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AA  SSUUMMMMAARRYY  

During production proteins are exposed to various stresses which can cause protein 

denaturation and inactivation. The objective of the present study was to investigate 

the effect of shear forces which can occur during filling operations of pharmaceutical 

solutions with dosing equipment. Such shear forces possibly have a negative 

influence on shear sensitive substances and may lower the quality and yield of the 

final drug product. 

 

In the scope of this work a peristaltic pump and different sizes of rotary piston pumps 

(RPPs) were compared in respect to induced protein aggregation due to shear 

damage caused by dosing equipment. The influence of various parameters such as 

filling speed, dosing volume, friction surface and exposure to air-liquid interfaces and 

on the intensity of the shear stress was examined. A characteristic rotary piston 

pump parameter δ was developed and introduced as an indicator describing the 

potential of a rotary piston pump to cause protein damage. Furthermore, excipients 

were tested on their ability to protect the model protein against shear-induced 

damage. 2 model proteins in solution, lactase (β-galactosidase) and rituximab, a 

recombinant chimeric monoclonal antibody, were used and tested for their suitability 

as model proteins. No activity loss was seen for the sheared lactase solution, 

therefore finally rituximab was chosen as a model protein. 

 

The level of protein aggregation in the unsheared and sheared solutions was 

determined by Photon Correlation Spectroscopy (PCS) and SEC-HPLC. TEM was 

used to visualise protein aggregation. 

 

It was found that protein aggregation was induced by rotary piston pumps however 

not by the peristaltic pump. The degree of protein damage was marginally low for 

large rotary piston pumps such as RPP 3 and 4 and showed a considerable increase 

with smaller sizes like RPP 1 and 2. A loss of protein monomers of 3.2 % ± 1.8% was 

found after 3 hours of circulation with RPP 1 in the test system. For RPP 2 a loss of 

0.4% ± 0.2% was found. No loss was seen for RPP 3. The different clearance 

between the piston and the cylinder in the different sizes of pumps was suggested to 
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be one reason for the large difference in exerted shear stress leading to protein 

aggregation. Two more factors were suggested to have an influence on the exerted 

stress caused by a RPP, which are the generated friction surface per dosed ml and 

the dosage volume. Although an influence of the dosage volume could not be 

confirmed by the conducted shear experiments. These 3 factors were respected for 

the calculation of parameter δ. The evaluation of the filling speed showed minor 

influence with a trend to fast filling speeds being more favourable, whereas the 

exposure to the air-liquid interface did not show an influence. A slight trend was seen 

that the combination of 5% trehalose dihydrate and 0.5% polyethylene glycol showed 

the best protective effect out of the excipients examined. 

 

An evaluation of the analytical methods used in this work revealed that PCS is an 

extremely sensitive method to detect protein aggregates and was therefore very 

suitable to monitor the changes in the protein solutions after circulation in the test 

system. A significant lower sensitivity was observed for SEC-HPLC. 

 

It can be concluded that for filling of shear sensitive pharmaceutical protein solutions, 

it is critical to choose the appropriate equipment. Large sizes of RPPs such as RPP 3 

and 4 or peristaltic pumps should be employed as dosing equipment. Furthermore 

high speed gives better results than low speed, i.e. machine stops during production 

should be avoided. 
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BB  IINNTTRROODDUUCCTTIIOONN  

Peptides and proteins as active pharmaceutical ingredients have gained very much 

in importance in the recent years. The introduction of the recombinant DNA 

technology and the hybridoma technology, has led to the development of a large 

number of protein pharmaceuticals. All leading pharmaceutical companies do 

research in this area and seek to register new innovative protein pharmaceuticals like 

vaccines, monoclonal antibodies, polyclonal antibodies, enzyme activators and 

inhibitors, functional regulators such as hormones and cytokines. An overview of 

recombinant proteins approved in the European Union till 2004 is given in Table 

G.1.1 (ISB, 2004) in chapter G. 

 

Protein pharmaceuticals have in comparison to structurally small chemical entities a 

high specificity and activity at relative low concentrations. This is one reason for their 

importance in the battle against diseases. The activity of a protein is related to the 

specific three dimensional structures. Any conformational change may lead to 

denaturation and aggregation resulting in no or reduced activity. During production 

operations as stirring, pumping, filtration, centrifugation, sterilization, shaking and 

shipping, protein aggregation is routinely found due to the presence of physical, 

chemical and thermal stresses. This is a major concern as it lowers final yield of the 

product. Furthermore denatured aggregated protein presents a clinical danger when 

i.v. administered (Demeule et al., 2006).  

 

Due to technical advances in analytical separation and purification, biotechnologically 

manufactured proteins can be obtained at a very high level of purity. However, 

achieving a stable protein formulation which maintains the integrity of the protein 

pharmaceutical during manufacturing and during an acceptable shelf-live is still a 

major challenge in development.  

 

Further, optimization of the manufacturing process and understanding potential risks 

during the various production steps can as well contribute to increase final yield. The 

present study concentrates on examining shear forces which may occur during 

dosing operations with respective equipment and to possibly optimize the filling 
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process. Excipients are tested for their suitability to protect proteins from degradation 

during the filling process. 
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CC  TTHHEEOORREETTIICCAALL  BBAACCKKGGRROOUUNNDD  

C.1 Protein Stability 

C.1.1 Protein Structure 

Proteins consist of a defined sequence of amino acids, which is referred to as the 

primary structure. The amino acid chain folds up to a precisely determined three-

dimensional structure. It is the three-dimensional structure on which the activity of a 

protein depends. The chain contains local regions of regular structure, α-helices, β-

strands and β-turns. The local ordered regions constitute the secondary structure and 

are separated by segments of random coil. The whole chain is folded into a three-

dimensional tightly packed globular structure, the tertiary structure. If a protein 

consists of more than one amino acid chain, the defined position of the chains to 

each other is referred to as the quaternary structure (Doonan, 2002). 

 

C.1.2 Protein Folding 

The formation of secondary structure elements are based on hydrogen bonds. α-

helices are stabilized by internal hydrogen bonds. The hydrogen bonding is between 

amino acids close to each other in the sequence. β-strands do generally not occur 

singly in proteins as they cannot form internal hydrogen bonds. This is why they 

occur in sheets. Two or more strands are located alongside one another and are 

stabilized by forming hydrogen bonding networks between the strands. The strands 

forming the sheet can be located far away from each other in the amino acid 

sequence.  

 

Various forces contribute to the overall folding of the protein into the tertiary structure. 

The formation of β-sheets, which brings together remote regions of the amino acid 

chain, but as well each amino acid residue contributes via it’s interactions with other 

amino acid residues. There are various types of interactions: hydrogen bonds which 

are formed between the side chains of polar residues or with peptide bonds; ionic 

interactions formed between amino acids with ionized acidic or basic residues; 

Impact of Filling Processes on Protein Solutions  5 



Ursula J. Bausch   

electrostatic interactions formed between the peptide bond which has dipole 

character and other dipoles or charged residues (van der Waals’ forces). Individually 

all of these interactions are relatively weak but the total of the entire interactions 

make a large contribution to the shape and stability of the protein. The repellent 

forces between non-polar domains of the protein and water are responsible for 

hydrophobic interactions (Wang, 1999).  

 

C.1.3 Protein degradation 

Due to the complex folded three-dimensional structure, proteins are highly 

susceptible to degradation (Manning et al., 1989). Degradation is often categorized in 

two different classes: chemical and physical. Chemical degradation refers to any 

process that involves modification of the molecule via covalent bond formation or 

cleavage. Resulting is a new chemical entity. Physical degradation involves changes 

in the secondary, tertiary and quaternary structure. However, chemical and physical 

degradation do not occur completely independent of one another (Randolph et al., 

2002). Chemical degradation can induce further physical degradation as for example 

reduction of disulfide bonds can lead to loss of the protein native conformation and 

vice versa, e.g. denaturation can cause oxidation to amino acid residues that have 

been buried inside before (Kendrick et al., 2002). On the other hand chemical 

changes may not always have an influence on the protein conformation or activity. It 

depends on the location of the amino acid (Wang, 1999). 

 

C.1.3.1 Chemical degradation 

Proteins can undergo chemical changes through several pathways like 

• hydrolysis 

• deamidation 

• oxidation 

• beta elimination 

• disulfide exchange 

• racemization 
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A large number of possible chemical reactions have been determined as 

decomposition pathways of polypeptides. They have been summarized in a review 

article by Manning et al. (1989). Out of all of the reactions, hydrolysis and oxidation 

reactions are of major concern as a source of chemical instability. Following a brief 

description of the pathways is given. 

 

Hydrolytic cleavage can occur at the peptide bond (RNH-CO-R), known as 

proteolysis, and more likely at the ester linkage (R-O-CO-R). Peptide bonds are 

considered to be stable unless hydrolysis is supported by a neighbouring group. The 

amino acids serine, threonine and first of all aspartic acid form peptide bonds which 

have been identified as the weak link of the chain. It has been found that the 

hydrolysis of peptide bonds of aspartic acid in dilute acid is 100 times faster than that 

of peptide bonds of other amino acids. Particularly prone to proteolysis is the bond 

between aspartic acid and proline or glycine (Wang, 1999). The hydrolytic rate is 

mostly influenced by solution pH and temperature; it is increased by extreme pH and 

high temperature. Often, hydrolysis is a continuation after deamidation of asparagine 

residues. 

 

The nucleophilic addition of water to the side chain amide of either asparagine or 

glutamine under removal of ammonia refers to the deamidation reaction. This is a 

most common degradation reaction in aqueous solution which is catalysed by both 

acid and base. It has been found that in general asparagine is much more labile than 

glutamine. Asparagine is most stable between pH 2 – 5 in proteins. The deamidation 

reaction at pH 5 – 12 proceeds rapidly and entirely and passes through a cyclic imide 

(succinimide) where the side chain carbonyl group attaches to the nitrogen atom on 

the peptide backbone. Depending on which bond in the cyclic imide breaks the des-

amido peptide, the isopeptide or D-isomers result. In acidic media (pH 1 - 2) it is a 

slow reaction which seems to skip the succinimide intermediate (Daniel et al., 1996). 

The peptides deamidate by direct hydrolysis. Cross et al. (1991) showed that the 

deamidation rate of asparagine in neutral and alkaline media is significantly 

influenced by the neighbouring amino acid on the carboxyl side. Increasing size and 

branching of this residue decreased the rate of deamidation compared to that of the 

asparagine-glycine sequence which is most labile. Furthermore secondary and 

tertiary structures can have a stabilizing effect on asparagine residues, as they are 
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buried inside and therefore inaccessible. It has been found that α-helical as well as β-

turn structures have a tendency to protect asparagine against deamidation. 

Therefore certain proteins are only deamidated if they have undergone denaturation 

first. Besides acidic and alkaline pH, the deamidation rate is increased by high 

temperature. Ionic strength and the choice of a suitable buffer are important as the 

anion can have a catalytic effect. 

 

Along with deamidation, oxidation is the most common form of chemical degradation 

of peptide pharmaceuticals (Cleland et al, 1993). Oxidation can occur at cysteine and 

methionine residues, or at the heterocyclic aromatic side chains of histidine and 

tryptophan. The thio groups of cysteine and methionine are most prone to oxidation. 

Methionine residues are sensitive to oxidation by atmospheric oxygen, like human 

growth hormone in a container with only 0.4 % oxygen (Wang, 1999). The thio group 

of cysteine is oxidized to form disulfide linkages; methionine is at a first stage 

reversibly oxidized to sulfoxide which can be further oxidized irreversibly to sulfone. 

The heterocyclic aromatic side chains of histidine and tryptophan form N-oxides. 

Several types of oxidants are known to cause specific mechanisms of oxidation. The 

different oxidants react at specific sites in the protein and set free specific 

decomposition products. Organic peroxides represent a reactive species which 

oxidize methionine to sulfoxide through a nucleophilic substitution reaction. Sources 

of organic peroxides are stoppers and silicone tubing as well as excipients like 

polysorbates. Furthermore singlet oxygen, which is generated through excitation by 

light, is a potential oxidant. Another source of reactive oxygen is redox-active metals 

like Fe(III) and Cu(II) which occur in traces as contaminants of buffer salts and 

sugars (Meyer, 2002). The rate of oxidation is influenced by the solution pH. In 

general it is increased in neutral to slightly alkaline media. 

 

β-elimination is a frequent decomposition pathway of proteins, where cystine, 

cysteine, serine, phenylalanine, lysine and threonine residues can be involved. Often 

β-elimination contributes to further physical degradation and leads to inactivation of 

the protein. The rate of β-elimination is increased by alkaline pH, high temperature 

and the presence of metal ions (Manning et al., 1989).  
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The cleavage of disulfide bonds and formation of new bonds with another sulfhydryl 

group, i.e. exchange of disulfide bond, is a possible degradation mechanism. As 

disulfide bonds are often critical for the stability of the three-dimensional structure, 

interchange of disulfide bonds induce loss of activity. In neutral and alkaline pH the 

reaction is a nucleophilic attack of an ionized thiol group (thiolate anion) and 

therefore catalyzed by thiols. The reaction can be inhibited by thiol scavengers 

(Manning et al., 1989). Disulfide exchange in acidic media follows a different 

mechanism. 

 

As all amino acids except glycine dispose of a chiral C-atom and hence a protein is 

composed of multiple chiral centres, the racemization reaction results in the 

formation of diastereomers. In alkaline media the reaction is considered to proceed 

through elimination of the α-proton to form a negatively charged planar carbanion. By 

addition of a proton to this intermediate a mixture of D- and L-enantiomers for the 

individual amino acid results. The rate of racemization is particularly high for aspartic 

acid residues in proteins, which is 105-fold higher than for the free amino acid, in 

comparison to a 2- to 4-fold increase for all other amino acids, as the mechanism 

involves the formation of a cyclic imide (Manning et al., 1989). 

 

C.1.3.2 Physical degradation 

Proteins possess a specific conformational structure, which minimizes the exposure 

of hydrophobic groups. This unique globular structure is a requirement for the 

proteins physiological and pharmacological activity. Physical degradation is the 

change of the native secondary or higher order folded structure. For proteins in dilute 

solutions (< 1 mg/ml) unfolding is often reversible, which means that the protein 

refolds to its native globular structure if the favourable solution conditions are 

restored. However, at concentrations above 2 mg/ml, which is often encountered for 

pharmaceutical protein solutions, the two-state thermodynamic model is not 

applicable (Kendrick et al., 2002). Intermolecular interactions are likely to induce 

reversible and irreversible aggregation and precipitation. Possible irreversible 

physical degradation reactions which follow denaturation are:  
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• non native aggregation 

• precipitation  

• adsorption to surfaces and interfaces 

 

The mechanisms of non-native protein aggregation are not yet fully understood. 

Arakawa et al. (2006a) suggested pathways for the formation of non-native 

aggregates according to Figure C.1.1, where mechanism A1 starts from the presence 

of a contaminant. This contaminant, which could be damaged protein, host cell 

proteins, or even nonprotein material, may lead to the formation of soluble oligomers 

and subsequently could serve as a nucleus, which induces assembly of further native 

protein. 

 

 
Figure C.1.1: Pathways of protein aggregation (Arakawa et al., 2006a) 
 

In the second mechanism (Figure C.1.1, A2) proteins aggregate from a partially 

unfolded state which was described as a transiently expanded conformational 

species within the native state ensemble (Kendrick et al., 1998b; Kim et al., 2001). 

The structure of proteins has to be considered as not too rigid and thus, the native 

conformational state fluctuates between a folded and a more expanded form. 

Kendrick et al., (1998b, 2002) suggested the scheme shown in Figure C.1.2 for the 

formation of aggregates of recombinant human interferon-γ. Non-native protein 

aggregation has been identified as a reversible modification of the native structure 

followed by an irreversible aggregation step. 
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N                                   N*                                 A;    (a) 

 

A + An-1                                    An ;  (b) 

Figure C.1.2: Recombinant human interferon-γ aggregation mechanism 
 

In Figure C.1.2, N* is a transiently expanded conformation in equilibrium with N. A is 

an aggregation-competent conformation. The transformation of N* to A is an 

irreversible reaction. A is a partially unfolded conformation, also called molten globule 

or acid-denatured. Hydrophobic parts, which are buried inside the protein structure in 

native state, are exposed on the surface. A is prone to aggregation to minimize the 

exposed hydrophobic surface and therefore undergoes assembly reactions to form 

larger aggregates. 

 

Non-native aggregates are characterized by an increased level of non-native 

intermolecular β-sheet structures and a loss in α-helical structures (Kendrick et al., 

1998a + b). Aggregation is most critical as it regularly occurs during routine 

production steps like refolding, purification, sterilization, shipping and storage 

(Manning et al., 1989). In some cases the cause for protein aggregation is very 

difficult to be identified as the impairment of the protein happens at a different 

process step than the formation of the aggregates. An example for this is the 

recombinant manufacturing of monoclonal antibodies, where the protein is exposed 

to low pH, but formation of aggregates is induced upon pH increase as shown in 

Figure C.1.1, B. Even under favourable solution conditions and in absence of any 

applied stresses protein aggregation can be observed. 

 

Aggregation leads to higher-order structures which may be soluble but with 

increasing size the aggregates become insoluble and precipitation occurs. 

 

With increasing hydrophobicity of the protein, whether it is in native or unfolded 

conformation, adsorption to surfaces and interfaces can be observed. Adsorption to 

glass or plastic surfaces as in vials or infusion bags and adsorption to filters regularly 

pose problems in production. 
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C.1.4 Physical stability of proteins in aqueous solution 

Physical stability of proteins in solution is controlled by conformational and colloidal 

stability of the protein under the solution conditions. The role of conformational and 

colloidal stability was summarized by Chi et al. (2003b) in a review article.  

 

Conformational stability depends on the thermodynamic equilibrium of the native and 

the partially unfolded state and is characterized by ΔGunf, the free energy of 

unfolding. With increasing ΔGunf values the thermodynamic equilibrium is pushed 

towards the more compact native protein conformation. It was shown for recombinant 

human interferon-γ that increasing ΔGunf resulted in a decreased aggregation rate 

(Kendrick et al, 1998a). The difference in free energy which stabilizes the native 

conformation is only approximately 5 – 20 kcal/mol compared to unfolded, denatured 

and biologically inactive conformations. This small conformational stability is the 

result of large stabilizing and large destabilizing forces. The native state seems to be 

predominantly stabilized by hydrophobic interactions (Dill, 1990).  

 

Colloidal stability is reflected by the B22 value, the osmotic second virial coefficient. 

The B22 value is a measure for overall protein-protein interactions, like Coulombic, 

van der Waals, and all other short range interactions.  It quantifies intermolecular 

interactions. Positive B22 values show that protein-solvent interactions are favoured 

over protein-protein interactions and therefore repulsive forces between protein 

molecules are dominant. Negative B22 values indicate that protein-protein interactions 

are dominant, i.e. proteins are colloidally unstable and assembly to aggregates is 

favoured (Chi et al., 2003a, 2003b).  

 

Thus to achieve a physically stable protein solution the aggregation process, which 

consists of at least 2 steps, structural changes followed by an assembly step, has to 

be controlled by increasing conformational and colloidal stability. It has been shown 

for recombinant human granulocyte colony stimulating factor that either of the 2 steps 

can be rate limiting depending on the solution conditions (Chi et al., 2003a). 
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C.1.5 Physical factors affecting protein stability 

Protein degradation may be affected by a variety of physical factors, such as 

temperature, pH, agitation, exposure to interfaces and surfaces, pressure, shearing, 

etc.. Wang (1999) has discussed these influencing factors on the stability in a review 

article. These factors easily perturb the fragile balance between stabilizing and 

destabilizing factors. 

 

Temperature: Increasing temperature usually leads to physical denaturation. 

Whereas electrostatic interactions are practically not affected by rising temperature, 

hydrogen bonding is diminished, and hydrophobic interactions are up to a certain 

limit enhanced. Denaturation may in some cases be reversible depending on 

experimental conditions. High temperature accelerates as well chemical degradation 

reactions, such as hydrolysis and deamidation. Usually the thermodynamic stability 

of proteins, characterized by ΔGunf, the free energy of unfolding, is positive within a 

temperature range; outside this range, at temperatures higher or lower, ΔGunf 

becomes negative and proteins are destabilized. 

 

Proteins are often stable within a narrow pH range. pH may strongly influence 

physical and chemical stability. Formulation pH defines the overall charge on the 

protein and its distribution, which influences electrostatic effects. If protein molecules 

are highly charged, the repulsive forces between the molecules stabilize proteins in 

solutions colloidally and prevent aggregation and denaturation. On the other hand 

when a protein is highly charged, e.g. at pH far from the isoelectric point (pI), the 

density of charged groups on the molecule is high and may lead to an increased 

intramolecular charge repulsion which destabilizes the protein conformation. In 

addition specific electrostatic forces, such as salt bridges and ion pairing are affected 

and can have an influence on protein stability (Wang, 1999; Chi et al., 2003b).  

 

During exposure to interfaces and surfaces proteins can suffer damage to their native 

structure. Due to their amphiphilic character, proteins tend to accumulate at 

hydrophobic surfaces and interfaces. They are aligned in a way to expose the 

hydrophobic residues to air and / or surface and unfold to maximize the exposed 

hydrophobic parts. Additionally a subsequent process of continuous adsorption and 

release of structurally perturbed protein molecules into the solution can occur and 
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cause further protein aggregation and denaturation (Randolph et al., 2002). This can 

lead to very high percentages of loss of native protein molecules. Depending on the 

extent of the surface active property, the degree of hydrophobicity of the protein 

molecule and flexibility of the protein structure, a protein is more or less sensitive to 

the exposure to surfaces and interfaces. The same applies to agitation and shearing, 

where new air / water or solid / water interfaces are continuously created and 

hydrophobic areas of proteins are exposed, initiating denaturation. Agitation and 

exposure to denaturing interfaces is one of the most common physical stresses as it 

occurs routinely during shipping and handling, as well as during processing 

operations, such as mixing, pumping and centrifugation of protein solutions. Maa and 

Hsu (1997) showed that recombinant human growth hormone formed noncovalent 

aggregates in the presence of high shear and air-liquid interface. Harrison et al. 

(1998) found that the binding activity of single-chain Fv antibody fragments 

decreased in a stirred vessel in the presence of air-liquid interfaces. 

 

There is evidence in literature that high pressure of a few hundred MPa can cause 

denaturation. The impact of pressure on protein molecules should be considered in 

certain manufacturing processes and in certain drug delivery devices. The volume of 

unfolded protein in solvent is smaller and therefore unfolded proteins are more 

compressible. It has been suggested that intrusion of water into the hydrophobic 

parts of the protein takes place under pressure. The protein is destabilized and as a 

result denatured (Kendrick et al., 2002).  

 

C.1.6 Stabilization of proteins 

Stabilization of protein molecules aims to protect sensitive functional groups in the 

native molecule from covalent degradation reactions, as well as protecting the folded 

native structure by intensifying the rigidity of the molecule and thus make it less 

sensitive to unfold due to destabilizing effects. There are generally two possible 

approaches of stabilization of proteins: internal and external stabilization (Wang, 

1999). Internal stabilization refers to any structural modifications to the protein 

molecule. External protein stabilization applies to stabilization by changing the 

properties of the solvent in contact with the molecule. 
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A search of literature reveals that a wide range of possibilities to improve stability of 

protein therapeutics exists (Wang, 1999; Capelle et al., 2007). They can be divided in 

3 groups: Stabilizing excipients, site-directed mutagenesis, and chemical 

modification. 

 

1. Stabilizing excipients: 

The most common way to stabilize protein therapeutics is the addition of 

excipients to the formulation. The types of protein stabilizing excipients include 

sugars and polyols, salts, detergents, amino acids, amins, polymers and metal 

ions, see Table C.1.1 with a list of commonly used excipients in protein 

formulations (Capelle et al., 2007). 

 

Polyalcohols, such as glycerol and sugars, stabilize proteins by the 

preferential interaction mechanism (Gekko et al., 1981a; Gekko et al., 1981b; 

Xie et al., 1997). One of the most studied excipients of this type is sucrose 

(Kim et al., 2003; Kendrick et al., 1998b; Lee and Timasheff, 1981). Sucrose is 

preferentially excluded form the protein’s surface due to repulsion from the 

protein backbone, which is thermodynamically unfavorable. Proportionally to 

the proteins’ exposed surface, this interaction results in an increase of the 

chemical potential of the protein. By the LeChatelier principle, the system will 

aim to minimize this thermodynamically unfavorable effect and therefore the 

protein is driven to the most compact conformation with the smallest surface 

area. Thus, the presence of sucrose shifts the equilibrium shown in Figure 

C.1.2 towards the more compact native state. The structurally expanded 

species, which precedes protein aggregation, is disfavored. Therefore sucrose 

makes proteins more resistant against any stress that leads to a more 

expanded state of the protein. Preferentially excluded excipients may also 

reduce chemical degradation as the accessibility of buried inside side chains 

is reduced. The Wyman linkage function was applied by Timasheff et al. (e.g. 

Timasheff, 1998) to protein conformational stability and can be used to explain 

the mechanism of preferential exclusion. Excipients that are preferentially 

excluded are also known as cosolutes or cosolvents and include as well salts 

and amino acids. Preferential interaction was measured for various cosolutes 

added to protein solutions and it was found that this mechanism can explain 
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the impact of cosolutes on protein solubility and stability (Lee et al., 1974; 

1981; Gekko et al., 1981a; Arakawa et al., 1982; 1983; 1984a; 1984b; 1985; 

1990; Kita et al., 1994). 

 

Salts and buffers have complex effects on protein stability, where the influence 

of buffers is not limited to having the appropriate pKa for the formulation. 

Depending on the type and concentration of the salt, the charged groups of 

the protein and the type of ionic interactions between them, salts may have a 

stabilizing, a destabilizing or no effect. At high concentrations salts can 

stabilize proteins through the preferential exclusion mechanism. The effect 

correlates with the Hofmeister series for anions (Kendrick et al., 2002):  

citrate3- / citrate2- > PO4
3- ≈ HPO4

2- ≈ SO4
2- > OAc-, F- > Cl- > Br- > I- > ClO4

-. 

Salts at low concentrations predominantly influence stability of proteins in 

solution by non-specific electrostatic shielding (Debye screening). Electrostatic 

interactions between charged groups are reduced, which can stabilize the 

protein. Furthermore specific ion binding to a protein can occur and may also 

lead to a stabilization of the protein. However, if ions bind more strongly to the 

nonnative protein conformation, destabilization of the native state results (Chi 

et al., 2003). 

 

Detergents are often added to protein formulations to inhibit aggregation and 

adsorption to surfaces and interfaces. Both, protein and detergents are 

surface active molecules. At interfaces and surfaces they orient in a way to 

minimize exposure of hydrophobic parts to the aqueous solution, which for 

proteins can lead to damage of the native conformation. The addition of 

surfactants lowers the surface tension of the solution and reduces the number 

of protein molecules adsorbed to surfaces and interfaces and therefore has a 

stabilizing effect on protein solutions. Nonionic surfactants, such as 

polysorbates are routinely used. Randolph et al. (2002) give an overview of 

surfactant-protein interactions. Arakawa et al. (2003) have shown that Tween 

20 protects effectively ciliary neutrotrophic factor from aggregation caused by 

agitation. Bam et al. (1998) found that Tween 20 used in molar ratios > 4 

inhibits aggregation of human growth hormone during agitation. Vidanovic et 

al. (2003) observed that Tween 80 and Cremophor EL employed close to the 
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critical micelle concentration destabilized IgG in solution and stabilized it in the 

presence of glycine. 

 

Polymers stabilize proteins by one or more of the following properties: 

preferential exclusion, surface activity, steric hindrance of protein-protein 

interactions, increased viscosity leading to limitation of structural movement 

(Wang, 1999). 

 

Some proteins can be stabilized by metal ions like zinc, calcium and 

magnesium. They bind to the protein and intensify the rigidity of the whole 

structure resulting in an overall more stable and resistant state of the protein. 

In literature many examples can be found for this mechanism, e.g. it has been 

shown that insulin is stabilized by calcium or zinc ions (Wang, 1999). 

 

Hydrophilic cyclodextrins may also protect proteins from aggregation. This has 

been shown for recombinant human growth hormone using hydrophilic β-

cyclodextrins (Tavornvipas et al., 2004), suggesting that hydrophilic β-

cyclodextrins are potentially useful excipients for parenteral preparation. 

Furthermore Tavornvipas et al. (2006) found that the use of the appropriate 

cyclodextrin is also dependent on the type of the denaturating stress on the 

protein. 

 

2. Site-directed mutagenesis 

Protein stability can be influenced by modifying amino acids through site-

directed mutagenesis. To enhance stability of proteins by change of amino 

acids, labile amino acids can by exchanged, hydrogen and disulfide bond can 

be increased, internal hydrophobicity can be increased and surface 

hyrophobicity lowered, flexibility and charge density can be decreased. 

However, the overall protein conformation has to be preserved. 

  

3. Chemical Modification 

The introduction of charge groups or water soluble polymers as polyethylene 

glycol and glycosylation results in a more hydrophilic surface of the protein 

which as well fortifies the intramolecular interaction. This can stabilize proteins 
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and is referred to chemical modification. A further possibility to make the 

protein structure more rigid is to introduce inter-and intramolecular cross 

linking using bifunctional reagents (Halbeisen, 1993). 

 

C.1.7 Protein formulations 

Typically proteins are formulated as solution for injection or infusion. If for stability 

reasons a liquid preparation is not possible, usually a lyophilisate is developed. For a 

stable liquid preparation control of pH and ionic strength is imperative. In Table C.1.1 

an overview of commonly used excipients in protein formulations is given (Capelle et 

al., 2007). A typical formulation contains: 

 

• buffer salt as citrate or phosphate 

• pH adaptation to physiological pH or as close as possible, if not stable 

• a surfactant is added to prevent adsorption to container surfaces 

 
Table C.1.1: List of commonly used excipients in protein solutions 
 
Excipient Examples 

Salts Ammonium sulfate, calcium chloride, magnesium sulfate, 
magnesium chloride, potassium chloride, sodium chloride, 
sodium gluconate, sodium sulfate, zinc chloride 

Buffers Acetate, carbonate, citrate, citrate-phosphate, glycine, HEPES, 
histidine, maleate, phosphate, succinate, tartrate, triethanolamine 
(Tris) 

Sugars and polyols Cyclodextrins, fructose, glucose, glycerol, inositol, lactose, maltose, 

mannitol, sorbitol, sucrose, trehalose 

Amino acids Alanine, arginine, aspartic acid, glycine, lysine, proline 

Surfactants Poloxamer 188/407, polysorbate 20/40/80, sodium lauryl sulfate 

Antioxidants and preservatives Ascorbic acid, benzyl alcohol, benzoic acid, citric acid, 
chlorobutanol, m-cresol, glutathione, methionine, methylparaben, 
phenol, propylparaben, sodium sulfite 

Polymers Dextran, polyethylene glycol 

Other Albumin, dimethyl sulfoxide, EDTA, ethanol, thioglycolic acid 

The included excipients are FDA approved for parenteral administration and part of the inactive 

ingredients list or part of FDA approved biopharmaceuticals (Nayar et Manning, 2002; Parkins et al., 

2000; Cleland et al., 1993; Gupta et al., 2003; Arakawa et al., 2001; Powell et al., 1998). 

 

As cryo-protectants for freeze-dried forms, non-reducing sugars such as sucrose and 

trehalose are used. It was found that trehalose is involved in stabilizing membranes 

and proteins in animals surviving in dry environment and in anhydrobiotic organisms 

18  Impact of Filling Processes on Protein Solutions 



  Ursula J. Bausch 

and was first introduced as excipient by Genentech for Herceptin® (Capelle et al., 

2007). 

 

A great challenge is the development of highly concentrated preparations above 100 

mg/ml, which are needed for subcutaneous administration (Harris et al., 2004). 

 

C.1.8 Methods for characterization of proteins 

C.1.8.1 Analytical techniques in protein characterization 

A wide range of chemical and physical analytical methods including their principles 

for the characterization of proteins and monitoring of instabilities is available in 

literature. For each protein product a number of analytical methods should be 

selected and customized to accomplish its specific needs. Biological assays to 

determine the biological activity of a protein are as essential as the determination of 

structural properties as the biological activity is dependent on the structure. Table 

C.1.2 gives an overview of commonly used analytical methods including their major 

applications (Wang, 1999). 

 
Table C.1.2: Analytical methods used in protein characterization 
 
Analytical techniques  Major applications 
Analytical centrifugation  Protein aggregation 
CE    Protein degradation, Determination of Tm
CD Estimation of secondary structure, Determination of Tm, Probing 

protein conformation, Determination of multimers 
DSC Determination of Tg, Determination of Tm, Protein unfolding 
Electron paramagnetic   Ligand-protein interactions 
resonance (EPR) 
Fluorescence Protein unfolding/interaction, Determination of Tm, Probing protein 

conformation 
HPLC-ion exchange Protein degradation and aggregation 
HPLC-reversed phase Protein degradation and aggregation, Estimation of contamination 
HPLC-size exclusion Protein degradation and aggregation, Estimation of contamination 
IR Estimation of secondary structures, Determination of Tm, Probing 

protein conformation 
Karl Fischer Water determination 
Light scattering Protein aggregation 
MS Determination of molecular weight, degradation products and 

contaminants 
NMR Determination of 3-D and secondary structures, Protein relaxation 

and softening, Protein unfolding 
Raman spectroscopy Determination of secondary structures 
Refractometry Ligand-protein interactions 
UV/visible spectroscopy Determination of Tm, Protein aggregation, Estimation of 

contamination, Probing protein conformation 
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Further methods which have successfully been used in quantification of protein 

aggregation are assymetrical flow field flow fractionation and sedimentation velocity 

analytical ultracentrifugation (SV-AUC) (Gabrielson et al., 2007). 

 

However, there is still a lack of analytical methods which can be used to directly 

examine protein structure and stability at high concentrations without prior dilution or 

concentration changes during the measurement process (Harn et al., 2007).  

 

Following the methods used for this work are described in more detail. 

 

C.1.8.2 Photon Correlation Spectroscopy (PCS) 

Photon correlation spectroscopy (PCS) is a method based on time-dependent or 

dynamic light scattering, which can be used for particle sizing of particles in the range 

of a few microns that are suspended in a liquid (Weiner, 1984). Determination of the 

size and size distributions is a common application of PCS (Janmey, 1993). Particles 

with diameters in the range from 1 to 5000 nm, dependent on sample considerations 

and the available laser power can be measured (Zetasizer 1000/2000/3000, 1996; 

Müller et al., 1997). Protein aggregates resulting from protein degradation can be 

detected by measuring the particle size and particle size distributions of proteins in 

solution. The size of aggregates can be determined by dynamic light scattering, 

however for measuring the exact composition of multimodal distributions and the 

percentage of aggregated protein in solution a prior separation step by e.g. SEC-

HPLC or asymmetrical flow field-flow fractionation is necessary (Demeule et al., 

2007). 

 

C.1.8.2.1 Principle 
 

The Brownian motion of suspended particles in solution causes time dependent 

intensity fluctuations of light scattered from the particles. The changes in intensity 

with time are dependent on the size of particles, as small particles move more rapidly 

than large particles. These changes can be detected with suitable optics and a 

photomultiplier. The rate of fluctuations of the scattered light is higher for small 

particles. The scattered light is detected usually at an angle of 90° of the laser beam. 
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A correlator calculates from the measured time dependent variations in intensity of 

scattered light an autocorrelation function. A theoretical correlation function according 

to Equation C.1.1 is adapted to the measured autocorrelation function: 

 

( ) ττ ⋅⋅⋅−=
22 KDeg      Equation C.1.1 

 

where 
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where τ is the correlation time, D is the diffusion coefficient and K is the scattering 

vector (dependent on refractive index of solvent n, wavelength of laser source λ and 

detection angle θ). D is the only variable factor in Equation C.1.1 and can be related 

to hydrodynamic particle radius Rh using the Stokes-Einstein equation: 

 

D
TkRh
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ηπ6
     Equation C.1.3 

 

Where k is Boltzmann’s constant, T is absolute temperature and η is solvent 

viscosity. 

 

C.1.8.2.2 Data analysis 
 

For the characterization of the protein solutions the following parameters are used: 

 

Cumulants Analysis: The analysis of the autocorrelation function can be performed 

with the cumulants analysis, where the normalized and logarithmized autocorrelation 

function is equated with the quadratic term: a + bτ + cτ2. The logarithmized 

theoretical correlation function (see Equation C.1.1) is a straight line, as is the 

logarithmized autocorrelation function of a monodisperse distribution. b is the slope 

of the straight line and related to the z average mean. c reflects the deviation of the 

autocorrelation function from the theoretical correlation function and is related to the 

polydispersity. The deviation increases with increasing polydispersity. 
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Z average mean: Mean hydrodynamic diameter obtained from the cumulants 

analysis. 

 

Polydispersity index (PI): PI is calculated with the constants b and c and describes 

the width of the particle size distribution. It is obtained from the cumulants analysis. A 

differentiation between a broad distribution and a bimodal distribution is not possible 

using the cumulants analysis.  

 

Contin analysis: The contin-algorithm is a complex mathematical calculation 

operation to determine a particle size distribution from the autocorrelation function. 

During this mathematical operation 12 possible distributions are calculated and the 

best fit result is displayed. As the contin analysis is good at determining smooth 

distributions and finding contaminants it is suitable to detect protein agglomerations 

in very low concentrations. However the resolution of this analysis is low. 

 

C.1.8.3 Size-Exclusion HPLC 

SEC-HPLC is an important method for the characterization of highly molecular 

substances as proteins or polymers. It is the basic method in aggregation analysis to 

determine and quantify aggregation levels for protein pharmaceuticals and practically 

always required for regulatory approval (Arakawa et al., 2006a). 

 

Principle: 

Molecules are separated due to their difference in size and shape of the solutes, i.e. 

their hydrodynamic volume. The principal of this method is shown in Figure C.1.3. 

The stationary phase consists of a porous material of a defined pore size diameter. 

Molecules with a larger diameter that cannot permeate into the pores pass the 

column with the mobile phase and elute first. Small molecules that permeate freely 

into the pores are retarded and take the longest time to pass the column. Molecules 

of an intermediate size between the two extremes are partially excluded and 

separated due to their size and occasionally as well due to their shape. They are 

detected at different retention volumes. The retention volume is calculated from the 

retention time according to Equation C.1.4. 
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     Equation C.1.4 flowrateRR VtV ⋅=
 
 

where VR is the retention volume which describes the retention behavior, tR is the 

retention time and Vflowrate is the flow rate of the mobile phase. 

 

 
Figure C.1.3: Principal of SEC-HPLC (Otto, M., 2000) 
 

Stationary phase: Routinely, columns with chemically modified polar phases like 

hydrophilic silica gel of a particle size around 5 to 10 µm and constant distributions of 

pore size diameter are used. The distribution of pore sizes should be as narrow as 

possible. The ratio of the total pore volume to the void volume should be as high as 

possible to improve the peak capacity. The separation efficiency can be increased by 

using small, regular stationary phase particles and by a narrow, long and densely 

packed column (Stulik et al., 2003). Furthermore it can be enhanced by injecting 

small sample volumes and reducing the flow rate. The limit of exclusion from a 

column corresponds to the molecular size in Dalton above which no retention can be 

observed anymore. It is dependent on the pore size of the material of the stationary 

phase and the hydrodynamic volume of the molecule.  

 

Mobile phase: The choice of the mobile phase depends on the solubility of the 

material to be analyzed. For water soluble material aqueous elution media containing 

a buffer for pH control are used. For poorly water-soluble substances apolar organic 

solvents in combination with hydrophobic packing materials are used. 

 

Electrostatic and hydrophobic interactions of the solutes with the stationary phase 

compromise the pure size exclusion mechanism and should as far as possible be 

suppressed by modifying the stationary and mobile phase accordingly. Literature 
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gives evidence that proteins tend to bind to columns during SEC-HPLC (Arakawa et 

al., 2006a; Stulik et al., 2003; Gabrielson et al., 2007), leading to abnormal 

chromatograms, protein loss, column damage and inaccurate protein molecular 

weight data (Ejima et al., 2005). This is especially true for soluble aggregates. In 

Figure C.1.4 possible mechanisms of protein binding to the stationary phase are 

shown, where in SEC-HPLC proteins tend to bind according to step C (Tsumoto et 

al., 2007). For recombinant human platelet-activating factor acteylhydrolase it has 

been found that it reversibly binds to silica surface (step A) followed by an irreversible 

conformation modification (step B) which leads to the formation of aggregates (Chi et 

al., 2005).  

 

 
Figure C.1.4: Schematic illustration of protein binding to column resin (Tsumoto et al., 2007) 
 

To decrease these interactions e.g. the active surface silanol groups of silica-based 

columns can be masked with dextran or agarose. The mobile phase can be adapted 

in terms of pH, ionic strength and the content of organic modifier in order to suppress 

hydrophobic and electrostatic interactions (Stulik et al., 2003). Tsumoto et al. give in 

a review article (2007) an overview of salt effects on protein-surface interactions 

applied to column chromatography. Salts can have nonspecific charge shielding 

effects on proteins and column chromatography due to their ionic properties and 

specific effects which refer to salting-in and salting-out effects of certain salts at 
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identical concentrations. In SEC-HPLC relatively low concentrations of salts are often 

sufficient to prevent nonspecific binding (Tsumoto et al., 2007). 

 

For arginine hydrochloride it was demonstrated to be very efficient in suppressing 

nonspecific binding of proteins as well as their aggregates to the stationary phase 

when added to the mobile phase in concentrations of 0.2 to 0.75 M (Ejima et al., 

2005; Arakawa et al., 2006a+b). Recovery and peak separation were enhanced by 

arginine hydrochloride. Arakawa et al. (2007) discussed in a review article various 

mechanisms of how arginine influences proteins and suggested that it acts via 

interacting favorably with amino acid side chains and limited binding on the proteins’ 

surface, which inhibits aggregation but does not destabilize the protein. 

 

C.2 Regulatory Background 

C.2.1 Manufacturing conditions 

Protein instability is one of the reasons why protein pharmaceuticals are formulated 

for parenteral administration and not e.g. for oral administration (Wang, 1999). 

Furthermore, most protein pharmaceuticals are sensitive to heat and therefore 

cannot be finally sterilized by steam sterilization. For sterile preparation without 

sterilization in the final container, the GMP guideline demands a preparation under 

aseptic conditions (PIC-Leitfaden einer Guten Herstellungspraxis für 

pharmazeutische Produkte, 2004a). The objective of aseptic processing is to 

maintain the sterility of a product that is assembled from components, each of which 

has been sterilized by steam, dry heat, ionizing radiation, gas or filtration. 

 

Sterility of a product cannot be guaranteed by testing. Aseptic production processes 

have to be validated by 3 consecutive successful process simulation tests using 

microbial growth media (media fill tests) and re-validated regularly (PIC-Leitfaden 

einer Guten Herstellungspraxis für pharmazeutische Produkte, 2004b). The aseptic 

manufacturing process has to be controlled by measures as: 

 

• bioburden of the solution before filtration 

• filter integrity tests after use 
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• microbiological controls during production: personnel, surface 

contact plates, air sampling, sedimentation plates 

• online particle monitoring  

• sterility testing of the product in the final container 

 

C.2.2 Requirements on parenteral preparations 

The European Pharmacopoeia (2006a) specifies in the monograph parenteral 

preparations, the requirements for sterile solutions administered by injection like 

protein solutions. Solutions for injection must be clear and practically free from 

particles. They have to comply with the test for sterility, the test for particulate 

contamination: sub-visible particles, test for uniformity of content and the test for 

bacterial endotoxins or pyrogens. As protein degradation often results in aggregation 

and precipitation, particles in the solution present besides other points a critical 

aspect.  

 

C.2.2.1 Test for visible particles 

The test for visible particles according to the European Pharmacopoeia (2006b) 

describes a simple procedure for a visual inspection of parenteral solutions. The aim 

is to assess the quality of the solution in respect to particulate contamination 

consisting of mobile undissolved particles other than gas bubbles. The visual 

inspection is performed with the help of a viewing station consisting of a matt black 

and a non-glare white panel in vertical position next to each other and a suitable 

white-light source. Non-labeled containers that are clean and dry on the outside are 

inspected for particles by gently swirling and observing 5 sec in front of the white 

panel and in front of the black panel. As it is a non-destructive method a 100% 

control can be performed. 

 

C.2.2.2 Test for sub-visible particles 

The test for sub-visible particles according to the European Pharmacopoeia (2006c), 

which has to be performed for solutions for injection, is conducted using the light 

obscuration particle count test. The method allows a determination of a size 
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distribution using the principle of light blockage. A suitable instrument calibrated with 

spherical particles of known size between 10 µm and 25 µm is used to examine a 

statistically relevant number of test specimens after sample preparation. Solutions for 

injection with a nominal volume of equal or less than 100 ml comply with the test if 

the average number of particles in the tested units does not exceed 6000 per 

container equal to or grater than 10 µm and 600 per container equal to or greater 

than 25 µm. Solutions with a nominal volume of more than 100 ml comply with the 

test if the average number of particles  in the tested samples does not exceed 25 per 

ml equal to or grater than 10 µm and 3 per ml equal to or grater than 25 µm. The 

microscopic particle count test is available as a second back-up method in the 

European Pharmacopoeia (2006c). 

 

C.3 Manufacturing of Protein Pharmaceuticals 

Large scale manufacturing of protein pharmaceuticals, e.g. recombinant monoclonal 

antibodies is well established in industry and range from 10 liter to 10 000 liter 

volumes. In Figure C.3.1, as an example, the schematic production flow of 

manufacturing a recombinant antibody is shown (Harris et al, 2004). The production 

process can generally be divided into two processing parts. The first one concerns 

the manufacturing of the active pharmaceutical ingredient, i.e. the protein drug 

substance. In the second part the drug substance is formulated to manufacture the 

drug product in the final dosage form. Following the two parts are briefly described. 

 
Cell culture expansion (seed strain to production) 

↓ 
Harvest (centrifugation, tangential and / or normal flow filtration) 

↓ 
Purification (chromatography, and/or membrane steps) 

↓ 
Formulation 

↓ 
Final vial filling 

 
Figure C.3.1: Recombinant antibody production process flow 
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C.3.1 Biotechnological Part – Manufacturing of protein drug substance 

The capability for producing large amounts of high quality proteins is based on the 

availability of two biotechnologies. Recombinant DNA is utilized to produce the 

desired protein in the first one. The gene which is responsible for the generation of a 

certain amino acid sequence of a protein is isolated, modified and subsequently 

recombined with a plasmid DNA, an extrachromosomal, independently replicating 

small circular DNA molecule. Restriction enzymes cut DNA at specific places and 

ligase connects the DNA fragment with the plasmid. The modified plasmid is then 

introduced into a host cell where it is replicated and transcribed to produce the 

specific protein. For example Escherichia coli are used for the production of insulin, 

human growth hormone, interleukin-2 and interferon. Another production technique 

for insulin utilizes Saccharomyces cerevisiae. CHO (Chinese Hamster Ovary) cell 

lines are used for the expression of tissue plasminogen activator, coagulation factor 

VIII and erythropoietin (Schmid, 2002).  In the case of Escherichia coli, proteins are 

expressed in the cytoplasm at high concentrations and result in insoluble inclusion 

bodies and/or soluble proteins. To release the expressed protein, usually the cells 

need to be destructed chemically or mechanically. Usually water is used to lyse the 

cells; however buffers may be used to improve the recovery rate in the supernatant. 

The further purification steps are depending if soluble folded proteins, soluble 

misfolded proteins or insoluble inclusion bodies are concerned. Different washing 

and purification steps are involved. For example in the case of insoluble inclusion 

bodies a solubilisation, purification and refolding is required to obtain the protein. An 

overview of the different possibilities for washing and purification methods is given by 

Arakawa et al. (2002). 

 

The second technology is the hybridoma technique, which is following exemplified by 

describing the production of monoclonal antibodies. A specific antigen is injected into 

a test animal. The immune response is initiated and the production of antibodies by 

B-lymphocytes starts. The antibody-producing B-lymphocytes are isolated from the 

spleen of the test animal and are in the presence of polyethylene glycol in vitro fused 

with cells of a lymphocyte tumour (myeloma cells) to form hybridoma cells (Römpp-

Lexikon, 1999). Hybridoma cells can be held in culture and indefinitely divided due to 

their tumour like attributes. The hybridoma cells expressing the desired antibody are 

selected using immunoassays and cell cloning. The best clones can be preserved for 
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many years by deep-freezing them. The hybridoma cells are cultured in bioreactors 

in complex culture media containing besides glucose, fetal bovine serum as nutrient. 

Supply of oxygen and CO2 is necessary. In industrial scale they are preferably grown 

in suspension as batch or continuous production process. A fed batch process, 

where the production phase in the bioreactor is prolonged by addition of nutrient 

medium, is preferred as the yield can be increased to several grams antibody per 

litre. Contrary to micro-organisms, no lysis is necessary for animal cells as the 

product is secreted. Subsequently a purification protocol is followed. Typically a 

concentration by ultrafiltration is performed, followed by a pre-purification by binding 

to protein A. Then the monoclonal antibody is further purified by ion-exchange 

chromatography and by elimination of aggregated antibodies by gel chromatography 

(Schmid, 2002). The purification as well includes a treatment for viral inactivation; 

most effective for that purpose is an exposure to acid (Ejima et al., 2006). 

 

C.3.2 Pharmaceutical part – Manufacturing of the final dosage form 

The formulation step transforms the purified bulk protein drug substance into the final 

solution composed of a defined concentration of protein and excipients. Methods 

used for the formulation step include large-scale size exclusion chromatography and 

ultrafiltration. For the preparation of high-concentration formulations, which are 

desirable for example for subcutaneous administration, ultrafiltration is the preferred 

method (Harris et al., 2004). 

 

A standard production process for an aseptically manufactured product includes the 

following steps: 

The solution is prepared in a clean room Class C under laminar air flow class A using 

the protein to be formulated, excipients and water for injection or as mentioned 

above. The solution is filtered through a sterile filter of pore size 0.2 µm into the class 

A of a cleanroom class A/B. The filtered solution is then filled into previously 

depyrogenated and sterilized glass vials or ampoules of hydrolytic class I using a 

suitable filling and dosing machine or device. Complete filling lines are used for high 

performance output (starting from 24000 vials / hour) consisting of a washing 

machine for glass containers, a sterilizing/ depyrogenation tunnel, filling and 

stoppering machine and crimping machine. The solution is filtered inline through a 
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sterile filter 0.2 µm. Filled vials are closed with previously sterilized stoppers followed 

by crimping; ampoules are closed by sealing with heat. Cleanroom conditions class A 

in B are imperative for all steps where open product or primary packaging 

components are handled. 

 

Different dosing systems are available for the filling operation, as for example: 

• rotary piston pumps: the principle is based on volumetric displacement; see 

Figure C.3.2.  

• peristaltic pumps: a forward flow of solution in an elastic tubing is driven by 

peristaltic movement. 

• time-pressure dosing system: the dosing vessel is kept at constant pressure; 

pressure differences are compensated with gas (usually nitrogen); dosing via  

valves, that are opened for a fixed time; the whole process is controlled via a 

programmable logic controller (PLC) or microprocessor.  

• weight-dosing system: dosing valves open till the desired fill weight is 

achieved; the weight is constantly measured with weighing cells during the 

dosing process; the process is controlled via PLC. 

• sensor dosing system: is based on a principal to fill a container and stop at a 

given level of product inside the container. A sensor is used to monitor the 

liquid level. This system is often used for containers which have to be filled 

100% without leaving an air bubble in the container as for example dental 

cartridges. Another advantage is that no product retraction is necessary at the 

end of filling due to the tolerance of the container, which minimizes the loss of 

product. 
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1. Aspiration of bulk solution 2. Piston rotation 3. Filling 4. Piston rotation 
The groove of the piston is 
directed to the bulk solution 
container. The piston is 
moving upwards and 
aspirates the solution into 
the pump. 

The piston makes a 180° 
rotation. The groove of the 
piston is directed to the 
filling needle. 

The piston is moving 
downwards. The solution is 
ejected and dosed into the 
final container. 

The piston makes a 180° 
rotation. The groove of the 
piston is directed to the bulk 
solution container. 

 
Figure C.3.2: Functional principle of rotary piston pumps (Bausch Advanced Technology 
Group, 2007). 
 

Rotary piston pumps are solid precision machine parts, without valves and seals, 

which are easy and fast to clean. Further advantages of this dosing system are that 

they have a minimal dead quantity and are very flexible in terms of different dosing 

quantities. Advantages of the time-pressure system and the weight-dosing system 

are that there are few product contacting parts and a broad processing spectrum as 

they are as well suitable to fill suspensions and abrasive media. The time-pressure 

system is suitable for high-performance processing. 

 

Aspects, which should be considered when choosing a dosing system, are that it is 

easy to clean and sterilize, preferable a CIP/SIP system is available, that it has a 

high dosing precision and the physical stress for the product is low if the product is 

sensitive to this. Furthermore the format change should be easy and quick. 

 

C.4 Shear forces during filling and dosing 

During processing of pharmaceutical solutions the latter are subjected to various 

stresses. There is a lot of evidence in literature that particularly proteins are prone to 

suffer under physical stress like for example high temperature, hydrodynamic shear 

stress (Elias et al., 1998), exposure to surfaces and interfaces during shaking and 
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foaming combined with high shear (Maa et al., 1996, 1997). The exerted physical 

stress can lead to protein degradation, agglomeration and precipitation.  

 

Rotary piston pumps have often been questioned for filling sensitive compounds as 

for example proteins, due to the potential risk of damage through shear forces that 

could occur, when passing through the pump. In this work the notions shear and 

shear forces are used in the sense of physical stress caused by filling systems. This 

includes the following stresses and their combinations but is not limited to these: 

 

• shear stress in the gap between the cylinder and the piston in a rotary piston 

pump caused by the movements of the piston 

• hydrodynamic shear stress caused by fluid motion 

• physical stress due to exposure to surfaces and interfaces 

 

The shear stress τ is defined according to Equation C.4.1. 

 
γμτ ⋅=      Equation C.4.1 

 

where γ is shear rate and μ is solution viscosity. 

 

The conditions in a rotary piston pump in respect to the average shear rate for the 

rotational movement is comparable to the conditions in a concentric cylinder shear 

device where the solution is introduced into the gap between two cylinders with the 

inner cylinder rotating. The radii of the cylinders are given by Ro for the outer and κRo 

for the inner cylinder. Maa et al. (1996) derived and calculated the average shear 

rate <γ> as follows: 
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where κ is the ratio between the radii of the inner and outer cylinder and ω is the 

rotating rate of the inner cylinder in radians/second. 
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The maximum shear rate occurs at the surface of the inner cylinder. An increase in 

the shear rate can be achieved by values for κ close to 1, which means to diminish 

the distance between inner and outer cylinder. 

 

The average shear can be calculated by multiplying the shear rate γ with the time 

spent in the shear field (Maa et al., 1996). Charm and Wong (1970) investigated 

shear damage for three enzymes when flowing through a capillary tube and found 

that the degree of inactivation was dependent on the shear rate and the time of 

exposure and was represented by the product of the two parameters. 

 

The hydrodynamic shear stress τ in a cylindrical tube for a laminar uni-directional 

flow is zero at the centre of the tube an increases towards the inner surface of the 

tube, where it is maximal. The calculation of the shear stress results from Equation 

C.4.3 (Elias et al., 1998). 

 

L
Pr
⋅
⋅

=
2
δτ      Equation C.4.3 

 

where r is the radial distance from the tube axis, δP is the pressure drop between two 

points situated at distance L. 

 

C.5 Aim of the work 

It is well known that during manufacturing pharmaceutical solutions are subjected to 

various stresses, e.g. during stirring, sterilization. However not so much is known 

about physical stress which might occur during filling and dosing operations. In the 

scope of this study, the impact of physical stress caused by dosing equipment is 

examined. By circulating a model solution in a suitable test system the impact of 

shear forces on the model solution is to be evaluated. As dosing equipment a 

peristaltic pump and rotary piston pumps are examined, compared and evaluated. 

Influencing parameters of the dosing operation like the dosing equipment itself, filling 

volume, speed, exposed surface during the operation shall be investigated. The 

objective is to better understand the filling and dosing process and to evaluate where 

the potential shear stress originates from. The obtained conclusions shall be utilized 
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to optimize the process as well as the equipment and to establish rules which shall 

be respected for filling shear sensitive products. 

 

As small chemical entities are unlikely to show an effect, the focus for a model 

substance concentrates on protein solutions. Literature gives evidence that proteins 

are sensitive to physical stress and can suffer damage from it. A protein which is 

sensitive enough to shear stress as it might occur in the present study has to be 

searched and evaluated in combination with the experimental test system and an 

analytical method which can monitor the impact on the protein. 

 

Subsequently excipients and their combinations are evaluated for their protective 

effect for the kind of physical stress encountered in the respective dosing equipment. 

 

As protein pharmaceuticals are administered as parenteral dosage forms, all 

considerations for the present study have to be made in respect of sterile 

manufacturing. 

 

C.6 Model Substances 

The search for a model protein from various protein groups like hormones, vaccines, 

cytokines and enzymes concentrated at first on the group of enzymes. The reason 

for this choice was that many enzymes are commercially available and the availability 

of simple enzymatic assays to determine the activity.  

 

β-galactosidase from Aspergillus oryzae was used for shear tests in this work 

because of its molecular weight of about 105 kDa (Tanaka et al., 1975). This 

corresponds to an average molecular weight for enzymes. Furthermore it is very 

stable, and an easy to handle enzyme activity test which delivers reliable results is 

available. 

 

After the first shear tests it became obvious that for β-galactosidase no degradation 

following exposure to shear stress could be detected. To examine different 

parameters concerning dosing operations a second model protein was searched 

which is highly sensitive to shear forces as they occur in the shear model used in this 
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study. Immunoglobulins in general are known to denature under various conditions 

including among others temperature change and shear (Wang et al., 2007). 

Rituximab was selected for this purpose. 

 

The following chapters give a short overview of the character and properties of β-

galactosidase and rituximab.  

 

C.6.1 β-Galactosidase 

β-galactosidase is as widely distributed in nature as its substrates, oligo- and 

polysaccharides containing D-galactose joined through a β-glycosidic bond 

(Wallenfels and Weil, 1972). The universal occurrence on the one hand and the 

simple enzymatic assay and the great number of substrates on the other hand led to 

a lot of research done on structure and behaviour of β-galactosidase, which varies 

depending on the organism source. 

 

C.6.1.1 Structure and catalytic reaction 

Structure analysis done by Tanaka et al. (1975) and Akasaki et al. (1976) showed 

that β-galactosidase from Aspergillus oryzae has unlike the molecule from 

Escherichia coli, which is a tetramer, no subunit structure and a molecular weight of 

105 kDa. The molecular weight corresponds more or less to the size of one monomer 

from Escherichia coli. Therefore it is supposed that the structure of β-galactosidase 

from Aspergillus oryzae is similar to that of the monomer of Escherichia coli. 
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Figure C.6.1: Structure of a monomer of β-galactosidase from E. coli. D1-D5 indicate the five 
domains, a indicates the active site (Juers et al., 2000). __ depict Na+ ions, __ Mg++ ions. 
 

Juers et al. (2000) examined the structure of β-galactosidase from E. coli. The 

monomer (116 kDa) consists of five structural domains and an active site, which is 

located at the C-terminal end of the central core of domain 3 and includes also parts 

of loops from domain 1, 2 and 5. Magnesium ions are present in the active site.  

 

Table C.6.1 shows the amino acid composition of β-galactosidase from Aspergillus 

oryzae (Tanaka et al., 1975). 
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Table C.6.1: Amino acid composition of β-galactosidase from Aspergillus oryzae 

 
Amino acid Amino acid 

(M/105 g Protein) 
Weight % 

Alanine 58.1 5.2 
Arginine 23.3 4.1 
Aspartic acid 89.2 11.9 
Cysteine 2.1 0.3 
Glutamic acid 70.0 10.3 
Glycine 82.2 6.2 
Histidine 12.8 2.0 
Isoleucine 29.8 3.9 
Leucine 69.7 9.1 
Lysine 34.5 5.0 
Methionine 7.3 1.1 
Phenylalanine 39.9 6.6 
Proline 60.6 7.0 
Serine 60.9 6.4 
Threonine 53.9 6.4 
Tryptophan 10.5 2.1 
Tyrosine 42.6 7.7 
Valine 41.3 4.8 

 
 
The β-galactosidase catalytic reaction involves 3 steps: 

 
                        Ks                           k2                                            k3

E + S                           ES                              ES’ + P1                           E + P1 + P2

 

The enzyme E binds rapidly substrate S and forms the Michaelis complex ES. This is 

followed by the formation of the intermediary complex ES’ with simultaneous 

elimination of the aglyconic leaving group P1.  The ES’ complex is hydrolysed to yield 

free galactose P2 and the enzyme E (Wallenfels and Weil, 1972). 
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Figure C.6.2: Reaction mechanism of β-galactosidase 
 

β-galactosidase catalyses a β-galactosidic cleavage between the anomeric C-atom 

and the ether-oxygen atom of di- and oligosaccharides from the galactose side. The 

galactose part of the galactose-enzyme complex is hydrolysed releasing the enzyme 

(Stellmach, 1988). 

 

C.6.1.2 Physicochemical properties and stability 

Tanaka et al. (1975) investigated the properties of β-galactosidase from Aspergillus 

oryzae and found that the enzyme showed pH optima of 4.5 with OPNG-1 as a 

substrate and 4.8 with lactose as a substrate. Furthermore a stable pH range from 

4.0 to 9.0 was detected. The optimum temperature was found to be 46 °C. 

 

C.6.2 Rituximab 

Rituximab is a therapeutic monoclonal antibody for intravenous injection which has 

been licensed by the US Food and Drug Administration (FDA) in 1997 to treat Non-

Hodgkin’s lymphoma. Following a short overview on the properties, structure and 

mechanism of action and of rituximab and monoclonal antibodies in general is given.  
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C.6.2.1 Monoclonal Antibodies 

Monoclonal antibodies are genetically engineered antibodies using mammalian cell 

lines. Hybridoma cells, which result from a fusion of immune cells with tumor cells, 

have the ability to produce a specific antibody and at the same time grow in cultures. 

This was achieved by Milstein and Köhler, who received the Nobel price for their 

research. The monoclonal antibody is then purified and concentrated. 

 

Rituximab is manufactured using Chinese Hamster Ovary cell suspension in a 

nutrient medium. The subsequent purification is done by affinity and ion exchange 

chromatography. A specific viral inactivation and removal procedure is performed 

(Patient Information Leaflet Rituxan®, 2002).  

 

C.6.2.2 Structure of Rituximab 

Rituximab is a chimeric murine / human monoclonal antibody. It is a type IgG1kappa 

immunoglobulin, which consists of two heavy chains of 451 amino acids and two light 

chains of 213 amino acids (Patient Information Leaflet Rituxan®, 2002). The 

molecular weight is approximately 145 kD, which is a typical molecular weight for 

monoclonal antibodies (Wang et al., 2007). The light and heavy chains show murine 

variable region sequences and human constant region sequences, as shown in 

Figure C.6.3. The variable regions are marked with V; constant regions with C.  

 

 
Figure C.6.3: Chimeric monoclonal antibody (Brüggemeier, M., 2005) 
 

The target of rituximab is the CD20 transmembrane antigen on the surface of normal 

and malignant B lymphocytes. Rituximab molecules bind specifically to the CD20 
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antigen with a binding affinity of approximately 8.0 nM. An immunological response 

induces the lysis of the B lymphocytes. Generally there are 2 known pathways for the 

cell lysis, the complement dependent cytotoxicity (CDC) mechanism and the 

antibody-dependant cell-mediated cytotoxicity (ADCC) mechanism 

(Arzneimittelkompendium der Schweiz, 2001). Research in this field is on-going to 

gain more understanding of the cell-killing mechanisms of anti-tumor antibodies such 

as rituximab, e.g. (Idusogie et al., 2000). 

 

C.6.2.3 Physicochemical properties and stability 

Rituximab is stable as a liquid formulation. The concentrated solution of 10 mg /ml, 

as commercially available on the market, in a citrate buffer solution at a pH of 6.5 has 

a shelf life of 48 months. It is stable when stored at 2 – 8 °C and it should be 

protected from direct sunlight. Wang et al. (2007) give an overview in their review 

article of the stability of monoclonal antibodies in general. 
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DD  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

D.1 Model Substances 

D.1.1 β-Galactosidase 

D.1.1.1 Formulation 

For the shear experiments an enzyme solution containing β-galactosidase from 

Aspergillus oryzae (Fluka Chemie GmbH, Buchs, Switzerland) with a molecular 

weight of 105 kD was prepared by dissolving 1 mg/ml of the enzyme powder in 

phosphate buffer solution. The phosphate buffer solution pH 4.5 contained 17.8 

mg/ml disodium hydrogenphosphate (Merck AG, Darmstadt, Germany) and 12.4 

mg/ml citric acid (Hänseler AG, Herisau, Switzerland) in distilled water. The enzyme 

solution was diluted 1:10 with phosphate buffer solution to obtain a solution 

containing approximately 0.1 mg/ml β-galactosidase enzyme powder. 

 

D.1.2 Rituximab 

D.1.2.1 Formulation 

The monoclonal antibody rituximab with a molecular weight of 145 kD was used. It 

was supplied by Roche, Basel as a sterile, clear, colourless and preservative-free 

solution at a concentration of 10 mg/ml formulated in 9 mg/ml sodium chloride, 7.35 

mg/ml sodium citrate dihydrate, 0.7 mg/ml polysorbate 80, and Water for Injection. 

The solution pH was 6.5. It was obtained in 10 ml and 50 ml vials.  

 

D.1.3 Excipients 

A fundamental condition for the choice of excipients for the stabilization of rituximab 

against shear stress was the compatibility for the use in parenteral dosage forms. 

The properties of the selected excipients for evaluation of their protective effect are 

briefly described in this chapter. 
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D.1.3.1 Description 

Trehalose dihydrate (Georg Breuer GmbH, Königstein, Germany) 
chemical formula see Figure D.1.1

 
 
 
 
 
 
·2H2O 

 
Figure D.1.1: chemical formula of trehalose dihydrate 

 

empirical formula:    C12H22O11 · 2H2O 

appearance:    virtually odorless, white or almost white crystals 

of sweet taste 

molecular weight:   378.33 g/mol 

solubility:    soluble in water, very slightly soluble in ethanol 

technological use:   stabilizes proteins in solution; it prevents protein  

     aggregation by the preferential exclusion 

     mechanism 

 

 

Polyglycol 6000 (Clariant GmbH, Gendorf, Germany) 
chemical formula see Figure D.1.2. 

 

 
Figure D.1.2: chemical formula of polyethylene glycol 
 
empirical formula:    HO(CH2CH2O)nCH2OH 

appearance:    white flakes of characteristic odor 

molecular weight:   6000 g/mol (average) 

solubility:    soluble in water 
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technological use:   220 – 262 mPa s viscosity; increases viscosity 

     which leads to steric hindrance and limits struc- 

     tural movements of molecules 

 

 
Tween 80 (Hänseler AG, Herisau, Switzerland) 
chemical formula see Figure D.1.3. 

 

 
Figure D.1.3: chemical formula of Tween 80 
 

empirical formula:    C32H60O10 

appearance:    yellow to amber viscous liquid of characteristic odor 

molecular weight:   604.82 g/mol 

solubility:    soluble in water 

technological use:   nonionic surfactant; in protein solutions it is used to 

      prevent adsorption of protein molecules at surfaces 

     and air/water interfaces. 

 

D.1.3.2 Formulation 

The excipients were added to the formulated rituximab solution described in chapter 

D. 1.2.1. In total 5 different formulations with excipients were prepared: 
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• original solution + 0.1% Polyglycol 6000 + 1% Trehalose dihydrate 

• original solution + 0.5% Polyglycol 6000 + 5% Trehalose dihydrate 

• original solution + 5% Trehalose dihydrate 

• original solution + 0.5% Polyglycol 6000 

• original solution + 1.24% Tween 80. As 0.07 % Tween 80 is already in the 

original solution a total concentration of Tween 80 of 1.31 % results.  

 

The excipients were weighed on an analytical balance type AG204 Delta Range 

(Mettler Toledo Schweiz GmbH, Greifensee, Switzerland) and dissolved in 

approximately 80 ml original rituximab solution in a volumetric flask (Brand, 

Germany). Original solution was added to 100.0 ml. 

 

D.2 Shear Experiment 

The shear experiments were performed under a laminar flow bench class 100 with a 

horizontal air flow (Type B-72-30, Skan AG, Basel) to avoid particulate contamination 

of the tested solution. All parts of the test system as well as all glassware and 

disposable material in direct contact with the test solution was cleaned with drinking 

water, finally rinsed three times with freshly distilled water and left for drying under 

the laminar flow bench. In Table D.2.1 these items are listed. 

 
Table D.2.1: Materials in direct contact with the test solution 
 
Type Part Material made of 

test system holding recipient borosilicate glass 

 tubing (inner Ø 5.0 mm; wall 3.0 mm) silicone 

 filling needle stainless steel AISI 316L 

 rotary piston pumps stainless steel AISI 316L 

 platinum cured silicone tubing (inner Ø 

3.2 mm; wall 1.6 mm) 

platinum cured silicone 

laboratory glassware pipettes (10.0 ml, 20.0 ml, 3.0 ml, 2.0 

ml, 1.0 ml) 

borosilicate glass 

 volumetric flasks (50.0 ml, 100.0 ml) borosilicate glass 

 Erlenmeyer flask borosilicate glass 

 beakers borosilicate glass 

disposable material tips for pipettes -1000μl blue Treff AG® polypropylene 

 sample tube 1.5 ml Treff AG® polypropylene 
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The test solution with the model protein was circulated at a defined displacement 

speed of the piston, which resulted in a pumping or dosing speed, in the test system. 

The test system consisted of a holding recipient and a filling needle both connected 

to the dosing system via silicone tubing as schematically shown in Figure D.2.1. As 

dosing systems a peristaltic pump or a rotary piston pump were used. 

 

 

Schematic design of the test 
system in which the test 
solution was circulated during 
shear experiments: 
 

(1) Dosing System: 
Rotary Piston Pump 
or Peristaltic Pump 

 
(2) Silicone Tubing 

 
(3) Filling Needle 
 
(4) Holding Recipient 

Figure D.2.1: Schematic design of the test system 
 

Description of the test cycles: 
The defined starting volume of the test solution is exactly introduced with a glass 

pipette into the holding recipient. As many pumping movements as necessary are 

applied so that the test solution is directly in front of the pump / pump head. The first 

sample P0 of exactly 1.0 ml was drawn with an Eppendorf micro-pipette 500 µl in a 

polypropylene sample tube 1.5 ml (Treff AG, Degersheim, Switzerland). The test 

solution was then circulated in the test system by continuously dosing with the dosing 

system at a defined speed. After a fixed number of cycles, further samples P1, P2 

and P3 were drawn as described above. The volumes of the samples taken were not 

replaced. One cycle corresponds to the number of strokes needed to pass the total 

volume in the system once. In the case of the long term experiment the samples 

were taken after fixed lapses of time.  
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D.2.1 Dosing System for Rotary Piston Pumps 

The dosing system for rotary piston pumps consisted of a dosing machine (Type 

EDM 3295, Bausch + Stroebel, Germany). The system was equipped with one or two 

valveless rotary piston pumps as dosing units.  

 

The adjustment of the dosing volume was made mechanically by fixing the piston 

stroke with a setting spindle. The position is shown in a digital display. The position 

for minimal filling volume was chosen 180, for the maximal filling volume 300. 180 

corresponds to a piston stroke of 18.0 mm; 300 to 39.0 mm, respectively. 

The dosing speed was continuously adjustable with a potentiometric control via a 

turning knob. The values can be set between 0.5 up to a maximal speed of 9.25 

indicated according to the position of the turning knob. These values correspond to 

displacement speeds of the piston between 10 sec/stroke up to 1.8 sec/stroke. The 

full speed range was covered by the shear test runs. 

 

Rotary Piston Pumps: 
The rotary piston pumps (RPP) used for the present shear experiment were 

valveless and made of stainless steel AISI 316L, as shown in Figure D.2.2. 4 

different sizes of rotary piston pumps (RPP 1-4) of 2 different suppliers were used. 

The different parameters of the 4 pumps are given in Table D.2.2. 

 

 
 

Figure D.2.2: Valveless rotary piston pump consisting of a cylinder (top) and a piston (bottom) 
(Bausch Advanced Technology Group, 2007) 
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Table D.2.2: Parameters of rotary piston pumps 
 
 RPP 1 RPP 2 RPP 3 RPP 4 
Size size 1 size 2 size 3 size 4 
Dosing range (ml) 0.15-1.1 0.7-5.5 1.6-12.5 3.6-28.0 
Ø Piston (mm) 6.0 13.0 20.0 30.0 
Clearance between 
Piston and Cylinder 
(μm) 

13.0 17.0 22.0 22.0 

Dosing Volume 
(Dosage 180) (ml)  0.52 2.35 5.55 12.50 

Dosing Volume 
(Dosage 300) (ml) 1.12 5.22 12.28 n/a 

Friction surface/ stroke 
(Dosage 180)* 
(mm2) 

1280.83 2775.12 4269.42 6029.97 

Friction surface/ stroke 
(Dosage 300)* 
(mm2) 

1676.67 3632.78 5588.89 8009.18 

average shear rate <γ> 
at 1.8 sec/stroke** 
(sec-1) 

2607.11 4321.48 5137.96 7708.35 

Supplier B+S B+S B+S BaseEurope 
The length of the piston and the concentricity are the same for all pumps. 
*) Calculations see below 
**) Calculation see Annex G.9 
 
Calculation of the generated surface of friction: 
The generated surface of friction is the area where the piston and the cylinder are in 

touch with each other at a distance corresponding to the clearance. The friction 

surface increases with larger dosing volumes and higher strokes within the same size 

of a rotary piston pump. 

 

 
Figure D.2.3: Layout for the calculation of the generated surfaces of friction 
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Table D.2.3: Calculated surfaces of friction 
 

Pump dpiston

[mm] 

clearance 

[mm] 

h1 

[mm] 

h2 

[mm] 

h3 

[mm] 

B1 

[mm2] 

B2 

[mm2] 

B3 

[mm2] 

RPP1 6 0.013 49.95 67.95 88.95 941.54 1280.83 1676.67 

RPP2 13 0.017 49.95 67.95 88.95 2039.99 2775.12 3632.78 

RPP3 20 0.022 49.95 67.95 88.95 3138.45 4269.42 5588.89 

RPP4 30 0.022 45.98 63.98 84.98 4333.51 6029.97 8009.18 

 

The generated surface of friction A is calculated according to Equation D.2.1: 

 

1BBxAx −=     Equation D.2.1 
  

where Ax is the generated surface of friction for a piston stroke of 18 mm (x=2) and a 

stroke of 39 mm (x=3); Bx is calculated with Equation D.2.2. Results are listed in 

Table D.2.4. 

 

hxdBx piston ⋅⋅= π     Equation D.2.2 

 

where dpiston is the diameter of the piston; x (=1,2 or 3) is the index for respective 

height and friction surface according to Figure D.2.3. h1 corresponds to the lowest 

position of the piston during one stroke. h2 corresponds to h1 + 18 mm and h3 to h1 

+ 39 mm. Results are displayed in Table D.2.3. The groove in the piston was 

neglected for these calculations.  

 

Calculation of cumulative friction surface: 
The cumulative friction surface is the integrated area of friction over the displacement 

of the piston. The displacement during one stroke has a vertical and a horizontal 

direction, as the piston makes an upward and downward movement and a rotary 

movement. The cumulative friction surface was calculated for 1 stroke with a rotary 

piston pump. The cumulative friction surface serves as a measure for the cumulative 

area on which the protein solution is subjected to shear stress. This is the area 

during 1 stroke where piston and cylinder are at a distance of the clearance from 

each other.  
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The cumulative friction surface was calculated for 1 stroke according to Equation 

D.2.3 up to Equation D.2.5. 

 

rotaryvertical FSFSFS +=      Equation D.2.3 
 
 

( )( ) ( ) ( )11211 hhxBBxhhxBFSvertical −⋅−+⋅−=   Equation D.2.4 
 
 

22
1 ππ ⋅

⋅+
⋅

⋅=
pistonpiston

rotary
dBxdBFS     Equation D.2.5 

 
 

where FS is the cumulative friction surface, FSvertical is the cumulative friction surface 

of the vertical movement of the piston, FSrotary is the cumulative friction surface of the 

rotary movement, x is the index indicating the stroke (2 for 18 mm stroke; 3 for 39 

mm stroke) according to Figure D.2.3 and Table D.2.3; B1 and h1 according to 

Figure D.2.3 and Table D.2.3. The calculated FS is shown in Table D.2.4. The 

groove of the piston was neglected for this calculation. 

 
Table D.2.4: Cumulative friction surface FS and generated friction surface A per stroke 
 
Pump – dosage volume FS (mm2 · mm) A (mm2) 

RPP 1 – DV 180 60937.39 339.29

RPP 1 – DV 300 126773.73 735.13

RPP 2 – DV 180 184948.38 735.13

RPP 2 – DV 300 337019.27 1592.79

RPP 3 – DV 180 365948.78 1130.97

RPP 3 – DV 300 614404.74 2450.44

RPP 4 – DV 180 674662.55 1696.46

RPP 4 – DV 300 1062705.22 3675.66

 

D.2.2 Peristaltic Pump 

The peristaltic pump employed for the shear experiment was a Watson-Marlow 

Bredel type 323U/D (WMP) consisting of: 

 

• 1 drive unit 323U 

• 1 pumphead 313D (3 roller) 
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The pump has a speed range of minimal 3 up to maximal 400 rpm. A medium speed 

of 200 rpm was applied and the pump was used in MemoDose-mode for a controlled 

dispensing to assure a precise dosing throughout the test runs. The pump has a 

dosing range of 1 ml up to 50 ml. For the present work a dosing volume of 4.36 ml 

has been used. The pumphead was loaded with a platinum cured silicone tubing (Ø 

3.2 mm; wall 1.6 mm) which resulted in a flow rate of approximately 200 ml/min 

considering above mentioned operational speed. 

 

D.2.3 Test conditions 

Each experiment was performed three times with the same parameters. Three types 

of shear experiments with their corresponding test conditions can be differentiated: 

(overview of the performed shear tests see chapter G.2) 

I. Test conditions for shear experiment with: 
a) a following PCS analysis (rituximab solution) 
The shear tests were performed with RPP size 1-4 and with the WMP. 

Variable parameters for the test runs have been applied: 

• Total volume in the system: is shown in Table D.2.5 

 
Table D.2.5: Volumes in the systems used for different pumps 

 
Pump Total volume 

RPP 1 20.0 ml 

RPP 2 23.0 ml 

RPP 3 20.0 ml / 30.0 ml 

RPP 4 35.0 ml 

WMP 23.0 ml 

 

• dosing volumes: for RPPs the dosage was 180 or 300 (see Table C.2.2 

for corresponding volumes in ml); for WMP the DV= 4.3 ml 

• Pumps used: RPP 1-4, WMP 

• applied pumping speeds: for RPPs see Table D.2.6. 

  
Table D.2.6: Applied pumping speeds for RPPs 

 
Indication on turn knob 0.5 2 3 5.5 8 9.25 

corresponding speed (sec/stroke) 10 5.7 4.3 2.7 2.2 1.8 
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for WMP: 200 rpm corresponding to 200 ml/min 

 

• Positions of the filling needle:  

(1) above the liquid level: 

  

(2) below the liquid level: 

 

• Sampling was performed as follows: 

RPP 1: at 0, 2, 4, 6 cycles 

RPP 2: at 0, 6, 10, 20 cycles 

RPP 3: at 0, 16, 28, 38 cycles 

RPP 4: at 0, 16, 27, 38 cycles 

WMP: at 0, 24, 48 cycles 

Analytics of the samples taken were performed on the same day. 

 

b) a following enzyme assay analysis (β-galactosidase solution) 

• Total volume in the system: 20.0 ml 

• dosing volume: 300 

• Pump used: RPP 1 

• applied pumping speed: 9.00 

• position of the filling needle: above the liquid level 

• Sampling was performed as follows: after 90 and 180 strokes  

Samples were analyzed by enzyme assay on the same day 

immediately after termination of the shear tests. 

 

II. Test conditions for shear experiment for the evaluation of excipients 
These test conditions were chosen on the basis of the results obtained from 

the test runs under test conditions I.  

• Total volume in the system: 20.0 ml 

• dosing volume: 180 

• Pump used: RPP 1 

• applied pumping speed: 9.25 

• position of the filling needle: above the liquid level 

• Sampling was performed as follows: at 0, 2, 4 cycles  
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Samples were analyzed by PCS on the same day immediately after 

termination of the shear tests. 

 
III. Test conditions for long-term shear experiment over 3 hours 

Samples drawn during the Long-term shear test were analyzed by SEC-HPLC 

to quantify the loss of protein monomers. 

• Total volume in the system: is shown in Table D.2.7. 

 
Table D.2.7: Volumes in the systems used for different pumps 

 
Pump Total volume 

RPP 1 23.0 ml 

RPP 2 23.0 ml 

RPP 3 30.0 ml 

  

• dosing volume: 180 

• Pump used: RPP 1 - 4 

• applied pumping speed: 9.0 

• position of the filling needle: above the liquid level 

• Sampling after 0, 60, 120 and 180 min  

 

D.3 Analytical Methods 

D.3.1 Enzyme assay 

Principle: 

The enzymatic activity of β-galactosidase was determined to detect an eventual 

activity loss after shearing the protein solution. The enzyme assay was performed 

according to the method of extract chemie, modified by Amano (Stellmach, 1988). o-

nitrophenyl-β-D-galactopyranosid abbreviated ONPG is used as a synthetic 

substrate. β-galactosidase splits ONPG into o-nitrophenol (ONP) and galactose. 

ONP, colourless in acidic medium, but yellow coloured in alkaline medium can be 

quantified spectrophotometrically at a wavelength of 420 nm and is a measure for the 

enzyme activity. 
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Procedure: 

The samples taken were diluted 1:10 by diluting 30 µl sample solution to 300 µl with 

phosphate buffer solution (17.8 mg/ml disodium hydrogenphosphate (Merck AG, 

Darmstadt, Germany), 12.4 mg/ml citric acid (Hänseler AG, Herisau, Switzerland); pH 

4.5) to obtain a concentration of approximately 0.01 mg/ml β-galactosidase. 

Substrate solution consisting of 0.172 mg/ml ONPG (Fluka Chemie GmbH, Buchs, 

Switzerland) in phosphate buffer solution was tempered in a water bath (WB7, 

Memmert GmbH + Co KG, Schwabach, Germany) at 30°C. 2100 µl substrate 

solution was added to the 300 µl diluted sample solution in a glass test tube (VWR, 

Switzerland). Then, the mixture was incubated at 30°C for exactly 10 min. in the 

water bath. After stopping the reaction by adding 600 µl sodium carbonate solution 

containing 106 mg/ml Na2CO3 (Riedel-de Häen, Seelze, Germany) the absorbance 

was measured at 420 nm with a spectrophotometer (UV mc2, Safas, Monaco) in a 

10.00-mm-precision-cell type 100-QS (Hellma, Müllheim, Germany) against the blank 

solution. A blank was prepared in the same way but taking 300 µl phosphate buffer 

solution instead of diluted sample solution. All weighing was done with an analytical 

balance (CP3245, Sartorius, Dietikon, Schweiz). Pipetting was done with 2 

micropipettes Biohit type m200, 20-200 µl and type m1000, 100-1000 µl (Biohit, 

Germany). The enzyme activity Ac (units/mg) was calculated according to Equation 

D.3.1. 

 

m
AAc

⋅⋅
⋅

=
1045.4

3420
   Equation D.3.1 

 

where A420 is the absorbance at 420 nm, 3 is the total volume of the reaction mixture 

in ml, 4.45 is the absorbance of 1 μmol ONP per ml at 420 nm, 10 is the reaction time 

in min and m is the weight of enzyme in mg per 0.1 ml diluted enzyme solution. 

 

One β-galactosidase unit is defined as the quantity of enzyme that sets free 1 μmol 

ONP per min under above mentioned experimental conditions. 

 

D.3.2 Selection of analytical methods for rituximab 

As no methods for the determinations of rituximab and the detection of eventual 

changes of the properties of rituximab after being subjected to shear stress in the 
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shear experiment were available, different analytical methods were evaluated for 

their suitability in a first step. A selection of the methods was performed. The 

selected methods were then developed and optimized further to correspond to the 

needs of this work. 

 

UV-Spectrophotometry: 
The original solution as delivered and the sheared solution (30 min.) were analysed 

spectrophotometrically. A UV-spectrophotometric scan with a DU530 Beckman 

spectrophotometer (Beckman Coulter, USA) was performed. A maximum absorption 

of the original and the sheared solution, both diluted 1:20 with distilled water, was 

detected at 280 nm. No bathochromic or hypsochromic shift of the maximum was 

seen due to the presence of aggregated protein. Therefore UV-spectrophotometry 

was not a suitable method to evaluate differently sheared solutions. However, it was 

confirmed that UV detection at 280 nm could possibly be used in combination with a 

separation method like SEC-HPLC for quantification. 

 

SEC-HPLC: 
The original and a sheared rituximab solution were evaluated by size SEC-HPLC. 

The rituximab monomer peak was detected for both solutions. The chromatograms 

allowed a quantification of the rituximab monomer with the peak area. SEC-HPLC 

was found to be the method of choice for the quantification of rituximab monomer 

loss. 

 

TEM: 
Transmission electron microscopy is an electron microscopic imaging method. The 

original and the sheared solution were analysed. The original rituximab solution 

showed with an 11000x magnification a homogenous solution where the single 

monoclonal antibodies could not be identified. Few undefined particles which could 

represent oil drops or dust particles could as well be detected. In the sheared 

solution unstructured formations of different shape and size could be detected. These 

agglomerations were formed due to the application of shear stress and represent 

protein aggregates. 
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TEM was found to be a useful method for the characterization of rituximab original 

solution. Furthermore it could be used for the qualitative evaluation of the sheared 

solution. However, the method was not found to be suitable for the evaluation of 

differently sheared solutions, as a quantitative detection of agglomerations was not 

feasible. 

 

PCS: 
The mean hydrodynamic diameter and polydispersity index were determined by PCS 

to characterize the original and the sheared solution. The original solution was 

sheared by pumping with RPP 3 at a minimal speed of 0.5. The total volume in the 

system in this pre-run was 43 ml. 100 piston strokes were applied; the dosage 

volume was 300. The results are listed in Table D.3.1. 

 
Table D.3.1: PCS results: pre-run 
 
Solution Z average (nm) Polydispersity index 

original solution 12.0±0.1 0.091±0.031 

sheared solution (100 strokes) 14.0±1.2 0.142±0.079 

blank solution not detectable not detectable 

  

 

The blank solution, which had exactly the same composition as the original rituximab 

solution without rituximab did not deliver a detectable signal during PCS analysis. No 

detectable particles were present in the blank solution. This confirmed that the mean 

hydrodynamic diameter and polydispersity index measured in the original solution 

refer to rituximab protein particles. The hydrodynamic diameter of rituximab in this 

solution was determined to be 12.0 nm. The increase of the mean hydrodynamic 

diameter in the sheared solution showed that larger particles had been generated 

during shearing. The increased polydispersity index indicated that the size 

distribution in the sheared solution had broadened. However, it was still a narrow 

distribution. 

 

Rituximab was identified with this pre-run as shear-sensitive protein suitable for the 

following work. Furthermore, PCS was found to be a potential analytical method to 

detect even slight changes in the composition of sheared solutions. 
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D.3.3 Transmission Electron Microscopy 

Principle: 

Transmission electron microscopy (TEM) is an imaging method where photographs 

of the sample are obtained indirectly. It was used to identify protein agglomerations. 

 

Procedure: 

Samples have been used directly or centrifuged at 14000 g. The sample solution was 

spread on a grid, which had a diameter of 3 mm and was coated with a 50 nm 

synthetic film. Particles were stained with uranylacetat before taking the TEM 

micrograph. 

 

D.3.4 Photon Correlation Spectroscopy 

Principle: 

PCS was used to detect aggregated protein in the sample solutions. The method 

delivers with the measured changes of intensities of scattered light a size distribution 

of the particles in the solution as well as the mean hydrodynamic diameter and the 

polydispersity index, which is a measure for the width of the distribution, see 

theoretical part C.1.8.2. The method is very sensitive to large particles in the solution, 

which made it suitable to detect protein aggregates at very low concentrations. 

 

Instrumentation: 

The instrument used for the measurements was a Zetasizer 1000 HSA (Malvern 

Instruments Ltd., Malvern, United Kingdom) equipped with an autocorrelator 8 type 

7032CN. Data analysis was done with Zetasizer software Version 1.61 Rev. 1. 

Measurements were performed at a scattering angle of 90° at 633 nm. As light 

source a Helium-Neon-Laser is integrated in the Zetasizer 1000 HSA.  

 

Optimization: 

In optimization runs the method was improved and adapted for the measurement of 

the original and sheared rituximab solution. To pass the quality check which is 

integrated into the system the following measure parameters were established: 
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The initial count rate was too low as small particle of a size of approximately 12 nm 

had to be detected; to achieve a count rate between 100 and 200 K counts, the 

detection aperture 200 was used. The duration of a measurement was set to 300 

sec. Automatic selection of the attenuator and size range was used. The correlator 

was configured in parallel mode. Measuring temperature was set to 25 °C. The 

analysis selected for result processing was contin. Further parameters are listed in 

Table D.3.2. 

 
Table D.3.2: Parameters set for PCS measurements 
 
Refractive index dispersant 1.330  Real refractive index 1.590 

Viscosity (cP) 0.890  Core real refractive index 1.600 

Analysis: Dilation 1.20 Delay between measurements 10 sec 

Analysis: Weighting quadric Point selection auto 

 

Procedure: 

The samples were measured in a square quartz cell of uniform wall thickness, which 

was cleaned between every sample with tap water followed by 3 rinses with freshly 

distilled water. The distilled water was checked for the absence of particles by a PCS 

measurement before use. One final rinse with the sample solution was performed 

just before introducing the undiluted sample solution. The outside of the cell was 

dried using a paper tissue. Every sample was measured in triplicate. 

 

Data analysis and interpretation: 

Characterization of monodisperse samples was done by analysis of PI and z average 

resulting form the cumulants method. The mean of the 3 measurements for one 

sample was taken. The following indications were respected for the interpretation of 

PI results: 

0.03 – 0.06: monodisperse distribution 

0.10 – 0.20: narrow distribution 

0.25 – 0.50: broad distribution 

 > 0.50: not evaluable as it concerns a broad distribution of undefined shape. 

 

Polydisperse samples, for which the interpretation of the data is considerably more 

difficult, were characterized by PI and z average from the cumulants analysis. 

Although, it has to be noted that if the PI is greater than 0.25, the z average size 
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should be used in a relative sense. Additionally, the result from the contin analysis 

was taken into consideration in terms of mean and width at half peak height and 

particularly the number of detected peaks. 

 

D.3.5 Size-Exclusion HPLC 

Principle: 

SEC-HPLC was employed to quantify the loss of rituximab monomers due to the 

exposed shear during the test runs over 3 hours. The sample is separated by 

passing the column according to the molecular weight of the proteins in solution. 

Precipitates were centrifuged to eliminate protein particles with very high molecular 

weight. The area of the rituximab peak in the original solution was set to 100% 

monomers. The loss of monomers in % was calculated using the area of the 

rituximab peak. 

 

Procedure: 

Rituximab samples were left at 5-8°C for 3-5 days so that the precipitate could settle 

and then centrifuged in a centrifuge type 5415C (Eppendorf, Germany) for 30 min at 

14000 min-1. The supernatant was transferred into HPLC glass vials (Agilent, USA) 

and crimped. 20 µl was injected into a Tosoh TSK-GEL G3000SW XL column; size 

7.8 mm i.d. x 30.0 cm length; particle size 5 µm. The mobile phase consisted of 15.6 

mg/ml NaH2PO4 x 2 H2O (Fluka Chemie GmbH, Buchs, Switzerland), 14.2 mg/ml 

Na2SO4 (Merck, Darmstadt, Germany) and 0.502 mg/ml NaN3 (Fluka Chemie GmbH, 

Buchs, Switzerland) in double distilled water, pH adjusted to 6.7, pumped at a flow 

rate of 1 ml/min. The instrument used was a Hewlett Packard series 1050 pump 

(Hewlett Packard, Waldbronn, Germany) and a Hewlett Packard series 1050 auto 

sampler (Hewlett Packard, Waldbronn, Germany). The detection was performed at a 

wavelength of 280 nm using a Hewlett Packard series 1050 UV-detector model 

79835A (Hewlett Packard, Waldbronn, Germany). 

 

D.3.6 Visual Inspection 

Principle: 
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A visual inspection of the sheared solution at the end of each shear experiment was 

performed. The aim of this examination was to detect precipitates which formed 

under the applied shear stress. The turbidity of the solution increases with increasing 

formation of protein aggregates. 

The storage of the sheared solution at 5-8°C for several days served to allow 

eventual precipitation to settle. With this procedure even a very light precipitation 

could be detected by eye. If precipitates were present, they moved upwards forming 

a white cloud when shaking the vial as described below. 

 

Procedure: 

The remaining test solution in the test system was emptied at the end of a shear 

experiment into a 50 ml glass vial, hydrolytic glass type I and closed with a grey 

stopper and parafilm. Glass vials and stoppers were the reused primary packaging 

from the original rituximab solution. The vials and stoppers were washed and finally 

rinsed with distilled water. 

The turbidity of the test solution at the end of the shear experiment was visually 

inspected by comparing the sheared solution with a vial containing the original 

rituximab solution in front of a dark background. A second visual inspection was 

performed after storing the vial with the sheared solution at refrigerated temperature 

for 5-7 days. The vial was taken out and left at room temperature till the solution had 

adapted to room temperature to avoid formation of condensate on the external of the 

vial during the visual inspection. The vial was then moved with one quick horizontal 

circular shake. It was verified if an upward moving cloud was detected. A 

classification of the intensity and size of this cloud was done into 3 categories 

according to Table D.3.3: 

 
Table D.3.3: Type and intensity of precipitation for visual inspection 
 
Type and intensity of cloud Description 

fine cloud a very fine upward moving line is observed 

medium cloud a small to medium sized upward moving cloud can clearly be seen in the 

middle of the vial 

large cloud white precipitation can be clearly seen on the bottom of the vial before 

shaking. A large upward moving cloud can be detected when shaking the vial 
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EE  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

E.1 Influence of shear on a β-galactosidase solution 

The suitability of lactase (= β-galactosidase) in solution for use as a model protein to 

examine the impact of shear caused by dosing systems was evaluated. Therefore 

the lactase solution was circulated in the test system using the rotary piston pump 

size 1, see section C.2. 20.0 ml of solution was introduced into the test system and 

pumped by applying in total 180 strokes with a dosing volume of 1.12 ml per stroke at 

maximum pumping speed. This corresponds to 10 cycles to which the solution was 

submitted. No significant loss of activity was observed during the shear experiment. 

Figure E.1.1 shows the results obtained in a plot of enzyme activity over the number 

of strokes.  
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Figure E.1.1: Influence of circulation of a lactase solution on the enzyme activity 
 
No physical degradation, which could potentially have been generated by the shear 

stress caused by RPP 1, was observed by measuring the enzyme activity. 

 

Conclusion: 

As no impact of the exerted shear on lactase was detected, this enzyme was not 

suitable for performing the shear experiments for the evaluation of the impact of 

shear caused by different dosing equipment and dosing parameters. The absence of 

loss of activity can be explained with the fact that either lactase is not sensitive to 
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shear as caused by the test system used for the present work or by a not sufficient 

sensitivity of the analytical method. 

 

E.2 Characterization of rituximab solution 

The original rituximab solution was analysed. The results of the characterization are 

presented in this chapter. 

 
Table E.2.1: Results of analysis of rituximab original solution 
 
Parameter Result 

UV maximum 280 nm 

pH 6.52 

osmolality 300 mOsm 

aspect clear, colourless solution; 

no precipitation 

z average (PCS) 11.9 ± 0.0 nm 

polydispersity index (PCS) 0.066 ± 0.008 

width at half peak height (PCS) 7.4 ± 1.7 nm 

mean (PCS) 12.6 ± 0.1 nm 

retention time (SEC-HPLC) 8.144 ± 0.001 min 

peak area (SEC-HPLC) 19277.5 ± 4.9 mAU*s 

% rituximab monomers (SEC-HPLC) 97.45 ± 0.01 % 

 

The polydispersity index result from the PCS measurements showed that the original 

rituximab solution has a strictly monodisperse distribution with an average 

hydrodynamic diameter of the protein monomers of 11.9 nm. The contin analysis of 

the distribution confirmed these results with a width of the distribution at half peak 

height of 7.4 nm. The intensity mean of 12.6 nm, which represents the distribution 

mean, was found to be a little higher than from the cumulants analysis. A percentage 

of 97.45 rituximab monomers from the SEC-HPLC revealed that approximately 2.5 % 

protein of higher or lower molecular size was present; 0.7 % larger particles and 1.8 

% smaller particles.  
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Transmission electron microscopy pictures were in agreement to the SEC-HPLC 

result concerning the presence of larger molecules, whereas smaller molecules were 

too small to be seen in the pictures (Figure E.2.1and Figure E.2.2). 

  

 
 
Figure E.2.1: TEM picture without centrifugation of original rituximab solution 
  

The TEM pictures show the presence of larger particles in the rituximab solution. For 

the picture in Figure E.2.2 the particles were concentrated by previous centrifugation 

of the solution. The large unstructured agglomerations probably represent protein 

aggregates. The black round spots in Figure E.2.1 have eventually been introduced 

accidentally during preparation of the samples and are not present in the original 

solution. 
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Figure E.2.2: TEM picture with previous centrifugation of original rituximab solution 
 

E.3 Evaluation of quality of PCS data  

In this chapter considerations in respect of the quality of data obtained from PCS 

measurements are made. The quality of the data is essential for the estimation how 

well the analysis algorithms will perform. For the evaluation of the data quality the 

stability of the count rate from repeat measurements, the repeatability of the z 

average diameter, the result of the quality factor and the precision of the method was 

observed. 

 

E.3.1 Quality factor 

For every single measurement the system delivers a quality factor. The quality factor 

was considered for evaluating PCS data. If results are within predetermined limits the 

quality factor obtained is a PASS. If one or more of the limits are exceeded a CHECK 

message for the parameter which failed is displayed. The limits are listed in Table 

E.3.1.  
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Table E.3.1: Result quality check criteria 
 
Check criteria Check error message 

Count rate < 10K or > 500K check count rate 

Merit < 10% or > 99% check merit 

Polydispersity > 0.7 check poly index 

Fit error > 0.005 Check fit 

In Range < 80% check baseline 

Z average diameter < 1 or > 5000nm check z-average mean range 

Polydispersity < 0.1 and Fit error >0.01 check fit 

duration of data used in analysis < 101s check duration 

 

In preliminary test runs the PCS measure parameters were fixed as described in 

chapter D.3.4 and the experimental conditions e.g. the number of cycles with the 

respective pump were adapted with the aim that the taken samples could fulfil above 

mentioned quality criteria. Every measurement was checked for the quality factor. It 

was found that for nearly all measurements performed the quality factor was a PASS. 

In a few cases, the samples which were taken at the end of the shear experiment 

(sample P3) with RPP 2 and 1, a CHECK parameter was indicated. In these cases 

the result was examined for the failed quality criterion. The reason for the failure was 

the presence of large aggregated protein particles which on the other hand was the 

phenomenon to be measured. Therefore even these measurements were accepted. 

 

The evaluation of the resulting quality factor indicates that the quality of the data 

obtained from measuring unstressed or slightly stressed rituximab solutions is good. 

Increasing shear gives rise to the formation of aggregates and to a deterioration of 

the quality of PCS data. 

 

E.3.2 Stability of count rate 

The count rate of 3 – 5 repeat measurements should be within a few percent of one 

another (Zetasizer, 2000). This parameter was evaluated for the measurements of 

the original solution and for the solutions after cycling in the test system with RPP 1 -

4 with DV 180. The last sample (P3) was analysed. The results are in Table E.3.2. It 

was seen that the relative standard deviation of the count rate for 3 repeat 

measurements is in the range of 1 - 2% for the original solution and for the solutions 
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circulated with RPP 4 and 3. It was increasing when circulated with RPP 2 and 1. As 

well the count rate itself increased, as aggregation of the protein molecules took 

place. For RPP 1, which was found to stress the protein most, the relative standard 

deviation of the count rate was approximately 5.5%. In respect of the count rate the 

quality of the PCS data obtained was considered to be excellent for the original 

solution and less stressed solution and was still good for stressed solutions. With 

increasing formation of aggregates the data quality was found to decrease, as large 

particles perturb the measurements.  

 
Table E.3.2: Comparison of count rates and relative standard deviation of PCS measurements 
 

Solution 
original 

solution 

DV 180, 

speed 9.25, 

sample P3, 

RPP 4 

DV 180, 

speed 9.25, 

sample P3, 

RPP 3 

DV 180, 

speed 9.25, 

sample P3, 

RPP 2 

DV 180, 

speed 9.25, 

sample P3, 

RPP 1 

count rate 
Mean ± SDrel

251.0 

(± 1.7%) 

282.8 

(± 1.2%) 

280.5 

(± 1.9%) 

289.3 

(± 2.6%) 

196.3 

(± 5.6%) 

Attenuator: x1 x1 x1 x1 x2 

  

E.3.3 Precision of the PCS method 

The precision of the PCS method is given by the relative standard deviation SDrel in 

percent: 

 

100⋅=
M
SDSDrel     Equation E.3.1 

 

where SD is standard deviation and M is mean value. 

 

For the present evaluation 5 determinations of the original solution were performed 

on the same day and the relative standard deviation was calculated. The same was 

performed on 2 further days. The relative standard deviation was calculated from the 

15 measurement. Furthermore the average mean was calculated from the 5 

determinations per day and the relative standard deviation was calculated from the 3 

averaged values. 
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The same procedure was performed for a solution submitted to shear stress with the 

following conditions. The pump RPP 1 was used with a dosage volume of 300 (1.12 

ml) at a pumping speed 2 (5.7 s/stroke). The total volume was cycled 6 times under 

these experimental conditions in the test system described under D.2.1. 

 

Precision of the cumulants analysis 
The results obtained from the PCS analysis using the cumulants analysis are 

presented in Table E.3.3 and Table E.3.4. 

 
Table E.3.3: Precision Cumulants Analysis - z average 
 
Solution M ± SD (nm) SDrel (%) M ± SD (nm) SDrel (%) M ± SD (nm) SDrel (%) 

 precision on one day 

(n=5) 

precision on 3 days 

(n=15) 

precision on 3 days (n=3) 
calculated with the mean of 5 

measurements per day 
original solution 11.9 ± 0.0 0.38 11.9 ± 0.1 0.43 11.9 ± 0.0 0.26 

sheared solution 20.6 ± 2.5 12.14 19.7 ± 1.81 9.19 19.8 ± 0.7 3.54 

 

The determination of z average obtained from the cumulants analysis for the original, 

unsheared solution showed an extremely low relative standard deviation below 0.5%, 

whereas the relative standard deviation for the sheared solution was considerably 

higher at approximately 10%. If the experiment was performed 3 times and the 3 

mean values of 5 repeat measurements were considered to calculate the precision, a 

relative standard deviation of approximately 4% was obtained. 

 
Table E.3.4: Precision Cumulants Analysis – Polydispersity index 
 
Solution M ± SD (nm) SDrel (%) M ± SD (nm) SDrel (%) M ± SD (nm) SDrel (%) 

Precision precision on one day 

(n=5) 

precision on 3 days 

(n=15) 

precision on 3 days (n=3) 
calculated with the mean of 5 

measurements per day 
original solution 0.052 

± 0.008 

15.89 0.052 

± 0.010 

18.15 0.052 

± 0.002 

3.24 

sheared solution 0.578 

± 0.074 

12.80 0.554 

± 0.056 

10.09 0.553 

± 0.022 

3.93 

 

The precision of the determinations of the polydispersity index was approximately the 

same for the original and the sheared solution. The relative standard deviation was 
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between 10-20%. The precision on 3 days calculated with the mean of 5 

determinations was found to be in an acceptable range of 4%.  

 

Precision of the contin analysis 
The precision for the contin analysis was investigated for the sheared solution. Unlike 

the original solution, the sheared solution showed a size distribution with different 

particle sizes. The mean values of the different peaks and the width at half peak 

height were considered for the present evaluation. Results are displayed in Table 

E.3.5 for the mean values and in Table E.3.6 for the width values. 

 
Table E.3.5: Precision Contin Analysis – Mean: sheared solution 
 

 Peak 1 

(nm) 

M ± SD 

(nm) 
Peak 2 

(nm) 

M ± SD 

(nm) 
Peak 3 

(nm) 

M ± SD 

(nm) 

M1-Day1 11.5 409.0 -- 
M2-Day1 11.5 519.0 -- 
M3-Day1 11.5 593.2 -- 
M4-Day1 12.2 479.2 1816.7 
M5-Day1 11.5 

11.6 ± 0.3 

(SDrel=2.7%)

770.5 

554.2±138.1 

(SDrel=24.9%)

-- 

n/a 

M1-Day2 11.4 574.9 -- 
M2-Day2 11.7 853.4 -- 
M3-Day2 11.4 -- -- 
M4-Day2 11.5 -- -- 
M5-Day2 11.3 

11.5±0.2 

(SDrel=1.3%)

884.5 

770.9±170.5 

(SDrel=22.1%)

-- 

n/a 

M1-Day3 11.4 -- 1594.6 
M2-Day3 11.4 -- -- 
M3-Day3 11.5 -- -- 
M4-Day3 11.6 669.2 -- 
M5-Day3 11.5 

11.5 ± 0.1 

(SDrel=0.7%)

-- 

n/a 

-- 

n/a 

M±SD (nm) 

SDrel

11.5±0.2 

1.8% 

11.5±0.1 

0.5% 

639.2±167.1

26.1% 

662.6±153.2 

23.1% 

1705.7±157.0 

9.2% 
n/a 
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Table E.3.6: Precision Contin Analysis – Width: sheared solution 
 

 Peak 1 

(nm) 

M ± SD 

(nm) 
Peak 2 

(nm) 

M ± SD 

(nm) 
Peak 3 

(nm) 

M ± SD 

(nm) 

M1-Day1 5.0 260.7 -- 
M2-Day1 5.0 285.1 -- 
M3-Day1 5.4 253.6 -- 
M4-Day1 6.3 249.4 1106.9 
M5-Day1 5.7 

5.5 ± 0.5 

(SDrel=9.9%) 

311.2 

272.0±25.9 

(SDrel=9.5%) 

-- 

n/a 

M1-Day2 5.1 236.8 -- 
M2-Day2 5.3 382.8 -- 
M3-Day2 5.0 -- -- 
M4-Day2 5.3 -- -- 
M5-Day2 5.0 

5.1±0.2 

(SDrel=3.0%) 

366.8 

328.8±80.1 

(SDrel=24.4%)

-- 

n/a 

M1-Day3 5.0 -- 904.8 
M2-Day3 5.1 -- -- 
M3-Day3 7.8 -- -- 
M4-Day3 5.2 377.8 -- 
M5-Day3 5.1 

5.6 ± 1.2 

(SDrel=21.4%)

-- 

n/a 

-- 

n/a 

M±SD (nm) 

SDrel

5.4±0.7 

13.8% 

5.4±0.3 

4.9% 

302.7±59.1 

19.5% 

300.4±40.2 

13.2% 

1005.9±142.9 

14.2% 
n/a 

 

The size distribution calculated with the contin algorithm showed that the first peak at 

11.5 nm was reliably detected. The relative standard deviation of the mean of 1.8% 

or 0.5%, depending on the way of calculation, stands for a high precision. The 

relative standard deviation for the width was found to be a little bit higher at 13.8% or 

4.9%. The second and third peak was not detected in every measurement. The 

second peak was seen in 9 determinations out of 15; the third in 2 out of 15. The 

mean and width values were calculated from these 9 and 2 available values; the fact 

that in the other determinations the peaks were not detected was not considered for 

the calculation. The precision of the contin analysis was therefore relatively low. 

However, it still gave a good indication if more than one particle size was present in 

the solution. 

 

It can be concluded that the precision of the PCS data was very high for the original 

solution and decreased with the presence of large particles, which were created 

through the applied shear stress. The method of cumulants worked extremely well for 

monodisperse samples like the original rituximab solution and delivered still very 
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acceptable results for the sheared solutions in this work. The precision of the contin 

analysis had to be considered low, but was in the present work in addition to the 

cumulants analysis a good indicator for the size distribution. 

 

E.3.4 Influence of excipients on PCS data 

An evaluation of the influence of added excipients to the original rituximab solution on 

the PCS measurements was performed. Z average was measured for the original 

solution and the solutions with added excipients. The obtained values were 

compared. It was found that the z average values of the solutions containing 

excipients differed from the original rituximab solution in the range of up to 1 nm. This 

can be explained with a change in viscosity of the solution when adding excipients. 

The viscosity introduced into the Zetasizer software for the original rituximab solution 

was 0.89 cP; this is the theoretical value indicated in the manual for aqueous 

solutions. Another explanation for the change of the mean hydrodynamic diameter of 

the protein in solution is the direct influence of the added excipients on the size of the 

molecule. The hydrodynamic diameter differs from the diameter of the dry particle 

because of a layer of solvent molecules around charged particles or attached 

surfactant molecules (Weiner, 1984). Excipients may influence this layer. In the case 

of very small sizes to be measured, which was true for the present determinations, 

these layers add to the diameter (Weiner, 1984). Furthermore, excipients that 

stabilize proteins against aggregation via the preferential exclusion mechanism drive 

the protein into a more compact conformation. The more compact conformation can 

lead to a smaller mean hydrodynamic diameter of the molecules. 

 

As for the present work the change of the mean hydrodynamic diameter with the 

circulation time in the test system was of higher relevance compared to the absolute 

value, the following procedure was developed to achieve a starting z average of 12.0 

nm ± 0.2 nm for all solutions. A viscosity value was empirically established by 

measuring the solutions and adapting the viscosity values till the measured z 

average showed 12.0 nm ± 0.2 nm. The acquired viscosity values are shown in Table 

E.3.7. These viscosity values were introduced into the program when measurements 

of the respective solutions were performed. 
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Table E.3.7: Viscosity values used for PCS measurements 
 
solution Viscosity (cP) 

orig. solution 0.89  

PEG 0.1% + Treh. 1% 0.92 

PEG 0.5% + Treh. 5% 1.04 

Treh.  5% 0.95 

PEG 0.5 % 0.95 

Tween 80 1.3% 0.95 

 

The quality of the obtained PCS data was not influenced by the added excipients. 

 

E.4 Comparison of WMP and RPP 

The peristaltic pump and the rotary piston pumps were compared in 2 aspects: filling 

precision and exerted shear stress on the protein solution. 

 

E.4.1 Filling precision 

The precision for different filling weights was calculated using Equation E.3.1. The 

WMP, RPP 2 and RPP 3 were compared. 5 consecutive dosing operations were 

performed. Every single dose was immediately weighed on an analytical balance 

(type AG204 Delta Range, Mettler Toledo Schweiz GmbH, Greifensee). Results are 

shown in Table G.5.1. It was found that at a filling weight at approximately 5 g, the 

WMP filling precision was circa 1 %, RPP 3 was circa 0.5 % and RPP 2 showed the 

best precision of 0.06 %. As expected the precision increased with increasing filling 

weight, e.g. 0.25 % for a fill weight of 11g with WMP. RPP 2 still showed a very high 

precision of 0.2 % for a lower fill weight around 2 g.  

 

E.4.2 Shear stress 

The results from the shear experiments with the WMP and the RPP 3 were 

compared and are illustrated in the graphs in Figure E.4.1 and Figure E.4.2. The test 

conditions corresponded to the description in D.2.3 I. For RPP 3 the dosage volume 

was 180, corresponding to 5.55 ml. The dosage volume used for the WMP of 4.3 ml 

was approximately in the same range. The speed applied in the shear experiment for 
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RPP 3 corresponded to 9.25 (=1.8 sec/stroke) resulting in a flow rate of 

approximately 185 ml/ min. The flow rate of the WMP was 200 ml/min. 
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Figure E.4.1: Developing of z average with increasing circulation in the test system 
 
Figure E.4.1 shows the effect of shear stress caused by the two different dosing 

systems on the developing of the mean hydrodynamic diameter (z average) of 

rituximab. In the shear experiment with RPP 3 the mean hydrodynamic diameter 

increased with increasing circulation of the protein solution in the test system. This 

was not the case when the WMP was used as dosing system. No effect on the mean 

hydrodynamic diameter was seen during cycling of the test solution with the WMP. 
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Figure E.4.2: Developing of PI with increasing circulation in the test system 
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Furthermore, it was observed that as well the polydispersity index increased when 

circulating the rituximab solution with RPP 3. It increased only marginally and not 

significantly when cycling with the WMP as shown in Figure E.4.2. Under the shear 

influence of the RPP 3 a development from a very narrow size distribution with a 

polydispersity index below 0.1 towards a broader size distribution could be observed. 

 

However, the evaluation of the visual aspect of the circulated solutions did not show 

any difference between solutions circulated with RPP 3 and WMP. All solutions 

remained clear without any visible precipitation throughout the shear experiments. 

Even the visual inspection after storing the solutions at 5 - 8°C for 5 - 7 days did not 

show any precipitation or cloud. 

 

The contin analysis method showed a slight increase of the width from 6.3 nm to 8.8 

nm at the end of the shear experiment with RPP 3. The size distribution always 

consisted of one peak. 

 

Conclusion: 

The shear stress which resulted from circulating the protein solution with the use of 

RPP 3 generated damage to the protein. This damage resulted in the formation of 

aggregated protein and could be seen in an increasing z average and a broadening 

of the size distribution indicated by a rising value for the polydispersity index. In 

comparison the WMP did not cause shear stress on the protein in solution. No 

damage of the protein in solution was indicated by the PCS results. However, the 

extent of shear and damage caused by RPP 3 was very limited. The polydispersity 

index after 10 cycles with RPP 3 was still below 0.1 which accounts for a 

monodisperse distribution. The contin analysis of the PCS measurements, which is 

good in finding contaminants like larger particles, did not show the appearance of a 

second peak. The width at half peak height gained only by 2.5 nm after 38 cycles. 

 

It is known that the selection of the appropriate processing equipment is a critical 

point in protein formulation (Wang et al., 2007). Factors which can influence the 

stability are contact surfaces (Tzannis et al., 1996) as well as shear stress exerted by 

the equipment. The reason for the slight increase in z average and PI due to 

circulation with RPP 3 in comparison to the WMP is suggested to lie in the different 
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geometry of the 2 pumps and the different flow of the solution. In the WMP the 

solution is driven by a peristaltic movement and the hydrodynamic shear stress can 

be calculated according to Equation C.4.3. In a cylindrical tube the shear stress for a 

laminar flow is 0 in the centre and maximal towards the inner surface. Evidently this 

maximum shear stress did not cause aggregation of the model protein. Due to the 

fact that the tubing had the same diameter, approximately the same length and the 

flow rate was in a comparable range for the 2 different pumps used, the 

hydrodynamic shear stress which occurred in the cylindrical tube was in a 

comparable range as well. For RPP 3 additional shear stress which might occur in 

the pump, predominantly originating from the rotary and vertical movement of the 

piston has to be considered. It is suggested that the shear stress which occurred in 

the gap between the cylinder and piston during the movements of the piston led to 

protein damage. This is in agreement with findings in literature. Maa and Hsu (1996) 

observed that during shear experiments using a concentric-cylinder shear device 

consisting of two concentric cylinders, where the inner cylinder can be rotated, a 

rhGH solution was slightly opalescent and the amount of soluble aggregates 

increased 2.4 ± 0.3% after 16 hours of shearing. Tirrell and Middleman (1975) 

studied the effect of shear in a coaxial cylinder viscometer using a urease solution. 

The rate of urea hydrolysis showed a continuous decrease as a function of shear 

time at a given shear rate. 

 

E.5 Comparison of different sizes of RPPs 

Shear experiments with RPP 1, 2, 3 and 4 were performed according to the 

conditions described in chapter D.2.3 I. The parameters used in the shear 

experiments for the comparison of the different rotary piston pumps were a DV of 180 

and a maximal pumping speed of 9.25. The aim of the comparison was to evaluate if 

the shear stress on the test solution is dependent on the pump size of the rotary 

piston pump. 

Figure E.5.1 shows the influence of circulating the solution with RPP 1-4 on the 

hydrodynamic mean diameter of the protein monomers. As a reference of a pump 

which was found not to cause any shear stress on the solution, the WMP was added 

to the graphs in Figure E.5.1 and Figure E.5.2. 
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Whereas RPP 3 and RPP 4 showed a minor influence on z average, the smallest 

pump RPP 1 could clearly be identified to very quickly induce the generation of larger 

particles, i.e. protein aggregates. A sharp increase of z average from originally 12.0 

nm to 15.0 nm was observed after circulating the solution twice. However, it has to 

be taken into account that if the polydispersity index is over 0.25, the z average size 

should only be used in a relative sense (Zetasizer 1000HS/3000HS, 2000). The 

solution cycled 38 times with RPP 3 and 4 showed in comparison a slow rise of z 

average from 11.9 nm up to only 12.6 nm and 12.9 nm respectively. The influence of 

circulating the solution with RPP 2 on hydrodynamic mean diameter was in-between. 

Z average showed a moderate rise in respect to the number of cycles performed. 
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Figure E.5.1: Developing of z average with increasing circulation in the test system 
 

Impact of Filling Processes on Protein Solutions  75 



Ursula J. Bausch   

0.000
0.100

0.200
0.300

0.400
0.500

0.600
0.700

0.800

0 10 20 30 40 50 60

Cycles

Po
ly

in
de

x

RPP size 1 RPP size 2 RPP size 3 RPP size 4 WMP
 

 
Figure E.5.2: Developing of PI with increasing circulation in the test system 
 
The polydispersity index plotted over the number of cycles shown in Figure E.5.2 

indicated as well that RPP 1 affected the protein solution most in comparison to the 

other sizes of pumps. After 2 cycles with RPP 1 the polydispersity index calculated 

with the cumulants analysis did not show a monodisperse size distribution any more, 

which was defined for this work to be below 0.1. The polydispersity index exceeded 

0.3 already after 2 cycles. The polydispersity index during pumping with RPP 3 and 4 

showed that the distribution of the particle size in the sheared solution gradually 

became broader during circulating but passed the limit for monomodal distribution of 

0.1 only after approximately 10 cycles.  

 

The size distribution calculated by the contin analysis showed during the circulation 

with RPP 1 a second peak at 200 nm or above. It was detected after 4 cycles. In one 

case the second peak appeared after 2 cycles already. The intensity of the second 

peak increased with cycling the solution in the test system. Representative examples 

for the size distributions in the original solution and after 2, 4 and 6 cycles with RPP 1 

are shown in Figure G.3.1 to Figure G.3.4 in the annex. The contin analysis of shear 

experiments with RPP 3 and 4 did not show a second peak in the size distribution but 

an increase of the width at half peak height of 2.5 nm and 1.6 nm respectively as 

shown in Table E.5.1. RPP 2 occasionally showed the appearance of a second peak 

after 20 cycles; out of 9 measurements obtained from performing the shear 

experiment 3 times with triplicate determination by PCS per sample, a second peak 

was detected in 5 measurements. 
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Table E.5.1: Width from contin analysis 
 
Pump width at half peak height 

initial (0 cycles)  
mean (± SD) 

width at half peak height 
end (38 cycles) 
mean (± SD) 

RPP 3 6.3 nm (± 0.8 nm) 8.8 nm (± 1.0 nm) 

RPP 4 5.9 nm (± 0.3 nm) 7.5 nm (± 2.0 nm) 

 

Conclusion: 

After 2 -4 cycles with RPP1 and after approximately 20 cycles with RPP 2 the size 

distributions in the sheared solution represented a multimodal distribution. Large 

particles had been generated due to the stress caused by the relevant pump and 

corresponded to protein aggregates. The more the solution was pumped, the more 

these aggregates dominated the light scattering. When pumping with RPP 3 and 4 

the size distribution was found to stay monomodal; just a slight broadening of the 

distribution was observed.  

In terms of shear stress caused by the different pumps, it could be concluded that 

RPP 1 caused high shear stress which very quickly led to physical degradation of the 

protein monomers. However, RPP 3 and 4 only marginally affected the protein 

solution and therefore it could be concluded that the stress caused by these 2 pumps 

was very limited. Pumping with RPP 2 was seen to create moderate stress. A clear 

dependency of the induced stress on the pump size could be established: the smaller 

the pump, the higher the shear stress on the solution. However, for pumps equal to 

the size of RPP 3 or larger a significant difference was not seen. 

 

E.6 Influence of the friction surface 

In this chapter the relationship between the friction surface and the exerted degree of 

stress on the test solution is examined. In the above chapters it was shown that the 

degree of stress generated by RPPs was different for the different sizes of pumps. 

The relation of the friction surface and the dosed volume is one factor which changed 

with the dimension of a pump. Furthermore, it was assumed that the stress on the 

solution was generated in the gap between the cylinder and the piston. The size of 

this gap is the clearance listed in Table D.2.2.  
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For this evaluation two different approaches were taken into account. First, the 

friction surface was set equal to the generated friction surface A during one stroke. A 

has been calculated according to Equation D.2.1 and results are listed in Table D.2.4 

(chapter D.2.1). The calculation of the generated friction surface considered the new 

contact area between the piston and the cylinder at the distance of the clearance, 

which was generated during one stroke. The generated friction surface has then 

been divided by the dosage in ml to obtain a comparable value for the different sizes 

of RPPs. The results are shown in Table E.6.1. 

 

The second approach was to take into account the cumulated friction surface FS as 

calculated in chapter D.2.1. Results are listed in Table D.2.4. The cumulative friction 

surface contained the vertical and the rotary movement of the piston. It corresponded 

to the areas under the curve when plotting the friction surface B over the 

displacement for the vertical and the rotary movement. The assumption was made 

that this sum of accumulated friction surface in the course of one stroke is 

proportional to the amount of stress exerted on the solution. The cumulated friction 

surface has then been divided by the dosage in ml to obtain a comparable value for 

the different sizes of RPPs. The results are shown in Table E.6.1.  

 
Table E.6.1: Cumulative friction surface FS and generated friction surface A in relation to the 
dosage volume DV 
 
Pump size – dosage volume FS/DV 

(mm3/ml) 
A/DV 
(mm2/ml) 

RPP 1- DV 180 117187.28 652.5

RPP 1- DV 300 113190.83 656.4

RPP 2- DV 180 78701.44 312.8

RPP 2- DV 300 64563.08 305.1

RPP 3- DV 180 65936.72 203.7

RPP 3- DV 300 50032.96 199.5

RPP 4- DV 180 53973.00 135.7

 

The relation of the calculated values in Table E.6.1 show that for the generated 

friction surface the value for RPP 3 is approximately one third and the value for RPP 

2, half compared to the value for RPP 1. The relation of the values regarding the 

cumulative friction surface is different. Furthermore the values for the same pump for 
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dosage volume 180 and 300 calculated from the cumulative friction surface vary 

whereas they are approximately the same when calculated from the generated 

friction surface. 

 

To evaluate the influence of the friction surface a plot with z average over the friction 

surface instead of the number of cycles was produced. The plots are shown in Figure 

E.6.1 and Figure E.6.2. 
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Figure E.6.1: Developing of z average in respect to the cumulative friction surface FS 
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Figure E.6.2: Developing of z average in respect to the generated friction surface A 
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The curves for RPP 3 and 4 were practically not inclined. Compared to the plot of z 

average over the number of cycles shown in Figure E.5.1, it was found that the 

curves for RPP 1 and 2 are more gently inclined relative to the progression of RPP 3 

and 4. This effect of approach of the curves when considering the developing of z 

average over the friction surface was seen to be slightly greater for the plot in Figure 

E.6.2 (generated friction surface A) than in Figure E.6.1 (cumulative friction surface 

FS). A correlation of the friction area to which the protein was subjected during the 

circulation in the test system and the intensity of stress which caused physical protein 

degradation could be supposed. However, it was evident that the friction surface 

could not be the only parameter on which the intensity of stress was dependent. 

Further possible factors which could influence the intensity and which could explain 

the comparatively high level of protein degradation which occurs during the use of 

RPP 2 and particularly RPP 1 could be the different clearance between piston and 

cylinder, the different shear speed in the gap due to the different diameter of the 

piston, or other parameters which change due to a different ratio in each pump like 

the flow speed at which the solution is pushed out or drawn inside the pump. Out of 

these, the clearance seemed to be the most likely one. A detailed experimental 

evaluation in respect of the influence of the clearance was not performed in the 

scope of this work. However, in the following chapters further evaluations were 

performed. As well, a characteristic pump parameter was proposed which considers 

various factors. 

 

Conclusions: The friction surface is suggested as a parameter which correlates with 

quantity of stress on the protein solution during circulation in the test system. As the 

friction surface was not the only parameter, the influence generally as well as the 

magnitude of the influence could not be proven. Furthermore, it was not possible to 

evaluate which calculation of the friction surface, i.e. the cumulative friction surface 

according to Equation D.2.3 or the generated friction surface according to Equation 

D.2.1, is closer to the reality. Considering the results from the influence of the dosing 

volume in connection with the calculation of the generated friction surface per ml 

dosed volume, the generated friction surface seemed to be more appropriate. 
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E.7 Influence of filling speed 

To evaluate the influence of the filling speed on the magnitude of shear stress 

caused, shear experiments under varying speeds were compared. In Figure E.7.1 

and Figure E.7.2 the results of the cycling at different velocities with RPP 3 and RPP 

1 respectively are demonstrated. 
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Figure E.7.1: RPP 3, DV 180 
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Figure E.7.2: RPP 1, DV 300 
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A quicker increase of z average calculated from the cumulants analysis was seen 

when circulating the solution with RPP 3 at low speeds. However, this was not 

consistent for all velocities. Exceptions were the 2 slowest speeds of 10 s/stroke and 

5.7 s/stroke. The mean hydrodynamic diameter increased more for the faster velocity 

of 5.7 s/stroke than that of 10s/stroke. 

For RPP 1 the results were less consistent. However, it has to be taken into 

consideration that circulation with RPP 1 generated large protein aggregates after 2 - 

4 cycles, yet. It is fact that the presence of large particles dominates the light 

scattering in comparison to light scattered by small particles. The relative standard 

deviation increased for rising z average values. Furthermore the z average value is 

only valid for monomodal distributions (Eisenring, 1994) and should be used in a 

relative sense if the polydispersity index is higher than 0.25 (Zetasizer 

1000HS/3000HS, 2000). Possibly, protein aggregation occurred too quickly when 

RPP 1 was used, so that a difference for the pumping velocities was not detectable 

with PCS. 

 

Conclusion: 

In Figure E.7.3 the slopes of the trend lines of the curves out of Figure E.7.1 and 

Figure E.7.2 calculated by employing least square linear regression have been 

plotted against the pumping velocities. A tendency to steeper slopes with declining 

velocities was seen. It can be concluded that higher filling speeds were favourable to 

low filling speed. The tendency can be explained with a shorter time of residence in 

the pump in the gap between cylinder and piston resulting in less stress on the test 

solution. However, it was found that there was no major influence of the filling speed. 

The contribution of the filling speed to the overall shear stress caused by a specific 

pump was minor. 

 

The influence of the residence time is in agreement with the calculation of the 

average shear by Maa and Hsu (1996), which considers the shear rate and the time 

spent in the shear field. As well, Charm and Wong (1970) found that the level of 

inactivation of enzymes is dependent on the shear rate and the time of exposure. 
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Figure E.7.3: Slopes versus pumping velocity 
 

E.8 Influence of filling volume 

The influence of the filling volume on the extent of stress on the circulated solution 

was evaluated by comparing the development of z average over the number of 

cycles to which the solution had been subjected. The solutions in this shear 

experiment were circulated at the maximum pumping speed with RPP 3. The dosage 

volumes of 300 and 180 were compared with each other. Z average was plotted over 

the number of cycles and is shown in Figure E.8.1. The same comparisons were 

done for solutions circulated with RPP1 at the maximum speed and the minimum 

speed for the 2 different dosage volumes 180 and 300. The graphs are shown in 

Annex G.4 Figure G.4.1 and Figure G.4.2. 

 

The results from the shear experiments with RPP 3 did not show a difference for the 

two different dosage volumes. The PI in relation to the number of cycles was 

coherent with the results of z average measurements. The PI of the starting solution 

corresponded to a monodisperse distribution. It slightly exceeded 0.1 after 16 cycles 

and stayed in the range of a narrow distribution till the end of the experiment. This 

was found for both dosage volumes. 
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Figure E.8.1: RPP 3, dosing speed of 1.8s / stroke 
 

The two plots in Figure G.4.1 and Figure G.4.2 resulting from the shear experiments 

with RPP 1 are controversial. The experiment at minimum speed showed a slightly 

quicker increase of z average with increasing circulation for the small dosage volume 

of 180, corresponding to 0.52 ml compared to DV 300 equivalent to 1.12 ml. This 

was particularly true for the end of the experiment after circulating the solution 6 

times. However, it can not be neglected that for both dosage volumes the PI of the 

solution was found to be above 0.25 after 2 cycles, in which case z average should 

be used in a relative sense only (Zetasizer 1000HS/3000HS, 2000). After circulating 

the solution 4 times the PI had exceeded 0.5, which means that aggregates of 

different sizes were formed. 

 

The shear experiment with RPP 1 at maximum speed resulted in a more important 

rise of z average after 6 cycles of the dosage volume 300. The contrary was found 

for z average after 4 cycles.  

 

The calculation of the generated surface A in relation to one dosed ml showed that 

for RPP 1 as well as for RPP 3 these values were in the same range for the dosing 

volumes of 180 and 300. The results of this calculation are listed in Table E.8.1. 

 

On the other hand, the dosage volume was an important factor taken into account for 

the calculation of parameter δ in form of the number of strokes needed to pass the 

volume of 1000 ml once with a specific RPP at a DV of 180. δ was suggested in 
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chapter E.11 as characteristic pump parameter for rotary piston pumps indicating the 

risk of causing protein damage. 

 
Table E.8.1: Generated surface in relation to dosed volume 
 
Pump – DV A/DV (mm2/ml) 

RPP 1 – DV 180 652.5 

RPP 1 – DV 300 656.4 

RPP 3 – DV 180 203.7 

RPP 3 – DV 300 199.5 

 

The influence of the filling volume could not be conclusively evaluated. Within one 

size of RPP a difference in the amount of stress exerted on the protein solution using 

different dosage volumes for a fixed number of cycles in the test system could not be 

confirmed. At low speed of the piston movement a tendency could be observed that 

large dosing volume is favorable to small one, i.e. number of strokes performed is 

relevant. At high speed a clear significant difference between large and small dosing 

volumes was not seen. 

No influence of the dosing volume would be coherent to the calculated relation of the 

generated surface over the dosed volume in ml. However, this would not be in 

agreement with the established characteristic rotary piston pump parameter δ in 

chapter E.11. 

 

E.9 Influence of exposed air-liquid interface 

In the present chapter an evaluation of the influence of the air-liquid interface was 

performed to verify if protein aggregation was induced predominantly by the rotary 

piston pump and not by the accumulation of the protein at the air-liquid interface. 

 

A shear experiment was performed by circulating the protein solution with the filling 

needle positioned below the liquid level, to avoid the formation of new air-liquid 

interfaces and keep the size of the interface constant. The results were compared 

with the shear experiment using the same parameters with exception to the position 

of the filling needle. 
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No statistically significant (Student’s t-test, p=0.05) difference of the PCS result in 

respect to z average values after 40 and 80 piston strokes was observed. Results are 

shown in Table E.9.1. 

 
Table E.9.1: Comparison of the developing of z average for 2 different filling needle positions 
 
 

Sample 

Z average  

After 0 strokes 

Mean ± SD (nm) 

Z average  

After 40 strokes 

Mean ± SD (nm) 

Z average  

After 80 strokes 

Mean ± SD (nm) 

RPP 1, speed 7, DV 300 12.0 ± 0.0 15.2 ± 0.2 19.8 ± 0.7 

RPP 1, speed 7, DV 300 

Needle below liquid level 
11.9 ± 0.1 15.4 ± 0.3 18.5 ± 0.8 

 

It was concluded that protein degradation was not significantly influenced by the 

increasing air-liquid interfacial area. This is also supported by the fact that pumping 

with the peristaltic pump did not show an effect on the mean hydrodynamic diameter 

even though the air-liquid interface renewal during pumping was comparable to that 

of rotary piston pumps. The exposure to the air-liquid interface during the shear 

experiments could be excluded as a cause for formation of protein aggregates in this 

study.  

 

In opposition to this result, literature gives a lot of evidence that physical protein 

degradation can be caused by the air-liquid interface or by surfaces particularly in 

combination with shear stress (Tzannis et al., 1996; Maa et al., 1997; Harrison et al., 

1998). Depending on the properties of the protein, it can be more or less prone to 

accumulation and degradation at the air-liquid interface. Maa and Hsu (1997) 

suggested that recombinant human desoxy-ribonuclease was adsorbed less to the 

air-liquid interface due to lower surface activity and showed therefore a higher 

stability. Furthermore, it has to be taken into account that a detergent like 

polysorbate, which was present in the sheared rituximab solution, is effective in 

preventing or reducing protein adsorption to interfaces and surfaces and is routinely 

used in protein formulations (Capelle et al., 2007; Wang et al., 2007, Bam et al., 

1998). 
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E.10 Determination of protein monomer loss 

To evaluate the extent of protein damage due to shear stress caused by rotary piston 

pumps, shear experiments over 3 hours were performed according the conditions 

described in section D.2.3 III. Loss of protein monomers was determined and is 

shown in Figure E.10.1. The monomer content decreased linearly with time circulated 

in the test system. It was found that the monomer content decreased to 97% during 3 

hours circulation with RPP 1. When circulating the test solution with RPP 2 the 

monomer content decreased by approximately 0.5%. With RPP 3 an increase of 

protein monomers over 3 hours was observed. The increase of monomer content 

could be explained with the evaporation of water during the 3 hours duration of the 

shear experiment. When the long term shear experiment was performed the first time 

an increase of monomer content in the range of 1% was observed for RPP 2 and 

RPP 3. Therefore the shear experiments were repeated and precautions were taken 

to reduce evaporation of water during circulation. The system was closed with 

parafilm. Evaporation could be reduced but not completely eliminated, suggesting 

that the monomer loss for RPP 2 and 3 was slightly higher. 

 

During the course of the shear experiments with RPP 1 and 2 the test solution 

became cloudy and the degree of turbidity increased with circulation time due to the 

formation of protein aggregates. The test solution sheared with RPP 3 stayed clear 

till the end of the experiment. 
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Figure E.10.1: Determination of rituximab monomer loss with SEC-HPLC 
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Conclusion: 

Protein molecules were not damaged by pumping with RPP 3 or the quantity of 

damaged protein was below the detection limit of the method. Circulation of the 

solution with RPP 1 clearly caused damage to the protein molecules. The applied 

shear stress caused by pumping induced protein aggregation and precipitation. The 

quantity of damaged protein increased linearly with pumping time. As well RPP 2 

stressed the protein solution in an extent to cause protein damage with time, even 

though the shear stress caused by this pump was lower compared to RPP 1. 

 

The results found were consistent with results of the PCS measurements in this 

work. However, the absolute quantity of protein monomer loss has to be regarded 

with caution. First, the evaporation of water has to be considered. Second, for the 

determinations with the SEC-HPLC method it should be taken into account that 

proteins tend to bind to SEC columns. Gabrielson et al. (2007) found significant 

antibody losses through the SEC column. 

 

A loss of protein monomer due to applied shear stress and subsequent formation of 

aggregates was found by Maa et al., (1997) for rhGH solutions. The rhGH solutions 

as well became cloudy and turbid with increasing shearing time. Further examples 

can be found in literature where shear stress led to denaturation, e.g. Harrison et al., 

(1998). 

 

E.11 Characteristic rotary piston pump parameter 

To characterise the potential of a rotary piston pump to cause shear during filling and 

dosing on a protein in solution which subsequently might lead to protein degradation, 

agglomeration and precipitation, an evaluation to find an applicable characteristic 

rotary piston pump parameter was performed. In the present chapter such a 

parameter is proposed and assessed. 

 

The parameter is suggested to be δ and was obtained by dividing the generated 

friction surface A in mm2 by the dosage volume DV in ml and by the clearance d 

between piston and cylinder in mm and by multiplying it with a factor, that was 
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obtained by dividing 1000 ml by the dosage volume DV in ml. The formula for δ is 

shown in Equation E.11.1. 

 

DV
ml

dDV
A 10001
1000

⋅⋅
⋅

=δ    Equation E.11.1 

 

The dimension of the suggested characteristic pump parameter δ is: 
mm2

1 . 

 

For the calculation of δ the dosage volume and the generated friction area A for 

dosage 180, which corresponds to a stroke of 18 mm, was considered. The 

considered dosage had mainly an influence on the above described factor of: 1000 

ml/DV, which describes the ratio between cycles and strokes for a specific pump at a 

specific dosage volume. It is the number of strokes needed to circulate 1000 ml once 

in the test system with a certain pump at a specific dosage volume. The value for 

A/DV was only marginally influenced as the obtained values were in a comparable 

range for a specific pump when calculated e.g. with dosage 180 and 300. The values 

for the generated friction surface A per dosage volume DV are displayed in Table 

E.6.1. 

 

Parameter δ was calculated for RPP 1 - 4 and is displayed in Table E.11.1. The 

lower the value, the less shear stress is exerted by the pump and therefore the lower 

the risk for a protein to be damaged during the dosing operation. The lowest value 

was obtained for RPP 4. With decreasing pump size, δ increased. In principal this 

complied with the results of the shear experiment, which showed that the increase of 

z average and PI with increasing circulation in the test system was getting more 

important the smaller the pump size. With exception to RPP 3 and 4, for which the 

result was less consistent. Although that δ was smaller for RPP 4 than for RPP 3, the 

shear experiment did not show a significant difference between the 2 pumps. Even a 

very slight trend was observed that RPP 3 caused marginally less stress in 

comparison to RPP 4. An explanation for this could be that an impact on the particle 

size distribution could only be observed if δ exceeded a certain value. If δ was 

smaller than this limit, the difference in the impact of the pumps would be too small to 

be detected with PCS. This limit for δ is suggested to be somewhere between 1668.3 

mm-2, the value for RPP 3 and 7829.8 mm-2, the value for RPP 2. Furthermore, the 
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values for δ for RPP 3 and 4 were relatively close to each other and hence, they 

might be too close to see a difference in the impact on the particle size distribution. 

 
Table E.11.1: Calculation of δ 
 
RPP size A/DV 

(mm2/ml) 
1000/DV 
(ml/ml) 

d 
(mm) 

δ 
(1/mm2) 

RPP1 652.5 1923.1 0.013 96523.7
RPP2 312.8 425.5 0.017 7829.8
RPP3 203.7 180.2 0.022 1668.3
RPP4 135.7 80.0 0.022 493.5
 

The course of the curves in Figure E.5.1 was normalized by multiplying the cycles 

with the characteristic pump parameter δ. The resulting curves are shown in Figure 

E.11.1 and for a better resolution in Figure E.11.2. without the curve for RPP 1. To 

compare the course of the curves in Figure E.5.1 and Figure E.11.1 graphs with the 

slopes of the curves in each Figure in relation to the characteristic δ were plotted and 

are shown in Figure E.11.3 and Figure E.11.4. 

 

Figure E.11.1 and Figure E.11.2 show that a normalization using the proposed 

parameter δ led to curves for the different RPP sizes with comparable slopes. 

Therefore, it seems that δ could compensate the differences in the course of the 

curves of Figure E.5.1 and hence represented well the influencing factors in an 

adequate proportion leading to the different slopes of the original curves. 
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Figure E.11.1: Curves normalized by multiplication of cycles with δ 
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Figure E.11.2: Curves normalized by multiplication of cycles with δ (without curve for RPP 1) 
 

On the basis of the characteristic pump parameter and its calculation, the main 

factors to explain the difference of the pumps in terms of protein damage are 

suggested to be first, the clearance between piston and cylinder. The smaller the gap 

between them, the more stress was exerted. This relation is also represented by 

Equation C.4.2., used by Maa and Hsu (1996) to calculate the average shear in a 

concentric-cylinder device. The average shear increases with a decreasing gap. The 

second important factor influencing the amount of stress was the dosage volume. 

This work suggests that per stroke a specific amount of stress was exerted. This 

influencing factor was expressed in the equation for δ as the term 1000/DV, the ratio 

between cycles and strokes. Therefore, contrary to the results presented in chapter 

E.8, that no significant influence of the dosage volume on the developing of z 

average and PI during circulation in the test system at high speed could be 

demonstrated, smaller dosage volumes would be less favourable, as more strokes 

are necessary to pass a defined volume. The same is applicable for smaller pump 

sizes. The third influencing factor is suggested to be the friction surface in proportion 

to the dosed volume. This ratio was seen to be higher and hence, less favourable for 

smaller pumps. It was found to be independent of the dosing volume. 
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Figure E.11.3: Slopes of the curves in Fig. D.5.1 
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Figure E.11.4: Slopes of the curves in Fig. D.11.1 
 

A correlation between the slopes of the original curves in Figure E.5.1 with the 

characteristic pump parameter δ was examined and a linear regression was found 

with a correlation function according to Equation E.11.2 and a coefficient of 

determination R2 of 0.9995. 

 

01.0102)( 5 +⋅= − xxf     Equation E.11.2 
 

Conclusion: 

With δ a parameter was created, which seems to adequately reflect the amount of 

physical stress applied by a specific rotary piston pump. A linear correlation was 

found between δ and the degree of increase of z average with circulation of a protein 

solution using a rotary piston pump. 
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E.12 Evaluation of protective effect of excipients 

The protective effect of excipients was determined by circulating solutions containing 

different excipients and combinations of excipients in the test system using RPP 1 

and a pumping speed of 9.25. The mean hydrodynamic diameter and polydispersity 

index were measured in samples after 0, 2 and 4 cycles. The graph in Figure E.12.1 

shows the development of the mean hydrodynamic diameter of the different solutions 

compared with the original solution. An increase of z average was observed for all 

solutions. The total of 5 solutions with different combinations of excipients stayed 

below the measured z average of the original solution after 4 cycles. The smallest 

increase of z average after 4 cycles was measured for the solution containing 0.5 % 

PEG 6000 and 5% Trehalose dihydrate.  
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Figure E.12.1: Developing of z average with increasing circulation of the solutions in the test 
system 
 

The results form the polydispersity index measurements of the unsheared and 

circulated solutions are summarized in Figure E.12.2. For the original rituximab 

solution the lowest polydispersity index was measured. The excipients seemed to 

influence the polydispersity index of the solutions before they were circulated in the 

test system. An explanation for this could be slight impurities of the excipients. The 

slopes of the linear regression line of the curves in Figure E.12.2 were considered to 

evaluate the influence of the excipients on the polydispersity index and are shown in 

Table E.12.1. It was observed that the unsheared rituximab solution showed the 
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narrowest size distribution with a polydispersity index of 0.057 ± 0.011. After 

circulation in the test system the solution developed the highest value for the 

polydispersity index of 0.529 ± 0.035. The linear regression line of the solution with 

0.5% PEG and 5% Trehalose dihydrate showed the lowest slope of 0.0737; the 

starting polydispersity index for this solution was measured to be 0.161 ± 0.004 and 

increased to 0.455 ± 0.017 after 4 cycles.  
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Figure E.12.2: Developing of the PI with increasing circulation of the solutions in the test 
system with RPP 1 
 
Table E.12.1: Slopes of the Polydispersity index curves in Figure E.12.2
 
solution orig. 

solution 
PEG 0.1% 
+ Treh. 1% 

PEG 0.5% 
+ Treh. 5% 

Treh.  5% 
 

PEG  0.5% 
 

Tween 80 
1.3% 

slope 0.1179 0.0914 0.0737 0.0774 0.1005 0.0948 

 

The trend that the combination of 0.5 % PEG 6000 and 5% Trehalose dihydrate 

stabilised the protein complies with findings in literature. Xie and Timasheff (1997) 

showed that trehalose stabilizes ribonuclease A via preferential exclusion from the 

protein surface. Bhat and Timasheff (1992) confirmed that polyethylene glycols 

stabilize proteins by preferential hydration of the protein. Preferential hydration 

increases with increasing PEG size. The polyethylene glycols are excluded from the 

proteins surface due to steric reasons.  
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E.13 Comparison of PCS, SEC-HPLC and TEM 

For the test runs performed with a rituximab model solution, different analytical 

techniques were employed to evaluate the solutions after being subjected to shear by 

circulation in the test system. The analytical methods, chosen out of a wide range of 

available methods, were photon correlation spectroscopy, size-exclusion 

chromatography, and transmission electron microscopy. The aim of the methods was 

to qualitatively and quantitatively determine the potential damage to the protein 

caused by a dosing system. The parameter to estimate this damage was chosen to 

be the formation of aggregates. In the present chapter a comparison of these 

methods and their suitability for aggregation analysis is evaluated.  

 

PCS was the method which has been predominantly used for this work. By 

measuring the mean hydrodynamic diameter z average and the polydispersity index, 

it was possible to detect with this method even very slight changes in the composition 

of the solution in terms of present particle sizes. Such slight changes were seen for 

example during the shear experiments with RPP 3 and RPP 4. Z average increased 

during circulation with RPP 3 from 11.9 nm to 12.5 nm by only 0.6 nm after 16 cycles. 

A great advantage for the detection of these minimal changes was the fact that no 

sample preparation or sample dilution was necessary. The samples drawn could be 

measured directly by introducing them into the measuring quartz cell. Dilution, for 

example, can lead to dissociation of reversible aggregates (Harn et al., 2007). 

Furthermore, varying solution conditions like ionic strength, salt type and pH affect 

protein aggregation (Chi et al., 2003b). Thus, any influence on the aggregation level 

in the sample during sample preparation or the measurement itself due to changes in 

solution conditions could be excluded. Particulate contamination of the sample, which 

would perturb the PCS measurement, was controlled by applying the precautions 

described in chapter D.2. However, the PCS method as applied in this work, 

encountered its limitations when the aggregation level in the sample increased. Large 

aggregates, as occurred e.g. during the circulation with RPP 1, very much perturbed 

the measurement, as the scattered light was much more intense. Depending on what 

particle passed the laser beam in the moment of measurement, the result for z 

average and the polydispersity index varied accordingly. The resulting z average and 

polydispersity index had to be interpreted carefully and in a relative sense. Even 
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though the contin analysis displays a size distribution, the concentration of 

aggregates in the sample could not be determined with this method. Examples of 

size distributions are shown in chapter G.3. A previous separation by size would be 

necessary to perform quantification and a determination of size (Demeule et al., 

2007). 

 

Size-exclusion HPLC was employed with the purpose to determine the amount of 

aggregation generated by shear stress from the dosing system, as this determination 

was a limitation of PCS. A shear experiment with RPP 1 at a pumping speed of 9.25 

and a dosing of 300 was performed to have a comparison of the PCS analysis and 

SEC-HPLC. Samples were drawn after 2, 6, 12, 18, 24, 30 and 42 cycles and 

analysed with SEC-HPLC. Results are shown in Figure G.8.1 in the annex. A 

monomer loss was observed between 0 and 2 cycles, however in the following no 

further loss was seen up to 42 cycles. The loss of protein monomers after performing 

2 cycles does not correspond to a loss due to aggregation. It can be explained with 

the fact that the sample at 0 cycles corresponded to the original rituximab solution 

and the sample taken after 2 cycles was taken from the test system. A dilution effect 

of the test solution occurred after the first cycle as the test system was not 

completely dry; some residual water rested after cleaning. When comparing these 

results with the results from PCS measurements, it was evident that the sensitivity of 

SEC-HPLC is much lower to detect aggregation in the test solution. To obtain a result 

in respect of a quantification of the lost native protein, the circulation in the test 

system had to be increased. Therefore samples were taken after 60, 120 and 180 

min circulation in the test system, which corresponds to approximately 45 cycles per 

hour for RPP 1 at a pumping speed of 9.0, a dosage volume of 0.52 ml and a total 

volume in the system of 23.0 ml. A loss of protein monomers in this long-term 

experiment over 3 hours with RPP 1 of 1.5% (±0.9%) after 60 min., 2.3% (±1.2%) 

after 120 min. and 3.2% (±1.8%) after 180 min. was observed. In comparison 

examples of graphs from PCS measurements of similar test conditions after 0, 2, 4 

and 6 cycles are shown in chapter G.3. A loss of protein monomers of 1.5% 

corresponds to a loss of 0.15 mg per ml. As 60 min. circulating corresponds to 

approximately 45 cycles, it can be calculated as a rough estimation that a loss of 

0.007 mg protein monomers resulting in protein aggregates per ml was detected 

qualitatively with PCS in the sample taken after 2 cycles.  
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The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.03 

mg/ml and 0.09 mg/ml respectively for the SEC-HPLC method. The calculation was 

performed with the equations in chapter G.7 in the annex. 

 

TEM was used as a method to visualise the aggregates in the solution. It was used to 

confirm aggregation in the test solutions. A quantification of aggregates with TEM 

was seen to be rather difficult, as a large range of sizes was observed. In Figure 

E.13.1 and Figure E.13.2 pictures of TEM measurements of a sheared solution are 

shown. 

 

  
Figure E.13.1: TEM picture of a sheared rituximab solution 
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Figure E.13.2: TEM picture of a sheared rituximab solution 
 

In both pictures particles of the size of a few nm up to a few µm are seen. 

Furthermore particles of different density were observed, ranging from clear grey 

loose agglomerates to almost black more firm aggregates. Compared to the pictures 

in Figure E.2.1 and Figure E.2.2 of the unsheared solution, it is evident that the 

number of aggregates increased remarkably. 

  

Conclusion: 

With PCS a very sensitive method to changes due to the formation of protein 

aggregates in the shared test solution was at disposition. For the determination of the 

amount of aggregated protein, SEC-HPLC was a suitable method, even though it 

was found that the sensitivity was much lower than for PCS. Additionally, it was 

found to be a useful complement for the two methods, to confirm the formation of 

aggregates by visualization with TEM.  

 

The low sensitivity found for the SEC-HPLC method can be derived from the fact that 

proteins tend to bind to columns. Gabrielson et al. (2007) examined the aggregation 

level in a monoclonal antibody formulation using SEC-HPLC, assymetrical flow field 

flow fractionation and sedimentation velocity and found statistically significant 

98  Impact of Filling Processes on Protein Solutions 



  Ursula J. Bausch 

(p<0.01) antibody loss through the size exclusion column. Arakawa et al. (2006a) 

observed that larger aggregates of monoclonal antibodies tend to stick to SEC 

columns and the addition of arginine HCl to the mobile phase leads to a higher 

recovery of the aggregates. Such binding can lead to abnormal chromatograms, 

protein loss, column damage and an abnormal separation profile inducing an 

inaccurate determination of protein molecular weight data and incorrect analysis of 

protein interactions (Ejima et al., 2005). 
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FF  CCOONNCCLLUUSSIIOONNSS  

F.1 Shear Forces during filling processes 

In the present study dosing and filling equipment was examined in respect to the 

effect of physical stress which possibly occurs during filling and dosing processes on 

protein solutions. A negative effect on protein solutions due to shear stress was 

confirmed for certain dosing equipment.  

 

β-galactosidase did not show any loss of activity after having been circulated with a 

rotary piston pump. Rituximab aggregated under the physical stress caused by a 

rotary piston pump. The reason for this could be a different sensitivity of each protein 

to shear stress due to the difference in primary, secondary and tertiary structure 

which leads to different instabilities. To confirm this, additional experiments with other 

proteins would be required. Another possible reason could be the different sensitivity 

of the applied analytical methods in respect to detect aggregation. As well possible is 

a combination of both proposed causes. Before filling protein solutions the sensitivity 

to shear should be assessed. 

 

The comparison of a peristaltic pump and 4 different sizes of rotary piston pumps 

showed that the peristaltic pump did not cause any physical stress. The rotary piston 

pumps delivered different results depending on their size. Rotary piston pump size 2 

and particularly size 1 caused aggregation and precipitation of rituximab. Whereas 

circulating with rotary piston pumps size 3 and 4 did not induce precipitation. A very 

low level of protein aggregation after extended circulation with RPP 3 and 4 in the 

test system was seen when analysing with photon correlation spectroscopy. 

However, it should be kept in mind that during a filling operation within the 

manufacturing of the final dosage form of a pharmaceutical solution the liquid product 

is not circulated but passes the dosing equipment one single time. On the other hand 

even minimal formation of visible or sub visible particles present in the final drug 

product is unacceptable and leads to low yield and refused batches. Therefore 

precautions for the filling of shear sensitive proteins should be taken in terms of 

choosing the appropriate dosing equipment. In this respect peristaltic pumps can be 
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considered to be suitable for the filling of these kinds of products. Furthermore no 

negative effect is expected when using rotary piston pumps of size 3 and 4. Rotary 

piston pumps size 1 and 2 should be avoided for shear sensitive products. 

 

On the basis of the evaluated parameters it was demonstrated that apart from the 

size of the rotary piston pump, the filling speed had an influence on the aggregation 

level in the model protein solution. High filling speed was found to be slightly more 

favourable than slow filling speed. This tendency could be explained with the 

residence time of the protein in the gap between cylinder and piston. Therefore 

special attention should be given to slow filling speeds during a filling operation when 

rotary piston pumps are used. These particularly can occur whenever an intervention 

which imposes a machine stop happens during manufacturing. The last vials before 

the stop and the first ones after restarting the machine should very critically be 

monitored and investigated. Machine stops should be as far as possible avoided. 

 

The relationship between the friction surface and the exerted physical stress during 

filling with a rotary piston pump could not be definitely clarified to allow for an overall 

conclusion. A contribution to the physical stress is possible but not stringent. 

Certainly, at least one further factor significantly influenced the extent of physical 

stress, which has found to be unequal for the different sizes. The clearance between 

the piston and the cylinder was suggested as a factor. This would be coherent with 

the results from the shear experiments. Pump sizes 3 and 4, which have the same 

clearance, exhibited comparable extent of stress, whereas with diminishing clearance 

the amount of exerted stress, resulting in protein aggregation, increased. This is as 

well coherent with the calculation of the shear rate by Maa et al. (1996) as in chapter 

B4, which implies that the shear rate and therefore shear stress and average shear 

increase by narrowing the gap between cylinder and piston. Further investigations 

with identical pumps which differ only in their clearance would be necessary to 

evidence this implication. 

 

The calculation of the friction surface was performed as the cumulative friction 

surface and the generated friction surface. The cumulative friction surface takes into 

account the complete friction surface which accumulated during one stroke. The 

generated friction surface was defined as the surface which corresponds to the inner 
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surface of the cylinder in the height of the stroke. This was as well the area which 

was definitely flushed during every stroke with new solution. It did not consider the 

complete cylinder area which is covered by the piston throughout the movements. 

The generated friction surface per ml of dosed solution was characteristic for each 

pump and independent of the dosing volume. This would be coherent with the results 

of the shear experiment with different dosing volumes at high filling speed, where a 

difference for varying dosing volumes within the same pump could not be proven. 

However, it should be noted that the influence of the dosing volume could not be 

conclusively analyzed. At low speed of the piston movement a tendency could be 

observed that large dosing volume is favorable to small, i.e. number of strokes 

performed is relevant. At high speed a clear significant difference between large and 

small dosing volumes was not seen. 

 

A characteristic rotary piston pump parameter δ was suggested, which indicates the 

potential of the respective RPP to cause damage to a protein due to the exerted 

shear stress during filling. Apart from the 2 above mentioned factors, the clearance 

between cylinder and piston and the generated friction surface per ml, a third factor, 

the ratio between cycle and stroke, was taken into account in the equation used for 

the calculation of δ. This suggested a third important influencing factor to the amount 

of stress caused by a RPP, which is the dosing volume. It was assumed that every 

pumping stroke causes a certain amount of stress, independent of RPP size and 

dosing volume. This implied that smaller dosing volumes are less favorable as the 

stress per dosed ml is higher than for large dosing volumes. It was found that the 

calculated values for δ represented well the potential to cause damage for the 

different pump sizes and therefore seemed to be an adequate characteristic pump 

parameter for RPPs. 

 

With different combinations of excipients, which were added to the original rituximab 

solution, the aggregation level caused by rotary piston pump 1 was slightly reduced. 

The combination of 0.5% polyethylene glycol 6000 and 5% trehalose dihydrate was 

the most effective protection. 
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F.2 Suitability of analytical methods for the evaluation of 

shear sensitivity 

Photon correlation spectroscopy was predominantly used for the present work. It was 

found that it represents a very sensitive method to detect changes in the particle size 

distribution of the rituximab solution after circulating it in the test system. It was 

calculated that 0.007 mg aggregated protein per ml could be detected, whereas the 

limit of detection for the SEC-HPLC method was found to be 0.03 mg/ml. Even very 

slight changes in the solution were detected with PCS as for example the changes 

caused by circulating the solution with RPP 3. These changes were not detectable 

with SEC-HPLC. 

 

SEC-HPLC was used to quantify the aggregated protein. The loss of protein 

monomers was determined. A direct quantification of aggregates with SEC-HPLC 

was not chosen, as in some of the sheared solutions aggregated protein precipitated 

and the solution became turbid. To avoid that precipitated protein entered the 

column, the solutions were stored and centrifuged before SEC-HPLC analysis. 

Furthermore, SEC-HPLC is often put into question due to the fact that proteins, 

particularly in the form of soluble aggregates, tend to bind non-specifically to columns 

and are therefore lost for quantification (Stulik et al., 2003). 

 

Transmission electron microscopy was found to be suitable imaging method to prove 

that changes in the particle size distribution detected with PCS came from the 

formation of protein aggregates. A quantification of the aggregates was not possible 

with this method. 

 

 

104  Impact of Filling Processes on Protein Solutions 



  Ursula J. Bausch 

GG  AANNNNEEXX  

G.1 Therapeutic Proteins 

Table G.1.1: List of recombinant therapeutic proteins approved in the European Union till  
2004 (ISB, 2004) 

 
Recombinant enzymes, hormones and cytokines; Recombinant antibodies; recombinant vaccines 

Drug Main indication Applicant First approval in EU 

Insulin, human Diabetes mellitus type 1 Lilly, Novo Nordisk, Hoechst 12/1987 

Interleukin-2, IL-2 (Aldesleukin) Hypernephrom (for T-cell activation) Chiron 12/1989 

Somatotropin (human growth hormone) Dwarfism Lilly, Pharmacia, Serono, Novo 

Nordisk, Ferring 

02/1991 

Glucagon Hypoglycemic reaction Novo Nordisk 03/1992 

Erythropoietin beta (Epoetin beta) Renal anemia Boehringer Mannheim 05/1992 

Interferon gamma 1b Chronic granulomatosis Boehringer Ingelheim 1992 

Interferon alfa-2b Hairy cell leukemia, carcinomas 

Papilloma induced genital warts 

Essex Pharma 03/1993 

02/2000 

Erythropoietin alpha (Epoetin alpha) Renal anemia Janssen-Cilag 04/1993 

GM-CSF (Molgramostim) Neutropenia Essex Pharma 

Sandoz 

04/1993 

Interferon alpha-2a Hairy cell leukemia, carcinomas, 

Papilloma induced genital warts 

Roche 04/1993 

Faktor VIII Hemophilia A Bayer AG, Baxter, Armour 

Pharma 

07/1993 

G – CSF, glycosylated Neutropenia Rhône – Poulenc Rorer, Chugai 

Rhône – Poulenc 

10/1993 

Tissu plasminogen activator, t-PA Coronary thrombosis, thrombosis Dr. Karl Thomae 04/1994 

Glucocerebrosidase Morbus Gaucher Genzyme B.V. 06/1994 

G – CSF Neutropenia Hoffmann-La Roche, Kohl 

Pharma 

08/1994 

Hum. DNAse Mucoviscidosis Hoffmann-La Roche 09/1994 

Follitropin alpha Ovaries stimulation, IVF Serono Laboratories 10/1995 

Interferon beta – 1b Multiple sclerosis Schering  11/1995 

Factor VII Bleeding with hemophilia A and B Novo Nordisk 02/1996 

Insulin, Lispro Diabetes mellitus type 1  Lilly Deutschland  05/1996 

Follitropin beta Ovaries stimulation, IVF Organon 10/1996 

Gewebe - Plasminogen-Activator, r-PA Coronary thrombosis, thrombosis Boehringer Mannheim 11/1996 

Faktor IX Hemophilia B Genetics Institute of Europe 08/1997 

Interferon beta-1a Multiple sclerosis Biogen France, Ares-Serono 03/1997 

Hirudine Treatment of heparinassociated 

thrombocytopenia 

Behringwerke 03/1997 

Desirudine Prevention of thrombosis during surgery Ciba Europharm Ltd 03/1997 

Calcitonin Osteoporosis, Paget’s disease; 

hypercalcaemia 

Unigene UK 01/1999 

Interferon alfacon-1 Hepatitis C Yamanouchi 02/1999 

Platelet cells derived growth factor, r-

hPDGF 

Treatment of ulceritis of diabetes 

patients  

Janssen-Cilag N.V. 03/1999 

Tumor necrosis factor alfa-1a Palliative therapy of sarcomas; adjuvant 

therapy after surgery of tumor patients 

Boehringer Ingelheim 04/1999 

Moroctocog alpha Preparation for surgery of hemophilia 

patients 

Genetics Institute 04/1999 
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Thyrotropin alfa Scintigraphy of thyroid gland with 

radioactive iodine 

Genzyme B.V. 07/1999 

Insulin aspart Diabetes mellitus type 1 Novo Nordisk A/S 09/1999 

Peginterferon alfa-2b Hepatits C Schering Plough Europe 05/2000 

Insulin glargin Diabetes mellitus HMR Deutschland/Aventis 06/2000 

Etanercept Rheumatoid arthritis Wyeth-Lederle 02/2000 

Rasburicase Tumor induced hyperuricaemia Sanofi 02/2001 

Tenecteplase Coronary thrombosis, thrombosis Boehringer Ingelheim 02/2001 

Choriogonadotropin alpha Ovaries stimulation IVF Areos Serono 02/2001 

Lutropin alpha Maturation of follicles, IVF Ares Serono 02/2001 

Darbepoetin alfa Renal anemia Amgen Europe 06/2001 

Agalsidase alfa Therapy of Fabry disease TKT Europe-5S AB 08/2001 

Agalsidase beta Therapy of Fabry disease Genzyme B.V. 08/2001 

Anakinra Rheumatoid arthritis Amgen  03/2002 

Dynepo Renal anaemia Aventis  02/2002 

Pegfilgrastim Neutropenia Amgen Europe 08/2002 

Drotrecogin alfa Severe sepsis with multiple organ 

failure 

Eli Lilly 08/2002 

Dibotermin alfa Treatment of acute tibia fractures in 

adults 

Genetics Institute Europe B.V. 09/2002 

Aldurazyme  Mucopolysaccharidosis Genzyme Europe 06/2003 

Abciximab Anti coagulant for treatment of myocard 

infarcts 

Centocor Europ B.V.  05/1995 

Votumumab Detection of colon carcinomas Organon Teknika 11/1996 

Rituximab  Treatment of CD20 positive B-cell 

lymphomas 

Roche 1998 

Basiliximab Prevention of transplant rejection Novartis 10/1998 

Daclizumab Prevention of transplant rejection Roche Registration 02/1999 

Palivizumab Monoclonal antibody against 

Respiratory Syncytial Virus (RSV) 

subtypes A and B 

Abbott Laboratories 05/1999 

Infliximab Anti TNF alphaantobody for treatment 

of immune and inflammatory diseases 

Centocor 08/1999 

Trastuzumab Breastcancer; HER2 receptor found 

with 30% of all cases 

Roche  09/2000 

Alemtuzumab Anti CD52 antibody for therapy of 

chronic lymphocytic leukemia when 

alkylating cytostatics fail 

Millenium & Ilex UK 03/2001 

Adalimumab Anti TNF alpha antibody for therapy of 

rheumatoid arthritis 

Abbott 03/2003 

Cetuximab Chimeric IgG antibody against 

epidermal 

Imclone, Merck 02/2004 

Hepatitis-B antigen  Hepatitis B prevention SmithKline 09/1989 

Hepatitis-B vaccine combinations Hepatitis B prevention  

additional vaccination 

against hepatitis A,  

tetanus, pertussis 

or/and diphtheria 

SmithKline 

Beecham 

Biologicals 

 MSD 

 Pasteur Mérieux  

07/1996 

09/1996 

02/1997 

07/1997 

05/1998 

Triacelluvax® three recombinant B 

pertussis toxins 

Vaccination against tetanus, pertussis, 

and diphtheria 

Chiron 01/1999 

Hepatitis B antigens S, pre-S1, pre-S2 Hepatitis B prevention Medeva Pharma 03/2000 

Glycosylated recombinant diphetria toxin 

CRM197 

Prevention of Pneumococcus infections 

with children 

Wyeth – Lederle 02/2001 

Lyme disease vaccine Prevention of infections Wyeth – Lederle 02/2001 
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G.2 Overview Shear Experiment Test Runs 

Ex. No.: Total 
Vol. 

Pump DV Speed sampling strokes analysis model 
substance 

1 20.0 ml RPP 1 300 0.5 0,2,4,6 cyc. 0+35+32+30 PCS rituximab 
2 20.0 ml RPP 1 300 2.0 0,2,4,6 cyc 0+35+32+30 PCS rituximab 
3 20.0 ml RPP 1 300 3.0 0,2,4,6 cyc 0+35+32+30 PCS rituximab 
4 20.0 ml RPP 1 300 5.5 0,2,4,6 cyc 0+35+32+30 PCS rituximab 
5 20.0 ml RPP 1 300 9.25 0,2,4,6 cyc 0+35+32+30 PCS rituximab 
6 20.0 ml RPP 1 180 0.5 0,2,4,6 cyc 0+72+70+66 PCS rituximab 
7 20.0 ml RPP 1 180 9.25 0,2,4,6 cyc 0+72+70+66 PCS rituximab 
9 23.0 ml RPP 2 180 9.25 0,6,10,20 cyc 0+56+36+85 PCS rituximab 
10 20.0 ml RPP 3 180 0.5 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
11 20.0 ml RPP 3 180 2.0 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
12 20.0 ml RPP 3 180 3.0 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
13 20.0 ml RPP 3 180 5.5 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
14 20.0 ml RPP 3 180 8.0 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
15 20.0 ml RPP 3 180 9.25 0,16,28,38 cyc 0+55+37+31 PCS rituximab 
16 30.0 ml RPP 3 300 9.25 0,16,28,38 cyc 0+38+28+22 PCS rituximab 
17 35.0 ml RPP 4 180 9.25 0,16,27,38 cyc 0+44+29+28 PCS rituximab 
18 
Compare-
ison to 19 

30.0 ml RPP 3 300 7.0 n/a 0+40+40 PCS rituximab 

19 below liq. 
level 30.0 ml RPP 3 300 7.0 n/a 0+40+40 PCS rituximab 

20 23.0 ml WMP 4.36 200 0,24,48 cyc. 0+121+116 PCS rituximab 
LT 10 23.0 ml RPP 1 180 9.0 0,60,120,180 min n/a SE-HPLC rituximab 
LT 20 23.0 ml RPP 2 180 9.0 0,60,120,180 min n/a SE-HPLC rituximab 
LT 30 30.0 ml RPP 3 180 9.0 0,60,120,180 min n/a SE-HPLC rituximab 
Excipients 1 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
Excipients 2 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
Excipients 3 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
Excipients 4 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
Excipients 5 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
Excipients 6 20.0 ml RPP 1 180 9.25 0, 2, 4 cyc. 0+72+70 PCS rituximab 
lactase 20.0 ml RPP 1 300 9.25 5, 10 90, 180 assay lactase 
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G.3 Size distributions from PCS measurements 

 
 
Figure G.3.1: Size distribution plot after 0 cycles with RPP1, DV 180, speed 9.25 (P0) 
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Figure G.3.2: Size distribution plot after 2 cycles with RPP1, DV 180, speed 9.25 (P1) 
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Figure G.3.3: Size distribution plot after 4 cycles with RPP1, DV 180, speed 9.25 (P2) 
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Figure G.3.4: Size distribution plot after 6 cycles with RPP1, DV 180, speed 9.25 (P3) 
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G.4 Influence of filling volume 
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Figure G.4.1: RPP 1, dosing speed of 10s / stroke 
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Figure G.4.2: RPP 1, dosing speed of 1.8s / stroke 
 

G.5 Filling precision 

 
Table G.5.1: Comparison of filling precision of WMP and RPPs 
 
 WMP 

Dosing 
WMP 
Dosing 

RPP 2 
Dosing 

RPP 2 
Dosing 

RPP 3 
Dosing  

Dosing 1 4.3318 g 11.1204 g 5.2227 g 2.3467 g 5.5554 g 
Dosing 2 4.3228 g 11.1387 g 5.2188 g 2.3567 g 5.5545 g 
Dosing 3 4.4110 g 11.1442 g 5.2156 g 2.3432 g 5.5859 g 
Dosing 4 4.3223 g 11.1835 g 5.2212 g 2.3443 g 5.5260 g 
Dosing 5 4.3916 g 11.1815 g 5.2162 g 2.3467 g 5.5191 g 
Mean 4.3559 g 11.1537 g 5.2189 g 2.3475 g 5.5482 g 
SD 0.0422  0.0278  0.0031  0.0054 0.0267  
SDrel 0.97 % 0.25 % 0.06 % 0.23 % 0.48 % 
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G.6 Linearity of SEC-HPLC method 

The original rituximab solution at 10 mg/ml was for the purpose of a dilution series 

diluted with mobile phase to obtain standard solutions in the range from 0.3125 

mg/ml – 10 mg/ml. The concentration was correlated with the rituximab peak area by 

using linear regression. The linear regression function and the determination 

coefficient are shown in Figure G.6.1. 
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Figure G.6.1: Correlation of rituximab concentration with peak area 
 

G.7 Calculation of LOD and LOQ 

Calculation used to determine Limits of detection (LOD) and quantification (LOQ) 

using linear regression analysis: 

 

Having generated appropriate data, a graph of response (y-axis) against 

concentration (x axis) is plotted and linear regression, using least squares fit, is 

performed. 

 

This yields a line of best fit with an equation of 

 

xbay ⋅+=                (1) 
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where y is response, x is the concentration, b the slope of the line of regression and 

a is the intercept on y axis at x = 0. 

 

Let y’= response at the limit of detection (or quantification) 

then x’= corresponding concentration at the limit of detection (or quantification) 

 

Hence       (2) '' xbay ⋅+=
 

Accepting the IUPAC convention of estimating LOD/LOQ as 

 

bb SKy ⋅+=LOQor  LOD      (3) 
 

where yb= blank signal, Sb= standard deviation of the blank signal and K= 3 for LOD, 

10 for LOQ 

 

then       (4) bb SKyy ⋅+='
 

Assuming that the intercept, a, may be used as an estimate of yb and the statistic Sy/x 

may be used as an estimate of Sb

 

Then equation (4) transposes to 

 

xySKay /' ⋅+=      (5) 
 

where  
( ) 2

1
2

/ )2(
ˆ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
= ∑

n
yy

S i ii
xy   (6) 

 

   yi= response at concentration xi

   ŷi= the fitted response at concentration xi

   n= the number of data points used 

and   yi- ŷi= y residual at concentration xi 
 

Hence substituting and transposing (2) and (5) 
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xySKxb /' ⋅=⋅       (7) 

b
SK

x xy /'
⋅

=       (8) 

 

Where x’ is LOD for K=3, or LOQ for K=10, calculated using the slope of the linear 

regression analysis. 

Now, as a worst case estimate for LOD or LOQ, the lower 95% confidence value for 

the slope (b’’) may be used instead of the slope of the linear regression line in 

equation (8). 

The lower 95% confidence limit for the slope may be calculated as follows: 

Using Sy/x as in equation (6), the standard deviation of the slope SDb may be 

calculated as 

[ ]212

/

)(∑ −
=

i

xy
b

xxi

S
SD      (9) 

 

where xx =  coordinate of the centroid of the points. 

Therefore the lower of 95% confidence value for the slope (b’’) is given by 

bSDtbb ⋅−=''       (10) 

 
where t is the t-statistic for (n-2) degrees of freedom at the 95% confidence level. 

Hence  
''

LOQor  LOD /

b
SK xy⋅

=   (11) 

where K=3 for LOD and K=10 for LOQ. 

(Miller and Miller, 1988) 
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G.8 Monomer content analysed by SEC-HPLC 

97.5
98

98.5
99

99.5
100

100.5
101

101.5

0 10 20 30 40 50

Cycles

M
on

om
er

 C
on

te
nt

 (%
)

RPP size 1
 

 
Figure G.8.1: Monomer content in the sheared rituximab solution after 2, 6, 12, 18, 24, 30 and 42 
cycles with RPP1, DV 300, speed 9.25 
 
 

G.9 Calculation of the average shear rate <γ> 

The average shear rate in a concentric cylinder shear device, where the solution is 

introduced into the gap between two cylinders with the inner cylinder rotating, can be 

calculated according to Maa et al (1996) with equation (1) 

 

( )22

2

1

1ln4

κ
κ

ωκ
γ

−

⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⋅

=   equation (1) 

 

where ω is the angular velocity of the rotating piston calculated as in equation (3); 

 

t
ϕω =     equation (3) 

where φ is the angle in radian measure, which is rotated in the time t; φ is calculated 

according to equation (4); 

 

r
d

r
s πϕ ⋅
==    equation (4) 
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where s is the length of the arc of the circle and r is the radius; d is the diameter of 

the piston; 

 

and κ in equation (1) is the ratio between the radii of the inner (ri) and outer (ro) 

cylinder, calculated according to equation (5) 

 

o

o

o

i

r
cr

r
r −
==κ   equation (5) 

 

where c is the clearance between the inner (piston) and outer cylinder. 
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