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I Summary 
 
 
The diagnosis of acute myeloid leukemia (AML) is associated to a poor long-term 

outcome due to frequent relapse despite intensive chemotherapy, radiation and 

hematopoietic stem cell transplantation (HSCT) as well as continuous advances in 

treatment modalities. Relapses might be caused by leukemic stem cells (LSC). 

According to a recently emerging concept, LSC display many features of normal 

hematopoietic stem cells (HSC) like quiescence and self renewal capacity and 

therefore are poorly accessible for conventional therapies which primarily reach the 

rapidly proliferating cells. Additionally, LSC are apparently able to escape from 

immunorecognition and thereby sustain the disease. NK cells, as the main innate 

immune effectors against tumor cells, are able to recognize and kill malignant cells 

when triggered by cell surface expression of a multitude of activating ligands.  

The best-described receptor-ligand pair in humans is NKG2D and its ligands, ULBP 

and MICA/B. Furthermore, NCR is an important family of activating receptors on  

NK cells, whose ligands are not yet known. The regulation of NK cells is completed 

by several inhibitory receptors (KIR) specific for different HLA class I molecules on 

potential target cells. While preceding work in our lab was describing the interaction 

between NK cells and leukemic blasts of AML, there is no information available on 

the recognition of LSC by NK cells.  

In this study we aimed to elucidate the interaction of NK cells with LSC of AML.  

The cell surface expression of ligands for activating and inhibitory NK cell receptors 

on LSC was in focus of these studies. Moreover, we applied a pharmacological 

approach to treat the patient-derived primary AML leukemic cells and examined the 

consequences for cell surface expression of NK cell-specific ligands. By employing 

hematopoietic colony forming assays, cytotoxicity assays as well as in vivo 

NOD/SCID xenotransplantation we aimed to functionally assess the implications of 

the upregulation of activating ligands for NK cell immunorecognition of LSC. 

In initial experiments, we demonstrated that activating ligands for the  

NKG2D receptor and NCR receptors on NK cells are absent or only weakly expressed 

on the surface of patient derived AML blasts. This expression could be increased by 

pharmacological means applying bryostatin-1, a modulator of PKC activity. 

Upregulation of cell surface expression of NKG2D ligands on AML blasts led to 
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increased immunorecognition by NK cells in cytotoxicity assays. Subsequently, we 

demonstrated that similarly to total blasts, LSC of AML as judged by the phenotype 

CD45dimCD34+CD38-, did not express ULBP and MICA/B on their surface.  

To pharmacologically increase their expression, we employed the HDAC inhibitor 

valproic acid (VA), a drug acting through epigenetic modification of gene expression 

and having long-term records in different clinical applications. This treatment with 

VA proved to be of importance for the immunorecognition by NK cells. In the 

functional assays we employed NK cells selected for the KIR-HLA class I mismatch 

in order to circumvent inhibitory signals inactivating the NK cells. Serial replating 

colony forming unit (CFU) assays with LSC after treatment with VA and after 

coincubation with KIR-HLA mismatched NK cells demonstrated an efficient 

reduction in colony formation capacity upon this synergistic treatment.  

The cytotoxicity assays with VA-treated LSC as targets and KIR-HLA mismatched 

NK cells as effectors revealed interindividual differences among patient samples, 

reflecting a complex regulation of NK cell activation and immunorecognition. 

Altogether, a direct interaction of NK cells and LSC could be demonstrated in vitro. 

In the in vivo setting, by transplantation of AML cells intrafemurally into NOD/SCID 

mice with consecutive treatment of VA and HLA-mismatched NK cells, we were able 

to achieve a stable engraftment of human AML in the mouse bone marrow. However, 

the combined treatment with VA and NK cells was not influencing the content of 

malignant cells as compared to untreated mice. The ongoing studies aim at 

optimization of AML treatment with NK cell-based immunotherapy in the preclinical 

NOD/SCID transplantation model.  

Taken together, these results showed the potential of VA as an applicable  

anti-neoplastic drug to enhance immunorecognition of LSC of AML by NK cells, 

mediated by increased cell surface expression of activating ligands. The functional 

consequences of an enhanced immunorecognition by NK cells in abolishing the 

colony forming capacity of patient derived LSC are promising beneficial effects for 

innovative AML treatments in future. 
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II Introduction 
 
 
1 : Acute myeloid Leukemia (AML) 
 
1.1 Disease 
Acute myeloid leukemia (AML) is a severe malignant disease of the hematopoietic 

system. The loss of the ability to differentiate and proliferate normally leads to a 

clonal disorder of hematopoietic progenitor cells. With a prevalence of 3.8 cases per 

100.000 it is the most common acute leukemia, and the prevalence rises to 17.9 cases 

per 100.000 in adults aged 65 years and older1. The overall 5-year general survival 

rate is 21.2 % and the frequency is 12.000 newly diagnosed patients per year in the 

USA, demonstrating together with a bad prognosis even after intensive therapy with 

radiation and chemotherapy in combination with hematopoietic stem cell 

transplantation the need for additional research.  

 

 

1.2 Risk factors, pathogenesis 

Data from the National Cancer Institute indicates, that the male gender is a risk factor, 

with three men affected for every two women. Further risk factors proven are 

exposure to chemical compounds which influence the DNA stability. Benzene is 

suspected to cause AML, characterized by particular chromosomal aberrations 

(trisomy of chomosome 82, translocations between chromosome 8 and 213) and 

frequently belonging to the AML subtype (FAB) M24. The most common source of 

benzene exposure is cigarette smoking. Consequently smoking increases the risk to 

develop AML 1.2 to 2.3 times4. 

Iatrogenically induced AML can occur after cytotoxic chemotherapy, mainly used to 

treat solid tumors. Alkylating agents can cause AML 5-10 years after exposure. These 

therapy-induced AML are characterized by deletions or monosomies of chromosome 

5 and/or 75. After the therapeutic use of inhibitors of topoisomerase, like doxorubicine 

or ethopside, AML can be detected mainly with abnormalities involving the long arm 

of chromosome 11 and translocations between chromosome 15 and 17, t(15;17), as 

well as between chromosome 8 and 21, t(8;21)5. 
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Similar to chemical agents influencing stability of DNA, ionizing radiation is also 

able to induce leukemia. The main sources of radiation demonstrated are that of 

atomic bombs in Japan6 and that of nuclear tests in the USA as well as radioactive 

fallout after failures in nuclear power plants7. Interestingly, excessive flying  

(more than 5000h) was shown to increase the risk of AML 5.1 times, supposedly due 

to cosmic radiation8. 

The fact that agents or conditions influencing the stability of DNA are carcinogenic 

has implications for understanding the pathogenesis of leukemia. This disease is 

caused by cytogenetic lesions which also determine the therapeutic response. Often 

the underlying structural changes in DNA are associated with distinct AML subtypes 

und have major influence on outcome and therapy. The most common targets of 

translocations in AML are genes coding for DNA-binding transcription factors and 

components of regulatory transcription complexes9. The translocation results in the 

generation of fusion proteins which are interfering with the functional wild type 

proteins. The most prominent and frequent example is AML1-ETO, caused  

by a translocation t(8;21). This fusion is found in approximately 40 percent of all 

AML FAB M2 without being restricted to this subtype10.  

 

 

 

Figure II.1: AML1-ETO fusion protein and its effect on transcription, modified from 10 
(A) The transcription factor AML1 is forming a complex with CBFβ and other  
co-activators to activate gene expression. (B) The fusion protein AML1-ETO is 
recruiting a co-repressor complex to the core enhancer sequence inhibiting the 
expression of genes essential for normal development. 

 

 

AML1 is, as well as ETO, a transcription factor, which in normal cells forms  

a heterodimeric transcription-factor complex together with CBFβ. After recruitment 
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of further co-activators it activates gene expression by binding to the TGTGGT core 

enhancer sequence in the transcriptional regulatory regions of AML1-regulated target 

genes (see figure II.1 A).  

As a result of the fusion of the N-terminal part of AML1 with the C-terminal part of 

ETO in t(8:21), AML1 is still able to mediate the formation of an activating complex 

with CBFβ, but the fusion partner ETO is recruiting a nuclear co-repressor complex 

(see figure II.1 B). This is leading to a dominant repression of transcription of  

AML1 regulated genes. Since these are hematopoiesis-specific genes essential for 

normal development of the hematopoietic system, the fusion leads to a block in 

differentiation.  

Another example for translocations, providing explanations as to the pathophysiology 

of disease and its treatment, is t(15;17). The resulting chimeric protein PML-RARα is 

the target of all-trans-retinoic-acid 11. A list with the most commonly found genetic 

modifications and their associations to AML subtypes is given in table II.1. 
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A frequently found mutation in patients with AML is the internal tandem duplication 

of FLT3 (FLT ITDs)12. FLT3 is a tyrosine kinase receptor III which is together with 

its ligand FL an important signaling molecule for normal hematopoiesis and immune 

development. Disruption of a repressor sequence in the receptor by internal tandem 

duplications, mostly in exons 14 and 15, or by mutations in the juxtamembrane 

domain is leading to a constitutive activation and thereby to development of AML13. 

With 30 – 35 % of AML patients carrying a mutation in the gene for FLT3, it is the 

most frequent genetic abnormality in AML conferring a poor prognosis especially in 

patients aged 60 and older and is representing a promising target for pharmaceutical 

intervention14. 

A model for the genetic events necessary for leukemogenic transformation of 

hematopoietic progenitor cells was introduced by Gilliland et al. They postulate two 

types of genetic damage. The first type (class I mutations) results in constitutive 

activation of oncogenes like RAS or cell surface tyrosine kinase receptors like FLT3 

and c-KIT15,16. These mutations cause a survival or proliferative advantage of the 

affected hematopoietic cell, leading to a clonal expansion. The second type of lesions 

(class II mutations) lead to a block in myeloid differentiation and are caused by 

mutations and overexpression of HOX genes or formation of fusion genes like  

t(8;21) or inv(16). According to a two-hit-model, class I mutations or  

class II mutations alone are not able to cause leukemia in mouse models16.  

However, this two-hit-model describing structural aberrations of DNA does not 

integrate the influence of epigenetic modifications of DNA, like hypermethylation 

and other ways of gene silencing. 

In addition, individual predisposition of patients to develop leukemia might be 

determined by the genetic variation of enzymes employed in detoxification of 

carcinogens. An example is NAD(P)H quinone oxyreductase 1 (NQO1) known to be 

involved in detoxification of benzene17. About 20 % of europeans and white 

americans are heterozygote for a variant form of NQO1 with a decreased protein 

activity due to a single amino acid change. This decrease was demonstrated to be 

associated with an increased risk to develop acute leukemia after benzene exposure18. 

Other factors influencing the detoxification and thereby being associated to an 

increased risk to develop leukemia are members of the cytochrome P450 family19. 
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1.3 Pathophysiology, diagnosis, classification 

The clinical features of AML are mainly linked to bone marrow failure due to 

infiltration of the bone marrow by leukemic blasts and repression of normal 

hematopoiesis. This leads to an ineffective generation of mature erythrocytes, 

monocytes, neutrophils and platelets. The inhibition is not only caused by pure steric 

replacement of healthy bone marrow progenitors but also by soluble factors like 

cytokines secreted by malignant cells20. The most important sign of bone marrow 

failure is infection, mainly by endogenous aerobic gram-positive and gram-negative 

bacteria and fungi like Candida and Aspergillus21. A lack of red blood cells leads to 

anemia and fatigue, thrombocytopenia to bleedings. A massive load of leukemic cells 

in the peripheral blood can cause hemostasis, which results in bleeding and bruising.  

 

 

 

Figure II.2: Normal myeloid hematopoietic development and relationship to AML, 

from22. 
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Some subtypes of AML can be linked to distinct clinical presentation. Infiltration of 

the gingiva, skin, meninges and soft tissue can be characteristic for the monocytic 

subtypes (AML M4/5). Patients with a translocation t(8;21) have a tendency to 

develop chloroma, a granulocytic mass of leukemic cells in soft tissues, breast, uterus, 

ovary, cranial or spinal dura, gastrointestinal tract, lung, mediastinum, prostate, bone 

and other organs.  

Characteristic for AML is the accumulation of blasts resulting from a block in 

differentiation in different stages of development (see figure II.2). A classification 

based on cytochemistry and cytomorphology is given by the French American British 

(FAB) system23 and defines AML subtypes M0 to M7. Following the FAB system, a 

diagnosis is confirmed when the marrow contains more than 30 % blasts. The more 

recent classification by the WHO is additionally based on cytogenetic characteristics. 

The minimal blast content in bone marrow is 20 %, the infiltrating blasts must be 

shown to be of myelocytic origin by expression of CD33 or CD13 on at least 20 % of 

the blasts24. A table with the FAB classification is shown in table II.2. 

 

 

1.4 Therapy: cytotoxic agents, stem cell transplantation, GvL effect 

Generally, treatment of AML is consisting of induction therapy, aiming at inducing a 

complete remission (CR), and postremission therapy with the goal of sustaining the 

remission and preventing relapse. CR is defined as absence of detectable dysplasia or 

extramedullary leukemia and the reduction of blasts in the bone marrow to less than  

5 % as well as presence of regenerated blood lineages with an increase in hemoglobin 

(>11 mg/dl without EPO-therapy), peripheral neutrophils (>1.5 * 109/l) and platelets 

(>100 * 109/l). This is achieved in young patients (<60 years) by cytotoxic therapy 

with a combination of anthracycline and cytarabine. The most commonly applied 

protocol is 45-60 ml/m2 of anthracycline for 3 days and 100 mg/m2 of cytarabine over 

7 days, resulting in complete remission rates of 65 % - 75 % in patients aged  

18-60 years25. Adjustments of therapy are necessary for distinct cytogenetic 

abnormalities, existence of mutations or different leukemic subtypes. Elderly patients 

have a worse response to induction therapy and therefore a less favorable outcome. 

Different protocols are under continuous evaluation, but in general dose escalation to 
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increase the rate of CR is followed by increased toxicity and treatment related 

mortality (TRM). 

 

 

 

 

 

Different strategies for postremission therapy are existing and are evaluated 

depending on the kind of AML, the age of the patient, response to the induction 

treatment and, if hematopoietic stem cell transplantation is considered, the existence 

of a stem cell donor. A standard postremission therapy is 3-4 courses of high dose 

cytarabine (cumulative dose 54-72 g/m2) and results in survival rates of 60-75 %26. 
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However, the overall rate of postremission disease-free survival in AML remains 

poor, usually 50 % at 5 years.  

Hematopoietic stem cell transplantation (HSCT) is a promising tool to sustain CR and 

reduce relapse in selected patients and represents the most efficient antileukemic 

treatment27. Elderly patients rarely profit from HSCT mainly due to high TRM caused 

by the conditioning regimen.  

HSCT can either be autologous (re-implantation of the patients own stem cells) or 

allogeneic (the use of stem cells from a human leukocyte antigen (HLA) –matched 

related or unrelated donor). A third source recently used with increasing frequency is 

umbilical-cord blood stem cells. Whereas autologous stem cell transplantations 

simply replace hematopoiesis after intensive chemotherapeutic treatment, allogeneic 

stem cells are able to induce an immunological response against tumor cells, termed 

graft-versus-leukemia effect (GvL) and are therefore the preferred treatment in 

leukemia. This beneficial effect is accompanied by the risk of graft-versus-host 

disease (GvHD), a serious side effect of HSCT. To prevent GvHD the donor of  

stem cells is matched with respect to the recipient`s HLA-loci HLA-A, HLA-B,  

HLA-DR. A completely matched donor is considered to be ideal- but bears the risk of 

missing GvL effect. Mismatches between donor and recipient come along with an 

increased risk of GvHD, but show a more favorable outcome in terms of lower rates 

of relapse. Advances in understanding the mechanisms of GvL and GvHD are 

allowing a calculated mismatch with beneficial effects on the outcome for the patient. 

 

 

1.5 Cancer stem cells, leukemic stem cells 
A recent concept in cancer biology aims at explaining the frequent relapse of 

malignant diseases and other underlying phenomena in cancer. It could be proven for 

several tumor entities that tumor cells are not an uniform bulk of malignant cells  

but – in analogy to the hematopoietic system – are hierarchically organized. 

Following this theory, cancer is consisting of more developed, short lived cells, which 

are replenished by cancer stem cells, thus mimicking any tissue repair. The first 

cancers shown to consist of stem cells and differentiated bulk tumor cells are AML28 
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(leukemic stem cells, LSC), breast cancer29 and brain tumor30. Recently stem cells of 

colon cancer31 and pancreatic cancer 32 could be isolated. 

In AML it could be shown that only a minor population among the bulk of leukemic 

cells is able to cause leukemia when transplanted in NOD/SCID mouse models 

(termed SCID leukemia initiating cells SL-IC)33 and is able to form colonies in 

semisolid culturing systems (methylcellulose)34. The phenotype of these LSC is a 

subject of ongoing research, reflecting the fact that single LSC-specific markers are 

not yet known. Candidate markers are CD3335, CD123 (IL-3 receptor chain α)36 and 

others, but the most reliable and best described markers are CD34 and CD38. In 

normal bone marrow and cord blood, expression of CD34 and absence of expression 

of CD38 defines the earliest hematopoietic stem cell. In analogy it could be shown 

that LSC are found in the CD34+CD38- fraction of leukemic blasts37. Intracellularly 

the phosphatase and inhibitor of proliferation PTEN (phosphatase and tensin 

homologue) has been postulated to distinguish normal and leukemic stem cells38 39.  

The importance of human LSC could be demonstrated in transplantation experiments, 

where different amount of cells with different maturation status were transplanted in a 

xenograft model into immunocompromised mice, which then were monitored for the 

development of human leukemia. Hereby it could be shown that the  

CD34+CD38- population of leukemic cells have the highest capacity of leukemia 

initiation. This fraction represents from 0.1 % to 1 % of the whole AML population40. 

Shortcomings of this phenotypical description is the existence of AML patients, 

whose blasts are not expressing CD34 at all. There the LSC must be defined by 

different cell surface markers41. 

By virtue of their stem cell characteristics like quiescence and self-renewing capacity 

LSC are believed to be more resistant against cytotoxic treatment. Furthermore LSC 

are due to an increased expression of the ATP-binding cassette (ABC) family of drug 

transporters less accessible for chemotherapeutic agents42. Chemotherapy and 

radiation induces a decrease in leukemic cell burden by mainly targeting mature  

AML cells, but LSC remain unaffected and ultimately relapse is observed  

(figure II.3 A). Thus LSC are believed to be responsible for relapse and therefore 

represent a target of novel therapeutic concepts (see figure II.3 B). 
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Figure II.3: Leukemic stem cells and their importance for the maintenance of AML. 
Modified from43. (A) Total blasts of AML are responding to cytoreductive therapy by 
apoptosis and necrosis, leading to a massive reduction in leukemic blast burden.  
LSC remain intact and eventually cause relapse. (B) Treating LSC by direct 
elimination or differentiation is a promising method to effectively treat leukemia. 
 
 
2 : Natural killer (NK) cells  
 

2.1 Introduction 

NK cells are, due to their ability to lyse target cells and secrete immunoregulatory 

cytokines, essential components of the innate immune system, comprising about  

10-20 % of all circulating blood lymphocytes44. Initially they were discovered by their 

ability to reject allogeneic bone marrow in lethally irradiated mice  

(“hybrid resistance”)45,46, later they could be shown to mediate tumor cytotoxicity in 

an HLA-unrestricted manner47. In contrast to T cells of the adaptive immune system, 

NK cells can readily display effector functions upon encountering infected or 

transformed cells, thus were labeled as “naturally active”48. 
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2.2 Functional and phenotypic features, development 

Mature NK cells are characterized phenotypically by expression of CD56 and absence 

of CD3. Furthermore, resting NK cells can be subclassified into two subsets, one of 

which showing a low expression of CD56, but a high expression of CD16  

(CD56dimCD16bright NK) and comprising about 90 % of total NK cells, the remaining 

10 % are of the CD56brightCD16dim phenotype49. The first subset shows cytotoxic 

activity, the latter is active in secreting immunomodulatory cytokines. 

As all leukocytes, NK cells are derived from CD34+ hematopoietic stem cells 

undergoing maturation in the bone marrow. This maturation can be separated into two 

phases. Initially, the primary stimulus for maturation of NK cell progenitors  

(CD34+ Lin-) is induced by early acting cytokines like Flt-3 ligand (FL) and  

c-kit ligand (SCF) and leads to the expression of the IL-15-receptor (CD34+ IL-15R+). 

Subsequently IL-15 promotes the further development of mature NK cells50. After 

maturation NK cells can be found in bone marrow, peripheral blood, lymph nodes and 

spleen51. There they protect the host against infectious and malignant threats in a 

direct way by secretion of cytokines and target cell lysis via granzymes and  

FAS ligand as well as indirectly by interaction with local dendritic cells. After 

activation and direct interaction of NK cell and target cell - or physiologically more 

important after stimulation of NK cells by dendritic cells - they can exert their 

immunologic functions. Toll like receptors (TLR) and their pathogen-associated 

ligands seem to be crucial for NK cell activation by infectious pathogens, either 

through direct stimulation of NK cells52 or by stimulation of dendritic cells with 

consecutive NK cell stimulation53-55. After activation NK cells play an important role 

in linking the innate with the adaptive immune system56. 

 

 

2.3 Regulation of NK cells: receptors and signaling 

In contrast to T- and B cells NK cells do not require gene rearrangement for antigen 

recognition. They express their own repertoire of receptors that regulate the activation 

of NK cells by balance of activating and inhibitory signals57. In general, receptors  

can be acting as either activating or inhibitory receptors (see table II.3). Based on  

their molecular structure, receptors on NK cells can be classified as  
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killer immunoglobulin-like receptors (KIR), C-type-lectin receptors or others. They 

can depend either on HLA class I as a ligand or be HLA class I independent. 

The net signal generated by activating and inhibitory receptors is determinating 

whether the target cell – NK cell interaction is resulting in lysis or not58.  

 

 

2.4 Inhibitory KIR receptors on NK cells 

Inhibitory receptors mainly engage HLA class I molecules on the surface of their 

target cells as their ligands and initiate inhibitory signals. The main group of receptors 

exerting inhibitory signals in NK cells are receptors belonging to the KIR group. This 

is a highly polygenic and polymorphic family of receptors. There are 16 different  

KIR genes known, located on chromosome 19q13.459, but not all of them have to be 

present in every individual. Individuals vary in terms of the number of KIR genes that 

they have between 6 and 1660. Beside of the polygeneity KIR genes are polymorphic 

and are clonally expressed with variation of the frequency of expression in different 

individuals. For example, one KIR receptor might be present on 50 % of NK cells of 

one person and on 5 % of NK cells of the other61. The regulation of expression of KIR 

in NK cells is complex. Presence of HLA class I expressing cells in proximity to the 

developing NK cell in the bone marrow as well as epigenetic modifications of  

KIR promoters might play important roles62. Finally this is leading to a clonal 

expression of different repertoires of NK cells in one individuum. These are 

differently inhibited by the HLA class I molecules expressed on all nucleated cells 

depending on their individual receptor repertoire63,64. 

Activating receptors include some types of KIR, C-type-lectins and natural 

cytotoxicity receptors (NCR), but other activating co-receptors have been described. 

They mainly initiate their stimulating signals by ITAM (Immunoreceptor tyrosine 

based activatory motif) in the intracellular part of the receptor. This signal is 

transmitted via several tyrosine kinases to phospholipase C which in the end leads via 

a Ca++ signal to activation of transcription factors like NF-AT and NK-κB. 
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2.5 Activating NKG2D receptor and its ligands ULBP and MIC  

One well described and probably the most important receptor-ligand-pair in the 

context of tumor recognition is NKG2D65. This is a 42 kDa type II lectin-like protein 

expressed on all NK cells, γδ T cells and the CD8 expressing subset of αβ T cells66. 

NKG2D is expressed constitutively and its levels can be upregulated on human  

NK cells by IL-15, IL-12 and IFN-α67. 

After binding its ligands, NKG2D is delivering the activating signal into the cell via 

phosphorylation of the adapter molecule DAP1068. Further signaling events are the 

recruitment of PI3K, ZAP70, SLP76, PLC-γ2 and Rac as well as Ca++-release 69  

(see figure II.4 A). 

The ligands for human NKG2D are the HLA class I chain-related antigens MICA and 

MICB70 and the UL16 binding proteins ULBP71. The expression of both is induced 

upon cellular stress. This includes stress after viral infection as well as malignant 

transformation. Due to the efficient lysis of ligand-expressing cells by NK cells, 

expression NKG2D ligands seem to be a strong and effective mechanism to control 

and eradicate transformed cells65. 
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MICA and MICB are glycosylated proteins with 18-30 % of homology to  

HLA-A, -B and -C. They consist of α1, α2 and α3 regions and do not require  

β2-microglobulin or peptide binding for stability on the surface and protein folding 

(see figure II.4 A). Even though a low level of expression of transcripts for MIC can 

be found in many cell types, mainly virally and bacterially infected cells as well as 

stressed cells display the ligands at the surface72- demonstrating that surface 

expression is at least in part regulated on a post-transcriptional level. 

Additional modification of surface expression of MIC is achieved by shedding. Some 

epithelial tumors were shown to shed MIC from their surface73. The resulting soluble 

form of MIC after shedding causes downregulation of NKG2D on NK cells by 

endocytosis. Consequently, low levels of both receptor and its ligands provide two 

ways of evasion of tumor recognition by NK cells.  

ULBPs are – similar to MIC - members of the HLA class I family and act as ligands 

for NKG2D/DAP10. They are consisting of α1 and α2 subdomains, 

glycosylphosphatidylinositol (GPI)- linked (see figure II.4 A) and mapped on 

chromosome 6p2171. As with MIC the presence of mRNA transcripts does not 

correlate with surface expression. There are indications that expression is partly 

regulated in response to DNA damage74.  

Experimental blocking of both ULBP and MIC by antibodies preventing  

ligand - NKG2D receptor interaction as well as blocking NKG2D receptors on  

NK cells are strongly abrogating NK cell mediated lysis. This is indicating that 

NKG2D together with its ligands ULBP and MICA/B are important regulators of 

immunosurveillance. 

 

 

2.6 Natural cytotoxicity receptors (NCR) on NK cells 

Natural cytotoxicity receptors (NCR) are a family of activating receptors exclusively 

expressed on NK cells. Known members are NKp30, NKp44 and NKp46 (the number 

is indicating the molecular weight in kDa of the respective receptors), all of them 

belonging to the immunoglobulin superfamily with up to now unidentified 

ligands75,76.  Whereas NKp30 and NKp46 are expressed on resting and activated  

NK cells, NKp44 can only be found to be expressed after IL-2 stimulation77. 
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The expression of NCRs differs in the intensity among individuals. Some persons 

homogenously express NCR at high density (NCRbright), others have subsets of 

NCRbright and NCRdim NK cells. Clones with different expression levels of NCR differ 

in their cytolytic activity78. 

NKp46 and NKp30 are associated with CD3ζ in their cytoplasmatic domain, p30 is 

additionally recruiting FcεRIγ79. NCRp44 in turn is using DAP12 as adapter 

molecule77 (see figure II.4 B). NCR are major determinants of NK cell mediated 

immunoreactivity against tumors. This could be shown by the block of lysis of several 

types of tumor cells by experimentally blocking NCR78. Yet the cellular ligands of 

NCR could not be identified. Experimental data suggest that viral hemagglutinins 

serve as possible ligands80, but a characterization and description of specific cellular 

ligands for the different NCR is still missing. Thus antibodies staining ligands for 

NCR on putative target cells for NK cells are not existing. 

 

 

 

Figure II.4: Signaling in NK cells. (A) is showing NKG2D together with its ligands 

and intracellular signaling events, in (B) NCR and their downstream signaling is 

depicted. 
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Beside signals initiated by triggering activating receptors, a number of cytokines are 

able to stimulate NK cells via their corresponding receptors. Known activating 

cytokines are IFN-α, IL-2, IL-12, IL-15 and IL-1881. The costimulatory role of 

cytokines is presumably the induction of specific molecules in both NK cells as well 

as target cells to support cell adhesion and mediate cytolysis leading to a more active 

state of NK cells and a broader spectrum of their targets51.  

 

 

2.7 Effector functions, mechanisms of cytotoxicity 

The complicated mechanisms of activation of NK cells are allowing the postulation of 

four scenarios in the interaction of NK cells and their prospective target cells. In 

absence of ligands for activating receptors engagement of only few inhibitory 

receptors by HLA-ligands is maintaining the NK cell in a resting state (figure II.5 A). 

Conversely few ligands for activating receptors in absence of stimulation of inhibitory 

receptors are sufficient to lead to the lysis of target cells (figure II.5 B). In cases 

where both stimulating and inhibitory ligands are expressed on target cells, the 

balance of the recruitment of both activating and inhibitory receptors defines whether 

the NK cell is activated or not (figure II.5 C + D)57. 

Once activated, NK cells exert their cytotoxic functions by secretion of lysosome-like 

vesicles containing perforin, serine esterases like granzyme and sulfated 

proteoglycanes. Perforin is capable of pore formation on the target cell, leading to a 

osmotic lysis82.  Granzymes, which are protected by proteoglycans from protease 

inhibitors-mediated inactivation83, are inducing apoptosis84. 

Recruitment of other cells by secretion of chemokines and cytokines like TNF-α and 

INF-γ is linking the innate and acquired immune systems. 

Independently of chemokines and granzymes NK cells can induce apoptosis in their 

target cells by virtue of expression of FAS-ligand85 and TRAIL86. FAS-ligand is 

intracellularly expressed in resting NK cells at significant levels, and becomes 

upregulated on the cell surface upon activation87. 
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Figure II.5: Scenarios of activation of NK cells. NK cells become activated and lyse 

their target cell if only activating receptors (B) or more activating receptors than 

inhibitory receptors (C) are engaged. Stimulation of inhibitory receptors only (A) or 

in higher numbers than activating receptors (D) leads to inhibition of NK cells. 

 

 

2.8 NK cells and AML 

NK cells play an important role in the immunosurveillance and killing of leukemic 

cells88. The activity of NK cells against leukemic blasts is determined by two major 

features. The presence of activating ligands on leukemic blasts like ULBP and 

MICA/B for NKG2D and ligands for NCR is a major determinant for NK-leukemia 

recognition. Inhibition of NK cells mediated through KIR by expression of the 

respective HLA-ligands on the tumor cell is another feature having an important 

influence on the immunosurveillance. Leukemic cells of AML were shown to have 

low to absent expression of activating ligands for NK cell receptors, thereby evading  
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immunorecognition89,90. This low surface density of ULBP and MICA/B is caused by  

both repression of expression91 and proteolytic shedding92,93. The possibility to induce 

the upregulation of cell surface expression of these ligands is therefore holding out 

prospects to enable NK cells to recognize and lyse leukemic blasts. 

Additionally, NK cells of leukemic patients are shown to be functionally impaired by 

displaying a skewed receptor repertoire and consequently a lower cytotoxic 

activity89,94. Furthermore, NK cells are efficiently inhibited by the engagement of 

inhibitory KIR by HLA ligands which are present at high levels on potential leukemic 

targets. Circumventing this inhibition by selecting NK cells with a mismatch of the 

KIR repertoire and the HLA expression of the tumor cells is leading to increased  

anti-tumor-activity of these NK cells92. In the clinical setting, hematopoietic stem cell 

transplantations mismatched with regard to the HLA-class I haplotype of the recipient 

and KIR repertoire of donor were evaluated and proved to beneficially influence the 

transplantation outcome by reducing the incidence of relapse95. This improvement is 

at least in part influenced by the graft-versus-leukemia effect of NK cells. When  

stem cell grafts were depleted from NK cells, the engraftment was impaired and the 

incidence of relapse was higher than in non-depleted grafts. Furthermore, presence of 

NK cells in PB after stem cell transplantation in AML was shown to maintain the 

disease in remission, whereas loss of leukemia-reactive NK cells is associated with 

relapse96.  

 

 

3 : Epigenetic gene regulation 

 

3.1 Introduction 

The chromatin of eukaryotic cells is a complex structure composed of DNA, histones 

and non-histone proteins97. Nucleosomes as the components of DNA are subunits of 

chromatin consisting of approximately 146 bp DNA wrapped around one histone 

complex composed of 2 copies of the four histones, H2A,  H3A, H3 and H4.  
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Acetylation and deacetylation of histones are important epigenetic determinants of 

transcriptional regulation of eukaryotic cells, as first postulated in 196498.  

The acetylation status is determined by histone acetyltransferases (HAT) and histone  

deacetylases (HDAC). HAT are adding acetyl groups to lysine residues on  

histone proteins and other proteins. HDAC are removing these acetyl groups. 

Acetylation of histones promotes a more relaxed, active chromatin structure99. Further 

epigenetic mechanisms influencing gene expression are histone methylation on  

CpG islands as well as ubiquitination100. There is now abundant evidence that 

remodeling the chromatin proteins is influencing the epigenetic regulation of gene 

expression and thereby representing a promising tool in anti-cancer therapy101.  

 

 

3.2 Histone deacetylases (HDAC) 

In humans HDAC has been identified in 18 different forms, classified based on the 

homology to yeast102 and subgrouped into 4 classes, each of them with different 

localization, expression and specificity. Class I HDAC are primarily localized in the 

nucleus, are ubiquitously expressed and require Zn++ for their enzymatic activity. 

Class II HDAC are cytoplasmatic proteins that migrate between cytoplasm and 

nucleus and are Zn++-dependent, similar to class I HDAC. They are expressed in a 

tissue-specific manner103. Class III HDAC are NAD+-dependent. Class IV HDAC 

share the catalytic core region of class I and II HDAC. 

Beside histones as substrates, HDAC have a variety of non-histone substrates, 

emphasized by phylogenetic analyses that HDAC preceded the evolution of histone 

proteins104 (see table II.4). The activity of these targets may be either enhanced or 

repressed upon acetylation, depending on the protein. Non-histone protein targets are 

involved in many biological processes influencing proliferation, differentiation and 

cell death suggesting that inhibitors of HDAC could have multiple mechanisms of 

inducing cell death and growth arrest 105.  
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3.3 HDAC inhibitors 

Inhibitors of HDAC (HDACi) are structurally different molecules with partly 

selective inhibition of the different HDAC classes present in the cell. 

They have been shown to selectively alter gene expression, influencing 7-10 % of 

genes in leukemic cell lines106,107. The pattern of alterations of gene expression is 

similar for different HDACi but differs for the various cells. HDACi induce about the 

same number of genes as they repress 108. 

The direct effects of HDACi are an inhibition of cell growth of transformed cells by 

cell cycle arrest109 and cell death by inducing the intrinsic and extrinsic apoptotic 

pathway as well as mitotic cell death110. Furthermore HDACi are able to inhibit 

angiogenesis by inhibition of hypoxia inducible factors 1 and 2 (HIF-1, HIF-2)111. 

Normal cells show a relative resistance to HDACi-induced modification112, making 

inhibition of HDAC an interesting target of novel pharmacological treatment 

modalities for cancer therapy. 
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Indeed several studies on tumor bearing animals as well as clinical studies have been 

exploring the anti-tumor effect of HDACi113,114 (see table II.5). 

 

 

 

 

 

3.4 Valproic acid (VA) 

The aliphatic acid valproic acid (VA) was first synthesized in 1884 by Bruton and 

was used as inergic solvent for organic compounds until its anti-epileptic effect was 

discovered by Pierre Eymard in 1962115. Its clinical use is dating back to 1973.  

By blocking the neurotransmitter γ-aminobutyric acid (GABA) in the brain it is in 

clinical use as an anticonvulsant therapy as well as a mood stabilizer in treatment of 

epilepsy and bipolar disorders. Additional indications are migraine and schizophrenia. 

Recently, it was demonstrated that VA also has an effect as an inhibitor for HDAC 

and induces differentiation and apoptosis in a variety of malignant cells in vitro.  

Due to the neurological experience over decades and the low frequency and severity 

of side effects it is considered a promising drug for the epigenetic modification in 

neoplastic diseases. 
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3.5 Epigenetic modifications in AML 

Beside of the irreversible structural genomic aberrations in AML which have been 

recognized as pathophysiological determinants of the disease (see table II.1), there is 

increasing evidence that epigenetic modifications are contributing to a loss of normal 

hematopoietic function as well 99. Methylation of promoters could be shown to induce 

aberrant gene expression in several hematological neoplasias116. Histone deacetylation 

was proven to be involved in several steps of leukemic transformation and 

progression. The fusion gene AML1/ETO is inducing histone deacetylation and 

transcriptional repression as a result of repressed histone acetylation  

(see chapter I 1.2)117.  Prominent example for the impact of epigenetic silencing by 

histone deacetylation is the acute promyelocytic leukemia (APL) with the 

translocation t(15;17). Due to the genetic alteration of the alpha subunit of the  

retinoic acid (RA) receptor (RARA), a transcriptional repressor complex  

(N-CoR/Sin3/HDAC) is recruited to RA target genes118. A therapeutically high dose 

of all-trans-retinoic-acid is releasing the repressor complex and causing 

transcriptional reactivation of RA target genes, leading to myeloid differentiation and 

disease remission of APL119. 

A pathogenetic role for chromatin remodeling in myeloid leukemia could be shown 

for Evi-1, a gene on chromosome 3q26 which is overexpressed in AML and 

myelodysplastic sydrom (MDS). Recruitment of C-terminal binding protein by  

Evi-1 is activating HDAC1 which in turn is transcriptionally downregulating Smad120. 

Inhibiting HDAC with trichostatinA reduces the repression induced by Evi-1, 

indicating that chromatin remodeling by histone deacetylation is an important 

mechanism causing this silencing. 

By showing that inhibition of HDAC does not only lead to cellular differentiation and 

block of proliferation, but also induces the expression of ligands for NK cells, mainly 

ULBP and MICA/B91,121, it is tempting to consider the therapeutic use of  

HDAC inhibition applied on LSC to render them accessible for NK cell mediated 

recognition and killing. 
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III Research objectives 
 
 

Acute myeloid leukemia (AML) is a severe malignant hematologic disease. Even with 

advances in understanding pathophysiology and pathogenesis and novel treatment 

options AML remains virtually an incurable disease. According to an emerging 

concept in cancer biology, the existence of leukemic stem cells (LSC) plays a central 

role in disease initiation and progression. LSC are tumor cells that are similar to 

hematopoietic stem cells in terms of a quiescent cell state, making them inaccessible 

for conventional cytotoxic therapy. Since LSC are believed to be responsible for 

treatment failure and relapse, the development of novel therapies focusing on this 

small leukemic cell subpopulation is of crucial importance. 

Natural killer (NK) cells are a major component of antitumor immune defense.  

NK cells recognize and kill malignant cells by virtue of their activating receptors, 

such as NKG2D and the natural cytotoxicity receptors NCR, on their cell surface. 

These are interacting with specific ligands on the putative target cell, such as  

ULBP and MICA/B as well as the ligands for NCR. The ligands can be upregulated 

on tumor cells upon cellular stress, nevertheless many tumor cells have developed 

mechanisms to either suppress expression of these ligands or shed them from their 

surface, and thus are evading the immunorecognition. 

Preceding studies in our laboratory have shown that leukemic blasts in AML are 

expressing activating ligands for NK cells at a very low level. Furthermore, NK cells 

from AML patients are functionally impaired in their cytotoxic activity. 

Pharmacologically it has been possible to increase the expression of activating ligands 

on AML blasts, resulting in an increased immunorecognition and killing. The NK cell 

subsets mismatched with respect to inhibitory receptors (KIR) and patient’s  

HLA class I have been demonstrated as the most efficient effectors. These 

experiments have lead to the novel question whether LSC can be recognized by  

NK cells and whether this interaction can be influenced pharmacologically. So far, 

there are no published reports on the interaction of NK cells and LSC and it is not 

known whether NK cells have the potential to act as a directed immunotherapy 

against LSC. 
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The first goal of this work was to characterize the expression of ligands for activating 

receptors on LSC. Since the homogenous cell populations of leukemic cell lines do 

not contain bona fide LSC, it was necessary to work with patient-derived primary 

cells and define the LSC population according to the phenotypic characteristics.  

In the second part of this work, we used a pharmacological approach to influence the 

expression of activating NK cell ligands on LSC with the perspective of increasing 

the tumor recognition by NK cells. The goal of these experiments was to use 

compounds which reverse the epigenetic silencing mechanisms and achieve an 

upregulation of expression of activating ligands on LSC. 

Subsequently, in the third part of this work the functional consequences of increased 

expression of activating ligands on LSC were determined. Since stem cells have the 

capability of forming colonies in semisolid cultures as well as engrafting in the bone 

marrow microenvironment in a NOD/SCID xenotransplantation model, the goal was 

to examine the susceptibility of LSC to NK cell cytotoxicity in vitro and in vivo. 

Understanding the interactions of LSC and NK cells might prove to be beneficial for 

therapeutic applications, either complementary to current protocols or as an 

alternative for the so far disappointing therapies. In the scope of developing  

novel immunotherapeutic strategies to target LSC of AML, the effect of  

epigenetic modification of gene expression by VA in combination with  

KIR-HLA mismatched NK cells should be evaluated. 
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IV Material and Methods 

 

1  AML Patients 

All control and clinical samples were obtained with informed consent from the  

University Hospitals of Basel (Switzerland) and Warsaw (Poland). Only patients with newly 

diagnosed untreated AML, from which enough material could be obtained were enrolled in 

the study. The diagnosis of the AML subtypes FAB M1 – M7 was based on morphologic, 

cytogenetic and immunophenotypic criteria. Subsequently, patients were selected for high 

blast content in the peripheral blood, expression of CD34 on the blasts, preferentially the 

existence of a HLA-mismatch regarding single KIR NK cell clones and the efficiency of 

engraftment upon NOD/SCID xenotransplantation. Table IV.1 is showing the characteristics 

of 12 AML patients, which fulfilled most criteria and were included in our study. 

 

Table IV.1: Characteristics of AML patients. 
PUN Age, sex AML subtype Blast content  CD34+ expression  Mismatch  

  (FAB)  % of PBMC  % of blasts with NK cells 
1 37, f M2 95 0.5 KIR a 
2 73, m M4 81 43 KIR e 
3 35, f M2 47 95 KIR a, e 
4 71, f M0-1 85 76 no typing 
5 65, f M2 92 80 KIR e 
6 31, f M4 93 82 KIR e 
7 46, f M5 98 52 KIR a 
8 21, m M2 95 45 KIR b 
9 41, m M5 74 16 KIR a, e 
10 76, f M2 67 94 KIR a, e 
11 41, f M1 97 47 no mismatch 
12 59, m M2 71 95 KIR a 

 

2  Cell culture of primary AML cells and HL-60 cell line 

Mononuclear cells from peripheral blood (PBMC) of AML patients were prepared using 

density-gradient centrifugation (Ficoll Histopaque, Sigma-Aldrich, St Louis, MO) and  

red blood cell lysis (RBC lysis buffer, Spitalpharmazie Basel, Universitätsspital Basel).  

Cells were cryopreserved in iscove`s modified dulbecco`s medium (IMDM, Invitrogen, 

Carlsbad, CA), dimethyl sulfoxide (DMSO, 10 %, Sigma-Aldrich) and fetal calf serum  

(FCS, 20%, Invitrogen) in liquid nitrogen. Upon use PBMC were cultured in  

X-Vivo 10 medium (Lonza, Basel, Switzerland) supplemented with the following growth 
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factors: interleukin-3 (IL-3, 20 ng/ml, Novartis, Basel, Switzerland), IL-6 (20 ng/ml, 

Novartis), stem cell factor (SCF, 100 ng/ml, Novartis), Flt-3 Ligand (FL, 100 ng/ml, 

Novartis), granulocyte - colony stimulating factor (G-CSF, 20 ng/ml, Roche, Basel, 

Switzerland) granulocyte macrophage – colony stimulating factor (GM-CSF, 20 ng/ml, 

Sandoz, Basel, Switzerland), thrombopoietin (TPO, 50 ng/ml, Roche) and 20 % BIT9500 

(BSA, insulin, transferrin, Stem cell technologies, Vancouver, Canada). HL-60 were cultured 

in IMDM, 10% FCS supplemented with the growth factors FL, SCF and GM-SCF and 

interferon-γ (IFN-γ, 100U/ml, Roche). 1-2 x 106 cells were cultured in 2 ml in a 24 well plate. 

After 2 days, cells were counted, washed in PBS (Invitrogen) and analyzed for the cell surface 

expression of ligands for NKG2D and NCR by FACS, the colony-forming ability in 

methylcellulose and in cytotoxicity assays (see below). 

 

3  Differentiating drugs 

When appropriate, cells were treated with bryostatin-1 (Sigma-Aldrich) at a concentration of 

10nM or valproic acid (VA, Orfiril, Desitin Pharma, Liestal, Switzerland) at 1mΜ. 

 

4  Fluorescence Activated Cell Scan (FACS) 

For the phenotypical analysis of cells by FACS, cells were stained with primary labeled 

antibodies against CD45, CD34 and CD38 linked to fluoresceinisothiocyanate (FITC), 

phycoerythrin (PE), allophycocyanin (APC) and peridinin-chlorophyll protein complex 

(PerCP) (all purchased from BD PharMingen, Franklin Lakes, NJ). NKG2D ligands were 

stained with the following unlabelled mouse antibodies: ULBP 1 (10 µg/ml, clone M295, 

IgG1), ULBP 2 (10 µg/ml, clone M311, IgG1), ULBP 3 (10 µg/ml, clone M551, IgG1) and 

MICA/B (10 µg/ml, clone M673, IgG1, all kind gifts from David Cosman, Amgen 

Washington Inc, Seattle, WA), in a second step detected with a FITC-labelled  

goat-anti-mouse antibody (IgG, 1:200 dilution, Jackson ImmunoResearch, West Grove, PA). 

Incubation was done in FACS-PBS (PBS supplemented with 0.5 % FCS, 0.02 % NaN3)  

for 20 minutes on ice in the dark. After staining cells were washed twice with FACS-PBS  

and resuspended in FACS-PBS containing 0.5 µg/ml propidiumiodide  

(0.5 µg/ml, PI, Sigma-Aldrich) to exclude dead cells and analyzed with a CyAn ADP Flow 

Cytometer (Dako Cytomation, Glostrup, Danmark) using Summit software  

(Dako Cytomation). Analysis was done using FlowJo software (Tree Star, Stanford, CA).  
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The expression level of ligands for NKG2D was defined as the mean fluorescence intensity 

ratio (MFR) of values obtained with specific mAbs divided by values given by the secondary 

or control mAbs. 

Since the ligands for the NCR receptors NKp30, p44 and p46 on NK cells are unknown, 

antibodies for measuring the cell surface expression of these ligands are not existing.  

To allow the staining of putative ligands, dimeric complexes of the soluble receptor molecules  

(sNCR) tagged with BirA1.4 and anti-BirA1.4-antibodies were generated. Supernatants 

containing sNKp30, sNKp44 or sNKp46 and anti-BirA1.4 mouse IgG were kindly provided 

by G. De Libero, Laboratory of Experimental Immunology, University Hospital Basel, 

Switzerland. Dimer formation was carried out in the supernatants containing the  

sNCR with 180 ng of anti-Bir antibody per 50 µl of supernatant, based on titration. Binding of 

cells by dimers was revealed using a secondary FITC-conjugated goat-anti-mouse antibody 

(IgG, Jackson ImmunoResearch). The NCR ligand expression was quantified as the mean 

fluorescence intensity ratio MFR of values given by the dimers + secondary goat-anti-mouse 

antibody divided by values given by anti-BirA1.4 antibody + secondary. 

 

5  FACS sorting 

Sorting of AML leukemic stem cells was performed on a FACSVantage SE  

(Becton Dickinson, Franklin Lakes, NJ) in the cell sorting facility of the University Hospital 

Basel. Up to 108 PBMC were stained in 300 µl final volume with 50 µl of each antibody for 

20 minutes on ice with CD45-FITC, CD34-PE, CD38-APC (all BD PharMingen). Before 

sorting cells were filtered through a cell strainer cap and sorted into 1 ml X-Vivo 10 medium 

containing 20 % FCS. Up to 106 cells were collected from each population. Sorted cells were 

cultured under medium conditions mentioned above in a density of 1-2 * 105 cells in 200 µl in 

96 well plates. Sorted cells were used for CFU assays, preparation of RNA and for 

cytotoxicity assays. 

 

6  RNA preparation 

Cells were washed in ice cold PBS and counted. Cells were spun 12.000 rpm for 8 minutes 

and pellet was resuspended in 1 ml Trizol (Invitrogen) and 200 µl chloroform  

(Merck, Darmstadt, Germany) was added after 5 minutes of vigorous mixing. Centrifugation 

at 12.000 rpm for 15 minutes separated an aqueous upper phase containing the RNA from an 
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organic lower phase containing proteins and DNA. The aqueous phase was collected, 

1 µg of glycogen (Invitrogen) was added to increase efficiency of the RNA precipitation 

conducted with 500 µl isopropanol (Merck) and centrifuged (12.000rpm, 15 minutes).  

The pellet was washed with 75 % ethanol and centrifuged (7500 rpm, 5 minutes).  

After removing the supernatant, the pellet was allowed to air-dry in the flow of a sterile bench 

and resuspended in 50 µl DEPC-H2O. Concentration of RNA was measured using NanoDrop 

(Fisher Scientific, Wilmington, DE) and stored at -70 °C.  

 

7  Reverse transcription real-time PCR 

Reverse transcription was performed using Omniscript RT kit (Qiagen, Hilden, Germany) 

according to the protocol. 1 µg of RNA was used for 20 µl reaction volume. 1-2 µl of the 

cDNA was used for the subsequent real-time PCR reaction using TaqMan MGB primer sets 

(Applied Biosystems, Foster City, CA) for ULBP 1 (Hs00360941_ml), ULBP 2 

(Hs00607609_ml) and ULBP 3 (Hs_00225909) with hypoxanthine phosphoribosyl 

transferase (HPRT, Hs00355752_ml) as standard. The Real-time PCR was performed on the 

ABI Prism 7500 Sequence Detection System (Applied Biosystems) and analyzed as usual. 

 

8  Serial replating colony forming unit (CFU) assay 

To assay leukemic cells directly after sorting or after incubation with valproic acid for their 

stem cell characteristics, CFU assays were performed. 1 * 105 sorted cells were suspended in 

600 µl IMDM medium supplemented with FCS (15%), human plasma from donors of the 

blood group AB+ (AB+ serum, 15%, Blutspendezentrum Basel), β-mercaptoethanol  

(48 µM, Sigma-Aldrich), L-glutamine (20 µM, Invitrogen), bovine serum albumin  

(BSA, 1 %, Fraction V, Roche Diagnostics, Mannheim, Germany), erythropoietin  

(3 U/ml, Epo Eprex 4000, Janssen-Cilag, Baar, Switzerland), IL-3 (20 ng/ml),  

IL-6 (20 ng/ml), G-CSF (20 ng/ml), GM-CSF (20 ng/ml), SCF (100 ng/ml), FL (100 ng/ml) 

and mixed with 600 µl of methylcellulose preparation (Fluka AG, Buchs, Switzerland) to a 

final volume of 1200 µl and plated in a dish with 3 cm diameter. All experiments were 

performed in duplicates. After 14 days the colonies were counted under the microscope and 

the average number of colonies in the duplicates were calculated. Afterwards cells from  

primary (1°) cultures were washed out of the methylcellulose with IMDM and re-plated using 
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the same procedure into the secondary (2°) cultures. For this purpose, the 1° duplicates were 

pooled and again separated into 2° duplicates.  

 

9  Cytotoxicity assay 

To analyze direct interaction of NK cells and AML leukemic stem cells, a standard chromium 

release assay was performed. Target leukemic cells or HL-60 cell line were loaded with  

250 µCurie of Na2
51CrO4 (Amersham, Little Chalfont, UK) for 2 hours in 37 °C in a total 

volume of 300 µl and co-cultured at 37 °C for 4 hours with NK cells in IMDM supplemented 

with FCS (10 %) in different effector : target-ratios (E:T ratio) ranging from 20 to 0.5.  

Target cell maximal chromium release upon lysis of cells with 1 % triton-X (Sigma-Aldrich) 

and spontaneous release were determined to calculate the percentage of specific killing. 

Experiments were set up in triplicates and contained 51Cr-labelled 103 target cells in  

200 µl final volume. After 4 hours 40 µl of supernatant was transferred onto  

Luma scintillation plates (Perkin Elmer, Waltham, MA) and allowed to air-dry. Chromium 

release was assessed using a TopCount NXT gamma-counter (Packard Perkin Elmer).  

Results are expressed as percentage of specific 51Cr-release and calculated as follows: [(cpm 

experimental release – cpm spontaneous release) / cpm target maximal release – cpm 

spontaneous release)] * 100. 

 

10  Single KIR NK cell clone isolation and culture 

NK cells were obtained from the peripheral blood of healthy donors. NK cells were purified 

from PBMC using magnetic-activated cell sorting (MACS, Miltenyi Biotech, Bergisch 

Gladbach, Germany). Briefly, 1-3 * 107 viable cells after thawing were incubated for 10 min 

in 300 µl PBS buffer containing 0.5 % BSA and 2mM ethylenediaminetetraacetic acid 

(EDTA, Sigma-Aldrich) with 100 µl of antibody cocktail against multiple lineage epitopes 

not expressed on NK cells (CD3, CD4, CD14, CD15, CD19, CD36, CD123, glycophorin A, 

Miltenyi Biotech). To purify NK cells by the negative selection step, antibodies  

coupled to magnetic beads were used and non-NK cells were retained in a column  

(LS separation column, Miltenyi). Purified NK cells were collected in the flow through.  

The purity of NK cell preparation was > 95 % with less than 0.5 % contaminating T cells. 

Subsequently 2 * 105 NK cells were cultured by stimulation on 2 * 106 irradiated (30 Gy) 

allogenic PBMC as feeders in IMDM medium containing human AB+ serum (5 %),  
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IL2 (100 U/ml, Novartis) as well as nonessential aminoacids, L-glutamine, 

penicillin/streptomycine and sodium pyruvate (all Gibco) together with phytohaemagglutinin 

(PHA, 2 µg/ml, Murex Biotech, Datford, England) in a total volume of 2 ml. About 10 days 

later cells were expanded by transferring them to 6 well plates. At 2-3 weeks, an 

approximately 600-1000 fold expansion of NK cell numbers was achieved. 

To isolate single KIR NK cell clones, NK cells were FACS sorted 14 days after stimulation. 

Remaining T cells were excluded by gating on CD3- cells. To sort for single KIR a NK cells, 

anti-KIR a- mAb labelled with FITC (CD158a, BD Pharmingen), was incubated for 20 min 

on ice with NK cells together with a mixture of anti-KIR b-PE and anti-KIR e-PE  

(all purchased from BD Pharmingen). Single KIR b NK and single KIR e NK were obtained 

accordingly. After sorting, single KIR NK cells were restimulated on allogenic feeders as 

described above and used on days 14 to 30 after restimulation. 

 

11  TM-β1 antibody production and purification 

To enhance engraftment of human cells in the mouse xenotransplantation model, remaining 

lymphocytes and macrophages in NOD/SCID mice after irradiation were depleted by murine 

IL-2 receptor beta chain (CD122) blockade using a rat-anti-mouse antibody against 

muCD122. The rat hybridoma cell line TM-β1 producing a rat monoclonal antibody 

recognizing the murine IL-2 receptor beta chain was kindly provided by Dr. Tanaka, Tokyo, 

Japan and grown in IMDM supplemented with 3% ultra-low IgG FCS (Invitrogen). 

Supernatant was collected, filtered through a 45 µm filter and subsequently purified over a 

protein G sepharose column (Protein G Sepharose 4 Fast Flow, GE Healthcare, Uppsala, 

Sweden, generously performed by Sebastiano Sansano, Laboratory of Experimental 

Immunology, University Hospital Basel, Switzerland). After dialysis against PBS  

(Float-A-Lyzer®, MWCO 10kDa, SpectrumLabs, Rancho Dominguez, CA), the concentration 

of TM-β1 antibody was measured by ELISA and antibody was stored at -70 °C until use. 

 

12  ELISA for TM-β1 

To measure the concentration of TM-β1 antibody, enzyme-linked immunosorbent assay 

(ELISA) was performed. 96 well plates (Nunc-Immuno Maxi-Sorp™, Nunc Roskilde, 

Danmark) were coated at 4 °C overnight with goat-anti-rat IgG (100 µl/well, 3 µg/ml, R 5130, 

Sigma-Aldrich). After blocking with 100 µl of a 2 % BSA solution in PBS for 1 hour at room 
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temperature, purified and dialyzed TM-β1 was applied in dilutions of 1:1000 to 1:10000  

(1h, RT). Anti-muCD122 clone TM-β1 (Cat. 14-1222-82, eBioscience, San Diego, CA) 

served as standard in concentrations of 10 mg/ml to 500 mg/ml. Antibodies were revealed  

for 1 hour at RT with a rabbit-anti-rat IgG conjugated to peroxidase (100 µl of 1:10000 

dilution, A5795, Sigma-Aldrich). Substrate reagent pack (Dy999, R&D systems, 

Minneapolis, MN) was used before reading in an ELISA reader (Spectra Max 190,  

Molecular Devices, Sunnyvale, CA) at 450 nm weavelength. 

 

13  NOD/SCID intrafemural xenotransplantation model of human leukemia 

NOD/LtSz-scid/scid (NOD/SCID) mice (The Jackson Laboratory, Bor Harbor, ME) were 

bred and maintained under specific pathogen-free conditions in the local animal facility of the 

University Hospital Basel. During the experiment mice were kept on acidified drinking water  

supplemented with trimethoprim (26.7 µg/ml)/sulfamethoxazol (133.3 µg/ml, Nopil,  

Mepha Pharma AG, Aesch, Switzerland).  

For AML transplantation mice were sub-lethally irradiated  with 375 cGy (60Co source, 

2cGy/min) and injected with 180 µg purified TM-β1-antibody i.p. produced as described 

above 24 hours prior to injection of human AML cells. Intrafemural transplantations were 

performed under inhalation anaesthesia with isoflurane (Attane ad us. vet., Minrad INC, 

Buffalo, NY). The left knee of anaesthesized mice was desinfected, bended and a hole was 

drilled with a 26 gauge needle (Sterican®, B. Braun Melsungen AG, Melsungen, Germany) 

into the femur via the distal end of the bone. The needle was removed and a syringe with a  

29 gauge needle (BD Micro-fine™, Becton Dickinson) was inserted to inject the 20 µl  

cell-suspension containing 1 * 107 human AML cells. Postoperative analgesia was provided 

with 1 µg buprenorphine s.c. (Temgesic, Essex Chemie AG, Luzern, Switzerland). Mice were 

monitored for pain and symptoms of disease 3 times weekly. 4 weeks post transplantation 

mice were grouped into 4 treatment groups with no treatment, valproic acid (400 mg/kg, 

corresponding to 100 µl i.p.), NK cells (5 * 106 IL-2-activated single KIR HLA-mismatched 

NK cells 14-25 days after restimulation i.v.) and a combination of valproic acid and NK cells. 

Treatment was performed 3 times in the 5th week after initial transplantation. Mice were 

sacrificed 1 week after the last treatment and bone marrow of the injected left femur and  

non-injected bones as well as mouse PB were separately analyzed by FACS for tumor load 

with human AML, expressed as percentage of huCD45+CD33+ cells of PI negative cells. 
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V Results 
1  Expression of ligands for NK cells on the AML cell line HL-60 and 

 primary AML cells and its functional consequences. 

 

1.1  Differentiating drugs upregulate cell surface expression of ligands for 

NKG2D in HL-60 cells. 

 

Epigenetic alterations have been implicated in the pathogenesis of acute myeloid 

leukemia by causing transcriptional silencing of genes encoding the regulators of cell 

growth and differentiation. In contrast to oncogenic changes caused by  

gene fusions - mutations and insertions/deletions - epigenetic changes in principle are 

reversible and therefore accessible for pharmacologic intervention. 

Since a large number of genes are affected by epigenetic modifiers, defining target 

molecules relevant for therapeutic effects has been difficult. In our study, we focused 

on the expression of ligands for NK cells as a response to anti-neoplastic drugs 

promoting cell differentiation through epigenetic mechanisms. 

With the intention to assess treatment options at the level of epigenetic modifications, 

we tested in the initial phase of this study a number of differentiating agents, acting 

through different post-transcriptional mechanisms. These included  

5-aza-2`deoxycytidine (AZA), a hypermethylating agent, trichostatin A (TSA), a 

HDAC inhibitor, 1-alpha,25-dihydroxy-vitamin D3 (VitD), binding to nuclear 

receptors and thereby influencing transcription, bryostatin-1, a protein kinase C 

activator and all-trans-retinoic-acid (ATRA), causing a disassembly of the 

transcriptional co-repressor-complex with HDAC activity. We used the AML cell line 

HL-60 (FAB M 2/3) as a model for human leukemia and selected for the most active 

drug. Upon treatment, we monitored cells for the expression of ligands for NK cells, 

ULBP1, 2 and 3 by FACS as possible mediators for immunorecognition and killing. 

As bryostatin-1 in combination with various growth factors and interferon-γ turned 

out to be the most potent inducer of cell surface expression of NK cell ligands on 

tumor cells, we focused on bryostatin-1 and used it in the initial experiments with 

both the HL-60 cell line and primary AML blasts. 

Figure V.1 A shows an example of an upregulation of the NK cell ligands ULBP1, 2 

and 3 upon treatment of HL-60 cells with bryostatin-1. Since NK cells express 
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multiple inhibitory receptors for HLA class I leading to a tolerance, we 

simultaneously measured the expression of HLA class I as a consequence of 

treatment. Interferon-γ is known to induce expression of HLA genes. In three 

independent experiments with HL-60 cells treated with bryostatin-1, we observed an 

upregulation of cell surface ligands, most prominent for ULBP1. ULBP2 and 3 

showed a less strong reaction to bryostatin-1. HLA class I, a possible opponent of 

ULBP for the activation of NK cells, was only slightly upregulated to the same extend 

as the surface expression of ULBP2 and 3. Figure V.1 B shows the increase of the cell 

surface expression of ULBP1, 2, 3 and HLA class I as a mean of three independent 

experiments. 

 

 
Figure V.1 
Cell surface expression of ULBP on HL-60 cell line and primary AML cells is absent and 
upregulated following treatment with bryostatin-1. 
FACS staining of ULBP1, 2, 3 and HLA class I + secondary FITC-labeled goat-anti-mouse IgG (blue 
area in histograms) or secondary FITC-labeled goat-anti-mouse IgG alone (thin black line) on HL-60 
(A) and AML cells (C) before (Day 0) and after 2 days of incubation with bryostatin-1 at 10 nM  
(Day 2). Representative example out of n=3 for HL-60, n=3 for primary AML cells. 
Fold upregulation measured as MFR after 2 days of treatment with bryostatin-1 as compared to day 0 
for ULBP1, 2, 3 and HLA class I on HL-60 (B) and AML (D) cells. Average of 3 independent 
experiments for (B) and (D).  
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To confirm the effect of bryostatin-1 in a more physiological setting, we studied the 

effect of bryostatin-1 on the regulation of ligands for NK cells using primary cells 

from AML patients. As published before, primary AML blasts judged by the 

CD45dim-phenotype do not express any known ligands for NKG2D (figure V.1 C, 

upper row). Bryostatin-1 caused an increase in the expression of ULBP molecules, as 

seen with HL-60 cells (figure V.1 C, lower row). Due to the heterogeneity of AML in 

individual patients, increased ULBP expression was more variable in between 

different samples than with the HL-60 cell line. Furthermore, the strong increase in 

ULBP1 compared to ULBP2 and 3 observed in HL-60 cells is not applying in primary 

AML cells. Stronger than in cell lines, primary blasts react to bryostatin-1 with an 

increased expression of HLA class I. Figure V.1 D shows the average of upregulation 

of ULBP ligands and HLA class I from n=3 independent experiments with primary 

AML cells. In agreement with the differentiating potential of bryostatin-1, AML cells 

acquired the cell surface expression of the myeloid marker CD14 (not shown).  

It might be noted that primary AML cells show the individual capacity to be cultured 

and their survival in culture differs strongly even over the short period of 2 days - 

leaving the possibility of a selection bias for those primary samples which can be 

maintained in culture. 

 

 

1.2 Expression of ligands for the Natural Cytotoxicity Receptors NKp30, 

 NKp44 and NKp46 is increased after treatment with bryostatin-1. 

 

NK cells also use other activating receptor-ligand interactions to recognize tumor 

cells beside the NKG2D - ULBP/MICA/B system. One further family of activating 

receptors are natural cytotoxicity receptors (NCR), representing a group of the 

receptors NKp30, NKp44 and NKp46. We asked whether ligands for NCR are also 

upregulated by the differentiating effect of bryostatin-1. Cellular ligands for NCR 

have not yet been described, even though viral hemagglutinins seem to bind NKp44 

and NKp46. To enable the measurement of ligand expression on putative target cells, 

the group of Gennaro de Libero (Laboratory of Experimental Immunology, University 

Hospital Basel, Switzerland) created recombinant proteins composed of the 

extracellular domains of the NCR receptors coupled to a Bir1.4 tag. Two of these 

recombinant molecules form a homodimer with an anti-Bir1.4 antibody, allowing the 
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detection and quantification of the yet unknown NCR ligands. In a collaborative study 

together with the Laboratory of Experimental Immunology, we used these dimers to 

stain HL-60 cells before and after treatment with bryostatin-1 in combination with 

growth factors and interferon-γ. HL-60 cells do express a basic level of NCR ligands 

(figure V.2 A, upper row), which can be upregulated up to threefold upon treatment 

(figure V.2 A, lower row). Figure V.2 B shows the average upregulation of  

n=2 independent experiments. These results indicate that several NK cell activating 

ligands can be upregulated upon treatment of AML cell lines with the differentiating 

drugs, such as bryostatin-1. 

 

 

 
Figure V.2 
Ligands for NCR on HL-60 cells are upregulated upon treatment with bryostatin-1. 
FACS staining of ligands for NCR with dimers of soluble NCR NKp30, NKp44 or NKp46 bound to 
anti-BirA1.4 + secondary goat-anti-mouse FITC (grey thick line in histograms) or anti-Bir1.4 + 
secondary FITC-labeled goat-anti-mouse IgG alone (thin black line) on HL-60 cells before (Day 0) and 
after 2 days in medium + growth factors (thick grey line, Day 2) and after 2 days treatment with 
bryostatin-1 at 10 nM (blue area, Day 2) (A). Representative example out of n=2. 
Fold upregulation measured as MFR after 2 days of treatment with bryostatin-1 as compared to day 0 
for NKp30, NKp44, NKp46 and HLA I on HL-60 cells. Average of 2 independent experiments (B). 
 

 

1.3 Upregulation of cell surface expression of ligands for NK cells enhances 

 the immunorecognition. 

 

Due to the induced increase in cell surface expression of ligands for NK cell receptors 

on AML cells, we wanted to determine the impact of the drugs on the 

immunorecognition of tumor cells by NK cells. To this end we treated cells with 

bryostatin-1 for 2 days followed by a cytotoxicity assay with NK cells.  
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Figure V.3 A shows the specific lysis of HL-60 cells which increases from 

approximately 40 % to 70 % (at E:T ratio of 8:1) in response to treatment with 

bryostatin-1. This lysis can be reduced to 55 % by the use of ULBP-blocking 

antibodies. This is demonstrating a direct effect of ULBP on NK cell-tumor cell 

interaction. The contribution of the different NKG2D ligands ULBP1, 2, 3 and 

MICA/B is experimentally adressed by blocking with different combinations of 

antibodies against individual ligands as well as the NKG2D receptor (figure V.3 B). 

The remaining killing after blockage of either NKG2D (+anti-NKG2D) or all known 

ligands for NKG2D (+anti-MICA/B +anti-ULBP mAb) is indicating the contribution 

of further activating ligand-receptor pairs. 

 

 

 

 
Figure V.3 
Increased NK cell-mediated killing of HL-60 cells following treatment with bryostatin-1. 
HL-60 cells were stimulated with bryostatin-1 for 2 days and used together with unstimulated control 
cells in the cytotoxicity assay as targets for primary NK cells at the indicated effector to target ratio 
(E:T ratio). Blocking antibodies against ULBP1, 2 and 3 were preincubated with the HL-60 cells prior 
to the cytotoxicity assay (A). Effect of blocking antibodies on NK cell mediated lysis of HL-60 cells 
after treatment with bryostatin-1. Anti-ULBP and anti-MICA/B mAbs were preincubated with HL-60 
cells and anti-NKG2D mAbs with NK cells prior the cytotoxicity assay. Lysis in the absence of 
blocking mAbs was defined as 100 % (B). *P<0.05 and **P<0.001, significant differences as 
compared to lysis without blocking mAbs obtained at 3 NK cell : target cell ratios of 8:1, 4:1 and 1:1. 
Mean ± S.E.M. of three independent experiments is presented. 
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These results demonstrate that the upregulation of cell surface expression of 

activating ligands for NK cells by differentiation inducing drugs has functional 

consequences on the immunorecognition and killing of cells of the leukemic cell lines 

HL-60. 

 

 

2  Leukemic stem cells (LSC) of AML and their interaction with NK cells. 

 

2.1  Defining LSC of AML based on their phenotype. 

 

The increased susceptibility to NK cells described above has been observed with a 

total population of leukemic blasts. Our next goal has been to address the distinct 

leukemic subpopulation of AML leukemic stem cells (LSC), which are – in contrast 

to blasts – difficult to target clinically with conventional cytoreductive therapy. Based 

on the most widely accepted phenotypical characterization, LSC are present among 

cells expressing the marker CD34. LSC of AML do not express CD38 on their cell 

surface but acquire this marker during maturation. Since CD34 and CD38 represent 

also markers of healthy hematopoietic stem cells (HSC), we used in addition the 

staining with anti-CD45 antibodies to distinguish CD45bright normal from CD45dim 

leukemic cells. LSC can therefore be defined according to the CD45dimCD34+CD38- 

phenotype.  

Figure V.4 shows the representative examples of three different AML patients of the 

same FAB subtype (AML M2) characterized by their size and granularity (FSC, SSC, 

1st column), their blast content in comparison to healthy blood cells  

(CD45, 2nd column) ranging from 47 to 95 % as well as their phenotypical expression 

pattern of CD34 and CD38 (3rd column). Remarkable is the difference in expression 

of CD34, ranging from virtually its absence (AML 1, upper row) to presence on 

nearly all leukemic blasts (AML 3). Due to a lack of established other markers for 

LSC, it was necessary to select for AML patients expressing CD34 on their blasts.  

For comparison, the expression of CD34 and CD38 on normal hematopoietic stem 

cells of healthy bone marrow is shown (figure V.4, bottom row). 
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Figure V.4 
Defining the phenotype of leukemic stem cells in primary AML. 
AML leukemic stem cells (LSC) were phenotypically defined based on FSC, SSC and cell surface 
expression of CD45dim and CD34+CD38-. Three different AML patients of the same subtype (FAB M2) 
with different content of CD34-expressing cells are exemplarily shown. Normal hematopoietic stem 
cells from healthy bone marrow (BM) as judged by expression of CD34+38- are shown as a control. 
Numbers refer to the percentages of sequentially gated cell populations. 
 

 

2.2 Absence of NKG2D ligands on LSC of AML and on HSC. 

 

To evaluate the possibilities of LSC recognition by NK cells, we were measuring the 

expression of ligands for the NKG2D receptor, ULBP1, 2, 3 and MICA/B on LSC. 

Throughout the different FAB subtypes of AML, LSC as judged by 

CD45dimCD34+CD38- showed no expression of any of these ligands (figure V.5 A). 

Absence of activating ligands may represent one of the reasons for the survival of 
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LSC and relapse of AML after treatment. Similar to LSC, HSC from healthy bone 

marrow do not express ULBP or MIC as well (figure V.5 B). HSC serve as an 

important control for treatment of LSC. Due to their physiologic indispensability, side 

effects of any treatment must spare this vital population, but the phenotypic and 

functional similarities of HSC to LSC may render them vulnerable to targeted LSC 

treatments. 

 

 

 

 
Figure V.5 
Absence of cell surface expression of ULBP and MICA/B on primary AML leukemic stem cells. 
FACS staining for ULBP1, 2, and 3 as well as MICA/B on LSC with FITC labeled goat-anti-mouse Ab 
(thick grey line) or FITC labeled goat-anti-mouse Ab alone (thin black line) on LSC as judged by the 
CD45dim and CD34+CD38--phenotype (A) and on normal hematopoietic stem cells from bone marrow 
(HSC) (B). Representative examples of AML (n=6) and healthy BM (n=4) are shown. 
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2.3 Transcripts of NKG2D ligands are detectable in LSC of AML and 

in HSC. 

 

To investigate further the regulation of expression of NKG2D ligands, we sorted LSC 

and HSC according to CD34 and CD38 markers (see chapter V.2.5) and evaluated the 

mRNA transcripts for ULBP ligands in the early and more differentiated 

subpopulations by real-time PCR. LSC showed a very low to absent transcription of 

ULBP2 in both CD34+CD38+ and CD34+CD38- cells (figure V.6). ULBP1 and 

ULBP3 were weakly transcribed with a Δ-CT of 10 and 6.7, respectively. HSC in turn 

had higher levels of ULBP1 and 2 transcripts, resembling the level of HPRT-1 

reference transcripts (Δ-CT of 1.5 and 0.7 respectively), but an only weak expression 

of ULBP3 mRNA (Δ-CT of 8.1). Combined with the measurement of cell surface 

expression by FACS, these findings are in line with the observation that NKG2D 

ligands are at least in part posttranscriptionaly regulated and cell surface expression is 

not directly reflecting the mRNA transcript levels. 

 

 

 
Figure V.6 
mRNA transcripts for ULBP in LSC and HSC. 
Quantitative PCR for the mRNA of ULBP1, 2 and 3 was performed with RNA isolated from untreated 
LSC (A) and HSC (B) directly after FACS sorting of the populations CD34+CD38- and CD34+CD38+ 

as indicated. Results are expressed as difference (Δ-CT) to HPRT-1 reference gene. 
 

 

2.4  Treatment of LSC with the HDAC inhibitor valproic acid (VA) 

is increasing the expression of NKG2D ligands. 

 

LSC, constituting a minor cell population in AML, represent a promising candidate 

for a targeted immunotherapy, which may have an impact on disease outcome by 
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influencing cells not responding to conventional treatment. Applying a differentiating 

treatment to LSC in order to render them accessible for NK cell mediated killing is an 

encouraging option. Bryostatin-1, although the most efficient in vitro, would not serve 

as a drug in the applied setting due to an only very limited clinical experience with 

this compound. Therefore we were applying valproic acid (VA), a drug that is acting 

as HDAC inhibitor and has a long-term record of clinical use and detailed knowledge 

about tolerance and side effects. VA has been clinically used over decades in 

treatment of neurological disorders, but it also promotes the myeloid differentiation of 

leukemic cells. 

 

 

 

 
Figure V.7 
Scheme of suspension culture of AML leukemic stem cells. 
Total AML blasts of PB were cultured for 2 days in X-Vivo Medium containing growth factors (GF) in 
absence and presence of 1 mM valproic acid (VA). Subsequently cells were analyzed by FACS  
for cell surface expression of the NK cell ligands ULBP and MICA/B on leukemic stem cells 
(CD45dim, CD34+CD38-). 
 

 

Figure V.7 shows the experimental setup of the differentiating treatment of leukemic 

blasts with VA. The expression of ligands for NKG2D was explored on the LSC 

population of PBMC from AML patients directly after thawing (“Day 0”) and after 

incubation for 2 days in a suspension culture containing a mix of growth factors to 

provide elementary survival factors together with VA or without VA (control). As 

shown in figure V.8, VA is able to induce an upregulation of cell surface expression 

of ULBP and MICA/B. The shifts in the histograms (blue area) are indicating 

increased expression of the ligands, as compared to expression after culturing  

AML cells in medium supplemented with growth factors alone (grey thick line). 
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Shown are 4 examples of individual AML patients out of 8 analyzed. Reflecting the 

heterogeneity of individual AML patients, differences in the extend of upregulation as 

well as the predominant ligand responding with the strongest increase in expression 

can be observed. 

As depicted in figure V.8 B, ULBP1 showed the most prominent increase of a  

3.4 fold upregulation compared to the expression on control untreated LSC. ULBP3 

and MICA/B were upregulated moderately with a 2.7 and 2.3 fold higher expression, 

respectively. The weakest upregulation of cell surface expression in response to VA 

treatment was measured for ULBP2.  

 

 
Figure V.8 
Valproic acid upregulates cell surface expression of ULBP and MICA/B on LSC. 
(A) FACS staining of secondary FITC-labeled goat-anti-mouse IgG alone (thin black line) and ULBP1 
and MICA/B + secondary FITC-labeled goat-anti-mouse IgG on control LSC cultured in medium + GF 
alone (thick grey line) and after 2 days incubation with valproic acid at 1 mM (blue area in histogram). 
4 representative examples out of n=8 are shown. (B) Average of upregulation of 4 different NKG2D 
ligands. (C) Normal HSC cultured in medium + GF (thick grey line) and VA-treated (blue area in 
histogram). Isotype: thin black line. Representative example out of n=4. 
 

 

This result is demonstrating the potentially beneficial effect of VA on LSC in 

inducing an increased expression of ligands activating the NK cells. Interestingly, 
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normal HSC do not show any reaction to treatment with VA, since cell surface 

ligands remain in the same low expression level as without treatment (figure V.8 C). 

Hence, since VA is not acting on healthy HSC that need to be spared while treating 

leukemia, this drug is a candidate for a clinical application to induce an enhanced 

LSC-NK cell interaction. 

 

 

2.5  Isolation of LSC of AML. 

 

Phenotypical analysis of cell surface molecules expressed on LSC can be performed 

with total blasts by adequate gating during FACS analysis. However, to analyze the  

functional properties of LSC, it is necessary to isolate AML LSC out of the 

heterogeneous cell population. For this purpose, we established a FACS sorting 

protocol which enabled circumventing a number of obstacles such as fragility of LSC 

and a heterogeneity of expression levels of CD38 present in continuously increasing 

amount on early and more differentiated LSC and progenitors during differentiation. 

 

 

 
Figure V.9 
FACS sorting of leukemic stem cells of AML. 
FACS sorting of primary human AML leukemic stem cells by gating on leukemic blasts  
(CD45dim) according to expression of CD34 and CD38. Reanalysis after sorting shows the separation of 
early leukemic stem cells (CD34+CD38-) and more differentiated leukemic progenitor cells 
(CD34+CD38+). Shown is one representative example. Numbers refer to the percentages of sequentially 
gated cell populations. 
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By choosing the appropriate fluorescent dye with a signal strong enough to enable the 

FACS sorter to distinguish and separate CD38+ and CD38- cells as well as by 

increasing the amount of antibody used to stain the AML cells we could overcome the 

obstacles. Figure V.9 shows a representative example of a FACS sorting procedure to 

separate early and more differentiated AML leukemic stem and progenitor cells and 

the reanalysis confirming successful sorting into two distinct and pure subpopulations. 

Up to 106 cells of each sorted subpopulation were recovered. 

 

 

2.6  Generation of single KIR NK cell lines. 

 

Inhibition of NK cells by the engagement of their inhibitory cell surface receptors is a 

major determinant of immunosurveillance. Since expression of HLA class I on tumor 

cells is frequently blocking NK cells in their activity, we wanted to circumvent this 

problem by searching for NK cells whose inhibitory receptors do not find their 

respective ligands on the patient’s cell. Clonal expression pattern of KIR genes makes 

it possible to select NK cells with single expression of only one type of inhibitory 

receptor of the KIR family. KIR negative NK cells in turn are anergic and do not 

show any cytotoxic activity. Mismatching between NK cells and primary patients` 

cells is possible if AML cells lack the HLA allele coding for a ligand that would be 

engaging the specific single KIR NK cell. Not all patients are suitable for 

mismatching with respect to single KIR NK cells, since cells of those patients who do 

express HLA ligands for all three major inhibitory KIRs on NK cells do not enable for 

an HLA-KIR mismatch. 

 

As shown in figure V.10, using a purified and expanded NK cell culture we excluded 

the remaining T cells and NKT cells by gating out CD3 expressing cells and further 

gated on the single KIR expressing NK cells. After sorting, single KIR clones need to 

be increased in quantity by restimulation cultures as described in chapter IV 10 and 

can be used to test their cytotoxic activity on days 10 to 25 after restimulation. 
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Figure V.10 
FACS sorting of NK cells into single KIR NK cell clones. 
FACS sorting of purified and expanded primary NK cells according to expression of KIR a, b and e. 
Single KIR clones are obtained by staining for the respective KIR with a FITC labeled mAb and a 
mixture of PE labeled Ab recognizing the two other KIR. Shown is one representative example. 
Numbers refer to the percentages of single KIR NK cell populations. 
 

 

3  Functional consequences of interaction of LSC of AML and  

single KIR NK cells 

 

3.1  Serial replating colony forming unit (CFU) assays show diminished 

colony forming capacity of LSC after treatment with VA and  

single KIR NK cells. 

 

Increased expression of NK cell ligands on the cell surface of tumor cells is relevant 

for facilitating the immunorecognition by NK cells and their cytotoxic activity. This 

could be proven for leukemic cell lines and primary cells (see chapter V 1.3).  

We have also shown that activating ligands can be increased on LSC, but due to the 
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complex regulation pattern of NK cell activation, a direct proof of the functional 

consequences for LSC has not been provided yet. In case of LSC, monitoring the 

colony formation capacity by hematopoietic cells gives a good information about their 

functionality and possible interactions with NK cells. To do so we designed an 

experimental setup using serial replating colony forming unit (CFU) assays in 

semisolid methylcellulose culture media. 

 

 

 

 
Figure V.11 
Scheme of treatment of LSC of AML with valproic acid for serial replating colony forming unit 
(CFU) assay. 
Sorting of early AML leukemic stem cells (CD45dimCD34+CD38-) and more differentiated leukemic 
progenitor cells (CD45dimCD34+CD38+) was performed. Cells were either plated in methylcellulose 
supplemented with growth factors directly on the day of sorting (Day 0) or cultured for 2 days in a 
suspension culture with medium supplemented with growth factors with or without (w/o) valproic acid 
(VA). After 2 days cells were counted, cultured for another 4 hours in medium or cocultured with 
HLA-mismatched NK cells (E:T ratio 5:1) and subsequently plated in methylcellulose (1° CFU). Each 
methylcellulose culture was incubated for 14 days. Colonies were counted and subsequently replated in 
a second set of methylcellulose cultures (2° CFU). 
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As illustrated in figure V.11, after sorting of PBMC from AML patients into early and 

differentiated leukemic stem and progenitor cells (CD45dimCD34+CD38+/-), cells were 

plated directly into methylcellulose supplemented with growth factors (see IV 8), 

referred to as control CFU assays “Day 0”. Duplicates for both CD34+CD38+ and 

CD34+CD38- cells were performed with 1 * 105 cells per plate. In parallel, the same 

populations of cells were cultured in suspension cultures supplemented with growth 

factors (see chapter IV 2) with or without valproic acid. After 2 days cells were 

washed and 1 * 105 cells were cultured alone or with mismatched single KIR NK cells 

for 4 hours in the E:T ratio of 5:1 (5 * 105 NK cells). Subsequently the sorted 

leukemic cells were plated together with effector NK cells into methylcellulose in 

duplicates referred to as 1° CFU assays. After 14 days of incubation, colonies were 

counted, documented by photography and cells were replated in a second round of 

methylcellulose (2° CFU assay) with another 14 days of incubation before again 

scoring the colony formation capacity.  

 

With this experimental setup we were able to serially replate human primary 

leukemia-colonies in 1° and 2° methylcellulose cultures. NK cells plated alone do not 

give any colonies (not shown), indicating that LSC are the only source of colonies in 

the CFU assays.  

 

Figure V.12 A is showing the CFU results obtained with CD45dimCD34+CD38- and 

CD45dimCD34+CD38+ cells from 3 AML patients (AML 2, AML 5 and AML 6). The 

CFU numbers in untreated samples (figure V.12 A, left column, Day “0”) differed in 

between the individual patients but there was a tendency to a stronger colony forming 

capacity in the initial CFU assay (1° CFU) and after replating (2° CFU) for the early 

LSC as compared to the more differentiated progenitors in all the three examples 

performed. The CD34+CD38+ cells seem to have a limited self renewing capacity as 

determined by only few or absent colonies in the 2° CFU. 
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Figure V.12 
Serial replating CFU assays of AML LSC after treatment with VA and HLA-mismatched single 
KIR NK cells. 
After sorting of early (CD45dimCD34+CD38-, dark blue columns) and more differentiated 
(CD45dimCD34+CD38+, light blue columns) LSC of three AML patients (AML 5, 2 and 6), 1 * 105 
cells were plated in methylcellulose directly after sorting (day 0), the rest were incubated in medium 
supplemented with GF with or without VA. After 2 days cells were cocultured with HLA-mismatched 
NK cells for 4 hours and subsequently plated in methylcellulose. (A) shows the number of colonies of 
the primary culture (1° CFU) and after replating (2° CFU) for early and differentiated LSC. In B, 
histograms of upregulation of ULBP1 and MICA/B as ligands for NK cells by treatment with VA for  
2 days (solid area) compared to culturing in medium + GF (thick grey line) and secondary Ab alone 
(thin black line) on early LSC (CD45dimCD34+CD38-) of the respective patients are shown. 
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Upon suspension culture, without as well as with treatment with VA, cells having the 

early LSC phenotype showed the much stronger colony forming and self renewing 

capacity than their more differentiated counterparts (figure V.12 A, 2nd column). VA 

treatment itself seemed to increase the self renewing capacity of early LSC as judged 

by higher CFU numbers in the second round of replating (2° CFU, AML 5 and AML 

2) as compared to 1° CFU. Treatment with HLA-mismatched single KIR NK cells 

had an important influence of LSC, reducing the numbers of colonies formed in the 

first round of cultures dramatically and virtually abolishing their replating in 

methylcellulose. This is indicating a strong effect of NK cells on LSC, presumably 

due to immunorecognition and cytotoxicity. A combined treatment with VA to induce 

NK cell ligand expression on LSC and sequentially with HLA-mismatched  

single KIR NK cells inhibited colony formation already in the initial 1° CFU cultures 

which was was even more evident in the 2° CFU assays.  

Figure V.12 B is showing the upregulation of NKG2D ligands of the respective 

patient’s early LSC. In case of every patient included in this experiment, either 

ULBP1 or MICA/B or both ligands were upregulated in response to VA. 

These results are demonstrating the eradication of LSC by NK cells on the basis of the 

functional assay of CFU cultures. 

 

 

3.2  Control serial replating CFU assays show no effect of NK cells and VA on 

 HSC and demonstrates importance of KIR-HLA-mismatch. 

 

To validate the results obtained by treating and culturing leukemic stem and 

progenitor cells, the same experimental procedure was performed with normal HSC 

derived from bone marrow of healthy donors. This control has been performed to 

evaluate the potential side effects of VA and of mismatched single KIR NK cells, 

which might be detrimental to the residual normal HSC and normal hematopoiesis. 

CD34+CD38- (HSC) and CD34+CD38+ progenitor cells were sorted from the bone 

marrow of 2 healthy donors (BM 1 and BM 2) and plated to measure 1° and 2° CFU 

capacities. 
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Figure V.13 
Control serial replating CFU assay with normal HSC after treatment with VA and  
HLA-mismatched single KIR NK cells and AML-LSC with VA and HLA-matched NK cells. 
Control experiments with normal hematopoietic stem cells sorted from healthy BM and treated with 
VA and mismatched NK cells shows no effect of VA and NK cells on HSC (A) . Treatment of AML 
leukemic stem cells with VA and matched NK cells had no effect on the colony forming capability as 
well, indicating that the efficiency of an HLA-mismatch of NK cell and LSC is triggering 
immunorecognition (B) . 
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Cells from BM 1 and BM 2 donor showed the self-renewing capacity judged by 

replating only in the early HSC subpopulation (figure V.13 A). Treatment with VA 

was not deteriorating the colony formation capacity in either the initial round of  

CFU assay (1° CFU) as well as after replating (2° CFU). Single KIR NK cells 

selected for an HLA mismatch reduced, but did not abolish neither colony forming 

capacity (1° CFU) nor replating capacity (2° CFU). 

Treating AML leukemic stem cells with VA and HLA-matched single KIR NK cells 

has underlined the importance of circumventing inhibition of NK cells by  

HLA ligands. In comparison to mismatched NK cell treatment of AML leukemic stem 

cells (AML 5, figure V.12 A), matched NK cells did not alter the plating (1° CFU) 

and replating (2° CFU) characteristics (AML 5, figure V.13 B). 

 

 

3.3  VA induces differences in morphology of colonies in CFU assay. 

 

Colonies formed by early LSC of AML in CFU assays displayed a morphology 

distinct to colonies found in cultures of normal HSC. Leukemic clones were more 

uniform, bigger in size, less compact and showed a more diffuse growth (figure V.14, 

AML 5 and AML 6 Day 0). Colonies of healthy HSC were heterogeneous in form, 

showing differentiation into different lineages and had an altogether smaller size 

(figure V.14, BM 1). Treatment by VA did not change the morphologic aspect in  

HSC cultures (Day 2, +VA) and even treatment with HLA-mismatched  

single KIR NK cells had no influence not only on the number of colonies  

(figure V.13) but also on their morphology (figure V.14). In CFU assays with LSC of 

AML, treatment with NK cells abolished colony-forming capacity and therefore did 

not allow the assessment of morphology of colonies. VA alone was changing the 

morphology of AML CFU into small, compact colonies showing no diffuse growth 

into the surrounding area (figure V.14, AML 5 and AML 6, Day 2, VA). 
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Figure V.14 
Pictures of colonies in serial replating CFU assay 
Pictures of colonies in CFU assays 14 days after plating CD34+CD38- LSC after treatment with VA 
and mismatched NK cells. AML-LSC showed different morphologies of the colonies than normal HSC 
with bigger but fewer colonies. Treatment with NK cells lead to an abolishment of the colony forming 
capacity of AML-LSC, but not normal HSC in 1° CFU cultures. Magnification : x 40. 
 
 

3.4  Cell surface expression of NKG2D ligands induced by VA increases 

susceptibilityof AML blasts to NK cell killing. 

 

The complexity of NK cell-tumor cell interaction with multiple activating and 

inhibitory signals integrated into a final NK cell response makes it difficult to predict 

the final outcome of a change introduced by one single interaction of one  

receptor-ligand pair. In analogy to the functional cytotoxicity assay described in 

chapter V 1.3 we wanted to address the question whether the upregulation of cell 
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surface ligands for NKG2D on total leukemic blasts induced by VA would lead to an 

enhanced immunorecognition and antitumor activity by NK cells.  

 
Figure V.15 
Increased susceptibility of leukemic blasts to NK cells following treatment with VA. 
(A) FACS analysis of ULBP1 and MICA/B expression levels by leukemic blasts from 6 AML patients 
untreated (black area), and after 2 days treatment with medium supplemented with growth factors alone 
(black line) or VA (grey area); broken line, isotype-specific mAb staining. (B) Specific lysis of cells 
treated with medium alone (open symbols) and VA (filled symbols) by HLA-mismatched (squares) and 
matched NK cells (circles). *P <0.05; **P<0.01; significant difference between cytolysis of VA-treated 
and VA-untreated AML blasts by NK cells. (C) Reduction of specific lysis of AML cells by α-NKG2D 
blocking mAbs. HLA-mismatched NK cells were preincubated with blocking mAbs and used as 
effectors against AML cells cultured in medium without VA (open bars) and with VA (grey bars). The 
effect of α-NKG2D mAbs is the average of results obtained at 3 NK cell:target cell ratios of 10:1 (or 
5:1), 2.5:1 and 1.2:1. Lysis after use of α-NKG2D mAbs is shown as stripped bars. No blocking was 
observed with control IgG1 Abs (not shown). *P <0.05; **P<0.01; significant difference between lysis 
of VA-untreated and VA-treated AML blasts in the presence of α-NKG2D mAbs. 
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Total unfractionated blasts from 6 AML patients were treated with VA. After 

monitoring the effect on cell surface expression of NK cell ligands by FACS, cells 

were cocultured for 4 hours with HLA-mismatched NK cells and analyzed in a  
51Cr-release cytotoxicity assay. The two types of controls were VA-untreated cells, as 

well as VA-treated cells but exposed to HLA-matched NK cells. The result obtained 

with 6 individual examples showed increased expression of ULBP1 and MICA/B 

(figure V.15, 1st column) as well as the positive effect on immunorecognition and 

killing by NK cells (figure V.15, 2nd column). The difference between the killing 

without treatment with VA and killing of VA-treated targets is demonstrating the 

specific effect of this pharmacologic treatment. In all these examples, HLA-matched 

NK cells showed a remarkably lower impact on tumor lysis (figure V.15, 2nd column). 

To confirm that increased killing is caused by increased NKG2D-ligand interaction, 

blocking experiments with anti-NKG2D antibodies were performed (figure V.15, 

right column).  

Addition of blocking anti-NKG2D antibodies partly abolished the cytolysis, and the 

blocking effect was even stronger with VA-treated than VA-untreated cells, indicating 

the contribution of NKG2D-ligand interactions to VA-modulated lysis of AML cells. 

These data demonstrates a role of HDAC inhibitors in enhancing the recognition and 

cytolysis of AML blasts by alloreactive NK cells. 

 

 

3.5  Functional consequences of treatment with VA on 

 immunorecognition of LSC by NK cells. 

 

To estimate whether alloreactive NK cells are able to interact with LSC and to 

evaluate possible approaches to increase such interaction, we performed cytotoxicity 

assays with sorted AML LSC and HLA-mismatched NK cells as effectors.  

Therefore we were sorting early and differentiated LSC from  

PBMC of AML patients and cultured them for 2 days with or without VA.  

The cells after pharmacologic treatment were used as targets and coincubated with 

HLA-mismatched NK cells. Figure V.16 is showing the specific lysis of  

LSC (CD34+CD38-, left column, light grey) and leukemic progenitor cells 

(CD34+CD38+, middle column, dark grey) from 3 independent patients  

(AML 5, 6 and 10). Cells of all patients showed an increased cell surface expression 
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of ligands for NKG2D after treatment with VA, possibly enabling NK cells for an 

increased recognition. All 3 patients demonstrated an immunorecognition of LSC and 

leukemic progenitor cells by HLA-mismatched NK cells as judged by specific 

cytolysis over all E:T ratios, providing a proof that NK cells are able to identify and 

lyse LSC. 

 

 

 
Figure V.16 
Specific lysis of LSC after VA treatment 
(A) Cytotoxicity assay of early (CD34+CD38-, left column, light grey) and more differentiated 
(CD34+CD38+, middle column, dark grey) LSC of 3 AML patients after sorting. Untreated  
(medium alone, blue line) and cells treated for 2 days with VA (red line) were exposed to HLA-
mismatched NK cells. The specific lysis in different E:T ratios from 10:1 to 0.6:1 are shown. (B) Fold 
increase of specific lysis induced by treatment with VA in average of all E:T ratios. Triplicates of all 
reactions have been performed. 
 

 

Patient AML 5 (figure V.16 1st row) showed no increase in the specific lysis of  

VA-treated LSC in comparison to untreated LSC over the different E:T ratios. 

However, the more differentiated leukemic progenitor cells were subjected to an 

enhanced specific lysis after treatment, with an 1.6 fold increase. The specific lysis 
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against cells of patient AML 6 showed an altogether poor performance with less than 

20 % specific lysis (figure V.16 2nd row). The recognition of early LSC population 

was increased due to VA treatment with an 1.7-fold increase whereas the 

immunorecognition of more differentiated progenitor AML cells was not affected. 

Cells of the third patient (figure V.16 3rd row) were strongly responding to  

HLA-mismatched NK cells as effectors and showing a high specific lysis of LSC 

even without VA-treatment (medium). Surprisingly, VA treatment of LSC was 

accompanied by a decreased lysis by NK cells despite an upregulation of activating 

NKG2D-ligands. 

Treatment with VA is not effective in all of the cases in increasing the 

immunorecognition and thereby specific lysis. Nevertheless, an interaction of LSC 

with HLA-mismatched NK cells could be proven by demonstrating a consecutive 

specific lysis of LSC and leukemic progenitor cells. A lack of an effect of the 

upregulation of cell surface expression of activating ligands for NK cells on the 

immunorecognition is indicating that recognition of target cells by NK cells is an 

complicated process regulated by multiple factors. 

 

 

4  In vivo assay of the effect of VA and KIR-HLA-mismatched NK cells  

on LSC 

 

4.1 NOD/SCID transplantation of human leukemia and treatment in mice 

 serves as disease model in vivo.  

 

To assess the ability of the combined treatment of VA and HLA-mismatched NK cells 

to target leukemic cells in vivo, we established a model of AML transplantation into 

NOD/SCID mice by intrafemural (i.f.) injections. Patients cells were chosen by the 

criteria of a profound engraftment in mouse bone marrow in preceding test 

transplantations (see table V.1), existence of an HLA class I mismatch in respect to 

single KIR NK cells, an effect of VA on the upregulation of cell surface expression of 

NKG2D ligands and availability of sufficient quantity of cells to perform 

transplantation in a group of at least 25 mice. 

Table V.1 is showing the result of tests for the efficiency of engraftment after  

i.f. transplantation using primary patients mononuclear cells of peripheral blood 
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(PBMC) of 13 individual AML patients. For these tests, except of irradiation no 

additional preparatory treatment was applied to mice, especially no TM-β1 Ab. The 

engraftment is varying from 0 % to 65 % of human cells in the mouse bone marrow  

4 weeks after transplantation. Migration of transplanted cells from the injected to 

noninjected bone or peripheral blood is low in general. In summary, the level of 

engraftment is not dependent on either blast content, CD34 expression of blasts or 

FAB subtype of AML. The 2 individuals chosen according to the criteria mentioned 

above for the following NOD/SCID transplantation and treatment experiment are 

marked with asterisks. 

 

 

Table V.1: Test of engraftment of AML in NOD/SCID mice 
    % of human blasts in:   

AML 

 

   blasts in PB             CD34+ of blasts Injected bone Noninjected bone PB 

AML 8 * 95 % 45 % 65.5 13 1.4 

# 1 83 % 0 % 51 0.1 0 

# 2 81 % 1 % 50 2.2 0 

AML 7 * 98 % 52 % 41 0.5 0 

# 3 85 % 100 % 18.5 12 2 

# 4 77 % 37 % 12 0.5 0.3 

# 5 65 %  3 % 8 0 0 

# 6 87 % 0 % 2 0 0 

# 7 96 % 52 % 0.5 0 0 

# 8 91 % 1 % 0.2 0 0 

# 9 95 % 0 % 0 0 0 

# 10 97 % 20 %  0 0 0 

# 11 92 5 2 % 0 0 0 

 

 

For the transplantation series, mice were pretreated with irradiation and TM-β1 Ab,  

a rat antibody against mouse IL-2 receptor β-chain designated to deplete residual 

lymphocytes and macrophages and thus enhance subsequent engraftment of human 

cells. 24 hours after the preparatory treatment, mice were transplanted intrafemurally 

with 1 * 107 unfracturated total primary AML blasts. At 4 weeks mice were grouped 

into 4 treatment groups receiving no treatment, treatment of VA  



 66 

(400 mg/kg = 10 mg/mouse) i.p., HLA-mismatched single KIR NK cells  

(5 * 105 cells) i.v. or a combination of NK cells and VA. Treatment was repeated two 

more times with a total amount of 1.5 * 107 NK cells and 30 mg VA per mouse given 

in one week. One week after the last treatment, bone marrow of the transplanted 

femur and nontransplanted bones were further assessed for human AML blast content 

by FACS (see figure V.17). 

 

 

 
Figure V.17 
Scheme of intrafemural transplantation of human AML into NOD/SCID mice. 
24 hours after irradiation (375 cGy) and i.p. injection of 180 µg TM-β1 mAb, NOD/SCID mice were 
intrafemuraly transplanted with 1 * 107 human AML cells. Subsequently mice were grouped in 4 
treatment groups receiving no treatment, 400 mg/kg valproic acid (VA), corresponding to 100 µl VA 
i.p., 5 * 106 mismatched NK cells i.v. or a combination of VA and NK cells in the same dose than VA 
or NK cells alone. Treatment was performed 3 times with one treatment free day in between. One week 
after the end of treatment mice were sacrificed and bone marrow of the injected femur and noninjected 
bones and PB was analyzed for content of human blasts as judged by expression of human CD45 and 
CD33 (percentages of viable PI negative cells). 
 

 

4.2 NK cells and VA fail to influence AML in mice with high blast load.  

 

 

Figure V.18 shows the engraftment of human AML of two individual AML patients 

(AML 7, AML 8). FACS pictures (left columns) indicate the method of assessing the 

level of engraftment as judged by viable cells (PI negative) carrying the human 

myeloid markers CD45 and CD33. Depicted are the percentages of human cells in the 

mouse bone marrow of the individual mice (light blue bars) grouped to the  

4 treatment groups and an average of each treatment group (dark blue bar).  

Mice receiving an intrafemural injection of human unfractionated AML blasts after 

the preparatory regimen of irradiation and TM-β1 antibody showed an engraftment of 
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human AML of 15-50 % (“untreated”). On average, cells of patient AML 7 

constituted 35 % of the mouse bone marrow, whereas patient AML 8 showed an 

engraftment of 53 %, both in mice not receiving either VA or NK cells. 

 

 

 

 
Figure V.18 
I.F. Xenotransplantation model for human AML into NOD/SCID mice 
NOD/SCID mice transplanted intrafemurally with human AML were grouped 4 weeks after 
transplantation into 4 treatment groups and received no treatment, VA and/or HLA-mismatched NK 
cells as indicated. Percentages of human cells on total mouse bone marrow was evaluated by FACS as 
judged by myeloid human cells (CD45, CD33) of viable, PI negative cells (left column). 2 sets of 
unfractionated AML blasts from 2 patients (AML 7 and AML 8) were performed. Shown are the 
percentages of engraftment of the individual mice (light blue bar) and average of engraftment of each 
treatment group (dark blue bar). Two sets of transplantation experiments with 2 different AML samples 
were performed and are shown. 
 
 

Treatment of the mice 4 weeks after transplantation with VA was reducing the blast 

content in the mouse bone marrow ranging between 24 and 30 % with patient AML 7 
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and AML 8, respectively as compared to untreated mice. Surprisingly, the treatment 

with HLA-mismatched human NK cells led to an increased engraftment of human 

cells in the NOD/SCID mice with both patient’s samples (70 % and 72 %, 

respectively). The combined treatment of VA together with mismatched NK cells 

(figure V.18, “VA+NK”) was reducing the extend of human blasts in the mouse bone 

marrow to the level of those of untreated mice (35 % and 47 %, respectively).  

These results show a stable engraftment of human AML blasts after intrafemural 

transplantation demonstrating the prospects of this method to be performed in search 

for novel options in the treatment of leukemia. It is underlining as well the need to 

challenge and adapt in vitro findings to the in vivo situation. 
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VI  Discussion 

 

 
1  NKG2D ligands on LSC of AML. 

 

Ligands for NK cell receptors represent a new focus of medical research. Expression 

of the activating ligands is a possible mechanism facilitating interactions between 

tumor cells and the immune system, thus promoting immunosurveillance. 

Accordingly, downregulation of these cell surface ligands or their receptors is a newly 

recognized immune escape mechanism developed by tumors to circumvent their 

detection and thereby destruction. Understanding these mechanisms and investigating 

the regulation and expression of NK cell ligands with the aim to influence their 

expression is subject of ongoing studies and is of therapeutic relevance. 

The expression of ULBP and MICA/B as the most prominent representatives of 

activating NK cell receptor ligands in AML is proven to be low to absent, reflecting 

the poor reaction of the body`s immune system to fight the tumor89. The reason of an 

absence of expression of ULBP and MICA/B is at least partially the cleavage of cell 

surface ligands 122,123. This is, in turn leading to an additional protection of the tumor 

cell: immunorecognition is hampered because NKG2D receptor on NK cells becomes 

internalized by the soluble form of ULBP circulating in plasma124.  

Leukemic cells of AML can be targeted by the classical cytoreductive therapies of 

irradiation and cytotoxic agents. This induction therapy is leading to a complete 

remission in 65 - 75 % of patients within the first two cycles of chemotherapy24. The 

high incidence of relapse and finally resistance to therapy is indicating a remaining 

cell population of AML that is not affected by conventional treatment and able to 

survive even the postremission therapy. To target this remaining cell population by 

immunotherapeutic approaches is highly tempting. 

By defining the population of AML cells that is the most resistant to treatment and 

responsible for adverse outcome of the disease, it would be desirable to focus the 

immunotherapeutic approaches onto this subpopulation. The mere calculation of cell 

numbers is indicating a bigger chance that this theoretical approach can be efficient. 

The blast load is often very high – in the range of 1-10 * 1011 of malignant cells. Even 

after cytoreductive chemotherapy the remaining number of leukemic cells can be 
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estimated as about 1 * 109. Considering an estimated total number of residual NK 

cells as 1-10 * 108, the ratio between effector immune cells and tumor cells is highly 

unfavorable (E : T ratio 0.0001 – 1 : 1).  

Consequently, absence of activating ligands for NK cells on leukemic cells is 

explaining the limited efficiency of HSCT for the treatment of AML. The findings 

presented here that cell surface expression of ligands for the activating NK cell 

receptors NKG2D, ULBP and MICA/B (figure V.1) and for NCR (figure V.2) is low 

to absent is in line with the observation that AML cells are able to evade 

immunorecognition. Accordingly, pharmacologically induced upregulation of these 

ligands by bryostatin-1 is leading to an increased immunorecognition and cytolytic 

activity of NK cells (figure V.3). 

Extending the investigations to the leukemic subpopulation of LSC is demonstrating 

the absence of ligands as on total blasts as well (figure V.5). However, a targeted 

therapy with the intention to increase the expression of activating ligands on LSC 

with the HDAC inhibitor VA is possible (figure V.8). This increased cell surface 

expression of ligands for NK cells has the functional consequences of enhanced 

immunorecognition, which can be proven by serial replating CFU assays in 

methylcellulose (figure V.12). 

Interestingly, cytotoxicity assays are demonstrating an interaction of  

KIR-HLA mismatched NK cells and LSC of AML even without treatment of VA  

(figure V.16). Obviously, other receptor-ligand pairs than the ones examined here are 

playing important roles in immunorecognition as well. Furthermore, an increased cell 

surface expression of the ligands for NK cells on LSC is not necessary leading to 

enhanced immunorecognition (figure V.16), underlining the complexity of the 

activation mechanisms of NK cells. 

Not only ULBP and MICA/B ligands, but also other activating ligands such as 

molecules recognized by NCR on NK cells are apparently not expressed in a 

sufficient level to overcome inactivity of NK cells as well. Identification of the 

ligands for the NCR NKp30, NKp44 and NKp46 on NK cells would increase the 

possibilities to characterize interactions and intervention possibilities.  

The unequivocal phenotypic definition of LSC remains difficult. Due to a lack of 

established markers which are identifying and distinguishing normal HSC and LSC, 

the most widely used marker for hematopoietic and leukemic progenitor cells is 

CD34. This is a glycoprotein, expressed on normal HSC and down-regulated during 
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maturation125. Due to their common origin it is not surprising that leukemic stem cells 

share the CD34-expression with normal HSC37. Since CD34 expression does not 

enable to distinguish normal from leukemic stem cells and since AML cells in some 

individuals are negative for CD34, additional markers for early stemness in AML are 

searched for35,126,127. Up to now there is no alternative reliable marker than CD34 for 

the phenotypic description of AML LSC. Choosing this marker for experiments with 

primary AML cells is associated with a selection of patients who express CD34 at 

least on subpopulations of their blasts. Only functional assays like 

xenotransplantations of whole blasts where no phenotypical characterization of the 

LSC subpopulation is necessary can circumvent this selection bias. Another selection 

bias is associated with the difficulty that not all primary AML blasts allow in vitro 

culturing. A cytokine mixture in the culture medium supplying essential growth and 

survival signals necessary to keep primary cells viable in cell suspension culture 

might influence any cellular process as well. This selection is skewing interpretation 

and generalization of data acquired in experiments with primary patient material. 

Despite the experimental shortcomings, the information provided by studies with 

primary human cells is extremely valuable and superior in many aspects to the data 

obtained with cell lines. 

 

 

2  Immunorecognition of LSC by NK cells. 

 

The induction of cell surface expression of ligands for the receptor NKG2D on  

NK cells by valproic acid described here is tempting as it may lead the way to 

enhance immunorecognition. LSC are important determinants of an adverse outcome 

in AML patients, thereby are representing the main cell population to be treated. 

Methodically, immunorecognition and killing can be demonstrated by a direct 

interaction of tumor cell and NK cell in a cytotoxicity assay, and further functionally 

by analyzing colony forming ability in CFU assays. In this study, both methods were 

applied to monitor the LSC behavior and demonstrated an increased 

immunorecognition of AML LSC by NK cells, thus providing a promising outlook for 

scenarios closer to the clinical situation. By applying the experimental setup to  

the in vivo setting it would be possible to test an immunorecognition of LSC under  

 



 72 

in vivo conditions, where localization and interactions with the stem cell niche  

within bone marrow microenvironment might exert important regulatory effects. 

In vivo experiments with cells of two AML patients in the NOD/SCID 

xenotransplantation model did not recapitulate the beneficial effects of NK cells and 

VA seen in vitro. Considering the multifactorial circumstances in mice it is 

impossible to determine a single reason of the observed ineffectiveness. One possible 

explanation is the quantity of tumor cells that needs to be eradicated by NK cells  

to show any measurable effect. By administering 1 * 107 cells localized into the 

injected bone and 5 * 106 NK cells given 3 times i.v. and distributed throughout of the 

whole mouse body, the NK cell- tumor cells proportions might be not sufficient to 

markedly influence the leukemic burden. Investigations into the distribution of  

human NK cells in a mouse body after i.v. injection was providing evidence for the 

presence of human NK cells in the mouse bone marrow. However, 24 hours after 

injection, only 0.03 % of the mouse bone marrow was estimated to be of  

human NK origin128. Therefore the quantity of NK cells and thereby the ratio between 

NK cell and target cell might be too low to efficiently lyse leukemic cells and have an 

influence on the course of the disease. A modified experimental protocol is therefore 

foreseen and it is introducing a chemotherapeutic treatment step in mice before the 

actual NK cell administration. This is done with the intention to reduce tumor burden 

and shift effector-target ratio to more advantageous numbers. It is expected that 

chemotherapeutic treatment with arabinosyl-cytosin129 will preferentially destroy 

mature leukemic blasts and leave the LSC relatively intact, thus will bring the 

experimental system closer to a clinical setting of AML treatment in human. 

 

 

 

3  Effect of VA on normal and leukemic cells. 

 

HDAC inhibitors in general and valproic acid in particular are in the focus for an 

innovative therapy for tumor disease since recently. Experimental data on the effect of 

epigenetic modification of gene expression by HDAC inhibitors on tumor cells 

demonstrate an activity in inducing cell cycle arrest, causing cell death and apoptosis 

of transformed cells109,110. An anti-tumor effect could also be shown in vivo in tumor  
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bearing mice113,114. Focusing on the blasts of AML, several groups could show that 

HDAC inhibitors are able to differentiate AML tumor cells to mature blasts and 

induce apoptosis ex vivo130. Applied in the human setting, it could be shown that VA 

improves the clinical parameters of AML patients by reducing the blast cell quantity 

and leads to a peripheral hypergranulocytosis as a result of restored normal 

hematopoiesis in the bone marrow131 as well as dominance of normal hematopoiesis 

over the malignant clone132. These effects can not only be explained by induction of 

differentiation and apoptosis, but other mechanisms of action are postulated131.  

For solid tumors as well as for leukemia, an increase of cell surface expression of 

ligands for activating NK cell receptors upon treatment with VA could be 

demonstrated92,121. This upregulation was causing increased immunorecognition and 

killing, giving a possible explanation for additional effects of valproic acid beside of 

induction of apoptosis and differentiation. The induction of cell surface expression of 

ligands for NK cells would offer an interesting additional treatment option 

complementing immunotherapies like HSCT and donor lymphocyte infusions (DLI) 

in AML patients. 

Following investigations of the effect of VA on tumor cells, the effect on HSC with 

respect to differentiation, proliferation and influence on the self-renewal capacity was 

examined. It was shown that inhibiting HDAC by VA is increasing both proliferation 

and self-renewal of normal HSC in vitro131. The cell cycle progression was 

accelerated. The molecular basis of this finding was shown to be due to a down-

regulation of p21cip-1/waf-1, a cyclin-dependent kinase (CDK) inhibitor, as well as 

inhibition of the protein kinase GSK3β which in turn is activating Wnt signaling131. 

Our own investigations into the consequences of treatment with VA on the expression 

of ULBP and MICA/B as ligands for NK cells revealed that normal hematopoietic 

stem cells do not show a significant increase in cell surface expression of these 

molecules. Clinically, the long term experience with VA as anti-epileptic drug 

without adverse effects noted on the hematopoietic system is providing additional 

strong arguments against a deleterious side effect of this drug.  

Whether HDAC inhibitors and VA in particular have an effect on AML LSC has not 

yet been described. The effect of VA on progenitor cells of AML was reported to be 

in favor of quantitative proliferation with colonies bigger than the control in 

methylcellulose assays133. An increase in cell count is in line with our finding that VA 
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is increasing the number of colonies (figure V.12). However the concern stated by the 

authors133 that VA could stimulate leukemic progression seems not to be justified in a 

combined treatment protocol with VA and KIR-HLA mismatched NK cells. 

Furthermore, to estimate an existing hazard for leukemic progression, self-renewal is 

of bigger importance than mere number of cells or colonies. Maturation of  

leukemic progenitor cells or stem cells is most likely going along with an  

increase in leukemic blast number, which is not sustained owing to a depletion in  

self-renewing LSC. This aspect is supported by our finding that in primary AML the 

more differentiated CD34+CD38+ stem cells have a higher capability to form colonies 

in the first plating in CFU assays, but not in replating (2° CFU) (figure V.12).  

These cells seem to be terminally differentiated and supposedly less harmful in a 

course of future relapses. 

 

 

4 Clinical consequences for AML treatment. 

 

AML therapy is up to now a frustrating endeavor due to high incidence of relapse and 

short survival times. Hence additional treatment options need to be introduced. 

Multiple clinical trials are evaluating novel strategies to replace or support 

conventional therapies, which are burdensome for the patient but nevertheless without 

showing an overwhelming long-term success. Treatment with VA is one of the 

pharmacological intervention under evaluation. The novel strategy with  

HLA-mismatched NK cells together with VA presented here is combining two 

different approaches. The synergy between them make them an interesting  

tool in anti-leukemic therapy. Both strategies individually as well as in combination 

seem to be of little harm134 – thereby in contrast to the burdensome conventional 

treatment. The interesting finding in vitro presented here that VA is helping NK cells 

to interact and recognize tumor cells is indicating an explanation for the phenomenon 

that VA as a solely agent without NK cells was of limited benefit in preliminary 

clinical trials even though good experimental data in vitro for induction of apoptosis 

and differentiation are existing. HCST and consecutively GvL effect as well as  

NK DLI are leading to a cure of AML disease only in limited cases. Apparently  

small subpopulations of AML are able to escape immunorecognition even after HSCT  
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or NK DLI134. A selected mismatch according to the HLA-class I allotype of the 

patient`s target cell with the donor`s single KIR effector NK cells as NK cell DLI 

could be an additional treatment option in AML patients, overcoming the inhibition of 

effectors by inhibitory KIR receptors.  

NK cells provide an array of further advantages with respect to HSCT treatment of 

AML. Beside of the cytotoxic effect on tumor cells exerted by NK cells, the 

engraftment efficiency of stem cells transplanted with a graft containing NK cells is 

proven to be higher. It is postulated that this effect is caused by a lytic activity 

 on the recipient`s T cells. This is even permitting a reduced toxicity conditioning 

regimen before transplantation95. Furthermore, based on the ablation of dendritic cells 

(DC) of the recipient, which are the major trigger for graft-versus-host disease 

(GvHD), allogeneic NK cells are protecting the host from suffering GvHD135. 

The combination of both VA and HLA mismatched NK cells has hereby shown  

in vitro to enable the beneficial interaction and is advocating the addition of valproic 

acid as a not harmful, but beneficial drug into the existing NK cell experimental 

therapeutic strategies. 
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