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SMALL POINTS ON SUBVARIETIES OF A TORUS

FRANCESCO AMOROSO and EVELINA VIADA

Abstract
Let V. be a subvariety of a torus defined over the algebraic numbers. We give a
qualitative and quantitative description of the set of points of V of height bounded by
invariants associated to any variety containing V. Especially, we determine whether
such a set is or is not dense in V. We then prove that these sets can always be written
as the intersection of V with a finite union of translates of tori of which we control the
sum of the degrees.

As a consequence, we prove a conjecture by the first author and David up to a
logarithmic factor.

1. Introduction

In this article, we study the distribution of the small points on varieties over @
imbedded in the torus G%, with n > 2. To simplify the presentation, we fix the usual
embedding of G/ in P given by (xy,...,x,) — (1 : x; : --- : x,). A variety
V C G, is the intersection of G, with a variety of P defined over @ Note that the
varieties that appear in this article are not necessarily irreducible or equidimensional,
but they are all defined over @

We say that
. V is torsion if V is the translate of a subtorus by a torsion point;
. V is transverse if V is irreducible and is not contained in any translate of a

proper subtorus.
Foraset S C G, we denote by S the Zariski closure of S in G”. On P, we consider
the Weil logarithmic absolute height, denoted by A(-). For 8 > 0, we define

S©) = {e € SQ) : h(e) < 6}.

In the present work, we describe V(6) in a qualitative and quantitative respect,
for different positive reals 8 depending on V. Among other results, we prove several
sharp effective versions of the toric Bogomolov conjecture. Before we present our
main result, we give an overview of the developments around this problem.
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2 AMOROSO AND VIADA

Assume that V is not a union of torsion varieties. The toric Bogomolov conjecture,
nowadays a theorem of Zhang, claims

f%S(V)=inf{6 >0 : V() =V} > 0.

Let us introduce other important invariants of a variety V. C G/.. The degree of
a subvariety of G/, is the degree of its Zariski closure in [P". The obstruction index
(V) is the minimal degree of a hypersurface containing V. By a result of M. Chardin
[C], for V equidimensional,

(V) < ndeg(V)! odimV) (1.1)

Define §(V) as the minimal degree § such that V is, as a set, the intersection of
hypersurfaces of degree at most 4. Finally, define §,(V') as the minimal degree §, such
that there exists an intersection X of hypersurfaces of degree at most §y such that any
irreducible component of V is a component of X. If V is equidimensional, then

o(V) < 8o(V) < 8(V) < deg(V) < §o(V) ™™, (1.2)

The first three inequalities are immediate. The last one follows from [P2, Corollary 5,
p.357] (withm = n, S = P", and § = §o(V)).

Let V be a transverse subvariety of G. In [ADI1], the first author and David
conjecture

AE(V) = c(mao(V) ™!

for some c(n) > 0. In [AD1, Theorem 1.4], they prove

PES(V) = c(m)o(V) ™ (logBe(V)) o™

)

where A(k) = (9(3k)F+1Hk,

Their proof is long and involved. Mainly, they need an intricate descent argument,
hard to read by non specialists. This descent has been used in several occasions by
other authors. Our first achievement (Corollary 2.3) is a simple and short proof of a
sharp version of [AD1, Theorem 1.4] just mentioned.

Following [BZ], we define V? as the complement in V of the union of all translates
of subgroups of positive dimension contained in V. Bombieri and Zannier [BZ] and
Schmidt [S] prove that, outside a finite set, the height on VO(@) is bounded from
below by a positive value that depends only on the ideal of definition of V and not on
the field of definition of V. Later, their bound was considerably improved by David
and Philippon [DP]. They consider an irreducible variety V € G < (P')" € P>~
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Let

)7dim(V)

g = (2492 deg(V)(log(deg(V) + 1)) (1.3)

(where deg(V) is the degree of the Zariski closure of V in P ~!). David and Philippon
prove that the set V(g ~*/*) is contained in a finite union of translates B; of tori such
that B; € V and ) _deg(B;) < q.

In [AD?2], the following lower bound is conjectured.

CONIJECTURE 1.1
Let V. C G be an irreducible variety. There exists c(n) > 0 such that, for all but
finitely many a € V°(Q),

h(a) > c(n)s(V)™". (1.4)

More precisely, there exist c1(n), ca(n) > 0 andl € N such that

V(eimsv)™) < | B

j=1

where the B; C 'V are translates of tori and

I
Z deg(B;) < c2(m)s(V)".

j=1

From a variant of [AD1, Theorem 1.4], the first author and David deduced a bound of
the type (1.4) up to a logarithmic factor. More precisely, in [AD2] the authors defined
8(V) as the minimal degree & such that V is, as a set, a component of the intersection
of hypersurfaces of degree at most 6. Note that their definition of §(V') coincides with
our definition of §o(V). In [AD2, Theorem 1.5], they claimed that, according to their
notation, for all but finitely many & € VO(@),

h(@) > c(md(V)™ (log38(v)) """,

where c(n) > 0 and A(k) = (9(3k)**V)k. We take the opportunity to mention here an
error in their approach. Using their definition of §(V'), at [AD2, p. 561, point (a)] they
cannot ensure that V' is incompletely defined by forms of degree at most n D§(V'). The
problem is the following. Let V be incompletely defined by forms of degree at most §,
and let Z be a hypersurface of degree at most § not containing V. Then an irreducible
component of V N Z is not a priori incompletely defined by forms of degree at most
8. Their proof can be corrected by defining §(V') as we have done here.



XXX

-

dmj8203

August 27, 2009 13:54

4 AMOROSO AND VIADA

The method of [AD2] cannot produce a bound for the sum of the degrees of the
translates. A close inspection of their proof shows that one can only bound the degree
of each translate B by a constant (depending on n) times §(V)**"".

The main result of this article provides a complete description of the points of
a variety V of height bounded by different invariants. Let V. C G be a variety of
codimension k. We define

O(V) = 8(V)(200n° log(n?5(V)))" """, (1.5)

We decompose V' as a (reduced) union X; U- - -U X,,, where X ; is an equidimensional
variety of codimension j. We allow the empty set as an equidimensional variety of
arbitrary codimension with no components and degree zero. Our main theorem is the
following.

THEOREM 1.2
Let V = X, U---U X, be as before, and let 6 = 0(V') be as in (1.5). Then

VO ) =G, U---UG,,

where G ; is either the empty set or a finite union of translates B ; of tori of codimension
J such that 8o(B; ;) < 6. Moreover, forr =k, ...,n,

r

> 07 deg G, < Z 0" deg X; < 6.

i=k i=k

The proof is based on a new induction that is simple and optimal. (For more details on
the structure of the proof, see Section 2.) Theorem 1.2 has interesting consequences.
First, it immediately implies Conjecture 1.1, up to a logarithmic factor. Especially, for
an equidimensional V of dimension d, the cardinality of the set V°(@~!) is bounded
by 69 deg(V) < 6".

Second, it generalizes Conjecture 1.1 to all varieties, not only irreducible or
equidimensional ones.

A nice feature of Theorem 1.2 is that it provides a complete description of
V(@(W)™!) for (W) associated to any variety W containing V. More precisely, we
have the following.

COROLLARY 1.3
Let V.C W be subvarieties of G.. Let O(W) be as in (1.5). Then

v(ew)™) c UB,-,
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where the Bj € W are translates of tori such that 5o(B;) < (W) and

> deg(B)) < H(W)".
J

As a consequence, if there exists a component of V which is not contained in any
translate B C W with §o(B) < 0, then V(@(W)™") is not dense in V.

In other words, the distribution of the points on a variety V' depends on the varieties
that contain V. For instance, suppose that V is irreducible. Choosing respectively
W =V, W an intersection of hypersurfaces of degree at most §o(V) such that V is a
component of W, and W a hypersurface of degree w(V') containing V', Corollary 1.3
describes the points of V of height bounded by the inverse of 6(V), §o(V), and w(V),
up to a remainder term (see Corollaries 5.1 and 5.2). We note that, for transverse
varieties, Corollary 1.3 tells us that, for any W 2 V, the set of points of V of height
bounded by the inverse of §(W), up to a remainder term, is never dense.

In Section 5, we also clarify the situation with an example that shows that our
results are essentially sharp.

Our results have interesting applications.

Bombieri, Masser and Zannier [BMZ] proved that the intersection of a transverse
curve ¢ with the union of all algebraic subgroups of codimension 2 is a finite set.
A recent approach to this kind of problem makes use of an effective version of the
Bogomolov theorem (see [V] in the elliptic case and [H] in the toric case). More
precisely, using a bound for the cardinality of the set of small points on % one can
provide a bound for the intersection of ¢ with a union of translated codimension-two
algebraic subgroups (see [H, Section 7] and for the elliptic case [V, Section 14]). In
Corollary 2.3, we give an upper bound for the number of points of height essentially
bounded by the inverse of w(%). Our estimate improves the one used by Habegger. It
also suggests a sharp conjecture in the abelian case.

Let V be a subvariety of G,. Following Schmidt [S], we denote by V* the union
of all torsion varieties contained in V. Let § = 8§(V), and let N = (":5). In [S,
Theorems 1(ii), 2(iii)], Schmidt proves that V* is a union of

1< (28)'(118)" exp(4N!) (1.6)

torsion varieties. Polynomial bounds in § are given in [DP], [R] and [AS]. Theorem 1.2
allows us to further improve these results. In Corollary 5.3, we prove

n?(n—1)>*

t < 8"(200n° log(n*s))

In addition, a bound for the cardinality of the set of small points of V? is used in
the proof of a quantitative version of the Mordell-Lang plus Bogomolov problem. Let
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I" be a subgroup of G, of finite rank. Let ¢ > 0. We consider the neighborhood of T,
r, = {(x eGl : a=xzwithx € Fandh(z)ge}.

The Mordell-Lang plus Bogomolov theorem (see [Po]) asserts that V NI, is contained
in a finite union of translates of subtori contained in V. Evertse [E] and Rémond [R]
give a quantitative version of this result. To estimate the number of “small points” in
V N T, they need a bound for the cardinality of VO(C) N T, for C > 1.

A first bound for the cardinality of V°(C) N T appears in [S, Theorem 5]. Later,
David and Philippon (see [DP, Theorem 1.4]) improve Schmidt’s result obtaining

vc)nr| < gt

where ¢ is as in (1.3). The method of Schmidt can be easily extended to the case
& > 0. Using the bound given in Theorem 1.2, we deduce the following.

COROLLARY 1.4
Let T be a subgroup of G of finite rank r, and let V. C G be a subvariety of
codimension k. As in (1.5), let

(V) = 5(V)(200n° log(n?s(v )" """,
Then for C > 1 and for any nonnegative ¢ < (260(V))™!,

[VO(C)NT.| < (5nCYO(V)™.

With respect to [DP, Theorem 1.4], our bound improves not only the dependence
on deg(V) but also the dependence on n, at least for varieties of large dimension or
degree.

In the special case of a linear variety, Corollary 1.4 can be used to improve
considerably the upper bound by Evertse, Schlickewei, and Schmidt [ESS] for the
number of nondegenerate* solutions of the equation

aty +aar + - +a,a, =1 witha €T, (1.7)

where (ay, ..., a,) € G (K) and I is a subgroup of G2 (K) of finite rank r (K any
field of characteristic zero). Their bound is exp((6n)*'(r + 1)). Using Corollary 1.4,
this can be improved to (82)* @ +1saving an exponential (see Theorem 6.2). As
an application of this estimate, we also improve of one exponential the result on
multiplicities for a simple linear recurrence sequence of [ESS] (see Corollary 6.3).

*A solution is called nondegenerate if no subsum of the left-hand side of (1.7) vanishes.
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In the next section, we detail the structure of the article. In Sections 3 and 4,
we prove the theorems that lead to the proof of Theorem 1.2, and we present their
corollaries. In Section 5, we prove our main theorem and its corollaries. In the last
section, we discuss some applications to the Mordell-Lang plus Bogomolov problem.

2. Structure of the article

The proof of an effective Bogomolov conjecture given in [AD1] is long and technical.
It relies on the fact that V' is, in some sense, p-adically close to ¢V for all p-torsion
points ¢. But also all the translates of V by p-torsion points are p-adically close
to each other. This gives a first simplification: we replace the vanishing principle
used in [AD1] by a symmetric vanishing principle. For technical reasons, it is more
convenient to use an interpolation determinant than an auxiliary function. This is
presented in Section 3.1, where we encode the Diophantine information needed for
the proof of Theorem 2.2. The main result of Section 3.1 is Proposition 3.2. It gives an
inequality involving some parameters, the essential minimum of a subvariety of G,
and two Hilbert functions.

The new key idea to decode the Diophantine information is to use sharp estimates
for the Hilbert function. The upper bound is a variant of the main result of [C]. It is
proved in [AD1, Lemma 2.5]. The lower bound is a deep result of M. Chardin and P.
Philippon [CP, Corollary 3]. In Section 3.2, we use these tools to prove the following.

THEOREM 2.1
Let V be an irreducible subvariety of G”, of codimension k which is not a translate
of a subtorus. Let

6o = 8o(V)(27n log(n*8y(V)))"".

Then V(6, Y is contained in a hypersurface Z of degree at most 6, which does not
contain V. In particular, V(GO_I) CVNZCVand j®(V) > 90_1.

A preliminary version of Theorem 2.1 was proved in [A]. That preprint is superceded
by the present article; therefore it will not be published. A priori, it is difficult to
compare Theorem 2.1 with [AD1, Theorem 1.4]. On the one hand, in Theorem 2.1 we
do not assume that V is transverse but only that V' is not a translate of a subtorus. On
the other hand, the bound in Theorem 2.1 depends on §y(V) which could potentially
be equal to the degree of V, while

(V) < ndeg(V)"/eim™),
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An innovative reduction process, due to the second author and based on Theo-
rem 2.1 applied to each variety involved, allows us to deduce [AD1, Theorem 1.4]. In
Section 4, we prove the following more general result.

THEOREM 2.2
Let Vy € Vi be subvarieties of G, of codimensions ko and k,, respectively. Assume
that V, is irreducible. Let

6 = 8(Vy)(200n° lOg(}’ZZCS(Vl)))(k°7k1+1)koll‘

Then

. either there exists a translate B of a subtorus such that Vo € B C V, and
do(B) < 0,

J or there exists a hypersurface Z of degree at most 0 such that Vo € Z and

Vo0~ C Z. Then Vo(8~") C Vo N Z C Vg and clearly j®(Vy) > 67"

This result has remarkable consequences. The most immediate corollary is an im-
proved and explicit version of [AD1, Theorem 1.4].

COROLLARY 2.3
Let V. C G be an irreducible variety of codimension k. Assume that V is not
contained in any translate B of a proper subtorus with §y(B) < 6 for

0 = w(V)(200n° log(n?w(V))"".

Then V(0~") is contained in a hypersurface Z of degree at most 6 such that V & Z.
As a consequence, we have 1°5(V) > 07! for a transverse V and

667" < 6deg

for a transverse curve 6.

Proof

By definition of w(V'), there exists an irreducible hypersurface W of degree w(V')
containing V. As W is a hypersurface, §(W) = deg W = w(V). Apply Theorem 2.2
with Vj = V, V, = W, ky = k, and k;, = 1. Then V(6~") is contained in a
hypersurface Z of degree at most 6 such that V & Z. O

We observe that the proof of the main result of [AD1] requires several technical tools.
Namely, the absolute Siegel lemma of Zhang (see [DP, Lemme 4.7]) and an involved
variant of the zero lemma of Philippon (see [AD1, Theorem 4.2, Corollary 4.4]). The
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final step of their proof is a complicated descent argument. We avoid all these tools,
presenting a short proof relying on basic geometric arguments.

Although our main theorem (Theorem 1.2) contains an improved and explicit
version of [AD2, Theorem 1.5], we would like to deduce such a corollary as an
immediate consequence of Theorem 2.2.

COROLLARY 2.4
Let V. C G2, be an irreducible variety of dimension d. Define

0= S(V)(ZOOHS 10g(n25(V)))(’1+1)n2.

Then V(0~") is a finite union of translates B; of subtori with 8o(B;) < 6.

Proof

Let Vo be one of the finitely many irreducible components of V(6~!). Then
Vo(0~1) = Vy. Apply Theorem 2.2 to the component Vy and to V; = V. We have
ko <nandk, =n —d. Thus (kg — k; + Dkon < (d + 1)n>. It follows that Vo (6—1)
is contained in a translate B of a subtorus such that B € V and 6o(B) < 6. Varing
Vo over all components of V(6~!), we conclude that V(6—') C | J B; where B; € V
are translates of subtori with §o(B;) < 6. Remark 2.5(ii) gives V(0~') = JB;. O

A quantitative description of the small points of V arises from a refined induction
based on Theorem 2.2, due to the second author. This leads us to the proof of our main
theorem, Theorem 1.2 (see Section 5).

We conclude this section by a simple remark which proves useful in Sections 4
and 5. On a translate of a subtorus, the small points are either dense or the empty set.

Remark 2.5

@) Let B be a translate of a subtorus. Then, for ¢ > 0, either B(¢) is empty or it
is dense in B.

(i) Let V € G be an irreducible variety, and let & > 0. Assume that V (¢) is
contained in a finite union of translates of subtori contained in V. Then V(¢g)
is the union of some of these translates.

Proof

We prove the first assertion. If B(g) is nonempty, we can choose & € B(g). Then
B = T« for T a subtorus. Note that 7'(0) is the set of torsion points of 7. Since T is
a torus, we have T'(0) = T. As h(a¢) = h(e) for any torsion point { € G, we have

aT(0) C B(e) C B.

This shows that B(¢) is Zariski dense in B.
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We now prove the second assertion. By assumption, V(¢) is contained in the
union of translates of subtori contained in V. Among those translates, choose only
the translates By, ..., B, which meet V(¢). Then V(¢) C B; U---U By and B;(¢) is
nonempty. By part (i), fori € {1, ..., k},

k
B =Bi(e) < V(e) < | B;. 0
j=1

3. Diophantine analysis

3.1. Encoding the information

We denote X = (xy, . . ., X,). Given amulti-index A = (Ao, ..., A,) € N**! we define
x* = xé” - -x,’}" .Let] C @[X] be ahomogeneous reduced ideal. Forv € N, we denote
by H (@[x] /1;v) the Hilbert function dim[@[x] /11,.Let T be a positive integer. We
denote by 17 the T-symbolic power of I (i.e., the ideal of polynomials vanishing on
the variety defined by / with multiplicity at least 7). Let V be a variety of G”.. Let
I be a radical homogeneous ideal in @[X] defining a closed subvariety of P" whose
intersection with G%, is V. By abuse of notation, we set H(V;v) = H (@[x] /1;v)
and H(V, T;v) = HQ[x]/ID;v).

The following lemma is one of the key argument of our approach.

LEMMA 3.1
Let v, T be positive integers. Let W = {ay, ..., 0.} € G2 (C) be a finite set, and let
A, ..., Ap € N be multi-indices of weight v. Define

To:=(L—HW,T;v)T.
Then the multihomogeneous polynomial
Aj
F(xy,...,xp) =det(x;")i<ij<L

vanishes on (o, ..., o;) € WE with multiplicity at least Ty,

Proof

We assume A; # A; fori # j. Otherwise, F is identically zero, and the proof is
clear. If H(W, T;v) > L, the assertion is obvious. Assume H(W, T;v) < L, and
let Lo=L— HW,T;v).Let E{, E, C @[xo, ..., Xy], be, respectively, the vector
space generated by x*', ..., x* and the vector space of homogeneous polynomials of
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degree v vanishing on W with multiplicity at least 7. Then

dim(E)) = L,

dim(E,) = (" Ty

dim(E, + E») < <” * "),
n

>—H(W, T;v),

whence
>L—HW,T;v)=L,.

Thus, there exist L linearly independent polynomials

L L
xj oy
Gl = Zgljx ",...,GLU = ZgLojx /
j=1 j=1
vanishing on W with multiplicity at least 7. Without loss of generality, we can assume
det(gk’j) Liil(;iioﬂ ;é 0.

By elementary operations, we replace the last L columns of the matrix (x?" ) by
(Gk(x1), ..., Gi(x)), k=1,..., L.
Let F'(Xy, ..., X;) be the determinant of the new matrix. Then
F'(Xq,...,X)=cF(Xq,...,X7)

for some ¢ € C*. The polynomials G vanish on W with multiplicity at least
T. Developing F'(xy,...,X;) with respect to the last Ly columns, we see that
F'(Xq,...,Xy) vanishes on (ap, . .., e;) € P*(C)" with multiplicity at least Ty. O

Let [ be a positive integer. We denote by [I] : G" — G, a + (a},...,a) the
“multiplication by /.” Let ker[/] be its kernel. The following inequality is the crucial
result of this section.

PROPOSITION 3.2
Let v and T be positive integers, and let p be a prime number. Let V be a subvariety
of G". Then

H(V,T;v) \Tlogp n
H(ker[p] - V; v)) — 5 log(v + D). (3.8)

pe=) = (1-
pv 2v
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Proof
Choose any real ¢ such that ¢ > 2°%(V). For simplicity, we define S = V(¢). Then
S is Zariski dense in V. We consider the (possibly infinite) matrix

(ﬂl) PBeker[pl-S

AeN+l I =v

of rank L = H(ker[p] - V;v). We select B,,..., B8, € ker[p] - Sand A{,..., A
with |A ;| = v such that

det(ﬂ?j)i,jzl ..... L #0.

Consider a1, ..., oy € S such that ,Bj € ker[plee;. We set
Aj
F(Xy,...,xy) =det(X;”); j=1,..1 € Z[X1,...,Xc].
It follows that F(8,, ..., B;) # 0. By Lemma 3.1, F vanishes on (e, . .., ;) with

multiplicity at least

To:=(L—H({ay,...,0}, T;0))T = (L—HV,T;v))T.
Let v be a place dividing p. Recall that the inequality |1 — ¢|, < p~"/®~D holds for
every pth root of unity ¢. Thus

1/(P—1)|a

leejx — Bkl = P~ kv

for j = 1,...,L and k = 1,...,n. Thus, by Taylor expansion of F around
(ah ceey aL)a

L
[FBy, s B < p "D Tl 12,
j=1

Where |°‘k|v = maX{lv Iaj,l |v’ MR |C(j_"|v}.
By the ultrametric inequality for v 1 0o and by the Hadamard inequality for v | oo,
we obtain that, for an arbitrary place v,

15 18,1 if v § 0o,

L .
LY2TT5Z, 1851y if v | oo

|F(ﬂ1’ . "’ﬂL)|v f

Since « is a translate of 8, by a torsion point, |8,], = |e|,. We apply the product
formula:

L

Tl L Tl L

0= -804 Ziog L+ ) ki) = 2P+ Zlog L+ viLe.
p—1 2 j=1 p 2
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Moreover, L < (v 4+ 1)". Thus

Tylogp n
> ——1 D).
&= Lpv 2v ogv+1)

Taking the limit for & which tends to 1%%(V'), we obtain the wished bound. O

3.2. Decoding the information
As announced in Section 2, to prove Theorem 2.1 we need an upper bound for the
Hilbert function. The next proposition follows from a result of M. Chardin [C].

PROPOSITION 3.3
Let V. C IP" be an irreducible variety of dimension d and codimension k = n — d.
Let v and T be positive integers. Then

T—l+k><v+d

HWV,T;v) <
( v)( ) J

) deg(V).

Proof
See [AD1, Lemma 2.5]. O

We also need a sharp lower bound for the Hilbert function. This is a deep result of M.
Chardin and P. Philippon.

THEOREM 3.4 ([CP, Corollary 3])

Let K be a field, and let A = K|[xo,...,x,]. Let I,J € A be two homogeneous
ideals with J of codimensionr. Let d, > - -- > d,, be positive integers. Assume that
@) I =(F,...,F,)withdeg F; =d;;

(i)  J contains the intersection of the primary components of codimension r of 1.
Then, forv > dy + ---+d, —r, we have

v+n—(d1+-~-+dr))

n—r

H(A/J;v) > degJ - (

As a corollary, we have the following.
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COROLLARY 3.5
Let V. C IP" be an equidimensional variety of dimension d and codimensionk = n—d.
Define m = k(6o(V) — 1). Then, for any v > m, we have

v+d—

H(V;v) > ( m) deg(V).

Proof

In Theorem 3.4, we choose for J the ideal of definition of V, and r = k is the
codimension of V. Furthermore, we choose for / an ideal defined by forms of degree
at most §o(V') such that all components of V are components of the zero set of I. O

Let V be an irreducible variety of G?n C P*, and let p be a prime number. In order to
prove Theorem 2.1, we apply Corollary 3.5 to V' = ker[p] - V. Therefore, we need an
upper bound for 8yo(V’) and a lower bound for deg(V’). These bounds are the object
of Lemma 3.8.

LEMMA 3.6
Let Xy, ..., X, subvarieties of G.. Then 5(Uj Xj) < Zj 5(X ).

Proof

It is enough to prove this lemma with t = 2. Let fi, ..., f, be equations of degree
at most 8(X) defining X;. Similarly, let g;, ..., g, be equations of degree at most
8(X,) defining X,. Then X; U X is defined by the equations fig; with 1 <i < a
and 1 < j <b. a

Let V and X be subvarieties of GJ;,. Assume that V' is irreducible. We say that

. V is imbedded in X if there exists an irreducible component W of X such that
VCw.

In other words, V is imbedded in X if V € X and V is not a component of X.

Remark 3.7

Let V be irreducible. Assume that V' is imbedded in X.

6)) Let X € X'. Then V is imbedded in X'.

(i) Let¢ € G..Then ¢V isimbedded in ¢ X.

(i) Let Xy, ..., X, be subvarieties of G”, and let V be imbedded in _J ;X Then
V is imbedded in at least one of the X ;.
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LEMMA 3.8
Let V be an irreducible subvariety of Gi.. Let G € G, be a finite group.
@) There exists a variety X' such that

. VCcXx,

. 8(X') < 80(V), and

. ¢V is a component of X' forall ¢ € G such that LV C X'.
(i)  Let t be the number of irreducible components of V' = G - V. Then

deg(V') =t deg(V) and So(V") < t8p(V).

Proof

We prove (i). By definition of 8y(V), there exists a variety X defined by equations of
degree at most 6o(V') such that V is a component of X. Let S be the set of ¢ € G such
that £V is imbedded in X. Then V C ¢~!X. We define

X' =xn()¢'x
ceS

Note that V C X’. Furthermore, the varieties X and {’IX are intersections of
hypersurfaces of degree at most 8o(V'). Thus §(X') < §o(V).

We show that no translate ¢V is imbedded in X’. Assume by contradiction that
¢V was imbedded in X’ for some ¢ € G. We prove that 1 € S. Then V would be
imbedded in X, which contradicts the fact that V is a component of X. Since ¢ has
finite order, to prove 1 € § it is sufficient to prove that " € S for all positive integers
n. We proceed by induction. Since X’ € X, ¢V isimbedded in X and ¢ € S. We now
assume that ¢" € § for some n > 1, and we prove that ;‘”“ € S.Since X' C¢7T"X,
£V isimbedded in £ " X. Thus "'V is imbedded in X and ¢"*! € S.

We now prove (ii). Let £, V, ..., { V be the components of V'. Clearly, deg(V') =
ZJ. deg(¢;V) = tdeg(V). Let j € {1,...,t}. By part (i) (with ¢;V instead of V),
we can choose a variety X; such that § ;V C X; and §(X;) < 8o(V). Furthermore, if
¢V C X; for some { € G, then ¢V is a component of X ;. Thus, in view of Remark
3.7(ii), &V, ..., ¢,V are components of X; U---U X,. By lemma 3.6,

So(V) = 8(X1 U=+ UX,) < 18(V). O
The stabilizer of a variety V is
Stab(V) ={a € G}, : aV =V}.

We denote by Stab(V)° the connected component of Stab(V) through the neutral
element. We recall that dim(Stab(V)) < dim(V) with equality if and only if V is a
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translate of a subtorus. In addition,
deg(Stab(V)) < deg(V)s(V)™™") < deg(V)HmV+1, (3.9)

We also recall the following.

LEMMA 3.9
Let [ be an integer coprime with [Stab(V) : Stab(V)°]. Then ker[l] - V is a union of
[eodimSWd V) distinct components (which are translates of V by I-torsion points).

All the previous statements concerning stabilizers are proved in [Hi, Lemma 6].
At last, we are ready to prove the main result of this section, Theorem 2.1. For
the convenience of the reader, we recall the statement.

THEOREM 2.1
Let V be an irreducible subvariety of G2, of codimension k which is not a translate
of a subtorus. Let

6y = 8o(V)(27n log(n?8,(V )"
Then V (6, Y is contained in a hypersurface Z of degree at most 6y which does not

contain V. In particular, V(G(;l) CVNZCVand (V) > 9(;1.

Proof

Letd = n — k = dim(V), and let §g = 6o(V). In the sequel of the proof, we use
several times the fact that n > k > 1. Especially, the inequality n > 2 allows us to
improve numerical constants. Let

N = 1.41(13n log(n?5,))".

We remark that N > 1.41 x 13 x 4 x log(4) > 101. By [RS, Theorems 9, 10],
prx log p < 1.02x forx > 1,and ) _ log p > 0.84x for x > 101. Thus

p=<x
1.02
Y logp= (0.84 - m)N
N/1.41<p<N ~011-N ’

> 0.11 - (13 log(n*8y))"
>0.11-13n - 2¢log &

> nklogé.
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If for any prime p with N/1.41 < p < N we have
p | [Stab(V) : Stab(V)"],
then

log[Stab(V) : Stab(V)°] > Z log p > nklogé.
N/1.41<p<N

This is impossible because, by (3.9) and (1.2),
[Stab(V') : Stab(V)°] < deg( Stab(V)) < deg(V)"™"*! < §p%.
We conclude that there exists a prime p { [Stab(V) : Stab(V)°] satisfying
(13n® log(n8))" < p < 1.41(13n* log(n?8y))". (3.10)

Since p t [Stab(V) : Stab(V)°], Lemma 3.9 implies that the variety V' = ker[p] - V
is a union of p<°dimS@bV) distinct components that are translates of V by a p-torsion
point. Since V is not a translate of a subtorus,

k 4+ 1 < codim(Stab V) < n.
By Lemma 3.8(ii),
deg(V') > p"deg(V) and  8,(V') < p"dy. (3.11)

We apply Proposition 3.3 to V and Corollary 3.5 to V’'. As in the statement of
Corollary 3.5, let m = k(8o(V’) — 1). The upper bound for 8o(V’) in (3.11) gives

Choose
v=md+m and T =[0.1p""VH].

Let f(n,k) = ((n + 1 — k)k)/"0_ We have

of 1
ﬁ_—W<log((n+1—k)k)+—n+1_k—1)

and log((n +1 —k)k)+k/(n+1—k) > logn+ 1/n > 1. Thus k — f(n, k) is
a decreasing function and f(n, k) < f(n, 1) = n'/" < 313, By the upper bound for
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m + 1 and for p (see (3.10)), we obtain
v+1=d+Dm+1) =@m+1-kkp"s
< (f(n, )1.417%13n log(n?8y))" 8
< (33 1.41 - 130 log(n*8y)) " .
Note that 3'/3 . 1.41 - 13 < 27. Thus
v+ 1 < (270 log(n?8))" 8o = 64 (3.12)
and
6, < v
Let W be the Zariski closure of the set V (6, 1, and let W' = ker][ pl- W. Then
pES(W) <6, < vl (3.13)
Furthermore,as W C V and W' C V',
HW,T;v) < H(V,T;v) and HW';v) < HV';v).
We show that H(W’; v) < H(V’;v). Assume by contradiction that
HW'v)=H(V';v). (3.14)

Apply Corollary 3.5 to the variety V', and apply Proposition 3.3 to the variety V.
Then, by the lower bound for deg(V’) given in (3.11),

HW.Tiv) _ HV.Tiv) _ ()05 deev) (T (3)
HWiv) = HV&v) = (T deg(V)  — (H)phet

By the choice T = [0.1p'*"/¥], we have ("7} ™) < T* < 0.1p**'. Moreover, by the
choice v = md + m,

(EN () ST = (e ) = (1 ) e

j=1

Thus

H(W, T;v)

< 0.1e < 0.3.
HW’;v)
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By Proposition 3.2 (with V replaced by W),

. HW,T;v)\Tlogp n
=) = (1 - ) -2 1
(W) = HOW o) o 3 og(v + 1)
0.7T1
_ ( pogp _ glog(v + 1))1)_'. (3.15)

We still need a bound for 0.7 T log p/ p and for (n/2) log(v + 1). By the choice of T,

0.7T1 1
SIT08P 0.7(0.1p1/k — —) log p.
p P

By the lower bound for p in (3.10),

1
13n2

0.7T log p
p

> o.7(0.1 - 1302 log(n8y) — >k1og(13n2)

> 0.7(0.1 13— >n2 log(n28y) - k log(13n?).

13n4

Since n > 2, we have

1 , |
0.7(0.1 13— W) log(13n?) > 0.7(0.1 13— o 16) log(13 - 4) > 3.5.
Thus
0771
212 8P+ 3 5kn? log(n?8y). (3.16)
p

Using (3.12), 27n* < 2°n®> < n’,and logx < x for x > 0, we get

glog(v +)< g(kn log(n” - n%8y) + log(8y)) < —kn log(n®s2).

oS

Thus
glog(v + 1) < 3kn? log(n28,). (3.17)
Replacing (3.16) and (3.17) into (3.15), we get
S (W) > 0.5kn” log(n®8p)v~" > vL.
This contradicts (3.13) and shows that

HW';v) < H(V';v).
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Equivalently, there exists a homogeneous polynomial F' of degree v < 6, vanishing
on W’ but not on V’. Replacing F(x) by F(¢x) for a suitable { € ker[p],
we can assume F # 0 on V. (Recall that W’ is invariant by translation by
p-torsion points.) Let Z € G, be the hypersurface defined by F. By construction
VO(OO_I) CWCW CZ V & Zanddeg(Z) = v < 6. This proves the
theorem. ad

4. Qualitative description of the small points
In this section, we prove Theorem 2.2. For the convenience of the reader, we recall
the statement.

THEOREM 2.2
Let Vy € Vi be subvarieties of G, of codimensions ko and k,, respectively. Assume
that Vy is irreducible. Let

6 = 8(Vy)(200n° log(nz(S(Vl)))("O—k1+1>kon‘

Then

o either there exists a translate B of a subtorus such that Vo € B C V| and
do(B) <0,

. or there exists a hypersurface Z of degree at most 0 such that Vo € Z and
Vo0~ C Z.

Proof
We simply denote 6 = 8(V;). By contradiction, we suppose that the conclusion of
Theorem 2.2 does not hold. Thus

Vp is not contained in any translate B C V| of a subtorus with §o(B) <6, (4.18)
and
each hypersurface Z of degree at most & such that V,(9~!) € Z contains V,. (4.19)
Forr € {0, ..., ko — ki + 1}, we define
rkon

D, = §(200n° log(n*5))

Since r < ko — k; + 1, we have D, < 6. Using an inductive process on r, we are
going to construct a chain of varieties

Xo2 - 2X, 2 X412+ 2 Xygmsy+1

satisfying the following.
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CLAIM

We have the following:

®» Vc Xy

(i)  each irreducible component of X, containing V, has codimension at least
r+ky;

(i) (X)) = D;.

Theorem 2.2 is proved if we show this claim for » = ky — k; + 1. Indeed, by (i)
there exists an irreducible component W of X;,_;,+; which contains V. By (i),
codim W > ky + 1. This gives a contradiction.

We now define X, and prove our claim by induction on r.

e For r = 0, we simply choose Xy, = V.

e We assume that our claim holds for some r € {0, ..., kg — k;}, and we prove
that it holds for  + 1, as well. Let 0 < s < ¢ be integers, and let Wy, ..., W, be the
irreducible components of X, enumerated in such a way that

Vo € W; ifandonlyif 1<j<s.

Since Vy € X,, we have s > 1. Assertion (ii) of our claim for » implies that
r+ki <codim(W;) <koforj=1,...,s.

Letj e {1,...,s}.Since §(X,) < D,, the variety W; is an irreducible component
of an intersection of hypersurfaces of degree at most D,. Thus §o(W;) < D, < 6.
Moreover,

VoS W; € X, CXo=V.
By assumption (4.18), W; is not a translate of a subtorus. Let
6y = D, (27n*log(n’D,))™".

Note that 8o(W;)(27n21og(n%8(W;))"" < 6. In view of Theorem 2.1, the set
W6, 1 is contained in a hypersurface Z ;j which does not contain W; and such
that deg Z; < 6. For x > 0, we have logx < x'/?. Furthermore, n > 2. Thus

n’D, = n*5(200n° log(n*8))™" < n?8(200n°5"/2y*o"
< n8(200n°8)" ! < (200n°8)"

< (’126)7}13 .
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(For the last inequalities, use rkon < (n — 1)’n < n® — 1 and 200 < 2% < n®.) Thus

6y < D,(27n* x Tn*log(n®8))""
= 5(200n° log(n8))"" (189n° log(n*3))"

< Dr+l-
Since Vo € W;,
Vo6 ) € W6, 1) € Z;.

AsdegZ; < 6y < D,y < 0, relation (4.19) implies that V; C Z;. Thus, for

j=1,...,s,wehave V; C Z; and

voc()z
j=1
Let

X=X, NZN---NZ,.

Then V) € X, € X,.
Recall that deg Z; < 6y < D, ;. Then

8(X,41) < max{8(X,), D41} <max{D,, D,y } = D,1.
We decompose

X,pp=WU---UWUW,_  U---UW,

s+1 t

wherer/. =W,nzZ,N-.-NZ,.

Let j € {1,...,s}. Since W; & Z;, every irreducible component of W; has
codimension at least codim(W;) + 1 > r + 1 + k.

Let j € {s+1,...,t}. Since Vy € W;, the variety Vj is not contained in any
irreducible component of ij.

We conclude that X, satisfies our claim for r + 1. |

We already mentioned in Section 2 that Theorem 2.2 gives an improved and explicit
version of [AD1, Theorem 1.4] (see Corollary 2.3) and of [AD2, Theorem 1.5] (see
Corollary 2.4). Theorem 2.2 has other interesting applications. For instance, we have
the following.
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COROLLARY 4.1
Let V be an irreducible variety of codimension k which is not a translate of a subtorus.
Let

6 = 8(V)(200n° log(n?8(V)))*“ ",
Let B C V be a translate of a subtorus of dimension dim(V) — 1. If §o(B) > 0, then
BB =40.

Proof

We apply Theorem 2.2 with Vy = B and V| = V. We have kg = k + 1 and k; = k.
Thus (kg — k1 + 1)kon = 2(k 4+ 1)n. The first conclusion of Theorem 2.2 cannot hold
because §y(B) > 6. It follows that B(6~!) is nondense in B. In view of Remark 2.5(i),
we deduce that B(A~") is empty. o

We further remark that Theorem 2.2 implies Theorem 2.1, up to a slightly worse
remainder term. More precisely, let V be a component of an intersection X of hy-
persurfaces of degree at most 6y(V'). Apply Theorem 2.2 with V, = V and V; = X.
Note that V € B C X cannot occur. This would imply V = B because V is a
component of X, contradicting the assumption in Theorem 2.1 that V is not a translate
of a subtorus.

5. Quantitative description of the small points
In this section we prove our main theorem Theorem 1.2. We then show some of its
consequences.

THEOREM 1.2
Let V.C G. be a variety of codimension k. We decompose V as a (reduced) union
X U---UX,, where X; is an equidimensional variety of codimension j. We define

0 =0(V)= 3(V)(200n5 log(nzg(V)))("—k)n(n—l).
Then
V(Q—l) =G U---UG,,

where G; is either the empty set or a finite union of translates B;; of subtori of

codimension j such that 80(B; ;) < 0. Moreover, forr =k, ...,n,
D 07 degGi < ) 0 deg X; < 6. (5.20)
i=k i=k



XXX

-

dmj8203

August 27, 2009 13:54

24 AMOROSO AND VIADA

Proof

We recall that, by our convention, the empty set is an equidimensional variety of any
codimension and degree zero. Using an inductive process, we are going to construct
Gy, . .., G, satisfying the condition of the theorem. Letr € {k, ..., n}. The following
claim is the inductive step of the proof.

CLAIM

There exist equidimensional varieties Gy, ..., G,_1, X, of codimension k, ..., r —

1, r such that

(i)  fork < j <r—1,thevariety G, is a finite (possibly empty) union of translates
B; ; of subtori such that 5o(B; ;) < 0,

i) VEOHCGU---UG 1 UX UX, U ---UX,;

(i) Y 0 'degG,; +degX, <Y/, 0" deg X..

In addition, G, is a union of components of X/ forr =k, ..., n.

First, we clarify how this claim implies Theorem 1.2. Note that an equidimensional
variety of codimension 7 is a finite set of points, and points are translates of subtori.
In addition, 8, of a point is 1 < #. Thus, we can define G, = X/,. Then assertion (ii)
of our claim for r = n implies that

VO HCS G U---UG,.
By Remark 2.5(ii), we can assume
VOH=G,U---UG,.

Since G, is a union of components of X/, assertion (ii) of our claim forr =k, ..., n
gives the first inequality of (5.20). Corollary 5 of [P2] (with m = n and § = P")
shows that for 8 > §(V') we have

Zr: 0" deg X; < 6",
i=k

which gives the second inequality of (5.20).

It remains to prove our claim for r = k, ..., n. We proceed by induction on r.
. For r = k, we simply take X; = X;.
. Letr € {k,...,n — 1}. We first remark that if our claim holds for r, then it

holds also with the two supplementary conditions that
(a) no component of X/ is imbedded in G, U --- U G,_y;
(b) every component of X/ meets Ve.
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This is clear because we can discard the components of X/ not satisfying (a) or (b)
without changing (ii) and (iii). Then, as an inductive hypothesis, we assume that we
have constructed Gy, ..., G,_;, X, satisfying our claim and the properties (a) and
(b), as well.

We decompose X/ as

X =G, UWU---UW,, (5.21)
where
. G, is the union of the components B,; of X, which are translates of subtori
and such that §o(B,;) < 6 (possibly G, = 0);
o Wi, ..., W, are the components of X/ not in G, (possibly s = 0).

Clearly, the first assertion of our claim for  + 1 is satisfied. It remains to show (ii)
and (iii) for r + 1.
Leti € {1,...,s}.

Remark. There does not exist any translate B of a subtorus such that §,(B) < 6 and
W, CBCV.

Proof

Assume by contradiction that there exists a translate B of a subtorus such that §y(B) <
6 and W; € B C V. By condition (b), W;(6~!) # (. Then Remark 2.5 (ii) gives
B(0—1) = B. Furthermore, B(0~!) C V(#~') and dim B > r. Thus

Wi BC G U---UG,,

contradicting either (a) or the definition of G,. O

We now apply Theorem 2.2 to the varieties Vy, = W; and V|, = V. We have ky =
r < n — 1and k; = k. The first conclusion of Theorem 2.2 cannot occur because
of the previous remark. Thus, the second conclusion must hold. Namely, there exists
a hypersurface Z; of degree at most @ such that W; € Z; and W;(6~') C Z;. By
Krull’s Hauptsatz, W; N Z; is either the empty set or it is an equidimensional variety
of codimension r 4 1.

We define

X=X U Jwinz).

i=1

By construction,
VO HCSGU---UG UX,  UX,ppU - UX,.

Then (ii) of our claim is satisfied for r + 1.
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/

By Bézout’s theorem, by the definition of X|_,, and by deg Z; < 6, we deduce
deg X, < 9( Z deg W[> +deg X, 1.
i=1

Substituting Yy ;_, deg W; = deg X/ — deg G, (which rises directly from (5.21)), we
obtain

deg X, < 6(deg X, —degG,) +deg X, ;.

Thus

r

D 07 deg G+ deg X, < Y 0" deg G,

i=k i=k

+6(deg X! —deg G,) + deg X,
r—1
= 9(2«9’7i deg G; + deg X;) +deg X, 1.
=k

By the inductive hypothesis, Gy, ..., G,_;, X| satisfy (iii) of our claim:

r—1

Z@’*i deg G; +deg X < i@’*i deg X; .

i=k i=k
Hence
r—1 r+1
0 ( Z 0" deg G; + deg X;) +deg X, < Z 6"t deg X;.
i=k i=k
This proves (iii) of our claim for r + 1. O

Proof of Corollary 1.3

Obviously, for all varieties V. C W and real numbers ¢ > 0, it holds that
V() = V N W(e). Applying theorem 1.2 to W, we immediately obtain
Vew)yHh c vn \UB;, where B; € W are translates of subtori such that
> deg B; < O(W)" and 8y(B;) < 6(W). Consequently, if V(@W) " isdensein V,
then V C | B, and each component of V is contained in a translate B; of a subtorus
with 8o(B;) < 6(W). O
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COROLLARY 5.1
Let V be an irreducible subvariety of G which is not a translate of a subtorus. Define

B0 = 80(V)(200n° log(n28o(V)))" """

Then V (6, VY is contained in a finite union of translates B i of proper subtori such that
V & Bj, 80(Bj) < 6y, and Z.j deg(B;) < 65.

Proof

Apply Corollary 1.3 with W an intersection of hypersurfaces of degree at most §o(V')
such that V is a component of W. Then (W) < 6, and the claim is proved except
for the assertion V' € B;. Note that, if V € B; € W, then V = B; because V is
a component in W. This contradicts the assumption that V is not the translate of a
subtorus. O

COROLLARY 5.2
Let V be an irreducible subvariety of G!... Let

n(n—1)>*

0., = (V) (2001 log(n*w(V)))

Then V(0,, 1Y is contained in a finite union of translates B ; of proper subtori such that
50(Bj) < Gw and Zj deg(B]) < 9:)

Proof
Apply Corollary 1.3 with W a hypersurface such that V. C W and deg(W) = w(V).
Such a W exists by definition of w. O

Note that Corollary 5.2 immediately implies that, for V transverse, 2°%(V) > 6!

We further remark that the bound (5.20) of Theorem 1.2 can be slightly improved
for an irreducible V' of codimension k which is not a translate of a subtorus. Indeed,
by Theorem 2.1, there exists a hypersurface Z with

deg Z < 8y = 8o(V)(27n* log(n5o(V)))",

which does not contain V' and such that V(6 'Y € Vv N Z. Then deg(VNZ <
6y deg(V), codim(V N Z) =k + 1,and §(V N Z) < max(8(V), 6). Thus (V N Z)
is essentially bounded by 8(V'). Theorem 1.2 applied to the equidimensional variety
V N Z gives a sharper version of the bound (5.20) obtained applying Theorem 1.2
directly to the variety V: substantially the bound 8(V)" is replaced by 6,0(V) .
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In this spirit, one can play on Theorem 1.2 producing a series of essentially similar
corollaries.

An example (inspired by [AD2, p. 555]) clarifies the situation. Let m > 3 be an
integer. In Gﬁl, we consider the hypersurfaces

Zm = {x" +y" — 1 =0}, W={x*+x>—z—1t=0)},

the variety V,, = Z,, N W, the subtori of W,

3

,t=x7}, T, ={z=x° t =x%,

and the curves C,,;, = V,, NT;, = Z,, N T,.

The varieties V,,, W, and Z,, are transverse, while C,, ; is contained in 7; and
8o(T;) = 3. Moreover, o(V,,) = deg(W) = 3, 6(V,,) = deg(Z,,) = m, o(Cy, ;) = 2,
8(Cp i) = deg(Z,) = m.

The points are

Pl — (21/n’ (1 _ 2m/n)1/m’ 23/n, 22//1) c Cm.l

m,n

and
P2, = (27, (1 —2mimylm ¥n 23y € C,, 5.

For n large, we have 0 < ¢'/m < h(P,fw) < c¢/m for some absolute positive
constants ¢ and ¢’ independent of m. Thus 1°9%(C,, ;) < ¢/m. This shows that the first
conclusion of Theorem 2.2 cannot be avoided. More precisely, let f be any positive
real function. Then we cannot expect 1°%%(Vy) > f(8(V})) for V, contained in a
translate of a subtorus C V; of small §y. This was contradicted by choosing V; = W
and Vy = C,,; for m large enough.

As remarked in [AD2], we cannot “replace 6(V) by w(V)” in Theorem 1.2. More
precisely, let f be any positive real function. Then there exists a positive integer m’
such that ¢c/m’ < f(3). Thus, for any sufficiently large n, the points Pnlq,,n and Pj,,n
lie on er( f (a)(me))). Recall that V° is the complement in V of the union of all
translates of subtori of positive dimension contained in V. Since V does not contain
any translate of positive dimension, Vn?, = V,. It follows that the set Vn?, ( f(( er)))
is not finite.

Let V be a subvariety of G/,. Notice that V(0) is the set of torsion points of V.
By the toric version of the Manin-Mumford conjecture (see [L]),

VO =B U---UB,
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with B; C V torsion varieties. We recall that V" is the union of all torsion varieties
contained in V. Since the torsion is dense in a torsion variety,

vV =V(0).

We say that a torsion variety B is maximal in V if B € V and B is not strictly
contained in any translate B’ C V of a subtorus. If a translate B’ contains a torsion
variety, then B’ is itself a torsion variety. Thus, discarding torsion varieties contained
in others, we can assume that By, ..., B, are precisely the maximal torsion varieties
of V and

V=B, U---UB,.

The following corollary improves the known upper bounds on ¢ quoted in the intro-
duction.

COROLLARY 5.3

Let V be a subvariety of < G of codimension k. Let
(V) = 8(V)(200n° log(n>s(Vy))" """

be as in (1.5). Let By, ..., B, be the maximal torsion varieties of V. Then §o(B;) <

o(V) and

D 6V deg(B)) < O(V)".

j=1

In particular, t < 0(V)".

Proof
The discussion above shows that

B,U---UB, =V(0)=V".
Let @ = (V). Since V(0) € V(8~'), Theorem 1.2 gives
BiU---UB, =V(©0)CV@H)=B,U---UB,,
where B} C V are translates of subtori satisfying §o(B}) < 6 and

p
> 0D deg(B)) < 0"

j=1

The B; are maximal; thus {By, ..., B;} S{ B, ..., B,}. 0O
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6. Applications to the Mordell-Lang plus Bogomolov problem
We first prove Corollary 1.4. Let us recall the statement.

COROLLARY 1.4
Let T be a subgroup of G, of finite rank r, and let V. C G%, be a subvariety of
codimension k. As in (1.5), let

(V) = 8(V)(200n° log(n*8(V)))" """

Then for C > 1 and for any nonnegative ¢ < (26(V))™},
[VUC)NTe| < (5nCY OV Y.

Proof

Fora € G, let

(o) = h(ey) + - - - + h(a)

be the height on G, with respect to G C (P')". Let p > 0 and 0 > 0 such that
p/2u > ¢e. Since I has finite rank r, by [R, Lemma 2.1], there exists a finite subset
E of T of cardinality at most (4 + 3)” such that

(xere <o) cUjxer s mowh =7}

yeE
Since
h <hs <nh,
this implies
Ve =Y o vr(2)). (6.22)
yeE K

Let & = (V). We choose p = nC and u = nC6. We have p/2u = (20)~! > . By
Theorem 1.2, with V replaced by y~!V, we deduce

‘(y71V)0<£>‘ S 9/1'
o
In view of (6.22),
IV9C)NT,| <| E|6" < (4nCH + 3)'6".

We finally remark that 4nC6 + 3 < 5nC9 since 3 < nf < nC®. O
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Given a subset I' € G” and ¢ > 0, we consider the conic neighborhood
G, e)={a€G) : @« =xzwithx € T and h(z) < (1 + h(x))e}.

Let ¢ = n~'exp{—(4n)*}, and let ' C G~ be a subgroup of rank r. In [ESS,
Theorem 2.1], the authors show that the set of & € G, satisfying

a4+t =1, PEEAON (6.23)

. . . . . N
is contained in the union of at most exp{(57)**(r + 1)} proper linear subspaces of Q.
Corollary 1.4 allows us to save an exponential in these estimates.

THEOREM 6.1
Let ¢ = (8n)~%"". Then the set of a € G satisfying (6.23) is contained in the union
of at most (8n)°"' " proper linear subspaces of Q" .

Proof

We follow [ESS]. By the reduction process of [ESS, Section 6], it is sufficient to bound
the number of proper linear subspaces containing the solutions &« of oty + - - -+, = 1
such that

acbl,e)NGL(F).
We decompose
a=xz withxel, zeGL(F), h(z) < (1+hX)e,

where F is a fixed number field. As in [ESS], we say that a solution is “large” (see
[ESS, (9.1)]) if h(x) > 4nlogn. The argument of [ESS, Sections 8, 9, 10] shows*
that the number of large solutions is contained in at most

A = 22(2n-‘r9)2 (8}’12 4 2n)n+4+r

proper linear subspaces of F"'. We have

1 3
A< Z(8 6n° (n+r).
< 4( n)

*Indeed, in these sections, the value of ¢ is used only to guarantee [ESS, (9.19)]. This equation still holds for our
choice of ¢ since h(z) < e(1 + h(x)) = (8n)’6“3(1 + h(x)) < h(x)/(8n) if h(x) > 1.
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Indeed, using 8n% 4 2n < 2*n2, we obtain A /(1/4)(8n)"’ "+ < 29p? with
a=202n+92+4@4+n+r)+2—182n+r),
b=24+n+r)—6n*(n+r).

Since b < 0and a + b < 0, we have 2¢n? < 29%0 < 1,
We now consider “small” solutions & = Xz satisfying 4(x) < 4nlogn. Let V be
the subvariety of G, defined by oy + - -+ + @, = 1. Then §(V) = 1 and

0(V) = (400n° log n)"" =",

We have 400n° logn < 400n''/? < (1/4)(8n)'"/? and
1 3
o(V) < Z(8n)(”/2)” :

By [S, p. 161], VO is the set of nondegenerate solutions of this equation. Moreover,
small solutions satisfy

h(a) < h(x)+ h(z) < 4nlogn + (1 4+ 4nlogn)e
< (4 + S5¢)nlogn
< 5pn?
and
h(z) < (1+4nlogn)e.
Note that
(14 4nlogn)e - 20(V) < 5n(8n)~%" (8n) 11/ < 1.

Thus we can apply Corollary 1.4 with C = 5n%. Using the inequality 5nC < (8n)?,
we find that there are at most

B = (5nCy6(V)"" < %<8n>3’+<“/2>"3<"“’ = %(Sn)an(nH)

nondegenerate small solutions. Since the degenerate solutions are contained in the
union of at most 2" proper linear subspaces, to cover the set of all solutions we need
at most

1

1
A+B+2n < (Sn)6n3(n+r)+Z(8H)6n3(n+r)+2n < (8n)6n3(n+r)

|

subspaces. a
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Using this last theorem, we deduce the following.

THEOREM 6.2
Let K be an algebraically closed field of characteristic zero. Let (ay, ..., a,) €
Gl (K), and let T be a subgroup of G, (K) of finite rank r. Then the equation

ajoy +aon + -+ a0, =1 witha € T (6.24)

has at most A(n, r) = (8n)*"' "+ D nondegenerate solutions.

Proof

By [ESS, Lemma 3.2], we may suppose K = @ Let A’(n, r) be the number of
nondegenerate solutions of (6.24). We prove by induction onn that A'(n, r) < A(n, r)
for every positive integer r. Our claim is obvious if n = 1. Let n be an integer at
least 2, and assume A’(m, r) < A(m, r)for 1 < m < n and for every positive integer
r.Let B(n,r) = (8n)* @+ be the bound of Theorem 6.1. Then, by the arguments
of [ESS, Section 4] and by the inductive hypothesis,*

A, r)<2'"Amn —1,rNBn,r +1) < (8n)°

with
c=n+4m - D*n+r)+6n*n+r+1)
<(1+4n-D'+6n°)n+r+1)
<4dn*tn+r+1).
Thus A'(n, r) < (8n)*' ™ +1 as required. O

As mentioned, Theorem 6.2 has an application to estimate for the multiplicities in a
linear recurrence sequence {u,,},cz of order n > 1 with elements in K, for K an
algebraically closed field of characteristic zero. Let {u,,} be such a sequence. Then it
satisfies a minimal relation

Upin = ClUpyn—1 + +++ + Cully (m € Z)

with ¢y, ..., c, € K. We say that {u,,} is simple if its companion polynomial G(z) =
7" —c1z" ' — .-« — ¢, has only simple roots. Let

S (uy) =1k : uy =0}.

*Remark that, for integers a, b > 1 and ry, r, > 0, the function A(n, r) satisfies the inequality A(a, r1)A(b, 1) <
A(a + b — 1, r; + r). Thus [ESS, inequality (4.12)] still holds.
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The Skolem-Mabhler-Lech theorem asserts that for an arbitrary linear recurrence se-
quence {u,,} of order n > 1 the set ¥(u,,) is a finite union of arithmetic progres-
sions (where single elements of Z are trivial arithmetic progressions). The following
corollary improves of one exponential the bounds of [ESS, Theorem 1.2] on the
Skolem-Mahler-Lech theorem.

COROLLARY 6.3
Let {u,,} be a simple linear recurrence sequence in K of order n > 1. Then ¥ (u,,) is
the union of at most (8n)*" arithmetic progressions.

Proof

We follow closely the inductive proof of [ESS, Theorem 1.2] in [ESS, Section 5]. We
define W(n) = (8n)4”5. Using our Theorem 6.2 instead of [ESS, Theorem 1.2], we
see that [ESS, (5.3)] has at most

4n—1D*n+1) -

An—1,1) = (8(n — 1)) (8n)*"

N =

nondegenerate solutions. For 2 <[ <n — 2, we have
WOWn —1) < (8n)" "

because I° + (n — 1) < ( 4+ (n —D))max(l,n — D* < n(n —2)* < n® —n. Thus
1 s 1 s
A= 1,1 +2" max WOW@n—1) < E(8n)4" + E(Sn)“" = W(n).

As in [ESS], we conclude that our result holds. a
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