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1 Summary 

Transplantation of organs and cells saves and prolongs thousands of lives every year. 

Surgical techniques were significantly improved but major problems remain, in particular the 

host’s immune system. Despite advances in immunosuppressive therapies, chronic allograft 

rejection still occurs which is characterized by intimal thickening in the arteries and the 

replacement of graft parenchyma, a phenomenon called chronic transplant vasculopathy 

(CTV). Within three years after transplantation 45% of transplant patients are affected by 

CTV which leads to the failure of allografts of about 5% each year post transplantation. The 

reasons for its development and the mechanistic basis inducing CTV are still not clearly 

understood.  

In graft versus host disease (GVHD) and vascular rejection of solid organ transplants, 

vascular endothelial cells (EC) have been recognized as important targets for alloreactive 

cytotoxic T-lymphocytes (CTL) and the presence of CTL has been associated with CTV. 

Therefore, T-cell-mediated immunity and subsequent inflammation appear to be important 

features of the initiation and progression of CTV. The contribution of EC to CD8
+
  

T-cell activation and therefore their role in the development of chronic vascular rejection is 

still controversially discussed. 

For that reason and the fact that after transplantation of vascularised organs EC are the first 

graft cells encountered by host lymphocytes, the detailed interaction of vascular EC with 

CD8
+
 T-cells has been assessed in vivo in the first part of our study, in order to find out 

whether EC are able to activate or tolerize naive CD8
+
 T-cells. Using a transgenic mouse 

model with beta-galactosidase (β-gal) expression confined to the vascular endothelium  

(Tie2-LacZ mice) and the help of β-gal TCR transgenic CD8
+
 T-cells (Bg1 mice), the 

capacity of EC presenting a minor histocompatibility antigen (mhAg) to induce a CD8
+
 T-cell 

response was studied. We could show that mhAg presentation on EC was ignored by CD8
+
  

T-cells and was neither sufficient to activate nor to tolerize CD8
+
 T-cells. Moreover, the 

mhAg was cross-presented by BM-derived CD11c
+
 DC and led to spontaneous activation of 

β-gal-specific CD8
+ 

T-cells in Tie2-LacZ mice. This identifies the priming of mhAg-specific 

CD8
+
 T-cells via DC as the critical step in the generation of alloimmune responses. 

Furthermore, no β-gal-specific CD8
+
 T-cell activation was induced after transplantation of 

fully vascularised heart or liver grafts from Tie2-LacZ mice into non-transgenic recipients 

confirming that CD8
+
 T-cell responses against mhAg cannot be initiated by EC. 
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In the second part of the study the major aim was to develop an experimental system that 

facilitates in vivo studies on the interaction of EC with activated CTL in a heart 

transplantation model. To this end, Tie2-LacZ hearts were heterotopically transplanted into 

C57BL/6 recipients. Tie2-LacZ hearts were accepted and showed no vascular inflammatory 

changes or neointima formation until day 100 post transplantation. Repetitive priming with  

β-gal peptide loaded DC induced a long-term β-gal-specific CTL response resulting in the 

induction of vascular inflammatory disease with neointima formation and vascular occlusion. 

Infection with β-gal recombinant mouse cytomegalovirus (MCMV-LacZ) however, led to a 

shorter activation of β-gal-specific CTL and thus to a less significant vascular inflammation in 

Tie2-LacZ hearts. Taken together, we suggest that it is the prolonged presentation of mhAg 

within secondary lymphoid organs that is responsible for the activation of EC-specific CTL 

and that activated CTL recognize thereafter mhAg specifically expressed on EC, leading to 

the development of chronic vascular rejection. 
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2 Zusammenfassung 

Durch die Transplantation von Organen oder Zellen werden jedes Jahr Menschenleben 

gerettet. Trotz medikamentösen Fortschritten zur Unterdrückung des Immunsystems 

entwickeln im Falle einer Knochenmarkstransplantation 60-70% der behandelten Patienten 

eine chronische Immunreaktion gegen das eigene Gewebe. Auch bei Organtransplantationen 

ist der Langzeiterfolg nicht garantiert und es kommt häufig zu spätem Organversagen. 

Chronische Abstossungsreaktionen, welche sich über Monate oder Jahre entwickeln, stellen 

den Hauptgrund für die Abstossung transplantierter Organe dar. Während der chronischen 

Abstossungsreaktion kommt es zur Verdickung der Intima der Arterien und zum Austausch 

von Transplantatparenchym, ein Prozess, der auch chronische Transplantatvaskulopathie 

genannt wird. Innerhalb der ersten drei Jahre nach der Transplantation entwickeln 45% der 

Transplantationspatienten solche vaskuläre Veränderungen, welche meist zum Organversagen 

führen. Diese Abstossungsreaktionen kommen in einer Häufigkeit von ungefähr 5% pro Jahr 

nach der Transplantation vor. Die Ursachen und die mechanistischen Grundlagen dafür sind 

nicht vollständig verstanden. 

Es wurde jedoch gezeigt, dass bei der Abstossungsreaktion vaskuläre Endothelzellen (EC) 

wichtige Zielzellen zytotoxischer T Zellen sind. Weiter konnte eine Korrelation zwischen 

dem Vorhandensein zytotoxischer T Zellen und dem Erscheinen chronischer Transplantat 

Vaskulopathie gezeigt werden. Die T Zellen-induzierte Immunität und die sich daraus 

entwickelnde Entzündung scheinen wichtige Faktoren für die Entstehung und Entwicklung 

vaskulärer Veränderungen zu sein. Welche Rolle EC im Bezug auf die CD8
+
 T Zellen-

Reaktivität und somit in der Entwicklung chronischer Abstossungsreaktionen haben, wird 

kontrovers diskutiert.  

Aus diesen Gründen und weil EC die ersten Zellen des transplantierten Organs sind, 

welche von Empfänger T Lymphozyten getroffen und erkannt werden, wurde im ersten Teil 

dieser Arbeit die Interaktion vaskulärer EC mit naiven CD8
+
 T Zellen am Tiermodell 

untersucht. In dieser Studie wurden transgene Mäuse verwendet, bei welchen die 

Exprimierung des Modelantigens Beta-galactosidase (β-gal) auf die vaskulären EC beschränkt 

ist (Tie2-LacZ Maus). Zusätzlich standen T Zell Rezeptor transgene β-gal-spezifische CD8
+
 

Zellen zur Verfügung. Es wurde untersucht, ob EC, die ein nominales Antigen präsentieren, 

eine CD8
+ 

T Zell-Antwort generieren können. Es konnte gezeigt werden, dass nominales 

Antigen von CD8
+
 T Zellen ignoriert wurde und weder zu einer Aktivierung, noch zu einer 

Toleriserung führte. Weiter wurde gezeigt, dass die Kreuz-Präsentation des Antigens durch 



  Zusammenfassung  

 

- 9 - 

 

CD11c
+
 dendritische Zellen (DC) zur spezifischen Aktivierung und Proliferierung der CD8

+
  

T Zellen führte. Diese Tatsache lässt das Priming der Antigen-spezifischen CD8
+
 T Zellen 

durch DC als einen kritischen Schritt bei der Generierung einer Immunantwort erkennen. 

Außerdem wurde auch im Transplantationsmodel, bei welchem Tie2-LacZ Herzen oder 

Lebern in Wildtyp-Mäuse transplantiert wurden, keine CD8
+
 T Zell-Aktivierung beobachtet. 

Dies bestätigt, dass EC nicht fähig sind, eine CD8
+
 T Zell-Antwort gegen ein nominales 

Antigen zu induzieren.  

Im zweiten Teil unserer Studie war das Hauptziel, ein experimentelles System, welches die 

Untersuchungen der Interaktion von EC mit aktivierten zytotoxischen T Zellen im 

Transplantationsmodel des Herzens erleichtert, zu entwickeln. Dazu wurden Tie2-LacZ 

Herzen heterotop in C57BL/6 Mäuse transplantiert. Diese Herzen wurden von den Wildtyp-

Mäusen akzeptiert und bis 100 Tage nach der Transplantation konnten keine 

antigenspezifischen Gefässveränderungen beobachtet werden. Durch die Aktivierung von  

β-gal-spezifischen CD8
+
 zytotoxischen T Zellen mittels Injektion β-gal-Peptid beladener DC 

kam es zu vaskulären Entzündungen und der Bildung von Neointima mit kompletter 

Gefässokklusion. Diese entzündlichen Veränderungen waren nach der Infektion der Mäuse 

mit dem β-gal-rekombinanten Maus-Cytomegalievirus weitaus weniger ausgeprägt. 

Zusammengefasst kann gesagt werden, dass die verlängerte Präsentation von Antigen in 

sekundären lymphatischen Organen für die Aktivierung von EC-spezifischen zytotoxischen  

T Zellen verantwortlich ist. Aktivierte zytotoxische T Zellen erkennen daraufhin das Antigen, 

welches durch EC exprimiert und präsentiert wird, und tragen so zur Entstehung einer 

chronischen Abstossungsreaktion bei. 
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3 Introduction 

In a first part of this work, the general principles of immune activation, in particular, T-cell 

reactivity, were summarized. Furthermore, problems of organ and cell transplantation, as well 

as the role of vascular EC and CD8
+
 T-cells in allotransplantation, were described in order to 

be acquainted with the present knowledge concerning the interaction of vascular EC with 

CD8
+
 T-cells. 

3.1 General principles of immune activation 

The main role of the immune system is to protect the individual from infections. To fulfil 

this goal, two major components of the immune system, the innate and the adaptive immunity, 

work together. Innate immunity is considered as the less specific part and provides the first 

line of defence against infectious agents. It comprises molecular and cellular mechanisms that 

are not pathogen-specific but are present before onset of the infection. On the other hand the 

adaptive immune system, regarded as the specific part, only comes into play when there is 

antigenic challenge to the organism. A specific response can be observed within five or six 

days after the initial contact with the antigen and is characterized by its high specificity for the 

antigen and the ability to provide immunologic memory. Furthermore, the recognition of 

billions of single structures is possible through the capability of the adaptive immune system 

to generate a remarkable diversity in recognition molecules. Moreover, it has the capacity to 

discriminate self from non-self (Billingham et al., 1953; Burnet and Fenner, 1949; Burnet, 

1957). 

The major mediators of the adaptive immune system are B- and T-lymphocytes.  

B-lymphocytes produce specific antibodies upon activation, which primarily bind 

extracellular agents and neutralize the pathogen directly. CD4
+
 T-lymphocytes provide either 

direct help to B cells, involving CD40L:CD40 interaction and the production of cytokines, or 

they facilitate CD8
+
 T-cell expansion and activate macrophages by the production of 

cytokines, such as IL-2, IFNγ and TNF. CD8
+
 T-cells are the cytotoxic T-cells which have the 

ability to directly kill the infected cells via cell-cell interaction. By the secretion of IFNγ and 

other cytokines they exert further effector function. The main targets of T-cells are peptides 

derived from infectious agents or intracellular antigens bound to major histocompatibility 

complexes (MHC). Peptide antigens have to be processed, which implies the digestion of the 

protein into peptides and presentation on MHC molecules by antigen presenting cells (APC), 

since the T-cell receptor (TCR) recognizes foreign only in the combination with self. There 
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are two types of MHC molecules: MHC class I molecules, expressed on almost all nucleated 

cells and recognized by CD8
+
 T-cells and the MHC class II molecules, expressed on 

professional APC such as dendritic cells (DC), macrophages and B-lymphocytes. MHC II 

molecules are recognized by CD4
+
 T-cells.  

3.1.1 Antigen-presenting cells 

Strictly speaking, all nucleated cells could be assigned as APC since they all express  

MHC I or MHC II molecules. But according to convention, cells presenting peptide on MHC 

class I molecules to CD8
+
 T-cells are referred to as target cells. Only cells that display peptide 

via class II molecules are called professional APC. Professional APC are hematopoietic cells 

whereby three types of cells belonging to APC exist: DC, macrophages and B-lymphocytes. 

DC, a minor cell population in lymphoid tissues, are considered the prototypic professional 

APC (Banchereau et al., 2000; Guermonprez et al., 2002; Ludewig et al., 1998a; Steinman 

and Cohn, 1973; Steinman, 1991). They are the most significant and potent APC, able of 

inducing T-cell responses following infection or organ transplantation. DC constitutively 

express high levels of both class I and II MHC molecules and members of the co-stimulatory 

B7 family. Therefore, they are more potent in antigen presentation than  

B-lymphocytes and macrophages, which both have to be activated prior to acquiring the 

ability of antigen presentation. Furthermore, DC have the unique capacity to migrate to the 

periphery, the site of inflammation where they act as sentinels for pathogen-derived structures 

(Pulendran et al., 2001). As soon as they sense such structures through their pattern 

recognition receptors, such as Toll-like receptors, they undergo a maturation process 

including up-regulation of costimulatory molecules (Banchereau and Steinman, 1998). The 

exposure to proinflammatory cytokines and the ligation of the costimulatory molecule CD40 

also lead to their activation (Bennett et al., 1998). During maturation, DC capture antigen, 

internalize it, either by phagocytosis or by endocytosis and thereafter modify their homing 

receptors (Roake et al., 1995). After having fully matured, they transport antigen from the 

periphery to local lymphoid tissue and present the processed antigen on their membrane 

bound to MHC molecules to CD4
+ 

and CD8
+
 T-cells. Specific T-cells recognize this complex 

and interact with the DC. Thereafter DC produce costimulatory signals, inducing complete 

activation of the T-cells. There is accumulating evidence that DC play a key role in T-cell 

immunity. For example, in a mouse model, CD11c
+
 DC depletion was accompanied by a 

complete absence of primed CTL after infection with Listeria monocytogenes or with 
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Plasmodium yoelli (Jung et al., 2002), confirming that DC have the ability to prime naive  

T-lymphocytes during inflammation or infection. 

However, non-hematopoietic cells, i.e., vascular EC, have also been shown to act as APC. 

EC express MHC class I molecules and can induce the expression of MHC class II molecules 

upon inflammation via proinflammatory cytokine such as IFNγ (Marelli-Berg et al., 2000; 

Pober et al., 1997) and thereby display antigen to CD8
+
 and CD4

+
 T-lymphocytes. The 

antigen presenting function of EC works only for short periods of time during a sustained 

inflammatory response, therefore EC are called “semiprofessional” APC. EC present antigen 

to T-cells via the direct pathway, in the context of allograft transplantation where they display 

allo-MHC-peptide complexes, or via the indirect pathway which involves cross-presentation 

of antigens (Pober et al., 1997; Epperson and Pober, 1994; Rose, 1998; Bagai et al., 2005a; 

Limmer et al., 2000; Limmer et al., 2005; Valujskikh et al., 2002a). Although EC have the 

capacity to stimulate allogeneic CD8
+
 T-cells and memory allogeneic CD4

+
 T-cells, can they 

neither activate naive alloreactive CD4
+
 T-cells in vitro and in vivo nor are they able to 

activate resting T-cells specific for a minor histocompatibility antigen (mhAg) in vitro (Bagai 

et al., 2005a; Kreisel et al., 2002b; Kreisel et al., 2004; Marelli-Berg et al., 2000; Marelli-Berg 

et al., 2001). There is even evidence for EC to induce T-cell tolerance (Berg et al., 2006; 

Limmer et al., 2000; Limmer et al., 2005; Marelli-Berg et al., 2000). However, their 

capability of being a semiprofessional APC, regardless whether they induce T-cell activation 

or tolerization, is of main importance in the context of solid organ and bone marrow (BM) 

transplantation.  

Nonetheless, not only EC have been shown to induce T-cell tolerance, but DC too. While 

they activate T-cells during inflammation and infection, they are immature under steady state 

conditions and induce peripheral T-cell tolerance, see Figure 1 (Abbas and Sharpe, 2005) 

(Probst et al., 2005; Probst et al., 2003; Steinman et al., 2003b; Steinman et al., 2003a; 

Steinman, 2003). 

3.1.2 T-cell activation 

Naive T-lymphocytes circulate via blood through secondary lymphoid organs and home 

with the help of CD62L and CCR7 expression (Sallusto et al., 1999). Without previous 

activating stimulus they are not able to enter peripheral non lymphoid tissue. They need 

antigen presentation by professional APC within the secondary lymphoid organs, referred to 

as signal 1, and thereafter suitable costimulation, referred to as signal 2, to be activated and to 

differentiate into full effector T-cells (Lakkis et al., 2000; Salomon and Bluestone, 2001). 

These interactions are based on cell-cell contact which demands the special microenvironment 
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of organized lymphoid tissue that provides the necessary inflammatory milieu with antigen 

location, cytokines and interleukins, and enhances the chance of specific antigen encounters 

(Zinkernagel et al., 1997). After interaction of the TCR with the APC, CD28 and CD40L 

expression on T-cells is up-regulated and costimulation by engagement of one or more T-cell 

surface receptors with their specific ligands (CD40, CD80, CD86) on APC is provided. 

Differentiated T-cells are preferentially recruited to sites of inflammation. Via the expression 

of adhesion molecule ligands (L-selectin, LFA-1, VLA-4, Mac-1) they make contact to 

adhesion molecules, such as P-selectin, E-selectin, VCAM-1 and ICAM-1 on the activated 

endothelium and enter the periphery, to fulfil their task to protect the individual from 

infections (Campbell et al., 1998; Rao et al., 2007).  

3.1.3 T-cell tolerance 

T-cell development is a highly coordinated process with the main goal of reaching a 

maximal degree of diversity and of removing all T-lymphocytes that recognize self-antigen to 

prevent autoimmune diseases. A major mechanism in accomplishing self-tolerance is the 

elimination of potentially self-reactive T-lymphocytes during their development in the 

thymus. This negative selection of T-cells, referred to as central tolerance, has been shown to 

play a key role (Kappler et al., 1987).  

3.1.3.1 Central tolerance 

T-cell progenitors migrate from the BM to the thymus, where they undergo maturation. 

Maturation includes rearrangements of the germ-line TCR genes and the expression of 

various membrane markers. Developing T-cells in the thymus, the so called thymocytes, 

proliferate and differentiate along determined pathways to become functionally distinct 

subpopulations of mature T-cells. During this process they are submitted to positive and 

negative selection. Whereas positive selection permits the survival of T-cells with a TCR able 

of recognizing self-MHC molecules, negative selection eliminates T-cells with too high 

affinity towards self-MHC plus self-antigens. These self-antigens consist of those that are 

ubiquitous expressed, and those who are restricted to a few tissues, referred to as tissue-

specific antigens (TSAs). TSAs are expressed on medullary thymic epithelial cells (mTECs) 

(Kyewski and Derbinski, 2004) and BM-derived DC which capture the TSAs from mTECs 

(Gallegos and Bevan, 2004; Speiser et al., 1989) and present it to the thymocytes. 

However, central tolerance seems to be incomplete and potentially self-reactive T-cells 

escape negative selection and are released into the periphery where they could become 
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activated by professional APC, presenting self-antigens, and thereafter induce autoimmunity. 

In particular, T-cells with low avidity for self-antigen can escape central tolerance (Zehn and 

Bevan, 2006) and it is possible that other self-proteins, for which tolerance is required, may 

not access the thymus. Therefore, it is not surprising that further mechanisms in the periphery 

control self reactivity.  

3.1.3.2 Peripheral tolerance 

The induction of peripheral tolerance is an imperative physiological process necessary to 

supplement central tolerance (Kurts et al., 1997; Probst et al., 2003). Particularly at sites of 

infection, where maturing DC process and present self- and non-self-antigens at the same 

time, efficient tolerance mechanisms are of main importance.  

One major mechanism of peripheral tolerance is the induction of T-cell tolerance via 

steady-state DC. DC that have not been activated through inflammation or infection have an 

immature phenotype. Although they efficiently capture antigen, they lack high expression of 

co-stimulatory molecules and do not express CCR7. Despite the fact that they deliver signal 1 

under steady state conditions, they lack the ability to deliver signal 2, resulting in T-cell 

tolerance. (Banchereau and Steinman, 1998). This has been shown to be mediated through 

PD-1 and CTLA-4 (Probst et al., 2005; Sakaguchi et al., 2006b). Upon recognition of self-

antigens presented by DC, T-cells undergo proliferation but are ultimately deleted from the 

peripheral T-cell repertoire.  

Moreover, DC have also been shown to induce tolerance by the activation of 

CD4
+
CD25

+
Foxp3

+
 regulatory T-cells (Sakaguchi, 2004). CD4

+
CD25

+
Foxp3

+ 
regulatory T-

cells (Tregs) are known to be essential in many processes of the immune system. They play a 

crucial role in the maintenance of maternal tolerance to the foetus (Aluvihare et al., 2004), in 

the prevention of autoimmunity (Sakaguchi et al., 2006a) and in the inhibition of antitumor 

immunity (Beyer and Schultze, 2006). Furthermore, they are important in the regulation of 

immunity to viral and parasite infections (Belkaid et al., 2006; Rouse et al., 2006). Tregs 

develop in the thymus where they get positively selected (Bensinger et al., 2001). It has been 

shown that the Treg repertoire is enriched in auto specific cells (Fisson et al., 2003; Hsieh et 

al., 2004). This is consistent with what can be found looking at their central function in 

controlling autoreactive T-lymphocytes. However, Tregs become specifically activated by the 

presentation of autoantigens through DC in secondary lymphoid organs (Fisson et al., 2003; 

Samy et al., 2005) and need IL-2 for their proliferation. In part, the effector mechanisms used 

by Tregs are mediated by CTLA4, expressed by Tregs, and its ligation with CD80 and CD86 
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on T-lymphocytes. Additionally, the suppression requires responsiveness of effector T-cells to 

TGF-β and the secretion of IL-10 by Tregs (Asseman et al., 1999; Fahlen et al., 2005). 

Furthermore, there is accumulating evidence for the tolerogenic capacity of EC. Liver 

sinusoidal EC (LSEC) have been shown to induce CD8
+
 T-cell tolerance to soluble, oral and 

tumour-derived antigens (Berg et al., 2006; Limmer et al., 2000; Limmer et al., 2005) and 

isolated murine lung EC negatively regulated CD8
+
 T-cell function (Marelli-Berg et al., 

2000).  

However, there is a third way of peripheral tolerance, which is immunologic ignorance 

where peripheral antigen is not visible to T-lymphocytes. Whether CD8
+
 T cell ignore a 

peripheral antigen or become tolerized has been shown to be a matter of antigen dose. When 

the tissue-specific antigen was expressed at low concentration, no cross-presentation by DC 

could be observed and indeed, there was no CD8
+
 T-cell response indicating that the CD8

+
  

T-cell compartment remained ignorant. In mice expressing antigen at higher doses the antigen 

was cross-presented and led to the peripheral deletion of specific CD8
+
 T-cells (Kurts et al., 

1999). It has further been demonstrated that CD8
+
 T-cells need the presence of the antigen in 

order to become tolerized, indicating that they are rather anergized than fully deleted (Lees et 

al., 2006). 

Nevertheless, it has been shown that peripheral tolerance mechanisms cannot entirely 

recompense for inefficiencies in central tolerance since deficiency of AIRE, the autoimmune 

regulator that controls the gene expression of peripheral antigens in TEC leading to central 

tolerance, resulted in autoimmune syndrome (Anderson, 2002; Villasenor et al., 2005). 

However, it is obvious that negative selection is not sufficient either to eliminate all 

potentially autoreactive T cells since the absence of the development and action of regulatory 

T-cells leads to the development of autoimmunity (Piccirillo and Shevach, 2004). 

Taken together, both central and peripheral tolerance mechanisms play a major role in 

inducing specific self-tolerance. Nevertheless, only peripheral mechanisms are involved in the 

induction of tolerance towards foreign antigens, such as allo-antigens in the case of 

transplantation where the induction of specific allogeneic tolerance is a major goal to prevent 

transplant rejection because it is not accompanied by a general immunosuppression of the 

patient. 
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Figure 1: Immune activation and tolerance induction by DC. Top, DC are activated by TLRs and other signals. 

They display antigens and express costimulatory molecules, which stimulate T-lymphocytes. Bottom, resting, 

immature DC induce T-lymphocytes tolerance since DC do not express sufficient amounts of costimulatory 

molecules or they engage inhibitory receptors on the T cells (from (Abbas and Sharpe, 2005)). 
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3.2 Transplantation 

Each year, transplantation of organs and cells between individuals saves or prolongs 

thousands of lives. Allogeneic BM transplantation for example, displays an extremely 

effective treatment of malignant blood cell disorders. However, despite improved 

immunosuppressive therapies, up to 60-70% of patients develop chronic GVHD. And despite 

advances in surgical techniques for organ transplantations and the better immunosuppressive 

drugs for acute rejection, successful long-term outcome of transplanted organs is still 

hampered by late graft failure since the major problem, the immune system, remains. 

However, transplantations are performed between members of the same species and thus 

referred to as allotransplants. The immune response to allotransplants is called alloreactivity. 

It is directed against allelic differences in MHC molecules between host and donor and leads 

to rejection of the transplanted organ. The immune system uses the same mechanisms evolved 

to protect the organism from foreign agents to cause rejection from genetically not identical 

donor grafts. Thus, alloreactivity includes T- and B-cell-mediated responses as well as innate 

immune responses. Clinically, it manifests as transplant rejection (host-versus-donor) or as 

GVHD. MHC graft rejection generally depends on both class I and class II antigens together 

and a rejected vascularised solid organ graft is characterized by its dense infiltrates of host 

lymphocytes. As a consequence, graft cell necrosis and graft vessel thrombosis are induced 

and lead to acute rejection, taking place one to two weeks after transplantation. For that 

reason, the success of all kind of transplants strongly depends at the beginning on the ability 

to prevent acute rejection by the use of immunosuppressive agents. However, despite 

advances in immunosuppressive therapies, chronic allograft rejection or chronic GVHD, 

which develop over months and years, still occur and display in the end the main limitations 

of long-term survival (Cecka, 1999; Keck et al., 1999).  

3.2.1 Alloreactivity  

T-lymphocytes mature in the thymus where they undergo positive and negative selection to 

subsequently recognize self-MHC molecules in combination with non-self peptides. There is 

no process that selects for, or against, the ability of the TCR to bind to MHC alleles that are 

not expressed by an individual. However, in the first scenario the TCR makes contact with 

both the peptide and the self MHC molecule as a complex, and foreign is only recognized in 

combination with self-MHC (MHC-restriction). On the contrary, the direct interaction of 

alloreactive T-lymphocytes with the non-self MHC molecule or the foreign peptide or even 
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with both is not MHC-restricted. Furthermore, direct recognition of the foreign MHC 

molecules by allogeneic T-cells is defined as the recognition of a major histocompatibility 

antigen, whereas minor histocompatibility antigens, in the context of allotransplantation, are 

defined as immunogenic peptides, which derive from cellular proteins from the graft 

(allorejection) or the host (GVHD), presented on MHC-I molecules and recognized by 

alloreactive T-cells. Naturally, alloresponses arise in the context of major and minor 

histocompatibility mismatches between donor and recipient. 

However, alloreactive T-lymphocytes have the ability to recognize peptide-MHC 

complexes that were not encountered during thymic development. This is characterized by 

lower specificity and binding affinities which goes along with a high precursor frequency that 

is 100 to 1000 times higher than the precursor frequency of T-cells specific for any single 

foreign-peptide-self-MHC complex (Lindahl and Wilson, 1977; Suchin et al., 2001). This 

explains the strong primary immune response where the high frequency of alloreactive T-cells 

(1 in 10
3
-10

4
) enables their detection. Nonetheless, a comprehensive model of how the 

peptide-allogeneic-MHC complex contributes to TCR alloreactivity is elusive. Some models 

suggest that T-cell activation derives entirely from interaction between the TCR and the 

allogeneic MHC molecules (Bevan, 1984), whereas other models explain the activation by a 

central role of the peptide (Matzinger and Bevan, 1977). According to these models, 

allorecognition and conventional recognition are two different mechanisms (Figure 2B). 

Despite the tendency to distinguish them, many recent findings reveal their similarities. 

Structural analyses have displayed that, although individual interactions differ, the type of 

TCR interactions with self and allogeneic MHC molecules are comparable (Figure 2A) and 

numerous studies have clearly shown the existence of alloreactive T-lymphocytes highly 

peptide specific (Alexander-Miller et al., 1993; Felix et al., 2007; Heath and Sherman, 1991; 

Heath et al., 1991; Mazza et al., 2007; Mendiratta et al., 1999; Tallquist et al., 1996; Weber et 

al., 1995; Whitelegg et al., 2005). Moreover, the ability of alloreactive TCR to identify 

multiple distinct peptide-allogeneic-MHC complexes, but each with a high degree of 

specificity, has been shown in several studies (Guimezanes et al., 2001; Mazza et al., 2007; 

Reiser et al., 2003; Tallquist et al., 1996). 
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Figure 2: T-cell recognition of conventional and allogeneic complexes. (a) TCRs recognize both conventional 

peptide-self-MHC complexes and peptide-allogeneic-MHC complexes although these TCRs have never 

encountered the allogeneic-MHC molecules during thymic development. (b) In conventional recognition, the 

TCR makes contact with both the peptide and the self MHC molecule. In allorecognition some models suggest 

that the TCR primarily contacts the MHC molecule or the peptide. However, many alloreactive T-cells seem to 

interact with the peptide-allogeneic-MHC complex in a manner identical to conventional recognition (from 

(Felix and Allen, 2007)). 

3.2.1.1 Molecular basis of alloreactivity 

Within a species and even within individuals, MHC molecules show a huge degree of 

diversity. They are highly polymorphic. Hundreds of different MHC alleles are present in the 

human population. These alleles differ in their DNA sequences from one individual to another 

by 5 to 10%. The location of so many polymorphic amino acids within the binding site for 

processed antigen strongly suggest that allelic differences contribute to the observed 

differences in the ability of MHC molecules to interact with a given antigenic peptide. 

Polymorphism in the MHC α-helical residues can directly influence allorecognition, whereas 

polymorphism in the peptide-binding groove affects which peptides binds, as well as the 

overall conformation of the peptide-allogeneic-MHC complex (Bluestone et al., 1992; 

Chattopadhyay et al., 1994). Each peptide-MHC complex may take up a unique conformation, 

even when the same peptide is presented by both self and allogeneic MHC molecules. 
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Consequently, the surface that is recognized by the TCR is intimately linked to both the 

bound peptide and the MHC molecule. 

3.2.2 Graft versus host disease (GVHD) 

GVHD is the most severe and common immunological complication of BM transplantation 

(Horowitz et al., 1990). It occurs when donor T-cells recognize alloantigens on the host cells 

and mediate an immune response directed against the recipient. Usually, the recipient of the 

BM transplant is immunologically suppressed before BM grafting is performed. The 

activation and proliferation of alloreactive T-cells and the following cytokine generation 

induces inflammatory reactions in the skin, gastrointestinal tract, and liver. In patients with 

acute and chronic GVHD vascular injury in the skin has been observed (Biedermann et al., 

2002), indicating that EC are target cells of allospecific CTL. In severe cases these processes 

can lead to generalized erythroderma of the skin, gastrointestinal haemorrhage, and liver 

failure. Immunosuppressive drugs are used in order to inhibit the immune response of the 

donor. GVHD affects 50-70% of BM-transplant patients and is even induced in HLA-

identical BM transplantation where disparities in mhAg between the donor and the host lead 

to the induction of GVHD (Goulmy et al., 1983). 

3.2.3 Allograft rejection  

Most allograft rejections involve T-cell mediated responses; whereby acute and chronic 

allograft rejection can be distinguished.  

3.2.3.1 T-cell activation in acute and chronic rejection 

Due to improved immunosuppression regimen, acute rejection occurs with decreasing 

incidence after the first three months. Indeed, a high percentage of transplant recipients never 

experience episodes of acute rejection. However, in allotransplantation APC, responsible for 

T-cell activation, may potentially originate from either the donor graft (direct) or from the 

recipient (indirect, semi-direct). Donor APC are tissue-specific and only the determinants 

expressed on donor APC will also be expressed by parenchymal cells of the graft. After 

transplantation of vascularised solid organs, donor APC travel to the secondary lymphoid 

organs of the host where they directly activate naive CD4
+
 and CD8

+
 T-lymphocytes leading 

to the induction of acute allograft rejection (Hernandez-Fuentes et al., 1999). In the case of 

vascularised grafts, memory alloreactive T-cells could be directly activated by donor APC in 

the periphery, e.g., EC, without need of co-stimulation and the environment of secondary 

lymphoid structures (Perez et al., 1998; Pober et al., 1996; Epperson and Pober, 1994). 



  Introduction  

 

- 21 - 

 

Nonetheless, over the time, donor APC are replaced by recipient APC and the indirect 

pathway becomes more important. This pathway is characterized by the presentation of donor 

antigens on recipient APC. Host APC enter the graft, pick up donor antigen, particularly 

allogeneic MHC antigens, and present it on self MHC-I (cross-presentation) and MHC-II 

molecules to naive T-lymphocytes in secondary lymphoid organs. The indirect pathway plays 

a major role during chronic rejection (Hornick et al., 2000; Shirwin, 1995). Furthermore, 

cross-presentation of alloantigen by DC is a phenomenon not restricted exclusively to DC. In 

the context of allotransplantation EC have also been shown to cross-present antigen (Bagai et 

al., 2005a). Recently, a third approach for presentation of foreign MHC molecules has been 

described, the so called semi-direct pathway. In the semi-direct pathway recipient DC are able 

to acquire intact functional MHC molecules from graft cells and thereafter induce antigen 

specific T-cell responses (Herrera et al., 2004). However, no matter which way of activation 

is used, naive cells can only be primed within the microenvironment of the secondary 

lymphoid organs and are not able to reject an allograft in the absence of those (Lakkis et al., 

2000). 

Nevertheless, although acute rejection can be prevented by immunosuppressive therapy, 

chronic rejection developing over months and years and characterized by the replacement of 

graft parenchyma still develops. It leads to the failure of allografts of about 5% each year 

posttransplantation and frequently necessitates retransplantation (Cecka, 1999; Keck et al., 

1999). It is important to point out that this rate has not been altered by the introduction of new 

immunosuppressive drugs compared to the tremendous reduction in the rate of acute allograft 

rejection.  

3.2.3.2 Chronic rejection 

There are two different forms of chronic rejections. The first is defined as chronic 

parenchymal cell rejection where graft failure is due to progressive immune-mediated fibrotic 

replacement of graft parenchyma. The second is called chronic vascular rejection and is 

caused by progressive immune-mediated host response to the blood vessels of the solid organ 

graft followed by stenosis of the arteries, arterioles, and capillaries. This process eventually 

leads to replacement fibrosis of the graft parenchyma (Libby and Pober, 2001). This 

progressive luminal narrowing of the graft arteries is frequently seen in cardiac 

transplantation (Julius et al., 2000). It is a multifactorial incident and develops over months to 

years and is only observed in allogeneic but not syngeneic cardiac grafts, demonstrating a 

central role of alloreactivity in the development of these lesions. Since the progressive loss of 
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lumen mainly affects conduit arteries, it can also be called arteriosclerosis, graft 

arteriosclerosis, or transplant vasculopathy (Mitchell and Libby, 2007; Libby and Pober, 

2001). CTV is the main cause of long-term allograft dysfunction and late graft loss in heart 

and kidney transplantation (Nankivell et al., 2003; Weis and von Scheidt, 1997) and it may 

lead to sudden death, myocardial infarction, or dump in cardiac function (Valantine, 2003). 

3.2.3.3 Biology of chronic vascular rejection 

The arterial wall contains three distinct layers (Figure 3: Arterial remodelling in chronic vascular 

rejection (from(Libby and Pober, 2001)).A). The innermost layer, the intima, consists of a 

monolayer of endothelial cells which are positioned on extracellular matrix and occasional 

smooth muscle cells. The intima is situated ablumenally on the internal elastic lamina. The 

next layer is the tunica media and consists of arterial smooth muscle cells within an elastin- 

and collagen-rich extracellular matrix. The next layer is the external elastic lamina. The 

adventitia, the outermost layer of the artery, consists of myofibroblasts, autonomic nerve 

endings, few lymphocytes, and extracellular matrix. 

 

 

 

Figure 3: Arterial remodelling in chronic vascular rejection (from(Libby and Pober, 2001)). 
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Vascular lumen loss in transplant vasculopathy is mostly due to the thickening of the 

intima (Figure 3B), characterized by intimal accumulation of mononuclear cells, particularly 

in the early stage (Salomon et al., 1991), and vascular smooth muscle cells which are both 

mainly host derived (Hillebrands et al., 2001; Shimizu et al., 2001). Furthermore, 

myofibroblasts accumulate and the expansion of extracellular matrix has been observed. As a 

consequence of inflammation at the sites of injury, adhesion molecules such as ICAM-1 and 

VCAM-1 are upregulated on the endothelium (Ardehali et al., 1995), thus leukocytes are 

recruited and colonize the thickened intima of the graft (Hruban et al., 1990; Salomon et al., 

1991; Russell et al., 1994b). The central role of T-cells and EC in the development of CTV 

has been further proven by the significance of the ICAM-1:LFA-1 pathway (Russell et al., 

1995; Russell et al., 1994b). However, it is important that EC are preserved in long-term 

allografts (Rifle et al., 2006) and thus are able to act as on-going targets of an alloresponse. 

Mediators, such as IFN secreted by lymphocytes, mediate further injury and enhance 

extracellular matrix synthesis and MHC class II expression on EC. IFN-blocking with 

monoclonal antibodies clearly demonstrated that IFN is required for the development of 

CTV because lesions did not build up in its absence (Nagano et al., 1997; Nagano et al., 1998; 

Russell et al., 1994d). IFN is mainly produced by activated CD4
+ 

T-cells but also by 

activated CD8
+
 T-cells and macrophages (Munder et al., 1998) that, once they are activated, 

can be significant to maintain an environment where CTV advances (Nagano et al., 1998). 

Further risk factors for CTV development are frequency and severity of acute rejection. In 

addition, differences in MHC and ineffective immunosuppression augment the risk (Isobe et 

al., 2006). Furthermore, nonimmunologic factors, such as the origin of the donor graft from a 

cadaveric donor or diseases like hyperlipidemia, diabetes, hypertension, or high donor age, 

are also known to increase the risk of CTV (Caforio et al., 2004; Kemna et al., 1994; Vassalli 

et al., 2003). In addition, cytomegalovirus infection has been demonstrated to promote CTV 

(Potena and Valantine, 2007; Valantine, 2004). Taken together, these findings confirm the 

overall impact of various vascular wall insults that finally lead to intimal hyperplasia. 

3.2.4 Cytomegalovirus infection 

It is well known that transplant patients undergo immunosuppressive treatment to prevent 

the potent rejection response. As a consequence, an array of side effects, such as defects in the 

control of pathogens (e.g., viral reactivation), can arise. However, accumulating evidence 

supports the hypothesis that viral infections play an imperative role in the pathogenesis of 

solid organ allograft rejection. In clinical and experimental models an association of viral 
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infection has been shown. Most of the studies centred their attention on Cytomegalovirus 

(CMV) as the initiating infectious agent. 

CMV is a ubiquitous herpesvirus which persists in the host. Primary CMV infection is 

frequently asymptomatic. Cells like myeloid lineage cells, smooth muscle cells, and EC are 

crucial sites of CMV replication and latency (Jarvis and Nelson, 2002). In heart transplant 

recipients, CMV infection is a common finding (Potena and Valantine, 2007). Moreover, in a 

mouse model with the closely related murine CMV (MCMV) EC have also been shown to be 

sites of viral latency, particularly small vessels and capillaries harbour the MCMV genome 

(Koffron et al., 1998). Recent studies demonstrate the impact of CMV infection on the 

pathogenesis of allograft rejection, CTV and, long-term graft outcome. CMV-related CTV 

manifests as intimal thickening and constrictive vascular remodelling (Potena et al., 2003). 

Even in the absence of CMV replication, CMV interacts with inflammatory pathways and 

mechanisms of immune-regulation of recipients that subsequently leads to graft damage 

inducing acute and chronic rejection (Potena and Valantine, 2007). It has further been shown 

that only parts of the virus and very low viral burden have the capacity to disrupt the subtle 

equilibrium between graft, host and the immune system (Boehme et al., 2006; Carlquist et al., 

1999; Compton et al., 2003; Tu et al., 2006). Moreover, in rat renal transplant recipients, rats 

with RCMV infection showed significantly reduced renal function measured in serum 

creatinine levels and had considerable inflammatory cell infiltration compared to rats without 

RCMV infection. Furthermore, chemokines, such as RANTES, MCP-1, MIP-1α, and the  

IP-10, were up-regulated (Soule et al., 2006). However, recent studies evaluating the outcome 

of CMV prophylaxis in solid organ recipients demonstrate improved survival and lower 

rejection episodes in patients with anti-CMV treatment (Hodson et al., 2005; Potena et al., 

2006). 

3.2.5 Immunologic mechanisms of chronic vascular rejection 

3.2.5.1 Animal models 

Recent studies of transplantation rejection and its mechanisms have predominantly been 

performed in mice. Although transplantation of hearts or other grafts requires difficult 

microsurgery, the availability of useful reagents, well characterized inbred strains, and 

transgenic mice have made them to become the preferred experimental model. The most 

frequently employed form for heart transplantation at the moment is the heterotopically 

grafting of whole hearts into the abdomen of recipient mice. In these cardiac grafts, the 

ventricular chambers do not fulfil pumping function, although the coronary arteries are 
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perfused. This leads to the development of an intracavitary thrombus. Nevertheless, 

transplantation of allogenic hearts in recipients with MHC disparities induces the 

development of graft arteriosclerosis that resembles human lesions in many characteristics. 

3.2.5.2 The role of CD4
+
 T-cells 

In chronic rejection, CD4
+
 T-cells are activated by the recognition of alloantigens, mostly 

by the indirect (via host lymphocytes) pathway. It is known that activation of CD4
+
 T-cells 

requires the expression of MHC class II and costimulatory molecules by APC. After 

activation they release proinflammatory cytokines that support the generation of CD8
+
 CTL 

responses and the activation of DC. Cytokines such as TNF, LT and IFNγ, lead to the 

induction of inflammatory infiltrates. Indeed, in the absence of TNF-receptors on the graft, 

CTV has not developed (Suzuki et al., 2003). Furthermore, clearly reduced arterial lesions are 

seen in IFNγ-deficient mice grafted with an allogenic heart graft (Nagano et al., 1997). 

Moreover, the activation state of multiple cell types and the regulation of MHC and 

costimulatory molecule expression is affected by IFNγ. In addition, IFNγ influences the 

production of other cytokines, chemokines and adhesion molecules and the extra cellular 

matrix. However, CD4
+
 T-lymphocytes provide CD4

+
 T-helper functionality by the provision 

of signals that promote differentiation and activation of alloantibody-producing  

B-cells. T-helper cells (Th) activate macrophages unspecifically leading to direct tissue 

damage (Black, 1999; Lowry, 1996). Nonetheless, in the absence of antigen elimination, i.e., 

after transplantation, CD4
+
 T-cells and macrophages stay activated and continue to release 

cytokines which promote the growth of stromal cells and fibrosis which, afterwards, leads to 

chronic rejection (Black, 1999; Salomon et al., 1991). 

3.2.5.3 The role of CD8
+
 T-cells 

During chronic transplant rejection, donor antigen may be directly presented by donor 

cells, expressing MHC class I molecules, i.e., graft EC, (Biedermann and Pober, 1999; 

Biedermann and Pober, 1998) or it may be cross-presented to CD8
+
 T-cells by host APC, such 

as DC and EC. Cross-presentation of alloantigen by EC has been shown in a mouse model 

with transplanted skin where anti-H-Y monospecific H-2b-restricted MataHari CD8
+
 T-cells 

rejected H-2k male skin grafts on female recipients (Valujskikh et al., 2002a). This indicates 

that donor H-Y antigens are processed and presented by recipient EC and thus, CD8
+
 T-cells 

were activated by a minor histocompatibility difference only. This rejection was clearly  

IFNγ-dependent. However, by their ability of producing IFNγ, CD8
+
 T-cells support the 
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general inflammatory environment and the activation of leukocytes (Fischbein et al., 2002). 

But their main role in chronic graft rejection is direct cytolysis of parenchymal and vascular 

cells which express MHC class I molecules-donor-antigen-complexes (Rosenberg and Singer, 

1992). CTL are the major effector cells in rejection. This has been confirmed in a mouse 

aortic allograft model where absence of CD8
+
 T-cells in MHC-I knockout recipients, 

prevented the development of chronic rejection (Sun et al., 2001). It is important to point out 

that effector cell triggering occurs in response to any target expressing the particular peptide-

MHC complex. Even very low antigen concentrations are sufficient for their induction while 

activation of CD8
+
 T-cells requires costimulatory signals offered by only a few APC and 

triggering of at least 20-50% of the TCR. (Lassila et al., 1988; Medzhitov and Janeway, Jr., 

1998; Ridge et al., 1998; Valitutti et al., 1996). 

3.2.5.4 The role of CD4
+
CD25

+
Foxp3

+
 regulatory T-cells 

Regulatory T-cells are one of the most powerful mechanisms to induce antigen-specific 

self-tolerance (Joffre et al., 2004). This feature may have important implications for 

transplantation since the induction of alloantigen-specific tolerance would be the treatment of 

choice to evade graft rejection and GVHD. However, in an experimental model transplanted 

allogeneic BM has been protected from rejection by host T-cells via the injection of 

CD4
+
CD25

+
 regulatory T-cells cultured ex vivo (Joffre et al., 2004). In this study specific 

CD4
+
CD25

+
Foxp3

+
 T-cells could be cultivated and expanded in vitro by stimulation with 

host-type APC and in the presence of high IL-2 concentrations and the addition of TGF-β. In 

a subsequent study, CD4
+
CD25

+
Foxp3

+
 regulatory T-lymphocytes could even prevent acute 

and chronic rejection of skin and heart allografts (Joffre et al., 2008). Mice treated with 

clinically acceptable levels of irradiation got long-term tolerance to BM and subsequent skin 

and cardiac allografts after transfer of regulatory T-cells stimulated in vitro with alloantigen. 

Furthermore, acute rejection could be prevented by regulatory T-cells specific for directly 

presented antigen, whereas for the prevention of chronic rejection regulatory T-cells specific 

for both directly and indirectly presented alloantigens had to be used. In the same context, 

Krupnick et al. showed that allogeneic presentation by EC led to the generation of 

CD4
+
CD25

+
Foxp3

+ 
regulatory T-cells (Krupnick et al., 2005). Tolerance induced by 

regulatory T-cells is IFNγ-dependent (Thebault et al., 2007). 

3.2.5.5 The role of endothelial cells in acute and chronic rejection 

The endothelium had been seen for a long time as a simple passive layer within the vessel 

wall. Now it is known to be engaged in physiologic and pathophysiologic immune processes, 
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such as atheriosclerosis, autoimmune diseases, inflammation, and allograft rejection (Briscoe 

et al., 1998b; Gimbrone, Jr. et al., 2000; Salmi et al., 1993; Wick et al., 1997). It is of major 

importance in maintaining normal vessel wall function; it controls thrombus building, 

leukocyte adhesion, the proliferation of vascular smooth muscle cells, and regulates the vessel 

tonus. 

EC build the inner lining of graft vessels and are therefore the first graft cells encountered 

by host lymphocytes in solid organ transplantation. By promoting both the recruitment and 

the activation of alloreactive T-cells they participate in the process of allograft rejection 

(Valantine, 2003; Wick et al., 1997). Furthermore, they are exposed to multiple events that 

provoke EC injury which could subsequently initiate local vascular events, known as CTV. 

After activation, T-cells are recruited to the peripheral tissue and thereby have to 

transmigrate through monolayers of vascular EC. The recruitment of activated T-cells from 

the blood to the site of inflammation is a multistep process regulated by leukocyte/EC 

interaction (Butcher and Picker, 1996). It starts with the rolling of T-lymphocytes along the 

endothelium, which is mediated by EC-expressed selectins, such as E- and P-selectin 

interacting with L-selectin expressed on leukocytes (Rao et al., 2007; Schon et al., 2002). 

Afterwards, leukocytes use integrins, such as LFA-1, MAC-1, and VLA-4, to interact with 

EC-expressed ligands including ICAM-1 and VCAM-1 to achieve adherence (Butcher and 

Picker, 1996; Nelson and Krensky, 2001). The expression of integrins on leukocytes can be 

regulated in part by EC-secreted chemokines, whereas their expression seems to be mainly 

dependent on IFNγ produced by T-cells (Kobayashi et al., 2003). Interaction with VCAM-1 

and ICAM-1 on graft EC leads to the entry of activated T-cells into the allograft by 

transendothelial cell migration (Campbell et al., 1998). It has been shown that T-cell 

transmigration through the EC barrier changed their surface markers and their ability to 

migrate. Furthermore, the avidity for the allogeneic stimulators became higher which 

influenced the effector function of T-cells infiltrating into the graft (Denton et al., 1999). 

However, resting EC express MHC class I molecules and low levels of costimulatory 

molecules, such as CD80 (B7-1), on their surface. In the presence of inflammatory cytokines, 

for instance IFNγ, MHC class II expression can be induced and the expression of MHC class I 

molecules may be upregulated, whereas CD80 expression is not changed (Marelli-Berg et al., 

2000; Pober et al., 1997; Rose, 1998; Russell et al., 1994d). This phenomenon enables EC in 

vitro to act as APC which has been demonstrated via isolated mouse EC presenting an 

alloantigen triggering alloreactive CD8
+
 T-cells to become potent cytotoxic and IFNγ-

secreting effector cells but not CD4
+
 T-cells (Kreisel et al., 2002a; Ma and Pober, 1998). 
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Stimulation of CD8
+
 T-cells has also been induced after culture with resting endothelium 

(Kreisel et al., 2002a). This direct activation is B7-dependent since T-cell proliferation was 

inhibited by CTLA4-lg which blocks CD28 costimulation (Kreisel et al., 2002a). Besides, 

human resting CD8
+
 T-cells could also be directly activated by alloantigen presenting EC in 

vitro (Epperson and Pober, 1994). CD4
+
 T-cells proliferated only when cultured with IFNγ 

treated allogeneic EC since thereby the expression of MHC class II molecules was induced 

(Pober et al., 1997). Kreisel et al. additionally provided in vivo evidence of priming naive 

alloreactive CD8
+
 T-cells through non-hematopoietic allograft cells leading to acute rejection 

(Kreisel et al., 2002b). In this chimeric transplantation model alloantigens were expressed on 

graft EC but not on graft-derived hematopoietic cells. These facts suggest that EC may have 

the potential to stimulate naive allogeneic T-cells, particularly when no other alloactivation is 

present. Taken together, these data clearly show that vascular EC can act as APC to allogeneic 

CD8
+
 T-cells and can trigger allograft rejection via CD8

+
 direct allorecognition. This is of 

main significance considering that EC are present for the life span of the allograft and thus 

contribute to the progress of chronic rejection. Whether nonhematopoietic cells, such as 

vascular EC, possess the ability to activate alloreactive CD4
+
 T-cells, has been controversially 

discussed for a long time. An in vivo study by Kreisel et al. finally displayed that vascular 

endothelium could not activate CD4
+
 T-cells via direct allorecognition, even when EC were 

cytokine-activated and MHC class II molecules expression was induced. In this study, hearts 

that express MHC class II and hearts which lack MHC class II on hematopoietic cells were 

transplanted. Both types were acutely rejected, but with significant delay in the latter case, 

regardless of the expression of MHC class II on graft EC (Kreisel et al., 2004). 

Further data from a minor histocompatibility disparate model showed that murine lung EC, 

loaded with peptide, could induce proliferation of CD8
+
 T-cells but they lose their 

immunogenicity following IFNγ treatment and become tolerogenic towards CD8
+
 T-cells in 

vitro. They further failed to induce a proliferative response in CD4
+
 T-cells, although EC 

expressed CD80 molecules and expression of MHC class II molecule was induced, and MHC 

class I upregulated (Marelli-Berg et al., 2001). In contrast, activated and peptide-pulsed EC 

were indeed killed more efficiently by effector CD8
+
 T cells (Marelli-Berg et al., 2000).  

Furthermore, several in vitro and in vivo studies confirmed that cognate interaction 

between naive T-cells and resting EC, considered as non-professional APC, leads to  

CD8
+
 T-cell tolerance (Limmer et al., 2000; Marelli-Berg et al., 2000; Perez et al., 1998). 

Also cross-presentation of oral antigens or antigens from apoptotic tumour cells by LSEC lead 

to specific CD8
+
 T-cell tolerance (Berg et al., 2006; Limmer et al., 2005). The ability of EC to 
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cross-present antigens in the context of transplantation has been demonstrated by a study of 

Bagai et al. showing that cultured murine aortic EC are able to process and present MHC-I-

restricted antigen (Bagai et al., 2005a). 

In addition, a recent in vitro study displayed CD4
+
CD25

+
Foxp3

+
 regulatory T-cell 

induction by EC leading to the inhibition of T-cell proliferation. This process was 

independent of CD80 costimulation but dependent on PD-L1 (Krupnick et al., 2005).  

However, only a few studies assessed the role of EC-CTL interaction in vivo, and whether 

EC tolerize or activate naive T-cells is a matter of further investigations. Although, the 

diverse settings of the different studies, such as dissimilar sources and activation states of EC, 

different affinities of T-cells and the use of nominal versus alloantigen, may be explanations 

for the partially contradictory results, one could summarize and conclude as follows: First, in 

the context of alloantigens (major histocompatibility antigen), CD8
+
 T-cells have been shown 

to become activated via resting EC in vitro and in vivo, whereas CD4
+
 T-cells become 

activated only via activated EC in vitro but not in vivo. Second, in the context of a nominal 

antigen (minor histocompatibility antigen), EC can induce CD8
+
 T-cell proliferation in vitro, 

whereas activated EC fail to induce CD8
+
 and CD4

+
 T-cell in vitro and in vivo, and there is 

indeed rather induction of T-cell tolerance. 

However, the fact that EC constitutively express MHC-I molecules and MHC-II molecules 

expression is inducible, make them susceptible to cellular and humoral host immune 

reactions. They are target cells for activated alloreactive CTL during GVHD which is 

characterized by the circulation of a large number of mhAg-specific CTL (Biedermann et al., 

2002; Mutis et al., 1999). Alloantigen-specific CD8
+
 T-cells directly recognize peptide-donor-

MHC molecules complexes on EC and kill them. Apoptosis of EC induced by cytotoxic CD8
+
 

T-cells is a key initiating event in the development of CTV. It leads to the contact to the 

subendothelial matrix and thus, to the enhancement of the inflammatory response. At sites of 

EC injury mononuclear leukocytes are recruited. Because of their production of biologically 

relevant molecules, they favour the accumulation and proliferation of vascular smooth muscle 

cells. This leads to neointima formation and at a later time point to ischemic graft loss. It has 

been shown, that it is mainly a perforin-dependent process since perforin-deficient CTL failed 

to destroy EC in culture. Interestingly, the deficiency in Fas/FasL had only a minor impact 

(Krupnick et al., 2002). Furthermore, Valujskikh et al. could provide evidence, that EC have 

the ability to process antigenic proteins derived from exogenous sources and present them to 

recipient CD8
+
 T-cells on recipient MHC I molecules. T-cells that recognized cross-presented 

antigen mediated skin-graft rejection (Valujskikh et al., 2002a). In vitro studies by Marelli-
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Berg et al. demonstrated the ability of CD8
+
 cytotoxic T-cells to lyse cytokine-treated EC 

presenting a mhAg (Marelli-Berg et al., 2000; Marelli-Berg et al., 2001). And, in a heart 

transplantation mouse model of CTV with minor histocompatibility disparity, perforin 

knockout recipient mice as well as granzyme B knockout recipients, had indeed comparable 

levels of T-cell infiltration but less endothelial apoptosis and therefore less fibroproliferative 

changes (Choy et al., 2004b; Choy et al., 2004a). Apoptotic EC were also shown in coronary 

arteries of human transplants mounting early signs of CTV (Dong et al., 1996b; Dong et al., 

1996a) confirming T-cell induced endothelial injury being a central event in the development 

of CTV. 

Moreover, activated EC play a major role in the coagulation process supporting 

coagulation and platelet aggregation. In addition, vascular endothelial growth factor (VEGF) 

and platelet-derived growth factor (PDGF) are proinflammatory factors in the transplantation 

setting and help to develop CTV (Nykanen et al., 2006). This is of significant importance 

since they precipitate endothelial cell injury, which induces platelet adhesion and the release 

of growth factors and leads to the subsequent development of CTV.  

Taken together, these data indicate the importance of EC in the development of acute and 

chronic rejections. And there is increasing evidence implying that EC are key players in the 

process of chronic rejection. 

3.2.6 Therapy of allograft rejection 

Immune responses directed against allografts are mainly orchestrated by T-cells that 

become activated after recognizing alloantigens and appropriate costimulatory signals. Since 

stimulation through TCR without costimulation leads to T-cell anergy (Schwartz, 1990), the 

blockade of T-cell costimulation provides an attractive target for therapies aimed at limiting 

acute rejection. In addition to the use of drugs, such as cyclosporine which reduces the T-cell 

response, or other macrolide immunosuppressants, such as rapamycin, the use of reagents that 

block costimulatory signals show promising results in preventing the acute rejection response 

(Khoury et al., 1999). Furthermore, the use of rapamycin together with anti-CD40L therapy 

promotes long-term allograft survival whereas cyclosporine, tacrolimus, and IL-2R 

monoclonal antibody therapy abolish the outcome of CD40L-block (Sho et al., 2002).  

3.2.7 Tolerance induction in transplantation 

Although the presence of effective immunosuppressive drugs prevents acute rejection, 

many of the standard drugs inhibit T-cell signalling and therefore inhibit the active process of 

tolerance induction, which is the treatment of choice in allograft rejection and GVHD. 
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Currently, different ways to induce specific T-cell tolerance are assessed, including co-

stimulatory blockade, introduction of chimersim, the use of CD4
+
CD25

+
Foxp3

+
 regulatory  

T-cells, and the combination of those.  

However, one of the best characterized and most important costimulatory pathways is the 

CD28/CTLA4:CD80/CD86 pathway (Salomon and Bluestone, 2001). These costimulatory 

molecules belong to the B7 family. CD28 is constitutively expressed on T-cells whereas 

CD86 molecules are expressed at low levels by resting professional APC. CD80 and CD86 

are both upregulated on activated professional APC. Their interaction induces full T-cells 

activation including cytokine production (Rothstein and Sayegh, 2003) while the interaction 

of CTLA-4, a molecule similar to CD28 but only expressed after cellular activation, delivers a 

negative signal, resulting in T-cell inhibition (Sharpe and Freeman, 2002). However, it has 

been demonstrated that the blockade of this pathway by CTLA-4lg, induced donor specific 

tolerance in several experimental models (Lin et al., 1993; Pearson et al., 1994; Pearson et al., 

1996; Sho et al., 2002). Deficiency in CD80/CD86 even resulted in xenograft survival 

(Hosiawa et al., 2005).  

A further target is the costimulatory CD40L:CD40 pathway. It consists of the CD40 and 

the CD40L molecules that belong to the TNFR and TNF super families, respectively. CD40 is 

a cell surface molecule that is expressed on several cell types including most professional 

APC (Grewal and Flavell, 1998). CD40 is also expressed on EC and therefore mediates their 

activation responses (Hollenbaugh et al., 1995). CD40L is expressed on activated T-cells, as 

well as on other cell types, such as activated B-cells and DC (Grewal and Flavell, 1998), and 

activates expression of adhesion molecules and cytokines in EC (Hollenbaugh et al., 1995; 

Karmann et al., 1995). However, it has been demonstrated that CD40 signalling is important 

in T-cell-mediated immunity where it induces the expression of co-stimulatory molecules and 

cytokines, such as CD80,CD86, ICAM-1, IL-1, and IL-12 on APC (van Essen et al., 1995), 

and upregulates MHC I and MHC II expression to turn the APC a more effective APC. 

Furthermore, CD40L:CD40 interaction activates antigen-specific T-cells to proliferate and 

secrete cytokines (Grewal et al., 1995; Grewal et al., 1996). The lack of CD40L in mice 

infected with lymphocytic choriomeningitis virus (LCMV) did not influence the virus-specific 

CD8
+ 

T-cell response but the virus-specific CD4
+
 T-cell response was rigorously 

compromised (Whitmire et al., 1999). Blockade of both pathways can prevent allograft 

rejection (Kirk et al., 1997). Nevertheless, although promising results are seen in many 

experimental models, the blockade of these pathways does not completely control rejection 

(Guo et al., 2001; Jones et al., 2000). This indicates that not all alloreactive T-cells depend on 
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these costimulatory signals. For example, primed allospecific T-cells or alloreactive CD4
+
 

memory T-cells act independently and circumvent CD40:CD40L costimulation (Chen et al., 

2004; Valujskikh et al., 2002b).  

A further pathway consisting of molecules belonging to the B7 family is the  

PD-1:PD-L1/PD-L2 pathway. PD-L1 and PD-L2 are expressed by a broader range of cells. 

Additionally to its expression on professional APC, PD-L1 is also expressed by vascular EC 

where it is upregulated in response to IFNγ and TNF (Eppihimer et al., 2002; Rodig et al., 

2003). It is involved in the suppression of the T-cell cytokine synthesis which is proportional 

to the primary stimulus (Mazanet and Hughes, 2002). In contrast to PD-L1, PD-L2 is 

restricted to hematopoietic APC, such as DC and macrophages (Latchman et al., 2001). Both 

are ligands of PD-1 which transduces inhibitory signals and is induced on peripheral T-cells, 

B-cells, and myeloid cells upon activation (Agata et al., 1996). However, it has been shown 

that expression of PD-L1 is important for peripheral control of autoreactive T-cells (Keir et 

al., 2006). In a model where CD8
+
 T-cell myocarditis could be induced by transfer of OT-I 

CTL into mice which express membrane-anchored Ova exclusively in cardiac myocytes, 

IFNγ-induced PD-L1 on cardiac EC played a major role in preventing inflammatory injury to 

the myocardium (Grabie et al., 2007). Further studies have assessed the role of PD-1 and its 

ligand in murine cardiac allograft rejection and have shown that treatment with blocking anti-

PD-1 antibody aggravate acute cardiac allograft rejection. Agonists, used with 

immunosuppressive drugs, improved acute cardiac rejection and CTV (Ito et al., 2005; 

Ozkaynak et al., 2002). In a very recent study PD-1:PDL1 interaction acquired transplantation 

tolerance. Indeed, using blocking antibodies against PDL1 demonstrated that recipient but not 

donor PDL1 is necessary to acquire tolerance induction and maintenance after CTLA-4lg 

therapy (Tanaka et al., 2007). These data provide evidence for the major role of PD-1:PDL1 

interaction in peripheral tolerance induction after transplantation by limiting the expansion of 

alloreactive T-cells. Taken together, it is the integration of positive and negative 

costimulatory signals that finally decides on the outcome of a T-cell response. 

Following transplantation of a solid organ allograft donor microchimerism can occur. Such 

rare cases of donor microchimerism are associated with long-term acceptance of the organ, 

therefore microchimerism is thought to play an active role in the induction of 

unresponsiveness (Ehl et al., 1998a; Cosimi and Sachs, 2004; Millan et al., 2002; Monaco, 

2002; Wood and Sachs, 1996). However, chimerism has been shown to be a tool to induce 

specific transplantation tolerance (Claas, 2004). This has been confirmed in a study by Bonilla 

et al, demonstrating that microchimerism induced active clonal deletion of donor cell-specific 
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T-cells (Bonilla et al., 2006), and identifying the induction of chimerism as a specific and 

effective way to prevent transplant rejection. 

Furthermore, the combination of chimerism with the adoptive transfer of 

CD4
+
CD25

+
Foxp3

+
 regulatory T-lymphocytes prevented acute and chronic allograft rejection 

in a skin and heart transplantation mouse model in vivo (Joffre et al., 2008). The combination 

of both methods may be a way to reduce the toxicity of previous irradiation in BM 

transplantation and may be a promising protocol acceptable in clinical settings. 

Despite hopeful results for the therapy in acute rejection and the fact that acute rejection 

can be prevented by immunosuppressive drugs, chronic rejection still occurs. While the 

number of patients that survive up to one year after transplantation continues to increase, the 

percentage of long term survival has not changed significantly over the past 20 years (Taylor 

et al., 2005). There is indeed a current lack of effective preventive therapies for chronic 

rejection. On the one hand, actual therapies may not be able to ameliorate the problems of 

chronic rejection because they target the wrong mechanisms. On the other hand, since the 

fundamental basis of chronic rejection is not well understood, it is obvious that the current 

drugs do not solve the problem. A more targeted immunosuppressive treatment may be a step 

in this direction. Therefore, the diffuse nature of chronic vascular rejection has to become 

clearer. Any plan that can limit immune or nonimmune injury to the vessels should help 

hinder graft vasculopathy.  

Consequently, the mechanism underlying acute and chronic rejection, particularly the 

detailed interaction between donor and host APC and recipient leucocytes, has to be 

investigated, with the aim to reach a more specific therapy to prevent allograft rejection.  
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3.3 A transgenic model to investigate the cognate interaction of CD8
+
  

T-cells with vascular endothelial cells expressing a minor 

histocompatibility antigen 

Transgenic techniques are powerful tools to set up models with microbial antigens present 

in specific tissues and therefore facilitate the targeting of antigens to, for example, vascular 

EC. Antigen transgenic mice combined with the use of TCR transgenic animals have been 

shown to provide essential insight into the basic principle of immunology, such as 

autoimmunity (Ohashi et al., 1991; von Herrath and Oldstone, 1996), and tumour immunity 

(Morgan et al., 1998; Speiser et al., 1997). To study the role of EC in presenting a mhAg in 

vivo, two different lines of transgenic mice that express bacterial -gal exclusively on the 

vascular endothelium exist. In VWF-LacZ mice the expression of -gal in EC is restricted to 

the heart and the brain (Aird et al., 1995; Aird et al., 1997). In Tie2-LacZ mice, a portion of 

the promoter and first intron of the gene encoding tie2, the receptor for the vascular 

differentiation factor angiopoietin-1, drives the expression of -gal antigen in EC in all organs 

(Schlaeger et al., 1997). In the studies hereafter, Tie2-LacZ mice, backcrossed to the C57BL/6 

background were used. In Tie2-LacZ mice, cells remain in their physiological setting and 

transgene expression avoids inflammation, therefore they are ideal in order to investigate 

antigen presentation by EC in vivo and to gain insight into the basic mechanisms initiating 

chronic vascular rejection. Furthermore, the use of recent transgenic models, facilitating the 

specific ablation of CD11c-positive DC in lymphoid organs (CD11c-DTR-mice) (Jung et al., 

2002), and the use of naturally occurring mutants, exhibiting a mutated H2-K
b
 molecule that 

precludes H2-K
b
-restricted presentation of peptides (B6.C-H2

bm1
-mice), allowed dissecting 

the role of professional versus non-professional APC. Additionally, in vivo analysis of 

antigen-specific interaction between EC and CD8
+
 T-cells has been eased by using high 

affinity β-gal specific TCR transgenic CD8
+
 T-cells (Bg1-cells). To assess the cognate 

interaction of EC with activated CTL in a transplantation model, where Tie2-LacZ and 

control C57BL/6 hearts were heterotopically transplanted into C57BL/6 recipients, the 

repetitive priming of recipients with DC presenting an H-2K
b
-restricted peptide derived from 

β-gal, induced activation of β-gal specific CD8
+
 T-cells for more than two weeks and enabled 

the investigation of EC interaction with activated CD8
+
 T-cell in a chronic setting. 
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4 Aims of the study 

The significance of chronic inflammatory processes in the pathogenesis of cardiovascular 

diseases is widely known. Atherosclerosis and autoimmune myocarditis are prototypic 

diseases demonstrating the unfavourable effect of constant immune activation within the 

cardiovascular system. Likewise, chronic rejection of solid organ transplants is characterized 

by a constant immune activation within the blood vessels of the transplanted organ. Despite 

the success in the treatment of acute rejection with immunosuppressive drugs, late graft 

rejection of a major organ (heart, liver, and kidney) occurs at a rate of 3-5% per year post 

transplantation (Cecka, 1999; Keck et al., 1999). Constant inflammation during chronic 

rejection results in a persistent activation of both helper and cytotoxic T-cells. It is likely that 

these inflammatory processes are driven through chronic antigen presentation within the 

blood vessel wall, by both professional APC (DC, macrophages and B cells) and non-

professional APC (e.g. EC). The detailed characterization of the interaction of CD8
+
 T-cells 

with professional and non-professional APC would be a major issue helping to delineate the 

exact mechanisms underlying vascular rejection of solid organ transplants. 

EC act as the major interface between blood and tissue. In the context of transplantation 

they fulfil important functions, including regulation of host leukocyte trafficking into the graft 

parenchyma, activation of the recipient lymphocytes, transmission of signals to other vascular 

cells, and angiogenesis reactions that develop during the healing process. Moreover, the 

vascular endothelium is a dynamic structure that contributes to the inflammatory response by 

the synthesis and display of various surface receptors and soluble molecules. Therefore, we 

hypothesized that the direct interaction of EC with T-cells is a critical factor for the activation 

or possible tolerization of T-cells. 

A first specific aim of our study was to analyze the interaction of EC with CD8
+
 T-cells in 

Tie2-LacZ mice in vivo. Using BM chimeric mice, we determined whether there is a direct 

interaction of β-gal specific CD8
+
 T-cells with β-gal-expressing EC or whether β-gal peptides 

are cross-presented by BM derived APC. 

In the second part of this study, we wanted to develop an experimental system that 

facilitates in vivo analysis on the cognate interaction of EC with activated CTL in a 

heterotopic heart transplantation model. Such a model should enable dissection of the 

immunologic mechanisms underlying the vascular rejection of Tie2-LacZ hearts transplanted 
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in C57BL/6 recipients. Furthermore, the role of persistent MCMV infection of transplant 

recipients for the acceptance of heart grafts was explored. 

We expect to provide a detailed study of the factors influencing the decision making 

process between T-cell activation versus T-cell tolerization in the context of chronic vascular 

rejection of solid organ grafts. In the long-term, we want to analyze the factors that influence 

EC-CTL interaction. These insights into the basic immunological mechanisms underlying 

chronic inflammatory processes may permit the evaluation of treatment strategies that could 

help to specifically tone-down the harmful consequences of chronic immune activation in 

chronic vascular rejection. 

 

 

Figure 4: Do vascular EC that present a minor histocompatibility antigen activate or tolerize naive CD8
+
  

T-cells? 
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5.1 Immunologic ignorance of vascular endothelial cells expressing 

minor histocompatibility antigen 
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5.1.1 Abstract  

Endothelial cells (EC) presenting minor histocompatibility antigen (mhAg) are major 

target cells for alloreactive effector CD8
+
 T-cells during chronic transplant rejection and 

graft-versus-host disease (GVHD). The contribution of EC to T-cell activation, however, is 

still a controversial issue. In this study, we have assessed the antigen presenting capacity of 

EC in vivo using a transgenic mouse model with beta-galactosidase (-gal) expression 

confined to the vascular endothelium (Tie2-LacZ mice). In a GVHD-like setting with 

adoptive transfer of -gal-specific T-cell receptor transgenic T-cells, -gal expression by EC 

was neither sufficient to activate nor to tolerize CD8
+
 T-cells. Likewise, transplantation of 

fully vascularized heart or liver grafts from Tie2-LacZ mice into non-transgenic recipients did 

not suffice to activate -gal-specific CD8
+
 T-cells, indicating that CD8

+
 T-cell responses 

against mhAg cannot be initiated by EC. Moreover, we could show that spontaneous 

activation of -gal-specific CD8
+
 T-cells in Tie2-LacZ mice was exclusively dependent on 

CD11c
+
 dendritic cells (DC) demonstrating that mhAg presented by EC remain 

immunologically ignored unless presentation by DC is granted.  
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5.1.2 Introduction 

Endothelial cells act as the major interface between blood and tissues. Forming the inner 

lining of blood vessels, they are uniquely positioned between circulating lymphocytes and the 

periphery and thereby regulate the trafficking of T-lymphocytes from the bloodstream to sites 

of infection and inflammation. Following transplantation of vascularized organs, EC are the 

first graft cells encountered by activated host lymphocytes and are therefore primary targets of 

alloreactive CTL (Briscoe et al., 1998a; Libby and Pober, 2001). Since donor EC persist in 

vascularized organ transplants, they may contribute to chronic immune stimulation and 

thereby fuel the process of chronic rejection. Such late graft failure is a major problem in 

transplantation medicine that frequently necessitates retransplantation (Weis and von Scheidt, 

1997). Furthermore, EC are important target cells for activated alloreactive CTL during graft 

versus host disease (GVHD) (Biedermann et al., 2002) which is characterized by large 

numbers of circulating minor histocompatibility antigen (mhAg)-specific CTL (Mutis et al., 

1999). 

EC can act as antigen presenting cells (APC) to CD8
+
 T-cells both via the direct pathway 

(i.e. recognition of allo-MHC:peptide complexes) or via the indirect pathway involving cross-

presentation of exogenous antigens (Valujskikh et al., 2002a; Bagai et al., 2005b; Limmer et 

al., 2000). In vitro studies have demonstrated that both human (Epperson and Pober, 1994) 

and murine (Kreisel et al., 2002a) EC can activate resting allogeneic CD8
+
 T-cells suggesting 

that EC critically contribute to the initial stimulation of alloreactive T-lymphocytes (Briscoe 

et al., 1998a). Moreover, EC exhibit important functions of professional APC including 

expression of MHC class II and costimulatory molecules (Rose, 1998) and cross-presentation 

of mhAg (Valujskikh et al., 2002a; Limmer et al., 2000). The notion that EC may under 

particular circumstances act as professional APC has been supported by the finding that non-

hematopoietic cells within vascularized grafts - presumably EC - are able to initiate CTL 

responses that mediate allograft rejection (Kreisel et al., 2002b).  

There are, however, a number of reports challenging the view that EC may act as immune 

activators. Murine lung EC, for example, have been shown to negatively regulate CD8
+
 T-cell 

function (Marelli-Berg et al., 2000). Furthermore, liver sinusoidal EC can induce CD8
+
 T-cell 

tolerance to soluble (Limmer et al., 2000; Limmer et al., 2005) or tumour-derived antigens 

(Berg et al., 2006). A third possible form of EC-CTL interaction is that of immunological 

ignorance. Indeed, aly/aly mice lacking secondary lymphoid organs fail to reject vascularized 

organ transplants, even in an allogeneic setting (Lakkis et al., 2000) suggesting that the 
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environment of organized lymphoid tissues is critical for primary activation of T-cell 

responses. To a large extent the above-mentioned contradictory findings can be explained by 

the use of in vitro co-culture systems or the lack of an appropriate in vivo model with truly 

EC-restricted antigen presentation. An experimental in vivo system with expression of well-

defined antigens exclusively in vascular EC may therefore be helpful to solve the question 

whether antigen presentation by vascular EC can lead to activation or tolerization of antigen-

specific CD8
+
 T-cells.  

The use of antigen-transgenic mice combined with the power of TCR transgenic animals 

has provided important insight into the basic principles of autoimmunity (Ohashi et al., 1991; 

von Herrath and Oldstone, 1996), and tumour immunity (Morgan et al., 1998; Speiser et al., 

1997). Recently, similar systems have been exploited to analyze T-cell responses in different 

allograft transplantation (Kreisel et al., 2004; Valujskikh et al., 2002a; Valujskikh et al., 2006; 

Ford et al., 2007) and GVHD models (Ehl et al., 1998b). However, despite significant 

advances in our understanding of the antigen presenting function of non-hematopoietic cells 

during allograft reactions (Kreisel et al., 2004) or the importance of T-cell frequencies for 

solid organ graft rejection (Ford et al., 2007; He et al., 2004b), the precise role of mhAg 

presentation by EC has remained elusive. We have used here Tie2-LacZ mice to model mhAg 

presentation by EC. In these mice, the tie2 promoter drives the expression of the beta-

galactosidase (-gal) antigen in EC in all tissues (Schlaeger et al., 1997). In vivo analysis of 

antigen-specific interaction between EC and CD8
+
 T-cell has been facilitated by using high 

affinity -gal-specific TCR transgenic CD8
+
 T-cells (Bg1 cells). Adoptive transfer of Bg1 

CD8
+
 T-cells into Tie2-LacZ mice revealed that mhAg presentation by EC did not suffice to 

activate or to tolerize CD8
+
 T-cells. Furthermore, -gal expression by EC in heterotopically 

transplanted Tie2-LacZ hearts or orthotopically transplanted Tie2-LacZ livers did not result in 

CD8
+
 T-cell activation in naive recipients. Finally, generation of bone marrow (BM) chimeric 

mice that facilitated selective ablation of CD11c-positive dendritic cells (DC) revealed that 

EC-associated mhAg has to be cross-presented by DC in order to elicit CD8
+
 T-cell 

activation.  
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5.1.3 Materials and Methods 

Mice 

Male and female C57BL/6 mice were obtained from Charles River (Sulzfeld, Germany). 

Tie2-LacZ mice (Schlaeger et al., 1997) had been backcrossed with C57BL/6 for at least 14 

times. B6.C-H2
bm1

 mice were provided by Christian Kurts (University of Bonn, Germany). 

Bg1 mice were produced with TCR cassette vectors generously provided by Dr Diane Mathis 

(Brigham and Women's Hospital, Boston, MA). RNA was isolated from a β-gal96–103-specific 

CD8
+
 T-cell clone, generated by limiting dilution, using silica matrix columns (Qiagen, 

Valencia, CA). Known TCR α and β constant region sequences were used to perform 5′ rapid 

amplification of cDNA ends (Invitrogen, Carlsbad, CA), and TCR sequences were then 

cloned into pCR4TOPO TA cloning sequencing vectors (Invitrogen). The TCR α and β 

transcripts were sequenced using an ABI Prism (Perkin-Elmer, Wellesley, MA), and these 

sequences were compared with available sequences to develop genomic cloning polymerase 

chain reaction (PCR) primers. These cloning primers provide amplification of the variable 

domains consisting of 10–20 bp upstream of the start codon through 200–300 bp of intronic 

sequence downstream of the junctional regions, thereby preserving splice donor/acceptor 

sites. The α and β genomic variable domains were PCR-amplified (Perkin-Elmer) and TA-

cloned into a sequencing vector (Invitrogen). The genomic variable domains were sequenced 

(Vα1/JαTA13/Cα and Vβ7S1/Jβ2S4/Cβ2) and subcloned into the TCR cassette vectors. The α 

and β cassette vectors were coinjected into fertilized C57BL/6 embryos (SAIC, Frederick, 

MD) and founders were obtained. The resulting mice, named Bg1, were maintained as 

heterozygotes, as a high rate of lymphoma in homozygotes reduced their life span. 

Heterozygotes were bred to B6.SJL mice and transgene expression was monitored by staining 

of blood cells with anti-Vβ7 by flow cytometry. Bg1 mice were further crossed with C57BL/6 

mice expressing the congenic marker Thy 1.1. Mice expressing the human high affinity 

diphteria toxin receptor (DTR) under the control of the CD11c promoter (Jung et al., 2002) 

were provided by Steffen Jung (The Weizmann Institute of Science, Rehovot, Israel). The 

presence of the gal and DTR transgenes was determined by PCR from genomic DNA; the 

presence of the H2-K
bm1

 molecule was determined by flow cytometry of blood lymphocytes 

using the 5F1 antibody (Sherman and Randolph, 1981). All animals were kept under 

conventional conditions in individually ventilated cages and fed with normal chow diet. 

Experiments were carried out with age (6-8 weeks) and sex-matched animals. Experiments 

were performed in accordance with Swiss Cantonal and Federal legislations.  
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Viruses and peptides 

Recombinant MCMV expressing the -gal protein under the transcriptional control of the 

human CMV ie1/ie2 promoter-enhancer (MCMV-LacZ RM427 (Manning and Mocarski, 

1988)) was kindly provided by Prof. E. S. Mocarski (Stanford University, San Francisco). 

MCMV-LacZ was propagated and titrated on NIH 3T3 cells (ECACC, UK) and injected 

intravenously at a dose of 210
6
 pfu. -gal96-103 (DAPIYTNV) (Overwijk et al., 1997),  

-gal497–504 (ICPMYARV) (Oukka et al., 1996) and MCMV M45985-993 (HGIRNASFI) (Gold 

et al., 2002) peptides were purchased from Neosystem (Strasbourg, France). 

 

Generation of bone marrow chimeric mice 

Recipient mice were lethally irradiated with 900 rads from a linear accelerator (clinics of 

radio-oncology, Cantonal Hospital St. Gallen) and intravenously injected 1 day later with 

210
7
 of the indicated donor BM cells. Chimeric mice were maintained on antibiotic water 

containing Sulfadoxin and Trimethoprim (Borgal, Veterinaria AG, Zurich, Switzerland) for 

the following 3 weeks. Recipient mice carrying the K
bm1

 mutation, received CD4
+
- and  

CD8
+
-T-cell-depleted BM and were further depleted of NK 1.1

+
 cells by i.p. injection of 20 l 

anti-asialo GM1 antibody (Wako Pure Chemical Industries, Ltd.) on the day before and in 

weekly intervals for 6 wk following irradiation. Mice were used for experiments 8 to 10 

weeks after bone marrow reconstitution. 

 

Antibodies and flow cytometry 

Anti-CD8-FITC, anti-CD4-PerCP, anti-V7-FITC, anti-CD90.1-PE, anti-CD44-PE, and 

anti-IFNγ-PE were obtained from BD PharMingen (Basel, Switzerland). Anti-CD8-APC was 

obtained from Biolegend (LuBioScience GmbH, Lucerne, Switzerland). Anti-CD62L-PE was 

obtained from ImmunoTools (Friesoythe, Germany). For flow cytometry, single cell 

suspensions were generated from the indicated organs and 1×10
6

 

cells were incubated with the 

indicated mAb at 4°C for 20 min. For PBL samples, erythrocytes were lysed with FACS 

Lysing Solution (BD PharMingen). Cells were analyzed with a FACScalibur flow cytometer 

using the CellQuest software (BD Biosciences). The cells were analyzed by flow cytometry, 

gating on viable leukocytes using 7-aminoactinomycin D (Sigma). 
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Construction of tetrameric MHC class I-peptide complexes and flow cytometry 

MHC class I monomers complexed with -gal (H-2K
b
) or M45 peptides (H-2D

b
) were 

produced as previously described (Altman et al., 1996) and tetramerized by addition of 

streptavidin-PE (Molecular Probes, Eugene, OR). At the indicated time points following 

infection, organs were removed and single cell suspensions were prepared. Aliquots of 510
6
 

cells or 300 l of blood were stained using 50 l of a solution containing tetrameric  

class I-peptide complexes at 37°C for 10 min followed by staining with anti-CD8-FITC (BD 

Pharmingen) at 4°C for 20 min. Absolute cell counts were determined by counting leukocytes 

in an improved Neubauer chamber. 

 

Chromium release assay 

EL-4 cells pulsed with peptide or without peptide (negative control) were used as target 

cells in a standard 
51

Cr release assay. Cells were labelled with 200 Ci 
51

Cr (EGT Chemie, 

Tägerig, Switzerland) for 1 h at 37°C. A total of 10
4
 target cells/well were incubated for 5 h in 

96-well round bottom plates with 3-fold serial dilutions of effector cells. Splenocytes from 

MCMV-LacZ infected mice that were restimulated with the indicated peptides for 5 days 

were tested for their cytolytic activity. Spontaneous chromium release was always below 

15%. 

 

CFSE labelling of TCR transgenic T cells and adoptive transfer 

Single cell suspensions from spleens of Bg1 mice were subjected to hypotonic red blood 

cell lysis and stained with CFSE (Molecular Probes, Leiden, The Netherland). A maximum 

concentration of 2.510
7
 cells/ml were incubated in 5 M CFSE in PBS for 10 min at 37°C. 

Cells were washed twice with ice-cold BSS and resuspended in BSS at a concentration of 

1.510
7
 splenocytes/ml. Recipient C57BL/6, Tie2-LacZ and the different subsets of chimeric 

mice were injected i.v. with 1.510
7
 Bg1-Thy 1.1

+
 splenocytes in 500 l BSS. 

 

Immunohistology 

Freshly removed organs were immersed in HBSS and snap-frozen in liquid nitrogen. 

Frozen tissue sections were cut in a cryostat and fixed in acetone for 10 minutes. Sections 

were incubated with antibodies against -gal (MP Biomedicals,), CD8 (clone YTS169.4.2) 

followed by goat anti-rat Ig (Caltag Labs) and alkaline phosphatase-labelled donkey anti-goat 

Ig (Jackson ImmunoResearch Labs). Alkaline phosphatase was visualized by using AS-BI 
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phosphate/New Fuchsin, and sections were counterstained with hemalum, and images were 

acquired using a Leica DM R microscope equipped with a Leica DC300 FX camera. Digital 

images were processed using Adobe Photoshop. 

 

Surgical procedure for liver transplantation 

Donor procedure, back-table preparation, and recipient procedure were performed as 

described previously with minor modifications (Tian et al., 2002). Briefly, all vessels and 

ligaments of the liver were dissected in the donor after midline laparotomy. In situ perfusion 

of the liver was performed, using cold (4°C) Ringer's solution. Subsequently, the liver was 

separated from its retroperitoneal attachments and removed. The graft was stored in cold 

(4°C) Ringer's solution for 60 minutes until implantation into the recipient. Following 

hepatectomy of the native liver in the recipient, the donor liver was implanted in an orthotopic 

position. The anhepatic time in the recipient was consistently kept below 20 minutes. The 

portal vein was reconstructed and the liver was reperfused after completing the anastomosis 

between the suprahepatic inferior vena cava of the recipient and donor. Arterial recirculation 

was established by an end-to-side anastomosis between the recipient aorta and an aortic 

segment attached to the hepatic artery of the graft. A single subcutaneous injection of 5 mg 

cefazolin provided antibiotic prophylaxis. 

 

Heterotopic heart transplantation 

Heterotopic vascularized cardiac transplantation was performed according to the method 

described by Corry et al. (Corry et al., 1973). Donor hearts were explanted from either male 

Tie2-LacZ or male C57BL/6 mice. The donor heart was removed from the chest after 

intracaval injection of 1 ml of heparin (100 U/ml), rinsed with NaCl 0.9% and placed on ice. 

After isolation of the recipient's abdominal aorta and inferior vena cava, the donor ascending 

aorta and pulmonary artery were joined end-to-side to the recipient's aorta and vena cava, 

respectively, using 10-0 nylon running suture. The abdomen was closed with individual 

running sutures to musculofascial layer and skins. The recipient mouse was then warmed for a 

few hours during recovery from anesthesia and had free access to water and food. The 

function of the transplanted heart was assessed daily by abdominal palpation. 
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Statistical data analysis 

To evaluate statistically significant differences, the unpaired two-tailed Student's test was 

used. p values smaller than 0.05 were considered statistically significant. Statistical data 

analysis was performed using GraphPad Prism version 4.03 for Windows (GraphPad 

Software Inc., San Diego California USA). 

5.1.4 Results 

5.1.4.1 CD8 T-cell tolerance in Tie2-LacZ mice 

Currently, a number of transgenic mouse lines are available that exhibit EC-restricted 

transgene expression: von Willebrandt Factor-LacZ (Aird et al., 1995) and thrombomodulin-

LacZ (Weiler-Guettler et al., 1996) mice which both show patchy transgene distribution in 

some arteries, and tie2-H-2Kb mice (Limmer et al., 2005) which express the H2-K
b
 molecule 

as a transgene. In this study, Tie2-LacZ mice (Schlaeger et al., 1997) backcrossed to the 

C57BL/6 background have been used because of the uniform -gal Ag expression in EC of all 

organs. It is noteworthy that the intensity of -gal expression in Tie2-LacZ mice is most 

pronounced in small and large arteries, but clearly detectable in venous and capillary EC 

(Figure 5 and Figure S 1). Furthermore, expression levels of -gal mRNA in various organs 

were comparable (Figure S 2) indicating that these mice are well-suited to study EC-CD8
+
  

T-cells interaction in vivo. Indeed, in a previous study, Rothermel et al. (Rothermel et al., 

2004) have used Tie2-LacZ mice on the FVB genetic background to assess CD4
+
 and CD8

+
 

T-cell responsiveness under conditions of persisting Ag expression in EC. Whereas this 

previous investigation suggested that Tie2-LacZ mice can mount CD8
+
 T-cell responses 

against the EC-restricted -gal antigen (Rothermel et al., 2004), the results obtained in the 

present study indicate that CD8
+
 T-cells in Tie2-LacZ mice are tolerant to the -gal antigen. 

This is shown by the fact that Tie2-LacZ mice failed to mount -gal-specific CTL responses 

following infection with -gal-recombinant mouse cytomegalovirus (MCMV-LacZ), whereas 

CD8
+
 T-cell responses against the viral M45 epitope were not influenced by the EC-specific 

transgene expression (Figure 5 B and C).  

We next addressed whether the apparent gal-specific CD8
+
 T-cell tolerance in Tie2-LacZ 

mice is mediated by thymic negative selection or by peripheral tolerizing mechanisms. To this 

end, Tie2-LacZ mice were crossed with TCR transgenic Bg1 mice which possess CD8
+
  

T-cells that recognize the H2-K
b
-restricted -gal96-103 epitope (Overwijk et al., 1997).  

60 - 70% of the Bg1 CD8
+
 T-cells bind H2-K

b
/-gal96-103 tetramers (Figure 6) and Bg1 CD8

+
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T-cells possess a high functional avidity for the -gal96-103 epitope as shown by target cell 

recognition and proliferation assays (Figure S 4). In the thymus of Tie2-LacZBg1 mice, the 

numbers of transgenic V7 chain-positive and tetramer-binding CD8
+
 cells were reduced to 

40% (Figure 6), suggesting that central tolerance led to partial deletion of -gal-specific  

T-cells. Interestingly, in peripheral lymphoid organs such as the spleen, the numbers of V7-

positive and -gal96-103 tetramer-binding CD8
+
 T cells was further reduced from 60-70% in 

Bg1 to less than 10% in Tie2-LacZBg1 mice. Thus, at a first glance, it appears that EC-

specific antigen expression in Tie2-LacZ mice precipitated both central and peripheral 

tolerance.  
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Figure 5: CD8
+
 T-cell reactivity in Tie2-LacZ mice. (A) Heart and thymus sections of naïve Tie2-LacZ mice 

were stained for -gal and CD8. (B-C) C57BL/6 (B6) and Tie2-LacZ (T2) mice were infected i.v. with 10
6
 pfu 

MCMV-LacZ. (B) Tetramer analysis for the indicated -gal and MCMV-derived M45 epitopes was performed 

on day 6 post infection. Mean percentage of tetramer-positive cells within the CD8 compartment are indicated  

( SEM; n=3-4). (C) Lysis of peptide-pulsed EL-4 cells by MCMV-LacZ-induced CTL. On day 6 post infection, 

splenocytes from the indicated mouse strains were restimulated in vitro for 5 days with -gal497-504, -gal96-103 or 

M45985-993 peptide and tested in a standard chromium release assay. 
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Figure 6: CD8
+
 T-cell tolerance in Tie2-LacZ mice. Tie2-LacZ mice were crossed with TCR trangenic Bg1 

mice. Thymocytes from Tie2-LacZ (T2, upper row), Bg1 (middle row), and Bg1Tie2-LacZ mice (Bg1xT2, 

lower row) were stained for CD4 and CD8 expression. The expression of the transgenic V7 chain and binding 

of the H2-K
b
-gal96-103 tetramer was determined by gating on CD8 T-cells. Values in the upper right quadrant 

indicate mean frequencies of CD4/CD8 positive cells in thymocytes or percentage of antigen-specific cells in 

single CD8 positive thymocytes, respectively (T2, n=2; Bg1; n=3, Bg1T2 n=7). Splenocytes were assessed for 

V7 and CD8 expression. Expression of gal96-103-specific cells was determined by V7 and H2-K
b
-gal96-103 

tetramer staining, gating on CD8 T-cells (T2, n=3; Bg1, n=5; Bg1T2 n=9). 
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5.1.4.2 EC-independent peripheral CD8
+
 T-cell tolerance 

Peripheral CD8
+
 tolerance can be induced via different cell types including circulating 

hematopoietic cells expressing mhAg (Ehl et al., 1998a; Bonilla et al., 2006), BM-derived 

APC cross-presenting antigen derived from parenchymal tissues (Kurts et al., 1997; Kurts et 

al., 1998), or particular subsets of EC that, as well, possess the ability to cross-present 

circulating antigens (Limmer et al., 2000; Limmer et al., 2005). In order to assess truely EC-

mediated peripheral tolerance induction, we established first a highly sensitive in vivo 

restimulation assay to detect very low amounts of circulating Bg1 cells. To this end, graded 

numbers of sorted CD8
+
Thy1.1

+
 cells from naive Bg1 mice were transferred into  

Thy1.2-positive Tie2-LacZ and C57BL/6 mice. Six days following adoptive transfer, mice 

were infected with MCMV-LacZ and the expansion of Bg1 cells was assessed six days later. 

As shown in Figure 7A, -gal-specific CD8
+
 T-cells expanded in C57BL/6 but not in  

Tie2-LacZ mice, confirming that Bg1 cells encounter their antigen in Tie2-LacZ mice outside 

of the thymus and that this interaction leads to their deletion. However, reconstituting  

Tie2-LacZ mice with C57BL/6 BM revealed that CD8
+
 T-cell tolerance in Tie2-LacZ mice 

was solely dependent on -gal expression within the BM (Figure 7B and C). These data 

indicate that expression of a mhAg by EC alone is neither sufficient to directly tolerize CD8
+
 

T-cells nor is this antigen available to BM-derived APC in a way that would lead to CD8
+
  

T-cell tolerance. 
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Figure 7: Loss of adoptively transferred Bg1 CD8
+
 T-cells in Tie2-LacZ mice is not dependent on -gal 

expression by EC. (A) Graded numbers of CD8
+
 Bg1 cells expressing the congenic marker Thy1.1 were 

adoptively transferred into Thy1.2
+
 C57BL/6 or Tie2-LacZ recipient mice. Six days later, mice were challenged 

with 210
6 

pfu MCMV-LacZ and the proliferation of Bg1 CD8
+
 T-cells was determined on day six following 

immunization by staining for CD8, Thy 1.1 and the transgenic V7 chain. Representative data from one out of 2 

independent experiments are shown. (B, C) Adoptive transfer of Bg1 CD8
+
 T-cells in bone marrow chimeric 

mice. 510
4
 (B) or 10

5 
(C) TCR transgenic Thy1.1

+
 Bg1 cells were adoptively transferred into the indicated 

Thy1.2
+
 bone marrow chimeric mice. Nine days (B) or 30 days (C) later, mice were challenged with 210

6
 pfu 

MCMV-LacZ and proliferation of Bg1 CD8
+
 T-cells was determined on day six following MCMV-LacZ 

challenge in the indicated organs. Values represent mean percentage ( SEM) of Thy1.1
+
V7

+
 cells within the 

CD8 T-cell compartment. 
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5.1.4.3 EC fail to directly activate naive CD8
+
 T-cells in vivo 

Deletional tolerization of CD8
+
 T-cells via activation-induced cell-death is usually 

associated with a transient period of T-cell activation and proliferation (Ehl et al., 1998b; 

Kyburz et al., 1993). Furthermore, it is possible that EC in Tie2-LacZ mice might directly 

interact with CD8
+
 T-cells in a way that leads to T-cell activation and/or proliferation. In 

order to assess a potential spontaneous T-cell activation by EC in a GVHD-like model 

situation, 310
6
 CFSE-labelled TCR transgenic CD8

+
 T-cells were adoptively transferred into 

Tie2-LacZ mice and T-cell activation was monitored as CD44 upregulation on proliferating 

Bg1 cells (Figure 8A). Quantification of gal-dependent T-cell proliferation was achieved by 

adoptive transfer of CSFE-labelled, Thy 1.1-positive CD8
+
 Bg1 cells into either C57BL/6 or 

Tie2-LacZ mice (Figure 8B). This sensitive read-out system was then used to assess whether 

antigen presentation by EC alone is sufficient to mediate CD8
+
 T-cell activation or whether 

bone marrow-derived APC, in particular DC, contribute to the observed initial CD8
+
 T-cell 

triggering.  

An array of BM chimeric mice was generated using different combinations between 

C57BL/6 (B6) and Tie2-LacZ (T2) controls, Tie2-LacZ mice on the C57BL/6
bm1

 background 

(T2bm1) exhibiting a mutated H2-K
b
 molecule that precludes H2-K

b
-restricted presentation, 

and CD11c-DTR mice (Jung et al., 2002) which facilitate the specific ablation of  

CD11c-positive DC in lymphoid organs. As expected, Bg1 cells were not activated in 

B6B6 chimeras (Figure 9A), whereas transgenic CD8
+
 T cells proliferated in T2T2 

chimeric mice (Figure 9B). Proliferation of Bg1 cells in B6T2 chimeras indicated that BM-

derived non-transgenic APC had activated the transgenic T cells (Figure 9C). This 

interpretation is supported by the fact that Bg1 proliferation was aborted in T2bm1T2 

chimeras where direct and cross-presentation via BM-derived APC is abolished and only EC 

can present the -gal epitope (Figure 9D). Experiments with T2bm1T2bm1 chimeras 

confirmed that Bg1 cells do not proliferate in the absence of the appropriate H2 restriction 

element (Figure 9E). Bg1 activation could be restored in B6T2bm1 chimeras confirming 

that indeed BM-derived APC are crucial in this setting (Figure 9F). Finally, reconstitution of 

T2bm1 mice with BM from CD11c-DTR mice together with diphteria toxin-mediated 

ablation of DC showed that the proliferation of Bg1 cells depended strictly on the cross-

presentation of -gal antigen by DC (Figure 9G). Taken together, these results indicate that 

gal-presenting vascular EC remain immunologically ignored by CD8
+
 T-cells and that 
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activation and proliferation of CD8
+
 T-cells recognizing the mhAg in Tie2-LacZ mice is 

solely dependent on cross-presentation of Ag by BM-derived DC. 

 

 

 

Figure 8: Activation of Bg1 CD8
+
 T-cells in Tie2-LacZ mice. (A) A total of 1.510

7
 CFSE-labelled splenocytes 

(corresponding to 310
6
 CD8

+
 TCR transgenic T-cells) from Bg1 mice were adoptively transferred into 

C57BL/6 or Tie2-LacZ mice. Mice were sacrificed on day four following transfer and cells from blood, spleen 

and LNs were analyzed by flow cytometry for CFSE dilution and CD44 upregulation on CD8
+
 lymphocytes. 

FACS-plots from one representative out of two independent experiments are shown. (B) Quantification of Bg1 

T-cell proliferation. 1.510
7
 CFSE-labelled Bg1 Thy1.1

+
 splenocytes were injected into C57BL/6 or naïve Tie2-

LacZ mice. Mice were killed on day four following transfer and cells from blood, spleen and LNs were analyzed 

by flow cytometry. Values represent mean percentage ( SEM, n=7, pooled data from two independent 

experiments) of proliferating CD8
+
Thy1.1

+
 cells (*, p0.05; **, p0.005; ***, p0.001). 
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Figure 9: In vivo proliferation of Bg1 CD8
+
 T-cells in bone marrow chimeric mice. 1.510

7
 CFSE-labelled 

splenocytes (corresponding to 310
6
 CD8

+
 TCR transgenic T-cells) expressing the congenic marker Thy1.1 were 

adoptively transferred into the indicated Thy1.2
+
 bone marrow chimeras: (A) C57BL/6  C57BL/6,  

(B) Tie2-LacZ  Tie2-LacZ, (C) C57BL/6  Tie2-LacZ, (D) Tie2-LacZB6.C-H2
bm1

  Tie2-LacZ,  

(E) Tie2-LacZB6.C-H2
bm1

  Tie2-LacZB6.C-H2
bm1

, (F) C57BL/6  Tie2-LacZB6.C-H2
bm1

, and (G) 

CD11cDTR  Tie2-LacZB6.C-H2
bm1

. CD11c-DTR bone marrow recipients had been injected 

intraperitoneally with 4 ng/g body weight diphteria toxin which led to a 95 to 98 % depletion of CD11c
+
 cells for 

> 48 h. Mice were sacrificed on day four following adoptive transfer and cells from blood, and spleens were 

analyzed by flow cytometry. Values in the histograms represent mean percentage ( SEM, n=5-7, pooled data 

from three independent experiments) of proliferating CD8
+
Thy1.1

+
 T-cells.  

 

5.1.4.4 Immunologic ignorance of antigen expressing EC in vascularized organ transplants 

In order to assess whether the above findings, obtained in a GVHD-like setting, also reflect 

EC-CTL interaction within vascularized organ grafts, a series of heart and liver 

transplantations were performed. Heterotopically transplanted Tie2-LacZ hearts were well-

accepted in C57BL/6 recipients and spontaneous CD8
+
 T-cells responses against both the  

-gal497-503 (Figure 10A) and the -gal96-103 epitope (not shown) could not be detected. To 

analyze with higher sensitivity the effect of -gal expression on vascular EC, we employed 

the adoptive transfer system of CSFE-labelled Bg1 cells. Two weeks following heterotopic 

heart transplantation (Figure 10B and D) or orthotopic liver transplantation (Figure 10C and 

E), CFSE-labelled Bg1 CD8
+
 T cells were adoptively transferred either into recipients that 

had received C57BL/6 (Figure 10B and C) or transgenic Tie2-LacZ organs (Figure 10D and 

E). This analysis revealed no significant differences in Bg1 CD8
+
 T-cell activation between 

recipients of Tie2-LacZ and C57BL/6 control organs indicating that EC within the 

transplanted organs had not primed naive CD8
+
 T-cells. 
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Figure 10: Lack of CD8
+
 cell activation in naive recipients of Tie2-LacZ vascularized organ grafts. (A) 

Spontaneous -gal-specific CD8
+
 T-cell reactivity measured by tetramer analysis. C57BL/6 recipients received 

either C57BL/6 (B6  B6) or Tie2-LacZ (T2  B6) hearts and the presence of -gal497-504-specific CD8
+
  

T-cells in blood was assessed by flow cytometry on day 20 post transplantation. (B-E) Activation of CD8
+
 Bg1 

T-cells after adoptive transfer of 1.510
7
 CFSE-labelled Bg1 splenocytes in C57BL/6 recipients on day 10 post 

transplantation. (B, D) Heterotopic heart transplantation with donor organs from C57BL/6 (n=7) (B) and Tie2-

LacZ (n=8) (D) mice. Orthotopic liver transplantation with donor organs from C57BL/6 (n=5) (B) and Tie2-

LacZ (n=4) (D) mice. Mice were sacrificed on day four following adoptive transfer and cells from blood were 

analyzed by flow cytometry. Values in the histograms represent mean percentage ( SEM) of proliferating 

CD8
+
Thy1.1

+
 cells. 
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5.1.5 Discussion 

In this study, we have used antigen-transgenic mice with uniform mhAg expression in EC 

in combination with CD8
+
 T-cell TCR transgenics to demonstrate that mhAg presentation by 

EC does neither precipitate T-cell activation nor tolerization. The lack of any tolerizing effect 

of prolonged EC-CD8
+
 T-cell interaction is unexpected because non-activated, mhAg 

presenting EC in Tie2-LacZ provide "signal 1", i.e. antigen, in the absence of "signal 2", i.e. 

costimulation. Thus, the EC-associated antigen in Tie-LacZ mice that is expressed in a wide-

spread and easily accessible fashion should lead to CD8
+
 T-cell tolerance, in particular, in the 

absence of "danger signals" (Matzinger, 1994). One could argue that EC possess an impaired 

capacity to present immunodominant peptides (Kummer et al., 2005) and therefore fail to 

interact with CD8
+
 T-cells. In Tie2-LacZ mice, however, EC can become target cells of CTL 

that have been appropriately activated via DC priming in vivo thereby leading to typical 

vascular rejection of organ grafts (Engeler et al., manuscript in preparation). Furthermore, it is 

unlikely that the antigen expression levels in EC of Tie2-LacZ are too low to allow for 

productive EC-CD8
+
 T-cell interaction because sufficient EC-associated antigen is present in 

Tie2-LacZ mice for indirect (cross-) presentation by BM-derived DC. It is therefore possible 

that studies describing activation and subsequent tolerization of CD8
+
 T-cells, for example by 

particular subsets of EC such as liver sinusoidal EC (Limmer et al., 2000; Limmer et al., 

2005; Berg et al., 2006) may not have considered the contribution of professional APC such 

as DC and other BM-derived APC. 

Indeed, the complexity of the multi-cellular processes involved in EC-mediated antigen 

presentation in vivo requires careful consideration of possible confounding factors. Rothermel 

et al. (Rothermel et al., 2004) have suggested that immune recognition of EC is context-

dependent with antigen expressed in hearts of Tie2-LacZ mice being immunologically 

ignored whereas EC presenting -gal antigen in skin are immunogenic and thus elicit T-cell 

responses capable of rejecting skin grafts. The results of our study clearly confirm the notion 

that direct presentation of mhAg by EC is accompanied by immunologic ignorance. However, 

in the context of mhAg presentation in transplant vasculopathy and GVHD, DC are probably 

the most important cell population that cross-presents the antigen in an immunogenic fashion.  

Our study revealed further details that could confound the analysis of T-cell 

activation/tolerization in Tie2-LacZ mice: gal-specific CD8
+
 T-cells were effectively 

tolerized in non-irradiated Tie2-LacZ and in T2T2 bone marrow chimeric mice. We 

conclude from these findings that cells within the bone marrow, but not professional APC that 
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descend from bone marrow precursors exert a tolerizing stimulus in Tie2-LacZ mice. 

Hematopoietic stem cells express the angiopoetin 1 receptor Tie2 (Arai et al., 2004) and it is 

therefore likely that the complete tie2-promoter that has been used in Tie2-LacZ (Schlaeger et 

al., 1997) is active in hematopoietic cells. Since circulating lymphocytes presenting mhAg 

efficiently tolerize naive CD8
+
 T-cells (Ehl et al., 1998b; Bonilla et al., 2006), it is reasonable 

to assume that naive CD8
+
 T-cells travelling through the BM can receive tolerizing stimuli 

within this compartment. Using Tie2-LacZ BM chimeras, it will be feasible to further 

characterize those cells within the bone marrow that are highly efficient in inducing tolerance 

to mhAg.  

Taken together, this study identifies the initial priming of mhAg-specific CD8
+
 T-cells via 

DC as a critical step in the generation of alloimmune responses. Therefore, it appears to be 

crucial that therapeutic intervention should aim at preventing or at least reducing the initial  

T-cell activation against mhAg. Indeed, blockade of essential costimulatory pathways such as 

CD40-CD40L (Larsen et al., 1996; Ford et al., 2007) or CD28-CD80/86 (Salomon and 

Bluestone, 2001) interaction during initial DC-mediated CD8
+
 T-cell stimulation bear a high 

potential for clinical application. It may well be that a combination of costimulatory blockade 

before and during priming of EC-specific CD8
+
 cell responses together with the induction of 

regulatory T-cells (Salomon and Bluestone, 2001) will help to protect EC from injury 

following transplantation of vascularized organs or during GVHD. 

5.1.6 Supplemtary data 
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Figure S 1: gal and CD8 staining of salivary gland, spleen and liver sections of naïve Tie2-LacZ mice. Freshly 

removed organs were immersed in HBSS and snap-frozen in liquid nitrogen. Frozen tissue sections were cut in a 

cryostat and fixed in acetone for 10 min. Sections were incubated with antibodies against gal (MP 

Biomedicals,), CD8 (clone YTS169.4.2) followed by goat anti-rat Ig (Caltag Labs) and alkaline phosphatase-

labelled donkey anti-goat Ig (Jackson ImmunoResearch Labs). Alkaline phosphatase was visualized by using 

AS-BI phosphate / New Fuchsin, and sections were counterstained with hemalum, and pictures were acquired 

using a Leica DM R microscope. 

 

 

 

 

 

Figure S 2: LacZ mRNA copy numbers in liver, spleen, heart, kidney, thymus and BM of naïve Tie2-LacZ 

mice. Organs were homogenized in Trizol (Sigma) using a MagNA Lyser instrument (Roche Diagnostics). RNA 

was isolated by isopropanol percipitation, washed with ethanol 70% and resuspended in DEPC-water. RNA (10 

g) was subjected to RT-PCR analysis. For RT-PCR the high capacity cDNA archive Kit from Applied 

Biosystem (ABI PRISM, Warrington, United Kingdom) was used according to the specifications of the 

manufacturer to generate cDNA from RNA samples. Quantitative real-time PCR was performed using a 

LightCycler (Roche Diagnostics) and the LightCycler FastStart DNA Master
PLUS

 HybProbe reaction mix (Roche 

Diagnostics) following the manufacturer's protocol. Data analysis was performed with LightCycler Software 3 

(Roche Diagnostics). Oligonucleotides were purchased from Microsynth (Balgach, Switzerland). The following 

oligonucleotides from LacZ sequences were used as primers for quantitative real-time PCR: 5'-

GCGTGGATGAAGACCAGC-3' and 5'-CGAAGCCGCCCTGTAAAC-3'. The following oligonucleotides were 

used as probes: 5' CAGTCTTGGCGGTTTCGCTAA 3' (probe 1) and 5' TACTGGCAGGCGTTTCGTCAG 3' 

(probe 2). Probe 1 carried a 3' FAM reporter and probe 2 was Cy5 labelled at the 5' end. Thermal cycling started 

with HotStarTaq activation during 15 min at 95°C. Thereafter 50 cycles of amplification were run consisting of 

15 s at 95°C, 20 s 60°C and 20 s of 72°C. A negative control, containing reagents only, and serial dilutions of 

plasmid containing the specific LacZ sequence were included in each run to generate a standard curve. The 

concentrations of the plasmid dilutions were: 280000, 28000, 2800, 280 and 28 copies per reaction. LacZ mRNA 

concentration in the unknown samples was calculated by the ABI Prism Software using the data from the 

standard curve. Each sample was measured twice and the average concentration was used. Final copy numbers 

were calculated per g total RNA. 
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Figure S 3: Expression of LacZ transcripts in sorted bone marrow cells. For cell sorting, the FACS Aria (BD 

Biosciences) was used. Erythrocyte-depleted BM cells were stained in IMDM 2% FBS with saturating 

concentrations of anti-TCR, anti-CD3, anti-CD11b, anti-CD11c, anti-CD19, anti-CD117, and anti-Ly6A/E 

(SCA-1). Following a 30 min incubation at 4°C, cells were washed in PBS 2% FBS and resuspended in PBS, 

filtered through a 20 µm diameter nylon mesh, and resuspended at about 20×10
6
/mL in filtered PBS 2% FBS 

prior to sorting. Reanalysis of sorted cells indicated purity >95%. Real-time RT-PCR for the quantification of 

LacZ expression in the sorted BM cells was performed essentially as described in Figure S2 with the following 

modifications. Expression of the TATA-binding protein (TBP) was used for normalization. The following 

primers were used for amplification of TBP: TBPfw CCTTCACCAATGACTCCTATGAC, TBPrev 

CAAGTTTACAGCCAAGATTCAC. Amplification program for the LightCycler RT-PCR was 95°C 15 min; 50 

cycles – 95°C 10 sec, 58°C 10 sec, 72°C 20 sec. The level of expression between samples derived from the 

different cell populations was calculated by the comparative CT method (CT) with expression in total bone 

marrow cells set as reference. 

 

 

Figure S 4: Functional avidity of TCR transgenic Bg1 CD8
+
 T-cells. (A) EL-4 cells pulsed with different 

concentration of the gal96-103 (DAPIYTNV) peptide or without peptide (negative control) were used as target 

cells in a standard 
51

Cr release assay. Cells were labelled with 200 Ci 
51

Cr (EGT Chemie, Tägerig, Switzerland) 

for 1 h at 37°C. A total of 10
4
 target cells/well were incubated for 5h in 96-well round bottom plates with 3-fold 

serial dilutions of effector cells. CTL from naïve Bg1 mice that were restimulated with gal96-103 (DAPIYTNV) 

for three days and were tested at a effector:target ratio of 10:1. (B) MACS-purified CD8
+
 splenocytes from Bg1 

mice were cocultured with gal96-103 (DAPIYTNV) peptide presenting DC. DC were generated from bone 

marrow of C57BL/6 mice using GM-CSF containing medium as described previously (Ludewig et al., 1998, J. 

Virol. 72:3812). DC were pulsed at the indicated concentration of the gal96-103 (DAPIYTNV) peptide or left 
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unloaded as a negative control and plated onto a 96-well plate in RPMI 1640 (Sigma) supplemented with 5% 

FCS, 25mM L-glutamine, and 100U/ml penicillin with 100g streptomycin sulfate. Responder to stimulator ratio 

of the displayed data was 30:1. Cells were incubated at 37°C for 60 hours. During the last 12 hours of coculture, 

1 Ci of 
3
H thymidine (MP Biomedical, EGT Chemie, Tägerig, Switzerland) was added to each well. To 

measure incorporation into DNA, the plates were frozen, thawed, harvested, and counted on a beta liquid 

scintillation counter (TRI-CARB, Packard). The mean of triplicates ( SD) was calculated, background values 

from cultures with unpulsed DC were subtracted.  

 
 

Figure S 5: Phenotype of MCMV-LacZ-activated Bg1 TCR transgenic T cells in B6B6 and B6T2 chimeras. 

The indicated bone marrow chimeric mice received 10
5
 CD8

+
Thy1.1

+
 cells from naive Bg1 mice. Nine days 

following adoptive transfer, mice were infected with MCMV-LacZ and the phenotype of the activated Bg1 cells 

was assessed six days later. Bg1 T cells activation was measured as upregulation of CD44 (A), and down-

regulation of CD62L (B). Progression of activation-induced cell death was measured as Annexin V upregulation 

(C). Expression of the respective markers on naïve CD8
+
 T-cells from B6 mice is shown as controls. Mean 

fluorescence intensity is indicated (n=2-3).  
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Figure S 6: Fate of Bg1 TCR transgenic T cells in T2T2 chimeric mice. 1.510
7
 CFSE-labelled splenocytes 

(corresponding to 310
6
 CD8

+
 TCR transgenic T cells) from Bg1 mice were adoptively transferred into T2T2 

bone marrow chimeras. Mice were sacrificed on days 4 and 8 following transfer and dividing Bg1 cells from 

spleens were analyzed by flow cytometry for CD44 (A), and Annexin V (B) upregulation. Total numbers of 

transgenic Bg1 cells in spleens of recipient T2T2 and B6B6 mice were determined (C) at the indicated time 

points. 
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5.2.1 Abstract  

Background: Occlusive coronary artery disease is the major cause for cardiac allograft 

rejection. Endothelial cells (EC) are the first graft cells encountered by host lymphocytes and 

are therefore primary targets of activated cytotoxic T-lymphocytes (CTL). This study 

determined whether CTL-mediated injury of EC exclusively presenting a minor 

histocompatibility antigen (mhAg) would suffice to precipitate transplant vasculopathy (TV). 

Methods: The interaction of CTL with antigen-presenting EC in vivo has been examined 

here using a transgenic mouse model with beta-galactosidase (-gal) expression confined to 

the vascular endothelium (Tie2-LacZ mice). Cardiac grafts from Tie2-LacZ mice were 

transplanted heterotopically into C57BL/6 recipients. EC-specific CTL were activated in vivo 

either by priming with -gal peptide-pulsed dendritic cells (DCs) or by infection with -gal-

recombinant mouse cytomegalovirus (MCMV-LacZ).  

Results: In the absence of -gal-specific effector CTL, Tie2-LacZ heart grafts remained 

immunologically ignored for more than 100 days post transplantation. Repetitive priming 

with -gal peptide-pulsed DC elicited severe vascular inflammation in transplanted Tie2-

LacZ hearts with neointima formation and vascular occlusion. Activation of EC-specific CTL 

by infection with MCMV-LacZ caused less severe vascular inflammation in Tie2-LacZ hearts 

presumably due to the timely limited activation of -gal-specific CTL under these conditions. 

Conclusions: EC injury mediated by activated CTL recognizing a mhAg specifically 

expressed on EC is sufficient to elicit TV. Prolonged antigen presentation within secondary 

lymphoid organs - most likely by DCs - appears to be a key factor for the development of 

chronic vascular rejection. 
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5.2.2 Introduction 

Despite advances in immunosuppressive therapies for acute allograft rejection, successful 

long-term outcome of transplanted solid organs is still hampered by late graft failure (Keck et 

al., 1999; Cecka, 1999). Chronic graft rejection is caused, in large part, by host-anti-graft 

immune responses that target cells of the graft vasculature thereby precipitating transplant 

vasculopathy (TV) (Libby and Pober, 2001). The most prominent feature of TV is the 

remodelling of graft vessels caused by neointima formation and progressive luminal 

narrowing (Mitchell and Libby, 2007). Since the progressive TV-associated loss of lumen 

affects mainly conduit arteries, this disease entity can also be referred to as "graft 

arteriosclerosis" (Tellides and Pober, 2007). Endothelial cells (EC) are the first graft cells 

encountered by the host immune system and it is thus most likely that a complex series of 

immune-mediated EC injuries initiate and drive the process of chronic vascular rejection 

(Valantine, 2003). It is therefore important to delineate the specifics of the inciting EC injury 

in well-defined model systems. 

Among the different immune effector molecules that have been implicated in the 

pathogenesis of TV, IFN- appears to be a particularly important factor. This is supported not 

only by the fact that IFN- transcription in endomyocardial biopsies of human heart grafts is 

upregulated prior the development of TV (Russell et al., 1994a), but also by several 

experimental studies showing that IFN- is instrumental for the development of TV (Russell 

et al., 1994d; Nagano et al., 1997). Studies of Russell and colleagues indicated that cardiac 

TV in a MHC-disparate setting is largely driven by T-cells (Russell et al., 1994b) and that 

humoral alloresponses can contribute to the chronic inflammatory process (Russell et al., 

1994c; Russell et al., 1997). It is important to note that these and other experimental studies 

on cardiac TV (Armstrong et al., 1997a; Armstrong et al., 1997b) had to employ 

immunosuppressive treatment to down-modulate a full-blown alloimmune response. 

Evidently, such a setting precludes comprehensive functional analyses of T-cells involved in 

the disease process.  

A major aim of the present study was to develop an experimental system that facilitates in 

vivo studies on the cognate interaction of EC with activated CTL in a heterotopic heart 

transplantation model. To this end, we employed a transgenic mouse with EC-specific  

-galactosidase (-gal) expression under the control of the Tie2 promoter (Tie2-LacZ mice) 

(Schlaeger et al., 1997). These mice had been generated on the FVB/NJ background (H2q 

haplotype) thus hampering thorough immunological analysis of EC-CTL interaction 
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(Rothermel et al., 2004). Following backcrossing to the C57BL/6 background, we have shown 

in a recent study (Bolinger et al., 2008) that -gal expression by EC in heterotopically 

transplanted Tie2-LacZ hearts or orthotopically transplanted Tie2-LacZ livers did not result in 

activation of naive CD8
+
 T-cells. Furthermore, generation of bone marrow (BM) chimeric 

mice that facilitated selective ablation of CD11c-positive dendritic cells (DC) revealed that 

EC-associated minor histocompatibility antigen (mhAg) has to be cross-presented by DC in 

order to elicit CD8
+
 T-cell activation. Having thus established that naive CTL 

immunologically ignore vascular EC expressing a mhAg, we examined in the present study 

whether -gal-specific effector CTL are able to mediate significant EC injury and whether 

this particular interaction would suffice to precipitate TV in transplanted Tie2-LacZ hearts. 

We found that priming with -gal peptide-pulsed DC induced vascular inflammatory disease 

with neointima formation and vascular occlusion. Less pronounced activation of EC-specific 

CTL by infection with -gal-recombinant mouse cytomegalovirus (MCMV-LacZ) led to 

reduced vascular inflammation in Tie2-LacZ hearts suggesting that it is the DC-mediated, 

prolonged presentation of mhAg within secondary lymphoid organs that drives activation of 

EC-specific CTL fostering thereby the development of chronic vascular rejection. 

5.2.3 Materials and Methods 

Mice 

Male and female C57BL/6 mice were obtained from Charles River (Sulzfeld, Germany). 

Tie2-LacZ mice (Schlaeger et al., 1997) had been crossed to the C57BL/6 background for at 

least 14 times. The presence of the -gal transgene was determined by PCR from genomic 

DNA. Mice were thymectomized at 6-7 weeks of age as described (Aichele et al., 1995) and 

used 4 weeks after thymectomy. All animals were kept under conventional conditions in 

individually ventilated cages and fed with normal chow diet. Experiments were carried out 

with age (6-10 weeks) and sex-matched animals. Experiments were performed in accordance 

with Swiss Cantonal and Federal legislations. 

 

Viruses and peptides 

Recombinant MCMV expressing the -gal protein under the transcriptional control of the 

human CMV ie1/ie2 promoter-enhancer (MCMV-LacZ RM427 (Manning and Mocarski, 

1988)) was kindly provided by Prof. E. S. Mocarski (Stanford University, San Francisco). 

MCMV-LacZ was propagated and titrated on NIH 3T3 cells (ECACC, UK) and injected 
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intravenously at a dose of 210
6
 pfu. -gal96-103 (DAPIYTNV) (Overwijk et al., 1997),  

-gal497–504 (ICPMYARV) (Oukka et al., 1996) and MCMV M45985-993 (HGIRNASFI) (Gold 

et al., 2002) peptides were purchased from Neosystem (Strasbourg, France). 

 

Antibodies and flow cytometry 

Anti-CD8-FITC and anti-IFNγ-PE were obtained from BD PharMingen (Basel, 

Switzerland). For flow cytometry, single cell suspensions were generated from the indicated 

organs, and 1×10
6

 

cells were incubated with the indicated mAb at 4°C for 20 min. For PBL 

samples, erythrocytes were lysed with FACS Lysing Solution (BD PharMingen). Cells were 

analyzed with a FACScalibur flow cytometer using the CellQuest software (BD Biosciences). 

Cells were analyzed by flow cytometry, gating on viable leukocytes using  

7-aminoactinomycin D (Sigma). 

 

Construction of tetrameric MHC class I-peptide complexes and flow cytometry 

MHC class I monomers complexed with -gal (H-2K
b
) or M45 peptides (H-2D

b
) were 

produced as previously described (Altman et al., 1996) and tetramerized by addition of 

streptavidin-PE (Molecular Probes, Eugene, OR). At the indicated time points following 

infection, organs were removed and single cell suspensions were prepared. Aliquots of 510
6
 

cells or 300 l of blood were stained using 50 l of a solution containing tetrameric  

class I-peptide complexes at 37°C for 10 minutes followed by staining with anti-CD8-FITC 

(BD Pharmingen) at 4°C for 20 min. Absolute cell counts were determined by counting 

leukocytes in an improved Neubauer chamber. 

 

DC preparation and injection 

DC were generated from C57BL/6 bone marrow as described previously (Ludewig et al., 

1998a). Before injection, cells were loaded with the gal497–504 peptide for 1 h at 37°C, 

washed three times with ice-cold BSS and resuspended in BSS at a concentration of 410
5
 

DC/ml. DC were injected in 500 l BSS i.v. on days 0, 2, 10, and 12.  

 

Immunohistology 

Freshly removed organs were immersed in HBSS and snap-frozen in liquid nitrogen. 

Frozen tissue sections were cut in a cryostat and fixed in acetone for 10 minutes. Sections 

were incubated with antibodies against -gal (MP Biomedicals,), CD8 (clone YTS169.4.2), or 
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F4/80 (Biomedicals AG, clone BM8) followed by goat anti-rat Ig (Caltag Labs) and alkaline 

phosphatase-labelled donkey anti-goat Ig (Jackson ImmunoResearch Labs). Alkaline 

phosphatase was visualized by using AS-BI phosphate/New Fuchsin, and sections were 

counterstained with hemalum. Hematoxylin-eosin, and elastica-Van Giesson (EVG) stainings 

were done following standard procedures. Images were acquired using a Leica DM R 

microscope equipped with a Leica DC300 FX camera. Digital images were processed using 

Adobe Photoshop. 

 

Heterotopic heart transplantation 

Heterotopic vascularised cardiac transplantation was performed according to the method 

described by Corry et al. (Corry et al., 1973). Donor hearts were explanted from either male 

Tie2-LacZ or male C57BL/6 mice. The donor heart was removed from the chest after 

intracaval injection of 1 ml of heparin (100 U/ml), rinsed with NaCl 0.9% and placed on ice. 

After isolation of the recipient's abdominal aorta and inferior vena cava, the donor ascending 

aorta and pulmonary artery were joined end-to-side to the recipient's aorta and vena cava, 

respectively, using 10-0 nylon running suture. The abdomen was closed with individual 

running sutures to musculo-fascial layer and skin. The recipient mouse was then warmed for a 

few hours during recovery from anaesthesia and had free access to water and food. The 

function of the transplanted heart was assessed daily by abdominal palpation. 

 

Histological scoring of chronic vascular transplant rejection 

Based on histological changes observed in chronic allograft rejection, we established a 

modified scoring system to analyze different degrees of vascular transplant rejection based on 

criteria previously published (Hirozane et al., 1995; Russell et al., 1994d) using a scale from 0 

to 3 for the different pathological alterations. The degrees for intimal thickening of coronary 

arteries (0 = <10%; 1 = 10 to <50%; 2 = 50 to <90%; 3 = 90-100% luminal occlusion in at 

least one artery/section), perivascular fibrosis (0 = no changes; 1 = minor fibrotic changes 

around 1 to 3 arteries/section; 2 = vast fibrotic changes around 1 to 3 arteries/section; 3 = vast 

fibrotic changes around more than 3 arteries/section), and perivascular and vascular 

inflammatory infiltrates (0 = no inflammatory infiltrates; 1 = few inflammatory infiltrates 

around 1 to 3 arteries/section; 2 = vast inflammatory infiltrations around 1 to 3 

arteries/section; 3 = vast inflammatory infiltrates in more than 3 arteries/section) were 
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determined. Six to eight sections from each heart were evaluated by two independent 

observers blinded for the tested specimen. 

 

Statistical data analysis 

To evaluate statistically significant differences, the unpaired two-tailed Student's test or the 

nonparametric Kruskal-Wallis test were used. p values smaller than 0.05 were considered 

statistically significant. Statistical data analysis was performed using GraphPad Prism version 

4.03 for Windows (GraphPad Software Inc., San Diego California USA). 

5.2.4 Results 

5.2.4.1 -gal-specific immune responsiveness in heart transplant recipients 

We have shown previously that EC-associated mhAg in Tie2-LacZ hearts transplanted into 

naive C57BL/6 recipients remains immunologically ignored during the first 2-3 weeks post 

transplantation (Bolinger et al., 2008). To determine whether EC in transplanted Tie2-LacZ 

hearts remain intact over a longer period of time, we performed two independent series of 

transplantations of Tie2-LacZ (T2B6, n=5) or C57BL/6 (B6B6, n=6) hearts in C57BL/6 

recipients. Daily palpation revealed that Tie2-LacZ hearts were well-accepted even over a 

period of 100 days. In situ analysis on day 100 post transplantation showed that inflammatory 

reactions both in T2B6 and B6B6 hearts were transplantation procedure-associated with 

thrombus organization in the left ventricle. Importantly, hearts from both groups lacked signs 

of vascular rejection (Figure 11). Furthermore, -gal-expression in coronary arteries of 

T2B6 heart was preserved (Figure 11B, lower right panel) indicating that the graft 

endothelium of Tie2-LacZ had not been replaced by recipient EC.  
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Figure 11: In situ analysis of heterotopically transplanted (A) C57BL/6 (B6B6) and (B) Tie2-LacZ (T2B6) 

hearts on day 100 post transplantation. Hematoxylin-eosin (HE), -CD8, -CD4, and -F4/80 stainings are 

indicated. Original magnification: ×200 (HE overview: ×16). 

 

Next, we assessed whether the persistent presence of a mhAg in the vasculature of a heart 

graft affected CTL reactivity. To this end, C57BL/6 recipients of transgenic and control hearts 

were challenged with -gal peptide-pulsed DC. In this setting, three different scenarios can be 

envisioned: (i) elevated CTL reactivity in T2B6 recipients due to preactivation of CTL, (ii) 

no or lowered CTL reactivity as a consequence of tolerizing stimuli, and (iii) no alteration in 

CTL reactivity because of immunologic ignorance. DC-immunization elicited a comparable 

expansion of -gal-specific CD8
+
 T-cells both in recipients of Tie2-LacZ and C57BL/6 

control hearts (Figure 12A and B) supporting the notion that mhAg presentation by cardiac 

EC did neither activate nor tolerize naive CTL. To further substantiate this finding and to 

exclude that recent thymic emigrants had replenished a pool of -gal-reactive CTL that were 

tolerized due to a low-level exposure to their cognate antigen in recipients of Tie2-LacZ 

hearts, transgenic hearts were transplanted into mice that had been thymectomized 4 weeks 

before heart transplantation. As shown in Figure 12C, induction of -gal-specific CTL in 

thymectomized recipients of Tie2-LacZ hearts was not affected by the replenishment of the 

peripheral T-cell pool from the thymus. Taken together, these data provide further evidence 

that a mhAg antigen expressed by vascular EC remains immunologically ignored.  
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Figure 12: CTL reactivity in recipients of C57BL/6 (B6B6) or Tie2-LacZ (T2B6) heart transplants 

following DC immunization. (A, B) Four weeks post transplantation; mice were repetitively immunized with 

2×10
5
 gal peptide-pulsed DC. (A) Representative FACS histograms from blood of B6B6 and T2B6 mice 

on day 7, or untreated B6 recipients of a Tie2-LacZ heart on day 30 post transplantation. Values in the upper 

right quadrant represent percentage of tetramer-positive CD8
+
 T-cells. (B) Percentage of gal497-504–specific 

CD8
+
 T-cells in blood on day 7 post immunization (left panel), and in spleens on day 15 post immunization 

(right panel) (mean SEM; n=4-7 animals per group). (C) CD8
+
 T cell responses in thymectomized mice 

following DC immunization. Male C57BL/6 mice were thymectomized, and received two weeks following 

thymectomy either C57BL/6 or Tie2-LacZ hearts. Four weeks post transplantation, mice were immunized with 

DC as in (A and B). Percentage of gal497-504–specific CD8
+
 T-cells in blood (left panel), and in spleens on day 

15 post immunization (right panel) (mean SEM; n=3 animals per group) Statistical analysis using the 

nonparametric Kruskal-Wallis test indicated no significant difference between the different groups (p>0.05 for B 

and C). 
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5.2.4.2 CTL-induced vascular rejection after DC immunization 

In the next set of experiments, we assessed whether EC in transplanted Tie2-LacZ hearts 

may serve as target cells for activated CTL. Recipient mice were challenged with -gal497–504 

peptide-loaded DC starting 4 weeks post transplantation. Two injections of -gal peptide-

pulsed DC (days 0 and 2), were sufficient to generate significant CTL responses on day 7 

(Figure 12) and to precipitate significant inflammatory reactions around coronary arteries of 

T2B6 hearts, whereas the vasculature of B6B6 hearts did not show signs of inflammation 

(Figure 13A). Based on our previous experience with DC-based immunization against 

tumours (Ochsenbein et al., 1999; Ludewig et al., 2004) and the requirement of prolonged 

DC-mediated antigen presentation to precipitate autoimmune disease (Ludewig et al., 1998b; 

Ludewig et al., 2001), immunization of transplant recipients was repeated on days 10 and 12, 

and hearts were evaluated for signs of vascular rejection on day 15 following the first DC 

application. Histological analysis revealed typical signs of chronic vascular rejection 

including intimal thickening combined with perivascular infiltrations of CD8
+
 T cells and 

F4/80-positive macrophages, perivascular fibrosis, and vascular occlusion (Figure 13B). Since 

these pathological alterations were prominent in T2B6 hearts, we developed a scoring 

system based on criteria published by Russell et al. (Russell et al., 1994d) and by Hirozane et 

al. (Hirozane et al., 1995). T2B6 hearts from DC-immunized recipients showed 

significantly more perivascular infiltration (Figure 14A), intimal thickening (Figure 14B), and 

perivascular fibrosis (Figure 14C) compared to B6B6 hearts. The overall vascular score of 

T2B6 hearts (Figure 14D) clearly indicates that this read-out is well-suited to monitor the 

vigour of vascular rejection in this setting.  
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Figure 13: In situ analysis of transplanted Tie2-LacZ hearts following repetitive DC immunization on days 7 

(A) and 15 (B) post immunization. Hematoxylin-eosin (HE), elastic-van Giesson (EVG), -CD8, -CD4, and  

-F4/80 stainings are indicated. Original magnification: ×200. 
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Figure 14: Quantification of vascular rejection following DC immunization. (A) Perivascular infiltration, (B) 

intimal thickening, (C) perivascular fibrosis, was determined on heart sections on day 15 post DC immunization. 

(D) Total of the vascular rejection indices. Values represent scores of individual mice, horizontal bars represent 

mean values. 

 

5.2.4.3 Virus-induced vascular pathology in transplanted Tie2-LacZ hearts 

Epidemiologic and experimental data indicate that human cytomegalovirus (HCMV) 

represents an important viral pathogen that elicits arterial inflammation and may thereby 

exacerbate TV (Valantine, 2004; Potena and Valantine, 2007). It has been suggested that 

CMV can alter the susceptibility of EC to CTL-inflicted injury by fostering upregulation of 

adhesion and MHC molecules (Sedmak et al., 1994; van Dorp et al., 1989) thereby rendering 

infected EC better targets for antiviral CTL. To assess the impact of murine CMV (MCMV) 

infection on chronic vascular rejection in the Tie2-LacZ heart transplant setting, we infected 

B6B6 and T2B6 recipients with -gal-recombinant MCMV (MCMV-LacZ). Peak 

expansion of -gal-specific CTL on day 6 post infection (Figure 15A, left panel), was lower 

compared to DC-based immunization (Figure 12). Furthermore, MCMV-induced CTL 

responses showed a pronounced contraction to less than 0.5% -gal-specific CTL in the CD8
+
 

T-cell compartment on day 14 post infection (Figure 15, right panel). Immunhistologic 
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analysis of heart sections on day 14 following MCMV-LacZ infection revealed a significantly 

higher amount of perivascular inflammatory infiltrates (Figure 15B and C, left panel) in 

T2B6 compared to B6B6 hearts. These infiltrates were mainly CD8
+
 T-cells (Figure 15B, 

right panel). Interestingly, intimal thickening and perivascular fibrosis were not detectable 

(Figure 15B and C) indicating that the MCMV-LacZ-driven CTL response was sufficient to 

direct activated CTLs to antigen-expressing blood vessels, but that this activation did not 

suffice to generate the full pathology of vascular rejection. 
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Figure 15: Immune reactivity and vascular pathology following MCMV-LacZ infection. C57BL/6 recipients of 

Tie2-LacZ (T2B6) or C57BL/6 (B6B6) hearts were infected with 2x10
6
 pfu MCMV-LacZ 4 weeks after 

transplantation. (A) CTL activation in blood and spleens was determined by tetramer analysis for the indicated 

-gal and MCMV-derived M45 epitopes on days 6 and 14, respectively. Mean percentage of tetramer-positive 

cells within the CD8 compartment are indicated ( SEM; n=3-4). (B) In situ analysis of heterotopically 

transplanted C57BL/6 (B6B6) and Tie2-LacZ (T2B6) hearts on day 14 post infection. Hematoxylin-eosin 

(HE), elastic-van Giesson (EVG), and -CD8 stainings are shown. Original magnification: ×200. (C) 

Quantification of vascular rejection following MCMV-LacZ infection measured as perivascular infiltration, 

intimal thickening, and perivascular fibrosis on day 14 post MCMV-LacZ infection. Values represent scores of 

individual mice, horizontal bars represent mean values.  



Results 

- 76 - 

 

5.2.5 Discussion 

It has been suggested that TV underlying chronic graft failure represents a delayed-type 

hypersensitivity response directed against cells of the vascular wall (Libby et al., 1989). The 

present study further supports this notion by providing a mechanistic link between direct T-

cell-mediated EC injury and subsequent pathological remodelling of coronary arteries. In a 

model situation where activated CTL recognizing an EC-specific mhAg cause vascular 

inflammation, prolonged antigen presentation by DC within secondary lymphoid organs was 

necessary and sufficient for the development of chronic vascular rejection. 

Within vascularised organ transplants, donor EC can persist and may therefore contribute 

to chronic alloimmune stimulation. Under particular circumstances, EC may even initiate 

CTL responses that mediate allograft rejection (Kreisel et al., 2002b), and EC can be 

recognized by CD8
+
 T-cells through the indirect antigen presentation pathway involving 

cross-presentation of exogenous antigens (Valujskikh et al., 2002a; Bagai et al., 2005b; 

Limmer et al., 2000). These previous studies have depicted EC-CTL interaction as an almost 

exclusive encounter of two cell types. However, in a recent study, we have shown, using 

Tie2LacZ mice in combination with CD8
+
 T-cell TCR transgenics, that EC presenting a 

mhAg remain immunologically ignored by naïve CTL and that EC-associated mhAg has to be 

cross-presented by DC in order to elicit CD8
+
 T-cell activation (Bolinger et al., 2008). The 

results of the present study support the notion that DC represents a crucial intermediary cell in 

the interaction between EC and CTL. -gal peptide-pulsed DC that were adoptively 

transferred into recipients of Tie2-LacZ heart efficiently expanded EC-specific CTL. 

Importantly, prolonged antigen presentation by DC was mandatory for the development of TV 

in this experimental system.  

Infection with CMV is an important risk factor for TV in human transplant recipients 

(Valantine, 2004; Potena and Valantine, 2007), most likely through its ability to directly 

infect cells of the vascular wall (Wu et al., 1992). Furthermore, experimental studies have 

indicated that MCMV infection can exacerbate allograft rejection (Carlquist et al., 1993). The 

results from the present study are in line with this interpretation since antiviral T cell 

responses directed against the -gal antigen within the vasculature favoured the development 

of vascular inflammation. However, in the absence of concomitant strong alloimmune 

responses, MCMV-induced anti-EC CTL did not suffice to elicit the full pathology of chronic 

vascular rejection. It is likely that a significant acceleration of TV by CMV infection is based 

on a combination of various factors including (i) the particular vascular tropism of the virus 
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resulting in virus-induced T-cell responses against persisting viral antigens within the 

vasculature, and (ii) bystander cytokine-mediated augmentation of allo-T-cell responses. 

Likewise, atherosclerotic lesion formation in hypercholesterolemic mice can be accelerated 

through MCMV-induced bystander cytokines (Vliegen et al., 2004; Vliegen et al., 2005) and 

by the specific activation of T-cells reactive against viral antigens that persist in the 

vasculature (Krebs et al., 2007).  

Taken together, using a novel mouse model of CTL-mediated EC injury in heterotopic 

heart transplantation, we could demonstrate that activated CTL recognizing a mhAg 

specifically expressed on EC can elicit TV. Furthermore, this interaction is facilitated by DC 

as intermediary cells which promote prolonged antigen presentation within secondary 

lymphoid organs. Thus, therapeutic intervention should target DC-mediated T-cell activation, 

for example through blockade of critical costimulatory circuits to protect EC from CTL-

mediated injury following transplantation of vascularised organs. 
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6 Discussion 

Numerous factors contribute to the development of CTV. In addition to non-

immunological aspects, a number of cell-cell interactions play a key role in its initiation and 

maintenance. It is thus important to provide appropriate models with well-defined conditions 

for the dissection of the different features. 

6.1 Can EC activate naive CD8
+
 T-cells? 

The detailed interaction of EC with CD8
+
 T-cells has been investigated in several in vitro 

and in vivo studies. Most in vitro studies were based on allogeneic differences between EC 

and CD8
+
 T-cells (Kreisel et al., 2002a; Ma and Pober, 1998; Epperson and Pober, 1994; 

Bagai et al., 2005a; Pober et al., 1997). Only a few studies have assessed the role of EC 

presenting a mhAg to CD8
+
 T-cells (Marelli-Berg et al., 2000; Marelli-Berg et al., 2001). 

Many in vivo studies have been performed using combinations with allogeneic differences 

between host and donor (Kreisel et al., 2002a; Kreisel et al., 2002b; Valujskikh et al., 2002a) 

or have studied the role of specific EC populations, such as the liver sinusoidal EC (LSEC), 

which cross-present antigen (Berg et al., 2006; Limmer et al., 2000; Limmer et al., 2005). 

However, in these experimental settings cross-presentation by professional APC, the role of 

mhAg, or the direct interaction of EC with CD8
+
 T-cells could not be examined. 

Therefore, our transgenic mouse, with the expression of the well-defined model antigen  

β-gal in the vascular endothelium (Tie2-LacZ mice) combined with the use of TCR transgenic 

mice (Bg1mice) with CD8
+
 T-cells specific for a β-gal epitope, represents a suitable model for 

the investigation of the cognate interaction of vascular EC with CD8
+
  

T-cells. It is the first model that allows studying the mhAg-specific cell-cell interaction in 

vivo. Furthermore, by the generation of BM chimeric mice, facilitating the ablation of  

CD11c-positive BM-derived DC (CD11c-DTR mice), antigen presentation by other cells than 

EC could be considered and analyzed. 

In this work, we demonstrated that mhAg presentation by EC does neither lead to CD8
+
  

T-cell activation nor tolerization. This was shown by the fact that adoptively transferred  

β-gal-specific CD8
+
 T-cells ignored mhAg expressed on the vascular endothelium. However, 

antigen expressed on vascular EC was cross-presented by BM-derived DC and induced 

activation of adoptively transferred antigen-specific CD8
+
 T-cells.  

There are several explanations for the observed immunologic ignorance. First, it could be 

that levels of antigen expression in EC of Tie2-LacZ mice are too low. It has been shown that 
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low antigen dose lead to T-cell tolerance (Kurts et al., 1999). However, this is implausible in 

our study since there is sufficient EC-associated antigen present for enabling the indirect 

cross-presentation by BM-derived DC. Second, there is the possibility that EC possess an 

impaired capacity to present immunodominant peptides (Kummer et al., 2005) and therefore 

fail to interact with CD8
+
 T-cells. However, it seems more reasonable that it is the location 

and the availability of antigen which determine whether an immune response is induced 

(Zinkernagel et al., 1997). Antigen has to be presented in organized lymphoid tissue to induce 

an immune response since aly/aly mice, which lack secondary lymphoid organs, failed to 

reject vascularised organ transplants (Lakkis et al., 2000). In other words, antigens that never 

reach organized lymphoid tissue or only for a too short period of time or in too low quantities 

are not able to activate T-cells. Staying outside lymphoid tissue is even a trick used by some 

viruses, for example the papilloma virus that induces skin warts, to escape immune 

surveillance (Zinkernagel et al., 1997). A further example of antigen ignorance is a transgenic 

mouse model with LCMV glycoprotein (GP) expressed in islet cells of the pancreas under the 

rat insulin promoter (RIP). These mice do not spontaneously develop diabetes. However, 

rapidly after infection with LCMV that induces a potent CTL response, they become diabetic 

(Ohashi et al., 1991). Only after specific activation T-cells are able to migrate to the periphery 

where target cells present the antigen. This underscores the necessity of the antigen being 

transported and presented within secondary lymphoid organs. Unless antigen does not reach 

organised lymphoid tissue, potentially reactive T-cells may be present but become neither 

activated nor actively tolerized.  

In our study, EC present a mhAg and therefore provide “signal 1”, i.e., antigen, in the 

absence of “signal 2”, i.e., costimulation which should result in tolerization of the antigen-

specific CD8
+
 T-cells. It is reasonable to assume that cell-cell contact between EC and CD8

+
 

T-cells was not possible or not within the right environment to enable productive interaction 

between EC and naive CTL. Nevertheless, BM-derived DC cross-presented mhAg and thus 

induced CD8
+
 T-cell activation and proliferation, identifying DC as potent APC that present 

antigen to CD8
+
 T-cells within secondary lymphoid organs.  

We explain the controversial outcome as compared to previous studies investigating the 

capacity of EC to induce a CD8
+
 T-response by their in vitro settings, where cell-cell contact 

is guaranteed (Marelli-Berg et al., 2000; Marelli-Berg et al., 2001), but which do not 

correspond to the in vivo situation where cell-cell contact represents a major challenge. A 

further explanation is the use of allogeneic disparities between host and donor leading to a 

different starting-point with higher antigen amount and higher precursor frequency (Kreisel et 
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al., 2002a; Kreisel et al., 2002b; Valujskikh et al., 2002a). A further reason is the difference in 

antigen amount presented by EC. In the study performed by Limmer et al. antigen was 

supplied systemically to the liver. This huge amount of antigen was then cross-presented by 

LSEC and led to the tolerization of antigen-specific CD8
+
 T-cells (Limmer et al., 2000). It 

would be of major interest whether the threshold amount of antigen necessary for the 

induction of CD8
+
 T-cell tolerance, instead of ignorance as seen in a study by Kurts et al. 

(Kurts et al., 1999) could be achieved supplying Tie2-LacZ mice with such high amounts of 

antigen. To address this question, we are going to inject soluble β-gal antigen i.v. into  

Tie2-LacZ mice, thereafter TCR transgenic CD8
+
 T-cells are transferred and CD8

+
 T-cell 

activation analyzed. However, in the experimental settings by Limmer and Berg et al. (Berg et 

al., 2006; Limmer et al., 2000; Limmer et al., 2005) antigen cross-presentation by professional 

APC, as seen in our study, could not be excluded and therefore may be a further reason for the 

different outcome.  

In our study, steady-state BM-derived DC cross-presenting mhAg induced CD8
+
 T-cell 

activation. Although they present antigen in the absence of “danger” or any inflammatory 

reaction, they did not induce T-cell tolerization. However, it is possible that some of the 

transferred cells became activated during ex vivo preparation before adoptive transfer. But 

since proliferation in wild-type C57BL/6 mice was not observed, this possibility can be ruled 

out. A better explanation for the independence of costimulatory signals could be the precursor 

frequency of CD8
+
 T-cells. Precursor frequency has been shown to play a particular role that 

impacts T-cell proliferation, differentiation, and requirement for costimulation. Donor-

reactive T-cells primed at a low frequency exhibited an increased requirement for CD28- and 

CD40L-mediated costimulation, whereas donor-reactive T-cells primed above a certain 

threshold cannot become tolerized by the blockade of costimulatory pathways (Ford et al., 

2007) and thus overcome peripheral tolerance mechanisms. Furthermore, it has been 

demonstrated that vigorous allograft rejection occurs despite the absence of “danger” 

(Bingaman et al., 2000).  

However, in our model CD8
+ 

T-cells became indeed activated and proliferated but they did 

not acquire full effector functions. This phenomenon could be a result of the different 

requirements for a T-cell to proliferate and expand or to become a cytotoxic T-cell. 

(Hernandez et al., 2002; Valitutti et al., 1996). Taken together, our results indicate that cell-

cell contact between vascular EC and CD8
+
 T-cells did not occur or in an inadequate manner, 

whereas contact between DC and CD8
+
 T-cells was strong and long enough to trigger CD8

+
 

T-cell activation and proliferation. 
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Tie2-LacZ hearts and livers transplanted into C57BL/6 mice have been well accepted. The 

presentation of a mhAg did not lead to T-cell activation. Moreover, Tie2-LacZ hearts resided 

in the recipients for over 100 days without any signs of CTV. This is in contrast to the study 

of Hirozane et al. where presentation of mhAg (more than one) lead to the development of 

CTV until day 70 (Hirozane et al., 1995). In our study, transferred β-gal specific CD8
+
 T-cells 

have neither been activated nor tolerized by mhAg presentation via EC of the transplanted 

organs. mhAg on EC has been ignored. This confirms the results seen in Tie2-LacZ mice. 

Furthermore, the mhAg amount was too low to be cross-presented by BM-derived DC (Kurts 

et al., 1999).  

However, β-gal expression in Tie2-LacZ mice refers to a single mhAg only. In the study 

by Valujskikh et al. the male antigen H-Y represents more than one single mhAg and cross-

presentation of the H-Y antigens by host EC was enough to mediate skin graft rejection. This 

estimate could also be considered in our setting. Transplantation of male Tie2-LacZ hearts 

into female C57BL/6 recipients would augment mhAg number and amount. Thus, we could 

address the question whether increase in mhAg number influences CD8
+
 T-cell activation and 

whether EC can become target cells of specific CTL.  

Overall, CD8
+
 T-cell activation or CD8

+
 T-cell induced rejection of transplanted organs 

has only been observed in in vivo transplantation models with allogeneic differences between 

host and donor (Kreisel et al., 2002a; Kreisel et al., 2002b). This indicates that the high 

amount of antigen together with the high precursor frequency provides a stimulus strong 

enough to overcome the standard rules for T-cell priming and thus to activate CD8
+
 T-cells. 

In the case of a mhAg, we argue that these requirements are not fulfilled and CD8
+
 T-cells 

therefore ignore mhAg presented by vascular EC (Figure 16).  
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Figure 16: Minor histocompatibility antigen presented by vascular EC is ignored by naive CD8
+
 T-cells. CD8

+
 

T-cells do not become activated nor tolerized. 
 

6.2 Can EC become target cells of activated CTL? 

To find out whether antigen-specific CTL mediate injury to EC presenting a mhAg and 

whether these injuries are sufficient to induce TV, we heterotopically transplanted Tie2-LacZ 

hearts into C57BL/6 recipients. In order to activate β-gal specific CD8
+
 T-cells over a longer 

period of time, β-gal peptide-loaded, in vitro cultured DC were repetitively injected. Thus, a 

strong β-gal specific CD8
+
 T-cell response could still be measured on day 15 and the detailed 

interaction of EC with β-gal-specific CTL was assessed. Induction of a β-gal specific CTL 

response elicited severe vascular inflammation in transplanted Tie2-LacZ hearts. Furthermore, 

neointima formation and vascular occlusion could be observed leading thereby to the 

development of chronic vascular rejection. Infection with MCMV-LacZ was characterized by 

a less pronounced activation and a shorter time of β-gal-specific CTL responses and therefore 

led to reduced vascular inflammation in Tie2-LacZ hearts. 

These results suggest that once activated, β-gal specific CD8
+
 T-cells easily migrate to the 

periphery where they make cognate interactions with peptide/MHC complexes expressed on 

vascular EC, thereby engaging their effector machinery and leading to specific destruction of 

the EC. This indicates that the second antigen contact has less stringent costimulatory 

requirements. Furthermore, these findings identify EC presenting mhAg as target cells of 

specific activated CTL (Figure 17). Nevertheless, this issue is crucial in the context of GVHD 
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which is characterized by the presence of activated mhAg-specific CTL capable of EC 

destruction and thereby leading to CTV development (Mutis et al., 1999). Furthermore, EC 

injury has been shown to influence the outcome of CTV. 

However, we show that it is yet again the long-term antigen presentation and thus the long-

term CTL activation within secondary lymphoid organs which plays a key role in the 

induction of chronic vascular rejection. Short-time activation of CTL, as seen in MCMV-

LacZ infection, is clearly less efficient in inducing specific CTV. Despite the fact that 

MCMV-LacZ induces a strong specific and overall immune stimulation, we argue that it is the 

lack of chronic activation that leads to a less pronounced outcome of vascular inflammation, 

neointima thickening, and vessel occlusion. Additionally, this is even more evident when 

lesions of Tie2-LacZ hearts were compared with lesions in wild-type hearts. This 

phenomenon could be explained by the fact that MCMV preferentially infects and replicates 

in vascular EC (Jarvis and Nelson, 2002), together with the general immune stimulation it 

leads to cell infiltration and mild inflammation around the vessels in C57BL/6 mice. The use 

of TCR transgenic β-gal specific CD8
+
 T-cells in combination with MCMV-LacZ could be an 

approach to render the system more specific and enable the investigation of the influence of 

viral infections. This is of major interest since, as a consequence of immunosuppressive 

treatment in transplantation patients, viral reactivation may occur and accumulating evidence 

suggests that such virus reactivations resulting in chronic viral infection play a major role in 

the development of CTV. Beside herpes viruses, such as CMV, viral genomes including 

adenovirus have been found to correlate with the outcome of acute and chronic rejection 

(Potena et al., 2003). By the constant presence of antigen, chronic viral infections lead to the 

continuous stimulation of the immune system. The permanent release of pro-inflammatory 

cytokines favours local inflammation and allograft injury leading to CTV. Nonetheless, it has 

been shown that antiviral therapy in transplant patients leads to a prolonged graft life (Hodson 

et al., 2005; Potena et al., 2006). Furthermore, chronic immune reactivity against persisting 

antigen in the vasculature exacerbates atherosclerotic lesion formation (Krebs et al., 2007). 

However, there is evidence that the development of CTV is influenced by the simultaneous 

co-existence of a chronic viral infection. Therefore, MCMV-LacZ infection together with the 

transfer of β-gal-specific CD8
+
 and/or CD4

+
 T-cells will help to measure the influence of 

specific immune reactivity against a persisting antigen in the vasculature. Nevertheless, since 

MCMV-LacZ infection did not display a long-term activation of β-gal-specific CTL in our 

model, we are going to further use the β-gal recombinant and replication deficient adenovirus 

(Adeno-LacZ). After Adeno-LacZ infection a long-term β-gal-specific CTL response could be 
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observed. Infection of C57BL/6 mice with 2x10
9
 pfu Adeno-LacZ induces a β-gal-specific 

CTL response with its peak for the β-gal497-504 epitope on day 14 measured by MHC class I 

tetramer staining, whereas the CTL response for a second β-gal epitope, the β-gal96-103, 

increased over time and displayed more than 30% specific CD8
+
 T-cells on day 100 

identifying Adeno-LacZ as an ideal virus to test chronic immune stimulation in our 

transplantation model. 

Taken together our results corroborate studies performed with major histocompatibility 

disparities between donor and host, except that mhAg-specific CTL had to be generated by 

vaccination in our model. This is because of the lower antigen amount and particularly 

because of the lower precursor frequency of T-cells specific for a mhAg compared to 

alloreactive T-cells (Lindahl and Wilson, 1977; Suchin et al., 2001). Nonetheless, CTV has 

been proposed to represent a delayed-type hypersensitivity response against cells of the 

vascular wall (Libby et al., 1989; Mitchell and Libby, 2007). The present findings support this 

view by showing the link between direct T-cell-mediated EC injury and subsequent 

pathological remodelling of coronary arteries. However, since EC are target cells for activated 

CTL they clearly drive the process of chronic vascular rejection by their immune-mediated 

injuries (Valantine, 2003). Furthermore, EC persist in organ transplants and are thereby able 

to serve as a place for chronic inflammation, injuries, and subsequent chronic vascular 

rejection. 

However, one criticism that could be raised concerning our model is the use of a single 

mhAg which does not represent the “real” situation where donor and host differ in more than 

one mhAg and principally display major histocompatibility antigen differences. This lack 

could be bypassed, as already mentioned, by the transplantation of a male Tie2-LacZ heart 

into a female C57BL/6 recipient. Whether this simple change could lead to spontaneous T cell 

activation has to be investigated. Although it has already been shown that a male heart 

transplanted into female recipient did not lead to rejection (He et al., 2004a), the cumulating 

effect of a mhAg and the H-Y antigens has never been assessed. Moreover, the use of TCR 

transgenic β-gal specific CD8
+
 T-cells in combination with MCMV-LacZ infection could 

additionally augment the precursor frequency of specific CD8
+
 T-cells which has been shown 

to accelerate the pace and severity of vasculopathy (He et al., 2004a). Yet, it was the 

restriction to a single mhAg presented by EC that made it possible to independently study the 

effect of mhAg expression on EC and its role in the development of CTV. Furthermore, the 

lack of any immunosuppressive therapy, either by immunosuppressive drugs or via co-

stimulatory blockade, made it an ideal model for studying cell-cell interaction in chronic 
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vascular rejection. Indeed, we could clearly demonstrate that activated CTL recognizing a 

mhAg expressed on EC were able to induce TV. Furthermore, by showing the importance of 

DC as intermediary cells promoting prolonged antigen presentation within secondary 

lymphoid organs, we propose that therapeutic intervention should clearly target DC-mediated 

T-cell activation in order to prevent CTL-mediated injury of EC following transplantation. 

Still, our findings concerning MCMV-LacZ infection clearly show that virus clearance or 

injury healing are critical steps contributing to the development of CTV (Valantine, 2003). 

Taken together, chronic graft rejection is a complex disorder in which numerous known and 

unknown factors participate and it is in the end the overall sum of stimuli leading to the 

disease (Caforio et al., 2004; Goodman and Mohanakumar, 2003).  

In order to obtain more mechanistic insights, we plan to further investigate the role of IFNγ 

in the development of TV since it has been shown to have a number of actions on EC, such as 

up-regulation of MHC class I molecules. Transplantation of hearts from Tie2-LacZ mice 

lacking the IFNγ-receptor should display whether the release of IFNγ by T-lymphocytes 

accelerate TV development induced by β-gal-specific CTL through its effect on the activation 

status of EC.  

 

Figure 17: Activated CD8
+ 

T-cells recognize minor histocompatibility antigen expressed on EC, thus EC 

become target cells of antigen-specific CTL. 
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6.3 CD4
+
 T-cell help 

It is known that both CD4
+
 and CD8

+
 T-cells contribute to allograft rejection. The central 

importance of CD4
+
 T-cells in the initiation of allograft rejection has been illustrated in 

multiple studies and there is no doubt that hematopoietic cells of donor and host origin, such 

as DC and macrophages, are potent activators of alloreactive CD4
+ 

T-cells. Furthermore, 

rejection of a solid organ mismatched for minor antigens is also dependent on CD4
+
 and 

CD8
+
 T-cells (Rosenberg and Singer, 1992; Filatenkov et al., 2005). Heart transplants with 

mhAg disparities are rapidly rejected, but only if they received both specific CD8
+
 and CD4

+
 

T-cells before transplantation (Filatenkov et al., 2005). Moreover, it has long been recognized 

that CD4
+
 T-cell help is essential for CD8

+
 T-cells, in particular for responses to some 

bacterial and viral infections (Bevan, 2004). However, it is the CD4
+
 T-cell help that renders 

the APC competent to efficiently stimulate naive CD8
+
 T-cells via CD40L-CD40 ligation 

(Ridge et al., 1998). Thus, the expression of B7 costimulatory molecules on DC (Yang and 

Wilson, 1996) is increased and the production of IL-12, which significantly augments CD8
+
 

T-cell responses, is stimulated (Filatenkov et al., 2005; Cella et al., 1996). This is of major 

importance since it is the DC that delivers the signals which decide whether there is T-cell 

immunity or tolerance (Steinman, 2003). CD4
+
 T-cells further assist CD8

+
 T-cells by 

providing IL-2. Moreover Hernandez et al. have shown that high numbers of in vitro activated 

specific CD4
+
 T-cells transferred into a transgenic mouse with antigen expressed in the 

pancreas could transform the tolerizing signal, resulting in CD8
+
 T-cell proliferation but not 

effector function, into a signal leading to the differentiation of CD8
+
 T-cells into effector cells 

(Hernandez et al., 2002). 
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Figure 18: Two models of help delivery to CTL. (a) The passive model: DC present antigen to T helper cells 

and CTL. Costimulatory signals are only provided to T helper cells. (b) The dynamic model: DC offer 

costimulation to both. They initially stimulate T helper cells, which, in turn, stimulates and “conditions” DC to 

differentiate to a state where they can directly costimulate CTL (Ridge et al., 1998). 

 

However, in our study the transfer of β-gal-specific CD8
+
 T-cells into Tie2-LacZ mice lead 

to activation and proliferation but not effector function of CD8
+
 T-cells, indicating that 

proliferative potential and the gain of effector function are independent events (Hernandez et 

al., 2002). It would be of major interest whether activated CD4
+
 T-cells could render DC 

competent to induce a potent CTL response in our mouse model. Therefore, we are going to 

investigate the influence of β-gal-specific CD4
+
 T-cells in this setting. Mice expressing a  

β-gal-specific TCR on CD4
+
 T-cells (Bg2 mice) have been kindly provided by Dr. Nicolas 

Restifo. The properties of this novel TCR transgenics are currently investigated. Once the 

basic characteristics of the Bg2 TCR have been recorded, it will be investigated whether 

adoptively transferred TCR transgenic CD4
+
 T-cells are activated by presenting DC in vivo. If 

yes, are they able to transform the CD8
+
 T-cell response in order that CD8

+
 T-cells reach 

effector function? If no, is there nevertheless a change in the CD8
+
 T-cell response due to the 
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release of cytokines such as IL-2? To address this question preactivated β-gal-specific CD4
+
 

T-cells (Bg2) together with CD8
+
 T-cells will be transferred into Tie2-LacZ mice and CD8

+
 

T-cell response will be assessed. A positive outcome of CD4
+
 T-cell help would have 

significant consequences in transplantations where both CD4
+
 and CD8

+
 T-cells become 

activated. This would lead to specific CTL activation, the induction of EC injury, and 

subsequently to the development of CTV.  

However, the transfer of CD4
+
 T-cells could also be of major interest after the 

transplantation of a Tie2-LacZ heart into a C57BL/6 recipient. Naive and preactivated CD4
+
 

T-cells together with CD8
+
 T-cells could be adoptively transferred into transplanted mice and 

the development of CTV could be analyzed. The combined injection with DC is not necessary 

since DC cultivated ex vivo are fully activated and therefore able to induce a CTL response, as 

well as the injection of MCMV-LacZ which leads to fully activated CTL.  

Nevertheless, knowing that EC cannot directly activate CD8
+
 T-cells, the requirements that 

render a DC a fully activated and competent APC are worth to be assessed. Therefore, the 

investigation of CD4
+
 T-cell help in the process of chronic vascular rejection will further 

explain the detailed cell-cell interaction during the development of TV and thus reveal new 

strategies for the prevention of late graft rejection. 

6.4 CD4
+
CD25

+
Foxp3

+
 regulatory T-cells 

Isolated and activated vascular EC have been shown to stimulate allogeneic 

CD4
+
CD25

+
Foxp3

+
 Treg cells, although they are known to be unable to induce cell division 

in allogeneic CD4
+
 T-cells. Treg cells clearly inhibited allogeneic T-cell proliferation in vitro 

and in vivo (Kreisel et al., 2004; Krupnick et al., 2005). However, the in vivo induction of 

CD4
+
CD25

+
Foxp3

+
 Treg cells has not been shown and therefore the contribution of 

hematopoietic APC in the induction of Treg cells could not be excluded. This aspect must be 

considered since it has been demonstrated that Treg cells become activated via the interaction 

of antigen presenting DC in secondary lymphoid organs (Sakaguchi, 2004). Moreover, spleen 

has clearly been shown to play an imperative role in the maintaining of tolerance towards 

heart allografts induced by CD4
+
CD25

+
Foxp3

+
 Treg cells (Chosa et al., 2007) confirming the 

significance of secondary lymphoid organs for T-cell priming. To dissect the role of 

professional APC versus non-hematopoietic APC, such as EC, in the induction of 

CD4
+
CD25

+
Foxp3

+
 Treg cells further in vivo studies are necessary. We are going to assess 

Treg cell stimulation in Tie2-LacZ mice where mhAg expression is confined to the vascular 
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endothelium by FACS analysis. In order to exclude antigen presentation by BM-derived cells, 

BM-chimeric mice could be generated and the induction of Treg cells analyzed.  

CD4
+
CD25

+
Foxp3

+
 Treg cells have further been demonstrated to regulate alloreactive  

T-cell responses and the acute rejection of single class II MHC-disparate heart allografts 

(Schenk et al., 2005). Moreover, in a very recent study the use of ex vivo expanded 

CD4
+
CD25

+
Foxp3

+
 T regulatory cells has been suggested as therapeutics in combination with 

irradiation to treat and prevent GVHD in BM transplantation (Joffre et al., 2008). However, 

only after knowing the exact mechanisms of how Treg cells become activated, in particular 

after organ transplantation, new strategies using Treg cells to induce specific tolerance 

towards the graft transplant can be established. Therefore, the detailed role of Treg cells in 

solid graft transplantation and the comprehension of the active suppressive mechanisms which 

induce long-term tolerance may help to generate new therapies and has thus to be further 

assessed. 

In several rodent transplantation studies, it has been shown that alloantigen-specific and 

suppressive CD4
+
CD25

+
 Treg cells accumulated within the graft and controlled effector cells 

by their regulatory mechanism (Cobbold et al., 2004; Graca et al., 2002). Therefore we 

suggest that there must be an interaction between Treg cells, effector cells and APC leading to 

tolerance induction. To assess the detailed role of Treg cells in transplantation, transgenic 

DEREG mice will be used (Lahl et al., 2007). DEREG mice express a diphtheria toxin 

receptor (DTR)-enhanced GFP fusion protein under the control of the foxp3 locus which 

allows both the detection of Foxp3
+
 regulatory T cells and their inducible depletion via DT 

injection. Therefore we are going to transplant Tie2-LacZ hearts into DEREG recipients. In a 

first set of experiments the induction of CD4
+
CD25

+
Foxp3

+
 Treg cells will be studied by 

FACS analysis and immune histochemistry of heart slides. To find out whether 

CD4
+
CD25

+
Foxp3

+
 regulatory T cells participate in tolerance towards Tie2-LacZ hearts in 

C57BL/6 recipients we are going to deplete Treg cells by the injection of DT. Depending on 

the outcome, the interaction between Treg cells and DC as well as effector T cells will be 

further analyzed. With the help of transgenic mice, facilitating the depletion of CD11c
+
 DC, 

and via the transfer of β-gal-specific CD4
+
 T-cells further insights into the detailed interplay 

between those cells will be achieved. We will additionally investigate the role of IFNγ via the 

transplantation of Tie2-LacZ hearts lacking the IFNγ-receptor since it has been demonstrated 

that IFNγ plays a key role in allograft tolerance based on Treg cells (Thebault et al., 2007). 

However, the options given by the well established transplantation model and the numerous 

available transgenic mice are almost without limits. Nevertheless, a further step is the 
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establishment of solid organ transplantation leading to physiologically functional organs. In 

order to fulfil this requirement we are going to orthotopically transplant kidney grafts. 

Chronic rejection is the most prevalent reason of renal transplant failure as well. In most cases 

the histopathology is not specific, such as fibrointima thickening of arteries, interstitial 

fibrosis, and tubular atrophy, but characterized by glomerulopathy and multilayering of the 

peritubular capillaries. However, a main advantage of renal transplantations is the easiness of 

measuring the loss of function by controlling the creatinine clearance and certainly the 

proximity to the conditions in humans since a host kidney is replaced by a donor kidney that 

takes over its physiological role. 



  Appendix  

 

- 91 - 

 

7 Appendix 

7.1 References 

 1.  Abbas,A.K. and Sharpe,A.H. (2005). Dendritic cells giveth and taketh away. Nat. Immunol. 6, 227-228. 

 2.  Agata,Y., Kawasaki,A., Nishimura,H., Ishida,Y., Tsubata,T., Yagita,H., and Honjo,T. (1996). 

Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 

8, 765-772. 

 3.  Aichele,P., Brduscha-Riem,K., Zinkernagel,R.M., Hengartner,H., and Pircher,H. (1995). T cell priming 

versus T cell tolerance induced by synthetic peptides. J. Exp. Med. 182, 261-266. 

 4.  Aird,W.C., Edelberg,J.M., Weiler-Guettler,H., Simmons,W.W., Smith,T.W., and Rosenberg,R.D. 

(1997). Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue 

microenvironment. J. Cell Biol. 138, 1117-1124. 

 5.  Aird,W.C., Jahroudi,N., Weiler Guettler,H., Rayburn,H.B., and Rosenberg,R.D. (1995). Human von 

Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic 

mice. Proc. Natl. Acad. Sci. U. S. A. 92, 4567-4571. 

 6.  Alexander-Miller,M.A., Burke,K., Koszinowski,U.H., Hansen,T.H., and Connolly,J.M. (1993). 

Alloreactive cytotoxic T lymphocytes generated in the presence of viral-derived peptides show 

exquisite peptide and MHC specificity. J. Immunol. 151, 1-10. 

 7.  Altman,J.D., Moss,P.A.H., Goulder,P.J.R., Barouch,D.H., McHeyzer-Williams,M.G., Bell,J.I., 

McMichael,A.J., and Davis,M.M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. 

Science 274, 94-96. 

 8.  Aluvihare,V.R., Kallikourdis,M., and Betz,A.G. (2004). Regulatory T cells mediate maternal tolerance 

to the fetus. Nat. Immunol. 5, 266-271. 

 9.  Anderson,M.S. (2002). Autoimmune endocrine disease. Curr. Opin. Immunol. 14, 760-764. 

 10.  Arai,F., Hirao,A., Ohmura,M., Sato,H., Matsuoka,S., Takubo,K., Ito,K., Koh,G.Y., and Suda,T. (2004). 

Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. 

Cell. 118, 149-161. 

 11.  Ardehali,A., Laks,H., Drinkwater,D.C., Ziv,E., and Drake,T.A. (1995). Vascular cell adhesion 

molecule-1 is induced on vascular endothelia and medial smooth muscle cells in experimental cardiac 

allograft vasculopathy. Circulation 92, 450-456. 

 12.  Armstrong,A.T., Strauch,A.R., Starling,R.C., Sedmak,D.D., and Orosz,C.G. (1997a). Morphometric 

analysis of neointimal formation in murine cardiac allografts. Transplantation. 63, 941-947. 

 13.  Armstrong,A.T., Strauch,A.R., Starling,R.C., Sedmak,D.D., and Orosz,C.G. (1997b). Morphometric 

analysis of neointimal formation in murine cardiac allografts: II. Rate and location of lesion 

development. Transplantation. 64, 322-328. 

 14.  Asseman,C., Mauze,S., Leach,M.W., Coffman,R.L., and Powrie,F. (1999). An essential role for 

interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 

190, 995-1004. 



Appendix 

- 92 - 

 

 15.  Bagai,R., Valujskikh,A., Canaday,D.H., Bailey,E., Lalli,P.N., Harding,C.V., and Heeger,P.S. (2005a). 

Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a. J. Immunol. 

174, 7711-7715. 

 16.  Bagai,R., Valujskikh,A., Canaday,D.H., Bailey,E., Lalli,P.N., Harding,C.V., and Heeger,P.S. (2005b). 

Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a TAP1- and 

proteasome-dependent pathway. J. Immunol. 174, 7711-7715. 

 17.  Banchereau,J., Briere,F., Caux,C., Davoust,J., Lebecque,S., Liu,Y.J., Pulendran,B., and Palucka,K. 

(2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811. 

 18.  Banchereau,J. and Steinman,R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-

252. 

 19.  Belkaid,Y., Blank,R.B., and Suffia,I. (2006). Natural regulatory T cells and parasites: a common quest 

for host homeostasis. Immunol. Rev. 212, 287-300. 

 20.  Bennett,S.R., Carbone,F.R., Karamalis,F., Flavell,R.A., Miller,J.F., and Heath,W.R. (1998). Help for 

cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478-480. 

 21.  Bensinger,S.J., Bandeira,A., Jordan,M.S., Caton,A.J., and Laufer,T.M. (2001). Major histocompatibility 

complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory 

T cells. J. Exp. Med. 194, 427-438. 

 22.  Berg,M., Wingender,G., Djandji,D., Hegenbarth,S., Momburg,F., Hammerling,G., Limmer,A., and 

Knolle,P. (2006). Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal 

endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur. J. Immunol. 36, 2960-2970. 

 23.  Bevan,M.J. (1984). High Determinant Density May Explain the Phenomenon of Alloreactivity. 

Immunology Today 5, 128-130. 

 24.  Bevan,M.J. (2004). Helping the CD8(+) T-cell response. Nat. Rev. Immunol. 4, 595-602. 

 25.  Beyer,M. and Schultze,J.L. (2006). Regulatory T cells in cancer. Blood 108, 804-811. 

 26.  Biedermann,B.C. and Pober,J.S. (1998). Human endothelial cells induce and regulate cytolytic T cell 

differentiation. J. Immunol. 161, 4679-4687. 

 27.  Biedermann,B.C. and Pober,J.S. (1999). Human vascular endothelial cells favor clonal expansion of 

unusual alloreactive CTL. J. Immunol. 162, 7022-7030. 

 28.  Biedermann,B.C., Sahner,S., Gregor,M., Tsakiris,D.A., Jeanneret,C., Pober,J.S., and Gratwohl,A. 

(2002). Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic 

graft versus host disease. Lancet 359, 2078-2083. 

 29.  Billingham,R.E., Brent,L., and Medawar,P.B. (1953). Actively acquired tolerance of foreign cells. 

Nature 172, 603-609. 

 30.  Bingaman,A.W., Ha,J., Waitze,S.Y., Durham,M.M., Cho,H.R., Tucker-Burden,C., Hendrix,R., 

Cowan,S.R., Pearson,T.C., and Larsen,C.P. (2000). Vigorous allograft rejection in the absence of 

danger. J. Immunol. 164, 3065-3071. 

 31.  Black,C.A. (1999). Delayed type hypersensitivity: current theories with an historic perspective. 

Dermatol. Online. J. 5, 7. 

 32.  Bluestone,J.A., Jameson,S., Miller,S., and Dick,R. (1992). Peptide-induced conformational changes in 

class I heavy chains alter major histocompatibility complex recognition. J. Exp. Med. 176, 1757-1761. 



  Appendix  

 

- 93 - 

 

 33.  Boehme,K.W., Guerrero,M., and Compton,T. (2006). Human cytomegalovirus envelope glycoproteins 

B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177, 7094-7102. 

 34.  Bolinger, B., Krebs, P., Tian, Y., Engeler, D., Scandella, E., Miller, S., Palmer, D. C., Restifo, N. P., 

Clavien, P. A., and Ludewig, B. Immunological ignorance of vascular endothelial cells expressing 

minor histocompatibility antigen. Blood . 2008.  

  Ref Type: In Press 

 35.  Bonilla,W.V., Geuking,M.B., Aichele,P., Ludewig,B., Hengartner,H., and Zinkernagel,R.M. (2006). 

Microchimerism maintains deletion of the donor cell-specific CD8+ T cell repertoire. J. Clin. Invest. 

116, 156-162. 

 36.  Briscoe,D.M., Alexander,S.I., and Lichtman,A.H. (1998a). Interactions between T lymphocytes and 

endothelial cells in allograft rejection. Curr. Opin. Immunol. 10, 525-531. 

 37.  Briscoe,D.M., Alexander,S.I., and Lichtman,A.H. (1998b). Interactions between T lymphocytes and 

endothelial cells in allograft rejection. Curr. Opin. Immunol. 10, 525-531. 

 38.  Burnet,F.M. (1957). A modification of Jerne's theory of antibodyproduction using the concept of clonal 

selection. Australian Journal of Science 20, 67-69. 

 39.  Burnet, F. M and Fenner. The production of antibodies. second editon. 1949.  Macmillan.  

  Ref Type: Serial (Book,Monograph) 

 40.  Butcher,E.C. and Picker,L.J. (1996). Lymphocyte homing and homeostasis. Science 272, 60-66. 

 41.  Caforio,A.L., Tona,F., Fortina,A.B., Angelini,A., Piaserico,S., Gambino,A., Feltrin,G., Ramondo,A., 

Valente,M., Iliceto,S., Thiene,G., and Gerosa,G. (2004). Immune and nonimmune predictors of cardiac 

allograft vasculopathy onset and severity: multivariate risk factor analysis and role of 

immunosuppression. Am. J. Transplant. 4, 962-970. 

 42.  Campbell,J.J., Hedrick,J., Zlotnik,A., Siani,M.A., Thompson,D.A., and Butcher,E.C. (1998). 

Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381-384. 

 43.  Carlquist,J.F., Edelman,L., Bennion,D.W., and Anderson,J.L. (1999). Cytomegalovirus induction of 

interleukin-6 in lung fibroblasts occurs independently of active infection and involves a G protein and 

the transcription factor, NF-kappaB. J. Infect. Dis. 179, 1094-1100. 

 44.  Carlquist,J.F., Shelby,J., Shao,Y.L., Greenwood,J.H., Hammond,M.E., and Anderson,J.L. (1993). 

Accelerated rejection of murine cardiac allografts by murine cytomegalovirus-infected recipients. Lack 

of haplotype specificity. J. Clin. Invest 91, 2602-2608. 

 45.  Cecka,J.M. (1999). The UNOS Scientific Renal Transplant Registry. Clin. Transpl. :1-21., 1-21. 

 46.  Cella,M., Scheidegger,D., PalmerLehmann,K., Lane,P., Lanzavecchia,A., and Alber,G. (1996). 

Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T 

cell stimulatory capacity: T-T help via apc activation. J. Exp. Med. 184, 747-752. 

 47.  Chattopadhyay,S., Theobald,M., Biggs,J., and Sherman,L.A. (1994). Conformational differences in 

major histocompatibility complex-peptide complexes can result in alloreactivity. J. Exp. Med. 179, 213-

219. 

 48.  Chen,Y., Heeger,P.S., and Valujskikh,A. (2004). In vivo helper functions of alloreactive memory CD4+ 

T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J. Immunol. 172, 

5456-5466. 



Appendix 

- 94 - 

 

 49.  Chosa,E., Hara,M., Watanabe,A., Matsuzaki,Y., Nakamura,K., Hamano,K., Wood,K.J., and 

Onitsuka,T. (2007). Spleen plays an important role in maintaining tolerance after removal of the 

vascularized heart graft. Transplantation 83, 1226-1233. 

 50.  Choy,J.C., Hung,V.H., Hunter,A.L., Cheung,P.K., Motyka,B., Goping,I.S., Sawchuk,T., 

Bleackley,R.C., Podor,T.J., McManus,B.M., and Granville,D.J. (2004a). Granzyme B induces smooth 

muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation. 

Arterioscler. Thromb. Vasc. Biol. 24, 2245-2250. 

 51.  Choy,J.C., Kerjner,A., Wong,B.W., McManus,B.M., and Granville,D.J. (2004b). Perforin mediates 

endothelial cell death and resultant transplant vascular disease in cardiac allografts. Am. J. Pathol. 165, 

127-133. 

 52.  Claas,F. (2004). Chimerism as a tool to induce clinical transplantation tolerance. Curr. Opin. Immunol. 

16, 578-583. 

 53.  Cobbold,S.P., Castejon,R., Adams,E., Zelenika,D., Graca,L., Humm,S., and Waldmann,H. (2004). 

Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to 

transplants. J. Immunol. 172, 6003-6010. 

 54.  Compton,T., Kurt-Jones,E.A., Boehme,K.W., Belko,J., Latz,E., Golenbock,D.T., and Finberg,R.W. 

(2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like 

receptor 2. J. Virol. 77, 4588-4596. 

 55.  Corry,R.J., Winn,H.J., and Russell,P.S. (1973). Primarily vascularized allografts of hearts in mice. The 

role of H-2D, H-2K and non-H-2 antigens in rejection. Transplantation 16, 343-350. 

 56.  Cosimi,A.B. and Sachs,D.H. (2004). Mixed chimerism and transplantation tolerance. Transplantation 

77, 943-946. 

 57.  Denton,M.D., Geehan,C.S., Alexander,S.I., Sayegh,M.H., and Briscoe,D.M. (1999). Endothelial cells 

modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T 

cell alloactivation. J. Exp. Med. 190, 555-566. 

 58.  Dong,C., Redenbach,D., Wood,S., Battistini,B., Wilson,J.E., and McManus,B.M. (1996a). The 

pathogenesis of cardiac allograft vasculopathy. Curr. Opin. Cardiol. 11, 183-190. 

 59.  Dong,C., Wilson,J.E., Winters,G.L., and McManus,B.M. (1996b). Human transplant coronary artery 

disease: pathological evidence for Fas-mediated apoptotic cytotoxicity in allograft arteriopathy. Lab 

Invest 74, 921-931. 

 60.  Ehl,S., Aichele,P., Ramseier,H., Barchet,W., Hombach,J., Pircher,H., Hengartner,H., and 

Zinkernagel,R.M. (1998a). Antigen persistence and time of T-cell tolerization determine the efficacy of 

tolerization protocols for prevention of skin graft rejection [In Process Citation]. Nat. Med. 4, 1015-

1019. 

 61.  Ehl,S., Hombach,J., Aichele,P., Rulicke,T., Odermatt,B., Hengartner,H., Zinkernagel,R.M., and 

Pircher,H. (1998b). Viral and bacterial infections interfere with peripheral tolerance induction and 

activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763-774. 

 62.  Epperson,D.E. and Pober,J.S. (1994). Antigen-presenting function of human endothelial cells. Direct 

activation of resting CD8 T cells. J. Immunol. 153, 5402-5412. 



  Appendix  

 

- 95 - 

 

 63.  Eppihimer,M.J., Gunn,J., Freeman,G.J., Greenfield,E.A., Chernova,T., Erickson,J., and Leonard,J.P. 

(2002). Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular 

endothelial cells. Microcirculation. 9, 133-145. 

 64.  Fahlen,L., Read,S., Gorelik,L., Hurst,S.D., Coffman,R.L., Flavell,R.A., and Powrie,F. (2005). T cells 

that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J. Exp. Med. 

201, 737-746. 

 65.  Felix,N.J. and Allen,P.M. (2007). Specificity of T-cell alloreactivity. Nat. Rev. Immunol. 7, 942-953. 

 66.  Felix,N.J., Donermeyer,D.L., Horvath,S., Walters,J.J., Gross,M.L., Suri,A., and Allen,P.M. (2007). 

Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat. Immunol. 8, 

388-397. 

 67.  Filatenkov,A.A., Jacovetty,E.L., Fischer,U.B., Curtsinger,J.M., Mescher,M.F., and Ingulli,E. (2005). 

CD4 T cell-dependent conditioning of dendritic cells to produce IL-12 results in CD8-mediated graft 

rejection and avoidance of tolerance. J. Immunol. 174, 6909-6917. 

 68.  Fischbein,M.P., Yun,J., Laks,H., Irie,Y., Fishbein,M.C., Bonavida,B., and Ardehali,A. (2002). Role of 

CD8+ lymphocytes in chronic rejection of transplanted hearts. J. Thorac. Cardiovasc. Surg. 123, 803-

809. 

 69.  Fisson,S., Darrasse-Jeze,G., Litvinova,E., Septier,F., Klatzmann,D., Liblau,R., and Salomon,B.L. 

(2003). Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. 

Exp. Med. 198, 737-746. 

 70.  Ford,M.L., Koehn,B.H., Wagener,M.E., Jiang,W., Gangappa,S., Pearson,T.C., and Larsen,C.P. (2007). 

Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for 

costimulation. J. Exp. Med. 204, 299-309. 

 71.  Gallegos,A.M. and Bevan,M.J. (2004). Central tolerance to tissue-specific antigens mediated by direct 

and indirect antigen presentation. J. Exp. Med. 200, 1039-1049. 

 72.  Gimbrone,M.A., Jr., Topper,J.N., Nagel,T., Anderson,K.R., and Garcia-Cardena,G. (2000). Endothelial 

dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902, 230-239. 

 73.  Gold,M.C., Munks,M.W., Wagner,M., Koszinowski,U.H., Hill,A.B., and Fling,S.P. (2002). The murine 

cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific 

CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J. 

Immunol. 169, 359-365. 

 74.  Goodman,J. and Mohanakumar,T. (2003). Chronic rejection: failure of immune regulation. Front 

Biosci. 8, s838-s844. 

 75.  Goulmy,E., Gratama,J.W., Blokland,E., Zwaan,F.E., and van Rood,J.J. (1983). A minor transplantation 

antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 

302, 159-161. 

 76.  Grabie,N., Gotsman,I., DaCosta,R., Pang,H., Stavrakis,G., Butte,M.J., Keir,M.E., Freeman,G.J., 

Sharpe,A.H., and Lichtman,A.H. (2007). Endothelial programmed death-1 ligand 1 (PD-L1) regulates 

CD8+ T-cell mediated injury in the heart. Circulation 116, 2062-2071. 

 77.  Graca,L., Cobbold,S.P., and Waldmann,H. (2002). Identification of regulatory T cells in tolerated 

allografts. J. Exp. Med. 195, 1641-1646. 



Appendix 

- 96 - 

 

 78.  Grewal,I.S. and Flavell,R.A. (1998). CD40 and CD154 in cell-mediated immunity. Annu. Rev. 

Immunol. 16, 111-135. 

 79.  Grewal,I.S., Foellmer,H.G., Grewal,K.D., Xu,J.C., Hardardottir,F., Baron,J.L., Janeway,C.A., and 

Flavell,R.A. (1996). Requirement for CD40 ligand in costimulation induction,T cell activation, and 

experimental allergic encephalomyelitis. Science 273, 1864-1867. 

 80.  Grewal,I.S., Xu,J., and Flavell,R.A. (1995). Impairment of antigen-specific T-cell priming in mice 

lacking CD40 ligand. Nature 378, 617-620. 

 81.  Guermonprez,P., Valladeau,J., Zitvogel,L., Thery,C., and Amigorena,S. (2002). Antigen presentation 

and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621-667. 

 82.  Guimezanes,A., Barrett-Wilt,G.A., Gulden-Thompson,P., Shabanowitz,J., Engelhard,V.H., Hunt,D.F., 

and Schmitt-Verhulst,A.M. (2001). Identification of endogenous peptides recognized by in vivo or in 

vitro generated alloreactive cytotoxic T lymphocytes: distinct characteristics correlated with CD8 

dependence. Eur. J. Immunol. 31, 421-432. 

 83.  Guo,Z., Meng,L., Kim,O., Wang,J., Hart,J., He,G., Alegre,M.L., Thistlethwaite,J.R., Jr., Pearson,T.C., 

Larsen,C.P., and Newell,K.A. (2001). CD8 T cell-mediated rejection of intestinal allografts is resistant 

to inhibition of the CD40/CD154 costimulatory pathway. Transplantation 71, 1351-1354. 

 84.  He,C., Schenk,S., Zhang,Q., Valujskikh,A., Bayer,J., Fairchild,R.L., and Heeger,P.S. (2004a). Effects 

of T cell frequency and graft size on transplant outcome in mice. J. Immunol. 172, 240-247. 

 85.  He,C., Schenk,S., Zhang,Q., Valujskikh,A., Bayer,J., Fairchild,R.L., and Heeger,P.S. (2004b). Effects 

of T cell frequency and graft size on transplant outcome in mice. J. Immunol. 172, 240-247. 

 86.  Heath,W.R., Kane,K.P., Mescher,M.F., and Sherman,L.A. (1991). Alloreactive T cells discriminate 

among a diverse set of endogenous peptides. Proc. Natl. Acad. Sci. U. S. A 88, 5101-5105. 

 87.  Heath,W.R. and Sherman,L.A. (1991). Cell-type-specific recognition of allogeneic cells by alloreactive 

cytotoxic T cells: a consequence of peptide-dependent allorecognition. Eur. J. Immunol. 21, 153-159. 

 88.  Hernandez,J., Aung,S., Marquardt,K., and Sherman,L.A. (2002). Uncoupling of proliferative potential 

and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 196, 323-333. 

 89.  Hernandez-Fuentes,M.P., Baker,R.J., and Lechler,R.I. (1999). The alloresponse. Rev. Immunogenet. 1, 

282-296. 

 90.  Herrera,O.B., Golshayan,D., Tibbott,R., Salcido,O.F., James,M.J., Marelli-Berg,F.M., and Lechler,R.I. 

(2004). A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 173, 4828-4837. 

 91.  Hillebrands,J.L., Klatter,F.A., van den Hurk,B.M., Popa,E.R., Nieuwenhuis,P., and Rozing,J. (2001). 

Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant 

arteriosclerosis. J. Clin. Invest 107, 1411-1422. 

 92.  Hirozane,T., Matsumori,A., Furukawa,Y., and Sasayama,S. (1995). Experimental graft coronary artery 

disease in a murine heterotopic cardiac transplant model. Circulation. 91, 386-392. 

 93.  Hodson,E.M., Jones,C.A., Webster,A.C., Strippoli,G.F., Barclay,P.G., Kable,K., Vimalachandra,D., and 

Craig,J.C. (2005). Antiviral medications to prevent cytomegalovirus disease and early death in 

recipients of solid-organ transplants: a systematic review of randomised controlled trials. Lancet 365, 

2105-2115. 



  Appendix  

 

- 97 - 

 

 94.  Hollenbaugh,D., Mischel-Petty,N., Edwards,C.P., Simon,J.C., Denfeld,R.W., Kiener,P.A., and 

Aruffo,A. (1995). Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 182, 33-

40. 

 95.  Hornick,P.I., Mason,P.D., Baker,R.J., Hernandez-Fuentes,M., Frasca,L., Lombardi,G., Taylor,K., 

Weng,L., Rose,M.L., Yacoub,M.H., Batchelor,R., and Lechler,R.I. (2000). Significant frequencies of T 

cells with indirect anti-donor specificity in heart graft recipients with chronic rejection. Circulation 101, 

2405-2410. 

 96.  Horowitz,M.M., Gale,R.P., Sondel,P.M., Goldman,J.M., Kersey,J., Kolb,H.J., Rimm,A.A., Ringden,O., 

Rozman,C., Speck,B., and . (1990). Graft-versus-leukemia reactions after bone marrow transplantation. 

Blood 75, 555-562. 

 97.  Hosiawa,K.A., Wang,H., DeVries,M.E., Garcia,B., Liu,W., Zhou,D., Akram,A., Jiang,J., Sun,H., 

Cameron,M.J., Zhong,R., and Kelvin,D.J. (2005). CD80/CD86 costimulation regulates acute vascular 

rejection. J. Immunol. 175, 6197-6204. 

 98.  Hruban,R.H., Beschorner,W.E., Baumgartner,W.A., Augustine,S.M., Ren,H., Reitz,B.A., and 

Hutchins,G.M. (1990). Accelerated arteriosclerosis in heart transplant recipients is associated with a T-

lymphocyte-mediated endothelialitis. Am. J. Pathol. 137, 871-882. 

 99.  Hsieh,C.S., Liang,Y., Tyznik,A.J., Self,S.G., Liggitt,D., and Rudensky,A.Y. (2004). Recognition of the 

peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity. 21, 267-277. 

 100.  Isobe,M., Kosuge,H., and Suzuki,J. (2006). T cell costimulation in the development of cardiac allograft 

vasculopathy: potential targets for therapeutic interventions. Arterioscler. Thromb. Vasc. Biol. 26, 

1447-1456. 

 101.  Ito,T., Ueno,T., Clarkson,M.R., Yuan,X., Jurewicz,M.M., Yagita,H., Azuma,M., Sharpe,A.H., 

Auchincloss,H., Jr., Sayegh,M.H., and Najafian,N. (2005). Analysis of the role of negative T cell 

costimulatory pathways in CD4 and CD8 T cell-mediated alloimmune responses in vivo. J. Immunol. 

174, 6648-6656. 

 102.  Jarvis,M.A. and Nelson,J.A. (2002). Human cytomegalovirus persistence and latency in endothelial 

cells and macrophages. Curr. Opin. Microbiol. 5, 403-407. 

 103.  Joffre,O., Gorsse,N., Romagnoli,P., Hudrisier,D., and van Meerwijk,J.P. (2004). Induction of antigen-

specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 103, 4216-4221. 

 104.  Joffre,O., Santolaria,T., Calise,D., Al Saati,T., Hudrisier,D., Romagnoli,P., and van Meerwijk,J.P. 

(2008). Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T 

lymphocytes. Nat. Med. 14, 88-92. 

 105.  Jones,N.D., Van Maurik,A., Hara,M., Spriewald,B.M., Witzke,O., Morris,P.J., and Wood,K.J. (2000). 

CD40-CD40 ligand-independent activation of CD8+ T cells can trigger allograft rejection. J. Immunol. 

165, 1111-1118. 

 106.  Julius,B.K., Attenhofer Jost,C.H., Sutsch,G., Brunner,H.P., Kuenzli,A., Vogt,P.R., Turina,M., 

Hess,O.M., and Kiowski,W. (2000). Incidence, progression and functional significance of cardiac 

allograft vasculopathy after heart transplantation. Transplantation 69, 847-853. 

 107.  Jung,S., Unutmaz,D., Wong,P., Sano,G., De los,S.K., Sparwasser,T., Wu,S., Vuthoori,S., Ko,K., 

Zavala,F., Pamer,E.G., Littman,D.R., and Lang,R.A. (2002). In vivo depletion of CD11c(+) dendritic 



Appendix 

- 98 - 

 

cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity. 17, 211-

220. 

 108.  Kappler,J.W., Roehm,N., and Marrack,P. (1987). T cell tolerance by clonal elimination in the thymus. 

Cell 49, 273-280. 

 109.  Karmann,K., Hughes,C.C., Schechner,J., Fanslow,W.C., and Pober,J.S. (1995). CD40 on human 

endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. 

Proc. Natl. Acad. Sci. U. S. A. 92, 4342-4346. 

 110.  Keck,B.M., Bennett,L.E., Rosendale,J., Daily,O.P., Novick,R.J., and Hosenpud,J.D. (1999). Worldwide 

thoracic organ transplantation: a report from the UNOS/ISHLT International Registry for Thoracic 

Organ Transplantation. Clin. Transpl. :35-49., 35-49. 

 111.  Keir,M.E., Liang,S.C., Guleria,I., Latchman,Y.E., Qipo,A., Albacker,L.A., Koulmanda,M., 

Freeman,G.J., Sayegh,M.H., and Sharpe,A.H. (2006). Tissue expression of PD-L1 mediates peripheral 

T cell tolerance. J. Exp. Med. 203, 883-895. 

 112.  Kemna,M.S., Valantine,H.A., Hunt,S.A., Schroeder,J.S., Chen,Y.D., and Reaven,G.M. (1994). 

Metabolic risk factors for atherosclerosis in heart transplant recipients. Am. Heart J. 128, 68-72. 

 113.  Khoury,S., Sayegh,M.H., and Turka,L.A. (1999). Blocking costimulatory signals to induce 

transplantation tolerance and prevent autoimmune disease. Int. Rev. Immunol. 18, 185-199. 

 114.  Kirk,A.D., Harlan,D.M., Armstrong,N.N., Davis,T.A., Dong,Y., Gray,G.S., Hong,X., Thomas,D., 

Fechner,J.H., Jr., and Knechtle,S.J. (1997). CTLA4-Ig and anti-CD40 ligand prevent renal allograft 

rejection in primates. Proc. Natl. Acad. Sci. U. S. A 94, 8789-8794. 

 115.  Kobayashi,H., Koga,S., Novick,A.C., Toma,H., and Fairchild,R.L. (2003). T-cell mediated induction of 

allogeneic endothelial cell chemokine expression. Transplantation 75, 529-536. 

 116.  Koffron,A.J., Hummel,M., Patterson,B.K., Yan,S., Kaufman,D.B., Fryer,J.P., Stuart,F.P., and 

Abecassis,M.I. (1998). Cellular localization of latent murine cytomegalovirus. J. Virol. 72, 95-103. 

 117.  Krebs,P., Scandella,E., Bolinger,B., Engeler,D., Miller,S., and Ludewig,B. (2007). Chronic immune 

reactivity against persisting microbial antigen in the vasculature exacerbates atherosclerotic lesion 

formation. Arterioscler. Thromb. Vasc. Biol. 27, 2206-2213. 

 118.  Kreisel,D., Krasinskas,A.M., Krupnick,A.S., Gelman,A.E., Balsara,K.R., Popma,S.H., Riha,M., 

Rosengard,A.M., Turka,L.A., and Rosengard,B.R. (2004). Vascular endothelium does not activate 

CD4+ direct allorecognition in graft rejection. J. Immunol. 173, 3027-3034. 

 119.  Kreisel,D., Krupnick,A.S., Balsara,K.R., Riha,M., Gelman,A.E., Popma,S.H., Szeto,W.Y., Turka,L.A., 

and Rosengard,B.R. (2002a). Mouse vascular endothelium activates CD8+ T lymphocytes in a B7-

dependent fashion. J. Immunol. 169, 6154-6161. 

 120.  Kreisel,D., Krupnick,A.S., Gelman,A.E., Engels,F.H., Popma,S.H., Krasinskas,A.M., Balsara,K.R., 

Szeto,W.Y., Turka,L.A., and Rosengard,B.R. (2002b). Non-hematopoietic allograft cells directly 

activate CD8+ T cells and trigger acute rejection: an alternative mechanism of allorecognition. Nat. 

Med. 8, 233-239. 

 121.  Krupnick,A.S., Gelman,A.E., Barchet,W., Richardson,S., Kreisel,F.H., Turka,L.A., Colonna,M., 

Patterson,G.A., and Kreisel,D. (2005). Murine vascular endothelium activates and induces the 

generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J. Immunol. 175, 6265-6270. 



  Appendix  

 

- 99 - 

 

 122.  Krupnick,A.S., Kreisel,D., Popma,S.H., Balsara,K.R., Szeto,W.Y., Krasinskas,A.M., Riha,M., 

Wells,A.D., Turka,L.A., and Rosengard,B.R. (2002). Mechanism of T cell-mediated endothelial 

apoptosis. Transplantation. 74, 871-876. 

 123.  Kummer,M., Lev,A., Reiter,Y., and Biedermann,B.C. (2005). Vascular endothelial cells have impaired 

capacity to present immunodominant, antigenic peptides: a mechanism of cell type-specific immune 

escape. J. Immunol. 174, 1947-1953. 

 124.  Kurts,C., Heath,W.R., Kosaka,H., Miller,J.F., and Carbone,F.R. (1998). The peripheral deletion of 

autoreactive CD8+ T cells induced by cross- presentation of self-antigens involves signaling through 

CD95 (Fas, Apo- 1). J. Exp. Med. 188, 415-420. 

 125.  Kurts,C., Kosaka,H., Carbone,F.R., Miller,J.F., and Heath,W.R. (1997). Class I-restricted cross-

presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J. Exp. Med. 

186, 239-245. 

 126.  Kurts,C., Sutherland,R.M., Davey,G., Li,M., Lew,A.M., Blanas,E., Carbone,F.R., Miller,J.F., and 

Heath,W.R. (1999). CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. 

Natl. Acad. Sci. U. S. A. 96, 12703-12707. 

 127.  Kyburz,D., Aichele,P., Speiser,D.E., Hengartner,H., Zinkernagel,R.M., and Pircher,H. (1993). T cell 

immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. 

Immunol. 23, 1956-1962. 

 128.  Kyewski,B. and Derbinski,J. (2004). Self-representation in the thymus: an extended view. Nat. Rev. 

Immunol. 4, 688-698. 

 129.  Lahl,K., Loddenkemper,C., Drouin,C., Freyer,J., Arnason,J., Eberl,G., Hamann,A., Wagner,H., 

Huehn,J., and Sparwasser,T. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-

like disease. J. Exp. Med. 204, 57-63. 

 130.  Lakkis,F.G., Arakelov,A., Konieczny,B.T., and Inoue,Y. (2000). Immunologic 'ignorance' of 

vascularized organ transplants in the absence of secondary lymphoid tissue. Nat. Med. 6, 686-688. 

 131.  Larsen,C.P., Elwood,E.T., Alexander,D.Z., Ritchie,S.C., Hendrix,R., Tucker-Burden,C., Cho,H.R., 

Aruffo,A., Hollenbaugh,D., Linsley,P.S., Winn,K.J., and Pearson,T.C. (1996). Long-term acceptance of 

skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434-438. 

 132.  Lassila,O., Vainio,O., and Matzinger,P. (1988). Can B cells turn on virgin T cells? Nature 334, 253-

255. 

 133.  Latchman,Y., Wood,C.R., Chernova,T., Chaudhary,D., Borde,M., Chernova,I., Iwai,Y., Long,A.J., 

Brown,J.A., Nunes,R., Greenfield,E.A., Bourque,K., Boussiotis,V.A., Carter,L.L., Carreno,B.M., 

Malenkovich,N., Nishimura,H., Okazaki,T., Honjo,T., Sharpe,A.H., and Freeman,G.J. (2001). PD-L2 is 

a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261-268. 

 134.  Lees,J.R., Charbonneau,B., Swanson,A.K., Jensen,R., Zhang,J., Matusik,R., and Ratliff,T.L. (2006). 

Deletion is neither sufficient nor necessary for the induction of peripheral tolerance in mature CD8+ T 

cells. Immunology 117, 248-261. 

 135.  Libby,P. and Pober,J.S. (2001). Chronic rejection. Immunity. 14, 387-397. 

 136.  Libby,P., Salomon,R.N., Payne,D.D., Schoen,F.J., and Pober,J.S. (1989). Functions of vascular wall 

cells related to development of transplantation-associated coronary arteriosclerosis. Transplant. Proc. 

21, 3677-3684. 



Appendix 

- 100 - 

 

 137.  Limmer,A., Ohl,J., Kurts,C., Ljunggren,H.G., Reiss,Y., Groettrup,M., Momburg,F., Arnold,B., and 

Knolle,P.A. (2000). Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T 

cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348-1354. 

 138.  Limmer,A., Ohl,J., Wingender,G., Berg,M., Jungerkes,F., Schumak,B., Djandji,D., Scholz,K., 

Klevenz,A., Hegenbarth,S., Momburg,F., Hammerling,G.J., Arnold,B., and Knolle,P.A. (2005). Cross-

presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. 

Immunol. 35, 2970-2981. 

 139.  Lin,H., Bolling,S.F., Linsley,P.S., Wei,R.Q., Gordon,D., Thompson,C.B., and Turka,L.A. (1993). 

Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by 

CTLA4Ig plus donor-specific transfusion. J. Exp. Med. 178, 1801-1806. 

 140.  Lindahl,K.F. and Wilson,D.B. (1977). Histocompatibility antigen-activated cytotoxic T lymphocytes. 

II. Estimates of the frequency and specificity of precursors. J. Exp. Med. 145, 508-522. 

 141.  Lowry, R. P. DTH-induced tissue injury. Tilney, N. L., Strom, T. B., and Paul, L. E.  487-502. 1996. In 

Transplantation Biology: Cellular and Molecular Aspects, Philadelphia: Lippincott Raven.  

  Ref Type: Serial (Book,Monograph) 

 142.  Ludewig,B., Ehl,S., Karrer,U., Odermatt,B., Hengartner,H., and Zinkernagel,R.M. (1998a). Dendritic 

cells efficiently induce protective antiviral immunity. J. Virol. 72, 3812-3818. 

 143.  Ludewig,B., Junt,T., Hengartner,H., and Zinkernagel,R.M. (2001). Dendritic cells in autoimmune 

diseases. Curr. Opin. Immunol. 13, 657-662. 

 144.  Ludewig,B., Krebs,P., Junt,T., Metters,H., Ford,N.J., Anderson,R.M., and Bocharov,G. (2004). 

Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur. J. Immunol. 

34, 2407-2418. 

 145.  Ludewig,B., Odermatt,B., Landmann,S., Hengartner,H., and Zinkernagel,R.M. (1998b). Dendritic cells 

induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. 

Exp. Med. 188, 1493-1501. 

 146.  Ma,W. and Pober,J.S. (1998). Human endothelial cells effectively costimulate cytokine production by, 

but not differentiation of, naive CD4+ T cells. J. Immunol. 161, 2158-2167. 

 147.  Manning,W.C. and Mocarski,E.S. (1988). Insertional mutagenesis of the murine cytomegalovirus 

genome: one prominent alpha gene (ie2) is dispensable for growth. Virology 167, 477-484. 

 148.  Marelli-Berg,F.M., Scott,D., Bartok,I., Peek,E., Dyson,J., and Lechler,R.I. (2000). Activated murine 

endothelial cells have reduced immunogenicity for CD8+ T cells: a mechanism of immunoregulation? 

J. Immunol. 165, 4182-4189. 

 149.  Marelli-Berg,F.M., Scott,D., Bartok,I., Peek,E., Dyson,J., and Lechler,R.I. (2001). Antigen presentation 

by murine endothelial cells. Transplant. Proc. 33, 315-316. 

 150.  Matzinger,P. (1994). Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991-1045, 

991-1045. 

 151.  Matzinger,P. and Bevan,M.J. (1977). Hypothesis: why do so many lymphocytes respond to major 

histocompatibility antigens? Cell Immunol. 29, 1-5. 

 152.  Mazanet,M.M. and Hughes,C.C. (2002). B7-H1 is expressed by human endothelial cells and suppresses 

T cell cytokine synthesis. J. Immunol. 169, 3581-3588. 



  Appendix  

 

- 101 - 

 

 153.  Mazza,C., Auphan-Anezin,N., Gregoire,C., Guimezanes,A., Kellenberger,C., Roussel,A., Kearney,A., 

van der Merwe,P.A., Schmitt-Verhulst,A.M., and Malissen,B. (2007). How much can a T-cell antigen 

receptor adapt to structurally distinct antigenic peptides? EMBO J. 26, 1972-1983. 

 154.  Medzhitov,R. and Janeway,C.A., Jr. (1998). Innate immune recognition and control of adaptive 

immune responses. Semin. Immunol. 10, 351-353. 

 155.  Mendiratta,S.K., Kovalik,J.P., Hong,S., Singh,N., Martin,W.D., and Van Kaer,L. (1999). Peptide 

dependency of alloreactive CD4+ T cell responses. Int. Immunol. 11, 351-360. 

 156.  Millan,M.T., Shizuru,J.A., Hoffmann,P., Dejbakhsh-Jones,S., Scandling,J.D., Grumet,F.C., Tan,J.C., 

Salvatierra,O., Hoppe,R.T., and Strober,S. (2002). Mixed chimerism and immunosuppressive drug 

withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. 

Transplantation 73, 1386-1391. 

 157.  Mitchell,R.N. and Libby,P. (2007). Vascular remodeling in transplant vasculopathy. Circ. Res. 100, 

967-978. 

 158.  Monaco,A.P. (2002). Tolerance and chimerism: separate and unequal concepts. Transplant. Proc. 34, 

1991-1997. 

 159.  Morgan,D.J., Kreuwel,H.T., Fleck,S., Levitsky,H.I., Pardoll,D.M., and Sherman,L.A. (1998). 

Activation of low avidity CTL specific for a self epitope results in tumor rejection but not 

autoimmunity. J. Immunol. 160, 643-651. 

 160.  Munder,M., Mallo,M., Eichmann,K., and Modolell,M. (1998). Murine macrophages secrete interferon 

gamma upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine 

macrophage activation. J. Exp. Med. 187, 2103-2108. 

 161.  Mutis,T., Gillespie,G., Schrama,E., Falkenburg,J.H., Moss,P., and Goulmy,E. (1999). Tetrameric HLA 

class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility 

antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat. Med. 5, 839-

842. 

 162.  Nagano,H., Libby,P., Taylor,M.K., Hasegawa,S., Stinn,J.L., Becker,G., Tilney,N.L., and Mitchell,R.N. 

(1998). Coronary arteriosclerosis after T-cell-mediated injury in transplanted mouse hearts: role of 

interferon-gamma. Am. J. Pathol. 152, 1187-1197. 

 163.  Nagano,H., Mitchell,R.N., Taylor,M.K., Hasegawa,S., Tilney,N.L., and Libby,P. (1997). Interferon-

gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse 

hearts. J. Clin. Invest 100, 550-557. 

 164.  Nankivell,B.J., Borrows,R.J., Fung,C.L., O'Connell,P.J., Allen,R.D., and Chapman,J.R. (2003). The 

natural history of chronic allograft nephropathy. N. Engl. J. Med. 349, 2326-2333. 

 165.  Nelson,P.J. and Krensky,A.M. (2001). Chemokines, chemokine receptors, and allograft rejection. 

Immunity. 14, 377-386. 

 166.  Nykanen,A.I., Tikkanen,J.M., Krebs,R., Keranen,M.A., Sihvola,R.K., Sandelin,H., Tuuminen,R., 

Raisky,O., Koskinen,P.K., and Lemstrom,K.B. (2006). Angiogenic growth factors in cardiac allograft 

rejection. Transplantation 82, S22-S24. 

 167.  Ochsenbein,A.F., Klenerman,P., Karrer,U., Ludewig,B., Pericin,M., Hengartner,H., and 

Zinkernagel,R.M. (1999). Immune surveillance against a solid tumor fails because of immunological 

ignorance. Proc. Natl. Acad. Sci. U. S. A. 96, 2233-2238. 



Appendix 

- 102 - 

 

 168.  Ohashi,P.S., Oehen,S., Buerki,K., Pircher,H., Ohashi,C.T., Odermatt,B., Malissen,B., 

Zinkernagel,R.M., and Hengartner,H. (1991). Ablation of "tolerance" and induction of diabetes by virus 

infection in viral antigen transgenic mice. Cell 65, 305-317. 

 169.  Oukka,M., Cohen-Tannoudji,M., Tanaka,Y., Babinet,C., and Kosmatopoulos,K. (1996). Medullary 

thymic epithelial cells induce tolerance to intracellular proteins. J. Immunol. 156, 968-975. 

 170.  Overwijk,W.W., Surman,D.R., Tsung,K., and Restifo,N.P. (1997). Identification of a Kb-restricted CTL 

epitope of beta-galactosidase: potential use in development of immunization protocols for "self" 

antigens. Methods. 12, 117-123. 

 171.  Ozkaynak,E., Wang,L., Goodearl,A., McDonald,K., Qin,S., O'Keefe,T., Duong,T., Smith,T., Gutierrez-

Ramos,J.C., Rottman,J.B., Coyle,A.J., and Hancock,W.W. (2002). Programmed death-1 targeting can 

promote allograft survival. J. Immunol. 169, 6546-6553. 

 172.  Pearson,T.C., Alexander,D.Z., Hendrix,R., Elwood,E.T., Linsley,P.S., Winn,K.J., and Larsen,C.P. 

(1996). CTLA4-Ig plus bone marrow induces long-term allograft survival and donor specific 

unresponsiveness in the murine model. Evidence for hematopoietic chimerism. Transplantation 61, 997-

1004. 

 173.  Pearson,T.C., Alexander,D.Z., Winn,K.J., Linsley,P.S., Lowry,R.P., and Larsen,C.P. (1994). 

Transplantation tolerance induced by CTLA4-Ig. Transplantation 57, 1701-1706. 

 174.  Perez,V.L., Henault,L., and Lichtman,A.H. (1998). Endothelial antigen presentation: stimulation of 

previously activated but not naive TCR-transgenic mouse T cells. Cell Immunol. 189, 31-40. 

 175.  Piccirillo,C.A. and Shevach,E.M. (2004). Naturally-occurring CD4+CD25+ immunoregulatory T cells: 

central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81-88. 

 176.  Pober,J.S., Ma,W., Biedermann,B., and Libby,P. (1997). Vascular cells have limited capacities to 

activate and differentiate T cells: implications for transplant vascular sclerosis. Transpl. Immunol. 5, 

251-254. 

 177.  Pober,J.S., Orosz,C.G., Rose,M.L., and Savage,C.O. (1996). Can graft endothelial cells initiate a host 

anti-graft immune response? Transplantation 61, 343-349. 

 178.  Potena,L., Grigioni,F., Ortolani,P., Magnani,G., Marrozzini,C., Falchetti,E., Barbieri,A., Bacchi-

Reggiani,L., Lazzarotto,T., Marzocchi,A., Magelli,C., Landini,M.P., and Branzi,A. (2003). Relevance 

of cytomegalovirus infection and coronary-artery remodeling in the first year after heart transplantation: 

a prospective three-dimensional intravascular ultrasound study. Transplantation 75, 839-843. 

 179.  Potena,L., Holweg,C.T., Chin,C., Luikart,H., Weisshaar,D., Narasimhan,B., Fearon,W.F., Lewis,D.B., 

Cooke,J.P., Mocarski,E.S., and Valantine,H.A. (2006). Acute rejection and cardiac allograft vascular 

disease is reduced by suppression of subclinical cytomegalovirus infection. Transplantation 82, 398-

405. 

 180.  Potena,L. and Valantine,H.A. (2007). Cytomegalovirus-associated allograft rejection in heart transplant 

patients. Curr. Opin. Infect. Dis. 20, 425-431. 

 181.  Probst,H.C., Lagnel,J., Kollias,G., and van den,B.M. (2003). Inducible transgenic mice reveal resting 

dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity. 18, 713-720. 

 182.  Probst,H.C., McCoy,K., Okazaki,T., Honjo,T., and van den,B.M. (2005). Resting dendritic cells induce 

peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280-286. 



  Appendix  

 

- 103 - 

 

 183.  Pulendran,B., Palucka,K., and Banchereau,J. (2001). Sensing pathogens and tuning immune responses. 

Science 293, 253-256. 

 184.  Rao,R.M., Yang,L., Garcia-Cardena,G., and Luscinskas,F.W. (2007). Endothelial-dependent 

mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 101, 234-247. 

 185.  Reiser,J.B., Darnault,C., Gregoire,C., Mosser,T., Mazza,G., Kearney,A., van der Merwe,P.A., 

Fontecilla-Camps,J.C., Housset,D., and Malissen,B. (2003). CDR3 loop flexibility contributes to the 

degeneracy of TCR recognition. Nat. Immunol. 4, 241-247. 

 186.  Ridge,J.P., Di Rosa,F., and Matzinger,P. (1998). A conditioned dendritic cell can be a temporal bridge 

between a CD4+ T- helper and a T-killer cell. Nature 393, 474-478. 

 187.  Rifle,G., Mousson,C., and Herve,P. (2006). Endothelial cells in organ transplantation: Friends or foes? 

Transplantation 82, S4-S5. 

 188.  Roake,J.A., Rao,A.S., Morris,P.J., Larsen,C.P., Hankins,D.F., and Austyn,J.M. (1995). Dendritic cell 

loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis 

factor, and interleukin 1. J. Exp. Med. 181, 2237-2247. 

 189.  Rodig,N., Ryan,T., Allen,J.A., Pang,H., Grabie,N., Chernova,T., Greenfield,E.A., Liang,S.C., 

Sharpe,A.H., Lichtman,A.H., and Freeman,G.J. (2003). Endothelial expression of PD-L1 and PD-L2 

down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117-3126. 

 190.  Rose,M.L. (1998). Endothelial cells as antigen-presenting cells: role in human transplant rejection. Cell 

Mol. Life Sci. 54, 965-978. 

 191.  Rosenberg,A.S. and Singer,A. (1992). Cellular basis of skin allograft rejection: an in vivo model of 

immune-mediated tissue destruction. Annu. Rev. Immunol. 10, 333-358. 

 192.  Rothermel,A.L., Wang,Y., Schechner,J., Mook-Kanamori,B., Aird,W.C., Pober,J.S., Tellides,G., and 

Johnson,D.R. (2004). Endothelial cells present antigens in vivo. BMC. Immunol. 5:5., 5. 

 193.  Rothstein,D.M. and Sayegh,M.H. (2003). T-cell costimulatory pathways in allograft rejection and 

tolerance. Immunol. Rev. 196, 85-108. 

 194.  Rouse,B.T., Sarangi,P.P., and Suvas,S. (2006). Regulatory T cells in virus infections. Immunol. Rev. 

212, 272-286. 

 195.  Russell,P.S., Chase,C.M., and Colvin,R.B. (1995). Coronary atherosclerosis in transplanted mouse 

hearts. IV Effects of treatment with monoclonal antibodies to intercellular adhesion molecule-1 and 

leukocyte function-associated antigen-1. Transplantation 60, 724-729. 

 196.  Russell,P.S., Chase,C.M., and Colvin,R.B. (1997). Alloantibody- and T cell-mediated immunity in the 

pathogenesis of transplant arteriosclerosis: lack of progression to sclerotic lesions in B cell-deficient 

mice. Transplantation 64, 1531-1536. 

 197.  Russell,P.S., Chase,C.M., Winn,H.J., and Colvin,R.B. (1994a). Coronary atherosclerosis in transplanted 

mouse hearts. I. Time course and immunogenetic and immunopathological considerations. Am. J. 

Pathol. 144, 260-274. 

 198.  Russell,P.S., Chase,C.M., Winn,H.J., and Colvin,R.B. (1994b). Coronary atherosclerosis in transplanted 

mouse hearts. I. Time course and immunogenetic and immunopathological considerations. Am. J. 

Pathol. 144, 260-274. 

 199.  Russell,P.S., Chase,C.M., Winn,H.J., and Colvin,R.B. (1994c). Coronary atherosclerosis in transplanted 

mouse hearts. II. Importance of humoral immunity. J. Immunol. 152, 5135-5141. 



Appendix 

- 104 - 

 

 200.  Russell,P.S., Chase,C.M., Winn,H.J., and Colvin,R.B. (1994d). Coronary atherosclerosis in transplanted 

mouse hearts. III. Effects of recipient treatment with a monoclonal antibody to interferon-gamma. 

Transplantation 57, 1367-1371. 

 201.  Sakaguchi,S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and 

negative control of immune responses. Annu. Rev. Immunol. 22, 531-562. 

 202.  Sakaguchi,S., Ono,M., Setoguchi,R., Yagi,H., Hori,S., Fehervari,Z., Shimizu,J., Takahashi,T., and 

Nomura,T. (2006a). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and 

autoimmune disease. Immunol. Rev. 212, 8-27. 

 203.  Sakaguchi,S., Ono,M., Setoguchi,R., Yagi,H., Hori,S., Fehervari,Z., Shimizu,J., Takahashi,T., and 

Nomura,T. (2006b). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and 

autoimmune disease. Immunol. Rev. 212, 8-27. 

 204.  Sallusto,F., Palermo,B., Lenig,D., Miettinen,M., Matikainen,S., Julkunen,I., Forster,R., Burgstahler,R., 

Lipp,M., and Lanzavecchia,A. (1999). Distinct patterns and kinetics of chemokine production regulate 

dendritic cell function. Eur. J. Immunol. 29, 1617-1625. 

 205.  Salmi,M., Kalimo,K., and Jalkanen,S. (1993). Induction and function of vascular adhesion protein-1 at 

sites of inflammation. J. Exp. Med. 178, 2255-2260. 

 206.  Salomon,B. and Bluestone,J.A. (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in 

autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225-252. 

 207.  Salomon,R.N., Hughes,C.C., Schoen,F.J., Payne,D.D., Pober,J.S., and Libby,P. (1991). Human 

coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to 

activated graft endothelial cells. Am. J. Pathol. 138, 791-798. 

 208.  Samy,E.T., Parker,L.A., Sharp,C.P., and Tung,K.S. (2005). Continuous control of autoimmune disease 

by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J. Exp. 

Med. 202, 771-781. 

 209.  Schenk,S., Kish,D.D., He,C., El Sawy,T., Chiffoleau,E., Chen,C., Wu,Z., Sandner,S., Gorbachev,A.V., 

Fukamachi,K., Heeger,P.S., Sayegh,M.H., Turka,L.A., and Fairchild,R.L. (2005). Alloreactive T cell 

responses and acute rejection of single class II MHC-disparate heart allografts are under strict 

regulation by CD4+ CD25+ T cells. J. Immunol. 174, 3741-3748. 

 210.  Schlaeger,T.M., Bartunkova,S., Lawitts,J.A., Teichmann,G., Risau,W., Deutsch,U., and Sato,T.N. 

(1997). Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult 

transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 94, 3058-3063. 

 211.  Schon,M.P., Krahn,T., Schon,M., Rodriguez,M.L., Antonicek,H., Schultz,J.E., Ludwig,R.J., 

Zollner,T.M., Bischoff,E., Bremm,K.D., Schramm,M., Henninger,K., Kaufmann,R., Gollnick,H.P., 

Parker,C.M., and Boehncke,W.H. (2002). Efomycine M, a new specific inhibitor of selectin, impairs 

leukocyte adhesion and alleviates cutaneous inflammation. Nat. Med. 8, 366-372. 

 212.  Schwartz,R.H. (1990). A cell culture model for T lymphocyte clonal anergy. Science 248, 1349-1356. 

 213.  Sedmak,D.D., Knight,D.A., Vook,N.C., and Waldman,J.W. (1994). Divergent patterns of ELAM-1, 

ICAM-1, and VCAM-1 expression on cytomegalovirus-infected endothelial cells. Transplantation. 58, 

1379-1385. 

 214.  Sharpe,A.H. and Freeman,G.J. (2002). The B7-CD28 superfamily. Nat. Rev. Immunol. 2, 116-126. 



  Appendix  

 

- 105 - 

 

 215.  Sherman,L.A. and Randolph,C.P. (1981). Monoclonal anti-H-2Kb antibodies detect serological 

differences between H-2Kb mutants. Immunogenetics. 12, 183-186. 

 216.  Shimizu,K., Sugiyama,S., Aikawa,M., Fukumoto,Y., Rabkin,E., Libby,P., and Mitchell,R.N. (2001). 

Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic 

transplant arteriopathy. Nat. Med. 7, 738-741. 

 217.  Shirwin, H. Chronic allograft rejection. Transplant 68, 715-726. 1995.  

  Ref Type: Serial (Book,Monograph) 

 218.  Sho,M., Sandner,S.E., Najafian,N., Salama,A.D., Dong,V., Yamada,A., Kishimoto,K., Harada,H., 

Schmitt,I., and Sayegh,M.H. (2002). New insights into the interactions between T-cell costimulatory 

blockade and conventional immunosuppressive drugs. Ann. Surg. 236, 667-675. 

 219.  Soule,J.L., Streblow,D.N., Andoh,T.F., Kreklywich,C.N., and Orloff,S.L. (2006). Cytomegalovirus 

accelerates chronic allograft nephropathy in a rat renal transplant model with associated provocative 

chemokine profiles. Transplant. Proc. 38, 3214-3220. 

 220.  Speiser,D.E., Lees,R.K., Hengartner,H., Zinkernagel,R.M., and MacDonald,H.R. (1989). Positive and 

negative selection of T cell receptor V beta domains controlled by distinct cell populations in the 

thymus. J. Exp. Med. 170, 2165-2170. 

 221.  Speiser,D.E., Miranda,R., Zakarian,A., Bachmann,M.F., McKall-Faienza,K., Odermatt,B., Hanahan,D., 

Zinkernagel,R.M., and Ohashi,P.S. (1997). Self antigens expressed by solid tumors do not efficiently 

stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645-653. 

 222.  Steinman,R.M. (1991). The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 

9, 271-296. 

 223.  Steinman,R.M. (2003). The control of immunity and tolerance by dendritic cell. Pathol. Biol. (Paris) 51, 

59-60. 

 224.  Steinman,R.M. and Cohn,Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs 

of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142-1162. 

 225.  Steinman,R.M., Hawiger,D., Liu,K., Bonifaz,L., Bonnyay,D., Mahnke,K., Iyoda,T., Ravetch,J., 

Dhodapkar,M., Inaba,K., and Nussenzweig,M. (2003a). Dendritic cell function in vivo during the 

steady state: a role in peripheral tolerance. Ann. N. Y. Acad. Sci. 987, 15-25. 

 226.  Steinman,R.M., Hawiger,D., and Nussenzweig,M.C. (2003b). Tolerogenic dendritic cells. Annu. Rev. 

Immunol. 21, 685-711. 

 227.  Suchin,E.J., Langmuir,P.B., Palmer,E., Sayegh,M.H., Wells,A.D., and Turka,L.A. (2001). Quantifying 

the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973-981. 

 228.  Sun,H., Subbotin,V., Woodward,J., Valdivia,L., Fung,J.J., and Rao,A.S. (2001). Role of MHC class I 

and CD8(+) T cells in the pathogenesis of chronic rejection. Transplant. Proc. 33, 319. 

 229.  Suzuki,J., Cole,S.E., Batirel,S., Kosuge,H., Shimizu,K., Isobe,M., Libby,P., and Mitchell,R.N. (2003). 

Tumor necrosis factor receptor -1 and -2 double deficiency reduces graft arterial disease in murine 

cardiac allografts. Am. J. Transplant. 3, 968-976. 

 230.  Tallquist,M.D., Yun,T.J., and Pease,L.R. (1996). A single T cell receptor recognizes structurally 

distinct MHC/peptide complexes with high specificity. J. Exp. Med. 184, 1017-1026. 

 231.  Tanaka,K., Albin,M.J., Yuan,X., Yamaura,K., Habicht,A., Murayama,T., Grimm,M., Waaga,A.M., 

Ueno,T., Padera,R.F., Yagita,H., Azuma,M., Shin,T., Blazar,B.R., Rothstein,D.M., Sayegh,M.H., and 



Appendix 

- 106 - 

 

Najafian,N. (2007). PDL1 is required for peripheral transplantation tolerance and protection from 

chronic allograft rejection. J. Immunol. 179, 5204-5210. 

 232.  Taylor,D.O., Edwards,L.B., Boucek,M.M., Trulock,E.P., Deng,M.C., Keck,B.M., and Hertz,M.I. 

(2005). Registry of the International Society for Heart and Lung Transplantation: twenty-second official 

adult heart transplant report--2005. J. Heart Lung Transplant. 24, 945-955. 

 233.  Tellides,G. and Pober,J.S. (2007). Interferon-gamma axis in graft arteriosclerosis. Circ. Res. 100, 622-

632. 

 234.  Thebault,P., Condamine,T., Heslan,M., Hill,M., Bernard,I., Saoudi,A., Josien,R., Anegon,I., 

Cuturi,M.C., and Chiffoleau,E. (2007). Role of IFNgamma in allograft tolerance mediated by 

CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells. Am. J. Transplant. 7, 2472-

2482. 

 235.  Tian,Y., Rudiger,H.A., Jochum,W., and Clavien,P.A. (2002). Comparison of arterialized and 

nonarterialized orthotopic liver transplantation in mice: prowess or relevant model? Transplantation 74, 

1242-1246. 

 236.  Tu,W., Potena,L., Stepick-Biek,P., Liu,L., Dionis,K.Y., Luikart,H., Fearon,W.F., Holmes,T.H., 

Chin,C., Cooke,J.P., Valantine,H.A., Mocarski,E.S., and Lewis,D.B. (2006). T-cell immunity to 

subclinical cytomegalovirus infection reduces cardiac allograft disease. Circulation 114, 1608-1615. 

 237.  Valantine,H.A. (2003). Cardiac allograft vasculopathy: central role of endothelial injury leading to 

transplant "atheroma". Transplantation. 76, 891-899. 

 238.  Valantine,H.A. (2004). The role of viruses in cardiac allograft vasculopathy. Am. J. Transplant. 4, 169-

177. 

 239.  Valitutti,S., Muller,S., Dessing,M., and Lanzavecchia,A. (1996). Different responses are elicited in 

cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917-1921. 

 240.  Valujskikh,A., Lantz,O., Celli,S., Matzinger,P., and Heeger,P.S. (2002a). Cross-primed CD8(+) T cells 

mediate graft rejection via a distinct effector pathway. Nat. Immunol. 3, 844-851. 

 241.  Valujskikh,A., Pantenburg,B., and Heeger,P.S. (2002b). Primed allospecific T cells prevent the effects 

of costimulatory blockade on prolonged cardiac allograft survival in mice. Am. J. Transplant. 2, 501-

509. 

 242.  Valujskikh,A., Zhang,Q., and Heeger,P.S. (2006). CD8 T cells specific for a donor-derived, self-

restricted transplant antigen are nonpathogenic bystanders after vascularized heart transplantation in 

mice. J. Immunol. 176, 2190-2196. 

 243.  van Dorp,W.T., Jonges,E., Bruggeman,C.A., Daha,M.R., van Es,L.A., and Der Woude,F.J. (1989). 

Direct induction of MHC class I, but not class II, expression on endothelial cells by cytomegalovirus 

infection. Transplantation. 48, 469-472. 

 244.  van Essen,D., Kikutani,H., and Gray,D. (1995). CD40 ligand-transduced co-stimulation of T cells in the 

development of helper function. Nature 378, 620-623. 

 245.  Vassalli,G., Gallino,A., Weis,M., von Scheidt,W., Kappenberger,L., von Segesser,L.K., and Goy,J.J. 

(2003). Alloimmunity and nonimmunologic risk factors in cardiac allograft vasculopathy. Eur. Heart J. 

24, 1180-1188. 

 246.  Villasenor,J., Benoist,C., and Mathis,D. (2005). AIRE and APECED: molecular insights into an 

autoimmune disease. Immunol. Rev. 204, 156-164. 



  Appendix  

 

- 107 - 

 

 247.  Vliegen,I., Duijvestijn,A., Grauls,G., Herngreen,S., Bruggeman,C., and Stassen,F. (2004). 

Cytomegalovirus infection aggravates atherogenesis in apoE knockout mice by both local and systemic 

immune activation. Microbes. Infect. 6, 17-24. 

 248.  Vliegen,I., Herngreen,S.B., Grauls,G.E., Bruggeman,C.A., and Stassen,F.R. (2005). Mouse 

cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in 

hypercholesterolemic mice. Atherosclerosis. 181, 39-44. 

 249.  von Herrath,M.G. and Oldstone,M.B. (1996). Virus-induced autoimmune disease. Curr Opin Immunol 

8, 878-885. 

 250.  Weber,D.A., Terrell,N.K., Zhang,Y., Strindberg,G., Martin,J., Rudensky,A., and Braunstein,N.S. 

(1995). Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J. 

Immunol. 154, 5153-5164. 

 251.  Weiler-Guettler,H., Aird,W.C., Husain,M., Rayburn,H., and Rosenberg,R.D. (1996). Targeting of 

transgene expression to the vascular endothelium of mice by homologous recombination at the 

thrombomodulin locus. Circ. Res. 78, 180-187. 

 252.  Weis,M. and von Scheidt,W. (1997). Cardiac allograft vasculopathy: a review. Circulation. 96, 2069-

2077. 

 253.  Whitelegg,A.M., Oosten,L.E., Jordan,S., Kester,M., van Halteren,A.G., Madrigal,J.A., Goulmy,E., and 

Barber,L.D. (2005). Investigation of peptide involvement in T cell allorecognition using recombinant 

HLA class I multimers. J. Immunol. 175, 1706-1714. 

 254.  Whitmire,J.K., Flavell,R.A., Grewal,I.S., Larsen,C.P., Pearson,T.C., and Ahmed,R. (1999). CD40-

CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable 

for CD8 T cell responses. J. Immunol. 163, 3194-3201. 

 255.  Wick,G., Romen,M., Amberger,A., Metzler,B., Mayr,M., Falkensammer,G., and Xu,Q. (1997). 

Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J. 11, 1199-1207. 

 256.  Wood,K. and Sachs,D.H. (1996). Chimerism and transplantation tolerance: cause and effect. Immunol. 

Today 17, 584-587. 

 257.  Wu,T.C., Hruban,R.H., Ambinder,R.F., Pizzorno,M., Cameron,D.E., Baumgartner,W.A., Reitz,B.A., 

Hayward,G.S., and Hutchins,G.M. (1992). Demonstration of cytomegalovirus nucleic acids in the 

coronary arteries of transplanted hearts. Am. J. Pathol. 140, 739-747. 

 258.  Yang,Y. and Wilson,J.M. (1996). CD40 ligand-dependent T cell activation: requirement of B7-CD28 

signaling through CD40. Science 273, 1862-1864. 

 259.  Zehn,D. and Bevan,M.J. (2006). T cells with low avidity for a tissue-restricted antigen routinely evade 

central and peripheral tolerance and cause autoimmunity. Immunity. 25, 261-270. 

 260.  Zinkernagel,R.M., Ehl,S., Aichele,P., Oehen,S., Kundig,T., and Hengartner,H. (1997). Antigen 

localisation regulates immune responses in a dose- and time- dependent fashion: a geographical view of 

immune reactivity. Immunol. Rev. 156:199-209, 199-209. 

 

 

  



Appendix 

- 108 - 

 

7.2 Figure legend 

Figure 1: Immune activation and tolerance induced by DC.. ............................................................................... 16 

Figure 2: T-cell recognition of conventional and allogeneic complexes.. ............................................................ 19 

Figure 3: Arterial remodelling in chronic vascular rejection (Libby and Pober, 2001)........................................ 22 

Figure 4: Do vascular EC that present a minor histocompatibility antigen activate or tolerize naive CD8
+
  T-

cells? ..................................................................................................................................................................... 36 

Figure 5: CD8
+
 T cell reactivity in Tie2-LacZ mice. ........................................................................................... 47 

Figure 6: CD8
+
 T cell tolerance in Tie2-LacZ mice. ............................................................................................ 48 

Figure 7: Loss of adoptively transferred Bg1 CD8
+
 T cells in Tie2-LacZ mice is not dependent on -gal 

expression by EC. ................................................................................................................................................. 50 

Figure 8: Activation of Bg1 CD8
+
 T cells in Tie2-LacZ mice. ............................................................................ 52 

Figure 9: In vivo proliferation of Bg1 CD8
+
 T cells in bone marrow chimeric mice.. ......................................... 53 

Figure 10: Lack of CD8
+
 cell activation in naive recipients of Tie2-LacZ vascularized organ grafts. ................ 54 

Figure 11: In situ analysis of heterotopically transplanted (A) C57BL/6 (B6B6) and (B) Tie2-LacZ (T2B6) 

hearts on day 100 post transplantation. ................................................................................................................. 69 

Figure 12: CTL reactivity in recipients of C57BL/6 (B6B6) or Tie2-LacZ (T2B6) heart transplants 

following DC immunization. ................................................................................................................................ 70 

Figure 13: In situ analysis of transplanted Tie2-LacZ hearts following repetitive DC immunization on days 7 (A) 

and 15 (B) post immunization. .............................................................................................................................. 72 

Figure 14: Quantification of vascular rejection following DC immunization. ..................................................... 73 

Figure 15: Immune reactivity and vascular pathology following MCMV-LacZ infection. ................................. 75 

Figure 16: Minor histocompatibility antigen presented by vascular EC is ignored by naive CD8
+
 T cells.. ....... 82 

Figure 17: Activated CD8
+ 

T cells recognize minor histocompatibility antigen expressed on EC, thus EC 

become target cells of antigen-specific CTL. ........................................................................................................ 85 

Figure 18: Two models of help delivery to CTL.. ................................................................................................ 87 

 

Figure S 1: gal and CD8 staining of salivary gland, spleen and liver sections of naïve Tie2-LacZ mice. ......... 57 

Figure S 2: LacZ mRNA copy numbers in liver, spleen, heart, kidney, thymus and BM of naïve Tie2-LacZ  

mice ....................................................................................................................................................................... 57 

Figure S 3: Expression of LacZ transcripts in sorted bone marrow cells.. ........................................................... 58 

Figure S 4: Functional avidity of TCR transgenic Bg1 CD8
+
 T-cells. ................................................................. 58 

Figure S 5: Phenotype of MCMV-LacZ-activated Bg1 TCR transgenic T cells in B6B6 and B6T2  

chimeras. ............................................................................................................................................................... 59 

Figure S 6: Fate of Bg1 TCR transgenic T cells in T2T2 chimeric mice.. ....................................................... 60 

 

  



  Appendix  

 

- 109 - 

 

7.3 Abbreviations 

β-gal  β-galactosidase 

Ab   Antibody 

Ag   Antigen 

AIRE  Human autoimmune regulator protein 

APC  Allophycocyanin 

APC  Antigen-presenting cell 

B6   C57BL/6 

BM   Bone marrow 

BSS  Balanced salt solution 

CCR  Chemokine receptor, C-C subgroup 

CD   Cluster of differentiation 

CD40L  CD40 ligand 

CD62L  CD62 L-Selectin 

cDNA  Cloned deoxyribonucleic acid 

CFSE  Carboxyfluoroscein diacetatsuccinimidyl ester 

CMV  Cytomegalovirus 

CTL  Cytotoxic T-lymphocyte 

CTLA4  Cytotoxic T-lymphocyte antigen 4 

CTLA4-lg  Cytotoxic T-lymphocyte antigen 4-ligand 

CTV  Chronic transplant vasculopathy 

DC   Dendritic cell 

DEPC  Diethylene pyrocarbonate 

DEREG  Depletion of regulatory T-cells 

DMEM  Dulbecco’s modified Eagle’s medium 

DNA  Deoxyribonucleic acid 

DT   Diphteria toxin 

DTR  Diphteria toxin receptor 

EC   Endothelial cell 

EL-4  Mouse thymome cell line 

EVG  Elastic van Giesson 

FACS  Fluorescence activated cell scanning/sorting 

FBS  Fetal bovine serum 
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FCS  Fetal calf serum 

FITC  Fluorescein isothiocyanat 

Foxp3  Forkhead box protein 3 

GFP  Green fluorescent protein 

GM-CSF  Granulocyte/macrophage colony-stimulating factor 

GP   Glycoprotein 

GVHD  Graft versus host disease 

HBSS  Hanks balanced salt solution 

HCS  Hematopoietic stem cell 

HCMV  Human cytomegalovirus 

HLA  Human leukocyte antigen 

i.p.   Intraperitoneal 

i.v.   Intravenous 

ICAM  Intercellular adhesion molecule 

IFN   Interferon 

Ig   Immunglobulin 

IL   Interleukin 

IMDM  Iscove’s modified Dulbecco’s medium 

IP-10   Interferon-inducible protein 10 

kDa   Kilodalton 

LacZ  Gene encoding for the β-galactosidase protein 

LCMV  Lymphocyte choriomeningitis virus 

LFA  Lymphocyte-function-associated antigen 1 

LN   Lymph node 

LPS   Lipopolysaccharide 

LSEC  Liver sinusoidal endothelial cell 

LT   Lymphotoxin 

mAb   Monoclonal antibody 

MAC-1  Membrane-attack complex 

MACS  Magnetic assisted cell sorting 

MCMV  Murine cytomegalovirus 

MCP-1  Monocyte chemoattractant protein 1 

MEM  Minimal essential medium 

mhAg  Minor histocompatibility antigen 
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MHC  Major histocompatibility complex 

MIG  Monokine induced by interferon gamma 

MIP-1α  Macrophage inflammatory protein 

MLN  Mesenteric lymphe node 

mTECs  Medullary thymic epithelial cells 

NP   Nucleoprotein 

PBL  Peripheral blood lymphocytes 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 

PD-1  Programmed death-1 

PD-L  Programmed death-ligand 

PDGF  Platelet-derived growth factor 

PE   Phycoerithrin 

PerCp  Peridinin Chlorophyll protein 

pfu   Plaque forming unit 

PMA  Phorbol myristate acetate 

RANTES  Regulated on activation, normal T expressed and secreted 

RCMV  Rat cytomegalovirus 

RIP   Rat insulin promoter 

RNA  Ribonucleic acid 

RT-PCR  Reverse transcriptase polymerase chain reaction 

SEM  Standard error of the mean 

s.c.   Subcutanous 

SM   Smooth muscle 

SMC  Smooth muscle cell 

T2   Tie2-LacZ 

TBP  TATA binding protein 

TCR  T-cell receptor 

TGF-β  Transforming growth factor beta 

Th   T helper cell 

TLR  Toll-like receptor 

TNF  Tumor necrosis factor 

TNFR  Tumor necrosis factor receptor 

Treg  T regulatory cell 
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TSAs  Tissue-specific antigens 

TV   Transplant vasculopathy 

Wt   Wild type 

VEGF  Vascular endothelial growth factor 

VLA-4  Very late antigen 4 
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