containing the target protein in a 

misfolded and non-functional state. Even in the presence of aid devices, which should 

support help for proper folding (e.g. co-expression of chaperones, optimization of 

growth conditions), a refolding step is usually unavoidable to achieve acceptable 

yields of functional protein from inclusion bodies [123]. Addition of a His-tag may 

help in a “matrix-assisted refolding”. In this procedure, the renaturation step is carried 

out by applying a linear change from denaturing to renaturing conditions or by 
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iterative refolding, a technique based on repeated cycles of renaturation and 

denaturation. During the matrix-assisted refolding, the target protein is bound via the 

His-tag to the Ni-NTA support. After renaturation, the fully functional protein can be 

eluted in its native and soluble form [105, 124]. Another application is the 

immobilization of His-tagged proteins to a matrix in a defined spatial orientation. 

Immobilization of target proteins is generally used to study interactions between 

biomolecules, such as protein-protein, protein-lipids, protein-drugs, and protein-DNA 

interactions. A site-specific immobilization is advantageous compared to random 

immobilization as it allows improved accessibility of the binding sites and increased 

stability [125]. Especially in the field of the evolving biosensors methods, site-specific 

immobilizations are highly demanded. For the Biacore system, using surface plasmon 

resonance detection to determine thermodynamic and kinetic binding parameters, a 

Ni(II)-chelating NTA-chip is commercially available (GE Healthcare) allowing the 

preparation of stable immobilized protein chips, which can be applied for repetitive 

injections [126]. Zhu et al. [127] reported another application, the successful stable 

immobilization of His-tagged proteins on a nickel-coated glass slide. Proteins 

immobilized via Histidine-tags clearly were superior to proteins immobilization via 

aldehyde-treated glass slides. Finally, the NTA/His-tag system was also used to anchor 

proteins to an atomic force microscopy tip applied for the investigation of binding 

forces of receptor-ligand systems at a single molecule level [128]. 

 

3.2.5. The Need for New Purification Tags 

Although the His-tag technology has become a standard procedure for the 

purification as well as the immobilization of recombinant proteins [126, 129], the 

chelating properties of His-tags at a molecular level are still not fully understood. Only 

some recent studies contributed a few basic mechanistic information: Investigations 

with single-molecule experiments using scanning force microscopy revealed that His-

tags are forming various types of complexes, which significantly differ in stability and 

energy profile along their dissociation pathway [128, 130]. It was demonstrated that a 

2His-tag forms less stable complexes with Ni-NTA, compared to a 6His-tag. In 

addition, the binding mechanism of metal ions to various His-tag motifs was 
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investigated by computational approaches [131], which showed that a 6His-tag has 

mainly two preferred binding motifs, 1-3 (His-His-His) and 1-6 (His-His-His-His-His-

His). This was at least partly confirmed by an investigation of Bernaudat et al. [132], 

who studied different His-tags coupled to lactate dehydrogenase to gain more 

information about the influence of the target protein on the binding properties. The 

His-Xaa-His motif elicited the best retention on Ni-IDA columns as also the most 

stable immobilization on Ni-NTA chips in Biacore experiments. Furthermore, a study 

on the stability of His-tagged proteins/Ni2+-NTA complexes and their applicability to 

protein immobilization in surface plasmon resonance experiments was published by 

Plückthun and collaborators [126]. Very recently, Kozlov et al. [133] reported results 

of a huge peptide series investigating their behavior on Ni-NTA columns. They found 

that the retention of the histidine-containing peptides depends on the arrangement of 

histidines within the sequence, but also on the amino acid composition of neighboring 

sequences. Trp and Arg, and to a lesser extent Lys and Phe, seem to increase the 

affinity, whereas Glu and Asp decrease the affinity of His-tagged peptides on Ni-NTA 

columns. A more structurally related investigation reported on differences of His-

tagged versus non-tagged proteins present as crystal structures [134]. From the 

presented structures, no structural impacts of the His-tag on the protein was observed 

although the B factors of the tagged structures were slightly increased because the N-

terminal or C-terminal His-tags were generally disordered.  

In spite of all advantages of the IMAC technology, the method has also its limits. 

The immobilization step, and consequently the whole purification procedure for 

recombinant proteins, is often greatly hampered by the inaccessibility of the His-tag 

caused steric hindrance [135]. When extended tags, e.g. 10His-tag [136, 137], or a 

combination of two His-tags at both termini of the protein [126] are introduced for 

improved accessibility, undesired changes in protein properties may often result, such 

as decreased solubility [138], misfolding [139], dimerization [140], inhibition of 

complex assembly [141], or even degradation [142]. A further drawback, especially 

for industrial use, is the problem of metal ion leakage or metal ion transfer [96, 101]. 

This leads to a contamination of the final product, which is absolutely not tolerable for 

pharmaceutical application. With the use of an additional chelating gel column this 

problem could be circumvented. However, this extra step would cause additional costs 
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and problems for the disposal of the contaminated metal residues. Furthermore, since 

the native structure is required for pharmaceutical-grade proteins, the His-tag has to be 

removed by chemical or enzymatic means after it has fulfilled its purpose in the 

purification step. Therefore, there is a need for tags with chelating properties that can 

be adapted according to the type of application. Independent of their use, ranging from 

purification to site-directed and stable immobilization on analytical surfaces, these tags 

should not interfere with the conformation and function of the native protein [143]. 

The need of new tags did not just evolve recently. During the last decades several 

newly developed metal ion-binding tags were reported. Smith et al. investigated the 

properties of various metal chelating peptides such as His-Gly-His, His-Tyr-NH2, and 

His-Trp coupled to luteinizing hormone-releasing hormone (LHRH) for purification 

on Ni-IDA columns [144, 145]. Similar investigations are reported for angiotensin I, a 

decapeptide with high affinity for various metal ions [146]. This peptide was coupled 

to TEM-β-lactamase for the purification on Ni-IDA columns [147]. Finally, 

Ljungquist et al. achieved a satisfying retention of protein A domains and β-

galactosidase on Zn-IDA columns with tags containing 4-8 repetitive His-Gly-His 

sequences [148]. 

For the development of new tags, a better understanding of the interaction 

mechanism of the Ni-NTA system would be beneficial. The determination of 

thermodynamic (KA and KD) and kinetic data (kon and koff) of ligands binding to Ni-

NTA might add to a more profound knowledge of such purification systems and could 

therefore lead to further improvements. 
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3.3. Surface Plasmon Resonance (SPR)-based Biosensor: Biacore 

Biacore measurements are based on the physical principle called surface plasmon 

resonance (SPR), arising from an electron density wave caused by an interaction of a 

p-polarized incident light beam with a metallic thin films [149]. In the 80ies 

Pharmacia Biosensor AB launched the first SPR detection system. In 1996, the 

company became Biacore AB and finally merged in 2006 with GE healthcare. 

 

3.3.1. The Theory of Surface Plasmon Resonance 

The SPR-phenomenon is based on total internal reflection (TIR), an evanescence 

electric field, and surface plasmon waves. When a beam of light propagating through a 

first medium of higher refractive index n1 (e.g. a glass or quartz prism), meets the 

interface with a second medium of lower refractive index n2 (e.g. an aqueous solution), 

total internal reflexion for all incident angles greater than a critical angle θ will 

occur (Figure 10, A). Despite the total reflexion, the incident beam establishes an 

electromagnetic field E1 that penetrates a small distance into the second medium. 

Propagation in the second medium is always parallel to the plane of the interface. The 

amplitude of the evanescent wave E1 decreases exponentially with distance from the 

surface, and the effective penetration depth is usually less than a wavelength of the 

incident light and therefore only a few hundred nanometers [150]. When a thin metal 

film is inserted at the interface between the glass/liquid interface, the phenomenon of 

surface plasmon resonance [151] can occur (Figure 10, B). Surface plasmons are 

waves of an oscillating surface charge density (conducting electrons) E2, which 

propagate along the metal surface between the metal and the aqueous phase. Similar to 

the situation without metal film, the field amplitude of the surface plasmons decays 

with increasing distance perpendicular to the metal surface. Usually, the penetration of 

the evanescent wave reaches 100 – 200 nm into the dielectric medium. Surface 

plasmons are excited when an evanescence field, produced by the internal reflexion of 

a p-polarized incident beam, penetrates this layer and thereby enhances the evanescent 

wave. Surface plasmons are waves and are equivalent to photons in the case of light. A 

non-magnetic metal like gold is normally used for these metal layers [152-154]. 
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To fully describe photons or surface plasmons, quantum physics is needed due to 

their electromagnetic nature. However, a simplification can be made by depicting each 

of the two wave momenta as a vector. The light photon momentum at the interface can 

be resolved into two vector components (parallel and perpendicular to the interface) as 

demonstrated in Figure 10, C. The magnitude of these incident light vectors directly 

depends on the light angle. Similarly, the surface plasmon wave is also described as a 

vector, which depends on a number of factors such as metal properties, layer 

thickness, surrounding media. In case that the energy and the momentum of the 

incident light vector exactly correspond to the one of the surface plasmon vector, 

resonance occurs, leading to the conversion of energy from photons into plasmons. 

The energy conversion can be detected by a drop in intensity of the totally reflected 

light beam. This drop is restricted to resonance conditions, otherwise no such 

conversion arises and the light is fully reflected (Figure 10, D). 

 

 
Figure 10: Principles of SPR. A: Total internal reflection (blue line) and refraction (red line) of a light beam in dependence 
of the incidence angle θ at the interface of two different media (n1, n2). B: Evanescence field wave leaking through a thin 
metal film (yellow). C, D: SPR in the gold surface. If the incident light vectors (component parallel to metal film) has not the 
same value than the surface plasmon vector, light is fully reflected (C). Only a specific angle leads to a matching of the two 
vectors and a resulting resonance (D). 

 

In an experimental setup, metal nature and thickness as well as the properties of 

one medium are kept constant and resonance can be obtained only by variation of the 

angle of the incident light and the refractive index of the second medium. This allows 

monitoring refractive index changes in the second medium adjusting the incident light 

angle until a dip in light intensity (resonance) is detectable [152-154]. 

For Biacore experiments, sensor chips that carry a thin gold layer (50 nm) on a 

glass support are applied. The gold surface is in direct contact with a flow cell 

(sample) and a prism follows the glass side. A monochromatic, plane-polarized light 

beam at a wavelength of 760 nm is focused in a wedge on the gold surface and the 

total internal reflection is monitored on a diode array. The described evanescence field 
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wave penetrates into the flow cell and enables detection of refractive index properties 

to a distance of about 700 nm from the surface. 

Biomolecular interaction measurements with SPR make use of the fact that 

binding of molecules to sensor surfaces alters the refractive index near this surface. In 

Biacore systems such a change is recorded by a change of the incidence light angle at 

which resonance occurs. This change can finally be converted into a response 

signal (Figure 11). The response signal is measured in resonance units (RU) 

corresponding to a shift in the resonance angle of approximately 10-4 degree [153]. The 

mass of the molecule and its influences on the refractive index is directly related, 

explaining why SPR biosensors are often referred to as mass detectors. The correlation 

between sensor signal and mass increase was found to be 1 pg/mm2 for 1 RU [155]. 

This experimental value was determined for a protein that binds to the metal surface. 

 

 
Figure 11: Detection of biomolecular interaction by SPR. A, B: Sensor surface before and after interaction of 
ligand. C: Shift of light intensity dip upon interaction. 

 

This correlation is almost constant for molecules with high protein and low lipid 

and carbohydrate content [153]. The relationship can be extrapolated to other 

molecules such as nucleic acids, carbohydrates, lipids or conjugate molecules. Despite 

some variations depending on the type of ligand, nearly all molecules binding to the 

sensor chip can be detected [154]. Deviations in signal intensity are a consequence of 

the three dimensional distribution of the ligand within the matrix near the metal 

surface and due to the exponential decay of the evanescent wave with increasing 

distance to the surface. Additional effects around the interface, e.g. electrostatic 

attraction or conformational changes, will further influence signals as described by 

Mannen et al. [156]. 

Biacore experiments are generally used to study interactions between binding 

partners. For this purpose, one binding partner e.g. a receptor or an enzyme is 
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immobilized on the sensor chip and the other (e.g. agonist, antagonist, inhibitor, 

substrate) is injected. A direct surface attachment of e.g. proteins to a solid (gold) 

support often leads to loss in affinity and potentially unspecific binding events. 

Therefore, a special surface chemistry was developed involving a ‘protecting 

polymer’, which carries functional groups for easy immobilization. On standard 

Biacore biosensor chips, thiolated carboxymethyl dextran chains are directly attached 

to the gold surface via the sulfur atom. Carboxyl groups distributed over the whole 

dextran matrix (three dimensionally distributed) enable immobilization via 

well-defined chemistry. Due to the hydrophilic environment, the immobilized 

biomolecules are kept in a quasi-solvent environment [157], which increases the 

stability of e.g. labile proteins. As electrostatic artifacts could be caused by free 

carboxyl groups on the chip surface and sample contaminants a routine addition, salts 

e.g. 150 mM NaCl are routinely added to the running buffer [153]. Other reagents, 

such as EDTA or polysorbate are highly recommended to further limit non-specific 

signals. A schematic overview of the entire experimental setup is visualized in 

Figure 12. 

 

 
Figure 12 (by courtesy of A. Vögtli): Schematic overview of the experimental setup of the Biacore 3000. Precise 
sample delivery is conducted by the integrated fluidic cartridge (IFC). Binding of a ligand to an immobilized target 
is monitored in real-time by the SPR-based detection system. 
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Biacore experiments are performed under continuous flow conditions. This 

minimizes effects like mass transport of molecules to the surface, a phenomenon 

observed in stationary systems. In such a system, the required incubation times of 

several hours to ensure reliable results would not correlate with real-time systems as 

Biacore. The flow system consists of a micro-flow cell, which offers a continuous 

transport of sample to and from the surface, therefore minimizing the diffusion and 

convection effects. Developments in miniaturization led to an integrated fluidic 

cartridge (IFC), which further reduced sample consumption and sample plug 

dispersion after injection [153].  

The shift in resonance angle is monitored in real-time and plotted in dependence 

of time. In such a signal versus time plot, called sensorgram, the different stages of a 

binding event are visualized (Figure 13). During a first phase, running buffer is 

injected over the surface leading to a stable baseline. Continuous injection of sample, 

which binds to the surface, is monitored by the increase of the binding curve during 

association phase (A). The shape of the curve during association is influenced by 

dissociation occurring already at this stage. Depending on the ligand, steady state is 

reached after a specific injection time, where associating and dissociating molecules 

are in equilibrium (B). With the stop of sample injection and change to continuous 

buffer flow, the dissociation phase starts and becomes visible by the decreasing signal 

in the sensorgram (C). In case of very slow dissociation, an additional regeneration 

step is required to reach the baseline again (D). 
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Figure 13 (by courtesy of A. Vögtli): A typical sensorgram obtained for a 
standard interaction measurement. Ligand from a sample starts to bind to the 
target (A) until a steady state is reached (B). After changing to pure buffer, 
dissociation of the ligand is visible (C). In case of remaining ligand a subsequent 
regeneration step is required (D). 

 

Due to the real time set up of Biacore, kinetic parameters such as the association 

and dissociation rate constants (kon, koff) can be derived from the sensorgram. The 

equilibrium dissociation constant (KD) can be directly calculated from the kinetic rate 

constants using Equation 1 or independently from the steady state signals at different 

concentrations. Steady state affinity is calculated based on Equation 2, where Req is the 

equilibrium response signal, KD the equilibrium dissociation constant, c the sample 

concentration, and Rmax the maximal response at saturation level. 

 

 
[Equation 1] 

 

  
[Equation 2] 

 

To demonstrate the effect of different kinetics on sensorgrams an in silico 

experiment can be performed, where eight concentrations (100 µM – 0.25 µM) of four 

virtual compounds (A – D) are injected. The affinity (KD) is for all compounds 

identical, but they differ in their association and dissociation rate constants (Table 8). 

A 

B 

D 

C 
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Table 8: Data of the virtual compounds A, B, C, D. 

Compound K D [µM] kon [M
-1s-1] koff [s

-1] 

A 10  10000  0.1 

B 10  1000  0.01 

C 10  500  0.005 

D 10  100  0.001 

 

For compound C and D, a steady state affinity analysis is already complicated 

because steady state for the lower concentrations is not reached within injection 

time (Figure 14). In such a case, only kinetically determined KDs are available. 

 

 
Figure 14: Importance of kinetics demonstrated by a simulation with four virtual compounds (A, B, C, and D) all displaying 
a KD of 10 µM. 

 

3.3.2. Immobilization Assay Using NTA-chips 

To measure binding affinities and kinetics of Ni-NTA complexes with various 

ligands, one of the interacting molecules has to be immobilized on the chip surface. 
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Biacore produces a commercially available sensor chip with covalently attached NTA 

to the dextran matrix (Figure 15) [158].  

 

 
Figure 15: Commercially available NTA chip from Biacore (GE Healthcare, Freiburg, Germany). Dextran is 
coupled via sulfur groups to the gold surface. 

 

After addition of aq. NiCl2 solution, the chip forms Ni-NTA complexes are 

formed, allowing the immobilization of His-tagged proteins. The NTA-chip is also 

appropriate for the analysis of potential tags binding to Ni-NTA. With such an 

experimental setup, it is possible to simulate the purification process on a Ni-NTA 

column. A comparison of the standard Biacore assay used for the investigation of Ni-

NTA complexes as proposed by Nieba et al. [126] and a Ni-NTA purification is given 

in Figure 16. 

The basic principle of the two experiments is the same. In both cases, the ligand 

(tag, tagged protein) is injected after the initial Ni(II) loading step. After the binding 

process the surface or the column material is regenerated again for the next round of 

ligand injection. Whereas in the purification process the product is eluted with 

imidazole to get a pure product, this step is not necessary in the Biacore experiment. 

Addition of EDTA leads to a complete release of Ni(II) and sample together. This is 

not desired in the purification experiment as it would lead to a Ni2+-contaminated 

products. 
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Figure 16: Comparison between Biacore assay using Ni-NTA chips and IMAC purification using Ni-NTA columns. 

 

From the shape of association, steady state, and dissociation phase, the parameters 

KD, kon, and koff can be calculated. The correct evaluation and interpretation of the 

obtained sensorgrams is critical. Many reported data in literature are either unreliable 

due to poor quality or to bad processing [159]. Deviations from an expected binding 

model are often caused by poor experimental design, low purity of ligands and/or 

target heterogeneity. Unfortunately, such data can often be fitted to a more complex 

binding model, simply because of the increased number of variables taken into 

consideration [160]. Hence, before reporting new binding mechanisms for a certain 

interaction all possible influences have to be eliminated. 
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To exclude unspecific binding, subtraction of a proper reference flow cell is 

needed. A reference flow cell should mimic the target flow cell as close as possible. 

For this purpose, one flow cell is generally used without injection of Ni2+ to eliminate 

unspecific binding either to the dextran matrix or the covalently attached NTA. In 

addition, injections of buffer blanks over the target flow cell cause small deviations 

from the reference and should be included as well. Both, subtraction of blanks and 

signal from the reference flow cell, also known as double referencing lead to higher 

data quality [161]. 

Generally, data should first be fitted to a simple 1:1-binding model according to 

Equation 3. Since some targets possess more than one binding site, the equation has to 

be extended to a two independent binding site model. In such a case two binding 

affinities (KA
1 and KA

2) as well as two kon and koff values can be determined 

(Equation 4). If mass transport effects are suspected or reported, a mass transport 

coefficient (km) might be introduced (Equation 5). 

 

 

[Equation 3] 

 

 

[Equation 4] 

 

 

[Equation 5] 

 

Mass transfer is very likely to appear for association rate constant (kon) higher 

than 106 M-1s-1. At these high on rates, the measured binding rate in some cases may 

reflect the transfer of analyte into the matrix rather than the reaction rate itself [162]. 

As mass transfer is dependent on the flow rate, it is easily detectable by measuring the 

same analyte concentrations at different flow rates. Deviations of the binding curve 

might indicate the existence of a mass transfer. Generally, higher flow rates are less 

prone to mass transfer, but increase significantly the analyte consumption. 
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A proper data processing is especially important for fitting kinetic data (kon and 

koff). Initially, different algorithms using curve transformation [163] or nonlinear least 

square analysis [162] were used for the evaluation of the binding kinetics. However, 

these methods only fitted single binding curves (or even portions thereof) and were 

found to be often insufficient to discriminate between different binding 

mechanisms [160]. In the global analysis approach, the association and dissociation 

phases of the entire data set are fitted to a model simultaneously, resulting in accurate 

and robust data [164].  

Finally, to exclude experimental artifacts, triplicate injections are applied. Such a 

treatment also helps to foresee changes of the chip surface over time, which could lead 

to deviations in further experiments and therefore unreliable data. Repreparation and 

reinjection of sample solutions additionally helps to avoid systematic errors based on 

manipulations.  
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3.4. Affinity Tags in Solid-phase Peptide Synthesis 

Nowadays, the principle of solid-phase peptide synthesis together with chemical 

ligation enables the production of large polypeptide or even protein chains [165]. 

However, due to limitations in the standard HPLC purification and the lack of suitable 

purification methods for SPPS, synthesis is quite often hampered (see section 3.1.2). 

Especially, in solid-phase based synthesis of large proteins using chemical ligation, the 

repetitive HPLC purifications of the fragments before each ligation is highly laborious 

and prone to significant losses. Furthermore, one pot reactions, which do not require 

intermediate HPLC purifications of fragments but only one single HPLC isolation of 

the product [166], are often limited as they need near-quantitative reaction yields for 

each fragment. However, in the field of production of recombinant proteins 

overexpressed in engineered cells, the attachment of tags to the N- or C-terminal end 

of the proteins is a common strategy to yield products in an acceptable amount and of 

good purity. The most successful and most frequently used method is IMAC 

purification in combination with His-tags (see section 3.2.4). Kent et al. presented a 

possible approach to make use of the successful hexahis-tag for SPPS [167]. For the 

chemical synthesis of a 17-kDa protein (tetratrico peptide repeat) via the natural 

chemical ligation strategy, they used a C-terminal hexahis-tag to facilitate the isolation 

and handling of intermediate products formed during the reaction and also to enable 

the final purification of the complete product (Figure 17). 

The attachment of an affinity tag would not only support the chemical synthesis of 

larger proteins but also the synthesis of larger peptides, which do not require chemical 

ligation. Secondary structures (e.g. helix, beta sheet) and tertiary structures (e.g. 

leucine-zipper, disulfide bridging domains) are also present in peptides of 40 and more 

amino acids and have to be established after synthesis. Upon detachment of the 

product from the solid-phase, the peptides form often multimolecular aggregates, 

which do not show the desired biological activity. Therefore, attachment of a metal 

binding tag prior to the cleavage from the solid support, would allow to load the 

peptide onto a Ni-NTA column to perform a refolding step similarly done with 

proteins expressed as inclusion bodies [123]. 
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Figure 17: His-tag assisted solid-phase peptide synthesis of polypeptide chains using native 
chemical ligation (from [167]). 

 

The first attempt to use metal affinity for SPPS was made from Comely et al. in 

2001, although with a slightly different aim [168]. These authors complexed an amino 

acid via chromium to a solid-phase using aromatic π–donor systems (e.g. as present in 

Phe). After the final coupling step, the peptide was detached from the solid-phase by 

elution with a competitor. The purification was finally performed using flash 

chromatography and not by the means of the attached metal chelator, which 

significantly differs from the strategy of Kent et al. with the His-tag [167]. 

The approach of Kent et al. suffers from mainly two drawbacks: Attachment of a 

C-terminal hexahis-tag means six additional coupling steps to the growing peptide 

chain, which further lowers the overall yield of the synthesis. Furthermore, as already 

described in section 3.2.5, the His-tag has some major drawbacks, which could also 

have an impact on fully synthetical proteins. 
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The interaction mechanism between metal ions and His-tags with a variable 

number of His residues has not yet been experimentally investigated at a molecular 

level. In fact, Hochuli et al. [90] compared the binding of His-tags consisting of 2 – 6 

residues, but only by means of retention and elution efficiency on Ni-NTA columns. 

Larger tags with up to ten histidine residues have also been described [137], however 

without any characterization of their binding properties. Hence, the hexahistidine 

tag (5) has been empirically determined as suitable for most of the applications and is 

therefore by far the most widely used affinity tag. 

For the development of new purification strategies using tags with improved 

chelation properties a better understanding of the mechanism of hexahis binding to Ni-

NTA is crucial. Very recently, an alternative to the approach of Kent et al. [167] was 

presented in a patent application of Frank et al. [169], who used a chemically 

cleavable phenanthroline-tag attached to the N-terminal of a synthetic peptide. 

Purification was performed with Ni-NTA due to the Ni(II)-chelating properties of 

phenanthroline. Unfortunately, no investigations on binding properties of such 

phenanthroline structures were performed within this patent. 
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3.5. Aim of the Thesis 

The aim of this thesis was to gain a better understanding of the basic principles 

involved in the binding process of various ligands to Ni-NTA. Such an improved 

knowledge will then be used for the development of new metal-chelating tags with 

improved chelation properties and fewer drawbacks as encountered with the existing 

strategies. 

With the Biacore system in house, a tool was available to screen libraries of 

different potential tags for Ni-NTA columns. In the first part of the thesis, the focus is 

mainly on amino acid tags suitable as affinity tags for solid-phase peptide synthesis. 

The binding assay using SPR should enable the determination of binding 

affinities (KD) and kinetic data (kon, koff). In addition, a qualitative analysis of the 

sensorgram should allow to gain a deeper insight into the binding mechanisms. 

Besides, a slightly modified purification strategy based on the method of Frank 

et al. [169] using a phenanthroline-tag was set up and studied intensively by Biacore. 

In addition, the phenanthroline-tag was also applied for the preparative purification of 

a peptide synthesized using standard SPPS. 

Furthermore, the possible introduction of a photolabile linker was tested. This 

would offer an efficient cleavage method for the removal of the tag [170]. Different 

tag-linker constructs were synthesized and analyzed by Biacore to demonstrate the 

effect on the chelation properties of the tags. 

In a last part, new potential tags as e.g. picolinic acid were identified, using the 

standard Biacore assay supported by a newly developed computational model [171].  
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4. MATERIALS AND METHODS 

4.1. General Procedures  

Chromatography 

Column chromatography was performed using silica gel 60 (40-63 µm) from 

Fluka. 

 

LC-MS: 

LC-MS separations were carried out using Waters sunfire C18 columns (analytical: 

2.1 x 50 mm, 3.5 µm; preparative: 19 x 150 mm, 5.0 µm) on a Waters 2525 LC 

system, equipped with Waters 2996 photodiode array and Waters micromass ZQ MS 

for m/z detection. If nothing else is mentioned, standard gradients of 15 min duration 

in analytic mode and 30 min in preparative mode were run. 

 

Mass spectrometry 

Mass spectra were obtained on a Waters micromass ZQ or a Finnigan LCQ Deca 

System. High resolution mass spectrometry (HR-MS) spectra were performed on an 

ESI Bruker Daltonics microTOF spectrometer equipped with a TOF hexapole detector. 

 

Microwave reactions 

Microwave reactions were carried out in a CEM Discover microwave apparatus. 

 

Nuclear magnetic resonance 

Nuclear magnetic resonance spectroscopy was performed on a Bruker Advance 

500 Ultra Shield spectrometer at 500 MHz (1H NMR) or 125 MHz (13C NMR). 

Chemical shifts are given in ppm and were assigned in relation to the solvent signals 

on the δ-scale or to tetramethylsilane (0 ppm) as internal standard. 1H: 7.26 ppm 

(CDCl3), 5.32 ppm (CD2Cl2), 3.31 ppm (CD3OD), 4.79 ppm (D2O), 2.50 ppm 

((CD3)2SO); 13C: 77.00 ppm (CDCl3), 53.50 ppm (CD2Cl2), 49.00 ppm CD3OD), 

39.43 ppm ((CD3)2SO). Coupling constants J are given in Hertz (Hz). The following 
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abbreviations are used for the multiplicities: s (singlet), d (doublet), dd (double 

doublet), t (triplet), dt (double triplet), q (quartet), dq (double quartet), m (multiplet). 

Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC, HMQC, HMBC). Abbreviations used for the assignment of peaks are the 

following: tBu, tert-butyl; MeO, methoxy; Me ester, methyl ester. 

 

Solvents 

All solvents were obtained from Fluka and dried prior to use if necessary: 

Diethylether, dioxane, toluene, and tetrahydrofuran (THF) by refluxing with 

sodium/benzophenone and subsequent distillation. Pyridine was freshly distilled from 

CaH2, whereas dichloromethane (CH2Cl2) was dried by filtration over Al2O3 (Fluka, 

type 5016 A basic). DMF and DMSO were liberated from water by stirring over 

activated molecular sieves 4Å over night, followed by microfiltration. Methanol was 

dried by distillation from sodium methoxide. 

 

Thin layer chromatography 

TLC was performed using silica gel 60 coated glass plates containing fluorescence 

indicator from Merck KGaA (Darmstadt, Germany) using either UV light (254 nm) or 

Mostain solution [0.8 g Cer(SO4)2, 40 g (NH4)6(Mo7O24)•4 H2O dissolved in 300 mL 

of 10% aq. H2SO4] followed by heating to 140°C for 5 minutes to visualize the 

substances. 
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4.2. Solid-phase Peptide Synthesis 

Four peptide series were synthesized to be used in the Biacore experiments: The 

oligohistidine (1 - 9), the His2Ala4 (10 - 14), the HisxAlay (15 - 19), and the HXH (20 - 

24) series. In addition, the α-MSH derivative NAPamide (25) and His6-amide (26) 

were produced for a closer investigation of the Ni-NTA purification process. An 

overview about the peptide sequences and the compound names is given in Table 9. 

As long as not stated explicitly, the L-form of the amino acids was utilized. All 

reactions were performed at room temperature (rt). 

 

Table 9: Peptides synthesized by solid-phase peptide synthesis. 

Compound No. Sequence 

His2 (1) H-His-His-OH 

His3 (2) H-His-His-His-OH 

His4 (3) H-His-His-His-His-OH 

His5 (4) H-His-His-His-His-His-OH 

His6 (5) H-His-His-His-His-His-His-OH 

His7 (6) H-His-His-His-His-His-His-His-OH 

His8 (7) H-His-His-His-His-His-His-His-His-OH 

His9 (8) H-His-His-His-His-His-His-His-His-His-OH 

His10 (9) H-His-His-His-His-His-His-His-His-His-His-OH 

His2Ala41 (10) H-Ala-Ala-Ala-Ala-His-His-OH 

His2Ala42 (11) H-Ala-Ala-Ala-His-Ala-His-OH 

His2Ala43 (12) H-Ala-Ala-His-Ala-Ala-His-OH 

His2Ala44 (13) H-Ala-His-Ala-Ala-Ala-His-OH 

His2Ala45 (14) H-His-Ala-Ala-Ala-Ala-His-OH 

HisxAlay1  (15) H-His-Ala-His-Ala-Ala-His-OH 

HisxAlay2  (16) H-His-Ala-Ala-His-Ala-His-OH 

HisxAlay3 (17) H-Ala-Ala-Ala-His-His-OH 

HisxAlay4 (18) H-Ala-Ala-His-His-OH 

HisxAlay5 (19) H-Ala-His-His-OH 

HGH (20) H-His-Gly-His-OH 

HAH (21) H-His-Ala-His-OH 

HSarH (22) H-His-Sar-His-OH 

HAibH (23) H-His-Aib-His-OH 

HPH (24) H-His-Pro-His-OH 

NAPamide (25) H-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys-NH2 

His6-amide (26) H-His-His-His-His-His-His-NH2 
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Reagents 

9-Fluorenylmethoxycarbonyl-(Fmoc) protected His(Trt)-NovaSyn TGT resin 

Fmoc-Aib-OH, Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-

Gly-OH, Fmoc-Phe-OH, Fmoc-Nle-OH, Fmoc-Pro-OH, Fmoc-Sar-OH, Fmoc-

Trp(Boc)-OH, and 1-hydroxybenzotriazole (HOBt) were purchased from 

NovaBiochem (VWR International AG, Lucerne, Switzerland). The resins Rink 

Amide Novagel and Fmoc-PAL-PEG-PS were from AppliedBiosystems (Rotkreuz, 

Switzerland), dihistidine (1), Fmoc-protected His(Trt), as well as 2-(1H-benzotriazole-

1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) from Bachem 

(Bachem AG, Bubendorf, Switzerland). 2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-

tetramethyl uronium hexafluorophosphate (HATU) was purchased from PerSeptive 

Biosystems. All solvents used for the automated peptide synthesis were purchased 

from PerSeptive Biosystems or Applied Biosystems. HPLC-grade water, t-butyl 

methyl ether, acetonitrile, and trifluoroacetic acid (TFA) used during peptide 

purification were purchased from Fluka (Fluka AG, Buchs, Switzerland). 

 

Equipment 

All the peptides except His2 (1) and HSarH (22) were synthesized on a fully 

automated Pioneer peptide synthesis system. The purification of the peptides was done 

on different HPLC and mass spectrometry systems: The oligohistidines (2 – 9), the 

HisxAlay (15 - 19), HGH (20), HSarH (22), and HAibH (23) were purified on a Jasco 

HPLC systems consisting of a Jasco UV-1570 intelligent UV/VIS detector (Jasco 

GmbH, Gross-Umstadt, Germany). An Agilent 1100 purification system (Agilent AG, 

Basel, Switzerland) was used for His2Ala4 (10 - 14), HAH (21), HPH (24), NAPamide 

(25), and His6-amide (26). This system consisted of a quaternary pump, a cooled well-

plate autosampler, a column thermostat, a DAD detector, and a cooled analytical 

fraction collector. 

The purification of the oligohistidines (2 – 9) except His3 (2) was performed 

using a preparative C18 column (SymmetryPrep, 19 × 150 mm, 7 µm; Waters AG, 

Rupperswil, Switzerland), whereas all other peptides were purified with different 

analytic C18 columns: His3 (2), HisxAlay1 (15), HisxAlay4 (18), and HisxAlay5 (19), 

HPH (24), and His6-amide (26) with a Vydac 218TP54 (4.6 × 250 mm, 5 µm; Vydac, 
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Basel, Switzerland). All peptides from the His2Ala4 series (10 – 14) were purified with 

a Phenomenex Jupiter C18 (4.6 × 250 mm, 5 µm; Brechbühler AG, Schlieren, 

Switzerland), while purification of HisxAlay2 (16), HisxAlay3 (17), HGH (20), 

HAH (21), HSarH (22), and HAibH (23) was performed on a Reprosil-Pur Basic C18 

column (4.6 × 250 mm, 5 µm; Dr. Maisch GmbH, Ammerbuch, Germany). 

NAPamide (25) was purified using the Agilent 1100 HPLC system with a 

Phenomenex Gemini C18 column (4.6 × 250 mm, 5 µm; Brechbühler AG, Schlieren, 

Switzerland). 

Mass spectrometry analysis of the peptides was performed on the Finnigan LCQ 

Deca System in case of the peptides His5 (4), His6 (5), His7 (6), His10 (9), and 

HisxAlay3 (17), while all the other peptides were analyzed on the Waters micromass 

ZQ system. 

Buffer pH values were controlled with a combined pH glass electrode from 

Metrohm (Metrohm AG, Herisau, Switzerland). 

 

4.2.1. Synthesis and Purification of Oligohistidines (1 – 9) 

All oligohistidines (2 – 9), except His2 (1), which was commercially available, 

were synthesized with a Pioneer Peptide Synthesizer using fully automated 

continuous-flow technology and Fmoc-strategy. A NovaSyn TGT resin preloaded with 

the C-terminal histidine (0.19 mmol/g) was used for the synthesis leading to a C-

terminal acid after cleavage from the solid-phase. 0.5 g of resin was pre-swollen in 

10 mL DMF for 30 min. Afterwards, the resin was loaded on the column, which was 

directly connected to the lines of the peptide synthesizer. Theoretical yields between 

43 mg and 125 mg depending on the peptide sequence were expected. For each cycle 

an automated program was executed using 20% piperidine (v/v) in DMF for removal 

of the Fmoc-group, followed by several washing steps with DMF. Coupling steps were 

performed using 0.5 M DIPEA in DMF and TBTU/HOBt (both 0.5 M in DMF) as 

activator solutions, followed again by washing with DMF to start the next coupling 

cycle. Four equivalents of amino acids were added for the coupling. Detailed 

information about the coupling cycle is summarized in Table 10. 
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Table 10: Coupling cycle on Pioneer Peptide Synthesizer. 

No. Step Duration [s] 
Flow 

[mL/min] 
Reagent 

1 Deblocking  300  5 20% piperidine in DMF 

2 Wash  50  30 DMF 

3 Activation of AA a  12  8 
0.5 M DIPEA in DMF 
0.5 M TBTU and 0.5 M HOBt in DMF 

4 Recycling through column b  3600  30 activated AA 

5 Wash  40  30 DMF 
a Amino acid is activated in separate vial prior to injection onto column 
b The solution containing the activated amino acid is pumped several times through the column containing the resin 

 

At the final stage of the peptide synthesis the N-terminal Fmoc group was 

removed by the peptide synthesizer, and the resin was transferred onto a frit for 

extensive washing with 2-propanol. 

For cleavage and deprotection of the oligopeptides from the resin, a TFA solution 

containing 5% thioanisole, 4.5% water and 0.5% ethane-1,2-dithiol (all v/v) was 

employed. The resin was resuspended in 3 mL of the TFA solution and filtered for 

45 min. For washing 3 mL of TFA solution were added dropwise over of 45 min. As 

the final steps, the filtrate containing the solubilized crude peptide was concentrated in 

vacuo and precipitated with iced tert-butyl methyl ether to afford the crude peptide as 

a white solid. 

Analysis and purification of the oligohistidines were performed with HPLC and 

mass spectrometry. The crude peptides, except His3 (2), were dissolved in 0.1% 

aqueous formic acid (10 mg/mL) and purified with a linear gradient of acetonitrile in 

water (0-35%, containing 0.1% TFA). For His3 (2) the aqueous phase had to be 

changed to 10 mM ammonium acetate pH 8.8 to get longer retention and the 

purification was performed on a Vydac C18 column using the same gradient. For all 

oligohistidines (2 – 9) major peaks were collected and analyzed by mass spectrometry. 

The correct fractions were lyophilized leading to a white lyophilisate. The HPLC and 

mass spectrometry data are delivered in Table 11. 
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Table 11: Analytical Data of Oligohistidines (2 – 9).  

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
His3 (2) 7.86 a 428.2 428.2 

His4 (3) 4.47 566.3 566.2 

His5 (4) 4.68 703.3 703.2 

His6 (5) 6.11 840.4 840.3 

His7 (6) 9.01 977.4 977.4 

His8 (7) 12.52 1114.4 1114.4 

His9 (8) 13.41 1250.5 1250.7 

His10 (9) 14.15 1388.6 1388.5 
a Purification was performed with a different buffer system compared to the other 

peptides, see above 

 

Lyophilized products were stored at -20°C and their stability was regularly 

verified by HPLC. 

 

4.2.2. Synthesis and Purification of His2Ala4 Series (10 – 14) 

The synthesis of the His2Ala4 series (10 – 14) was performed as described for the 

oligohistidines (2 – 9). To achieve a theoretical yield of 55 mg, 0.5 g of Fmoc-

His(Trt)-NovaSyn TGT resin (0.19 mmol/g) was employed. After cleavage, the TFA 

solution was evaporated and the crude product was resuspended in 10% acetic acid 

and lyophilized. 

Purification of the His2Ala4 (10 – 14) was performed by a former member of the 

Institute of Molecular Pharmacy, Dr. Daniel Ricklin. Only small amounts of the crude, 

lyophilized peptides for further experiments with Biacore were purified by HPLC. Due 

to their small size and relatively high hydrophilicity, purification under acidic 

conditions was not possible. Therefore, separation was performed using 10 mM 

ammonium acetate buffer at pH 8.8, above the theoretical pI of 6.92 (calculated using 

the PeptideMass tool [172]), using a silica-based Phenomenex Jupiter C18 column. 

After sample injection, an isocratic phase of 2 min was run, followed by a linear 

gradient up to 5% acetonitrile. After collecting the relatively wide peaks, solvents and 

ammonium acetate were removed by lyophilization over night. Analytical data are 

shown in Table 12. 
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Table 12: Analytical Data of His2Ala4 (10 – 14).  

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
His2Ala41 (10) 11.78 576.3 576.1 

His2Ala42 (11) 10.49 576.3 576.1 

His2Ala43 (12) 11.75 576.3 576.1 

His2Ala44 (13) 12.03 576.3 576.1 

His2Ala45 (14) 14.42 576.3 576.1 

 

The pure white lyophilisates of the peptides were stored at -20°C. The purity was 

checked by HPLC from time to time. 

 

4.2.3. Synthesis of HisxAlay Series (15 – 19) 

The synthesis of the HisxAlay peptides (15 – 19) was performed as described for 

the oligohistidine series (2 – 9). Again, 0.5 g of Fmoc-His(Trt)-NovaSyn TGT resin 

(0.19 mmol/g) was used to produce peptides with a theoretical yield between 36 and 

64 mg. 

Only peptides HisxAlay1 (15), HisxAlay2 (16), and HisxAlay3 (17) were 

precipitated with iced tert-butyl methyl ether prior to HPLC purification. Analytical 

HPLC afforded about 5 mg of product the Biacore assay. The peptides were purified 

using 10 mM ammonium acetate buffer at pH 8.8. A linear gradient from 5 to 50% 

acetonitrile was run on a Vydac C18 column for the peptides HisxAlay1 (15), 

HisxAlay4 (18), and HisxAlay5 (19). Peptides 16 and 17 were purified with the 

ReprosilPur Basic column from Dr. Maisch GmbH using the same gradient mentioned 

above. Retention times and monoisotopic masses of the peptides are given in Table 13. 
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Table 13: Analytical Data of HisxAlay (15 – 19). 

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
HisxAlay1 (15) 12.45 642.3 642.4 

HisxAlay2 (16) 12.48a 642.3 642.4 

HisxAlay3 (17) 11.63a 505.2 505.3 

HisxAlay4 (18) 5.33 434.2 434.2 

HisxAlay5 (19) 4.51 363.2 363.2 
a Purification was performed with a different column compared to the other 

peptides, see text. 

 

Fractions containing the desired product were collected, pooled and lyophilized. 

The peptides were stored at -20°C, and their purity was verified by HPLC. 

 

4.2.4. Synthesis of HXH Series (20 – 24) 

Synthesis of HGH (20), HAH (21), HAibH (23), and HPH (24) was performed 

with the same protocol used for the oligohistidines (2 – 9). For the synthesis, 0.5 g of 

Fmoc-His(Trt)-NovaSyn TGT resin (0.19 mmol/g) was employed. The cleavage 

solution was changed to 5% triisopropylsilane and 5% water in TFA, as to improve the 

yield. 3 mL of the solution were added to the peptide still bound to the resin, and after 

1 hour the resin was washed with additional 3 mL of the TFA solution. Finally, the 

cleaved peptide was concentrated and precipitated with diethyl ether to get the crude 

peptide as a white solid. 

The synthesis of HSarH (22) was done manually. For this purpose, Fmoc-

His(Trt)-NovaSyn TGT (0.14 g, 0.19 mmol/g, 1 eq) was deprotected in 20% 

piperidine in DMF (5 mL). After 20 min the resin was washed with DMF (5 × 5 mL), 

transferred to a new flask and resuspended in DMF (2 mL). Prior to the first coupling 

step, Fmoc-Sar-OH (34 mg, 0.106 mmol, 4 eq), HATU (50 mg, 0.128 mmol, 4.8 eq), 

and DIPEA (38 µL, 0.106 mmol, 4 eq) were pre-activated in DMF (3 mL) for 10 min, 

before the reaction mixture was added to the deprotected resin. The reaction vial was 

permanently agitated over night. Finally, the resin was washed with DMF (5 × 5 mL). 

The next coupling cycle was performed twice to ensure proper coupling of N-terminal 

His residue to the secondary amine of Sar. Using exactly the same procedure as for the 
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first step, Fmoc-His(Trt)-OH (68 mg, 0.106 mmol, 4 eq), HATU (50 mg, 0.128 mmol, 

4.8 eq), and DIPEA (38 µL, 0.106 mmol, 4 eq) were used for the reaction. After 

washing the peptide resin 5 times with DMF, Fmoc-His(Trt)-OH, HATU, and DIPEA 

were added again in the same amounts as described above. The final washing steps 

were done with DMF (5 × 5 mL) and isopropanol (5 × 5 mL). 

The purification was done with a ReprosilPur Basic column from Dr. Maisch 

GmbH using ammonium acetate pH 8.8 as the water phase and a gradient of pure 

acetonitrile from 0-50%. For HAH (21) and HPH (24) the HPLC system from Agilent 

was used, whereas for HGH (20), HSarH (22), and HAibH (23), the Jasco system was 

chosen. Data resulting from the purification are shown in Table 14. 

 

Table 14: Analytical Data of HXH (20 – 24). 

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
HGH (20) 4.45 349.2 349.1 

HAH (21) 6.00 a 363.2 363.2 

HSarH (22) 11.73 363.2 363.2 

HAibH (23) 3.51 377.2 377.2 

HPH (24) 3.90 a 389.2 389.0 
a Purification was performed with a different HPLC system compared to the other 

peptides, see text 

 

Fractions containing the desired product were collected, pooled and lyophilized. 

After prolonged storage at -20°C, peptide purity was checked by HPLC. 

 

4.2.5. Synthesis of NAPamide (25) 

The first amino acid of NAPamide (25) was manually coupled to the resin. Fmoc-

PAL-PEG-PS resin (0.8 g, 0.19 mmol/g, 1 eq) was pre-swollen in DMF for 30 min. 

Then, 20% piperidine in DMF was added to cleave the Fmoc-group. After 20 min the 

resin was washed with DMF (5 × 5 mL). Fmoc-Lys(Boc)-OH (202 mg, 0.456 mmol, 

3 eq) was pre-activated with DIPCDI (68 µL, 0.456 mmol, 3 eq) and HOBt (76 mg, 

0.456 mmol, 3 eq) in DMF for 10 min. Finally, the pre-activated solution was added to 

the pre-swollen resin, and the reaction mixture was constantly agitated for 6 h. After 

the resin was washed with DMF (5 × 5 mL), free amino groups were acetylated 
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(capping) by treating with 10 mL of a solution of 6% 2,6-lutidine and 5% acetic 

anhydride in DMF for 30 min. Finally, the resin was washed with DMF (5 × 5 mL) 

and then loaded onto the column of the peptide synthesizer. 

The other steps of the synthesis of the NAPamide were done as described for the 

oligohistidines (2 – 9) on the peptide synthesizer, with the additional capping step after 

each coupling cycle during the automated synthesis. After step 5 (see Table 10) the 

resin was flushed with 15 mL/min of capping solution (6% 2,6-lutidine, 5% acetic 

anhydride in DMF) during 15 s. After a reaction time of 300 s, the resin was washed 

again (DMF, 30 mL/min, 40 s) to start the next cycle. After synthesis, the resin was 

weighed and divided into small aliquots of 35 mg (corresponding to 5.8 mg peptide). 

One aliquot (0.00549 mmol) was used for cleavage and deprotection as described 

for the oligohistidines (2 – 9). After precipitation with tert-butyl methyl ether, the 

crude peptide was purified by LC-MS using a gradient of acetonitrile in water (both 

containing 0.1% HCOOH) from 5 to 95%. The result of this purification is shown in 

Table 15. Fractions containing the desired product were collected, pooled and 

lyophilized to afford pure NAPamide. 

 

Table 15: Analytical Data of NAPamide (25). 

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
NAPamide (25) 5.78 1056.6 1056.4 

 

The rest of the 35 mg aliquots were further used as described in section 4.6.1 for 

the attachment of the phenanthroline tag.  

 

4.2.6. Synthesis of His6-amide (26) 

Rink Amide Novagel (238 mg, 0.63 mmol/g, 1 eq) was pre-swollen in DMF 

(5 mL) for 30 min. Fmoc-His(Trt)-OH (465 mg, 0.750 mmol, 5 eq), HOBt (101 mg, 

0.750 mmol, 5 eq), and DIPCDI (116 µL, 0.750 mmol, 5 eq) pre-activated DMF 

(4 mL) for 10 min. Finally, the pre-activated amino acid was added to the resin and the 

mixture was constantly agitated for 6 h. Afterwards the resin was washed 5 times with 

DMF and loaded onto the column of the peptide synthesizer. The remaining 5 
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histidines were coupled as described for the oligohistidines (2 – 9). After the last 

coupling step, the last Fmoc-group was cleaved, and the resin washed with 

isopropanol (5 × 5 mL) and transferred into a new flask.  

To verify the success of the synthesis, 0.0119 mmol of resin (theoretical yield of 

10 mg pure 25) were taken for cleavage and deprotection. 5 mL of a TFA solution 

containing 1 % triisopropyl silane and 4% water were added to the resin for 2 h. 

Afterwards, the resin was washed with another 5 mL of the TFA solution. After 

concentration in vacuo and precipitation with diethyl ether, the crude peptide was 

purified on the Agilent 1100 system using a Vydac C18 column. A gradient (5 – 80%) 

of acetonitrile in water, both containing 0.1% TFA, was run to afford 3.4 mg (34%) of 

the pure peptide (Table 16). 

 

Table 16: Analytical Data of His6-amide (26). 

Compound No. 
Retention 
time tR [min] 

Calculated 
monoisotopic 

mass 

Found 
monoisotopic 

mass 
His6-amide (26) 3.10 839.4 839.6 

 

The remaining resin was further used for the attachment of the photolinker as 

described in section 4.7.1. 
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4.3. Determination of the Salt Content of Peptides 

Synthesis and purification of peptides finally leads to a pure product containing a 

certain amount of counter ions firmly bound to the product. For an exact determination 

of binding affinities of these peptides by means of surface plasmon resonance, the 

fraction of salt bound to the peptide samples has to be determined. 

 

Reagents 

4-(4-Dimethylaminophenylazo)benzenesulfonyl chloride (DABS-Cl) was 

obtained from Fluka (Fluka AG, Buchs, Switzerland) and recrystallized as previously 

described [173]. Hydrochloric acid (6 N) and the amino acid standard were both 

obtained from Sigma (Fluka AG, Buchs, Switzerland).  

 

Equipment 

For the gas-phase hydrolysis a Waters vessel (custom-made) was used. This vessel 

is a flat-bottom glass tube (2.7 cm i.d. × 9 cm), which could take up to 12 small 

hydrolysis tubes (4 mm i.d. × 50 mm). A heat-resistant plastic screw cap, equipped 

with a Teflon valve, is used to firmly close the vessel after vacuumization. HPLC was 

performed on an Agilent 1100 purification system (Agilent AG, Basel, Switzerland) 

containing a quaternary pump, a cooled well-plate autosampler, a column thermostat, a 

DAD detector, and a cooled analytical fraction collector. The column for the analysis 

was a Waters Symmetry® C18 (2.1 × 150 mm, 5 µm; Waters AG, Rupperswil, 

Switzerland). 

 

4.3.1. General Procedures 

Derivatization of the peptide to determine the salt concentration was performed as 

previously described [174]. Briefly, samples of approximately 2 µg of peptide, 

dissolved either in water or eluent buffer (10 mM HEPES, 150 mM NaCl, 50 µM 

EDTA, pH 7.4), were placed in hydrolysis tubes and dried in a vacuum centrifuge. 

Afterwards, 400 µL of 6 N HCl were added into each hydrolysis tube, and the tubes 
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were placed into the Waters hydrolysis vessel. The gas-phase hydrolysis was carried 

out at <0.1 mbar for 14 h at 110°C. An amino acid standard was processed under the 

same conditions in parallel with the samples. Standard and samples were measured in 

duplicates. After the hydrolysis, samples and standard were dissolved in 20 µL of 

50 mM sodium bicarbonate pH 8.1. 40 µL of a freshly prepared DABS-Cl solution 

(4 nmol/µL in acetonitrile) was added to each sample to start the derivatization. Sealed 

with silicon-rubber caps, the tubes were heated at 70°C for 10 min. After dabsylation 

the samples were diluted with 50 mM sodium phosphate (pH 7.0 / ethanol, 1:1, v/v) to 

suitable volumes for HPLC analysis. The volume was chosen according to the 

expected amount of peptide: For about 0.5 µg of peptide (or 500 pmol of standard) a 

volume of 1 mL was added. 20 µL of this solution were injected into the HPLC system 

using a gradient of 25 mM sodium acetate pH 6.5, containing 4% DMF as solvent A 

and pure acetonitrile as solvent B (15% to 40% in 20 min, 40% to 70% from 20 to 

32 min, kept at 70% from 32 to 34 min, and back to 15% from 34 to 36 min). 
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4.4. Protection of Hydroxyethyl Photolinker (PL) 

The following reactions were performed to protect the free hydroxyl group on the 

photolinker (PL) by formation of a tert-butyldimethylsilyl ether. 

 

Reagents 

Hydroxyethyl photolinker was purchased from NovaBiochem (VWR 

International AG, Lucerne, Switzerland) and was always protected from prolonged 

light exposure. Thionyl chloride (SOCl2) was purchased from Fluka (Fluka AG, 

Buchs, Switzerland), and tert-butyldimethylsilyl chloride was purchased from Aldrich 

(Fluka AG, Buchs, Switzerland). 

 

Equipment 

All vials containing the light-sensitive PL were wrapped in aluminum foil if 

possible. 

 

4.4.1. Formation of PL-ester: Methyl 4-[4-(1-hydroxyethyl)-2-methoxy-

5-nitrophenoxy]butanoate (27) 

 

 

 

PL (500 mg, 1.67 mmol, 1 eq) was dissolved in dry methanol (5 mL) and dry 

DMF (1.8 mL). SOCl2 (280 µL, 3.68 mmol, 2.2 eq) was added dropwise at 0°C to the 

dissolved PL. Then, the reaction mixture was stirred over night at rt. To stop the 

reaction, saturated NaHCO3 was added to the mixture until pH 9 was reached. The 

mixture was transferred into a separation funnel and was extracted with ethyl acetate 

(3 × 15 mL). The combined organic layers were dried over Na2SO4, filtered and 



Material and Methods 

78 

concentrated in vacuo. After drying in high vacuum, the pure product 27 was achieved 

as a yellow solid (517 mg, quant.). 

ESMS: m/z calcd for C14H19NO7 336.11 [M + Na]+; found, 336.12 [M + Na]+. 1H 

NMR (CDCl3, 500 MHz): 7.55 (s, 1H, H-10), 7.24 (s, 1H, H-7), 5.55 (q, 1H, J = 6.3 

Hz, H-11), 4.09 (m, 2H, H-4), 3.95 (s, 3H, Me ether), 3.68 (s, 3H, Me ester), 2.55 (t, 

2H, J = 7.2 Hz, H-2), 2.17 (tt, 2H, J = 6.9 Hz, H-3), 1.54 (d, 3H, J = 6.3 Hz, H-12). 13C 

NMR (CDCl3): 173.57 (C-1), 154.28 (C-6), 147.03 (C-5), 139.64 (C-9), 137.22 (C-8), 

109.21 (C-7), 108.87 (C-10), 68.39 (C-2), 65.89 (C-11), 56.50 (Me ether), 51.91 (Me 

ester), 30.55 (C-4), 24.48, 24.43 (C-3, C-12). 

 

4.4.2. Silylation of Photocleavable Linker: Methyl 4-[4-(1-(tert-

butyldimethylsilyloxy)ethyl)-2-methoxy-5-

nitrophenoxy]butanoate (28) 

 

 

 

27 (517 mg, 1.65 mmol, 1 eq), tert-butyldimethylsilyl chloride (622 mg, 4.13, 

2.5 eq) and imidazole (315 mg, 4.62 mmol, 2.8 eq) were dissolved in dry DMF 

(8 mL). The reaction was stirred at rt over night. To quench the reaction, the mixture 

was diluted with ethyl acetate (40 mL) and washed with saturated aqueous NaHCO3, 

saturated aqueous NH4Cl, and brine (each 3 × 40 mL). The organic layer was dried 

over Na2SO4, filtered and evaporated. The crude product was purified by column 

chromatography (petroleum ether/ethyl acetate, 8:1 to 6:1) to afford silyl ether 28 

(692 mg, 98%) as a dark-red oil. 

ESMS: m/z calcd for C20H33NO7Si 450.2 [M + Na]+; found, 450.2 [M + Na]+. 1H 

NMR (CDCl3, 500 MHz): 7.56 (s, 1H, H-10), 7.35 (s, 1H, H-7), 5.58 (q, 1H, J = 6.1, 

H-11), 4.08 (t, 2H, J = 6.2 Hz, H-4), 3.92 (s, 3H, MeO), 3.67 (s, 3H, Me ester), 2.54 (t, 

2H, J = 7.2 Hz, H-2), 2.16 (m, 2H, H-3), 1.41 (d, 3H, J = 6.1 Hz, H-12), 0.85 (s, 9H, 
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SiC(CH3)3), 0.05 (s, 3H, Si(CH3)), -0.07 (s, 3H, Si(CH3)). 
13C NMR (CDCl3): 173.57 

(C-1), 154.17 (C-6), 146.71 (C-5), 139.00 (C-9), 138.61 (C-8), 109.32 (C-7), 108.87 

(C-10), 68.30 (C-2), 66.80 (C-11), 56.36 (MeO), 51.93 (Me ester), 30.60 (C-4), 26.53 

(C-12), 25.98 (SiC(CH3)3), 24.48 (C-3), 18.33 (SiC(CH3)3), -4.76 (Si(CH3)), -4.81 

(Si(CH3)). 

 

4.4.3. Hydrolysis of Ester: Sodium 4-[4-(1-(tert-butyldimethylsilyloxy)-

ethyl)-2-methoxy-5-nitrophenoxy]butanoate (29) 

 

 

 

Ester 28 (175 mg, 0.409 mmol, 1 eq) was dissolved in methanol (2 mL) and 1 M 

NaOH solution was added (738 µL, 0.227 mmol, 1.8 eq). The reaction was stirred at rt 

over night, followed by evaporation of methanol and water. Product 29 (185 mg, 

quant.) contained a surplus of 0.8 eq sodium, which was taken into account for further 

experiments and calculations. 

ESMS: m/z calcd for C19H30NNaO7Si 436.2 [M + H]+; found, 436.1 [M + H]+. 1H 

NMR (CD3OD, 500 MHz): 7.57 (s, 1H, H-10), 7.36 (s, 1H, H-7), 5.56 (q, 1H, J = 6.1, 

H-11), 4.07 (t, 2H, J = 6.5, H-4), 3.91 (s, 3H, MeO), 2.54 (t, 2H, J = 7.5, H-2), 2.16 

(m, 2H, H-3), 1.43 (d, 3H, J = 6.1 Hz, H-12), 0.89 (s, 9H, SiC(CH3)3), 0.05 (s, 3H, 

Si(CH3)), -0.07 (s, 3H, Si(CH3)). 
13C NMR (CD3OD): 181.84 (C-1), 155.43 (C-6), 

148.61 (C-5), 140.21 (C-9), 138.61 (C-8), 110.23 (C-7), 109.74 (C-10), 70.31 (C-2), 

67.80 (C-11), 56.62 (MeO), 35.20 (C-4), 27.19 (C-12), 26.64 (C-3), 25.09 

(SiC(CH3)3), 18.99 (SiC(CH3)3), -4.94 (Si(CH3)2). 



Material and Methods 

80 

4.5. Attachment of Spacers to Phenanthroline 

To provide an anchor point for a linkage between phenanthroline and a peptide, or 

an introduction of a (photo)chemical or an enzymatic cleavage, two different 

derivatizations of the phenanthroline were performed, either an attachment of an 

amino group or an introduction of a carboxylic acid to the phenanthroline. 

 

Reagents 

5-Chloro-1,10-phenanthroline, Pd(OAc)2, Pd2(dba)3, 2-dicyclohexylphosphino-

2’,6’-dimethoxy-biphenyl (S-Phos), 2-dicyclohexylphosphino-2’,4’,6’-triisopropyl-

biphenyl (X-Phos), and 4-methoxycarbonylphenylboronic acid were purchased from 

Aldrich (Fluka AG, Buchs, Switzerland). 5-Nitro-1,10-phenanthroline was purchased 

from Sigma (Fluka AG, Buchs, Switzerland). Pd/C (E 101 N/W, 10%) was purchased 

from Degussa (Evonik Degussa GmbH, Hanau, Germany). Fmoc-Gly-OH was 

purchased from NovaBiochem (VWR International AG, Lucerne, Switzerland), and 

HATU was obtained from PerSeptive Biosystems. 

 

4.5.1. Introduction of an Amino Group I: 5-Amino-1,10-

phenanthroline (30) 

 

 

 

5-Nitro-1,10-phenanthroline (400 mg, 1.78 mmol) and Pd/C (E 101 N/W, 10%) 

were suspended in dry methanol (16 mL) under an argon atmosphere. After 24 h of 

hydrogenation under atmospheric pressure at rt, the mixture was filtered over celite 

and the celite washed with methanol (20 mL). Finally, the filtrate was concentrated in 

vacuo to afford 30 as a yellow solid (323 mg, 93%). 
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ESMS: m/z calcd for C12H9N3 196.1 [M + H]+; found, 195.7 [M + H]+. 1H NMR 

(DMSO, 500 MHz): 9.05 (m, 1H, H-4), 8.68 (m, 2H, H-2, H-9), 8.04 (m, 1H, H-7), 

7.74 (m, 1H, H-3), 7.51 (m, 1H, H-8), 6.86 (s, 1H, H-6), 6.16 (s, 2H, H-15). 13C NMR 

(DMSO): 149.36 (C-4), 146.19 (C-11), 144.83 (C-9), 142.69 (C-13), 140.51 (C-14), 

132.72 (C-7), 130.82 (C-1), 130.58 (C-5), 123.22 (C-8), 122.08 (C-3), 121.82 (C-12), 

101.74 (C-6). 

 

4.5.2. Introduction of an Amino Group II: (9 H-Fluoren-9-yl)methyl 2-

(1,10-phenanthrolin-5-ylamino)-2-oxoethylcarbamate (31) 

 

 

 

5-Amino-1,10-phenanthroline (30, 102 mg, 0.522 mmol, 1 eq), Fmoc-Gly-OH 

(777 mg, 2.61 mmol, 5 eq), and HATU (978 mg, 2.57 mmol, 4.9 eq) were dissolved in 

DMF (5 mL). After addition of DIPEA (890 µL, 5.22 mmol, 10 eq), the reaction was 

stirred at rt over night. Finally, the crude product was concentrated in vacuo, dissolved 

in water/acetonitrile (30:70), and purified by LC-MS using a gradient of acetonitrile in 

water (both containing 0.1% HCOOH) from 30 to 95% to afford product 31 (tR = 

6.07 min, 114 mg, 46%) as a yellow solid. 

ESMS: m/z calcd for C29H22N4O3 475.2 [M + H]+; found, 475.1 [M + H]+.  

 

4.5.3. Introduction of an Amino Group III: 2-Amino- N-(1,10-

phenanthrolin-5-yl)acetamide (32) 
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Compound 31 (20 mg, 0.421 mmol) was dissolved in 20% piperidine in DMF 

(5 mL) and stirred at rt for 2 h. After concentration and evaporation in vacuo, crude 

product 32 was analyzed by mass spectrometry. The product was directly used for 

fusion reactions with 29 without further purification (section 4.6.2). 

ESMS: m/z calcd for C14H12N4O 253.1 [M + H]+; found, 252.9 [M + H]+. 

 

4.5.4. Introduction of Carboxylic Acid I: ( E)-tert-Butyl 3-(1,10-

phenanthrolin-5-yl)acrylate (33) 

 

 

 

Pd(OAc)2 (3.1 mg, 0.0138 mmol, 0.15 eq) and 2-dicyclohexylphosphino-2’,4’,6’-

triisopropylbiphenyl (X-Phos, 3.1 mg, 0.0279 mmol, 0.3 eq) were placed in a 

microwave tube, which was flushed with argon and evacuated several times. DMF 

(1.3 mL), which was flushed with argon for 10 min prior to the experiment, was added 

and the catalyst was stirred at rt under argon. After 30 min, CsCO3 (75 mg, 

0.230 mmol, 2.5 eq), 5-chloro-1,10-phenanthroline (20 mg, 0.0932 mmol, 1 eq), and 

tert-butyl acrylate (27 µL, 0.186 mmol, 2 eq) were added. The tube was flushed again 

with argon and firmly closed. The reaction was heated under microwave irradiation at 

80°C for 3 h. Finally, the mixture was concentrated and purified by LC-MS using a 

gradient of acetonitrile in water (both containing 0.1% HCOOH) from 5 to 95%. For 

an increased purity an additional purification was performed on the Agilent 1100 

system using the same reagents and a Phenomenex Gemini C18 column (4.6 × 

250 mm, 5 µm; Brechbühler AG, Schlieren, Switzerland) to afford pure product 33 

(19.7 mg, 69%) as a red solid. 



Materials and Methods 

83 

HR-MS: m/z calcd for C19H18N2O2 329.1260 [M + Na]+; found, 329.1261 

[M + Na]+. 1H NMR (CD3OD, 500 MHz): 9.11 (m, 1H, H-2), 9.07 (m, 1H, H-9), 8.70 

(m, 1H, H-4), 8.48 (m, 1H, H-7), 8.36 (d, 1H, J = 15.7, H-15), 8.24 (s, 1H, H-6), 7.83 

(m, 1H, H-3), 7.77 (m, 1H, H-8), 6.68 (d, 1H, J = 15.7, H-16), 1.58 (s, 9H, tBu). 13C 

NMR (CD3OD): 167.48 (C-17), 151.80 (C-2), 151.20 (C-9), 147.07 (C-11), 146.72 

(C-13), 140.23 (C-15), 138.53 (C-7), 134.01 (C-4), 132.60 (C-14), 129.70 (C-12), 

128.58 (C-5), 126.84 (C-6). 126.15 (C-16), 125.27 (C-8), 125.00 (C-3), 82.46 

(C(CH3)3), 28.59 (C(CH3)3). 

 

4.5.5. Introduction of Carboxylic Acid II: ( E)-3-(1,10-Phenanthrolin-5-

yl)acrylic acid (34) 

 

 

 

tert-Butyl ester 33 (46 mg, 0.151 mmol) was dissolved in 5 mL of TFA and stirred 

at rt over night. After concentration and evaporation in vacuo, the red oil was verified 

by mass spectrometry as product 34. It was further used for the fusion reaction with 

NAPamide (section 4.6.1) after a purity check on the Agilent 1100 system using 

acetonitrile in water from 5 to 90% on a Phenomenex Gemini C18 (4.6 × 250 mm, 

5 µm; Brechbühler AG, Schlieren, Switzerland). 

HR-MS: m/z calcd for C15H10N2O2 251.0815 [M + H]+; found, 251.0818 

[M + H]+. 1H NMR (CD3OD, 500 MHz): 9.16 (m, 1H, H-2), 9.13 (m, 1H, H-9), 8.81 

(m, 1H, H-4), 8.58 (m, 1H, H-7), 8.48 (d, 1H, J = 15.7, H-15), 8.34 (s, 1H, H-6), 7.90 

(m, 1H, H-3), 7.85 (m, 1H, H-8), 6.77 (d, 1H, J = 15.7, H-16). 13C NMR (CD3OD): 

169.64 (C-17), 151.44 (C-9), 150.96 (C-2), 146.16 (C-11), 145.86 (C-13), 141.00 

(C-15), 139.28 (C-7), 134.74 (C-4), 132.89 (C-14), 129.91 (C-12), 128.79 (C-5), 

126.94 (C-6), 125.54 (C-8), 125.30 (C-3), 125.22 (C-16). 
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4.5.6. Alternative for Carboxylic Acid: Methyl 4-(1,10-phenanthrolin-

5-yl)benzoate (35) 

 

 

 

4-Methoxyphenylboronic acid (126 mg, 0.699 mmol, 1.5 eq), 5-chloro-1,10-

phenanthroline (100 mg, 0.466 mmol, 1 eq), CsF (211.4 mg, 1.39 mmol, 3 eq), S-Phos 

(19.2 mg, 41.1 mmol, 88 eq), and Pd2(dba)3 (24.0 mg, 51.8 mmol, 111 eq) were 

resuspended under argon in dry dioxane (6 mL). The reaction was stirred at 80°C for 

7 d. The mixture was diluted with ethyl acetate (20 mL) and washed with saturated 

aqueous NaHCO3 (2 × 20 mL) and brine (2 × 10 mL). The organic phase was dried 

over Na2SO4 and concentrated in vacuo. Recrystallization in methanol afforded 

product 35 (61.3 mg, 42%) as a slightly yellow powder. For an increased purity 10 mg 

of the product were further purified by LC-MS, leading to 6.8 mg of pure product 35. 

ESMS: m/z calcd for C20H14N2O2 315.1 [M + H]+; found, 315.0 [M + H]+. 1H 

NMR (DMSO, 500 MHz): 9.18 (m, 2H, H-2, H-9), 8.64 (m, 1H, H-7), 8.30 (m, 1H, 

H-4), 8.18 (m, 2H, H-17, H-19), 8.09 (s, 1H, H-6), 7.89 (m, 1H, H-8), 7.82 (m, 1H, 

H-3), 7.77 (m, 2H, H-16, H-20). 
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4.6. Fusion Reactions of Phenanthroline with NAPamide (25) 

To prove the concept of a peptide purification by attachment of a tag binding to 

Ni-NTA, phenanthroline was coupled to the test peptide NAPamide (25). A direct 

fusion to the N-terminus was performed with (E)-3-(1,10-phenanthrolin-5-yl)acrylic 

acid (34). In addition, another tag construct was synthesized with a covalently attached 

photolinker (PL). For this purpose, 2-amino-N-(1,10-phenanthrolin-5-yl)-

acetamide (32) was used. 

 

Reagents 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC•HCl) was 

purchased from Pierce (Pierce Biotechnology, Rockford IL, USA), and HATU was 

from PerSeptive Biosystems. Tetrabutyl ammonium fluoride (TBAF) was purchased 

from Fluka (Fluka AG, Buchs, Switzerland). 

 

4.6.1. Direct Fusion of Phenanthroline with NAPamide: (E)-3-(1,10-

Phenanthrolin-5-yl)acryoyl-NAPamide (36) 

Carboxylic acid 34 (12 mg, 0.0464 mmol, 8.4 eq) was pre-activated with HATU 

(18 mg, 0.0464 mmol, 8.4 eq) and DIPEA (16 µL, 0.0947 mmol, 8.4 eq) in DMF 

(1 mL) at rt for 10 min. The pre-activated mixture was added to resin-bound 

NAPamide-PAL-PEG-PS (35 mg, 0.00549 mmol, 1 eq), which was equal to a 

theoretic yield of 5.8 mg peptide. The reaction mixture was agitated at rt over night 

and washed with DMF (5 × 5 mL) and isopropanol (3 × 5 mL) to give red-stained 

polystyrene beads. Cleavage from the resin and deprotection of the construct was 

performed in 5 mL TFA mixture (90% TFA, 5% EDT, 4.5% H2O, 0.5% thioanisole) at 

rt for 45 min. Afterwards, the suspension was immediately filtered and the resin was 

washed with TFA (3 × 5 mL). The crude product 36 was concentrated in vacuo and 

analyzed by mass spectrometry to be further used for the Ni-NTA purification 

(section 4.8.2). 

ESMS: m/z calcd for C65H80N18O11 1289.6 [M + H]+, found, 1289.7 [M + H]+. 
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4.6.2. Fusion of Phenanthroline with Photolinker I: N-[2-(1,10-

Phenanthrolin-5-ylamino)-2-oxoethyl]-4-[4-(1-(tert-

butyldimethylsilyloxy)ethyl)-2-methoxy-5-

nitrophenoxy]butanamide (37) 

 

 

 

The crude sodium salt 29 (25 mg, 0.0548 mmol, 1.3 eq) was dissolved together 

with crude amine 32 (27 mg, 0.0421 mmol, 1 eq), EDC•HCl (17 mg, 0.110 mmol, 

2.6 eq), HOBt (17 mg, 0.110 mmol, 2.6 eq), and DIPEA (30 µL, 0.169 mmol, 4 eq) in 

DMF (4 mL). The reaction was stirred at rt over night. Analytic LC-MS analysis was 

performed using a gradient of acetonitrile in water (including 0.1% HCOOH) from 5% 

to 95% to detect product 37 (tR = 7.35). The crude product was directly used for 

desilylation. 

ESMS: m/z calcd for C33H41N5O7Si 648.3 [M + H]+; found, 648.2 [M + H]+. 

 

4.6.3. Fusion of Phenanthroline with Photolinker II: N-[2-(1,10-

phenanthrolin-5-ylamino)-2-oxoethyl]-4-[4-(1-hydroxyethyl)-2-

methoxy-5-nitrophenoxy]butanamide (38) 
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Crude product 37 (0.042 mmol) was dissolved in THF (1 mL), and TBAF 

(126 µL, 1 M in THF) was added to the solution. The reaction mixture was stirred at rt 

over night and then concentrated in vacuo. For purification, the residue had to be 

injected twice into the LC-MS system using a linear gradient of acetonitrile in water 

(17 – 20%, both solvents containing 0.2% HCOOH) to afford pure product 38 (2.4 mg, 

11%). 

ESMS: m/z calcd for C27H27N5O7 534.2 [M + H]+; found, 534.2 [M + H]+. 1H 

NMR (CD3OD, 500 MHz): 9.11 (m, 1H, H-2), 9.07 (m, 1H, H-9), 8.62 (m, 1H, H-4), 

8.42 (m, 1H, H-7), 8.11 (s, 1H, H-6), 7.81 (m, 1H, H-3), 7.77 (m, 1H, H-8), 7.58 (m, 

1H, H-26), 7.33 (m, 1H, H-23), 5.40 (q, 1H, J = 6.2, H-27), 4.23 (s, 2H, H-16), 4.15 (t, 

2H, J = 6.2, H-20), 3.94 (s, 3H, MeO), 2.61 (t, 2H, J = 7.1, H-18), 2.21 (m, 2H, H-19), 

1.42 (d, 3H, J = 6.2, H-28). 
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4.7. Fusion of His6-amide to Photolinker: 2-(2-(2-(4-(4-(1-(Tert-

butyldimethylsilyloxy)ethyl)-2-methoxy-5-nitrophenoxy)-

butanoylhexahistidineamide (PL-His6-amide) (41) 

To test the amide formation between the photolinker and a potential tag, His6-

amide (26) was coupled to the sodium salt of the protected photolinker (29). The 

reagents used for this reaction are mentioned in section 4.6. 

 

4.7.1. General Procedure 

His6-amide-Rink amide Novagel resin (26, 133 mg, 0.0367 mmol, 1 eq), the 

sodium salt of the protected photolinker 29 (20 mg, 0.0441 mmol, 1.2 eq), EDC•HCl 

(15 mg, 0.0918 mmol, 2.5 eq), HOBt (14 mg, 0.0918 mmol, 2.5 eq), and DIPEA 

(26 µL, 0.147 mmol, 4 eq) were resuspended in DMF (5 mL). The reaction was run 

under constant agitation at rt for 60 h. Then, the resin was washed with DMF (3 x 

5 mL) and isopropanol (5 × 5 mL), and dried in vacuo to yield the protected PL-His6-

amide resin (39). For the hydrolysis of the silyl ether, the resin was transferred into 

THF (5 mL) and TBAF (1 M solution in THF, 150 µL, 0.147 mmol, 4 eq) was added. 

After 2 h of agitation at rt, the resin was washed with isopropanol (5 × 5 mL) and dried 

in vacuo to yield the PL-His6-amide resin (40). Finally, the construct was deprotected 

and cleaved from the resin using 10 mL of a TFA solution (95% TFA, 4% water, 1% 

triisopropyl silane) at rt for 2 h. The resin was filtered and washed with another 10 mL 

of TFA solution. The filtrate was concentrated and dried in vacuo to afford crude 

product 41. For purification, LC-MS was performed using the Agilent purification 

system with a C18 Vydac 218TP54 reversed-phase column. A gradient of acetonitrile 

in water (both containing 0.1% TFA) from 5 to 50% was run to achieve the pure 

product 41 (tR = 2.98 min, 8.8 mg, 65%). 

ESMS: m/z calcd for C49H60N20O12 1121.5 [M + H]+; found, 1121.7 [M + H]+.  
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4.8. Ni-NTA Purifications 

The purification of the test peptide NAPamide using a tag and a commercially 

available Ni-NTA column was one of the main tasks in this work. In a first step, the 

purification was established with 1,10-phenanthroline alone, later on, the purification 

was performed with the NAPamide construct 36. 

 

Reagents 

HBS-N (0.01 M HEPES pH 7.4, 0.15 M NaCl) was purchased from Biacore 

(Biacore AB, Uppsala, Sweden). Acetonitrile was purchased from Fluka (Fluka AG, 

Buchs, Switzerland). 1,10-Phenanthroline monohydrate was achieved from Riedel-

deHaën (Fluka AG, Buchs, Switzerland). 

 

Equipment 

For the purification standard single use syringes were used from ONCE. The 

HisTrap HP (1 mL) column was purchased from GE Healthcare (GE Healthcare, 

Otelfingen, Switzerland). Injection, equilibration, and washing steps were performed 

manually by connecting the syringe directly to the HisTrap column. A Molecular 

Devices SpectraMax plus UV absorbance plate reader was used to analyze the elution 

and wash fractions photometrically. UV Star 96-well microtiter plates were ordered 

from Greiner Bio-One (Greiner Bio-One GmbH, Frickenhausen, Germany) to allow 

analysis in the UV range. 

 

4.8.1. Evaluation with 1,10-Phenanthroline 

Prior to the experiment, absorbance spectra (190 to 700 nm, 5 nm steps) of a 10-

fold dilution series of 1,10-phenanthroline (2.8 mg/mL to 0.0028 mg/mL) in elution 

buffer (HBS-N/acetonitrile, 1:1, including 500 mM imidazole) were recorded, to be 

later compared with wash and elution fractions. Before loading the phenanthroline, the 

HisTrap column was equilibrated with 10 mL loading buffer (HBS-N/acetonitrile, 

1:1). Phenanthroline (4 mg) was dissolved in loading buffer (400 µL) and loaded onto 

the column. The column was washed with loading buffer (10 mL), and wash fractions 
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were collected (each 1.5 mL, fractions “wash I”). A small portion of each wash 

fraction (200 µL) was photometrically analyzed in the plate reader measuring the 

absorbance between 190 and 400 nm (steps of 5 nm). Elution was performed using 

10 mL of elution buffer and fractions were collected (each 1.5 mL, fractions 

“elution I”). Again, 200 µL samples of the collected elution fractions were analyzed in 

the plate reader. Wash fractions still containing 1,10-phenanthroline were reloaded 

onto the column after equilibration with loading buffer (10 mL) and collected as well 

(each 1.5 mL, fraction “intermediate”). After washing with loading buffer (wash II), 

elution was performed again with elution buffer until no absorbance of phenanthroline 

was detectable any more (elution II). All fractions were pooled according to their 

origin (wash I, elution I, intermediate, wash II, and elution II) and concentrated in 

vacuo. For quantification, a 1,10-phenanthroline standard was prepared (25 µg/mL to 

0.781 µg/mL in loading buffer), and absorbance was measured at 260 nm. Samples 

were diluted with loading buffer (1:100) and measured in triplicates. Three samples 

(200 µl) of loading buffer were used as blanks. For long-term storage the HisTrap 

column was washed with methanol (10 mL) and stored in the same solvent at -20°C. 

 

4.8.2. Purification of (E)-3-(1,10-phenanthrolin-5-yl)acryoyl-

NAPamide (36) 

Product 36 was purified as described for 1,10-phenanthroline (section 4.8.1) with 

minor variations: The whole amount of 36, synthesized before (0.00549 mmol, 

theoretical yield of 5.8 mg pure peptide), was dissolved in 2 mL loading buffer. After 

equilibration of the column with loading buffer (5 mL), half of the freshly prepared 

solution (1 mL) was loaded onto the column with the syringe and stored at -20°C over 

night. The next morning, the procedure was continued as described above. The 

fractions from the first elution round (e1) were pooled and stored separately from the 

pooled elution fractions of the second elution (e2). Both fractions e1 and e2 were 

concentrated in vacuo and dissolved in 1 mL of water/acetonitrile (1:1, including 0.2% 

HCOOH) for HPLC analysis. HPLC analysis was performed for a qualitative 

investigation using the Agilent 1100 HPLC system with a Phenomenex Gemini C18 

(4.6 × 250 mm, 5 µm; Brechbühler AG, Schlieren, Switzerland) column. For 
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quantification fractions e1 and e2 were separated from imidazole by HPLC 

purification using the same system mentioned above. Single peak at 9.64 min was 

collected and analyzed by hydrolysis and dabsylation as described in section 4.3. 
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4.9. SPR Experiments 

Interaction analyses between Ni-NTA surfaces and various ligands were 

performed to determine the binding affinities and kinetics of different potential tags 

and tag constructs. These qualitative and quantitative experiments were carried out on 

a Biacore system using surface plasmon resonance (SPR). 

 

Reagents 

Degassed and ready-to-use running buffers HBS-N (0.01 M HEPES pH 7.4, 

0.15 M NaCl) and HBS-EP (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 

0.005% v/v surfactant P20) were purchased from Biacore (GE Healthcare, Freiburg, 

Germany). Sensor chips with covalently attached NTA, BIAdesorb 1 (0.5% SDS), 

BIAdesorb 2 (50 mM glycine pH 9.5), and BIAdisinfectant (sodium hypochlorite) 

solutions were ordered from Biacore, too. NiCl2•6H2O, DMSO, EDTA, and 5-nitro-

1,10-phenanthroline were purchased from Sigma (Fluka AG, Buchs, Switzerland). 2-

Aminopyridine and picolinic acid were purchased from Fluka (Fluka AG, Buchs, 

Switzerland). Methyl picolinate, 3-aminopyrazine-2-carboxylic acid, neocuproine, and 

4,7-dimethoxy-1,10-phenanthroline were ordered from Aldrich (Fluka AG, Buchs, 

Switzerland). 1,10-Phenanthroline was achieved from Riedel-deHaën (Fluka AG, 

Buchs, Switzerland), 4-aminopyridine-2-carboxylic acid was ordered from Apollo 

Scientific Ltd (Stockport, UK). 2-Amino-1,10-phenanthroline and 6-

(acetylamino)pyridine-2-carboxylic acid were purchased from Specs (Specs, Delft, 

Netherlands), 6-amino-2-(2-pyridyl)pyrimidin-4-ol was ordered from Maybridge 

(Tintagel, UK). 

 

Equipment 

All SPR analyses were performed on a Biacore 3000 system (GE Healthcare, 

Freiburg, Germany). In addition, a Thermo Haake C10/K10 water bath system 

(Digitana AG, Horgen, Switzerland) was used for temperature control of the 

Biacore 3000 autosampler. All vials and caps were purchased from GE Healthcare. 
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For degassing of buffers, a Branson 2510 ultrasonic water bath (Merck Schweiz AG, 

Dietikon, Switzerland) was used. 

Data processing and determination of binding affinities (KA, KD) and kinetics (kon, 

koff) was performed with the software Scrubber 1.0g or 2.0a (BioLogic Software 

Pty Ltd., Campbell, Australia).  

 

4.9.1. General Procedures 

To achieve reproducible data of high quality, different cleaning and maintenance 

procedures were performed. Desorb procedures using BIAdesorb solutions were 

carried out on a weekly basis, and sanitize routines were performed with 

BIAdisinfectant solution to inhibit bacterial growth at least every month. All running 

buffers were degassed every day in the ultrasonic bath under reduced pressure 

(<50 mbar) prior to use. Samples to be injected into the system were centrifuged to 

remove air bubbles trapped at the bottom of the vial. In addition, the flow cell system 

was always kept under constant flow even between experiments. 

Two different buffers were used in parallel for each experiment: HBS-N with 

additional 50 µM of EDTA, to scavenge contaminating ions, was used as eluent 

buffer, HBS-EP was applied as dispensor buffer. The eluent buffer was connected to 

the left pump of the Biacore 3000, which is responsible to maintain a constant flow 

and to carry out sample injections. Dispensor buffer was connected to the right pump 

used for the sample preparation and wash steps. The standard flow rate for all 

experiments was 20 µl/min. The temperature within the Biacore system was 

maintained at 25°C. 

NTA sensor chips were stored in eluent buffer at -20°C. Before reusing, the chip 

surface was extensively washed with water and finally dried under nitrogen flow 

before insertion into the Biacore 3000 system. 

To compare the binding affinities or kinetics of different ligands the sensorgrams 

of the SPR experiments were processed with the software Scrubber 1.0g or 2.0a. Only 

the latter allowed determination of kinetics (kon, koff). A single value of kon and koff was 

calculated for each triplicate injection, to determine the mean value of kon and koff as 

well as the standard deviations from all triplicate injections. To eliminate bulk effects 
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or systemic artifacts double referencing was applied to all measurements [175], which 

was included in the software, too. For the calculations, all concentrations were 

corrected with the deviation determined by the dabsylation experiment (see 

section 4.3). 

 

4.9.2. Oligohistidine Binding Assay 

Tenfold dilution series of oligohistidines (1 – 9) were freshly prepared in eluent 

buffer before each experiment. Loading of Ni2+ on the NTA chip was performed with 

a NiCl2 solution (500 µM in eluent buffer) and regeneration with imidazole (500 mM 

in water), followed by regeneration solution (10 mM HEPES, 150 mM NaCl, 0.005% 

polysorbate 20, 350 mM EDTA pH 7.4), and finally 0.5% SDS. 

The experiment was started with a 1 min injection of NiCl2 solution to load the 

NTA chip. Then, each oligohistidine sample was injected for 5 min followed by 5 min 

of undisturbed dissociation time. The regeneration procedure consisted of two 

subsequent 1-min injections of imidazole and regeneration solution. Finally, the 

surface was washed with 0.5% SDS in water for 1 min at a flow rate of 100 µl/min. 

Regeneration and washing was performed twice for each cycle. Oligohistidine 

solutions were injected in five different concentrations at different concentration 

ranges depending on the binding affinity (Table 17).  

 

Table 17: Concentration Range of Oligohis (1 – 9). 

Compound  No. Concentration range 

His2  (1) 5 mM – 500 nM 

His3  (2) 500 µM – 50 nM 

His4  (3) 50 µM – 5 nM 

His5  (4) 5 µM – 500 pM 

His6  (5) 5 µM – 500 pM 

His7  (6) 5 µM – 500 pM 

His8  (7) 5 µM – 500 pM 

His9  (8) 5 µM – 500 pM 

His10  (9) 5 µM – 500 pM 

PL-His6-amide  (41) 200 µM – 3 nM 

L-histidine a  - 20 mM – 610 nM 
a L-histidine was included for comparison reasons with 

the other peptides in this series 
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Each concentration was measured in triplicates in a randomized order. The 

temperature of the autosampler rack was kept at 17°C. A NTA flow cell without Ni2+ 

was used as reference cell. Three buffer blanks before, one between the sample series, 

and one at the end of the experiment were used for double referencing during data 

processing. 

The binding assay of L-histidine was slightly modified: 20 µl of His as 2-fold 

dilution series was injected during the association phase. Undisturbed dissociation was 

performed during 60 s to reach baseline level again. A single injection of 20 µl 

regeneration solution was sufficient to regenerate the surface. 

 

4.9.3. His2Ala4 Binding Assay 

The binding assay for the His2Ala4 series was developed by Dr. Daniel Ricklin 

(Institute of Molecular Pharmacy, University of Basel). The same experimental setup 

was used as described for the oligohistidines (section 4.9.2). Stock solutions (25 mM 

in eluent buffer) of peptides 10 – 14 were freshly prepared before the experiment. 

Peptide samples of fivefold linear dilutions ranging from 0.32 – 5000 µM were 

injected. The autosampler rack was kept at 17°C. After preparation of the surface with 

Ni2Cl solution, the samples were injected with a 1 min pulse followed by a 

dissociation time of 20 s. Regeneration of the surface was performed with a single 1 

min pulse of regeneration solution. Again, 3 blanks were included at the beginning, 

one in between the triplicates, and one at the end of the experiment. All blanks were 

included into the double referencing (see section 4.9.1). 

 

4.9.4. HisxAlay Binding Assay 

Analysis of the HisxAlay series (15 – 19) was performed as mentioned for the 

oligohistidines (section 4.9.2). Before each experiment the chip surface was washed 

with 20 µl NaOH solution (100 mM) at a flow rate of 20 µl/min for an increased 

stability of the binding curves. Stock solutions of the peptides (5 mM in eluent buffer) 

and 5-fold dilutions were freshly prepared before the experiment. In case of His2 (1), 
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the dilution factor was 10. The concentration ranges of the different peptides are 

shown in Table 18. 

 

Table 18: Concentration Range of HisxAlay (15 – 19). 

Compound No. Concentration range 

His2Ala41 a (10) 5 mM – 320 nM 

HisxAlay1 (15) 200 µM – 12.8 nM 

HisxAlay2 (16) 200 µM – 12.8 nM 

HisxAlay3 (17) 5 mM – 320 nM 

HisxAlay4 (18) 5 mM – 320 nM 

HisxAlay5 (19) 5 mM – 320 nM 

His2 a (1) 5 mM – 500 nM 
a His2Ala41 and His2 were included in this series to 

ensure same conditions (chip, solvents) for all 
peptides to be compared within this series 

 

The temperature of the autosampler rack was maintained at 19°C. After a 1 min 

injection of NiCl2, 20 µl of the peptide sample was injected and followed by a 

dissociation phase of 30 s. To finish the cycle, the surface was washed with 20 µl of 

regeneration solution followed by two pre-programmed wash routines “wash needle” 

and “wash IFC”. Double referencing was again used including blanks as described in 

section 4.9.2. 

 

4.9.5. HXH Binding Assay 

The same experimental setup was used as described for the oligohistidines 

(section 4.9.2). Stock solutions were freshly prepared prior to the experiment (1 mM 

for 20, 21, and 22; 5 mM for 23 and 24; all in eluent buffer). After injection of NiCl2 

solution, 20 µl of sample (5-fold dilutions in eluent buffer) was injected, followed by a 

dissociation phase of 30 s. Concentration ranges are shown in Table 19. 
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Table 19: Concentration Range of HXH (20 – 24). 

Compound No. Concentration range 

HGH (20) 1 mM – 64 nM 

HAH (21) 1 mM – 64 nM 

HSarH (22) 1 mM – 64 nM 

HAibH (23) 5 mM – 320 nM 

HPH (24) 5 mM – 320 nM 

 

To wash the surface 20 µl of regeneration solution was injected and additionally 

the two routines “wash needle” and “wash IFC” were performed for a better signal 

quality. The temperature of the autosampler rack was kept at 19°C. 

 

4.9.6. Phenanthroline Binding Assay 

The phenanthroline binding assay was performed as described for the 

oligohistidines in section 4.9.2 using the same washing procedures with imidazole, 

regeneration solution and SDS. The number of blank injections at the beginning of the 

experiment was increased to five injections. The temperature was kept constant at 

19°C. After Ni2+ loading, 60 µl of sample was injected followed by a dissociation 

phase of 180 s. The different phenanthrolines and phenanthroline derivatives, which 

were measured in the phenanthroline assay, are shown in Table 20. 

 

Table 20: Concentration Range of Phenanthroline-like Structures. 

Compound No. 
Concentration 

range 
Dilutions 

2,2’-Bipyridyl (30) 1 mM – 64 nM 10-fold 

1,10-Phenanthroline (42) 10 µM – 100 pM 10-fold 

Neocuproine (43) 250 µM – 16 nM 5-fold 

4,7-Dimethoxy-1,10-phenanthroline (44) 2.5 µM – 20 nM 2-fold 

2-Amino-1,10-phenanthroline (46) 10 µM – 39 nM 2-fold 

5-Amino-1,10-phenanthroline (47) 2 µM – 7.8 nM 2-fold 

5-Nitro-1,10-phenanthroline (48) 250 µM – 16 nM 5-fold 

3-(1,10-phenanthrolin-5-yl)prop-2-enoic acid (34) 10 µM – 4 nM 5-fold 
N-[2-(1,10-phenanthrolin-5-ylamino)-2-oxoethyl]-4-[4-(1- 
hydroxyethyl)-2-methoxy-5-nitrophenoxy]butanamide 

(38) 200 µM – 13 nM 5-fold 
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All samples had to be prepared in DMSO for better solubility. For this purpose, 

stock solutions 20-fold above the highest concentration to be injected (Table 20) were 

prepared in 100% DMSO. Finally, to achieve a DMSO concentration of 5% eluent 

buffer was added, which resulted in the correct sample concentration. The remaining 

dilutions were prepared using eluent buffer containing 5% DMSO.  

Because of the influence of DMSO on the binding signal, a calibration was 

necessary [176]. Different mixtures of two solutions (A = 1 mL running buffer + 50 µl 

eluent buffer, B = 1 mL running buffer + 1 µl DMSO; running buffer = 5% DMSO in 

eluent buffer) according to Table 21 had to be prepared and were injected between 5 

blank injections at the very beginning of the experiment and the first sample. 

 

Table 21: DMSO Calibration Solutions. 

Calibration A [µl] B [µl] 

1  400  0 

2  300  100 

3  200  200 

4  100  300 

5  0  400 

 

Signal corrections based on the calibration solutions were directly performed 

during binding evaluation in the software Scrubber 2.0a.  

 

4.9.7. Picolinic acid Binding Assay 

The picolinic acid binding assay was performed as described for the 

oligohistidines in section 4.9.2. Stock solutions of all samples were prepared freshly 

before the experiment in eluent buffer. Association of the samples to the Ni2+-surface 

was performed by 60 µl injections using different concentration ranges and dilution 

factors (Table 22), followed by a dissociation phase of 180 s. 
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Table 22: Concentration Range of Picolinic acid Structures. 

Compound No. Concentration range Dilutions 

2-Aminopyridine (51) 80 mM – 625 µM 2-fold 

Picolinic acid (52) 500 µM – 6.4 nM 5-fold 

3-Aminopyrazine-2-carboxylic acid (53) 1 mM – 64 nM 5-fold 

Methyl picolinate (54) 20 mM – 39 µM 2-fold 

4-Aminopyridine-2-carboxylic acid (55) 5 mM – 1.6 µM 5-fold 

6-(Acetylamino)pyridine-2-carboxylic acid (56) 2 mM – 26 nM 5-fold 

6-Amino-2-(2-pyridyl)pyrimdin-4-ol (57) 100 µM – 195 nM 2-fold 

5-Methoxypyrimidine-2-carbohydrazide (58) 100 µM – 195 nM 5-fold 

 

The autosampler temperature was kept at 19°C during the experiment. Surface 

regeneration was performed by a 20 µl injection of imidazole solution (500 mM in 

water) and 20 µl of regeneration solution. 5 blanks at the beginning and one between 

the triplicate measurements were included for the evaluation in Scrubber 2.0a. 
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5. RESULTS AND DISCUSSION 

5.1. Qualitative and Quantitative Analysis of the His-Tag 

IMAC has become the most common method for the purification of proteins 

carrying either a C- or N-terminal histidine (His)-tag. However, only little is known on 

the binding properties of the His-tag to Ni-NTA. Qualitative and quantitative 

investigations, such as the determination of equilibrium association constants (KA), 

equilibrium dissociation constants (KD), association rate constants (kon), and 

dissociation rate constants (koff) would add to a better understanding of this interaction. 

Surface plasmon resonance (SPR)-based biosensors, e.g. Biacore, are suitable systems 

for the determination of these constants. Biacore (GE Healthcare, Freiburg, Germany) 

provides commercially available sensor chips with covalently attached NTA chelates, 

which can be used as a model setup for a Ni-NTA purification system. It was planned 

to design and synthesize different peptide tags and analyze them with the SPR system. 

As tags attached to “model” proteins could suffer from the drawbacks as mentioned in 

section 3.2.5, only uncoupled tags were included into the first part of the study. 

 

5.1.1. The Oligohistidine Series 

In general, five or six consecutive histidine residues are attached to a protein as 

earlier described by Hochuli et al. for the purification on a Ni-NTA column [59]. The 

length of six residues turned out to be the optimal length for the purification as 

demonstrated by Hochuli et al. The oligohistidine series (1 – 9) should therefore 

deliver explanations, whether this is also true for the binding affinity. 

 

Synthesis and Purification 

The synthesis on the solid-phase using a trityl-based linker was performed without 

any particular problems, with good yields of at least 40% for all peptides synthesized 

in this series. This means a coupling efficiency of more than 90% for each step. 

Histidine is one of the most critical amino acids in peptide synthesis, as it is prone to 

enantiomerization during the coupling step due to the reactivity of the imidazole 
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nucleus. The most effective way to suppress enantiomerization is blocking either the 

π-nitrogen or the τ–nitrogen [177, 178].  

The purification of the peptides was much more difficult, especially for the short 

peptide His3 (2). As expected, the retention times (tR) of the HPLC correlates with the 

length of the tag (Figure 18). Because His3 (2) was purified under different conditions, 

it does not fit into this correlation. 

 

 
Figure 18: Retention time tR of HPLC analysis in correlation to peptide length of the different oligohistidines). His3 (2) 
was purified on a different column using a different buffer system, which explains the high tR. 

 

The difference between two peptides with n and n+1 histidine residues was rather 

small for n = 4 and 5, as well as for n = 8, 9, and 10. During the synthesis of His5 (4), 

His4 (3) will appear as a byproduct, which has to be separated from the desired 

product. The difference of 0.2 min between product (4) and byproduct (3) was at the 

lower limit for a baseline separation. The differences in tR between peptides with 

n = 5, 6, 7, and 8 histidines were larger and therefore purification did not reveal any 

problems. 

Purification of His3 (2) was problematic due to the low retention on the reversed-

phase C18 columns. Both running buffers contained 0.1% TFA lowering the pH below 

the pI of histidine (7.6). Therefore, His3 (2) is at least partially protonated. This led to 

highly hydrophilic peptides with poor retention on reversed-phase columns. Therefore, 
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the buffer system for the purification of His3 (2) was changed from 0.1% TFA to 

ammonium acetate buffer at pH 8.8 to decrease the average charge on the molecule. 

This prolonged the retention of His3 (2) from initially 2.5 min (injection peak) with 

the water/acetonitrile/TFA system up to 7.9 min with the ammonium 

acetate/acetonitrile system. 

After HPLC the lyophilized peptides contain a certain amount of salt. Therefore, 

the peptides were hydrolyzed and than derivatized with 4-(4-

dimethylaminophenylazo)benzenesulfonyl chloride (DABS-Cl). Comparison with an 

amino acid standard treated with the same procedure allowed the determination of the 

amino acid amount in the samples. The results from the dabsylation experiments 

demonstrated the necessity of such salt content determinations to gain reliable data in 

the SPR experiments of synthetic peptides, where the knowledge of the exact 

concentration of the samples is crucial (Table 23). 

 

Table 23: Salt Content of Oligohis (1 – 9). 

Compound No. Salt Content [%, w/w] 

His2 (1) 49 a 

His3 (2) 23 

His4 (3) 62 

His5 (4) 64 

His6 (5) 60 

His7 (6) 59 

His8 (7) 55 

His9 (8) 54 

His10 (9) 58 
a A salt content of 50% was given by the manufacturer 

 

The salt content was in most cases more than 50%. Therefore, a KD determined by 

simply weighing the peptide on the scales would underestimate the binding affinity by 

a factor of 2. His2 (1) could be used for the validation of the derivatization method. 

The value specified by the manufacturer was 50% and therefore similar to the value 

obtained by dabsylation (49%). The high amount of salt after purification with HPLC 

is a result of the buffer conditions. For example, in hexahistidine dissolved in a 0.1% 

TFA, probably all imidazole residues and the N-terminal amine are protonated. 

Therefore, up to 7 TFA counter ions are bound to the peptide after lyophilization, 
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leading to a calculated salt content of 48% (w/w). The only molecule containing a 

significant lower amount of salt was His3 (2), which was purified under basic 

conditions at pH 8.8. At this pH, the histidine residues are mostly uncharged. 

 

Binding Assay 

The method used for the binding assay was already published in a study of Nieba 

et al. [126] and was available as a recommendation note of Biacore [158]. 

Nevertheless, the eluent buffer was slightly modified and prepared without addition of 

polysorbate 20. When the samples were kept in eluent buffer containing polysorbate, 

no binding of His6 (5) could be detected even at high concentrations. When 

polysorbate was omitted in the eluent buffer, the binding signal rose with increasing 

peptide concentration as expected. A clear explanation for this effect was not found. 

Complexation effects could be a possible reason for the inhibition of the binding of 

His6 (5) to the Ni-NTA surface. To avoid carry over effects, especially after injections 

of highly concentrated samples, wash steps with 500 mM imidazole and 0.1% SDS 

had to be introduced in addition to the regeneration with 350 mM EDTA. To guarantee 

high signal intensities and reproducibility of the triplicate measurements, the complete 

regeneration of the surface was crucial. Thus, the surface could be freshly loaded with 

nickel before each sample injection, and the signal derived from the nickel loading 

step could be used as a monitor of the chip quality. Generally, the amount of nickel 

loaded onto the surface varied slightly from flow cell to flow cell. After several weeks 

of chip usage, a slight decrease of the nickel signal was observed and the chip had to 

be exchanged. An overview of the binding signals for the oligohistidine series is 

shown in Figure 19.  
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Figure 19: Sensorgrams of the oligohistidine series (1 – 9). The samples were measured in triplicate injections. The 
concentration ranges and dilution factors are given in 4.9.2, Table 17. 

 

The sensorgrams showed highly reproducible triplicates up to His7 (6). With 

increasing peptide length (more than seven amino acids) the triplicates deviated, 

especially at concentrations around saturation level. Reasons like carry over effects or 

reduced binding activity could be excluded, because no changes were detected in case 

of altered injection orders or wash procedures. Furthermore, the signals were checked 

for mass transfer by running the experiment at different flow rates from 10 to 

100 µl/min. And finally, impurities or degradation of peptides were excluded by 

HPLC analysis before and after SPR experiments. As the effects are only visible for 

long peptides, time-dependent conformational changes might be considered as a 

possible reason for this phenomenon. 

Looking at the steady state phases, another abnormality becomes visible. All 

peptides showed a linear decrease in binding signal during steady state phase. This 

decrease is most likely due to the removal of Ni2+ from the NTA surface (‘nickel 

leaching’) and its full coordination by the peptide in solution. As a consequence, the 

binding level dropped below the initial baseline after dissociation of the analyte (see 

sensorgrams of the His2 (1) and His3 (2) in Figure 19). The same loss was also visible 

for other peptide series and will be discussed in more detail in section 5.1.3. 
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According to the sensorgrams, the dissociation rates for tags consisting of four or 

more histidines altered with different concentrations of analyte, indicating multiple 

binding events [126]. Therefore, the dissociation did not follow a normal exponential 

decay, and the baseline was not reached within dissociation time. At peptide 

concentrations below saturation of the nickel surface, the dissociation rate was found 

to be remarkably slow, probably caused by fast rebinding to vacant metal ions. At 

concentrations near saturation level, an initial dissociation was observed up to a certain 

level, where a stable binding signal was reached. At this stage, a temporary 

equilibrium is reached, at which the amount of free metal ions is high enough to 

enable rebinding. Finally, the rebinding and therefore the stability of the binding 

between the tag and the metal depends on the peptide length. When comparing the 

dissociation phases of oligohistidines 3 – 9 normalized by their molecular weights at 

same concentrations, the His10 (9) elicited the most pronounced rebinding (Figure 20). 

 

 
Figure 20: Normalized overlay plots showing the dissociation 
phase of a selection of oligohistidines [His4 (3) to His10 (9)] 
at the same concentration. 

 

The response at the beginning of dissociation was set to 100 and a value of 0 

signifies complete dissociation. 90% of His10 (9) was still bound to the chip surface 

after 180 s of dissociation, whereas His4 (3) has almost completely dissociated within 

the same time span. The higher the binding capacity of a molecule, the more rebinding 

occurs. 

The strong rebinding effect as well as the drift during steady state made a kinetic 

evaluation of the binding curves impossible. The latter effect and the drop below 

baseline after dissociation also aggravated a determination of the binding affinity of 

the oligohistidines to Ni-NTA. Nevertheless, fitting of the data to a simple 1:1 binding 



Results and Discussion 

107 

model (Equation 2) with the response during steady state Req allowed at least the 

determination of apparent KDs. 

Despite these problems, a comparison of the KDs of the oligohistidines was still 

possible, because all peptides showed a similar behavior. For the calculation of the 

KDs, Req on the drifting steady state curve were determined as an average value of a 2 s 

time period ten seconds before the end of the injection. Concentration plots thus 

obtained fitted well with a 1:1 binding model (Figure 21). Values at higher 

concentrations (500 nM and 5 µM) deviated more from the fitted data, which might be 

influenced by the more pronounced decrease of binding signal during steady state at 

these concentrations.  

 

 
Figure 21: Fit of Langmuir isotherm (single-site-
interaction model of His7 (6) (5 µM, 500 nM, 50 nM, 
5 nM, 500 pM). 

 

The above mentioned method was used to determine the equilibrium dissociation 

constant and binding affinities of the oligohistidines (1 – 9) (Table 24).  

 

Table 24: Apparent KDs and KAs of Oligohistidines (1 – 9). 

Compound No. App. K D [µM] App. K A [105 M -1] 

His2 (1)  62.7 ± 3.4  2 

His3 (2)  2.23 ± 0.15  45 

His4 (3)  0.313 ± 0.031  319 

His5 (4)  0.024 ± 0.002  4202 

His6 (5)  0.014 ± 0.001  7246 

His7 (6)  0.016 ± 0.001  6173 

His8 (7)  0.020 ± 0.002  4902 

His9 (8)  0.047 ± 0.002  2119 

His10 (9)  0.070 ± 0.007  1437 

 



Results and Discussion 

108 

His2 (1) showed the highest KD (62.7 µM) of all oligohistidines. Addition of 

another histidine increased the affinity by a factor 28. Another 7-fold gain in activity 

was achieved with His4 (3). This tendency continued up to six histidines, which 

showed the maximal affinity of the series (KD = 14 nM). Every further addition of 

histidines did not improve the binding affinity, demonstrated by the 7-fold lower 

affinity of His10 (9) compared to His6 (5). Therefore, six histidines are the optimal 

length for such an oligohistidine tag. The initial improvement in binding affinity from 

His2 (1) to His6 (5) might be explained by an increase in binding enthalpy (∆H) due to 

the higher number of possible interactions (Figure 22). There are several reports 

describing such a cooperative mechanism for the binding of proteins to IMAC 

adsorbents due to multipoint interactions between residues on the protein and the 

immobilized metal ions [179-181]. 

  

 
Figure 22: Binding affinity KA (1/KD) of different oligohistidines to Ni-NTA chips in 
surface plasmon resonance experiment. Due to a better illustration the KAs instead of 
the KDs are presented within this chart. 

 

Furthermore, the increase in rotatable bonds for short peptides might as well lead 

to a more flexible peptide increasing the possibility of such multiple binding events. 
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However, the free Gibbs energy (∆G) also depends on the entropy term (T∆S), which 

explains the lower affinity of His10 (9) compared to His6 (5) (Equation 6). 

 

 ∆G = ∆H - T∆S [Equation 6] 

 

When the peptide length exceedes to more than six residues, the entropy term 

outbalances the enthalpic contribution. The loss of entropy by forcing the ligand into 

the binding conformation rises with each additional residue. Above a certain chain 

length, this leads to a weaker binding. A peptide length of six histidine residues 

represents therefore an optimal balance between enthalpic and entropic components. 

To complete the oligohistidine series, L-histidine was included in the series, too. 

The difference between the oligohistidine series and L-histidine lies in the valency of 

the ligand. While all oligohistidine binding curves were fitted to a simple 1:1-binding 

model, L-histidine had to be fitted to a two-binding-site model, because two ligand 

molecules are able to bind simultaneously to Ni-NTA. The sensorgram and binding 

curve of L-histidine are shown in Figure 23. 

 

 
Figure 23: Sensorgram and Langmuir isotherm (single-site interaction model) of L-histidine (20 mM – 610 nM). 

 

The sensorgrams of L-histidine looked similar to those of His2 (1). A pronounced 

drop during steady state made the determination of a binding affinity again difficult. In 

addition, the fit did not show a clear two-binding-site behavior with clearly separated 

binding steps. This might indicate that both KDs for each step are similar, leading to a 

simultaneous binding of two histidine molecules. Another reason could be that binding 

of a second ligand occurs with a much lower affinity (KD higher than 20 mM) e.g. due 

to increased steric hindrance or unfavorable electrostatic interactions. Unfortunately, 
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Biacore is not design to measure KDs in the medium or even high millimolar range. 

Due to the lack of a clear two-binding-site behavior, determination of an apparent KD 

was performed by fitting the data set to a simple 1:1 binding model. The resulting KD 

of 430 µM was about 7-fold higher than the KD of His2 (1). The best bidentate ligand 

consisting of two histidine residues would therefore be a ligand with a KD of 180 nM 

(430 µM × 430 µM), which is 3-fold lower than the value for His2 (1). This indicates 

most probably an unfavorable arrangement of two vicinal histidines for the binding to 

Ni-NTA (e.g. non-optimal distance). 

 

5.1.2. The Preferred Binding Motif: His 2Ala4 series 

Nickel is coordinated by NTA in a tetradentate manner (3 COO-, 1 N). To 

complete the requested octahedral coordination, two additional interactions are 

required. Therefore, only two histidines can bind simultaneously via their imidazole 

nitrogens to the metal ion. Therefore, the His2Ala4 series (10 – 14) was synthesized to 

evaluate the optimal distances between two coordinating histidines. The C-terminal 

histidine residue was kept constant and the other His residue was shifted through the 

peptide. Ala was chosen as the second amino acid building block because it is inert, 

non-problematic in solid-phase peptide synthesis, and widely used in similar 

experiments (e.g. Ala screen). All peptides of the His2Ala4 series (10 – 14) were 

analyzed with SPR. 

 

Synthesis and Purification 

The synthesis of this peptide series did not reveal any relevant problem except for 

precipitation, which was impossible either with diethylether or with tert-

butylmethylether. Therefore, the crude peptide was directly concentrated after 

cleavage and lyophilized from a 10% acetic acid solution. Since only lower 

concentrated peptide solutions could be injected into the HPLC system, extended 

purification times resulted. Furthermore, when water/acetonitrile/TFA was used, all 

peptides eluted within the injection peak together with other impurities (e.g. reagents, 

byproducts). Similar to His3 (2), the purification system had to be changed to 

ammonium acetate/acetonitrile resulting in longer retention times and purer products. 
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Finally, the purification yielded peptides with an average salt content of up to 75%, 

which is significantly higher than for the oligohistidines (1 – 9). 

 

Binding Assay 

The binding assay for His2Ala4 (10 – 14) peptides was based on the experience 

from the oligohistidine assay (section 4.9.2). The overall shape of the sensorgrams was 

similar for all peptides (Figure 24). However, differences regarding signal intensity 

and steady state drift were observed. 

 

 
Figure 24: Sensorgrams of His2Ala4 series (10 – 14). Triplicate injections were measured over a concentration range of 
0.32 - 5000 µM (fivefold dilutions). a: AAAAHH (10); b: AAAHAH (11); c: AAHAAH (12); d: AHAAAH (13); 
e: HAAAAH (14). 

 

Compared to the oligohistidine series (Figure 19), the kinetic rate constants were 

much faster than for most of the oligohistidines. The binding curves rapidly reached 

baseline level after the start of the dissociation phase. This simplified the washing 

procedure to a great extent. After complete dissociation of the analyte, a single 

injection of a 350 mM EDTA solution was sufficient for regenerating the chip surface 

and for achieving highly reproducible data as demonstrated with the triplicate 

injections. A steady state drift of the binding curve was observed for peptides 

AAAHAH ( 11) and HAAAAH (14). The effect was less pronounced compared to 

His2 (1). Nevertheless, the signals allowed the determination of an apparent KD by 

fitting steady state binding signals. The dissociation followed a normal exponential 

decay and did not show extensive rebinding effects as observed for the 
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oligohistidines (1 – 9). Therefore, the His2Ala4 series was fitted kinetically (Figure 25) 

to determine kon, koff, and KD. 

 

 
Figure 25: a: Steady state fit of AAHAAH (12) to a simple 1:1 binding model. b: Kinetic fit of AAHAAH ( 12) to a simple 
1:1 binding model. Light gray lines represent binding curves of calculated single-site binding model. Black curves 
represent experimental values. 

 

The steady state fit showed a good correlation with the experimental values. The 

same was true for the kinetic fit, which showed an excellent overlap with the 

experimental data. Minor deviations are most likely due to small rebinding effects, 

binding of both or only one histidine residue to Ni-NTA, or the slight decrease during 

injection of the analyte. The residual standard deviation (res SD) of the fit was 6.05. 

The fits were of similar quality for all His2Ala4 peptides (10 – 14) allowing a 

comparison of kinetic and affinity data within this series. These data are shown in 

Table 25. 

The binding affinities obtained by steady state affinity or kinetically were in good 

agreement. Standard deviations (SD) lay below 3%. The kinetic data showed a much 

higher SD of up to 42% for the koff of AHAAAH (13). This might be due to the fact 

that the kinetic rate constants are extremely fast (T1/2 < 2.2 min) and therefore difficult 

to determine. With fast kinetics, a small deviation of the fitting curve can lead to huge 

differences in the calculated values. 
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Table 25: Evaluation of kinetics and binding affinity of His2Ala4 series (10 – 14). 

Compound No. K D (ss a) [µM] kon [M
-1s-1] koff [s

-1] 
T1/2 
[s] 

K D (kin b) 
[µM] 

AAAAHH ( 10)  288 ± 3  1164 ± 180  0.334 ± 0.053 2.1  288 ± 1 
AAAHAH ( 11)  112 ± 1  5970 ± 274  0.685 ± 0.021 1.0  111 ± 1 
AAHAAH ( 12)  402 ± 4  2181 ± 592  0.877 ± 0.258 0.8  401 ± 9 
AHAAAH ( 13)  440 ± 6  2011 ± 849  0.889 ± 0.372 0.8  442 ± 4 
HAAAAH ( 14)  70 ± 1  10194 ± 1320  0.709 ± 0.094 1.0  70 ± 1 
a steady state fit 
b kinetic fit, KD = koff/kon 

 

AAAHAH ( 11) (KD = 112 µM) and HAAAAH (14) (KD = 70 µM) showed the 

lowest KDs of the series. This indicates a favorable arrangement for two histidine 

residues separated either by one (binding motif 1-3) or by 4 amino acids (binding 

motif 1-6) when binding to Ni-NTA. This confirmed the observations of molecular 

simulations from Liu et al. with oligohistidines and free nickel ions in solution, who 

found the 1-3 and the 1-6 as the preferred binding motifs, too [131]. The higher 

flexibility of HAAAAH ( 14) compared to AAAHAH (11) might simplify an optimal 

arrangement of the binding imidazole nitrogens explaining the slightly higher affinity 

of 14. AAAAHH (10) was a factor 2.6 weaker than AAAHAH (11). The two peptides 

with the lowest affinity were AAHAAH (12) and AHAAAH (13) with KDs of 402 µM 

and 440 µM, respectively. The 4-fold lower affinity of AAAAHH (10) compared to 

His2 (1, 5.1.1, Table 24) was explained by entropic and steric effects. 

The differences in binding affinity within the His2Ala4 (10 – 14) series were 

mainly based on differences in the association rates. Peptides 11 and 14 showed 

significantly higher kons compared to 12 and 13. The dissociation rates of 11 and 14 

were only slightly slower and did not contribute that much to the higher affinity. 

AAAAHH ( 10) elicited a different behavior. The kon was even lower than for 

peptides 12 and 13, but the dissociation rate was the slowest among this series. The 

proximity of the two histidines in 10 explains the low koff. When one histidine residue 

is dissociating from the Ni-NTA complex, its rotational freedom and its flexibility in 

respect to the other histidine residue, which is still bound to Ni-NTA, is rather small. 

Therefore, the probability of rebinding to the same complex is much higher compared 

to a His with an increased flexibility. Thus, the complex might be more stable leading 



Results and Discussion 

114 

to an increased half-life time. This trend continues throughout the series, except for 

HAAAAH ( 14). This means the larger the distance between the two histidines, the 

faster is the dissociation rate constant. With 14, the koff decreased again, because as a 

result of the high flexibility, contacts to neighboring Ni-NTA complexes are becoming 

possible leading to increased rebinding. 

As already observed for the oligohis series, the His2Ala4 (10 – 14) also showed a 

steady loss in binding signal during steady state phase. This constant loss in steady 

state level and the subsequent drop of the baseline signal under the initial level before 

injection of the analyte was further analyzed. Complexation of Ni2+ from the surface 

by free analyte molecules could explain this decrease in binding signal as already 

mentioned in section 5.1.1. “Metal ion transfer” was first observed by Belew et al. 

although for a slightly different metal complex [109]. They reported some tri- and 

tetrapeptides consisting of histidine residues, which did not bind to a Superose-Cu(II) 

column because of their high affinity to the Cu(II) ions. This high affinity enables to 

strip off the Cu(II) ions from the solid support. The same phenomenon was observed 

by Andersson et al. when human serum albumin was run on a Ni2+-IDA column [182].  

A possibility to quantify this effect in the Biacore experiment was provided by the 

peptides His2 (1), His3 (2), and HAAAAH (14). For these peptides the fast kinetics 

led to a complete dissociation of the analyte, which enabled to quantify the drop below 

baseline level. If this drop is due to a loss of Ni2+ from the chip surface, it could be 

correlated with the decreasing signal during steady state using Equation 7. This 

equation is generally used to predict the binding signal at saturation level for a certain 

analyte-target system: 

 

[Equation 7] 

 

Rmax calc. was compared with the experimental signal decrease during steady state 

(Rmax exp). Rtarget is the experimental drop in baseline level, MWtarget the molecular 

weight of Ni (58.7 g/mol), and MWanalyte the molecular weight of the peptide, which 

was analyzed. For better illustration Figure 26 shows the experimental R values for 

His2 (1). 

 

Rmax calc. =
MWanalyte

MWtarget

× Rtarget × valency
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Figure 26: Decrease in steady state signal during sample injection of His2 (1). A: Full size of sensorgram of His2 (1). 
B: Magnification of drifting signal at 5 mM concentration (red binding curve). C: Drop below initial baseline level after 
dissociation of 5 mM (red) binding curve. 

 

The calculations were performed with the three peptides mentioned above (1, 2, 

and 14), which showed the most pronounced signal decrease during steady state phase. 

This allowed a precise determination of the experimental values shown in Figure 26. 

The results of the calculations are presented in Table 26. With most of the peptides 

from the oligohistidine series (1 – 9) this calculation could not be performed due to the 

rebinding effect. For the His2Ala4 peptides 10, 11, 12, and 13, the baseline drop was 

too small for detection. This problem could be circumvented by an increased injection 

time, although analyte consumption would be significantly higher. 

 

Table 26: Quantitative Analysis of ‘Metal Ion Drift’. 

Compound  No. Rmax exp. [RU] Rtarget [RU] Rmax calc. [RU] 

His2  (1) 73  15 76 

His3  (2) 59  8 59 

HAAAAH  ( 14) 38  4 40 

 

For all three peptides, the calculations fitted well with the experimental value. Due 

to the loss of Ni2+ during steady state phase, the binding capacity of the surface is 

decreased. Therefore, less analyte molecules are able to bind to the surface leading to 

the significant decrease in binding signal. Finally, after dissociation, the binding curve 

drops below the baseline level because of the decreased number of Ni2+ bound to the 

chip surface.  

Further explanations, which might support the Ni2+ complexation theory, can be 

found in solution-based stability constants [183]. The affinity of Ni-NTA in solution 

(logKD = -11.26) is about 350 times higher than the affinity of the Ni2+-His interaction 

(logKD = -8.69). This value could be decreased if other histidine residues are present 
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in the proximity of the Ni-NTA, leading to a strong competition between the peptide 

and the nickel ion. 

 

5.1.3. Entropic Effect and Combination of Preferred Binding Motifs: 

The HisxAlay Series 

As a consequence of the comparison between the oligohistidine series (1 – 9) and 

His2Ala4 series (10 – 14), the impact of entropy on the binding affinity was closer 

investigated. The increase in peptide length of the oligohistidine series led to a 

decrease in binding affinity due to the increased entropy penalty upon binding. The 

same is true when comparing His2 (1) and AAAAHH (10), which contain both a 1-2 

binding motif. The HisxAlay series (15 – 19) was synthesized to analyze this effect in 

more detail by SPR experiments. For this purpose, peptides AAAHH (17), 

AAHH (18), and AHH (19) all containing vicinal histidine residues but containing a 

variable number of alanine residues at the N-terminus were synthesized. Together with 

the peptides HH (1) and AAAAHH (10) they complete the series His2Ala0-4. 

Furthermore,  the peptides HAHAAH (15) and HAAHAH (16) were added to this 

series, which both include the two preferred binding motifs 1-3 and 1-6 in one 

molecule (see section 5.1.2). 

 

Synthesis and Purification 

The synthesis and purification of the HisxAlay series (15 – 19) revealed similar 

problems as the His2Ala4 series (section 5.1.3). Especially for shorter peptides such as 

AAHH (18) and AHH (19), precipitation prior to HPLC purification was not possible. 

As a consequence, the products are characterized by a high salt content (Table 27). 
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Table 27: Salt Content of HisxAla y (15 – 19). 

Compound No. Salt Content [%, w/w] 

HH (1) 49 

AAAAHH ( 10) 75 

HAHAAH ( 15) 36 

HAAHAH ( 16) 35 

AAAHH ( 17) 42 

AAHH (18) 75 

AHH (19) 73 

 

The different salt content – peptides 15, 16, and 17 contained up to a factor 2.1 

less salt after HPLC purification compared to 18 and 19 – cannot be rationalized. As 

both peptides, 18 and 19, showed a good retention (tR = 5.3 min for 18 and tR = 

4.5 min for 19) on the reversed-phase column, co-elution with byproducts could vastly 

be excluded. Therefore, no anomalous binding signal due to an impure sample was 

observed in the SPR analysis. 

 

Binding Assay 

The binding assay for the HisxAlay series (15 – 19) was performed with the same 

wash routine as already described for the His2Ala4 (section 5.1.2). In the experimental 

part, no relevant problems occured, apart from a continuous increase in baseline signal 

visible during long-term experiments (>8 hours). With several 1-min injections of 

100 mM NaOH at a flow rate of 20 µl/min, the chip surface could be regenerated to 

achieve the initial baseline level again. Therefore, this procedure was performed 

before each experiment. Furthermore, reproducibility and life-time of the NTA sensor 

chip could be increased, when adding wash procedures as “wash needle” and “wash 

IFC” after each injection cycle. This procedure provided a proper removal of 

precipitates or aggregates sticking to the needle or the IFC unit. 

The binding assay for the HisxAlay series (15 – 19) was completed with peptides 

from previous experiments such as His2 (1, section 5.1.1) and AAAAHH (10, 

section 5.1.2). An overview about the sensorgram is shown in Figure 27. 
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Figure 27: Sensorgrams of the HisxAlay series (1, 10, and 15 – 19): a: HH (1); b: AHH (19); c: AAHH (18); d: 
AAAHH (17); e: AAAAHH (10); a: HAHAAH (15); a: HAAHAH (16). The samples were measured in triplicate 
injections. The concentration ranges and dilution factors are given in 4.9.4, Table 18. 

 

The sensorgrams for HH (1), AHH (19), AAHH (18), AAAHH (17), and 

AAAAHH ( 10) were similar in shape to those of the His2Ala4 series (Figure 24). 

Rapid association and fast dissociation phases led to a complete return to the baseline 

level of the binding signal within seconds. The shape of the binding curves for 

HAHAAH (15) and HAAHAH (16) looked different compared with the other 

sensorgrams of this peptide series. At low concentrations of 8 µM (brown curve), 

1.6 µM (orange curve), and 320 nM (blue curve), the time span to reach steady state 

level was significantly increased. In addition, the dissociation phase is slightly 

delayed, a clear sign for rebinding. The effect is less pronounced than in the case of 

e.g. His9 (8) or His10 (9) (section 5.1.1, Figure 19). With a closer look at the 

dissociation phases of the two peptides 15 and 16 (Figure 28), the rebinding phase was 

closer analyzed. 

The first 2 s of the dissociation phase at the three highest sample concentrations of 

each peptide were fitted manually with a normal exponential decay of a 1:1 interaction 

model. The rebinding effect becomes visible due to the delayed dissociation of the 

experimental dissociation curve compared to the simulated curve around 65 s. Such a 

dissociation profile cannot be fitted with a regular exponential dissociation model. 
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Figure 28: Close-up of dissociation phases of HAHAAH (15) and HAAHAH (16). 200 µM (upper curve), 40 µM (middle 
curve), and 8 µM (lower curve) sample concentrations were compared with a normal exponential decay (thick orange 
lines) with the koff indicated for each peptide. 

 

Due to the observed decrease of the steady state signal and the rebinding, a kinetic 

investigation of the HisxAlay series was not possible. Therefore, an apparent KD was 

determined using steady state signals as already described for the oligohistidine series 

(section 5.1.1). The results are shown in Table 28. 

 

Table 28: Evaluation of KDs of HisxAlay series (1, 10, and 15 – 19). 

Compound No. K D (ss a) [µM] 

HH (1)  62.7 ± 3.4 
AHH (19)  175 ± 4 
AAHH (18)  266 ± 4 
AAAHH ( 17)  279 ± 4 
AAAAHH ( 10)  288 ± 3 
HAHAAH ( 15)  10.7 ± 0.4 
HAAHAH ( 16)  6.10 ± 0.16 
a steady state fit 

 

As expected, the binding affinity is decreased (KD increased) for each additional 

alanine residue, most probably due to increased entropy costs upon binding. 

Furthermore, binding is sterically more hindered due to the additional alanine residues. 

The difference in binding affinity between HH (1) and AHH (19) was of a factor 2.4, 

This difference became less pronounced for longer peptides as demonstrated for 

AAAHH ( 17) and AAAAHH (10), which differed only by a factor 1.03 in affinity.  
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Peptides 15 and 16 with two possible binding motifs exhibited a stronger binding 

affinity to Ni-NTA compared to the peptides AAAHAH (11, 112 µM) and HAAAAH 

(14, 70 µM), respectively. 

 

5.1.4. Impact of Rotational Freedom: The HXH Series 

Shorter tags have many advantages compared to the existing hexahistidine tag as 

already described in section 3.2.5. Therefore, tags with two histidine residues linked 

via different spacer sequences were developed. Two histidine residues separated by 

one amino acid are able to adopt a favorable conformation for binding to Ni-NTA as 

demonstrated with AAAHAH (11, KD = 112 µM). However, the affinity of 11 is still a 

factor 8000 below the one His6 (5). Shortening of the peptide to the sequence HAH 

increased the binding affinity due to the smaller entropy costs upon binding. With 

rotational restrictions between the two histidines leading to a pre-organisation of the 

binding conformation should further increase the affinity. This hypothesis was tested 

with the HXH series (20 – 24) (Figure 29). 

Five tripeptides containing either a glycine, an alanine, a sarcosine (Sar), an 

aminoisobutyric acid (Aib), or a proline at position 2 were synthesized. The peptide 

HGH (20) with its non-substituted Cα-atom should have a higher degree of rotational 

freedom than e.g. 24 containing a cyclic proline residue. As sixth peptide of this series 

His3 (2) was included (see also section 5.1.1). 
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Figure 29: The HXH (20 – 24) series with different amino acids at position 2 (marked in red): 
glycine (20), alanine (21), sarcosine (22), aminoisobutyric acid (23), and proline (24). 

 

Synthesis and Purification 

Syntheses of HGH (20), HAH (21), HAibH (22), and HPH (23) were performed 

on the Pioneer Peptide Synthesizer. 

The purification was performed with the ammonium acetate/acetonitrile system, 

which provided longer retention and therefore better separation from reagents and 

byproducts present in the crude peptide. This was important, because precipitation of 

these short peptides was not possible. 

Synthesis of HSarH (22) was more difficult to perform. With the standard 

procedure on the peptide synthesizer, the chromatograms after HPLC purification 

showed a heterogeneous profile instead of one major peak as usually obtained for short 

sequences. The problem might be caused by an incomplete coupling of the His to the 

secondary amine of Sar. Therefore, HATU instead of HOBt/TBTU was used for the 

coupling procedure [34, 184]. Furthermore, the mode was changed from automated 

continuous-flow to manual batch synthesis. Finally, using two over night couplings 

HSarH (22) was obtained in sufficient amounts for the Biacore assays. 

For all tripeptides, derivatization with DABS-Cl showed a huge salt contents of 

approximately 70% and for HAH (21) even 89%. 
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Binding Assay 

The binding assays for the HXH series (20 – 24) were performed using the same 

washing procedures as for the oligohistidines (1 – 9) including the wash routines 

“wash needle” and “wash IFC”. Due to the rather fast kinetics, short association and 

dissociation times of 1 min and 30 s, respectively could be used lowering the analyte 

consumption significantly (Figure 30). 

 

 
Figure 30: Sensorgrams of the HXH series (20 – 24). The samples were measured in triplicate injections. The 
concentration ranges and dilution factors are given in 4.9.5, Table 19. 

 

All peptides showed a linear decrease in binding signal during the steady state 

phase. HSarH (22) and HPH (24) elicited the highest loss in binding signal. Looking 

closer to the sensorgram of HPH, the steady state phase can be divided into two parts 

[see concentrations of 1 mM (red curve) and 200 µM (blue curve)]. After reaching the 

steady state level, the binding signal remains constant for 10 s (intermediate steady 

state level) before starting a pronounced linear decrease until the dissociation phase 

starts. After dissociation the signal drops again below the initial baseline level, which 

was true for all peptides of this series. The decrease was analyzed quantitatively as 

already done in section 5.1.2 using Equation 7. The values of these calculations are 

given in Table 29. 
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Table 29: Quantitative Analysis of ‘Metal Ion Drift’. 

Compound No. Rmax exp. [RU] Rtarget [RU] Rmax calc. [RU] 

HGH (20) 10 2  12 

HAH (21) 20 3  19 

HSarH (22) 41 9  55 

HAibH (23) 27 3  26 

HPH (24) 120 4  185 

 

The analysis was done with the highest concentrations of each peptide. 

HSarH (22) and HPH (24) showed the highest deviation between the calculated and 

the experimental value. For the three peptides 20, 21, and 23, deviations from the 

experimental values lay within 20%. The calculated value for HPH (24) was more than 

50% higher than the experimental value. This means that the decrease of the binding 

signal during steady state is less pronounced than expected. The same overestimation 

was found for HSarH (22). The two molecules might be regarded as outliners due to 

their strange behavior in the binding assay (biphasic dissociation).  

Despite some deviations from a standard sensorgram, the binding curves were 

analyzed to determine binding affinities and kinetic parameters. For HPH (24), a 

kinetic fit was not possible, because the decrease in binding level during steady state 

was too high. Therefore, only a fit of the steady state level to a simple 1:1 Langmuir 

isotherme was made using steady state levels immediately after reaching steady state. 

Calculated data from the steady state and kinetic fits are shown in Table 30. 

 

Table 30: Evaluation of kinetics and binding affinity of HXH series (20 – 24). 

Compound No. K D (ss a) [µM] kon [M
-1s-1] koff [s

-1] 
T1/2 
[s] 

K D (kin b) [µM] 

HGH (20)  54 ± 1  10123 ± 725  0.478 ± 0.022 1.5  47 ± 2 

HAH (21)  41 ± 1  11697 ± 822  0.535 ± 0.035 1.3  41 ± 1 

HSarH (22)  154 ± 17  3262 ± 187  0.389 ± 0.036 1.9  123 ± 17 

HAibH (23)  36 ± 3  13916 ± 632  0.406 ± 0.052 1.7  36 ± 3 

HPH (24)  77 ± 2  -  - -  - 

His3 (2)  2.23 ± 0.15  -  - -  - 
a steady state fit 
b kinetic fit, KD = koff/kon 
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The quality of the kinetic fits was satisfying with res SDs below 6.0. Only the fit 

of HSarH (22) had a res SD of 9.6. The lower quality of the fit for 22 was also obvious 

from the difference between the two KD values from the kinetic and the steady state fit. 

Furthermore, the SD for both values was significantly higher compared to the other 

peptides of this series. Despite the difference of the two KD values, the ranking of this 

series did not change. Consecutive substitution of the Cα-atom with one (HAH) or two 

(HAibH) methyl groups decreased the KD. HGH (20) with a high degree of rotational 

freedom due to its unsubstituted Cα-atom had a slightly lower (1.3-fold for the steady 

state fit or 1.1-fold for the kinetic fit) binding affinity than HAH (21). HAibH (23) 

with two methyl groups at the Cα is even more restricted in its rotational freedom, 

therefore the entropy costs upon binding is smaller than e.g. for HGH. 

However, rotational restriction does only guarantee a high affinity, when the 

molecule can adapt a conformation close or similar to the binding conformation. The 

increased kon of HAibH (23) compared to HGH (20) and HAH (21) indicates that this 

is the case for 23. The other contribution to the slightly higher binding affinity of 23 is 

a consequence of the lowered off-rate (koff = 0.406 s-1). HSarH (22) contains a 

methylated nitrogen in its peptide backbone. Although the rotational freedom should 

be restricted in comparison with 20, 22 showed a significantly higher KD (2.9-fold 

compared to 20). The low affinity was due to the much slower on-rate (3.1-fold 

compared to 20), most probably because the methyl group on the nitrogen leads to a 

pre-organization in an undesired conformation, aggravating the association of the 

complex. The affinity of HPH (24) lays between HSarH (22) and HGH (20). In this 

case the decreased flexibility did not elicit a positive effect on the binding affinity. 

Again, the binding conformation and the equilibrium conformation in solution might 

be different. In addition, X-Pro bonds are known to populate both the cis and trans 

isomers. However, for binding, one isomer is preferred. The necessary cis-trans-

isomerization lowers the affinity. 

The difference in binding affinity between HAibH (23) and His3 (2) is huge. 

His3 (2) shows a 16-fold higher affinity to Ni-NTA than HAibH (23), the best ligand 

from the HXH series (20 – 24). Due to the additional histidine residue in His3 (2), 

binding either in a 1-3 or a 1-2 binding mode to Ni-NTA is possible. Therefore, the 
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probability for binding to Ni-NTA is increased. This could not be compensated with 

the pre-organization of the two ligands in HAibH (23).  

 

5.1.5. General Considerations about the His-tag 

A better understanding of the binding mechanism of the widely used 

hexahistidine-tag (5) has been one goal of our investigations described in section 5.1. 

For this purpose, tag fragments of different peptide length and composition were 

compared in respect to thermodynamic and kinetic behavior. Even though these 

peptide tags are usually attached to a much larger protein, the idea was to investigate 

only the isolated peptide tag in order to avoid any binding interference with the 

protein. Such an approach allows the characterization and selective improvement of 

the existing tag independently of the attached protein. 

Depending on the desired application, affinity tags have to fulfill specific 

requirements. When they are used for target immobilization in ligand binding assays, a 

stable interaction is indispensable. Conversely, when the tag is used for affinity 

purification, only moderate dissociation constants [104, 105] are required in order to 

allow a mild elution from the affinity column.  

In case of Ni-NTA affinity chromatography [56, 78, 104], the stability constants 

of four complexes have to be taken into consideration; (i) Ni2+/6His-tagged protein 

(KD ≈·10-6 M, [126]), (ii) Ni 2+/imidazole (KD = 9.8·10-4 M, ), (iii) Ni 2+/NTA 

(KD = 1.8·10-11 M, [183]), and (iv) Ni2+/EDTA complex (KD = 3.6·10-18, [183]). The 

differences between these dissociation constants guarantee that the captured His-

tagged protein can be eluted with imidazole under mild, non-destructive conditions, 

while the nickel ions remain tightly bound. Finally, the affinity chromatography 

support can be regenerated by complete removal of the Ni2+ ions with EDTA followed 

by reloading the NTA chelators with Ni2+ ions (Figure 31). 
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Figure 31: Illustration of all interactions involved during the 
purification with Ni-NTA affinity column. 

 

In this tailored network of dissociation constants, the KD for Ni2+/NTA, 

Ni2+/imidazole, and Ni2+/EDTA complexes form the given constraints, whereas the 

binding properties of the His-tag can be adapted according to the needs of a specific 

application by varying the numbers of histidines or by modifying the amino acid 

sequence. For example, two consecutive 6His-tags are recommended for a stable 

immobilization of proteins on SPR surfaces for the purpose of ligand binding 

assays [126]. For purification reasons, the affinity has generally to be lower, otherwise 

the much higher imidazole concentrations needed for elution might lead to protein 

denaturation [185]. 

The apparent KD value for the best ligand in all of the presented peptide series, the 

free His6 (5) peptide, is more than 20 times lower than that reported for fusion 

proteins with a single hexahis-tag (~700 nM) by Nieba et al. [126]. Limited 

accessibility of the tag, caused by steric hindrance by the attached protein, or 

electrostatic interactions are possible explanations for the decrease in binding affinity 

of the tagged protein compared to the free tag. The same authors also investigated the 

interaction of the free His6 (5) with a nickel surface, but did not report any KD 

values [126]. 

The widespread usage of the hexahistidine tag might somehow astonish because 

of the moderate binding constant when coupled to a protein. Compared to strong 

interactions as measured with complexes of avidin and biotin (KD = 10-14 M), the 
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affinity of the hexahistidine peptide to Ni-NTA is more than a factor 105 lower. 

Nevertheless, the secret of the success of the hexahistidine-tag lies in its low “pseudo” 

off-rate. Speaking of a real dissociation rate constant is not correct due to the rebinding 

observed with the oligohistidine series (1 – 9). For peptides with eight (7) to ten 

histidine (9) residues, stable binding with little dissociation is achieved at analyte 

concentration in the range of the KD. Alternating dissociation and reassociation phases 

lead to a “sliding” of the peptide over the chip surface (Figure 32) instead of a 

complete dissociation. This leads to a stable binding to the Ni-NTA surface. At higher 

concentrations, however, when free coordination sites are in short supply, dissociation 

becomes visible. 

 

 
Figure 32: Overall binding process of hexahistidine to Ni-NTA at moderate concentrations. Ni2+ is immobilized to the 
surface of the sensor chip via NTA. One imidazole group of the hexahis-tag (a) makes first contact with Ni2+ (b). After 
the monovalent interaction is established, the high local concentration of his ligand facilitates the interaction with a 
second imidazole forming a divalent complex with histidines from the i and i+2 position (c). By consecutive 
dissociation and reassociation (d, e) the molecule ‘slides’ over the chip surface, which explains the observed rebinding 
effect in the SPR measurements. Finally, the hexahis dissociates from the Ni2+ (f, g). 

 

This demonstrates that high binding affinities are not mandatory for affinity 

purification. Moderate binding affinities can be compensated by rebinding prolonging 

the interaction of the tag with the solid support.  

Finally, in the His6 (5) an optimal ratio of entropy costs vs. binding events leads 

to the best apparent KD. Overall, fifteen different binding motifs are available within 

one hexahistidine molecule: 5 times the 1-2 motif, 4 times the 1-3 motif, 3 times the 

1-4 motif, 2 times the 1-5 motif, and once the 1-6 motif. 
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5.2. 1,10-Phenanthroline, an Alternative to the His-tag 

In section 5.1, the limitations of an affinity tag exclusively consisting of amino 

acids has been demonstrated. Therefore, non-amino acid tags were also studied. The 

idea to couple 1,10-phenanthroline (phen) to a protein or a peptide, and purify the 

construct on a Ni-NTA column was published by Frank et al. from Lonza AG (Basel, 

Switzerland) [169]. In their patent application, they attached phen to a peptide, 

synthesized via SPPS and purified the construct via a solid-phase bearing various 

metal ions Mn+ (n =1 to 3). The phenanthroline, acting as the purification tag, was 

coupled via a chemically cleavable tag to a test peptide enabling the synthesis of 

native peptides. 

Complexes between Ni(II) and 1,10-phenanthroline have been known for more 

than a century [186], but no reliable kinetic or equilibrium constants were reported 

until 1956 when Margerum et al. [187] published equilibrium constants of the mono-, 

di-, and tri-(1,10-phenanthroline)-nickel(II) complex in solution (Figure 33).  

 

 
Figure 33: Equilibrium constants of the mono-, di-, and tri-
(1,10-phenanthroline)-nickel(II) complex. K is equal to KD of the 
described complexation reaction. 

 

1,10-phenanthroline is a bidentate ligand coordinating with Ni(II) via its two 

aromatic nitrogens. Therefore, three molecules are able to bind to Ni2+ in solution. The 

existence off all three complexes has been demonstrated by Vosburgh and 

Cooper [188]. The KD for the binding of the first phenanthroline is about a factor 10 

lower than the value for the third ligand. This is due to steric hindrance and 

unfavorable electrostatic interactions between phenanthroline ring systems. For the Ni-

NTA system, conditions are similar. Ni2+ bound to NTA has only two coordination 

sites and thus binds one phenanthroline molecule. Therefore, the KD for the 

complexation of the third phenanthroline gives at least an idea about the potential of a 

phenanthroline-tag binding to Ni-NTA. The KD (K3 in Figure 33) of 30 nM is in the 
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range of the value for His6 obtained in SPR experiments (Table 24, 14 nM). A 

comparison of these two values is rather delicate due to the different ligands involved 

in binding. Up to now, no affinity measurements and kinetic evaluations of 

phenanthroline and derivatives thereof binding to Ni-NTA were reported. To fill this 

gap, the phenanthroline series (42 – 49) was analyzed with using SPR to obtain more 

information about the binding properties of phen to Ni-NTA (Figure 34). 

 

 
Figure 34: Compounds of the phenanthroline series: 1,10-Phenanthroline (42), neocuproine (2,9-
dimethyl-1,10-phenanthroline) (43), 4,7-dimethoxy-1,10-phenanthroline (44), 4,7-dichloro-1,10-
phenanthroline (45), 2-amino-1,10-phenanthroline (46), 5-amino-1,10-phenanthroline (47), 5-nitro-1,10-
phenanthroline (48), 2,2’-bipyridyl (49). 

 

The set of the different phenanthrolines was completed with 2,2’-bipyridyl 

(bipy, 49). Bipy has the same scaffold as phen, but a freely rotatable σ-bond. 

 

5.2.1. Computational Model for the Prediction of Binding Affinities to 

Ni-NTA 

In parallel to the Biacore approach, Dr. Martin Smiesko, Institute of Molecular 

Pharmacy, established a computational method that for the prediction of binding 

affinities of various ligands to Ni-NTA [171]. The software used for all calculations 

was Gaussian 03. All the operations necessary for the development of such a model 

are briefly summarized below: 

1. Geometry optimization of the complexes was performed using ab initio density 

functional theory methods at B3LYP level in combination with the triple-zeta 
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basis set with polarization and diffuse functions 6-311++G(d,p) in the solvent 

phase (water) using the conductor-like polarizable continuum method. 

2. At optimized geometries, the gas-phase part of the interaction energy was 

calculated in a single point calculation using the same level of the theory as in 

step 1, but without solvent. 

3. Similarly to point 2, the solvation effects were evaluated in a single point 

calculation at the optimized geometry using the Hartree-Fock level of theory in 

combination with the double zeta basis set with polarization functions for heavy 

atoms 6-31G(d) employing the conductor-like polarizable continuum method. 

4. The final interaction energy was calculated from the partial results of step 2 

and 3. 

One of the major problems during the development of the computational model 

was the lack of a crystal structure of 1,10-phenanthroline binding to Ni-NTA. For the 

geometry optimization such a crystal structure is needed to calibrate the ab initio 

calculations. Only two complexes of NTA binding in a tetradentate manner to Ni2+ 

were found, [NiII(NTA)(H2O)2]
- and [NiII(NTA)(adeninium)(H2O)]- [189]. Therefore, 

the complex [Ni(NTA)(phen)]- was synthesized to obtain the X-ray crystal structure 

depicted in Figure 35. 

 

 
Figure 35 (by courtesy of Dr. Martin Smiesko): Crystal structure of the complex as stick and ball 
(left) and with a highlighted phenanthroline plane (right). 

 

An unexpected property was found. The whole complex does not show the 

expected symmetry with the phen lying in the same plane as the one formed by the 
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nitrogen, the axial carboxylic acid arm, and the metal (Figure 35). Therefore, two 

enantiomeric complexes are possible, which are both found in the crystal structure. 

The missing symmetry leads to differences in the length of the coordination bonds 

between nickel and each of the coordinating nitrogens. The equatorial coordination 

bond is significantly elongated to a value of 2.143 Å, whereas the axial one measures 

only 2.053 Å. The asymmetric complex leading to different lengths of the two Ni-N 

bonds, indicate some unfavorable interactions within the complex. A steric clash of 

phen with the two CH2 groups of the NTA (Figure 35, left) might be the most probable 

explanation. 

The computational model established by Dr. Martin Smiesko was finally able to 

estimate binding affinities of various phenanthroline derivatives as demonstrated by 

the good correlation (R2 = 0.87) between the experimental and calculated data 

(Figure 36). 

 

 
Figure 36: Correlation between experimental and calculated ∆G for binding to the Ni-NTA system. Substances: 
42: 1,10-phenanthroline; 44: 4,7-dimethoxy-1,10-phenanthroline; 46: 2-amino-1,10-phenanthroline; 47: 5-amino-
1,10-phenanthroline; 48: 5-nitro-1,10-phenanthroline; 49: 2,2’-bipyridyl. 
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Only two values are not within 1 kcal/mol of the prediction. 1,10-

Phenanthroline (42) was underestimated by the model and 2-amino-1,10-

phenanthroline (46) was overestimated. At least for 46 the explanation was quite clear: 

The model does not consider a protonation of the adjacent ring nitrogen. This issue, 

together with the results of the Biacore experiment and the information derived from 

the calculations will be discussed later in section 5.2.3. 

 

5.2.2. Biacore experiments with 1,10-Phenanthroline and 2,2’-

Bipyridyl 

The Biacore assay with 1,10-phenanthroline (42) was rather difficult to establish. 

Signals were unstable and the quality was highly dependent on the injected 

concentrations: The higher the applied concentrations, the more unstable the signal 

was. On the other hand, the concentrations should approach saturation level for the 

exact determination of binding affinities and kinetics. However, this was not possible 

for the whole phenanthroline series due to the low signal quality at high 

concentrations. The unstable curves at high concentrations might be associated with 

the low solubility in water. However, Sengupta et al. published a solubility of 

3 mg/mL was reported [190], which is actually much higher than the concentrations 

used in the Biacore experiment (100 µM, 0.0180 mg/mL). Nevertheless, aggregation 

within the IFC could significantly decrease the solubility leading to the strange signals 

observed. Finally, several wash steps using 0.5% SDS after each injection of 

phenanthroline  helped to improve the signal quality. In addition, omitting of high 

concentrations allowed a further stabilization of the signal. This enabled kinetic fitting 

of the data to a simple 1:1 binding model as demonstrated in Figure 37. 
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Figure 37: a: Sensorgram of 1,10-phenanthroline (42) over a concentration range of 100 µM - 1 nM; 
b: Sensorgram of 1,10-phenanthroline (42) over a concentration range of 10 µM - 100 pM including kinetic fit 
(orange curve) to simple 1:1 binding model. 

 

With the additional SDS wash, stable triplicates could be achieved over the whole 

duration of the experiment. However, the life-time of the NTA-chips was significantly 

shorter compared to the measurements with the peptide tags. After 4 to 5 triplicate 

measurements, the binding curves became more and more unstable, which could only 

be solved by a change of the flow cells or an exchange of the chip. The res SD of the 

kinetic fit lay at 8.0, which was higher than for the His2Ala4 (section 5.1.2) and HXH 

(section 5.1.4) series (around 6.0 for both), indicating a slightly lower quality of the 

fits. 

For 2,2’-bipyridyl (49) the situation was even worse: The signals were highly 

unstable with significantly deviating triplicates. The preferred conformation of bipy in 

solution was found to be with the two nitrogens facing into opposite directions, as 

could be demonstrated in silico using a conformational search. Hence, before binding, 

a conformational change is needed for a proper alignment of the two pyridine rings. A 

kinetic fit was impossible, but a steady state fit to a simple 1:1 binding model gave at 

least an estimate of the apparent KD in comparison to 1,10-phenanthroline. The values 

obtained from the analysis of 2,2’-bipyridyl and 1,10-phenanthroline are presented in 

Table 31. 

 

Table 31: Evaluation of kinetics and binding affinity of 2,2’-bipyridyl and 1,10-phenanthroline. 

Compound No. kon [M
-1s-1] koff [s

-1] 
T1/2 

[min] K D [µM] 

1,10-Phen (42) 3546 ± 181 0.00229 ± 0.00021 5.0 0.650 ± 0.093 a 

2,2’-Bipyridyl (49) -  - - ≈ 43 b,c 
a kinetic fit, KD = koff/kon 
b steady state fit 
c mean value of several measurements 
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The difference in binding affinity between bipy and phen is about a factor 60. The 

weaker binding of bipy to Ni-NTA is most likely due to the additional rotatable bond 

in the molecule, leading to the entropic costs upon binding of compound 49. The 

penalty for a single, freely rotatable bond has been estimated from model compounds 

to be in the range of 16 – 20 Jmol-1K-1 [191]. A change of 20 Jmol-1K-1 would be equal 

to a change of 5960 Jmol-1 in ∆G at 25°C. ∆G is linked with the KD via the formula 

∆G = RTlnKD. According to this equation, the KD of bipy should be 11-fold higher 

than for phen. This value is significantly lower compared to the 60-fold difference of 

the experimental values, indicating further unfavorable properties of bipy. Indeed, bipy 

was shown to prefer an anti conformation (two nitrogens pointing into opposite 

directions) in solution as demonstrated in silico with a conformational search. 

Therefore, additional energy is needed for the rotation into the more unstable syn 

conformation. 

The koff of 1,10-phenanthroline leading to a T1/2 of 5 min was very low compared 

to the peptide tags. Higher half-life times were only found with peptides showing 

rebinding. The high affinity of the complex is based on the slow koff, whereas the 

association rate is only moderate compared e.g. with the almost 4-fold faster kon of 

HAibH (25, Table 30). 

1,10-Phenanthroline proves a high potential due to the high half-life time and due 

to the nanomolar affinity for Ni-NTA. The moderate binding affinity fits excellently 

into the Ni-NTA purification setup as already described in section 5.1.5 (Figure 31). 

 

5.2.3. Analysis of Phenanthroline Derivatives 

Further investigations on phenanthroline were performed due to the promising 

results obtained by the Biacore assay. For this purpose, different commercially 

available phenanthroline derivatives were measured by SPR. 

Sample preparation was critical for the phenanthroline assay. For all compounds, 

pure DMSO was used to avoid precipitation during the experiment. However, 5% 

DMSO is the maximal concentration tolerated for Biacore experiments. Therefore, 

dilutions had to be prepared with water-based eluent buffer to reach the final DMSO 
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concentration. 4,7-Dichloro-1,10-phenanthroline (46) did not dissolve at all and could 

therefore not be analyzed by SPR. The sensorgrams of the remaining compounds are 

presented in Figure 38. For comparison reasons 1,10-phenanthroline (42) is included 

as well. 

 

 
Figure 38: Biacore assay with phenanthroline derivatives: a: 1,10-phenanthroline (42); b: neocuproine (4,7-dimethyl-1,10-
phenanthroline) (43); c: 4,7-dimethoxy-1,10-phenanthroline (44); d: 2-amino-1,10-phenanthroline (46); e: 5-amino-1,10-
phenanthroline (47); f: 5-nitro-1,10-phenanthroline (48). The concentration ranges and dilution factors are given in 4.9.6, 
Table 20. 

 

Compounds 1,10-phenanthroline (42), 2-amino-1,10-phenanthroline (46), and 5-

nitro-1,10-phenanthroline (48) gave good triplicates, whereas neocuproine (43), 4,7-

dimethoxy-1,10-phenanthroline (44), and 5-amino-1,10-phenanthroline (47) did not 

show a good reproducibility. Only low binding signals were detected for 43 at a 

concentration of 250 µM due to the weak affinity for Ni-NTA. In this case, the KD will 

most probably lie in the millimolar range and therefore beyond the limit required for 

Biacore measurements. The signals of compounds 44, 46, 47, and 48 showed slow 

dissociation phases similar to phen (42). The binding affinity had to be determined by 

kinetic fits, because steady state was only reached for high concentrations. 

Kinetic fitting of the binding curves to a simple 1:1 binding model was delicate, 

because of the low reproducibility, especially for 4,7-dimethoxy-1,10-

phenanthroline (44). The kinetic fit of this compound showed a high res SD of 10 due 

to the deviating triplicates. As a consequence, KD, kon, and koff for 44 showed high SDs 

of more than 80% (Table 32). The quality of the fits for compounds 42, 46, 47, and 48 

was significantly higher. Interpretation of the data obtained by the kinetic fit was 
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supported by the computational model. Several parameters (e.g. partial charges on 

binding nitrogens, solvation energies, or gas-phase binding affinity) obtained by 

calculation were used to interpret the data qualitatively. 

 

Table 32: Evaluation of kinetics and binding affinity of phenanthroline series. 

Compound No. kon [M
-1s-1] koff [s

-1] 
T1/2 

[min] K D (kin a) [µM] 

1,10-Phen (42)  3546 ± 181  0.00229 ± 0.00021 5.0 0.650 ± 0.093 

Neocuproine (43)  -  - - > 1000 

4,7-Dimethoxy-1,10-phen (44)  1864 ± 1222  0.000512 ± 0.000360 22.6 0.704 ± 0.604 

2-Amino-1,10-phen (46)  1138 ± 74  0.00282 ± 0.00010 4.1 2.39 ± 0.23 

5-Amino-1,10-phen (47)  2662 ± 429  0.00107 ± 0.00005 10.8 0.407 ± 0.050 

5-Nitro-1,10-phen (48)  922 ± 11  0.00394 ± 0.00019 2.9 4.28 ± 0.25 
a kinetic fit, KD = koff/kon 

 

5-amino-1,10-phenanthroline (47) showed the highest affinity of the series 

(KD = 407 nM). The 1.6-fold higher affinity compared to 1,10-phenanthroline (42) was 

obtained due to the slower koff resulting in a prolonged half-life time of 10.8 min. The 

difference between phen (42) and 47 is the amino group, directed to the solvent when 

bound to the Ni-NTA complex. Therefore, the difference was thought to be due to a 

better solvation of the outer face of 47. An impact of the amino group on the charge 

transfer could be excluded. The calculated partial charges on the two binding nitrogens 

did not show any difference between 47 and 42. This was different for the dimethoxy 

compound (44), where each of the two methoxy groups in para position to the binding 

nitrogen influence the charge via the +M-effect. This might explain the low koff 

resulting in a high half-life time of 22.6 min for this compound. However, the lower 

on-rate of 44 compared to phen leads to a similar KD. Due to the higher charge, 

solvation of the nitrogens will be increased. Therefore, impeded desolvation prior to 

binding leads to a smaller enthalpic contribution for binding [192]. 

The low binding affinity of neocuproine (43) could be explained by the steric 

clash already observed in the crystal structure with phen (Figure 35). Sterically 

demanding methyl groups in ortho position to the coordinating nitrogens lead to 

unfavorable interactions with the CH2-groups of NTA aggravating binding to Ni-NTA.  

An amino group at position 2 as present in 2-amino-1,10-phenanthroline (46) was 

thought to increase the binding affinity due to an additional interaction (H-bond) of the 
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ligand to the carboxyl group of NTA. Furthermore, the electron donating group 

increases the negative charge on the adjacent nitrogen from –0.412 to –0.488 obtained 

by the computational model. The koff was in the same range as for phen, but kon was 

more than a factor 3 lower than for 42, leading to a much lower binding affinity 

(3.7-fold). Reasons are manifold, e.g. the loss of symmetry in the molecule upon 

addition of an amino group (only one instead of two orientations are possible in the 

binding mode), the increased solvation around the coordinating nitrogens and the 

additional amino group, or the significantly increased pKa of the nitrogen at position 1 

from 4.94 in 42 [193] to 6.9 in 46 [194]. Due to the latter, the fraction of protonated 

nitrogens at pH 7.4 (pH of eluent buffer) will be much higher than for 42. In its 

protonated state, the lone pair of the nitrogen is occupied and is not able to interact 

with the d-orbital of the metal. 

The final compound 48 with a nitro functionality at position 5 is an example of 

low solubility on the outer face of phenanthroline leading to a low affinity of 4.28 µM. 

As already observed for 47, the charges on the aromatic nitrogens were not influenced 

by the substituent. 

Unfortunately, the dichloro compound 45 could not be measured by Biacore due 

to solubility problems. However, the binding affinity can be predicted using the 

computational model. The electron donating substituents at position 4 and 7 laed to a 

higher binding affinity at least in the gas-phase. However, due to the poorer solvation 

of the outer face of the ligand, the overall binding constant dropped to a low binding 

affinity in the millimolar range. 

Figure 39 summarizes all effects that may improve the binding affinity of 

phenanthroline for Ni-NTA. The influence of a neutral or positive charge on binding 

was not addressed by SPR and is therefore purely speculative. The phen-Ni-NTA 

complex is negatively charged and therefore counter ions must be present equalizing 

this charge. The counter ion in the crystal structure is formed by [NiII(phen)2(H2O)2]
2+. 

In the Biacore or the purification column, the negative charge will most probably be 

equalized by free sodium ions present in high amounts in the running buffer. 

Therefore, a positive charge of the ligand could help in establishing a strong binding to 

Ni-NTA. However, the positive charge of Ni2+ could lead to a repulsion of a positively 
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charged ligand despite the negative overall charge. A positive charge that can be 

distributed over the molecule e.g. by mesomery could be the optimal solution. 

Finally, electron donating substituents in ortho- or para-position increase the 

binding affinity, as could be demonstrated with the dimethoxy (44) and the 2-amino 

compound (46). However, salvation has to be considered as well. 

 

 
Figure 39: Summary of positive effects on binding affinity of phenanthroline scaffold to Ni-NTA. 
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5.3. Purification Strategy with 1,10-Phenanthroline 

IMAC purification with NTA-bound Sepharose is a well established technique. 

The potential of 1,10-phenanthroline as a tag had been demonstrated in section 5.2. To 

use 1,10-phenanthroline as a tag, a spacer has to be attached to the molecule in order 

to enable coupling to a peptide or a protein. This spacer should contain a functional 

group allowing its application in solid-phase peptide synthesis. Coupling of the tag to 

the peptide, which is still bound to the solid-phase. This would allow a simple removal 

of excessive tag molecules prior to the loading step onto the column. Otherwise, the 

final product would be contaminated with non-coupled tags, because both tag and 

tagged peptides would be retained on the purification column.  

First of all, a suitable technique with the test peptide NAPamide containing a 

directly coupled phenanthroline tag was developed. Its suitability for a purification 

process on Ni-NTA columns and the application on Biacore systems was investigated. 

The whole strategy is shown in Figure 40. 

 

 
Figure 40: Synthesis and purification of a synthetic peptide (white). A: Peptide is synthesized on 
solid-phase, free amino groups are capped (C). b: Attachment of tag via spacer to complete 
peptides (black-red). C: Cleavage and deprotection. D: Purification on Ni-NTA column. E: Tag 
binds to Ni-NTA. F: Elution with excess of imidazole (pentagon). 
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A further sensitive point to be mentioned is the capping. It is absolutely necessary 

that only complete peptides with the correct sequence are substituted with the tag. For 

this reason, after each coupling step free amino groups are capped by acetylation in 

order to exclude them from the further coupling steps. The quality of the final product 

(purity) is strongly dependent on this step. 

 

5.3.1. Attachment of Spacers to 1,10-Phenanthroline 

In a first step, a 1,10-phenanthroline derivative applicable in solid-phase peptide 

synthesis was prepared. Derivatization of phen at position 5 is a straightforward 

approach, as many derivatives of phenanthroline functionalized at this position are 

commercially available. Introduction of a carboxylic acid would be beneficial for the 

direct attachment to the peptide. Activation of the carboxylic acid would then allow 

the amide formation with the free amino group of the N-terminal amino acid in 

analogy to the common solid-phase peptide synthesis protocols. 

 

The Suzuki Coupling (Nadine Hafner, Master student) 

From the numerous reactions available for the introduction of the spacer, a Suzuki 

coupling was investigated as shown in Scheme 9. Addition of the phenylboronic acid 

and subsequent cleavage of the methyl ester should furnish a phenanthroline derivative 

suitable for coupling to the N-terminal of a peptide. 

Compared to preliminary experiments, performed with 4-methoxyphenylboronic 

acid, the Suzuki coupling with 4-methoxycarbonylphenyl boronic acid proceeded 

extremely slow. This might be due to the fact that electron-rich organoboranes are 

much more reactive [195], which is the case for a methoxy group, that increases the 

electron density of the benzene ring. Various parameters were tested to optimize the 

reaction yield, e.g. solvent, catalyst, base, and ligand. Finally, an acceptable yield of 

42% using S-Phos as the ligand and dioxane as the solvent was obtained. A direct 

purification of the product by LC-MS was not possible as product and starting material 

coeluted on the C18 reversed-phase column. Recrystallization prior to chromatography 

improved the purity of the final product, although small traces of the boronic acid were 
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still visible. π-π stacking between the boronic acid and product 35 might be the reason, 

as will be discussed later. 

 

 
Scheme 9: Synthesis of 4-(1,10-phenanthrolin-5-yl)benzoic acid. 
a) 4-methoxycarbonylphenylboronic acid, Pd2(dba)3, S-Phos, dioxane, 
80°C, 96h (42%). 

 

Solubility of product 35 in aqueous solvents was very poor, aggravating the HPLC 

purification significantly. Even solvent mixtures containing an increased amount of 

methanol or acetonitrile did not solve the problem. Analysis on the Biacore system 

was not possible, as only solutions containing at least 50% DMSO enabled a proper 

dissolving of the Suzuki product 35 at concentrations needed for the experiments. 

According to the recommendations of the manufacturer, the upper limit of DMSO is 

8%. Furthermore, insolubility in water would also complicate the application in IMAC 

chromatography, where mainly water based buffers are used. Therefore, no further 

efforts were put into this approach and final hydrolysis of the ester was skipped. 

 

The Heck Coupling 

Due to the poor solubility of the Suzuki product, an alternative spacer was tested. 

Attachment of an acrylic acid residue instead of a methoxycarbonylphenyl group 

would yield a more hydrophilic product. Furthermore, the improved solubility on the 

outer face of the molecule would improve the binding affinity, as already 

demonstrated in the phenanthroline series (section 5.2.3). The reaction was done with 

a palladium-catalyzed Heck coupling (Scheme 10). 
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Scheme 10: Synthesis of 3-(1,10-phenanthrolin-5-yl)prop-2-enoic acid (34). a) tert. butyl acrylate, PdOAc, CsCO3, X-Phos, 
DMF, µW 80°C, 4h (69%); b) TFA, rt, o/n. 

 

The first Heck coupling was tried with Pd2(dba)3, NaOAc, and P(tBu)3 as ligand, 

which proved to be highly effective for couplings of non-activated aryl 

chlorides [196]. Incubation for totally 9 h in the microwave at 80°C did not show any 

product peak after LC-MS analysis. The temperature was increased to 100°C which 

led to a small product peak. However, a further increase to 120°C led to the complete 

degradation of the aryl chloride into 1,10-phenanthroline. In addition, an exchange of 

the catalyst to Pd(OAc)2 and the ligand to S-Phos did not improve the result. However, 

an improvement was observed with the highly active X-Phos ligand, which was 

reported for amination reactions of aryl bromides and chlorides [197]. This bulky 

ligand forms a stable metal complex. The quantification of the UV signal after HPLC 

analysis gave a starting material-to-product-ratio of 1 : 0.35. A further effect was 

found using CsCO3 instead of NaOAc, which improved the starting material-to-

product-ratio by a factor of 10, leading to a yield of 69% after HPLC purification. 

With S-Phos ligand and CsCO3 the yield was more than 2-fold lower after HPLC 

purification (34%). Trials with N,N-dimethylacetamide (DMA) instead of DMF did 

not furnish any product. 

For all attempts, both the cis and trans product 33 were detectable, although the 

cis-product could only be detected by MS. The trans isomer was clearly identified by 
1H-NMR due to the J-coupling constant of 15.7 Hz between H-15 and H-16. 

Upscaling of the Heck coupling was problematic because of the increase in the 

concentration of the reagents. As soon as the amount of the starting material was 

increased to 100 or even 400 mg (both in 5 mL DMF), the efficiency of the coupling 

nearly dropped to zero. For comparison, the same reaction was successful using 20 mg 
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starting material in 1.3 mL DMF. A possible reason could be the formation of 

aggregates due to π-π stacking of starting material with starting material or starting 

material with product. Increased π-π stacking was demonstrated between unsubstituted 

benzenes and benzenes with electron withdrawing substituents by Sinnokrot 

et al. [198]. Addition of the acrylate to the phenanthroline might therefore even further 

increase π-π stacking, especially at high concentrations. Therefore, the Heck coupling 

was performed only with small batches of 20 mg (in 1.3 mL DMF) and the products 

from each synthesis were pooled. 

The final deprotection of the carboxylic acid by with performed quantitatively. 

The purity of free acid was finally checked by HPLC, before it was further used for 

coupling to the test peptide. 

The initial idea for the attachment of the carboxylic acid spacer to 1,10-

phenanthroline was to hydrogenate the double bond of the acrylic acid. But as none of 

the numerous attempts to reduce the double bond with Pd on charcoal at atmospheric 

pressure was successful, the last step was omitted. A selective hydrogenation of the 

acrylate double bond was not possible. A small fraction of the desired product was 

detected by MS after 36 h of reduction at atmospheric pressure. After 62 h complex 34 

was completely reduced yielding 3-(tetradecahydro-1,10-phenanthrolin-5-yl)propanoic 

acid. Hydrogenation before the hydrolysis of the tert-butyl ester did also not alter the 

result. 

 

5.3.2. Synthesis of the Test Peptide NAPamide 

As a test peptide an α–MSH analog was chosen, which was well known from a 

synthetic point of view. It was developed for tumor-targeting, where it demonstrated 

great potential for diagnostics and treatment of melanoma cells . The sequence of this 

octapeptide is shown in section 4.2 (Table 9, entry 25) containing two non-

proteinogenic amino acids in the sequence at position 1 (norleucine) and 3 (D-

phenylalanine). The crucial capping was performed with acetic anhydride as a highly 

reactive reagent to block free amino groups by acetylation. As base 2,6-lutidine was 

used as suggested by the manufacturer manual of the Pioneer peptide synthesizer. 

After the synthesis, the resin was divided into small portions of 35 mg. With one batch 
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(theoretical yield of 5.8 mg pure peptide) the conventional process with cleavage, 

precipitation and subsequent purification by HPLC was performed (standard method). 

The HPLC purification was also used for the qualitative analysis of the NAPamide 

synthesis. Figure 41 shows the chromatogram of the HPLC analysis of the crude 

NAPamide treated via the standard method. 

 

 
Figure 41: Chromatogram of crude NAPamide (25) recorded at 214 nm. A gradient of acetonitrile in water (both 
containing 0.1% HCOOH) from 5-95% for 20 min was run together with Phenomenex Gemini column (4.6 × 
250 mm, 5 µM). Product peak of NAPamide is visible at tR = 7.847 min.  

 

The peak at 7.487 min corresponds to the NAPamide (25), which was verified by 

MS analysis. The huge peak at the end could not be identified, which might indicate 

that it is a low molecular weight compound and non peptidic. The rest of the 

impurities are formed by incomplete peptides, cleaved protecting groups, scavengers, 

and coupling reagents, which could not be completely removed by precipitation. 

With another batch of 35 mg resin, the purification using the “phenanthroline 

method” was performed. Before peptide cleavage from the solid-phase, the 

phenanthroline-tag (33) had to be attached to the peptide (Scheme 11). 
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Scheme 11: Synthesis of phenanthroline-tagged NAPamide; a) HATU, DIPEA, DMF, rt, o/n; 
b) TFA, EDT, thioanisole, water, rt, 45 min. 

 

The coupling was done by standard solid-phase peptide synthesis methods with 

the peptide still bound to the resin. Peptide molecules, which do not react with the tag, 

will be lost during purification on the Ni-NTA column leading to lower yields for the 

strategy. Therefore, the potent coupling agent HATU was used to enable the highest 

possible yield for this step. In addition, a huge excess of phenanthroline-tag 33 (8.4 eq) 

was used. The reaction was done over night. After extensive washing with DMF and 

isopropanol the resin beads showed a red staining resulting from the tagged 

peptide (33). 

In the next step, the peptide-tag construct was cleaved from the solid-phase. To 

avoid the addition of the soft nucleophile ethane-1,2-dithiol used as scavenger to the 

unsaturated compound, the cleavage time was reduced to 45 min compared to a total 

cleavage time of 1.5 h for the NAPamide without tag. The decreased cleavage time did 

not elicit a significant effect on the yield as could be later shown (see quantification in 

section 5.3.4). After concentration in vacuo, the crude peptide still showed a strong red 

staining, compared to a transparent/white color for the crude NAPamide without tag. 

 

5.3.3. Evaluation of Purification System with 1,10-Phenanthroline 

Before the purification strategy could be applied to the tagged peptide, the optimal 

conditions were evaluated with the tag itself. The Ni-NTA system is widely used for 

the hexahistidine-tag, but not much information is known for purifications with 
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phenanthroline-tags, except the already mentioned patent application from 

Lonza [169]. 

First, the optimal buffer system was identified. For this purpose, small samples of 

1,10-phenanthroline (4 mg) were dissolved in loading buffer and loaded onto the 

column. After washing, phenanthroline was eluted with elution buffer containing 

500 mM imidazole. For higher sample recovery, the wash fractions were concentrated 

in vacuo and loaded again onto the column.  

Imidazole with its maximal absorption around 230 nm interferes with the maximal 

absorption of 1,10-phenanthroline (λmax = 230 nm), making a quantification impossible 

at this wavelength (Figure 42). At 260 nm, 1,10-phenanthroline has a second smaller 

maximum, which is clearly isolated from the imidazole signal and could be used for 

the quantification. 

 

 

 
Figure 42: a: Spectrum of imidazole (0.36 mg/mL), λmax = 230 nm; b: Spectrum of 1,10-phenanthroline (0.028 mg/mL), 
λmax1 = 230 nm, λmax2 = 260 nm. 

 

Three different buffer systems were compared for the purification process 

(Table 33). As a first buffer, the eluent buffer from the Biacore experiments was used. 

HEPES-based buffer with a pH 7.4 was thought to be suitable for the purification of 

peptides or proteins, because its buffer capacity is around the physiological pH. The 

second buffer was a 1:1 mixture of eluent buffer and acetonitrile. In Biacore 

experiments with NTA chips, a small amount (50 µM) of EDTA is added to the 

running buffer to scavenge contaminating ions, which was also thought to be 

beneficial for the purification process. The third buffer system does not contain 

EDTA. An overview of the three buffer systems and the results from the test 

purifications with 1,10-phenanthroline is given in Table 33.  
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Table 33: Ni-NTA purifications of 1,10-phenanthroline with different buffer systems. 

Total recovery b 
[mg] No. Buffer system a 

Amount 
with 1st 

elution [mg] 

Amount with 
2nd elution 

[mg] Exp. Theor. 

Total 
recovery 

[%] 

I 
0.01 M HEPES pH 7.4, 0.15 M 
NaCl, 50 µM EDTA in H2O 

0 0 0 4.0 0 

II 
0.005 M HEPES pH 7.4, 
0.0725 M NaCl, 25 µM EDTA 
in H2O/CH3CN (1:1) 

0.53 0 0.53 4.0 13 

III 
0.005 M HEPES pH 7.4, 
0.0725 M NaCl in 
H2O/CH3CN (1:1) 

2.4 1.4 3.8 4.0 95 

a composition of the loading buffer, for elution the same buffer was used with additional 500 mM imidazole 
b Exp.: Experimentally determined amount of total recovery; Theor.: Theoretical amount, total amount used in this 

experiment 

 

Most evident is the fact that without acetonitrile in the loading buffer, the sample 

was completely lost, most likely due to insolubility of phen in water. As nothing of the 

sample was detected in any of the wash solutions, the problem is most likely a 

precipitation on the column or already in the syringe during loading. As soon as 

acetonitrile is added, at least 13% of the 1,10-phenanthroline can be recovered. 

Interestingly, only one elution step was necessary to recover the sample. Reloading of 

the wash fractions did not contribute to a higher recovery. For the third purification 

EDTA was completely omitted from the buffer solutions and this led to a sudden 

increase in sample recovery. From 4 mg of injected 1,10-phenanthroline, 3.8 mg 

(95%) could be regained. The first elution step gave the highest amount of 1,10-

phenanthroline with 60%. The rest of 35% could be recovered with a second loading 

of the 1st wash fraction. 

With a recovery of 95%, 1,10-phenanthroline was found to be applicable as a tag 

in purifications on Ni-NTA columns. Buffers only based on pure water as buffer I are 

not recommendable for purifications with 1,10-phenanthroline. The low solubility of 

1,10-phenanthroline in water of 3 mg/mL derived from literature seems to confirm this 

assumption [190]. The effect of EDTA in the buffer is not clear. A possible 

explanation is that EDTA is able to withdraw nickel ions from the column matrix and 

therefore decreases the binding capacity of the column. This might explain the low 

recovery of the phenanthroline with buffer II in the purification process. Although, 

Nieba et al. could demonstrate at least for the Biacore setup that inclusion of EDTA in 

the running buffer has no impact on nickel loading of the NTA sensor chip up to a 
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concentration of 300 µM [126], the situation might look different in case of a Ni-NTA 

column. 

 

5.3.4. Purification of NAPamide using 1,10-Phenanthrolinyl Tag 

Buffer system I and II from section 5.3.4 (see Table 33) were compared in this 

purification of the phenanthroline-tagged NAPamide (see section 5.3.2). The red color 

of the phenanthroline-tagged NAPamide enabled a qualitative tracking of the 

purification process (Figure 43). 

 

 
Figure 43: Purification of 1,10-phenanthroline-tagged NAPamide on HisTrap column: a: before sample loading; 
b: after sample loading; c: pooled fractions of first wash; d: pooled fractions of first elution; e: after first elution; 
f: reloading of first wash; g: second wash; h: during second elution I; i.: during second elution II; j: pooled fraction of 
second elution. 

 

On picture a (Figure 43), the blue color of the nickel loaded NTA column is 

shown. Upon loading of the sample, the red color settles in the upper half of the 

column (b). The first wash showed a strong red coloring (c), indicating that the 

column might be overloaded, or that the half-life time of the complex of 
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phenanthroline and Ni-NTA is too short, leading to an immediate release of the 

sample. At least part of the phenanthroline-tagged peptide is clearly retained on the 

column, as demonstrated with the clear red solution achieved after elution with 

500 mM imidazole (d). Only a small fraction of the product gets stuck on the column 

and is not eluted, as visible in picture e (small red band at the very top of the 

regenerated column). The remaining sample, present in the first wash (c) was then 

reloaded onto the column after concentration in vacuo. This is a common process, 

which is also frequently applied to histidine-tagged proteins. Again, the red staining is 

visible after loading the first wash onto the column due to its red staining (f). The 

second wash was colorless indicating that the whole product present in the first wash 

was retained on the column (g). Again, the last elution with 500 mM imidazole could 

clearly be followed as the red sample migrates towards the bottom of the column after 

injection of 2 mL (h) and 4 mL (i) elution buffer. The red color from the pooled 

elution fractions of the second round (j ) demonstrated that the purification was 

successful. 

A comparison of samples before and after the Ni-NTA purification by HPLC 

analysis clearly demonstrated the successful purification procedure (Figure 44). 

The chromatograms showed that out of a heterogeneous mixture the desired target 

peptide could be purified. By MS analysis it could be shown that peaks at 11.119 min 

in b and 11.093 min in c correspond with the phenanthroline-tagged NAPamide (36). 

The huge absorption in these chromatograms around the injection peak are mainly 

caused from imidazole present in high amounts in the elution buffer. Chromatogram a 

showed a number of peaks around a retention time of 9 min, which could not be 

assigned to peptidic moieties (e.g. non-tagged NAPamide or incomplete NAPamide) 

as well as the impurity. The impurity in c was of non-peptidic nature as could be later 

demonstrated by dabsylation. The non-tagged NAPamide, which eluted at 7.5 min (see 

Figure 41), was only visible as a small peak compared to the product peak at 

11.160 min in chromatogram a, eliciting a high yield of the final coupling of the 

phenanthroline-tag to the peptide. 
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Figure 44: HPLC analysis at 214 nm on a Phenomenex Gemini column (4.6 × 250 mm, 5 µM) of phenanthroline-tagged 
NAPamide before Ni-NTA purification (a), after 1st elution (b), and after elution of reinjected 1st wash fraction (c). A 
gradient of acetonitrile in water (both containing 0.1% HCOOH) from 5-95% for 20 min was run. 

 

The quantitative analysis was performed to compare the new phenanthroline 

method with the standard HPLC purification of NAPamide. The quantification was 

done by gas-phase hydrolysis and subsequent dabsylation of the free amino-groups of 

the amino acids as described in section 4.3.1. Due to the presence of imidazole in the 

elution buffer, the sample 36 had to be separated from imidazole by HPLC after 

elution from the Ni-NTA column. Since the large excess of imidazole in the samples 

might interfere with the dabsylation reaction, as imidazole can react with DABS-Cl as 

well, a correct quantification would not be possible. The data from the quantification 

via dabsyl derivatization is shown in Table 34. 
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Table 34: Ni-NTA purification of phenanthroline-tagged NAPamide (36) compared to standard 

purification of NAPamide (25) with HPLC. 

Quantity of purified 
product b [mg] Sample 

Purification 
System a 

Exp. Theor. 

Yield of 
Synthesis 

[%] 

Phen-tagged 
NAPamide (36) 

Ni-NTA, buffer 
system II 

1.2 2.9 41 

Phen-tagged 
NAPamide (36) 

Ni-NTA, buffer 
system III 

1.0 2.3 43 

NAPamide (25) HPLC 2.0 5.8 34 
a composition of the loading buffer, for elution the same buffer was used with additional 500 mM 

imidazole 
b Exp.: Amount of product determined by dabsylation; Theor.: Amount of product estimated from 

the amount of resin 

 

The yields of the NAPamide synthesis were in the expected range for all 

purification strategies. A comparison between the HPLC and the Ni-NTA purification 

methods showed a satisfying result. Both purifications of the tagged peptide (with 

system II and system III) showed similar or even higher yields compared to the HPLC 

purified peptide. In contrary to the purification with phenanthroline alone, no 

differences in the purification yield between buffers with and without EDTA were 

found. The derivatized peptides showed in all three cases the correct ratios of the 

amino acids present in NAPamide. Therefore, only the full length peptide is present in 

the purified sample demonstrating the success of the capping strategy. 

 

5.3.5. Influence of Spacer and Peptide on Binding Affinity and Kinetics 

A fundamental question to be answered when an affinity tag is developed is the 

required affinity. The much higher binding affinity of His6 (5) compared to a His-

tagged protein reported by Nieba et al. [126] was already discussed in section 5.1.5. 

With the phenanthroline system, the same effect is expected, as the phenanthroline-

tagged peptide contains a plethora of additional rotational bonds. This will truly lead 

to an increased entropy penalty upon binding, probably due to electrostatic interactions 

between peptide and phen, or to steric hindrance. With a peptide directly coupled to 

the phenanthroline tag, the binding behavior of the tag alone and coupled to a peptide 

could be studied. 
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For this purpose, Biacore experiments were performed with 1,10-phenanthroline 

derivatized with the acrylate spacer (34) and phenanthroline-tagged NAPamide (36), 

which could then be compared with 1,10-phenanthroline (42). The sensorgrams of the 

three compounds are shown in Figure 45. 

 

 
Figure 45: Biacore analysis of Heck coupling products. A: Sensorgram of 3-(1,10-phenanthrolin-5-yl)prop-2-enoic 
acid (34), 10 µM – 4 nM, 5-fold dilutions; b: kinetic fit of 34, 2 µM – 4 nM, 5-fold dilutions; c: Sensorgram of phen-tagged 
NAPamide (33), 30 µM – 469 nM, 2-fold dilutions. 

 

The acrylate spacer linked to the phenanthroline altered its binding behavior 

significantly. The free carboxylic acid seems to lead to rebinding at concentrations in 

the low micromolar range as was evident by the parallel dissociation phase of the two 

highest concentrations in the sensorgram of 34 (Figure 45a). With the additional Ni2+-

ligand formed by the carboxylic acids, a complete dissociation of 34 from the Ni-NTA 

surface was aggravated. When more than one binding motif is present in a single 

molecule, rebinding becomes apparent in the sensorgrams as already observed for the 

oligohistidines in section 5.1.1. Due to the rebinding, the highest concentration (red 

curve) was omitted for fitting to a 1:1 binding model (Figure 45b). Binding of phen-

tagged NAPamide (36) did not show a sensorgram, which was fittable to a 1:1 binding 

model, neither kinetically nor by a steady state fit (Figure 45c). The expected 

saturation level Rmax according to Equation 7, would have been at about 2000 RU. The 

experimental binding level observed with a concentration of 30 µM was up to 5-fold 

higher, suggesting an overlay of different binding events. At higher concentrations, a 

complete loss of binding signal or even negative binding signals were observed, 

indicating a possible influence of the dextran matrix. These effects might arise due to 

the charges on the Ni-NTA complex and on the peptide as well. The negatively 

charged NTA-dextran matrix might also explain the high binding signal reached for a 

concentration of 30 µM. As soon as the Ni-NTA complexes are saturated, electrostatic 

interactions between the negatively charged chip surface and the positively charged 
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peptide (due to the counterions from the HPLC purifications) leads to a coating of the 

surface and therefore to this huge binding signals. Nevertheless, a stable 

immobilization of product 36 was possible at a concentration of 15 µM, where the 

binding signal remains stable during dissociation phase indicating a specific 

interaction between phenanthroline and Ni-NTA. At higher concentrations, some 

product was lost at the beginning of the dissociation phase, which is comparable with 

the wash step of an overloaded Ni-NTA column. 

Only the sensorgram of 33 allowed a kinetic fit to a simple 1:1 binding model. 

However, the highest concentration of 10 µM had to be excluded due to the strong 

rebinding, in order to achieve a satisfying fit with a res SD of 7.5. For the phen-tagged 

NAPamide (36) a rough estimate of the binding affinity was made: Binding was 

detected for concentrations above 7.5 µM, which corresponds to a binding affinity in 

the mid micromolar range as a very rough estimate. Fitting of the 30 µM and the 

15 µM binding curve kinetically to a simple 1:1 binding model reveals a binding 

affinity of 10 µM and 80 µM, respectively. 

 

Table 35: Evaluation of kinetics and binding affinity of phenanthroline series. 

Compound No. kon [M
-1s-1] koff [s

-1] 
T1/2 

[min] 
K D (kin a) [µM] 

1,10-Phen (42)  3546 ± 181  0.00229 ± 0.00021 5.0 0.650 ± 0.093 
(E)-3-(1,10-Phenanthrolin-
5-yl)acrylic acid 

(34)  1240 ± 60  0.00131 ± 0.00008 8.8 1.06 ± 0.11 

Phen-tagged NAPamide (36)  - - - 10 – 100 b 
a kinetic fit, KD = koff/kon 
b rough estimate 

 

The binding affinity of phen (42) decreases upon attachment of the acrylate spacer 

(1.6-fold) due to the significantly lower kon. Interestingly, the decreased koff is leading 

to an increase in the half-life time of the complex from T1/2 = 5 min to 8.8 min. The 

same effect was already observed within the phenanthroline series, where the 

increased solubility on the outer face of the molecule also led to a decreased koff. The 

same must be true for 34, because of the favorable solvation by the carboxylic acid, 

although the koff might be slightly underestimated due to the rebinding. 

The difference of the KDs of phen (42) alone and attached to the target 

peptide (36) was >15-fold and therefore in the same range as already observed for the 



Results and Discussion 

154 

affinity of the His6 (5) and a His-tagged protein reported by Nieba et al. [126], 

although the attached protein in case of Nieba et al. and the peptide in our case 

significantly differ in size. This observation was already confirmed with the results of 

the HisxAlay series (section 5.1.3). The difference in binding affinity between HH (1) 

and AHH (19) was much more pronounced than for AAAHH (17) and 

AAAAHH ( 10), where almost the same affinities were measured. 

 



Results and Discussion 

155 

5.4. Refinement of the Purification Strategy: Introduction of 

Photolinker 

With the successful purification of a peptide with the IMAC technique, the project 

was guided towards further refinements. Introduction of a linker between the tag and 

the product would allow a site specific cleavage to get finally the pure product without 

tag traces. The use of a photochemically cleavable linker for solid-phase peptide 

synthesis has received considerable attention during the last two decades. It is widely 

recognized that photolysis offers a mild method of cleavage [199]. Very recently, a 

successful application of a photolinker (50, Scheme 12) was reported, which allows 

selective cleavage by photoirradiation at 365 nm [170]. The photolytic cleavage is 

supposed to give high yields without side reactions.  

 
Scheme 12: Introduction of the tag-photolinker for purification of a solid-phase product. After the 
final coupling step of the peptide synthesis, the tag-linker construct is coupled via a carbamate to 
the peptide. Cleavage of the product form the solid-phase allows loading of the product onto a 
purification column. Upon irradiation, the tag can be cleaved from the peptide at the indicated 
site. 
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The application of the photolinker to our purification process is outlined in 

Scheme 12. 1,10-phenanthroline is coupled via a glycine spacer to the photolabile 

linker. After cleavage from the solid-phase, the product will be loaded onto the Ni-

NTA support for purification as described in section 5.3. The carbamate linking 

photolinker and peptide as well as the amide bond between photolinker and phen are 

stable in 90% TFA during deprotection and cleavage of the product from the solid 

support [170]. After all non-tagged side-products have been eluted, the peptide-

photolinker-tag construct still immobilized on the affinity column, is irradiated leading 

to the release of the product. Finally, the product is eluted at neutral pH. The tag-

photolinker construct will remain attached to the Ni-NTA surface. 

The synthesis of the tag-photolinker construct is discussed in the following 

sections. 

 

5.4.1. Preparation of the Tag-Photolinker Construct 

The coupling of the photolinker to the tag was achieved by the attachment of a 

glycine spacer to the 1,10-phenanthroline. The starting material was the commercially 

available 5-nitro derivative. Preparation of this 5-glycyl-phen is shown in Scheme 13. 

 

 
Scheme 13: Introduction of a glycine spacer to 1,10-phenanthroline: a) H2, Pd/C, MeOH, atm. pressure, rt, 24h, (quant.); 
b) HATU, DIPEA, DMF, rt, o/n (71%). 

 

5-nitro-1,10-phenanthroline was reduced to the 5-amino derivative (30). NMR 

analysis of the crude product did not show any byproducts, therefore no additional 

purification step was necessary. Fmoc-Gly-OH was attached as a spacer using 

standard conditions of peptide synthesis. When the reaction was performed with the 

more reactive HATU, full consumption of 5-amino-1,10-phenanthroline was observed, 

whereas with HOBt/TBTU some starting material was still present, even after 
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prolonged reaction times. With HATU as coupling reagent, the reaction afforded 

product 31 in 71% yield. However, a purity check showed some minor impurities even 

after LC-MS analysis. 

The next step in the photolinker strategy was the coupling of phen to the 

photolabile linker (Scheme 14).  

 

 
Scheme 14: Protection of photolinker and subsequent attachment to 5-glycyl-1,10-phenanthroline (32): a) SOCl2, 
MeOH/DMF, rt, o/n (quant.); b) TBDMS-Cl, imidazole, DMF, rt, o/n (98%); c) NaOH, rt, o/n (quant.); 
d) 20% piperidine, DMF, rt, 2 h (quant.); e) EDC•HCl, HOBt, DIPEA, rt, o/n; f) TBAF, THF, rt, o/n (e+f: 11%). 

 

For this purpose, the free hydroxyl group of the linker had to be protected as 

silylether to avoid formation of linker dimmers. The methyl ester was formed using 
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thionyl chloride in methanol to afford quantitatively 27 after acid-base extraction. 

Protection of the secondary hydroxyl group was performed by silylation with 

TBDMS-Cl yielding 28 in 98%. Finally, hydrolysis in sodium hydroxide gave the 

sodium salt of the photolinker 29. 

Before coupling to the photolinker, the glycine derivative 31 was deprotected with 

20% pyridine. The reaction was quantitative, and the product 32 was further used 

without chromatographic purification. The tert. amine formed as a byproduct during 

Fmoc-cleavage (1-((9H-fluoren-9-yl)methyl)piperidine) was thought to be 

significantly less reactive than the primary amine of the glycine, and should therefore 

not compete with the coupling of the photolinker. Unfortunately, HPLC purification 

revealed that only traces of 38 had been formed. 

In addition to the phen-photolinker construct 32, the His6-amide-photolinker 41 

was synthesized (Scheme 15).  

 

 
Scheme 15: Aattachment of His6-amide (26) to photolinker (29): a) EDC•HCl, HOBt, DIPEA, rt, o/n; b) TBAF, THF, rt, 
o/n c) TFA, H2O, triisopropyl silane, rt, 2 h (a+b+c: 65%). 

 

After synthesis of His6-amide (26) on solid-phase, the amide bond formation was 

performed with the EDC•HCl to yield product i1. After cleavage of the silyl ether with 

TBAF (i2), the construct PL-His6-amide (41) was cleaved from the solid support. 

Regarding the low excess (only 1.2-fold) of 29 compared to His6-amide, the yield of 

the amide formation was satisfying (65%). After purification by HPLC, the His6-

amide-PL (41) was characterized by MS. As the compound was later used for analysis 
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on Biacore (section 5.4.3), quantification with dabsylation was performed, to avoid 

concentration problems as a consequence of the salt load. The salt content of the PL-

His6-amide was 58% and in the same range as for the His6 (5) peptide. 

 

5.4.2. Solubility of Phenanthroline Derivatives 

All phenanthroline derivatives showed a critical behavior during HPLC 

purification. Separation of products and byproducts on normal-phase support was not 

successful, probably as a consequence of the high logP values. ALOGPS 2.1 from 

Virtual Computational Chemistry Laboratory [200] was used to predict the logP of 

different phenanthroline containing structures synthesized in this project. The results 

are given as the mean value including standard deviations over the various logP. A 

second logP calculation was performed with the so-called Moriguchi method [201], 

which is based on 13 descriptors adding either to an increase or a decrease in 

lipophilicity. The results of both logP predictions are summarized in Table 36. 

 

Table 36: LogP prediction of phenanthroline derivatives by software ALOGPS 2.1 and Moriguchi. 

Compound No. 
Avg. logP 

 (ALOGPS 2.1) 
MlogP 

 (Moriguchi) 

1,10-Phenanthroline (42)  2.18 ± 0.26  1.90 

(E)-tert-Butyl-3-(1,10-phenanthrolin-5-yl)acrylate (33)  3.75 ± 0.49  3.18 

(E)-3-(1,10-Phenanthrolin-5-yl)acrylic acid (34)  2.00 ± 0.43  1.97 

Fmoc-protected glycyl-phen (31)  4.38 ± 0.56  3.64 

TBDMS-protected PL-phen (37)  5.32 ± 0.40  3.04 

Phen-PL (38)  2.11 ± 0.55  0.85 

His6-amide-PL (41)  -3.90 ± 1.92  -6.51 

 

Calculations with the ALOGPS software and with Moriguchi predicted a good 

solubility in water for PL-His6-amide (41) (8000-fold better solubility in water than in 

octanol for ALOGPS). This correlates with the observations made during RP-HPLC 

purifications of 41. All the phenanthroline containing compounds showed a much 

higher logP value. 
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5.4.3. Biacore Experiments with Photolinker Constructs and 

Precursors 

The influence of the photolinker on the binding affinity of the tag was analyzed by 

SPR. For this purpose, phen-PL (38) and His6-amide-PL (41) were analyzed 

(Figure 46). 

 

 
Figure 46: Biacore experiments with photolinker constructs: a: Sensorgram of phen-PL (38) from 200 µM – 13 n (5-fold 
dilutions); b: kinetic fit of phen-PL (38) from 40 µM – 13 n (5-fold dilutions); c: sensorgram of His6-amide-PL (41) from 
200 µM – 3 n (5-fold dilutions). 

 

The sensorgram of 38 showed a concentration dependent slow dissociation as 

generally observed for rebinding (Figure 46a). At high concentrations (>200 µM, red 

curve), the compound elicited strong rebinding. Therefore, the 200 µM concentration 

was omitted for the kinetic fitting of 38 (Figure 46b), leading to a good fit with a res 

SD of 6.5. Rebinding is likely to occur due to the oxygen of the free hydroxyl group, 

which is able to complex Ni2+. 

Rebinding was even more pronounced for 41 (Figure 46c). Similar to some 

oligohis (Figure 19), binding curves at high concentrations seem to establish stable 

immobilization after an initial dissociation phase. Therefore, the photolabile linker 

does not strongly interfere with the rebinding ability of the His-tag. 

The kinetic parameters and the binding affinity of the above mentioned 

compounds were compared with the free tags phen (42) and His6 (5), respectively 

(Table 37). 
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Table 37: Evaluation of kinetics and binding affinity of photolinker constructs. 

Compound  No. kon [M
-1s-1] koff [s

-1] 
T1/2 

[min] 
K D [µM] 

His6 (5)  -   -  -  0.014 ± 0.001 a 

His6-amide-PL  (41)  -  -  -  0.128 ± 0.002 a 

1,10-Phen (42)  3546 ± 181  0.00229 ± 0.00021 5.0  0.650 ± 0.093 b 

Phen-PL (38)  139 ± 8  0.00161 ± 0.00002 8.6  8.36 ± 0. 41 b 
a steady state fit 
b kinetic fit, KD = koff/kon 

 

The binding affinity of His6-amide-PL (41) was 9.1-fold lower compared to 

His6 (5) as a consequence of the increased entropic costs upon binding of 41. 

Phen-PL (38) showed a 12.9-fold lower affinity than phen. Attachment of the 

photolinker had therefore comparable effects on the affinity of the tag. 

The bulky photolinker had a high effect on the on-rate. A 25-fold decrease of the 

kon was observed for 38 compared with phen (42). The koff slightly added to a better 

binding affinity and was 1.8-fold lower than for phen.  
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5.5. A New Series of Potential Tags 

One goal of this thesis was to screen for new purification tags suitable for SPPS. 

Such tags must meet many requirements like high affinity to Ni-NTA, good solubility 

in aqueous solvents, and high stability towards chemical conditions. The search was 

restricted to commercially available substances or to substances, which can be 

synthesize with minor efforts. According to a search in the CSD, the main group of 

ligands binding to Ni2+ contains nitrogen. Carbonyls or sulfur could be found as well, 

although to some lesser extent. For bidentate ligands, a combination of two of the 

three elements is possible. Octahedral coordination is the preferred geometry for Ni2+. 

In such a complex the angle formed by the ligand atom, the nickel ion, and the second 

ligand atom is 90°. Potential bidentate ligands are shown in Figure 47. The search for 

new ligands was supported by the computational model mentioned already for the 

phenanthroline series in section 5.2.1 

 

 
Figure 47: New series of potential tags for purification on Ni-NTA columns, the picolinic acid series. 

 

Except for 57 in Figure 47, the main motif is an aromatic nitrogen and a carbonyl 

oxygen binding in a bidentate manner to the nickel ion.  

 

5.5.1. Biacore Experiments with Picolinic Acid Derivatives 

Generally, the picolinic acid series showed a higher solubility than the 

phenanthroline series. Therefore, except for 57, no DMSO was used for the Biacore 
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experiments. A selection of some sensorgrams including a kinetic fit is shown in 

Figure 48. 

 

 
Figure 48: Selection of sensorgrams from picolinic acid series: a) Kinetic fit to simple 1:1 binding model of picolinic 
acid (52); b) sensorgram of methyl picolinate (54); c) sensorgram of 6-amino-2-(2-pyridyl)pyrimdin-4-ol (57). 

 

The sensorgrams of 52, 55, and 56 was highly reproducible data. The data could 

be kinetically fitted to a simple 1:1 binding model as demonstrated for 52 (Figure 48a). 

The res SD was 2 or even lower for all compounds of this series. For methyl 

picolinate (54), reproducibility was much lower, therefore the values of kon, koff, and 

KD showed much higher SD (see Table 38). Compound 57 showed again the common 

decrease in binding signal during steady state phase as was already demonstrated for 

bipy and phen (Figure 48c). Due to this decrease, kinetic parameters could not be 

determined, but an approximation of the binding affinity was obtained by a steady 

state fit to a simple 1:1 binding model. The results of the kinetic or steady state fits of 

the picolinic acid series are summarized in Table 38. 
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Table 38: Evaluation of kinetics and binding affinity of picolinic acid series (51 – 58). 

Compound No. kon [M
-1s-1] koff [s

-1] 
T1/2 
[s] 

K D [µM] 

2-Aminopyridine (51)  -   -  -  >104 a 

Picolinic acid (52)  3412 ± 389  0.0480 ± 0.0065 14.4  14.0 ± 0.5 b 
3-Aminopyrazine-2-
carboxylic acid 

(53)  3544 ± 321  0.139 ± 0.006 5.0  39.4 ± 2.3 b 

Methyl picolinate (54)  1590 ± 690  0.0497 ± 0.0011 13.9  35.3 ± 3.2 b 

6-Aminopicolinic acid (55)  1663 ± 9  0.0181 ± 0.0003 38.3  10.9 ± 0. 1 b 
6-(Acetylamino)pyridine-
2-carboxylic acid 

(56)  1274 ± 68  0.168 ± 0.010 4.1  132 ± 4 b 

6-Amino-2-(2-pyridyl)-
pyrimidin-4-ol 

(57)  -  - -  83 ± 6 a 

5-Methoxy-pyrimidine-2-
carboxylic acid hydrazide 

(58)  378 ± 9  0.213 ± 0.001 3.3  563 ± 11 b 

a steady state fit 
b kinetic fit, KD = koff/kon 

 

For 2-aminopyridine (51), binding was only detected at concentrations > 10 mM. 

One reason could be the pKa of 6.86 of the aromatic nitrogen [202], which is close to 

the pH of the eluent buffer (pH 7.4). Therefore, protonation of the binding nitrogen 

could explain the low binding affinity. Picolinic acid (52) showed an affinity in the 

low micromolar range. Compared to the affinity of phen (42) with a KD of 650 nM, the 

affinity is about a factor 20 lower. The lower affinity is a consequence of the lower 

stability of the complex as seen in the half-life time T1/2 of 14 s for 52 compared to 

5 min for phen. Due to the carboxylic acid, the molecule is negatively charged, which 

might lead to a repulsion of the negatively charged Ni-NTA complex. For pyrazine 

derivative 53, two possible binding modes, either the “picolinic acid” or the “2-

aminopyridine mode” are possible. Whereas the kon did not change compared to 

picolinic acid, the off-rate was slightly higher, leading to the increased KD. 

Unsubstituted pyrazines have a smaller negative charge and therefore less 

nucleophilicity on the nitrogens compared to pyridine, which might explain the lower 

binding affinity. In compound 54, the carboxylic acid is replaced by a methyl ester 

reducing the overall charge of the ligand. Unfortunately, the binding affinity was 

reduced by a factor 2.5 compared to 52. This effect is due to the low on-rate resulting 

from the methyl ester orientation. Whereas picolinic acid is almost correctly 

prealigned (only a small rotation of the carboxylic acid into the phen plane occurs in a 

conformational search), ligand 54 populates two equally stable conformations in 
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solution with the carbonyl oxygen on the same or on opposite sides. Compound 55 

was measured to test the effect of an amino group adjacent to the binding nitrogen, 

which could establish a hydrogen bond to one of the carboxylic acid of NTA. Indeed, 

the substituent had a positive effect on binding affinity, leading to the lowest binding 

affinity in the whole series (10.9 µM). Although the kon was 2-fold lower than for 

picolinic acid, the koff was significantly decreased resulting in a half-life time of the 

complex of 39 s. This might indicate a tighter binding as a consequence of the 

hydrogen bond. The lower kon can be explained by the loss of binding symmetry, as 

the molecule can bind only in one orientation compared to two for picolinic acid. The 

acetylated compound 56 was more than a factor 10 weaker in affinity than 55, 

although it was expected to decrease solvation on the 6-amino group, which would be 

beneficial for binding. Most probably the orientation of the acetyl group leads to an 

unfavorable interaction with the Ni-NTA complex. Derivative 57 was thought to 

increase the affinity of bipy because of a symmetric arrangement of the binding 

nitrogens in the second benzene ring. Additionally, the ligand could choose between a 

hydroxyl or an amino group to form an H-bond to the carboxylic acid of NTA. 

However, most likely due to a tautomery effect as shown in Scheme 15 the binding 

affinity was not improved. 

 

 
Scheme 15: Tautomery effect in 6-Amino-2-(2-pyridyl)pyrimidin-
4-ol (58), leading to a protonation of the binding nitrogen. 

 

 

The last compound of this series was a pyrimidine derivative (58). Pyrimidines are 

supposed to have higher negative charges on the ring nitrogens, which would increase 

the charge transfer to the nickel. In addition, the symmetric arrangement of two 

nitrogens in para position of the carboxylic acid should avoid the problem of pre-

orientation encountered with the methyl picolinate 54. Unfortunately with a KD of 

378 µM, the binding affinity was the weakest of the whole series. 
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6. CONCLUSION AND OUTLOOK 

The main goal of this thesis was to improve the knowledge about small tags 

binding to Ni-NTA and to provide new purification tags for solid-phase peptide 

synthesis. In a first part, existing purification tags such as the His-tag were 

investigated. With the Biacore 3000 system, a tool to simulate the binding process of 

such ligands was available in house. The His-tag [126, 129], the very recently reported 

phenanthroline-tag [169] and derivatives thereof were analyzed with SPR to determine 

binding affinities and kinetic parameters of the tags and of derivatives thereof. In the 

second part, a purification strategy was accomplished by using a novel phenanthroline-

containing construct for the purification of a test peptide. In parallel, a computational 

model for the prediction of binding affinities of various ligands to Ni-NTA was 

developed in collaboration with Dr. M. Smiesko. This computational model was then 

used to identify new purification tags suitable for SPPS, before they were analyzed by 

SPR. 

 

The Histidine-Tag 

Although the His-tag is the most widely used method for the purification of 

recombinant proteins, only little information is available on its binding properties. 

Therefore, the binding affinities and kinetics of different His-containing peptides were 

determined using SPR analysis. The hexahistidine (5) turned out to be the peptide with 

the highest affinity to Ni-NTA (KD = 14 nM). The six histidines represent the optimal 

balance between enthalpic and entropic contributions to the binding process. 

Furthermore, divalent ligands formed by two histidines either in the positions i and i+2 

or i and i+5 of the hexapeptide are contributing more to the overall binding than the 

other possible divalent ligands (i+1, i+3, and i+4). In addition, when the His-tag is 

further elongated, i.e. from heptahistidine (6) to decahistidine (9), a slight reduction of 

the affinity is observed, probably due to increased entropy costs upon binding. Finally, 

rebinding becomes more pronounced with increasing peptide length. This enables 

stable immobilization even with moderate dissociation constants, as shown for the 

decahistidine (9). Tags with strong rebinding would be appropriate for the 

immobilization of fusion proteins to solid supports for binding studies. Rebinding and 
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therefore multiple binding events mainly contribute to the high affinity of the His-tag 

to Ni-NTA. Single molecular interaction events as demonstrated with the His2Ala4 

(10 - 14) and the HXH (20 – 24) series did not lead to high binding affinities (KD in 

the micromolar range).  

The proper orientation is crucial for the high binding affinity in tags consisting of 

two histidine residues. The kon can be positively influenced enabling a faster 

association of the tag, if rotational restriction and fixation of the histidines is applied 

leading to higher binding affinities to Ni-NTA.  

 

The Phenanthroline-Tag 

1,10-phenanthroline (phen) is a promising scaffold for a purification tag. It 

showed a binding affinity of 650 nM. The low KD results mainly from a slow 

dissociation rate leading to a long half-life time of the complex (T1/2 = 5.0 min). 

Manifold positive and negative influences on the binding affinity of phen were 

observed with the SPR analysis and the computational approach. Solubility played a 

key role in this complex system. Ligands that can establish on the side facing the 

solvent a well-organized solvation shell, showed improved binding properties for the 

Ni2+-surface. Therefore, the affinity 5-amino-1,10-phenanthroline (47) was improved 

by a factor of 1.6 compared to phen (42). However, on the ligand side involved in 

binding weaker salvation is desired, because the exchange of well organized solvent 

molecules prior to binding is decreasing the gain in binding enthalpy. On the other 

hand, modifications on the two pyridine rings in para or ortho position increasing the 

nucleophilicity of the nitrogens. Therefore, a balance has to be found between 

moderate solvation on the side involved in binding and a high nucleophilicity of the 

nitrogens.  

In addition, the complex [Ni(II)(nta)(phen)]- was crystallized for the development 

of a computational model for the prediction of binding affinities of various ligands to 

Ni-NTA. Analysis of the crystal structure revealed some unexpected facts: Phen was 

shifted out of the plane formed by nickel, the amino nitrogen of NTA, and a carboxylic 

acid arm of the NTA leading to an asymmetric complex. This was due to a steric clash 

between the hydrogen in position 2 of the phen and a CH2 hydrogen of one of the 

carboxylic acid arms in NTA. Therefore, the number of possible alignments of phen in 
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a complex with Ni-NTA is cut from two to one, if substituents are present at position 2 

or 9 in the phen scaffold. This effect was clearly demonstrated with the more than 2-

fold decrease of kon for 2-amino-phenanthroline (46) compared to phen (42). 

Furthermore, the amino group at position 2 was thought to interact with the carboxylic 

acid of NTA via an H-bond. However, no effect on koff and KD was observed, probably 

due to a suboptimal directionality of the H-bond. 

 

Purification of SPPS Products 

A new method was presented to link the phenanthroline-tag to a peptide 

synthesized via SPPS: For this purpose, an acrylate spacer was introduced to phen. 

Tert-butyl acrylate was coupled via a Heck reaction to 5-chloro-1,10-phenanthroline 

with a yield of 69%. After coupling of the tag to the test peptide NAPamide using 

standard SPPS chemistry, the construct was cleaved from the solid-phase. Attachment 

of the tag to the peptide could be qualitatively followed by the characteristic red color 

of the tag-spacer construct. The final purification was performed using a commercially 

available Ni-NTA column leading to a pure peptide with a yield of 43 % for the total 

synthesis. The purification strategy was even superior compared to the standard HPLC 

purification, where only a yield of 34% was achieved. Therefore, the newly designed 

acrylate spacer attached to phenanthroline is a suitable purification tag, to be used in 

solid-phase peptide synthesis. 

The Biacore assay revealed only a small effect of the spacer on the binding 

affinity of the phen-tag. The KD was slightly increased by a factor of 1.6 to about 

1 µM. This is still sufficient to achieve a stable immobilization of the phen-tagged 

NAPamide on the Ni-NTA surface at a concentration of 10 µM. At higher 

concentrations, fast dissociation rates at the onset of dissociation were observed. 

 

Photolabile linker 

Introduction of a photolabile linker (PL) between the peptide and the phen-tag 

would enable to release the peptide from the tag, while the tag is still bound to the Ni-

NTA support. This would allow the production of native peptides or proteins. The 

photolinker was coupled via an amide bond to phen. For this purpose, 5-nitro-1,10-

phenanthroline was reduced to the 5-amino derivative. The nucleophilicity of the 
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aniline nitrogen was supposed to be too low for the amide formation. Therefore, 

Fmoc-Gly-OH was coupled to 5-amino-1,10-phenanthroline to obtain a primary amine 

after Fmoc deprotection. Unfortunately, solubility problems appeared with the 

introduction of the Fmoc-Gly-OH and became even worse upon attachment of the 

photolinker leading to precipitation of the PL-phen construct (38) during HPLC 

purification. 

 

Picolinic acid 

Picolinic acid (52) was demonstrated to bind via one oxygen of the carboxylic 

acid and the aromatic nitrogen to Ni-NTA with a KD of 14 µM. This value further 

improved with 6-aminopicolinic acid (55) (KD = 11 µM). The anilinic amino group at 

position 6 (55) is able to interact with one oxygen of the carboxylate of NTA leading 

to a 2.7-fold lower koff compared to 52. Therefore, the half-life time of the complex 

was increased from T1/2 = 14 s for 52 to T1/2 = 38 s for 55. However, 55 is able to bind 

to Ni-NTA in only one orientation instead of two. This led to a 2-fold decrease of the 

koff compared to 52, and finally only to a small increase in binding affinity. 

 

Outlook 

This investigation illustrates the suitability of SPR experiments for the 

development of new tags for solid-phase peptide synthesis allowing both qualitative 

and quantitative investigations of the binding events. Nevertheless, a more detailed 

view could be gained with NMR experiments. Saturation Transfer Difference (STD) 

experiments could monitor, which atoms of a tag are involved in binding. This is 

especially beneficial for tags with more than one binding motif and could support the 

development of multivalent ligands. E.g. cyclic structures containing a symmetric 

arrangement of two binding motifs would help on one hand to increase the rebinding 

effect but would also add to a higher affinity. 

The cleavage of the tag from the target molecule is essential for the production of 

native peptides or proteins. Chemically cleavable linkers such as the Fmoc-

linker [203] could be an alternative to photolabile linkers. Such a lipophilic linker 

would require the change from phen-tags to more hydrophilic tags to increase 
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solubility in aqueous solvents. The introduction of PEG or PEGA spacers between the 

tag and the cleavable linker could further increase the solubility. 

Finally, different combinations of metal ions and chelating groups could influence 

the binding affinity either positively or negatively. With the commercially available 

NTA chip, other transition metals such as Fe2+, Co2+, and Zn2+ could be immobilized 

to study the effect on binding affinity and kinetics to various tags. 
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8. APPENDIX 

 

(1) H-His-His-OH 

(2) H-His-His-His-OH 

(3) H-His-His-His-His-OH 

(4) H-His-His-His-His-His-OH 

(5) H-His-His-His-His-His-His-OH 

(6) H-His-His-His-His-His-His-His-OH 

(7) H-His-His-His-His-His-His-His-His-OH 

(8) H-His-His-His-His-His-His-His-His-His-OH 

(9) H-His-His-His-His-His-His-His-His-His-His-OH 

(10) H-Ala-Ala-Ala-Ala-His-His-OH 

(11) H-Ala-Ala-Ala-His-Ala-His-OH 

(12) H-Ala-Ala-His-Ala-Ala-His-OH 

(13) H-Ala-His-Ala-Ala-Ala-His-OH 

(14) H-His-Ala-Ala-Ala-Ala-His-OH 

(15) H-His-Ala-His-Ala-Ala-His-OH 

(16) H-His-Ala-Ala-His-Ala-His-OH 

(17) H-Ala-Ala-Ala-His-His-OH 

(18) H-Ala-Ala-His-His-OH 

(19) H-Ala-His-His-OH 

(20) H-His-Gly-His-OH 

(21) H-His-Ala-His-OH 

(22) H-His-Sar-His-OH 

(23) H-His-Aib-His-OH 

(24) H-His-Pro-His-OH 

(25) H-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys-NH2 

(26) H-His-His-His-His-His-His-NH2 
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