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Summary

Summary

The  bradyzoite  stage  of  the  apicomplexan  parasite  Neospora  caninum
represents a hypobiotic, slowly proliferating and tissue cyst forming stage, which

can survive in the immunocompetent  host for  several  years. Tissue cysts are

orally infectious. In addition, as immunocompetence gets impaired such as in the

pregnant  cow,  bradyzoites  transform  into  the  rapidly  proliferating  and  more

virulent tachyzoites, which break out of the tissue cysts, cross the placenta and

infect the unborn foetus, causing abortion, stillbirth or the birth of weak calves.

Thus, the bradyzoite stage is epidemiologically important, since it plays a crucial

role in both oral and transplacental transmission.

During  the  thesis  work,  an  in  vitro  cultivation  model  for  the  generation  of

bradyzoites  containing  tissue  cysts  was developed  that  allowed  to  study  this

parasite stage more closely.

In  preliminary  studies,  different  cell  lines  like  Vero  cells,  fibroblasts  and

neuroblastoma cells were infected with several  Neospora caninum isolates and

stage conversion was induced using pH-stress, the macrolide antibiotic tylosin

and heat stress. However, the number of parasites expressing the bradyzoite-

specific antigen BAG1 remained very low. Besides, the host cells tended not to

tolerate such culture conditions that rendered a cultivation period over several

days impossible.

As an alternative approach to induce stage conversion, organotypic brain slice

cultures of  rat  cortical  tissue were used for  infection.  This  cultures  provide a

three-dimensional  array  of  central  nervous  tissue  with  the  original  complex

mixture of neuronal cells. The rationale behind this approach was that cofactors

that could contribute to stage conversion were more likely to be provided in such

a system than within a single cell. Organotypic brain slice cultures were infected

with 2x106 and 2x107 tachyzoites. To some cultures, 100 units of recombinant

mouse IFN-γ were added. IFN-γ, a key cytokine in the host immune response to

Neospora  caninum infection  has  shown  to  trigger  stage  conversion  in

Toxoplasma gondii infected macrophages and microglia. However, in none of the
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Summary

Neospora  caninum infected  cultures,  IFN-γ-treated  or  untreated  cultures,

parasites that expressed the bradyzoite marker BAG1 could be detected, neither

a cyst wall was found by transmission electron microscopy. 

In  order  to  monitor  the  kinetics  of  parasite  proliferation  in  this  system,  a

quantitative real-time PCR was developed using a dual fluorescent hybridization

probe system and the LightCycler™ instrument for online detection of amplified

DNA. Treatment of the infected cultures with IFN-γ resulted in an inhibition of

parasite  proliferation  compared  to  the  untreated  cultures.  Moreover,  smaller

pseudocysts were found after IFN-γ-treatment. In addition, neuronal cytoskeletal

elements,  namely  glial  acid  protein  filaments  as  well  as  actin  microfilament

bundles largely colocalised with the pseudocyst periphery.

Although the use of organotypic brain slice cultures did not  succeed in stage

conversion of Neospora caninum, a model was established that can be used to

gain more information on the cerebral phase of Neosporosis.

Since inhibitors  of  the mitochondrial  respiratory chain  were found to promote

stage  conversion  in  Toxoplasma  gondii,  sodium  nitroprusside,  an  exogenous

donor of nitric oxide that inhibits the respiratory chain at cytochrome oxidase was

tested  for  stage  conversion  in  Neospora  caninum.  Additionally,  long  term

cultures of murine epidermal keratinocytes were used as host cells, because of

their very strong cell-substrate adhesion. Sodium nitroprusside was daily added

at a concentration of  70 μM to infected Vero cells, fibroblasts,  neuroblastoma

cells and keratinocytes for up to 8 days. Keratinocytes were the only host cells to

withstand this treatment  for  a period of  at  least  eight  days. In these cultures,

sodium  nitroprusside  strongly  inhibited  Neospora  caninum proliferation  as

assessed by quantitative real-time PCR and induced the expression of  BAG1

antigen from day 3 onwards. This data suggests that the inhibition of parasite

proliferation is closely linked to the expression of bradyzoite-specific markers. At

day 8,  around 60% of  the parasitophorous vacuoles contained BAG1-positive

parasites.  Another  marker,  which  was  used,  was  mAbCC2  that  is  directed

against a  Toxoplasma gondii cyst wall protein. After 8 days, around 60% of all

parasitophorous vacuoles exhibited a peripheral labelling with this antibody that

indicated  the  formation  of  a  cyst  wall.  Inspection  by  transmission  electron
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microscopy  suggested  that  the  majority  of  the  intracellular  compartments

occupied  by  Neospora parasites  exhibited  features  that  were  indicative  for

tachyzoite-to-bradyzoite stage conversion.  Vacuoles contained 1-5 intracellular

parasites,  featuring  electron  dense  rhoptries,  many  micronemes  that  were

predominantly located at the anterior end, and large and small dense granules.

In addition, amylopectin granules, that are characteristic for the bradyzoite stage,

were  found.  The  majority  of  the  parasitophorous  vacuoles  contained  an

accumulation of electron dense granular material at the periphery that indicated

the formation of a cyst wall, which varied considerably in thickness between 0.1-

1 μM.

Although this developed in vitro culture system was efficient in terms of NcBAG1-

expression, it was less suitable in order to obtain larger amounts of  Neospora

caninum bradyzoites that  are required for  biochemical  and molecular  studies.

The separation of bradyzoites from keratinocytes was difficult,  due to the fact,

that the tissue cysts were surrounded by keratin filament bundles, that hindered

the liberation of the parasites. The culture conditions were therefore adapted to

Vero cells by decreasing the concentration of sodium nitroprusside to a minimum

level of 17 μM, which was tolerated by the less adhesive cell type. The efficiency

of tachyzoite-to-bradyzoite conversion was similar to that obtained with 70  μM

sodium  nitroprusside in  keratinocytes  as  host  cells,  but  resulted  in  a  higher

number  of  NcBAG1-positive  individual  zoites,  due  to  the  increased  size  of

NcBAG1-positive  vacuoles.  Additionally,  the  modified  system  made  it  now

possible  to  purify  bradyzoites  out  of  the  host  cells.  Furthermore,  sodium

nitroprusside-treatment of  infected Vero cells lead to a down regulation of  the

major  tachyzoite  surface  antigens  NcSAG1  and  NcSRS2,  as  assessed  by

immunofluorescence  and  immunoblotting.  The  expression  and  localisation  of

dense  granule  proteins  in  bradyzoites  was  also  analysed  by  immunogold

transmission electron microscopy and immunofluorescence and showed that the

localisation  of  these  proteins  shifted  towards  the  periphery  of  the  cysts,

compared  to  tachyzoites  where  dense  granule  proteins  were  found  at  the

anterior and posterior end of the parasites. These results implied an involvement

of dense granuIe proteins in the formation and modification of the cyst wall. In
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addition,  using  purified  tachyzoites  and  bradyzoites,  the  adhesion  and  the

invasion  of  these  two stages  to  Vero  cells  was comparatively  assessed  and

demonstrated that tachyzoites were more invasive than bradyzoites.  However,

removal of sialic acid by sialidase from the Vero cell surface and parasite surface

enhanced  the  bradyzoite  invasion  rate  from  25%  to  46%  and  15%  to  36%

respectively, whereas these treatments had no effect on the tachyzoite invasion

rate.  Thus, sialic acid plays an important  role in the invasion of  host  cells by

bradyzoites.
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Zusammenfassung

Zusammenfassung

Das Bradyzoitenstadium des apicomplexen Parasiten Neospora caninum ist ein

hypobiotisches, langsam proliferierendes und Gewebezysten bildendes Stadium,

das  im  immunkompetenten  Wirt  mehrere  Jahre  überleben  kann.  Die

Gewebezysten sind oral infektiös. Während der Trächtigkeit einer Kuh kann es

zur Beeinträchtigung der Immunkompetenz kommen, was eine Umwandlung von

Bradyzoiten  in  schnell  proliferierende,  virulentere  Tachyzoiten  zur  Folge  hat.

Diese brechen aus der Gewebezyste aus und werden über die Plazenta auf den

Foeten übertragen, was zu Abort, Todgeburt oder zur Geburt schwacher Kälber

führen kann. Das Bradyzoitenstadium ist epidemiologisch von Bedeutung, da es

eine entscheidende Rolle in der oralen und transplazentaren Übertragung spielt.

Während der Doktorarbeit wurde ein in vitro Kultivierungsmodell zur Erzeugung

von Bradyzoiten entwickelt,  das ermöglichte, dieses Parasitenstadium genauer

zu studieren.

In Vorversuchen wurden verschiedene Zellinien wie Verozellen, Fibroblasten und

Neuroblastomazellen mit unterschiedlichen  Neospora caninum Isolaten infiziert

und  die  Stadienkonversion  wurde  unter  Anwendung  von  pH-Stress,  dem

Makrolid-Antibiotikum  Tylosin  und  Hitzestress  induziert.  Die  Anzahl  der

Parasiten,  die  das  Bradyzoiten-spezifische  Antigen  BAG1  exprimierten,  blieb

jedoch  sehr  gering.  Ausserdem  neigten  die  Wirtszellen  dazu,  diese

Kulturbedingungen nicht zu tolerieren, was eine Kultivierungszeit über mehrere

Tage verunmöglichte. 

Als  eine  alternative  Methode  zur  Induktion  der  Stadienkonversion  wurden

organotypische Hirnschnittkulturen, die aus dem kortikalen Gewebe von Ratten

stammten,  zur  Infektion  verwendet.  Diese  Kulturen  zeichnen  sich  durch  eine

dreidimensionale Anordnung des zentralnervösen Gewebes aus,  welches das

ursprüngliche  komplexe  Gemisch  neuronaler  Zellen  enthält.  Die  Idee  hinter

dieser Methode war, dass Kofaktoren, die zu einer Stadienkonversion beitragen

könnten, eher in einem solchem System enthalten sind, als in einer einzelnen
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Zusammenfassung

Zelle.  Organotypische  Hirnschnittkulturen  wurden  mit  2x106 und  2x107

Tachyzoiten infiziert. Zu einigen Kulturen wurden 100 Einheiten rekombinantes

Maus-Interferon-γ  hinzugefügt.  Interferon-γ  ist  ein  Schlüsselcytokin  in  der

Immunantwort des Wirtes auf  Neospora caninum Infektionen. Zusätzlich haben

Studien gezeigt, dass Interferon-γ eine Stadienkonversion in Makrophagen und

Mikroglia, die mit Toxoplasma gondii infiziert waren, induzieren konnte. In keiner

der  mit  Neospora  caninum infizierten  Kulturen,  die  mit  Interferon-γ behandelt

wurden oder unbehandelt blieben, konnten Parasiten nachgewiesen werden, die

den Bradyzoitenmarker BAG1 exprimierten, noch wurde eine Zystenwand unter

Anwendung der Transmissionselektronenmikroskopie gefunden.

Um die Kinetik der Parasitenproliferation in diesem System zu ermitteln, wurde

eine  quantitative  „real-time“  PCR  entwickelt.  Dabei  wurde  ein  zweifach

fluoreszierendes  Hybridisierungsprobensystem  und  der  LightCycler™  für  die

Detektion amplifizierter DNA eingesetzt. Verglichen mit unbehandelten Kulturen

führte die Behandlung infizierter Kulturen mit Interferon-γ zu einer Hemmung der

Parasitenproliferation. Ausserdem wurden generell kleinere Pseudozysten nach

Behandlung mit Interferon-γ gefunden. Zusätzlich konnte gezeigt werden, dass

Bestandteile  des  neuronalen  Zytoskelettes,  wie  Filamente  des  sauren

Gliaproteins  und  Aktinfilamentbündel  mit  der  Peripherie  der  Pseudozysten

kolokalisierten.

Obwohl die Anwendung von organotypischen Hirnschnittkulturen bezüglich der

Stadienkonversion  von  Neospora  caninum nicht  erfolgreich  war,  wurde  ein

Modell etabliert, das verwendet werden kann, um mehr Informationen über die

zerebrale Phase der Neosporose zu gewinnen. 

Da mit Inhibitoren der mitochondrialen Atmungskette gemäss früheren Studien

eine Stadienkonversion in  Toxoplasma gondii induziert  werden konnte,  wurde

der Effekt von Natriumnitroprussid, einem exogenen Stickstoffmonoxiddonor, der

die Cytochromoxidase der Atmungskette hemmt, auf die Stadienkonversion von

Neospora  caninum  getestet.  Zusätzlich  wurden  Langzeitkulturen  von

Mauskeratinozyten als Wirtszellen benutzt, die sich durch eine ausgeprägte Zell-

Substratadhäsion  auszeichnen.  Zu  infizierten  Verozellen,  Fibroblasten,

Neuroblastomazellen  und  Keratinozyten  wurden  täglich  70  µM
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Natriumnitroprussid  während  8  Tagen  zugegeben.  Keratinozyten  waren  die

einzigen Wirtszellen,  die  einer  Natriumnitroprussidbehandlung während dieser

Zeitspanne  standhielten.  In  diesen  Kulturen  hemmte  Natriumnitroprussid  die

Neospora  caninum Proliferation  beträchtlich,  wie  mit  quantitativer  „real-time“

PCR gezeigt werden konnte und induzierte die Expression des BAG1 Antigens

vom dritten Tag an. Diese Ergebnisse weisen darauf hin, dass die Hemmung der

Parasitenproliferation  eng  mit  der  Expression  von  Bradyzoiten-spezifischen

Markern  verbunden  ist.  Am  achten  Tag  enthielten  ungefähr  60%  der

parasitophoren  Vakuolen  BAG1-positive  Parasiten.  Ein  weiterer  Marker,  der

verwendet  wurde,  war  der  monoklonale  CC2  Antikörper,  der  gegen  ein

Toxoplasma  gondii Zystenwandprotein  gerichtet  ist.  Nach  8  Tagen  zeigten

ungefähr 60% aller parasitophoren Vakuolen eine Anfärbung der Peripherie mit

diesem  Antikörper  auf,  was  auf  die  Bildung  einer  Zystenwand  hindeutete.

Beobachtungen mit  dem Transmissionselektronenmikroskop zeigten,  dass  die

Mehrzahl  der  intrazellulären  Kompartimente,  die  mit  Neospora  caninum
Parasiten besetzt waren, Eigenschaften aufwiesen, die auf eine Konversion von

Tachyzoiten zu Bradyzoiten zurückzuführen waren. Die Vakuolen enthielten 1-5

intrazelluläre  Parasiten,  die  aus  elektronendichten  Rhoptrien,  vielen

Mikronemen, die vorwiegend am Vorderende des Parasiten zu finden waren und

aus  grossen  und  kleinen  dichten  Granula  bestanden.  Zusätzlich  wurden

Amylopektingranula,  die  kennzeichnend  für  das  Bradyzoitenstadium  sind,

gefunden. In der Mehrheit der parasitophoren Vakuolen wurde eine Anhäufung

von elektronendichtem granulärem Material an der Peripherie gefunden, was auf

die Ausbildung einer Zystenwand hindeutete, deren Dicke beträchtlich zwischen

0.1-1 µm variierte. 

Obwohl  das  entwickelte  in  vitro Kultursystem  bezüglich  der  Expression  des

Neospora  caninum BAG1  Antigens  effizient  war,  erwies  es  sich  als  weniger

geeignet,  um grössere Mengen an gereinigten  Neospora caninum Bradyzoiten

zu erhalten, die für biochemische und molekulare Studien erforderlich sind. Die

Trennung der Bradyzoiten von Keratinozyten erwies sich als schwierig, da die

Gewebezysten  von Keratinfilamentbündeln  umgeben  waren,  die  das  Befreien
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der  Parasiten  von  der  Wirtszelle  behinderten.  Indem  man  die

Natriumnitroprussidkonzentration  auf  eine  Minimalkonzentration  von  17  µM

herabsetzte,  wurden  die  Kulturbedingungen  Verozellen  angepasst.  Diese

Konzentration wurde vom weniger adhäsiven Zelltypen toleriert. Die Effizienz der

Konversion von Bradyzoiten zu Tachyzoiten war vergleichbar mit derjenigen, die

mit 70 µM Natriumnitroprussid in Keratinozyten als Wirtszellen erhalten wurde.

Die  Behandlung  führte  jedoch  zu  einer  grösseren  Anzahl  BAG1-positiver

individueller  Zoiten,  was  auf  eine  Grössenzunahme  BAG1-positiver  Vakuolen

zurückzuführen  war.  Zusätzlich  ermöglichte  das  modifizierte  System  nun  die

Reinigung der Bradyzoiten aus den Wirtszellen. Mittels Immunfluoreszenz und

Immun-Blotting  konnte  gezeigt  werden,  dass  die  Behandlung  von  infizierten

Verozellen  mit  Natriumnitroprussid  zu  einer  stark  reduzierten  Expression  der

Tachyzoitenhauptoberflächenantigene SAG1 und SRS2 führte.  Die Expression

und  Lokalisation  von  dichten  Granulaproteinen  in  Bradyzoiten  wurde  mittels

Immungold  Transmissionselektronenmikroskopie  und  Immunfluoreszenz

analysiert  und  zeigte eine  Verlagerung dieser  Proteine  an  die  Peripherie  der

Vakuole,  wohingegen  in  Tachyzoiten  die  dichten  Granula  am  vorderen  und

hinteren Ende der Parasiten zu finden waren.  Diese Erkenntnisse weisen auf

eine Beteiligung der  dichten Granula am Aufbau und an der  Modifikation der

Zystenwand  hin.  Im  Weiteren  wurde  die  Adhäsion  an  und  Invasion  von

gereinigten Tachyzoiten und Bradyzoiten in Verozellen verglichen und es wurde

gezeigt, dass Tachyzoiten invasiver waren als Bradyzoiten. Das Entfernen der

Sialinsäure  durch  das  Enzym  Sialidase  von  der  Verozelloberfläche,

beziehungsweise  von  der  Parasitenoberfläche  steigerte  die

Bradyzoiteninvasionsrate von 25% auf 46%, respektive von 15% auf 36%. Diese

Behandlung zeigte keinen Effekt  auf  die  Tachyzoiteninvasionsrate.  Dies weist

auf eine bedeutende Rolle der Sialinsäure bei der Invasion von Bradyzoiten in

die Wirtszelle hin.
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Abbreviations

ATP Adenosine-5’-triphosphate

BSA Bovine serum albumine

cGMP Cyclic guanosine 5’-monophosphate

CNS Central nervous system

DBA Dolichos biflorans agglutinin

EDTA Ethylendiamine tetraacetic acid

EGF Epidermal growth factor

EM Electron microscopy

FCS Foetal calf serum

FITC Fluorescein-isothiocyanate
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Introduction

1. Introduction

1.1 Neospora caninum and Neosporosis

Neospora caninum is an apicomplexan parasite, which is phylogenetically closely

related to Toxoplasma gondii, but can clearly be distinguished from Toxoplasma

with regard to its natural host range (Dubey et al., 2002), antigenicity (Howe and

Sibley, 1999),  few ultrastructural  features (Hemphill  et al.,  2003;  Speer  et  al.,

1999) and differences in its host cell recognition (Naguleswaran et al., 2002). 

Infection with Neospora caninum, which was first identified in 1988 by Dubey and

coworkers  in  a  dog suffering  from neurological  problems,  leads  to  a  disease

named Neosporosis. Although this disease affects primarily cattle and dogs,  N.

caninum infection has been shown to occur in a variety of species (Dubey and

Lindsay, 1996;  Hemphill,  1999).  During the last  years it  became evident,  that

Neosporosis represents the most important cause of bovine abortions worldwide,

and infection with N. caninum is therefore regarded as an economically important

problem (Dubey, 1999; Trees et al., 1999). In Switzerland, approximately 30% of

all  abortions  in  cattle  are  associated  with  N. caninum infection  (Sager  et  al.,
2001).

1.2 Life cycle of Neospora caninum

McAllister et al. (1998) were the first to show that the dog is a definitive host for

N. caninum, and this was later confirmed (Lindsay et al., 1999). However, other

final hosts cannot be ruled out. Three stages are known in the life cycle of  N.

caninum (Figure 1). Oocysts represent the sexually produced stage, which are

generated  within  canine  intestinal  tissue  and  subsequently  shed  in  the

environment  with  the  faeces.  There,  sporulation  of  oocysts  leads  to  the
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production of sporozoites, and sporulated oocysts are orally infectious (McAllister

et  al.,  1998).  The  sporozoites  transform  into  the  rapidly  dividing  tachyzoites

which are present during the acute phase of the infection. Tachyzoites invade

any  nucleated  cell  type,  including  macrophages  and  lymphocytes,  are

disseminated  throughout  the  body,  and  continuous  cycles  of  intracellular

proliferation, host cell lysis and reinfection, combined with immunopathological

events, can lead to tissue destruction and eventually disease. 

Figure 1: Life cycle of Neospora caninum (Dubey 1999).

However, during the normal course of infection, in the immunocompetent host,

tachyzoites convert  into slowly replicating and tissue cyst forming bradyzoites,

and the immune system has been implicated in this development (Buxton et al.,

2002; Innes  et al., 2002). Tissue cysts containing  N. caninum bradyzoites can

persist in the infected host for several years without causing any clinical signs.
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Reactivation of tissue cysts in an immunocompromised situation such as during

pregnancy, may lead to bradyzoite-to-tachyzoite reconversion and subsequent

infection of the placenta and / or the unborn foetus (Innes et al., 2002; Quinn et

al., 2002).  Bradyzoites  containing  tissue  cysts  are  orally  infectious.  Thus,  N.

caninum tissue  cysts  are  largely  responsible  for  both,  horizontal  and  vertical

infection.

1.3 Differentiation of tachyzoites and bradyzoites

1.3.1 Stage specifically expressed antigens

Several antigens have been identified so far in  N. caninum tachyzoites,  using

different  approaches  such  as  raising  monoclonal  antibodies  or  generating

polyclonal  antisera  against  the  whole  parasite,  immunoscreening  of  cDNA

expression libraries with sera from infected cattle or subcellular fractionation of

parasites  and  preparation  of  affinity-purified  antibodies.  Most  of  the  antigens

were  found  to  be  localised  either  on  the  parasite  surface  or  in  secretory

organelles, like micronemes, rhoptries and dense granules. Antigens detected so

far  include  two  surface  antigens  NcSAG1  and  NcSRS2,  the  dense  granule

antigens  NcGRA1,  NcGRA2,  NcGRA6,  NcGRA7,  a  nucleoside-3-phosphate

hydrolase,  the  microneme  antigens  NcMIC1-4  and  NcMIC10  and  finally  the

serine protease Ncp65.

In  N.  caninum,  likewise  in  T.  gondii,  tachyzoites  and  bradyzoites  can  be

differentiated  through  detection  of  stage  specific  antigen  expression  and

differentially located antigens by immunofluorescence. It was shown by Kasper

(1989)  that  the major  T. gondii surface  antigens TgSAG1 and TgSAG2 were

stage  specifically  expressed  in  tachyzoites.  Similarly,  N.  caninum SAG1

homologue NcSAG1 was observed to be down regulated during tachyzoite-to-

bradyzoite  stage  conversion  (Fuchs  et  al., 1998;  Vonlaufen  et  al., 2002b).
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Schares  et al. (1999) showed by inspection of dog brain tissue harbouring  N.

caninum tissue cysts, that another major 38 kDa surface antigen, now known to

be identical  to NcSRS2, was also stage specifically expressed in  N. caninum

tachyzoites and not in bradyzoites. In contrast, Fuchs et al. (1998) had reported

on the expression  of  NcSRS2 in  N. caninum tissue cysts  generated  in mice.

Several bradyzoite-specific T. gondii antigens have been identified (Bohne et al.,

1999;  Smith,  1995;  Weiss  et  al., 1992).  Among  them,  the  stress  response

protein TgBAG1 (Bohne  et al., 1995), also known as TgBAG5 (Parmley  et al.,

1995)  was  found  in  the  cytoplasm  of  T.  gondii bradyzoites,  and  polyclonal

antibodies directed against recombinant TgBAG1 were shown to crossreact with

bradyzoites of N. caninum (McAllister et al., 1996; Tunev et al., 2002; Vonlaufen

et al., 2002b; Weiss  et al., 1999). Further, the monoclonal antibody mAbCC2,

generated against T. gondii tissue cysts, was shown to label a 115 kDa T. gondii
cyst wall protein and a secreted 40 kDa dense granule protein  in tachyzoites

(Gross  et  al., 1995).  We  recently  demonstrated  that  this  antibody  also

crossreacted with  N. caninum tachyzoites and bradyzoites (Keller  et al., 2002;

Vonlaufen  et  al., 2002b).  In addition to stage specifically expressed antigens,

other T. gondii dense granule proteins, which are secreted shortly after invasion

and  involved  in  the  modification  of  the  parasitophorous  vacuole,  have  been

shown to be differentially located in  T. gondii tachyzoite and bradyzoite cysts

(Torpier et al., 1993). NcGRA7, formerly designated as Nc-p33 (Hemphill  et al.,

1998),  was found to be localised in the tissue cyst wall  (Fuchs  et  al., 1998).

Recently,  a  mucin  domain  containing protein  was identified  in  T.  gondii.  The

gene, expressing this protein, has been shown to be upregulated in bradyzoites

compared  to  tachyzoites.  This  finding  shows a  possible  role  of  mucin  in  the

protection of bradyzoites from degradative enzymes in the gut or a role in the

invasion of gut epithelial cells by bradyzoites (Cleary et al., 2002).
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1.3.2 Metabolic differences between tachyzoites and bradyzoites of
Toxoplasma gondii and stage specific enzymes

It is generally assumed, that the fast growing tachyzoite requires more energy

than the dormant bradyzoite stage. Tachyzoites utilize the glycolytic pathway as

their  major  energy  source.  Additionally,  mitochondria  with  a  functional

tricarboxylic  acid  cycle  (TCA)  and  a  respiratory  chain  contribute  to  energy

production. Bradyzoites, however, entirely depend on anaerobic ATP generation

via glycolysis with the production of lactate. The fact that mitochondrial inhibitors

such as antimycin A, myxothiazol and oligomycin promote stage conversion from

tachyzoite-to-bradyzoite  in  vitro,  further  support  the  assumption  that

mitochondrial  activity  is  more  important  for  the  tachyzoite  stage  than  for  the

bradyzoite  stage  (Bohne  et  al., 1994;  Tomavo  and  Boothroyd,  1995).  Stage

specific  differences  have been  reported  in  the  activity  of  glycolytic  enzymes.

Lactate dehydrogenase and pyruvate kinase activity was found to be higher in

bradyzoites  than  in  tachyzoites  (Denton  et  al., 1996),  suggesting,  that

fermentation of glucose to lactate plays the major role in energy generation in

bradyzoites  (Figure  2).  Furthermore,  a  high  activity  of  pyrophosphate

phosphofructokinase was observed in both stages. This enzyme has shown to

be  more  specific  for  pyrophosphate  than  for  ATP.  This  results  in  an  energy

outcome of 3 ATP per glucose instead of 2 ATP, showing evidence that T. gondii

has some adaptation for anaerobic conditions (Denton et al., 1996; Combs et al.,
2002).  Three  isoenzymes,  lactate  dehydrogenase,  glucose-6-phosphate

isomerase and enolase have been found to be stage specifically expressed in T.

gondii at  the  transcription  and  protein  level  (Yang  and  Parmley,  1997;

Dzierszinski  et al., 1999 & 2001).  Expression of  different  isoforms might be a

way  to  adjust  glycolysis  stage  specifically.  Additionally,  glucose-6-phosphate

dehydrogenase (G6PD) was found to be down regulated in bradyzoites. G6PD

initiates the pentose phosphate pathway, which finally leads to the synthesis of

ribose-5-phosphate, an important precursor molecule of DNA and RNA. Down

regulation of G6PD shifts the flow of glucose-6-phosphate towards glycolysis or

gluconeogenesis / amylopectin synthesis (Cleary et al., 2002).

5



Introduction

Bradyzoites contain a large amount of amylopectin granules, a storage form of

glucose.  In  tachyzoites,  only  few  amylopectin  granules  are  found.  The

explanation for  this difference is unknown, but  it  could reflect  the need of  an

endogenous  energy  source  for  long  term  survival  of  bradyzoites,  which  are

surrounded  by  a  cyst  wall  that  may  be  largely  impervious  to  an  exogenous

source of energy (Coombs et al., 1997). 

Holpert et al. (2001) have shown that bradyzoites posses a H+-ATPase, which is

a P-type ATPase of plants and lower eukaryotes, that is absent in tachyzoites.

H+-ATPases  are  located  in  the  plasma  membrane  and  translocate  protons

across  the  membrane,  generating  an  electrochemical  gradient  which  drives

secondary nutrients and metabolic uptake (Serrano  et al., 1988; Morsomme et

al., 2000). The functional role of plasma membrane H+-ATPases in bradyzoites is

still unclear. Since the bradyzoite stage is exposed to a sudden pH change while

it  passes  the  stomach,  it  is  possible,  that  P-type  ATPases  contribute  to  pH

regulation.
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Figure  2: T.  gondii bradyzoite  metabolism.  This  model  predicts  that  differentiation  into  the
bradyzoite form will be accompanied by the impairment of mitochondrial oxidative phosphorylation
and by the synthesis of new sets of metabolic enzymes that will trigger metabolite accumulation
and therefore  amylopectin synthesis  (gluconeogenesis).  Only selected steps of  both glycolytic
pathway and gluconeogenesis are diplayed in order to emphasise those enzymes described in
chapter  1.3.2.  G1P:  glucose-1-phosphate;  G6P:  glucose-6-phosphate;  F6P:  fructose-6-
phosphate;  F1,6BP:  fructose-1,6-biphosphate;  2PG:  2-phosphoglycerate;  PEP:  phosphoenol
pyruvate. Adapted from Tomavo (2001).
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1.3.3 Ultrastructure  of  Neospora  caninum tachyzoites  and
bradyzoites

Tachyzoites (Figure 3A) are 5-7 μm in lenght and 1-2 μm wide. They contain all

the  classical  features  found  in  apicomplexan  parasites.  These  are  a  three-

layered plasma membrane, an apical complex composed of two apical rings, two

polar  rings,  a  conoid  and  microtubules.  Furthermore,  they  possess  secretory

organelles  like  micronemes,  rhoptries  and  dense  granules.  Micronemes  are

located at the anterior end of the parasite, whereas rhoptries are arranged along

the longitudinal axis of the cell and they are filled with amorphous electron dense

material.  Dense granules are located at the anterior  and posterior  end of  the

parasite  (Hemphill  et  al., 1998).  In  addition,  N.  caninum tachyzoites  like  all

eukaryotic  cells,  contain  a  Golgi  complex,  rough  and  smooth  endoplasmic

reticulum, mitochondria and a nucleus with a nucleolus (Speer and Dubey, 1989;

Lindsay et al., 1993). 

Tissue cysts (Figure 4) of N.caninum are primarily found in the brain and are up

to  100  μm in  diameter.  The  cyst  wall  is  up to  4  μm thick and consists of  a

parasitophorous vacuole membrane and a granular layer, where electron dense

granules and vesicles are embedded (Jardine et al., 1996). The interior of the

tissue cyst consists of a less condensed granular matrix, that contains tortous

and branched vesicles, small irregular electron dense bodies and lobulated lipid

like inclusions (Jardine et al., 1996). Bradyzoites (Figure 3B) are approximately

6-8  μm long and 1-2 μm wide and they possess the same organelles that are

described  for  tachyzoites.  Additionally,  they  possess  vesicular  organelles

containing short flat membranous segments and smaller vesicles (Jardine et al.,
1996).  The  nucleus  in  bradyzoites  is  subterminally  located,  whereas  in

tachyzoites  it  has  a  more  central  position.  Further  differences  are  that

bradyzoites  contain  fewer  rhoptries  and  more  amylopectin  granules  than

tachyzoites.
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Figure  3:  Transmission electron microscopy of  N. caninum tachyzoite (A) and bradyzoite (B).
(Speer et al., 1999).
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Figure 4: Tissue cyst containing bradyzoites. (Speer et al., 1999).

1.4 Host parasite interaction

Since N. caninum is an obligatory intracellular parasite, adhesion to and invasion

of  the  host  cell  are  important  events  for  its  survival  and  proliferation.  The

invasion process starts with a low affinity contact of the parasite with the host cell

surface  membrane  without  any  consistent  orientation  and  involves

immunodominant tachyzoite surface antigens (Hemphill, 1996; Nishikawa et al.,

2000). In order to invade the host cell, the parasite reorients itself with its apical

tip  in  contact  with  the  host  membrane  (Figure  5).  This  leads  to  secretion  of

adhesion proteins from micronemes that form a tight attachment zone between

host cell receptor and the actin - myosin cytoskeleton of the parasite, mediating

gliding  penetration  of  the  parasite  into  the  host  cell  (Carruthers  and  Sibley,

1997).  Invagination  of  the  host  cell  plasma  membrane  is  initiated  by  the
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discharge of rhoptry proteins to form a nascent parasitophorous vacuole. After

the parasite is fully enclosed by the parasitophorous vacuole membrane, dense

granule proteins are released in order to modify the lumen of the vacuole and its

membrane. 

Figure  5:  Scanning electron microscopy of  adherent  and invading  Neospora caninum in  cell
culture. (A) Adhesion, (B) Reorientation and (C) Invasion. Arrows in (B) point towards the apical
tachyzoite tips. Bar in (A) = 1400 nm, in (B) = 1260 nm, in (C) = 900 nm. Hemphill et al. (2003).

In order to gain more information about N. caninum proteins that are involved in

host  cell  adhesion  and  invasion  and  the  corresponding  host  cell  receptors,

several  experiments  were  performed.  It  was  shown  by  Hemphill  (1996)  and

Nishikawa et al. (2000) that NcSRS2 and NcSAG1 play a role in the initial low

affinity  contact  between  the  parasite  and  the  host  cell  since  polyclonal  and

monoclonal  antibodies directed against  these antigens inhibited adhesion and

invasion of the host cell. Several N. caninum microneme proteins identified today

possess adhesive domains that could interact with receptors on the surface of

target cells. These adhesive motifs include thrombospondin (TSP)-like domain in

NcMIC1 (Keller  et al., 2002), intergrin- and TSP-type I-like domains in NcMIC2

(Lovett et al., 2000) and epidermal growth factor (EGF)-like domains in NcMIC3

(Sonda et al., 2000). Among them, NcMIC3 is involved in the tight attachment of

the parasite to the host cell as demonstrated by in vitro binding assays as well as

antibody  inhibition  experiments  (Naguleswaran  et  al., 2001).  Additionally,  cell

surface proteoglycans,  a  class  of  glycoproteins  that  covers the surface  of  all

mammalian  cells,  were  found  to  act  as  possible  receptor  for  N.  caninum
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adhesion to the host cell, through their covalently attached glycosaminoglycan

chains. This includes heparin,  heparan sulphate,  chondroitin sulphate A, B, C

and  keratin  sulphate.  It  was  found  that  N.  caninum binds  to  sulphated

glycosaminoglycans  with  the  preference  to  chondroitin  sulphate.  The  same

accounts for the N. caninum microneme proteins NcMIC1 and NcMIC3 (Keller et

al., 2002;  Naguleswaran  et  al., 2002).  T.  gondii also  binds  to  sulphated

glycosaminoglycans, however, it prefers heparin and heparan sulphate as host

cell  receptor  (Ortega-Barria  and  Boothroyd  1999;  Carruthers  et  al., 2000;

Naguleswaran et al., 2002). The significance of proteases in host cell adhesion

and invasion was also assessed. It was shown that inhibition of parasite aspartyl

proteases  reduce  the  invasive  capacity  of  N.  caninum whereas  inhibition  of

cysteine proteases significantly increased N. caninum invasion. This suggests a

negative impact of cysteine proteases on the parasite invasive properties and a

functional involvement of aspartyl proteases in host cell entry. The host cell entry

of  T. gondii was not affected by these enzymes. Inhibition of serine proteases,

however, affected its entry into the host cell. Contrary to N. caninum, treatment

of T. gondii with inhibitors of metallo-, cysteine- and aspartyl-proteases affected

the adhesion of the parasite to the host cell (Naguleswaran et al., 2003).

1.5 Immune  response  to  Toxoplasma  gondii  and  Neospora
caninum

The immunological response to  N. caninum infection has not yet been as well

elucidated as in T. gondii, probably due to the lack of satisfactory small animal

models, contrary to  T. gondii, where the mouse, a natural host of the parasite,

represents  the  primary  mean  to  study  the  immune  response  after  T.  gondii
infection.  Therefore,  most  of  the  data  described  here  originate  from  studies

performed  with  T.  gondii.  Nevertheless,  the  mechanism  of  host  protection

against N. caninum appears to be similar in many aspects to that of T. gondii.
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Generally,  the  host  immune  response  to  T.  gondii and  other  intracellular

protozoan  parasites  is  characterized  by  a  Th1  type  cell  mediated  immune

response. Activation of antigen presenting cells such as dentritic cells results in

the production of IL-12. This in turn activates natural killer cells, CD4+- and CD8+-

T cells to produce IFN-γ that stimulates macrophages to produce TNF-α. These

two cytokines control parasite proliferation in the infected host. In vitro studies

with T. gondii have shown that IFN-γ and TNF-α inhibited parasite multiplication

in  both  phagocytic  and  non  phagocytic  cells  through  different  mechanisms,

depending on the cell type. IFN-γ and TNF-α have shown to stimulate murine

macrophages and microglia to produce nitric oxide (NO) by inducible nitric oxide

synthase (iNOS) and NO inhibited  parasite  proliferation  (Chao  et  al., 1993 &

1994). In addition to the antiparasitic activity of NO, IFN-γ and lipopolysaccharide

(LPS) induced stage conversion of  T.  gondii in murine macrophages, implying

that  there  are  several  possible  outcomes  of  exposure  of  tachyzoites  to  NO

(Bohne et al., 1993). In human gliablastoma cell lines and astrocytes, IFN-γ and

TNF-α  inhibited  parasite  proliferation  via  activation  of  indolamine-2,3-

dioxygenase that leads to degradation of intracellular tryptophan (Däubener  et

al., 1996). Other mechanisms involved in the control of parasite proliferation are

limiting the availability of intracellular iron to the parasite (Dimier et al., 1998) and

the production of reactive oxygen intermediates (Murray et al., 1985). Recently,

an IFN-γ regulated gene, IGTP was identified that encodes 47-48 kDa proteins

that  might  be  involved  in  the  processing  and  trafficking  of  immunologically

relevant proteins. Halonen et al. (2001) have shown that T. gondii proliferation in

astrocytes from IGTP-deficient mice was not inhibited by IFN-γ compared to that

of wild type mice, which demonstrates the role of this gene in the IFN-γ induced

inhibition of T. gondii in murine astrocytes.

In vivo studies using gene knockout mice,  neutralizing antibodies or inhibitors

demonstrated  the importance of  IFN-γ in  controlling parasite  proliferation  and

preventing tissue cyst reactivation during both the acute and chronic stage of

infection  and  the  significance  of  TNF-α  and  iNOS in  controlling  the  chronic

infection.  The  role  of  IFN-γ  in  the  acute  stage  of  infection  was  shown  by

Alexander et al. (1997), where IFN-γ and IFN-γ receptor deficient mice could not
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survive  the  early  stage  of  infection.  The  control  of  early  parasite  growth,

however, does not seem to be dependent on NO, as mice deficient in iNOS and

TNF receptor were able to survive longer than animals deficient in IFN-γ and

IFN-γ  receptor.  In  contrast  to  the  acute  phase  of  infection,  the  treatment  of

chronically  infected  mice  with  the  iNOS  inhibitor  N-monomethyl-L-arginine  or

anti-TNF-α and anti-IFN-γ monoclonal antibodies resulted in reactivation of the

infection and in the development of  toxoplasmic encephalitis (TE) (Scharton  et

al., 1997). These results show that iNOS activated by TNF-α and IFN-γ plays a

key role in TE. These findings are interesting with regard to AIDS patients, where

reactivation of  chronic Toxoplasmosis results in TE.  This is associated with a

deficiency of CD4+-T cells, which are the major source for IFN-γ. The role of IFN-

γ, TNF p55 receptor and iNOS in the expression of bradyzoite antigen BAG5 and

cyst formation was further analysed and revealed, that the induction of  BAG5

expression and cyst formation seems to be dependent on IFN-γ but independent

on TNF p55 receptor and iNOS functions (Silva et al., 2002). 

Since  proinflammatory  mediators  can  be  detrimental  to  the  host,  their  effect

needs  to  be  counterbalanced  by  the  simultaneous  induction  of  regulatory

cytokines such as IL-10 and IL-4 in order to limit host pathology. Mice deficient in

IL-4 and IL-10 have shown an increased mortality during the acute phase of

infection (Gazzinelli et al., 1996; Suzuki et al., 1996).

Experiments performed in mice infected with N. caninum demonstrated that the

immune response to N. caninum like in T. gondii is dominated by Th1-cytokines

with IFN-γ and IL-12 as the major mediator during acute infection. Mice depleted

of IL-12 or IFN-γ were unable to survive the infection with N. caninum (Khan et

al., 1997;  Bazler  et  al., 1999;  Dubey  et  al., 1998).  Using  in  vitro  cultures  of

murine  macrophages,  it  was  demonstrated,  that  IFN-γ  inhibited  N.  caninum

proliferation  via  NO  generation,  as  it  was  earlier  described  for  T.  gondii.

Additionally, a dose dependent growth inhibition was observed (Tanaka  et al.,

2000).  In  this  context,  it  is  noteworthy  to  mention  that  infection  of  murine

fibroblasts with  N. caninum and treatment with IFN-γ induced apoptosis in the

host cell that was associated with DNA fragmentation and increased caspase 3
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and 8 activity, whereas T. gondii protected fibroblasts from cell death (Nishikawa

et  al., 2002).  Beside  cellular  immune  response,  humoral  immune  response

seems also to play a crucial role in the protection against N. caninum infection,

since antibody knock out mice (μMT mice) succumbed to the infection (Eperon

et al., 1998).

Studies performed in naturally and experimentally infected cattle suggest,  that

similar to mice, the Th1 response plays a major role in the protection against N.

caninum infection (Lunden et al., 1998). Cattle generally show few clinical signs

following an  infection  with  N.  caninum.  Problems,  however,  arise  during

pregnancy, when changes in the cytokine profile at the maternal-foetal interface

occur  and  influence  the  outcome  of  pregnancy  (Innes  et  al., 2002).  Early  in

gestation, the mother is able to mount an effective Th1 response to N. caninum
infection that can lead to abortion of the foetus. At mid gestation, a Th2-cytokine

environment  dominates  the  maternal-foetal  interface.  IL-10 is  known to  down

regulate  the  production  of  IFN-γ,  which  might  triggers recrudescence  of  the

chronic infection and facilitates parasite invasion and infection of the foetus. This

can result in the death of the foetus or in the birth of a live, congenitally infected

calf, which might shows clinical signs at birth. In late gestation, the mother gives

birth  to  healthy,  but  congenitally  infected  calves.  Therefore,  it  is  important  to

prevent congenital transmission by the way of developing novel vaccines.

1.6 Mode of action of nitric oxide

In  eukaryotic  cells,  nitric  oxide (NO) is mainly produced by the enzyme nitric

oxide synthase (NOS).  Three isoforms of  this  enzyme are known.  These are

nNOS (neuronal  NOS),  iNOS (inducible  NOS)  and  eNOS (endothelial  NOS).

These enzymes use arginine, NADPH and oxygen as substrates and produce

citrulline, NADP and NO. The major physiological action of NO is the relaxation

of  smooth  muscle,  neurotransmission,  inhibition  of  platelet  aggregation  and

regulation of cell respiration that are mediated by NO binding to the haem iron of
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guadenylate cyclase (Denninger  et al., 1999) and cytochrome oxidase (Brown,

2001). During the inflammatory process of the cell, iNOS expression is induced

by cytokines such as IFN-γ and TNF-α that lead to the production of high levels

of  NO. Cell  damage and even cell  death can occur  that  is mediated through

different mechanisms. NO and its derivatives peroxynitrate, nitrogen dioxide and

nitrosothiol can bind to enzymes of the respiratory chain specially to cytochrome

oxidase leading to inhibition of respiration and causing cytotoxicity in those cells

that are unable to survive only on glycolytic ATP production. Furthermore, NO

can affect  DNA synthesis  through inactivation of  the ribonucleotide reductase

enzyme and  DNA damage.  DNA damage leads  to  expression  of  the  tumour

suppressor gene p53 that arrests the cell cycle to allow additional time for DNA

repair. However, if the repair process fails, it triggers apoptosis. The effect of NO

on cells, however, ultimately depends on many complex conditions, such as the

rate of NO production, its diffusion rate, the concentration of potential reactants

such as superoxide and oxygen in the cells, the presence of enzymes such as

catalase  and  superoxide  dismutase  which  decompose  H2O2 and  superoxide

respectively, the level of antioxidants such as glutathione and finally the distance

between generator cells and target cells (Burney  et al.,  1997).  Furthermore, it

has  to  be  taken  into  consideration  that  different  cell  types  exhibit  different

sensitivity to NO.

Besides its role as a physiological and pathological regulator on the host cell, NO

also exerts an antiparasitic effect. It was shown by Shaw et al. (2002) that NO

inhibited  cysteine  proteases  in  T.  gondii that  lead  to  inhibition  of  parasite

replication. Other mechanisms described to be involved in the antiparasitic effect

of NO are the inhibition of ribonucleotide reductase, the inhibition of enzymes of

the respiratory chain  like cytochrome oxidase and NADH dehydrogenase,  the

blocking of enzymes of the TCA cycle like aconitase and finally the inhibition of

aldolase, an enzyme of the glycolytic pathway. 

As  already  described,  NO can  induce  stage  conversion  in  T.  gondii in  vitro

(Bohne et al., 1994). In our study, we used sodium nitroprusside (Figure 6) as a

NO donor to induce stage conversion in N. caninum at a concentration that did
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not have a negative impact on the host cell but on the same time could support

stage conversion.

Figure 6: Sodium nitroprusside.

1.7 In vitro cultivation systems of Neospora caninum

1.7.1 In vitro cultivation of Neospora caninum tachyzoites

In vitro cultivation of  N. caninum tachyzoites could be achieved in a wide range

of  cell  types,  including  both  primary  cells  and  established  cell  lines.  In  vitro

cultures of tachyzoites were used to develop tools for immuno- and molecular

diagnosis such as the enzyme-linked immunosorbent assay (ELISA), the indirect

fluorescent antibody technique (IFAT) and the polymerase chain reaction (PCR).

Furthermore,  in  vitro  generated  tachyzoites  were  used  to  assess  the

susceptibility to a wide range of chemotherapeutical agents (Lindsay et al., 1994)

and to study the biology, especially the host parasite interaction during host cell

invasion (Hemphill et al., 2003). In vitro tissue cultures has also enabled genetic

manipulation  of  the  parasite  in  order  to  study  proteins  involved  in  host  cell

adhesion  and invasion  and it  has  been shown that  Toxoplasma proteins  are

expressed, sorted and targeted properly in Neospora (Howe and Sibley, 1997).
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1.7.2 Organotypic culture system of rat brain cortical tissue slices

This in vitro culture technique was initially developed by Stoppini et al. (1991) to

study the physiology of neuronal tissue in vitro. The main feature of these slice

cultures is to maintain  a well  preserved three-dimensional  organization of  the

tissue, while simplifying the in vivo situation by excluding blood derived elements

of  the  host  defence,  such  as  CD4+-  and  CD8+-T  cells,  natural  killer  cells,

macrophages,  neutrophils,  antibodies  and  complement.  In  contrast  to  in  vivo

experiments, this model enables manipulations to be carried out in a controlled

environment under defined conditions, with a direct access to a complex network

of  host  cells  such as astrocytes,  microglia and neurons.  The principle  of  this

culture  system  is  to  maintain  nervous  tissue  on  a  porous  and  transparent

membrane at the interface between the culture medium and the atmosphere. By

capillarity, the culture medium crosses the membrane and covers the slices by a

thin film of medium. In these conditions, the explants do not dry out and remain

well oxygenated. They can be kept in culture for several weeks.

1.7.3 In  vitro  cultivation  model  systems  for  the  induction  of
bradyzoites

For the generation of  N. caninum tissue cysts, animal models were developed.

Tissue cysts could be produced in the brain of immunocompromised mice that

were parenterally inoculated with tachyzoites (McGuire  et al., 1997a) and they

were found as early as 17 days post inoculation. In addition, a method for the

separation and cryopreservation of  N. caninum tissue cysts from mouse brain

was worked out (McGuire et al., 1997b). However, the number of cysts produced

in mice remains low compared to the avirulent strains of  T. gondii,  where the

mouse represents a natural host of the parasite. A recent study carried out by

Gondim et al. (2002) showed that dogs shed fewer oocysts when fed with mouse
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brain tissue containing  N. caninum tissue cysts than the one fed with bovine

tissue.  This  suggests that  mice are an inefficient  model  for  the production  of

tissue cysts.  Another  approach to generate  tissue cysts is  the use of  gerbils

where larger number of tissue cysts could be obtained (Gondim et al., 2001).

However, it would be a great advantage to have an in vitro cultivation model to

study the molecular basis of stage conversion and to produce large amounts of

bradyzoites required  for  scientific  studies.  For  this  purpose,  several  protocols

were developed for T. gondii to generate bradyzoites in vitro.

Tachyzoite-to-bradyzoite conversion in  T. gondii could be induced by applying

external stress to various types of infected cells. It was shown that modulation of

the  culture  conditions  such  as  altering  the  pH,  increasing  the  temperature,

chemical  stress  (Soete  et  al.,  1994)  and  the  use  of  mitochondrial  inhibitors

(Bohne  et  al., 1994)  lead to  stage  conversion  and  cyst  formation.  In  murine

macrophages,  IFN-γ  induced  stage  conversion  of  T.  gondii by  a  mechanism

related  to  NO release.  Identical  results  were  obtained  by  the  use of  sodium

nitroprusside as a source of exogenous NO (Bohne et al., 1993 and 1994). More

recently,  it  was  shown  that  increased  cyclic  nucleotide  levels  in  the  host  or

parasite also seems to be linked to stage conversion (Kirkmann  et al., 2001).

Contrary to  T. gondii,  N. caninum tissue cysts have been difficult  to obtain in

vitro.  Protocols  developed  for  T.  gondii,  based  on  increasing  the  pH  of  the

medium and treatment of infected human fibroblasts with tylosin over a period of

4  days,  have  yielded  relatively  few  parasites  undergoing  stage  conversion,

showing, that the efficiency in the differentiation process in vitro is rather low

compared to Toxoplasma (Weiss et al., 1999).
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1.8 Aim of this work

The major aim of this work was to develop a workable in vitro cultivation model

for the efficient generation of N. caninum tissue cysts harbouring the bradyzoite

stage.  Once established,  some practical  applications of  this model  should be

demonstrated.  This  includes  the  analysis  of  bradyzoite-specific  antigen

expression  that  could  contribute  to  the  immunodiagnosis  of  Neosporosis  in

chronically  infected  animals,  investigations  on  the  ultrastructure  of  in  vitro

generated  N.  caninum tissue  cysts  and  finally  studies  on  the  biology  of  the

bradyzoite stage with regard to adhesion and invasion of the host cell should be

performed.
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2. Material and Methods

2.1 Application  of  a  real-time  fluorescent  PCR  for  the
quantitative assessment of Neospora caninum infections in
organotypic slice cultures

If  not otherwise stated, all  reagents and tissue culture media were purchased

from Gibco-BRL. 

2.1.1 Vero cell culture

Cultures  of  Vero  cells  were  maintained  in  20ml  of  RPMI-1640  medium

supplemented  with  7%  foetal  calf  serum  (FCS),  2  mM  glutamine,  50  U/ml

penicillin, and 50 µg/ml streptomycin at 37˚C / 5% CO2  in T-75 tissue culture

flasks. Cultures were trypsinised at least once a week. 

2.1.2 Maintenance and purification of parasites

Neospora caninum tachyzoites of the Swedish isolate NcSwB1 (Stenlund et al.,

1997)  were maintained in Vero  cell  monolayers at  37˚C /  5% CO2 in  RPMI-

medium containing 2 mM glutamine, 50 U/ml penicillin, 50 µg/ml streptomycin,

and 5% Ig-free horse serum (HS). Parasites were harvested from their feeder

cell  cultures by passage through PD-10™ column filled with Sephadex G25M

(Pharmacia) as previously described (Hemphill  et al., 1996). The eluted purified

parasites were centrifuged at 4˚C and were resuspended in cold RPMI-medium

and used for infection.
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2.1.3 Infection of organotypic rat brain slice cultures

Organotypic  slice  explants  of  rat  brain  cortex  were  prepared  essentially  as

described by Stoppini  et al.  (1991). The tissue samples corresponding to serial

slices  were  allowed  to  recover  from  explantation  trauma  for  1  week  before

infection was initiated. For infection, slice cultures were overlaid with 106 freshly

isolated  and  purified  NcSwB1  tachyzoites  in  300  µl  of  RPMI-1640  culture

medium without  serum for  1h at  37ºC /  5% CO2,  followed by two washes in

RPMI-1640.  Control  cultures  were  treated  identically  without  parasites.  The

infected  slices  were  then  further  maintained  at  37ºC  for  1-5  days  prior  to

analysis.

2.1.4 Immunohistochemistry

For immunohistochemical monitoring of parasite proliferation, tissue slices were

fixed overnight in 5ml of 4% paraformaldehyde in PBS, pH 7.2, at 4ºC, placed

into  18%  sucrose  in  PBS  for  24h,  cut  at  10-20  µm  intervals  on  a  cryostat

(Cryocut 1800, Leica Instruments, Nussloch, Germany) and mounted onto poly-

L-lysine coated slides.  Unspecific  binding sites were blocked by incubation of

slices in PBS / 3% BSA / 50 mM glycine, pH 7.2, for 2h at 24ºC. Tachyzoites

were visualised by applying a polyclonal rabbit anti-N. caninum antiserum and a

goat  anti-rabbit  IgG  conjugated  to  FITC  (Sigma)  as  previously  described

(Hemphill et al., 1996). Specimens were subsequently stained with a monoclonal

antibody  directed  against  glial  fibrillary  acid  protein  (GFAP;  Chemicon

International Inc.) and a goat anti-mouse IgG conjugated to Texas red (Sigma).

They were then embedded  in  a  mixture of  glycerol  /  gelvatol  containing  1.4-

diazobicyclo[2.2.2] octan (Merck) as an anti-fading reagent, and were inspected

on a Nikon Eclipse E800 digital confocal fluorescence microscope. Processing of

images  was  performed  using  the  Openlab  2.07  software  (Improvision,

Heidelberg, Germany).
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2.1.5 Processing  of  DNA  samples  and  LightCycler™-based
quantitative PCR

DNA was extracted from entire brain slices by using the DNAeasy™ Kit (Qiagen,

Basel,  Switzerland)  according  to  the  standard  protocol  suitable  for  tissue

samples. DNA was eluted in 100 µl AE buffer (elution buffer from the kit) and

subsequently boiled for  5 min.  For quantitative PCR forward primer Np21plus

and reverse primer Np6plus were used. These primers had been designed to

amplify a 337-bp sequence of the Nc5 region of N. caninum (Müller et al., 1996).

Detection of DNA amplification products through fluorescence resonance energy

transfer on the LightCycler™ Instrument (Roche Diagnostics, Basel, Switzerland)

was achieved by hybridization of  Nc5-specific  5‘-LC-Red 640-labelled Np 5LC

(5‘-TCCCTCGGTTCACCCGTTCACACAC-3‘) detection probe and 3‘-fluorescein

labelled Np 3FL (5‘-CACGTATCCCACCTCTCACCGCTACCA-3‘) anchor probe

(TIB MOLBIOL, Berlin, Germany). The resonance energy transfer was over a 3-

base gap between the two probes. PCR amplification was performed with 1 µl of

1:5 diluted sample DNA (see also below) using the LightCycler™ DNA Master

Hybridization Probes Kit (Roche Diagnostics, Basel, Switzerland) in a standard

reaction supplemented with MgCl2 to a final concentration of 3 mM containing 0.5

µM of each primer plus 0.3 µM of each probe. After denaturation of DNA for 30s

at 95°C, amplification was done in 50 cycles (5 cycles including denaturation:

[95°C,  1  s],  annealing:  [63°C,  5  s],  extension:  [72°C,  20  s],  plus  10  cycles

including  denaturation:  [95°C,  1s],  “touch-down“  annealing:  [63°C  to  53°C,

temperature  reduction:  1°C  per  cycle],  5  s;  extension:  [72°C,  20  s],  plus  35

cycles including denaturation: [95°C, 1 s], annealing: [53°C, 5 s] and extension:

[72°C, 20 s]; ramp rates in all cycle steps were 20°C/s) with 1 µl of 1:5 diluted

DNA samples  (see  above).  Fluorescence  was measured  at  the  end  of  each

annealing  phase  in  the  “single“  mode  with  the  channel  setting  F2/1.

Fluorescence  signals  from  the  amplification  products  were  quantitatively

assessed by applying the standard software (version 3.5.3) of the LightCycler™

Instrument.  Quantification  of  PCR  products  was  achieved  by  plotting  the

fluorescence signals versus the cycle numbers at which the signals crossed the
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baseline (see Figure 8A). Adjustment of the baseline was performed by using the

“minimize error“ mode. Positive samples were identified by a fluorescence signal,

which accumulated to values above the baseline within 50 cycles of reaction. As

external  standards,  samples  containing DNA equivalents  from 100,  10 and  1

parasite(s) were included. Linearity among the standard reactions was reflected

by the correlation coefficient, which was calculated by computer program to be 1.

Lack of  PCR-inhibitory effects as well  as overall  comparability of  the different

standard  and  sample  reactions  was  evidenced  by  demonstrating  the  quasi-

identity of the slopes from the amplification plots (monitoring amplification rates)

at the baseline crossing points (see  Figure 8A). Furthermore, reproducibility of

the test system was demonstrated by proving an overall low variation within three

independent  runs  of  the  standard  reactions  representing  100  (interassay

coefficient  of  variation,  7.8%),  10  (13.3%),  and  1  (17.2%)  parasite(s),

respectively.
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2.2 Infection  of  organotypic  slice  cultures  from  rat  central
nervous tissue with Neospora caninum

If  not otherwise stated, all  reagents and tissue culture media were purchased

from Gibco-BRL.

2.2.1 Vero cell culture

Vero cells were cultivated as described in 2.1.1.

2.2.2 Maintenance and purification of parasites

Neospora caninum tachyzoites of the Swedish isolate NcSwB1 were maintained

in Vero cell monolayers and purified as described in 2.1.2.

2.2.3 Organotypic  culture  of  rat  brain  cortical  tissue  slices  and
infection with Neospora caninum tachyzoites

Organotypic  slice  explants  of  rat  brain  cortex were prepared essentially  by a

modification of the procedure described for hippocampal tissue by Stoppini et al.

(1991; 2000). The slices were allowed to recover from explantation trauma and

to mature for 1 week before infection was initiated. For infection, cultures were

overlaid with 2 x 106 or 2 x 107 freshly isolated and purified NcSwB1 tachyzoites

in 300 µl of culture medium without serum for 1h at 37ºC / 5% CO2, followed by

two  washes  in  medium.  Control  cultures  were  treated  identically  without
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parasites.  The infected slices were then further cultured at  37ºC for 1-7 days

prior to analysis. In some experiments, infected slice cultures were cultured in

the presence of 100 U/ml of recombinant mouse IFN-γ (Genzyme).

2.2.4 Lightmicroscopy and immunohistochemistry

At the appropriate time points, the brain slices were carefully removed from the

filter, and were fixed overnight in 5ml of 4% paraformaldehyde in PBS, pH 7.2, at

4ºC.  They  were  then  placed  into  18%  sucrose  in  PBS  for  24h,  were

subsequently  cut  at  10-20  µm  intervals  on  a  cryostat  (Cryocut  1800,  Leica

Instruments) and mounted onto poly-L-lysine coated slides. They were stored at

-20ºC for a maximum of 1 week prior to use. 

Primary  antibodies  for  the  detection  of  parasites  were  the  mAb  NcmAb-4

directed against the major tachyzoite antigen NcSAG1 (Björkman and Hemphill,

1998),  and  an  affinity-purified  rabbit  anti-NcSRS2  antibody  (Hemphill  et  al.,
1997).  For  the visualisation  of  cytoskeletal  elements  within  the  host  neuronal

tissue, the following reagents were used: Intermediate filaments were detected

using  a  mAb  directed  against  glial  fibrilary  acid  protein  (GFAP;  Chemicon

International Inc.). For the detection of tubulin, immunolabelling was carried out

employing  the  mAb5-1-2  directed  against  -tubulin  (Sigma-Aldrich).  Bound

antibodies  were  visualised  employing  the  appropriate  TRITC-  or  FITC-

conjugated  secondary  antibodies  (Sigma).  Actin  microfilaments  were

demonstrated by staining with rhodamin-conjugated phalloidin (Sigma).

For  staining  of  frozen  sections,  specimens  were  washed  in  PBS,  and  non-

specific binding sites were blocked by incubation in blocking buffer (PBS / 3%

BSA /  50  mM glycine)  for  2h  at  room temperature.  Incubations  with  primary

antibodies  were  performed  in  dilution  buffer  (PBS  /  0.3%  BSA)  for  45  min,

followed by three washes in PBS, 5 min each. Secondary antibodies were used

at a 1:100 dilution in dilution buffer for 30 min, followed by three washes in PBS,

15 min each.  In  case of  double  immunofluorescence labelling,  all  four  layers
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were  applied  sequentially.  Finally,  nuclei  were  fluorescently  stained  with  the

DNA-specific  dye Hoechst 22358, (1 µg/ml in PBS), according to Fuchs  et al.

(1998).  Specimens  were  subsequently  embedded  in  a  mixture  of  glycerol  /

gelvatol  containing  1.4-diazobicyclo[2.2.2]octan  (Merck)  as  an  anti-fading

reagent.  The  preparations  were  viewed  on  a  Leitz  Laborlux  S  fluorescence

microscope for black and white photography. For colour micrographs, specimens

were  inspected  on  a  Nikon  Eclipse  E800  digital  confocal  fluorescence

microscope.  Processing  of  images  was  performed  using  the  Openlab  2.0.7

software (Improvision).

2.2.5 Transmission electron microscopy (TEM)

Tissue slices were fixed in 100 mM sodium phosphate buffer, pH 7.2, containing

2.5%  glutaraldehyde  and  0.25%  tannic  acid  for  4h  at  room  temperature

(Hemphill and Croft, 1997), followed by postfixation in 1% OsO4 for 4h at 4ºC.

Subsequently  specimens  were  washed  in  water  and  were  prestained  in  1%

uranyl acetate in water for 1h at 4ºC, followed by extensive washing in water.

Tissue slices  were then  dehydrated  in  a  graded  series  of  ethanol,  and  were

embedded in Epon 820 resin. The resin was polymerised at 65ºC over a period

of 48h. Ultrathin sections were cut on a Reichert and Jung ultramicrotome and

were loaded onto 300 mesh copper grids (Plano GmbH). Staining with uranyl

acetate and lead citrate was performed as described (Hemphill and Croft, 1997).

Finally, grids were viewed on a Hitachi H-600 transmission electron microscope

operating at 100 kV.
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2.2.6 Processing  of  DNA  samples  and  LightCycler™-based
quantitative PCR

PCR-quantification  of  parasite  proliferation  within  infected  slice  cultures

maintained in  the presence or  absence of  IFN- was performed according to

Müller et al., (2002) as described in 2.1.5.
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2.3 Exogenous  nitric  oxide  triggers  Neospora  caninum
tachyzoite-to-bradyzoite stage conversion in keratinocytes

Unless  otherwise  stated,  all  tissue  culture  reagents  and  biochemicals  were

purchased from Sigma (St. Louis, MO) 

2.3.1 Vero  cells,  human  foreskin  fibroblast  (HFF)  and  human
neuroblastoma (HT4) cell cultures

Vero  cells,  HFF,  and  neuroblastoma  cells  were  maintained  in  RPMI-1640

medium  (Gibco-BRL)  supplemented  with  10%  FCS,  2  mM  glutamine,  50  U

penicillin /  ml,  and 50 µg of streptomycin / ml at 37°C with 5% CO2 in tissue

culture flasks. Cultures were trypsinised at least once a week.

2.3.2 Murine epidermal keratinocyte cell cultures

Cultures of murine epidermal keratinocytes (obtained from CELLn-TEC, Berne,

Switzerland)  were  maintained  in  defined  keratinocyte-SFM  medium  plus

supplement (Gibco-BRL) at 37°C / 5% CO2 in tissue culture flasks. The medium

was supplemented with 10 ng/ml EGF (Bioconcept / Perotech), 10-10 M cholera

toxin  (Sigma)  and  1x  antibiotic-antimycotic  (100  U/ml  penicillin,  100  mg/ml

streptomycin, 250 ng/ml amphotericin). This culture medium contains 0.07 mM

calcium,  a  concentration  reported  to  support  the  proliferation  of  mouse  and

human keratinocytes cultures (Hennings  et al., 1980;  Jensen  et al., 1990).  At

confluency, cells were trypsinised (0.25% / 0.125% trypsin-EDTA) (Bioconcept /
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Amimed), and seeded at 3 x 104 cells / cm2 in new culture flasks (Caldelari et al.,

2001).

2.3.3 Maintenance  and  purification  of  Neospora  caninum and
Toxoplasma gondii tachyzoites

Neospora caninum tachyzoites of the Liverpool isolate (Nc-Liverpool) (Barber et

al., 1995), Swedish isolate (NcSwB1) (Stenlund  et al., 1997) and Nc-1 isolate

(Dubey et al., 1988) were maintained in Vero cell monolayers at 37°C / 5% CO2

in RPMI-1640 medium containing 2 mM glutamine, 50 U penicillin / ml, 50 µg of

streptomycin  /  ml,  and  5%  Ig-free  HS  (Hemphill  et  al.,  1996).  T.  gondii
tachyzoites  (RH  and  ME-49,  respectively)  were  cultured  under  identical

conditions,  except  that  horse  serum  was  replaced  by  FCS.  Parasites  were

harvested from their host cell cultures by passage through PD-10™ column filled

with  Sephadex  G25M (Pharmacia)  as  previously  described  (Hemphill,  1996).

The  purified  tachyzoites  were  centrifuged  at  4°C,  were  resuspended  in

supplemented  keratinocyte-SFM medium  (see  2.3.2),  counted  in  a  Neubauer

chamber, and were immediately used for infection experiments. 

2.3.4 Infection  of  murine  epidermal  keratinocytes  and  induction  of
stage conversion

Monolayers of keratinocytes were grown to 80-90% confluency, either directly in

24 well tissue culture plates, on poly-L-lysine (100 µg/ml) coated glass coverslips

in 24 well tissue culture plates, or in T25 tissue culture flasks. Prior to infection,

the medium was removed, and cells were overlaid with 1ml (for 24 wells) or 10ml

(for tissue culture flasks) of supplemented keratinocyte-SFM medium containing

70 µM sodium nitroprusside (SNP) (stock solution 10 mg/ml in distilled water)
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and 105/ml of either N. caninum (Nc-Liverpool, NcSwB1 and Nc-1, respectively)

or T. gondii tachyzoites (RH, ME-49, respectively). Control cultures contained no

SNP. The infected monolayers were cultured at 37°C / 5% CO2 for 1 to 8 days.

SNP was added daily to the cultures. After 4 days, the medium was replaced

with  fresh  medium  with  or  without  SNP,  respectively.  The  specimen  were

inspected daily by phase contrast microscopy. 

2.3.5 Monitoring  of  Neospora  caninum proliferation  in  murine
epidermal keratinocytes by quantitative Neospora-specific real-
time PCR

For quantification of parasite proliferation, keratinocytes were grown in 24 well

culture  plates  and  were  infected  with  105 freshly  isolated  and  purified  Nc-

Liverpool tachyzoites. To some cultures, 70 µM SNP was added at the time of

infection.  After  1,  2,  3  and  4  days,  DNA  was  extracted  from  infected  cell

monolayers  using  the  DNAeasy™  Kit  (Qiagen)  according  to  the  standard

protocol suitable for cultured animal cells provided by the manufacturers. DNA

was  eluted  in  100  µl  AE  buffer  and  subsequently  boiled  for  5  minutes.

Quantitative PCR amplification was performed on a LightCycler™ (Roche) with 4

µl of 1:400 diluted sample DNA, according to the protocol described by Müller et

al.  (2002)  as  described  in  2.1.5.  As  external  standards,  samples  containing

Neospora DNA equivalent to 10, 5 and 1 tachyzoite(s) were included.
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2.3.6 Immuno- and lectin-fluorescence labelling of infected cultures

At days 4 and 8 post infection, coverslips were rinsed 3 times in PBS and placed

into fixation buffer (3% paraformaldehyde in PBS) for 30 min. Subsequently, the

cells  were  permeabilised  in  PBS  containing  0.2%  Triton-X-100  for  30  min,

washed in PBS, and were incubated in blocking solution (PBS / 3% BSA) over

night at 4°C. The following primary antibodies were diluted in PBS / 0.3% BSA:

(i)  NcmAb-4,  a mAb directed against  the immunodominant  tachyzoite surface

antigen NcSAG1 (Björkman and  Hemphill,  1998)  was used at  1  µg/ml;  (ii)  a

polyclonal rabbit anti-N. caninum tachyzoite hyperimmune serum (Hemphill et al.,

1996), diluted at 1:500; (iii) a polyclonal antiserum directed against TgBAG1 that

crossreacted with  N. caninum bradyzoites and cysts in vivo (McAllister  et  al.,

1996), diluted at 1:250; (iv) mAbCC2, a rat mAb directed against a T. gondii cyst

wall  protein  (Gross  et  al., 1995),  diluted  at  1:100.  Incubations  with  primary

antibodies were performed for 1h, followed by three washes in PBS, 5 min each.

Bound antibodies were detected by incubation of coverslips with the appropriate

TRITC- or FITC-conjugated secondary antibodies diluted at 1:100 in PBS / 0.3%

BSA  for  30  min.  For  double-fluorescence  staining,  antibodies  were  always

applied sequentially, one layer at a time. Lectin staining was performed using

biotinylated  Dolichos biflorans  agglutinin (DBA), exhibiting a high affinity for N-

acteylgalactosamine residues, at a dilution of 1:200. As secondary antibody, anti-

biotin-FITC conjugate, diluted 1:100 in PBS / 0.3% BSA was applied. Finally, the

preparations were washed in PBS three times for 5 minutes, incubated in the

fluorescent dye Hoechst 33258 (1 µg/ml in PBS) for 2 minutes, rinsed again in

PBS and mounted in Fluoprep (BioMerieux S.A.). All specimens were viewed on

a Nikon Eclipse E 800 digital confocal fluorescence microscope. Processing of

images was performed using the Openlab 2.0.7 software (Improvision).
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2.3.7 Transmission electron microscopy (TEM)

Keratinocytes were grown in a 25cm2 culture flask. They were infected with 106

freshly isolated and purified tachyzoites of the Nc-Liverpool isolate. 70 µM SNP

was added at the time of infection, control cultures received no SNP. Infected

monolayers were cultured as described above (see  2.3.4).  After  8 days cells

were washed in PBS, and were fixed in 100 mM sodium phosphate buffer, pH

7.2, containing 2.5% glutaraldehyde. They were then removed from the culture

flask  using  a  rubber  policeman,  and  were  maintained  in  the  primary  fixation

buffer for 3h at room temperature. Subsequently, the specimens were washed in

PBS.  The  preparations  were  post-fixed  in  2%  OsO4 in  100  mM  sodium

phosphate buffer pH 7.2 for 2h, washed 4 times in water and were prestained in

1% uranyl acetate in water for  30 minutes.  Specimens were then dehydrated

using a graded series of ethanol (50-70-90-100%) and were embedded in Epon

820 resin as described (Hemphill and Croft, 1997). The resin was polymerised at

65°C over a period of 24h. Ultrathin sections were cut on a Reichert and Jung

ultramicrotome and were loaded onto 300 mesh copper  grids (Plano GmbH).

Staining  with  uranyl  acetate  and  lead  citrate  was  performed  as  described

(Hemphill  and  Croft,  1997).  Finally,  grids  were  viewed  on  a  Phillips  600

transmission electron microscope operating at 60kV.
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2.4 In vitro induction of Neospora caninum bradyzoites in Vero
cells  reveals  differential  antigen  expression,  localisation,
and host cell recognition of tachyzoites and bradyzoites

2.4.1 Cell cultures

Vero cells were cultivated as described in 2.1.1. Murine epidermal keratinocytes

were cultivated as described in 2.3.2.

2.4.2 Maintenance and purification of Neospora caninum tachyzoites

Neospora caninum tachyzoites of the Liverpool isolate (Nc-Liverpool) (Barber et

al., 1995) were maintained and purified as described in 2.3.3.

2.4.3 Monitoring of  Neospora caninum proliferation in infected host
cell monolayers by quantitative real-time PCR

In order to asses the influence of different concentrations of SNP on parasite

proliferation,  murine  epidermal  keratinocytes  were  grown  in  24  well  culture

plates,  and  infected  with  105 freshly  isolated  and  purified  Nc-Liverpool

tachyzoites, as described by Vonlaufen et al. (2002b). Different concentrations of

SNP (up to 70 µM) were added at the time of infection. Control cultures received

no  SNP.  After  2,  4,  6  and  8  days,  DNA  was  extracted  from  infected  cell

monolayers using the DNAeasy™ Kit (Qiagen). DNA was eluted in 100 µl AE

buffer  and subsequently  boiled  for  5  minutes.  Quantitative  PCR amplification
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was performed on a LightCycler™ (Roche)  with 4 µl  of  1:400 diluted sample

DNA, according to the protocol described by Müller et al. (2002) as described in

2.1.5.  As external  standards samples containing  Nesopora DNA equivalent  to

100, 10 and 1 parasite(s) were included. 

2.4.4 Induction of  Neospora caninum tachyzoite-to-bradyzoite stage
conversion in Vero cells and purification of parasites

To induce tachyzoite-to-bradyzoite stage conversion in Vero cells, the previous

protocol for the bradyzoite culture in murine epidermal keratinocytes (Vonlaufen

et al., 2002b) was modified. Vero cell confluent monolayers were grown on poly-

L-lysine (100 µg/ml) coated glass coverslips in 24 well tissue culture plates or in

T75 or T175 tissue culture flasks. Prior to infection, the medium was removed

and cells were overlaid with 1ml / well (24 well) or 20ml or 60ml (T75 and T175

tissue culture  flasks,  respectively)  of  RPMI-medium containing  10% FCS and

freshly purified 1 x 105  tachyzoites / cm2.  To induce stage conversion,  17 µM

SNP was added at the time of infection. Infected cultures were maintained at 37°

C / 5% CO2,  and inspected microscopically daily.  Each day, the medium was

replaced with fresh medium, containing 17 µM SNP. Control cultures contained

no SNP. The SNP-stressed cultures were grown for 8 days; control cultures were

cultured for 2 days. 

SNP-treated N. caninum parasites were harvested from Vero cell cultures after 8

days of cultivation and isolated according to the previously described protocol for

tachyzoites (Hemphill et al., 1996) with some modifications. Briefly, SNP-treated

cultures were trypsinised, and were repeatedly passed through a 25G needle.

Following centrifugation at 600 x g at 4°C for 10 min, the pellet was resuspended

in cold RPMI-1640 and washed twice by centrifugation at 600 x g. Under these

conditions,  cellular  debris  remained  largely  in  the  supernatant,  while  intact

parasites were recovered in the pellet fraction. The final pellet was resuspended

in 2ml of cold RPMI-1640, and parasites were purified by passage through PD-
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10™ columns. The purified parasites were centrifuged at 4ºC at 600 x g and

pellets were stored at -80ºC for further analysis, or parasites were immediately

fixed and used for immunofluorescence labelling as described below. 

2.4.5 Immunofluorescence labelling of isolated parasites and infected
Vero cell cultures

All manipulations were done at room temperature. Either isolated parasites were

fixed in 3% paraformaldehyde in PBS and were allowed to settle down onto poly-

L-lysine  coated  glass  coverslips  for  30  min,  or  SNP-treated  and  untreated

infected Vero cell cultures grown on poly-L-lysine coated coverslips were fixed in

3% paraformaldehyde in PBS for  30 min.  Following fixation,  specimens were

permeabilised in 0.2% Triton-X-100 in PBS for 30 minutes, washed in PBS, and

unspecific binding sites were blocked in 3% BSA in PBS overnight at 4ºC. The

following  primary  antibodies  were  diluted  in  0.3% BSA in  PBS:  (i)  NcmAb-4

directed against NcSAG1 (Björkman and Hemphill, 1998) was used at 1 µg/ml;

(ii) mAb5.2.15, cell culture supernatant, directed against NcSRS2 (Schares et al.,

1999) undiluted; (iii) polyclonal rabbit  anti-N. caninum tachyzoite hyperimmune

serum (Hemphill  et  al.,  1996)  1:500;  (iv)  polyclonal  rabbit  antiserum directed

against TgBAG1 (McAllister et al., 1996) 1:250; (v) mAbCC2, raised against a T.

gondii cyst wall antigen (Gross et al., 1995) 1:100; (vi) polyclonal rabbit antibody

against NcGRA7 (Lally  et al., 1997) 1:50; (vii) polyclonal mouse serum against

NcGRA1  (Atkinson  et  al.,  2001)  1:50;  (viii)  polyclonal  mouse  serum  against

NcGRA2  (Ellis  et  al.,  2000)  1:50.  Incubation  with  primary  antibodies  was

performed for 1h, followed by 3 washes in PBS, 5 min each. The bound primary

antibodies were detected by incubation with the appropriate rhodamin- or FITC-

conjugated secondary antibodies diluted 1:100 in 0.3% BSA in PBS for 30 min.

For double-fluorescence staining,  antibodies were always applied sequentially,

one layer at a time. Finally, the preparations were washed in PBS (3 x 5 min),

and were incubated in the fluorescent dye Hoechst 33258 (1 µg/ml in PBS) for 2
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min,  rinsed  again  in  water  and  mounted  in  Fluoprep  (BioMerieux  S.A.).  All

specimens were viewed on a Nikon Eclipse E 800 digital confocal fluorescence

microscope.  Processing  of  images  was  performed  using  the  Openlab  2.0.7

software (Improvision).

2.4.6 Transmission  electron  microscopy  and  immunogold
transmission electron microscopy

For conventional TEM of  N. caninum bradyzoite cultures, infected monolayers

were fixed, dehydrated, embedded in Epon 820 resin, and further processed as

previously described for infected murine epidermal keratinocytes (Vonlaufen  et

al., 2002b), as described in 2.3.7.

For immunogold transmission electron microscopy, bradyzoite-infected Vero cell

cultures were fixed in PBS containing 3% paraformaldehyde for 30 min at 24˚C.

The preparations were washed three times in PBS, and were removed from the

surface of the tissue culture flask using a rubber policeman. They were kept in

PBS / 50 mM glycine for 1h at 4˚C, and were washed extensively in PBS by

several  rounds  of  centrifugation.  Specimens  were  then  dehydrated  using  a

graded  series  of  ethanol  (50-70-90-100%)  at  -20˚C,  5  min  each,  and  were

embedded in LR-White resin at -15˚C, with four changes of fresh resin over a

period of three days. The resin was polymerized at 58˚C for 24h. Sections were

cut using a Reichert & Jung ultramicrotome, and were picked up onto 200 mesh

formvar-carbon-coated nickel grids (PLANO GmbH, Marburg, Germany). Loaded

grids were stored at 4˚C for a maximum of 48h prior to use.

Prior  to  labelling  of  LR-White  sections,  electron  microscopy  (EM)  grids  were

incubated in EM blocking buffer (PBS / 0.5% BSA / 50 mM glycine) for 1h at

room  temperature.  All  subsequent  steps  were  also  performed  at  room

temperature. Sections were rinsed in PBS, and incubated with either monoclonal

or polyclonal antibodies diluted as for immunofluorescence in EM blocking buffer

(see above) for 1h. Following washing in 5 changes of PBS, 2 min each, EM
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grids were incubated with goat anti-mouse- or goat anti-rabbit-IgG conjugated to

10 nm gold particles (Amersham), at a dilution of 1:5 in PBS / 0.5% BSA for 45

min. After 6 washes in PBS, 5 min each, the specimens were shortly rinsed in

distilled water, and were air-dried.  Finally,  grids were stained with lead citrate

and  uranyl  acetate,  and  were  subsequently  viewed  on  a  Phillips  300

transmission electron microscope operating at 60 kV.

2.4.7 SDS-PAGE and immunoblotting

Protein  extracts,  corresponding  to  identical  numbers  of  purified  N.  caninum
tachyzoites  and  bradyzoites,  were  separated  by  SDS-PAGE  under  reducing

conditions,  and  were  electrophoretically  transferred  onto  a  nitrocellulose

membrane as previously described (Sonda  et al.,  2000).  Non specific  binding

sites  were blocked  in  3% BSA in  TBS-T  (20  mM Tris,  150 mM NaCl,  0.3%

Tween 20, pH 7.4) for 2h at room temperature. Polyclonal anti-BAG1 antibody

(1:2000), NcmAb-4 (1:2000), mAb5.2.15 (1:1) and anti  Neospora  hyperimmune

serum  (1:1000)  were  diluted  in  TBS-Tween  /  0.3%  BSA,  and  were  applied

overnight at 4°C.  Bound antibodies were visualised using appropriate alkaline

phosphatase conjugates (Promega, Zürich, Switzerland).
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2.4.8 Pyrrolidine  dithiocarbamate  (PDTC)-PCR-based  quantification
of host cell interactions of bradyzoites and tachyzoites

Adhesion  to  and  invasion  of  Vero  cells  by  N.  caninum tachyzoites  and

bradyzoites was investigated using the PDTC-PCR adhesion /  invasion assay

according  to  Naguleswaran  et  al.  (2003).  Briefly,  Vero  cell  monolayers  were

grown to confluency in 96 well flat  bottom tissue culture plates (Sarstedt Inc.,

Nümbrecht,  Germany). 1 x 105 parasites (either freshly purified tachyzoites or

bradyzoites)  resuspended  in  100  µl  of  RPMI-1640  were  added  to  the

monolayers. They were allowed to invade for 30 min at 37°C / 5% CO2. In some

experiments,  monolayers  were  treated  with  50  mU/ml  neuraminidase  (Vibrio

cholerae) at 37°C for 2h prior to parasite incubation. Alternatively, tachyzoites

and bradyzoites were pretreated with 50 mU/ml neuraminidase at 37°C for 30

min  prior  to  letting  them  interact  with  host  cells.  Unbound  parasites  were

removed by washing in RPMI-1640,  and infected monolayers were incubated

with RPMI-1640 containing 100 µM PDTC, 0.2 µM CuSO4 and the respective

parasite  specific  hyperimmune serum (1:200)  for  2h  at  37°C.  This  killed and

permeabilised  extracellular  parasites  but  left  intracellular  ones  unharmed

(Naguleswaran et al., 2003). In parallel, control incubations in RPMI-1640 were

performed.  Subsequently,  the  wells  were washed once with  RPMI-1640,  and

RPMI-1640 containing 1 mg/ml DNaseI was added and the preparations were

incubated  for  1h  at  37ºC.  Finally,  all  wells  were  washed  with  RPMI-1640

containing 1 mM EDTA to inhibit DNaseI-activity, and the cellular material was

taken up in 100 µl of lysis buffer (DNAeasy™ Kit, Qiagen). The specimens were

transferred to Eppendorf tubes, and heated for 5 min at 95C. DNA was purified

by  using  the  DNAeasy™  Kit  (Qiagen)  according  to  the  manufacturers

instructions.  Parasite  numbers  were  determined  by  real-time  PCR using  the

LightCycler™ Instrument as described by Müller et al., (2002) in 2.1.5.
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3. Results and Discussion

3.1 Application of a real-time fluorescent PCR for quantitative
assessment of Neospora caninum infections in organotypic
slice cultures

Two sets of 10 serial rat brain slices were incubated in the presence of 106 N.

caninum tachyzoites per set. Between days 1 and 5 post inoculation, samples

were investigated for infection intensities by examination of slices either through

immunohistochemistry (Figure 7) or quantitative PCR (Figure 8). In addition, an

uninfected control sample (representing day 0) was analysed by each technique.

Semiquantitative immunohistological evaluation revealed a progressive increase

of  the  intracellular  parasite  numbers  (Figure  7).  These  results  were  largely

confirmed  by  PCR  on  a  quantitative  level.  For  quantitative  PCR-based

determination of parasite numbers at the different time points post inoculation,

corresponding  data  from  the  DNA  amplification  plots  were  compared  to  the

standard plots representing DNA equivalents from approximately 100, 10 and 1

parasite(s) (Figure 8A). By assessing parasite numbers as means (plus standard

deviations)  from values  determined  in  three  independent  PCR runs,  infection

intensities were revealed to continuously increase to a number of approximately

48‘000 parasites per slice at day 5 post inoculation (Figure 8B).

Taken together,  the present results showed that inoculation of  organotypic rat

brain  slice  cultures  with  an  appropriate  number  (approximately  106)  of  N.

caninum tachyzoites results in continuous parasite growth over a period of  at

least 5 days. The investigation revealed that the proliferation rate can precisely

be monitored  by using the  highly sensitive Nc5-PCR (Müller  et  al.,  1996)  for

quantitative  detection  of  accumulating  parasites.  In  contrast,

immunofluorescence  detection  of  parasites  allows  only  a  semi-quantitative

assessment of parasite proliferation.
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Figure 7: Monitoring of parasite proliferation following infection of organotypic cultures with 106 N.
caninum tachyzoites (days 1 to 5). Parasites were detected by immunolabelling using a polyclonal
anti-N. caninum antiserum followed by detection with a fluorescein isothiocyanat-conjugated anti-
rabbit antibody. The brain tissue was counterstained employing a monoclonal antibody directed
against GFAP followed by staining with an anti-mouse-Texas red conjugate.

The  excellent  operating  characteristics  make  the  quantitative  PCR  assay  a

versatile tool to study, ex vivo and under experimentally controlled conditions, a

large variety of biological parameters relevant during the cerebral phase of a N.

caninum infection. Accordingly, PCR-based parasite quantification of organotypic

brain  tissue  samples  may  become  an  important  experimental  model  for  the

generation  of  novel  information  on  those  processes  that  cause  neuronal

pathogenicity  in  bovine  and  canine  Neosporosis.  In  addition,  PCR-based

quantification of Neospora caninum can be applied to determine infection
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Figure 8: LightCycler™-PCR for quantitative assessment of  N. caninum in organotypic rat brain
tissue samples.  (A) Typical  example from three independent PCR runs including amplification
plots  representing  standard  reactions  (dotted  lines)  for  100 (left),  10 (middle)  and 1  parasite
(right),  or reactions representing samples taken at days 1 (open circles),  2 (closed circles),  3
(open  squares),  4  (closed  squares),  and  5  (crosses)  post  inoculation  with  106 parasites.
Quantification of PCR products was achieved by plotting the fluorescence signals versus the cycle
numbers at which the signals crossed the baseline (indicated as horizontal lines) and standards
(dotted curves) were used for calculation of the parasite numbers within the samples. (B) Parasite
growth kinetics,  expressed as mean values plus  standard deviations from three independent
determinations.  Values  are  given as  parasite  numbers  detected in  the  various  reactions (left
scale). The extrapolated numbers of parasites corresponding to the entire section of brain slice
are indicated on the right.

intensities  in tissues and body fluids originating from both  experimentally and

naturally  infected  samples,  and thus is  useful  for  epidemiological  and clinical

studies,  as well  as  for  research applications,  such as the  assessment  of  the

efficacy of treatment and / or vaccination strategies to be developed in the future.
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3.2 Infection  of  organotypic  slice  cultures  from  rat  central
nervous tissue with Neospora caninum

3.2.1 Results

3.2.1.1 Maintenance of Neospora caninum tachyzoites in organotypic slice
cultures from rat cortical brain tissue

Organotypic rat cortical central nervous system (CNS) tissue was maintained for

1 week prior to infection with 106 freshly isolated N. caninum tachyzoites in order

to determine whether these cultures would sustain the growth and proliferation of

N. caninum. The distribution of tachyzoites following infection was monitored on

frozen  sections  by  immunofluorescence  using  monoclonal  and  polyclonal

antibodies directed against  NcSAG1 and NcSRS2,  respectively. NcSAG1 and

NcSRS2  represent  the  immunodominant  surface  antigens  of  N.  caninum
tachyzoites  (Hemphill,  1999).  In  brain  tissue  slices  fixed  at  day  1  following

infection,  we  found  single  tachyzoites  or  groups  of  few  parasites  which  had

invaded the tissue (Figure 9). The overall number of  tachyzoites was low, not

more than approximately 40-60 parasites per tissue slice, and tachyzoites were

scattered  along  the  periphery  of  the  tissue  sections.  On  day  2,  a  slightly

increased  number  of  parasites  could  be  seen.  At  3  days  following  infection,

larger groups of tachyzoites were visible, some already spreading and infecting

neighbouring cells, but mostly still preferentially located at the periphery of the

sections (Figure 9). Electron microscopy of infected cultures fixed and processed

at  days 2-3 following infection  (Figure 10A-C) revealed  that  tachyzoites  were

located, and proliferating within classical parasitophorous vacuoles. The lumen

of  the  vacuole  was  filled  with  a  parasitophorous  vacuole  tubular  network.

Pseudocysts  containing  between  4  and  10  tachyzoites  were  detected,  in  all

cases surrounded by a parasitophorous vacuole membrane. In no case a cyst

wall was visible. Around days 4-5, the number of parasites was increasing 
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Figure 9: Time course of infection of organotypic cultures of rat cortex with 2 x 106 N. caninum
tachyzoites.  Parasites  were immunolabelled with a mAb directed against  NcSAG1 and FITC-
conjugated  secondary antibodies  (left),  and  the  nuclei  were  stained  with  the  fluorescent  dye
Hoechst 22348 (right). Note the massive proliferation between days 3 and 7.

Next Page:

Figure 10: TEM of infected organotypic cultures. Fixation and processing for TEM was carried out
at day 2 (A, B), day 3 (C), and at day 4 (D) following infection with 2 x 106 N. caninum tachyzoites.
Arrows  point  towards  the  parasitophorous  vacuole  membrane;  no  cyst  wall  is  formed.  tn  =
parasitophorous vacuole tubular network. (A) Bar = 790 nm; (B) Bar = 600 nm; (C) Bar = 990 nm;
(D) Bar = 680 nm.
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Figure 10:
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dramatically as assessed by immunofluorescence (Figure 9) and by quantitative

PCR-assay  (Figure  13).  Many  of  the  pseudocysts  had  collapsed,  liberating

tachyzoites,  which  readily  had  entered  neighbouring  cells.  The  distribution  of

parasites  has  moved  from  the  periphery  towards  the  interior  of  the  section,

reflecting the development of tachyzoites and the spread to adjacent regions of

the tissue. In this phase, larger pseudocysts similar to the one shown in Figure

10D could be seen. At day 7, all areas of the tissue were heavily infected with

tachyzoites,  and  large  pseudocysts  containing  hundreds  of  tachyzoites  were

visible  (Figure  9).  TEM  revealed  that  these  events  resulted  not  only  in  the

deterioration  of  the  overall  morphological  and  structural  organisation  of  the

infected host tissue, but that the massive proliferation of parasites also resulted

in a large number of necrotic tachyzoites due to the lack of viable host cells (data

not  shown).  Similar  observations  were  made  when  organotypic  brain  slice

cultures  were  infected  with  2  x  107 tachyzoites,  except  that  the  time  frame

between  initial  invasion  and  complete  colonialization  of  the  tissue  slices  was

reduced to 3-4 day (data not shown). Taken together, organotypic slice cultures

of  rat  cortical  brain  tissue  constituted  a  favourable  environment  for  the

maintenance and proliferation of N. caninum tachyzoites.

3.2.1.2 Neuronal cytoskeleton and Neospora caninum infection

The interaction between neuronal cytoskeletal elements of organotypic cortical

tissue  slices  and  N.  caninum tachyzoites  were  investigated  by

immunofluorescence. These interactions appeared most evident with regard to

the intermediate filaments formed by glial fibrillary acid protein (GFAP), which at

the same time serves as a marker for astrocytes. In uninfected control cultures,

anti-GFAP  immunolabelling  revealed  the  highly  organised,  three-dimensional

structure  of  GFAP-containing  filaments.  Double  staining  of  GFAP  and  N.

caninum in infected cultures showed that the overall structure of the intermediate

filament  network  was  heavily  distorted  in  regions  of  massive  tachyzoite
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proliferation, starting at about day 4 to 5 following infection with 2 x 106 parasites

(data not shown). In areas where tachyzoites were still located intracellularly, 

Figure  11: GFAP  and  pseudocysts.  Immunofluorescence  staining  of  GFAP  labelling  (red),
NcSRS2 staining  (green)  indicative  for  N. caninum tachyzoites,  DNA-labelling  (blue),  and the
overlay. Note the close colocalisation of peripheral GFAP filaments with the pseudocyst periphery.

enclosed in a large pseudocyst, the glial filaments were in close juxtapositon to

the pseudocyst membrane, indicating that an association between the parasite

pseudocyst  membrane  and  astrocyte-derived  intermediate  filaments  is

maintained (Figure 11). In contrast, double staining with anti-tubulin antibodies

did not reveal any association of microtubules with N. caninum (data not shown).
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Figure  12: Actin  microfilaments  and  N. caninum pseudocysts.  Fluorescence staining of  actin
microfilaments  using phalloidin-rhodamin (F-actin,  red),  corresponding staining for  N. caninum
tachyzoites using anti-NcSRS2 antibodies (green),  DNA labelling (blue) and overlay. Note the
close association and overcoating of pseudocysts with actin microfilament bundles.

The third class of  cytoskeletal  filaments,  actin microfilaments,  were visualised

with  phalloidin-TRITC labelling.  While  individual  actin  microfilaments  were not

easily  discernable  in  uninfected  areas  of  the  tissue  (data  not  shown),  we

identified  a  close  association  between  actin  microfilament  bundles  and  the

periphery  of  pseudocysts,  with  microfilaments  forming  an  enveloping  layer

around  the  entire  pseudocyst,  largely  colocalising  with  the  actual  pseudocyst

membrane (Figure 12).
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3.2.1.3 Modulation  of  Neospora  caninum-infected  organotypic  cultures
with IFN-γ

Infected  slice  cultures  were  maintained  in  the  presence  of  100  units  of

recombinant mouse IFN-γ for a time period of up to 5 days, with IFN-γ-treatment

starting  immediately  after  infection  has  taken  place.  The  effect  of  IFN-γ-

treatment with regard to parasite proliferation was comparatively assessed with

untreated cultures using quantitative PCR. This assay allows the determination

of infection intensities by using a dual fluorescent hybridization probe system and

the LightCycler™ Instrument for online detection of amplified DNA. Quantitative

PCR (Müller  et al., 2002) revealed that after a cultivation period of 5 days the

number of tachyzoites was two-fold lower in IFN-γ-treated cultures compared to

untreated  cultures  (Figure  13A).  However,  during  the  first  3  days  of  culture,

proliferation was not affected by the presence of IFN-γ, and the inhibitory effect

became manifest only from day 4 onwards. In organotypic cultures treated with

IFN-γ, the size of  the few pseudocysts which were detected was consistently

small, containing only few tachyzoites, even after 5 days of culture (Figure 13B).

Larger  pseudocysts  were  never  observed.  More  frequently,  parasitophorous

vacuoles,  containing  remnants  of  tachyzoites  which  apparently  became  non-

viable after they had entered their host cells, could be seen (Figure 13C). 
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Figure  13: Effect  of  IFN-γ on parasite proliferation in organotypic cultures from rat  CNS. (A)
Quantitative PCR, showing the number of N. caninum parasites detected during the PCR reaction
plotted against days post infection. Note the diminished proliferation of tachyzoites from day 3
onwards. (B) Pseudocyst of IFN-γ-treated tissue at day 5 following infection. Note that the number
of tachyzoites is low, bar = 800 nm. (C) Non-viable necrotic tachyzoite located intracellularly within
a parasitophorous vacuole, bar = 630 nm.

50



Results and Discussion

3.2.2 Discussion

Neosporosis is generally a mild, asymptomatic disease that begins with an acute

phase  in  which  tachyzoites  invade  their  host  cells,  divide  rapidly,  form

pseudocysts  which rupture,  and relased tachyzoites  infect  neighbouring  cells.

This process triggers an efficient immune response in the host, and is followed

by the formation of intracellular tissue cysts containing the bradyzoite stage of

the parasite, surrounded by a cyst wall, eventually leading to chronic infection.

The  current  evidence  suggests  that  during  chronic  infection  N.  caninum  is

sequestered into immuno-privileged sites such as the CNS. There, tissue cysts

harbouring the bradyzoite stage of the parasite may be the source of successive

waves of parasitaemia which, for instance during pregnancy, are responsible for

foetal  infection. The invasion of  the CNS by  N. caninum tachyzoites,  and the

subsequent damage to it, eventually gives rise to frequent abortion in cattle or

causes  neurological  manifestations  as  they  have  been  observed  in  infected

calves and dogs (Dubey and Lindsay, 1996; Hemphill, 1999). Thus, an in vitro

model which can be used to study the proliferation, ultrastructural characteristics,

development, and the interactions of  N. caninum within the context of a three-

dimensionally organised neuronal  tissue, and which at  the same time can be

modulated and influenced under controlled conditions, is needed to gain more

information on the cerebral phase of Neosporosis.  Organotypic cultures of  rat

CNS tissue were therefore infected with cell culture derived parasites in order to

assess the suitability of this system.

In  the  initial  phase of  development  following infection  with 2  x 106 parasites,

meaning during the first 48h post infection, invasion of peripheral host cells was

evident,  but  proliferation  of  tachyzoites  was not  notably  observed,  neither  by

immunofluorescence (see  Figure 9), nor by quantitative PCR (see  Figure 13),

indicating that the parasites had to adjust to the altered culture conditions (such

as  changes  in  culture  medium  and  different  host  cell  types).  During  later

timepoints (days 3-5), proliferation of tachyzoites took place rapidly, resulting in

the transient formation of pseudocysts with ultrastructural characteristics similar

to  pseudocysts  observed  in  natural  infections  (Dubey  and  Lindsay,  1996).
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Collapse  of  these  pseudocysts  and  host  cell  lysis  was  associated  with

progressive invasion of  the entire tissue slices.  Consequently, this resulted in

almost  complete  breakdown of  the  structural  integrity of  the  tissue,  with  fatal

consequences also for the parasites by days 5-7.

Immunofluorescence staining, employing a GFAP-specific mAb which serves as

a marker  for  astrocytes,  was carried  out.  It  has  been  shown earlier  that  the

predominant  population  within  these  organotypic  culture  slices  were  in  fact

astrocytes  (Stoppini  et  al.,  1991).  First,  we  found  that  the  formation  of

pseudocysts  was  accompanied  by  profound  changes  in  GFAP-filament

distribution,  in  that  glial  filaments  were observed in  close juxtaposition  to  the

cytoplasmic side of the pseudocyst membrane (see Figure 11). This was true for

virtually all pseudocysts observed, thus pseudocyst formation (and thus parasite

proliferation) took place predominantly in astrocytes. 

Our observations concerning the close interaction of intermediate filaments with

pseudocysts  are  in  agreement  with  previous  studies,  which  reported  the

association  and  overcoating  of  parasitophorous  vacuoles  with  vimentin-type

intermediate filaments in Vero cells infected with T. gondii tachyzoites (Halonen

and  Weidner,  1994).  Halonen  et  al. (1998)  had  also  shown  that  host  cell

intermediate filaments  were associated  with the cytoplasmic  side of  T. gondii
tissue cyst (harbouring bradyzoites)  within  in vitro cultured  murine  astrocytes.

Layers of glial filaments had also been observed around young T. gondii tissue

cysts developing in astrocytes of human brain (Powell et al., 1978). However, our

study  suggests  that  an  additional  class  of  cytoskeletal  filaments  is  in  close

contact  with  the  pseudocyst  membrane.  Actin  microfilaments,  visualised  by

phalloidin-TRITC staining,  were consistently found closely associated with the

pseudocysts periphery (see Figure 12). These findings are suggestive, but by no

means a definitive proof,  for  a  physical  link  between actin  filaments  and  the

pseudocyst  membrane.  Whether  these  microfilaments  at  the  pseudocyst

periphery originate from the parasite or from the host is not yet clear, but the lack

of staining in the cyst interior suggests that they originate from the host cells. It is

also not clear whether these microfilament bundles specifically colocalise with

the pseudocyst periphery,  or  whether  they are just  simply forced towards the
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host cell periphery by the growing pseudocyst. In contrast to Sims et al. (1988),

which earlier described a microtubular-intermediate filament layer present on the

cytoplasmic side of  mature  Toxoplasma  cysts in neurons in murine brain,  we

could  not  detect  any  evidence  for  microtubule-based  filamentous  overcoating

around pseudocyts in  N. caninum infected organotypic slice cultures (data not

shown).  The functional  significance of  this  microfilament-  and GFAP-filament-

overcoating  of  N.  caninum pseudocysts  is  not  understood,  but  this  type  of

cytoskeletal alteration could be an important factor mediating physical stability of

pseudocysts,  and could also account for  the exclusion of  host  cell  organelles

from  the  vacuoles.  For  instance,  by  overcoating  with  host  cell  cytoskeletal

elements lysosomes could be prevented from fusing with the parasitophorous

vacuole membrane (Halonen et al., 1998).

Astrocytes  appear  to  be  efficiently  invaded  within  these  organotypic  cultures.

Astrocytes play a central role in brain energy metabolism, and they contain the

principal  stock of  glycogen of  the brain (Swanson and Choi,  1993;  Swanson,

1992). Therefore, invasion of astrocytes could be of advantage for  N. caninum

with  regard  to  its  energy  metabolism.  In  addition,  IFN-γ  inhibits T.  gondii

tachyzoite proliferation in astrocytes via mechanisms independent of nitric oxide,

tryptophan  starvation  or  iron  deprivation  (Halonen  et  al.,  1998;  Halonen  and

Weiss,  2000).  Also  for  T.  gondii,  astrocytes  have  been  shown  to  support

tachyzoite-to-bradyzoite  conversion,  and  thus  tissue  cyst  formation,  upon

stimulation  with  IFN-γ  and  TNF-α (Fagard  et  al.,  1999).  Thus,  invasion  of

astrocytes enhances the parasite’s prospects for intracellular survival in case of

an inflammatory response on part  of  the  host.  Another  argument  which  is  in

favour of preferential invasion of astrocytes is the fact that it has been shown

earlier that in vitro cultured rat hippocampus neurons were about 20 times less

efficiently infected by  T. gondii tachyzoites compared to astrocytes (Creuzet  et

al., 1998). This was attributed to the small size of neurons, the possible absence

of cell  surface receptors required for  entry, the mitotic status of  the host  cell,

and / or the release of cytokines (Fagard et al., 1999).

Since  IFN-γ  is  a  key  cytokine  in  the  host  immune  response  to  N.  caninum

infection  (Kahn  et  al.,  1997),  and  for  T.  gondii has  shown  to  trigger  the
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conversion  from  tachyzoites  into  bradyzoites  (Fagard  et  al.,  1999),  we

investigated the effects of IFN-γ-treatment on the proliferation and development

of  N. caninum within these organotypic cultures. As evidenced by quantitative

PCR (see Figure 13), parasites proliferated in both, IFN-γ-treated and untreated

cultures,  with  equal  efficiency  until  day  3  post  infection.  Thereafter,  IFN-γ

exhibited  a  profound  inhibitory  effect  with  regard  to  the  proliferation  of

tachyzoites. This diminished proliferation was also noted by immunofluorescence

(data not shown), and by TEM. At day 5, only small pseudocysts containing few

tachyzoites  were  visible  in IFN-γ-treated  infected  cultures,  and many necrotic

parasites were found which had invaded their host cell but were apparently killed

intracellularly  (see  Figure  13B,  C).  The  mechanisms  which  resulted  in  this

proliferation inhibitory effect or in the intracellular killing of parasites are unknown

and will be investigated in the future using the organotypic tissue culture model

for N. caninum infection. 
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3.3 Exogenous  nitric  oxide  triggers  Neospora  caninum
tachyzoite-to-bradyzoite stage conversion in keratinocytes

3.3.1 Results

3.3.1.1 Exogenous NO inhibits parasite proliferation in murine epidermal
keratinocytes

To investigate whether the addition of  exogenous NO to cell  cultures induces

stage  conversion  from  tachyzoites  to  bradyzoites,  and  thus  slows  down  the

proliferation  of N. caninum in vitro, either Vero cells, HFF, HT4 cells or murine

epidermal keratinocytes were infected with N. caninum tachyzoites of the Nc-1-,

NcSwB1-,  and  the  Nc-Liverpool  isolate,  respectively.  The  NO  donor  sodium

nitroprusside was added to the culture medium at a final concentration of 70 µM

at the time of infection. Preliminary results showed that all host cell types were

readily infected with all  Neospora isolates, but murine epidermal keratinocytes

were the only host  cell  type which remained largely intact following the SNP-

treatment for 4 days, while Vero cells, HFF and HT4 cells exhibited severe signs

of structural disintegration, resulting in cell death (data not shown). Thus, murine

epidermal keratinocytes were used in all subsequent experiments. 

The effect of SNP-treatment of infected murine epidermal keratinocytes on the

proliferation of  Nc-Liverpool  within the time span of 4 days was measured by

quantitative  Neospora-specific  real-time  PCR  employing  the  LightCycler™

Instrument.  As  shown  in  Figure  14,  during  the  first  24h  of  culture,  parasite

proliferation was not notably affected by the presence of sodium nitroprusside.

From  day  2  onwards,  an  inhibitory  effect  on  parasite  proliferation  became

evident in the treated cultures compared to the untreated cultures. At day 3, SNP

had  severely  inhibited  parasite  proliferation,  while  in  untreated  keratinocyte

cultures  N.  caninum tachyzoites  divided  normally.  At  day  4,  the  number  of

parasites was approximately 5 times higher in untreated monolayers compared

to SNP-treated cells.
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Figure 14: Proliferation of Neospora caninum in murine epidermal keratinocytes as assessed by
quantitative Neospora-specific real-time PCR. Confluent keratinocyte monolayers were inoculated
with 105 N. caninum tachyzoites, and were cultured in the presence (SNP) or absence (control) of
70 µM sodium nitroprusside (SNP) for 1-4 days, respectively. Note the distinctly inhibited parasite
proliferation in sodium nitroprusside-treated cultures.

3.3.1.2 Exogenous  NO  induces  the  expression  of  bradyzoite-specific
markers in Neospora caninum infected keratinocytes

After  different  timepoints  of  SNP-treatment  of  murine epidermal  keratinocytes

infected with the Nc-Liverpool isolate, the expression of the stage specific marker

BAG1 was analysed by immunofluorescence microscopy, and respective results

are shown in Figure 15 and Figure 16. No BAG1-expression could be detected

prior to day 3 (data not shown), thus day 4 p.i. was chosen as the first timepoint

of analysis. Expression of BAG1 was quantified by determining the percentage of

BAG1-positive  parasitophorous  vacuoles  in  10  randomly  chosen  microscopic

fields.  After 4 days, 35% of all vacuoles were found to contain BAG1-positive

parasites, and after 8 days of culture, 60% exhibited BAG1-expression (Figure

15).  Similar  experiments  were  performed  using  Nc-1  and  NcSwB1  isolates,

however,  for  these  two  isolates  the  maximum  percentage  of  BAG1-positive

parasitophorous  vacuoles  after  8  days  of  SNP-treatment  was  consistently
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between  1  and  3%  only  (data  not  shown).  Surprisingly,  infection  of  murine

epidermal keratinocytes with T. gondii RH and T. gondii ME-49 and cultivation in

the presence of SNP did neither result in markedly reduced proliferation nor in

expression of BAG1 in both Toxoplasma strains (data not shown).

In  most  BAG1-positive  parasitophorous  vacuoles  in  Nc-Liverpool  infected

keratinocytes, all parasites within a given vacuole reacted with BAG1. However,

occasionally,  parasitophorous  vacuoles  were  observed  which  contained  both,

BAG1-positive  and  BAG1-negative  parasites  (Figure  16A-C).  Although  it  was

possible that within a single host  cell  more than one parasitophorous vacuole

was present, the vacuoles within this single host cell were always entirely BAG1-

positive or negative (data not shown). BAG1-positive parasitophorous vacuoles

were generally smaller and contained less parasites than BAG1 negative ones.

This became more evident after 8 days of in vitro culture (Figure 16D-F). Also

after  8  days,  those  parasitophorous  vacuoles  expressing  BAG1  showed  a

strongly diminished expression of the tachyzoite marker antigen NcSAG1 (Figure

16D-F).  In  the  untreated  control  cultures,  consistently  less  than  5%  of  the

parasitophorous vacuoles contained BAG1-positive parasites after 4 days, and

after 8 days, large portions of the monolayer were destroyed due to extensive

tachyzoite proliferation (data not shwon). 

The  mAbCC2 is  directed  against  a  T.  gondii cyst  wall  antigen  (Gross  et  al.,
1995), and we had found earlier that this mAb crossreacts with the cyst wall of

N. caninum tissue cysts in the CNS of experimentally infected mice (Keller et al.,

2002).  The expression and distribution of  the  Neospora antigen crossreacting

with  mAbCC2  (which  we  named  NcCC2)  was  also  analysed  by

immunofluorescence  after  4  and  8  days  of  culture  in  the  presence  of  SNP

(Figure 17). After 4 days of SNP-treatment of infected keratinocyte monolayers,

a  majority  of  Nc-Liverpool  containing  parasitophorous  vacuoles  (over  80%)

exhibited either only very little expression of this antigen, or NcCC2 was found to

be localised in the lumen of the parasitophorous vacuoles (Figure 17A). Only a

small fraction of all vacuoles (< 2%) exhibited staining at the vacuolar periphery

(data  not  shown).  The  situation  was different  after  8  days of  SNP-treatment

(Figure  17B-D),  with  a  much  larger  portion  of  parasitophorous  vacuoles
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exhibiting  distinct  peripheral  staining  with  the  mAbCC2.  Quantification  by

counting 10  randomly  chosen microscopic  fields  showed that  after  8  days of

SNP-treatment,  85%  of  all  parasitophorous  vacuoles  tested  positive  for  the

mAbCC2, with 60% of vacuoles exhibiting peripheral labelling, and 25% showing

intravacuolar  staining  (Figure  18).  In  untreated  cultures,  mAbCC2-

immunoreactive  vacuoles  were  found  in  approximately  10%  of  all

parasitophorous vacuoles, however, immunolabelling was never associated with

the periphery of the vacuoles (not shown). In SNP-treated cultures, peripheral,

thus cyst wall-associated staining was generally found in small parasitophorous

vacuoles,  containing  up  to  seven  parasites,  and  intravacuolar  staining  was

observed in larger parasitophorous vacuoles (Figure 17A, B).  Often,  vacuoles

containing only one or two parasites were also found to exhibit peripheral NcCC2

expression (Figure 17B). 
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Figure  15: Quantification  of  bradyzoite  antigen  1-expression  as  assessed  by
immunofluorescence staining. Monolayers were infected with N. caninum tachyzoites and cultured
in  the  presence  of  sodium  nitroprusside,  and  fixed  and  processed  for  bradyzoite  antigen-
immunofluorescence after  4  and  8  days of  culture.  The  percentage  of  bradyzoite antigen  1-
expressing parasitophorous vacuoles was determined by counting bradyzoite antigen 1-positive
vacuoles in 10 randomly chosen fields in the fluorescence microscopy. Note the distinct increase
in bradyzoite antigen 1-positive parasitophorous vacuoles at 8 days.
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When similar experiments were performed with the NcSwB1 isolate, less than

5% of the parasitophorous vacuoles exhibited staining of the cyst wall following

SNP-treatment, and most of the vacuoles showed intravacuolar labelling or were

mAbCC2 negative (data not shown). In virtually all cases, peripheral mAbCC2-

staining in parasitophorous vacuoles containing Nc-Liverpool cultured in SNP-

treated murine epidermal keratinocytes was accompanied by the expression of 

Figure  16: Bradyzoite antigen 1/NcSAG1 double immunofluorescence performed on  Neospora
caninum-infected murine epidermal keratinocytes treated with sodium nitroprusside for 4 days (A-
C)  and  8  days  (D-F),  respectively.  The  overlay  in  (C)  demonstrates  the  occurrence  of
asynchronous  bradyzoite  antigen1-expression  within  a  single  parasitophorous  vacuole.  (D-F)
Bradyzoite antigen 1-expression is accompanied by strongly reduced expression of the tachyzoite
marker NcSAG1 after 8 days of sodium nitroprusside-treatment.
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Figure 17: Expression of NcCC2 cyst wall antigen after 4 days (A) and 8 days (B-D) of sodium
nitroprusside-treatment.  (A,  B)  mAbCC2/anti-Neospora double  immunofluorescence  performed
after 4 days (A) and 8 days (B) of sodium nitroprusside-treatment. Note the intravacuolar labelling
with mAbCC2 (green) after 4 days (A), and the distinct staining of the periphery after 8 days of
sodium nitroprusside-treatment (B). (C, D) Indicate that all parasitophorous vacuoles expressing
peripheral NcCC2 (red) also express bradyzoite antigen 1 (C) as well as the microneme antigen
NcMIC1 (D).

BAG1  (Figure  17C),  whereas  parasitophorous  vacuoles  that  exhibited

intravacuolar  mAbCC2 labelling,  did  not  express the BAG1 antigen (data  not

shown). The microneme protein NcMIC1 (Keller et al., 2002) could be detected

at the apical end of parasites undergoing SNP-treatment for 8 days (Figure 17D).

Staining of parasitophorous vacuoles with the lectin Dolichos biflorans agglutinin

(DBA) was also found to occur exclusively in vacuoles containing BAG1-positive

parasites (Figure 19A-C), albeit  only in about 10% of BAG1-positive vacuoles.

We found that, similar to mAbCC2, after 8 days of SNP-treatment, DBA labelled

exclusively the vacuole periphery, and strictly colocalised with mAbCC2 staining

(Figure 19D-F).
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Figure  18: Quantification of intravacuolar and peripheral labelling of parasitophorous vacuoles
with mAbCC2 in Neospora caninum-infected murine epidermal keratinocytes treated with 70 µM
sodium  nitroprusside  for  8  days.  Note  that  almost  60%  of  parasitophorous  vacuoles  exhibit
staining at the periphery of the parasitophorous vacuoles.

Figure  19: Expression  of  Dolichos  biflorans  agglutinin-binding  sites  in  the  periphery  of
parasitophorous vacuoles of  Neospora caninum infected keratinocytes after  8 days of  sodium
nitroprusside-treatment. Note that all Dolichos biflorans agglutinin-positive vacuoles also express
bradyzoite antigen 1 (A-C), and all Dolichos biflorans agglutinin colocalises with mAbCC2 labelling
(D-F).
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3.3.1.3 Treatment  of  Neospora  caninum  infected  murine  epidermal
keratinocytes with sodium nitroprusside induces the formation of a
cyst wall-like structure

Nc-Liverpool  infected  and  SNP-treated  murine  epidermal  keratinocytes  were

inspected by TEM (Figure 20,  Figure 21). Parasitophorous vacuoles containing

one to five intracellular  parasites were found,  the majority of  which contained

electron  dense  accumulations  of  granular  material  located  at  their  periphery,

forming a cyst wall-like structure (Figure 20A, Figure 21A). The parasitophorous

vacuole membrane (PVM) was always located distally to this cyst wall (Figure

20C, D,  Figure 21C). In contrast, the parasitophorous vacuoles of  N. caninum
tachyzoites generated in these cells in the absence of SNP lacked this peripheral

electron  dense  layer,  and  the  vacuole  was  always  delineated  by  the

parasitophorous vacuole membrane only (Figure 20B).  The irregularly shaped

cyst wall-like structures generated in SNP-treated keratinocytes surrounded the

entire  lumen  of  the  parasitophorous  vacuole.  They  were  composed  of

condensed electron  dense granules,  few vesicles,  and variied considerably in

thickness (0.1-1 µm). The matrix of these in vitro generated tissue cysts were

filled  with  similar,  but  less  condensed  granular  material  that  also  contained

vesiculated  structures  and  flat  membranous  segments  (Figure  21B,  C).

Bradyzoites found within these cysts contained electron-dense rhoptries, many

micronemes  predominantly  located  at  the  anterior  end,  and  large  and  small

dense granules. Amylopectin granules were also found (Figure 20, Figure 21). In

addition,  vesiculated  organelles  filled  with  irregularly  arranged  membrane

segments  were  observed  (Figure  20A,  Figure  21C).  Taken  together,  TEM

strongly  suggested  that  in  vitro  N.  caninum tissue  cyst  formation  has  been

initiated in these SNP-treated murine epidermal keratinocytes.
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Figure 20: Transmission electron microscopy of a Neospora caninum tissue cyst obtained after 8
days  of  sodium  nitroprusside-treatment  (A,  C,  D),  and  a  parasitophorous  vacuole containing
Neospora caninum tachyzoites from untreated cultures (B). In (A) a tissue cyst is shown, with
peripherally  accumulated  electron  dense  material  forming  a  cyst  wall.  (B)  Shows,  as  a
comparison,  a  parasitophorous  vacuole in  untreated  cells  which  is  delineated  only  by  a
parasitophorous vacuole membrane (pvm).  (C) and (D) are higher magnification views of  the
areas in  (A)  pointed out  with the white bold  arrow (for  C)  and the black  bold  arrow (for  D).
Micronemes (mic), rhoptries (ro), dense granules (dg) and amylopectin granules (am) are visible.
The vacuolar membrane (pvm) is marked with thin arrows, and is localised distally to the cyst wall
(cw). Tissue cysts are closely associated with host cell mitochondria (mito). pm = host cell plasma
membrane. Bar in (A) = 0.9 µm, in (B) = 2.3 µm, in (C) = 0.4 µm, in (D) = 0.6 µm.
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Figure  21:  A murine epidermal  keratinocyte containing two distinct  Neospora caninum tissue
cysts after 8 days of sodium nitroprusside-treatment. (A) Shows an overview. The periphery of the
vacuoles is indicated with small arrows, and the thickness of the cyst wall varies within a cyst, and
between cysts. Micronemes (mic), rhoptries (rho), dense granules (dg) and amylopectin granules
(am) are visible. (B) and (C) are higher magnification views onto the areas pointed out with the
white  bold  arrow  (for  B)  and  the  black  bold  arrow  (for  C).  Note  that  the  matrix  of  the
parasitophorous vacuole contains granules of similar ultrastructure, but in a less condensed form,
compared to the granular material building up the cyst wall (cw). Also visible within the matrix are
small  vesiculated  lipid particles  (small  arrows in B),  and flat  lipid-like  membranous  segments
(large horizontal arrow). Note in (C) the presence of vesiculated, inclusion body-like organelles
(ib), filled with irregularly arranged membrane segments. Bar in (A) = 0.75 µm, in (B) = 0.2 µm, in
(C) = 0.35 µm.
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3.3.2 Discussion

In this study, we report on a novel cell culture system which allows an efficient

induction  of  N.  caninum tachyzoite-to-bradyzoite  stage  conversion.  This  cell

culture system is based on the Nc-Liverpool isolate (Barber et al., 1995), the use

of  murine  epidermal  keratinocytes  (Caldelari  et  al.,  2000)  as  host  cells,  and

continuous treatment of infected cells with 70 µM SNP. Under these conditions,

we monitored parasite proliferation by quantitative PCR, studied the induction of

bradyzoites specific markers (BAG1, NcCC2, DBA) within infected monolayers,

and  we  present  electron  microscopic  evidence  which  strongly  suggests  that

tissue cysts with a defined cyst wall are being formed in vitro under the culture

conditions described herein.

Preliminary studies employing Vero cells, HFF and HT4 have demonstrated, that

the number of parasites expressing the bradyzoite antigen BAG1 was relatively

low under conditions where pH stress, treatment with tylosin, SNP-treatment or

increased  temperature  stress  were  used.  Besides,  these  treatments  had  a

negative impact on the structural integrity of the host cells, finally resulting in the

destruction of the cell monolayers after 4-6 days, and rendering these systems

largely unsuitable for a longer culture period (data not shown). In contrast, we

found that the primary cultures of  murine epidermal keratinocytes used in this

study are able to withstand the SNP-treatment for a period of at least 8 days,

due to the strong adhesive properties of these epithelial cells to the substrate.

SNP releases NO that reacts with the iron sulphur centres of several proteins

involved in the electron transport of the respiratory chain and with the haem iron

of cytochrome oxidase. This results in a decrease of ATP formation and in a

diminished  binding  of  oxygen  to  cytochrome  oxidase  (Cooper,  1999).  The

adaptation  of  the  parasites  to  a  decreased  energy  production  and  to  an

anaerobic environment may trigger the differentiation process, and thus results in

the formation of the slowly dividing bradyzoites which consume less energy. It

was demonstrated for T. gondii, that stage conversion also occurred in host cells

lacking mitochondrial functions, indicating, that it is the parasite mitochondrium
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which  mediates  this  effect  (Bohne  et  al., 1994),  and  most  likely  the  same

accounts for N. caninum in this culture system.

SNP-treatment  strongly  inhibited  N.  caninum proliferation,  and  induced  the

expression  of  BAG1  antigen  from  day  3  onwards,  as  demonstrated  by

immunofluorescence  using  a  polyclonal  antiserum  directed  against  TgBAG1

(McAllister  et al.,  1996).  By quantitative PCR, significantly decreased parasite

growth in SNP-treated cultures was also observed on day 3 (see Figure 14) and

thus inhibition  of  proliferation seems to  be associated  with BAG1-expression.

This also indicates that reduced parasite replication is linked to stage conversion,

and is confirmed by the fact that high levels of BAG1-expression were generally

found in smaller vacuoles (see Figure 16). The findings, that NO-induced stress

can also result in DNA damage and repair and will delay the entry of a cell into

mitosis (Nasmyth,  1996),  may be another  explanation for  the reduced rate of

parasite replication after SNP-treatment.

In untreated infected murine epidermal keratinocytes, BAG1-expression occurred

only  in  a  very  low  number  of  parasites,  indicating  that  spontaneous  stage

conversion in vitro is a rather rare event.

The  percentage  of  BAG1-positive  vacuoles  steadily  increased  during  the

observed  culture  period  of  8  days  (see  Figure  15).  We  also  observed

heterogenous  parasite  populations  in  some  vacuoles,  where  all  individuals

reacted with the anti NcSAG1 antibody, but not all parasites reacted with anti-

BAG1 antibody. Similar findings had been obtained earlier with T. gondii (Bohne

et al., 1993), suggesting, that conversion from tachyzoites to bradyzoites is an

asynchronous process. However, the observation that after 8 days, most BAG1-

positive parasites did not express the major tachyzoite surface antigen NcSAG1

anymore,  suggested  that  a  dramatic  change  in  surface  antigen  pattern  was

taking  place.  Upon immunohistochemical  staining  of  N.  caninum tissue  cysts

generated in mice by the method of  McGuire  et  al. (1997),  it  was found that

NcSAG1  is  stage-specifically  expressed  in  tachyzoites  (Fuchs  et  al.,  1998).

BAG1 in T. gondii was found to be homologous to small heat shock proteins of

plants  (Bohne  et  al., 1995).  The  expression  of  heat  shock  proteins  e.g.

Hsp30/BAG1,  is related to the stress induced by SNP and is associated with
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bradyzoite  differentiation.  Thus,  the  BAG1-positive  and  NcSAG1-negative

parasites found after 8 days of SNP-treatment can be designated as bradyzoites

or at least bradyzoite-like organisms.

The mAbCC2 was originally generated against  T. gondii tissue cysts, and was

shown  to  recognise  a  115  kDa  cyst  wall  associated  protein  in  T.  gondii

bradyzoites, and a 40 kDa dense granule protein in T. gondii tachyzoites which is

secreted into the lumen of the parasitophorous vacuole (Gross et al., 1995). The

relationship between these two proteins in the two different stages has not been

clarified  to  date,  but  it  was shown by  Sahm  et  al. (1997)  that  the  mAbCC2

labelled  the  periphery  of  the  parasitophorous  vacuole  of  single  T.  gondii

bradyzoites, suggesting, that some parasites already secrete this protein as soon

as they enter the host cell (Sahm et al., 1997). The same was found in our study

for N. caninum (see Figure 17).

Similar  to the situation in  T. gondii,  mAbCC2 labelling could be found at  two

distinct  locations  in  SNP-treated  N.  caninum parasitophorous  vacuoles.  After

eight  days  of  treatment,  the  majority  of  parasitophorous  vacuoles  (60%)

exhibited distinct peripheral, presumably cyst wall-associated staining, while only

25% of all parasitophorous vacuoles showed intravacuolar labelling, and 15% of

parasitophorous  vacuoles  remained  unlabelled.  Apparently  the  parasites

exhibiting no mAbCC2 reactivity and those which exhibited intravacuolar labelling

were  not  affected  by  exogenous  NO,  since  they  occupied  larger  vacuoles

(indicative  of  a  faster  replication  rate),  and  they  did  not  express  detectable

amounts  of  BAG1.  In  contrast,  all  parasites  showing  cyst  wall-associated

mAbCC2 labelling were found in smaller parasitophorous vacuoles (indicative of

a  slower  replication  rate),  and  all  expressed  BAG1  (see  Figure  17).  These

findings  also  suggest  that  in  N.  caninum BAG1-expression  is  linked  to  the

differentiation process from tachyzoites to cyst wall forming bradyzoites in vitro. It

was previously shown in T. gondii that inhibition of heat shock protein synthesis

by quercetin suppressed the induction of bradyzoite formation in vitro (Weiss et

al., 1998), implying an involvement of heat shock protein e.g. Hsp30/BAG1 in

stage  conversion.  However,  in  another  in  vitro  study,  Bohne  et  al. (1998)

revealed, that a BAG1-deficient mutant of  T. gondii was still  capable of  stage
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conversion and expression of bradyzoite antigens including the 115 kDa protein

recognised by mAbCC2. Zhang et al. (1999) showed that disruption of the gene

coding for  BAG1 was associated  with  a  change in cyst  development  in vivo,

although cyst formation in vivo was not inhibited in this study either. Thus, the

role of Hsp30/BAG1 in stage conversion remains to be elucidated.

The lectin DBA represents a marker which has been shown earlier by Weiss et

al. (1999) to be indicative for the formation of  N. caninum tissue cysts in vitro.

We found that, after 8 days of SNP-treatment, DBA-binding could be detected in

the  periphery  of  only  a  limited  number  (10%)  of  all  vacuoles,  all  of  which

expressed BAG1 as well. In no case, a BAG1-negative parasitophorous vacuole

exhibited binding to DBA. Thus, DBA binding sites are most likely expressed at a

relatively late stage of tissue cyst formation, compared to BAG1 and NcCC2. In

addition, the binding site for DBA in SNP-treated N. caninum tissue cysts largely

colocalised with mAbCC2 labelling, and this may indicate, that DBA could bind to

the NcCC2 antigen itself, implying, that CC2 is probably a glycoprotein. These

results are interesting in the light of the findings in T. gondii, which demonstrated

the  binding  of  DBA to  CST1,  a  116  kDa  tissue  cyst  wall-associated  antigen

(Zhang et al., 2001) which could well be identical to the mAbCC2-reactive 115

kDa antigen originally described by Gross et al. (1995).

Further information was obtained by TEM (see  Figure 20 and  Figure 21). We

found  that  the  majority  of  intracellular  compartments  occupied  by  Neospora
parasites  exhibited  features,  which  indicate  that  parasites  are  undergoing

bradyzoite  stage  conversion.  In  addition,  our  observations  suggest,  that  the

formation of a tissue cyst wall takes place in vitro. However, at present we do not

know how mature and biologically functional these in vitro generated tissue cysts

and  bradyzoites  really  are.  For  instance,  the  microneme  protein  NcMIC1,

previously shown to be not  expressed in mature tissue cysts of  mouse brain

tissue (Keller  et al.,  2002) is still  expressed in these in vitro generated tissue

cysts despite of clear peripheral mAbCC2 labelling (see Figure 17). In addition,

the  fact  that  only  a  fraction  of  BAG1-positive  parasitophorous  vacuoles  also

exhibited peripheral DBA staining, indicates that many of these in vitro generated

cysts are not yet fully mature. Besides this, TEM showed that in certain regions
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the cyst wall was still very thin, suggesting, that cyst wall formation has not been

accomplished  yet  and  the  development  of  fully  mature  cysts  may requires  a

longer  cultivation  period  than  8  days.  This  would  be  consistent  with  in  vivo

observations in mice, where N. caninum tissue cysts were not found earlier than

3 weeks after infection (Lindsay and Dubey, 1989). Current studies are directed

towards the development of a longer term culture system based on the murine

epidermal keratinocyte host cells used in this study.

The in vitro model for generating N. caninum tissue cysts presented herein only

applies for the Nc-Liverpool isolate. Stage conversion is highly inefficient when

other  isolates such as Nc-1 or NcSwB1, the least virulent  N. caninum isolate

(Atkinson  et al., 1999) are used. This is in agreement with earlier findings and

other in vitro systems for N. caninum bradyzoite culture (Weiss et al., 1999), and

confirms the genetic and biological diversity among N. caninum isolates (Schock

et al., 2001). It is somewhat surprising that this in vitro model was found to be

completely inefficient also for bradyzoite formation of  T. gondii where the less

virulent strains such as ME-49 are more suitable for the in vitro production of

tissue cysts than virulent ones such as RH (Mc Hugh et al., 1994; Gross et al.,

1996; Boothroyd et al., 1997). However, we found that SNP-treatment of murine

epidermal keratinocytes infected with either T. gondii ME-49 or T. gondii RH did

not induce BAG1-expression, nor peripheral mAbCC2 labelling, nor did it result

in a marked reduction of  T. gondii proliferation within these keratinocytes (data

not shown). This could be explained by the observation, that prolonged passage

of  T.  gondii or  other  apicomplexa  in  vitro  can  lead  to  a  loss  of  ability  to

differentiate  into  other  stages  (Frenkel  et  al., 1976).  However,  it  could  also

indicate that T. gondii and N. caninum require intrinsically different stimuli for the

induction of  stage conversion and tachyzoite-to-bradyzoite differentiation.  This

could in turn have strong implications with regard to the epidemiology of these

two closely related species.
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3.4 In vitro induction of Neospora caninum bradyzoites in Vero
cells  reveals  differential  antigen  expression,  localisation,
and host cell recognition of tachyzoites and bradyzoites

3.4.1 Results

3.4.1.1 Reduction  of  sodium nitroprusside  concentration  during  in  vitro
culture  of  infected  host  cell  monolayers  influences  parasite
proliferation but not NcBAG1-expression

We have previously demonstrated that addition of  70 µM SNP to  N. caninum
infected murine epidermal keratinocyte host cells at the time point of infection,

followed by culture of several days, had a profound inhibitory effect on parasite

proliferation,  and  was  leading  to  tachyzoite-to-bradyzoite  stage  conversion  in

about  60% of  the parasitophorous vacuoles  (Vonlaufen  et  al.,  2002b).  In  this

study, we tested a range of concentrations (up to 70 µM) of SNP, and assessed

parasite  proliferation  by quantitative real-time PCR.  Figure 22A shows results

obtained with 70 µM and 17 µM SNP, as well as the growth curve of untreated

cultures. After 2 days of  SNP-treatment,  no difference in parasite proliferation

was visible in 17 µM SNP-treated cultures compared to the cultures treated with

70 µM SNP. However, after 4 and 8 days, 2.5-fold higher parasite numbers were

detected in the 17 µM SNP-treated cultures compared to the ones grown in the

presence of  70 µM SNP.  Eight  days treatment  of  parasites with 70 µM SNP

resulted in a nearly completely abolished parasite proliferation, whereas in the 17

µM-treated cultures still a slight increase in parasite numbers was observed, but

proliferation was still  severely inhibited compared  to untreated cultures (Figure

22A).  In  parallel,  corresponding  infected  cultures  were  investigated  by

immunofluorescence.  In  terms  of  number  of  vacuoles  exhibiting  NcBAG1-

expression, there was no difference observed between cultures treated with 17

or 70 µM SNP, with approximately 60% of parasitophorous vacuoles containing
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NcBAG1-expressing parasites after 8 days of treatment. We also found that the

absolute number of NcBAG1-positive, individual zoites increased, due to the

Figure 22:  Proliferation and stage conversion of  N. caninum in murine epidermal keratinocytes.
(A) Illustrates parasite proliferation either in the absence, or in the presence of 17 and 70 µM
sodium nitroprusside as assessed by quantitative real-time PCR. Data are displayed as means ±
standard deviation. (B, C) TEM of N. caninum bradyzoites cultured in the presence of 70 µM (B)
and 17 µM (C) sodium nitroprusside. Note the presence of keratin filament bundles surrounding
the cysts (arrows). Bars in (B) = 0.40 µm, (C) 0.48 µm.
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larger size of the vacuoles in those cultures treated with 17 µM SNP (data not

shown).

Attempts to purify N. caninum out of SNP-treated murine epidermal keratinocyte

monolayer cultures consistently failed. The reasons for this are seen by TEM in

Figure 22B and C, which show that infected keratinocytes contain thick keratin-

filament bundles which surround the parasitophorous vacuoles. This cytoskeletal

cage rendered parasites inaccessible for any isolation or purification attempts.

3.4.1.2 Exogenous NO induces stage conversion of Nc-Liverpool in Vero
cells

Preliminary  studies  showed  that  the  application  of  20-70 µM  SNP  to  Nc-

Liverpool-infected Vero cells resulted in detachment of the monolayer latest at

day 4 of culture (data not shown). The findings on keratinocytes described above

prompted  us  to  decrease  the  SNP-concentration  to  a  level,  which  could  be

sustained by Vero cell monolayers. Therefore, 17  µM SNP was added daily to

infected Vero cells for a period of 8 days, and this did not significantly impair the

integrity of the monolayer as assessed by light microscopy. Immunofluorescence

labelling of infected and SNP-treated Vero cells revealed, that the expression of

the  bradyzoite-specific  NcBAG1-antigen  (Figure  23)  as  well  as  peripheral

labelling of parasitophorous vacuoles with the mAbCC2 (Figure 23G-I) was as

efficient  as  in  keratinocytes.  In  addition,  intracellular  parasites  expressing

NcBAG1  consistently  exhibited  a  reduced  staining  with  antibodies  directed

against NcSAG1 and NcSRS2 (Figure 23A-F).

TEM (Figure 23J) demonstrated that N. caninum bradyzoites generated in 17 µM

SNP-treated  Vero cells  were located in a  parasitophorous vacuole,  and were

surrounded  by  a  peripheral  accumulation  of  electron-dense  material  which

resembles  a  cyst  wall.  The  vacuole  was  not  notably  surrounded  by  any

cytoskeletal elements, but by mitochondria instead.
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Compared to  murine  epidermal  keratinocytes,  where  keratin  filament  bundles

represented  the  major  obstacle  for  the  parasite  purification,  Nc-Liverpool

parasites could be readily purified from the feeder cells (Figure 23K, L). The yield

per T175 flask was typically around 3-5 x 106 parasites.  Immunofluorescence

labelling of purified parasites revealed that a major portion (50-80%) exhibited

staining with anti-NcBAG1 antibodies, thus this purified population was heavily

enriched in parasites undergoing stage conversion.

Purified  N. caninum parasites were used to assess the differences in protein

expression of tachyzoites (grown in the absence of SNP) and bradyzoites (grown

in the presence of 17 µM SNP). Silver staining of SDS-PAGE separated extracts

revealed partially distinct banding patterns for bradyzoite and tachyzoite extracts

(Figure 24). Immunoblotting confirmed the down regulation of tachyzoite antigen

expression,  and  more  specifically  of  NcSAG1-  and  NcSRS2-expression  in

bradyzoites, and the induction of NcBAG1-expression (Figure 24).

3.4.1.3 Differential  localisation  of  Neospora  caninum  dense  granule
antigens in tachyzoite and bradyzoite-infected Vero cells

Besides  the  reduced  expression  of  the  immunodominant  surface  antigens

NcSAG1 and NcSRS2 in N. caninum parasites expressing NcBAG1 (Figure 23,

Figure 24), we also investigated the expression and localisation of several dense

granule proteins in in vitro generated  N. caninum tachyzoites and bradyzoites

(Figure  25).  Tachyzoites  and  bradyzoites  were  cultured  for  2  and  8  days

respectively in Vero cell monolayers grown in tissue culture flasks. The staining

pattern in tachyzoites for NcGRA1, NcGRA2 and NcGRA7 was virtually identical

for all three antigens, as exemplified in Figure 25A-C for NcGRA1. Granular type

immunolabelling was found predominantly within the parasite cytoplasm at the

anterior and posterior end of the tachyzoites. In contrast, the in vitro generated

N.  caninum bradyzoites  exhibited  staining  for  NcGRA1  (Figure  25D-F)  and

NcGRA7
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Figure  23:  In vitro stage conversion in Vero cells.  Vero cells were infected with Nc-Liverpool
tachyzoites and treated with 17 µM sodium nitroprusside for 8 days. Note the down regulation of
NcSAG1- (A-C) and NcSRS2-expression (D-F) in those parasites expressing NcBAG1. Parasites
within vacuoles expressing NcBAG1 also exhibit peripheral labelling with mAbCC2 (G-I). (J) TEM
of  a  tissue  cyst  with  bradyzoites  shows  peripheral  accumulation  of  electron-dense  material
reminiscent of a cyst wall (cw), and the presence of host cell mitochondria (mito) surrounding the
cyst. Bar = 0.85 µm. (K, L) Purified parasites labelled with anti-BAG1 (green) and anti-SAG1 (red)
antibodies.
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Figure  24:  SDS-PAGE  (silver  stain)  and  corresponding  immunoblots  of  tachyzoite  (T)  and
bradyzoite (B) extracts. Note differential banding patterns obtained in bradyzoite and tachyzoite
extracts by silver staining and immunoblotting using an anti-N. caninum antiserum (Neo), and the
down  regulation  of  NcSAG1-  and  NcSRS2-expression  and  the  appearance  of  NcBAG1-
expression in bradyzoites.

(Figure 25J-L), which has largely shifted towards the periphery of the vacuole,

and  has  become incorporated  into  the  tissue cyst  wall.  For  NcGRA2 (Figure

25G-I), cyst wall-associated labelling was not as pronounced, but clearly evident

as well, and NcGRA2 could also be detected within the parasite cytoplasm.

These  findings  were  confirmed  by  immunogold  labelling  on  sections  of  LR-

White-embedded  in  vitro  generated  bradyzoites.  Figure  26 shows  a

parasitophorous vacuole  of  N. caninum tachyzoites stained with anti-NcGRA1

antibodies  and  a  secondary  anti-rabbit  antibody  conjugated  to  10  nm  gold

particles. Most of the immunogold labelling is localised at a high density within

the tachyzoite dense granules, with fewer gold particles also labelling the matrix

of  the  parasitophorous  vacuole.  Similar  results  were  obtained  using  anti-

NcGRA2  and  anti-NcGRA7  antibodies  (data  not  shown).  Figure  27 shows

immunogold labelled, in vitro generated N. caninum bradyzoites using antibodies

directed against NcGRA1 (Figure 27A, B), NcGRA2 (Figure 27C) and NcGRA7

(Figure  27D).  For  NcGRA1  and  NcGRA7  antibodies,  the  intensity  of  dense

granule labelling was clearly reduced compared to tachyzoites, and for all three
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dense  granule  antibodies,  distinct  staining  of  the  cyst  periphery  could  be

observed.

Figure  25:  Differential  localisation  of  dense  granule  antigens  in  tachyzoites  and  bradyzoites
during in vitro culture. Localisation of NcGRA1, NcGRA2 and NcGRA7 in tachyzoite cultures were
identical as exemplified for NcGRA1 (A-C), with a distinct granular staining at the anterior and
posterior end of parasites. During in vitro stage conversion, a strong shift of labelling towards the
vacuole periphery was noted for NcGRA1 (D-F) and NcGRA7 (J-L), and to a lesser extent also for
NcGRA2 (G-I).
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Figure  26:  Immunogold  localisation  of  dense  granule  antigens  in  N.  caninum tachyzoites.
NcGRA1, NcGRA2 and NcGRA7 showed an identical  pattern to the one exemplified here for
NcGRA1 which allows to visualise strong association of gold particles with the parasite dense
granules (small arrows), and to a lesser extent with the vacuolar matrix. Bar in (A) = 0.23 µm. (B)
Smaller  magnification  view  of  (A),  showing  the  parasitophorous  vacuole  with  numerous
tachyzoites. The large arrow depicts the area magnified in (A). Bar in (B) = 0.9 µm.
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Figure  27:  Immunogold  localisation  of  dense  granule  antigens  in  N.  caninum bradyzoites
following induction of stage conversion by sodium nitroprusside during 8 days. (A) Labelling with
anti-NcGRA1 antibodies, mainly at the cyst periphery. Bar = 0.25 µm. (B) Smaller magnification
view of (A), bar = 1.25 µm. (C) Staining with NcGRA2 antibodies, bar = 0.42 µm. (D) Staining with
anti-NcGRA7, bar = 0.51 µm. Note the decrease in number of gold particles within the parasite
dense granules, and the increased labelling of the periphery.
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3.4.1.4 Adhesive and invasive properties of Neospora caninum tachyzoites
and bradyzoites

Adhesion and invasion of Vero cells by N. caninum tachyzoites and bradyzoites

was comparatively  assessed  using  a  recently  developed  adhesion  /  invasion

assay  (Naguleswaran  et  al.,  2003).  Equal  numbers  of  tachyzoites  and

bradyzoites were allowed to interact with Vero cell monolayers for 30 min either

directly  following  isolation  (Figure  28A,  B),  after  treatment  of  Vero  cells  with

neuraminidase at 37°C for 2h (Figure 28A), or after treatment of parasites with

neuraminidase at 37°C for 30 min (Figure 28B). We found that the number of

tachyzoites  actually  capable  of  either  adhering  or  invading  Vero  cells  was

consistently  several  fold  higher  compared  to  bradyzoites  (Figure  28A,  B).  In

addition, tachyzoites also exhibited a pronounced higher invasion rate compared

to bradyzoites. The situation changed after enzymatic removal of terminal sialic

acid residues from the Vero host cell surface (Figure 28A). The absence of sialic

acid residues did not markedly affect N. caninum tachyzoites, neither with regard

to adhesion nor with respect to invasion. In contrast, the invasive capacities of

bradyzoites  were  significantly  increased  upon  removal  of  terminal  sialic  acid

residues from the Vero cell surface from 25% to 46% (Figure 28A).The invasion

of bradyzoites was also increased significantly from 15% to 36% when parasites

were  treated  with  neuraminidase  prior  to  host  cell  interaction.  In  contrast,

tachyzoite  invasion  was  not  affected  at  all  (Figure  28B).  While  only  one

representative  result  of  one  experiment  is  shown in  Figure  28,  these assays

were  repeated  twice  and  resulted  in  essentially  identical  results  in  all  three

experiments (data not shown). The findings show that the two in vitro generated

stages exhibit  different  properties with regard to host  cell  interaction,  and our

results indicate that the presence of host cell surface sialic acid residues could

influence host cell invasion by N. caninum bradyzoites.
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Figure 28: Adhesion and invasion of Vero cells by in vitro cultivated N. caninum tachyzoites and
bradyzoites. Black columns indicate the overall number of parasites interacting with Vero cells
(adherent and invaded), while white columns indicate the number of intracellular parasites only.
(A) Identical numbers of parasites were allowed to interact with either untreated Vero cells, or with
Vero cells which had been treated with neuraminidase. Note that in general, bradyzoites exhibit
much lower adhesive as well as invasive capacities for Vero cells. Removal of sialic acid residues
increased bradyzoite invasion but did not markedly affect tachyzoites. (B) Parasites were treated
with neuraminidase prior  to Vero cell  interaction.  Note again,  that  neuraminidase-treatment of
bradyzoites  increased  their  invasive  capacity,  in  contrast  to  tachyzoites  which  remained
unaffected. Data are displayed as means ± standard deviation, and a representative experiment
of three independent experiments is shown.
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3.4.2 Discussion

In the present study, we introduce a protocol for  the induction of  N. caninum

tachyzoite-to-bradyzoite stage conversion in Vero cells.  The use of  Vero host

cells allows to generate and purify large amounts of bradyzoite-enriched parasite

populations. This enabled us to study the expression of NcSAG1, NcSRS2 and

NcBAG1 antigens in both stages not only by means of immunofluorescence, but

also by immunoblotting, and we also investigated the differential localisation of

several dense granule proteins in tachyzoites and bradyzoite-containing cysts by

immunofluorescence and TEM.  In  addition,  we demonstrated  that  tachyzoites

and  bradyzoites  differ  with  regard  to  host  cell  adhesion and invasion,  and  in

particular sialic acid residues were found to be implicated in bradyzoite-host cell

invasion, but not in tachyzoite-host cell interactions.

3.4.2.1 Neospora caninum in vitro bradyzoite culture in murine epidermal
keratinocytes

We had previously reported on the development of an in vitro culture technique

for  generating N.  caninum bradyzoites  in  vitro  using  murine  epidermal

keratinocytes by addition of exogenous NO (Vonlaufen  et al., 2002b), and this

protocol  had proven to  be suitable  for  immunofluorescence and TEM studies

(Hemphill  et al., 2003). However, in order to study the bradyzoite stage in more

detail, a protocol is required to produce larger amounts of parasites. Treatment

of Nc-Liverpool infected keratinocytes with continuously lower concentrations of

SNP from 70 down to 17 µM resulted in a dose-dependent weaker suppression

of parasite growth, while the percentage of NcBAG1-positive parasites remained

unchanged, independently of the SNP concentration. Although this resulted in a

higher yield in terms of actual bradyzoites, our attempts to purify in vitro-induced
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parasites out of keratinocyte cultures consistently failed due to the high density

and  the  physical  stability  of  keratin  filaments  surrounding  the  cysts.  Similar

observations  with  regard  to  the  overcoating  of  T.  gondii tissue  cysts  with

intermediate  filaments  in  various  host  cells  have  been  reported  by  others.

Halonen  et  al. (1998)  have shown that  host  cell  intermediate  filaments  were

associated  with  the  cytoplasmic  side  of  T.  gondii tissue  cysts  within  in  vitro

cultured  murine  astrocytes.  Layers  of  glial  filaments  had also  been observed

around young  T. gondii tissue cysts  developing in astrocytes  of  human brain

(Powell et al., 1978). Finally, infection of astrocytes with N. caninum tachyzoites

also resulted in an association of  glial filaments with the outer  surface of the

parasitophorous vacuole membrane (Vonlaufen  et al., 2002a). Thus, host cells

with a high intermediate filament content are not suitable for parasite purification.

3.4.2.2 Neospora  caninum  in  vitro  bradyzoite  culture  in  Vero  host
cells

Since  treatment  of  infected  keratinocytes  with  17  µM  SNP  allowed  us  to

generate an overall larger number of N. caninum bradyzoites, but purification of

bradyzoites was not possible, the method was adapted to Vero cells. 20-70 µM

SNP consistently  lead to  detachment  of  the monolayers within  few days,  but

treatment with 17 µM SNP did not, and resulted only in partial inhibition of Vero

cell proliferation (data not shown). Immunofluorescence labelling of infected Vero

cells  treated  with  17  µM SNP showed  that  expression  of  the  major  surface

antigens of tachyzoites, NcSAG1 and NcSRS2 was down regulated in NcBAG1-

positive vacuoles (see  Figure 23). This was confirmed by immunoblotting (see

Figure 24), and corresponds to earlier findings which had shown that NcSAG1

antigen was stage specifically down regulated in  N. caninum bradyzoite cysts

generated  in  mice  (Fuchs  et  al.,  1998).  The  same  authors  had  found  that

NcSRS2  (or  Nc-p43)  was  still  expressed  by  those  bradyzoites.  In  contrast,
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Schares  et al.  (1999) had demonstrated that  the mAb5.2.1.5 directed against

NcSRS2  did  not  label  tissue  cysts  of  the  brain  of  an  infected  dog.  Our

experiments  confirmed  these  findings,  demonstrating  inhibition  of  NcSRS2-

expression also under in vitro conditions. While NcSAG1 and NcSRS2 antigens

were shown to be involved in adhesion and invasion of tachyzoites into the host

cells (Hemphill et al., 1996; Nishikawa et al., 2000), the down regulation of these

surface antigens in bradyzoites suggests that they probably play a minor role in

the biology of bradyzoites. 

However,  NcSRS2  or  Ncp38,  purified  through  monoclonal  antibody  affinity

chromatography, exhibits a high diagnostic potential (Schares  et al., 2000). On

the other hand, bradyzoite proteins such as NcBAG1 could serve as tools for

diagnostic purposes, in order to discern acute and chronic infection in animals. In

this respect, our purification protocol allows to harvest the parasites out of Vero

host cells (see Figure 23K), and these purified bradyzoites are now accessible to

studies on altered gene expression during stage conversion by construction of

cDNA libraries and expressed sequence tags (EST) sequencing, as it is currently

done for  a number of  other apicomplexan parasites including the  N. caninum

tachyzoite  stage  (Li  et  al.,  2003).  This  information  would  provide  better

understanding  of  the  events  occurring  during  the  stage  conversion  process,

which  represents  a  crucial  event  in  the  pathogenesis  of  Neospora infection,

influencing both the formation and reactivation of tissue cysts.

Soon after the invasion of host cells by apicomplexan parasites, dense granule

proteins are released in order to modify the parasitophorous vacuole (Carruthers

and Sibley, 1997). Our studies have shown that during in vitro stage conversion,

NcGRA1,  NcGRA2  and  NcGRA7  also  follow  this  pattern.  However,  all  three

proteins are most abundant within the tachyzoite dense granules (see Figure 25,

Figure 26), but less abundant in bradyzoite dense granules. Instead, they are

secreted  and  continuously  integrated  into  the  cyst  wall,  as  assessed  by

immunofluorescence and immunogold TEM (see  Figure 26,  Figure 27), which

indicates that they are functionally involved in the modification of the cyst wall.

However, NcGRA2 appears to be less actively secreted in bradyzoites compared

to NcGRA1 and NcGRA7, which argues for a different functional relevance of
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this molecule.  NcGRA1 and NcGRA2 antigens were recognised by sera from

chronically infected mice and naturally infected cows (Atkinson et al., 2001; Ellis

et  al.,  2000),  indicating that  these proteins  elicit  an  immune response during

chronic infection and could be used as a marker to identify chronically infected

animals  by  serological  means.  Additionally,  dense  granule  proteins  are  likely

vaccine candidates, since they are expressed and secreted in both tachyzoites

and bradyzoites. In  T. gondii, protective immunity has been achieved in mice,

using TgGRA1, TgGRA7 and TgROP2 recombinant proteins and DNA vaccines

(Vercammen  et  al.,  2000).  For  N.  caninum,  recombinant  NcMIC3,  and

recombinant  NcSAG1  and  NcSRS2  combined  with  the  corresponding  DNA

vaccines, exhibit the potential to prevent cerebral  N. caninum infection in mice

(Cannas et al., 2003a, b).

3.4.2.3 Neospora caninum tachyzoites and bradyzoites differ in host cell
interaction

The adhesion to and invasion of Vero cells by in vitro generated and isolated

tachyzoites  and  bradyzoites  were  investigated  (see  Figure  28).  Our  results

suggest that  N. caninum tachyzoites and bradyzoites exhibit distinctly different

adhesive and invasive capacities. Tachyzoite-host cell interaction is several fold

more efficient than host cell recognition by bradyzoites, and invasion rates for

tachyzoites  were  consistently  higher  than  for  bradyzoites  (see  Figure  28).

Differences in host cell invasion between tachyzoites and bradyzoites have also

been described earlier for T. gondii, albeit at the ultrastructural level (Sasono and

Smith,  1998),  and  respective  receptor-ligand  interactions  have  not  been

elucidated so far.

It seems likely that during natural infection, bradyzoites invade epithelial cells of

the dog gut to induce the sexual cycle that leads to formation of oocysts (Dubey

and Lindsay, 1996; Dubey  et al., 2002). Epithelial cells of the gut are covered
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with mucin glycoproteins, whose carbohydrates are mainly attached through o-

glycosylation  to  serine  and  threonine  in  repeating  regions  of  the  polypeptide

core.  These  carbohydrate  chains  are  usually  terminally  modified  by  charged

residues such as sialic acids (Hicks et al., 2000). Mucins might act as a barrier

for invasion by intestinal pathogens. It was suggested by Pellegrin et al. (1993)

that invasion of epithelial cells by Eimeria might be facilitated by the desialylation

of  caecal  mucin  by  sialidase  expressed  in  sporozoites  and  merozoites  of

Eimeria. For T. gondii tachyzoites it had also been shown earlier that removal of

sialic acid residues from the macrophage surface has lead to increased invasion

of macrophages (De Carvalho et al., 1993).

In our experiments (see  Figure 28A), removal of sialic acid from the Vero cell

surface  lead  to  enhanced  invasion  of  bradyzoites,  while  for  tachyzoites  this

treatment  had  no  effect  on  invasion.  In  addition,  treatment  of  parasites  with

neuraminidase prior to host cell interaction also lead to an increase in bradyzoite

invasion, and did not affect tachyzoites (see Figure 28B). This suggests that the

two stages employ different mechanisms for invading their host cells, and the

fact that neuraminidase-treatment of parasites contributes to bradyzoite invasion

implies  that  bradyzoites  express  sialic  acid  residues,  and  possibly  mucin-like

molecules,  on their  surface.  This has been previously demonstrated for  other

invasive protozoan parasites such as Trypanosoma cruzi and it was also shown

that  removal  of  sialic  acid  residues  from  the  surface  of  metacyclic

trypomastigotes enhanced host cell invasion (Yoshida et al., 1997). With regard

to apicomplexan parasites, it is interesting to note that Cleary et al. (2002) used

microarray  analysis  to  study  changes  in  transcript  levels  during  T.  gondii

tachyzoite-to-bradyzoite  conversion,  and  besides  other  developmentally

regulated  genes,  they  identified  a  gene coding  for  a  putative,  mucin  domain

containing bradyzoite surface molecule. Given the role of a close homologue in

host  cell  invasion by another  apicomplexan parasite,  Cryptosporidium parvum

(Barnes  et  al.,  1998),  it  is  likely  that  mucin-like  bradyzoite  proteins  are  also

functionally implicated in host cell invasion by N. caninum upon oral ingestion of

tissue  cysts.  In  addition,  it  is  possible  that  the  highly  glycosylated  mucin-like
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domains provide protection from degradative enzymes in the gut. Thus, the role

of sialic acid in N. caninum host cell interactions is worthy of further studies.
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