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1 SUMMARY 

Huntington’s Disease is a neurodegenerative disorder characterized by motor dysfunction, 

emotional disturbance, dementia and weight loss. The disorder is caused by an autosomal 

dominant expansion of a CAG repeat encoding for a polyglutamine stretch in exon 1 of the 

huntingtin gene. Mutated huntingtin gains a neurotoxic function, leading to the onset of 

clinical symptoms mostly in mid-life. The progression of Huntington’s Disease is 

characterized by a marked degeneration of gray and white brain matter. A loss of vulnerable 

neurons, most notably striatal medium-sized spiny neurons, is observed, while resistant 

populations are spared. No cure for Huntington’s Disease exists and the disorder progresses 

relentlessly with a lethal outcome about two decades after diagnosis.  

In my thesis I explored four main projects. As the reported cellular dysfunctions in 

Huntington’s Disease are numerous, I generated an inducible, neuronal model to investigate 

the effects of mutant huntingtin expression at the cellular level (Chapter 4.1). This inducible 

model allowed for adjustable expression levels of different wild-type and mutant huntingtin 

fragments in proliferating or differentiated HN10 neuroblastoma cells, thus providing the 

ability to examine huntingtin protein effects under different cellular conditions. I was able to 

show that this model displays key major characteristics found in Huntington’s Disease 

patients like transcriptional dysregulation, mutant huntingtin aggregation and decrease in cell 

viability. Subsequently, I made use of this newly designed cellular model to develop 

huntingtin detection methods to further investigate the biological role of soluble or aggregated 

mutant huntingtin for Huntington’s Disease development and progression. 

Since the role of huntingtin aggregate formation in Huntington’s Disease is still under debate, 

I designed a simple method based on agarose gel electrophoresis for qualitative and 

quantitative characterization of huntingtin aggregates in my second project. Using this method, 

I proceeded to analyze samples of cellular and animal Huntington’s Disease models and was 

able to show that in the brain of transgenic R6/2 mice aggregates became larger as a function 

of age and disease progression. Importantly, I showed that in primary striatal neurons and in 

brains of two Huntington’s Disease mouse models (transgenic R6/2 and HdhQ150 knock-in 

mice), aggregate formation preceded detection of any functional deficits, supporting the 

theory that aggregates play an important pathogenic role in Huntington’s Disease (Chapter 

4.2). 

In the third project, I developed a method for the detection of intracellular mutant huntingtin, 

the causative agent of Huntington’s Disease. I generated a small recombinant protein tag 

which is recognized by a pair of readily available, high affinity monoclonal antibodies, thus 
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making this method generally applicable for detection of other recombinant proteins. Using 

this tag I was able to establish a time resolved fluorescence resonance energy transfer (time 

resolved FRET) based assay which allows for rapid, sensitive and robust detection of cellular 

mutant huntingtin levels. I miniaturized this assay to a homogeneous 1536 well microplate 

format and demonstrated that the assay system is suitable for the identification of  compounds 

that increase or decrease the levels of huntingtin protein (Chapter 4.3). 

In the fourth project, by using antibodies specific against endogenous huntingtin epitopes, I 

expanded this time resolved FRET detection method to monitor the levels of endogenous 

soluble mutant huntingtin in cellular, animal and human samples. I showed that the soluble 

mutant huntingtin levels inversely correlate with the amount of mutant huntingtin aggregates 

in the brains of aging R6/2 mice. Importantly, I was able to quantify mutant huntingtin 

concentrations in blood fractions from Huntington’s Disease patients, providing for the first 

time a bioassay to assess the relevance of mutant huntingtin levels as a marker for disease 

progression. This biomarker could help to monitor the efficacy of drug treatments aimed at 

lowering mutant huntingtin levels in preclinical and clinical trials (Chapter 4.4). 
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2 INTRODUCTION 

2.1 Huntington’s Disease  

Huntington’s Disease, also sometimes referred to as Huntington’s Chorea, is the most 

common autosomal-dominant neurodegenerative disorder with a prevalence of 5 to 8 cases 

per 100’000. Disease symptoms include severe motor dysfunctions (chorea), psychiatric 

alterations and progressive dementia with onset normally in middle-age. The solitary cause for 

Huntington’s Disease is an elongation of a polyglutamine repeat at the amino terminus of the 

ubiquitously expressed huntingtin protein. The underlying pathophysiological mechanisms of 

mutant huntingtin are yet to be elucidated. Currently, aside from limited symptomatic 

treatments against emotional disturbances or chorea, no effective treatment for Huntington’s 

Disease which can prolong the life expectancy of patients or stop their cognitive decline exist.  

 

2.1.1 History 

The term “chorea” for the classification of movement 

disorders has been first used by Paracelsus, professor of 

medicine at the university of Basel in the 16th century 

(Paracelsus, 1527). First records with reports of chronic 

choreas, today accepted to describe Huntington’s Disease 

patients, were published in the middle of the 19th century 

(Dunglison, 1848; Lund, 1860; Waters, 1842). The 

eponymous publication which described in detail not only 

the choreic movements but also the progressive dementia 

as well as the clear hereditary nature of the disease was 

published by George Huntington in 1872 (Huntington, 

1872), (Figure 1). Huntington’s Disease rose to public attention in 1952 when the American 

folk singer Woody Guthrie was diagnosed with the disease. His death in 1967 prompted the 

foundation of the Committee to Combat Huntington’s Disease, one of the first patient support 

groups that greatly increased fund-raising for research and public awareness of the disease. 

The improved conditions for Huntington’s Disease research were reflected in the research 

milestones over the next decades. In 1983, the chromosomal localization of the disease was 

discovered (Gusella et al., 1983) and in 1993 the gene responsible for Huntington’s Disease 

was isolated and characterized (Group, 1993a). Since then, research progress has included the 

design of the first animal model (Mangiarini et al., 1996), the discovery of intracellular 

huntingtin aggregates (Davies et al., 1997) and several hypothesis for toxic mechanisms of 

Figure 1: George Huntington. 
Reproduced from the “Huntington 
number” of Neurographs (1908). 
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action were put forward (Bates, 2003). However, despite of this remarkable progress, no 

treatment tackling the underlying mechanisms of action causing Huntington’s Disease is 

available today. 

 

2.1.2 Clinical manifestations of Huntington’s Disease 

Even though the sole cause of Huntington’s Disease in every patient is a single mutational 

event causing a CAG trinucleotide expansion in the huntingtin gene, the clinical 

manifestations are found to be diverse and can be mistaken for other neurodegenerative 

diseases like Huntington’s Disease-like 2 (Greenstein et al., 2007; Margolis et al., 2004; 

Rudnicki et al., 2008; Walker et al., 2003) or dentatorubropallidoluysian atrophy (Nakano et 

al., 1985). In addition, even though symptom onset mostly occurs between 30 to 50 years of 

age, juvenile and late-onset cases are frequent, widening the possible range of symptom onset 

to 2-85 years of age (Hayden et al., 1987; Osborne et al., 1982). Approximately 44-72% of 

these variations in age of onset can be explained by the length of the CAG repeat, making the 

trinucleotide and the resulting polyglutamine repeat length in the huntingtin protein the most 

important determinant for the age of onset (Myers, 2004; Wexler et al., 2004). Because of the 

wide variety in symptoms and ages of onset, misdiagnoses based on clinical symptoms used 

to occur regularly (Bateman et al., 1992; Folstein et al., 1986) and molecular testing for CAG 

repeat length became key for precise diagnosis of Huntington’s Disease (Kremer et al., 1994).  

Since molecular testing will be performed only in patients suspected to show clinical 

symptoms of Huntington’s Disease or patients known to be at risk because of their family 

history, it is important to note that no singular symptomatic finding is sufficient for a clinical 

diagnosis. In the early disease stages, minor alterations in intellectual capacity, increased 

anxiety and personality changes are observed (Kirkwood et al., 2000; Kirkwood et al., 2001; 

Penney et al., 1990) although these changes are often attributed retrospectively after a more 

certain diagnosis based on more profound symptoms or molecular testing.  

The classical phenotype in the mid-course of Huntington’s Disease progression is 

characterized by motor abnormalities. The motor impairments include chorea (rapid, random 

and uncontrollable movements (Dunglison, 1848; Huntington, 1872; Lang, 1989; Lund, 1860; 

Penney et al., 1990; Waters, 1842; Young et al., 1986)), bradykinesia (decrease of movement 

speed (Thompson et al., 1988)) and dystonia (abnormal movements with increased muscle 

tone (Andrich et al., 2007; Bittenbender and Quadfasel, 1962)). Even though chorea is by far 

the most prominent clinical manifestation found in over 90% of all Huntington’s Disease 

patients, it is a poor marker for disease progression as chorea intensity tends to change in a 
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non-predictable manner from patient to patient and is often replaced in later stages of the 

disease by other motor impairments such as dystonia (Mahant et al., 2003; Young et al., 1986).  

In advanced stages of Huntington’s Disease, independent living becomes impossible for the 

patients due to severe motor impairment and increased cognitive decline (Nance and Sanders, 

1996). These later disease stages are often accompanied by increased sleep disturbances 

(Hansotia et al., 1985; Silvestri et al., 1995) and weight loss (Morales et al., 1989; Sanberg et 

al., 1981). Patients die prematurely of complications associated with the disease such as 

pneumonia or dysphagia (Lanska et al., 1988a; Lanska et al., 1988b) with the median duration 

between onset of symptoms and time of death being 15 to 20 years (Foroud et al., 1999). 

 

2.1.3 Neuropathology of Huntington’s Disease 

In the past, asymptomatic and early symptomatic disease stages were thought not to be 

accompanied by distinct neuropathological changes. However, more recent studies were able 

to show alterations in cytoskeletal proteins in cortical neurons even at these early 

presymptomatic timepoints (DiProspero et al., 2004; Modregger et al., 2002). Futhermore, 

advances in MRI imaging allowed to 

visualize cortical thinning and atrophy in 

presymptomatic mutation carriers, providing 

a possible neurological explanation for the 

very early psychiatric alterations (Kassubek 

et al., 2004; Peinemann et al., 2005; Rosas et 

al., 2001; Rosas et al., 2006). 

Brains from patients with advanced stages of 

Huntington’s Disease show a general atrophy 

with weight reduction of about 10 to 20% 

(Figure 2). Affected brain areas with 

distinctive neuronal loss include the 

hippocampus, cortical layers 3, 5 and 6, Purkinje cells of the cerebellum, tuberal nuclei of the 

hypothalamus as well as the centromedial-parafascicular complex of the thalamus (Bates et al., 

2002; Jeste et al., 1984; Kremer et al., 1991; Spargo et al., 1993). Despite this widespread 

neuronal loss, neurodegeneration in Huntington’s Disease is still considered to be remarkably 

selective because of the strikingly severe and distinct atrophy in the most affected brain region, 

the striatum (Bruyn, 1979; Roos et al., 1985; Vonsattel et al., 1985). In this area almost all of 

the medium-sized spiny striatal neurons are lost in the later stages of the disease, while large 

Figure 2: Comparison of normal brain (right) to a 
brain of a late stage Huntington's Disease patients 
(left). General atrophy of the Huntington brain is 
visible in all brain areas with most severe atrophy 
apparent in the striatum. Photo courtesy of the 
Harvard Brain Tissue Resource Center. 
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striatal neurons, aspiny interneurons and striatal astrocytes are relatively resistant to 

Huntington’s Disease related degeneration (Cicchetti et al., 2000; Ferrante et al., 1987a; 

Ferrante et al., 1987b). The striatum itself comprises the caudate nucleus and putamen and 

interconnects to subcortical nuclei (such as globus pallidus, subthalamic nucleus and 

substantia nigra) which influence movement, motivation and reward behavior through 

modulation of higher brain areas (Alexander, 1994; Alexander and Crutcher, 1990; Hoover 

and Strick, 1999). In healthy individuals, the medium-sized striatal neurons send inhibitory 

signals to the external and internal segments of the globus pallidus as well as to the substantia 

nigra pars reticulata, (Figure 3, left side). 

 

Cerebral cortex

Striatum

GPe

STN GPi/SNr

SNc

Thalamus

Cerebral cortex

Striatum

GPe

STN GPi/SNr

SNc

Thalamus

Healthy Brain Huntington‘s Disease Brain

Basal Ganglia Basal Ganglia
 

Figure 3: Basal Ganglia pathways in healthy and Huntington’s Disease brain, simplified schematic view, 
modified from Bates et al., 2002. Brain regions of the basal ganglia encircled in grey. The striatum, the most 
severely affected brain region in Huntington’s Disease is depicted in yellow. Widespread neurodegeneration in 
the striatum causes a decrease of its inhibitory function in the basal ganglia pathway. This results in decreased 
activation of the basal ganglia output regions (GPi/SNr) which have an inhibitory effect on thalamic nuclei. 
Therefore, subsequent increased excitation of the thalamus due to lacking inhibitory input from the basal ganglia 
occurs and are thought to be the cause for the uncontrolled movement and psychiatric alterations seen in 
Huntington’s Disease patients. GPe: Globus pallidus external segment; GPi: Globus pallidus internal segment; 
STN: Subthalamic nucleus; SNr: Substantia nigra pars reticulata; SNc: Substantia nigra pars compacta. 

 

These nuclei project inhibitory axons to the thalamus, a brain region of the diencephalon 

which in turn projects to higher cortical regions and is thought to have a “selective mediator” 

role for prethalamic signals to be interpreted by the cortex (Alexander et al., 2006; Jones, 

2002; Percheron et al., 1996). In patients affected by Huntington’s Disease, this circuitry 

appears to be severely disturbed due to the almost complete loss of medium-sized spiny 
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neurons in the striatum (Figure 3, right side). The decreased inhibitory signaling from the 

striatum to other subcortical nuclei of the basal ganglia leads to overexcitation of the thalamus 

and is thought to be responsible for the various psychiatric and motor symptoms seen in 

Huntington’s Disease. 

 

2.1.4 Metabolic defects in Huntington’s Disease 

Because of the severe brain atrophy and the resulting clinical symptoms, Huntington’s 

Disease is primarily considered to be a neurodegenerative disorder. However, over the past 

four decades it has become more and more apparent that this is a too restrictive disease 

definition and that patients display various symptoms which are most likely connected to 

widespread, systemic metabolic defects. Early studies in the 1960s and 70s reported a 

dysfunction in amino acid, glucose and fatty acid metabolism (Perry et al., 1969; Phillipson 

and Bird, 1977; Podolsky and Leopold, 1977) as well as weight loss in Huntington’s Disease 

patients (Bruyn and von Wolferen, 1973). Further studies found that this massive weight loss 

occurs despite sufficient calorie intake and that weight loss cannot be simply explained by the 

increased and uncontrollable muscle movements associated with Huntington’s Disease (Farrer 

and Meaney, 1985; Kremer and Roos, 1992; Morales et al., 1989; Sanberg et al., 1981). These 

findings as well as reports of increased prevalence of diabetes mellitus in Huntingon's Disease 

patients (Farrer, 1985), support the hypothesis of a general, systemic metabolic defect caused 

by Huntington’s Disease. 

Over the last decade, detailed metabolomic studies became feasible due to the emergence and 

improvement of sensitive detection methods like nuclear magnetic resonance (NMR) or gas 

chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). Metabolic profiling of 30 

Huntington’s Disease and 20 healthy patients reported dysregulation of amino acid 

metabolism in Huntington’s Disease, verifying the earlier studies (Underwood et al., 2006). 

The study identified several metabolites such as leucine, ethylene glycol and hydroxybutyric 

acid with serum levels differing significantly between asymptomatic gene carriers and patients 

with first disease symptoms, thus providing a possible biomarker profile for disease onset and 

early disease progression. However, additional, larger scaled metabolomic studies are needed 

to verify these results. 

 

2.1.5 Current treatment possibilities of Huntington’s Disease 

Even though over 110 clinical phase I to III trials for Huntington’s Disease have been reported 

(Bonelli et al., 2004), no treatment recommendation of clinical relevance has emerged. In fact, 
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only very limited symptomatic treatment possibilities for Huntington’s Disease exist which 

can be subdivided into three classes: treatment of motor disturbances, treatment of psychiatric 

alterations and neuroprotective treatments (Bonelli and Hofmann, 2007; Bonelli et al., 2004; 

Walker, 2007).  

Treatment of motor impairments mostly focus on using antipsychotic drugs to decrease chorea 

such as haloperidol (Barr et al., 1988; Girotti et al., 1984; Leonard et al., 1975) or 

tetrabenazine (Jankovic and Beach, 1997; Ondo et al., 2002). While showing significant 

improvements on the Unified Huntington’s Disease Rating Scale in some of the studies, 

regular side-effects limit their use for clinical treatment. An alternative treatment strategy is 

based on the “excitotoxin theory” which proposes an excess of excitatory neurotransmitters 

such as glutamate as reason for the motor impairments and neurodegeneration (DiFiglia, 

1990). In an attempt to counter this overexcitatory stimuli, NMDA-receptor antagonists such 

as ketamine or riluzole have been tested in clinical trials. While ketamine failed to show any 

beneficial effects and to the contrary caused a decline in memory performance (Murman et al., 

1997), riluzole improved chorea symptoms in a number of earlier studies (Group, 2003; 

Bodner et al., 2001; Rosas et al., 1999; Seppi et al., 2001). However, a recent larger European 

level I trial with 537 patients did not report any neuroprotective or beneficial symptomatic 

effects (Landwehrmeyer et al., 2007). 

Attempts to ameliorate the psychiatric symptoms associated with Huntington’s Disease are 

mostly aimed at treating the frequent cases of depression and dementia. Common 

antidepressants like fluoxetine (Como et al., 1997; De Marchi et al., 2001) or clozapine 

(Bonuccelli et al., 1994; Colosimo et al., 1995; Sajatovic et al., 1991) showed positive results 

in case studies but larger controlled trials against depression in Huntington’s Disease are 

necessary for verification. Mild beneficial effects against dementia have been reported for 

riluzole (Seppi et al., 2001) and minocycline (Bonelli et al., 2003) in open-label trials, but 

generally no approved dementia treatment exists for Huntington’s Disease patients. 

The efficacy of neuroprotective treatments is more difficult to access because of the lack of 

reliable markers. Nevertheless, several clinical trials with potentially neuroprotective 

compounds have been reported for Huntington’s Disease. Treatment with unsaturated fatty 

acids as plasma membrane components which can alter the probability of a cell to undergo 

apoptosis showed beneficial effects in smaller studies (Puri et al., 2002; Vaddadi et al., 2002) 

but positive results could not be reproduced in a more recent and larger scaled level I trial 

(Puri et al., 2005). Similarly, treatment with the caspase inhibitor minocycline (Chen et al., 

2000; Scarabelli et al., 2004) was found to be safe, free of adverse effects at lower doses 
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(HuntingtonStudyGroup, 2004) and significantly improved motor and neuropsychological 

functions after 6 and 24 months of treatment in an open-label pilot study (Bonelli, 2004). 

However, another level III study with minocycline did not report any beneficial effects 

(Thomas et al., 2004). Critically, a recent minocycline trial with 412 ALS patients showed 

that minocycline treated patients performed significantly worse in functional capacity than 

placebo treated patients, prompting the authors of the ALS study to raise serious concerns 

about minocycline treatment in other neurodegenerative diseases, including Huntington’s 

Disease (Reynolds, 2007). Another treatment strategy has been aimed at enhancing 

mitochondrial oxidative functions known to be affected in Huntington’s Disease. Use of 

coenzyme Q10, an essential component of the mitochondrial electron transport chain (Crane 

et al., 1957), showed no beneficial effects (HuntingtonStudyGroup, 2001), whereas treatment 

with creatine resulted in an improvement of brain metabolites (Tabrizi et al., 2003; Tabrizi et 

al., 2005) as well as a decrease of serum 8-hydroxy-2'-deoxyguanosine, a marker for oxidative 

DNA injury, in Huntington’s Disease patients (Hersch et al., 2006). However, a double-blind 

placebo-controlled study showed no beneficial effect on motor symptoms or cognitive 

performance after creatine treatment for 1 year (Verbessem et al., 2003). 

Taken together, the efficacy of various potentially therapeutic compounds for Huntington’s 

Disease remains to be proven. Importantly, all clinical studies so far have been symptomatic 

treatment attempts and no potential treatment aimed at curing Huntington’s Disease or 

prolonging the life expectancy of patients exists, resulting in a very high unmet medical need 

for this disease. 

 

2.1.6 The genetics of Huntington’s Disease 

The huntingtin gene, localized on chromosome 4p16.3 (Gusella et al., 1983), was identified in 

1993 through a joint effort of six international research groups (Group, 1993a). It comprises 

67 exons and encodes for a large protein of 348 kDa whose exact function(s) remain to be 

elucidated. The mutation underlying Huntington’s Disease is an expansion of a CAG repeat 

above a pathogenic length in the coding region of exon 1 of the huntingtin gene. In healthy 

individuals, CAG length normally varies between 10 to 35 repeats while patients carrying one 

allele with 40 or more CAG repeats will develop Huntington’s Disease with 100% certainty. 

Repeat sizes of 36 to 39 are associated with a reduced disease penetrance (Andrew et al., 

1993; Brinkman et al., 1997; Duyao et al., 1993) (Figure 4). 
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Figure 4: Distribution of CAG repeat sizes in healthy and Huntington’s Disease patients, taken and 
modified from Myers, 2004. Healthy patients (green area) carry repeats between 10 and 35 with the most 
common repeat lengths being 17 to 20 CAG triplets. Individuals with a CAG repeat size of 40 or more will 
develop Huntington’s Disease. Repeat sizes from 36 to 39 can result in development of Huntington’s Disease but 
penetrance is reduced and so far unknown factors seem contribute to the development of disease symptoms. 

 

It should be noted that even though the length of the CAG repeat generally correlates 

statistically well with the age of onset, the strength of this correlation is mostly due to a small 

number of early-onset Huntington’s Disease cases with a CAG repeat length of 60 or more. 

However, the vast majority of Huntington’s Disease patients (~95%, (Myers, 2004)) carry a 

repeat length between 40 to 55 CAGs. When plotting the CAG repeat size against the age of 

onset it becomes apparent that for the majority of Huntington’s Disease patients, CAG repeat 

length is an insufficient predictor for age of onset as e.g. patients with a CAG repeat length 

between 40 and 44 can display first Huntington’s Disease symptoms as early as ~30 years of 

age and as late as ~70 years of age (Figure 5).  

 

 

 

 

 

 

 

 

 

Healthy Development of HD 

HD development dependent on 
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Figure 5: CAG repeat length and age of onset in Huntington’s Disease, taken and modified from Wexler et 
al., 2004. For CAG repeat sizes between 40 and 58, repeat size accounts for 44% of the variance in age of onset 
with a correlation coefficient of r = -0.66 (light red area). Longer repeat sizes result in early onset forms of 
Huntington’s Disease (dark red area). In these juvenile forms of Huntington’s Disease, age of onset correlates 
stronger with repeat length (r = -0.81) and CAG repeat length accounts for 72% of variance in age of onset. 

 

The search for genetic modifiers for age of onset besides the CAG repeat length in the 

huntingtin gene yielded several candidates which seem to modulate age of onset independent 

of CAG repeat length such as glutamate receptor GRIK2 (GluR6) (Chattopadhyay et al., 

2003), human caspase activated DNase (hCAD) (Chattopadhyay et al., 2005), ubiquitin 

carboxy-terminal hydrolase L1 (UCHL1) (Metzger et al., 2006b), drosophila homeobox 

homologue 1 (MSX1) (Djousse et al., 2004), NMDA receptor subunits (Arning et al., 2005), 

apolipoprotein E ε2ε3 (Kehoe et al., 1999), huntingtin interacting proteins HIP1 and HIP14 

(Metzger et al., 2006a). While these multiple genetic findings are encouraging, verified 

functional connections in terms of disease modifying mechanisms of action for these 

candidate genes are still lacking. 

 

2.1.6.1 Genetic anticipation in Huntington’s Disease 

A striking feature of Huntington’s Disease genetics is the unstability of the CAG repeat length 

from one generation to the next. In approximately 75% of all Huntington’s Disease cases, the 

CAG length changes, with expansion of the repeat length being more common than repeat 

contraction (Wheeler et al., 2007). Since repeat length correlates with age of onset, an earlier 

Strong correlation between age of 
onset and CAG repeat size

Poor correlation between age of 
onset and CAG repeat size

CAG repeat size
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disease phenotype is often observed in successive generations (Ridley et al., 1988; Ridley et 

al., 1991). This phenomenon termed “genetic anticipation” was first reported for myotonic 

dystrophy, another trinucleotide repeat disorder (Fleischer, 1918; Fu et al., 1992; Howeler et 

al., 1989; Penrose, 1948) and has since been observed in several trinucleotide repeat disorders 

(Gouw et al., 1994; Ikeuchi et al., 1995; Koide et al., 1994; Ranum et al., 1994; Takiyama et 

al., 1999; Vaisanen et al., 1996). 

The molecular mechanisms responsible for the trinucleotide instabilities are not yet fully 

understood. In Huntington’s Disease, epidemiologic reports showed that decreased age of 

onset is often associated with paternal inheritance (Barbeau, 1970; Bird et al., 1974; 

Conneally, 1984; Ridley et al., 1991; Wheeler et al., 2007), indicating a possibly increased 

gametic CAG repeat instability in sperm cells, a finding that was later confirmed in molecular 

studies (Leeflang et al., 1995; MacDonald et al., 1993). Because of these reports, erroneous 

DNA replication was long speculated to be solely responsible for the repeat length instability. 

However, more recent studies showed increased CAG repeat length mosaicism not only in 

gametic cells but also in somatic brain tissue where the CAG repeat length elongations in 

different brain regions correlated well with Huntington’s Disease neuropathology, with the 

striatum and the cerebral cortex displaying the largest repeat elongations (Kennedy et al., 

2003; Shelbourne et al., 2007; Telenius et al., 1994). While the observed somatic instability in 

different brain regions in human tissue might still be due to instability in replicating non-

neuronal cells rather than postmitotic neurons, a recent publication proved specific CAG 

instability even in non-replicating, terminally differentiated neurons in mouse models of 

Huntington’s Disease. Furthermore, this study showed an increased CAG repeat instability in 

neuronal cells dissected from human striata when compared to non-neuronal cell types 

(Gonitel et al., 2008).  

 

2.1.7 Huntingtin Protein 

2.1.7.1 Wild-type huntingtin 

Wild-type huntingtin is a 3144 amino acids large, soluble protein which is ubiquitously 

expressed, with highest expression levels in testes and the central nervous system (Figure 6). 

It has no relevant sequence homology with other proteins and its potentially complex cellular 

functions are poorly understood. Subcellular localization showed huntingtin association with 

the nucleus (Kegel et al., 2002), the Golgi complex, the endoplasmatic reticulum (Hilditch-

Maguire et al., 2000), synaptic vesicles (DiFiglia et al., 1995; Velier et al., 1998), the 

microtubule network (Hoffner et al., 2002) as well as mitochondria (Orr et al., 2008; Petrasch-
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Parwez et al., 2007; Rockabrand et al., 2007). Huntingtin contains 36 HEAT domains which 

are supposed to be involved in protein-protein-interactions (Andrade and Bork, 1995) and 

consist of a series of three amino acids which are repeated ~10 times along a 37-47 amino 

acid stretch. Huntingtin also contains a carboxyterminal nuclear export signal (Xia et al., 

2003), indicating a possible role as a cytosol-nucleus transporter protein or as a transcription 

modulating protein. The aminoterminal part of huntingtin contains various protease cleavage 

sites (Gafni and Ellerby, 2002; Gafni et al., 2004; Goldberg et al., 1996; Wellington et al., 

2002; Wellington et al., 1998; Wellington et al., 2000b) and the polyglutamine repeat which is 

expanded in Huntington’s Disease (Group, 1993a). Importantly, polyglutamine rich regions 

are also found in transcription factors like TBP or CREB (Everett and Wood, 2004; Friedman 

et al., 2008; Kim et al., 2002; McCampbell et al., 2000; Perez et al., 1998; van Roon-Mom et 

al., 2005). The cleavage and subsequent release of the aminoterminal segment containing the 

polyglutamine sequence facilitates fragment localization to the nucleus (Davies et al., 1997; 

DiFiglia et al., 1997; Kim et al., 2001; Lunkes et al., 2002).  

 

H2N COOH

1    250       500       750       1000                      1500                        2000                     2500          3144

: Polyglutamine tract : Region with several cleavage sites

: Polyproline sequence : Nuclear export signal

: HEAT repeat clusters : Serine phosphorylation sites

: Ubiquitination/Sumoylation site  

Figure 6: The huntingtin protein. Huntingtin is a 348 kDa large protein whose wild-type functions are still to 
be elucidated. The protein consists of numerous HEAT repeats which are hypothesized to be involved in protein-
protein interactions, a polyglutamine region mutated at the aminoterminal part in Huntington’s Disease, a 
polyproline region supposed to enhance protein solubility and a region containing several caspase and calpain 
cleavage sites. Several posttranslational modifications such as aminoterminal SUMOylation/ubiquitination or 
serine phosphorylations have been reported which are hypothesized to influence mutant huntingtin toxicitiy. 

 

Wild-type huntingtin is reported to have numerous cellular functions. Studies showed that it is 

anti-apoptotic through inhibition of pro-caspase9 cleavage and caspase 3 activation (Leavitt et 

al., 2006; Rigamonti et al., 2000; Rigamonti et al., 2001), it controls the cortical production of 

BDNF, a neurotrophin known to regulate striatal survival (Alcantara et al., 1997; Fusco et al., 

2003; Nakao et al., 1995; Zuccato et al., 2001; Zuccato et al., 2005; Zuccato et al., 2003), it is 

involved in vesicular transport (Gauthier et al., 2004; Gunawardena et al., 2003; Trushina et 

al., 2004) and it is reported to be involved in regulating gene transcription (Dunah et al., 2002; 

Holbert et al., 2001; Zuccato et al., 2001). 
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2.1.7.2 Gain-of-function or loss-of-function? 

Despite these numerous reported functions of wild-type huntingtin for normal cellular 

mechanisms and survival, Huntington’s Disease is widely considered a gain-of-function 

disease which is caused by newly adopted toxic properties of the mutated protein rather than a 

loss-of-function disease. This is supported by several observations. First, heterozygote knock 

out mouse models with loss of one wild-type huntingtin allele do not show any disease 

phenotype (Duyao et al., 1995; Zeitlin et al., 1995) while heterozygote mutant huntingtin 

knock-in mouse models display Huntington’s Disease like symptoms (Lin et al., 2001; 

Shelbourne et al., 1999). Second, transgenic mouse models which express mutant huntingtin 

or mutant huntingtin fragments in addition to the normal levels of endogenous wild-type 

huntingtin, suffer from strikingly severe neurodegeneration and Huntington’s Disease 

symptoms (Hodgson et al., 1999; Hurlbert et al., 1999; Mangiarini et al., 1996; Reddy et al., 

1998; Schilling et al., 1999; Shehadeh et al., 2006). Similarly, rat models with artificial 

expression of mutant huntingtin through lentiviral delivery exhibit Huntington’s Disease 

symptoms despite the presence of two endogenous wild-type huntingtin alleles (de Almeida et 

al., 2002; Regulier et al., 2004). Finally, unspecific knockdown of both wild-type and mutant 

huntingtin mRNA through RNA interference in mouse models improves disease symptoms 

(DiFiglia et al., 2007; Harper et al., 2005; Machida et al., 2006; Rodriguez-Lebron et al., 

2005; Wang et al., 2005), supporting the theory that it is not the decrease of wild-type but the 

gain of mutant huntingtin expression which causes Huntington’s Disease. However, it cannot 

be excluded that loss of wild-type function contributes to a smaller extend to disease 

development and progression. 

 

2.1.7.3 Structural changes of the mutated huntingtin protein 

As mentioned above, 100% penetrance in Huntington’s Disease is associated with a mutated 

huntingtin protein in which the aminoterminal polyglutamine sequence is expanded over a 

critical threshold of 39 glutamines. Long polyglutamine repeats can undergo a transient 

conformational change in which the random-coil adopts a polar zipper conformation that is 

stabilized by hydrogen bonds between the amides (Figure 7) (Perutz et al., 1994). The newly 

formed polar zipper conformation results in a cylindrical, parallel ß-sheet structure with one 

helical turn requiring 20 glutamines (Perutz et al., 2002a). However, this singular helical turn 

itself is unstable as the ends of the helix cannot form hydrogen bonds needed for helix 

stability. Importantly, a helix containing 40 or more glutamines displays two successive turns, 

enabling hydrogen bond formation between the two turns, thereby greatly enhancing overall 
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stability. A similar ß-sheet formation has been observed in amyloid fibrils formed by yeast 

prion protein Sup35 as well as amyloid ß peptide found in Alzheimer’s Disease (Balbirnie et 

al., 2001; Benzinger et al., 2000; Perutz et al., 2002b). In all these disorders the ß-sheet 

helices are proposed to act as a nuclearization seed for other monomers leading to fibril- and 

ultimately aggregate formation. 

Figure 7: Polymerisation events leading to aggregation of mutant huntingtin fragments, modified 
composite picture: Polar Zipper and ß-sheet helices pictures taken from Perutz et al., 2002a and Perutz et 
al., 1994, fibrils and aggregates pictures taken from Diaz-Hernandez et al., 2004. Hydrogen bonds between 
polyglutamines result in a polar zipper conformational arrangement between polyglutamine repeat stretches. 
These polar zipper strands in turn form water-filled helical ß-sheet structures whose stability increases with 
increasing polyglutamine repeat length. Assembly of several of these ß-sheet helices into fibrils leads in the end 
to the formation of large intracellular aggregates. 

 

Studies in in vitro and in vivo Huntington’s Disease models showed that full length mutant 

huntingtin has to be cleaved in order to undergo the described sequential aggregation steps 

(Cooper et al., 1998; Graham et al., 2006; Lunkes et al., 2002; Scherzinger et al., 1997; 

Scherzinger et al., 1999). It is hypothesized that uncleaved mutant huntingtin is prevented 

from fibrillar polymerization because of steric hindrance resulting from the size of the full 

length protein. The small, soluble aminoterminal mutated huntingtin fragments are then prone 

for stable conformational changes and thus have the ability to form fibrils and aggregates. 

Therefore, cleavage of mutant huntingtin and release of critical intracellular levels of mutant 

huntingtin fragments appears to be the rate limiting step in aggregate formation. 

While the conformational changes of mutant huntingtin and the subsequent formation of large 

aggregates are its most striking characteristics, the role of these mutant huntingtin aggregates 

for Huntington’s Disease are under debate and contradicting reports about aggregate toxicity 

have been published. Studies supporting a toxic role of huntingtin aggregates demonstrated 

that formation of nuclear but not cytosolic aggregates result in cell death (Bates, 2003; Chen 

et al., 2001; Chen et al., 2002; Saudou et al., 1998; Yang et al., 2002). In vivo experiments 

Polar Zipper Fibrils Aggregates

20 µm500 nm

4.8Å

Increasing scale

ß-sheet helix
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using a mouse model conditionally expressing mutant huntingtin showed that development of 

symptoms depended on the continuous expression of the transgene. Interestingly, switching 

off mutant huntingtin production not only stopped disease progression but also reversed the 

aggregate load in the mouse brain (Martin-Aparicio et al., 2001; Yamamoto et al., 2000). 

However, these findings have to be interpreted with care as they merely show correlation 

between aggregate formation and Huntington’s Disease progression and not necessarily 

causation. Reports using time-lapse single cell microscopy question the toxic role of 

huntingtin aggregates by showing that neuronal death is dependent on the amount of diffuse 

mutant huntingtin inside the cell and not the number of aggregates. Interestingly, neurons 

displaying aggregate formation seem to survive even longer than those without visible 

aggregates suggesting a neuroprotective role for aggregates as a molecular sink for soluble 

pathogenic mutant huntingtin forms (Arrasate et al., 2004; Saudou et al., 1998).  

 

2.1.8 Potential pathogenic molecular mechanisms Huntington’s Disease 

The exact cause for cell death resulting from expression of either soluble mutant huntingtin 

species or formation of insoluble huntingtin aggregates remains unclear and various toxic 

mechanisms have been suggested including impairment of vesicle transport, transcriptional 

dysregulation, mitochondrial dysfunction and proteasome blockage (Figure 8). 

 

Figure 8: Possible pathogenic mechanisms of mutated huntingtin protein, taken from Landles and Bates, 
2004.  
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Numerous groups have reported transcriptional dysregulation in Huntington’s Disease caused 

by association of different transcription factors like specificity protein 1 (SP1) (Dunah et al., 

2002; Hodges et al., 2006; Luthi-Carter et al., 2002a; Luthi-Carter et al., 2002b), cyclic AMP 

(cAMP) response element binding (CREB) protein (Glass et al., 2000; Jiang et al., 2006; 

Nucifora et al., 2001; Wyttenbach et al., 2001) or TATA-box binding protein (TBP) (Schaffar 

et al., 2004) with mutant huntingtin. As a result, these transcription factors are sequestered 

into intranuclear aggregates thereby leading to a general decrease in expression levels of their 

target genes (Figure 8, #7). 

Possibly related to the reported transcriptional dysregulations is the finding of mitochondrial 

impairment in Huntington’s Disease. Expression of the transcriptional coactivator peroxisome 

proliferator-activated receptor-gamma coactivator 1 (PGC-1alpha) is regulated by CREB 

(Herzig et al., 2001). PGC-1-alpha is a key regulator of cellular metabolism and 

mitochondriogenesis (Puigserver and Spiegelman, 2003). Interestingly, PGC-1alpha is 

consistently downregulated in Huntington’s Disease animal models as well as in patients 

resulting in mitochondrial dysfunctions (Cui et al., 2006; Weydt et al., 2006). In addition, 

PGC1-alpha knock-out mice display a specific striatal degeneration phenotype similar to the 

one observed in Huntington’s Disease (Leone et al., 2005; Lin et al., 2004). Besides these 

indirect links between mitochondrial impairment in Huntington’s Disease through 

transcriptional dysregulation, direct association of mutant huntingtin with mitochondria has 

been reported which results in specific dysfunctions of complexes II and III of the 

mitochondrial respiratory chain and oxidative damage (Orr et al., 2008; Solans et al., 2006) 

(Figure 8, #5). 

Another possible reason for mutant huntingtin toxicity could be the direct impairment of the 

ubiquitin-proteasome system. Various studies reported an inability of the proteasome 

machinery to degrade peptides containing long polyQ-repeats, resulting in a blockage of the 

proteasome degradation pathway and subsequent cellular changes of the ubiquitin system in 

Huntington’s Disease patients (Bence et al., 2001; Bennett et al., 2007; Jana et al., 2001) 

(Figure 8, #4). 

Because of the great variety of the affected cellular mechanisms in Huntington’s Disease, the 

exact reasons for mutant huntingtin toxicity are still not fully understood. Interestingly, recent 

findings suggest that efforts to pinpoint a specific pathogenic mechanism of action in 

Huntington’s Disease might be impossible as the numerous reported dysfunctions might be 

secondary due to a general, unspecific impairment in cellular protein homeostasis. This could 

be caused by the flux of misfolded proteins acting as additional stressors to the chaperone 
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system, which is responsible to keep the balance between folding, translocation and protein 

clearance (Morimoto, 2008; Prahlad et al., 2008). 

Therefore, treatments aiming to restore specifically only one impaired cellular mechanism in 

Huntington’s Disease might be condemned to fail. Thus, recent discovery work for 

therapeutics have been expanded to include potential therapies which influence the misfolding 

or the clearance of mutant huntingtin thereby tackling the most upstream event leading to 

Huntington’s Disease. This includes e.g. the upregulation of the chaperone system (Perrin et 

al., 2007; Zourlidou et al., 2007), inhibition of mutant huntingtin cleavage (Kim et al., 2006) 

or induction of the autophagy degradation pathway (King et al., 2008; Yamamoto et al., 2006).  

 

2.2 Time resolved fluorescence resonance energy transfer  

2.2.1 Fluorescence resonance energy transfer (FRET)  

The eponymous report with the first description of resonance energy transfer was published 

six decades ago by Förster (Förster, 1948). Fluorescence resonance energy transfer (FRET) is 

a quantum-mechanical phenomena based on energy coupling through the dipoles of two 

fluorescent molecules which occurs when two fluorophores are in close proximity to each 

other. Under such conditions, excitation of the donor fluorophore results in emission from the 

acceptor fluorophore at expense of donor-emission, presumed that the emission spectrum of 

the donor overlaps with the excitation spectrum of the acceptor (Stryer, 1978). Förster showed 

that efficiency of FRET (EFRET) is largely dependent on the distance “r” between the two 

fluorophores (Figure 9): 

EFRET = 1 / [1 + (r / R0)6] 
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Figure 9: FRET efficiency in dependence to the distance of the two fluorophores. 
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The Förster radius R0 is the distance for a defined fluorophore pair where EFRET equals 50%. It 

is a non-empirical value and can be calculated through: 

 

R0 = [2.8 * 1017 * κ2 * QD * εA * J(λ)]1/6 nm 

 

with κ2 being the dipole orientation factor, QD the fluorescence quantum yield of the donor 

when acceptor is absent, εA the maximum acceptor extinction coefficient and J(λ) being the 

overlap integral between donor and acceptor spectra. Since all the variables determining R0 

only influence its value by the sixth power, the normal R0 limit for FRET pairs using 

fluorophores with a strong maximum acceptor extinction coefficient as well as a high 

quantum yield of the donor is around 4 to 6 nm (Patterson et al., 2000; Wu and Brand, 1994).  

While FRET is routinely used for imaging experiments investigating e.g. protein-protein-

interactions it has some technological limitations like photobleaching or bleed-through 

between the two fluorophores (light which is supposed to excite only the donor also excites 

directly the acceptor fluorophore because of overlap in the excitation spectra). More 

importantly for drug discovery purposes, a further limitation inherent to the nature of FRET 

exists which complicates its application in high-throughput compound screens. In large 

automated primary screens designed to test 100’000 to over 1 millions compounds with a 

sample size of n=1, readout reliability and assay robustness is a prerequisite for any successful 

screen. Since FRET is severely affected by numerous possible screening artifacts such as 

autofluorescence of compounds or cellular components as well as light scattering resulting 

from precipitating compounds, FRET based readouts become highly unreliable under most 

high-throughput screening conditions. However, a related technology termed time resolved 

FRET can overcome most of these limitations. 

 

2.2.2 Time resolved FRET 

The disadvantages of normal FRET for high-throughput screening can be overcome by the 

use of rare earth complexes. These complexes are characterized by an organic trisbypyridine 

cryptate which engulfs a lanthanide ion such as europium3+ (Alpha et al., 1987). Light 

excitation of the complex results in a controlled energy transfer from the organic cage to the 

europium3+ ion. The lanthanide ion subsequently emits a very long-lived fluorescence which 

is not affected by photobleaching.  

For several reasons, these properties make the europium cryptate an excellent donor 

fluorophore for a time resolved FRET when used in combination with an acceptor fluorophore 
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(Mathis, 1993). First, rare earth ion cryptates display very large Förster radii of up to 9 nm as 

opposed to the 4 to 6 nm found in common fluorophores, enabling acceptor-donor interactions 

over much larger distances, thus simplifying their use for immunodetection methods (Bazin et 

al., 2001). Second, the unique long-lived emission from the cryptate-ion complex allows for 

time-dependent separation of the fluorescence artifacts which limit normal FRET assays from 

the specific time delayed excitation of the FRET acceptor fluorophore (Figure 10). Third, the 

possibility of time resolved measurements for wavelengths specific for the donor as well as 

the acceptor fluorophore results in a ratiometric readout which automatically corrects for 

assay volume errors as well as signal quenching or scattering, thereby increasing assay 

robustness and reliability (Imbert et al., 2007). 
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Figure 10: Schematic presentation of time resolved FRET. The time dependent intensity decay for four 
different fluorescence signals in a homogenous sample system where fluorophore-labeled antibodies are present 
in excess over their antigen is shown. After excitation of the sample, the matrix background fluorescence  (grey) 
of the sample and the fluorescence resulting from the direct flash excitation of the acceptor fluorophore-labeled 
antibody (dark blue) decrease rapidly. Introducing a time delay of ~100 µs between sample excitation and 
fluorescence measurement therefore allows for separation of this nonspecific fluorescence from the specific time 
resolved FRET signal. In contrast to this short lived matrix fluorescence, the europium cryptate donor 
fluorophore-labeled antibody displays a very long lived (up to 1 ms) emission after flash excitation (red). When 
the donor fluorophore-labeled antibody and the acceptor fluorophore-labeled are in close proximity to each other 
as a result of binding to the same antigen, a fluorescence resonance energy transfer occurs between the two 
fluorophores thus resulting in a time resolved FRET signal (light blue) whose intensity is directly proportional to 
the amount of antigen present in the sample. 
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3 AIMS OF THE THESIS 

At present, the pathogenesis of mutant huntingtin remains enigmatic, also due to insufficient 

characterization and quantification of the interplay between soluble and aggregated mutant 

huntingtin species. Therefore, my goal was to monitor huntingtin protein levels in its soluble 

and aggregated form and to find new methods and treatments to characterize or influence the 

balance between these conformational species.  

In order to study mutant huntingtin levels under controlled conditions, my first goal was to 

establish a cellular model system recapitulating major aspects found in Huntington’s Disease 

patients such as aggregation of mutant huntingtin and transcriptional dysregulation. As the 

precise pathogenic mechanisms of mutant huntingtin protein in neurons are yet not fully 

understood, the cellular model should display greatest possible flexibility to study the effect of 

wild-type and mutant huntingtin expression under a variety of cellular conditions. Using my 

cellular model, I aimed to establish a biochemical method for the precise and sensitive 

quantification and characterization of huntingtin aggregates. 

In parallel, since only symptomatic treatments for Huntington’s Disease exist, another goal of 

this thesis was to develop a highly sensitive, rapid, automated and robust quantification assay 

based on time resolved fluorescence resonance energy transfer. This assay enabled me to 

examine new therapeutic approaches by identifying compounds which directly modify the 

level of mutated huntingtin protein. In addition, if the search for compounds lowering mutant 

huntingtin in the cellular model is successful, I needed to establish a method enabling me to 

monitor the amount of mutant huntingtin during disease progression also in living human 

patients. I therefore aimed at creating a novel bioassay with reliable and easy quantification of 

human mutant huntingtin in readily accessible tissue samples.  
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4 RESULTS 

4.1 Inducible mutant huntingtin expression in a neuronal cell model leads to 

transcriptional dysregulation and cell death 
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4.1.1 SUMMARY 

Expansion of a polyglutamine repeat at the aminoterminal part of huntingtin protein leads to 

Huntington’s Disease, an autosomal-dominant neurodegenerative disorder characterized by 

impaired motor performance and severe brain atrophy. The proposed pathogenic cellular 

mechanisms of mutant huntingtin protein are numerous and include formation of intracellular 

huntingtin protein aggregates, transcriptional dysregulation, neurite dystrophy and 

mitochondrial dysfunction. Here, we describe a novel neuronal model with inducible 

expression of wild-type and mutant huntingtin fragments under proliferating and 

differentiating conditions. We further demonstrate that the induced expression of 

aminoterminal fragments of mutant huntingtin causes transcriptional dysregulation and 

cellular dysfunction. Recapitulation of the pathogenic findings from human patients in these 

cells recommends this neuronal model for further investigations of the biological mechanism 

of mutant huntingtin, allowing us to characterize the development and the pathology of 

Huntington’s Disease on a cellular level. 

 



 

26 

4.1.2 INTRODUCTION 

Huntington’s Disease (HD) is an inherited, autosomal-dominant neurodegenerative disorder 

whose main clinical symptoms include chorea, cognitive decline and weight loss (Nance and 

Sanders, 1996; Young et al., 1986). Patients normally display first disease symptoms in mid-

age with a relentless disease progression and premature death 15 to 20 years after appearance 

of clinical symptoms (Foroud et al., 1999). The disorder is caused by a mutated and expanded 

polyglutamine (polyQ) stretch in the huntingtin protein (Htt), a 348 kDa large, ubiquitously 

expressed protein with yet unclear cellular function (Group, 1993a; Gusella et al., 1983). 

Cleavage of full-length mutated Htt leads to the release of aggregation prone aminoterminal 

Htt fragments carrying the expanded polyQ repeat (Cooper et al., 1998; Lunkes et al., 2002; 

Scherzinger et al., 1999). The cause for cell death as a result of mutant Htt expression is yet 

not fully understood and different pathogenic mechanisms have been proposed, including 

impaired axonal trafficking and microtubule destabilization (Gunawardena et al., 2003; 

Trushina et al., 2003), transcriptional dysregulation (Hodges et al., 2006; Jiang et al., 2006; 

Schaffar et al., 2004; Wyttenbach et al., 2001) and mitochondrial dysfunction (Solans et al., 

2006). 

Various cellular models for HD have been developed to study the effect of mutant huntingtin 

expression on cellular mechanisms. Non-neuronal primary cells from HD patients have been 

used to study CAG repeat variability (Manley et al., 1999a) or calcium homeostasis (Sawa et 

al., 1999). Expression of mutant Htt in murine primary neuronal cultures results in neuritic 

degeneration and induction of apoptotic pathways (Li et al., 2000; Saudou et al., 1998). 

Immortalized striatal neurons showed increased vulnerability to mitochondrial toxins and 

impaired mitochondrial complex II function in presence of stable mutant Htt expression (Ruan 

et al., 2004; Trettel et al., 2000). 

While the use of primary neuronal cultures or stable expressing cell lines vastly increased the 

understanding of HD pathology, such cellular models display several drawbacks for their use 

in drug discovery purposes such as the limited availability of primary cultures and the 

possible adaptation to the toxic insult in cell lines stably expressing mutant Htt. To overcome 

these disadvantages, we developed a neuronal model which recapitulates cellular dysfunctions 

seen in HD patients but is available in unlimited cell numbers and provides flexibility for 

future experiments. We chose the neuroblastoma line HN10, a readily transfectable neuronal 

line which can be cultured under mitotic and post-mitotic conditions (Lee et al., 1990; 

Sommerfeld et al., 2000). To eliminate adaptational clonal effects, we created HN10 cell lines 

with inducible expression of different wild-type and mutant Htt constructs. In this study, we 
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show that this inducible neuronal model reproduces key pathogenic mechanisms found in HD 

patients and provides a valuable in vitro system for drug discovery research in HD. 
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4.1.3 MATERIAL AND METHODS 

Cell culture 

For keeping the HN10 cells in a mitotically active state, cultures were grown in proliferating 

media (high-glucose DMEM (Gibco), 10% FCS, penicillin + streptomycin) at 37°C and 5 % 

CO2. Exchange of the medium and splitting of the cells occured every 2-3 days. In order to 

keep the cells under differentiating, post-mitotic conditions, proliferating cells were collected 

and resuspended in proliferating media and plated in 20% confluency on dishes precoated 

with 20 µg/µl laminin (SIGMA). After 1 day, proliferating media was removed and cells were 

cultured in differentiating media (serum-free media, supplements (Brewer et al., 1993), 45 µM 

retinoic acid (SIGMA)) until time of the readout. For immunohistochemistry, cells were fixed 

with 4% paraformaldehyde and stained with the anti-huntingtin antibody 2B7 (custom 

designed by GENOVAC, Freiburg, Germany), the anti-huntingtin mEM48 antibody 

(Millipore, MAB 5374) or the anti-polyglutamine antibody m1C2 (Millipore, MAB 1574) and 

Hoechst nuclei stain (Invitrogen) according to standard immunohistochemistry protocol.  

 

Creation of stable inducible clones 

Parental HN10 cells were transfected with the receptor pNEBR-R1 plasmid part of the 

inducible rheoswitch mammalian system (New England Biolabs). Transfected cells were 

seeded in a dilution series on 96-well plates to statistically achieve singular clones in the 

higher diluted wells and cultured under selection with 1 mg/ml geneticin (Invitrogen). After 2 

weeks of selection, >30 identifiable clone colonies from the highest diluted wells were picked 

and reseeded on a 24-well plate. Selected clones were compared to the parental HN10 cell line 

in terms of morphology, speed of growth and their ability to differentiate. After this 

preselection 21 remaining clones were transiently transfected with a luciferase reporter 

plasmid and cultured for 2 days with or without inducer. Clone with best induction ratio was 

selected to develop four stable HN10 cell lines with inducible expression of the 

aminoterminal huntingtin fragments exon1-25Q, exon1-72Q, aa857-25Q and aa857-72Q.  

 

Western blot and AGERA 

Monomeric and aggregated huntingtin fragments were detected by western blot or AGERA as 

described in Weiss et al., 2008. 
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Real time PCR 

Exon1-72Q clone was cultured under proliferating or differentiating conditions with or 

without inducer. RNA was isolated with RNeasy Mini kit (Qiagen). Real time PCR was 

performed with customized TaqMan® microfluidic card arrays (Applied Biosystems) 

according to manufacturers protocol. Eight different samples were analyzed simultaneously 

for 15 probes + 18S control. 100 to 150 ng of total RNA were used in the First-Strand cDNA 

synthesis according to manufacturers protocol (Invitrogen, SuperScript III Platinum). The 

cDNA was added to the microfluidic card using 30 µl cDNA, 50 µl 2x Platinum qPCR 

SuperMix-UDG with ROX and 100 µl DEPC water. After two centrifugations at 1000 g for 1 

min, the micro fluidic card was sealed and analyzed. After an incubation at 50°C for 2 min, 

samples were denatured at 94.5°C for 2 min. The following parameters were then set for 

optimal amplification of selected probes during 45 cycles: 97°C for 30 sec and 59.7°C for 1 

min. Data were extracted and Ct values normalized by 18S calibration.  

 

Protein and aconitase measurements 

For protein and aconitase measurements, proliferating or differentiating HN10-exon1-72Q 

clone was cultured on 24-well plates under noninduced or induced conditions. After 1, 2 and 3 

days of cell culture, wells were washed 3x with PBS and protein content of each well was 

measured with BCATM Protein Assay Kit (Perbio). The aconitase activity assay was adapted 

from previously described methods (Gardner et al., 1994; Hausladen and Fridovich, 1996). 

Briefly, wells were washed with 100 µl of PBS followed by addition of 30 mM sodium citrate, 

0.5 mM MnCl2, 50 mM Tris, 0.2 mM NADP, 2 U/ml isocitrate dehydrogenase, 1 % Triton, 

pH 7.5. After mixing, kinetic measurements were done at 37°C in Fluoroskan microplate 

fluorometer with 355/460 nm over 30 min. 

 

Neurite quantification 

Analysis of neurite outgrowth was performed with LI-COR Biosciences In-Cell Western™ 

assay. Exon1-25Q and exon1-72Q clone were cultured under differentiating conditions with 

or without inducer for up to 6 days on clear 96-well plates. HN10 neurites can be visualized 

with anti-tubulin immunohistochemistry. For this, cells were fixed with 4% paraformaldehyde 

and stained with anti-tubulin (Abcam). After washing, cells were incubated with IRDye 

800CW anti-mouse secondary antibody (LI-COR Biosciences) and DRAQ5™ nuclei stain 

(Biostatus Limited). Quantification of tubulin and nuclei was performed with Odyssey® 
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imager & software (LI-COR Biosciences). The ratio of tubulin stain and cell number (nuclei 

stain) reflected the amount of neurites per cell formed under the different conditions. 

 

Caspase 3/7 activity 

Exon1-25Q and exon1-72Q clone were cultured under differentiating conditions with or 

without inducer for up to 5 days on an opaque 96-well plates. Caspase 3/7 activity was 

determined using the Caspase-Glo 3/7 Assay (Promega) as recommended by the manufacturer 

using a RUBYstar reader (BMG Labtech). 
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4.1.4 RESULTS 

Inducible expression of wild-type and mutant huntingtin fragments in a neuronal cell 

line 

Aminoterminal mutant huntingtin fragments carrying an expanded polyQ stretch are toxic in 

vitro and in vivo through a gain-of-function mechanism but the precise pathogenic cellular 

mechanism are yet not fully understood (Arrasate et al., 2004; Hurlbert et al., 1999; 

Mangiarini et al., 1996; Schilling et al., 1999; Varma et al., 2007). To examine in detail toxic 

mechanism(s) of action of mutant huntingtin fragments, in vitro models are needed which 

recapitulate the cellular defects found in patients. We thus generated four stable neuronal 

HN10 clone lines with inducible expression of short (exon1) or long (aa857) amino-terminal 

Htt fragments carrying either a wild-type (25Q) or a mutant (72Q) polyQ length (Figure 11A). 

All cell lines displayed no basal expression, whereas the expression levels of Htt fragments 

were readily detectable upon induction (Figure 11B). Expression of Htt was confirmed by 

immunohistochemistry. Notably, only the expression of the exon1-72Q fragment resulted in 

visible aggregate formation in a subset of cells (Figure 11C).  
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Figure 11: Inducible expression of wild-type and mutant huntingtin fragments in clonal HN10 cell lines. A: 
Wild-type (25Q) and mutant (72Q) huntingtin fragments used for creation of stable and inducible HN10 clones 
in comparison to the endogenous full length huntingtin. B: Western blots of huntingtin expressing HN10 clones 
cultured with or without inducer. No basal expression is detectable in absence of inducing ligand. C: 
Immunohistochemistry of huntingtin expressing HN10 clones cultured with or without inducer. After 5 days of 
induction, expression of exon1-72Q fragment leads to aggregate formation in a subset of cells (arrow) whereas 
clones expressing exon-25Q, aa857-25Q and aa857-72Q do not show any detectable aggregate formation. 

 

After the addition of inducer, an increase in Htt fragment levels was observed over 24 hours, 

whereas the subsequent removal of the inducer from the culture medium caused a time 

dependent decrease of the Htt fragments (Figure 12A and Figure 12B). Further quantification 

of fragment expression levels revealed a dose dependency correlating with the concentration 

of the inducer in the culture medium (Figure 12C). Supporting the immunohistochemical 

observation, aggregate formation after induction of exon1-Q72 expression was confirmed 
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with AGERA (Weiss et al., 2008) (Figure 12D) while expression of the two wild-type 

constructs or of the larger aa857-72Q construct did not lead to any detectable aggregate levels 

even when using this sensitive biochemical aggregate detection method (data not shown).  
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Figure 12: Time dependent induction of exon1-Q72 monomer expression and aggregation formation. A: 
Addition of inducer to the culture medium leads to a time dependent increase of exon1-72Q expression with first 
detectable protein levels after 6 h (biological triplicates). B: Removal of the inducer from the culture medium 
leads to decreasing exon1-72Q levels over time. C: Increasing inducer concentrations to the culture medium of 
exon1-25Q, exon1-72Q, aa857-25Q and aa857-72Q clones reveal dose dependent huntingtin fragment 
expression response for all 4 clones (western blot quantification). D: AGERA blot of noninduced or induced 
exon1-72Q cells reveals detectable aggregate levels after induction.  

 

A common finding in HD models is that the length of the huntingtin construct carrying the 

polyQ repeat influences aggregate formation and severity of disease symptoms. Full length 

mutant huntingtin is cleaved into smaller fragments (Lunkes et al., 2002; Ratovitski et al., 

2007; Scherzinger et al., 1999) and decreased mutant huntingtin fragment length correlates 

with increased disease progression and aggregate formation (Kim et al., 2001; Martindale et 

al., 1998; Schilling et al., 2007; Weiss et al., 2008). Further work focused on characterizing 

the HN10-exon1-Q72 cell line as it expresses the shortest aminoterminal mutant fragment 

which is most prone to aggregate. Since mutant huntingtin aggregation and impairment of cell 

viability is most pronounced in differentiated adult neuronal cells (DiFiglia et al., 1997; 

Fennema-Notestine et al., 2004; Li et al., 2000; Macdonald and Halliday, 2002; Rosas et al., 

2003), it was important that our cellular model can be cultured under mitotic and post-mitotic 



 

33 

conditions (Figure 13), therefore allowing for analysis of exon1-72Q expression effects under 

proliferating as well as differentiating conditions. 

 

Differentiated
Real Light Tubulin

Proliferating
Real Light

 

Figure 13: HN10 cells can be grown under proliferating and differentiated conditions. Adjusting the culture 
conditions allows for controlled differentiation of the normally proliferating HN10 cells. Staining with tubulin 
(red) and Hoechst nuclei stain (blue) reveals the dense neurite network formed after 7 days of differentiation. 
(representative pictures, all bars=100 µm). 

 

Exon1-72Q expression decreases PGC1-alpha levels and impairs cellular viability  

One of the major characteristics of HD is transcriptional dysregulation. Transcription factors 

such as specificity protein 1 (SP1) (Dunah et al., 2002; Hodges et al., 2006; Luthi-Carter et al., 

2002a) and cAMP response element binding (CREB) protein (Jiang et al., 2006; Nucifora et 

al., 2001; Wyttenbach et al., 2001) can interact with mutant huntingtin and get sequestered 

into intranuclear aggregates, resulting in a decreased transcription of their target genes. To 

examine the relevance of our model for transcriptional dysregulation as a result of mutant 

huntingtin expression, we analyzed the expression levels of several genes which are under the 

promoter control of SP1 or CREB. First, we compared gene expression in noninduced 

proliferating versus differentiating HN10-exon1-72Q cells. As expected, keeping the cells in a 

proliferative active or in differentiated state resulted in different gene expression patterns 

(Figure 14A). Expression of transcriptional coactivator peroxisome proliferator-activated 

receptor-gamma coactivator 1 (PGC-1alpha), a CREB dependent master regulator of 

mitochondriogenesis (Puigserver and Spiegelman, 2003), was found to be upregulated in 

noninduced differentiating cells, possibly reflecting the increased energetic demand of 

differentiating cells due to extensive neurite formation. Differences in basal PGC-1alpha 

expression levels were of special interest for establishing a valid cellular HD model, as human 

PGC-1alpha is one of the key genes found to be constantly downregulated in HD patients (Cui 

et al., 2006; Weydt et al., 2006). When analyzing the effect of induced exon1-72Q on gene 
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expression we detected a downregulation of PGC-1alpha in proliferating (Figure 14B) as well 

as in differentiating cells (Figure 14C). 
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Figure 14: Differences in transcriptional dysregulation in proliferating and differentiated HN10 cells with 
or without exon1-72Q induction. A: Real-time PCR for 15 genes of interest in Huntington’s Disease reveals 
influence of culture conditions on gene expression in noninduced HN10 exon1-72Q clone with pronounced 
upregulation of PGC1A expression (~6-fold) upon differentiation. B: Induced expression of exon1-72Q in 
proliferating cells results in significant downregulation of PGC1A and TFAM, genes known do be also 
decreased in Huntington’s Disease patients. C: Expression of exon1-72Q in differentiated cells reproduces the 
significant downregulation of PGC1A. (All graphs: n=3, p<0.05=*, p<0.01=**, p<0.001=***). 
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Next, we examined whether expression of mutant Htt fragment and the downregulation of 

PGC-1alpha influenced cell viability or mitochondrial function. For this, cells were cultured 

under proliferating or differentiating conditions with or without induction of exon1-72Q for 

three days and cellular protein levels were measured to determine general cell viability. 

Cellular protein amounts increased with time when culturing the cells under proliferating 

conditions, reflecting the mitotic nature of the cells (Figure 15A, upper graph). A small but 

not significant decrease in cellular protein levels was detected after 3 days in the proliferating 

clones with exon1-72Q expression compared to proliferating noninduced clones. The 

influence of exon1-72Q expression increased when keeping the clone under differentiating, 

non-dividing conditions. Significant decrease of cellular protein levels between noninduced 

and induced cells were detected already after 2 days of exon1-72Q expression and differences 

increased after 3 days of induction, indicating a general impairment of cell viability as a result 

of mutant Htt expression (Figure 15A, lower graph).  
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Figure 15: Impaired cell viability and aconitase activity as a result of exon1-Q72 expression in 
differentiated HN10 cells. A: Induction of exon1-72Q expression in proliferating (upper graph) and 
differentiating cells (lower graph) leads to decreased cell viability as measured by cellular protein expression 
levels only in differentiating cells. B: Aconitase activity as a measure for mitochondrial function and presence of 
radical oxygen species reveals impaired mitochondria function after 3 days of exon1-72Q expression in 
differentiated but not proliferating cells. (All graphs: n=4, p<0.05=*, p<0.01=**). 

 



 

36 

Since PGC1-alpha, a key regulator of mitochondriogenesis, was downregulated in 

proliferating and in differentiated cells upon exon1-72Q expression but only differentiated 

cells displayed a significant impairment in cell viability, we examined the influence of exon1-

72Q expression on mitochondria in noninduced and induced cells under proliferating and 

differentiating conditions. Using aconitase activity as a marker for mitochondrial function and 

oxidative damage (Bulteau et al., 2003; Gardner et al., 1994; Yan et al., 1997), we found a 

significant mitochondrial impairment in differentiating cells after 3 days of exon1-72Q 

expression (Figure 15B, lower graph) but not in proliferating cells (Figure 15B, upper graph) 

when compared to noninduced control. 

To validate that the observed effects of exon1-72Q in differentiated cells are a direct result of 

the mutated polyQ stretch in the exon1 fragment and not due to the expression of a Htt 

fragment per se, we compared the effects of wild-type exon1-25Q and mutant exon1-72Q 

expression on cell viability (Figure 16). Measuring caspase 3/7 activity as a generic marker 

for apoptosis showed an increased caspase activity in differentiated cells upon exon1-72Q 

expression whereas expression of the wild-type exon1-25Q fragment resulted in decreased 

caspase 3/7 activity (Figure 16A). Using neurite outgrowth as an orthogonal readout for the 

different effects of wild-type and mutant huntingtin fragments in differentiating cells verified 

the protective effect of exon1-25Q expression whereas expression of exon1-72Q construct 

resulted in a significantly decreased neurite outgrowth (Figure 16B). 
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Figure 16: Effects of wild-type and mutant huntingtin exon1 expression on cell viability in differentiated 
cells. A: Caspase 3/7 activity as a measure of cellular dysfunction reveals increased apoptosis after exon1-72Q 
expression in differentiated cells. Expression of the wild-type construct exon1-25Q protects the differentiated 
cells from caspase 3/7 activity. B: Quantification of tubulin/nuclei ratio with in-cell western as a indicator for 
neurite outgrowth in differentiated HN10 clones upon exon1-25Q or exon1-72Q induction. Induced expression 
of wild-type exon1-25Q leads to increased neurite outgrowth over noninduced control whereas expression of 
mutant exon1-72Q construct leads to decreased neurite formation. (A: n=4, B: n=3, All graphs: p<0.05=*, 
p<0.01=**). 
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4.1.5 DISCUSSION 

Despite a remarkable progress in the understanding of HD, the most common monocausal 

neurodegenerative disorder (Bates et al., 2002), over the past decades, the cellular mechanisms 

leading to neuronal death remain elusive and various pathogenic mechanisms of action have 

been proposed including transcriptional dysregulation, impaired neurite function and 

mitochondrial dysfunction. In order to elucidate some of the open questions concerning the 

pathology of Huntington’s Disease and to establish a valid cellular Huntington’s Disease 

model which can be used for drug discovery purposes, we have developed a flexible 

expression system in a neuronal cell line in which we can control the amount and time of 

wild-type and mutant Htt expression (Figure 12) as well as the mitotic state of the cells 

(Figure 13).  

The ability to culture the cells under both proliferating as well differentiating conditions is 

especially relevant considering that terminally differentiated cells such as neurons and adult 

muscle cells display the strongest aggregate formation and are most vulnerable to mutant 

huntingtin expression (Arenas et al., 1998; Fennema-Notestine et al., 2004; Lodi et al., 2000; 

Rosas et al., 2003; Sathasivam et al., 1999b). Since the rate of aggregation is dependent on the 

intracellular concentration of mutant huntingtin fragments (Scherzinger et al., 1999), the 

increased aggregate formation in these cell types is thought to be a direct result of their 

terminally differentiated status in which a threshold concentration of aggregation-prone 

mutant huntingtin precursors can be surpassed. In contrast, the continuous division of 

proliferating cells allows for a constant dilution of the cleaved mutant huntingtin fragments 

therefore making it more unlikely that the amount of intracellular huntingtin fragments can 

built up to a critical concentration. Indeed when comparing the effects of induced mutant 

huntingtin expression in the identical clone line which has been either cultured under 

proliferating or differentiating conditions, a different susceptibility to the mutant huntingtin 

became apparent with differentiating, post-mitotic cells being more vulnerable to the toxic 

insult from mutant huntingtin than the mitocically active proliferating cells (Figure 15). 

By comparing the effects of exon1-25Q and exon1-72Q expression on cell viability, we 

showed that the sensitivity of differentiated HN10 cells to mutated huntingtin fragment is 

specific to the elongated polyglutamine stretch in the huntingtin fragment and not to the 

artificial expression of a short huntingtin fragment itself (Figure 16). Interestingly, the 

expression of a wild-type huntingtin fragment resulted in a protective effect on caspase 3 

activity, a finding which is in agreement with earlier in vitro and in vivo Huntington’s Disease 
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models (Leavitt et al., 2006; Rigamonti et al., 2000; Rigamonti et al., 2001) thus further 

validating the applicability of our inducible neuronal cells as a Huntington’s Disease model.  

Some open questions which may limit the use of our model for Huntington’s Disease research 

remain. Even though the toxic effect of mutant huntingtin expression on the cells has been 

verified with three orthogonal readouts (cellular protein levels, caspase activity and neurite 

outgrowth), none of these readouts examines a specific cellular pathway. Therefore in theory, 

it may be possible that the observed impairments in cell viability in our inducible neuronal 

clones are unrelated to the pathologic biological mechanism of action occurring in patients. 

While expression of aminoterminal mutated fragments results in a more aggressive toxicity 

and allows for an increased dynamic range of our readouts, this decision prevents our model 

from being used to answer biological questions that may require the expression of more 

carboxyterminal parts of the mutated huntingtin protein. For example, cellular pathways 

relevant for the development of Huntington’s Disease that may interact specifically with 

huntingtin’s nuclear export signal at the carboxyterminus (Xia et al., 2003) cannot be studied 

with our current setup. Hence, further studies should include the development of an inducible 

full length mutant huntingtin clone based on our neuronal model system as well as the more 

in-depth analysis of specific cellular pathways that are supposed to be affected in 

Huntington’s Disease.  

Nevertheless, the current data supports the applicability of our neuronal cells as a valid model 

for Huntington’s Disease. Induced expression of mutated huntingtin fragment results in 

prominent cellular defects also found in patients such as aggregation of mutated huntingtin 

fragments, specific transcriptional dysregulation, impairment of cell viability and 

mitochondrial dysfunction. Future use of our cell model will therefore include pathway 

analysis of the toxic mechanisms of action and identification of compounds which may 

ameliorate the described effects resulting from mutant huntingtin expression. 
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4.2.1 SUMMARY 

A CAG repeat gene expansion translated into a pathogenic polyglutamine stretch at the N-

terminus of huntingtin triggers Huntington's Disease. Mutated huntingtin is predicted to adopt 

toxic properties mainly if aggregation-prone N-terminal fragments are released by proteolysis. 

Huntingtin-aggregates are indeed a major hallmark of this disorder and could represent useful 

markers of disease-onset or progression. We designed a simple method for qualitative and 

quantitative characterization of aggregates. For this, we analyzed samples from in vitro and in 

vivo Huntington’s Disease models by agarose gel electrophoresis and show that in the brain of 

transgenic mice huntingtin-aggregates became larger as a function of disease progression. 

This appears to be a property of cytoplasmic but not nuclear aggregates. In cell cultures, 

treatment with Congo Red inhibited aggregate growth but not total load. Finally, we show that 

in primary striatal neurons and in brains of R6/2 and HdhQ150 mice, the presence of 

aggregates preceded initiation of any other functional deficits. This observation argues for a 

pathogenic role of huntingtin-aggregation in Huntington`s Disease. Our results emphasize that 

thorough analysis of huntingtin metabolism and aggregation is now feasible, thus significantly 

improving the power of studies assessing therapies designed to lower huntingtin levels or to 

interfere with its aggregation. 
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4.2.2 INTRODUCTION 

Huntington’s Disease (HD) is a neurodegenerative disorder characterized by motor 

dysfunction (choreiform movements), emotional disturbance, dementia, and weight loss 

(Bates et al., 2002). HD is caused by an autosomal dominant expansion of a CAG repeat 

encoding for polyglutamine (polyQ) in exon 1 of the huntingtin (Htt) gene (Group, 1993b). 

Mutated Htt (mHtt) gains a neurotoxic function, leading to the onset of clinical symptoms 

mostly in mid-life. The progression of HD is characterized by a marked degeneration of gray 

and white brain matter whereby a loss of vulnerable neurons, most notably striatal medium-

sized spiny neurons, is observed, while resistant populations are spared (Davies et al., 1997; 

DiFiglia et al., 1997; Henley et al., 2006; Rosas et al., 2006; Ruocco et al., 2006; Vonsattel 

and DiFiglia, 1998). HD progresses relentlessly with a lethal outcome about two decades after 

diagnosis.  

In transgenic mouse models of HD the expression of N-terminal fragments or full-length mHtt 

leads to HD-like pathology and associated motor, cognitive and behavioral deficits. R6/2 mice 

are the first and most intensely studied mouse model of HD (Mangiarini et al., 1996). They 

express mHtt-exon 1 with an expansion of more than 150 glutamines under the control of the 

human Htt-promoter. The mice develop an early and severe phenotype with first motor 

deficits appearing already at 5-6 weeks (wk) after birth, behavioral deficits are observed at 8 

wk and rapid lethality ensues after 14 wk of age. Because of this fast and prominent 

progression, R6/2 mice are often used to dissect the neurodegenerative processes causing HD 

or as a translational model for experimental therapeutics. Critically, neuronal dysfunction can 

be replicated in vitro by expressing N-terminal fragments of mHtt in cell lines and primary 

neuronal cultures (Li et al., 2000; Saudou et al., 1998). 

A hallmark of neuropathology in animal HD models as well as in human patients affected by 

HD is the presence of intracellular mHtt-aggregates (Davies et al., 1997; Nguyen et al., 2006; 

van Roon-Mom et al., 2002; Woodman et al., 2007). It is an ongoing debate whether these 

mHtt containing aggregates are toxic to the cell, neutral byproducts of the pathogenic process 

or even neuroprotective by sequestering toxic polymeric forms of mHtt (Chen et al., 2001; 

Davies et al., 1997; DiFiglia et al., 1997; Yang et al., 2002). Even though the exact role of 

mHtt-aggregates in HD pathology remains unclear, it is a common observation that 

accumulation of aggregates in brains of HD patients and animal models increases with disease 

progression (DiFiglia et al., 1997; Gutekunst et al., 1999; Menalled et al., 2003; van Roon-

Mom et al., 2002; Woodman et al., 2007). In R6/2 mice, histochemistry was used to show 

wide-spread accumulation of Htt in cytosolic and nuclear inclusions, which increased in 
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number and size with age and whose formation was highly correlated with the progression of 

neurological symptoms (Li et al., 1999). In light of these findings, detailed and sensitive 

mHtt-aggregate characterization is therefore required when analyzing disease onset and 

progression or for testing disease-modifying treatments. 

As discussed, histochemistry provides access to the study of aggregate morphology, number 

and regional localization but does not provide the power for quantitative biochemical 

determinations. PolyQ-aggregates are insoluble and resistant to chemical extractions, thus 

they can be poorly determined by polyacrylamide gel electrophoresis because they are 

retained in the loading wells (Hazeki et al., 2000). More precise biochemical quantitative 

information can be obtained with the filter-trap assay for aggregates (Scherzinger et al., 1997). 

However, detailed investigation of aggregate growth or of aggregate composition depending 

on size is impossible by this method due to indiscriminate retention of all protein inclusions 

larger than the filter pores of the cellulose acetate membrane. 

Here, we developed Agarose Gel Electrophoresis for Resolving Aggregates (AGERA) as a 

simple and sensitive biochemical detection method for quantitative and qualitative 

investigations of aggregate formation in in vitro and in vivo HD models. Notably, using 

AGERA we report that sizeable amounts of aggregates are found before the onset of other 

pathological dysfunctions in different in vitro and in vivo models of HD suggesting a 

pathogenic role of aggregates in HD. 
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4.2.3 MATERIALS AND METHODS 

Cell culture, DNA transfections and lentivirus infections 

HN10 cells were grown in DMEM (Gibco), 10% FCS, penicillin and streptomycin. Plasmid 

transfections were performed with Lipofectamine 2000 (Invitrogen) according to the 

manufacturer protocol. Two days later, cells were lysed in RIPA buffer (10 mM Tris pH 7.5, 

150 mM NaCl, 1 mM EDTA pH 8, 1% NP40, 0.5% SDS, Complete Protease Inhibitor) and 

samples were separated by electrophoresis on agarose or SDS polyacrylamide gels (Wiltfang 

et al., 1991). For immunohistochemistry, cells were fixed with 4% paraformaldehyde (PFA) 

and GFP autofluorescence was analyzed by microscopy.  

Primary striatal cultures were prepared and cultured as described (Zafra et al., 1990). In short, 

timed-pregnant female mice were sacrificed and embryos were collected at E16.5. Ganglionic 

eminences were dissected and incubated for 20 min at 37°C in phosphate buffered saline 

(PBS) without Ca2+/Mg2+ (Gibco), but containing 10 mM glucose, 1 mg/ml albumin (Sigma), 

6 g/ml DNase (Sigma) and 0.25% trypsin (Sigma). After washing, striatal cells were 

dissociated with a fire polished Pasteur pipette. Cells were collected and resuspended in 

DMEM (Gibco), supplemented with 10% FCS and plated on culture dishes precoated with 

poly-DL-ornithine (0.5 mg/ml) and  cultured in serum-free medium and supplements (Brewer 

and Cotman, 1989). One day after plating, cells were infected with lentivirus expressing Htt-

exon1 with 25Q or 72Q. A virus expressing eGFP was used as control, generation and titer 

determination were done as previously described (Regulier et al., 2004). Briefly, 293T cells 

were transfected with four plasmids encoding for packaging proteins, envelope (VSV-G) 

protein, Rev protein and transfer vector encoding for Ex1-25Q, Ex1-72Q or GFP proteins. 

The viruses were resuspended in (PBS) with 1% BSA and matched for particle content in ng 

p24 antigen/ml as measured by ELISA (Zeptometrix Corp; USA). The cell cultures were 

infected with lentiviral vectors at ratio of 100 ng of p24 antigen/105 cells the day after plating 

(1 DIV). 

Four and seven days after infections, cells were either lysed and analyzed by gel 

electrophoresis or fixed with 4% PFA and stained with mEM48 antibody (Chemicon, MAB 

5374) and DAPI according to standard immunohistochemistry protocol.  

 

Generation and characterization of inducible HN10 cell line 

Rheoswitch system (New England Biolabs) was used to create a stable HN10 cell line with 

inducible Ex1-72Q expression. Ex1-Q72 was subcloned into the pNEBR-X1Hygro Vector 

according to standard molecular biology procedures. HN10 cells were transfected with 
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pNEBR-R1 plasmid and cultured with 1 mg/ml G418 (Invitrogen). Stable clones were first 

screened for normal cell morphology, transiently transfected with the pNEBR-GLuciferase 

reporter plasmid and induced with 500 nM Rheoswitch-ligand (RSL). Luciferase expression 

was measured and the clone with highest induction ratio was further expanded and 

subsequently transfected with pNEBR-ExQ72 plasmid. Stable clones were selected with 1 

mg/ml G418 and 1 mg/ml Hygromycin (Invitrogen) and screened for normal cell morphology. 

Expression of Ex1Q72 in stable clones was monitored after induction with 500 nM RSL. 

Expression levels were analyzed with western blot. The clone with the best expression level 

and non detectable basal expression was chosen for further experiments (HN10-Ex1Q72V). 

For RSL-concentration and time-dependency of induction, HN10-Ex1Q72V clone was grown 

in RSL-containing media as indicated. Cell lysates were analyzed by western blot for 

huntingtin monomer expression or AGERA for aggregate determination. 

 

Brain homogenates and subcellular fractionation 

Aggregate quantification was conducted using mouse brains homogenized in 10 volumes 

(w/v) TBS (100 mM Tris, pH 7.4, 150 mM NaCl) and Complete Protease Inhibitor (Roche 

Diagnostics) twice for 2 min at 30 Hz in a Retsch MM 300 Mill. Samples were further 

homogenized by 10 ultrasound pulses with a Branson sonifier and stored at -80°C. 

To isolate cytoplasmic and nuclear fractions, each brain was homogenized in 5 volumes (w/v) 

ice-cold Buffer 1 (575 mM sucrose, 25 mM KCl, 50 mM triethanolamine, 5 mM MgCl2, 1 

mM DTT, 0.5 mM PMSF, Complete Protease Inhibitor) and few strokes with Teflon pestle in 

a glass homogenizer. DTT concentration was adjusted to 5 mM. A crude homogenate aliquot 

was kept as starting material reference. The rest of the homogenate was centrifuged at 800 g 

for 15 min (all centrifugations were run at 4°C) to isolate a crude nuclear fraction (pellet) and 

a cytoplasmic fraction (supernatant). The nuclei were resuspended in Buffer 1 to 3 ml final 

volume and supplemented with 6 ml of Buffer 2 (2.3 M sucrose, 25 mM KCl, 50 mM 

triethanolamine, 5 mM MgCl2, 1 mM DTT, 0.5 mM PMSF, Complete Protease Inhibitor) and 

centrifuged at 124,000 g for 1 h over a cushion made of 0.5 ml Buffer 2. The pellet was 

resuspended in 500 µl Buffer 1 and centrifuged at 800 g for 15 min. The nuclear fraction was 

equivalent to the pellet dissolved in 100 µl 1% SDS in PBS and boiled for 10 min to shred the 

DNA. For different mice, samples were normalized after immunoblots with antibodies to α-

tubulin or histone 1, marker proteins for the cytoplasmic and nuclear fractions, respectively. 
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Filter-trap retardation assay 

Brain homogenate samples were diluted 1:10 v/v with 250 µl 2% SDS in PBS, corresponding 

to 0.15 mg of total protein per brain tissue sample. Cellulose acetate membrane (Whatman 

Group, OE 66, 200 nm pore size) was equilibrated in 2% SDS in PBS and samples where 

sucked through the membrane on a Biorad dot-blot vacuum device. Wells were washed three 

times with 300 µl 2% SDS in PBS. Membrane was blocked with 10% milk powder in TBS for 

1 h and incubated with primary antibody overnight at 4°C. The antibodies were selective for 

ubiquitin (1:5000; DAKO) or for Htt (1:1000, MW1 and MW8 (Ko et al., 2001), Chemicon 

mEM48/MAB5374 and Nov1). Nov1 mouse monoclonal antibody was generated by custom 

production (GENOVAC GmbH, Germany) after DNA-vaccination with a cDNA encoding for 

Q25Htt1-857. The membranes were washed three times with TBST and incubated with 

secondary antibody (1:10000, anti-mouse or anti-rabbit IgG coupled to horse radish 

peroxidase). After washing, immunoblots were developed with the ECL detection reagent 

(Amersham Biosciences). The MCID software was used for densitometric analysis of 

digitalized autoradiograms.  

 

AGERA 

For short 1.5% (2%) agarose gels, 1.5 g (2 g) agarose (Biorad, #161-3101) was dissolved in 

100 ml 375 mM Tris-HCl, pH 8.8 brought to boiling in a microwave oven. After melting, 

SDS was added to a final concentration of 0.1%. Gels were poured on short Biorad DNA Sub 

CellTM trays resulting in a gel thickness of 8 mm. Long 1% (1.5%) agarose gels were obtained 

by dissolving 2.5 g (3.75 g) agarose in 250 ml 375 mM Tris-HCl, pH 8.8, adjusting the final 

SDS concentration to 0.1% and pouring the gels on long Biorad DNA Sub CellTM trays (gel 

thickness = 8 mm). Samples were diluted 1:1 into non-reducing Laemmli sample buffer (150 

mM Tris-HCl pH 6.8, 33% glycerol, 1.2% SDS and bromophenol blue) and incubated for 5 

min at 95°C. For brain tissue samples, 0.15 mg of total protein, for cellular samples 0.1 mg of 

total protein was loaded per AGERA lane. Purified catalase (232 kDa), ferritin (440 kDa) and 

thyroglobulin (669 kDa) were taken as high molecular weight size markers (all proteins 

included in Amersham Bioscience HMW Gel Filtration Kit, #17-0441-01). After loading, gels 

were run in Laemmli running buffer (192 mM glycine, 25 mM Tris-base, 0.1% SDS) at 100 V, 

2 A until the bromophenol blue running front reached the bottom of the gel. Semi-dry 

electroblotter model B (Ancos) was used to blot the gels on PDVF membranes (Millipore 

Immobilon-P, #IPVH00010) at 200 mA for 1 h with a Biorad 200 power supply (transfer 

buffer: 192 mM glycine, 25 mM Tris-base, 0.1% SDS, 15% methanol). As the thickness of 
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the 1% long gels decreased substantially during the 1 h transfer, a 500 g weight was centered 

on the electroblotter’s top to guarantee constant and even contact between the gel and the 

electroblotter when blotting these gels. After transfer, starting with the blocking step, 

immunoblot membranes were then developed exactly as described for the cellulose acetate 

membranes. 

 

Aggregate analysis  

To determine the relative mHtt-aggregate size, AGERA autoradiograms were digitalized with 

a Cool Snap Photometrics camera. Densitometry of aggregate signals was performed with 

MCID software. The peak signal intensity for each lane and the distance of this peak signal to 

the running front were calculated automatically with MCID. For each experiment, the largest 

peak distance, which represented the lane with the largest aggregates, was set to 1. 

 

Immunoprecipitations 

30 µl brain homogenate from 14 wk-old R6/2 mice was diluted in 950 µl RIPA buffer. 2 µg 

ubiquitin- or huntingtin antibodies were added and incubated on a shaker at 4°C overnight. 15 

µl Protein A/G bead mixture (1:1) was added and incubated at 4°C for 2 h. Beads were 

washed three times with RIPA buffer. 30 µl Laemmli sample buffer was added and the beads 

were incubated for 10 min at 95°C. Supernatants were then loaded on 1.5% agarose gels, 

immunoblotted and analyzed with anti-ubiquitin antibody. 
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4.2.4 RESULTS 

AGERA is a sensitive assay to visualize and quantify mHtt-aggregates  

The formation of mHtt containing aggregates is one of the major hallmarks of HD. The 

prevention of the formation of these aggregates in neurons may represent an attractive 

therapeutic strategy to ameliorate Huntington's disease. A sensitive and quantitative method is 

necessary to monitor aggregate formation and progression or when assessing the efficacy of a 

potential drug candidate against HD. So far the analysis of the onset and progression of Htt-

aggregates in biological samples has relied on immunohistochemistry or the filter-trap 

retardation assay, a method that has analytical limitations due to its all-or-nothing cut-off 

imposed by the size of the membrane pores. We thus designed an agarose gel electrophoresis-

based methodology enabling the quantitative and qualitative investigation of Htt-aggregation 

with high sensitivity and generating reliable values. We applied this Agarose Gel 

Electrophoresis for Resolving Aggregates (AGERA) to determine the load of mHtt-aggregates 

in the brain of 14 wk-old R6/2 mice, which display pronounced Htt-deposition and brain 

pathology. At 14 wk of age, R6/2 mice suffer of severe HD-like symptoms approaching the 

terminal stage. The presence of Htt-inclusions in the R6/2 brain extracts was first verified by 

the filter-trap assay (Figure 17A, upper panels) using three different Htt-specific antibodies as 

well as an anti-ubiquitin antibody, confirming previous findings that the presence of ubiquitin 

is a hallmark of Htt-aggregates in R6/2 mice (Davies et al., 1997). A weak but discernible 

background signal was present for all used antibodies also in brain samples from wild-type 

(wt) littermate controls. The same samples were then resolved using AGERA (Figure 17A, 

lower panels) and the dynamic range of this method was assessed by comparing the signal 

intensity obtained for the 14 wk-old R6/2 mice with that of wt mice. When compared to the 

filter-trap assay, the signal-to-background ratios were considerably improved by AGERA 

(Figure 17B). In fact, the mean ratio determined by AGERA was 340-fold over background 

and thus 18-fold larger than that produced by the filter-trap assay (each group n=6). On the 

AGERA immunoblots, aggregates were detected with Htt antibodies as well as with the 

ubiquitin antibody (Figure 17A, lower panel).  
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Figure 17: A: Identical samples of brain homogenates from 14 wk-old R6/2 mice or wt siblings were analyzed 

by filter-trap retardation assay or by AGERA on short 2% agarose gels. Both methods visualize aggregates with 

antibodies against huntingtin (MW8, EM48, Nov1) or ubiquitin in the transgenic but not in the wt samples. B: 

Comparison of the sensitivity of AGERA with the filter-trap assay. Signal ratios were calculated using the 

respective mean background signal obtained for brains of age-matched wt siblings and are shown with error bars 

representing standard deviations. AGERA generates a signal 340-fold ± 75 above background in 14 wk-old R6/2 

brains compared to a 19-fold ± 10 signal using the filter-trap retardation assay (n=6; ***=p<0.001). 

 

In order to demonstrate that the ubiquitin signal detected in brains of 14 wk-old R6/2 mice 

resulted from Htt-ubiquitination, a brain homogenate sample was first immunoprecipitated 

with the MW8 antibody specific for huntingtin or with the anti-ubiquitin antibody and then 

analyzed by ubiquitin-immunoblotting (Figure 18).  

 

Figure 18: Htt-aggregates in brain homogenate of 14 wk-old R6/2 mice were immunoprecipitated with 

huntingtin antibody (MW8) or ubiquitin antibody (Ubi). Detection of aggregates on AGERA blots with ubiquitin 

antibody shows that huntingtin aggregates are ubiquitinated. 
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Although we can not exclude that other ubiquitinated proteins were sequestered into the 

aggregates, these data support the view that mHtt-aggregates were indeed ubiquitinated and 

that, more importantly, AGERA can reveal the extent of ubiquitination, and possibly other 

posttranslational modifications, of Htt-aggregates in biological samples. 

 

Separation of mHtt-aggregates by AGERA is based on their size 

Htt-aggregates resolved by AGERA were distributed over a wide region of the gel. We 

analyzed whether the signal smear was caused by the presence of heterogeneous species of 

inclusions or due to the low resolving property of the gels. For this, brain homogenates of 14 

wk-old R6/2 mice were first separated by agarose gel electrophoresis to obtain multiple gel 

fractions depending on their mobility on the gel. The fractions were then embedded in a 

second gel and again resolved by electrophoresis. We found that, as an example, Htt-

aggregates isolated from the middle part of the gel retained a similar migration behavior when 

analyzed by AGERA and were separated from Htt-aggregates isolated from the upper or 

lower ends of the gel (Figure 19A). Thus, we concluded that AGERA resolved distinct, 

heterogeneous species of aggregates over most of the length of the gel. Supporting these data, 

another sample of a 14 wk-old R6/2 mice was run in two perpendicular dimensions of the 

agarose gel. This resulted in a 2D spatial resolution of the Htt-aggregates. The signal 

distributed mainly along the gel diagonal (Figure 19B) confirming that AGERA is a method 

suitable to separate distinct Htt-aggregate species in a reproducible manner.  

 

Figure 19: A: Two samples from a brain homogenate from a 14 wk-old R6/2 mouse were resolved by AGERA. 
The first sample was immunoblotted using the MW8 antibody (I). For the second sample, five sections were 
dissected from the agarose gel, embedded into a new gel and resolved again by AGERA (II). Aggregates 
preserve a distinct migration rate on the second gel, suggesting that Htt-aggregates are specifically and 
reproducibly separated in the agarose gels according to their size. B: A brain homogenate from a 14 wk-old R6/2 
mouse was run on a short 1.5% agarose gel. The entire lane was dissected, embedded in a perpendicular direction 
in a new agarose gel and resolved by electrophoresis. Detection of the Htt-aggregates transferred on a PVDF 
membrane using MW8 reveals the two-dimensional distribution mostly along the diagonal of the second agarose 
gel. This indicates that separation by AGERA is reproducible and based on a heterogeneous trait of Htt-
aggregates. 



 

50 

Htt-aggregate formation in HN10 cells 

To analyze the formation of Htt-aggregates in vitro, we first transiently expressed Htt-exon 1 

fused to green fluorescent protein (GFP) with either 72 (Ex1-Q72GFP) or 25 glutamines 

(Ex1-Q25GFP) in HN10 neuroblastoma cells (Lee et al., 1990). Ex1-Q25GFP, a construct 

with a non-pathologic polyQ-length, was distributed diffusely throughout the cytosol as 

indicated by GFP-autofluorescence. Ex1-Q72GFP, a construct similar to the ones routinely 

used to study the aggregation-prone effect of elongated polyQ-repeat in Htt (Bodner et al., 

2006; Lecerf et al., 2001; Zhang et al., 2005) formed aggregates which were located in the 

nucleus (Figure 20A). Equal expression of monomeric Htt was verified by polyacrylamide gel 

electrophoresis (Figure 20B, SDS-PAGE) and the presence of Htt-aggregates in Ex1-Q72GFP 

transfected cells was verified by the filter trap assay and AGERA (Figure 20B). No aggregates 

were detected in mock transfected cells or in cells transfected with Ex1-Q25GFP. On the other 

hand, aggregates were visualized with anti-Htt antibodies (Figure 20B, AGERA) or anti-GFP 

antibodies (not shown) in Ex1-Q72GFP transfected cell lysates. The mEM48 and Nov1 

antibodies specific for soluble and aggregated Htt detected both forms of the protein by 

AGERA. In contrast, MW1 an antibody specific for monomeric, soluble Htt (Ko et al., 2001), 

failed to detect Htt-aggregates in Ex1-Q72GFP transfected cell lysates, but visualized 

monomers running just behind the running front of the agarose gel and which were poorly, if 

at all, retained by the filter-trap retardation assay. These data confirm the potential of AGERA 

to separate and detect in a single step soluble and aggregated Htt forms present in cells 

expressing mutant Htt in vitro. 

 

Figure 20: A: HN10 neuronal cells were transiently transfected with huntingtin Ex1-Q25GFP or Ex1-Q72GFP 
plasmids and analyzed after 2 days by GFP autofluorescence. Huntingtin Ex1-Q72GFP forms aggregates located 
predominantly in the nucleus, whereas Ex1-Q25GFP distributed evenly in the cytoplasma of the cells B: 
Identical amounts of lysates from HN10-cells transfected with Ex1-Q72GFP, Ex1-Q25GFP or with empty vector 
(mock) were analyzed by filter-trap, by AGERA on short 2% agarose gels or by SDS-PAGE as indicated on the 
left of the panels. SDS-PAGE confirms equal expression of the Htt constructs with three Htt-antibodies. 
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Aggregates in cells expressing the pathogenic Ex1-Q72GFP construct were detected selectively with Htt-specific 
antibodies. Ex1-Q25GFP-monomers running just behind the running front of the agarose gel reacted also to the 
MW1 antibody. 

 

Congo Red affects the size, not the amount, of Htt-aggregates in vitro 

The dye Congo Red stains protein aggregates in various neurodegenerative diseases by 

binding to fibril proteins with enriched β-sheet conformation (Divry, 1927; Frid et al., 2007). 

Recent in vitro and in vivo studies in HD models indicate that Congo Red treatment prevents 

later stages of mHtt-fibrillization into larger aggregates (Poirier et al., 2002), thereby reducing 

mHtt- accumulation in general (Heiser et al., 2000; Sanchez et al., 2003; Smith et al., 2001). 

In order to study a possible effect of Congo Red, or other chemical compounds, on the 

formation of mHtt-aggregate in vitro, we created a stable HN10 clone with inducible Ex1-Q72 

expression in the absence of the GFP or any other tags (Figure 21A,B). In this cell line, Htt-

aggregates were detected as early as 3 days after induction (Figure 21C). Similar data were 

obtained with independent cell clones but not with inducible cell lines for normal polyQ-

length (Ex1-Q25; data not shown). 

 

Figure 21: A: Monomer expression of Ex1-Q72 in HN10-Ex1Q72V clone was induced by adding different 
Rheoswitch-ligand (RSL) concentrations to the culture media. Cells were lysed after 3 days of induction and 
monomer expression levels were analyzed with anti-huntingtin antibody EM48 on a western blot. B: Monomer 
expression of Ex1-Q72 in HN10-Ex1Q72V clone was induced by adding 500 nM RSL to the culture media. 
Cells were lysed 0-7 days after induction and monomer expression levels were analyzed with anti-huntingtin 
antibody EM48 on a western blot. C: Expression of Ex1-Q72 was induced in HN10-Ex1Q72V clone by adding 
500 nM RSL to the culture media. Cells were lysed after 0, 3 or 6 days of induction and equal protein levels of 
cell lysates were analyzed with AGERA to visualize aggregate load 

 

nM RSL
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Interestingly, treatment with increasing amounts of Congo Red caused the Htt-aggregates to 

acquire a faster mobility on the AGERA gels, indicative for decreased size of the aggregates 

in the presence of Congo Red (Figure 22, AGERA blot). Quantification of this effect was 

obtained by measuring the position of the peak signal intensity within the gel lane in relation 

to its distance from the running front (Figure 22, bar graph).  

 

 

Figure 22: Congo Red treatment (up to 40 µM) of an induced Ex1-Q72 expressing HN10 clone inhibits 
aggregate growth as visualized by AGERA on short 1.5% agarose gels (left panel) or quantified as relative 
apparent mobility (right panel) using densitometric scans of the gels (n=3;*=p<0.05, **=p<0.01). 

 

The dose-dependent effect of Congo Red culminated at the maximal concentration tested (40 

µM), whereby the peak aggregate size was reduced to a relative factor of 0.76 when compared 

to the vehicle control (value set to 1). Due to logarithmic dependence of Rf on molecular 

weight, the difference on Htt aggregate size after Congo Red treatment may even be bigger. 

Nevertheless, a precise determination of the Rf values on AGERA is difficult due to the 

paucity of adequate markers for the molecular weight range of aggregates. Our data are in 

good agreement with the effect of Congo Red on Htt aggregation reported using the filter-trap 

retardation assay (Heiser et al., 2000) but demonstrate that this effect did not relate to the total 

load of aggregates present in the cells. This was rather due to a change in the aggregate type in 

favor of smaller species, which may have escaped detection in the filter-trap assay.  

 

Htt-aggregates in striatal primary cells precede appearance of polyQ-induced toxicity  

To extend our studies to a cellular model more relevant to HD, we infected primary striatal 

cells with a lentivirus transducing expression of Ex1-Q25 or Ex1-Q72 in the absence of the 

GFP-tag. As previously described (Zala et al., 2005) and using GFP-transduction as control, 

stable and sustained expression of the transgene was observed in more than 90% of the 
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cultured neurons with no sign of cytotoxicity at the viral dose used (data not shown). The 

same conditions were used to transduce striatal primary neurons with Ex1-25Q or Ex1-72Q. 

Immunocytochemistry using the mEM48 antibody revealed aggregates in most if not all 

nuclei of Ex1-Q72 infected striatal cells 7 days after infection. In contrast, the Ex1-Q25 

construct was evenly distributed in the cytosol of cell bodies and neurites of the neurons 

(Figure 23).  

 

 

Figure 23: Striatal primary cells were infected with a lentivirus driving expression of Ex1-Q25 or Ex1-Q72. 
After seven days of infection the cells were fixed and stained with the mEM48 antibody. The Ex1-Q25 protein 
distributes in the cytoplasma and neurites whereas the Ex1-Q72 Htt fragment localizes to the nucleus and formed 
aggregates. 

 

Consistent with previously published data (Li et al., 2000; Saudou et al., 1998; Zala et al., 

2005), severe neuron degeneration and neurite collapse were observed at 7 days after infection 

for neurons expressing Ex1-Q72 but not for cells expressing Ex1Q25 or GFP (Figure 24).  

 

 

Figure 24: Light microscopy of transduced striatal cells 7 days after transfection reveals severe 
neurodegeneration in cells infected with Ex1-Q72 but not in cells infected with Ex1-Q25.  
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More relevantly, significant amounts of Htt-aggregates were already detected at 4 days post-

transduction in lysates of Ex1-Q72 expressing primary striatal cells, thus well before the onset 

of visible neurite degeneration (Figure 25).  

 

 

Figure 25: Lysates of transduced cells were analyzed by AGERA on short 1.5% agarose gels or SDS-PAGE. 
EM48 antibody detects Htt-monomers after SDS-PAGE and aggregates by AGERA in the Ex-1Q72 infected 
cells at 4 and 7 days post-infection. The data were reproduced in at least three independent experiments. 

 
The load of aggregates increased further at the 7th day of infection. As expected, no Htt-

aggregates or toxicity were detected in striatal neurons transduced with GFP or Ex1-Q25, 

despite the presence of huntingtin monomers at 4 and 7 days after infection (Figure 25; SDS-

PAGE). Quantification of the partition of monomeric mHtt (detected after SDS PAGE) versus 

aggregated mHtt (detected by AGERA) demonstrated an increase of Ex1-Q72 aggregates 

between day 4 and 7 post-infection accompanied by a reduction in the amount of monomeric 

Htt (not shown). 

 

Presence of presymptomatic Htt-aggregates in mouse models of HD 

Having demonstrated biochemically that Htt-aggregate formation occurred before or at the 

onset of neurodegeneration in a cellular model of HD, we proceeded to study Htt-aggregate 
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appearance in two mouse models of HD. Using AGERA, we detected a significant amount of 

Htt-aggregates in brains of R6/2 mice already at 2 weeks after birth (Figure 26). At this age, 

no behavioral differences were detectable when we compared R6/2 mice to littermate controls 

(data not shown and (Davies et al., 1997; Li et al., 1999)).  

 

 

Figure 26: Onset and accumulation of aggregated Htt as a function of age were assessed in brain homogenates 
from 2, 4, 6 and 8 wk-old wt or R6/2 mice. Data are shown as signal ratios over background with error bars 
representing standard deviations (n=6-8; *** = p<0.001).  

 
The aggregate signal by AGERA was 6-fold higher than that determined in age-matched wt 

siblings (p <0.001, each group n=6). Accumulation of Htt-aggregates progressed in a semi-

exponential modus across the age groups 4 wk (8.6-fold above controls, p <0.001), 6 wk (24-

fold, p <0.001) and 8 wk (90-fold, p <0.001) (Figure 26). Maximal aggregate load was 

measured in the 14 wk-old R6/2 mice (340-fold, Figure 17B). In contrast, when analyzing the 

homogenates with filter trap assay, no aggregate signal was detected at 2 wk and the signal at 

4 wk was 3.3-fold (p <0.05) above background (data not shown). To assess the potential of 

AGERA to detect a difference in Htt-accumulation over a period of 2 wk (a typical treatment 

duration for subchronic drug trials), we conducted a power analysis using the values acquired 

at 4 and 6 wk of age. Under these conditions, a 30% reduction in the amount of Htt-

aggregates accumulating over this period is predicted to be observed at 95% confidence (p = 

0.05) with 10 transgenic mice per treatment arm (20% reduction would require group sizes of 

at least 22 animals, 40% reduction group sizes of at least 5 animals). Quantification of Htt-

aggregates in distinct brain regions of 14 wk-old R6/2 mice showed the largest aggregate load 

is present in the hippocampus and striatum, whereas cortex and cerebellum contained 2 to 3-

fold less Htt-aggregates (Figure 27).  
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Figure 27: Quantification of relative Htt-aggregate load in different brain regions of 13 wk-old R6/2 mice (n=5) 
reveals that aggregate deposition is most pronounced in the hippocampus and striatum.  

 
Next, we analyzed Htt-aggregate formation in the HdhQ150 knock-in mouse model which 

was generated by inserting an elongated polyQ stretch of 150 glutamines in the endogenous 

mouse huntingtin gene (Lin et al., 2001). Typical for full-length polyQ-Htt models, in the 

HdhQ150 mice disease-onset and progression is delayed when compared to Htt-fragment 

models such as the R6/2 mice. First phenotypic alterations in HdhQ150 mice are observed 

starting from about one year of age (body weight loss) or from 18 months of age on the 

RotaRod (Woodman et al., 2007). In contrast, we detected Htt-aggregates in HdhQ150 brain 

samples already at 6 months of age, at this age the AGERA signal was 3.4-fold above 

background of wt littermates (Figure 28).  

 

Figure 28: Onset and accumulation of Htt-aggregates during disease progression were confirmed in cortical 
samples from the full-length Htt knock-in model HdhQ150 from 6, 10, 18 and 22 months old HdhQ150 mice (n= 
3-4, *=p<0.05, **= p<0.01, *** = p<0.001) 
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We then found an age- and disease progression-dependent increase in the load of Htt-

aggregates, reaching a 9.0-fold difference at 10 months, 13.9-fold at 18 months and 20.1-fold 

at 22 months of age (all groups n=4 but n=3 for the HdhQ150 mice at 6 months). No 

aggregate signal was detected in 6 months old mice and signal failed to reach significant 

levels before 18 months of age with the filter trap assay (data not shown). Overall, our data 

demonstrate that sizable amounts of Htt-aggregates appeared before the onset of disease 

symptoms in two mouse models of HD. 

 

Age-dependent growth of brain Htt-aggregates  

In our in vitro studies we demonstrated that AGERA is not only an accurate method to 

measure quantitatively the absolute amount of Htt-aggregates, but that this methodology has 

also the potential to reveal qualitative changes in their appearance. Age-dependent growth of 

Htt-deposits in vivo has been observed previously in immunohistochemical studies on brain 

sections isolated from brains of HD patients or of R6/2 mice (DiFiglia et al., 1997; Li et al., 

1999). To confirm this biochemically, we analyzed brain homogenates of 4 and 14 wk-old 

R6/2 mice on a long 1% agarose gel in order to maximize the resolution of distinct Htt-

aggregate species. This procedure established that in young mice Htt-aggregates had faster 

average mobility, since they were detected in the lower half of the agarose gel (Figure 29). In 

contrast, Htt-aggregates from brain samples of 14 wk-old mice scattered over most of the gel. 

This was more evident with a short exposure of the gel to compensate for the larger amount of 

aggregates present at 14 wk of age.  

 

Figure 29: Brain homogenates from 4 or 14 wk-old mice were run on a long 1% agarose gel and immunoblotted 
with the MW8 antibody (left panel). A long and a short exposure of the same blot were done in order to compare 
signals with similar intensity for the two ages. Dotted lines indicate the distribution of the aggregates on the 
agarose gels in the 14 wk-old (left lane) and in the 4 wk-old (right lane) R6/2 brains. Aggregates are significantly 
larger in older mice, also confirmed by determining the relative apparent mobility using densitometric scans of 
the gels (right panel).  
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Histological examinations also indicated that the localization within the cell may have an 

effect on the size of the Htt-deposits (Gutekunst et al., 1999; Stack et al., 2005). In fact, 

neuropil inclusions appeared initially small but then grew faster than those observed in the 

nuclei of affected neurons. To revisit this finding, we isolated cytoplasmic and nuclear 

fractions from brains of 6, 8 and 14 wk-old R6/2 mice. The purity of the two subcellular 

fractions was verified using cytoplasmic and nuclear markers, respectively (Figure 30, lower 

panels). When using AGERA, we indeed observed that the aggregates present in the 

cytoplasmic fraction at 6 and 8 wk of age migrated faster than those detected in the nuclear 

fractions of the same samples. These data demonstrated that cytoplasmic aggregates were 

smaller than nuclear aggregates in brains of 6 or 8 wk-old R6/2 mice.  

 

 

Figure 30: Cytoplasmic (C) and nuclear (N) fractions were isolated from brains of 6, 8 and 14 wk-old R6/2 mice. 
Purity of the fractions was confirmed with a cytoplasmic (α-tubulin) and a nuclear marker (histone) by Western 
blot after SDS PAGE. Samples were resolved by AGERA on a long 1.5% agarose gel and using the MW8 or the 
anti-ubiquitin antibody. A clear increase in the size of cytosolic aggregates occurs between the age of 8 and 14 
wk. Nuclear aggregates are larger than the cytoplasmic aggregates at 6 wk of age but their size does not change 
significantly with disease progression. More aggregates localize into nuclei at 14 wk of age, but ubiquitination is 
more prominent in the cytosolic fractions and is more pronounced for the larger aggregates. 

 
A significant increase in the size of the cytoplasmic aggregates was observed between the age 

of 8 and 14 wk. In contrast to this, the size of nuclear aggregates remained constant with age. 

Moreover, the use of anti-ubiquitin antibodies revealed that in particular the slow-migrating 

aggregates were ubiquitinated. Not surprisingly, modification with ubiquitin was more 

prominent for cytosolic than nuclear aggregates (Figure 30), contradicting earlier histological 

studies (Li et al., 1999). Further studies may help understanding whether location and size of 
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Htt-aggregates might have differential roles in the manifestation of HD as previously 

suggested by others (Yang et al., 2002). 
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4.2.5 DISCUSSION 

The genetic cause for Huntington’s Disease is an aberrant polyQ-expansion in Htt. PolyQ-

length regulates deposition of Htt-fragments into intracellular aggregates (Chen et al., 2002; 

Huang et al., 1998) whose number correlates with disease progression in HD patients and 

animal models (DiFiglia et al., 1997; Gutekunst et al., 1999; Menalled et al., 2003; van Roon-

Mom et al., 2002; Woodman et al., 2007). Precise quantification of the amount of aggregates 

present in biological samples has proven challenging due to analytical limitations such as high 

background in the filter-trap assay or indirect quantitative determination by histochemistry. 

For instance, the filter-trap assay often retains contaminants such as tissue debris, which may 

include soluble Htt-forms and adsorb unselectively antibodies, both reducing the signal 

specificity. AGERA overcomes this and other limitations as it is based on active 

electrophoretic separation of aggregates. Moreover, soluble (monomeric and oligomeric) Htt-

species migrate fast through the agarose gels thereby becoming fully resolved from insoluble 

aggregates. The negligible background signals obtained by AGERA may indeed explain the 

drastic improvement in Htt-aggregate detection sensitivity, also when compared to other 

agarose-gel methods (Kushnirov et al., 2006). This will become critical for a comprehensive 

study of cellular and rodent models of HD. We showed that in cultured striatal neurons 

expressing mHtt-Exon 1, aggregates formed several days before onset of neurite degeneration. 

In vivo, a significant amount of Htt-aggregates was measured in the brains of R6/2 mice at 

two weeks of age, preceding the development of first motor impairments by weeks (Carter et 

al., 1999; Lione et al., 1999; Mangiarini et al., 1996). Aggregates have been previously 

detected in defined areas of the cortex and striatum of R6/2 mice at 3.5 and 4.5 weeks of age, 

respectively (Davies et al., 1997). A more recent study reported the immunohistochemical and 

electronmicroscopical detection of very small Htt aggregates as early as postnatal day 1 and 

15 (Stack et al., 2005). 

We reproduced these findings in a second HD mouse model. In HdhQ150 mice, Htt-

aggregates were detected at 6 months of age, about half a year earlier than the first discernible 

phenotype. Detection of Htt-aggregates in HdhQ150 mice, which express full-length polyQ-

Htt, suggests that AGERA may also be applicable for the analysis of aggregates in human 

tissue.  

In addition to the determination of the total amount of aggregated Htt, we studied by AGERA 

aggregate growth and composition. We showed that disease progression correlated in R6/2 

mice not only with an increase of the amount of Htt-aggregates but also with an increase in 

their size, and this depending on their intracellular localization. Notably, Htt-deposits in the 
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cytosol were smaller than those found in the nucleus in young R6/2 mice but grew 

dramatically between 8 and 14 weeks of age. These data suggest that the microenvironment 

may affect Htt-deposition and hinted that nuclear and cytosolic aggregates may differently 

impact specific cellular functions. Also, the ubiquitination level of Htt-aggregates was more 

prominent in the cytoplasmic than the nuclear fraction. In light of recent findings that 

hindrance of the proteasome clearance pathway by ubiquitinated Htt may induce autophagy 

(Bence et al., 2001; Iwata et al., 2005; Jana et al., 2001), AGERA could become a critical 

method to study ubiquitination or other posttranslational modifications of Htt-aggregates and 

their influence on cytotoxicity or induction of protective mechanisms such as autophagy. 

Determination of changes in aggregate size was particularly important in three aspects of this 

work. We first demonstrated that Congo Red inhibited mainly aggregate growth but less so 

their total amount. Then, we showed that deposit size correlated with disease progression. 

Finally, we illustrated that in this respect nuclear and cytosolic aggregates behaved differently. 

The role of aggregates in HD is still under debate. While some researchers argue that 

aggregates are toxic and lead to neurodegeneration, others have suggested that they are a mere 

byproduct of the pathology. Yet others discuss a neuroprotective role for aggregates as a 

molecular sink for putative soluble toxic Htt forms (Arrasate et al., 2004; Saudou et al., 1998). 

It is to be expected that aggregate localization will influence toxicity to a larger extend than 

aggregate size or composition. Indeed nuclear rather than cytosolic Htt-aggregates led to a 

very quick cell death and this independently of polyQ-length (Saudou et al., 1998, Bates, 

2003; Chen et al., 2001; Chen et al., 2002; Yang et al., 2002). Also, it has been reported that 

the smaller, more aggregation prone fragments of mHtt were found preferentially in the 

nucleus (Lunkes and Mandel, 1998; Wellington et al., 2000a). Interestingly, the study of a 

conditional mouse model of HD demonstrated that development and progression of a HD-like 

pathology was dependent on the continuous expression of the transgene. In fact, switching off 

Htt-expression stopped disease progression, reversed aggregate load and improved motor 

deficits (Martin-Aparicio et al., 2001; Yamamoto et al., 2000). Most pre-clinical trials failed 

to show a decrease of aggregate formation in the brain of HD mouse models, although 

occasionally motor behavior or striatal volume loss improved (Ferrante et al., 2004; Gardian 

et al., 2005; Smith et al., 2006). However, assessment of aggregates in these studies was 

mostly limited to immunohistochemical analysis. The use of AGERA has improved 

sensitivity and reproducibility of our analysis and has allowed for active resolution of Htt-

aggregates based on size. In light of this, although our study does not solve the problem of the 

role of aggregates in the pathology of HD, AGERA enables a sensitive and quantitative 
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assessment of aggregate load and therefore is expected to enable their detailed analysis and 

thus significantly improve the power of future pre-clinical HD drug trials. 

As protein misfolding and deposition are hallmarks of not only HD but also most other 

neurodegenerative diseases, AGERA may find application for the study of the pathogenic 

processes in other human brain disorders and may allow for comparative studies of the many 

neurodegeneration models developed over the recent years. Indeed, agarose gel 

electrophoresis has been recently used to study prion polymerization in yeast (Kushnirov et al., 

2006), to analyze fibril generated in vitro from synthetic β-amyloid peptide (Bagriantsev et al., 

2006) and readily detects aggregation of other pathogenic polyQ-containing proteins (A. 

Weiss, unpublished results). The development and optimization of AGERA aimed at the 

specific analysis of protein aggregates in cellular and tissue samples. While AGERA is in 

principle similar to the agarose-based method described independently by Kushnirov and 

colleagues, in order to generate reliable data enabling comparative studies using large sample 

sizes and granting reproducibility among independent experiments it was critical to keep all 

AGERA parameters constant. It will be interesting to see if AGERA can be used to trace 

changes within disease specific aggregate pools, specifically for visualization of subtle 

differences caused by experimental drugs.  
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4.3.1 SUMMARY 

The quantification of cellular proteins is essential for the study of many different biological 

processes. This study describes an assay for the detection of intracellular mutant huntingtin, 

the causative agent of Huntington’s Disease, with a method that may be generally applicable 

to other cellular proteins. A small recombinant protein tag was designed that is recognized by 

a pair of readily available, high affinity monoclonal antibodies. This tag was then added to an 

inducible fragment of the mutant huntingtin protein by genetic engineering. First we 

demonstrated that it is possible to use time resolved Förster resonance energy transfer (time 

resolved FRET) to detect the cellular levels of this protein by a simple lysis and detection 

procedure. This assay was then adapted into a homogeneous, miniaturized format suitable for 

screening in 1536 well plates. The use of time resolved FRET also allows the assay to be 

multiplexed with a standard readout of cell toxicity thus detecting conditions causing 

reduction of protein levels simply due to cell toxicity. Screening results demonstrated that the 

assay is able to identify compounds that modulate the levels of huntingtin protein both 

positively and negatively. 
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4.3.2 INTRODUCTION 

Huntington’s Disease (HD) is a fatal, autosomal-dominant neurological disorder. The disease 

is characterized by involuntary movements, severe emotional disturbance and cognitive 

decline caused by a significant degeneration of brain matter (Bates et al., 2002). In 1993, the 

gene IT15, later called huntingtin (Htt), was cloned and found to contain a CAG repeat 

encoding for polyglutamine (polyQ) in exon 1 which is expanded in patients (Group, 1993a; 

Gusella et al., 1983). A number of possible effects on cell physiology by this polyQ region 

have been suggested including the generation of cytotoxic proteolytic fragments and 

aggregates, transcriptional dysfunctions and several other effects. Currently, there are no 

approved treatments for HD (Bates, 2003; Bates and Hockly, 2003; Landles and Bates, 2004; 

Young, 2003). 

Even though the mechanism of polyQ-Htt toxicity is unknown, it has been shown in mouse 

models that down-regulation of polyQ-Htt expression either by RNA interference (DiFiglia et 

al., 2007; Machida et al., 2006; Rodriguez-Lebron et al., 2005; Wang et al., 2005) or by 

conditional expression of a polyQ-Htt-fragment (Yamamoto et al., 2000) will improve HD-

like symptoms significantly. Critically, polyQ-Htt and wild-type Htt are distinct in terms of 

posttranslational modifications (e.g. phosporylation (Warby et al., 2005)), proteolytic 

cleavages (Graham et al., 2006; Wellington et al., 2002), cellular localization (Davies et al., 

1997) and degradation (ubiquitin/proteasome or autophagy pathway (Ravikumar et al., 2002)). 

As polyQ-Htt is the sole cause for HD and as the cell metabolizes polyQ-Htt and wild-type 

Htt differently, we established an assay capable of detecting the intracellular levels of wild-

type and polyQ-Htt. In order to develop this assay, neuronal cell lines with inducible copies of 

either the wild-type or polyQ-Htt, tagged with small peptide sequences were created and a 

method was developed to detect compounds which selectively promote the degradation of 

polyQ-Htt. 

In general, most methods to monitor cellular protein levels require separation and detection 

steps e.g. Western blotting or HPLC-MS. Such methods are not suitable as assays to test 

multiple conditions, i.e. high throughput screening of chemicals or siRNAs as high throughput 

screening applications require homogeneous assays that are robust enough to allow assay 

automation. To circumvent these problems, we developed an alternative method using time 

resolved Förster resonance energy transfer (time resolved FRET), a technology that has been 

available for monitoring biomolecular interactions since the early 1990’s (Mathis, 1993). 

There are many different applications of this technology utilizing several aspects of the 

fluorescence characteristics of lanthanide ions. The large Förster’s distance of the rare earth 
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ions is up to 9 nm which is much larger than for many fluorescent compounds which have 

Förster’s distances of between 4-6 nm. The effect of this larger distance is that it is possible to 

transfer absorbed energy over much longer distances than it is possible for many FRET pairs. 

This then makes it possible to use rare earth chelates as generic immunodetection reagents 

(Bazin et al., 2001). The second advantage of rare earth FRET pairs is that the time it takes for 

the fluorescence to decay is greatly delayed thus allowing time resolved fluorescence. The 

effect of this is to reduce the influence of background fluorescence from small molecules 

being tested. The third advantage is the ability to monitor ratiometric readouts allowing the 

correction for liquid dispensing errors, thus helping to reduce assay variability and improve 

data quality (Imbert et al., 2007). 

Because of these advantages, time resolved FRET has been used in the past to monitor a 

number of different biological analytes such as small molecules (e.g. cAMP (Gabriel et al., 

2003)), small secreted cytokines (e.g. IL-8 (Achard et al., 2003)) as well as the levels of 

phosphorylated proteins in in vitro assays (Riddle et al., 2006). There have also been reports 

of using time resolved FRET to monitor the levels of phosphorylated proteins in cell lysates 

using cell lines over-expressing protein substrates of interest. In this report we extent these 

observations by designing a small peptide tag that gives an optimal time resolved FRET signal 

and allows the detection of polyQ-Htt, an intracellular protein expressed at endogenous levels. 

As polyQ-Htt detection in this assay is based on an artificial tag, this method should be 

generally applicable for the detection of other proteins. Importantly, the required antibody 

pairs for tag detection are commercially available (see Material and Methods) making the 

herein described method a readily applicable generic detection method for other laboratories. 
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4.3.3 MATERIALS AND METHODS 

Peptides and Antibodies 

Peptides carrying epitopes against 25H10, 32A7 or ß1 antibodies which are separated by 

different linker sequences were custom produced by MIT biopolymers laboratory (MIT, 

Cambridge, MA). Amyloid ß40 peptide was purchased from Bachem (Bubendorf, 

Switzerland). 

25H10 antibody specific against GGVV-epitope, 32A7 antibody specific against VVIA and 

ß1 antibody directed against EFRH are described elsewhere (Paganetti et al., 1996; Weihofen 

et al., 2003). Commercially available unlabeled antibodies equivalent to these antibodies can 

be obtained through several vendors such as Cell Sciences (MA, USA), The Genetics 

Company (Switzerland) or Immuno-Biological Laboratories (MN, USA). Labeled antibodies 

ready for time-resolved Förster Resonance Energy transfer can be obtained through Cisbio 

Bioassays (France). 2B7 antibody was custom designed against the first 17 amino acids of Htt 

protein (GENOVAC, Freiburg, Germany). Custom europium cryptate and D2-fluorophore 

labeling were performed by Cisbio Bioassays (France). Depending on the batch used, 

antibodies were crosslinked to 5 to 7 mol europium cryptate or D2-fluorophore per mol 

antibody. 

 

Generation of Neuronal Cell Lines 

Neuronal HN10 cells (Lee et al., 1990) were used to create inducible clones with expression 

of Htt573-Q25 and/or Htt573-Q72. In short, cells were transfected with the rheoswitch 

receptor plasmid (New England Biolabs) and cultured under selection of 1 mg/ml G418 

(Invitrogen). Clones were screened for cell morphology, transfected with inducible luciferase 

reporter construct and induced for 2 days. Clone with best induction ratio were selected and 

used for subsequent transfection with Htt573-Q25 or Htt573-Q72 inducible plasmid. After 

selection with 1 mg/ml G418 and 1 mg/ml Hygromycin (Invitrogen), inducible expression of 

Htt fragments in the clonal lines were monitored with herein described time resolved FRET 

detection method and clones with no basal expression and highest inducible expression were 

chosen for use in the assay format. 

 

Detection of Peptides by time resolved FRET 

Peptides were prediluted in DMSO to 800 µg/ml. DMSO solutions were further diluted in 1 to 

5 RIPA buffer to 3 ng/ml final concentration. 3 ng/ml amyloid ß40 peptide was used as 

control. 10 µl peptide solution per low-volume 96-well were mixed with 5 µl of antibody 
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solution (ß1–D2 20 ng/well, 25H10-K 2 ng/well in 50 mM NaH2PO4, 400 mM NaF, 0.1% 

BSA, 0.05% tween) and incubated at 4 °C overnight. 620 and 665 nm signals were measured 

with a RUBYstar (BMG Labtech) reader. 

 

Adaptation to 96 Well Format 

20.000 cells/well were seeded in 100 µl normal grow medium (DMEM (Gibco), 10% FCS, 

penicillin and streptomycin). After 2 h medium was removed and 200 µl inducing medium 

(normal growth medium plus inducer) was added to start expression of Htt fragments. After 3 

days, medium was removed and 30 µl/well readout buffer (20 µl of different lysis buffers and 

10 µl of ß1-D2 and 25H10-K or 32A7-K in 50 mM NaH2PO4, 400 mM NaF, 0.1% BSA, 

0.05% tween) was added. After incubating 30 min at room temperature, lysates were 

transferred to low volume black bottom 96 well plate. After 3 h at 4°C 620 and 665 nm 

signals were measured with a RUBYstar (BMG Labtech) reader. 

 

1536 Well HTS Miniaturization and Compound Screen  

A Htt573-Q72 expressing HN10 cell line was incubated for 72 h at 37°C, 5% CO2 with 

inducing medium to facilitate expression of polyQ-Htt construct. Then 3 µl of a 2000 cells/µl 

cell suspension were added per well in a 1536-microtiterplate (Greiner) and incubated 

overnight -/+ compound treatment. 5 µl of sample buffer solution (3 µl lysis buffer [1x PBS + 

1% Triton X-100, complete protease inhibitors] + 2 µl antibody buffer [50 mM NaH2PO4, 400 

mM NaF, 0.1% BSA, 0.05% tween, 60 pg/well europium labeled antibody, 800 pg/well D2-

labeled antibody]) was added and incubated for 30 min at room temperature. Plates were 

incubated at room temperature as indicated. Measurements were performed with a View Lux 

machine with the following settings: Label 1 time resolved FRET_Eu-K_(E:800K, Xsec, BF4, 

GN:high,SP:slow), Label 2 time resolved FRET_XL665_(E:800K, Xsec, BF4, 

GN:high,SP:slow). 

 

Data Analysis 

Time resolved FRET measurement results in two different signals. The 620 nm signal from 

the europium cryptate labeled antibody can be used as an internal reference for possible 

interfering artifacts of the assay such as signal quenching or absorption by compounds, 

sample turbidity as well as differences in excitation energy or sample volume. The 665 nm 

signal results from D2 labeled antibody which is excited by time resolved energy transfer 

from the europium cryptate. The calculated 665/620 nm ratio therefore is an artifact corrected 
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specific signal of the two antibodies bound to their antigen and hence a reflection of the 

amount of antigen present in the sample. For 96 well data time resolved FRET signals are 

given as the ratio between those two wavelengths. 

For 1536 microtiter well optimization data, time resolved signals are presented as ∆F values, a 

format more suitable to take day-to-day assay variations into account as it is a background 

corrected value: 

∆F = (Ratio665/620induced - Ratio665/620non-induced ) / Ratio665/620non-induced * 100 

Analysis of high throughput screening data was conducted using an in house data analysis 

software. This software is able to normalize activity to percent remaining activity with the use 

of high and low control samples present on a plate and to correct plate effects using a local 

regression algorithm that corrects for local plate effects (Gubler, 2006). Z-factor was 

calculated according to (Zhang et al., 1999). 
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4.3.4 RESULTS 

Technology Development 

Time resolved FRET detection of amyloid ß peptide in fluid biological milieu has been 

previously described (Clarke and Shearman, 2000) and is currently commercially available. 

The amyloid sandwich assay takes advantage of high-affinity antibodies directed against two 

well characterized epitopes in the amyloid ß peptide. We designed a library of small peptides 

which carry these epitopes (Figure 31A). Our goal was to use this peptide sequence as a tag 

for recombinant proteins, making them suitable for time resolved FRET detection. Since the 

efficiency of the FRET energy transfer can be influenced by various parameters (Clegg, 1996; 

Förster, 1948) we tested different peptides with changing linker length and amino acid 

composition to determine the most suitable peptide sequence. Time resolved FRET analysis 

of purified peptides showed that linker length and sequence of the linker can indeed influence 

signal intensity significantly (Figure 31B). For example, peptides with very short linker length 

(peptides H2 and H3) resulted in low signals probably due to steric hindrance of the two 

antibodies. Peptide I6 in which the neo-epitope GGVV specific for 25H10 antibody was 

exchanged for VVIA (specific for 32A7 antibody) failed to result in a signal when using the 

25H10 europium labeled antibody (25H10-K), verifying the specifity of the signal. For further 

experiments we designed two Htt-protein-fragments carrying either the exact H1 peptide 

sequence as a tag (polyQ-Htt/Htt573-Q72) or an alternative sequence in which the neo-

epitope GGVV was exchanged for VVIA (wild-type Htt/Htt573-Q25) (Figure 31C). We 

created clonal neuronal HN10 cell lines (Lee et al., 1990) with inducible expression of either 

polyQ-Htt, wild-type Htt or polyQ-Htt and wild-type Htt together. These cell lines were 

subsequently used to establish a cellular high-throughput time resolved FRET assay for 

detection of cellular protein levels (Figure 31D).  
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Figure 31: Detection tag and linker optimization, protein constructs and assay principle. A: Optimization 
of linkers. Peptide sequences analyzed with 25H10 and ß1 antibodies are shown with epitope sequences for 
antibodies in bold letters. B: Time Resolved FRET analysis of the peptides indicated that peptide H1 is best 
recognized by the antibody pair. H1 peptide sequence was subsequently chosen as an artifical tag (3 ng 
peptide/well loaded, duplicates for each peptide shown). C: Final constructs that are expressed in the clonal 
neuronal cell lines and detection sites of antibodies used. 25H10, 32A7 and ß1 antibodies detect epitopes at the 
carboxyterminal tag of the constructs, 2B7 antibody detects an endogenous Htt epitope at the aminoterminus. 
Neuronal HN10 clonal cell lines with inducible expression of tagged Htt constructs were created for the assay. 
D: Concept behind the assay. 

 

Protein Detection and Signal Specificity  

The neuronal clonal cell lines created expressed the tagged polyQ-Htt and wild-type Htt at 

levels corresponding to that of endogenously expressed Htt upon full induction with no 

detectable basal expression as demonstrated by western blot analysis (Figure 32A,B). 

Expression levels of the constructs after induction were stable over time (Figure 32B). 

Experiments using a 96-well format showed that highly specific time resolved FRET 

detection of either the wild-type- or polyQ-Htt-protein in a cellular context was feasible when 

using the antibody pairs 25H10-K + ß1-D2 or 32A7-K + ß1-D2 which detected specifically 

their corresponding tags. In addition, using the 2B7-K antibody specific for an aminoterminal 

endogenous Htt epitope in combination with the ß1-D2 antibody specific for an epitope at the 
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carboxy-terminal tag, allowed for selective detection of non-cleaved, intact Htt-protein 

(Figure 32C) in the cell lines expressing either wild-type or polyQ-Htt. 
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Figure 32: Detection of induced constructs in neuronal cell lines with time resolved FRET. A: Western blot 
for wild-type (Htt573-Q25) and polyQ-Htt (Htt573-Q72) shows expression levels near endogenous levels of full 
length Htt as well as absence of basal expression without addition of inducer. B: Western blot of cell lysates 
from clone with inducible co-expression of the wild-type and polyQ-Htt constructs. Expression levels are stable 
over passages and time. C: Detection of constructs in 96-well format with time resolved FRET method proves 
sensitivity and specificity of the assay. After induction of expression, wild-type and polyQ-Htt are specifically 
detected only by the antibody pairs corresponding to the tags. 

 

In order to determine the maximal expression levels of polyQ-Htt-protein in the HN10 

Htt573-Q72 cells, we first calibrated our assay using increasing H1 peptide concentrations 

diluted into PBS or cell lysates from noninduced cells (Figure 33). After determining the 

linear range and intensity of the time-resolved FRET signal for a given H1 peptide amount in 

cell lysates, we were able to calculate an expression level of polyQ-Htt-protein (which carries 

the H1 peptide as a tag) corresponding to 17 ng Htt per mg total cellular protein. This 

intracellular concentration of polyQ-Htt was significantly higher than the detection limit of 

the assays calculated as 3-fold standard deviation over the background signal (3.6 ng polyQ-

Htt per 1 mg total cellular protein). 
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Figure 33: Detection sensitivity of H1 peptide for 25H10-K + ß1-D2 antibody combination. Increasing 
amounts of H1 spiked into noninduced cell lysates of Htt573-Q72 clone and time resolved FRET detection with 
25H10-K + ß1-D2. All data points n=3, error bars =stdev. 

 

Assay Miniaturization 

Next, we adapted the assay to a 1536 microwell format. To this end, we selected the Htt573-

Q72 expressing HN10 cell line and used the 2B7-K plus ß1-D2 antibody combination in order 

to quantify uncleaved polyQ-Htt-protein. One of the advantages of using the ratiometric 

readout in the time resolved FRET method is that adaptation to a miniaturized assay format is 

readily facilitated because the assay signal is not dependent on the path length of the detection 

system or the absolute number of particles being detected. In addition ratiometric readout are 

also more robust to errors in liquid handling again facilitating assay miniaturization (Imbert et 

al., 2007). As liquid transfer is difficult and time consuming in a 1536 well plate format it was 

especially important that our detection was based on a totally homogeneous assay format 

whereby no liquid transfer or removing steps were necessary.  

After miniaturizing the format to cells grown directly in a 1536 microwell plate, the assay 

protocol was optimized for lysis buffer (Figure 34A) and signal development over time 

(Figure 34B). Even though induced-to-non-induced signal ratio improved as a function of 

incubation time, the Z’ value already reached a maximum of 0.86 after shorter incubation 

periods (Figure 34B). We proceeded to optimize the detection conditions by determining the 

minimal inducer concentration for maximal induction of expression. Induction of polyQ-Htt 

expression showed good response to changing inducer concentrations, with an EC50 

corresponding to ~250 nM (Figure 34C) and a Z’ value of 0.87 between signals at 400 nM 
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and 200 nM inducer, showing the reliability of the assay for a partial (~50%) reduction in 

polyQ-Htt. 
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Figure 34: Optimization of Htt construct detection in neuronal cell line with time resolved FRET. A: 
Influence of lysis buffer on assay performance for the detection of the Htt573-Q72 construct with the 2B7-ß1 
antibody combination (measurement after 50 min, n=6). B: Time dependency of signal showed increase in 
induced-to-non-induced ratio but relative stability of Z’ over time (Htt573-Q72 construct, n=6). C: Expression 
levels of Htt573-Q72 in response to increasing inducer concentration (n=6, IC50 ~250 nM). 
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Figure 35 presents some of the additional assay validation steps taken to characterize the 1536 

well assay. First, the DMSO tolerance of the assay was tested to ensure that DMSO, which is 

used as the compound salvation agent, did not affect the assay signal by altering cell growth 

(Figure 35A). DMSO was well tolerated up to a concentration of 1%. The effect of cell 

density on the assay robustness was determined by assessing the Z’ value (using induced and 

non-induced cells as high and low controls) at different cell densities with or without 

multiplexing the detection of Htt levels with a measure of cell viability (the reduction of 

resazurin as a measure of mitochondrial activity, Figure 35B) (O'Brien et al., 2000). The Z’ 

values remained constant over a range between 6000 and 8000 cells/well and multiplexing 

with the cytotoxicity assay had no influence on the robustness of the assay. Since unbound 

europium cryptate labeled antibody can contribute to non-specific background signal in time 

resolved FRET assays, it was important to select the most appropriate dilutions of the two 

monoclonal antibodies used in the assay. An example of optimization of antibody 

concentrations is shown in Figure 35C. 
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Figure 35: Optimization of assay conditions for high-throughput-screen. A: Shows the DMSO tolerance of 
the assay. B: Z’ calculation at different cell densities, in the presence and absence of resazurin. C: Antibody 
titration to optimize the relative antibody concentrations for construct detection after induction. 
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High Throughput Screening 

Following miniaturization, the assay was first applied for screening a small library composed 

of ~10000 compounds commonly used in house for validating the assay performance before 

commencing screening the full deck library. This allowed to monitor the assay performance 

under real HTS screening conditions. Importantly, this also resulted in the identification of a 

small number of primary hits, which can be used to further characterize the secondary assays 

destined for triaging the total number of hits identified by the full primary screen. 

Analysis of the prescreen values demonstrated excellent performance with Z’ values 

averaging at ~0.6 among multiple plates. Close inspection of the primary results however did 

show that there was a small, but significant “edge effect” in all plates tested in the prescreen. 

This edge effect was more evident when viewing the correction pattern of the plates analyzed 

(data not shown) or when the results of this focused screen were arranged by well number 

(Figure 36A). This view showed a regular “saw tooth” pattern due to the plate edge effects. 

However, this effect was only minor and did not affect much the statistics of the assay 

performance, as shown in Figure 36B with the primary data presented in a Gaussian 

distribution.  

A B

 

Figure 36: Screening performance. A: Scatter plot of the screening data with the x-axis being the well number 
for each of the samples. The slight “saw-tooth” pattern of the results show how even after “correction” of the 
results a slight effect of the plate effect is apparent.  However, the actual magnitude of this plate effect is actually 
less than 20% activity. B: Frequency distribution of the results obtained for the samples tested (colored green) 
and the positive controls (noninduced cells, colored red). 

 
Comparison of Results Using Resazurin 

In addition to testing assay performance with the standard single readout format (Figure 37A) 

a smaller subset of the preplated compounds were also multiplexed for cell viability, which 

was monitored before cell lysis, and protein detection by time resolved FRET (Figure 37B). 

As shown in Figure 37C, both assay formats performed equally well. If anything, the data 

generated by the multiplexed readout appeared less scattering. Comparison of the compound 
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activity in the two assay formats showed that 90% of the compounds identified as hits in the 

single readout format were also identified in the dual readout format with a general hit rate of 

~0.4% (activity cut-off: 3-fold standard deviation over the mean signal), confirming high 

reproducibility and reliability of the time resolved FRET readout. 
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Figure 37: Comparison of screening results in the presence or absence of resazurin. A: Standard single 
readout format. B: Subset of plates tested with a multiplexed readout. Plates were tested for cell viability with 
resazurin and polyQ-Htt levels with time resolved FRET C: Comparison of single readout and multiplex readout 
hits. Both assay formats resulted in similar performance with 90% of the compounds identified as hits in the 
single readout format also being found in the multiplex readout format with a general hitrate of ~0.4%.  

 

Both assay formats were able to identify compounds that increased the levels of polyQ-Htt 

protein present in the cells. Though not of primary focus in our screen, it should be noted that 

since we measured the levels of intact polyQ-Htt and since proteolytic cleavage of polyQ-Htt 

influences its toxicity (Gafni et al., 2004; Wellington et al., 2002), these compounds could 

potentially be of interest as Htt cleavage inhibitors or of general interest to characterize our 

cellular model systems. 
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Characterization of Active Compounds 

The Novartis compound archive contains one of the largest collection of purified natural 

products. Screening of these compounds has the advantage that many of the compounds have 

previously reported activity and their mechanism of action is known, thus suggesting possible 

targets involved in the cellular regulation of polyQ-Htt expression. 

As noted previously, 12 compounds out of the ~10000 compounds in the prescreen were 

found to increase polyQ-Htt protein in both assays. Even though Htt cleavage inhibitors of 

potential therapeutic use could belong to this compound group, the majority of compounds 

increasing polyQ-Htt levels were expected to act via unspecific pathways. Indeed, 8 of these 

compounds were chlamydocin or trichostatin A analogues, common HDAC inhibitors that 

lead to a general increase of gene expression (Table 1, #1,2) (De Schepper et al., 2003; 

Nishino et al., 2004; Yoshida et al., 1995).  

More interesting were a number of compounds effectively lowering polyQ-Htt expression 

although these compounds may work by some non-specific effect or by perturbing cell 

viability. For example cycloheximide, borrelidin and anisomycin (Table 1, #4-6) lowered the 

levels of polyQ-Htt but did not influence cell viability over the incubation time of this assay. 

All three compounds are known to be general inhibitors of protein synthesis (Baliga et al., 

1969; Grollman, 1967; Nass, 1970). Additionally, a number of staurosporine analogues 

(unselective protein kinase inhibitors; Table 1, #3), as well as BAY 61-3606 (a specific syk 

kinase inhibitor; Table 1, #7 (Yamamoto et al., 2003)) are known to interfere with various 

cellular pathways.  

Even though many compound hits in our assay will act via unspecific pathways such as those 

described in the previous paragraph, the dynamic response of the assay to compounds with 

known mechanism of action was very encouraging. Further validation of the compounds 

lowering neuronal expressed polyQ-Htt by unknown biological mechanisms of action is in 

process as well as a full screen of the Novartis compound library.  
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# Compound Structure Biology Activity in 
assay in %

1 Trichostatin A 
analogue HDAC Inhibitor 68

2 Trichostatin A 
analogue HDAC Inhibitor 67

3 Staurosporine Proteinkinase 
Inhibitor -84

4 Anisomycin Proteinsynthesis 
Inhibitor -79

5 Cycloheximide Proteinsynthesis 
Inhibitor -74

6 Borrelidin Proteinsynthesis 
Inhibitor -73

7 BAY 61-3606 SYK kinase 
Inhibitor -27
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Table 1: Selection of compounds with known biological mechanism of action and their activity in the assay. 
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4.3.5 DISCUSSION 

This report describes the design and implementation of an assay that allows the quantification 

of proteins, even those expressed at endogenous levels. The assay format is homogenous and 

robust enough to allow miniaturization for high throughput screening. The assay format has 

been used to identify compounds that modulate the intracellular levels of the polyQ-Htt 

protein fragment and possibly represents the first assay that is capable of measuring the steady 

state levels of this protein. 

There are still a number of caveats with this assay format though. First, it appears that the cell 

lysis conditions need to be optimized for each set of protein and antibody detection reagents 

(unpublished results). Second, it appears that the assay is only detecting proteins that are 

solubilized during cell lysis which might mean that this format would not be suitable for 

monitoring the levels of proteins involved in large macromolecular complexes that are not 

readily solubilized (e.g. proteins associated to the cell cytoskeleton or to the nuclear structure). 

Third, because a recombinant peptide tag has been added to facilitate detection there are a 

number of possible caveats including that the endogenous untagged protein levels may differ 

from the detected signal. Such a caveat depends on the fate of the detection tag because of 

potential proteolysis. The peptide tag may also have an effect on the physiology of the protein 

being studied. Fourth, while it is possible to multiplex this assay format with an assay to 

monitor cell viability, the current assay setup uses a measure of mitochondrial redox potential 

which may not be sensitive enough to detect changes in cell physiology that may alter relative 

protein levels. 

One advantage of this tagging approach is that it allows not only the levels of protein 

expression to be monitored but readily allows detection of the protein for application to 

intracellular imaging assays. This would then make it possible to not only follow the levels of 

protein during a change in conditions but also the protein location within the cell. For Htt this 

is of importance as it has been reported that intracellular localization of Htt influences its 

toxicity (Bates, 2003; Chen et al., 2001; Chen et al., 2002; Yang et al., 2002) and may also 

have a bearing on the apparent protein levels (Gutekunst et al., 1999; Stack et al., 2005). 

While the detection method described in this report has been combined with a readout of cell 

viability, this readout has a tendency to underestimate the potential toxicity of compounds. 

However it is still possible that this assay format could be multiplexed with additional 

readouts such as ATP levels or even other reporter gene assays. 
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Finally, it should be evident that the basic strategy used to detect proteins can be extended to 

assays using antibodies to non-recombinant epitopes allowing endogenous and untagged 

protein to be detected and quantified. 
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4.4.1 SUMMARY 

The genetic mutation causing Huntington's Disease (HD) is a polyglutamine expansion in the 

huntingtin protein. Expansions beyond 39 glutamines become pathogenic and appear to affect 

protein folding and successive formation of toxic intracellular fragments and aggregates. 

Innovative disease-modifying therapeutics for HD may target folding, proteolytic cleavage or 

degradation of mutant huntingtin. Despite the clear causative role of mutant huntingtin, 

assessment of huntingtin expression during disease progression or in presymptomatic HD is 

sparse. We established a highly sensitive detection assay, which allows for single-step 

quantification of soluble mutant huntingtin in biological samples. We found that mutant 

huntingtin levels decrease as a function of disease progression and inversely correlate with the 

amount of aggregates present in brains of HD mice. Specific determination of mutant 

huntingtin was established in blood-derived fractions and brain extracts of HD patients. This 

allows assessing the relevance of mutant huntingtin levels as a disease and/or 

pharmacodynamic biomarker in HD. 
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4.4.2 INTRODUCTION 

Huntington’s Disease (HD) is the most common inherited neurodegenerative disorder with a 

prevalence of 5 to 8 cases per 100’000. Its main clinical manifestations include motoric 

dysfunction, psychiatric disturbances and dementia. Numerous symptomatic treatments have 

been tried for HD without any substantial success (Bonelli and Wenning, 2006) and no 

approved treatments for HD exist (Bates, 2003; Bates and Hockly, 2003; Landles and Bates, 

2004; Young, 2003). HD is the founding member of the polyglutamine (polyQ) disease family 

composed of nine autosomal-dominant inherited disorders whose common characteristic is a 

polyQ-repeat expansion in different ubiquitously expressed proteins (Everett and Wood, 

2004; Ross, 2002). The expanded polyQ repeat in the huntingtin gene (Htt) lies in exon 1 and 

leads to the expression of mutant Htt protein (Group, 1993a; Gusella et al., 1983). The polyQ-

repeat expansion may promote a conversion from a native random-coiled to a cylindrical, 

parallel beta-sheet conformation tethered by hydrogen bonds between the polyglutamine 

strands (Perutz et al., 1994; Perutz et al., 2002b). Similar to other neurodegenerative diseases 

characterized by protein misfolding like Alzheimer’s Disease, the proteins with helical beta-

sheet conformation are prone to form non-soluble protein aggregates (Balbirnie et al., 2001; 

Benzinger et al., 2000; Perutz et al., 2002b).  

HD-like symptoms are reversed when expression of mutant Htt is down-regulated in the brain 

of HD mouse models by RNA interference (DiFiglia et al., 2007; Machida et al., 2006), 

(Rodriguez-Lebron et al., 2005; Wang et al., 2005) or by tetracyclin-regulated conditional 

expression (Yamamoto et al., 2000). Interestingly, mutant and wild-type-Htt are differently 

metabolized by the cell and display a different pattern of posttranslational modifications 

(phosphorylation (Warby et al., 2005)), proteolytic cleavage (Gafni et al., 2004; Graham et al., 

2006; Wellington et al., 2002), cellular localization (Davies et al., 1997; van Roon-Mom et al., 

2002) and degradation (Ravikumar et al., 2002). These findings prompted discovery work for 

HD therapeutics aimed at influencing the misfolding or the clearance of mutant Htt e.g. 

through upregulation of the chaperone system or induction of the autophagy degradation 

pathway (King et al., 2008; Perrin et al., 2007; Yamamoto et al., 2006; Zourlidou et al., 2007). 

Such approaches may find application for other neurodegenerative diseases caused by protein 

misfolding. 

Currently, there is no bioassay available to assess the effect of such therapies on mutant Htt 

levels in clinical trials. We recently described a new homogenous time resolved Förster 

resonance energy transfer method for Htt detection suitable for high-throughput screening in a 

neuronal cell line (Weiss et al. submitted). Here, we show that this method can be modified to 
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quantify endogenous, full-length soluble mutant Htt in cellular, animal and human samples. 

This will enable researchers to address the relevance of soluble mutant Htt as a marker for 

disease progression or to monitor the efficacy of drug treatments in preclinical and clinical 

trials. As the design of the method is highly flexible, it is in principle applicable for 

investigations of other diseases, especially other members of the polyQ-family. 
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4.4.3 MATERIALS AND METHODS 

Antibodies 

25H10, 32A7 and 2B7 antibodies have been described previously (Paganetti et al., 1996; 

Weihofen et al., 2003), (Weiss at al, submitted). MW1 antibody specific against the 

polyglutamine stretch of Htt and developed by Dr. Paul Patterson were obtained from the 

Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and 

maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 

52242. Custom europium cryptate and D2-fluorophore labeling of the antibodies were 

performed by CisBio (Bagnols/Ceze, France). Depending on the batch used, antibodies were 

cross-linked to 5 to 7 mol europium cryptate or D2-fluorophore per mol antibody. 

 

Cellular Models 

Inducible, neuronal HN10 cells (Lee et al., 1990) were described elsewhere (Weiss et al., 

2008), (Weiss et al. submitted). The knock-in embryonic stem cells (ES cells) were generated 

as described in (Wheeler et al., 1999; White et al., 1997). The neomycin selection cassette was 

removed by a second electroporation with a plasmid expressing cre recombinase. Embryonic 

stem cell-derived neurons (ES neurons) were generated using the differentiation protocol as 

published by (Bibel et al., 2007; Bibel et al., 2004). In brief, ES cells were cultivated on 

mitomycine-inactivated mouse embryonic fibroblasts for at least two passages after thawing 

in ES medium containing 15% foetal calf serum (FCS) and 1000 U/ml LIF (leukemia 

inducing factor). Subsequently, they were cultured without fibroblast feeder cells for two 

more passages. Embryoid bodies (EBs) were formed on bacterial dishes in EB medium 

containing 10% FCS but no LIF and incubated for 8 days with the addition of retinoic acid on 

the last four days. EBs were dissociated by trypsinisation and plated on poly-l-lysine and 

laminin coated plates in N2 medium and changed to neuronal differentiation medium as 

described by (Brewer and Cotman, 1989) two days after dissociation. 

 

Animal Models.  

Heterozygous transgenic R6/2 males of CBAxC57BL/6 strain were obtained from G. Bates 

laboratory (Mangiarini et al., 1996) and bred with CBAxC57BL/6 F1 females. The offspring 

were genotyped by PCR assay of DNA obtained from tail tissue. The animals were housed in 

a temperature-controlled room that was maintained on a 12 hr light/dark cycle. Food and 

water were available ad libitum. All experiments were carried out in accordance with 

authorization guidelines for the care and use of laboratory animals. For time resolved FRET 
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assay detection of huntingtin, 2-3 months old animals were anesthetized with 3-5% isofluran 

followed by an intraperitoneal dose of 100mg/kg Ketamin and 10mg/kg xylazine. After CSF 

and blood collection, animals were given a sodium pentobarbital overdose (150 mg/kg). 

Muscle (gastrocnemius) and brain were immediately further collected for FRET analysis.  

 

Aggregate analysis by AGERA 

AGERA analysis was performed as described (Weiss et al., 2008). In short, R6/2 brains were 

homogenized in 10 volumes (w/v) PBS + 0,4% TritonX100 and Complete Protease Inhibitor 

(Roche Diagnostics). Brain samples corresponding to 0.15 mg of total protein were loaded per 

AGERA lane. For separation of brain homogenates into soluble and non-soluble fractions, 

homogenates were centrifuged at 124 000 g for 1 h, supernatant was aliquoted (soluble 

fraction) and pellet was resuspended in equal to starting volume PBS + 0,4% TritonX100 

(non-soluble fraction). 

 

Human samples  

HD patient identificication was based on the presence of movement disorders, a positive 

family history and known CAG repeat expansion. Patients were categorized by using the total 

functional capacity (TFC) score assessed by experienced clinical raters. Control subjects 

showed no history of neurological or psychiatric symptoms. Consent of patients was obtained 

according to the Declaration of Helsinski (Br Med J 1991; 302: 1194). Blood samples were 

taken in EDTA-Vacutainer tubes (BD, Oxford) and fractionated by density gradient 

centrifugation using a standard technique to obtain red blood cell and buffy coat (> 90% 

lymphocytes) fractions. 

 

Time resolved-FRET: Cellular models 

Detection of polyQ huntingtin in cell lysates was performed as described (Weiss et al. 

submitted). 

 

Time resolved-FRET: BioAssay 

Brain and muscle tissue were homogenized in 10x volume sample buffer (PBS + 1% Triton 

X-100 + compleate protease inhibitor). Blood, plasma and corticospinal fluid samples were 

prediluted 1:1 in sample buffer. 10 µl sample and 5 µl antibody dilution (europium cryptate 

and D2 labeled antibodies in 50mM NaH2PO4, 400mM NaF, 0.1% BSA, 0.05% Tween) was 

added to each well to a final dilution of 1.5 ng/well 2B7-europium labeled antibody and 30 
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ng/well MW1-D2-labeled antibody. Plates were incubated at 4°C for 1h. Measurements were 

performed with a Xenon-lamp Envision Reader for 620 and 665 nm wavelengths after 

excitation at 320 nm (time delay 100 µs, window 400 µs, 100 flashes per well). 

 

Data analysis 

The time resolved-FRET readouts are performed at 620 and 665 nm wavelength. The signal 

obtained from the 620 nm wavelength is a huntingtin unspecific signal and results from the 

emission of the europium labeled antibody. It is possible to use the 620 nm signal as a control 

reference signal for possible artifacts caused by scattering, quenching, absorption or general 

turbidity resulting from the analyzed sample. The huntingtin specific signal at 665 nm 

wavelength is caused by the time delayed excitation of the D2 labeled antibody by the 620 nm 

emission of the europium labeled antibody. Therefore, 665/620 nm ratio calculation results in 

an artifact corrected specific determination of the amount of the two antibodies binding in 

close proximity of each other on the huntingtin protein. As the antibodies are present in excess, 

665/620 ratio is a precise reflection of the amount of antigen present in the sample.  

 
Statistical analysis 

Quantification of cellular and mouse values are presented as averages with standard 

deviations. Significances were calculated by students’ t-test. 
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4.4.4 RESULTS 

Time-resolved Förster resonance energy transfer assay for detection of endogenous 

huntingtin 

Aminoterminal fragments of mutant Htt are neurotoxic in vitro and in vivo (Arrasate et al., 

2004; Li et al., 2000; Varma et al., 2007). Mutant Htt toxicity and aggregation are dependent 

on polyQ length, Htt fragment length, and level of mutant Htt expression (Colby et al., 2006; 

King et al., 2008; Machida et al., 2006; Scherzinger et al., 1999; Wang et al., 2005). We 

recently demonstrated the feasibility to measure in one step intracellular mutant Htt using a 

time resolved-FRET assay. In this assay, an antibody pair recognizes a short artificial tag 

fused to a Htt fragment. (Weiss et al. 2008, submitted) (Figure 38).  

 

PolyQ

TR-FRET
Tag

Y Y Y Y2B7 MW1Y Beta1
32A7 
25H10

1 548     573

Exon1
 

Figure 38: Binding sites of antibodies used in this study to the 573-Htt construct. While 2B7 and MW1 
detect endogenous Htt epitopes, Beta1, 32A7 and 25H10 are specific against the artificial tag added at the C-
terminus (Weiss et al, submitted). Note: as MW1is specific against the polyQ-stretch, increasing polyQ-length 
will result in stronger and increased MW1 binding (represented by the two antibodies displayed in the figure) (Li 
et al., 2007). 

 

With the aim of detecting untagged mutant Htt, it was necessary to use a different antibody 

pair. In order to measure fragments as well as full-length mutant Htt, we used the monoclonal 

antibody 2B7, which binds to the 17 amino acids preceding the polyQ-repeat at the 

aminoterminus of Htt. We selected MW1, a polyQ-specific antibody (Ko et al., 2001) as 

second antibody. The combination of 2B7 and MW1 antibodies resulted in specific detection 

of all Htt-fragments expressed in HN10 cells, including untagged Htt-exon1 (Figure 39A, 

Exon1-Q25 and -Q72). As expected, using other antibody combinations which included one 

or both of the epitopes against the artificial tag failed to detect the untagged Htt-exon1 

constructs (Figure 39A, Exon1-Q25 and -Q72) but readily detected the Htt constructs carrying 

the tags (Figure 39A, 573-Q25 and -Q72). 
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Figure 39: Mutant huntingtin detection in cellular models of Huntington’s disease. A: Time resolved-FRET 
detection of Htt constructs upon inducible expression in neuronal HN10 clones. Specific detection of 573-Htt-
constructs by different antibody combinations. Using antibody combinations that included one of the epitope 
against the artificial tag which is included in the 573-constructs fails to detect untagged exon1 constructs. Using 
antibody combination 2B7 and MW1 both specific against Htt-endogenous epitopes, results in a Htt specific 
signal for all constructs tested, including the untagged exon1 constructs. B: Time resolved-FRET signal for 2B7-
MW1 detection is polyQ-dependent. Lentiviral expression of untagged Htt-constructs with varying polyQ-length 
with a fixed virustiter resulted in equal expression of all the constructs as shown by western blot. Time resolved-
FRET detection showed a clear dependency of the signal strength on the polyQ-length. Loading: 7 ug total 
protein per sample. C: Detection of full length Htt expressed at endogenous levels. A notable and significant 
signal difference was observed for lysates from ES cells expression full-length Htt with 140 polyQ repeats over 
lysates from Htt knock-out ES cells or ES cells expressing full length Htt with the mice wild-type polyQ length 
of 7 glutamines. Loading: 10 ug total protein per sample. D: Detection of full length Htt expressed at endogenous 
levels in neurons in a polyQ-dependent manner. Detection of full-length huntingtin expressed at endogenous, 
neuronal levels is possible as shown by lysates from ES-derived neurons. In addition, as shown for lentiviral 
system, signal strength is polyQ-dependent. Loading: 40 ug protein per sample. (All figures: n=3, stdev, 
*=p<0.05, **=p<0.01, ***=p<0.001). 
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Clone to clone variations may contribute to different expression levels in the HN10 cell lines, 

thereby possibly complicating efforts to compare polyQ-dependent detection sensitivity when 

analyzing wild-type and mutant huntingtin expression from different clones. To circumvent 

this limitation, we opted for a lentiviral approach for expression of untagged Htt-constructs 

with 25 or 72 glutamines in a homogenous population of mouse embryonic stem cells (ESC; 

(Bibel et al., 2004)). A predefined virus titer led to equal expression of the constructs as 

demonstrated by western blot. Signal strength in time resolved-FRET increased with polyQ-

length (Figure 39B). This was expected, since expansion of the polyQ-repeat would increase 

binding of MW1 relative to wild-type Htt (Ko et al., 2001; Li et al., 2007). These data 

demonstrated specific detection of Htt fragments in a polyQ-dependent manner by the 

antibody pair 2B7-MW1. 

For evaluating the use of the time resolved-FRET assay to detect endogenous, full-length Htt, 

we selected ESC with the Htt gene deleted (Htt knock-out as negative control) or modified by 

a polyQ insertion (polyQ knock-in as positive control). A significant signal was obtained in 

samples from the 140Q knock-in ESC when compared to samples from the Htt knock-out 

ESC (Figure 39C). In contrast, we did not observe a signal above background (mock 

condition) when using normal ESC. This is consistent with the fact that normal mouse Htt has 

a polyQ-stretch of only 7 glutamines, evidently too short for recognition by the MW1 

monoclonal (Figure 39C) (Ko et al., 2001). In cell lysates obtained from ESC-derived 

glutamatergic neurons in which varying polyQ-lengths were knocked-in in the endogenous 

Htt gene, neuronal Htt was detected in a polyQ-length dependent manner (Figure 39D). 

Notably, a significant amount of Htt was detected also for 20Q-Htt, a polyQ length 

representing the majority of the normal human alleles. These data demonstrate that our single-

step detection method can be used for rapid, quantitative and polyQ-length dependent 

detection of endogenous Htt protein in neuronal cells. 

 
Detection of soluble mutant Htt in central and peripheral tissues of murine HD models 

and significant changes in soluble brain Htt as a function of disease progression 

The single-step bioassay for Htt was next used to analyze brain homogenates obtained from 4 

and 12 week-old R6/2 mice and aged-matched wild-type mice. R6/2 mice develop an 

aggressive HD-like phenotype because of the ubiquitous expression of mutant Htt exon1 

driven by the human Htt promoter (Mangiarini et al., 1996). Figure 40 summarizes the data 

obtained for the HD mice. Robust signals were observed in all transgenic animals analyzed. 

The mutant Htt specific signal in young, presymptomatic mice was about 25-fold above that 
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measured in wild-type animals (Figure 40A), which is likely to represent the background 

noise as endogenous mouse Htt was not detected in ESC Htt-knock out cells (see above). 

Interestingly, the level of mutant Htt detected in the brain of the older mouse group, which 

have an advanced HD-like phenotype, was about 45% less than that in young R6/2 mice 

(Figure 40A). This decrease in mutant Htt was surprising, as the Htt-aggregate load measured 

in the same brain samples by AGERA increased as a function of age (Weiss et al., 2008) 

(Figure 40A; AGERA blot). One possible explanation for these results was that the time 

resolved-FRET assay using the 2B7-MW1 antibody pair was specific for a mutant Htt fraction 

distinct from mutant Htt aggregates. To further investigate this possibility, we separated by 

ultracentrifugation R6/2 brain homogenates into two fractions, one containing only soluble 

Htt species and one containing Htt aggregates sedimented as an insoluble pellet. Analysis of 

the supernatant and pellet fractions by AGERA demonstrated successful separation of the 

insoluble aggregates into the pellet fraction whereby no aggregates were present in the 

supernatant fractions (Figure 40B, AGERA blot). In contrast, we found that the amount of Htt 

detected by time resolved-FRET was predominantly enriched (most likely in a soluble 

monomeric and oligomeric form) in the supernatant fractions. These data indicated that the 

time resolved-FRET assay was specific for soluble mutant Htt forms. Thus, the decrease in 

the time resolved-FRET signal may indicate recruitment of soluble Htt species into aggregates 

accumulating as a function of age and disease progression, a mechanism also suggested for 

other neurodegenerative disorders such as Alzheimer’s Disease (Sjogren et al., 2002; Strozyk 

et al., 2003).  

We extended our analysis to include muscle and plasma samples from 6 week old as well as 

corticospinal fluid samples from 9 to 12 week old R6/2 or WT mice. We found significant 

detectable amounts of mutant Htt in the R6/2 mice when compared to their normal siblings in 

all tissue samples analyzed, although the signals in the body fluids were significantly lower 

than those detected in cortical extracts (Figure 40C). 

In the context of a bioassay for mutant Htt, the R6/2 mouse model of HD based on the 

expression of a short fragment of Htt may have only a limited value as a model of the human 

situation in which mutated full-length Htt is expressed. As an alternative, we applied the time 

resolved-FRET assay for the analysis of mutant Htt in a knock-in mouse model expressing 

endogenous mouse full-length Htt with a polyQ-stretch of 140 glutamines (Menalled et al., 

2003). Similar to the R6/2 mouse samples, significant amounts of mutant Htt were detected in 

every brain area analyzed as well as in full blood samples (Figure 40D) obtained from the 

polyQ-knock-in mice.  
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Figure 40: Detection of soluble mutant huntingtin in mice HD models. A: Time resolved-FRET signal in 
brains of R6/2 decreases with age. Full-brain homogenates of 4 and 12 week-old wild-type (WT) or R6/2 mice 
were analyzed with time resolved-FRET using the 2B7-K-MW1-D2 antibody combination. The sensitive time 
resolved-FRET detection resulted in a highly significant signal difference between not only WT and R6/2 mice 
(p<0.001) but also between 4 and 12 week-old R6/2 mice (p<0.001). Time resolved-FRET signal in R6/2 brain 
decreased with age (upper graph) whereas the aggregate load in these samples increases with age (lower AGERA 
blot), indicating that the time resolved-FRET method based on 2B7-MW1 does detect a mutant Htt subspecies 
different from insoluble aggregates. B: Time resolved-FRET detects soluble fraction and not insoluble 
aggregates. Ultracentrifugation (1h at 124000g) of four R6/2 full-brain homogenates separated the insoluble Htt 
aggregates from soluble monomeric/oligomeric species. Analysis of supernatant and pellet fractions showed that 
ultracentrifugation successfully separated the insoluble aggregates into the pellet fractions whereas no aggregates 
were detected in the supernatant fractions (lower AGERA blot). In contrast we found that the Htt signal detected 
by time resolved-FRET is found in the supernatant fractions and thus specific for soluble mutant Htt. C: 
Quantification of mutant Htt-exon1 in R6/2 mice. Cortex, muscle and plasma samples from 6 week old R6/2 or 
WT mice showed a significant signal difference between R6/2 and WT in all samples analyzed (n=3, stdev, 
*=p<0.05, **=p<0.01, ***=p<0.001). Analysis of corticospinal fluid from 9 to 12 week old R6/2 mice (n=9) and 
WT mice (n=4) showed a small but highly significant signal difference between R6/2 and WT CSF. D: 
Endogenous full-length mutant Htt detection in Hdh140 mice. Detection in a knock-in mouse model that 
expresses full-length mutant Htt at endogenous levels is possible with the time resolved-FRET method. Highly 
significant quantification was possible in every tissue sample analyzed. (n=3, stdev, *=p<0.05, **=p<0.01, 
***=p<0.001) 
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Sensitive and polyQ-dependent huntingtin detection in human tissue samples 

Next, we analyzed post-mortem cortex tissue from three HD and three control patients. A 

significant signal difference was observed for all HD patients over the healthy controls, 

demonstrating the feasibility of our method for sensitive and polyQ-length dependent 

detection of soluble Htt levels in human tissue (Figure 41A). To our knowledge, this is the 

first time that the specific pool of potentially toxic soluble mutant Htt can be accurately 

quantified in human samples. 
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Figure 41: Sensitive and polyQ-dependent huntingtin detection in human tissue samples. A: PolyQ-
dependent Htt detection in post-mortem human cortex. Analysis of cortex homogenates from three Huntington’s 
Disease and three control patients revealed a polyQ-length dependent signal intensity allowing for clear 
distinction of human tissue from a diseased versus a healthy patient. B: Detection of mutant huntingtin in human 
snap frozen full blood samples. Human full blood samples from five living Huntington’s Disease patients and 
four living control patients were analyzed. A clear distinction of the diseased patients from the healthy patients 
based on the polyQ-length dependent detection of Htt was possible. Averages of technical triplicates with 
standard deviation are shown for each patient.  C-D: Separation of EDTA treated full blood into red blood cells 
and buffy coat fraction revealed polyQ-dependent detection of mutant Htt in erythrocytes and buffy coat cells of 
Huntington’s Disease patients. Average of technical triplicates with standard deviation are shown for each 
patient.  

 

We proceeded to test human full blood, red blood cells (erythrocytes) and human buffy coat 

samples from five living HD and four control patients (Table 2). As in the post-mortem cortex 

tissue analyzed, we were able to identify all five living HD patients based on their increased 
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time resolved-FRET polyQ-Htt-dependent signal in full blood, erythrocytes and buffy coat 

over the signal of the four healthy control patients (Figure 41B-D).   
Patient Sex Age TFC

1 F 42 10
2 F 62 5
3 F 46 10
4 M 50 9
5 F 45 6
6 M 30 13
7 M 23 13
8 M 24 13
9 F 54 13

Healthy control 
patient

Huntington's 
Disease patient

 

Table 2: Patients providing blood samples. The age, sex and total functional capacity (TFC) score (13=normal; 
0=severe disability) for each patient are shown.  
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4.4.5 DISCUSSION 

We have developed a bioassay for determination of soluble mutant Htt and demonstrated its 

use to measure mutant Htt levels in cell lysates, animal and human tissues. The time resolved-

FRET assay is a simple, one-step methodology that requires only small sample volumes. 

Quantitative determination of mutant Htt levels are therefore possible with as little as 5 µl 

human full blood, providing the possibility to determine soluble mutant Htt protein levels 

multiple times over a longer clinical trial period without affecting the patient as obtaining the 

sample is minimally invasive. In addition, the ability to correct for artifacts using the time 

resolved-FRET method allows for a very reliable quantification of mutant Htt even in small 

sample sizes (Imbert et al., 2007).  

To verify the specifity of our detection method for soluble mutant Htt, several experimental 

steps were taken. Importantly, we based our bioassay on a method that has been recently 

described to detect intracellular levels of tagged Htt fragments in a sensitive, robust and 

reliable manner as indicated by a high Z-factor value, a common statistical parameter that 

reflects assay quality in terms of reliability and robustness (Zhang et al., 1999, Weiss et al. 

submitted). By exchanging the detection antibodies of the high-throughput screen to an 

antibody pair that recognizes endogenous Htt epitopes, we were able to show detection of 

untagged Htt fragments in a stable neuronal cell line with inducible expression of tagged Htt. 

In order to specifically detect mutant Htt levels over wild-type Htt, one of the antibodies is 

directed against the polyQ-repeat that is elongated in Huntington’s Disease. We showed that 

the signal intensity directly correlates with the polyQ length in lentiviral infected embryonic 

stem cells as well as in cell lysates obtained from wild-type and polyQ-knock-in embryonic 

stem cells and embryonic stem cell derived neurons. Critically, using knock-out embryonic 

stem cell lysates void of any Htt protein expression, we were able to prove the Htt specificity 

of our signal. As the detection method is polyQ-length dependent, it should be noted that 

while wild-type Htt is not detected in murine cells or tissue due to the WT-polyQ-length of 

only 7 glutamines, human healthy polyQ length normally resides around ~20 glutamines 

(Myers, 2004), a length that is also detected by our method. However, the intensity of this 

healthy Htt derived signal only contributes little to the total signal that is largely comprised of 

mutant polyQ Htt detection with polyQ-length >39 glutamines. 

We proceeded to analyze mouse models of HD and for the first time were able to quantifiably 

determine soluble, non-aggregated mutant Htt levels in various tissue samples of two different 

HD mouse models. Notably, we found that the levels of soluble mutant Htt decrease while the 

amount of insoluble Htt aggregates increase in the brains of aging R6/2 mice. This decrease of 
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an aggregation prone monomeric species upon aging resembles similar findings in Alzheimer 

Disease whereby a decrease in Abeta42 levels is a marker for disease progression (likely to be 

caused by recruitment of soluble Abeta as a function of increased plaque burden).  

Finally, we tested human post-mortem cortex samples as well as full blood and blood-derived 

human samples from living control and HD patients. We were able to clearly distinguish 

between healthy and HD patient samples by the intensity of the signal alone. This quantitative 

detection of soluble Htt in readily available human tissue samples opens up the possibility to 

determine the value of this soluble mutant Htt quantification for use as a potential biomarker 

for HD disease progression. In that regard, it is interesting that the signal measured in buffy 

coat fraction tends to correlate with severity of disease progression as determined by the total 

function capacity score in the analyzed HD patients. This trend was not observed in full blood 

or erythrocytes. However, erythrocytes represent the vast majority of cells found in full blood. 

Erythrocytes display a shorter lifespan than some of the lymphocytes found in the buffy coat 

fraction. In addition, mature erythrocytes differ from other cells as they are void of a nuclei 

and mitochondrial respiration. The difference in time resolved FRET signals could therefore 

be due to the longer lifespan and different cellular characteristics of a lymphocyte 

subpopulation in which effects of mutant huntingtin monomer expression, e.g. huntingtin 

aggregation, can accumulate over time, leading to a decreased signal of soluble mutant 

huntingtin similar to what we observed in R6/2 mice with advanced disease progression. 

Further longitudinal studies with a larger HD patient population could help to elucidate this 

intriguing possibility. In addition, since potential HD therapies could be aimed at influencing 

the soluble mutant Htt pool directly (e.g. RNAi knockdown of mutant huntingtin, compounds 

that alter aggregation, compounds that act on the chaperone system or compounds that act on 

autophagy) the precise quantification of soluble mutant Htt could also find application as a 

marker for treatment success in human clinical trials. 

In summary, our bioassay is a very simple, one-step methodology that requires only small 

sample volumes. In addition, the artifact corrected nature of time resolved-FRET allows for 

very reliable Htt-quantification with a single small sample per subject, making the method 

useful for experiments that are limited by sample numbers or sample volume as it is often 

found in human clinical trials. Because signal specifity of the method depends on the antibody 

pair used, the method could also find further application not only for HD but also for other 

diseases, especially other polyQ-diseases like the spinocerebellar ataxias. 
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5 GENERAL DISCUSSION AND OUTLOOK 

This thesis focused on the development and application of new models, methods and 

therapeutic approaches for the investigation of Huntington’s Disease, a fatal 

neurodegenerative disorder caused by the expression of mutated huntingtin protein (Bates et 

al., 2002). Currently, no cure for this devastating disease exists (Bonelli and Hofmann, 2007). 

To help in elucidating the open questions about the affected cellular mechanism in 

Huntington’s Disease, we developed an inducible neuronal model and established readouts to 

measure the effects of mutant huntingtin expression (Chapter 4.1.). The observed effects on 

cell viability, transcriptional dysregulation and neurite formation are consistent with earlier 

reports (Borrell-Pages et al., 2006; Hodges et al., 2006; Landles and Bates, 2004). We made 

use of our model to develop two new methods for the detection of aggregated and soluble 

mutant huntingtin protein (AGERA method: Chapter 4.2; TR-FRET method: Chapter 4.4). 

Since these methods are specific for huntingtin protein because of the use of anti-huntingtin 

antibodies, these methods can in principle be applied to a variety of other targets of interest by 

using alternative antibodies directed against other proteins.  

The presented results focused solely on the mutated huntingtin protein while leaving the 

question of a potential RNA toxicity in Huntington’s Disease untouched. Understanding the 

potential role of RNA toxicity in disease development is important as numerous nucleotide 

expansion diseases are thought to be caused by pathogenic RNA and not pathogenic protein. 

So far, almost 30 hereditary diseases are known to result from nucleotide repeat expansions 

(Mirkin, 2007; Pearson et al., 2005). Interestingly, nucleotide expansions in exons can only be 

found in approximately 50% of these diseases. In the rest of the known nucleotide expansion 

disorders, elongation of the DNA are found in the 5' or 3' untranslated regions or in introns. 

Consequently, these nucleotide expansions do not result in expression of mutated proteins but 

in transcription of altered RNAs or changed levels of protein expression.  

The mechanisms how RNA with expanded nucleotide repeats can become toxic in these 

diseases are not yet fully understood. Studies in myotonic dystrophy, a disorder caused by 

nucleotide expansion in an untranslated gene region (Brook et al., 1992), showed that 

expanded RNA can form hairpin structures and distinct RNA foci inside the nucleus (Davis et 

al., 1997). These foci seem to sequester proteins like muscleblind-like protein 1 (MBNL1) or 

CUG RNA-binding protein 1 (CUG-BP1) which play a role in alternative RNA splicing 

(Fardaei et al., 2002; Ho et al., 2004; Miller et al., 2000). In good agreement with these in 

vitro observations are studies which show that deregulation of RNA splicing during 

development is a key pathogenic event leading to myotonic dystrophy (Philips et al., 1998). 
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An alternative interesting theory for mRNA toxicity is based on recent studies reporting that 

CNG-triplet mRNA hairpins are not only recognized and cleaved by Dicer protein (Handa et 

al., 2003; Malinina, 2005) but that these resulting (CNG)n fragments seem to have gene 

silencing effects normally reserved for siRNA (Krol et al., 2007). 

In contrast to myotonic dystrophy, Huntington’s Disease and the other eight members of the 

polyglutamine disease family are characterized by an expansion of a CAG repeat in an exon 

coding region leading to a polyglutamine repeat length above a critical threshold in an 

expressed protein. Since the dominating characteristic of all these polyglutamine diseases are 

the visible protein aggregations in the central nervous system, it has been mostly believed that 

these disorders are caused by the mutated proteins and not by the subjacent, altered mRNA.  

Interestingly, a recent study demonstrated that mRNA toxicity contributes significantly to the 

onset and progression of SCA3 and Huntington’s Disease in a drosophila model (Li et al., 

2008). However, several observations speak against toxicity of the huntingtin mRNA. Firstly, 

it has been shown that the amino acid flanking sequences of the polyglutamine repeat have a 

significant influence on the tendency of the protein to aggregate and the overall toxicity 

(Darnell et al., 2007; Dehay and Bertolotti, 2006; Rockabrand et al., 2007). Secondly, 

numerous studies reported that subcellular localization of the mutated protein influences 

disease progression substantially (Benn et al., 2005; Hackam et al., 1999; Martindale et al., 

1998; Perez et al., 1998; Saudou et al., 1998; Wheeler et al., 2000; Yang et al., 2002). In 

addition, posttranslational modifications of the mutant huntingtin protein such as cleavage or 

phosphorylation have been shown to influence the overall disease progression (Graham et al., 

2006; Ratovitski et al., 2007; Warby et al., 2005; Wellington et al., 2002). Notably, expression 

of anti-huntingtin-intrabodies results in specific binding of the huntingtin protein and reduces 

symptoms in cellular and mouse models of Huntington’s Disease (Wang et al., 2008). Finally, 

earlier studies in other drosophila Huntington’s Disease models argue specifically for the 

polyglutamine repeat in the protein itself as the toxic agent (Marsh et al., 2000; McLeod et al., 

2005). All these findings connect the expression, localization and posttranslational 

modifications of the mutated protein directly with disease onset and progression, questioning 

the role of a potential mRNA toxicity in Huntington’s Disease. Nevertheless, a potential 

minor contribution of mRNA toxicity to disease development should not be ruled out and 

further experiments will be needed on this subject. The in the process of this thesis developed 

detection methods for the different conformational subspecies of mutant huntingtin protein 

could complement the already available sensitive detection methods for mRNA in such 
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studies, helping to find a more definitive answer to the possibility of an additional RNA 

toxicity in Huntington’s Disease. 

Because of the above described arguments against a potential RNA toxicity in Huntington’s 

Disease, we were confident that applying our TR-FRET method to screen a small-molecule 

library comprised of 10000 molecules with the aim to identify compounds which lower 

specifically the levels of mutant huntingtin protein will help in approaching an alternative 

therapeutic treatment against Huntington’s Disease (Chapter 4.3). Even though the screen 

identified mostly compounds which influence generic cellular pathways, the specifity of the 

readout for mutant huntingtin and the dynamic response of the assay encouraged us to proceed 

with the analysis of a larger compound library (>1 million compounds). This screen is 

currently in progress and it is expected to be finished by the end of this year. If a verified 

compound hit list can be established, it will be interesting to test the effect of these 

compounds in our readouts for cell viability (Chapter 4.1) and aggregate formation (Chapter 

4.2) in our inducible neuronal model but also other established cellular and animal models of 

Huntington’s Disease (Bates and Hockly, 2003; Sathasivam et al., 1999a).  

A key finding when using the herein described methods was that the levels of soluble and 

aggregated mutant huntingtin seem to display an inverse correlation in aging Huntington’s 

Disease mice (Chapter 4.4). This could be explained by a “sink”-hypothesis-model which 

postulates that the levels of soluble cellular mutant huntingtin protein decrease as they get 

sequestered into a growing number of intracellular mutant huntingtin aggregates associated 

with disease progression. Indeed, a similar observation has been put forward for patients 

suffering of Alzheimer’s Disease, another neurodegenerative disorder characterized by 

misfolded protein fragments prone for aggregation (Sjogren et al., 2002; Strozyk et al., 2003). 

Since we readily detect soluble mutant huntingtin in human samples with our time resolved 

FRET assay and since we observe a correlating trend of advanced human disease progression 

and lower time resolved FRET signals in buffy coat fractions of HD patients (Chapter 4.4), it 

is intriguing to speculate that our finding from the Huntington’s Disease mouse model can be 

translated into humans. If studies with a larger human sample size verify this correlation 

between a decrease of soluble huntingtin and the state of disease progression, our method may 

find use as a diagnostic clinical readout for treatment success of Huntington’s Disease 

therapies and the monitoring of disease progression. Future planned experiments will  

therefore include the analysis of a larger collection of longitudinal patient samples to elucidate 

this intriguing application possibility.  
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