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SUMMARY 

 

The arbuscular mycorrhiza is the most widely occurring and important microbial symbiosis for 

agricultural crops and well known to facilitate plant mineral nutrient uptake, particularly under 

conditions of P-limitation - as it is common in tropical soils due to leaching or/and severe 

immobilization - and, moreover, it is understood to improve plant water relations and provide 

resistance against pests and pathogens. Yam (Dioscorea spp.) is the most important tuber crop in 

terms of coverage area in West Africa, particularly in Benin and Togo. Alarmingly, the annual 

yam production per hectare has recently decreased considerably due to a loss of soil fertility and 

pest and disease (especially nematode) damage. Under field conditions, yam and arbuscular 

mycorrhizal fungi (AMF) are naturally associated with each other. Currently, however, data on 

the ecology of AMF in West Africa are lacking with very limited information on the mycorrhizal 

status of yam. There may be potential to improve growth and to protect plants against nematodes 

by AMF but this is possibly dependent on specific AMF-nematode-host combinations. The 

present project aimed at studying AMF indigenous to West Africa, with respect to yam growth 

promotion and yam nematode suppression. The specific objectives focused on assessing the (1) 

diversity of AMF, including their distribution, abundance and relation to agronomic practices 

and ecological conditions; (2) the mycorrhizal status of yam; and (3) the specific associations 

between (a) yam-AMF, and (b) yam-AMF -nematode in vivo under greenhouse conditions.  

 

In the first part of our study, we determined the influence of three ecological zones (from wettest 

to driest) and of land use intensity on the diversity of AMF in the yam growing area of Benin, 

West Africa. In each zone, four ‘natural’ and four ‘cultivated’ sites were selected. ‘Natural’ sites 

included three natural forest savannas (at least 25-30 years old) and a long-term fallow (6-7 years 

old). ‘Cultivated’ sites comprised yam fields established immediately following forest clearance, 

mixed cropping maize (Zea mays) and peanut (Arachis hypogaea) fields, peanut fields, and fields 

under cotton (Gossypium hirsutum), which was the most intensively managed crop. Soil samples 

were collected towards the end of the wet season in each zone. AMF spores were extracted and 

identified morphologically. A total of 60 AMF species was detected, with only seven species 

sporulating in AMF trap cultures that were set up with various AMF host plants. Higher species 
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richness was observed in the northern most, driest ecological zone Sudan Savanna (SU) than in 

the adjacent zones to the south with increasing humidity, namely the Northern Guinea Savanna 

(NG) and the Southern Guinea Savanna (SG), mainly due to a high proportion of species in the 

Gigasporaceae, Acaulosporaceae and Glomeraceae. Within each ecological zone, spore density 

and species richness were generally higher in the natural savannas and in association with yam 

than in the other cultivated sites. These parameters were lowest under the intensively managed 

cotton, and intermediate in the fallows, indicating that the high richness of the natural savannas 

is not necessarily restored during fallowing.  

 

Assuming that yam is an arbuscular mycorrhizal crop, we addressed the question of which AMF 

species are associated with yam. Our aim was to propagate the AMF communities from three 

natural forests and three adjacent yam fields of the SG in Benin in trap cultures and to assess the 

AMF richness, identifying those associated with yam. Soil samples were collected in the dry 

season (February 2005) and used to identify AMF spores directly and also to establish AMF trap 

cultures on yam (tissue culture plantlets of D. rotundata and D. cayenensis) and, for comparison, 

on Sorghum bicolor. In the trap cultures, AMF root colonization was particularly high in yam 

(70-95%), compared with S. bicolor (11-20%). Based on spore morphotyping, 37 AMF species 

were detected in the ‘trap’ rhizosphere of S. bicolor, while 28 and 29 species were identified as 

fungal symbionts of D. cayenensis and D. rotundata, respectively. Following eight months 

cultivation in trap cultures, yam tuber dry weight was generally higher in mycorrhizal than in 

non-mycorrhizal control pots.  

 

We also hypothesized that indigenous AMF species and strains isolated from yam plantlets in 

trap cultures may be more beneficial for yam plant growth compared to non-indigenous isolates. 

We screened indigenous AMF species and strains that have been isolated from the trap cultures 

and compared their effects on micro-propagated white yam plantlets (D. rotundata) (cv. TDr89-

02461) against exotic AMF isolates in pot experiments over seven months. First, we tested 

several indigenous and non-indigenous (South America and Asia) G. etunicatum strains with 

regard to their effect on yam growth promotion and mineral accumulation in the tissues. 

Secondly, three isolates each of nine indigenous AMF species and three additional non-tropical 

AMF species were screened on the same yam cultivars. We found that most tropical AMF 
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isolates of G. etunicatum increased yam tuber dry weight, while the non-tropical AMF isolates 

had a lower or no effect, but instead increased tuber P concentrations, when compared to non-

mycorrhizal controls. Glomus mosseae, G. hoi, G. etunicatum, Acaulospora scrobiculata and A. 

spinosa generally had a positive effect on tuber growth, while isolates of G. sinuosum and 

Kuklospora kentinensis generally did not.  

 

Finally, we assessed the interaction between yam and AMF in the presence or absence of plant 

parasitic nematodes. Yam vplants cultivated in vitro were used, which were inoculated with 

commercial inocula of G. mosseae and G. dussii (Biorize, Dijon France). In the presence of 

nematodes (Scutellonema bradys and Meloidogyne spp.), inoculation of G. mosseae generally 

increased growth of micropropagated yam plantlets and yam tuber weight production, especially 

cultivars from D. alata. Tubers were, in general, less infected with S. bradys, but not necessarily 

with Meloidogyne spp. However, application of G. mosseae and G. dussii to micropropagated 

plantlets resulted in improved quality of yam tubers, when challenged with nematodes, compared 

to nematode inoculation without AMF, indicating a positive effect of AMF on yam productivity.  

 

Our results indicate that the AMF richness is high in the ‘yam belt’ of Benin, but that it is 

strongly influenced by the ecological zone and by the intensity of land cultivation after forest 

clearance. Our results also indicate that in controlled pot studies, AMF can suppress nematode 

damage and additionally lead to improved quality and weight of yam tubers. The present results 

remain preliminary, however, while results from ongoing studies currently in the field will help 

to determine further their potential in the longer term. These results provide exciting prospects 

for African crop production, in addition to illuminating the wide and diverse species richness of 

West African AMF and their potential benefits.  



Chapter 1 

 

 - 12 -  

CHAPTER 1: General introduction 

 

1.1. Overall view 

Yam (Dioscorea spp.) is a tuber crop belonging to the family of Dioscoreaceae. The genus 

Dioscorea includes more than 200 species, but only ten are important food yam species, from 

which water yam (Dioscorea alata, originating from Asia), yellow and white yam of the 

Dioscorea “rotundata-cayenensis” complex (indigenous to Africa) are the most frequently 

cultivated in West Africa (Coursey, 1967; Orkwor, 1998). Most of the other Dioscorea species 

are wild yam indicating the high biodiversity of wild yams. Yam is widely cultivated in West 

and Central Africa, in Asia and South American countries (Coursey, 1967; Orkwor, 1998; FAO, 

2007). In West Africa, yam is the most important tuber crop in terms of area coverage and a key 

staple food, particularly in Nigeria, Ghana, Ivory Coast, Benin and Togo (Kalu and Erhabor 

1992; Ile et al. 2006). More than 90% of the global world yam production (40 million tons fresh 

tubers/year) is produced in West Africa (FAOdata, 2007). Additionally, yam plays a vital role in 

traditional culture, rituals and religion, local commerce and is additionally referred to as a 

cultural symbol of fertility (Coursey, 1965). Yam is also an essential element of traditional 

marriages for instance in many West Africa cultures (Coursey, 1965; Coursey, 1967). In West 

Africa, yam consumption (especially in the cities) is increasing; consequently the area under yam 

cultivation is constantly increasing (IITA, 2006). Unfortunately, yam production is dramatically 

decreasing in productivity per area (IITA, 2006). Two major constraints are highlighted for their 

association with declining yam production: (1) soil fertility degradation, e.g. due to nutrient 

deficiency, leaching by erosion, high fixing of phosphorus (P) and low level of organic matter 

from most soils in West Africa (Schlecht et al., 2006); (2) damage by pests and diseases, 

especially plant parasitic nematodes and virus diseases (Odu et al., 2004; Egesi et al., 2007a b).  

 

Originally, yam was planted only in the humid forest within intercropping based systems with 

banana, plantain (Musa spp.), sweet potatoes (Ipomea batata), vegetables and maize (Zea Mays) 

(Coursey, 1967; IITA, 1995).  Over the past four decades, however, the yam production zone in 

West Africa has shifted from the humid forest zone towards the savannas in the North (Manyong 
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et al., 1996).  In the savanna zones, farm sizes are larger and the number of intercrop components 

is fewer (Nweke et al., 1991; Manyong et al., 1996). The consequences from the reduction of 

intercropping practices are monoculture practices in rotation systems, where yam is planted as 

the first crop of the rotation following clearance of forests or long-term fallows (Carsky et al., 

1999; O’Sullivan and Jenner, 2006). Each year, farmers have traditionally cleared forests for 

yam production and former yam production sites succeeded by other crops, such as maize, 

sorghum (Sorghum spp.), cassava (Manihoti esculenta) and cotton (Gossipium hirsutum) (IITA, 

1995). Forest and fallow clearance are mainly characterized by the ‘slash and burn’ system of 

removing and burning grasses and trees (Orkwor and Asadu, 1998). Additionally, in West 

Africa, as in the rest of the continent, crop residues are often removed from the fields or burned, 

contributing to negative nutrient balances (Stoorvogel et al., 1993). These practices expose the 

soil to erosion, nutrient and organic matter leaching, natural resource degradations and 

decreasing soil microbial diversity including arbuscular mycorrhizal fungi (AMF) diversity 

(Cardoso and Kuyper, 2006), leading to soil degradation (Salako et al., 2007). With increasing 

demographic pressure, land use intensity and reducing savannah forest covering areas, suitable 

land for yam cultivation becomes gradually scarcer (Carsky et al., 2001). Furthermore, fallow 

periods in the savannas become shorter and most farmers increasingly cultivate yam without any 

fallow, leading to increased pathogen and pest attacks, including the harmful nematodes 

(Manyong et al., 1996; Carsky et al., 2001).  

 

Nematode problems such as “dry rot disease” caused by the migratory endoparasitic nematode, 

Scutellonema bradys, and “galling” caused by the sedentary endoparasitic nematode 

Meloidogyne spp. cause important yield losses in West and Central Africa, while Pratylenchus 

coffeae is the most damaging in Asia (Bridge et al., 2005). Scutellonema bradys invade the roots 

tips or young tubers and feed intracellulary resulting in rupture of cell walls, loss of cell contents 

and the formation of cavities in yam tuber tissue (Bridge, 1973). Scutellonema bradys, causing 

“dry rot disease” (Bridge, 1973) is mainly confined to the subdermal, peridermal and underlying 

parenchymatus tissues in the outer 1-2 cm of the tuber, where the tissues become necrotic and 

die (Adessiyan, 1977). Meloidogyne spp. are sedentary endoparasitic nematodes of roots and 

tubers. The mobile second-stage juveniles (J2) emerge from the eggs, move towards the roots 

and penetrate the roots mostly at the root tip (Bridge, 1973). In the root, the J2 invade the 
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endodermis and, on entering, induce giant cells. Multiplication of the cortical cells is also 

induced, resulting in the formation of the characteristic galls (Vovlas and Ekanayake, 1985). The 

J2 feed on these giant cells and moult three times before becoming immobile adult females 

(Bridge, 1973). Both types of nematodes, S. bradys and Meloidogyne spp., produce a significant 

reduction in the quality, marketable value and edible portions of yam tubers in West Africa 

(Ayala and Acosta, 1971). The damage is more severe in yams following storage and often 

limited at harvest (Coyne et al., 2005; Baimey et al., 2006). Main nematode control methods, 

such as the application of chemicals can be used effectively and efficiently, particularly to treat 

planting material. However, one main problem is the limited and erratic availability of suitable 

pesticides, in addition to a lack of awareness of their beneficial effects, and understanding of the 

cause of the damage and losses. The identification of suitable sources of resistance, for the 

development of cultivars, resistant to the key nematode constraints would be highly desirable, 

but as yet remains to be realised (IITA, 2004).   

 

Currently, research is underway to investigate the efficiency and economics of inorganic 

fertilizer application for yam. Available results on the effects and financial benefits of fertilizer 

application for yam production are often contradictory and not conclusive. Increased tuber 

weight is reported in Nigeria (Igwilo, 1989), Cameroun (Kayode, 1985) and in the savanna 

regions in Côte d’Ivoire (Dibby et al., 2004) for example, while no or limited effects are reported 

in other studies in the humid forest in Côte d’Ivoire (Dibby et al., 2004), in the savannas and 

coastal humid regions in Benin (Baimey et al., 2006) and in Hawaii and Ghana (Van der Zaag et 

al., 1980). The differences among results appear to be highly related to yam species or cultivars 

used and environmental conditions (Dibby et al., 2004). For example, the differences in yam 

responses to fertilizer application in savanna areas between studies of Baimey et al. (2006) and 

Dibby et al. (2004) were attributed to the yam cultivars (Baimey, 2006). Other factors are 

suggested to explain the non-response of yam to fertilizer application, such as Ferguson (1973), 

who attributed the lack of response of yam plants to fertilizer application to the fact that yam 

received P through a possible dependence on arbuscular mycorrhizal fungi (AMF), and for 

Vander-Zaag (1980), who speculated that yam requires only moderate or very low P, which can 

be readily delivered through mycorrhizal associations. It was suggested that imitating natural 

ecosystems, rather than planting monocultures or inorganic fertilizer application is the most 
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suitable agricultural strategy for the tropics e.g. agroforestry systems or mixed cultures of plant 

species(Cardoso and Kuyper, 2006). Use of adequate plant species diversity with perennial 

plants to maintain soil fertility and to protect ion of soils against erosion generally will lead to an 

increased diversity and abundance of AMF (Altieri, 2004; Cardoso and Kuyper, 2006). 

 

AMF are an abundant and functionally important group of soil microorganisms, which can form 

symbiotic associations with more than 80% of terrestrial plant species (Smith and Read, 2008). 

They are supposed to be the most important microbial symbionts for the majority of plants. 

Many studies have shown an improvement of nutrient supply for crop plants (e.g. Caglar and 

Akgun, 2006; Schreiner, 2007) and suppressive effects on nematode infestations (e.g. Hol and 

Cook, 2005). Under phosphate-limited conditions, AMF can influence plant community 

development (van der Heijden et al., 1998), nutrient uptake, water relations and above-ground 

productivity (Clark and Zeto, 2000). They can also act against toxic stresses (Jeffries et al., 

2003). Many studies have reported that native (=indigenous) AMF are often more effective 

mutualists than non-native AMF, presumably as a result of adaptation to edaphic factors, such as 

soil nutrient concentrations, or to environmental factors, such as drought (Lambert et al., 1980; 

Henkel et al., 1989; Caravaca et al., 2003; Oliveira et al., 2005; Querejeta et al., 2006). However, 

there are numerous reports where non-native AMF have outperformed native AMF (Trent et al., 

1993; Sylvia and Burks, 1988; Calvente et al., 2004). The use of AMF, either by adding them 

into the field or by favoring systems and practices that facilitate their presence, may improve 

plant growth promotion or provide an interesting alternative or complement to manage soil 

fertility and nematodes in yam.  

 

Until now, there is little information regarding the mycorrhizal status of yam (Uchendu, 2000; 

Ahulu et al., 2004; Dare et al., 2007; Oyetunji et al., 2007). To our knowledge no extensive study 

has been undertaken to isolate and identify AMF species associated with yam. Additionally, no 

information is available regarding the diversity of AMF species in yam-growing areas, 

specifically in yam fields or under natural conditions adjacent to yam fields in West African 

forest savannas. Furthermore, the interactions between AMF and yam and also between AMF 

and nematodes on yam have, to date, not been investigated to evaluate their potential to promote 

yam growth or nematode management. Thus, the present chapter 1 presents a literature review 
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providing a detailed background to the topic and is divided in four sections. The first section 

(1.2.) treats the importance of yam as food crop and the major constraints for its production. The 

second section (1.3.) is focused on S. bradys and Meloidogyne spp. as important pests of yam. 

The third section (1.4.) is concentrating on the biology of AMF and their importance in 

(agro)ecosystems and crop protection. The fourth section (1.5.) presents the general and specifics 

objectives of the current study. 

 

1.2. Dioscorea spp. (yam)  

1.2.1. Origin and distribution of yam 

Yams are among the oldest food crops recorded and are defined as “an economically useful plant 

of the botanical genus Dioscorea for the tubers or rhizomes of these plants” (Coursey, 1967). 

Including cultivated and wild yam, the genus includes 194 species (http://www.aluka.org/: 

checked in May 2008), and about thirteen are important food yam species. They are listed in 

Table 1 with D. rotundata (white yam). D. cayenensis (yellow yam) and D. alata (water yam) as 

the economical most important species (Malaurie et al., 1998). Yam was believed to be 

indigenous to West Africa (Coursey, 1967; Nweke, 1981), but in reality, yam origins are variable 

according to a large species diversity of the genus Dioscorea (table 1). In general, food yam 

species originate in the tropical areas of three separate continents: Africa, South America and 

Southeast Asia. Details on yam origin and its evolution have been well discussed by Coursey 

(1967), Alexandre and Coursey (1969) and Orkwor et al. (1998). 

 

The global distribution of yams was well documented by Coursey (1967), Ayensu (1972) and 

Orkwor et al. (1998). However, the majority of the Dioscorea species are distributed throughout 

the tropics and a few species of less economic importance are also found in the warmer regions 

of the temperate zones (Orkwor, 1998). The main area of production is in West Africa, which 

includes Nigeria, Benin, Togo, Ghana and Côte d’Ivoire, and Cameroon in Central Africa 

(Coursey, 1967 and Orkwor, 1998). 
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Table 1.1. Main edible species of yam (source: Malaurie et al., 1998),  

Dioscorea spp. Zone of origin Zone of culture 

D. rotundata Poir West Africa West & Central Africa, and 

Caribbean 

D. cayenensis Lam West Africa West & Central Africa, and 

Caribbean 

D. alata L. South East Asia South East Asia 

D. esculenta (Lour.) Burk South East Asia  Inter-tropical humid 

D. dumetorum (Kunth) Pax. West Africa West Africa 

D. bulbifera L. South East Asia and Africa  Inter-tropical humid  

D. trifida L Guyana, Amazonian basin  Caribbean  

D. opposita Kunth China, Korea, Taiwan, Japan China, Korea, Taiwan, Japan  

D. japonica L. China, Korea, Taiwan, Japan China, Korea, Taiwan, Japan  

D. nummularia Lamk Indonesia, Oceania  Indonesia, Oceania and, 

Micronesia  

D. transversa Br.  South Pacific  South Pacific  

D. pentaphylla L. Himalaya and Oceania  Himalaya and Oceania  

D. hispida Dennst.  India, South-China, New 

Guinea  

India, South-China, New Guinea 

 

The yam domesticated earlier in West and Central Africa included D. rotundata and D. 

cayenensis, often summarized in the so-called D. rotundata-cayenensis complex (Malaurie et al., 

1998) as well as D. dumetorum, while in Southeast Asia, D.alata was the first yam cultivated. 

Later, D. alata reached Africa, most likely on the East coast of Africa from Malaysia at about 

1500 B.C. Today, the Asiatic yam, especially D. alata, is widely distributed in Africa, while the 

Africa D. rotunda-cayenensis complex is now widely grown in the Caribbean (Hahn et al. 1987). 

In Benin and in Togo, as well as in Nigeria, D. alata ranks second to the D. rotunda-cayenensis 

complex in production and consumption (Orkwor, 1998, MDR, 2000, IITA, 2005). In the West 

Indies, Papua New Guinea and New Caledonia, D. alata is the major food yam grown and 

consumed. 
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1.2.2. Taxonomy and morphology of yam  

Yam was first described by Linnaeus (1737) as a monocotyledon plant in the Dioscoreales order. 

The family Dioscoreaceae has ten genera: Dioscorea, Higinbothamia, Borderea, Epipetrum, 

Rajania, Tamus, Stenomeris, Trichopus, Avetra and Petermannia (Knuth, 1924). The genus 

Dioscorea is the largest of the ten genera and consists mostly of tropical plants. Many edible 

yam species have a large number of cultivars that have yet to be systematically characterized and 

the distinctions between species are not always evident (Orkwor, 1998).  

 

Morphologically, yam plants are composed of two parts: below-ground structures (the fibrous 

root system and the thick storage organs or tubers in which all starch is deposited) and the above 

aerial component, which comprises leaves and vines. Concerning the below-ground part, 

Onwueme (1978) showed that the fibrous root system is concentrated within the top 0.3 m of the 

soil with only few penetrating deeper than 1 m, while tubers can penetrate deeper than 2 m. Yam 

tuber shape, number and form depend on yam species and genotype (Martin and Sadik, 1977; 

Bai and Ekanayake, 1998). For example, D. rotundata tubers are generally large and cylindrical 

in shape, while D. alata has a variable shape, but the majority being cylindrical. Yam tubers are 

often referred to as stem tubers, because they are considered to be a modified stem structure; but 

in fact, they have no pre-formed buds or eyes, no scale leaves, and no equivalent of terminal bud 

at the distal end of the tubers (Hahn et al., 1987). Yam tubers originate from the hypocotyls, 

which is a small region of meristematic cells between the stem and the root (Lawton and Lawton, 

1969). Orkwor et al. (1998) reported that the aerial part consists of vine-like stems on which 

leaves and inflorescence are formed. The vines can be several meters long and the leaves, which 

are borne on long petioles, are usually simple, cordate or acuminate, but are lobed or palmate in 

some species with pointed tips, alternate or opposite with a heart-shape (Bai and Ekanayake, 

1998). The leaves may be smooth or hairy. In certain species, bulbils (aerial tubers) are formed 

in the leaf axils (Osagie, 1992). The yam plant is dioecious with white, green, or red flowers 

arranged in clusters or spikes. More extensive details about the origin, morphology and 

physiology of yam can be found in Orkwor et al. (1998).  
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1.2.3. Production, socio-economic importance, composition, consumption and use of yam 

 Yam production 

The greatest proportion of global production is found in the area of West Africa known as the 

“yam belt”, where D. rotundata and D. cayenensis are most widely grown and consumed. 

Approximately 96% of the world’s annual yam production is produced in the ‘yam belt’ of West 

and Central Africa (FAOdata, 2007), which indicates a global production of yam of 42 million 

tonnes (Mt). In Africa, Nigeria is the largest producer with 34 Mt, followed by Ghana (3.8 Mt), 

Ivory Coast (3 Mt), Benin (2, 5 Mt) and Togo (600.000 t). In Benin, yam is one of the most 

important food crops cultivated in the Northern and Central part, while in Togo; yam is mainly 

cultivated in the Central and South-West part (MDR, 2000).  

 

Socio-economic importance of yam 

In many parts of the tropics where yam tubers are produced, the ethnocentric attachment to the 

crop is very strong (Ayensu and Coursey, 1972). In Africa, particularly in the “yam belt” yam 

plays a vital role in traditional culture, ritual and religion, as well as in local commerce. In all 

these respects, white yam (D. rotundata) is the most valued species (Hahn et al., 1993). Large 

tubers (5-10 kg) are used as gifts or for marriages. To appease the gods, special white yams are 

required. For example, at Maku in the east of Nigeria, an ancient white yam cultivar “Ukoli” is 

used by local priests for sacrifices to the gods (Akoroda and Hahn, 1995). No other type of yam 

can be used. In addition, wealthy people use white yam to set standards of social status to which 

the poor aspire, thereby creating competition and struggle for attainment (Ayensu, 1972; Hahn et 

al., 1993). In the Igbo district of Nigeria for instance, the yam is present in marriage ceremonies, 

birth and death rites, and other ceremonies (Ayensu, 1972). The same cultural practices with yam 

were observed with the Tem and Ani populations in Central Togo (MDR, 2000), where the 

population celebrates the “yam festival” each year before consuming newly harvested yam.  

 

Composition of yam 

The composition of yam tubers was well reviewed by Osagie (1992). Yam is composed mainly 

of starch, with a minor amount of proteins and lipids (1% dry matter) (Osagie, 1992; Omonigho, 

1988) and all the vitamin C required by consumers (Bell, 1983). Yam is rich in minerals 

(Omonigho, 1988). The amount of starch depends on the cultivars and the age of the tubers 
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(Osagie, 1992). Yam tubers are important sources of carbohydrates comprising between 17 and 

38% fresh weight (Orkwor, 1988). Some cultivars are sources of protein superior to cassava, 

comprising 1 to 3% fresh weight and a better balance of amino acids than many other root and 

tuber crops (Orkwor, 1988). In West Africa yam contributes approximately one-third of the 

calorific intake (FAOdata, 2007). 

 

Consumption of edible yam 

Yam is a valuable source of carbohydrate in the diet of West Africa, parts of South-East Asia, 

India, Islands of the South Pacific, the Caribbean and parts of Brazil (Osagie, 1992; FAOdata, 

2007). The most common use of yam is as a boiled vegetable with some kind of sauce, but the 

skin may be removed before or after boiling, since it is normally not eaten. In West Africa, yam 

is often pounded into a thick paste after boiling and is eaten with soup (Orkwor et al., 1998). 

Yam is also processed into flour that is used in the preparation of another type of paste. It may 

also be baked, fried, roasted or mashed to suit regional tastes and customs. Other specific ways 

of preparing yam (puree, dry chips as basic ingredients for snacks…) can be found in other 

regions though (Okaka and Anajekwu, 1990; Okaka et al., 1991).  

 

Other uses of yam 

A number of Dioscorea species are also cultivated to provide a source of diosgenin, which is 

used in the manufacture of oral contraceptives and sex hormones (Coursey, 1967a; Kay, 1987; 

Ayensu, 1972). Also, some sapogenins, alkaloids, steroid derivatives and phenolic compounds 

are found in yam (for example D. composita, D. floribunda and D. mexicana) and are used in the 

pharmaceutical industry (Onwueme, 1978; Osagie, 1992; Degras, 1993). 

 

1.2.4. Constraints of yam production 

Several factors affect yam production. The main problems are the limited availability and high 

cost of planting material, pests and diseases and soil fertility issues. In addition, there is the 

problem of high cost of labor for operations such as land preparation, staking, weeding, 

harvesting.   
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Planting material 

Yam planting material consistes of the whole tubers or pieces of tubers cut from a large tuber. 

Planting material accounts for about 50% of the cost of production in Nigeria (Nweke et al. 

1991). To reduce the cost of planting material, numerous solutions are suggested for rapid and 

sustainable production of planting material, and especially for healthy pathogen-free material, 

such as the use of tissue culture technology, and also “minisett” technology (IITA, 2006), as 

described below.  

 

The use of tissue culture has been well developed for disease elimination, and rapid 

multiplication, using meristem/shoot tip cultures for the former and meristem/shoot tip and nodal 

cultures for the latter (IITA, 2006). Using a combination of heat treatment and meristem culture, 

it was possible to eliminate yam mosaic virus from D. rotundata plantlets (IITA, 2006). At IITA, 

plantlets free of pathogens were also rapidly multiplied in-vitro using single node cuttings from 

in vitro plantlets previously obtained by the rapid multiplication methodology of yam. For this 

purpose, in vitro plantlets were maintained and multiplied under in-vitro conditions by sub-

culturing nodal segments from established in-vitro plantlets under the laminar flow hood in 

culture test-tubes containing a specific yam multiplication medium (Ng, 1994). The yam 

plantlets were regenerated in the culture room with 12 hours photoperiod, 3000 lux light 

intensity, 27 ± 1°C of temperature and 70 ± 5% of relative humidity. The plantlets obtained in 

vitro are sterile, and consequently free of pathogens, but also of beneficial microorganisms, such 

as AMF. The plantlets are acclimatized for one month and later planted out, or used for 

dissemination of germplasm as certified disease-free material. After planting out, small tubers 

(minitubers) of 20-50 g are collected, which, if planted under sterile conditions, can also be used 

for germplasm distribution, as small minitubers, which are also less sensitive than vitroplants and 

in many ways, more suitable for transportation. The minitubers can be planted in the field for 

seed yam (100-250 g) production. Planting plantlets as well as minitubers in the field or in 

untreated soil exposes them to pathogen infection, of course.  

 

An alternative type of planting material consists of whole yam tubers cut into sections of 25 g,  

‘minisetts’. Growing minisetts cut from mature tubers is a method used to relatively rapidly 

produce large numbers of seed tubers. It is important to cut the setts in such a way that each has a 
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reasonable amount of the peel of the tuber or periderm, from which the sprouting locus usually 

emanates. Prior to planting, the minisetts should be treated with a combination of 

insecticide/fungicide/bactericides/nematicide to prevent infection of the seed yam (IITA, 2004). 

The treated setts can be planted directly at the field site or pre-sprouted in beds in the nursery or 

in trays (boxes). Instead of using minisett pesticidal dust, application of AMF might prove useful 

in protecting minisetts against nematodes.  

 

Yam yield lost by diseases 

Yam is prone to infection by various diseases from the seedling stage to harvest (field diseases) 

and during storage (storage diseases) (Amusa et al., 2003). During the growth period, several 

pathogenic fungi have been found associated with yam, causing diseases such as anthracnose 

(caused by Colletotrichum spp. and Glomerella spp.) leaf spots and blight (caused by Sclerotium 

rolfsii), as well as rotting of yam tubers caused mainly by Fusarium spp. (IITA, 1975). Many 

viruses were also isolated from yam leaves that cause not only stress to yam, but also lead to 

yield losses (Osagie, 1992). Among the viruses that attack yam, Yam Mosaic Potyvirus (YMV) 

is the most frequent and economically important in Côte d’Ivoire, where the loss was estimated 

at between 4 to 10% (Osagie, 1992). 

 

Concerning storage diseases, several fungi, viruses, and bacteria have been frequently associated 

with harvested tubers. The fungi most associated with rotted tubers are Botryodiplodia 

theobromae and Fusarium spp., while the bacteria most frequently isolated from wet rot tubers 

are Erwinia spp. (Adeniji, 1970; Osagie, 1992). In general, these pathogens occur in complexes 

causing pre-harvest and post-harvest losses. They are often a secondary consequence of tuber 

wounding, either as a result of mechanical damage during the harvest period and transportation, 

or due to pest damage to the cortex, permitting fungal and bacterial pathogens an entry point.   

 

Yam yield lost by pests (nematodes excluded). 

Several insect pests affects yam either in storage or in field depending on locality (Osagie, 1992; 

Bridge et al, 2005). These insects include larvae of three Lepidoptera spp. Viz. Euzopherodes 

vapidella (Sauphanor and Ratnadass, 1985) Decadarchis minusculata (Plumbley and Rees, 

1983) and Dasyses rugosella (Dina, 1977); a Coleoptera Araecerus fasciculatus (Plumbley and 
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Rees, 1983), a Coccidae Aspidiella spp. and a Pseudococcidae Phenacoccus spp. (Nwankiti et al, 

1988). Losses due to insect attacks can be estimated at 50% after several months of storage in 

Côte d’Ivoire (Osagie, 1992) 

 

  Nematode parasites of yam and their damage to yam 

Among the nematodes associated with yam, three respective species groups are considered to be 

major constraints: the yam nematode (Scutellonema bradys), root-knot nematodes (Meloidogyne 

spp.) and lesion nematodes (Pratylenchus coffeae and P. sudanensis) (Bridge et al., 2005). In 

marketed yam tubers in West African yam markets, S. bradys and Meloidogyne spp. were the 

main nematodes with 2.84% of yam tubers infected by S. bradys and 2.94% infected by 

Meloidogyne spp. (Coyne et al., 2005). Similar observations were reported from Nigeria 

(Adesiyan and Odihirin, 1977). These two nematodes are described in more detail in the section 

1.3. 

 

The primary importance of S. bradys on yam is in the direct damage it causes to the tubers, 

resulting in dry rot disease (Bridge et al., 2005). The nematodes produce a significant reduction 

in the quality, marketable value and edible portions of tubers. These reductions are more severe 

in yam that has been stored (Coyne et al., 2005). Weight differences between healthy and 

diseased tubers harvested from the field have been estimated to be 20 to 30% in Côte d’Ivoire 

(Bridge, 1982) and 0 to 29% in Nigeria (Wood et al., 1980).  

Meloidogyne spp. so far identified associated with yam are M. incognita, M. javanica, M. 

arenaria and M. hapla, of which M. incognita appears the most important (Bridge et al, 2005). 

Nwauzor and Fawole (1981) recorded losses of 25-75% due to Meloidogyne spp. infection on 

yam within a storage period of 16 weeks in Nigeria. The proportion of yam with galled tubers 

collected from yam barns and markets in Nigeria can be as high as 90% for D. alata and 70% for 

D. rotundata (Adesiyan and Odihirin, 1978), with an estimated value of between 39-52% in 

price reduction of galled tubers compared to healthy ones (Nwauzor and Fawole, 1981). 

 

Pratylenchus coffeae lives endo-parasitically and is typically a root parasite, but it attacks also 

underground stems and tubers. It has been reported as a pest of yam in Puerto Rico, Jamaica, 

British Solomon Islands, Pacific and Central America (Thompson et al., 1973). Pratylenchus 
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coffeae is assumed to have a life cycle of 3-4 weeks on yam and causes dry rot of the peri-dermal 

and sub-dermal regions similar to that caused by S. bradys (Thompson et al., 1973). The 

nematode is concentrated in the apical portion within 6 mm up to 15 mm into yam tuber tissue. 

Dry rot can extend 1-2 cm into the outer tissues of D. rotundata tubers (Acosta, 1974), but has 

been estimated to extend up to 5 cm in D. alata tubers (Bridge and Page, 1984).  Scutellonema 

bradys and P. coffeae can induce a synergistic effect on yam growth in pot experiments (Acosta 

and Ayala, 1976), but were together exclusively present in tubers harvested from fields in India 

(Castognone-Sereno and Kermarrec, 1988).  

 

Pratylenchus sudanensis was recently observed on yam in Uganda (Coyne et al, 2003), where it 

was reported as dominant nematode on yam (Mudiope et al., 2001).  Pratylenchus sudanensis is 

morphologically similar to P. pseudopratensis (Coyne et al., 2003) and associated with cracked 

tubers (Mudiope et al., 2004).  Host range studies of P. sudanensis in Sudan showed that 20 plant 

species such as cotton, sorghum, and pigeonpea (Cajanus cajan) acted as favorable hosts while 

groundnut (Arachis hypogea)and wheat (Triticum turgidum) were considered as poor hosts 

(Saadabi, 1985). Pratylenchus brachyurus has been found in yam tubers, roots and yam soil in 

Nigeria (Caveness, 1967), Ivory Coast (Miège, 1957), Guatemala (Jenkins and Bird, 1962), Fiji 

and Tonga (Bridge, 1988), but appears to be of limited importance. 

 

Radopholus cf. similis was associated with yam in Papua New Guinea (Bridge and Page, 1984), 

in Fiji (Butler and Vilsoni, 1975) and in the Solomon Islands (Bridge, 1988) causing dry rot 

disease, similar to that caused by P. coffeae and S. bradys. Aphelenchoides besseyi was also 

found associated with drying and blackening of the foliage, and cracking of the tuber of D. 

trifida, with internal decay in Guadeloupe (Kermarrec and Anais, 1973). Paratrichodorus 

porosus was reported associated with blackening, cracking and corkiness of the tuber tips of 

Chinese yam, D. opposita in Japan (Niashizawa, 1973).  

 

Disease complexes on yam 

It has been estimated that an average of over 25% of the yam yield is annually lost due to 

diseases and pests (Ezeh, 1998; FAO, 2007). Lesions caused by nematodes to yam tubers 

facilitate invasion by disease pathogens. The resulting of decay process often destroys the entire 
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tuber in the ground, but particularly during storage (Bridge, 1982). The more extensive internal 

decay of tubers known as wet rot or soft rot or watery rot is associated with fungal and/or 

bacterial pathogens (Adeniji, 1970). This general decay of tubers, which is a serious problem in 

stored yam, is increased when tubers are wounded or damaged by man, rodents, and insects or 

mainly by nematodes (Adeniji, 1970). Nematodes and fungi are often found in combination in 

the transitional stage between dry rot and wet rot although nematodes tend not to be found when 

yam tubers are completely decayed (Adeniji, 1970). Another complex associated with serious 

losses in yam production is the occurrence of nematodes especially in soils of poor fertility. 

According to Adeniji (1970), in soils of low fertility, yam plants are weak, nematode attacks 

increase and yam yields decrease. 

 

 Problems of soil fertility in West Africa  

Many soils in the tropic and particularly in West Africa are fragile and prone to degradation 

(Schlecht et al., 2006). Major factors that constrain tropical soil fertility and sustainable 

agriculture are soil moisture stress (a dry season lasting longer than 3 months makes year-round 

crop production difficult), low nutrient contents, leaching and erosion risks, low pH with 

aluminium (Al) toxicity, high phosphorus (P) fixation, low levels of soil organic matter, and low 

soil biodiversity (Sanchez, 2002). However, savanna soils under natural conditions (forest or 

long fallow) have a diversity of species that tend to be productive, pest resistant, and maintain 

soil organic matter and soil biological activity at levels satisfactory for soil fertility (Ewel, 1999). 

As yam was thought to be a high nutrient demanding crop, farmers traditionally planted yam first 

in the rotation system following fallow or forest clearance (Carsky et al., 2001). Increasing 

human population pressure has decreased the availability of forest and arable land and it is 

becoming less feasible to use extended fallow periods to restore soil biodiversity and fertility 

(Manyong et al., 1996). It was estimated that over 70% of deforestation in West Africa is caused 

by farmers, who in their quest for arable land and food, have no incentive to ponder on long-term 

environmental consequences (FAOdata, 2007). Today, the fallow periods, which would have 

restored soil fertility and organic carbon, are reduced to lengths that cannot regenerate soil 

productivity leading to unsustainable farming systems (Schlecht et al., 2006). In addition, 

farmers in West Africa and other parts of Africa remove crop residues from field or burn them. 

This practice, coupled with a low rate of macronutrient application compared to their removal, 
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contributes to a strongly negative nutrient balance (Stoorvogel and Smaling, 1990). For nitrogen 

as an example, whereas 4.4 million tons are lost per year, only 0.8 million tons are applied in 

West African countries, such as Burkina Faso, Benin, Togo, and Mali, mainly for cotton growth 

(Bationo et al., 2004). The chemical characteristics of yam-growing soils showed that nutrient N, 

P, and K contents of such soils is low (Bationa et al., 1996; Bationo et al., 2004). Reversing the 

declining trend in agricultural productivity and preserving the environment for present and future 

generations in West Africa must begin with soil fertility restoration and maintenance (Bationa et 

al., 1996). Many solutions have been suggested for the restoration of soil fertility. These methods 

include mixed cropping of plant species, short fallows with cover crops, agroforestery, crop 

rotation mainly with mycorrhizal plants, which usually allow a larger diversity and abundance of 

AMF than monocultures (Altieri, 2004). 

 

Labor 

Yam cultivation requires large levels of energy for land preparation before planting, particularly 

since yam is planted on mounds, ridges or in beds (Toure and Ahoussou, 1982). Much time and 

labor is also required for weeding, staking, control of pests and diseases (during growth period), 

and also for tuber harvesting and storage (Toure and Ahoussou, 1982). The labor costs are 

estimated at > 40% of the annual income of the family (Nweke et al., 1991).  

 

1.3. Plant parasitic nematodes studied in the current study 

The main nematodes associated with yam cultivation in West Africa, the yam nematode (S. 

bradys) (Caveness, 1992) and root knot nematodes (Meloidogyne spp.) are among the major 

constraints to yam production and storage. These nematodes will therefore be the focus of further 

detail. 

 

1.3.1. Scutellonema bradys “yam nematode” 

Taxonomy and nomenclature 

Scutellonema bradys was first described in 1933 from infected yam tuber from Jamaica in the 

genus Hoplolaimus (Steiner et al., 1933). According to Morgan (1971), S. bradys was 

redescribed from Hoplolaimus to Rotylenchus by (Goodey (1952) and then described to 
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Scutellonema by Andrassy (1958). The common name used is the “yam nematode” or “yam dry 

rot nematode”. 

 

The scheme of classification is according to Morgan (1971) 

Kingdom: Animalia 

Phylum: Nematoda Cobb,1919 

                  Class: Secernentea Van Linstow, 1905 

                            Oder: Tylenchida Thorne, 1949 

                                     Suborder: Tylenchoidea, Thorne, 1949 

                                                Superfamily: Tylenchoidea, Orley, 1880 

                                                             Family: Hoplolaimidea, Filipjev, 1934 

                                                                     Genus: Scutellonema Andrassy, 1958 

                                              Species: Scutellonema bradys  

(Steiner and LeHew, 1933) Andrassy, 1958. 

 

  Distribution and host range 

Scutellonema bradys is widely distributed in the tropics, especially in yam growing areas. It has 

been reported from the West Africa countries of Nigeria, Côte d’Ivoire, Senegal, Gambia, 

Ghana, Benin and Togo, and from the central Africa country of Cameroon. It also occurs in 

Cuba, Jamaica, Guatemala, Puerto Rico, Guadeloupe, Haiti, and Martinique in the Caribbean and 

from Venezuela, Brazil and India (Bridge et al., 2005). All the Dioscorea spp. grown as food 

crops are susceptible to S. bradys. In addition, other yam species known to be affected by S. 

bradys are D. bulbifera, D. trifida and D. transversa (Ayala and Acosta, 1971). Two wild 

Dioscorea spp. growing in forests in Nigeria and Cameroon have been shown to be natural hosts 

(Bridge et al., 2005). A wide range of other crops and some weeds have been reported to support 

low root populations of S. bradys including yam bean (Pachyrrhizus erosus), pigeon pea 

(Cajanus cajan) okra (Hibiscus esculentus), tomato (Lycopersicon esculentum), sorghum 

(Sorghum bicolour), Loofah (Luffa cylindrical), and roselle (Hibiscus sabdariffa) (Adesiyan, 

1976). It occurs also in cassava (Missah and Peters, 2001), taro (Xanthosoma sp., Colocasia 

esculenta) and sweet potato (Ipomea batatas) (Kermarrec et al., 1987). These alternative hosts 

permit the yams nematode to survive in the soil even in the absence of yams. However, only 
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cowpea (Vigna unguiculata subsp. unguiculata) water melon (Citrullus spp.) and sesame 

(Sesamum indicum) in addition to yam have been found to actually increase populations of S. 

bradys (Bridge, 1982).  

 

Reproduction and ecology 

The reproduction of S. bradys is amphimictic with separated sexes. Eggs are laid in the soil or in 

the roots and tubers. Juveniles develop into mature vermiform stages by subsequent moulting 

within 21 days while all active stages are infective (Kwoseh et al., 2001). Dense populations can 

build up in the tubers with a miximum of 62.000 nematodes/10g of tuber recorded in Nigeria 

(Bridge, 1972) but 100.000 nematodes were also reported to be found in the infested tubers in 

Nigeria (Bridge, 1982). The S. bradys populations are affected by storage conditions and 

increase at twice the rate in tubers stored at 22-32°C and relative humidity 40-85%, when 

compared to tubers stored at 16-18°C (Adesiyan, 1977).  

 

Symptoms and diagnostics 

Scutellonema bradys causes a characteristic disease of yam tubers known as “dry rot disease” 

(Bridge et al., 2005). The initial stage of rot consists of cream and light-yellow lesions below the 

outer skin of the tuber. There are no external symptoms at this stage. As the disease progresses, it 

spreads into the tuber, normally to a maximum depth of 2 cm, but sometimes deeper. In the later 

stages of dry rot, infected tissues first become light brown and then turn dark brown to black. 

External cracks appear in the skin of the tubers and parts can flake off exposing patches of dark 

brown, dry rot tissues. The most severe symptoms of dry rot are observed in mature tubers, 

especially during storage, when it is often associated with general decay of tubers. No foliar 

symptoms have been observed on yams growing in soil infested by S. bradys (Adesiyan and 

Adeniji, 1976; Bridge et al., 2005). 

 

Assessment of the incidence and extent of dry rot disease in tubers can be undertaken by direct 

observation. In tubers without obvious external symptoms of damage, it is necessary to scrape 

away the surface layers, or cut tubers to determine the presence of dry rot. Nematodes in the soil 

and roots can be sampled during or at the end of the growing season. However, most nematodes 
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will be found in the outer cortex of tuber tissue. Sampling on the outer cortex is most appropriate 

for assessing populations and importance of S. bradys infestation (Adesiyan and Adeniji, 1976). 

 

 

 
Fig.1.1. Healthy tubers (left photo) compared to tubers with dry rot disease (right photo) caused 

by Scutellonema bradys in outer part of yam (Dioscorea rotundata, cv. Kokoro) 

 

 

1.3.2. Meloidogyne spp. or Root Knot Nematode  

Taxonomy of Meloidogyne spp. 

Phylum: Nemathelminthes 

Class: Nematoda 

Subclass: Secernentea 

Order: Tylenchida 

Superfamily: Tylenchoidea 

Family: Heteroderideae 

Genus: Meloidogyne 

Specie: Meloidogyne spp. 

 

Distribution and host range 

Meloidogyne spp. has been found in yam in Africa (Ghana, Côte d’Ivoire, and Nigeria, Uganda, 

Ethiopia), the Caribbean (Jamaica, Martinique, Puerto Rico, Trinidad), Pacific (Fiji, Kiribati, 

Papua New Guinea, Western Samoa), Brazil, Guatemala and Japan (Bridge et al., 2005). They 
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are well distributed all over the world. The most widely spread species are M. incognita and M. 

javanica (Bridge et al., 2005). They can become abundant on yam above all in areas where S. 

bradys is not present. A general survey conducted by Coyne et al. (2005) in West Africa showed 

that the Meloidogyne spp is associated with yam across the whole region. In spite of their 

widespread occurrence and abundance, root-knot nematodes are considered of limited 

importance on yam in West Africa (IITA, 2005), since their infection does not cause lesion or an 

entry point for bacterial and fungal infestation. Especially M. incognita is highly polyphagous, 

with a very broad host range of more than 700 hosts, including most cultivated crops and 

ornamentals (Radewald, 1978). 

 

Reproduction and ecology 

Meloidogyne spp. reproduction is parthenogenetic. J2 moult to females under favorable 

conditions while a high percentage of males are produced under adverse conditions (Adesiyan 

and Odihirin, 1978). The eggs are laid within a gelatinous matrix to form an external egg mass. 

A single egg mass can contain several hundred eggs. The life cycle of M. incognita on yam 

tubers (D. rotundata or D. alata) is 35 days under controlled conditions at 28°C (Nwauzor and 

Fawole, 1981).  

 

Symptoms and diagnostic 

Root knot nematodes cause typical knotting or galling of yam roots. Yam tubers produce galls in 

the outer tissues, giving rise to abnormal, warty or knobbly tubers. Root proliferation from galls 

on tubers can occur (Nwauzor and Fawole, 1981).  

 

Foliar symptoms, such as early yellowing, leaf fall and inhibited vine growth have been observed 

on yam infested with Meloidogyne spp. (Nwauzor and Fawole, 1981). Assessment of the 

incidence and extent of galles in tubers can be undertaken by direct observation. The tubers 

infected by Meloidogyne spp. show obvious external protuberance (galls) at the surface layers. 

The nematodes can be sampled in the soil and root at the end of the growing season. However, 

most nematodes will be found in the tuber tissues. Sampling on the infested tubers is the most 

appropriate means for assessing populations and importance of Meloidogyne spp., since the 

nematode has many host plants, as already mentioned above (Adesiyan and Odihirin, 1978).  
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Fig. 1.2. Yam tuber with galls caused by Meloidogyne spp. in the outer tissues of yam 

(Dioscorea rotundata cv. Kpana). 

 

1.3.3 Yam nematode control 

Although some nematodes can cause huge losses even when present in low numbers, most of 

them do not cause economically significant damage, except if their numbers are unusually high 

or the plant is highly stressed. Thus, the nematode population density should be kept under 

threshold levels. Host plants may either suppress (i.e. resistance) or allow (i.e. susceptibility) 

nematode development and reproduction. However, they may suffer only little injury (i.e. 

tolerance) even when heavily infected with nematodes (Bos and Parlevliet, 1995). In order to 

prevent and control nematode infestation, the management of S. bradys and Meloidogyne spp.  

can be achieved by one, or preferably, a combination of several measurements, which are 

presented in the following. 

 

Phytosanitary and clean planting materials 

Phytosanitary is the first method used for nematode control on yam. It is necessary to separate 

infested tubers before storage and planting in order to prevent establishment of nematode 

infection. Healthy planting materials can also be obtained by using tissue-cultured planting 

material (Dropkin, 1980; Speijer et al., 2000). In yam, use of nematode-free planting material is a 

practical and economic means of preventing damage by S. bradys and their dissemination. Aerial 

tubers of the yam D. bulbifera and some forms of D. alata, which are used for propagation 

should, however, be completely free of nematodes. A number of yam species, such as D. alata, 
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D. rotundata and D. dumetorum, can also be produced from vine cuttings (Coursey, 1967). 

Although these methods of propagation are not practical for producing yam tubers, they can be 

used to produce nematode-free seed tubers (IITA, 2005). The use of ‘microsetts’ or ‘minisetts’, 

cut from mature tubers (IITA, 2007) can be used to provide clean planting material if the mother 

seed yam tubers selected is free of nematodes. 

 

Agronomic practices in the field  

Agronomy practices such as fallow, crop rotation with non-host or cover crops are efficient for 

nematodes control. A fallow of 8 to 12 months as well as crop rotation with non-hosts, can 

reduce the nematode population in the soil (Adesiyan, 1976). However, high land pressure and 

the cultivation of perennials prevent the successful application of fallow. When it is practical, 

rotation of yam with non-hosts or poor hosts such as groundnut (Arachis hypogea), tabacco 

(Nicotiana tabacum) or cotton will limit damage by S. bradys. However, crop rotation to 

effectively reduce S. bradys populations seems to be non-realistic because of its absence or low 

density in the soil.  

 

Using Mucuna sp. and Crotalaria sp. cropped as cover crops have been reported to reduce soil 

nematode populations, particularly Meloidogyne spp. and S. bradys (Claudius-Cole et al., 2004), 

Other cover crops such as Tagetes spp., Stylosanthes spp., Centrosema spp. and Aspilia spp. have 

been recommended to lower nematode populations and restore fertility for yam production in 

Nigeria (Atu and Ogbuji, 1983). Using cover crops in crop rotation is not efficient to control 

Meloidogyne spp. Since these nematodes have a wide host range; moreover, as these crops are 

not edible, farmers are deterred from using them as a rotation crop. 

 

 Organic and mineral fertilisers 

It was reported that the application of mulch or organic matter might result in increased plant 

vigor and probably to some level, tolerance to nematodes (Kashaija, 1999).  The use of cow 

dung, mixed in yam mound before planting at a rate of 1.5 kg per mound (1886.3kg/ha) was 

reported to increase yields of tubers and significantly decreased nematodes numbers (Adesiyan 

and Adeniji, 1976). The use of Azadirachta indica L. powder at a rate of 2.5 t/ha has also been 

reported to decrease nematode populations as well as to increase soil fertility and tuber yields 
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(Onalo et al., 2001). For inorganic fertilizer use, superphosphate fertilizers was reported to 

reduce S. bradys populations in tubers of D. alata to a low level, but did not increase yam yield 

(Baimey et al., 2006). In contrast, N (Nitrogen) alone was reported to increase both populations 

of S. bradys and the percentage of the infested tubers of D. rotundata, whereas P (Phosphorus) 

alone can decrease the percentage of infested tubers (Sobulo, 1972). However, the experimental 

conditions and the species of yam and cultivars used are likely to have a substantial influence on 

the results obtained. For example, S. bradys populations increased on D. rotundata but not D. 

alata or D. cayenensis following application of high rates of N combined with P (Obigbesan and 

Adesiyan, 1981). In addition, the traditional practice of using wood ash on yam tubers before 

planting is reported to decrease nematode numbers (Adesiyan and Adeniji, 1976). An efficient 

alternative practice to increase soil fertility and decrease nematode population in the soil, as well 

as on yam tubers could be to increase the levels of soil microorganisms and particularly AMF 

spore density and diversity or inoculation of selected AMF species or isolates (Cardoso and 

Kuyper, 2006; Smith and Read, 2008). But these practices are not necessarily effective and in 

some cases even reported to have no effect on nematode densities and damage, when compared 

to the controls (Claudius-Cole, 2005). 

 

Physical control or hot water treatment  

Hot water treatment consists of heating water at temperature of 50-55°C and submerging tubers 

for 45 min, which provides good control of S. bradys without damaging tubers (IITA, 2005). The 

hot water treatment is effective but far from practical for farmers, due to the need for temperature 

control, labor and fuel, and simply due to the huge volume of yam material needed to be treated. 

Other factors, such as yam species, cultivars, nematode densities, depth of infestation and age of 

tubers also conflict with efficiency (Bridge et al., 2005). However, it is feasible for small-scale 

operations and for establishing nematode-free planting material for research experiments.  

 

Resistance 

To date, no useful sources of resistance to the yam nematode S. bradys have been identified from 

cultivated yam (IITA, 2004). Sources of nematode resistance are likely to be found in non-

cultivated yam, but breeding this into cultivated yam lines will be a lengthy process and not 

necessarily successful due to the complex nature of yam botany (Coursey, 1967; R. Asiedu, IITA 
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pers. comm.). However, resistance could prove to be the most practical and economic means of 

managing S. bradys for minimizing losses to such pests found in commercially acceptable 

cultivars (CABI International, 2001). Crop resistance is not as common against the migratory 

endoparasitic nematodes however, such as S. bradys, as it is against the sedentary endoparasites 

with specialized feeding sites, such as Meloidogyne spp., Globodera spp., Heterodera spp., 

Rotylenchulus spp. and Tylenchulus spp. One cultivar of yellow yam, D. Esculenta, and one of 

D. dumetorum have shown some resistance to S. bradys (Bridge, 1982; Kwoseh, 2000).  

 

Nematicides 

Nematicides (carbamates and organophosphates) can be used successfully against nematodes on 

yam, but these agents are not only very expensive but also toxic against non-target organisms, 

including the user. They are poorly biodegradable and, therefore present an important ecological 

risk (Gowen and Quénéhervé, 1990). However, application of chemical nematicides in the field 

has, at best, only produced moderate yield increases and control of S. bradys (Ayala and Acosta, 

1971) and information on the economics of this means of control is lacking for large-scale use. 

Nematicide treatment of planting material however, to generate healthy seed yam free of 

nematodes can have a major effect and proved to be highly economical (IITA, 2006). 

 

Biological control 

Biological control is considered to be an alternative to nematicides, especially concerning the 

environmental and health risks associated with the use of these chemicals (Kerry, 2000; Viaenne, 

2005). Integrated crop pest control may benefit from studying plant-parasitic nematodes and 

natural antagonistic interactions in natural systems, which have co-evolved for longer than crop-

nematode-antagonist systems. Understanding how wild plants manage their association (plant-

parasitic nematodes) may ultimately result in improving the sustainability of crop protection 

against plant-parasitic nematodes. Current research has focused mainly on predacious and 

parasitic micro-organisms. Nematophagous fungi such as Pochonia chlamydosporium and 

Paecilomyces lilacinus are nematode parasites (Gaspard et al., 1990). Bacteria such as Pasteuria 

penetrans also appear promising biological control agents of Meloidogyne spp. (Davies et al., 

1991; Pembroke and Gowen, 1998). Recently, possible anti-nematode effects of the micro-

organisms in the rhizosphere have been studied. Rhizobacteria such as Rhizobium spp. and 
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Pseudomonas spp. not only have a positive effect on plants by promoting their growth, but in 

addition they show a repellent effect towards nematodes (Aalten et al., 1998; Hallman et al., 

2001).  

 

Integrated pest management 

A combination of several methods is the best way to control nematodes but is not usually applied 

by farmers for managing nematodes. For example, combinations of hot water treatment and 

phytosanitary measures as well as crop rotations were experimentally used in IITA-Ibadan, West 

Africa for successful yam nematode control (IITA, 2005).  

 

 

1.4. Mycorrhiza association 

1.4.1. General definition and its main types 

Mycorrhiza (Greek words mycos = fungi, rhiza = root) can be defined as a close physical 

association between soil fungi and plant roots from which both fungi and plants appear to 

benefit. Harley and Smith (1983) preferred using the term symbiosis for describing this 

interdependent mutualistic relationship where the host plant receives mineral nutrients, while the 

fungus obtains photosynthesis derived carbon compounds from the plant. According to Smith 

and Read (2008), mycorrhizas were discovered during the late 19th century when several 

researchers noted the presence of fungi in plant roots without any apparent disease or necrosis. In 

general, the mycorrhiza was classified morphologically according to their association types 

(Peyronel et al., 1969).  

 

Endomycorrhiza: The term endomycorrhiza refers to a symbiotic association between fungal 

mycelia and roots of certain plants, in which the fungal hyphae penetrates directly into cortical 

cells (endomycorrhizal fungi) with individual hyphae extending from the root surface outwards 

into the surrounding soil. Their hyphae penetrate the living cells of the cortex and they can form 

structures such as vesicles and/or arbuscules. The most important members belonging to the 

endomycorrhizal fungi are arbuscular mycorrhizal fungi (AMF), which include the vesicular-

AMF and AMF that do not form vesicles in the roots. Over 200 fungal species belonging to the 
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Glomerales are known to form arbuscular mycorrhiza (Redecker et al., 2007; Smith and Read, 

2008). 

 

Ectomycorrhiza: This term refers to a symbiotic association of fungal mycelia and roots in which 

the fungal hyphae form a compact mantle on the surface of roots and extend into the surrounding 

soil and inwards between cortical cells, but not into these cells. The hyphae between cortical root 

cells produce a netlike structure, the Hartig net (Smith and Read, 2008). Many ectomycorrhizal 

fungi form a mantle of fungal tissue, completely covering the absorbing root. Ectomycorrhiza is 

found on woody plants, most belonging to the families Pinaceae, Fagaceae, Betulaceae and 

Myrtaceae (Smith and Read, 2008). Over 4000 fungal species, belonging primarily to the 

Basidiomycotina and fewer to the Ascomycotina, are known to form ectomycorrhizae (Schenk, 

1991). 

 

Ectoendomycorrhiza: This term refers to an ectomycorrhizal - endomycorrhizal intermediate 

type. In this association, the hyphae of involved fungi develop a mantle of fungal tissue and a 

Hartig net like the ectomycorrhiza association and their hyphae penetrate the living cells of their 

hosts as known for the endomycorrhiza association, but without forming special intracellular 

structures (Brundrett, 2004). The ectoendomycorrhizal fungi colonize only a few plant families 

from gymnosperms and angiosperms (Smith and Read, 2008).  

 

Some additional mycorrhizas: Arbutoid mycorrhiza is a symbiotic association that involves 

Basidiomycete fungi and some specific host plants belonging to the Ericales. In this association 

the hyphae penetrate directly the cortex cells (endomycorrhiza) of the root but do not form 

arbuscules or vesicles (Read, 1998). Monotropoid mycorrhiza involves Basidiomycete fungi and 

plants from the Monotropaceae. They form intracellular colonization as well as a Hartig net but 

never arbuscules or vesicles (Harley and Smith, 1983). Ericoid mycorrhiza develops between 

Ascomycete fungi and plants belonging to the Ericales. The hyphae penetrate into the root cells, 

and form intracellular structures called coils, which are different from arbuscles or vesicles 

(Harley amd Smith, 1983). The Orchid mycorrhiza is developed between Basidiomycetes fungi 

and Orchidaceae plants. The hyphae penetrate the root cells and form intracellular coil structures 

(Smith and Read, 2008).  
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1.4.2. Taxonomy of AMF 

AMF belong to the phylum Glomeromycota (Schüβler et al., 2001) and the class 

Glomeromycetes (Cavalier-Smith 1998), with four orders: Glomerales, Diversisporales, 

Archaeosporales and Paraglomerales, eight families and ten genera (Schüβler et al., 2001). 

Recently, four new AMF genera, Ambispora, Kuklospora, Intraspora and Otospora, and two 

new families, Ambisporaceae and Entrophosporaceae, have been described in the phylum 

Glomeromycota (Sieverding and Oehl, 2006; Palenzuela et al., 2008). In earlier classifications, 

the AMF were placed in the order Glomales within the division Zygomycota as they have non-

septate hyphae, similar to the hyphae of most Zygomycota. However, AMF are distinguished 

from the Zygomycotan lineages due to some specific characteristics, e.g. mutualistic symbiotic 

nutritional habit and the lack of formation of characteristic zygospores (Smith and Read, 2008). 

Moreover, rDNA analysis has revealed a clear separation of AMF from other fungal groups and 

the AMF are now placed in a separate new phylum, Glomeromycota (Schüßler et al., 2001; 

Schwarzott et al., 2001).  

 

Classical spore morphology and more recently PCR-based molecular approaches are generally 

used for identification of AMF species and communities, but there are problems with both these 

approaches. In the case of spore morphology, it is not always possible to identify all spores 

obtained directly by sieving field soil. There are variations in spore development and sometimes 

AMF colonizing the plant roots are not found as spores (Clapp et al., 1995; Clapp et al., 2002). 

The main problem with molecular approaches is that these are mostly based on rDNA sequences 

and AMF species have the peculiarity to contain polymorphic rDNA sequences often precluding 

a distinction of closely related species (Sanders, 2002; Redecker et al., 2003). It is normal to 

recover multiple rDNA sequences by PCR amplification from a single spore known to contain a 

thousand or more nuclei (Antoniolli et al., 2000; Pawlowska and Taylor, 2004). At present, there 

are no individual rDNA primers that permit identification of all major Glomalean lineages 

(Redecker, 2000; Vandenkoornhuyse et al., 2002; Redecker et al., 2003; Walker and Schüßler, 

2004). 
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Table 1.2. Order, families and genera of AMF (Sieverding and Oehl, 2006; Palenzuela et al., 

2008) 

 

Orders Families Genera 

Glomerales Glomeraceae Glomus 

Diversisporales Gigasporaceae 

Acaulosporaceae 

Entrophosporaceae 

Pacisporaceae 

Diversisporaceae 

Gigaspora, Scutellospora 

Acaulospora, Kuklospora 

Entrophospora  

Pacispora 

Diversispora, Otospora 

Paraglomerales Geosiphonaceae 

Paraglomeraceae 

Geosiphon 

Paraglomus 

Archaeosporales Archaeosporaceae 

Ambisporaceae 

Archaeospora, Intraspora 

Ambispora 

 

Thus the characterisation of AMF communities based on either spore morphology or molecular 

identification alone is insufficient to cover the whole spectrum within a community (Landis et al. 

2004). In order to assess the total community present at a specific site, use of both methods is 

recommended because they complement each other (van der Heijden and Scheublin, 2007). 

 

1.4.3. Morphology and biology of AMF 

After colonization (=infection) of the host plant roots, AMF first develop a hyphal network of 

microscopic filaments in the soil. When these filaments come into contact with a young root, the 

extramatrical hyphae swell apically and increase in size to form an appressorium-like structure. 

Hyphae penetrate the roots in a number of ways: direct penetration of the root hair cell wall or of 

another epidermal cell or infection through crevices between cells in the outer layer of the root 

(Bonfante-Fasolo, 1984). After penetration, the infection develops an extramatrical phase which 

might consist of external vesicles and, above all, spores and a large mycelium in the surrounding 

soil, and an the intraradical phase with intercellular un-branched hyphae, the intracellular hyphae 

branching extensively to form arbuscules and, in some genera formed vesicles (Janse, 1897; 

Morton and Benny, 1990). Spores can be formed in the soil and within roots. The spores contain 
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a nutrient reserve and act as propagating organs. They are used for morphological species 

identification. The mycelium does not penetrate the meristematic regions and the endodermis, 

and is therefore absent from the central vascular cylinder. Active hyphae of AMF are non-

septate, i.e. coenocytic (one cell with many nuclei). 

 

Biologically, the close contact created between the plant and fungus through the intraradical 

filamentous network allows the exchange of nutrients between the two partners. The wide 

dispersal of the fungus in the soil through its large extraradical filament network gives the plant 

access to a much larger volume of soil than the root system itself. The fungal filaments act like 

conduits supplying the root with mineral salts to which it normally would not have access. In 

return, the fungus receives from the plant metabolized nutrients that it is unable to synthesize 

himself, such as sugars, amino acids and secondary metabolites (Smith and Read, 2008). AMF 

are recognized on the basis of their specific traits such as obligate biotrophy, asexual 

reproduction, large and multinucleate spores with layered walls, non-septate hyphae and 

arbuscule formation in plant roots. Though AMF are believed to be obligate symbionts and 

generally they need living plant roots to grow, some reports claimed that AMF species can grow 

up to the spore production phase in vitro in the absence of plant roots but in the presence of some 

selected strains of spore-associated bacteria (Hildebrandt et al., 2002; Hildebrandt et al., 2006). 

AMF reproduce asexually by spore (chlamydospore) production and there is no evidence that 

AMF can reproduce sexually (Kuhn et al., 2001). One study reports the formation of sexual 

zygospores by Gigaspora (Tommerup and Sivasithamparam, 1990), but this has not been 

confirmed so far. Only a low level of genetic recombination or non at all has been detected using 

molecular marker genes (Kuhn et al., 2001). Therefore, it is generally assumed that AMF are 

asexual. The spores are relatively large (40-800 μm) containing large amounts of lipids. 

 

1.4.4. Role of AMF in agroecosystems 

 Contribution of AMF to improve soil structure 

In tropical agriculture systems where most soils are fragile and of low fertility, a major beneficial 

effect of AMF is their role in maintenance and improvement of soil structure by their external 

hyphae and the production of a special protein excreted, the glomalin (Miller and Jastrow, 1990; 

2000). The mechanisms involved are (1) the growth of external hyphae into the soil to create a 
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skeletal structure that holds soil particles together and (2) the formation of a ‘sticky’ string-bag 

of hyphae by the glomalin, which contributes to soil aggregate stabilization (Rillig et al., 2002).  

 

Contribution of AMF to improve plant mineral uptake and plant growth. 

The improvement of P nutrition of plants is the most recognized beneficial effect of AMF. These 

fungi can physically explore the soil with hyphae – significantly finer than roots - to access 

inorganic and organic P sources that are unavailable to non-mycorrhizal plants (Feng et al., 2003; 

Cardoso et al., 2006; Smith and Read, 2008). In particular, it is believed that plants with limited 

root hair development, such as cassava are frequently dependent on AMF for P nutrition under 

all soil conditions (Howeler and Sieverding, 1983). AMF may also enhance N acquisition by the 

plant (Mäder et al., 2000; Hogde et al., 2001). Uptake of other nutrients mediated by AMF 

hyphae, such as K, Mg, Ca, Zn and Cu has been demonstrated, but their translocation to plants 

has not been well established (Clark and Zeto, 2000).  

 

Under P limited conditions, AMF have the potential to increase growth and yield e.g. as shown 

for watermelon (Citullus lanatus) inoculated with G. clarum (Kaya et al., 2003).  Inoculation 

with G. mosseae increased shoot dry weight of several plum rootstock (Prunus domestica) 

cultivars (Camprubi et al., 1993), and dry weight of micropropagated banana (Musa spp.) 

plantlets (Declerck et al., 1994; Elsen el al., 2003). Other studies showed that inoculation of 

micropropagated plants of oil palm (Elaeis guineensis), pineapple (Ananas comosus) or kiwi 

(Apteryx spp.) with AMF also led to improved development (Schubert et al., 1990; Jaizme-Vega 

and Azcón, 1995). Caglar and Akgun (2006) found that Terebinth (Pistacia terebinthus) 

seedlings pre-inoculated with AMF had improved growth following transplanting. Stewart et al. 

(2005) showed that micropropagated plantlets of strawberry (Fragaria X ananassa) cultivars 

inoculated with G. mosseae and a mixture of G. intraradices, G. mosseae and G. etunicatum 

exhibited better growth at the acclimatization stage, than non inoculated plants when they were 

transplanted to P rich soil. It has been suggested that the extent of growth enhancement by AMF 

and the mycorrhizal dependency of the host varies with genera and species of AMF. For 

example, seedlings of narrowleaf plantain (Plantago lanceolata) inoculated with Glomus spp. 

grew faster than seedlings inoculated with Archaeospora trappei (Bennett and Bever, 2007).  
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In root and tuber crops, many studies have demonstrated the enhancement of growth and yield by 

AMF. For example, the AMF G. manihotis and Entrophospora colombiana both proved to be 

highly efficient for improving cassava (Manihotis spp.) growth in the greenhouse (Howeler and 

Sieverding, 1983). Potato (Solanum tuberosum) microplants inoculated with commercial AMF 

products (Vaminoc and Endorize IV) and with G. intraradices showed increased tuber yield and 

quality (Duffy and Cassells, 2000). Potato plantlets inoculated with G. etunicatum produced 

significantly greater shoot fresh weight, root dry weight and number of tubers per plant (Yao et 

al., 2002). Cultivars of potato, S. aethiopicum inoculated with G. aggregatum or with G. mosseae 

produced higher shoot dry weight than non-inoculated plants (Diop et al., 2003). Sweet potato 

(Ipomoea batatas) inoculated with 14 AMF species separately enhanced the biomass production 

and showed improved nutritional status with higher efficiency of Glomus spp. compared to 

Acaulospora spp. or Scutellospora spp.(Gai et al., 2006). 

 

While numerous studies have shown the positive effects of AMF on growth and yield of plants, a 

few studies also indicated negative or neutral effects of AMF on plant growth and yield. For 

example, Duffy and Cassells (2000) reported that Solanum spp. plantlets inoculated with G. 

intraradices showed a reduction of growth, while no effect of G. versiforme inoculation on S. 

aethiopicum cultivars was recorded (Diop et al., 2003). 

 

Role of AMF to enhance plant tolerance to pollution with toxic metals 

The reports of AMF effects on plant tolerance to heavy metal or pollution have been 

contradictory (reviewed by Gadd, 1993). For example, in the case of nutrient toxicity, AMF can 

reduce metal translocation to the plants (Chen et al., 2005), reduce metal concentration build up 

in shoots and increase plant growth (Davies Jr et al., 2001). In addition, earlier studies by 

Bethlenfalvay and Franson (1989), found that the concentration of Mn in plants infected with G. 

mosseae was significantly lower but with no symptoms of Mn toxicity. However, other studies 

reported an increased accumulation of Cu, Ni, Pb and Zn in a grass (Ehrartia calycina) (Killham 

and Firestone, 1983) and maize (Liu et al., 2000), while G. mosseae, G. intraradices and G. 

caledonium inoculation to Chinese brake fern (Pteris vittata) in soil contaminated with U 

(Uranium) and As (Arsenic), increased U uptake, concentration in plant tissue and decreased 

plant growth were recorded (Shen et al., 2006). 
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 Role of AMF to increase plant resistance to drought stress 

In many arid and semiarid regions of the world, drought or low water availability limits crop 

productivity. Many studies reported that colonization of plant roots by AMF under drought stress 

resulted in improved productivity of numerous crop plants, such as wheat (Triticum spp.) (Al-

Karaki et al., 2004), pepper (Capsicum spp.) (Davies et al., 2002), lettuce (Marulanda et al., 

2003) and strawberries (Borkowska, 2002). Improved productivity of plants inoculated with 

AMF under drought stress was attributed to enhanced uptake of immobile nutrients such as P, Zn 

and Cu (Al-Karaki 1998). Other results have shown that AMF colonization increased the drought 

resistance of wheat (Allen and Boosalis, 1983; Ellis et al., 1985; Al-Karaki and Al-Raddad, 

1997) and pepper (Davies et al., 1993). However, other studies established the negative effect of 

drought stress on AMF root colonization (Ryan and Ash, 1996).  

 

1.4.5. Role of AMF in crop protection 

Interaction between AMF and insects  

A number of studies have investigated the interaction between AMF colonized plants and insects 

(Wardle e al., 2004), and have found both positive and negative effects on insect growth and 

survival (Bennett and Bever, 2007), dependind on plant host. For example, Gange et al. (2003) 

showed that AMF colonization reduced the level of narrowleaf plantain leaf damage by 

herbivorous insects at field sites, but had no such effect in ragwort (Senecio jacobaea). It was 

also showned that the effect of AMF colonized plants on insects depends on the type of insect 

(Gange and West, 1994; Borowicz, 1997; Goverd et al., 2004; Gang et al., 2005). The difference 

in feeding behaviour of herbivorous insects was explained by the assumption that AMF, which 

colonize roots, will alter plant physiology and chemistry (Smith and Read, 2008).  

 

A positive effect of AMF inoculation on insects has also been reported. For example, Goverde et 

al. (2004) reported that survival and larval weight of third instars larvae of the common blue 

butterfly, Polyommatus icarus were greater when they were fed with small shoots of mycorrhizal 

plants than of non-mycorrhizal plants of bird's-foot trefoil (Lotus corniculatus). 
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By feeding on the plants leaves, the insects have been reported to have also negative effects on 

AMF infection. For example, Gange et al. (2003), performing a series of field and laboratory 

experiments reported that herbivorous insects reduced root colonization by AMF in narrowleaf 

plantain, which is a highly mycorrhizal, mycotrophic plant that sufferred continuously over a 

growing season, even after limited insect damage. On the other hand there was no such effect on 

S. jacobaea (weakly mycorrhizal, non-mycotrophic). 

 

Interaction between AMF and pathogenic fungi 

Various effects have been noted from AMF and pathogenic fungi interactions. AMF tend to 

decrease the harmful effects of fungal pathogens through a negative impact on pathogen 

development, leading to increased crop yields. For example, Rhizoctonia solani infected potato 

(Solanum spp.) plantlets, inoculated with G. etunicatum, produced greater tuber fresh weights 

than non-AMF plantlets (Borowicz, 2001). Similar observations were reported on Verticillium 

dahliae infected pepper plants (Garmendia et al., 2004), where AMF reduced the deleterious 

effect of V. dahliae on pepper growth and yield. G. intraradices has been also reported to 

suppress development of the potato dry rot (a post-harvest disease) caused by the fungus 

Fusarium spp. (Niemira et al., 1996). Mycorrhizal symbionts have been shown to improve 

resistance against pathogenic fungi such as Fusarium oxysporum f. sp. Cubense on banana (cv 

Maca) (Borges et al., 2007), Phytophthora parasitica on citrus (Citrus spp.) (Davis and Menge, 

1981), Sclerotium cepivorum on onion (Allium spp.) (Torres-Barragan et al., 1996), Fusarium 

spp. on cotton (G. hursitum), tomato (Lycorpersicum spp.) and in cucumber (Zhipeng et al., 

1991; Caron et al., 1996; Zhipeng et al., 2005), F. oxysporum f. sp. Lycopersici on tomato 

(Akköprü and Demir, 2005) and Pythium ultimum on white clover (Trifolium repens) (Carlsen et 

al. 2008).  

 

In certain studies, reduced AMF colonization in pathogen-challenged plants was observed. For 

example, Garmendia et al. (2004) reported that prior inoculation of Capsicum sp. plants with V. 

dahliae negatively affected root colonization with Glomus sp. when the AMF were inoculated at 

the flowering stage. In addition, increased pathogen incidence was reported in mycorrhizal plants 

compared to the control non-mycorrhzal plants. For example, in mycorrhizal tobacco plants 

infested with the leaves pathogen Botrytis cinerea, the mycorrhizal treatments resulted in an 
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increase in disease symptom severity (necrotic lesions) when inoculated with G. intraradices 

compared to the non-mycorrhizal treatments (Shaul et al., 1999). 

  

Interaction between AMF and pathogenic bacteria 

Only recently has the interaction between AMF and pathogenic bacteria been assessed (Liu et al., 

2007). The authors showed that in mycorrhizal medic (M. truncatula) plants infested with the 

bacteria Xanthomonas campestris, the symbiosis result in enhanced resistance to pathogenic 

bacteria compared to the nonmycorrhizal treatments. 

 

Interaction between AMF and virus 

A limited number of studies have assessed the interaction between AMF and viruses (Shaul et 

al., 1999). The authors reported that plants of tobacco colonized by G. intraradices and infested 

with tobacco mosaic virus showed a higher incidence of the virus disease than those of non-

mycorrhizal plants. 

 

Interaction between AMF and plant parasitic nematodes 

 In general, plant parasitic nematodes are detrimental to plant growth and yield, while AMF are 

beneficial. Plant parasitic nematodes and AMF share plant roots as a resource for food and space. 

The effects of both these organisms on plant growth and their interaction have been reviewed by 

numerous authors (Smith and Kaplan, 1988; Pinochet et al, 1996; Roncardori and Hussey, 1997; 

Borowicz, 2001; Hol and Cook, 2005; Borowicz, 2006). A general conclusion from these 

reviews suggests that AMF increase resistance to nematode infestation by slowing down 

nematode development. But it is now clear that the net effect of AMF on nematodes vary with 

environmental conditions, plant genotype, nematode species and fungal isolates. Here the 

interaction between AMF and the following four groups of nematodes is discussed: (1) sedentary 

endoparasitic nematodes, that induce feeding sites in the parenchyma cells of the roots; (2) 

migratory endoparasitic nematodes, which invade, multiply, feed and move within the root 

cortex of the host plant resulting in necrotic lesions and promoting fungal infections; (3) 

migratory ectoparasitic nematodes that feed on superficial cells, as well as in deeper cortical 

layers at the root tip, which is less colonized by AMF; (4) stem-and leaf nematodes. 
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The effect of AMF on sedentary nematodes have mostly been addressed in studies at assessing 

AMF-nematode interactions. These studies generally show a negative effect of AMF on 

nematode population densities. For example, Li et al. (2006) showed that inoculation of the 

grapevine (Vitis amurensis) with the AMF G. versiforme significantly increased resistance 

against the M. incognita possibly due to a transcriptional activation of the class III chitinase gene 

VCH3. A suppressive effect was also observed on M. hapla, when pyrethrum (Anacyclus 

pyrethrum) plants were inoculated with G. etunicatum (Waceke et al., 2001). Castillo et al. 

(2006) studied the effects of single and joint inoculation of olive (Elaeagnus angustifolia) 

planting stocks (cvs Arbequina and Picual) with the AMF G. intraradices, G. mosseae and G. 

viscosum, and the nematodes M. incognita and M. javanica under controlled conditions. They 

found that AMF in olive plants significantly reduced the severity of root galling up to 36.8% as 

well as reproduction of both Meloidogyne spp. up to 35.7%, indicating a protective effect against 

parasitism by Meloidogyne spp. They also reported that in plants free from AMF, infection by 

Meloidogyne spp. significantly reduced the plant main stem girth by 22.8-38.6%. A single 

inoculation of olive planting stocks with the AMF G. intraradices, G. mosseae and G. viscosum 

and the M. incognita and M. javanica under controlled conditions showed that the fungal 

symbiosis significantly increased growth of olive plants by 88.9% within a range of 11.9-

214.0%, irrespective of olive cultivar and plant age (Castillo et al., 2006). In Musa spp., a 

number of studies have investigated the effect of AMF on Meloidogyne spp. population 

dynamics as well as on nematode damage on roots (reviewed by Pinochet et al., 1996; Jaime-

Vega et al., 1997). In 2003, Elsen et al., reported that banana cultivars inoculated with G. 

mosseae reduced M. javanica populations as compared to the control. While however, root 

colonization by AMF was increased in plants free of nematodes as compared to plants infested 

with nematodes. In tomato for example, Diedhiou et al., (2003) reported that pre-inoculation of 

plants with G. coronatum stimulated plant growth and reduced M. incognita infestation. Among 

root and tuber crops, interactions between AMF and sedentary nematode were reported on 

potato, Solanum tuberosum and S. melongena, showing increased plant growth and reduced 

potato cyst population densities (Borah and Phukan, 2000; Jothi and Sundarababu, 2000; Jothi 

and Sundarababu, 2002; Rao et al., 2003).  
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While there are numerous studies indicating that AMF increase plant resistance to nematode 

infection by slowing down nematode development, there are also studies reporting no effect or 

synergistic effects on nematode populations. For example, Diedhiou et al., (2003) reported that a 

combined application of the AMF G. coronatum and a non-pathogenic F. oxysporum (Fo162) 

enhanced mycorrhization of Lycopersicum spp. roots, but did not increase overall nematode 

control. They also reported that a higher number of nematodes per gall was found for 

mycorrhizal than non-mycorrhizal plants. Ryan et al. (2003) reported that the population of 

potato cyst nematodes per plant was increased on potato plants inoculated with Vaminoc 

(commercial AMF product) compared to non-inoculated plants, by 200% for Globodera 

rostochiensis and by 57% for Globodera pallida. Other studies reported that a synergistic effect 

of soil pathogenic fungi and nematodes reduced bioprotection by AMF on the sand ryegrass 

(Leymus arenarius) (Greipsson and El-Mayas, 2002). 

 

Concerning the AMF interaction with migratory endoparasitic nematodes, relatively few studies 

have been undertaken. Some notable successes in the management of migratory nematodes 

through application of AMF have been observed. This has been well documented for G. 

intraradices and Radopholus similis on rough lemon (Citrus jambhiri) seedlings (Smith and 

Kaplan, 1988). Camprubi et al. (1993) also reported that root weights of mycorrhizal plum 

(Prunus domestica) rootstock plants inoculated with Pratylenchus vulnus were higher than root 

weights of the same plum rootstock plants lacking mycorrhiza (G. mosseae). Some studies have 

shown increases in plant tolerance or resistance to Pratylenchus spp. as a consequence of 

inoculation with AMF, while others found no protective effect of AMF (Forge et al., 2001). For 

example, de la Peña et al., (2006) reported that AMF could out-compete migratory endoparasitic 

nematodes (Pratylenchus penetrans) when they occurred together in the same root compartment 

of pioneer dune grass (Ammophila arenaria). They also reported that root colonization by AMF 

was not affected by the nematode. In banana, Elsen et al., (2003; 2008) showed that G. mosseae 

or G. intraradices inoculation of plantlets increased plant tolerance or resistance to Pratylenchus 

spp. and R. similis. Similar observations were reported by Jaizme-Vega and Pinochet (1997), 

when they studied the interaction between G. intraradices and P. goodeyi on banana. In the case 

of root and tuber crops, few studies have been performed concerning the interaction of AMF 

with migratory endoparasitic nematodes. According to Kassab and Taha (1990b), sweet potato 
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(Ipomoea batatas) inoculated with Glomus sp., reduced Tylenchorhynchus spp. populations. In 

contrast, however, the same authors demonstrated that sweet potato inoculated with Glomus sp. 

led to increased Criconemalla spp. and Rotylenchulus spp. populations, but resulted in increased 

sweet potato tolerance (Kassab and Taha, 1990b). Other studies have shown that the associations 

of AMF with migratory endoparasitic nematodes can lead to increased nematode populations 

(Pinochet et al., 1996; Borowicz, 2001). Moreover, a few reports have dealt with the negative 

effects of migratory nematodes on AMF, as so-called fungivorous nematodes grazed on the 

mycorrhizal mycelium in soils (Bakhtiar et al., 2001). Mutual inhibitions were also detected 

between AMF and nematodes in banana (Francl, 1993; Elsen et al., 2003). 

Concerning the migratory ectoparasitic nematodes, only limited studies have been performed, 

investigating mainly Tylenchorhynchus sp. It was clearly observed that the effect of ectoparasitic 

nematodes on AMF was more severe than the effect of Meloidogyne spp. (Hasan and Jain, 1987; 

Kassab and Taha, 1990a) with AMF plants of Trifolium alexandrium suffering more from 

ectoparasitic nematodes than non-AMF plants. A possible explanation might be that ectoparasitic 

nematodes damage the extra-radical hyphae growth and possibly diminish fungal entry into the 

roots (Hasan and Jain, 1987; Kassab and Taha, 1990a).  

 

Furthermore, stem-and leaf nematodes infesting aerial plant parts should be included in the 

interaction studies.  Unfortunately, up to now, only one report appears to have addressed the 

interaction between AMF and aerial nematodes. Sikora and Dehne (1979) reported that 

Ditylenchus dipsaci populations initially increased, then decreased on mycorrhizal bean 

(Phaseolus vulgaris) compared to non-mycorrhizal controls, while Aphelenchoides spp. 

populations decreased on mycorrhizal, compared to non-mycorrhizal tabacco (Nicotiana spp.). 

 

Mechanisms involved in the AMF mediated bioprotection of plants against soil-borne pathogens 

To our knowledge, there is no report elucidating the direct mechanisms of the interaction 

between AMF and pathogens e.g. through antagonism, antibiosis, and/ or mycoparasitism. 

Therefore, there are many hypotheses attempting to explain the mechanisms, which are likely to 

include indirect ones (Azcon-Aguilar and Barea, 1996; Harrier and Waston, 2004).   
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-Improved crop nutrition: AMF can enhance plant nutrient uptake, increasing plant vigor and 

consequently natural ability to resist/ tolerate pathogens, especially when AMF is established 

prior to pathogen infection (Smith and Kaplan, 1988; Smith and Read, 2008). 

 

-Anatomical changes in the root system: It was reported that AMF infection increased root 

branching, leading to greater root ability to elude or avoid pathogen infections (Hooker et al., 

1994) and, in addition, induced cell wall fortification by increased production of polysaccharides 

and an increased lignin, thus reducing pathogen penetration (Jalali and Jalali, 1991). 

 

-Competition for infection and colonization sites: AMF and the soil-borne fungal and plant 

parasitic nematodes occupy similar root tissues, and therefore, they will compete for space 

especially if colonization occurs simultaneously (Smith, 1987). Biocontrol of the pathogen 

Phytophtora parasitica by the AMF G. mosseae was induced as a consequence of competition 

for infection sites (Cordier et al., 1996; Vigo et al., 2000). 

 

-Competition for host photosynthates: Both AMF and pathogens, especially sedentary 

endoparasitic nematodes, depend on photosynthates produced by the host and compete for 

carbon reaching the root (Smith, 1987; Smith and Read, 2008). There is no solid evidence for the 

mechanism involved in the competition (Azcon-Aguilar and Barea, 1996). 

 

-Soil microbial population changes: AMF inoculation reduced plant exudate production in maize 

plants (Marschner et al., 1997) and likely also in other plants, which could lead to stimulation of 

microorganisms such as antagonistic nematode and chitinase-producing actinomycetes (Burke et 

al., 2002).  

 

-Pathogen damage compensation: Plants colonized by AMF can compensate for the loss of roots 

or root function caused by the pathogens by enhanced nutrient uptake and water absorption 

capacity of the mycorrhizal root system (Harrier and Waston, 2004). 

 

-Activation of plant defense responses: Establishment of AMF symbiosis can predispose plants 

to respond more rapidly to pathogenic attacks (Dehne, 1982; Gianinazzi-Person, 1996), through 
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a pre-activation of plant defense responses (Slezack et al., 2000). Genes and corresponding 

proteins and other compounds involved in plant defense responses were extensively studied 

including phytoalexins, callose deposition, hydroxyproline-rich glycoproteins, phenolics, 

peroxidases, chitinases, β-1-3 glucanases and PR-pathogenesis related proteins (Cordier et al., 

1996; Slezack et al., 2001). 

 

1.5. Objectives of the current study  

The general objective of the present thesis was to identify the diversity of AMF in the “yam belt” 

region of West Africa and to assess the potential of selected indigenous and non-indigenous 

AMF isolates for yam growth promotion and yam nematode suppression towards improved yam 

(Dioscorea spp.) production. The specific objectives divide this thesis in four related studies, 

which are presented accordingly, with an additional general discussion chapter. The studies have 

been prepared for publication in international scientific journals with one chapter recently 

published (Tchabi et al., 2008). 

 

1.5.1. Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, 

West Africa, as affected by agricultural land use intensity and ecological zone (chapter 2).  

The first specific objective was to explore the native AMF communities in three ecological zones 

of the ‘yam belt’ in Benin (from the more humid Southern Guinea savannah (SG) over the 

Northern Guinea savanna (NG) to the drier Sudan savanna (SU), and to assess the impact of 

farming practices on the diversity of AMF. We hypothesized that farming practices such as 

forest clearance by slash and burn, as well as crop rotation and cultivation of specific crops 

would lead to an erosion of AMF species diversity in West African soils. We further expected 

that AMF species composition would change with increasing dry season length from southern to 

northern succession of savannas (SG through NG to SU). For these, AMF spore density (= spore 

abundance) and species richness (= species numbers) were compared at various agricultural sites 

differing in land use intensity, from undisturbed natural forest savannas through yam fields and 

various low-input crops to relatively intensive cotton production in all three ecological zones.  
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1.5.2. Arbuscular mycorrhizal fungi associated with yam (Dioscorea spp.) in the Southern 

Guinea Savanna of West Africa (chapter 3). 

The specific objective here was to assess the mycorrhizal status of yam by identifying root 

colonization by AMF among yam cultivars, and to identify AMF species associated with yam. It 

was assumed that yam is arbuscular mycorrhizal and dependent on AMF for its growth. The 

AMF communities present in soil samples from the field sites were propagated in trap cultures 

on cultivars of white and yellow yam in order to produce fresh living spores of different AMF 

species that could be used for the subsequent etablishment of single spore derived AMF cultures 

(strains) necessary for the functional screening experiments for yam growth promotion and 

nematode suppression (chapters 3-5). The spore abundance and species richness of AMF was 

first determined in soil samples from three yam fields and three adjacent natural savanna forests. 

Therafter, the AMF trap cultures were etablished with yam and sorghum as host plants and soil 

inoculum from the field sites. While AMF present in the yam fields may not necessarily be 

associated with yam but possibly with the accompanying weed flora, AMF species detected in 

the yam trap cultures could unequivocally be assigned to yam. In these trap cultures, root 

colonization by AMF, spore density and species richness was determined, as well as yam shoot 

and tuber dry weight.  

 

1.5.3. Increased growth of micro-propagated white yam (Dioscorea rotundata) following 

inoculation with indigenous arbuscular mycorrhizal fungal isolates (chapter 4). 

This study assessed AMF isolates indigenous to the ‘yam belt’ for their potential to promote 

growth of micro-propagated white yam plantlets. For ecological reasons, the use of indigenous 

AMF instead of AMF of ‘exotic’ origin would certainly be recommendable. Furthermore, we 

hypothesized that indigenous AMF isolates might be more effective for plant growth promotion 

than non-indigenous isolates as being better adapted to the specific environment. Therefore, we 

first generated single spore derived (=monosporal) cultures of several AMF species indigenous 

to the Southern Guinea savanna of Benin. In a first growth experiment, we screened several 

indigenous and non-indigenous G. etunicatum isolates for AM root colonization as well as shoot, 

root and tuber growth of micro-propagated white yam. The non-indigenous G. etunicatum 

isolates were obtained from other tropical origins (Bolivia and India). In the second experiment, 

nine AMF species with three monosporal isolates per species were screened on the same yam 
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cultivar (TDr89/02461) for the same parameters. AMF isolates of non-tropical origin were 

included in both experiments.  

 

1.5.4. Effect of arbuscular mycorrhizal fungal application on micropropagated yam 

plantlets and suppression of nematode damage caused by Scutellonema bradys 

(Tylenchideae) and Meloidogyne spp. (Meloidogyneae) (chapter 5). 

Here, we assessed the potential of AMF species on in vitro yam plantlets for plant growth 

promotion and suppression of yam nematodes: migratory S. bradys and sedentary Meloidogyne 

spp. We hypothesized that AMF inoculation may be effective for plant growth promotion, but 

their effect might depend on AMF species and on yam genotype. In addition, we hypothesized 

that AMF inoculation could affect the nematode population dynamics and their consequent 

damage, but which probably depends on the type of nematode and especially on yam cultivar. 

We used two AMF species (G. mosseae and G. dussii) and four yam cultivars obtained from in 

vitro. Two experiments were established. Firstly, we challenged plants following AMF species 

inoculation with S. bradys, and secondly with Meloidogyne spp. 

 

1.5.5. General discussion (chapter 6) 

In the last chapter, we discussed the main results obtained from our overall study and presented 

some perspectives for further investigations in this exciting field of research. 
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Chapter 2: Arbuscular mycorrhizal  fungal  communities  in  sub­Saharan 

Savannas  of  Benin, West  Africa,  as  affected  by  agricultural  land  use 

intensity and ecological zone* 
 

2.1. Abstract  

The rapid decline of soil fertility of cultivated lands in the sub-Saharan savannas of West Africa 

is considered to be the main cause of the increasingly severe constraints of food production. The 

soils in this tropical area are highly fragile and crop yields are limited by characteristically low 

levels of available phosphorus. Under such preconditions, the multiple benefits of the arbuscular 

mycorrhizal (AM) symbiosis are likely to play a pivotal role for maintaining natural soil fertility, 

by enhancing plant nutrient use efficiency, plant health and stabilization of a favorable soil 

structure. Thus it is important to explore the impact of the commonly applied farming practices 

on the native AM fungal (AMF) community. In the present study, we determined the AMF 

species composition in three ecological zones differing by an increasingly prolonged dry season 

from South to North, from the Southern Guinea Savanna (SG), to the Northern Guinea Savanna 

(NG), to the Sudan Savanna (SU). In each zone, four ‘natural’ and four ‘cultivated’ sites were 

selected. ‘Natural’ sites were three natural forest savannas (at least 25-30 years old) and a long-

term fallow (6-7 years old). ‘Cultivated’ sites comprised a field with yam (Dioscorea spp.) 

established during the first year following forest clearance, a field under mixed cropping with 

maize (Zea mays) and peanut (Arachis hypogaea), a field under peanut, and a field under cotton 

(Gossypium hirsutum) which was the most intensively managed crop. Soil samples were 

collected towards the end of the wet season in each zone. AMF spores were extracted and 

morphologically identified. Soil sub-samples were used to inoculate AMF trap cultures using 

Stylosanthes guianensis and Brachiaria humidicola as host plants to monitor AM root 

colonization and spore formation over 10 and 24 months, respectively. A total of 60 AMF 

species were detected, with only seven species sporulating in the trap cultures. Spore density and 

species richness were generally higher in the natural savannas and under yam than at the other 

cultivated sites, and lowest under the intensively managed cotton. In the fallows, species richness 
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was intermediate indicating that the high richness of the natural savannas was not restored. 

Surprisingly, higher species richness was observed in the SU than in the SG and NG, mainly due 

to a high proportion of species in the Gigasporaceae, Acaulosporaceae and Glomeraceae. We 

conclude that the West African savannas contain a high natural AMF species richness but that 

this natural richness is significantly affected by the common agricultural land use practices, and 

appears not to be quickly restored by fallow. 

Key Word: agroecology; arbuscular mycorrhiza; biodiversity; Dioscorea spp.; ecological zones; 

farming practices; forest; yam; arid lands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* The content of this chapter 2 has been published: Tchabi A, Coyne D, Hountondji F, Lawouin 

L, Wiemken A, Oehl F (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan 

Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological 

zone. Mycorrhiza 18: 181-195. 
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2.2. Introduction 

Arbuscular mycorrhizal fungi (AMF) occur in most vegetation types and constitute an important 

component of the tropical soil microflora (Sieverding, 1991; Smith and Read, 2008; Cardoso and 

Kuyper, 2006). The symbiotic relationship between AMF and plants presents a particularly 

outstanding example of mutually beneficial interactions, where both organisms profit, primarily 

from the exchange of nutrients (Smith and Read, 2008). The benefit for the plants, however, 

extends to more than enhanced nutrient uptake, including pest and disease protection and 

favorable soil structure stabilization. Knowledge and understanding of the community structure 

and dynamics within AMF communities, however, is a necessary prerequisite to eventually 

identify the specific beneficial effects of individual AMF, especially in tropical low-input agro-

ecosystems in which sustainable management of the generally low soil nutrient resources must 

consider the benefits of native microorganisms (Cardoso and Kuyper, 2006; Lovera and Cuenca, 

2007). 

 

During the infancy of AMF systematics (Gerdemann and Trappe, 1974; Morton and Benny, 

1990), species diversity studies were few and generally limited (e.g. Gerdemann and Trappe, 

1974; Nicolson and Schenck, 1979; Schenck et al., 1984) without consideration of climatic, 

vegetation or land use changes. Often the main purpose of these studies was the description of 

newly discovered species based on spore morphology. Further progress in this field (e.g. 

Schenck and Pérez, 1990) and particularly the rapid development of molecular tools for 

identification (e.g. Redecker, 2000), have steadily increased the number of AMF distribution and 

diversity studies and their quality in the recent past (e.g. Jansa et al., 2002; Wubet et al., 2003; 

Castillo et al., 2006; Gai et al., 2006; Bashan et al., 2007; Wu et al., 2007). Such studies have 

enabled progressive understanding of the connection between AMF communities and various 

parameters along broad gradients, such as land use intensity (Jansa et al., 2002; Oehl et al., 2003; 

2004), soil type (Lekberg et al., 2007), soil depth (Oehl et al., 2005), host specificities (Bever et 

al., 2001; Eom et al., 2004), plant nutrient content (Egerton-Warburton and Allen, 2000; Landis 

et al., 2004), spatial, temporal (Lovelock et al., 2003; Lovelock and Ewel, 2005) and latitude 

(Koske et al., 1997) gradients. AMF identification and diversity studies from African 

ecosystems, however, are to date, relatively limited (e.g. Sieverding, 1988; Stutz and Morton, 

1996; Wubet et al., 2004; 2006; Uhlmann et al. 2006; Lekberg et al., 2007; Mathimaran et al., 
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2007) with a particular scarcity from tropical West Africa (Old et al., 1973; Ingleby et al., 1994; 

Sanginga et al., 1999; Dalpé et al., 2000; Friberg, 2001; Duponnois et al., 2001). AMF 

distribution and diversity in tropical ecosystems elsewhere, appears to be receiving increased 

attention (e.g. Sieverding, 1989; Maia and Trufem, 1990; Picone, 2000; Husband et al., 2002a; 

2002b; Lovelock et al., 2003; Lovelock and Ewel, 2005). 

 

In West Africa, particularly Benin, the impact of farming practices on composition and diversity 

of AMF remains largely unknown. The slash and burn technique of land clearance tends to 

prevail in many areas, leaving the land to fallow following a number of cultivation cycles. The 

Sudan and Guinea savannas of West Africa occur in a zone commonly referred to as the ‘yam 

belt’, where yam (Dioscorea spp.) is of particular importance and characteristically is used as the 

first crop cultivated after forest clearing (IITA, 2004). Depending on production levels, the same 

land is cultivated with other crops one or two years after yam, such as maize (Zea mays), 

sorghum (Sorghum spp.), peanut (Arachis hypogaea), cassava (Manihot esculenta), and later 

cotton (Gossypium hirsutum). The crops are generally cultivated in small-scale fields as mono-

cropping or mixed cropping during the wet season, rotating the crops from one season to another. 

Except for cotton, which is cultivated as a cash crop, other crops are managed on low external 

input level and are intended to meet local demand (IITA, 2006). Use of agricultural machinery - 

even for soil cultivation - is not common and where present is applied to grow cotton. ‘Ferralsol’ 

soils are dominant in Benin and are characterized by low nutrient availability and high levels of 

soil degradation through physical loss and leaching of soil minerals, particularly available 

phosphorus, due to heavy rains, resulting in rapid yield decline (Defoer and Scoones, 2001; 

IITA, 2006).  Soil infertility and subsequent yield decline is also partly related to the decreasing 

prevalence and loss of diversity of soil microflora and microfauna, such as beneficial AMF, 

following forest clearance (Johnson et al., 1992).  

 

The present study investigated the impact of land use intensity on AMF communities in three 

ecological zones of Benin: the Sudan Savanna (SU) and the Northern and Southern Guinea 

Savannas (NG and SG, respectively). Based on similar studies elsewhere (e.g. Sieverding, 1989; 

Jansa et al., 2002; Oehl et al., 2003), we hypothesized that agricultural cultivation practices such 

as crop rotation and cultivation of specific crops would lead to an erosion of AMF species 
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diversity in West African soils. We further expected that AMF species composition change with 

increasing dry season length from south to north succession of savanna types (SG through NG to 

SU). In order to achieve an understanding on AMF dynamics in different ecological zones, AMF 

spore density (= spore abundance) and species richness (= species numbers) were compared at 

the various agricultural sites using a gradient of land use intensity, from undisturbed natural 

forest savannah sites through yam fields and various low-input crops to relatively intensive 

cotton production, in the three ecological zones.  

 

2.3 Material and Methods 

2.3.1. Study area 

This study was undertaken in three ecological zones of Benin: in the SU the NG and SG (Table 

2.1). The climate changes from SG through NG to SU, reflected by a decreasing annual rainfall 

and increasing length of dry season (Table 2.1). Moreover, the temperature differences between 

day and night are increasingly more pronounced with distance from south to north, especially 

during the dry season (Table 2.1). Remarkably, the SG has two wet seasons and two dry seasons 

per annum, while NG and SU have a single wet and dry season each per annum. The natural 

vegetation in the natural savannas consists of trees, shrubs and grasses with trees and shrubs 

becoming increasingly less prominent from south to north (see e.g. Adjakidje 1984; Adjanohoun 

1989; Table 2.1). The soils are dominantly ferruginous Ferralsols (FAO, 2006: 

http://www.fao.org/AG/aGL/agll/landuse/docs/benin.doc).  
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Table 2.1. Some geographic characteristics of the sub-Saharan ecological zones under study for 

arbuscular mycorrhizal fungi 

Parameters Sudan Savanna  Northern Guinea 

Savanna 

Southern Guinea Savanna, 

Latitude 

Elevation 

9-11 °N 

550m asl 

8-9 °N 

400m asl 

7-8 °N 

200m asl 

Climate One wet season:  

May-October 

22-34°C 

 

One dry season:  

Oct-May 

15-45°C 

One wet season:  

April-October 

22-34°C 

 

One dry season: 

Nov-Mar 

20-40°C 

Two wet seasons:  

March- July  

September –November 

20-28°C 

Two dry seasons:  

Dec-Mar and Aug-Sep  

24-30°C 

 

 

Rainfall 600-700 mm 1000 -1200 mm 1200-1400 mm 

Vegetation Zyziphus mauritania, 

Combretum spp.,  

Balamiten spp.,  

Acacia spp.,  

Butyrospermum spp.,  

Parkia biglobosa,  

Andropogon gayanus, 

Imperata cylindrica 

Isoberlinia doka, 

Afzelia africana, 

Khaya senegalensis, 

Danielia oliveri, 

Anogeissus spp.,   

Pterocarpus spp., 

Andropogon spp.,   

Combretaceae, 

Mimosaceae, Fabaceae,  

Poaceae 

Sources: Adjakidje (1984); Adjanohoun (1989).   
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Table 2.2. Historical characteristics (cultural precedence, fallow duration, crop rotation, fertilizer 

and pesticide use) of sites in Benin sampled for arbuscular mycorrhizal fungi 

Standing 

crops/vegetation 

at sampling date 

Previous 

crops/vegetation 

Estimated 

age of the 

forest or 

fallow 

(year) 

Years of 

continuous 

cultivation 

after forest 

clearance 

Historic of 

fertilizer use 

Historic of 

pesticide use 

Sudan Savanna (SU) 

Natural Forest1 - 25-30 - - - 

Natural Forest2 - 25-30 - - - 

Natural Forest3 - 25-30 - - - 

yam Natural forest - 1 - - 

Mixed crops 

(maize-peanut) 

yam - 2 - - 

Peanut Peanut and 

cassava 

- 3 - - 

Cotton Maize+peanut - 4 Mineral 

fertilizer 

(N:P:K:S:B =  

14:23:14:5:1; 

150 kg ha-1); 

Urea (50 kg 

ha-1) 

Conquest Plus 

388EC 

(Cypermetrine, 

Acetometride 

and 

Triasophos) 

Fallow - 6-7 - - - 

      

Northern Guinea Savanna (NG) 

Natural Forest1 - 20-25 - - - 

Natural Forest2 - 25-30 - - - 

Natural Forest3 - 20-25 - - - 

yam Natural forest - 1 - - 
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Mixed crops 

(maize-peanut) 

yam - 2 - - 

Peanut Cassava  - 3 - - 

Cotton Maize+peanut - 4 Mineral 

fertilizer 

(N:P:K:S:B =  

14:23:14:5:1; 

150 kg ha-1) 

Conquest Plus 

388EC 

(Cypermetrine, 

Acetometride 

and 

Triasophos) 

Fallow - 7 - - - 

      

Southern Guinea Savanna (SG) 

Natural Forest1 - 25-30 - - - 

Natural Forest2 - 25-30 - - - 

Natural Forest3 - 20-25 - - - 

yam Natural forest - 1 - - 

Mixed crops 

(maize-peanut) 

yam - 2 - - 

Peanut Peanut and 

maize 

- 3 - - 

Cotton Maize+cassava - 4 Mineral 

fertilizer 

(N:P:K:S:B =  

14:23:14:5:1); 

150 kg ha-1) 

Conquest Plus 

388EC 

(Cypermetrine, 

Acetometride 

and 

Triasophos) 

Fallow - 5-6 - - - 
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Table 2.3 Geographical position of study sites, and selected chemical soil parameters  

 

Sampling sites  

 

Geographical position 

 

pH 

(H20) 

 

Organic 

C 

g kg-1 

Available P  

(Sodium 

acetate) 

mg kg-1 

Available P 

(Citrate) 

 

mg kg-1 

Ecological zone 1: Sudan Savanna (SU)    

Natural Forest 1 10°56.420N ; 

001°32.003E 

6.1 13.9 47.6 69.9 

Natural Forest 2 10°17.060N ; 

001°19.506E 

6.3 10.4 11.8 17.5 

Natural Forest 3 10°07.868N; 

001°56.315E 

6.5 23.8 3.9 8.7 

Yam  10°07.868N; 

001°51.104E 

5.9 11.6 3.9 8.7 

Mixed cropping 10°18.802N; 

001°35.104E 

6.2 6.4 7.4 13.1 

Peanut 10°19.885N; 

002°00.326E 

6.2 12.8 6.5 13.1 

Cotton 09°58.916N; 

002°47.936E 

5.9 13.9 47.6 69.8 

Fallow 10°18.802N; 

001°35.104E 

5.9 6.4 3.9 4.4 

      

Ecological zone 2: Northern Guinea Savanna (NG)    

Natural Forest 1 08°43.452N; 

002°40.047E 

6.6 9.3 8.7 8.7 

Natural Forest 2 09°10.545N; 

002°12.321E 

6.5 28.4 13.1 21.8 

Natural Forest 3 09°03.112N; 

002°04.197E 

6.7 36.0 46.3 65.5 
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Yam  08°54.966N;002°33.37

0E  

5.8 11.0 7.0 8.7 

Mixed cropping 09°57.436N; 

001°51.797E 

6.2 4.1 5.2 8.7 

Peanut 08°58.619N; 

002°28.714E 

6.2 13.9 9.2 13.1 

Cotton 09°21.962N; 

001°34.121E 

5.8 11.0 25.8 52.4 

Fallow 08°54.966N; 

002°33.370E  

6.5 13.3 13.1 21.8 

      

Ecological zone 3: Southern Guinea Savanna (SG)    

Natural Forest 1 07°45.739N; 

002°27.519E 

6.7 9.9 14.8 34.9 

Natural Forest 2 07°57.217N; 

002°26.935E 

7.2 13.9 8.7 13.1 

Natural Forest3  07°35.829N; 

002°18.942E 

6.4 13.9 28.4 43.6 

Yam  07°55.111N; 

002°10.507E 

7.4 13.3 5.7 8.7 

Mixed cropping 07°25.639N; 

001°51.323E 

6.2 9.9 14.8 34.9 

Peanut 07°51.537N; 

002°17.246E 

6.6 7.5 13.1 17.5 

Cotton 07°23.024N; 

001°52.495E 

6.2 16.2 43.7 61.1 

Fallow 07°49.275N; 

002°15155E 

6.5 9.9 10.5 17.5 

      
E, east of Greenwich; N, north of the Equator 
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2.3.2. Study sites and soil sampling 

In each ecological zone, soils were sampled at eight sites (Table 2.2): three in natural forest 

savannas where soils and plant vegetation had been undisturbed for 25-30 years before sampling; 

one under long-term fallow of 6-7 years; one cultivated with yam, in the first season following 

forest clearance; two cultivated with peanut, either alone or in mixed cropping with maize; one 

cultivated with cotton under relatively intensive high-input conditions. The geographical position 

and selected chemical soil parameters were measured at each site (Table 2.3). 

 

Sites were sampled towards the end of the wet season, in October 2004, when vegetation cover 

remained green and yam was approximately 5-6 months old. At each sampling site, four replicate 

quadrant plots (100 m2) were selected and six soil cores randomly removed to a depth of 20 cm 

using 6-cm ∅ corers. The six soil-core samples per plot were combined as one composite sample 

constituting one replicate per site. Samples were stored in plastic bags and transported within 24-

72 h to the International Institute of Tropical Agriculture station in Abomey-Calavi (IITA-

Benin), air-dried on an open bench in the greenhouse for 72 h and then held at 4°C in a fridge for 

two weeks before transferal to the Botanical Institute of Basel (Switzerland).  

 

2.3.3. Soil analyses 

Each replicate air-dried soil sample from each quadrant plot was divided into three sub-sets: one 

for the determination of chemical soil parameters (pH, organic carbon and available phosphorus) 

in the “Laboratory Dr. Balzer”, Wetter-Amönau, Germany, according to standard methods (Oehl 

et al. 2003); the second for direct isolation and identification of AMF spores (see below); the 

third for use as inoculum for AMF propagation and spore production in ‘trap cultures’ and 

subsequent AMF identification. 

 

2.3.4. Trap cultures 

Four trap culture pots (pots: 20 cm x 20 cm x 30 cm) were created for each site, one each per 

field plot replicate according to Oehl et al. (2003). For each pot, 4 kg of substrate was used, 

comprised of a sterilized 3:1 (wt/wt) mixture of Terragreen® (a calcined granular attapulgite clay 

mineral, American aluminium oxide, oil dry US special, type III R, >0.125mm; Lobbe 

Umwelttechnik, Iserlohn, Germany) and quartz sand (Alsace quartz sand, 5% of free silica, 
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Smurfit Company, France), respectively. The chemical composition of the substrate was 0.3 % 

organic matter, 10 mg kg-1 and 1480 mg kg-1 easily and heavily available phosphorus (P 

extracted with sodium acetate and citrate, respectively), and 191 mg kg-1 potassium (K extracted 

with sodium acetate), and pH 5.8. A 180 g sample, divided equally into three sub-portions of soil 

inoculum, was placed in each trap culture pot as three lines on the surface of 3 kg substrate, 

which was then covered with the remaining 1 kg of trap culture substrate. Five one-week old 

Stylosanthes guianensis plants and four one-week old Brachiaria humidicola plants were 

alternatively and equidistantly planted per pot along the three lines of the inoculum. A total of 

100 pots were set up including four non-mycorrhizal control pots. Each control pot received 180 

g sterilized soil and a non-mycorrhizal suspension of soil bacteria (1 mL per plantlet) obtained 

through fine filtration (LS 141/2; Schleicher and Schuell, Feldbach, Switzerland) of a soil 

suspension (final volume of 1 l bacterial soil suspension from 0.5 kg air-dried soil). The trap 

cultures were maintained in a greenhouse in Basel for 24 months under day: night regimes of 

12h: 12h photoperiod and 25: 21°C temperature, with a mean relative humidity of 65 ± 5%. Trap 

cultures were irrigated using automated watering systems (Tropf-Blumat; Weninger GmbH, 

Telfs, Austria) (Oehl et al. 2003).  

 

2.3.5. Sampling of trap cultures 

At 4, 6, 8 10 and 24 months after planting, two soil core samples (volume 15 cm3 per core) were 

removed from each pot for spore isolation and identification and to monitor mycorrhizal root 

colonization.  

 

2.3.6. Isolation and morphological identification of AMF  

AMF spores were isolated from 25 g air-dried field soil samples or from 30 cm3 trap culture 

substrate that were suspended in water. Spores were extracted by wet sieving through nested 

sieves (1000µm, 125µm, 80µm and 32µm) followed by density gradient centrifugation. From the 

1000 µm sieves no spores or sporocarps were obtained and therefore only the contents from the 

125 µm, 80 µm and 35 µm sieves were poured into 50 ml vials and centrifuged in 70% sucrose 

solution gradient (Oehl et al. 2003). After centrifugation at 2000 rpm for 2 min, spores, spore 

clusters and sporocarps obtained from each pot were transferred into Petri dishes, and counted 

using a dissecting microscope (Olympus SZ12) at up to 90x magnification.  
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For microscopic identification, healthy spores were mounted on glass slides and stained with 

polyvinyl-lactic acid glycerol (PVLG) mixed with Melzer’s reagent (1:1 vol/vol) (Brundrett et al. 

1994). The spores were examined under a compound microscope (Zeiss; Axioplan) at up to 400x 

magnification. Identification was based on current species descriptions and identification 

manuals (Schenck and Pérez 1990; International Culture Collection of Arbuscular and Vesicular-

Arbuscular Endomycorrhizal Fungi, INVAM: http://invam.caf.wvu.edu; Arbuscular Mycorrhizal 

Fungi (Glomeromycota), Endogone and Complexipes species deposited in the Department of 

Plant Pathology, University of Agriculture in Szczecin, Poland: 

http://www.agro.ar.szczecin.pl/~jblaszkowski/).  

 

2.3.7. Statistical analysis 

Spore density (= spore abundance) in a field sample was expressed as the number of AMF spores 

g-1 of soil. Spore density and species richness were analysed using the PROC ANOVA procedure 

of SAS version 9.1 packages (SAS, 2005). Significant differences between field sites were tested 

using Fisher’s least significant difference (LSD) at P < 0.05. Prior to analysis, data on spore 

density were log(x+1) transformed to normalize the data.   

 

 

2.4. Results 

2.4.1. Soil characteristics 

Soils were slightly acid across zones (Table 2.3). In general, natural forest savanna sites had 

relatively higher soil organic matter content and available P (phosphorus) than cultivated sites 

(except cotton fields). The C (carbon) and P soil contents also were dramatically reduced once 

under crop cultivation. Available P in the cotton fields, however, was similar to forest sites, 

probably as a result of fertilizer application. In the fallows, organic C and available P contents 

were similar to peanut or mixed cropping sites.  
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2.4.2. AMF spore density  

AMF spore density was generally higher at the natural sites than at the cultivated sites. With a 

few exceptions forest soil spore density was consistently higher compared with peanut, mixed 

cropping and cotton sites (Fig.2.1). Spore density was similar in cultivated sites, but yam fields 

in SG had notably higher spore density than at all other sites, followed by forest and fallow soils. 

Spore density at fallow sites was variable, but generally comparable to forest sites. The lowest 

spore densities were observed under mixed cropping and in cotton fields in all three ecological 

zones (Fig. 2.1).  
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Fig. 2.1 Arbuscular mycorrhizal fungal spore density (in spore numbers g-1 of soil) at field sites 

in three agro-ecological zones: (SU) Sudan savanna, (NG) Northern Guinea savanna, and (SG) 

Southern Guinea savanna. Data are reported as averages and standard deviations for four 

replicate plots per field site. Non-significant differences between sites are shown by identical 

letters, determined using Fisher’s Least Significant Difference (LSD) at the 5% level following 

one-way ANOVA. 
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Table 2.4. Arbuscular mycorrhizal fungal genera and species richness found at 24 sites in three 

ecological zones (SU: Sudan Savanna; NG: Northern Guinea Savanna and SG: Southern Guinea 

Savanna) of Benin 

            SU           NG           SG        Sum of 

    SU, NG, SG 

Glomeraceae      

Glomus  23  18  19  30  

Acaulosporaceae      

Acaulospora  10  10  8  12  

Kuklospora  1  2  1  2  

Gigasporaceae      

Gigaspora  2  1  0  2  

Scutellospora  8  7  5  10  

Entrophosporaceae      

Entrophospora  1  0  1  1  

Ambisporaceae      

Ambispora  1  1  1  1  

Paraglomeraceae      

Paraglomus  1  0  0  1  

Total species richness  47  39  35  59  
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Fig. 2.2. Arbuscular mycorrhizal fungal species richness at field sites in three agro-ecological 

zones: (SU) Sudan savanna, (NG) Northern Guinea savanna, and (SG) Southern Guinea savanna. 

Data are reported as averages and standard deviations for four replicate plots per field site. Non-

significant differences between sites are shown by identical letters, determined using Fisher’s 

Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 

2.4.3. AMF species richness  
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A total of 59 AMF species were detected in soils sampled from the 24 sites in the study area 

(Table 2.4). Thirty species belonged to the genus Glomus in the family Glomeraceae, twelve 

species to Acaulospora and two species to Kuklospora in the Acaulosporaceae. There were ten 

Scutellospora and two Gigaspora species in the Gigasporaceae. One species each belonged to 

the families Entrophosporaceae, Archaeosporaceae, Ambisporaceae and Paraglomeraceae. The 

total number of AMF species detected was higher in the SU (47 species) than in the NG and SG 

(39 and 35, respectively; Table 2.4). A relatively greater proportion of particularly Scutellospora 

spp. and Gigaspora spp., but also of Glomus spp. and Acaulospora spp., was apparent in the SU 

than in the NG and SG.  

 

 

2.4.4. AMF species richness and land use  

AMF species richness was generally higher (P<0.05) in natural forest and yam field soils when 

compared to other field crop sites (Fig. 2.2). With one exception of yam fields in SU, species 

richness was higher than in other cultivated or fallow sites (Fig. 2.2). However, no difference in 

species richness was observed between any of the cotton, mixed cropping, peanut or fallow sites 

(Fig. 2.2).  

 

Independent of the ecological zone, land cultivation negatively affected the species richness, 

particularly species of Gigasporaceae and sporocarp-forming Glomus species, such as Glomus 

clavisporum, G. pachycaulis and G. taiwanense (Tables 2.5, 2.6, 2.7 and 2.8). The number of 

species of Acaulosporaceae was also reduced, while a few Glomus species (e.g. G. etunicatum, 

G. macrocarpum and G. intraradices) and Acaulospora scrobiculata were less affected, with 

higher spore densities recorded under cotton production. These four species were recovered from 

most of the 24 sites under investigation. 

 

Relationship between chemical soil parameters and spore density and species richness  

Spore density, as well as species richness, were mostly positive correlated with soil organic 

carbon contents and soil pH (P<0.05). No significant correlation was observed, however, 

between available soil P and spore density or species richness (Table 2.9).  
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Table 2.5. Arbuscular mycorrhizal fungal species richness under various land use systems: 

natural forest savannas, cultivated fields, and fallows of three ecological zones (SU: Sudan 

Savanna; NG: Northern Guinea Savanna and SG: Southern Guinea Savanna) in Benin. 

AMF family/genera  

and ecological zones 

Natural 

Forest 

1 

Natural 

Forest 

2 

Natural 

Forest 

3 

Yam   Mixed 

Cropping

Peanut Cotton Fallow 

Glomeraceae         

Glomus          

SU 13  10  10  8  3  8  5  7  

NG 7  10  8  7  4  5  4  6  

SG 9  9  8  10  5  3  4  6  

Acaulosporaceae          

Acaulospora          

SU 4  6  2  7  2  4   2  

NG 3  7  5  2  3  1  1   

SG 3  1  3  3  3  2  1  3  

Kuklospora         

SU     1     

NG 1  2  1       

SG  1        

Gigasporaceae          

Gigaspora          

SU 1     1  1    

NG   1    1    

SG         

Scutellospora          

SU 6  1  4  2  3  1   1  

NG 4  1  3  2   4    

SG 3  3  2  1     1  

Entrophosporaceae          
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Entrophospora          

SU  1   1      

NG         

SG   1       

Ambisporaceae         

Ambispora          

SU 1         

NG   1       

SG   1    1    

Paraglomeraceae          

Paraglomus         

SU 1         

NG         

SG         

 

 

2.4.5. AMF in trap cultures  

For unknown reasons, spore formation and mycorrhizal root colonization was low or even zero 

in most pots. After 10 months of trap culturing AMF propagation was low with only four AMF 

species having sporulated, and most pots remaining without mycorrhiza or spore formation, even 

after 24 months. Only spores of Glomus etunicatum, G. claroideum, G. aggregatum, a small-

spored Glomus sp. and a few spores of Gigaspora gigantea were extracted during the first 10 

months. After two years a further two species were recovered: Paraglomus occultum and 

Acaulospora myriocarpa. The latter species had not been detected in the field samples.  
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Table 2.6. Arbuscular mycorrhizal fungal species detected under various land use systems in the 

Sudan Savanna of Benin 

AMF species Natural 

Forest 

1 

Natural 

Forest 

2 

Natural 

Forest 

3 

Yam Mixed 

cropping

Peanuts Cotton Fallow 

Glomeraceae         

G. aggregatum      x   

Glomus etunicatum x x x x x x x x 

G. macrocarpum x x x x  x x x 

G. brohulti x x x x x  x x 

G. claroideum x  x  x    

G. aureum   x   x   

G. ambisporum x  x   x  x 

Glomus sp. WAG7c  x x   x x  

G. sinuosum x   x  x  x 

G. intraradices x x  x    x 

G. mosseae        x 

G. constrictum x   x     

Glomus sp. WAG2a x  x      

Glomus sp. WAG4b x   x     

G. hyderabadense    x     

G. clarum  x       

G. taiwanense   x      

G. clavisporum x        

G. geosporum x x       

Glomus sp. WAG5 d x        

G. nanolumen  x       

Glomus sp. WAG3  x       

Glomus sp. WAG1e  x x      

Acaulosporaceae         
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Acaulospora scrobiculata x x x x x x  x 

A. spinosa x x x x  x x x 

A. elegans x   x  x   

A. mellea  x   x    

A. excavata      x   

A. laevis    x     

A. longula  x  x     

Acaulospora sp. WAA1f x x  x     

Acaulospora sp. WAA2g    x     

A. morrowiae  x       

Kuklospora colombiana     x    

Gigasporaceae         

Scutellospora sp. WAS1  x x  x x    

Scutellospora verrucosa x  x  x    

S. fulgida x  x   x   

Scutellospora sp. WAS2      x   x 

S. heterogama x   x     

S. savannicola x  x      

S. calospora x        

S. nigra   x      

Gigaspora gigantea x    x    

Gi. decipiens      x   

Entrophosporaceae         

Entrophospora infrequens  x  x     

Ambisporaceae         

Ambispora gerdemannii x        

Paraglomaceae         

Paraglomus occultum x        

 26 18 16 18 10 13  5 10 

Total number of AMF 47 
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species 
a resembling Glomus spinuliferum; b resembling Glomus coreomioides; c resembling Glomus microcarpum; d 

resembling Glomus tortuosum; e resembling Glomus rubiforme; f resembling Acaulospora scrobiculata; g 

resembling Acaulospora paulinae. 

 

 

 

 

Table 2.7 Arbuscular mycorrhizal fungal species detected under various land use systems in the 

Northern Guinea Savanna of Benin 

AMF species Natural 

Forest 1 

Natural 

Forest 2

Natural 

Forest 3

Yam Mixed 

cropping 

Peanuts Cotton Fallow

Glomeraceae         

Glomus etunicatum x x x x x x x x 

G. macrocarpum x x x  x x x x 

G. brohulti x x x x  x x x 

G. intraradices  x x x x x x  

G. constrictum x x x  x   x 

G. claroideum   x      

G. sinuosum   x x     

G. microaggregatum    x  x  x 

Glomus sp. WAG3  x      x 

G. versiforme     x     

Glomus sp. WAG7 a    x     

G. clavisporum x x       

G. taiwanense x        

Glomus sp. WAG2 b x        

G. aureum  x       

G. eburneum  x       

G. fasciculatum  x       

G. hoi   x      
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Acaulosporaceae         

Acaulospora scrobiculata x x x x x  x  

A. mellea  x x   x   

A. laevis     x    

A. cavernata     x    

Acaulospora sp. WAA1c x x x x     

A. elegans   x      

A. spinosa x x x      

A. excavata  x       

A. longula  x       

Acaulospora sp. WAA2  x       

Kuklospora kentinensis x x x      

K. colombiana  x       

Gigasporaceae         

Scutellospora fulgida  x x x  x   

Scutellospora sp. WAS2  x   x  x   

S. savannicola      x   

S. heterogama      x   

Scutellospora sp. WAS1  x  x      

S. verrucosa x  x      

S. pellucida x        

Gigaspora decipiens   x   x   

Ambisporaceae         

Ambispora gerdemannii   x      

Number of AMF species 15 20 19 11 7 11 5 6 

Total number of AMF 

species 

39 

a resembling Glomus microcarpum; b resembling Glomus spinuliferum; c resembling Acaulospora scrobiculata  
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Table 2.8 Arbuscular mycorrhizal fungal species detected under various land use systems in the 

Southern Guinea Savanna of Benin 

AMF species Natural 

Forest 

1 

Natural 

Forest 

2 

Natural 

Forest 

3 

Yam  Mixed 

cropping

Peanuts Cotton Fallow

Glomeraceae         

G. etunicatum x x x x x x x x 

G. macrocarpum x x x x x x x x 

G. brohulti x x  x    x 

G. intraradices x x x x x    

G. fasciculatum x   x    x 

G. constrictum x x x x   x  

G. claroideum        x 

G. geosporum      x   

G. aureum  x x  x  x  

Glomus sp. WAG7 a     x   x 

G. ambisporum x        

G. sinuosum  x x x     

G. taiwanense   x x     

G. clavisporum   x x     

G. mosseae    x     

G. clarum x        

G. pachycaulis  x       

Glomus sp. WAG2 b  x       

Glomus sp WAG6 c x        

Acaulosporaceae         

Acaulospora scrobiculata x  x x x x x x 

A. excavata   x x x    

A. spinosa x  x      



Chapter 2 

 

 - 101 -  

A. mellea x    x    

A. elegans    x    x 

Acaulospora sp. WAA2 e      x   

A. laevis        x 

Acaulospora sp. WAA1 d   x       

Kuklospora colombiana  x       

Gigasporaceae         

S. heterogama    x    x 

Scutellospora sp. WAS1  x x x      

Scutellospora sp. WAS2  x x       

S. fulgida  x x      

S. verrucosa x        

Entrophosporaceae         

E. infrequens   x      

Ambisporaceae         

Ambispora gerdemannii   x   x   

 15 14 15 14 8 6 5 10 

Total number of AMF 

species 

35 

a resembling Glomus microcarpum; b resembling Glomus spinuliferum; c resembling Glomus 

arborense; d resembling Acaulospora scrobiculata; e resembling Acaulospora paulinae. 
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Table 2.9 Correlation coefficients between soil chemical parameters and Arbuscular mycorrhizal 

fungal spore density and species richness from 24 sites sampled in four simultaneous replicates  

Correlation factors Correlation coefficient (r) P value 

P Acetic Acid x AMF spore density  0.13 0.18 

P Acetic Acid x AMF species richness 0.17 0.09 

P Citric Acid x AMF spore density 0.12 0.24 

P Citric Acid x AMF species richness 0.19 0.05 

Carbon(Humus) x AMF spore density 0.37 0.0002 

Carbon(Humus) x AMF species richness 0.44 <0.0001 

pH (H2O) x AMF spore density 0.54 <0.0001 

pH (H2O) x AMF species richness 0.35 0.0005 

 

 

2.5 Discussion 

Our study amounts to the first comprehensive assessment of AMF species richness in the yam-

growing region of West Africa, represented in this case by Benin. We detected a total of 60 AMF 

species (59 from field samples and A. myriocarpa additionally from trap cultures) belonging to 

eight AMF genera in soils from three separate ecological zones of Benin. This reflects results 

from studies in other tropical areas, such as India (Muthukumar and Udaiyan, 2000), Central 

America (Husband et al. 2002a; 2002b) and East Africa (Mathimaran et al., 2007), albeit with 

slightly higher species richness recorded in the present study. Data shown here may still 

represent an underestimation, however, as it is likely that not all AMF present will have 

sporulated at the time of sampling (see Bever et al., 1996; 2001), and especially since our trap 

culturing largely failed to support the field data. By using morphological tools for identification, 

AMF species richness may also be underestimated, because some species rarely, if ever 

sporulate, or the spores isolated from field are degraded and not suitable for identification 

purposes (Douds and Millner ,1999; Rodriguez et al., 2005). New data from ongoing studies 

further indicates that the timing of sampling in the current study, towards the end of the wet 

season, was not optimal, and at least partially explains why AMF propagation was largely 

unsuccessful (Tchabi et al. unpublished). However, the intensive sampling design used in the 
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current study will undoubtedly represent a high quality reflection of the occurrence and density 

of AMF species in the West African ‘yam belt’.  

 

Forty-seven AMF species were detected in the SU (~5 months wet season), while 39 were 

recovered from the NG (~7 months wet season) and 35 in the SG (~8 months wet season), 

respectively. The findings indicate that AMF species richness decreases with increasing length of 

wet season and towards the more humid tropics. However, 46 AMF species were detected from 

the SG + NG combined, similar to the number in the SU. Furthermore, species of the 

Gigasporaceae (mainly Scutellospora, but also Gigaspora spp.) became more numerous with 

increasing duration of annual dry season. Less obviously, Acaulospora and Glomus species 

numbers decreased with reducing duration of the annual dry season. Relatively high numbers of 

Scutellospora and Acaulospora spp. were also reported by Mathimaran et al., (2007) in a Kenyan 

savannah (with approximately 5 months annual rainfall) and also by Lekberg et al., (2007) in a 

Zimbabwean savannah (with approximately 5 months annual rainfall) in light textured soils. 

Indeed, most Scutellospora spp. has been described from warmer climates characterized by 

pronounced rainfall and a dry season (e.g. in Mediterranean and tropical and sub-tropical 

savannas, such as S. savannicola, S. cerradensis, S. nigra). In drier climates, with fewer rainfall 

months and lower total annual rainfall, Gigasporaceae tend to be represented by a small number 

of cosmopolitan species (Uhlmann et al., 2004; Bashan et al., 2007), if species of this family 

occur at all (Stutz and Morton, 1996). We conclude that SU has a high AMF species richness, 

and that a relatively long dry season (~7 months) does not negatively affect, but rather seems to 

stimulate species richness in this area of African savannas. It is also possible that species adapted 

to low water conditions, or species with a pronounced seasonal life cycle may be more 

competitive in SU, than in NG or SG (e.g. some Scutellospora and Gigaspora spp.). It would be 

interesting to further investigate the effect of rainfall and dry season length in the drier sub-

Saharan savannas and deserts, where, under the driest conditions only a few Glomus and 

Diversispora spp., and rarely, an Acaulospora sp. can be expected (Friberg, 2001), to gain a 

better understanding of the adaptation of individual species along the climatic and vegetation 

gradient from tropical rain forest to the Sahelian desert. 
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Independent of the ecological zone, AMF species richness decreased with land use 

intensification, irrespective of duration of soil cultivation. The high species richness of the 

natural forest savannahs was not restored, however, by long-term fallows. Species of 

Gigasporaceae were most negatively affected following conversion from natural forest savannas 

into agro-ecosystems, and appeared most sensitive to recovery in the fallows, while several 

Glomus spp. and a few Acaulospora spp. were barely affected (Table 2.5) or reacted positively 

(e.g. G. etunicatum and A. scrobiculata). This observation concurs with the findings from 

temperate agro-ecosystems of Jansa et al., (2002; 2003) and Oehl et al., (2003; 2004; 2005), who 

observed negative correlations between land use intensification and soil disturbance, and the 

presence of Scutellospora spp., which is possibly related to the particularities in anastomosis 

processes of Scutellospora spp. (de la Providencia et al., 2005). Also, Menéndez et al. (2001) 

demonstrated that tillage and cereal monoculture negatively affected AMF species richness. As 

found by Oehl et al. (2003; 2004; 2005) for Central European regions, also in the sub-Saharan 

savannas the majority of sporocarpic Glomus spp. and Entrophospora infrequens were strongly 

affected by soil cultivation, becoming undetectable following the first year of arable land use, 

which, in the current study would correspond with yam cultivation (Table 2.5). It is possible that 

the persistence of such species as G. etunicatum, G. macrocarpum, G. intraradices and A. 

scrobiculata is related to their ability to rapidly colonize roots from spreading external hyphae 

(Kurle and Pfleger, 1994) or to the intensity and speed of spore formation (Oehl et al., 2003).  

 

Spore density and species richness were not correlated to available P but were positively 

correlated with soil organic carbon and soil pH. Similar results were reported by Johnson et al., 

(1991) and Mohammad et al., (2003) who found that spore production increased with soil pH 

and organic carbon. Gryndler et al., (2006) also found that organic fertilizer application leads to 

increased external AMF mycelium development. No relationship between available P and spore 

density and species richness can be explained by the specific situation of our study, as a dramatic 

decrease in spore density and species richness was observed in the intensively managed cotton 

fields, compared to the natural forest savannas, despite the fact that soil P levels were similar at 

the time of sampling. However, it is well known that the response of AMF to available P is 

variable (Jasper et al., 1989) and, according to Neumann and George, (2004) and Subramanian et 

al., (2006), the application of P can influence spore production either positively or negatively. 
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Certainly, the period of time between forest clearance and cotton cultivation (4 years; Table 2.2), 

when other crops were cultivated without external fertilizer input, was already associated with 

species richness decline. In summary, the positive association between organic carbon contents 

and soil pH with spore density and species richness may reflect the change from natural 

ecosystems to crop production systems, particularly with application of acidifying fertilizers in 

the most intensive cropping system (Na Bhadalung et al., 2005). Neither parameter can be 

considered independently from each other for their impact on spore abundance and species 

richness (Coughlan et al., 2000).  

 

Since in the mono-cropped fields several weed species were often present, AMF species 

recovered from these sites cannot unequivocally be identified as the AMF symbionts of the 

cultivated crop. To address such aspects, it would be necessary to apply molecular root analyses 

for single plant species. Also AMF dynamics within a single season cannot be deduced, but need 

to be interpreted in respect to long-term community dynamics in tropical agro- ecosystems. The 

natural forest savannas had a high AMF species and genus richness, but which remained 

relatively high for only one season, under yam, following forest clearance. Thereafter, the 

decline was precipitous and did not recover even after 7 years of natural fallow. We assume that 

at least some of the natural savannas - undisturbed for at least 25-30 years before sampling - had 

been used for agricultural purposes previously and thus, a relatively high AMF species richness 

had restored during this period. However, with the continuous erosion of fallow period length in 

West Africa and intensification of farming practices (IITA, 2006) it is likely that AMF 

communities will be subject to unrecoverable losses.  

 

High levels of infective AMF propagules (Sieverding, 1991) and soil microbial activity are 

accepted as preconditions for sustainable low-input farming systems (Mäder et al., 2002), 

especially in the tropics (Oberson et al., 2004; Franchini et al., 2005). Present farming practices 

need to be studied with respect to the management of AMF, in order to better understand their 

importance, especially at the specific level. A common recommendation has often been the use 

of mixed culture or alley cropping systems with legumes to introduce nitrogen to the soil/plant 

system. However, our results indicated that mixed cropping of peanuts and maize had no effect 

on the AMF spore density and species richness when compared to peanuts alone. Moreover, the 
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decrease in AMF species richness after slash and burn and yam production was quite dramatic. 

Yam is usually grown in 70-120 cm high mounds heaped up following the high level of soil 

disturbance caused by the slash and burn of the forest, with further disturbance taking place at 

harvest. Such practices would certainly negatively affect both the AMF hyphal networks and the 

soil microbial biomass. With the change in cropping styles towards intensification, coupled with 

loss, or reduction of fallow periods as land becomes scarcer, there is need to assess the potentials 

of AMF and measures for maintaining AMF levels and communities for soil fertility and 

sustainable crop production. Therefore, besides yam being a highly important staple food crop in 

the study area, it is also particularly interesting in respect to AMF, as ongoing studies indicate it 

to be highly AMF dependent (personal observations). However, current soil and crop 

management strategies for yam would appear to have a strong negative impact on AMF 

communities, which will ultimately affect the AMF effectivity for the entire crop rotation. In 

order to improve the sustainability of yam production systems, it is suggested that future studies 

focus on the importance of AMF, and beneficial soil microorganisms in general, to yam 

production itself, in addition to other crops in the traditional rotational system.   
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Chapter 3: Arbuscular mycorrhizal fungi associated with yam (Dioscorea 

spp.) in the Southern Guinea Savanna of West Africa 

 

 

3.1. Abstract 

In the southern Guinea Savanna of West Africa, yam (Dioscorea spp.) is a traditional staple food 

crop holding an important position in the prevailing farming systems. Traditionally, yam is 

cultivated as a first crop after forest clearing because, later in the crop rotation cycle, yam yields 

are declining substantially. The reason for this decline is still unknown as current knowledge on 

yam nutrient requirements and appropriate fertilizer management is limited and often 

contradictory. We hypothesized, therefore, that for nutrient acquisition yam may depend on an 

efficient symbiosis with arbuscular mycorrhizal fungi (AMF) left over from the preceding 

natural forest. We therefore investigated the AMF communities occurring in the natural forests 

and in the adjacent yam fields at several places in the southern Guinea Savanna of Benin. Soil 

samples were collected during the wet and subsequent dry seasons (October and February, 

respectively) and used for assessing the AMF community composition based on spore 

morphotyping. The same soil samples were used also as inocula for establishing trap cultures for 

AMF using Sorghum bicolor and yam (tissure culture plantlets of D. rotundata and D. 

cayenensis) as bait plants. AMF species richness, as determined directly in the soil samples from 

the field sites, was higher in the forests than in the neighboring yam fields (18-25 versus 11-16 

spp, respectively). However, the species richness was found similar in both ecosystems if 

samples were taken from the trap cultures (29-36 spp). Trap cultures initiated with soil collected 

during the dry season exhibited a high arbuscular mycorrhiza (AM) root colonization, spore 

production and species richness (overall as much as 45 spp) whereas these parameters were all 

low in trap cultures initiated with samples from the wet season (2 spp).  Using S. bicolor as bait 

plant, 37 AMF species were detected and with D. cayenensis and D. rotundata there were 

slightly less, namely 28 and 29 spp, respectively. AM root colonization, however, was much 

higher in yam than in sorghum (70-95% versus 11-20% of root length, respectively). After eight 
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months trap culturing, the tuber dry weights of the mycorrhizal yam was higher than that of  the 

non-mycorrhizal controls. Our study demonstrates for the first time that yam is colonized with a 

multitude of indigenous AMF. It is likely, therefore, that AMF, probably inherited from the 

preceding natural forest, play an important role for yam nutrition, particularly in low-input 

traditional farming systems of West Africa.  

 

Key words:  biodiversity, arbuscular mycorrhiza, spore, sustainable agriculture, tropics, yam 

tubers. 

 

3.2. Introduction 

Yam (Dioscorea spp.) is a tuber crop widely cultivated in the humid and sub-humid lowland 

regions of West Africa, the Caribbean, the Atlantic coastal line of tropical South America and 

tropical Asia (Onwueme and Haverkort 1991; Sotomayor-Ramirez et al. 2003; Suja et al. 2003; 

Baimey et al. 2006; Egesi et al. 2007). In West Africa, yam is the most important tuber crop in 

terms of area coverage and a key staple food, particularly in Nigeria, Benin and Togo (Kalu and 

Erhabor 1990; Olasantan 1999; Ile et al. 2006; Baimey et al. 2006). More than 90% of the global 

production (40 million tons fresh tubers/year) is produced in West Africa (Ravi et al. 1996; 

FAOSTAT 2007). Additionally, yam plays an important cultural role in the traditions of West 

Africa (Coursey 1983, Orkwor 1998). Regionally, yam production is relatively static, while the 

area under production is steadily increasing (IITA, 2006), indicating a gradual decrease in 

productivity. Major constraints for yam production are presumed to be low soil fertility, e.g. due 

to macro-and micronutrient deficiency (O’Sullivan and Ernest 2007), nutrient leaching, or 

damage by plant parasitic nematodes and virus diseases (Odu et al. 2004; Baimey et al. 2005; 

Egesi et al. 2007). In terms of nutrient use, yam is a demanding crop and, consequently, it is 

planted traditionally at the beginning of the rotation cycle following forest clearing or long 

periods of fallow (Carsky et al. 2001; O’Sullivan and Jenner 2006). With increasing land use 

intensity, demographic pressure and reducing land availability, suitable land becomes gradually 

scarcer. Furthermore, cultivated lands are being continuously exposed to erosion, leading to soil 

degradation (Maduakor et al. 1984; Carsky et al. 2001; Salako et al. 2007). Studies conducted to 

explore the efficiency and economics of inorganic fertiliser application to yam are often 
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contradictory. For example, Ferguson (1973) found that Dioscorea alata did not respond to 

phosphorus (P) fertilizer application, particularly when seed yam setts of 100 g or more were 

used. Reasons for the lack of response were accorded to the assumption that the accumulated P 

in seed yam tubers of more than 100 g was sufficient to supply nutrition for the newly sprouting 

vines during early growth stages or that yam may depend on AMF for P aquisition. Similar, 

fertilizer application trials showed that yam yields, in the Southern Guinea savanna of Benin, are 

not increased by application of ammonium super phosphate (Baimey 2005). Sotomayor-Ramirez 

et al. (2003) found that the application of micronutrients was most important for increased yam 

(D. alata and D. rotundata) production, while a moderate application rate was adequate for 

macronutrients. Ahn (1993) attributed the moderate or limited need of P by yam to possible 

mycorrhizal benefits, as did Vander Zaag and Fox (1980), when observing that D. esculenta and 

D. rotundata did not respond to P fertilization in field experiments in Hawaii and Ghana. 

Valenzuela and deFrank (1995), in a review, also speculated that yam may depend on an 

effective mycorrhizal association to meet its P requirements.  

 

Kowledge on the mycorrhizal status of yam has remained imprecise so far, with only limited 

information available (Ahulu et al. 2005). Micropropagated D. rotundata cv. TDr131 and cv. 

TDr179, however, were successfully inoculated with a mixture of AMF species when 

transferring from humidity chambers to field conditions (Uchendu 2000). Nevertheless, the 

extent of the association of yam with AMF, to date remains largely limited (Dare et al., 2007). 

 

In a recent study, we investigated AMF diversity in the ‘yam belt’ of West Africa in three 

ecological zones differing by an increasingly prolonged dry season from South to North, from 

the Southern Guinea Savanna, to the Northern Guinea Savanna, to the Sudan Savanna, selecting 

in each zone a set of sites with ‘natural’ forest savanna, fallow and cultivated land differing in 

land use intensity (Tchabi et al. 2008). A high diversity of AMF was revealed at the ‘natural’ 

sites with a strong decrease of AMF species richness in the crops following yam in the crop 

rotation. In the present study, we focused on AMF associated with yam restricting the study area 

to the southern Guinea savanna (SGS) of Benin. Based on spore morphotyping, we determined 

the AMF species composition in three yam fields and, the adjacent natural savanna forest. 

Moreover, we set up trap cultures with soil inocula from the sites and using yam as bait plant for 
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specifically identifying yam AMF symbionts. For comparison, trap cultures were also 

established with a commonly used bait plant, Sorghum bicolor. In all these trap cultures, AM 

root rolonization, spore density and species richness were determined as well as yam shoot and 

tuber growth.  

 

3.3. Materials and methods 

3.3.1. Study area and study sites 

The Southern Guinea savanna (SG) of Benin is situated between 7° and 9° N latitude in the sub-

humid tropical savanna about 400 m asl. The soils are termed ‘ferruginous’ and generally 

classified as Ferralsols according to FAO (2007). The area is characterized by a wet season 

between April and October and a dry season between November and March, with a variant 

towards the southern latitude, where a short dry season intervenes in the wet season around 

August. The mean annual rainfall is 1000-1200 mm, with a vegetation composed mainly of 

Combretaceae, Mimosaceae, Fabaceae and grass layers of Poaceae (mainly Andropogon 

gayanus) (Adjakidje1984; Adjanohoun 1989). 

 

Six sites were selected for this study: three natural forest sites (nf1-nf3), undisturbed for 25-30 

years; and three fields cultivated with yam immediately following forest clearance (yf1-yf3). The 

sites were selected for the close proximity of the yam fields with the selected natural forests 

(Table 3.1). 
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Table 3.1 Geographic position of study sites.  

Sampling sites  Geographic position 

Natural Forest 1 (nf1) 07° 45. 739N; 002° 27. 519E 

Natural Forest 2 (nf2) 07° 57. 217N; 002° 26. 935E 

Natural Forest 3 (nf3) 08° 19. 661N; 001° 51 340 E 

  

Yam field 1 (yf1) 07° 49. 114N; 002° 14. 519E 

Yam field 2 (yf2) 07° 55. 111N; 002° 10.507E 

Yam field 3 (yf3) 08° 19.730N; 001° 51. 332E 

 

 

 

3.3.2. Soil sampling 

Soils were sampled twice at each site: first towards the end of the wet season (September-

October 2004), when yam plants in the field were approximately 5-6 months old and harvests 

were beginning (harvest period of yam is September to January in the study area and in West 

Africa in general, Ile et al. 2007). The second sampling occurred during the dry season (February 

2005) following the yam harvest and when vegetation was dry. For each sampling occasion and 

site four replicate quadrant plots (100 m2) were determined and six soil cores taken using a 6 cm 

diameter corer, to a depth of 20 cm. The six randomly located soil-core samples per quadrant 

were combined into one composite sample to constitute a replicate from per site for each 

occasion. Samples were air-dried on an open bench in the greenhouse for 72 hours at the 

International Institute of Tropical Agriculture (IITA) station in Abomey-Calavi, Benin, 

maintained in the refrigerator at 4° C for two weeks and transferred to the Institute of Botany in 

Basel, Switzerland.  
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Table 3.2 Selected chemical soil parameters at study sites.  

 

Sampling sites  

Available P  

(Sodium 

acetate) 

mg kg-1 

Available P  

(Citrate) 

mg kg-1 

 

Organic C 

g kg-1 

 

pH 

(H20) 

 w.s. d.s. w.s. d.s. w.s. d.s. w.s. d.s. 

Natural Forest 1 (nf1) 52.8 74.2 83.0 144.1 24.9 26.1 6.7 6.8 

Natural Forest 2 (nf2) 272.9 269.8 375.5 358.0 44.1 37.7 7.2 7.2 

Natural Forest 3 (nf3) 28.8 21.8 34.9 30.6 20.3 23.8 6.5 6.9 

         

Yam field 1 (yf1) 8.7 6.1 8.7 8.7 9.3 9.9 6.1 6.5 

Yam field 2 (yf2) 10.9 8.7 13.1 13.1 16.8 15.1 6.7 6.7 

Yam field 3 (yf3) 6.5 3.9 8.7 13.1 6.4 7.5 6.2 6.3 
Study sites were natural forests (nf1-3) undisturbed since more than 25-30 years and yam fields (yf1-3) sampled 

during the first year after forest clearance. Soil samples were taken either in wet season (w.s.) or in dry season (d.s.). 

 

 

3.3.3. Soil analyses 

Each air-dried soil sample was divided equally into three sub-sets. Each separate sub-set per 

replicate, was used to: a) determine selected soil chemical parameters (pH, organic carbon and 

available phosphorus (see Table 3.2) in the “Laboratory Dr. Balzer”, Wetter-Amönau, Germany), 

according to standard methods (Oehl et al., 2005); b) isolate and identify AMF spores (see 

below): c) to establish AMF trap cultures (see below). For three sites (nf1, nf2 and yf3), some 

spore data from the wet season field samples taken were already shown in a previous study 

(Tchabi et al., 2008). 

 

3.3.4. Trap cultures 

The first trap culture experiment was established using soil sub-sets from each replicate sample 

per site from end of the wet season. Four trap culture pots (pots: 20 cm x 20 cm x 30 cm) were 

created for each site according to Oehl et al., (2003), one each per field plot replicate which, 

including four non-inoculated control pots, totaled 28 trap culture pots. For each pot, 4 kg of 
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substrate was used, comprised of a sterilized 3:1 (wt/wt) mixture of Terragreen® (a calcined 

granular attapulgite clay mineral, American aluminium oxide, oil dry US special, type III R, 

>0.125mm; Lobbe Umwelttechnik, Iserlohn, Germany) and quartz sand (Alsace quartz sand, 5% 

of free silica, Smurfit Company, France), respectively. The chemical composition of the 

substrate was 0.3 % organic matter, 10 mg kg-1 and 1480 mg kg-1 easily and heavily available 

phosphorus (P extracted with sodium acetate and citrate, respectively), 191 mg kg-1 easily 

available potassium (K extracted with sodium acetate), and pH 5.8. A 180 g sample, divided 

equally into three sub-portions of soil inoculum, was placed in each trap culture pot as three lines 

on the surface of the 3 kg substrate, which was then covered with the remaining 1 kg of trap 

culture substrate. A 20-mm-thick drainage mat had been placed at the bottom of each pot 

(Enkadrain ST; Colbond Geosynthetics, Arnhem, the Netherland). Five one-week old 

Stylosanthes guianensis plants and four one-week old Brachiaria humidicola plants were 

alternatively and equidistantly planted per pot along the three lines of the inoculum. Automated 

watering systems (Tropf-Blumat; Weninger GmbH, Telfs, Austria) were used to irrigate all trap 

cultures, which were maintained in a greenhouse in Basel for 24 months under day:night regimes 

of 12h:12h photoperiod and 25:21°C temperature, with a mean relative humidity of 65 ± 5%. 

During the first year, trap plants were trimmed to about 4 cm above the substrate level at two 

months intervals and at 6-month intervals during the second year.  

 

In order to specifically detect potential AMF symbionts associated with yam, a second trap 

culture experiment was established using the dry season soil samples. For this experiment, the 

yam cultivars Dioscorea rotundata cv TDr89/02461 and Dioscorea cayenensis cv TDc98-136 

were used as host plants, and – for comparison – additionally Sorghum bicolor. The 

methodology was the same as above with a little modification. 1 L pots, 800 g of substrate and 

50 g of inoculum were used.  Pots were established and arranged as above, except that only one 

plant was used per pot, to unequivocally attribute the sporulating AMF species to its host. In 

order to compare the two trap culture experiments, four additional pots inoculated with wet 

season soil samples of field site YF2 were also included in this second experiment. Thus, 

including four non-mycorrhizal controls, 96 trap cultures were established in total. These trap 

cultures were maintained and irrigated for eight months as indicated above with the exception 

that trap plants were only cut once at the end of the experiment.  
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3.3.5. Sampling of the trap cultures 

At 4, 6 and 8 (and – for first trap culture experiment – after 24) months, two separate soil cores 

of in total 30 cm3 (core diameter of 1.5 cm and sampling depth 10 cm) were removed from each 

pot for the extraction of AMF spores and assessment of root colonization. The initial rate of root 

colonization and spore formation was determined after 4 months. In the trap cultures with the 

two yam cultivars as host plants, yam shoot and tuber growth was determined at the end of the 

experiment after 8 months. 

 

3.3.6. Source and acclimatization of yam plantlets  

In-vitro tissue culture plantlets of D. rotundata and D. cayenensis were obtained from IITA-

Ibadan, Nigeria. They had been multiplied under in-vitro conditions by sub-culturing nodal 

segments from established in-vitro plantlets under laminar flow in culture test-tubes containing a 

specific yam multiplication medium (Ng, 1988; 1992; 1994). Plantlets were regenerated in a 

culture room with 12 hours photoperiod, 3000 lux light intensity, at 27 ± 1°C and 70 ± 5% 

relative humidity.  

 

Plantlets were conveyed in vitro to Basel, Switzerland, de-flasked upon arrival and received 

three weeks post-flask acclimatization in a covered tray (50 cm x 30 cm) with 30 planting holes 

(each 16 cm3 of volume). Plantlets were de-flasked into holes (one plantlet per hole). Each hole 

was filled with a substrate (Peat: vermiculite: Quartz sand: 2:1:1 w/w/w) mixture of sterilized 

peat, vermiculite (GERMEX, Vermica AG, Switzerland) and Quartz sand (Quartz d’Alsace, 5% 

of free silica; Smurfit Company, France).  The chemical composition of this acclimatization 

substrate was 4.5 % organic matter, pH 5.0 (H2O), 220 and 703 mg g-1 easily and heavily 

available P (P-natrium acetate and P-citrate, respectively and 717 mg g-1 easily available 

potassium (K-natrium acetate). The plantlets were then watered and the tray covered with a 

double white and transparent cover system (consisting of a thin plastic sheeting and a solid, 

plastic cover beneath) to maintain a consistently high relative humidity (70 ± 5 %), but which 

allowed air to circulate under the cover. The plantlets were maintained in the greenhouse with a 

day:night regime of 12h:12h photoperiod, 25:21°C temperature, and a mean relative humidity of 
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65 ± 5%. The plantlets were irrigated once to twice per day. At three days, the plastic cover was 

steadily removed for increasingly longer periods (6-12 hours) per day over the following week, 

before the cover system was completely removed at three weeks. The plantlets were transplanted 

one week later into the inoculated trap culture pots. 

 

3.3.7. AMF spore isolation and identification from field and trap culture soil. 

AMF spores from field samples or from trap cultures were extracted by wet sieving and sucrose 

density gradient centrifugation after Oehl et al., (2003). For this purpose, 25 g air-dried field soil 

samples or 250 ml trap culture substrate were suspended in 300 ml of water using a 500 ml 

beaker. The soil suspension was passed through 1000-, 500-, 125-, 80- and 32-µm sieves to 

discriminate particles. The 1000- and 500-µm µm sieves were checked for sporocarps, spore 

clusters and large spores adjacent to or inside roots. The contents of the 125-, 80- and 32-µm 

were layered onto a water-sucrose solution (70% ‹wt/vol›) gradient and centrifuged at 2000 

tours/min for 2 minutes. After centrifugation, the supernatant was passed through the 32-µm 

sieve, washed with tap water, and transferred to Petri dishes. Spores, spore clusters, and 

sporocarps obtained from all sieves were transferred into Petri dishes, counted for each sample 

using a dissection microscope (Olympus SZ12) at up to x 90 magnification. The abundance of 

spores (= spore density) in a field sample was expressed as the number of AMF spores g-1 of soil 

(field samples) or mL-1 (of trap culture) substrate.  

 

For species identification, healthy spores were mounted on glass microscope slides and stained 

with polyvinyl-acid-glycerol or polyvinyl-lactic acid-glycerol mixed 1:1 (vol/vol) with Melzer’s 

reagent (Brundrett et al., 1994). The spores were examined under a compound microscope 

(Zeiss; Axioplan) at up to x 400 magnification. Identification was based on current species 

descriptions and identification manuals (Schenck and Pérez, 1990; International Culture 

Collection of Arbuscular and Vesicular-Arbuscular Endomycorrhizal Fungi, INVAM: 

http://invam.caf.wvu.edu). The relative abundance of each AMF species was recorded on a sacle: 

0-3% (rare), only a few spores from a specific species were found; 3.1-20 % (frequent), spores 

from a specific species were found frequently; > 20% (abundant), the spores from a specific 

species were dominant among others. 
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3.3.8. AMF root colonization  

The initial rate of root colonization by AMF was determined from trap culture samples taken at 4 

months after planting. Therefore, roots obtained during wet sieving of spores were collected 

from the sieves, and the mycorrhizal structures were stained according to Brundrett et al., (1996) 

with trypan blue. The gridline-intersect technique (Giovannetti and Mosse, 1980) was then used 

to assess colonization.  

 

3.3.9. Calculation and statistical analysis 

For the field soil analyses, AMF spore density, as spore numbers g-1 of soil, and species richness 

(= species numbers) are recorded as mean total numbers per study site, per sampling occasion 

and - if useful – as sum of both dates. In the trap cultures, AMF spore density, as spore numbers 

per mL-1 substrate, and species richness are also recorded as mean total numbers per study site. 

The number of AMF species found to be symbiotic with both Dioscorea cultivars and with S. 

bicolor are presented. For the root length colonized by AMF, the mean percentage colonization 

is recorded per site. Prior to further analysis, in order to provide homogeneity of variance, data 

on spore numbers per gram (field spores) or per ml (trap culture spores) were log(x+1) 

transformed and mycorrhizal colonization were arcsin(x/100) transformed. Differences in spore 

density, species richness and mycorrhizal root colonization between field sites and sampling sites 

were separated using Fisher’s least significant difference (LSD) at P ≤ 0.05 after one-way 

ANOVA analysis (SAS program, version 9.1 package; SAS 2005).  

 

3.4. Results 

3.4.1. AMF spores and species at field sites  

Between sites, AMF spore density varied from 2-13 spores g-1 of wet season soil (Fig.3.1 A). For 

dry season soil, mean spore density varied also between sites (3-17 spores g–1; Fig. 3.1 B). Spore 

density, however, was less variable in soils from the forest (6-11 g–1 soil) than from yam fields 

(2-17 spores g–1 soil). No correlation was detected between spore density at field sites and any of 

the edaphic factors analyzed (pH, available phosphorus and organic carbon). 

 



Chapter 3 

 

 - 123 -  

A total of 40 AMF species belonging to eight genera of six families were identified directly from 

the soil samples collected from field, without sitting trap culture (Table 3.3). Of the 40 species, 

19 belonged to Glomeraceae and 9 each to Acaulosporaceae and Gigasporaceae. 

Entrophosporaceae, Paraglomeraceae and Ambisporaceae were each represented by one species 

(Table 3.3). Of the 40 species detected, seven could not be attributed to a described species and 

may represent new, undescribed species (Glomus spp. WAG1, WAG2, WAG3 and WAG4, 

Acaulospora spp.WA1 and Scutellospora spp. WAS1, Scutellospora spp. WAS2). 

 

For the forest soils, the species richness was similar level for both seasons, while species 

richness in yam fields was relatively higher from soil sampled during the wet season than in the 

subsequent dry season (Fig. 3.2 and Table 3.3). The cumulative species numbers, including all 

species found either in the wet or in the dry season at the sites, also show a decline in AMF 

species richness following land-use change from natural forests into low-input yam production 

within one year after forest clearance (Fig. 3.2C). No correlation was found between species 

richness at field sites and any of the edaphic factors analyzed (pH, available P and organic C; 

data not shown). Twenty species were identified during the study, with 12 exclusive to the 

forests and 8 exclusive to the yam fields. In the yam field, Glomus etunicatum and Acaulospora 

scrobiculata dominated the spore populations, while sporocarpic Glomus spp. such as G. 

sinuosum, G. clavisporum, G. taiwanense and G. pachycaulis were more frequently found in the 

forests than in the yam fields. Acaulospora species were more frequently recorded in the forest 

samples than in the yam field samples.  
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Fig. 3.1 AMF spore density presented as spore numbers g-1 in field soil samples collected from 

yam natural forests and adjacent yam fields in the southern Guinea savanna of Benin in the wet 

season (September-October 2004, A) and in the subsequent dry season (February 2005, B). Data 

are reported as averages and standard deviations for four replicate plots per field site. Non-

significant differences between sites are shown by identical letters, determined using Fisher’s 

Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 
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Fig. 3.2 AMF species richness in field soil samples collected from yam natural forests and 

adjacent yam fields in the southern Guinea savanna of Benin in the wet season (September-

October 2004, A), in the subsequent dry season (February 2005, B), and cumulative from both 

seasons (C). Data are reported as averages and standard deviations for four replicate plots per 

field site. Non-significant differences between sites are shown by identical letters, determined 

using Fisher’s Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 
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Table 3.3 AMF species at field sites. Soils were taken from three natural forests (nf1-3) and three 

yam fields (yf1-3) in the wet season (w.s.) and in the subsequent dry season (d.s.) 

 

AMF species  

Natural forests Yam fields 

nf1 nf2 nf3 yf1 yf2 yf3 

w.s d.s. w.s d.s. w.s d.s. w.s d.s. w.s d.s. w.s d.s. 

Glomeraceae             

Glomus etunicatum ● ● ● ● ● ●       

G. macrocarpum ● ● ● ● ● ● ● ● ● ● ● ● 

G. intraradices ● ● ● ● ●  ● ●     

G. sinuosum ● ●   ●    ○   ○ 

G. brohultii ● ●   ●     ●   

G. constrictum ●  ●  ●    ○  ○  

G. clavisporum   ● ● ●    ○    

G. taiwanense   ●   ●   ○    

Glomus sp. WAG2 a ●          ○  

Glomus sp. WAG7 b  ●  ●  ○        

G.pachycaulis ● ●           

G. versiforme    ○  ○       

G. hoi    ○  ○       

G. mosseae    ○  ○       

Glomus sp. WAG3     ○ ○       

G. ambisporum           ○  

G. fasciculatum          ○   

G. claroideum           ○  

Glomus sp. WAG1 c            ○ 

Acaulosporaceae             

Acaulospora sp. WAA1 d ● ●  ●   ●  ● ●   

Acaulospora scrobiculata  ● ●  ●        

A. spinosa   ● ● ● ●   ● ●   

Kuklospora colombiana ●   ● ●   ●     

A. mellea      ○ ●  ● ●   
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A. laevis  ○   ○        

A. excavata   ● ●         

A.elegans    ●  ●       

A. morrowiae    ○         

Entrophosporaceae             

Entrophospora infrequens   ○  ○  ○      

Gigasporaceae             

Scutellospora fulgida  ● ● ● ●   ● ● ●  ●  

Scutellospora sp. WAS1  ● ● ●  ●  ● ● ● ● ● ● 

Scutellospora sp. WAS2  ○ ○    ○ ○ ○     

Scutellospora verrucosa   ○  ○  ○       

S. pellucida    ○         

S. heterogama       ○      

S. savannicola       ○      

Gigaspora decipiens       ○      

Gi. gigantea       ○      

Paraglomaceae             

Paraglomus occultum  ○    ○  ○     

Ambisporaceae             

Ambispora gerdemannii    ○ ○     ○   

Total species numbers 14 14 13 17 16 13 14 9 12 10 9 6 

Total species numbers per 

site 

18 23 25 16 15 11 

Total species numbers per 

system 

32 28 

Total species numbers in 

field samples  

40 

a resembling Glomus halonatum; b resembling Glomus aureum;  c resembling Glomus rubiforme (legend continue) 
d resembling Acaulospora rehmii.   The relative abundance of each AMF species was recorded following the scale: 

(rare): ○ = 0-3% or only a few specimens found; f (frequent): ● 3.1-20 %; (abundant):        > 20%. 
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Table 3.4 AMF species recovered on Sorghum bicolor, Dioscorea cayenensis and Dioscorea 

rotundata in trap cultures set up from field soils sampled in the dry season 

 

AMF species 

Sorghum bicolor  Dioscorea cayenensis  Dioscorea rotundata 

Natural 

forests 

 Yam 

fields 

 Natural 

forests 

 Yam 

fields 

 Natural 

forests 

 Yam 

fields 

Glomeraceae            

Glomus etunicatum    ●●    ●●  ●●●  ●●●   ●●●  ●●● 

G. macrocarpum       ●        ●   

G. intraradices  ●●●  ●●●     ●●     ●●        ●     ●● 

G. sinuosum     ●●     ●●          ●          ● 

G. brohultii       ●           

G. constrictum ●             ●● 

G. clavisporum       ●         ●         ●● 

G. taiwanense         

● 

         ●     

Glomus sp. WAG2 a            

Glomus sp. WAG7 b    ●●    ●     ●●  ●  ● 

G. pachycaulis            

G. versiforme       ●    ●        ●● 

G. hoi    ●●  ●●●       ●  ●        ●  ● 

G. mosseae ●  ●●●         ●  ●  ● 

Glomus sp. WAG3            

Glomus ambisporum 

        

● 

        

G. fasciculatum   ●  ●     ●●     

G. claroideum ●●●  ●●●  ●       

Glomus sp. WAG1 c            

G. tortuosum      ●           

G. eburneum ●         ●  ●  ●●● 

Glomus sp. WAG4 d     ●           ●●     ●●     
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● 

G. diaphanum     ●           

G. aggregatum ●●●   

●●● 

 ●     ●●  ●  ● 

Glomus sp. WAG5 e         

● 

       ● 

Glomus sp. WAG6 f       ●      ●     

Acaulosporaceae            

Acaulospora sp. WAA1 g    ●●   ●       ●        ●    ●●        ● 

Acaulospora scrobiculata ●●●      

●● 

 ●●●   ●●●  ●●●     ●● 

A. spinosa       ●       ●  ●●●            ● 

Kuklospora colombiana       ●     ●●       ●       

A. mellea     ●         ●  ● 

A. laevis           ●       

A. excavata            

A.elegans ●           

A. morrowiae         

● 

     ●   

A. rehmii       ●  ●●●     ●● 

A. dilatata        ●         

A.caulospora sp. WAA3 h     ●   ●         ●       

A. longula          ●  ●  ●   

A. undulata       ●     

Acaulospora sp. WAA2       ●               ●   

K. kentinensis   ●●●           ●  ●        ● 

Kuklospora sp. WAK1   ●         

Entrophosporaceae            

Entrophospora infrequens    ●●    ●●●    ●●●   

Gigasporaceae            

Scutellospora fulgida  ●      ●     
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Scutellospora sp. WAS1             

Scutellospora sp. WAS2             

S. verrucosa            

S. pellucida               ●   

S. heterogama            

S. savannicola            

Gigaspora decipiens            

Gi. gigantea   ●              ● 

Paraglomaceae            

Paraglomus occultum       ●     ●●  ●          ●      ●●        ● 

Ambisporaceae            

Ambispora gerdemannii   ●         

Archaeosporaceae            

Intraspora schenckii  ●          ● 

Number of species per 

system and trap plant  

29  23  19  21  20  22 

Number of species per 

plant species 

37  29  28 

Total number of species in 

trap cultures 

45 

*Spores detected in the trap cultures after 4, 6, 8 months: first, second and third dot (●), respectively. a resembling 

Glomus halonatum; b resembling Glomus aureum;  c resembling Glomus rubiforme; d resembling Glomus tenue; e 

resembling Glomus tortuosum; f resembling Glomus arborense; g resembling Acaulospora rehmii; h resembling 

Acaulospora elegans. 

 

 

3.4.2. Trap cultures: root colonization, spore density and species richness  

AMF root colonization was zero to insignificant in the wet season soil trap cultures (data not 

shown), but highly colonized in the trap cultures inoculated with dry season soil (Fig. 3.3). At 

four months after initiation, AMF root colonization was particularly high in both yam species 

(73-94 % in D. cayenensis and 78-95 % in D. rotundata), compared to S. bicolor (11-20 %). For 
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both yam cultivars, AMF root colonization was relatively higher in the trap cultures inoculated 

with forest soils than those with soil from the yam fields. 
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Fig. 3.3 AM root colonization (%) of Sorghum bicolor (A), Dioscorea cayenensis (B) and D. 

rotundata (C) following four months cultivation in trap cultures using dry season field soils from 

three forest and three yam field sites as inocula, and including a non-mycorrhizal control. Data 

are reported as averages and standard deviations for four replicate plots per field site. Non-

significant differences between sites are shown by identical letters, determined using Fisher’s 

Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 
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Spores recovered from trap cultures inoculated with wet season soils were zero to insignificant 

(data not shown), while species abundantly sporulated in the trap cultures inoculated with dry 

season soils. Interestingly, despite the low mycorrhizal root colonization, spore numbers were 

higher with S. bicolor (12-94 ml-1 of substrate) than with D. cayenensis (0.1-17 ml-1 of substrate) 

or D. rotundata (1-34 ml-1 of substrate) as hosts (Fig. 3.4). The most frequently, most abundantly 

and first sporulating species were G. etunicatum and A. scrobiculata in the majority of the trap 

cultures. These two species had greater absolute and relative spore densities in the yam fields 

than in the forest sites (Table 3.3). High phosphorus availability in the forest soils had no 

obvious negative impact on root colonization or on spore production in the trap cultures (Table 

3.1; Figs. 3.3 and 3.4). 

 

In the trap cultures inoculated with wet season soils only G. etunicatum produced spores of any 

quantity over 8 months (sites NF1, YF1 and YF3). In one pot of YF3, a few spores of Gigaspora 

gigantea were also isolated, too. In the trap cultures inoculated with dry season soils, 45 AMF 

species, representing 9 genera and 7 families were recorded (Table 3.4). The greatest number of 

AMF species recovered were of the family Glomeraceae (22 species) followed by 

Acaulosporaceae (16), Gigasporaceae (3), Ambisporaceae, Archaeosporaceae, 

Entrophosporaceae and Paraglomeraceae (1 species each). Of the 45 species, 16 were not 

identified to species level in the corresponding field samples (Table 3.3). These were mainly 

species that form small and rapidly degrading spores such as G. eburneum, A. undulata and 

Intraspora schenkii or species such G. aggregatum, Kuklospora kentinensis and K. colombiana, 

which are usually difficult to distinguish from similar species (e.g. G. intraradices, A. 

scrobiculata and A. dilatata, respectively) in field samples.  
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Fig. 3.4 AMF spore density (presented as spore numbers mL-1  of substrate) on Sorghum bicolor 

(A), Dioscorea cayenensis (B) and D. rotundata (C) following four months cultivation in trap 

cultures using dry season field soils from three forest and three yam field sites as inocula, and 

including a non-mycorrhizal control. Data are reported as averages and standard deviations for 

four replicate plots per field site. Non-significant differences between sites are shown by 

identical letters, determined using Fisher’s Least Significant Difference (LSD) at the 5% level 

following one-way ANOVA. 
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Of the species detected in the field samples, 11 were not recovered from trap cultures. These 

were particularly sporocarpic Glomus spp. such as G. pachycaulis and all the above species of 

Gigasporaceae, such as Scutellospora verrucosa, S. heterogama and Gigaspora decipiens. 

Twenty-nine species were detected from trap cultures of both natural forests and yam fields, 8 

species exclusive to the forests and 8 exclusive to the yam fields (Table 3.4).  

 

 

3.4.3. Overall AMF species at study sites 

Considering both field and trap cultures, a total of 56 species were recovered from across all 

study sites (Table 3.5), with similar numbers obtained from forest sites (29-36; in total 45) and 

from yam fields (29-35; in total 45). The mean number of AMF species per site was relatively 

higher in the forests (20-21) than in the yam fields (17-19). Interestingly, the high phosphorus 

availability at site NF2 did not negatively affect AMF species richness. 

 

3.4.4. AMF species associated with yam cultivars  

During the eight months of trap culturing a combined total of 37 species were associated with the 

two yam cultivars (Table 3.4). Of these, 29 and 28 AMF species were isolated from the 

rhizosphere of D. cayenensis and D. rotundata, respectively, of which 20 were common to both. 

Four species detected on S. bicolor were not recovered from yam. However, in mean numbers 

per site more AMF species were recovered in the trap cultures from S. bicolor (8-11), than D. 

cayenensis (4-7) or D. rotundata (3-8) (Fig. 3.5). 

 

AMF species of six families were associated with yam. Approximately half (18) of the species 

were Glomus spp. of the Glomeraceae, followed by 13 Acaulosporaceae spp. (12 Acaulospora 

spp. and 1 Kuklospora sp.). Only three associated species were of Gigasporaceae (Scutellospora 

fulgida, S. heterogama and Gigaspora gigantea). Entrophospora infrequens, Paraglomus 

occultum and Intraspora schenckii were also found to be symbiotic on yam (Table 3.4).  
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Table 3.5 AMF species numbers at field sites found through soil and trap culture analyses 

 Natural forests  Yam fields  

nf1 nf2 nf3  yf1 yf2 yf3  LSD 

Average numbers of AMF 

species a 

20.5 a 20.3 a 20.0 a  19.3 

a 

17.3 

a 

16.8 

a 

 3.9 

Total numbers of AMF species 

per site (sum of four replicate 

plots) 

29 36 33  29 35 30  - 

Total numbers of AMF species 

per ecosystem 

45 45   

Total numbers of AMF species 

in study area  

56 

 

  

Field sites are three natural forests (nf1-nf3) and three yam fields (yf1-yf3). a Data are reported as averages for four 

replicate plots of field site. Nonsignificant differences between sites are shown by identical letters and were 

determined by Fisher’s Least Significant Difference (LSD) at the 5% level after one-way ANOVA.  

 

3.4.5. Impact of soil inoculum on yam growth 

The different soil inocula did not affect the yam shoot dry weight when compared to the non-

mycorrhizal control (Fig. 3.6). However, yam tuber growth was affected. Inoculum application 

from three origins (NF1, NF2 and YF3) positively affected tuber dry weight with an average 

growth increase of approximately 40% (D. rotundata), when compared to the control (Fig. 3.7). 

With D. cayenensis, tuber dry weight was 20% higher in the inoculated treatments than in the 

control, but this positive effect was significant (P<0.05) only for the NF1 site. 
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Fig. 3.5 AMF species richness on Sorghum bicolor (A), Dioscorea cayenensis (B) and D. 

rotundata (C) following four months cultivation in trap cultures using dry season field soils from 

three forest and three yam field sites as inocula, and including a non-mycorrhizal control. Data 

are reported as averages and standard deviations for four replicate plots per field site. Non-

significant differences between sites are shown by identical letters, determined using Fisher’s 

Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 
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Fig. 3.6. Shoot dry weight of Dioscorea cayenensis (A) and D. rotundata (B) following eight 

months cultivation in trap cultures using dry season field soils from three forest and three yam 

field sites as inocula, and including a non-mycorrhizal control. Data are reported as averages and 

standard deviations for four replicate plots per field site. Columns with the same letter are not 

significant at P=0.05. LSD denotes the least significant difference between sites. 
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Fig. 3.7. Tuber dry weight of Dioscorea cayenensis (A) and D. rotundata (B) following eight 

months cultivation in trap cultures using dry season field soils from three forest and three yam 

field sites as inocula, and including a non-mycorrhizal control. Data are reported as averages and 

standard deviations for four replicate plots per field site. Non-significant differences between 

sites are shown by identical letters, determined using Fisher’s Least Significant Difference (LSD) 

at the 5% level following one-way ANOVA. 
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3.5. Discussion 

A total of 56 AMF species were recovered from three forest and three adjacent yam field sites, 

representing a high AMF diversity for the southern Guinea savanna of Benin, especially when 

compared to similar studies from tropical areas (e.g. Sanginga et al. 1999; Dalpé et al. 2000; 

review in Öpik et al. 2006; review in Gai et al. 2006; Lekberg et al. 2007; Mathimaran et al. 

2007). By using molecular identification tools, Husband et al. (2002) recorded 30 AMF taxons 

from three sites in tropical forests in Panama. The high AMF species numbers in our study may, 

in part, be attributed to the extensive sampling during two different seasons, and also due to the 

combined recovery of AMF from fresh field samples and repeated analyses from trap cultures 

using three host plants over 8 months (longer than the ~7 months of wet season in the southern 

Guinea savanna). In a previous study which covered each eight sites under different levels of 

land use intensity in the southern and northern Guinea savanna in Benin, 35 and 39 AMF species 

were recovered from field soils sampled during the wet season, respectively (Tchabi et al., 2008). 

These results reflect the current findings from the field samples (40 species; Table 3.3).  

 

The results from the trap cultures revealed that AMF communities recovered from the dry season 

samples enabled the recovery of more diverse communities than from soils sampled during the 

wet season. There may be several reasons for this result, such as the fact that AMF spores are 

more exposed to attack from soil microorganisms under wet, humid conditions (Klironomos et 

al. 1999; Bakhtiar et al. 2001; Tiunov and Scheu 2005). Furthermore, it is possible that many 

AMF species complete their life cycle only at the end of the wet season. Samples taken during 

the wet season therefore, would not enable germination in the trap cultures, even though 

dormancy aspects were considered. However, the results of the current study indicate that soil 

sampling for successful AMF propagation in the tropics should be performed primarily during 

the dry season. Nevertheless, despite intensive investigations, it is further assumed that 

additional species remain undetected, due to the lack of sporulation, both in the field soils and 

trap cultures. 

 

The results of this study also demonstrate for the first time that a wide range of AMF species act 

as symbionts of yam, and that yam is highly mycorrhizal. The number of AMF species detected 

on D. cayenensis and D. rotundata was found to gradually increase over the course of the study, 
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with a single AMF species recovered at 2 months after inoculation (G. etunicatum), up 29 

species at 8 months (Table 3.4). A similar observation was recorded by Oehl et al. (2003) and 

Chaurasia and Khare (2005) who found that the number of species sporulating in trap cultures 

increased from two to 20 months. Using molecular techniques, it is possible that future 

investigations will detect higher diversities of active AMF species, even during early yam root 

growth of trap cultures or field situations. This however, was not possible during the current 

study. Some species though consistently sporulated faster in the trap cultures than others, such as 

G. etunicatum and A. scrobiculata, which produced spores abundantly on both yam species as 

well as S. bicolor as early as four months (Table 4). Interestingly in this study, these species (G. 

etunicatum and A. scrobiculata) also tended to dominate the spore populations recovered from 

the field samples derived from the yam cultivated sites (Table 3.3). 

 

Some AMF species that were recovered from S. bicolor did not associate with yam, while other 

AMF species were recovered only from yam plants. Even within yam species, some AMF 

species were recovered only from D. rotundata and from D. cayenensis, which suggests quite a 

high degree of specificity of some species of AMF, which is only recently being appreciated (e.g. 

Bever et al. 1996; Bever et al. 2001; Sýkorová et al. 2007). Lovelock et al. (2003) observed 

differences in the relative spore abundance of AMF communities according to host plants, and 

Vandenkoornhuyse et al. (2002) demonstrated that the AMF community colonizing Trifolium 

repens differed from that colonizing Agrostis capillaris. This specificity has obvious 

implications towards the efficient use of trap cultures for AMF species detection, especially for 

AMF ecosystem research (Oehl et al. 2003). However, information remains limited on host 

specificity and how individual or mixed communities affect interactions between specific AM 

fungal species or between AMF species and the host plants or host plant communities or even 

affect host growth promotion or improved plant health.  

   

AM root colonization was also particularly high four months after inoculation for both yam 

cultivars, compared with S. bicolor, which had relatively low colonization. High mycorrhization 

of yam roots has also been observed in the field, although this varied with yam genotype (IITA 

2005). The high yam root colonization by AMF may be explained by the relatively low density 

of yam roots, when compared to the extensive root system of S. bicolor (not quantified, own 
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observations during the concomitant spore analyses), although high root colonization has been 

attributed to the number and density of fine or secondary plant roots, which favor active 

mycorrhizal colonization (e.g. Mosse et al. 1976; Sanders et al. 1977). However, our results are 

highly indicative that yam is a highly AMF dependent plant, although higher levels of root 

colonization in the yam was accompanied by a lower spore reproduction than on S. bicolor. 

Similar observations were also made at the ecosystem level in the cold climate from Central 

Europe (Oehl et al. 2003) and in the semi-dry tropics in Bolivia (Pérez-Camacho and Oehl, 

unpublished): AMF communities from natural sites caused higher root colonization but had 

lower spore reproduction, compared with communities in adjacent cultivated soils.  

 

Yam root colonization by AMF was higher using soil inoculum from the forests than adjacent 

yam fields. This was related with the lower AMF species richness during the year of yam 

cultivation following forest clearance: a lower number of species were also recovered from yam 

fields of the subsequent dry seasons than the natural forests (Fig. 3.2). The current study 

therefore, demonstrates the rapid decline in AMF infection potential (Fig. 3.3) and AMF species 

richness following land-use change from natural forests into traditional low-input farming, even 

during the first year after forest clearance. This observation is clearer in the current study than in 

the previous related study (Tchabi et al. 2008), which established a dramatic decrease in AMF 

species richness in relation to land-use intensity in the Sudan and Guinea savannas, but not 

necessarily during yam production in the first year after forest clearance. In the current study, 

AM root colonization was not negatively correlated with the available soil P contents, which has 

been observed elsewhere (e.g. Oehl et al., 2004; Wiseman and Wells, 2005). 

 

Inoculation with field soil from the study sites had no affect on yam shoot growth in the trap 

cultures (Fig. 3.6), but increased yam tuber weight (Fig. 3.7). This result could be attributed to a 

number of factors, but highly likely to be related to the AMF given the outstanding high AMF 

root colonization of the yam roots. This further indicates that AMF might be particularly 

important components for yam nutrition and tuber production, and one possible reason why they 

perform better immediately following forest clearance, when AMF abundance is still increased 

when compared to subsequent years (Tchabi et al. 2008). Plant growth promotion in relation to 

AMF colonization is a well-established phenomenon across crops and climatic zones (e.g. Smith 
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and Read 1997; Chaurasia and Khare 2005; Caglar and Akgun 2006). Further studies on yam 

growth promotion by AMF should now focus on the specificity and inocula levels of AMF/yam 

interactions under controlled and field conditions with particular emphasis on the selection of 

indigenous AMF isolates respective species that promise to be most beneficial to yam.  

 

Conclusion 

The diversity of AMF species in the southern Guinea savanna (SG) was found to be higher after 

combined field and trap culture studies than after field studies solely. Thus, for AMF diversity 

studies in West Africa the use of trap cultures in addition to analyses of field samples is highly 

recommended, but sampling in the dry season, as opposed to the wet season, appears to be of 

much greater value for AMF propagation and subsequent AMF identification. Our results 

indicate that individual host plants favor different spore populations and thus AMF species 

compositions. However, in the current study it was clearly demonstrated that yam is an AM plant 

associated with at least 37 potential AMF species as fungal symbiotic partners in the SG. The 

AMF species most frequently found and most related to high and fast spore production during 

yam growth were G. etunicatum and A. scrobiculata. It will be challenging to determine in the 

future which of these, or whether rather slower sporulating species may be the more important 

symbionts for yam for improving crop productivity, especially when the soils become deficient 

in AMF with intensification of agricultural practices in West Africa. 
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Chapter  4:  Growth  promotion  in  white  yam  (Dioscorea  rotundata) 

following  inoculation with West African arbuscular mycorrhizal  fungal 

isolates 

 

4.1. Abstract 

Tuber yields of an important tropical staple crop, yam (Dioscorea spp.), per unit area, have 

declined in West Africa, mainly due to increasing land use pressure and decreasing soil fertility. 

Yam roots were recently found to be highly mycorrhizal and associated with a wide range of 

arbuscular mycorrhizal fungi (AMF). Thus, AMF inoculation of yam may present an option to 

increase tuber yields, above all under conditions of low soil nutrient availability. It is 

hypothesized that for plant growth promotion, application of indigenous AMF isolates might be 

more effective than non-indigenous exotic AMF isolates, and this would also sound more 

ecologically. We screened AMF isolates, indigenous to the West African ‘yam belt’, on micro-

propagated plantlets of white yam (Dioscorea rotundata, cv.TDr89/02461) in pot experiments. 

Initially, single spore derived (=monosporal) cultures of nine AMF species (Glomus etunicatum, 

G. claroideum, G. mosseae, G. sinuosum, G. hoi, Acaulospora scrobiculata, an undescribed 

Acaulospora sp., A. spinosa and Kuklospora kentinenses) were generated on Stylosanthes 

guianensis and Hieracium pilosella following a first trap culturing on Sorghum bicolor. In the 

first experiment, several tropical indigenous and non-indigenous (South American and Asian) 

isolates of G. etunicatum were compared against three non-tropical AMF isolates from temperate 

Europe on yam. In the second experiment, three different isolates of each of the above nine AMF 

species derived from single spores and three strains from Biorize company® were screened on 

the same yam cultivar. The results indicated that, independent of origin in the tropics, most 

isolates of G. etunicatum increased yam tuber dry weight. However, the non-tropical AMF 

isolates had a lower or no effect on tuber growth, but instead increased tuber P concentrations as 

compared to non-mycorrhizal controls. The indigenous isolates of G. mosseae, G. hoi, G. 

etunicatum, A. scrobiculata and A. spinosa generally led to increased tuber growth, while 

isolates of G. sinuosum and K. kentinensis did not. In conclusion, our results indicate a high 

potential for an improvement of yam production by application of indigenous AMF. However, a 
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further screening for suitable isolates is necessary as different AMF species, and also different 

isolates are not equally beneficial.  

 

Key words: beneficial microorganisms, indigenous AMF, Glomeromycota, growth, native, tuber 

crop, yam 

 

 

4.2. Introduction 

Yam (Dioscorea spp.) is a tuber crop widely cultivated in West and Central Africa, in Asia and 

in several tropical Central and South American countries (Ravi et al., 1996; Sotomayor-Ramirez 

et al., 2003; Suja et al., 2003; FAO data, 2007). Especially in Africa, yam production has been 

annually increasing, but yields realized per unit area have declined due to increased land 

pressure, declining soil fertility and an increase in pest and disease levels (Coyne et al., 2005; 

Baimey et al., 2006), above all of viruses and harmful nematodes (Egesi et al., 2006).  

 

Arbuscular mycorrhizal fungi (AMF) are symbionts that colonize the roots of most terrestrial 

plants. The large majority of crop plants benefit from the AMF association e.g. by increasing 

plant nutrient uptake, plant growth and survival rates (Linderman, 1992; Smith and Read, 2008; 

Clark et al., 1999; Akhtar and Siddiqui, 2007). The AMF association may also increase host 

plant resistance/tolerance against pathogens (Jaizme-Vega et al., 1998; Declerck et al., 2002; Hol 

and Cook, 2005; Akhtar and Siddiqui, 2007) and abiotic stresses such as transplantation, salinity 

and drought (Gerdemann, 1968; Smith, 1987; Cartmil et al., 2007; Franco-Ramirez et al., 2007; 

Giri et al., 2007; Sudova et al., 2007).  

 

Recently, it was shown that yam (Dioscorea spp.) is arbuscular mycorrhizal (Ahulu et al., 2005; 

Tchabi et al. 2008), with high levels of root colonization and a wide range of AMF species 

associated (Tchabi et al. 2008; Tchabi et al., chapter 3). Under field conditions, the association 

between AMF and cultivated yam may start immediately after tuber transplantation. 

Simultaneous AMF inoculation to the yam rhizosphere might therefore improve yam 
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development, especially under low soil nutrient conditions and in soils with low AMF infection 

potential.  

 

The use of tissue culture as a technique for plant multiplication has become of broad use for 

commercial plant production in many cultivated crops (Nowak, 1998). In vitro propagated yam 

is increasingly used to produce yam planting material for research centers, but also increasingly 

for small and large scale-production systems in West Africa (IITA, 2007). However, such 

materials are not only free of viruses and nematodes, but also of beneficial micro-organisms 

including AMF. Thus, with transplantation, a simultaneous AMF inoculation might be especially 

useful for plant adaptation, improved yam development and ultimately increased tuber yields. 

Several studies have already reported a beneficial effect of AMF inoculation for micro-

propagated tropical plants such as papaya, avocado, pineapple (Jaizme-Vega and Azcon, 1995) 

and bananas (Yano-Melo et al., 1999; Declerck et al., 2002). In tuber crops, AMF inoculation of 

micro-propagated potato improved viability during the transfer from in vitro conditions (Niemira 

et al., 1995; Vosatka and Gryndler, 2000), increased tuber yield and size (Duffy and Cassells, 

2000; O’Herlihy et al., 2003) and in cassava shoot, root and tuber was increased by AMF 

inoculation (Azcón-Aguilar et al., 1997). 

 

In a previous study, a high AMF species richness of the ‘yam belt’ (Benin, West Africa) was 

found for both sites with natural vegetation and sites with a broad range of agricultural uses in 

three ecological zones (Southern Guinea savanna, Northern Guinea, and Sudan savanna) (Tchabi 

et al., 2008). In a subsequent study, we identified the AMF associated with yellow yam (D. 

cayanensis) and white yam (D. rotundata) in trap cultures (Tchabi et al. chapter 3). In the present 

study, we testedthe AMF isolates from the West African ‘yam belt’ for their potential to promote 

growth of micro-propagated white yam plantlets. For ecological reasons, the use of indigenous 

AMF rather than AMF of ‘exotic’ origin would certainly be recommendable. We further 

hypothesized that indigenous AMF isolates might be more efficient for plant growth promotion 

than non-indigenous isolates because they are probably better adapted to the specific 

environment. Therefore, we generated single spore derived (=monosporal) cultures of several 

AMF species indigenous to the Southern Guinea savanna (SGS) of Benin. In a first growth 

experiment, we screened several indigenous and non-indigenous G. etunicatum isolates (from 
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tropical locations, in Bolivia and India, and from temperate region in central Europe) for AM 

root colonization as well as shoot, root, tuber growth and mineral accumulation in micro-

propagated white yam(TDr89/02461). In a second experiment, nine AMF species with three 

monosporal isolates per species were screened on the same white yam cultivar for growth 

parameters. AMF isolates from Biorize Company® were included in this experiment.  

 

4.3. Materials and methods 

4.3.1. Establishment of single spore derived (=monosporal) AMF cultures  

AMF communities indigenous to the SGS, derived from three natural forest and three adjacent 

yam fields, were previously propagated on white and yellow yam cultivars and on Sorghum 

bicolor as host plants (Tchabi et al., chapter 3). To generate indigenous single spore derived 

(=monosporal) isolates, spores of Glomus etunicatum, G. claroideum, G. mosseae, G. sinuosum, 

G. hoi, G. ambisporum, Acaulospora scrobiculata, A. sp. WAA1, A. spinosa and Kuklospora 

kentinensis were isolated from the trap cultures of Sorghum bicolor 6, 8 and 10 months after 

establishment of the trap cultures. Single spores of each species were used to generate pure 

cultures. In the case of G. hoi, single spore clusters with three to five spores formed on the same 

hypha were used as inocula instead of single spores; while in the case of G. sinuosum and G. 

ambisporum single sporocarp fragments of 5-10 adherent, connected spores were inoculated. The 

substrate was an autoclaved, fine-textured and water-saturated quartz sand:loess mixture (wt/wt 

1:1; Alsace quartz, 5% of free silica, Smurfit Company, France). The substrate pH (KCl) was 7.0 

and contained 5 mg g-1 organic matter, 5 mg g-1 available P and 50 mg g-1 available K, both 

extracted by sodium acetate. The substrate had been introduced to 1 mL pipette tip under dry 

conditions and watered from the bottom profiting from the good capillary conductivity of the 

selected substrate. The spores were placed in the top of ~4 mm of the substrate, with two to three 

Stylosanthes guianensis seeds sown at the same time and covered with an additional 1 mm of 

substrate. The pipette tip systems were watered every two days, as above. The prospective 

germinating AMF spore isolate and the host plant were grown in these tips for ~4 weeks until 

plant roots exhausted the space. After one month, the tips were then cut in half with sterilized 

scissors; the upper half was transplanted into 320 mL pots filled with an autoclaved substrate 

mixture (3:1 wt/wt) of Terragreen (calcined granulate Attapulgite clay, American aluminium 
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oxide, oil dry US special, type III R, >0.125 mm; Lobbe Umwelttechnik, Iserlohn, Germany) and 

quartz sand. The chemical composition of the substrate (pH 5.8) was 0.3 % organic matter, 10 

mg kg-1 available P, 191 mg kg-1 available potassium (K), again extracted by sodium acetate. The 

AMF-plant systems were watered twice-weekly. No fertilizer was applied during the 5 months of 

culturing. The AMF-plant systems in the pipette tips and in the pots were grown in the 

greenhouse of the Institute of Botany in Basel with 25°/20°C day/night temperatures under 

ambient light conditions, and under additional artificial light when sun light was < 12 h per day, 

to assure 12 h light period every day. 

 

The trap culture substrates were air-dried after 10 months of trap culturing and stored for 3 

months in order to create an artificial dry season, more or less equivalent to the dry season in the 

SGS, in order to break possible dormancy of AMF spores (January to March 2006). Spores of all 

species were then isolated again from the trap culture substrate and used as monosporal inocula, 

as described above using Hieracium pilosella, a species typical of drier Central European 

grasslands, as a host plant. For these monosporal cultures, the 1 mL pipette tip system and the 

same substrate were used as described above. After four weeks, the upper tip half with the 

putative established AMF-H. pilosella symbiosis, was transplanted into 320 mL pots and 

cultured for five months as described above.  

 

Six months after spore inoculation all monosporal pot cultures were assessed for new spore 

formation. After determination of the spore densities in the monosporal cultures, three isolates 

per species, with approximatively similar spore densities were selected for the subsequent 

functional screening experiments.  

 

4.3.2. Experimental site details 

Both experiments, following initial AMF inoculation, were conducted in the screenhouse of the 

International Institute of Tropical Agriculture (IITA), Cotonou, Benin. The IITA-Benin station is 

situated at the coastal region of Benin, 12 km Northwest of Cotonou, between 6°25.256N and 

2°19.719E, 23 m asl with a sub-equatorial climate and a daily ambient temperature between 29-

34°C at day and 24-27°C at night. Relative air humidity was between 70% and 85%.  
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4.3.3. Substrate used for the growth experiments  

The substrate used for both experiments was a mixture (wt/wt 1/1) of soil derived from the SGS 

of Benin and sand collected from Cotonou beach. The soil was collected from a depth of 0-25 cm 

and passed through a 1 mm aperture sieve to remove roots and debris. The sea sand was 

thoroughly washed with tap water to remove salt. The substrate mixture was oven sterilized at 80 

°C for 72 h. Substrate pH (H2O) was 7.7, the organic carbon 20 g C kg-1, and the total nitrogen 

(N) and available phosphorus (P-BrayI) were 3.4 g N kg-1 and 19 mg P kg-1, respectively, which 

was analyzed at the Centre National Agro-Pedologique of Benin (CENAP, Cotonou). 

 

4.3.4. Growth experiment I: Screening of G. etunicatum isolates of different geographical 

origin 

The first experiment was established from May 2006 until November 2006. The experiment 

aimed at testing the effect of five indigenous and six non-indigenous monosporal G. etunicatum 

isolates on micropropagated yam plantlets (Table 4.1). The non-indigenous G. etunicatum 

isolates derived from other tropical origins (four from India and two from Bolivia) were obtained 

from Botanical Institute of Basel as pure culture generated from single spore culture. In the 

current experiment, non-indigenous isolates were propagated from the original monosporal 

inoculum simultaneously with the establishment of the indigenous isolates. Three monosporal 

isolates of non-tropical origin were also included in the experiment (each an isolate of Glomus 

sp. resembling G. luteum, G. mosseae and G. constrictum) generated on Plantago lanceolata 

from soils of the Upper Rhine valley close to Basel (Table 4.1). In total, the experiment 

comprised 14 monosporal isolates using 5 replicate pots per isolate and including both a control 

inoculated with yam field soil sourced from the SGS and a non-mycorrhizal control. The yam 

field was situated at 07° 50.121 N; 002° 12.445 E. Four-liter pots filled with 2 kg of the sterilized 

substrate (as described above), were used, arranged in a completely randomized design in the 

greenhouse. For each monosporal isolate 5 g of inocula (representing approximately 150 spores 

plus colonized roots and hyphal fragments) were placed in the planting hole before placing a 

single yam plantlet (D. rotundata cultivar TDr89/02461) in the hole. The non-mycorrhizal 

control pots received each 5 g of sterilized monosporal culture substrate. The second control 

received 5g of yam field soil. The plantlets were watered to 100% water capacity with tap water 

every other day and staked at five weeks after planting (one stake per plant). The stakes were 
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disinfected by submerging them in 70% alcohol. At harvest, 7 months after planting, AMF root 

colonization and yam shoot, root and tuber dry weights were determined. Shoot and tuber 

mineral concentrations (N, P, Mg and Ca) were determined in the Laboratory of Nutrition at 

IITA-Ibadan (Nigeria) according to standard methods (Anderson and Ingram, 1993). 

 

Table 4.1 List of monosporal arbuscular mycorrhizal fungi (AMF) isolates1 (included their 

ascension number, species name, short cut names, origin of samples from which they were 

isolated from and the Gene Bank where they were stored) used to assess the effect of AMF 

inoculation on yam (D. rotundata) cultivar 89/02461 micropropagated plantlets root 

colonization, growths parameters and mineral accumulation in the tissues. 

Accession 

number 

AMF species Short cut Origin  Gene 

Bank 

BENTG102 Glomus etunicatum WA-G.etu1 Benin yam field IITA-Benin 

BENTG103 Glomus etunicatum WA-G.etu2 Benin natural forest IITA-Benin 

BENTG105 Glomus etunicatum WA-G.etu3 Benin, natural forest  IITA-Benin 

BENTG104 Glomus etunicatum WA-G.etu4 Benin, cotton field IITA-Benin 

BENTG101 Glomus etunicatum WA-G.etu5 Togo, sorghum field IITA-Benin 

FIND25 Glomus etunicatum IN-G.etu1 Central India, cotton field BIB-Basel 

FIND62 Glomus etunicatum IN-G.etu2 Southern India BIB-Basel 

FIND66 Glomus etunicatum IN-G.etu3 Southern India BIB-Basel 

FIND73 Glomus etunicatum IN-G.etu4 Southern India BIB-Basel 

FBOL28 Glomus etunicatum SA-G.etu1 Bolivia, sorghum field BIB-Basel 

FBOL29 Glomus etunicatum SA-G.etu2 Bolivia, sorghum field BIB-Basel 

FSWI39 Glomus  sp resembling G. 

luteum & G. claroideum 

EU-G.’lut’ Switzerland, Grass-clover field BIB-Basel 

FSWI22 Glomus mosseae EU-G.mos Switzerland, grassland BIB-Basel 

FGER45 Glomus constrictum EU-G.con Germany, grassland BIB-Basel 
1AMF isolates used for experiment1, WA = West Africa, IN = India, SA = South America, Eu = Europe, IITA = 

International Institute of Tropical Agriculture, BIB = Botanical Institute of Basel. 
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Table 4.2 List of monosporal arbuscular mycorrhizal fungi (AMF) isolates2 indigenous to the 

Southern Guinea Savanna in Benin and non-indigenous isolate (included their ascension number, 

species name, short cut names, origin of samples from which they were isolated from) used to 

assess the effect of AMF inoculation on yam (D. rotundata) cultivar 89/02461 micropropagated 

plantlets root colonization and growths parameters 

Accession 

code 

AMF species Short cut Origin*  

BENTG102 Glomus etunicatum WA-G.etu1 Yam field yf2  

BENTG103 Glomus etunicatum WA-G.etu2 Natural forest nf1  

BENTG105 Glomus etunicatum WA-G.etu3 Natural forest nf1  

BENTG141 Glomus claroideum WA-G.cla1 Natural forest nf3  

BENTG142 Glomus claroideum WA-G.cla2 Natural forest nf3  

BENTG143 Glomus claroideum WA-G.cla3 Natural forest nf3  

BENTG111 Glomus mosseae WA-G.mos1 Yam field yf3 

BENTG112 Glomus mosseae WA-G.mos2 Yam field yf3  

BENTG113 Glomus mosseae WA-G.mos3 Yam field yf3  

BENTG121 Glomus sinuosum WA-G.sin1 Yam field yf3 

BENTG122 Glomus sinuosum WA-G.sin2 Yam field yf3  

BENTG123 Glomus sinuosum WA-G.sin3 Yam field yf3 

BENTG131 Glomus hoi WA-G.hoi1 Yam field yf3  

BENTG132 Glomus hoi WA-G.hoi2 Natural forest nf1  

BENTG133 Glomus hoi WA-G.hoi3 Natural forest nf1  

BENTG201 Acaulospora scrobiculata WA-A.scr1 Natural forest nf3  

BENTG202 Acaulospora scrobiculata WA-A.scr2 Natural forest nf3  

BENTG203 Acaulospora scrobiculata WA-A.scr3 Natural forest nf3  

BENTG221 Acaulospora sp. WAA1 WA-A.WA1 Natural forest nf3  

BENTG222 Acaulospora sp. WAA1 WA-A.WA2 Natural forest nf3  

BENTG223 Acaulospora sp. WAA1 WA-A.WA3 Natural forest nf1  

BENTG211 Acaulospora spinosa WA-A.spi1 Natural forest nf1  

BENTG212 Acaulospora spinosa WA-A.spi2 Natural forest nf3  
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BENTG213 Acaulospora spinosa WA-A.spi3 Natural forest nf3  

BENTG301 Kuklospora kentinensis WA-K.ken1 Yam field yf3 

BENTG302 Kuklospora kentinensis WA-K.ken2 Yam field yf3  

BENTG303 Kuklospora kentinensis WA-K.ken3 Yam field yf3  

    

Biorize® G. mosseae G.mosBEG Central Europe 

Biorize® G. clarum G.clrBEG Central Europe 

Biorize® G. dussii (= G. coremioides) G.dusBEG Côte d’Ivoire 
1AMF isolates used for experiment II, WA = West Africa, *see (chapter3). 

 

 

4.3.5. Growth experiment II: Screening of AMF isolates indigenous to the West African 

‘yam belt’ 

The second experiment screened all the AMF species previously isolated from the SGS in Benin 

study (Tchabi et al., 2008) using the same micropropagated yam cultivar as used in the first 

experiment, between May and November 2007. Three indigenous monosporal AMF isolates per 

AMF species were selected. Three indigenous G. etunicatum isolates which were previously 

screened in experiment I were included along with three non-indigenous species (G. mosseae 

(BEG12), G. coremioides (=G. dussii) and G. clarum), available as commercial products from 

Biorize (Dijon, France), and a non-mycorrhizal control (Table 4.2). Four pot replicates were 

established per treatment totalling 124 pots (30 isolates plus one control). Initially, 3 kg of the 

sterilized substrate was placed in 4 L pots, with 5 g of the corresponding AMF inoculum placed 

into the planting hole prior to transplanting the plantlets. The non-mycorrhizal control pots 

received 5 g of sterilized monosporal culture substrate. The experiment was arranged in a 

completely randomized design in the greenhouse. The experiment was maintained and harvested, 

recording the root colonization and growth parameters as in experiment I.  

 

4.3.6. Source and acclimatization of yam plantlets  

In-vitro tissue culture D. rotundata (cultivar TDr89/02461) plantlets, selected due to their 

availability, were supplied by the Biotechnology unit of IITA-Ibadan (Nigeria). The plantlets 

were multiplied under in-vitro conditions by sub-culturing nodal segments from established in–
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vitro plantlets under a laminar flow hood in culture test tubes containing a yam specific 

multiplication medium (Ng, 1994). The plantlets were regenerated in the culture room with 12 h 

photoperiod, 3000 flux light intensity, 27 ± 1°C of temperature and 70 ± 5% of relative humidity.  

 

Following removal from test tubes, before use in the trap cultures, the plantlets were 

acclimatized for three weeks. They were planted into peat pellets after first soaking them in 

water to swell. After removal from the test tube, their roots were gently rinsed in water and then 

transferred with a forceps into the peat pellets. They were then placed on a tray and covered with 

thin, transparent plastic sheet to maintain high relative humidity (70 ± 5%), but enabling air to 

circulate under the cover. The tray was kept under controlled conditions in the greenhouse (12 h 

of photoperiod; 25 °C in the day, 21 °C in the night; 65 ± 5% humidity). After one week, the 

plastic cover was steadily removed for increasingly longer periods (6-12 h) per day, before the 

plastic was completely removed after three weeks and the plants transplanted one week later into 

individual pots. 

 

4.3.7. AM root colonization and spore formation  

The AMF root colonization and spore density were assessed three months after AMF 

inoculation, according to Oehl et al. (2003), collecting two separate soil cores totalling 30 cm3 

(sampling depth 10 cm) from each pot. Roots were extracted by wet sieving and decantation, 

while the AMF spores were isolated by wet sieving and sucrose density gradient centrifugation 

(Oehl et al., 2003).  AMF root colonization was determined according to Brundrett et al. (1996), 

using trypan blue to stain mycorrhizal structures. The gridline-intersect technique (Giovannetti 

and Mosse, 1980) was applied to analyze AM colonization using a Leica Wild M3C stereo 

microscope, at up to 90-fold magnification. AMF spores for each sample were counted with the 

same microscope.  

 

4.3.8. Measurement of yam growth characteristics 

The plants were harvested seven months after transplanting into pots. The shoots were cut to soil 

level and tubers were removed by hand by upending pots and gently breaking the soil away from 

around tubers and roots. The roots were removed with forceps and collected separately. Shoots, 

roots and tubers from each pot were rinsed gently under tap water, air dried and separately stored 
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in labeled paper bags. Dry weight of shoots, roots and tubers were recorded following oven 

drying in the well-ventilated Gallenkamp oven at 80 °C for 72 h.  

 

4.3.9. Yam tissue nutrient concentration analysis  

All shoots and tubers were sent to the Laboratory of Food Technology, IITA Ibadan, Nigeria for 

analyzing for total nitrogen (N), phosphorus (P), calcium (Ca) and magnesium (Mg) 

concentration.   Shoot tissue was digested in a hydrogen peroxide-sulphuric acid digestion 

mixture according to the Kjeldahl procedure, followed by standard colorimetric assays 

(Anderson and Ingram, 1993) and nutrient contents determined calorimetrically according to 

Murphy and Riley (1962). From tubers, only P was analyzed.  

 

4.3.10. Statistical treatment of data 

The significance of differences between treatments for AMF root colonization, spore density, 

yam shoot, root and tuber dry weight and nutrient concentrations was assessed using Fisher’s 

least significant difference (LSD) test at P < 0.05 after a one-way analysis of variance 

(ANOVA). Prior to analysis, data on spore density were log10(x+1) transformed, while data on 

mycorrhizal colonization were arcsin (x/100) transformed.  

 

4.4. Results 

4.4.1. Establishment of single spore derived AMF isolates indigenous to the SGS 

Monosporal isolates of nine AMF species, belonging to four AMF species groups were obtained: 

i) three species of Glomus group A sensu Schüßler et al. (2001): G. mosseae, G. sinuosum and G. 

hoi, ii) two species of Glomus group B sensu Schüßler et al. (2001): G. etunicatum and G. 

claroideum, iii) three species of Acaulospora: A. scrobiculata, Acaulospora sp. WAA1 and A. 

spinosa, and iv) Kuklospora kentinensis.  

 



Chapter 4 

 

 - 160 -  

A
M

F 
sp

or
e 

nu
m

be
rs

 m
L-1

0

15

30

45

60

75

90

105

120

A. W
A1

K.ke
n

LSD

G.m
os

G.cl
ar

G.ho
i

G.si
n

A.sc
r 

A.sp
in

a

b
b

b

bc
c c c

P<0.001

G.et
u

 
Fig. 4.1 Spore densities (= number of spores mL-1 substrate) after six months in single spore 

derived (= monosporal) AMF cultures, indigenous to the ‘yam belt’ of Benin. G.etu = G. 

etunicatum; G.clar = G. claroideum; G.mos = G. mosseae; G.sin = G. sinuosum; G.hoi = G. hoi; 

A.scr = A. scrobiculata; A.WA1 = A. sp. WAA1; A.spin = A. spinosa; K.ken = K. kentinensis. The 

G. etunicatum isolates were established on Stylosanthes guianensis; the others on Hieracium 

pilosella. Data are reported as means and standard deviation of three isolates per AMF species. 

Non-significant differences between species propagated on H. pilosella are shown by identical 

letters, determined using Fisher’s Least Significant Difference (LSD) at the 5% level following 

one-way ANOVA. 
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When monosporal cultures were established directly after spore isolation from growing trap 

cultures, an AMF symbiosis and new spores were formed only in 5% of the pots. Moreover, only 

monosporal cultures of G. etunicatum were successfully established, while from the other AMF 

species no cultures could be generated (data not show). When monosporal cultures were 

established from spores isolated from the same, but air-dried trap culture samples after 3-months 

storage in plastic bags, an AM symbiosis was established with new spore formation in 25% of 

the pots, and several isolates from nine species were successfully generated. After six months in 

the monosporal cultures, three isolates exhibiting typical species-specific and approximatively 

similar spore densities were selected from each of the nine species for subsequent screening 

experiments. The spore density (=number of spores g-1 soil) was generally higher for Glomus 

isolates than for Acaulospora and Kuklospora isolates (Fig. 4.1).  

 

4.4.2. AM root colonization and spore formation  

In both growth experiments, all AMF isolates of tropical and non-tropical origin had 

substantially colonized the micro-propagated yam plantlets after 3 months. No colonization 

occurred in non-mycorrhizal control plants (Figs. 4.2 and 4.3), while highest AMF colonization 

occurred on plantlets inoculated with the AMF yam field soil community (Fig. 4.2).  

The degree of AMF colonization by the monosporal isolates were 25-60% in experiment I (Fig. 

4.2) and 15-45 % in experiment II (Fig. 4.3). In experiment I, the G. etunicatum isolates WA-

G.etu4 and WA-G.etu5 of West African origin had higher AM root colonization percentage than 

most other monosporal isolates (Fig. 4.2). The G. constrictum isolate from temperate Europe also 

highly colonized the roots when compared to the other isolates from all origins. In experiment II, 

isolates of G. mosseae, G. hoi and, less significantly A. sp. WAA1 and K. kentinensis, colonized 

roots the most, while A. scrobiculata and especially G. sinuosum and A. spinosa had lower 

colonization levels. Colonization levels of G. etunicatum and G. claroideum were intermediary 

and more variable, respectively. Percentage of AM root colonization was not correlated with the 

initial spore density of the inocula in which e.g. K. kentinensis had significantly lower spore 

densities than G. mosseae and G. hoi, while G. claroideum had highest spore densities (Fig. 4.1). 

Spore densities at 3 months after inoculation were between 3 and 23 per mL substrate, but it did 

not differ between the inoculated treatments. No spore production occurred in the non-

mycorrhizal controls (data not shown). 
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Fig. 4.2 Arbuscular mycorrhizal root colonization (%) in pot cultured plantlets of white yam (D. 

rotundata) 3 months after inoculation with 11 isolates of G. etunicatum from tropical West 

Africa (WA), Asia (AS) and South America (SA), compared with 3 non-tropical AMF isolates 

from temperate Europe (EU), one mycorrhizal control, inoculated with a West African yam field 

soil (Soil), and one non-mycorrhizal control. G.etu = G. etunicatum; G.‘lut’ = Glomus sp. 

resembling G. luteum and G. claroideum; G.mos = G. mosseae; G.con = G. constrictum. Data are 

reported as means and standard deviation of five replicates. Non-significant differences between 

treatments are shown by identical letters, determined using Fisher’s Least Significant Difference 

(LSD) at the 5% level following one-way ANOVA.   
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Fig. 4.3 Arbuscular mycorrhizal root colonization (%) in pot cultured plantlets of white yam (D. 

rotundata) 3 months after inoculation with 27 indigenous and 3 non-indigenous AMF isolates 

comprising 11 AMF species. G.etu = G. etunicatum; G.cla = G. claroideum; G.mos = G. 

mosseae; G.sin = G. sinuosum; G.hoi = G. hoi; A.scr = A. scrobiculata; A.WA1 = A. sp. WAA1; 

A.spin = A. spinosa; K.ken = K. kentinensis; G.clr = G. clarum; G.dus = G. coremioides. A non-

mycorrhizal control was included. Data are reported as means and standard deviation of four 

replicates. Non-significant differences between treatments are shown by identical letters, 

determined using Fisher’s Least Significant Difference (LSD) at the 5% level following one-way 

ANOVA. 
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Fig. 4.4 Yam shoot (A), root (B) and tuber (C) dry weight of pot cultured plantlets of white yam 

(D. rotundata) 7 months after inoculation with 11 isolates of G. etunicatum from tropical West 

Africa (WA), Asia (AS) and South America (SA) compared with 3 non-tropical AMF isolates 

from temperate Europe (EU), one mycorrhizal control, inoculated with a West African yam field 

soil (SOIL), and one non-mycorrhizal control. G.etu = G. etunicatum; G.‘lut’ = Glomus sp. 

resembling G. luteum and G. claroideum; G.mos = G. mosseae; G.con = G. constrictum. Data are 
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reported as means and standard deviation of five replicates. Non-significant differences between 

treatments are shown by identical letters, determined using Fisher’s Least Significant Difference 

(LSD) at the 5% level following one-way ANOVA. 
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Fig. 4.5 Yam shoot (A), root (B) and tuber (C) dry weight of pot cultured plantlets of white yam 

(D. rotundata) 7 months after inoculation with 27 indigenous and 3 non-indigenous AMF 

isolates comprising 11 AMF species. G.etu = G. etunicatum; G.cla = G. claroideum; G.mos = G. 

mosseae; G.sin = G. sinuosum; G.hoi = G. hoi; (legend continue to next page); A.scr = A. 

scrobiculata; A.WA1 = Acaulospora sp. WAA1; A.spin = A. spinosa; K.ken = K. kentinensis; 

G.clr = G. clarum; G.dus = G. coremioides. A non-mycorrhizal control was included. Data are 

reported as means and standard deviation of four replicates. Non-significant differences between 

treatments are shown by identical letters, determined using Fisher’s Least Significant Difference 

(LSD) at the 5% level following one-way ANOVA. 

 

4.4.3. Shoot, root and tuber dry weight 

For both growth experiments, inoculation with AMF had no effect on yam shoot dry weight at 

harvest after seven months of growth (Figs. 4.4A and 4.5A). In experiment I, yam root dry 

weight was higher following inoculation with several of the AMF isolates, while AS-G.etu9 and 

two isolates of non-tropical origins had no effect, when compared to the control. The AMF 

isolates which led to increased yam root growth in the first experiment were WA-G.etu3, SA-

G.etu10, WA-G.etu5, WA-G.etu2 and AS-G.etu8 from tropical West African, South American 

or Asian origin (Fig. 4.4B). In experiment II, no differences in root dry weight were observed 

between treatments (Fig. 4.5B). However, all G. etunicatum isolates increased yam tuber weight, 

when compared to the non-mycorrhizal control, and this was reflected for the majority of isolates 

(Fig. 4.4C). Of the AMF isolates from non-tropical origin only isolate EU-G.mos led to increased 

tuber weight. Inoculation with field soil did not affect shoot, root or tuber growth (Fig. 4.4).  

 

4.4.4. Nutrient concentrations in the yam tissues 

Yam tissue nutrient concentrations in experiment I showed that AMF inoculation had no 

significant (P > 0.05) effect on leaf N, Ca and Mg concentrations (Table 4.3). The effect of AMF 

inoculation increased leaf P concentration significantly only with G. etunicatum isolates (WA-

G.etu5, AS-G.etu6 and SA-G.etu11), when compared to the non-mycorrhizal control (Table 4.3). 

Tuber P concentrations, however were not affected by the tropical G. etunicatum isolates, while 

the concentrations were increased by the non-tropical AMF isolates EU-G.’lut’ and EU-G.con 
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and the field soil inoculum (Fig. 4.6). Phosphorus concentrations in the tubers were negatively 

correlated with tuber dry weight (P < 0.01; linear regression y = 0.260-0.008*x). 

 

In experiment II, isolates of G. hoi and A. spinosa had the greatest and most reproducible effect 

on yam tuber growth, followed by isolates of G. etunicatum, G. mosseae and A. scrobiculata.  

On the other hand, G. sinuosum and K. kentinensis had no effect, while isolates of G. claroideum 

and A. sp. WA1 had an intermediary or more variable effect (Fig. 4.5 C). Of the non-indigenous 

isolates, only G. clarum positively affected tuber dry weight (Fig. 4.5 C).  
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Fig. 4.6 Phosphorus concentration in tubers of pot cultured plantlets of white yam (D. rotundata) 

7 months after inoculation with 11 isolates of G. etunicatum from tropical West Africa (WA), 

Asia (AS) and South America (SA) compared with 3 non-tropical AMF isolates from temperate 

Europe (EU), one mycorrhizal control, inoculated with a West African yam field soil (SOIL), 

and one non-mycorrhizal control. G.etu = G. etunicatum; G.‘lut’ = Glomus sp. resembling G. 

luteum and G. claroideum; G.mos = G. mosseae; G.con = G. constrictum. Data are reported as 
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means and standard deviation of five pot replicates per treatment. Non-significant differences 

between treatments are shown by identical letters, determined using Fisher’s Least Significant 

Difference (LSD) at the 5% level following one-way ANOVA. 

 

 

Table 4.3 Shoot nutrient concentrations of pot cultured white yam (D. rotundata) 7 months after 

inoculation with G. etunicatum from tropical West Africa (WA), Asia (AS) and South America 

(SA) compared against 3 non-tropical arbuscular mycorrhizal fungal isolates from temperate 

Europe (EU), one mycorrhizal control, inoculated with a West African yam field soil (SOIL), 

and one non-mycorrhizal control were included.  

AMF isolates Nutrient concentrations (%) 

 Nitrogen Phosphorus Calcium Magnesium 

WA-G.etu1 0.43±0.08a 0.12±0.01 bc 0.44±0.11a 0.38±0.25a 

WA-G.etu2 0.42±0.17a 0.11±0.00 bc 0.44±0.25a 0.22±0.11a 

WA-G.etu3 0.48±0.17a 0.11±0.01 bc 0.51±0.20a 0.31±0.14a 

WA-G.etu4 0.43±0.08a 0.12±0.01 bc 0.48±0.16a 0.29±0.08a 

WA-G.etu5 0.46±0.07a 0.13±0.01 bc 0.55±0.14a 0.33±0.14a 

IN-G.etu6 0.48±0.19a 0.13±0.04 ab 0.46±0.15a 0.25±0.09a 

IN-G.etu7 0.45±0.11a 0.12±0.02 ab 0.52±0.19a 0.34±0.18a 

IN-G.etu8 0.46±0.09a 0.12±0.03 bc 0.53±0.18a 0.34±0.17a 

IN-G.etu9 0.43±0.03a 0.12±0.02 bc 0.53±0.05a 0.34±0.04a 

SA-G.etu10 0.42±0.11a 0.12±0.01 bc 0.56±0.09a 0.39±0.08a 

SA-G.etu11 0.50±0.07a 0.15±0.02 bc 0.55±0.03a 0.36±0.04a 

EU-G.’lut’ 0.66±0.13a 0.11±0.04 a 0.56±0.08a 0.49±0.17a 

EU-G.mos 0.51±0.05a 0.12±0.01 bc 0.51±0.16a 0.31±0.08a 

EU-G.con 0.63±0.12a 0.13±0.03 bc 0.77±0.44a 0.64±0.31a 

SOIL inoculum 0.43±0.03a 0.10±0.01 c 0.45±0.11a 0.40±0.23a 

Control 0.39±0.03a 0.10±0.00 c 0.50±0.02a 0.36±0.07a 

P value 0.08 0.02 0.95 0.19 

LSD  0.024   

N = 5 per treatment. Non-significant differences between treatments are shown by identical letters, determined using 

Fisher’s Least Significant Difference (LSD) at the 5% level following one-way ANOVA. 
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4.4.5. Correlation between AMF root colonization and yam dry weight and tuber P 

concentration  

No relationship between AMF root colonization at three months and yam growth parameters at 

seven months were determined for either experiment (Table 4.4 and 4.5). In experiment I, yam 

tuber P concentration was positively correlated with AMF root colonization (P = 0.042; Table 4) 

but with a relatively small slope (0.0009; linear regression y = 0.112+0.0009*x). 

 

Table 4.4 Linear regression between arbuscular mycorrhizal root colonization after 3 months and 

yam growth parameters and P concentrations in the yam tubers 7 months after inoculation with 

11 G. etunicatum isolates from tropical West Africa (WA), Asia (AS) and South America (SA), 

3 non-tropical AMF isolates from temperate Europe (EU), one mycorrhizal control, inoculated 

with a West African yam field soil (SOIL), and one non-mycorrhizal control*. 

 R P value 

AM root colonization and shoot dry weight 0.141 0.601 

AM root colonization and root dry weight 0.215 0.424 

 AM root colonization and tuber dry weight 0.092 0.736 

 AM root colonization and tuber P concentration 0.516 0.041 

* refer to table1 

 

 

Table 4.5 Linear regression between arbuscular mycorrhizal root colonization after 3 months and 

yam growth parameters 7 months after arbuscular mycorrhizal fungi (AMF) inoculation with 27 

indigenous and 3 non-indigenous AMF isolates comprising 11 AMF species*. 

 R P value 

AM root colonization and shoot dry weight 0.349 0.055 

 AM root colonization and root dry weight 0.347 0.056 

AM root colonization and tuber dry weight 0.082 0.663 

* refer to table2. 
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4.4.6. Correlation between AMF spore density in the monosporal inocula and parameters 

analyzed in experiment II 

No correlation was observed between monosporal AMF inocula, spore density after 3-months 

storage of the spores in the dry trap culture substrate (comprising 8 species; Fig. 4.1) and AMF 

root colonization (Table 4.6). There was also no significant correlation between spore density of 

the monosporal AMF inocula and yam growth parameters (Table 4.6). Correlation analysis was 

not calculated for the experiment I as the different monosporal inocula derived from different 

propagation cycles (the West African isolates from first cycle, the Indian and Bolivian isolates 

from second cycle, and the European from third cycle). 

 

Table 4.6 Linear regressions between spore densities of the 27 indigenous arbuscular 

mycorrhizal fungi (AMF) inocula and AM root colonization after 3 months and yam growth 

parameters after 7 months. Inocula comprised 9 AMF species obtained after propagation on 

Hieracium pilosella  

Linear regression between R P value 

Inoculum spore density and AM root colonization 0.091 0.653 

Inoculum spore density and yam shoot dry weight 0.125 0.536 

Inoculum spore density and yam root dry weight 0.015 0.942 

Inoculum spore density and yam tuber dry weight 0.044 0.829 

 

 

4.5. Discussion 

The present study, involving 29 AMF isolates of 9 species and several species groups, is amongt 

the largest investigating the effect of AMF inocula from a single geographical origin on growth 

promotion of a single plant species. Furthermore, the study presents the first assessment of AMF 

indigenous to the SGS of West Africa, where information on AMF species is virtually known. 

Previously, studies have tended to be based on non-indigenous, exotic isolates (e.g. Frey et al., 

1985; Copretta et al., 2006) or, alternatively, were restricted solely to the screening of Glomus 

sp. isolates (Munkvold et al. 2004; Jansa et al. 2005) or, were focused on relatively few isolates 

(e.g. Yano-Melo et al., 1999; Jansa et al. 2005; Cavallazzi et al., 2007). Moreover, the large 
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majority of such studies were not based on monosporal, but on multiple spore isolates (e.g. 

Sieverding, 1991; Fagbola et al., 1998; Duffy and Cassells, 2000; O’Herlihy et al., 2003; 

Oyekanmi et al., 2007), thus, increased of genetic variation and a risk of contamination by 

morphologically similar species (e.g. G. intraradices and G. fasciculatum). Also noteworthy for 

our study is that this is the first successful establishment of single spore, respectively single 

sporocarp-fragment derived cultures for several species, such as A. scrobiculata, A. spinosa, K. 

kentinensis and sporocarpic G. sinuosum.  

 

When compared with the non-mycorrhizal control, the majority of tropical G. etunicatum isolates 

(6 of 11) positively influenced (P≤0.05) yam tuber weight, but not negatively, whereby their 

geographical origin appeared to be of minor importance. Remarkably, the non-tropical AMF 

isolates (EU-G.‘lut’ and EU-G.con) generally did not affect yam tuber dry weight (EU-G.mos) 

(Fig. 4.4 C) despite of their high colonization level. However, these results are likely, at least, 

partly dependent on the species or the isolate since the experiment II revealed that different AMF 

species and isolates affected yam growth differently, but the majority of indigenous AMF 

isolates (14 out of 27) led to increased yam tuber weights. Indigenous isolates of G. mosseae, G. 

etunicatum, and A. scrobiculata, and especially G. hoi and A. spinosa had a greater effect on yam 

tuber weight than indigenous G. sinuosum and K. kentinensis. Various other studies have also 

shown the variable effect of different AMF species on plant growth (e.g. Frey et al., 1985; 

Sieverding 1991), which can be related to specific compatibility between host plants and AMF 

species (Dodd et al., 2000; Klironomos, 2003). Variable compatibility between AMF species and 

host plants has been reported in a number of crops, such as potatoes (Yao et al., 2002; Diop et 

al., 2003), onion (Yao, 1996), maize (Khalill et al., 1994) and sweet potatoes (Gai et al., 2006). 

Recent studies also strongly suggest that such effects may vary intraspecifically at a high level 

(e.g. Munkvold et al. 2004; Koch et al., 2004; Koch et al., 2006). However, it has to be 

considered that in such studies the inocula applied were sometimes prepared in different 

laboratories, propagated on different host plants and substrates, and under different propagation 

conditions (time, pot sizes etc.).Thus, intraspecific variation of host growth promotion was 

probably not only a factor of genetic variation but also of the quality of the inocula. In the 

current study, we tried to minimize this ‘background disturbance’, by propagating the isolates as 
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close as possible under the same conditions, on the same plant species and substrate, and for the 

same duration.  

 

None of the isolates affected the shoot dry weight, which might be explained by yam physiology, 

which is characterised by dry matter translocation from shoots to tubers during the growth 

period, especially towards tuber maturity when shoots senesce (Sobulo, 1971). Root dry weight 

was affected by the AMF isolate only in the first experiment, but with a rather high variability 

within treatments: The indigenous G. etunicatum isolates slightly affected root dry weight 

positively compared with non-indigenous isolates. A larger root system, though, may prove 

decisive for such crops, which are prone to production constraints under low nutrient and water 

availability, especially during extended dry periods within the yam-growing season.    

 

In the first growth experiment, the non-tropical isolates of G. etunicatum were the only 

monosporal treatments that led to increased P concentrations in tubers, although they did not 

affect yam tuber dry weight. Such results could therefore lead to the assumption that these non-

tropical isolates were less useful inocula for yam tuber production since they extracted more 

phosphorus from the soil when compared to the non-mycorrhizal control without leading to 

simultaneous improved tuber growth. Nutrient concentrations were not determined in the yam 

tubers in the second experiment. This would have been interesting to elucidate which indigenous 

isolates/species affected nutrient assimilation with or without concomitant tuber yield increase, 

to judge the benefits of the various isolates and identify those most suitable for yam tuber 

production without exaggerated nutrient export from the soils. However, the increase in tuber P 

concentration of the mycorrhizal control soil, inoculated with a yam field soil AMF community, 

indicates that yam association with some indigenous AMF isolates can also lead to increased P 

uptake without having simultaneous effects on tuber growth. Sporocarpic G. sinuosum and K. 

kentinensis might be two of such species. Interestingly, sporocarpic Glomus spp. were found to 

be amongt the first species to disappear from fields with intensification of agronomic practices 

(Oehl et al., 2003; Tchabi et al. 2008). On the other hand, they may be a decisive factor during 

fallow periods, leading to increased available and total P contents towards a rapid restoration of 

soil fertility. However, the current study focused on the assessment of AMF isolates on yam 

plantlets, shortly after weaning, which may prove not to be the most suitable period to assess the 
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effect of AMF species on yam tuber, given that only a small tuber is produced. The most 

informative period of the effects of AMF on yam tuber development may be during subsequent 

growth periods. Information on the effects of AMF on other tuber crop vitro-plantlets like potato 

inoculated at post-flask have however, shown higher number of minitubers, weight per minituber 

and total weight of minitubers per plant (Vosátka and Gryndler, 2000). In addition, Glomus 

deserticola inoculation to cassava micropropagated plantlets at acclimatization phase improved 

the percentage of plantlets survival but the growth parameters were similar when compared to 

plantlets inoculated with AMF after acclimatization phase (Azcón-Aguilar et al., 1997). 

However, the timing of AMF inoculation significantly improved cassava growth parameters 

compared to control (Azcón-Aguilar et al., 1997). In contrary, Monticelli et al., (2000) reported 

an increased development of shoots in terms of height and weight of fruit tree rootstocks cv 

GF677 and cv. Citation in double inoculation (at acclimatization and at transplanting) with 

Scutellospora calospora compared to a single inoculation. The general observation from these 

results was that micropropagated yam response positively to AMF inoculation but the level of 

the responses depend on AMF species even strains and on yam cultivar. We suggest that yam 

micropropagated plantlets inoculation after weaning phage might be successful regarding plant 

growth and yield; however, to increase the potential of the inoculation in practical production of 

yam minitubers, it is necessary to consider the differences of various yam cultivars and to select 

appropriate AMF strains. 

 

Although none of the isolates reached the high colonization levels found for the indigenous AMF 

field soil community, all AMF isolates significantly colonized the yam roots independently of 

their geographical origin. Even the three isolates from Central Europe colonized the yam roots to 

a relatively high level (40-60%), confirming observations that the infectivity of any AMF is 

likely more dependent on its intrinsic ability to infect and spread in a specific host than its origin 

(Monzon and Azcon, 1996; van der Heijden and Kuyper, 2001; Klironomos, 2003). On the other 

hand, our results confirm that yam can be colonized by a wide and broad range of AMF species 

(Tchabi et al., chapter 3), and suggest that there was rather low host specificity for the 13 AMF 

species and 41 isolates tested. However, there were differences in root colonization levels 

between AMF species and isolates: isolates of G. mosseae, G. hoi and K. kentinensis had higher 

AM root colonization levels than isolates of A. scrobiculata, and especially G. sinuosum and A. 
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spinosa, which could not be necessarily explained by inoculum spore density. Similar results 

were obtained in previous studies where it was postulated that AM fungal infection and 

colonization is not necessarily host specific, but that the level of colonization and function can 

depend on the AM fungal ability to colonize a specific host and even on the genotype of the host 

plant (Buwalda et al., 1984; Gai et al., 2006). Several recent studies have revealed that there is at 

least a clear host preference in the AM symbiosis (e.g. Bever et al., 2001; Sýkorová et al., 2007), 

even though the reasons for this are yet to be established. The lower colonization levels in the 

second than in the first experiment might, however, be related to the higher amount of substrate 

used in the second (3 kg) than in the first experiment (2 kg).  

 

Our attempts to achieve a large set of monosporal cultures of various AMF species using S. 

guianensis and H. pilosella yielded a series of isolates of nine AMF species. This represents 

approximately 25% of the species (37) that sporulated in the preceeding trap cultures on S. 

bicolor (Tchabi et al., chapter 3), but moreover represents 90% of the species selected for the 

single spore inoculation in the pipette tip system. In our trap cultures, spores e.g. of Gigaspora, 

Scutellospora, Diversispora and Ambispora species were scarce, creating difficulties to establish 

such species in pure cultures. Other species could also not be readily identified under the 

dissecting microscope, leading to their avoidance for establishing monosporal cultures, for 

example Kuklospora colombiana or Paraglomus occultum. We attribute our success in achieving 

several species in monosporal culture to our attempt to imitate the length of the wet and dry 

season in the SGS during culturing and subsequent storage in the air-dried substrate, both during 

trap culture and subsequent single spore propagation. This strategy was chosen to reflect as 

closely as possible the conditions during the life cycles of the AMF at their natural sites, 

breaking their putative (spore) dormancy during dry storage. This strategy was derived from our 

previous experience with AMF trap cultures from the SGS (Tchabi et al. 2008). There, even 

following a 3-month storage of air-dried field soil samples, trap culturing largely failed with field 

samples taken during the wet season, but with field samples from dry season, a total of 44 

species were propagated (Tchabi et al. chapter 3). Remarkably, H. pilosella, a typical plant for 

Central Europe, was found to be an excellent host for the propagation of AMF species from 

tropical West Africa. 
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In conclusion, the results of the current study indicate a high potential for indigenous AMF to 

provide plant growth benefits for micro-propagated yam when applied at the stage of 

transplantation. Several species or isolates promoted tuber growth of white yam, although AMF 

species and isolates were not equally beneficial. The data indicate that G. hoi, A. spinosa, G. 

mosseae and G. etunicatum isolates offer particular promise, although future greenhouse and 

field studies on different yam cultivars and species are necessary to confirm these benefits. 

Interestingly, some non-indigenous isolates were also effective in promoting yam tuber growth, 

but since these species also occur in West Africa, there may be also indigenous isolates that may 

be more adapted to prevailing field conditions than the non-indigenous isolates. Although the 

presence of AMF led to increased tuber P concentrations in some cases, the results were variable 

and compounded by the fact that there was a general negative correlation between tuber growth 

and tuber P concentration. The physiology behind this different functionality of AMF species or 

isolates is not yet understood, it may be crucial to determine this in order to better judge the 

usefulness and applicability of AMF for various eco- and agricultural systems. For the ‘yam belt’ 

in West Africa, it might be especially interesting to identify AMF species that promote growth of 

high quality yam tubers, with concomitant efficient and sustainable use of soil nutrient resources. 

Together with the development of improved yam cultivars, this aspect may additionally help to 

provide a more stable and improved yam production.  
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CHAPTER  5:  Effect  of  arbuscular  mycorrhizal  fungal  application  on 

micropropagated  yam  plantlets  and  suppression  of  nematode  damage 

caused  by  Scutellonema  bradys  (Tylenchideae)  and  Meloidogyne  spp. 

(Meloidogyneae) 

 

5.1. Abstract 

Using two commercially available arbuscular mycorrhizal fungal (AMF) products, one based on 

Glomus mosseae and the other based on Glomus dussii, two experiments were conducted to 

assess their effect on yam growth and ability to suppress nematode damage in pots. Four 

cultivars (cvs) in total (Dioscorea alata cvs TDa98-01183 and TDa98-165, and Dioscorea 

rotundata cvs. TDr97-00551 and TDr 745) were used. In the first experiment, micropropagated 

yam plantlets were inoculated either with G. mosseae or with G. dussii at the stage of 

transplanting into 2L pots and - one month later - with 500 vermiform Scutellonema bradys. In 

the second experiment, AMF inoculated micropropagated plantlets were challenged with 500 

infective juveniles of Meloidogyne spp. The plantlets were grown for further six months in the 

greenhouse at IITA-Ibadan. Although the results showed a wide variance, the presence of AMF 

tended to lead to improved growth of yam, especially D. alata cvs, as compared with the non-

arbuscular mycorrhizal control plants. When challenged with the yam nematode S. bradys, 

plantlets of the two D. alata cultivars pre-inoculated with G. mosseae and cv TDr97-00551 pre-

inoculated with G. dussii yielded significantly higher tuber weights compared to non-AMF 

control plantlets, indicating a relatively high degree of functional specificity of the AMF species. 

In addition, when challenged with Meloidogyne spp., cv TDa98-01183 plantlets pre-inoculated 

with either AMF species yielded heavier tubers than the non-mycorrhizal control plantlets. 

Scutellonema bradys densities on yam plantlets pre-inoculated with AMF were generally 

suppressed, although no differences were observed in visible damage scores, which remained 

low or absent across treatments. However, Meloidogyne spp. densities and galling damage 

tended to be similar with or without AMF. Thus, with regard to nematode suppression, AMF 

appears to counter S. bradys attack more than an attack by Meloidogyne spp., but obviously, this 
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finding requires further substantiation, particularly under field conditions. In conclusion, our pot 

experiments, using the delicate micropropagated plantlets, showed that yam cvs are highly 

mycorrhizal, though variably response to AMF species and thus, there is a potential to use AMF 

as inocula to sustainably improve yam productivity.  

 

Keywords: Bio control, bio fertilizer, Scutellonema bradys, Meloidogyne spp., yam growth, yield 

 

5.2. Introduction 

Yam (Dioscorea spp.) is a tuber crop widely cultivated in West and Central Africa and is a 

particularly important staple source of carbohydrates and vitamins in the local diet (Coursey, 

1967; IITA, 2006). It is also cultivated in Asia and in Central and South America (Malaurie et 

al., 1998). Yam cultivation is adversely affected by an array of biotic and abiotic factors, among 

which are the plant parasitic nematodes Scutellonema bradys (Andrassy, 1958) and Meloidogyne 

spp. (Bridge et al., 2005).  

 

Scutellonema bradys (Andrassy, 1958) and Meloidogyne spp. are the economically most 

important nematodes affecting yam (Bridge et al., 2005). Scutellonema bradys is a migratory 

endo-parasite of roots and tubers, confined usually to the outer 1-2 cm of the tuber, feeding 

intracellular in yam tuber tissues. This results in ruptured cell walls, loss of cell contents, the 

formation of cavities (Goodey, 1935; Bridge, 1973), tuber dry rot (Bridge et al., 2005), tuber 

decay and higher rates of desiccation (Nwauzor and Fawole, 1981). Meloidogyne species so far 

identified associated with yam are M. incognita, M. javanica, M. arenaria and M. hapla, of 

which M. incognita is the most important (Bridge et al, 2005). Meloidogyne spp. are sedentary 

endo-parasites. Mobile second-stage juveniles (J2) emerge from the eggs, move towards the roots 

and penetrate the roots, where they feed on specific cells and induce the formation of giant cells. 

The adult females of Meloidogyne spp. are immobile and enlarge rapidly (Bridge et al., 2005). 

The proportion of galled tubers collected from yam barns and markets in Nigeria can be as high 

as 90% for D. alata and 70% for D. rotundata (Adesiyan and Odihirin, 1978), although in 

general the proportion of affected yams is much lower (Coyne et al., 2005). The value of galled 

tubers is estimated to be between 39-52% lower than healthy ones (Nwauzor and Fawole, 1981). 
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Pesticides can be used for nematode control, but they are expensive, unavailable or highly toxic 

for both the user and the environment, constituting serious health hazards (FAO, 2007). Other 

nematode management practices, such as hot water treatment of tubers (Speijer, 1996; IITA, 

2006), use of cover crops (Claudius-Cole et al., 2005), trap crops (El-Nagdi and Youssef, 2004), 

chemical fertilizers (Baimey, 2005) or organic fertilizers (Adesiyan and Adeniji, 1976; Youssef 

et al., 2005) have been explored for yam. Recent progress in biotechnology has also shown that 

tissue culture of yam will provide disease and pest-free planting material, using aseptic in vitro 

meristem/shoot tip culture techniques (IITA, 2006). However, the vitroplants obtained are 

delicate and fragile, and not only free of pathogens, but also free of all natural beneficial 

microorganisms, such as arbuscular mycorrhizal fungi (AMF).  

 

AMF are important elements of the soil microflora in agroecosystems, which form a mutualistic 

symbiosis with most plant species, including almost all plants currently micropropagated (Smith 

and Read, 2008). AMF are active in increasing the availability and uptake of soil phosphorus and 

trace elements, thereby enhancing host plant growth (Hamel, 1996; Dodd, 2000, van der Heijden 

et al., 2006). They can alleviate biotic and abiotic stresses (Fred et al., 2001; Alarcon et al., 2007; 

Arriagada et al., 2007a; Aroca et al., 2007; Audet and Charest, 2007). They are also particularly 

important in sustainable agriculture systems where non-biological inputs are low (Brussard et al., 

2007). Root colonization by AMF, in general, favors plant development by increasing nutrient 

uptake, hormonal activity, growth rate and consequently yield (Arriagada et al., 2007b; Smith 

and Read, 2008), but is also associated with pathogen suppression (Ryan et al., 2003; Vestberg et 

al., 2004; Hol and Cook, 2005). Some AMF species have recently become available as 

commercial products for promoting crop productivity (Duffy et al., 1999; Deliopoulos et al., 

2007). In tuber crops such as potato (Solanum spp.) and sweet potato (Ipomea batata), results 

following the application of commercial AMF products have shown that individual species of 

AMF formulation, and even combinations of a number of AMF species in a single formulation, 

differ in their ability to promote plant growth, which depends on the specific compatibility 

between plant and fungal species (Carpio et al., 2005; Farmer et al., 2006). The existence of the 

interspecific variation in interactions between AMF and host plants increases the need for 

efficient screening of AMF for host-plant species compatibility and especially for broad-

spectrum associations. On yam, no studies have yet been reported on the efficiency of 
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commercial AMF isolates or species for promoting yam growth and yield, or management of 

nematodes. The present study aimed at evaluating the effect of two commercial AMF products, 

based separately on Glomus mosseae and G. dussii, on yam growth parameters and on plant 

parasitic nematode management using in vitro cultures of various yam cultivars. 

 

5.3. Materials and methods 

5.3.1. Experimental details 

Two separate experiments were conducted at the International Institute of Tropical Agriculture 

(IITA), Ibadan (Nigeria), in the Southern Guinea savanna zone of Nigeria (7°30’N, 3°05’E). The 

experiments were established under controlled conditions in the greenhouse with mean daily 

temperatures ranging between 25°C and 32°C and humidity between 70% and 85%. The soil 

used for both experiments was collected from a depth of 0 – 15 cm at IITA Ibadan. Soil was 

passed through a 1 mm sieve to remove roots, sterilized by autoclaving in the oven at 80°C for 3 

days and then air-dried. The soil was characterized as a sandy loam soil with a pH 6.0 and total 

nitrogen and available phosphorus were at 0.7 g N kg-1 and 2.96 mg P kg-1, respectively 

(Oyekanmi et al., 2006). 

 

5.3.2. Source and acclimatization of yam plantlets 

 

For both experiments, in vitro tissue culture plantlets of D. alata (TDa 98-165, TDa 98-01183) 

and D. rotundata (TDr 745, TDr 87-00551), selected due to their availability, were supplied by 

the Biotechnology unit of IITA-Ibadan (Nigeria). The plantlets were multiplied under in vitro 

conditions by sub-culturing nodal segments from established in vitro plantlets under a laminar 

flow hood in culture test tubes containing a yam specific multiplication medium (Ng, 1994). The 

plantlets were regenerated in the culture room with 12 h photoperiod, 3000 flux light intensity, 

27 ± 1°C of temperature and 70 ± 5% of relative humidity.  

 

Following removal from test tubes, before use in the trap cultures, the plantlets were 

acclimatized for three weeks. They were planted into peat pellets after first soaking them in 

water to swell. After removal from the test tube, their roots were gently rinsed in water and then 
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transferred with a forceps into the peat pellets. They were then placed on a tray and covered with 

thin, transparent plastic sheet to maintain high relative humidity (70 ± 5%), but enabling air to 

circulate under the cover. The tray was kept under controlled conditions in the greenhouse (12 h 

of photoperiod; 25 °C in the day, 21 °C in the night; 65 ± 5% humidity). After one week, the 

plastic cover was steadily removed for increasingly longer periods (6-12 h) per day, before the 

plastic was completely removed after three weeks and the plants transplanted one week later into 

individual pots. 

 

5.3.3. Source of AMF inoculum and inoculation procedure 

Glomus mosseae and G. dussii were obtained from BIORIZE Company© (Dijon, France). The G. 

mosseae strain originated from Western Europe, while G. dussii originated from Côte d’Ivoire, 

West Africa. These commercial inocula consisted of substrates, spores, hyphae and chopped 

infested fine roots, 2 g of which (representing approximately 300 spores) were inoculated to each 

plantlet at transplanting. A hole ~8 cm deep was made in the substrate at the middle of each 2-l 

pot using a pencil. The inoculum was then placed in the hole before planting a single plantlet 

above the inoculum. Each AMF product was applied separately, as individual treatment. Non-

inoculated pots were included as controls. All control pots received 2 g of sterilized soil and 30 

ml of filtrated suspensions from 20 g of both AMF products.   

 

5.3.4. Scutellonema bradys inoculum preparation and procedure of inoculation 

Scutellonema bradys were collected from infected peels obtained from heavily infected tubers of 

D. rotundata cv TDr 131 from IITA-Ibadan. To determine the nematode density for the required 

inoculum of S. bradys, the infected tubers were manually peeled using a kitchen peeler, and 

chopped in ~0.5 cm x 0.3 cm pieces (Baimey et al., 2005). Nematodes were extracted from the 

peels for 48 h using a modified Baermann pie pan method (Coyne et al., 2007). Prior to 

inoculation, the density of the S. bradys suspension, which had been adjusted to 100 ml with tap 

water, was estimated from 3 x 10 ml aliquots, after manually shaking without allowing the 

nematodes to settle down. Fornematodes counting, a Leica Wild M3C stereomicroscope was 

used. Two months after planting, each plant was inoculated with 8 ml suspension of 500 

vermiform S. bradys. A water control of 8 ml was added to the control plants. Plants were 

subsequently watered with 300 ml tap water per each plant from the base. 
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5.3.5. Meloidogyne spp. inoculum preparation and inoculation procedure 

Meloidogyne spp. were originally extracted from an infested yam tuber (D. rotundata, cv Amula) 

collected from the market in Ibadan. The yam tuber was peeled, chopped finely and nematodes 

were extracted using a modified Baermann method (Coyne et al., 2007). The nematodes were 

maintained in the greenhouse at IITA-Ibadan on tomato (cv Pello) plants. For inoculum, 

Meloidogyne spp. J2 and eggs were obtained by finely chopping infected tomato roots, and 

macerating in 1.0 % NaOCl for 4 min to aid their release from the eggmass matrix.  Eggs were 

caught on a 20 µm aperture sieve after passing through nested sieves and rinsed in five changes 

of tap water, before maintaining in tap water for 10 days at room temperature. Hatched J2 were 

inoculated into soil aside seedlings in a shallow trench made ~5 cm radius around each plant (~5-

10 cm deep) that exposed some of the roots, at a rate of 500 J2/plant in 10 ml of water, at 2 

months after planting. Control plants received 10 ml of water. All plants were subsequently 

watered with 300 ml tap water per plant from the base. Prior to inoculation, the density of the 

Meloidogyne spp. J2 suspension, which had been adjusted to 100 ml with tap water, was 

estimated from 3 x 10 ml aliquots, after manually shaking without allowing the nematodes to 

settle before removing and counting using a Leica Wild M3C stereomicroscope.  

 

5.3.6. Experimental design 

In both experiments single plants of D. alata (TDa) and D. rotundata (TDr) were planted in 2-l 

pots with 2 kg sterilized soil and maintained in the greenhouse over 6 months. All yam plantlets 

were aged one month at initiation of the experiment. Plants were inoculated with two AMF 

species (G. mosseae and G. dussii) that were applied separately. In all experiments, pots were 

randomly arranged, using ten and six plants per treatment (respectively for experiment I and II). 

Plants were staked at two months in all cases, received no fertilizer during the experiment and 

were watered regularly as required. During the growing period, temperature ranged between 

25°C and 35°C and relative humidity between 75% and 90% in the greenhouse.  

 

The first experiment involved three factors: AMF (three levels: G. mosseae, G. dussii and non-

inoculated control), yam cultivar (four levels: TDa 98-165, TDa98-01183, TDr745, 

TDr87/00551) and S. bradys inoculation (two levels: 0 and 500). Sixty pots per yam cultivar 
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were used, totalling 240 pots. The experiment was established in June 2006 and harvested in 

December 2006. 

 

The second experiment involved three factors: AMF (three levels: G. mosseae, G. dussii and 

non-inoculated control) yam cultivar (four levels: TDa 98-165, TDa98-01183, TDr745, 

TDr87/00551) and Meloidogyne spp. inoculum (two levels: 0 and 500 J2). The experiment was 

established in June 2007 and harvested in December 2007. Thirty-six pots per yam cultivar were 

used, totalling 144 pots.  

 

5.3.7. Assessment of AMF spore density and root colonization  

In both experiments, soil core samples were removed one day before harvest of yam tubers, 

according to Oehl et al. (2003), which consisted of collecting two separate soil cores of a 

combined total of 30 cm3 (sampling depth 10 cm) from each pot. Roots were extracted by wet 

sieving and decantation, while the AMF spores were isolated by wet sieving and sucrose density 

gradient centrifugation (Oehl et al., 2003). The root colonization by AMF was determined 

according to Brundrett et al. (1996), using trypan blue to stain the mycorrhizal structures. The 

gridline-intersect technique (Giovannetti and Mosse, 1980) was used to analyse AMF 

colonization under a dissecting stereo microscope (Leica Wild M3C) at up to 90x magnification.  

 

5.3.8. Assessment of yam growth parameters at harvest 

The plants were harvested six months after transplanting into individual pots. The shoots were 

cut to soil level and then tubers were removed by hand, and gently removed the soil away from 

tubers and roots. The roots were removed with forceps and collected separately. Shoots, roots 

and tubers from each pot were rinsed gently under tap water, air dried and separately stored in 

labelled paper bags. Dry weight of shoots and roots were recorded following oven-drying in a 

well-ventilated Gallenkamp oven at 80°C for 72 h. Only fresh tuber weight was recorded as they 

were used for planting in the subsequent season at field sites. Total dry root weights were 

calculated after taking into account material removed to determine mycorrhizal colonization and 

nematode density. 
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5.3.9. Assessment of nematode density and tuber damage symptoms 

For both experiments, all tubers harvested were scored for both cracking and dry rot (experiment 

1) or galling (experiment II) severity. Galling of tubers is the visible symptom of Meloidogyne 

spp. infestation, while cracking and dry rot are the main symptoms of S. bradys infestation. The 

tuber cracking, galling and dry rot severity were assessed on a scale of 1-5 (Claudius-Cole et al., 

2005): where 1 = clean tuber; 2 = 1-25% tuber skin showing cracking, galling or dry rot 

symptoms (low level of damage); 3 = 25-50% of tuber skin symptoms (low to moderate level of 

damage); 4 = 51-75% tuber skin symptoms (moderate to severe level of damage); 5 = 76-100% 

tuber skin symptoms (high level of damage). All tubers per pot were scored and mean scores 

calculated per pot when more than one tuber per pot was present. Nematodes were not extracted 

from tubers, which were destructive, preventing planting through to the next season, which was 

undertaken for longer-term assessment on the effects of AMF on yam production.  

 

Nematodes were extracted from the soil of each pot by mixing all the contents of each pot, 

removing 3 x 50 g sub-samples and extracting them using a modified Bearmann Pie Pan method 

(Coyne et al., 2007). Two methods were used to extract nematodes from roots: Meloidogyne spp. 

were extracted using a modified Baermann technique following root maceration in 1.0 % NaOCl 

for 4 min, while S. bradys were extracted directly using the modified Baermann technique as 

described in above sections. For each method, roots collected from each pot were chopped into 

small pieces of 0.1 to 0.2 cm and 2 x 5 g sub-samples were removed for nematode extraction. 

Nematodes were counted with a stereomicroscope at 400x magnification. 

 

5.3.10. Data analyses 

All data were analyzed using STATGRAPHICS, version 9.1 in Windows 2007. Two-Way 

ANOVA was used to compare yam growth parameters (shoot, root and tuber weight) between 

treatments. Data on nematodes and on mycorrhization were analyzed by one-way ANOVA. Prior 

to analysis, AMF spore density and nematode population density data were log10 (x+1) 

transformed, while data on mycorrhizal colonization were arcsin (x/100) transformed for 

homogeneous variances. The differences among treatment means were compared with Fischer’s 

Least Significant Difference (LSD) Test. Pearson’s correlation coefficient was used to assess the 

association between root colonization and various growth parameters.  
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5.4. Results 

5.4.1. Effect of AMF and S. bradys inoculation on yam root colonization and plant growth 

parameters.  

Mycorrhizal root colonization was moderately high (between 17% and 44%) with a significant 

interaction occurring between AMF inoculation and nematode inoculation (Df = 2, F = 4.3, p = 

0.02; Table 5.1). Higher colonization by AMF was recorded from all cultivars inoculated with G. 

mosseae, compared to G. dussii in the treatment without S. bradys, while in the treatments with 

S. bradys, higher colonization by AMF was recorded from all yam cultivars except for cv. 

TDa98-165 inoculated with G. dussii (Table 5.2). Spore production was affected by both yam 

cultivars and S. bradys inoculation (Df = 1, F = 48.5, p = <0.001 Table 5.1). A higher spore 

density was recorded from cv TDr745 inoculated with G. dussii without S. bradys inoculation 

compared to cv. TDr745 plantlets inoculated with G. dussii and S. bradys (Table 5.2).  

 

Without S. bradys inoculation, fresh weight and number of tubers were significantly affected by 

AMF inoculation (Df = 2, F = 39.44, p <0.001; Df = 2, F = 4.07, p = 0.01 respectively) and yam 

cultivar (DF = 3, F =11.83, p <0.001; Df = 3, F = 3.35, p = 0.02) (Table 5.1). AMF inoculation 

did not affect shoot or root weight. S. bradys inoculation significantly affected tuber fresh 

weight, shoot and root dry weight (Df = 1, F = 28.19, p <0.001 for tuber fresh weight; Df = 1, F 

= 4.98, p = 0.02 for shoot dry weight; Df = 1, F = 5.80, p = 0.01 for root dry weight) (Table 5.1). 

Without S. bradys inoculation, application of each AMF species led to a significantly higher 

fresh weight and number of tubers than the control for TDa98-01183 (Table 5.3). In addition, G. 

dussii application induced higher shoot and root dry weights of TDr97-000551 than the controls 

(Table 5.3). With S. bradys inoculation, only plantlets from cvs TDa98-165 and TDa98-01183 

inoculated with G. mosseae yielded higher (p <0.01) than controls, while a higher number of 

tubers was recorded from cv TDr97-00551 when plantlets were inoculated with G. mosseae 

compared to controls (Table 5.3).  

 

 



Chapter 5 

 

 - 190 -  

Table 5.1: Analysis of variance table for yam cultivar, inoculation of arbuscular mycorrhizal 

fungi1 and Scutellonema bradys2 factor effects on micropropagated yam plantlet growth (tuber 

fresh weight, shoot dry weight, root dry weight, tuber number), AMF development (root 

colonization, spore production) and nematode parameters (cracking, dry rot, population densities 

in soil and root) from a pot study conducted under greenhouse conditions at IITA-Ibadan, 

Nigeria, West Africa. 
Variable Factors 

 

 Cultivar 

(A) 

AMF  

(B) 

S. bradys (C) AxB AxC BxC AxBxC 

Colonization        

Df 3 2 1 6 3 2 6 

F 2.27 131.5 1.16 1.00 2.12 4.3 1.56 

p 0.08 <0.001 0.18 0.42 0.09 0.02 0.16 

        

Spore densities3        

Df 3 2 1 6 3 2 6 

F 207.3 586.6 48.5 70.7 9.4 12.3 25.5 

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

        

TFW        

Df 3 2 1 6 3 2 6 

F 11.83 39.44 28.19 0.64 1.29 2.07 0.93 

p <0.001 <0.001 <0.001 0.69 0.27 0.12 0.47 

        

SDW        

Df 3 2 1 6 3 2 6 

F 2.42 2.13 4.98 3.51 2.72 2.02 2.62 

p 0.06 0.12 0.02 0.002 0.04 0.13 0.018 

         

RDW        

Df 3 2 1 6 3 2 6 

F 0.70 0.13 5.80 1.57 2.10 0.53 1.60 

p 0.55 0.87 0.01 0.15 0.10 0.58 0.14 
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Tuber No.        

Df 3 2 1 6 3 2 6 

F 3.64 4.07 0.75 1.81 1.81 0.94 0.90 

P 0.01 0.01 0.38 0.09 0.14 0.39 0.49 

         

Tuber cracking        

Df 3 2 1 6 3 2 6 

F 3.35 1.8 12.30 3.10 5.83 1.10 3.05 

p 0.02 0.16 <0.001 0.006 <0.001 0.33 0.006 

 

Tuber dry rot 

       

Df 3 2 1 6 3 2 6 

F 2.20 0.01 12.31 1.91 4.74 0.54 2.63 

p 0.08 0.98 <0.001 0.08 0.003 0.58 0.01 

 

S. bradys root 

density  

       

Df 3 2 1 6 3 2 6 

F 1.33 76.74 488.5 1.98 1.33 76.7 1.98 

p 0.26 <0.001 <0.001 0.06 0.26 <0.001 0.06 

 

S. bradys  soil 

density  

       

Df 3 2 1 6 3 2 6 

F 0.73 26.6 363.2 6.58 0.73 26.7 6.9 

p 0.53 <0.001 <0.001 <0.001 0.53 <0.001 <0.001 

Tuber cracking, and dry rot severity were assessed using an arbitrary scale from 1 to 5 (Claudius-Cole et al., 2005), 

where 1 = clean tuber; 2 = 1-25% tuber skin showing cracking or galling or dry rot symptoms (low level of 

damage); 3 = 25-50% of tuber skin showing cracking or galling or dry rot symptoms (low to moderate level of 

damage); 4 = 51-75% tuber skin showing cracking or galling or dry rot symptoms (moderate to severe level of 

damage); 5 = 76-100% tuber skin showing cracking or galling or dry rot symptoms (high level of damage). 1AMF 

inoculated at rate of 300 spores per pot at yam plantlet transplanting into individual pot. 2 S. bradys inoculated at 

rate of 500 vermiform two months after AMF inoculation. S. bradys density g-1 root or 50 g-1 soil. 3spore densities 

were per 30 cm3 of substrate. Data on spore densities and nematode population densities were log10 (x+1) 

transformed while data on mycorrhizal colonization were arcsin (x/100) transformed prior to analysis.TFW = tuber 

fresh weight, SDW = shoot dry weight, RDW = root dry weight, Tuber No. = tuber number. 
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Table 5.2: Effect of arbuscular mycorrhizal fungal (Glomus mosseae and G. dussii) and 

Scutellonema bradys inoculation on root colonization and spore production of two cultivars of 

Dioscorea rotundata (TDr745, TDr87-00551) and two D. alata (TDa98-165, TDa98-01183) in 

pots under greenhouse conditions at IITA-Ibadan, Nigeria, West Africa. 
Treatments AMF Root colonization (%) AMF spore density (30 cm-3 of soil) 

 Non-inoc Inoc Non-inoc Inoc 

TDa98-165     

 Control - - - - 

 G. mosseae 35.9±6.5a 30.9±3.3a 19.3±2.1a 16.2±1.5a 

 G. dussii 24.4±3.6b 23.4±2.7b 21.8±1.5a 14.2±0.8a 

 P value 0.03 0.023 0.21 0.32 

TDa98-01183     

 Control - - - - 

 G. mosseae 44.04±4.6a 22.6±3.1b 19.8±1.7a 19.01±0.8a 

 G. dussii 21.5±4.8b 29.1±4.3a 13.5±0.8a 11.2±0.8a 

 P value <0.01 0.04 0.16 0.09 

TDr745     

 Control - - - - 

 G. mosseae 31.1±4.3a 17.1±3.3b 28.3±2.6b 25.6±1.4a 

 G. dussii 19.8±3.7b 24.4±5.3a 52.5±3.1a 16.6±1.8b 

 P value 0.04 0.02 <0.01 <0.01 

TDr97-00551     

 Control - - - - 

 G. mosseae 22.9±3.6a 29.7±5.4a 79.3±4.2a 52.6±5.6a 

 G. dussii 22.02±3.7a 27.1±9.6a 39.9±2.1a 48.6±2.6a 

 P value 0.23 0.08 0.07 0.13 

Non-inoculated AMF treatments were free of colonization and spore production. - = data collected were zero and 

were omitted from statistical analysis. Values = mean (± SE) of ten replicates (non transformed data) at harvest 

seven and five months after AMF and S. bradys inoculation respectively; Inoc = inoculated with S. bradys; Non-

inoc = non-inoculated with S. bradys; Means followed by the same letter within a column for each cultivar were not 

significantly different (p > 0.05) according to the Protected Least Significant Difference test (LSD).  
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Table 5.3: Effect of arbuscular mycorrhizal fungal (Glomus mosseae and G. dussii) and 

Scutellonema bradys inoculation on micropropagated yam plantlet growth (tuber fresh weight 

(TFW), shoot dry weight (SDW), root dry weight (RDW), tuber number (Tuber No.) of two 

cultivars of Dioscorea rotundata (TDr745, TDr87/00551) and two cultivars of D. alata (TDa98-

165; TDa98-01183) in pots study under greenhouse conditions at IITA-Ibadan, Nigeria, West 

Africa. 

 
Treatments TFW (g) SDW (g) RDW (g) Tuber No. 

 Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc 

TDa98-165         

 Control 9.8±2.2a 3.6±1.2b 1.4±0.4b 1.9±0.4b 2.8±1.1a 1.3±0.2a 1.1±0.3a 1.3±0.2b 

 G. mosseae 12.5±2.3a 15.5±4.5a 3.5±0.6a 4.1±1.2a 3.2±0.9a 1.6±0.6a 1.7±0.4a 2.6±0.6a 

 G. dussii 3.1±1.4b 6.2±2.1b 3.7±0.9a 0.6±0.1c 1.8±0.6a 0.6±0.1a 1.4±0.6a 1.1±0.3b 

 P value 0.029 0.04 0.05 0.01 0.07 0.35 0.36 0.03 

TDa98-01183         

 Control 9.3±1.3b 11.9±1.5b 3.6±0.7a 1.3±0.4a 3.3±0.7a 2.0±0.9a 1.1±0.4a 1.3±0.3a 

 G. mosseae 16.7±3.8a 23.3±3.6a 1.9±0.4a 3.8±0.8a 2.4±0.8a 2.0±0.7a 1.0±0.1a 1.6±0.4a 

 G. dussii 13.3±3.4a 11.6±1.1b 2.9±0.6a 3.4±0.9a 2.5±0.7a 1.6±0.5a 1.3±0.5a 1.4±0.6a 

 P value 0.005 0.0013 0.14 0.08 0.31 0.66 0.33 0.48 

TDr745         

 Control 7.3±1.5a 4.9±18.8a 3.4±1.3a 3.4±0.8a 1.6±0.5a 1.1±0.2a 1.2±0.1a 1.1±0.2a 

 G. mosseae 6.8±0.6a 6.9±1.7a 3.7±0.9a 2.7±0.9a 1.8±0.5a 1.4±0.4a 1.3±0.1a 1.0±0.0a 

 G. dussii 8.11±2.2a 5.2±1.4a 2.7±0.6a 1.2±0.4a 3.1±0.8a 1.5±0.8a 1.3±0.1a 1.3±0.2a 

 P value 0.06 0.07 0.07 0.16 0.19 0.86 0.56 0.71 

TDr97-00551         

 Control 9.8±2.3a 2.7±0.6b 3.8±0.6b 3.6±1.2 2.3±0.8b 2.1±0.7a 1.1±0.2a 1.0±0.1a 

 G. mosseae 13.8±3.1a 2.7±0.6b 3.8±0.6b 3.6±1.2 2.3±0.8b 2.1±0.7a 1.3±0.2a 1.1±0.1a 

 G. dussii 3.1±1.1b 10.8±1.8a 4.1±0.7a 3.3±1.1 3.9±0.5a 1.3±0.5a 1.0±0.0a 1.3±0.2a 

 P value <0.001 0.01 <0.001 0.8 0.002 0.6 0.53 0.39 

Values = mean (± SE) of ten replicates at harvest seven and five months after AMF and S. bradys inoculation 

respectively; Means followed by the same letter within a column for each cultivar were not significantly different (P 

> 0.05) according to the Protected Least Significant Difference test (LSD). Inoc = inoculated S. bradys; Non-inoc = 

non-inoculated with S. bradys.  
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Across all cultivars, a negative correlation was observed between root colonization and tuber 

fresh weight (p = 0.0002) (Table 5.4). Within each cultivar, a negative correlation was observed 

between root colonization and tuber fresh weight for three of the four assessed cultivars: TDa98-

165, TDa98-01183 and TDr745 (p = 0.0038, 0.0142 and 0.0147 respectively) (Table 5.4). 

 

Table 5.4: Pearson correlation analysis between arbuscular mycorrhizal fungal root colonization 

and yam plant growth parameters (tuber number, tuber fresh weight) or nematode damage scores 

(cracking, dry rot) 
Cultivars  Tuber No. TFW Cracking Dry rot 

All cultivars Correlation 

P value 

0.00019 

0.99 

-0.24101 

< 0.001 

-0.0144 

0.82 

0.03015 

0.6421 

TDa98-165 Correlation 

P value 

0.12556 

0.33 

-0.36800 

< 0.01 

-0.2746 

0.03 

-0.0746 

0.5709 

TDa98-01183 Correlation 

P value 

0.21152 

0.10 

-0.31521 

0.01 

.10099 

0.44 

0.16321 

0.2128 

TDr 745 Correlation 

P value 

0.12436 

0.35 

-0.31367 

0.01 

-0.0878 

0.50 

-0.0154 

0.90 

TDr87-00551 Correlation 

P value 

0.11005 

0.40 

-0.17042 

0.19 

0.07170 

0.5862 

0.06486 

0.62 

Tuber No. = tuber number, TFW = tuber fresh weight. 

 

 

5.4.2. Effect of AMF inoculation on yam tuber quality and S. bradys density 

The AMF inoculation apparently did not reduce the severity of S. bradys damage recorded as 

cracking and dry rot (Table 5.1). Across the experiment, symptoms were very low in general 

(Table 5.5). Tuber cracking was significantly lower though, where AMF species were applied 

compared with controls for cvs TDa98-165 and TDr745, while tuber dry rot was significantly 

lower for cv TDr745 (Table 5.5). Interestingly, AMF inoculation significantly suppressed S. 

bradys densities in roots (Df = 3, F = 2.20, p <0.01) and soil (Df = 1, F = 363.2, p <0.001) 

(Tables 5.1 and 5.5) on plantlets where both AMF + S. bradys were inoculated, compared to S. 

bradys inoculation only.  
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Table 5.5: Scutellonema bradys population densities and tuber damage at harvest seven and five 

months after arbuscular mycorrhizal fungal (Glomus mosseae and G dussii) and S. bradys 

inoculation, respectively, to micropropagated yam plantlets of two cultivars of Dioscorea 

rotundata (TDr745, TDr87/00551) and two cultivars of D. alata (TDa98-165, TDa98-01183) 

under greenhouse conditions at IITA-Ibadan, Nigeria, West Africa. 
Treatments S. bradys density  

(root) 

S. bradys density 

(soil) 

Tuber cracking Tuber rot 

 

 

Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc 

TDa98-165         

 Control - 48.6±6.8a - 5.2±1.01 1.1±0.1 2.4±0.4a 1.0±0.0 1.6±0.1 

 G. mosseae - 23.8±2.2b - 6.3±1.5 1.0±0.0 1.4±0.3b 1.0±0.2 1.6±0.2 

 G. dussii - 20.3±3.2b - 2.9±0.67 1.1±0.2 1.5±0.3b 1.1±0.1 1.4±0.2 

 p value  <0.001  0.104 0.23 0.04 0.6 0.08 

TDa98-01183         

 Control - 69.0±4.5a - 11.4±1.2 1.0±0.0 1.1±0.1 1.0±0.0 1.2±0.1 

 G. mosseae - 21.8±6.5b - 2.5±0.6 1.0±0.0 1.02±0.2 1.1±0.1 1.1±0.2 

 G. dussii - 20.4±3.2b - 3.8±0.8 1.0±0.0 1.2±0.1 1.0±0.0 1.4±0.2 

 p value  <0.001  <0.001 0.5 0.26 0.13 0.23 

TDr745         

 Control - 73.2±4.6a - 6.3±1.2 1.2±0.1 1.7±0.4a 1.1±0.1 1.6±0.3a 

 G. mosseae - 20.3±2.3b - 6.0±0.8 1.2±0.1 0.8±0.1b 1.2±0.1 0.7±0.1b 

 G. dussii - 17.9±2.0b - 3.3±0.5 1.3±0.1 0.7±0.1b 1.2±0.1 0.8±0.1b 

 p value  <0.001  0.055 0.061 0.016 0.07 0.04 

TDr97-00551         

 Control - 70.5±8.4a - 9.3±0.8a 1.0±0.0 1.1±0.1b 1.1±0.1 1.2±0.2 

 G. mosseae - 18.4±9.8b - 2.0±0.4b 1.0±0.0 1.5±0.3ab 1.0±0.0 1.6±0.3 

 G. dussii - 32.2±7.5b - 3.9±1.06

b 

1.1±0.1 2.0±0.4a 1.0±0.0 1.8±0.3 

 p value  <0.001  <0.001 0.12 0.08 0.9 0.23 

Roots and soil from non-inoculated treatments were free of nematode. - = data collected were zero and were not 

used for statistic analysis. Analysis and means separation of nematode densities were undertaken on log10(x+1) 

transformed data. 1Nematode densities were 5 g-1 root. 2Nematode densities 50 g-1 soil. Values are means (± SE) 

(non transformed data) of ten replicates. For each yam cultivar treatment means were compared by columns, and 

means followed by same ( or without) letters were not significantly different (p > 0.05) according to the Least 

Significant Difference test (LSD). Inoc = inoculated with S. bradys; Non-inoc = non-inoculated with S. bradys.  
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5.4.3. Effect of AMF and Meloidogyne spp. inoculation on yam root colonization and plant 

growth parameters 

Root colonization was in general low (0.3% to 6%) but significantly influenced by both AMF 

species (Df = 2, F = 4.02, p = 0.02) and by Meloidogyne spp. inoculation (Df =1, F = 100.21, p = 

0.028) and appears as a function of AMF species and yam cultivars compatibility (Table 5.6). 

Glomus mosseae application resulted in higher root colonization for cv TDa98-01183 than G. 

dussii application (p = 0.03). Both AMF species produced a high density of spores (10 to 136 

spores/30 cm-3 of soil), but depending on AMF species (Df = 2, F = 8.7, p < 0.001) (Tables 5.6, 

5.7). Without Meloidogyne spp. inoculation, G. mosseae produced higher density of spores on cv 

TDa98-01183 (p = 0.008) and fewer on cv TDr97-00551 (p = 0.02), than G. dussii (Table 5.7). 

With Meloidogyne spp. inoculation to cv. TDr97-00551, G. dussii produced more spores than G. 

mosseae (p = 0.03).  

 

 

Table 5.6: Analysis of variance table for yam cultivar, inoculation of arbuscular mycorrhizal 

fungi1 and Meloidogyne spp.2 factor effects on micropropagated yam plantlet growth (tuber fresh 

weight, shoot dry weight, root dry weight, tuber number), AMF development (root colonization, 

spore production) and nematode parameters (cracking, rot, population densities) in pots under 

greenhouse conditions at IITA-Ibadan, Nigeria, West Africa. 

 
Variable Factors 

 Cultivar (A) AMF (B) S. bradys (C) AxB AxC BxC AxBxC 

Colonization        

Df 3 2 1 6 3 2 6 

F 0.25 4.02 100.21 5.88 34.8 42.36 18.41 

p 0.86 0.02 0.028 0.94 0.69 0.130 0.496 

Spore densities3        

Df 3 2 1 6 3 2 6 

F 1.08 8.7 0.12 1.04 0.3 0.8 0.6 

p 0.36 <0.001 0.7 0.4 0.8 0.4 0.7 

TDW        
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Df 3 2 1 6 3 2 6 

F 2.28 6.87 4.29 2.18 1.06 0.08 0.68 

p 0.086 0.001 0.041 0.054 0.36 0.92 0.66 

SDW        

Df 3 2 1 6 3 2 6 

F 3.21 0.71 2.03 1.93 4.06 1.21 0.19 

p 0.027 0.49 0.15 0.086 0.0097 0.30 0.97 

RDW         

Df 3 2 1 6 3 2 6 

F 1.63 1.09 5.87 0.57 0.11 0.01 0.42 

p 0.18 0.34 0.018 0.75 0.95 0.99 0.86 

Tuber No.         

Df 3 2 1 6 3 2 6 

F 0.80 0.87 0.02 0.40 1.58 1.004 0.21 

p 0.49 0.42 0.89 0.87 0.20 0.35 0.97 

Tub galling        

Df 3 2 1 6 3 2 6  

F 3.28 3.20 259.6 0.97 1.21 4.15 0.96 

p 0.025 0.046 0.0001 0.45 0.309 0.019 0.460 

No. Meloid. in root        

Df 3 2 1 6 3 2 6 

F 1.38 1.00 12.62 1.10 1.38 1.00 1.10 

p 0.25 0.37 0.001 0.36 0.25 0.37 0.36 

No. Meloid. in soil        

Df 3 2 1 6 3 2 6 

F 0.83 1.36 18.15 0.95 0.83 1.36 0.95 

p 0.21 0.25 0.001 0.46 0.48 0.25 0.46 

 

Tuber galling severity were assessed on an arbitrary scale from 1 to 5 (Claudius-Cole et al., 2005) where 1 = clean 

tuber; 2 = 1-25 % tuber skin showing cracking or galling or dry rot symptoms (low level of damage); 3 = 25-50% of 

tuber skin showing cracking or galling or dry rot symptoms (low to moderate level of damage); 4 = 51-75% tuber 

skin showing cracking or galling or dry rot symptoms (moderate to severe level of damage); 5 = 76-100% tuber skin 

showing cracking or galling or dry rot symptoms (high level of damage). 1AMF inoculated at rate of 300 spores per 

pot at yam plantlet transplanting into individual pot. 2Meloidogyne spp. inoculated at rate of 500 vermiform two 

months after AMF inoculation. 3Spore densities were per 30 cm3 of substrate. TFW = tuber fresh weight, SDW = 

shoot dry weight, RDW = root dry weight, Tuber No = tuber numbers, No. Meloid. = Number of Meloidogyne spp. 

per 5 g of root or 50 g of soil. 



Chapter 5 

 

 - 198 -  

 

Table 5.7: Effect of arbuscular mycorrhizal fungal (Glomus mosseae and G. dussii) and 

Meloidogyne spp. inoculation on tuber number, yam root colonization and spore production of 

two cultivars of Dioscorea rotundata (TDr745, TDr87-00551) and two D. alata (TDa98-165, 

TDa98-01183) in pots under greenhouse conditions at IITA-Ibadan, Nigeria, West Africa. 
Treatments Tuber No. Root colonization (%) Spore density (g-1 of soil) 

 

 

Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc 

TDa98-165       

 Control 1.7±1.7 1.8±1.3 - - - - 

 G. mosseae 2.0±1.3 1.7±1.5 4.1±2.5 1.9±1.5 56.8±37.2 33.7±22.9 

 G. dussii 1.0±0.6 1.2±0.5 4.4±3.4 1.2±0.6 21.8±8.2 33.1±14.8 

 p value 0.36 0.76 0.41 0.46 0.23 0.25 

TDa98-01183       

 Control 1.4±0.9 1.4±0.6 - - - - 

 G. mosseae 2.4±1.7 1.3±0.6 6.3±4.5 0.3±0.1b 136.3±52.9a 66.1±45.1 

 G. dussii 3.2±1.8 1.5±0.6 3.3±1.5 4.9±1.2a 17.6±4.0b 179.3±110.7 

 p value 0.42 0.10 0.13 0.03 0.008 0.26 

TDr745       

 Control 1.5±0.6 2.1±1.2 - - - - 

 G. mosseae 2.0±0.8 2.3±1.5 2.5±1.2 0.9±0.5 43.5±38.2 14.8±7.4 

 G. dussii 2.4±1.7 1.7±0.9 4.6±2.9 4.6±2.4 11.8±5.4 35.2±24.3 

 p value 0.5 0.8 0.25 0.09 0.38 0.26 

TDr97-00551       

 Control 1.0±0.1 1.7±1.1 - - - - 

 G. mosseae 1.3±0.6 2.1±1.6 1.5±0.9 0.3±0.2 10.5±3.8 23.3±11.8 

 G. dussii 1.3±1.2 2.0±0.9 0.2±0.5 4.9±3.2 43.7±17.1 49.8±10.6 

 p value 0.9 0.93 0.39 0.37 0.02 0.03 

 

Non-inoculated AMF treatments were free of colonization and spores production. - = data collected were zero and 

were not used for statistic analysis. Values were means (± SE) of six replicates at harvest, seven and five months 

after AMF and S. bradys inoculation, respectively. For each yam cultivar treatment means were compared by 

column, and means followed by same letters (or without) were not significantly different (p > 0.05) according to the 

Protected Least Significant Difference test (LSD). Inoc = inoculated; Non-inoc = non-inoculated with Meloidogyne 

spp.  
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Table 5.8: Effect of arbuscular mycorrhizal fungal (Glomus mosseae and G. dussii) and 

Meloidogyne spp. inoculation on micropropagated yam plantlet growth (tuber fresh weight, shoot 

dry weight (SDW), root dry weight (RDW) of two cultivars of Dioscorea rotundata (TDr745, 

TDr87-00551) and two D. alata (TDa98-165, TDa98-01183) in pots under greenhouse 

conditions at IITA-Ibadan, Nigeria, West Africa. 
Treatments TFW (g) SDW (g) RDW (g) 

 Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc 

TDa98-165       

 Control 19.4±14.8b 34.8±14.6 17.6±15.9 26.5±8.1 7.7±6.0 4.5±2.7 

 G. mos. 75.8±14.6a 66.3±12.9 29.8±9.6 53.2±12.9 15.6±4.0 14.6±10.7 

 G. dussii 31.8±16.9ab 21.7±12.3 21.0±14.1 39.1±13.6 10.05±10.4 3.8±1.8 

 p value 0.039 0.25 0.79 0.3 0.60 0.27 

TDa98-01183      

 Control 8.0±2.1b 3.5±1.2b 23.2±5.4ab 3.4±0.4b 4.0±1.5 0.5±0.1 

 G. mos. 99.5±11.1a 54.3±9.8a 10.5±4.9b 3.6±1.1b 12.6±7.2 4.7±2.6 

 G. dussii 77.5±21.3a 42.0±6.5a 30.2±8.5a 8.6±1.9a 13.8±6.1 8.2±3.1 

 p value 0.050 0.04 0.051 0.003 0.4 0.56 

TDr745       

 Control 81.7±23.5 68.4±15.2 48.4±14.7 12.9±5.2 8.3±3.6 2.0±1.1 

 G. mos. 74.2±7.9 74.1±22.6 19.5±4.7 16.2±8.1 14.4±4.2 2.6±1.1 

 G. dussii 49.2±14.3 43.4±13.2 23.2±6.6 3.6±1.1 6.5±2.2 2.8±2.7 

 p value 0.46 0.56 0.11 0.32 0.25 0.94 

TDr97-00551      

 Control 5.1±0.12 10.7±3.4 5.0±2.3 1.1±0.8 9.0±3.6 1.0±0.5 

 G. mos. 144.3±34.5 80.2±22.5 26.6±13.2 26.3±4.3 4.1±2.3 1.5±0.3 

 G. dussii 66.3±23.6 38.7±11.8 42.3±31.8 23.2±10.1 4.3±2.6 3.2±1.9 

 p value 0.2 0.09 0.7 0.13 0.6 0.46 

Values were means (± SE) of six replicates at harvest, seven and five months after AMF and Meloidogyne spp 

inoculation, respectively. For each yam cultivar treatments means were compared by columns, and means followed 

by same (or without) letters were not significantly different (p > 0.05) according to the Protected Least Significant 

Difference test (LSD). Inoc = inoculated and Non-inoc = non-inoculated with Meloidogyne spp. G. moss. = G. 

mosseae, TFW = tuber fresh weight, SDW = shoot dry weight, RDW = root dry weight. 
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Taking into account all cultivars, without Meloidogyne spp., AMF inoculated plantlets yielded 

greater than non-AMF inoculation plantlets (Df = 2, F = 6.87, p = 0.001) (Table 5.6). With 

Meloidogyne spp. inoculation, AMF inoculated plantlets also yielded greater than non-AMF 

inoculated plantlets (Df = 1, F = 4.29, p = 0.041) (Table 5.6). Data analysis for each yam cultivar 

showed that, with (P = 0.05) or without (P = 0.04) Meloidogyne spp. inoculation, only cv TDa98-

01183 yielded greater with either of the AMF species application than the control (Table5.8). In 

addition, shoot dry weight was significantly higher for cv TDa98-01183 when inoculated with G. 

dussii and Meloidogyne spp. compared to control (p = 0.003) (Table 5.8). Taking into account all 

yam cultivars, AMF root colonization was positively correlated with tuber weight (p = 0.0006) 

and also with Meloidogyne spp. soil densities (p = 0.017) (Table 5.9). The correlation varied by 

cultivar however. Positive correlation was observed between root colonization and tuber weight 

for cv TDa98-01183 (p = 0.04) and TDr745 (p = 0.028) (Table 5.9).  

 

Table 5.9: Results of Pearson Correlation analysis between arbuscular mycorrhizal fungal spore 

density and yam plant growth parameters and nematode damage symptoms. 
Pearson Correlation Coefficients r value P value 

Mycorrhization/tuber dry weight 0.32024 0.0006 

Spore density/soil Meloidogyne 

spp. density 

0.17768 

 

0.0173 

   

TDa 98-01183 

Mycorrization/tuber dry weight 0.39071 0.0484 

   

TDa 98-165 

Spore density/root Meloidogyne 

spp. 

-0.30402 

 

0.0714 

   

TDr745 

Mycorrization/root dry weight 0.42968 

 

0.0285 
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5.4.4. Effect of AMF inoculation on yam tuber quality and Meloidogyne spp. density  

At harvest tuber galling was significantly lower on plantlets inoculated with both AMF species 

and Meloidogyne spp. compared to Meloidogyne spp. inoculation alone (Df = 2, F = 3.20, p = 

0.04; Table 5.6). Plants inoculated with Meloidogyne spp. had no roots at harvest and highly 

galled tubers, compared to tubers harvested from plantlets inoculated with AMF species and 

Meloidogyne spp. (Figure 5.1). AMF inoculation suppressed the densities of Meloidogyne spp. 

both in yam roots (Df = 2, F = 1, p = 0.37) and in soil (Df = 2, F = 1.36, p = 0.25) (Table 5.6). 

For individual yam cultivars, only G. dussii significantly suppressed Meloidogyne spp. soil 

density on TDa98-01183 (Table 5.10). However, application of either AMF species improved 

tuber quality of plants inoculated additionally with Meloidogyne spp. compared to nematode 

inoculation alone (Figure 5.1).  

  

 

 
Control   G. mosseae+Meloidogyne spp.  G. mosseae            Meloidogyne spp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Quality of yam tubers and roots at harvest six months after planting following 

arbuscular mycorrhizal fungi inoculation at planting and Meloidogyne spp. inoculation two 

months after planting. 
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Table 5.10: Tuber galling and Meloidogyne spp. population density at harvest seven and five 

months after AMF (G. mosseae and G. dussii) and Meloidogyne spp. inoculation respectively to 

micropropagated yam plantlets of two cultivars of Dioscorea rotundata (TDr745, TDr87/00551) 

and two cultivars of D. alata (TDa98-165, TDa98-01183) under greenhouse growth conditions at 

IITA-Ibadan, Nigeria, West Africa. 
Treatments Tubers galling Meloidogyne spp. density1 

(root) 

Meloidogyne spp. density2 (soil) 

 Non-inoc Inoc Non-inoc Inoc Non-inoc Inoc 

TDa98-165       

 Control 0.8±0.2 5±0.3 - 2977.6±1615.3 - 734.2±356.9 

 G. mosseae 1±0.0 3±0.7 - 1687.3±716.7 - 148.3±55.9 

 G. dussii 0.8±0.4 3.2±0.7 - 236.4±167.5 - 202.5±138.1 

 pvalue 0.67 0.2  0.20  0.15 

TDa98-01183       

 Control 1.0±0.0 4.1±0.2 - 560.8±324.9a - 727.3±655.8 

 G. mosseae 1.0±0.0 4.7±0.5 - 457.5±354.1a - 1055.6±724.5 

 G. dussii 1.0±0.1 4.2±1.5 - 135.2±85.5b - 354.3±117.9 

 p value 0.9 0.23  0.01  0.12 

TDr745       

 Control 1.0±0.1 4.7±0.7 - 1308.3±530.5 - 1048.3±581.8 

 G. mosseae 1.0±0.0 4.6±0.2 - 178.3±110.3 - 85.8±44.6 

 G. dussii 1.0±0.2 3.7±0.5 - 110.2±39.6 - 155.5±82.3 

 pvalue 0.81 0.09  0.3  0.26 

TDr97-00551       

 Control 1.0±0.0 3.8±0.3 - 53.3±13.2 - 225.6±142.4 

 G. mosseae 1.0±0.1 2.3±0.6 - 2720.3±1516.3 - 125.3±72.7 

 G. dussii 0.7±0.3 3.5±0.3 - 2053.3±1309.5 - 460.8±170.8 

 p value 0.6 0.06  0.51  0.23 

Roots and soil from non-inoculated treatments were free of nematode. - = data collected were zero and were not 

used for statistical analysis. Analysis and means separation of nematode densities were undertaken on log10(x+1) 

transformed data. 1Nematode density 5g-1 of root; 2Nematode 50 g-1 soil. Values were mean (± SE) of six replicates 

non transformed data. For each yam cultivar treatment means were compared by columns, and means followed by 

same (or without) letters were not significantly different (p > 0.05) according to the Protected Least Significant 

Difference test (LSD). Inoc = inoculated; Non-inoc = non-inoculated with Meloidogne spp.  
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5.5. Discussion 

The results of our study clearly show the positive potential of AMF application on yam plantlets, 

both in terms of improved production under non-pest challenged conditions, and also under 

nematode pest challenged conditions. Although results were erratic to some degree following 

nematode inoculation, there is a strong indication that AMF will provide good protection against 

nematode infection. However, this is less convincing for Meloidogyne spp. than it is for S. 

bradys. On the other hand, while the use of in vitro plantlets proved useful in the current study, it 

must also be recognised that their use has its limitations, in respect to the fragile nature of the 

plantlets. To date no data exist on the interaction and protective potential of AMF against 

nematodes on yam. In vitro plantlets were used as an initial starting point to assess the potential 

of AMF on yam, with and without challenge from nematodes. It must be respected, however, 

that at this stage, most plantlets would not be challenged or come in contact with nematodes, but 

the study serves as an initial indicator. Understandably, the most effective stage to inoculate 

plantlets yet remains to be properly identified. It was suggested that the growth stage at which 

AMF is inoculated to tissue-cultured plantlets is important but varies according to plant genotype 

(Smith and Read, 2008). For example, Monticelli et al., (2000) reported that micropropagated 

tree fruit rootstock (Prunus spp.) growth was significantly affected depending on the growth 

stage at which AMF were inoculated (early acclimatization phase, at transplantation after 

acclimatization, or in both phases) with significantly greater plant growth in early 

acclimatization. In addition, the authors reported that the results were also influenced by the 

inocula strains (G. mosseae or Scutellospora calospora) and the plant genotype (cv M51, cv 

GF677 and cv Citation). A similar response was also reported for banana (Musa spp.) (Elsen et 

al., 2003) and cassava (Manihot spp.) (Azcón-Aguilar et al., 1997). In some cases a better plant 

response is produced when the inoculation is carried out at the transplant phase after 

acclimatization of vitroplants e.g. avocado (Persea americana) (Vidal et al., 1992), pineapple 

(Ananas comosus) (Guillemin et al., 1992) and apple rootstocks (Malus spp.) (Cavallazi et al., 

2007). Further to the current study, a separate study has been undertaken to establish the nature 

of the relationship of AMF on yam planting setts, which are cut from tubers and prepared more 

traditionally by farmers, for both their effect on growth and protection against nematode attack 

during the sprouting phase (the results are not included in the present thesis).  
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In the current study, yam plants inoculated with AMF species yielded heavier tubers 

(microtubers) compared to non-AMF plantlets in the presence or absence of nematode pests (S. 

bradys or Meloidogyne spp.). Without nematode inoculation, the general observation from our 

results is that, AMF inoculation significantly increased number and fresh weight of tubers, but 

that the degree of effectiveness depends on yam cultivar and on AMF species. The latter 

confirms our previous results carried out with 13 AMF species and 41 AMF isolates (chapter 4). 

Tuber Plant growth promotion in relation to AMF colonization is a well-established phenomenon 

across crops and climatic zones (Elsen et al., 2003; Chaurasia and Khare, 2005; Caglar and 

Akgun, 2006). The effect of AMF inoculation was not constant across our experiments or yam 

cultivar, however. The lack of consistency of effectiveness may be attributed to a number of 

factors, including the slight variation in experimental set up, but more possibly as a result of the 

different feeding styles of the two nematodes assessed. It was proposed by Johnson et al. (1997) 

that mycorrhizal association could be considered as symbioses, but the functional range along a 

continuum of parasitism to mutualism according to environmental conditions (climate, 

temperature, abundance of soil nutrients, presence or absence of pathogens, etc.) and the host 

plants genotype (Klironomos, 2003). 

  

In the current study, perhaps the most interesting result was that yam cultivars from D. alata 

species responded more efficiently to AMF inoculation compared to D. rotundata cultivars. One 

possible explanation could be related to the morphology and physiology of the two yam species. 

D. alata cultivars have larger leaves, intercepting more light for photosynthesis than D. 

rotundata species (Orkwor and Ekanayake, 1998), and probably transfer more carbohydrate to 

AMF, which in return uptake and transfer nutrients to the plant leading to greater tuber 

production. Furthermore, a possible difference in the change of phytohormone balance following 

the association between some yam cultivars and AMF may further explain differences in yam 

cultivar response to AMF inoculation (Allen et al., 1980 and 1982; Dannenberg et al., 1992). 

Such differences in response to AMF inoculation among plant cultivars are reported, indicating 

the variable response in root colonization and relation to yield for different cultivars in the field 

(Dare et al., 2007) and on other tuber crops, such as micropropagated potato plantlets (Yao et al., 

2002) and sweet potato (Gai et al., 2006). The beneficial effect of AMF infection on plants has 

generally been attributed to improved uptake of nutrients, especially P (Smith et al., 1992; Smith 
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et al., 2003; Zhu et al., 2004) and other elements, such as Ca, Mg and micro-elements (Pinochet 

et al., 1997; Ryan and Angus, 2003). Further studies are warranted to verify this hypothesis, 

which is also likely to vary by situation, crop and cultivar. Alternatively, inoculation with two 

fungal taxa in dual combination might improve the overall synergistic interaction between plants 

and fungi and may reflect the possible different roles of AMF within a fungal community (van 

der Heijden and Kuyper, 2001), towards resolving the selection problem for the most specific 

fungal partner.  

 

With nematode (S. bradys or Meloidogyne spp.) inoculation, yam plantlets inoculated with G. 

mosseae, followed by S. bradys, produced heavier tubers compared to S. bradys alone for 

TDa98-165, TDa98-01183 and TDr97-00551. Interestingly, a stimulatory effect on tuber weight 

was observed for plantlets inoculated with both G. mosseae and S. bradys compared to single 

inoculation of G. mosseae or G. dussii using cv TDa98-01183. In the second experiment, the 

tuber weight was also significantly increased for treatments with either of the AMF species 

followed by Meloidogyne spp. inoculation, compared to Meloidogyne spp. alone using cv 

TDa98-01183. These results indicate that AMF can lead to suppression of nematode damage 

through the phenomenon of compensation (Smith and Read, 2008). This means that plants 

colonized by AMF can compensate for the loss of root or root function caused by the pathogen 

infection by enhanced root growth and development (see Figure 1), nutrient uptake and water 

absorption capacity of the root system (Harrier and Watson, 2004). 

 

Our observation was similar to those undertaken by Brown and Kerry (1987), Hao et al., (2005) 

and Zum-Felde et al., (2006), who also observed that a low nematode population in dual 

combination with endophytic microbes could stimulate host plant growth and yield. Also, 

considering that tuber formation in yam is hormonally mediated (Okwor and Ekanayake, 1998), 

it may be hypothesized that G. mosseae, in combination with S. bradys challenge, affected the 

hormone balance in yam plantlets (e.g. increased synthesis of growth regulators in response to 

nematode infection), leading to increased production of yam tubers. McKenry et al., (2001) 

reported that grapevine (Vitis spp.) (cvs VR 039-16, Schwarzmann, and Freedom rootstocks) had 

grown larger in the presence of Xiphinema americanum than in its absence. The mechanisms by 

which AMF reduces nematode damage has not been fully determined. Hypotheses range from 
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depression of nematode development by competition for nutrient and space (Smith et al., 1986; 

Elsen et al., 2003), microbial changes in the mycorrhizosphere that disturb nematode chemotaxis 

(Linderman, 1988) to induced resistance through a pre-activation of gene and corresponding 

proteins responsible for plant defence against pathogen attacks (Slezack et al., 2000). For an 

efficient option for using AMF to protect against nematode damage, AMF essentially need to be 

established in the roots before nematode attack in order to provide biological control (review 

Borowicz, 2001; Diedhiou et al., 2003). For this reason, the ‘impregnation’ of AMF at weaning 

of in vitro plantlets would appear suitable and appropriate, before planting out in the field, where 

nematode (and other pest and disease) challenge would occur.  

 

Concerning the migratory endo-parasitic nematode S. bradys, our results clearly indicated for the 

first time that yam plants inoculated with AMF species can produce healthier tubers, compared 

to non-AMF plants, in the presence of nematodes, while additionally suppressing S. bradys 

densities. Tubers harvested from AMF inoculated plantlets followed by nematode inoculation 

had lower cracking and rotting symptoms caused by S. bradys. Similar studies assessing the 

impact of AMF on nematode pests on banana (Elsen, 2003) and potato (Yao et al., 2002) have 

also recorded reduced nematode symptoms. In the case of yam tubers, the severity of surface 

cracking and dry rot is well correlated with tuber nematode density (Bridge et al., 2005), 

although tubers showing cracking symptoms typical of S. bradys infestation have been observed 

which are not related to the nematode but to other unknown factors (Baimey et al., 2005; Coyne 

et al., 2006). Furthermore, we observed that S. bradys inoculation negatively affect AMF spore 

production while no effect was recorded on AMF root colonization. However, the present results 

conflict with those recorded in a study on bananas where it has been reported that AM root 

colonization was negatively affected by nematodes (Elsen et al., 2003; 2008).  

 

Concerning the effect of AMF inoculation on sedentary endo-parasitic nematodes, the results of 

our study have shown for the first time that AMF plantlets can suppress galling damage 

symptoms caused by Meloidogyne spp., although there was less impact on nematode densities. 

Results from the current study reflect to some degree, those of Ryan et al. (2003), who reported 

that the population of potato cyst nematodes (sedentary nematode) was higher by 200% for 

Globodera rostochiensis and 57% for Globodera pallida on potato plants inoculated with 
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Vaminoc© (commercial product with combination of three Glomus spp.), compared to non-

inoculated plants. Diedhiou et al., (2003), also reported that a combined application of the AMF 

G. coronatum and a non-pathogenic Fusarium oxysporum strain Fo162 led to a higher number of 

nematodes per gall on mycorrhizal than non-mycorrhizal plants. However, the present results 

differ from those of many studies, where AMF suppression of Meloidogyne spp. density and 

damage has previously been reported (review Azcon-Aguilar and Barea, 1997; review Hol and 

Cook, 2006; Li et al., 2006). 

 

The present study shows that commercial G. mosseae and G. dussii could easily associate with 

yam plantlets and produce high quantities of spores. No single yam cultivar, within the study, 

appeared to be a more suitable host than the others, across both experiments. The cv. TDa98-

01183 was successfully associated with both AMF species, with high root colonization and spore 

numbers produced. The high root colonization and high spore production had earlier been 

observed on yam plantlets, indicating the high mycorrhizal association with yam of a few 

cultivars with G. etunicatum, G. hoi and Acaulospora scrobiculata (Tchabi et al., chapters 3 and 

4). In contrast to the high spore production, there was relatively low root colonization in the 

second experiment.  Differences in root colonization was also observed among AMF species, 

with higher levels recorded for G. mosseae, compared to G. dussii, which may be explained by 

the difference in inoculum infectivity (Abbott and Robson, 1981; Cavallazzi et al., 2007), or the 

difference in compatibility between both AMF species and the yam cultivars used in the present 

study (Smith and Read, 2008). Alternatively, the specificity of yam species and cultivars may 

account for colonization differences, with yam being more compatible with G. mosseae than G. 

dussii in general. Recent work has demonstrated quite a high level of variability in yam cultivar 

specificity with AMF, recorded as differences in root colonization among cultivars (Uchendu, 

2000; Dare et al., 2007), while D. rotundata cv TDr89-02461 and D. cayenensis cv TDc98-136 

were shown to be highly colonized by bulk AMF from soil samples at up to 90% (Tchabi et al., 

submitted; chapter 3). However, it is interesting to note that the G. dussii inoculum used in the 

current study was originally sourced from West Africa, while G. mosseae is derived originally 

from Europe (Biorize, pers. comm.), indicating that geographical or ecological origin is not 

entirely an indicator of their potential to form associations with certain crops, to improve crop 

growth or as biocontrol agents. 
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Conclusion 

Our results have shown for the first time that a commercial AMF can stimulate yam growth 

parameters. However, AMF species influence on plant growth appears highly dependent on the 

plant genotype with which they are associated. The fact that tuber cracking, dry rot, and galling 

symptoms in mycorrhizal yam were lower, compared to non-mycorrhizal plants, even though 

yam tuber weight was lower in some cases, indicates that mycorrhizal plants probably activate 

defence genes or improve compensation of root losses due to nematode attack, which leads to 

suppression of nematode density and injury. Taking into consideration tuber weight, number of 

tubers, AMF attributes, and nematode management, G. mosseae, originating from Europe, was a 

more effective AMF symbiont for association with yam plantlets under the conditions of the 

study (in pots on vitroplants) than G. dussii originating from West Africa. 
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CHAPTER 6: General discussion 

 

Beneficial plant-microbe interactions in the rhizosphere play a crucial role for plant health and 

soil fertility (Cardoso and Kuyper, 2006). The arbuscular mycorrhiza (AM) is the most widely 

occurring and important microbial symbiosis for agricultural crops (Smith and Read, 2008). In 

recent years, a wealth of evidence has shown that arbuscular mycorrhizal fungi (AMF) provide 

increased efficiency of use of soil nutrients and water, and enhance plant growth, particularly 

under sub-optimal soil conditions such as P-limitation, which is common in tropical soils due to 

leaching or/and severe immobilization (Clark and Zeto, 2000; Schlecht et al., 2006). 

Additionally, the use of AMF for suppression of plant root diseases and nematodes has been 

recognised and is gaining increasing attention recently (Hol and Cook, 2005). 

 

Yam (Dioscorea spp.) is the most important tuber crop in terms of area of production in West 

Africa, particularly in Benin and Togo (IITA, 2006). It also provides cash income for a wide 

range of smallholders, including many women as producers, processors and traders (Orkwor and 

Ekenayeke, 1998). Yam is also particularly symbolic in the cultural and traditional history of the 

region and is integrally woven within the fabric of society (Coursey, 1967). Currently, the 

situation regarding yam production in West Africa has been summarised as, “the annual demand 

for yam consumption is increasing, the surface used for yam cultivation is increasing but the 

annual production per hectare or the yield is decreasing considerably”. Two main problems were 

defined for yam yield decrease: soil fertility (IITA, 2006; Schlecht et al., 2006) and disease 

damage (Odu et al., 2004; Egesi et al., 2007a; b), especially nematode damage due to 

Scutellonema bradys and Meloidogyne spp. (Coyne et al., 2005). 

 

 Nematodes can successfully be managed by nematicides (carbamates and organophosphates), 

but these are not commonly used due to a number of factors, one being their perceived high cost. 

Instead they use cheaper (sometimes obsolete or banned), poor quality (following extended 

storage and often dubious repackaging) or unconventional products such as pounded disused 

batteries, which leads to well-documented pollution and health problems (MDR, 2000; IITA, 

2006). Recent studies at the International Institute of Tropical agriculture (IITA) show that hot 
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water therapy effectively reduces yam nematode infection of tubers and can reduce losses in the 

field, which can result in a production increase of up to 60% (IITA, 2006). However, although 

feasible, producing clean (healthy) planting material through the use of pesticides or heat 

treatment can be costly and often impractical. Management of nematode pests of yam should 

effectively involve an integrated approach, using a number of suitable options. Specifically 

compatible microbial agents, such as AMF, which provide resistance/tolerance against pests or 

diseases and increase yam establishment under poor soil conditions, may contribute to a 

sustainable practice for improving yam production.  

 

The current study was therefore undertaken to address the knowledge gaps on the occurrence of 

AMF in sub-Saharan West Africa and on the AM status of yam on the one hand, but also the 

effectiveness of different AMF species to colonize yam roots and promote yam growth and 

disease control, especially nematodes. Several aspects of AMF ecology such as AMF richness in 

relation to their presence in various ecological zones and following increased land use intensity 

were assessed. The interaction between AMF and yam and the interaction between AMF, yam 

and nematodes were also examined. 

 

Concerning the occurrence of AMF in sub-Saharan West Africa, soil samples were initially 

collected in the yam growing areas of Benin, in the so called “yam belt”, to assess the impact of 

agricultural practices and of dry season length in respective ecological zones on AMF species 

richness (Chapter 2). The soil sample sites included forests and their adjacent yam fields, peanut 

fields, mixed culture fields, cotton fields and 6-7 year old fallowed lands. Results showed that 

the savannas of Benin contain a high natural AMF species richness. This natural AMF species 

richness is significantly affected by the length of dry season among the three ecological zones 

with an apparently increasing AMF richness from the wetter Southern Guinea savanna through 

the Northern Guinea savanna to the drier zone of the Sudan savanna. The underlying 

mechanisms for the AMF community shifts among ecological zones remain unclear, but may be 

due to a reduced activity of spore grazing soil biota and lower fungal respiration in the driest 

zone (Baktiar et al., 2001). Within each ecological zone spore densities, as well as species 

richness, were affected by forest clearance, i.e. following “slash and burn” for yam production in 

the first year and the subsequent years of land cultivation with various other crops. Especially 
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under intensive cotton production, AMF richness was negatively influenced and appeared not to 

be readily restored by fallow thereafter. In tropical regions several studies have shown the impact 

of agricultural practices on AMF species richness and abundance, e.g. in Kenya (Mathimaran et 

al., 2007), Ethiopia (Mulata et al., 2007), South America (Dodd et al., 1990), India (Harinikumar 

and Bagyaraj, 1988), China (Wang and Vestberg, 2008) and in West African countries such as 

Burkina Faso and Niger (Bagayoko et al., 2000), Togo and Burkina Faso (Marschner et al., 

2004). Although the current study was relatively intense across a range of agro-ecological zones 

in West Africa, given the geographic scale of the region, its climatic diversity, agricultural 

breadth - considering the size of the continent as a whole - our study has hardly touched upon the 

situation of AMF in Africa. However, our “small” study established a wide range of species 

indicating the potential magnitude of what possibly exists in terms of species diversity and extent 

of undescribed species yet to be discovered. The present results also indicate, to a certain extent, 

the potential biodiversity losses if actions are not taken to explore, preserve and utilise AMF 

before it is too late. We suggest mycorrhizal management through agroforestry - including the 

use of legume plants - and reduced soil disturbance, to improve mycorrhizal persistence. 

 

In order to screen AMF species for their potential to improve yam growth and nematode control, 

it is necessary to understand which AMF species can easily associate with yam (Chapter 3). 

Within the current study, soil samples collected from three different forests and their adjacent 

yam fields were used as inoculum.  By using sterile micropropagated plantlets of two yam 

species, D. cayenensis and D. rotundata (cv. TDc98-136, cv. TDr89-02461) as trap plants and 

inoculation with the soil inocula, 28 and 29 AMF species were identified as symbionts of D. 

cayenensis and D. rotundata, respectively. AMF species identified as symbionts of yam belong 

to six families, mainly 18 species from Glomeraceae and 13 species from Acaulosporaceae, but 

also some species from Gigasporaceae, Entrophosporaceae, Archaeosporaceae and 

Paraglomeraceae. The current study thus provides one of the most detailed investigations to date 

on AMF status of yam (Ahulu et al., 2005; Dare et al., 2007; Oyetunji and Afolayan, 2007). 

Currently, information is still limited on how mixed communities of AMF species compete for 

root colonization and how they affect host plant growth, health and, consequently crop yield 

(Jansa et al., 2008). Therefore, the current study definitively indicates the need for more detailed 

and comprehensive investigations of AMF communities and their value to agriculture in West 
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Africa (and beyond). We suggest the use of molecular techniques to identify the AMF species 

which actually colonize the roots at the various growth stages of yam, even during early yam 

root growth in trap cultures or under field situations.  

 

In the present study the interaction between yam and indigenous as well as exotic AMF species 

was assessed (Chapter 4). Firstly, D. rotundata cv. TDr89-02461 plantlets were inoculated with 

G. etunicatum strains from Africa, India, Bolivia and Central Europe and compared against three 

AMF isolates from temperate Europe. Despite the relative similarity of AMF infectivity (27-

61%), plant response to AMF colonization showed that tuber weight was significantly increased 

when infected with African strains and certain strains from other tropical regions, while the 

phosphorus (P) concentration in yam tubers was significantly increased with Central European 

strains, compared to non-mycorrhizal plants. These results suggest that similar species of AMF 

(e.g. G. etunicatum and Glomus sp. resembling G. luteum) and even same species confer 

different physiological benefits to the same plant species. Intraspecific variation in function of 

AMF was also reported on cucumber (Cucumis sativus) with G. mosseae, G. claroideum and G. 

geosporum isolates originating from different geographical zones (Munkvold et al., 2004). In 

addition, there was a negative correlation between yam tuber weight and tuber P concentration, 

at least for the cv. TDr89-02461 and the AMF species and isolates used in the present interaction 

study. The results clearly indicate that the hypothesized functional complementarity of AMF 

(Read, 1998; Koide, 2000) or incompatibility of function between AMF (Fitter et al., 2005) 

could exist, not only between, but also within AMF species. The physiology behind this different 

functionality of AMF species or isolates has yet to be determined. But, for the ‘yam belt’ in West 

Africa, it will be interesting to identify AMF species and isolates that promote growth of high 

quality tubers, confering efficient and sustainable use of soil P and – of particular interest - 

supporting yam production for more than one year after forest clearance on the same land, or in 

crop rotation systems without fallows. Furthermore, the same yam cultivar was inoculated with 9 

AMF species (including 3 strains for each species, i.e. a total of 27 AMF strains) from Africa and 

compared to an inoculation with 3 AMF species from Biorize Company©. The results from pots 

showed that G. mosseae, G. hoi, G. etunicatum, A. scrobiculata and A. spinosa generally 

increased tuber weight while strains of G. sinuosum and Kuklospora kentinensis generally did 

not. Our results clearly indicated that the effect of AMF isolates on yam cv. TDr89-02461 yield 
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depends on AMF species, which can be related to the genetic difference between AMF species 

(e.g. Bâ et al., 2000; Munkvold et al., 2004). In this study, the interspecific variability among 

AMF species in promoting yam yield was high while the intraspecific variability in some AMF 

species was rather low. The low level of intraspecific differences of AMF isolates on promoting 

yam growth recorded in the present study (only from 3 AMF species: G. claroideum, A. 

scrobiculata and G. etunicatum) might be attributed to the few isolates (3) of each AMF species 

(Munkvold et al., 2004). In contrary, some studies have reported intraspecific differences in 

mycorrhizal plant growth response, by including only two isolates of each of G. mosseae and G. 

caledonium (Carling and Brown, 1980) or three isolates of G. mosseae (Stahl et al., 1990). 

Taking into account the ability of AMF isolates or species to promote growth of 

micropropagated plantlets of yam cv. TDr89-02461, we hypothesize that the performance of a 

single host yam cultivar depends on the particular AMF isolates associated, and therefore it is not 

easily possible to generalize the performance of a single AMF isolate against the entire range of 

possible isolates within a particular AMF species, or to the entire range of cultivars of a host 

plant species. 

 

The results from the interactions between two AMF species (G. mosseae, G. dussii) and four 

yam cultivars (TDr745, TDr97-00551, TDa98-01183 and TDa98-165) (chapter 5) showed the 

potential of AMF species inoculation to improve yam growth. However, the beneficial effects 

provided by different AMF species to different yam cultivars differed and our results highlight 

the importance of the AMF species and the yam genotype on the response of yam to AMF 

inoculation. Our results showed that AMF inoculation significantly increased tuber weight of D. 

alata cvs (TDa98-01183 and TDa98-165). Despite being significantly colonized, cv. TDr745 did 

not physically respond to any of the AMF species, while cv. TDr97-00551 had lower yield 

following G. dussii colonization compared to the control. These results indicate that D. alata 

cultivars respond positively to AMF colonization through improved tuber yield, while D. 

rotundata cultivars did not respond in the same way, at least for the parameters analyzed in the 

present investigation and with the AMF species used. The difference between the two Dioscorea 

species in response to AMF colonization can partly be related to the crop morphological 

properties, particularly the hairyness of the root systems of yam species, with coarse and short 

root hairs on D. alata and fine, long hairs on D. rotundata (Orkwor and Ekanayeke, 1998). It was 
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suggested that  few and short root hairs are indicative for plants responding to AM colonization 

(Baylis, 1975; Bâ et al., 2000). Alternatively, Orkwor and Ekanayeke (1998) reported that D. 

alata generally produces larger tubers, compared to D. rotundata, indicating that D. alata 

requires higher nutrient levels for growth, a requirement that can be partly fulfilled by AM 

colonization. Additionally, Asiedu et al. (1998) and Dare et al. (2007) commented that the 

genotype and the genotype X environment interactions can affect yield and/or yam response to 

AM colonization under field conditions. 

 

 With regard to control options of nematodes (S. bradys or Meloidogyne spp.) infesting yam, the 

inoculation of two AMF species (G. mosseae, G. dussii) was assessed for their effect on yam 

growth and yield, nematode densities and nematode damage to yam tubers (Chapter 5). This 

experiment was undertaken in consideration of intensification of yam production by biocontrol 

measures as opposed to using fertilizers or nematicides for nematode management (Coyne et al., 

2004; Bridge et al., 2005). Using micropropagated yam plantlets there appears to be a better 

ability of AMF to suppress S. bradys attack than Meloidogyne spp., but this requires further 

substantiation, particularly under field conditions. Scutellonema bradys densities were in general 

suppressed following AMF inoculation prior to nematode inoculation, but Meloidogyne spp. 

densities were not necessarily suppressed. Most studies on AMF-nematode interactions have 

reported on the suppression of sedentary endoparasitic nematodes (e.g. Meloidogyne spp.) 

compared to migratory endoparasitic nematodes (e.g. S. bradys) (Hol and Cook, 2005). 

However, AMF suppression of migratory endoparasitic nematodes has been reported in banana 

(Elsen et al., 2003, 2008) and on quite a range of other crops (Borwicz, 2001; Hol and Cook, 

2005). Similar studies assessing the impact of AMF on nematode pests in potato (Yao, 2002) 

have also reported reduced nematode symptoms and population densities. The current study 

further indicated that AMF application reduced galling damage symptoms of Meloidogyne spp. 

compared to non-AMF controls even though Meloidogyne spp. population densities were not 

suppressed. The suppression of Meloidogyne spp. damage by AMF inoculation has previously 

been reported in a number of studies (review of Azcón-Aguilar and Barea, 1997; review of Hol 

and Cook, 2006; Li et al., 2006), indicating their general potential as a management tool.  
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While not conclusive, the present results on nematode control provide basic and useful 

information to warrant their further investigation as an alternative, ecofriendly method of yam 

nematode management. Taking into account our experimental findings, we can speculate that for 

an efficient use of AMF to protect against nematode damage, AMF should be established in roots 

prior to nematode attack, in order to provide biological control (review Borowicz, 2001; 

Diedhiou et al., 2003). For this reason, we suggest that the ‘impregnation’ with AMF at weaning 

of in vitro plantlets would be an idealsolution, before planting out in the field, where nematode 

and other pest and disease challenges will occur. 

 

Conclusion and perspectives: 

The present work constitutes the first attempt to evaluate the diversity of AMF in Sub-Saharan 

savannas and agro-(eco)systems in Benin, West Africa - and also the first attempt to study AMF-

nematode interactions in Dioscorea spp. Three principal conclusions can be drawn from the 

present work: 

 

a-) West African savannas contain a high natural AMF species richness, which is significantly 

affected by the common agricultural land use practices, and the length of dry season. The soil 

inocula are highly infective, but for AMF-trapping and propagation studies, soil sampling should 

be conducted in the dry season and not in the wet season as the AMF propagation success with 

soil inocula from the wet season was poor. 

 

b-) Yam is highly mycorrhizal with yam roots hosting numerous AMF species as indicated by 

the finding of > 30 AMF species in pots containing yam micropropagated plantlets that were 

used as trap plants.  

 

c-) The functional study with several AMF species indicated a high potential of indigenous AMF 

to promote yam tuber growth and to provide bioprotection against nematodes. However, 

different AMF species and isolates are not equally beneficial to yam and, vice versa, different 

yam cultivars do not equally benefit from individual AMF species or strains. Our results indicate 

that the performance of a single specific host can depend on the AMF strain and similarly, the 

performance of a single AMF strain can depend on the specific host plant species or cultivar.  
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Due to the high level of response by certain yam cultivars to AMF inoculation, we suggest the 

inoculation of micropropagated D. alata cvs. TDa98-01183 and TDa98-165 or additionally D. 

rotundata cv. TDr89-02461 as model plant species in future AMF studies on yam. Furthermore, 

G. mosseae, G. hoi, G. etunicatum, A. scrobiculata and A. spinosa appear most adequate as AMF 

model species for future investigations on the interaction between yam, AMF and pathogens 

(nematodes, fungi, bacteria) for improving yam production. We believe that this pioneering work 

provides a solid platform of information upon which to build further towards understanding the 

ecology of AMF in West Africa, and furthermore represents a basis for future studies on the 

function of AMF for sustainable crop production in West African agroecosystems. 

 

For further AMF studies on yam, we recommend to focus on the following two objectives: 

Firstly, in order to evaluate the AMF species associated with yam, molecular tools should be 

applied to identify the AMF species colonizing the roots. Roots can be collected from field sites 

(e.g. from different ecological zones) or in trap cultures using soil inoculum. The sampling can 

be undertaken at two months intervals to enable interpretation of AMF population dynamics 

inside the roots. The results can be compared with morphological identifications of spores 

present in the yam rhizosphere. 

Secondly, we suggest that greenhouse screening is continued for functional compatibility 

between yam cultivars and AMF species/strains subjected to a challenge with nematodes in order 

to select the AMF most promising as bio-protectants. All the isolated native AMF strains present 

in the Gene Bank should be tested, singly or in combinations, for selecting the strains most 

efficient in mediating yam yield improvement and nematode suppression. Another possibility is 

the selection of two or more AMF species or strains performing in concert one or both functions. 

Once the most appropriate AMF strains - or combinations of strains - are identified by the 

greenhouse pot experiments, field experiments have to be conducted for validation.  

 

Finally it remains the task to convince the biotechnologists about the importance to establish the 

AM symbiosis already in the sterile micropropagated plants that are still free of pathogens. Plant 

pathologists and microbiologists engaged in mycorrhizal research may be unaware of the 

problems of micropropagation. We suggest that biotechnologists and plant breeders integrate 
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AMF knowledge and combine the technology with micropropagation techniques for stronger, 

more robust and healthier plants, which have ‘in-built’ protection against pests and pathogens. 
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