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Summary 

 

Background: Glioblastoma multiforme (GBM), astrocytoma (A) and oligodendroglioma (OG) 

are the neoplasms of the glial lineage in the Central Nervous System (CNS). Among them, GBM 

occurs at the highest frequency and shows the shortest patient median survival time of some 10 

months as compared for instance to the survival time of OG of about 10 years. Genetically, OG 

differs from GBM by the frequent combination of loss of heterozygosity (LOH) on chromosomes 

1p and 19q, which is associated with more favourable prognosis in OG patients. However, the 

clinical significance of LOH on 1p in other glioma subtypes remained unknown.  

 

Methods and Results: We identified a subgroup of GBM with LOH on centromeric chromosome 

1p together with longer survival. The minimally lost area(s) in both GBM and OG converged at 

the NOTCH2 locus on 1p11 and positively correlated with prognosis in GBM as well as in OG 

patients. Comparison between gene expression of NOTCH2 and the genetic status at the NOTCH2 

locus on chromosome 1p11 supported the hypothesis of a loss of function alteration of NOTCH2 

in tumours. However, many GBMs do not display deletions at the NOTCH2 locus on 1p11 and do 

express the NOTCH2 gene. Abundant expression of components of canonical NOTCH signaling 

in these tumors and a positive correlation between NOTCH2 transcripts with the target gene  

HES-1 (P=0.0001) indicated that functional NOTCH signaling in glioma is mainly driven by 

NOTCH2. In addition, we defined TNC, the gene for the cell migration factor tenascin-C as a 

novel target gene for NOTCH signaling. We further showed that activation of NOTCH signaling 

was indeed promoting TNC-dependent glioma cell motility. Thus, together with the ability to 

increase proliferation, canonical Notch signaling turned out to be critical for glioma progression. 

We also found that non-canonical Notch signaling was associated with the maintenance of 

tumorigenic potential of the GBM cells in soft agar culture. In addition, Notch2 had a pro-

survival effect on GBM cells by upregulating anti-apoptotic proteins Bcl-2 and Mcl-1, 

independently of the canonical pathway. Finally, defective degradation pathway of Notch 

receptors in GBM cells led to slow receptor turnover, thereby providing additional contribution to 

the oncogenic function of Notch2.  

 

Conclusion: This study identified aberrant multi-facetted oncogenic behaviours of Notch 

proteins, in particular of Notch2, in GBM. This provided a molecular basis for the higher 

aggressiveness of Notch2-positive GBM compared to Notch2-negative GBM or OG, and 

suggested Notch2 as a sensible target for new therapeutic approaches against GBM. 
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Introduction 

                  In the year 2000, malignant tumours were responsible for 6.2 million deaths 

out of 56 million worldwide from all causes, while 5.3 million men and 4.7 million 

women developed a malignant tumour according to World Health Organization (WHO) 

(Stewart, 2003).The report also revealed that cancer has emerged as a major public health 

problem in developing countries, matching industrialized nations. In Switzerland 

approximately 25% of deaths are caused by cancer (Quinto, 2004). In spite of 

phenomenal progress in basic and clinical research, current treatment results only in a 

modest prolongation of life. Exposure to carcinogens in tobacco smoke (Witschi et al., 

1995) or in food (Johnson, 2002) or UV light (Fisher and Kripke, 1977) results in genetic 

alterations that target genes involved in the regulation of cell-cycle, survival and genome 

integrity. Genetic alterations such as gene amplification, gain of function mutation or 

ectopic expression due to gene translocation result in activation of oncogenes that 

accelerate the cell cycle preferentially during the G1/S phase, but also during the G2/M. 

Loss of heterozygosity (LOH), loss of function mutations (Pihan and Doxsey, 2003) and 

transcriptional silencing result in inactivation of tumour-suppressor genes (Herman and 

Baylin, 2003; Merlo et al., 1995). These types of genetic alterations are believed to 

cooperate in the promotion of tumour development. 

 

Acquired genetic alterations are clonally selected if they convey a growth advantage 

leading to progressive conversion of normal into neoplastic cells (Nowell, 1976). Self-

sufficient growth signals, insensitivity to anti-growth signals, unlimited replicative 

potential, evasion of apoptosis and sustained angiogenesis are all considered to be 

hallmarks of cancer cells (Hanahan and Weinberg, 2000). A cancer cell no longer induces 

efficient cell cycle arrest and apoptosis in response to mutations in cell cycle, DNA repair 

and pro-apoptotic genes. Germline mutations present in cancer genes, such as NF-1 & -2, 

PTEN, TSC1/2, MLH1/MSH2 (Turcot syndrome), TP53 (Li-Fraumeni syndrome) and Rb 

(He et al., 1995) result in hereditary predispositions to cancer (familial cancer syndromes) 

(Fearon, 1997) whereas somatic mutations give rise to the prevalent sporadic tumours. 

Such genes involved in gliomagenesis are Rb (He et al., 1995), CDKN2A (Labuhn et al., 

2001), CDKN1B (Alleyne et al., 1999), and HDM2 (Vogelstein and Kinzler, 2004). 
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1.1 Clinical presentation of brain tumours 

                  Gliomas, tumours of glial origin, are the most common neoplasms of the 

central nervous (CNS) that include oligodendroglioma, astrocytoma and glioblastoma 

(Annex-2) (Holland, 2001). Oligodendrogliomas have an incidence of 3 in 1x10
6
 

population/year with a mean survival of 10 years (Kleihues and Sobin, 2000). Pilocytic 

astrocytomas are benign tumours of WHO grade I that rarely progresses to more 

advanced stages and the patients are cured if the tumour can be completely resected (Zhu 

and Parada, 2002). Astrocytoma WHO grade II and anaplastic astrocytomas WHO grade 

III infiltrate into the normal brain. The incidence rates of grade II and III astrocytomas 

are 10-15 in 1x10
6
 population/year. The mean survival is 7 years in grade II and less than 

5 years in grade III atstrocytomas (Burger et al., 1985; Leighton et al., 1997; Philippon et 

al., 1993; Prados et al., 1992). Glioblastoma (GBM) is the most malignant form of 

tumour with 36 in 1x10
6
 population/year as occurrence rate. The patients mean survival is 

less than 10 months (Ohgaki and Kleihues, 2007). Surgical resection is difficult in these 

tumours. Despite advances in surgical and medical neuro-oncology, their prognosis 

remains poor (Ohgaki and Kleihues, 2005). Like tumours of other cellular types, they 

also show resistance to chemo- and radio-therapy (Shapiro et al., 1989). However, in 

contrast to other tumour types, they rarely metastasize (Giordana et al., 1995), but show 

diffuse infiltration and rapid invasion of neighbouring brain structures (Burger et al., 

1988).  

 

1.2 Purpose of this work 

                  The core intention of this work is to identify and understand the key molecular 

genetic mechanisms, which are crucial. That would eventually pave a way for finding 

effective diagnostic and therapeutic strategies to improve patient prognosis. 

 

a. Understanding the mechanism of gliomagenesis  

                  Frequent genetic alterations targeting the chromosomes 1p, 7p, 10p and 10q, 

11p, 17p, 19q and 22q have been observed in gliomas (Merlo, 2003). Genes located 

within these alterations may be responsible for initiation and progression of glioma. 

Identification of underlying genes and associated pathways within these chromosomal 
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aberrations will shed light on their biological and clinical significance. In the past two 

decades, progress in the field of molecular neuro-oncology revealed that the most 

relevant genes involved in gliomagenesis are those encoding growth factor receptors (e.g. 

EGFR), components of the cell cycle machinery (Rb, Cdk4, and the Cyclin-dependent 

kinase inhibitor CDKN2A/p16
INK4a

), and regulators of apoptosis (p53, HDM2, p14
ARF

 and 

PTEN) (Maher et al., 2001; Merlo, 2003). Most of the animal models created so far are 

based on the molecular alterations mentioned above (Holland, 2001; Hu and Holland, 

2005). These alterations have been shown to confer a growth advantage, leading to 

uncontrolled cell proliferation, a high invasive potential and drug resistance.  

 

b. Clinical application 

                  In recent years there has been tremendous progress towards a detailed 

characterization of genetic alterations that underlie many human tumour types (Hanahan 

and Weinberg, 2000). The new molecular genetic insights of tumour biology have been 

exploited with success to identify pliable cancer pathways and use them as targets for low 

molecular weight compounds that have potential anti-tumourigenic effects. Targeted 

therapies raise new hopes in the treatment of cancer. Compounds like Gleevec and Iressa 

have established a paradigm for the treatment of tumours such as chronic myeloid 

leukemia (CML), gastro-intestinal tumour (GIST) (Capdeville et al., 2002) and non-small 

cell lung cancer (NSCLC) (Sordella et al., 2004). As the tumour growth is acutely 

dependent on specific kinases however, only Gleevec has fulfilled its therapeutic promise 

so far in the chronic phase, but not in the blast crisis of CML. No equivalent drug has 

been identified yet for interfering with glioma progression, and single drug treatments are 

likely to be inefficient to treat gliomas, possibly because of the genetic instability that 

allows a swift adaptation to a therapeutic challenge. Hence, a new strategy is to find 

crucial molecular genetic alterations during initiation and progression of gliomas that can 

be exploited for development of new drugs that ought to be used in drug combinations 

targeting several pathways at once instead of single drug approaches. 
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1.3 Central nervous system development 

                  The three major fundamental cell types of the vertebrate central nervous 

system (CNS) are neurons, astrocytes and oligodendrocytes. This basic triad comprises 

many distinct sub-types of neurons, of astroglia and of oligodendroglia. The different 

neural cell types are generated sequentially during the CNS development from 

ventricular zone neuro-epithelial stem cells (NSC) derived from the embryonic neural 

tube, with neurogenesis preceding gliogenesis (Battiste et al., 2007; Sugimori et al., 

2007; Zhou and Anderson, 2002). These NSC undergo series of symmetric and 

asymmetric divisions at specific points in time and space to generate progressively 

more restricted precursors: neuronal restricted precursors that produce only neurons and 

glial-restricted precursor cells (GPCs) which further lineage into either astrocytic 

precursor cells (APCs) or oligodendrocyte precursor cells (OPCs), and terminally either 

differentiate into astrocytes or oligodendrocytes. This results in the correct proportion 

of cells needed to form a mature nervous system (Holland, 2001; Maher et al., 2001; 

Wechsler-Reya and Scott, 2001) (Annex-1). At the adult stage, most neurons become 

post-mitotic, and only a small fraction of stem cells remains undifferentiated. However, 

many astrocytes or their precursors retain their dividing capacity throughout life. This 

makes them particularly susceptible to transformation and this is presumably one 

reason why astrocytic tumours are the most common brain tumours, besides the fact 

that astrocytes are about ten times more frequent in the CNS compared to neurons (Zhu 

and Parada, 2002).  

 

1.4 Classification, grading and genetic alteration of gliomas 

 

a. Precursors of gliomas 

                 Gliomas include tumours with predominance of astrocytic (astrocytomas) or 

oligodendrocytic origin (oligodendroglioma) or which show a mixture of both glial cell 

types (oligoastrocytoma), or less differentiated glial cells (glioblastoma) (Annex-2) 

(Holland, 2001). These tumours have cellular morphologies and gene-expression 

patterns similar to astrocytes, oligodendrocytes and their precursors, respectively. The 

pathways known to be involved in proliferation and differentiation of glial progenitors 

are altered in gliomas. The cell type from which gliomas originate has not been 
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definitely established (Sanai et al., 2005). The common understanding is that 

astrocytoma and oligodendrogliomas arise from respective precursors and that mixed 

gliomas originate from progenitors of both astrocytes and oligodendrocytes, but this is 

not completely proven (Holland, 2001). Next, the widely assumed mechanism of 

gliomagenesis derived from differentiated glia has not been adequately tested. Finally, 

the concept of de-differentiation of mature glia fails to explain adequately the origin of 

oligo-astrocytoma. However, the important point is that the origin of a neoplasm is not 

necessarily reflected in the appearance of its most common cellular component: brain 

tumours of apparently comparable histological structure can exhibit vastly different 

behaviors (Holland, 2001; Merlo, 2003; Ohgaki and Kleihues, 2005; Wechsler-Reya 

and Scott, 2001). 

 

For decades, adult glia was thought to be the only dividing cells in the postnatal brain, 

making them the only brain cells susceptible to transformation. Since then, other multi-

potent, self-renewing and proliferative populations like Neural stem cells (NSC) and 

glial cells (GPC) have been identified in multiple regions of the human adult brain that 

are reservoirs for immature neural cells, i.e. the subventricular zone (Johansson et al., 

1999). So, the classic theories regarding gliomagenesis are now being reappraised in 

the hope of reconstructing a more accurate picture of the origin of gliomas (Johansson 

et al., 1999; Sanai et al., 2005). Recently, two groups (Galli et al., 2004; Singh et al., 

2004) have identified brain tumour initiating, stem-like precursors from human primary 

glioblastomas. This sub-population seemingly responsible for radio-resistance of 

glioblastomas (GBM) (Bao et al., 2006), looses its tumourigenic potential upon addition 

of bone morphogenic protein-4 (BMP4) (Piccirillo et al., 2006). The identification of 

the cellular origin of gliomas presents an opportunity for improving our understanding 

of this disease and finding potential therapeutic strategies (Holland, 2001; Maher et al., 

2001; Sanai et al., 2005). 
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b. Classification and grading of gliomas 

                  The seminal system of classification and grading of glial tumours 

introduced by Bailey and Cushing in the early 20
th

 century was based on the 

comparison of histological appearances and putative developmental stages of glia 

(Louis et al., 2001). This was basically due to the consideration that astrocytomas and 

oligodendrogliomas are looking similar to their normal differentiated counterparts. 

Later, advancements in molecular histopathology have proven that the seminal concepts 

were correct and they form the basis for the current World Health Organization (WHO) 

classification and grading revised in 2000 (Louis et al., 2001). The WHO classification 

system divides diffusive gliomas into astrocytic tumours, oligodendrogliomas and 

oligo-astrocytomas. The degree of malignancy, as determined by histopathological 

criteria, grades them on the scale of I to IV. The clinical outcome of the patients 

predominantly depends on the tumour grade since gliomas rarely metastasize outside 

the CNS. Biologically, grade I tumours are benign and can be surgically cured because 

they do not infiltrate adjacent normal brain tissue. Grade II tumours are low-grade 

malignancies that may take a long clinical course. Because grade II tumours infiltrate 

normal surrounding brain tissue, they cannot be cured surgically. Grade III & IV 

gliomas are highly malignant and diffusely infiltrate normal brain. Around 70% of the 

grade II gliomas transform into grade III & IV tumours within 5-10 years of diagnosis 

(Maher et al., 2001) (Annex-3). 

 

Astrocytomas of WHO grades II-IV are the most common CNS neoplasms and 

represent more than 60% of all primary brain tumours. Glioblastoma multiforme 

(GBM), also called astrocytoma WHO grade IV is the most malignant form of 

infiltrating glioma with a very short median survival of 8 to 10 months (Zhu and 

Parada, 2002). Although identical at the histopathological point of view, GBMs can be 

divided into two subclasses: primary and secondary GBM based on clinical 

characteristics. Primary GBM occur in older patients, are very aggressive, highly 

invasive and arise from a de novo process, without a record of a pre-existing low-grade 

lesion (Ohgaki and Kleihues, 2007). Secondary GBM are usually observed in younger 

patients and develop progressively from low-grade astrocytoma over a period of 5 to 10 



 13 

years. Genetic studies of GBM indicate that there are common, but also distinct genetic 

pathways that lead to these two sub-types (Wechsler-Reya and Scott, 2001). Very 

recently, the isocitrate dehydrogenase (IDH1) gene has been identified that allows 

distinction between primary and secondary GBM (Parsons et al., 2008). 

 

c. Genetic alterations associated with gliomas 

                  The median survival is statistically similar between primary and secondary 

GBM, although secondary GBM have a tendency for longer survival that may be 

related to younger patient age. Both tumours have equal capacities to proliferate, invade 

and resist to all therapeutic interventions (Maher et al., 2001; Wechsler-Reya and Scott, 

2001). Microvascular proliferation and necrosis are found in primary as well as in 

secondary GBM. Both are composed of highly infiltrative and less differentiated cells 

than low-grade astrocytomas. The analysis of mutations indicates that the same genetic 

pathways (growth and cell cycle regulation) are targeted, but the frequency of specific 

genetic mutations may differ between the GBM sub-types (Zhu and Parada, 2002).  

 

Primary GBM 

                  Primary GBM are the majority of GBM and develop de novo very rapidly, 

without clinical, radiological, or morphological evidence of a pre-existing low-grade 

lesion (Labuhn et al., 2001; Maher et al., 2001; Ohgaki and Kleihues, 2005).  

 

In primary GBM, the homozygous deletion of the CDKN2A locus, coding for p16INK4A & 

p14ARF occurs quite frequently, simultaneously affecting pathways mediated by the 

retinoblastoma protein (Rb) and p53 (Labuhn et al., 2001; Ohgaki and Kleihues, 2007). 

p16INK4A binds to CDK4 and inhibits CDK4/cyclinD1 complex formation, thereby 

releasing Rb. The free Rb controls G1-S transition by sequestering E2F transcription 

factors (Sherr and Roberts, 1999; Zhu and Parada, 2002). In normal cells, an 

autoregulatory feedback loop regulates both the activity of p53 and the expression of 

mouse double minute 2 (MDM2, in humans: HDM2). The p14ARF gene product binds to 

HDM2 and inhibits HDM2-mediated p53 degradation and trans-activational silencing 
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of genes related to cellular processes such as the cell cycle, response to DNA damage 

and cell death (Kamijo et al., 1998; Picksley and Lane, 1993; Pomerantz et al., 1998).  

 

The gene coding for the growth-promoting epidermal growth factor receptor (EGFR) is 

amplified in 40% of primary GBM and frequently contains the mutated variant 3 

(EGFRvIII) consisting of a deletion of exons 2-7 (Ekstrand et al., 1994).  

 

Loss of chromosome 10q is the most common genetic alteration associated with GBM. 

The tumour suppressor PTEN, located on 10q23, is genetically inactivated in more than 

30% of GBM. The protein and lipid phosphatase PTEN negatively regulates the growth 

and survival pathway PI3K-Akt by acting on its product phosphatidylinositol (3,4,5)-

triphosphate (PIP3) (Sansal and Sellers, 2004; Vivanco and Sawyers, 2002). PTEN also 

has a protein phosphatase activity, which directly or indirectly dephosphorylates the 

Thr-383 residue. This allows its C2 domain to associate with a signaling complex in the 

cell membrane and slows cell migration. This protein phosphatase activity is lacking in 

GBM cells (Merlo and Bettler, 2004; Raftopoulou et al., 2004). PI3KCA has been 

mutated in GBM (Samuels et al., 2004). The carboxyl-terminal modulator protein 

(CTMP) is another negative regulatory component controlling PKB activity (Maira et 

al., 2001) and the corresponding gene is often epigenetically silenced in GBM (Knobbe 

et al., 2004). The mutational spectrum has nicely been confirmed by a whole genome 

sequencing approach in GBM (Parsons et al., 2008). 

  

Recent observations support a plastic model of primary GBM development: either a 

transformation of adult neural stem cells from the sub-ventricular zones of the brain or 

de-differentiation of mature astrocytes. Glial progenitor cells (GPC) can develop into 

neural stem cells in response to exogenous fibroblast growth factor 2 (FGF2), while 

astrocytes with loss of the INK4A/ARF locus can be de-differentiated into neural stem 

cells in response to epidermal growth factor (EGF) signaling. Thereafter, amplification 

of the EGFR gene or mutations in PTEN can lead to primary GBM (Maher et al., 2001; 

Wechsler-Reya and Scott, 2001; Zhu and Parada, 2002) (Annex-4). 
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Astrocytomas & Secondary GBM 

                  The presence of some genetic alterations in both low and high-grade 

astrocytomas indicates that common mutations are involved in early phases of tumour 

formation (Maher et al., 2001). For example, patients with the Li-Fraumeni syndrome 

carry a germ line mutation in the TP53 gene that encodes the p53 protein, a regulator of 

cell cycle progression and apoptosis. Li-Fraumeni patients are predisposed to the 

development of tumours of various lineages, including astrocytomas. More than 60% of 

all grades of astrocytomas show TP53 mutations (Ohgaki and Kleihues, 2007). The 

early occurrence of TP53 mutations points to the need for astrocytoma cells to evade 

apoptosis, migrate and survive in a non-adequate environment. However, observations 

in knock-out mice indicate that the loss of TP53 alone is not sufficient to initiate 

astrocytoma formation and additional genetic events are required (Maher et al., 2001; 

Wechsler-Reya and Scott, 2001; Zhu and Parada, 2002). 

 

The growth factor-receptor tyrosine kinases (GF-RTK) transmit growth and survival 

signals through the effector GTP-binding protein, RAS. The GF-RTK-RAS signaling 

cascade is frequently targeted in human cancers rendering cancer cells constitutively 

independent of exogenous growth factors (Kinzler and Vogelstein, 1996). Platelet- 

derived growth factor (PDGF) and its receptor are both highly expressed in 

astrocytomas, indicating that the cells establish an autocrine stimulatory loop. 

Neurofibromatosis type 1 (NF-1) is a familial cancer syndrome in which patients 

develop multiple CNS and peripheral tumours. The gene NF1 codes for a protein that 

shares homology with the GAP family (RAS GTPase-activating protein), a negative 

regulator of RAS. Loss of both NF1 copies, as observed in these tumours, leads to 

activation of RAS-mediated MAPK. Transgenic mice models over-expressing 

oncogenic Ras in astrocytes lead to the development of astrocytoma (Vogel et al., 1999; 

Zhu et al., 2005). 

 

In the PI3K/PTEN cancer related pathway, mutations in the PI3KCA gene have also 

been detected in glioblastomas and other forms of brain tumours. These mutations lead 

to increased lipid kinase activity (Samuels et al., 2004). In addition, the tumour 
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suppressor gene PTEN is mutated or deleted only in 4% of the secondary GBM. These 

mutations lead to increased PKB/Akt activity, promoting growth and survival (Knobbe 

et al., 2002). These observations support the hypothesis that p53 and the growth factor 

signaling pathways are involved in the initiation of low-grade astrocytoma development 

(Annex-4).  

 

Oligodendrogliomas 

                  Oligodendrogliomas, a major type of gliomas, constitute 5% of all primary 

brain tumours (Kleihues, 2000). They frequently show sensitivity to chemotherapy, 

especially to PCV (procarbazine, CCNU and vincristine) (Cairncross and Macdonald, 

1988). Molecular genetic studies on oligodendrogliomas revealed that allelic loss at 

chromosome 1p, which is found in 60-80% of tumours and often accompanied with 

allelic loss at 19q (Smith et al., 1999), was highly associated with good responsiveness 

for treatment and better prognosis. The remaining 20-30% of tumours without 

chromosome 1p loss are resistant to therapy (Cairncross et al., 1998; Ino et al., 2001). 

Unfortunately, the putative tumour suppressor genes at chromosomes 1p and 19q, 

obvious keys to investigate the molecular features of the tumour cells, are yet to be 

identified despite intensive investigations. Several attractive candidate tumour 

suppressor genes on chromosome 1p include TP73 (Mai et al., 1998), RAD54 (Bello et 

al., 2000; Husemann et al., 1999), CDKN2C (Bello et al., 2000), CAMTA1 (Barbashina 

et al., 2005) and CHD5 (Bagchi et al., 2007), but their role in 

oligodendrogliomagenesis has not been established. 

 

1.5 General biology of tumours highlighting malignant gliomas 

 

a. Evasion from apoptosis 

                  The balance between cell growth and programmed cell death is essential for 

successful embryonic development and maintenance of normal cellular homeostasis in 

adult organisms. Perturbation of cellular homeostasis can be a primary pathological 

event that results in disease, such as cancer. Apoptosis is an evolutionarily conserved 

cell death program that counteracts tumour growth (Jaattela, 2004; MacFarlane and 
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Williams, 2004). Loss of normal induction of apoptosis results in increased cell 

population. Programmed cell death manifests in irreversible damage to cellular 

constituents through caspase activation and loss of mitochondrial integrity. The major 

regulators of mitochondrial integrity are the BCL-2 family members, which include 

both anti-apoptotic and pro-apoptotic proteins (Danial and Korsmeyer, 2004).  

 

An important regulator of apoptosis is the nuclear protein p53 which in response to 

DNA damage (Vogelstein et al., 2000) initiates the transcription of many genes 

involved in genetic stability, cell-cycle inhibition, apoptosis (el-Deiry et al., 1993; 

Harper et al., 1993) and integrates numerous signals that are crucial for the 

determination of cell survival (Lane and Fischer, 2004; Levine et al., 2004). Mutated 

cells are normally eliminated by apoptosis. However, inactivation of the cell death 

pathway results in an enhanced intrinsic apoptotic threshold generating resistance to 

apoptotic stimulus (Cavenee et al., 1991; Van Meir et al., 1995). This is a critical step 

in the process of transformation of a cell into a slightly hyper-proliferative cell with 

growth advantage, following the Darwinian principle for tumourigenesis as formulated 

in the clonal theory of cancer (Nowell, 1976).  

 

In gliomas, this pathway is de-sensitized from death stimuli at different levels. 

Examples for this are the loss of p53 function, high expression of anti-apoptotic 

proteins (Bcl-2, Bcl-xL, Mcl-1) that block the activation of pro-apoptotic proteins such 

as Bax and the activated PKB/Akt, which inactivates pro-apoptotic protein Bad. This 

contributes to the suppression of apoptosis and increased cell proliferation in gliomas 

(Austin and Cook, 2005; Krajewski et al., 1997; Vivanco and Sawyers, 2002). 

Although there is no correlation between TP53 gene status and GBM patient survival, 

p53 mutation may contribute to tumourigenesis as well as progression to malignancy 

(Shiraishi et al., 2002). 
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b. Unchecked proliferation 

                 Multicellular organisms have a strong intrinsic proliferative potential. The 

interplay between mitogenic signals and cell cycle control pathway restrains this 

proliferative capacity to the appropriate time and place. Loss of restraining mechanisms 

leads to abnormal proliferation and accumulation of clonal cell populations. Tumour 

cells differ from their normal counterparts in generating their own growth signals by 

creating a positive feedback loop, either by autocrine or paracrine stimulation, which 

reduce their dependence on the surrounding tissues (Hanahan and Weinberg, 2000). 

Illustrative examples are the production of the platelet-derived growth factor (PDGF) 

and transforming growth factor-beta (TGF-!) in glioblastomas (Fontana et al., 1991; 

Lokker et al., 2002). Many oncogenes act by mimicking normal growth signaling.  

 

In glioblastomas, the epidermal growth factor receptor (EGFR) is highly expressed 

(Barker et al., 2001). The EGFRvIII mutation lacking the prominent ligand binding 

domain, renders it constitutively active. This in turn is activating the PI3K/Akt 

(Vivanco and Sawyers, 2002) and MAPK pathways (Hunter, 2000). Cell cycle 

regulatory proteins are often disrupted in order to allow proliferation and avoid the 

block at the G1 checkpoint (Kastan and Bartek, 2004; Molinari, 2000). Changes in the 

genes encoding cyclins, CDK, CDK inhibitors (Fischer and Gianella-Borradori, 2003; 

Hunter and Pines, 1994; MacLachlan et al., 1995), and Rb (Knudson et al., 1975) have 

been observed at high frequency in glioblastomas (Hanahan and Weinberg, 2000). 

Historically, the Rb gene gave rise to the concept of the two-step model to inactivate a 

tumour suppressor gene (Knudson, 1996) by loss of heterozygosity (Cavenee et al., 

1991). 

 

c. Sustained angiogenesis 

                  Oxygen and nutrients supplied by the vascular system are crucial for cell 

function and survival. Angiogenesis, the formation of new blood vessels, is a discrete 

step in tumour progression that is required for expansion of the tumour mass (Bouck, 
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1996; Hanahan and Folkman, 1996). Astrocytomas are strongly oxygen-dependent. 

When grade III astrocytomas progress to grade IV, they show features of hypoxic and 

necrotic palisades (Blouw et al., 2003). Hypoxia is promoting formation of new blood 

vessels that supply the tumour with the necessary metabolites. Hypoxic response is 

triggered to a large extent by the hypoxia inducible factor-1 (HIF-1) (Semenza, 2003), 

which is over-expressed in human glioblastomas. The most prominent target genes of 

HIF-1 is the vascular endothelial growth factors (VEGF), which is expressed in the 

perinecrotic palisading cells (Folkman, 1996). VEGF is also produced by tumour-

associated cells like endothelial cells and macrophages, as well as by surrounding 

stromal cells and regulates endothelial cell proliferation and vascular permeability. The 

earliest stages of angiogenesis are defined by vasodilatation and an increased vascular 

permeability of pre-existing capillaries or post-capillary venules in response to VEGF. 

The vascular basement membrane and the extracellular matrix are locally degraded to 

allow underlying endothelial cells to migrate into the perivascular space and multiply.  

 

Astrocytic tumour cells do not require neo-vascularization. They acquire their nutrients 

from existing blood vessels without initiating angiogenesis, but by growing along blood 

vessels of the vascular-rich brain parenchyma (Brat and Van Meir, 2004). However, 

when they progress into glioblastomas, they become hypoxic and necrotic, partially due 

to vessel regression and increased tumour cell proliferation. This initiates hypoxia-

induced angiogenesis. As soon as these tumours are re-vascularized, they become 

extremely aggressive. Expression of tenascin-C, an extracellular matrix glycoprotein, 

has been found in the wall of the blood vessels and in the extra-cellular matrix (ECM) 

of GBMs (Chiquet-Ehrismann et al., 1986), suggesting a role of this protein in 

angiogenesis (Zagzag et al., 1995). 

 

d. Migratory and invasive potential of maliganant gliomas 
                  The ability to widely invade normal brain tissue is a key property of the 

malignant glial cells. Malignant lesions are usually considered to be metastatic; 

however, brain tumours differ from these by the fact that they rarely spread to sites 

outside of the CNS (Maher et al., 2001; Merlo, 2003). The progression is a diffuse, 
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locally invasive growth into the normal brain coupled with an increase in tumour 

volume. Moreover, tumours may spread along blood vessels, white matter tracts and 

grey–white matter interfaces. Invasion does not correlate with the grade, since low-

grade astrocytomas already extensively invade normal brain tissue. In the adult CNS, 

neurons, astrocytes and oligodendrocytes are fixed in position and do not migrate. A 

number of studies indicate that PTEN can regulate cell shape and movement (Merlo and 

Bettler, 2004). In addition, the focal adhesion kinase (FAK) mediates signal 

transduction by integrins and by regulating cell adhesion and migration. Interestingly, 

FAK is over-expressed in primary GBM (Jones et al., 2001a). Over-expression of 

PTEN inhibits cell spreading and cell migration induced by integrins, whereas 

reduction of PTEN levels has the opposite effect (Maier et al., 1999). The inhibitory 

effects of PTEN can be blocked by the over-expression of FAK, which induces 

extensive reorganization of the actin cytoskeleton, formation of focal adhesions and 

directional migration (Jones et al., 2001b). Thus, cells lacking functional PTEN would 

be expected to manifest increased migration and increased tendency to metastasize.  

 

PTEN mutations are found in glioblastomas but rarely in low-grade astrocytic tumours 

(Knobbe et al., 2002; Sansal and Sellers, 2004). Tenascin-C (TN-C) is an extracellular 

matrix glycoprotein first identified in gliomas (Bourdon et al., 1983) and high expression 

is found in grade III and IV astrocytomas (Carnemolla et al., 1999). In some tumour types 

such as breast cancer, glioma and osteosarcoma, high expression levels of tenascin-C are 

linked to short patient survival (Tanaka et al., 2000). In many cancers including brain 

tumours, stromal expression of tenascin-C is increased in higher tumour grades (Leins et 

al., 2003) and correlates with invasiveness (Orend and Chiquet-Ehrismann, 2006), high 

vascularisation and a high proliferation index (Godard et al., 2003). In TN-C-deficient 

mice, oligodendrocyte precursor maturation is accelerated (Garcion et al., 2001). Thus, 

TN-C promotes cell migration, controls differentiation and is critical for angiogenesis. 
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1.6 The Notch pathway: role in normal and neo-plastic development in 

the CNS 

 

a. Discovery of Notch 

 

In Drosophila 

                 T.H. Morgan (Morgan, 1917) and O.L. Mohr (Moohr, 1919) discovered the 

‘Notch’ mutation in the fruit fly Drosophila, with a phenotype consisting of notches at 

the wing margin. Further genetic analyses of Notch loss-of-function mutations revealed 

an embryonic phenotype with an expanded population of neuroblasts at the expense of 

epidermis cells. These loss-of-function mutations provided the first clue that during 

neurogenesis, wild-type Notch regulates cell fate decision by preventing ectoderm cells 

to differentiate into neuroblasts rather than into epidermis. Therefore they qualified as 

neurogenic mutations (Poulson, 1937). Identification of anti-neurogenic gain-of-

function mutations completed the description of the allelic series of Notch mutations 

(Brennan et al., 1997; Rebay et al., 1993). In fact, both groups of mutations are 

dominant and loss or gain of a single genomic copy of the Notch gene is sufficient to 

perform the hypomorphic and the hypermorphic mutations (Heitzler and Simpson, 

1991). Thus, it became clear that the Notch expression level is critical to ensure the 

subtle balance between neuroblast and epidermal cell fate decision during Drosophila 

development. In addition, the identification of loci that genetically interact by 

enhancing or suppressing the Notch phenotype such as DLL or Su(H) further allowed 

the characterization of genes encoding mediators of Notch signaling (Artavanis-

Tsakonas et al., 1999). 

 

Cloning of the gene 

                 Cloning of the Drosophila Notch gene revealed an open reading frame 

encoding a 300-kD type I single-pass transmembrane receptor consisting of 36 

epidermal growth factor (EGF)-like tandem repeats and three cysteine-rich Notch/LIN-

12 repeats in the extra-cellular domain. The cytpolasmic part contains RAM domain, 

six tandem ankyrin repeats, a glutamine-rich domain, a proline-, glutamate-, serine-, 
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threonine-rich (PEST) sequence and a strong transcription activation domain (TAD). A 

post-translational cleavage of the extra-cellular part at the S1 site occurs within the 

secretory pathway and a subsequent formation of disulphide bonds between both parts 

of the Notch receptor chain results in a heterodimeric receptor transported to the cell 

membrane (Artavanis-Tsakonas et al., 1999; Jarriault et al., 1998). 

 

In vertebrates  

                  The genomes of vertebrate encode four Notch receptor paralogues, (Notch 

1-4) with various degrees of similarity with Drosophila Notch. Although the overall 

structures of the four Notch receptors are very similar, they show differences in the 

extracellular and cytoplasmic parts. The extracellular domains of Notch1 and Notch2 

contain 36 EGF-like repeats, while Notch3 and Notch4 have 34 and 29, respectively. 

All four chains contain three cysteine-rich Notch/LIN-12 repeats. The intracellular parts 

of all four proteins contain a RAM domain, six-tandem ankyrin repeats, a glutamine-

rich domain and a PEST sequence. Notch1 and Notch2 contain a trans-activating 

domain (TAD) domain that is absent in Notch3 and Notch4 (Artavanis-Tsakonas et al., 

1999; Radtke and Raj, 2003; Weinmaster, 1997). 

 

b. Notch signaling 

                  Notch signaling defines an evolutionarily highly conserved and ubiquitous 

intercellular communication mechanism initiated between two neighbouring cells to 

amplify and consolidate the molecular differences that result in cell fate determination. 

It acts in two types of local regulation, namely lateral inhibition and inductive signaling 

essential for organism development (Artavanis-Tsakonas et al., 1995; Artavanis-

Tsakonas et al., 1999; Greenwald, 1994). In mammals, Notch receptors are activated by 

type I transmembrane ligands, known collectively as DSL (Delta, Serrate, and Lag 2) 

(Artavanis-Tsakonas et al., 1999; Blaumueller and Artavanis-Tsakonas, 1997; 

Blaumueller et al., 1997).  Vertebrate genomes encode five ligands: DLL1, DLL3, 

DLL4 and JAG1and JAG2. Glycosylation of the receptor as well as the ligands of the 

EGF repeats by Fringe with glycosyltransferase acivity modulates the receptor-ligand 

binding interactions and determines which ligand should activate the pathway 
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(Bruckner et al., 2000; Panin et al., 2002). Following Delta or Jagged binding to the 

receptor, cleavage at the site S2 releases a membrane-tethered form of the Notch 

intracellular domain. The latter is a constitutive substrate for S3 cleavage, which 

releases the soluble Notch intracellular (N-IC) (Artavanis-Tsakonas et al., 1995; Baron, 

2003). Then, N-IC translocates to the nucleus where it binds to the transcription factor 

Su(H)/CSL/RBP-J" through the RAM domain and ankyrin repeats. The binding of N-

IC recruits histone acetylases and the nuclear protein Mastermind. These events turn the 

repressor into an activator complex and trans-activate target genes such as hairy / 

enhancer of Split (HES)-1 or HES-5 and the HEY family of basic Helix-Loop-Helix 

(HLH) transcription factors (Artavanis-Tsakonas et al., 1999; Baron, 2003; Mumm and 

Kopan, 2000). HES-1 & HES-5 transcription factors are the negative regulators of 

neurogenic genes such as those of the Achaete-Scute family.  

 

In addition to the canonical pathway, (Ramain et al., 2001) reported an alternative 

RBP-J"-independent pathway signaling through DTX, which represses neural fate in 

Drosophila. The intermediate molecular players of the pathway are not known 

(Brennan and Gardner, 2002; Martinez Arias et al., 2002). More recently, three new 

Notch ligands, namley F3/contactin (Hu et al., 2003), NB3 (Cui et al., 2004) and DNER 

(Eiraku et al., 2005), have been identified. They are signaling through DTX1 during 

oligodendrocyte maturation, differentiation and Bergmann glia development, 

respectively.  

 

Moreover, Notch signaling crosstalks with other signaling pathways such as Wnt, TGF-

! and JAK-STAT. Notch modulates the Wnt pathway through regulating !-catenin 

transcriptional activity (Hayward et al., 2005). Wnt regulates Notch signaling by 

physical interaction with EGF repeats in the extra-cellular part of the receptor (Brennan 

et al., 1999) and binding of Disheveled in the c-terminal domain of Notch exerts a 

negative effect (Axelrod et al., 1996). The interaction of the Notch intracellular domain 

with Smad3 initiates crosstalk between the TGF-! signaling with Notch (Blokzijl et al., 

2003). Binding of the Notch target gene HES-1 with Stat3 mediates the crosstalk 

between Notch and the JAK-STAT signaling pathway (Kamakura et al., 2004). Notch 
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signaling controls how the cells respond to intrinsic and extrinsic developmental cues 

that are necessary to unfold the specific developmental program and that affect the 

implementation of differentiation, proliferation, and apoptotic programs, providing a 

general developmental tool to influence organ formation (Artavanis-Tsakonas et al., 

1999) (Annex-5). 

 

c. Role in CNS development 

                  Among the genes and pathways that regulate development and 

differentiation of the neural lineage, Notch signaling has been shown to be critical for 

the maintenance of the neural stem cell (NSC) pool as well as the neuronal and glial 

differentiation (Gaiano and Fishell, 2002; Lasky and Wu, 2005; Louvi and Artavanis-

Tsakonas, 2006). In recent years there has been extensive interest in extending the 

understanding of the Notch pathway from flies to mammals. This resulted in generation 

and examination of mouse mutants for Notch receptors, ligands, modulators and 

effectors (Yoon and Gaiano, 2005). Several studies during the early embryonic stages 

as well as in the late embryonic and postnatal brain documented the expression of 

Notch1, Notch2 and Notch3 and their ligands (Del Amo et al., 1992; Higuchi et al., 

1995; Lardelli et al., 1994; Lindsell et al., 1996; Weinmaster et al., 1991; Weinmaster 

et al., 1992). There is some overlapping expression, but also different spatial and 

temporal patterns, suggesting a different role played by each receptor-ligand 

combination during neural development (Irvin et al., 2001).  

 

The embryos mutant for NOTCH1 died at E11, deletion showed precocious neuronal 

differentiation marked by up-regulation of neuronal markers; MASH1 and NeuroD, 

defects in somitogenesis, down-regulation of target gene HES-5 and progenitor pool 

depletion (low neurosphere frequency) (Conlon et al., 1995; de la Pompa et al., 1997; 

McCright et al., 2001; Swiatek et al., 1994). This analysis supports the canonical view 

that Notch signaling is critical for inhibiting aneuronal differentiation and for 

maintaining a neural progenitor pool. Numerous studies found that rather than simply 

not inhibiting gliogenesis, Notch signaling actively promotes glial fate such as 

differentiation into astrocytes (Tanigaki et al., 2001), radial glia in the forebrain and the 

cerebellum (Gaiano et al., 2000; Yoon et al., 2004), Müller glia in the retina (Furukawa 
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et al., 2000), and Schwann cells in the neural crest (Morrison et al., 2000).  

 

In contrast, Notch has been found to inhibit the genesis of oligodendroglial cells in the 

optic nerve (Wang et al., 1998) while promoting the differentiation of neural progenitor 

cells into oligodendrocytes during interaction with a new family of ligands: 

F3/contactin and NB-3, through the alternative DTX1 mediated pathway (Cui et al., 

2004; Hu et al., 2003). Conditional deletion of NOTCH1 in the cerebellum leads to 

premature neuronal differentiation and a subsequent reduction in gliogenesis (Lutolf et 

al., 2002). This is independent of the role of Notch in the maintenance of 

undifferentiated neural progenitors.  

 

Notch2 is expressed during brain development in the cerebellum external granule layer 

and the subventricular zones, where it maintains proliferation and prevents neuronal 

precursor differentiation (Irvin et al., 2001; Solecki et al., 2001). Notch2 expression in the 

postnatal brain is restricted to the ventricular germinal zones and dividing immature glial 

cells (Irvin et al., 2001; Tanaka and Marunouchi, 2003). Unlike NOTCH1, NOTCH2 

mutants undergo widespread cell death in the CNS starting around E9 and there is no 

change in HES-5 levels (Hamada et al., 1999). There is no phenotype observed in 

NOTCH3 and NOTCH4 deletion mutant analysis (Krebs et al., 2000; Krebs et al., 

2003). Consistent with the NOTCH1 null phenotype, DLL1 mutant embryos also 

showed decreased HES-5 expression, increased neuronal differentiation and defects in 

gliogenesis (Grandbarbe et al., 2003; Yun et al., 2002).  

 

Since the Notch signaling cascade is primarily transduced through the transcriptional 

regulator Cbf1/CSL/RBP-J", Cbf1-/- mutants show altered expression of HES-5, DLL1 

and NeuroD, suggestive of widespread precocious neuronal differentiation and severe 

defects in gliogenesis (de la Pompa et al., 1997; Taylor et al., 2007). Mutants for the 

Notch signaling target gene either HES-1 (Ishibashi et al., 1995) or HES-5 resulted in 

the same phenotype like the receptor and the transcription factor mutants. Double 

mutants show a far more severe phenotype than HES-1-/- and HES-5-/- alone, 

suggesting redundancy such that loss of HES-1 is compensated by HES-5 and vice-

versa (Ohtsuka et al., 1999). Presenelin-1 and -2 are part of the gamma-secretase 
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complex along with nicastrin, Aph1 and Pen-2 that performs S3 cleavage of the Notch 

receptor. The PS1-/- and PS2-/- mutant phenotypes during neural development both in 

vivo (Donoviel et al., 1999; Handler et al., 2000) and in vitro (Hitoshi et al., 2002) are 

similar to that found during disruption of positive regulators of Notch. This supports a 

role of the pathway in neural progenitor maintenance. These works suggest that the role 

of Notch during vertebrate gliogenesis is more complex than initially taught and also 

plays a role in neuronal and glial cell differentiation (Annex-6). 

 

d. Role in cancer 

                  Notch signaling impinges on a wide variety of cellular processes in the CNS 

such as maintenance of stem cells, specification of cell fate, differentiation, 

proliferation and apoptosis. In line with this, animal models for mutations in the Notch 

receptor invariably result in developmental abnormalities and thus, human pathologies 

(Artavanis-Tsakonas et al., 1999). Hence, three functions of Notch are thought to be 

important in the context of the role in cancer. Notch signaling in the vertebrate nervous 

system is usually thought to influence the balance between the progenitor cell pool and 

its differentiating progeny and also to participates in binary cell fate decisions such as 

glia versus neurons. Finally, it can also induce or enhance terminal differentiation 

between developmentally related cell types like astrocytes/oligodendrocytes. Therefore, 

the Notch mediated pathology is a result of abnormality of signaling either during stem 

cell maintenance, binary cell fate or induction of terminal differentiation (Leong and 

Karsan, 2006).  

 

The tumourigenic role of Notch receptors in humans was first identified in T-cell acute 

lymphoblastic leukemia (T-ALL). This is due to the fusion of NOTCH1 and the T cell 

receptor-! chain (TCR-!) loci by the translocation t(7;9) (q34;q34.3). As a result, 

Notch1-IC is constitutively produced under the control of the TCR-! promoter/enhancer 

(Reynolds et al., 1987). The other T-ALL tumours were shown to have signaling 

activation either through mutation in the NOTCH1 gene or inactivation of Sel-10/Fbw-

7, which ubiquitinates the Notch1-IC for lysosomal degradation (Malyukova et al., 

2007; Weng et al., 2004). Subsequently, the oncogenic form of Notch4 was identified 
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by a proviral integration experiment using the mouse mammary tumour virus (MMTV) 

in Czech II mice. Integrated Notch4 forms epithelial tumours (Gallahan and Callahan, 

1997). The feline leukemia virus encodes a constitutively active form of Notch2 and 

forms cat thymic lymphomas in cats (Rohn et al., 1996). An oncogenic function of 

Notch2 has been reported in human B cell leukemia in which it induces the over 

expression of the transmembrane glycoprotein CD23, which results in a defect in the 

initiation of apoptosis (Duechler et al., 2005; Hubmann et al., 2002; Jewell, 2002). The 

activation of Notch receptors by genomic rearrangement is rare in human tumours, but 

apparent overexpression of Notch signaling components is common in variety of solid 

tumours including pancreas (Miyamoto et al., 2003), cervix (Gray et al., 1999), breast 

(Weijzen et al., 2002) and prostate cancer (Zayzafoon et al., 2004). In breast cancer, the 

deregulated Notch activity is oncogenic. Notch1 levels are high and 50% of the tumours 

lost the expression of Numb, the negative regulator of Notch (Pece et al., 2004; 

Weijzen et al., 2002).  

 

In skin, Notch signaling acts as a tumour suppressor. During skin development, Notch 

signaling induces the terminal differentiation of keratinocytes by inhibiting Wnt- and 

Shh-mediated proliferation and inducing the expression of cell cycle inhibitor p21 

(Rangarajan et al., 2001). In non-small cell lung cancer (NSCLC), Notch1and Notch2 

are frequently expressed, and the HES-1 level inversely correlates with ASCL1 (Chen et 

al., 1997). In small cell lung cancer (SCLC), Notch1 is rarely detectable. Growth is 

inhibited by high-level overexpression of activated Notch1 & Notch2 through 

upregulation of p21waf1/cip1 (Sriuranpong et al., 2001; Sriuranpong et al., 2002). Most 

interestingly, in medulloblastomas Notch1 and Notch2 have opposite effects in a single 

tumour type. Notch1 is expressed in postmitotic differentiating cells, undetectable in 

tumour tissue, and it inhibits proliferation upon reexpression. Notch2 was found to be 

expressed in proliferating cells and is apparently present in tumour lines and associated 

with shorter patient survival (Fan et al., 2004).  

 

The role of Notch receptors in human gliomas is relatively unknown even though their 

function during CNS development has started to unravel. Purow et al., (2005) have 
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found expression of Notch1 and the ligands DLL1 and JAG1 in human glioma primary 

tissues as well as in established cell lines. Moreover, they also showed that their 

expression is critical for glioma cell survival and proliferation (Purow et al., 2005). 

Notch1 promotes neural stem-cell like colonies in human glioma cells in vitro (Zhang 

et al., 2008). In another report, the upregulated expression of ASCL1 characterizes a 

progressive type of astrocytoma. There the negative regulator of ASCL1, the Notch 

signaling, seems to be inhibited (Somasundaram et al., 2005). In high-grade gliomas, 

PTEN and DLL3 expressions suggest that PKB/Akt and Notch signaling are hallmarks 

of poor prognosis versus better prognosis (Phillips et al., 2006). So, the role of Notch 

signaling in human tumourigenesis either as an oncogene or a tumour suppressor 

pathway depends on the cellular context (Radtke and Raj, 2003) (Annex-7). 

 

e. Notch degradation 

                 Small variations in Notch signaling are sufficient to modulate differences in 

cellular behavior. The pathway is tightly regulated by a variety of molecular 

mechanisms within and also from outside the signaling pathway at different levels 

(Schweisguth, 2004). Glycosylation of the receptor on the EGF repeats as well as of the 

ligands by the glycosyltransferase modulates the receptor-ligand binding interactions 

and determines which ligand should activate the pathway (Bruckner et al., 2000; Panin 

et al., 2002). Internalization of membrane receptors and ligands is thought to be 

associated with signal attenuation. Indeed, endocytosis regulates the steady-state level 

of receptors, ligands and associated factors at the cell surface. In addition, it can also 

target receptors for lysosomal degradation (Le Borgne, 2006; Le Borgne et al., 2005). 

Prior to lysosomal degradation, proteins to be degraded should be tagged by 

ubiquitination. This process involves the ubiquitin-activating enzyme E1, an ubiquitin-

conjugating enzyme of the E2 family and E3-ubiquitin ligases which confer target 

specificity and associate with both E2 and the substrate to catalyze the transfer of 

ubiquitin to the substrate (Hershko and Ciechanover, 1998; Hicke, 2001).  

 

Normally, Notch undergoes degradation through two different E3 ubiquitin ligase 

mediated mechanisms. One is Itch/Su(dx) along with the co-factor Numb which 
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ubiquitinates the full-length receptor (Cornell et al., 1999; Qiu et al., 2000). The second 

one is mediated by Sel-10/Fbw-7 which specifically ubiquitinates the N-IC (Gupta-Rossi 

et al., 2001; Oberg et al., 2001; Wu et al., 2001). Recently, DTX, which is known to 

interact with the intracellular part of the Notch receptor and contains an E3 ubiquitin 

ligase domain, has been found to degrade Notch together with !-arrestin as an adaptor 

protein (Mukherjee et al., 2005). Itch/Su(dx) ubiquitinates and regulates plasma 

membrane associated Notch. Sel-10/Fbw-7 recruits an SCF complex that ubiquitinates 

nuclear, phosphorylated N-IC, thereby targeting it for degradation by the proteasome. 

Neur, a RING finger containing E-3 ubiquitin ligase targets DLL for endocytosis and 

subsequent degradation (Lai et al., 2001; Yeh et al., 2001). LNX ubiquitinates Numb, 

thereby targeting it for degradation by the proteasome pathway (Nie et al., 2002). In 

addition to this, receptor-ligand interaction, proteolytic mediated cleavages to activate the 

receptor and molecular players that transduces the signaling are also regulates the 

strength of the Notch signaling (Annex-8).  

 

1.7 Key topics 

                  Acquired genetic alterations that cause either activation of oncogenes (Pihan 

and Doxsey, 2003) or inactivation of tumour-suppressor genes (Herman and Baylin, 

2003; Merlo et al., 1995) result in the selection of clones with enhanced growth and 

progressively change normal cells into neoplastic cells (Nowell, 1976). Such genetic 

alterations found to be involved in gliomagenesis are targeting genes encoding growth 

factor receptors (e.g. EGFR), components of the cell cycle machinery (Rb, Cdk4, and the 

Cdk inhibitor p16
INK4a

), and regulators of apoptosis (p53, HDM2, p14
ARF

 and PTEN) 

(Maher et al., 2001).  

 

In addition, frequent genetic alterations targeting the chromosomes 1p, 7p, 10p, 10q, 11p, 

19q and 22q have been observed in gliomas. Gene(s) located in these chromosomal bands 

may be responsible for glioma initiation and progression. The patient median survival 

time differs dramatically between GBM (less than 12 months) and OG (10 years in grade 

II, 3-4 years in grade III) (Ohgaki et al., 2004; Ohgaki and Kleihues, 2007). Moreover, 

the combined loss of heterozygosity (LOH) in chromosomes 1p and 19q is highly 
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prevalent in OG and absent in GBM. This genetic alteration is associated with favorable 

prognosis and, presumably with a better response to therapy in OG grade III (Cairncross 

et al., 1998; Ino et al., 2001; Smith et al., 1999). However, the so-called better response 

could simply be an artifact, since the response criteria have been modified for malignant 

gliomas, defining stable disease (=no growth) as a response.  

 

Along this line, the recent somatic deletion mapping done in our lab on 26 primary OG 

and 118 GBM samples, using 43 polymorphic microsatellite markers on chromosome 1 

has found that the LOH at NOTCH2 locus positively predicted patient survival in sub-

groups of human glial tumours and the minimally lost areas in OG and GBM converge to 

NOTCH2 gene. The rest of the tumour sub-type showed retention at the NOTCH2 locus 

and a worse prognosis (Boulay et al., 2007). A major aim of this thesis was to 

characterize the role of NOTCH2 in gliomas. To this end, the following aspects were 

addressed:                             

 

a) Is there any gain or loss of function mutation of the NOTCH2 gene? If so, does it play 

a role in gliomagenesis?  

 

Approach: Sequencing mutational hotspots in the NOTCH2 gene as described in 

Drosophila and in human studies.  

 

b) Are the NOTCH2 gene and its pathway functionaries expressed in glioma primary 

tumour and cell line samples. If so, what is their role in glioma tumour cell survival, 

proliferation and migration?  

 

Approach: Studying the expression of NOTCH2 and pathway functionaries in glioma 

primary tumour samples and established cell lines using micro-array and western 

blotting, and by employing pharmacological and molecular level inhibitors to block 

Notch signaling in glioma tumour cells and study their effect on proliferation and 

survival.  

c). Analyzing the role of Notch2 degradation pathways in gliomas.  
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Results 

 

2.1 Loss of Notch2 function 

                  The main determinants of prognosis and therapy for highly aggressive and 

invasive human glial brain tumours are histological classification and WHO grading. The 

median survival significantly varies between different glioma sub-types. The patient#s 

median survival is less than 12 months in GBM, while it is 10 years in OG grade II and 3-

4 years in anaplastic OG grade III. Loss of heterozygosity (LOH) of the chromosome 1p 

is highly prevalent in OG and is associated with a favourable prognosis (Ino et al., 2001; 

Smith et al., 1999). The clinical relevance of loss of heterozygosity of chromosome 1p is 

not investigated yet in astrocytomas.  

 

We performed a somatic deletion mapping on 26 primary OG and 118 GBM samples, 

using 43 polymorphic microsatellite markers on chromosome 1 (figure 1). In OG, LOH 

on chromosome 1p was found in 81% (21/26) of the tumour samples. In contrast, 69% 

(80/118) of the GBM had retention on 1p, and 31% displayed various deletion patterns 

with hotspots at markers D1S2845, D1S507, D1S216 and D1S2696. These deletion 

hotspots were grouped into 10 different haplotypes (figure 1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Deletion pattern on chromosome 1p in GBM and OG (Boulay et al., 2007). 
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Haplotype H1, H2 to H9 and H10 designate no deletion, partial deletion patterns and 

complete loss of 1p respectively. GBM displayed the entire spectrum of haplotypes H1 to 

H10 while OG harbored the two haplotypes H1 and H10 (figure 1) (Boulay et al., 2007).  

 

Haplotype H10 significantly differed in survival time compared to H1 (P<0.0007) in OG. 

Within haplotype H1, OG still had a more favorable prognosis than GBM (OG H1 vs. 

GBM H1, P<0.02). Even though GBM with and without 1p loss (GBM H1 vs. GBM H2-

H10, P<0.3) did not show a difference in survival time, the haplotypes H8-H10, defined 

by LOH at centromeric marker D1S2696, had a better survival than GBM haplotypes H2-

H7, defined by D1S2696 retention (GBM H8-H10 vs. GBM H2-H7, P<0.02) (figure 2).   

 

                               

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Kaplan-Meier cumulative survival curve for different haplotypes (Boulay et al., 

2007). 

 

Based on the telomeric marker D1S2845 status, the haplotypes H2-H7 were further 

divided: those with retention (GBM H5-H7) showed significantly poorer survival than 

those with LOH (GBM H2-H4) (GBM H5-H7 vs. GBM H2-H4, P< 0.02). Altogether, 

GBM with 1p loss were subdivided into 3 categories defined by telomeric (H2-H4, 47%), 

interstitial (H5-H7, 29%) and centromeric deletions (H8-H10, 24%). GBM with 

centromeric deletions had the most favorable prognosis (GBM H8-H10 vs. H1, P<0.02), 

while GBM with interstitial deletions had the worst (GBM H5-H7 vs. H1, P<0.02) and a 

lower age at diagnosis (50.7). However, survival did not differ between GBM with the 

prevalent telomeric deletions versus GBM with 1p retention (GBM H2-H4 vs. H1, P<0.5) 

(figure 2). From this initial mapping, we found that LOH at NOTCH2 locus 
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(centromeric) positively predicted patient survival in subgroups of human glial tumours, 

and that distal LOH was linked with poorer survival (Boulay et al., 2007).  

 

The haplotypes H8-H10 in GBM define a minimally lost area that spans the markers 

D1S514 and 210WF10 and overlaps the centromeric breakpoint clusters between markers 

D1S2696 and 210WF10 in OG with haplotype H10 (figure 3). Refinement of deletion 

mapping in this area has so far been limited by a pericentric duplication on chromosome 

1. This duplicates the 5# part of NOTCH2 until intron 5 from 1p11 to 1q21.1, which 

results in the truncated NOTCH2 N-terminal like (N2N) gene. Sequence comparison 

between these genes revealed several single nucleotide polymorphisms (SNP) and 

microdeletions. Two 5-bp microdeletions from exons 1 and 4 of N2N were selected to 

develop a PCR based assay, the “N2/N2N test”, that recognizes either genomic region by 

size and determines the relative dosage in tumour DNA (Boulay et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Chromosome 1 pericentric duplication (Boulay et al., 2007). 

 

Calculation of the ratio between NOTCH2 and N2N PCR product levels in DNA from 

tumour and lymphocytes from the same patient, evaluates the gene copy status at 

NOTCH2 relative to N2N. 

 

For the OG displaying 1p loss (haplotype H10) (21/21), this test showed imbalance 
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between the duplicated regions: exon 1 and 4 of NOTCH2 harbored half the copy number 

relative to N2N, indicating loss of one NOTCH2 copy. The tumour AO80 and AO84 had 

almost no PCR product derived from exon 4 of NOTCH2. This indicated loss of both 

NOTCH2 genomic copies. Real time PCR gave further evidence for the presence of 

homozygous deletions. This genomic imbalance showed that the breakpoints detected in 

OG with 1p loss cluster between the duplicated areas (figure 3).  

 

GBM with 1p loss (haplotypes H2-H10) revealed equal copy numbers with the N2/N2N 

test, and therefore the breakpoints on 1p are telomeric to the pericentric duplication, 

either towards distal 1p or distal 1q. All analyzed GBM without 1p loss (5/5) also had 

equal copy numbers of NOTCH2 and N2N. Therefore, OG and GBM display distinct 1p 

deletion patterns that can be analyzed by the N2/N2N test. The results of the N2/N2N test 

and fine mapping of centromeric deletions in GBM disclosed a minimal area of loss 

located between the marker D1S514 and exon 4 of NOTCH2 (figure 3). These findings 

support NOTCH2 as a candidate tumour suppressor gene in OG and in the subgroup of 

GBM with 1p loss (Boulay et al., 2007).  

 

Next, we decided to study in deep the role of the NOTCH2 gene in gliomagenesis and to 

search for loss of function mutation. 

 

Sequencing of NOTCH2 in glioma primary tissues and in GBM cell lines 

                  In order to find out whether OG (haplotype H10) and the subgroup of GBM 

(haplotypes H8-H10) (figure 1) have acquired mutations in the remaining copy of 

NOTCH2, the mutational hotspots, as described in Drosophila studies (Brennan et al., 

1997; Rebay et al., 1993) were sequenced. The hotspots include: the EGF repeats 11 to 

14 (blue arrows in figure 4) involved in the interaction with the ligand (ligand-dependent 

canonical Notch signaling). The green arrows indicate mutations located in the EGF 

repeats 24 to 29 that impair the interaction with wingless. The intracellular part of Notch2 

contains the RAM23 domain, the ankyrin repeats and the trans-activation domain (TAD) 

(purple arrows in figure 4) that are involved in the interaction with factors and co-factors 

required for transcription.  
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Altogether, eight OG and three GBM primary tumour samples (those having LOH at the 

NOTCH2 locus) and the cell line Hs683, which expresses OG markers, were sequenced. 

The Hs683 cell line showed a C-to-A mutation in codon 1711 resulting in the substitution 

of leucine by methionine. 

 

 

 

  

 

 

Figure 4. Molecular interactions of Notch2. 

 

Leucine 1711, located within the RBP-J" interacting RAM domain, is conserved 

throughout vertebrate Notch2 proteins as shown in figure 5. A N2-IC L1711M mutant 

expression vector (through site directed mutagenesis in pcDNA3.0 N2-IC) was produced 

and functionality was checked in the in vitro reporter gene assay (figure 31).  

 

                         

 
Figure 5. In the Hs683 glioma cell line, sequencing of the NOTCH2 gene shows a 

mutation targeting the RAM domain through which Notch interacts with transcription 

factor RBP-J". 

 

We did not find any other mutation in the rest of the samples analyzed, suggesting that 

mutation is not a main mechanism leading to inactivation of the Notch2 receptor in 

gliomas. This is in accordance with the previous observation that NOTCH genes are 

rarely mutated in common cancers (Lee et al., 2007). Most probably, NOTCH2 

inactivation is mainly based on homozygous deletions (figure 3) (Boulay et al., 2007). 
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Conclusion 

                  This initial chromosome 1 deletion mapping identified the minimal area of 

loss in a subgroup of GBM and in OG, which converges to NOTCH2. LOH at the 

NOTCH2 locus positively predicted patient survival in subgroups of human glial 

tumours. Sequencing of primary tumour samples from OG (haplotype H10) and GBM 

(haplotypes H8-H10) (figure 1) for mutations in the remaining copy of the NOTCH2 gene 

has suggested that point mutations may not be the main mechanism of inactivation of 

Notch2 receptors in gliomas. Since not the entire reading frame of Notch2 was 

sequenced, we cannot rule out mutations at other regions of the gene. The duplication of 

the N-terminal of Notch2 (between Notch2 and the pericentromere) does not interfere 

with the interpretation of sequencing results. Even though Notch2 is a reasonable and 

attractive candidate suppressor gene, we cannot rule out that another gene in the vicinity 

of Notch2 is the relevant for gliomagenesis.  
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2.2 Gain of Notch2 function 

                  Notch expression levels are critical for cell fate determination and have been 

detected in different transformed cell lines (Miele and Osborne, 1999; Radtke and Raj, 

2003). In GBM, it has been shown that the expression of Notch1, the ligands DLL1, 

JAG1 in primary human glioma tissues as well as in established cell lines is critical for 

glioma cell survival and proliferation (Purow et al., 2005). Moreover, Notch1 promotes 

neural stem-cell like colony formation in human glioma cells in vitro (Zhang et al., 

2008).  

 

We found out that LOH at the NOTCH2 locus positively predicted patient survival in 

subgroups of human glial tumours. The other tumour sub-types showed retention 

(GBM, haplotypes H1-H7) at the NOTCH2 locus and worse prognosis (figure 1 & 2) 

(Boulay et al., 2007). Given its critical function in CNS development, Notch may play a 

role in GBM. Therefore, we decided to study Notch2 expression in different human 

glial tumours. 

 

a. Notch2 over-expression in gliomas 

 

NOTCH2 mRNA study on GBM cell lines and brain tumour biopsies  

                  In order to study NOTCH2 expression in human brain tumours, we analyzed 

RNA samples extracted from a panel of GBM cell lines and primary brain tumour 

biopsies using micro-array (in collaboration with Dr. Brian Hemmings at the Friedrich 

Miescher Iinstitute, Basel, Switzerland). The studied samples include: GBM cell lines 

(LN18, LN215, LN229 & LN319), 13 primary glioblastomas (GBM-I, grade IV), 3 

secondary glioblastomas (GBM-II, grade IV), 8 astrocytomas (A-grade II & III) and 2 

control normal brain samples (NB). The probe sets that showed the highest values in the 

y-axis were selected for further analysis (Morin et al., manuscript in preparation). 

Changes in the gene expression levels (fold change) for each tumour sample were 

calculated in comparison to the expression found in normal brain.  
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GBM cell lines 

                  All four GBM cell lines showed expression of NOTCH2 mRNA. In the cell 

lines LN215, LN229 and LN319 the expression were 1.5 to 3 fold higher than in normal 

brain. Among them, LN215 was the highest expresser, while NOTCH2 expression was 

close to that in normal brain in LN18 (figure 6). 

 

Figur 6. Expression of NOTCH2 transcripts in GBM cell lines. 

 

Brain tumour biopsies 

                  All tumours showed higher expression of NOTCH2 transcripts in comparison 

to normal brain (figure 7). Astrocytomas were the glioma sub-types expressing the 

highest level of NOTCH2 messenger when compared to normal brain (astrocytomas vs. 

NB, P=0.007). The primary GBMs also showed a statistically significant difference in 

NOTCH2 expression (GBM-I vs NB, P=0.022) relative to the control (figure 7). 

 

Figure 7. Glial tumours express higher levels of NOTCH2 transcripts than normal brain. 

The vertical bar is the median value for each group (t-Test: Two-sample assuming 

unequal variances). 

 

Due to the low occurrence rate, only three secondary GBMs were analyzed. Nevertheless, 
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the NOTCH2 transcript levels were significantly higher than in the control (GBM-II vs. 

NB, P=0.018) (figure 7). The levels of NOTCH2 expression were significantly higher in 

astrocytomas than in primary GBM (P=0.02) (figure 7), while no significant difference in 

NOTCH2 expression within the tumour types was found (GBM-I vs. GBM-II and GBM-

II vs. astrocytomas) (figure 7). This experiment showed that NOTCH2 is highly 

expressed in glial brain tumour samples. 

 

Notch2 protein levels in GBM cell lines and brain tumour biopsies 

                  Given the high NOTCH2 mRNA levels found in glial tumour samples (figure 

6 & 7), we analyzed Notch2 protein expression both in cell lines and brain tumour 

biopsies. 

 

GBM cell lines 

                  Protein extracts from established GBM cell lines were screened for the 

presence of Notch2 by western blotting. In total, nine tumour cell lines were used, eight 

of them are derived from glioblastoma and one (Hs683) expresses oligodendroglioma 

markers (Branle et al., 2002). The Hs683 cell line showed local NOTCH2 copy loss 

relative to diploidy (figure 14b) and expressed little Notch2 protein (figure 8). The cell 

lines U373, U343, LN319 and LN215 expressed higher levels of Notch2, most probably 

due to genomic amplification (figure 8 & 14b). Lines LN405, LN401 and LN229 

expressed high levels of Notch2 without any genomic alteration.   

 

 

 

 

Figure 8. GBM cell lines express high levels of the Notch2 proteins. 

 

Brain tumour biopsies 

                  The human primary brain tumour biopsies were further tested for the presence 

of the Notch2 protein. The protein extracts from 19 GBM, 7 astrocytomas and a normal 

brain were analyzed. In this experiment, 63% (12/19) of the GBM and 71% (5/7) of the 

astrocytoma showed higher Notch2 levels compared to normal brain, consistent with the 
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micro-array data, where astrocytomas were the highest expressers followed by primary 

GBM (figure 7 & 9a).  

 

a. 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

Figure 9a & b. Astrocytic tumours express the Notch2 protein in contrast to normal brain 

and oligodendrogliomas. 

 

To show the cell specific expression of Notch2, in collaboration with Dr.Markus Tolnay 

(Institute of Pathology, Basel, Switzerland), immunohistochemical analysis has been 

performed on human brain tumour biopsies. Glioblastoma, astrocytoma and 

oligoastrocytoma but not oligodendroglioma biopsies showed Notch2 expression in the 

tumour cells, while it was absent in the normal brain white matter control (figure 9b). 

Oligodendrogliomas did not express the Notch2 protein. This was expected since they 

have LOH at the NOTCH2 locus (Boulay et al., 2007). Altogether, RNA and protein data 

from primary tumour biopsies showed that Notch2 is highly expressed in astrocytoma 
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and GBM, suggesting an active Notch signaling (figure 6, 7, 8, 9a & b).  

 

Expression of Notch2 paralogues 

                  Next, to have a complete overview on the Notch receptors family expression 

we analyzed the mRNA levels of NOTCH1 and NOTCH3 both in cell lines and brain 

tumour biopsies. 

 

Tumour cell lines 

                  Analysis of the micro-array data showed the expression of the NOTCH2 

paralogues, NOTCH1 and 3 in the GBM cell lines. In comparison to the normal brain 

sample, the cell lines LN229 and LN319 showed 1.5 times higher expression of NOTCH1 

and NOTCH3 respectively (figure 10).    

 

 

 

 

 

 

 

Figure 10. NOTCH1&3 transcript levels in GBM cell lines. 

 

Brain tumour biopsies 

                  The same micro-array data set as described above has been analyzed to check 

the expression of NOTCH1 and 3 in human glial brain tumour samples. All tumour 

samples expressed two- to three fold higher NOTCH1 and two- to four-fold higher 

NOTCH3 transcript levels compared to normal brain. Primary GBM and astrocytomas 

expressed significantly high levels of NOTCH1 compared to normal brain (P=0.027 & 

P=0.002, respectively). NOTCH1 expression in secondary GBM was not different from 

the normal control (P=1). Within the tumour sub-types, NOTCH1 expression was 

significantly different in primary GBM (P=0.03) compared to astrocytomas. No 

difference has been observed between primary vs secondary GBM and between 

secondary GBM vs astrocytomas (figure 11).    
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NOTCH3 expression was significantly higher in primary GBM and in astrocytomas 

compared to normal brain (P=0.014 & P=0.013, respectively). NOTCH3 expression in 

secondary GBM was not different from the normal control (P=0.5). 

 

 

 

 

 

 

 

 

 

Figure 11. NOTCH1 and NOTCH3 transcript levels in human primary gliomas in 

comparison to normal brain. The vertical bar is the median value for each group (t-Test: 

Two-sample assuming unequal variances). 

 

Within the tumour sub-types, NOTCH3 expression in secondary GBM was significantly 

different from primary GBM (P=0.02) and astrocytomas (P=0.02). There was no 

difference between primary GBM vs astrocytomas (P=0.4) (figure 11). These data show 

an increased NOTCH1 and NOTCH3 expression, in addition to NOTCH2, in the brain 

tumours.  

 

Given the high Notch1 and Notch3 mRNA levels found in cell lines and glial tumour 

biopsies, we analyzed their protein expression both in cell lines and brain tumour 

biopsies. 

 

Tumour cell lines 

                  Protein extracts from established GBM cell lines were screened for the 

expression of Notch1 and 3 by western blotting. In total, 11 tumour cell lines were used. 

U373, U343, LN229 and LN319 were the highest expressers of Notch1 while it was low 

in LN215, LN18 and LN401. We found a high Notch3 expression in all cell lines except 

in Hs683, the malignant oligodendroglioma line (figure 12). Although the role of Notch1 

in proliferation and survival of GBM cells has been studied (Purow et al., 2005), the 

exact function of Notch2 and Notch3 remains unknown. 
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Figure 12. Glial tumour cell lines express higher levels of Notch1 and 3 protein. 

 

Brain tumour biopsies 

                  The human primary brain tumour biopsies were further tested for the presence 

of Notch1 protein. The protein extracts from 19 GBM, 7 astrocytomas and a normal brain 

were subjected to western blotting. In this experiment, 73% (12/19) of GBM and 57% 

(4/7) of astrocytoma showed higher Notch1 levels compared to normal brain and 

confirmed the micro-array data where primary GBM and astrocytomas showed high 

Notch 1 expression on the mRNA level (figure 13).  

 

 

 

 

 

 

 

 

 

Figure 13. Glial tumours express higher levels of the Notch1 protein. 

 

Basis of Notch2 over-expression: genomic status 

                  The data obtained so far suggest that the human brain tumour and GBM-

derived cell lines over-express the Notch2 receptor. In order to elucidate the genetic basis 

of Notch2 over-expression in glioblastomas, real-time PCR of genomic DNA near the 

microsatellite marker D1S2696 (figure 14a) located within intron11 of NOTCH2 was 

performed in glioma cell lines. Fifty percent (4/8) of the GBM cell lines analyzed 

harbored a two- to three-fold amplification relative to the diploid status, while only one 

line (LN18) displayed local haploidy (figure 14b). This prevalence of genomic 

amplifications at the NOTCH2 gene is reminiscent of the EGF receptor gene tandem 
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amplifications observed in 50% of GBM and suggests a gene dosage effect as a possible 

mechanism of gain of Notch2 activity.                                                                     

 

In addition, Hs683, the glioma line expressing OG markers, contains only one NOTCH2 

gene copy per diploid genome, reminiscent of the allelic loss of the NOTCH2 locus in 

OGs. Further analysis of these cell lines on Western blots has revealed concordant lower 

Notch2 protein levels in the cells with genomic deletions (figure 14b), implying that the 

genomic status at this locus may influence the Notch2 expression level. Similar results 

were found in Drosophila (Heitzler and Simpson, 1991) and in a mouse model where 

NOTCH2 haploinsufficiency impairs normal B cell development (Saito et al., 2003). 

 

a).                                                                 b).      

 

 

 

 

 

 

 

 

 

 

 

Figure 14. a) Partial map of the NOTCH2 gene b) Correlation of NOTCH2 genomic 

status and protein expression in GBM cell lines. 

 

Sequencing of NOTCH2 

                  In order to find out whether the GBM cell lines acquired gain of function 

mutations in the NOTCH2 gene in addition to genomic amplification (figure 14b), 

sequencing was performed. The sequencing has been carried on the NOTCH2 mRNA at 

the mutational hotspots described as gain of function mutations in Drosophila (Brennan 

et al., 1997; Rebay et al., 1993) and in human T-ALL (T-cell lymphoblastic leukemia) 
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(Weng et al., 2004). These hotspots include the lin-12/Notch repeats (red arrows in figure 

15) and the heterodimerization domain (HD) (red arrows in figure 15). Both activate the 

Notch receptor independent of ligand. The PEST domain in the intracellular part of Notch 

is involved in the degradation of Notch receptor (blue arrows in figure 15). In figure 15, 

the green arrow indicates the mutations located in the EGF repeats 24-29 which 

inactivate the interaction with wingless, resulting in a loss of Notch regulation through 

Wnt signaling.  

 

Totally, 13 GBM cell lines were sequenced at the three lin-12 domain, the 

heterodimerization domain and the complete intracellular part of the Notch2 receptor 

covering the RAM23 domain, the ankyrin repeat, TAD and PEST. We did not find any 

gain of function mutation in any of the cell lines analyzed. These findings suggest that 

mutations most probably are not a mechanism of activation of the Notch2 receptor in 

gliomas.  

 

 

 

 

 

 

Figure 15. Molecular interactions of Notch2. 

 

Expression of Notch signaling mediators 

                  Since GBM tumour samples highly expressed Notch2 receptors, we next 

analyzed the expression of Notch ligands that are required to initiate Notch signaling. 

 

Ligands expression 

 

Tumour cell lines 

                  From micro-array data, all four GBM cell lines expressed the ligands DLL1 

and -3, JAG1 and -2. In comparison to the normal brain sample, the cell lines LN18 and 
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LN319 expressed nearly 1.5 fold higher levels of DLL1 (figure 16a). DLL3 and JAG2 

expression was close to normal in all the cell lines. JAG1 expression was 2 to 3 fold 

higher in all GBM cell lines analyzed, and LN319 was the highest expresser of them 

(figure 16b).   

 

a).  

 

 

 

 

b).   

 

 

 

Figure 16. Notch ligand transcript levels in GBM cell lines in comparison to normal 

brain: a). DLL1 and -3,  b). JAG1 and -2. 

 

Brain tumour biopsies 

                  The micro-array data-set described above has also been analyzed for the 

expression of Notch ligands. In all brain tumours, expression of all four Notch ligands 

was increased compared to normal brain (figure 17 a & b). DLL1 was highly expressed in 

astrocytomas (2-8 fold, P=0.02), while in primary GBM and secondary GBM did not 

show a significant difference compared to normal brain. Within the tumour subgroups, 

astrocytomas had significantly higher DLL1 transcript levels in comparison to primary 

and secondary GBM (P=0.03). DLL3, was increased in primary GBM (2 to 10 fold), 

secondary GBM (2 to 4 fold), but not significantly compared to normal brain. The 

astrocytomas had markedly highly high DLL3 expression (2 to 100 fold, P=0.03) relative 

to NB. The DLL3 expression in astrocytomas was significantly different from secondary 

GBM (P=0.03). Primary GBM had a comparatively higher expression of DLL1 and -3 

than the secondary GBM. Astrocytomas were the highest expressers of both DLL1 and -3 

(figure 17a).   
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a). 

 

 

 

 

 

b). 

 

 

 

 

Figure 17. Notch ligand transcript levels in human primary gliomas in comparison to 

normal brain: a). DLL1 and -3, b). JAG1 and -2. The vertical bar is the median value for 

each group (t-Test: Two-sample assuming unequal variances). 

 

The serrate family ligands, JAG1 and -2 were highly expressed in primary GBM (2 to 4 

fold) compared to normal brain. The increase in JAG1 expression was statistically 

significant in primary GBM and in astrocytomas (P=0.01). Secondary GBM express 

relatively low amount of JAG1 and -2 compare to primary GBM although still higher 

than the NB (figure 17b). The JAG1 and -2 expression was highly consistent in 

astrotcytomas.  

 

This experiment identified a differential expression of the Notch ligands within the 

tumour sub-types. The co-expression of NOTCH2 either with the DLL or JAG family 

ligands suggests an active and ligand specific Notch signaling operative in these tumours.  

 

Given the different ligand mRNA levels found in the GBM cell lines and tumour 

biopsies, we analyzed their protein expression both in cell lines and brain tumour biopsy. 

 

Tumour cell lines 

                  Next, the established GBM cell lines were analyzed for expression of the 

Notch ligand proteins: DLL1 and JAG1. We found that DLL1 was present in all the cell 
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lines with a lower expression in LN405 and Hs683 (figure 18). The expression pattern for 

JAG1 varied among the cell lines with high expression in U343, U373 and LN71, (figure 

18) which were also high Notch2 expressers (figure 8).  

 

 

 

 

 

 

Figure 18. Notch ligand expression in GBM cell lines. 

 

LN18 showed high JAG1 expression (but low Notch2, figure 8) while LN215, LN319 

and LN405 showed a moderate expression. Jagged-1 expression was low in LN229 and 

LN401, and completely absent in U87 and Hs683 (figure 18).  

 

Nuclear signaling 

 

Canonical signaling 

                  The necessary downstream components of Notch signaling are the 

transcription factor RBP-J" and the co-factors MAML1 & 2, which are required to trans-

activate the Notch canonical target genes. RBP-J" regulates transcription by recognizing 

and binding to the DNA sequence motif “GTGGGAA” located in the promoters of target 

genes. In the absence of activated Notch, RBP-J" represses the transcription of those 

genes. Activated Notch binds to RBP-J" to form a ternary complex with the proteins 

MAML1 or 2. That turns RBP-J" from a repressor into an activator of target gene 

transcription (Artavanis-Tsakonas et al., 1999; Baron, 2003; Mumm and Kopan, 2000).  

 

To further study the active components of Notch signaling, we analyzed the protein 

expression of the transcription factor RBP-J" in GBM cell lines and brain tumour 

biopsies.   
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Tumour cell lines 

                  We found that all the GBM cell lines analyzed express RBP-J". In order to 

check the MAML1 and MAML2 expression, RT-PCR was carried out on the cDNA from 

cell lines. All the cell lines expressed the co-factor (figure 19). 

 

 

 

 

 

 

 

 

Figure 19. Expression of transcription factor and co-factors required for Notch signaling 

in GBM cell lines. RBP-J" data are from WB; MAML1/2 data are from RT-PCR. 

 

Brain tumour biopsies 

                  To study whether the primary tumour samples express the transcription factor 

RBP-J", the protein extracts from tumour biopsies were subjected to western blotting. 

Normal brain did not express RBP-J", while its expression was high in most of the 

tumour samples analyzed: 74% glioblastomas (14/19) and 71% astrocytomas (5/7) (figure 

20).  

 

 

 

 

 

 

 

 

Figure 20. Glial tumours express RBP-J" protein. 

 

The presence of transcription factor and co-factors in GBM tumour tissues and in cell 

lines confirm the possibility of active Notch signaling and provide molecular targets to 
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interfere with Notch signaling, either by expressing a dominant negative form or by RNA 

interference.   

 

Non-canonical signaling 

In 2001, Ramain et al. reported an alternative, RBP-J"-independent pathway signaling 

through DTX. This alternative pathway is able to repress the neural cell fate in 

Drosophila. Nevertheless, the intermediate molecular players of this pathway are not 

yet known (Brennan and Gardner, 2002; Martinez Arias et al., 2002). Recently, three 

new ligands of Nocth receptor have been identified in mice: F3/Contactin (Hu et al., 

2003), NB3 (Cui et al., 2004) and DNER (Eiraku et al., 2005). They signal through the 

DTX1 pathway. Moreover it has been reported that in human cervical cancer, DTX1-

mediated Notch1 signaling up-regulates the PI3Kinase pathway (Veeraraghavalu et al., 

2005), and transgenic expression of DTX1 inhibits Notch1-mediated mouse mammary 

tumour (Kiaris et al., 2004). Further, to see whether this alternative pathway is also 

active in GBM cell lines and brain tumours, we decided to study the DTX mRNA 

expression. 

 

Tumour cell lines 

                  The cDNA from the GBM cell lines were screened for the expression of 

DTX1 using the primer set that covers exon 8-9 at the 3#end of the gene. We found that 

DTX1 was expressed, with different levels, in all the cell lines. DTX1 levels were high in 

U87, LN215, LN405, moderately expressed in LN18, LN401, Hs683 and comparatively 

low in LN71 (figure 21).  

 

 

 

 

 

Figure 21. DTX1 expression in human GBM cell lines, using a primer set that covers 

exon 8-9 at the 3#end of the gene. 
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Brain tumour biopsies 

The micro-array data set had been analyzed to the check the expression of DTX1 in the 

primary tumour tissues. All the tumour samples showed high DTX1 expression when 

compared to normal brain. DTX1 mRNA levels were significantly higher in astrocytomas 

compared to normal brain (P=0.02). In primary and secondary GBM, the higher 

expression was not significantly different from normal brain. 

 

 

 

 

 

 

 

Figure 22. DTX1 expression in human gliomas in comparison to normal brain. The 

vertical bar is the median value for each group (t-Test: Two-sample assuming unequal 

variances). 

 

Within the tumour samples, astrocytomas were statistically different from primary GBM 

(P=0.03) (figure 22). These data suggest that in addition to canonical Notch signaling, 

Deltex-1 mediated signaling may also be operative in astrocytomas.  

 

Down-stream target gene expression: HES-1 and HES-5 

                  HES-1 and HES-5 are direct targets of Notch signaling (Jarriault et al., 1998) 

and represent a reliable read-out to monitor Notch signaling. In order to assess the 

activation status of Notch signaling in brain tumour samples, the levels of HES-1 and 

ESs-5 transcripts were determined.  

 

Tumour cell lines 

                  HES-1 and -5 expression in the GBM cell lines wa quantified from micro-

array data. The results were normalized against the normal brain. In 2/4 GBM cell lines, 

HES-1 showed a 2 to 5-fold increased level compared to normal brain. The LN319 cell 

line was the highest expresser of HES-1 followed by LN229. HES-5 was also expressed 
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in the cell lines analyzed, but of lower levels than normal brain (figure 23). 

 

 

   

 

 

 

Figure 23. HES-1 and -5 expression in GBM cell line in comparison to normal brain. 
 

Brain tumour biopsies 

                  We analyzed the expression of HES-1 and HES-5 transcripts contained in the 

micro-array data set. When compared to normal brain, the tumours showed different 

levels of HES-1 and HES-5 expression, with a three-fold increase on average (figure 24). 

All the tumours express the HES-1 transcript. HES-1 expression was high in primary 

GBM while it was very dispersed in secondary GBM and astrocytomas. HES-5 

expression was detectable in most of the tumours screened. The expression levels were 

less dispersed, and astrocytomas showed the highest (2 to 3 fold) amount compared to 

primary and secondary GBM. 

 

 

 

 

 

 

 

Figure 24. Notch canonical signaling target genes HES-1 and HES-5 expression in 

gliomas in comparison to normal brain. The vertical bar is the median value for each 

group (t-Test: Two-sample assuming unequal variances). 

 

These results suggest active Notch signaling in brain tumours, where each tumour 

subgroup may have a different transcriptional regulation of target genes such as HES-1 or 

HES-5 (figure 24).  
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Correlation of Notch receptors and target gene expression 

                  The correlation study between Notch receptors and their target gene 

expression was performed using the micro-array data, to find out which Notch receptor 

mediates the signaling. We found that in primary glioblastomas, the expression of 

NOTCH2 and NOTCH1 significantly correlated with the expression of the target genes 

HES-1 and HES-5 respectively (P=0.0001 and P=0.022) (figure 25). In secondary 

glioblastomas, because of small sample size, correlation analysis not been carried out. In 

astrocytoma, HES-1 expression was weakly correlated with NOTCH1, NOTCH3 and 

NOTCH2 expression (not very significant), while HES-5 correlated moderately with 

NOTCH1 and weakly with NOTCH2 (figure 25). In addition, NOTCH2/HES-1 

correlation was the most significant among the other Notch family members, suggesting 

that triggering of Notch signaling in GBM is most likely driven by Notch2. 

 

 

 

 

 

          

 

Figure 25. Correlation of the relative expression of NOTCH1,2,3 and their target genes 

HES-1 and -5 in glial brain tumour samples in comparison to normal brain. * Pearson#s 

correlation. 

 

Conclusion 

                  The results obtained from primary tumour samples and established cell lines 

suggested that NOTCH2, its paralogues and their signaling pathway components are 

highly expressed in these tumour samples compared to normal brain and supported an 

active and operative Notch signaling in these tumour samples. Each tumour subgroup 

may have a preferential pattern of expression of NOTCH2, ligands and of the 

transcriptional regulation of target genes such as HES-1 or HES-5. Moreover, the high 

correlation between NOTCH2 and HES-1 expression suggests an oncogenic function of 

Notch2 in gliomas.  

HES-1 HES-5 Samples Genes 

Correlation 

coefficient* 

P-Value Correlation 

coefficient* 

P-Value 

NOTCH1 0.2965931 0.3251 0.6245946 0.0225 

NOTCH2 0.8707052 0.0001 -0.1794646 0.5574 

 

GBM I 
NOTCH3 0.3121279 0.2992 0.1670098 0.5855 

NOTCH1 0.3230883 0.435 0.6271685 0.096 

NOTCH2 0.4254356 0.2933 0.3366512 0.4149 

 

Astrocytomas 
NOTCH3 0.3858183 0.3452 0.0176438 0.9669 
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b. Notch and GBM cell invasiveness 

               We hypothesize that Notch2 is an oncogenic protein, which is over-expressed 

in GBM primary tumour samples as well as in established cell lines. Some GBM cell 

lines have shown genomic amplification at the NOTCH2 locus and higher expression of 

the Notch2 protein (figure 14b). Activated Notch signaling is known to transform various 

cell types (Radtke and Raj, 2003); nevertheless the pathway that drives tumourigenesis 

downstream of Notch signaling is relatively unknown. TN-C is an extracellular matrix 

glycoprotein (Bourdon et al., 1983) and is a marker for gliomas (Carnemolla et al., 1999). 

High TN-C expression is associated with a poor patient survival (Tanaka et al., 2000) 

promotes cell migration, controls differentiation and is critical for angiogenesis (Orend 

and Chiquet-Ehrismann, 2006). Since Notch2 and TN-C are over-expressed in gliomas, 

an initial assessment of the parallel expression of these two onco-proteins has shown a 

striking association. This has impelled us to analyze whether TN-C is the Notch signaling 

target gene in gliomas.    

 

Co-expression of Notch2 and TN-C in GBM cell lines and in primary tumour 

samples  

 

Tumour cell lines 

                  The protein extracts from established GBM cell lines were checked for the 

expression of Notch2 and TN-C. All cell lines except Hs683 and LN18 showed high 

expression of Notch2 and TN-C (figure 26). 

 

 

 

 

 

Figure 26. Expression of Notch2 and TN-C in GBM cell lines (western blot). 

 

The cell lines U373, U343, LN319 and LN215 that showed amplification at the NOTCH2 

locus (figure 14b) also expressed high levels of Notch2 and TN-C proteins (figure 26). 

LN405, LN401 and LN229 were diploid for the NOTCH2 locus and expressed high 

Actin 

 Notch2 

 Tenascin-C 

 Hs683     U373     U343     LN319  LN215   LN405   LN18     LN401  LN229 
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levels of the Notch2 and TN-C proteins as well. However, the cell lines Hs683 and LN18 

that displayed haploidy at the NOTCH2 locus (figure 14b), were low expressers of 

Notch2 (figure 26) and showed no detectable TN-C expression (figure 26). These cell 

lines were also expressing the ligands, transcription factor RBP-J" and co-factors 

required to initiate and transmit the Notch signaling (figure 18 & 19). This experiment 

has shown that expression of Notch2 and TN-C correlates in the GBM cell lines. Both 

Notch2 and TN-C are oncoproteins implicated in cancer, and the co-expression of these 

two proteins in GBM indicates a potential molecular link between these two genes.  

 

Brain tumour biopsies 

                  In order to extend and confirm the observation made in GBM cell lines, 

Notch2 and TN-C protein expression was screened in samples prepared from 19 primary 

GBM tumours, four oligodendrogliomas (those had LOH at the NOTCH2 locus) along 

with normal brain as a control. Most of the GBM tumours analyzed were positive for the 

two proteins (figure 27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Expression of Notch2 and TN-C in GBM tumour samples. The Boxes in blue 

show the tumours that co-express Notch2 and TN-C.   

 

TN-C protein expression was found in 90 % (17/19) of the GBM while 80 % (15/19) of 

the tumours expressed the Notch2 protein. The co-expression of Notch2 and TN-C was 

found in 60 % (12/19) of the tumours. Notch2 and TN-C expression in 

oligodendrogliomas was less than or close to normal brain (figure 28). 
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Figure 28. Expression of Notch2 and TN-C in oligodendrogliomas (those with LOH at 

the NOTCH2 locus) and normal brain.  

 

Further, an immunohistochemical experiment was carried out on the human brain tumour 

biopsies in collaboration with Dr.Markus Tolnay (Institute of Pathology, Basel, 

Switzerland). Analysis on glioblastoma, oligodendroglioma and normal brain samples 

showed that Notch2 and TN-C were highly expressed in the GBM samples while it was 

undetecable in oligodendrogliomas and normal white matter (figure 29). 

 

 

 

 

 

 

 

 

 

 

Figure 29. Immnuohistochemical analsis of GBM, OG and normal white matter for 

Notch2 and TN-C expression. 

 

This experiment shows that Notch2 and TN-C were co-expressed in glioblastomas while 

both were absent in oligodendrogliomas and normal brain. Notch2 and TN-C are onco-

proteins implicated in cancer, and co-expression of these two proteins in GBM primary 

tumour biopsies indicates a potential molecular link between these two genes. 
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RBP-J"  binding motif in TN-C promoter 

                  Notch2 signaling requires that upon the ligand-dependent activation of 

proteolytic cleavages, the intracellular domain of Notch is released from the membrane 

and translocates to the nucleus to trans-activate target genes such as HES-1 or HES-5. 

Notch2 acts as a trans-activator of gene transcription in association with the DNA-

binding transcription factor CSL/RBP-J". This has suggested the hypothesis that Notch2 

together with RBP-J" may activate TN-C gene transcription. Based on this hypothesis we 

speculate that the TN-C gene promoter contains a cis-acting element responsive to RBP-

J". Such a sequence motif has been described to be recognized by and to respond to 

RBP-J" activation: GTGGGAA (Artavanis-Tsakonas et al., 1999). Scanning for this 

motif in the vicinity of the TN-C gene transcription initiation site (in collaboration with 

Dr. JL Boulay) revealed the existence of a potential RBP-J" responsive element located 

at -80 with respect to the TN-C gene transcription initiation site.  

 

 

Figure 30. Alignment of the canonical Notch target genes and the tenascin-C, promoter 

sequences. 

 

Interestingly, the alignment of 100 bp of the promoter sequences of the established 

human and murine Notch target genes HES-1 and HES-5 with those of human and murine 

TN-C revealed two highly conserved regions: the TATA box, located at -30 bp, and the 

RBP-J" binding motif GTGGGAA located at -80 (figure 30). The conservation in 

sequence and position of these two elements supports the possibility that RBP-J" may 

indeed bind to the TN-C promoter and promote its transcription under the control of 

Notch signaling. Together with our observation that Notch2 is the most likely Notch 

protein, which activates Notch signaling in GBM, we hypothesized that Notch2 signaling 

trans-activates TN-C in GBM. 
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The RBP-J"  binding motif a functional element of the TN-C promoter 

               To establish the functionality of the RBP-J" binding motif identified in the 

TN-C promoter (figure 30), a series of reporter gene assays in the Hs683 cell line was 

carried out by Martin Degen in Prof. Ruth Chiquet’s lab at the FMI in collaboration with 

our lab. This series of reporter gene assays consisted of co-transfection of plasmids 

expressing activated Notch constructs together with plasmids expressing the luciferase 

reporter gene (driven by the proximal 100 base pairs of the TN-C promoter that contain 

the RBP-J" binding motif) into a glioma cell line. The initial reporter gene assay 

experiments were conducted in cell line LN319 with a high TN-C expression, and the 

results were reproducible. 

 

Figure 31. TN-C- promoter reporter gene assay. 

 

Co-expression of either Notch1-IC or Notch2-IC and a luciferase reporter gene driven by 

100 base pairs of wild-type TN-C promoter resulted in a 2-fold induction of luciferase 

reporter activity compared to the pcDNA vector control (figure 31). Introduction of cis 

mutations described to prevent RBP-J" binding in the TnC promoter (Tamura et al., 

1995) abrogated Notch-dependent induction of luciferase activity (figure 31). 

Introduction of the trans mutation L1711M found in Hs683 Notch2-IC, or of the 

dominant negative RBP-J" (Chung et al., 1994) no longer allowed Notch-dependent 

induction of luciferase activity (figure 31). Altogether, the expression of activated Notch 

receptor, mutation in the cis-element and expression of the dominant negative mutants of 

trans-acting factors have proven that the TN-C promoter contains a functional RBP-J" 

responsive element that is regulated by canonical Notch signaling. 
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Sequencing of the Tenascin-C promoter in LN18 and Hs683 

                  Although the reporter gene assay on the TN-C promoter was performed in 

Hs683 cells, these cells express basically no tenascin-C (figure 26). To verify that the 

absence of tenacin-C protein in Hs683 and also in LN18 is not due to a mutation in the 

TN-C promoter ($300bp) and more precisely in the RBP-J" binding motif, the TN-C 

promoter was sequenced. We did not find mutations in the RBP-J" binding motif (figure 

32). This has suggested that the absence of TN-C protein in Hs683 and LN18 is not 

related to RBP-J" binding motif in the Tenascin-C gene.  

 

 

 

 

Figure 32. Sequencing of Tn-C promoter in Hs683 and LN18 GBM cell lines.  

 

Abrogation of Notch signaling results in down regulation of TN-C  

 

The Notch2-TN-C link in the GBM cell line LN319 

                  In order to show that abrogating Notch signaling down-regulates the TN-C 

expression, the GBM cell line LN319, one of the highest expressers of Notch2 and TN-C, 

was stably transfected with a plasmid expressing a dominant negative (DN) mutant of the 

Notch signaling mediator MAML1. This mutation consists of the deletion of the C-

terminal domain of the MAML1 protein such that it competes with wild-type MAML1 in 

a dominant-negative way (Weng et al., 2003). 

 

The protein extracts as well as RNAs from the stably transfected cell lines mentioned 

above and from the parental control cell line were analyzed for the expression of TN-C. 

MAML1 (DN) over-expression resulted in a decreased expression of TN-C protein and 

mRNA (figure 33 a & b). Down-regulation of TN-C was dramatic in the MAML-1 (DN) 

mutant expressing line. This experiment has supported that TN-C expression is induced 

    Hs683                                   LN18 
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by Notch signaling in GBM through the canonical pathway, and that TN-C carries a 

functional RBP-J" binding motif. 

 
                          LN319 
a).                                                    b). 

 

 

 

 

 

 

Figure 33. Abrogation of Notch signaling in the LN319 cell line by dominant-negative 

MAML1: a) down-regulation of Tn-C expression (western blot); b) down-regulation of 

the canonical Notch target genes: transcripts of Hes-1, Hes-5 and TN-C (Real time 

PCR). 

 

The Notch2-TN-C link in HEK293 cells 

                  To independently verify that TN-C expression regulated by Notch2 at the 

transcriptional level is not specific to certain cell types, HEK293 cells stably expressing 

the Notch2-IC were stably co-expressed with the dominant negative co-factor MAML1 

or shRNA against RBP-J". The RNAs from the three resulting stable cell lines were 

analyzed for the expression of HES-1 and TN-C.   

 

                                                                                                                                                                                                  HEK-293 

 

a).                                                                             b). 

 

 

 

 

 

 

Figure 34. Abrogation of Notch signaling and down-regulation of TN-C expression in 

HEK293-Notch2-IC cells.  a).Real time PCR, b).Western blot. 

 

Expression of the dominant-negative MAML1 as well as down-regulation of RBP-J" 

resulted in down-regulation of the TN-C transcript (figure 34a). This experiment has 

confirmed the results from the GBM cell lines that Notch canonical signaling regulates 

TN-C at the transcriptional level, and that is independent of specific cell type.   
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Down-regulation of TN-C inhibits the migration of GBM cell line 

                  Next, to check whether down-regulation of TN-C in GBM cell lines interferes 

with migration capacity, the parental LN319 and the LN319 line stably expressing the 

MAML1 (DN) mutant were subjected to a trans-well migration assay. Compared to the 

parental line, the MAML-1 (DN) mutant expressing cell line showed a reduced migration 

rate (figure 35a). This experiment has shown that canonical Notch signaling acts as a 

regulator of GBM cell migration. Inhibition of canonical Notch signaling using  

&-secretase is also inhibited the migration of LN319 cell line (figure 35b). 

  

 

                                           LN319                                                                                                                      LN319 

 

a).                                                                        b).   

 

 

 

 

 

 

Figure 35. Blocking of Notch signaling inhibits the migration of GBM cell line. a). 

dominant-negative MAML1, b). "-secretase inhibitor DAPT at 20µM concentration for 

three days (t-Test: Two-sample assuming unequal variances). 

 

Conclusion 

                  We found the co-expression of the two oncogenic proteins Notch2 and Tn-C 

in glioma primary tumour samples and in a GBM cell line. Furthermore, we could prove 

that Notch signaling can trans-activate the TN-C gene and that the molecular inactivation 

of the Notch signaling abrogates the TN-C expression and inhibits GBM cell migration. 

From these data, we can conclude that Notch signaling in GBM induces TN-C-dependent 

cell invasiveness, thereby providing a mechanism through which oncogenic Notch2 

promotes the neoplastic phenotype.  
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c. Anti-apoptotic function of Notch2   

                  In the previous sections, the over-expression of Notch2 and its pathway 

components in the GBM primary tumour samples as well as in established cell lines have 

been described. Furthermore, the role of Notch2 in inducing tenascin-C (TN-C) 

expression and migration of the GBM cells has been elucidated. Developmental studies 

have shown that Notch signaling is important for the maintenance of the stemness 

character, proliferation, survival and differentiation of the neural stem cells (Hitoshi et 

al., 2002). Notch1 signaling in neural stem cells is known to promote cell survival 

independent from the canonical Notch signaling pathway, by inducing anti-apoptotic 

proteins Bcl-2 and Mcl-1 (Oishi et al., 2004). Several lines of evidence suggest that 

alterations of Notch signaling contribute to tumourigenesis, and firmly establish that 

Notch expression and signaling are altered in spontaneous tumours and in tumour models 

(see introduction). The inability to undergo apoptosis through physiological mechanisms 

and resistance to therapeutically induced apoptosis are well-recognized features of the 

transformed phenotype in many human malignancies. Therefore, we decided to study the 

role of Notch2 in regulating apoptosis in brain tumour cells. 

 

Notch2 induces anti-apoptotic proteins: Bcl-2 & Mcl-1 expression 

                  Notch2 expression protects human B-cell leukemic cells from cell death 

(Duechler et al., 2005; Hubmann et al., 2002), and Notch2 inactivation in a mouse model 

leads to widespread cell death in the CNS (Hamada et al., 1999). Moreover, Notch1 

induces the anti-apoptotic proteins Bcl-2 and Mcl-1 to promote neural stem cell survival 

independent of the canonical signaling (Oishi et al., 2004). The anti-apoptotic proteins 

Bcl-2 and Mcl-1 prevent apoptosis at several levels, either by sequestering death-driving 

cysteine proteases called caspases (apoptosome) or by preventing the release of 

mitochondrial apoptogenic factors such as cytochrome c and AIF (apoptosis-inducing 

factor) into the cytoplasm (Tsujimoto, 1998). Based on these data, we decided to stably 

transfect the HEK-293 cell line over-expressing Notch2-IC to study the expression of the 

anti-apoptotic proteins Bcl-2 and Mcl-1 as possible targets of Notch2. Bcl-2 and Mcl-1 

expression was induced by the stable expression of N2-IC compared to the vector control 

(figure 36a). Next we stably expressed the shRNA against NOTCH2 in the HEK-293 cell 
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line and analyzed the expression of the two anti-apoptotic proteins Bcl-2 and Mcl-1. 

Down-regulation of Notch2 resulted in a decreased expression of Bcl-2 and Mcl-1 (figure 

36b). These two experiments have shown that Notch2 regulates expression of the two 

anti-apoptotic proteins Bcl-2 and Mcl-1, and that the Notch2 signaling pathway appears 

to exert an anti-apoptotic effect in different cell types. 

 

                  HEK-293                                                                                                          HEK-293 

   a)                                                                  b)     

 

 

 
 

Figure 36. Regulation of Bcl-2 and Mcl-1 expression by Notch2 in HEK-293 cells, a) 

over-expression of N2-IC induces Bcl-2 and Mcl-1 expression and b) down-regulation of 

Notch2 reduces expression of Bcl-2 and Mcl-1. 

 

Mode of Bcl-2 and Mcl-1 induction by Notch2 

                  In order to elucidate how and at which level Notch2 signaling regulates Bcl-2 

and Mcl-1 expression, we used the HEK-293 cell line stably expressing the Notch2-IC 

for further experiments. To understand whether the Notch2 signaling pathway regulates 

Bcl-2 and Mcl-1 at the transcription level, the HEK-293 cell line stably expressing 

Notch2-IC was treated with actinomycin-D at 0.5µg/ml or 1µg/ml for 36 hours to block 

transcription. Total RNA was isolated, and semi-quantitative PCR for the expression of 

Bcl-2, Mcl-1 and HES-5, was carried out on the cDNA prepared from the samples. HES-

5, being a canonical target gene highly induced upon Notch2-IC expression (figure 37), 

was used as a positive control for transcriptional regulation. HEK293-N2-IC 

 

 

 

 

 

 

 

 

 

Figure 37. Actinomycin-D blocks the transcription of Hes-5 and Bcl-2, but not of Mcl-1. 
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Blocking transcription in the HEK293 cell line stably expressing Notch2-IC resulted in 

down-regulation of HES-5 at both 0.5µg/ml and 1µg/ml of actinomycin-D (figure 37). 

Bcl-2 down-regulation was more pronounced in 1µg/ml of actinomycin-D. There was a 

slight change in the level of Mcl-1 expression. From this experiment, we can conclude 

that Bcl-2 and HES-5 are regulated at the transcriptional level. 

 

Next, to understand whether a post-translational mechanism is involved in the regulation 

of Bcl-2 and Mcl-1 expression, the HEK-293 cell line stably expressing Notch2-IC was 

treated with the proteasome inhibitor MG132 at 1.0 µM concentration for 12 hours. 
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Figure 38. Notch2 regulates the stability of Mcl-1 protein. 

 

At the end of the treatment, the protein extracts were subjected to western blotting. As 

shown in figure 38, there was a low accumulation of Mcl-1 in the Notch2-IC expressing 

cell line compared to the vector control showing that Notch2 slowed down the 

degradation of Mcl-1 and stabilized it. Bcl-2 expression did not change after the 

proteasome inhibitor treatment.  From these experiments we can conclude that Notch2 is 

regulating the expression of Bcl-2 and Mcl-1 at different levels.  

 

Expression of Bcl-2 and Mcl-1 in GBM cell lines 

                  Since Notch2 is highly expressed in brain tumours and seems to regulate the 

expression of the anti-apoptotic proteins Bcl-2 and Mcl-1, the level of these anti-

apoptotic proteins expressed in the GBM cell lines were studied. The protein extracts 

were subjected to western blotting. Both Bcl-2 and Mcl-1proteins were highly expressed 

in the cell lines. Bcl-2 was highly expressed in LN229, LN18, U373, U343 and LN71 
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while it was low in U87. Mcl-1 showed a moderate to high expression in U87, U343, 

U373, LN71 and LN229, while it was comparatively low in LN18 (figure 39).   

 

 

 

 

Figure 39. Anti-apoptotic proteins expression in GBM cell lines. 

 

This analysis has shown that the GBM cell lines co-express Notch2, Bcl-2 and Mcl-1, 

and that Notch2 may regulate them.  

 

Down-regulation of Notch2 decreases the expression of Bcl-2 and Mcl-1 in GBM and 

in other cancer cell lines 

                  In order to show that Notch2 regulates Bcl-2 and Mcl-1 not only in GBM 

cells, but also in other types of cancer, GBM cell lines (LN18, U343 and U373), lung 

(Calu-6) and cervical cancer (Hela) lines stably expressing the shRNA against NOTCH2 

were created. Their protein extracts were screened for the down-regulation of Notch2 and 

the anti-apoptotic proteins Bcl-2 and Mcl-1. Notch2 expression was highly down-

regulated in LN18, U343, U373 and Hela, and only slightly down-regulated in Calu-6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Down-regulation of Notch2 in GBM cell lines and other cancer lines using 

shRNA against NOTCH2. Red box shows the down-regulation of Bcl-2 and Mcl-1.   
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Depending on the cell line, expression of either one of the anti-apoptotic proteins was 

reduced during the down-regulation of Notch2 as seen in the figure 40. Bcl-2 was 

reduced in LN18, U373 and Hela. U343 and Calu-6 showed a reduction in Mcl-1. This 

experiment has shown that Notch2 regulates Bcl-2 and Mcl-1 expression in cancer and in 

normal cells differently. 

 

Induction of Bcl-2 and Mcl-1 by Notch2 is not through the canonical and the DTX1 

mediated signaling 

                  Next we studied whether the induction of Bcl-2 and Mcl-1 by Notch2 

signaling goes through the RBP-J" mediated canonical signaling or the DTX1 mediated 

non-canonical pathway. To study the canonical signaling, the cell lines HEK293-N2-IC, 

LN18 and U373 were stably transfected with either the MAML1 (DN) mutant or shRNA 

against RBP-J#. To understand whether the non-canonical pathway was responsible for 

the induction of Bcl-2 and Mcl-1, the cell lines U373 and HEK293 were stably 

transfected with the human DTX1 tagged with myc. RBP-J# down-regulation by shRNA 

was highly effective in the three cell lines. The MAML1 (DN) mutant construct was 

efficiently expressed in the three cell lines. In the cell lines HEK293-Notch2-IC, LN18 

and U373, Bcl-2 and Mcl-1 expression did not change both in the MAML1 (DN) mutant 

and in the RBP-J" down-regulated lines compared to the control (figure 41).  

   

 

 

 

 

 

 

 

Figure 41. Bcl-2 and Mcl-1 expression is not regulated by Notch canonical signaling 

(western blot). 

 

Over-expression of human DTX1-myc in U373, HEK293 did not influence Bcl-2 and 

Mcl-1 expression (figure 42). These experiments suggest that both the canonical as well 
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as the non-canonical pathways do not regulate the expression of Bcl-2 and Mcl-1, and 

that Notch2 may regulate Bcl-2 and Mcl-1 expression by interacting with other factors.  
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Figure.42. Bcl-2 and Mcl-1 expression are not regulated by Deltex-1 pathway (western 

blot).  

 

Down-regulation of either Bcl-2 or Mcl-1 increases the background apoptosis in 

GBM cell lines 

                  Since the down-regulation Notch2 resulted in lower levels of either Bcl-2 or 

Mcl-1 in GBM cell lines, and since these two proteins are involved in the regulation of 

programmed cell death, we analyzed whether Notch2 down-regulation increases the 

background apoptosis. We found an increase in the background apoptosis of the cell lines 

compared to the control. The increase in the background apoptosis was directly related to 

the decrease in the expression of the anti-apoptotic proteins Bcl-2 and Mcl-1.   

 

 

Figure 43. shRNA mediated Notch2 down-regulation increases background apoptosis. 

 

This experiment showed that the down-regulation of either one of the anti-apoptotic 

proteins shifts the balance towards the pro-apoptotic pathway, which resulted in increased 

background apoptosis (figure 43).  
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Conclusion 

                  From these experiments, it is clear that Notch2 signaling activates the anti-

apoptotic protein Bcl-2 at a transcriptional level and Mcl-1 at a post-translational level. 

Furthermore, Notch2 is not able to induce Bcl-2 and Mcl-1 through the RBP-J" or DTX1 

mediated pathway. In comparison to normal HEK-293 cells, Notch2 activates either one 

of the anti-apoptotic proteins in cancer cells, but the reason behind this selectivity is not 

yet clear. Nevertheless, down-regulation of either one of the anti-apoptotic proteins 

increases the background apoptosis.   
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d. Interfering with Notch signaling in GBM cell lines 

                  The activation of the Notch receptor upon ligand binding is determined by two 

proteolytic cleavages. The first cleavage at the site S2 releases the membrane-tethered 

form of the Notch intracellular domain and is mediated by the ADAM metalloprotease 

(Brou et al., 2000). The second cleavage at the cytoplasmic site S3 is mediated by 

presenilin-dependent &-secretase activity, which releases the soluble Notch intracellular 

(N-IC) (Schroeter et al., 1998) (Annex-5). Then, N-IC translocates to the nucleus where 

it binds to partners of the canonical signaling such as the transcription factor CSL/RBP-

J", the nuclear protein Mastermind and trans-activates target genes such as the hairy/ 

enhancer of Split (HES)-1 or HES-5 transcription factors (details in the introduction) 

(Artavanis-Tsakonas et al., 1999). In addition, an alternative RBP-J"-independent 

pathway signaling through DTX has been identified in Drosophila (Ramain et al., 

2001) and is a positive modulator of Notch signaling. Recently in mammals, three new 

Notch ligands F3/contactin (Hu et al., 2003), NB3 (Cui et al., 2004) and DNER (Eiraku 

et al., 2005) have been identified and found to signal through DTX1 during 

oligodendrocyte maturation, differentiation and Bergmann glia development.  

 

The expression analysis on GBM primary tumour biopsies and cell lines for the Notch 

signaling pathway described in section 7.2.1 suggested an active Notch signaling in 

cancer cells. Hence, we investigated the effect of blocking canonical as well as 

alternative Notch signaling through a molecular and pharmacological approach in GBM 

cell lines.  

 

Canonical Notch signaling 

 

Molecular inactivation of Notch signaling 

                  To inhibit the canonical Notch signaling in GBM cell lines, stable lines were 

created expressing either a dominant-negative MAML1 construct or shRNA targeted 

against the human RBP-J". A BrdU incorporation assay was used to measure the 

proliferation rate of GBM lines. The U373 GBM cell line, expressing either the MAML1 

dominant negative mutant or shRNA against RBP-J" resulted in 20% inhibition of 
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proliferation. The MAML1 dominant negative mutant in the LN319 cell line and shRNA 

targeted against RBP-J" in the U251 cell line lead to a 20-25% reduction in proliferation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Effect on proliferation in GBM cell lines expressing the dominant-negative 

MAML1 or targeted down- regulation of RBP-J#. 

 

This experiment showed that molecular inhibition of the Notch canonical signaling 

pathway in GBM cell lines blocked 20-25% of cell proliferation (figure 44). No cell 

death (data not shown) was observed in GBM cells due to inhibition of Notch signaling 

using either MAML1 dominant negative or RBP-J" shRNA. 
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Pharmacological inactivation of Notch signaling 

                  Next, the GBM cell lines were treated with DAPT, an inhibitor of the &-

secretase, at two different concentrations for 72 Hrs. At the end of the treatment, the 

BrdU incorporation rate was measured as readout of Notch signaling inhibition. Each cell 

line reacted differently to the &-secretase inhibitor treatment.   

 

 

 

 

 

 

 

 

 

Figure 45. Effect of the "-secretase inhibitor DAPT (N-[N-(3,5-Difluorophenacetyl-L-

alanyl)]-S-phenylglycine t-Butyl Ester) on GBM cell lines. The results are the average of 

two experiments. 

 

Cell lines U87, U251, U373, LN18 and LN229 showed varied levels of inhibition of 

proliferation in response to inactivation of Notch signaling. U87 was the most responsive 

among them. LN319 and LN405 were moderately responsive to the inhibitor, while U343 

and LN215 were non-responsive to &'secretase inhibition. We also included an ex-vivo 

tumour culture: T287 enriched in CD133+ cancer stem cell like cells population and the 

CD133- population. Both populations were partially responsive towards &-secretase 

inhibition to a similar extent (figure 45). This experiment showed that pharmacological 

inhibition of Notch signaling in GBM cells results in slight to moderate inhibition of 

proliferation. 
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Down-regulation of canonical target genes 

                  In order to confirm that the expression of the dominant negative (DN) 

MAML1 mutant interferes with Notch signaling in the GBM cell lines, the LN319 and 

U373 cell lines stably expressing MAML1 (DN) were analyzed for target gene 

expression (HES-1).  

 

  

 

   

 

 

 

Figure 46. LN319 and U373 cell lines expressing MAML1 (DN) form in that Notch target 

gene HES-1 transcript was down-regulated (Real time PCR).  

 

The figure 44 shows the expression of MAML1 (DN) in LN319 and U373 cells at the 

protein level. In these two cell lines, the expression of Notch canonical target gene HES-1 

was quantified by real-time PCR. The (Ct value for HES-1 was calculated relative to 

GAPDH expression. The non-transfected parental LN319 and U373 cell lines were 

considered ( HES-1=0. HES-1 was found to be down-regulated in MAML1 (DN) mutant 

expressing lines (figure 46). With this experiment, we confirmed that GBM cell lines 

possesse an active Notch signaling that drives the canonical target gene HES-1 and can be 

molecularly interfered.  

 

Non-canonical Notch signaling 

                  To block the non-canonical Notch signaling, a stable cell line expressing 

shRNA targeted against human DTX1 was created. To study whether DTX1 down-

regulation influences pathway activation, as demonstrated for a cervical cancer 

(Veeraraghavalu et al., 2005), the U373 cell line was stably transduced with two shRNA 

targeting the human DTX1 gene and a scramble shRNA as a control. Analysis of these 

stable lines for a GBM-related cancer pathway like MAP kinase and PI3kinase was 

performed.  
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We found a reduction in phosphorylated ERK (P-ERK) level compared to the total 

amount of ERK (T-ERK), while there was no effect on the P-Akt level (figure 47). This 

experiment has shown that down-regulation of DTX1 interferes with the cancer related 

pathway which is inhibiting ERK phosphorylation.  

         

 

 

       

 

     

 

   

 

 

 

 

 

Figure 47. Down-regulation of the human DTX1 in the U373 GBM cell line. 

Abbreviations: prefix P: phosphorylated protein; prefix T: total protein. The DTX1 

antibody shows multiple bands. The $60 KDa band represent the DTX1 specific protein. 

 

No good antibodies against the human DTX1 protein are available; therefore we 

generated a rabbit anti-serum for human DTX1. Although multiple protein bands were 

present, a down-regulated band (blue arrow, $60 KDa) of the proper size could be 

identified.  

 

Down-regulation of DTX1 induces apoptosis and impairs the colony-forming ability 

of a GBM cell line 

                  Next, we studied the effect on apoptosis due to DTX1 down-regulation in the 

U373 GBM cell line. Cell death was measured using annexin-V and PI. We found that 

the U373 cell line carrying stably DTX1 down-regulation (shRNA 1938) showed 

increased apoptosis when compared both to the parental U373 line and to the U373 stably 

transfected with a scramble shRNA (figure 48).  
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Figure 48. Induction of apoptosis in the DTX1 down-regulated U373 GBM cell line. 

 

This experiment has shown that inhibition of Notch signaling through down-regulation of 

DTX1 lead to increased background apoptosis.  

 

Next, we studied the cell growth using a colony formation assay on the U373 cell line 

carrying DTX1 shRNA and compare it with the parental line and with the line stably 

transfected with the scramble shRNA.  

 

 

 

 

 

 

 

 

 

 

Figure 49. Colony formation in soft-agar shows a marked reduction upon 

downregulation of DTX1 mRNA. (t-Test: Two-sample assuming unequal variances). 

 

 

The colonies with a size bigger than 100 µm were counted and the average number was 

determined between the replicates. The average colony number was significantly reduced 

in the DTX1 shRNA1938-expressing line compared to the parental and control shRNA 

lines (P=0.00008) (figure 49). Furthermore, most of the colonies were smaller in size as 

shown in figure 49.  

P=0.8 P=0.02 P=0.00008 
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The U373 line stably transfected with the shRNA1476 against DTX1 did show significant 

differences both in the colony forming efficiency (P=0.02) and in the level of P-ERK 

compared to the parental and scramble shRNA transfected lines. The colony forming 

efficiency of shRNA1476 was high compared to shRNA1938 transfected U373 cells; this 

was most probably due a low efficiency in the DTX1 down-regulation (figure 47). This 

experiment has shown that down-regulation of DTX1 interferes with the colony forming 

ability of GBM cell lines.  

 

Conclusion 

                  Molecular or pharmacological mediated inactivation of Notch signaling in 

GBM cell lines has resulted in a partial block of proliferation. Moreover, down-regulation 

of DTX1 interferes with the non-canonical Notch signaling pathway and significantly 

reduced the colony forming efficiency of GBM cells. These experiments suggest that 

GBM cells possess active Notch signaling that drives canonical as well as non-canonical 

pathways. Inhibition of &-secretase may be considered as a possible therapeutic approach 

to control the development of Notch-positive GBM. 
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2.3 Notch degradation 

                  Notch signaling is a highly conserved, developmentally regulated pathway 

that determines cell fate and controls cell growth and proliferation in different cell types. 

Inactivation of Notch signaling results in developmental defects, whereas activation of 

this receptor supports anchorage-independent growth in-vitro (Artavanis-Tsakonas et al., 

1999). Abundant expression of Notch receptors, ligands and pathway components are 

documented in different cancer types including T-cell acute lymphoblastic leukemia (T-

ALL), B-cell leukemia and epithelial tumours such as cervical cancer (Gray et al., 1999), 

breast carcinoma (Weijzen et al., 2002) medulloblastomas (Fan et al., 2004) and others. 

In T-ALL, apart from genomic translocation (detail in introduction), mutations targeting 

the PEST domain and inactivation of Fbw-7 are the most frequent alterations that 

stabilize the Notch1 protein and confer constitutive activity (Malyukova et al., 2007; 

Weng et al., 2004).  

 

Regarding GBM, it has been shown that Notch1 has an effect on proliferation and 

survival of cancer cells (Purow et al., 2005). Moreover, we found that GBM cell lines 

have a NOTCH2 genomic amplification (figure 14b) paralled with a high expression of 

the Notch2 protein (figure 14b). Nevertheless, we did not find any gain of function 

mutations in the NOTCH2 gene in GBM cell lines, and therefore assume tandem 

duplication/multiplications reminiscent of EGFR amplifications (figure 15). The higher 

expression of Notch2 is linked to a migratory and apoptotic resistant-phenotype of GBM 

cells (results sections: 2.2 a & b). The high expression of Notch1 and Notch2 in GBM 

might be the result of altered degradation of Notch proteins. Therefore, we investigated 

whether there is an alteration in the degradation of Notch proteins in GBM cell lines. 

 

Expression analysis of Notch degradation pathway components 

                  Fbw-7/Sel-10 is a RING finger type E3-ubiquitin ligase that ubiquitinates the 

activated form of the receptor, Notch-IC. Ubiquitination by Fbw-7 requires the presence 

of the PEST domain at the C-terminal end of Notch-IC (Gupta-Rossi et al., 2001; Oberg 

et al., 2001; Wu et al., 2001). Numb is a negative-regulator of Notch signaling. It is a co-

factor of Itch/Su(dx) which ubiquitinates the full-length receptor. Itch is a HECT-domain 
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containing E3 ubiquitin ligase (Qiu et al., 2000) (Annex-8).  

 

First, we analyzed the expression pattern of genes involved in the degradation of Notch 

receptors in GBM cell lines. Semi-quantitative PCR (polymerase chain reaction) was 

done on complementary DNA (cDNA) prepared from GBM cell lines, normal brain (NB) 

and fetal brain (FB), using cDNA specific primers of the respective genes. FB and NB 

were the sample controls while actin was taken as a gene expression control. We found 

that all components required for the degradation of Notch receptors were expressed in the 

GBM cell lines, fetal brain and in normal brain. 

 

 

 

 

Figure 50. Expression pattern of Notch degradation pathway components in GBM cell 

lines.                                

 

Both NUMB and ITCH were expressed in all cell lines, but NUMB expression was not 

detected in normal adult brain (figure 50). The absence of NUMB in adult brain may be 

complemented by its paralogue NUMBL. 

                              

Defective Notch receptor degradation pathway 

                  Since the genes required for the degradation of the full length as well as the 

activated form of Notch receptors were expressed, we next studied the state of protein 

degradation in general and Notch receptor degradation in particular in glioblastoma cells 

lines. For this purpose, two GBM cell lines were treated with an inhibitor of the 

proteasome-mediated protein degradation pathway, MG132. The protein extracts were 

collected at two time points, 12 and 24 hours after treatment. Then, western blotting was 

performed on the collected samples to check for any change in the level of Notch 

receptors.  

 

In this experiment, c-myc was used as a positive control given its rapid turnover in GBM 

cell lines. We found an accumulation of c-myc protein in the inhibitor treated samples 
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confirming the effect of the drug to a block of protein degradation. We did not find any 

accumulation of Notch1 and Notch2 proteins in the inhibitor treated samples. Actin was 

used as a loading control (figure 51).  

                                             

                                                                   LN319                                    U373 

 

 

 

 

 

Figure 51. Degradation of proteins effectively blocked by proteosome inhibitor MG132 

(5!M) at time points 12 and 24 hrs. 

 

This experiment showed that even though the components required for the degradation of 

Notch receptors are expressed in GBM cell lines, Notch protein is not subjected to 

proteasome mediated degradation. These results have suggested that Notch receptors in 

GBM cell lines do not seem to be subjected to the known degradation pathway. 

 

Loss of DTX1 expression in GBM cell lines 

                  Since there was no significant change in the level of Notch1 and Notch2 

proteins when the GBM cell lines were treated with proteasome inhibitor, we checked 

whether any other E3-ubiquitin ligase might play a role in the degradation of Notch 

receptors. In Drosophila, DTX is a positive modulator of the Notch pathway driving 

RBP-J" independent Notch signaling. DTX possesses a RING finger domain known to 

carry ubiquitination function. It has been suspected to be an E3-ubiquitin ligase for the 

Notch receptor (Mukherjee et al., 2005).  

 

 

 

 

 

Figure 52. Expression of !-arrestins in human GBM cell lines (western blot). 

 

 

 
Notch2 

Notch1 

c-Myc 

Actin 

Con      12 hrs    24 hrs           Con      12 hrs    24 hrs 

         
         

Actin 

    U87     U343     U373    LN18    LN71  LN215   LN229  LN319   

!-arrestin-1 

!-arrestin-2 



 79 

The DTX action requires arrestins as adaptor molecules to ubiquitinate Notch receptors. 

There are two human arrestin homologs: !-arrestin-1 & !-arrestin-2. We found that both 

!-arrestin-1 and !-arrestin-2 were expressed in our GBM cell lines (figure 52). 

 

To proceed further, we studied whether DTX1 is present in human GBM cell lines. The 

human DTX1 is highly similar to Drosophila DTX. Surprisingly, we did not find mRNA 

for DTX1 in any of the GBM cell lines analyzed, while it was expressed in the fetal brain 

using PCR primers covering exon 1-2 at the 5# end of the gene (figure 53).  

 

 

 

 

Figure 53. Absence of DTX1 expression in GBM cell lines. 

 

As described in section 2.3, no good antibodies against DTX1 are available. 

Nevertheless, in GBM cell lines we could detect a possible DTX1 band (60 KDa) with 

our antibody. This band was down-regulated in GBM cell lines stably transfected with 

shRNA against DTX1. 

 

The primer used to amplify the DTX1, located at the 5#end of the gene covers the protein 

coding sequence by which it interacts with Notch receptors. With the primers covering 

the 3# end of the gene, we found DTX1 transcript in GBM cell lines (figure 21). Since we 

did not find any mRNA using the 5# end primers except in the normal brain, we could 

speculate that alternative splicing forms of DTX1 are present in GBM cell lines. This 

experiment identified that an E3 ubiquitin ligase involved in the degradation of Notch 

receptors is not expressed in the GBM cell lines. Hence, the further step was to restore 

the expression of DTX1 and study its function in GBM cell lines.  
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Restoration of DTX1 expression 

 

Over-expression 

                  We stably expressed human DTX1 in HEK293 (control line) and in the U373 

cell line. To see whether introduction of DTX1 initiated the degradation of Notch 

receptors, these lines were treated with proteasome inhibitor MG132 at 10µM 

concentration, and cell extracts were collected at two time points.                                                  

                                                    Vector                 Dtx-1-myc 

                                                  

                                      

 

 

Figure 54. Effect of DTX1-myc expression in HEK293 cells. 

 

Western blot analysis identified the stable expression of DTX1-myc in HEK293 (figure 

54) and U373 cell lines (figure 55). We found that DTX1 expression enhances the 

degradation of Notch receptors compared to the control lines. In the HEK293 cells, the 

degradation of Notch1 and Notch2 was highly efficient compared to the U373 GBM cell 

line. Blocking the degradation pathway by using proteasome inhibitor MG132, resulted 

in the accumulation of the Notch1 and Notch2 receptors (figure 54 & 55) in both cell 

lines. Here, p21 was used as a control to determine the activity of the proteasome 

inhibitor MG132.            

                                                                                  Vector                                Dtx-1-myc 

 

 

 

 

 

Figure 55. Effect of DTX1-myc expression in U373 cells. 

 

DTX1-myc itself accumulated when the protein degradation was inhibited. This showed 

that DTX1 levels might be self-regulated. The accumulation of DTX1-myc was more 

enhanced in the U373 GBM cell line than in the normal line HEK293 (figure 54 & 55) 
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when protein degradation was blocked. We can conclude that in the GBM cell line, 

DTX1-myc undergoes a faster turnover than in the HEK293 cell line, leading to a low 

degradation of targets. From these experiments, we can conclude that most probably the 

high amount of Notch protein present in GBM cell lines is due to the absence and altered 

stability of DTX1. 

 

De-repression 

                  To re-induce a proper DTX1 expression, the HEK293 cell line was treated 

with the inhibitor of histone deacetylases, trichostatin A (TSA) at 100nM. DTX1 

expression was then analyzed from the cDNA prepared from these samples. We found an 

up-regulation of DTX1 transcript in the TSA treated samples compared to the control 

(figure 56a). This experiment suggests that DTX1 expression is suppressed through 

epigenetic modification of DNA, and that gene expression can be re-induced upon the use 

of epigenetic modulators.  

 

                                            HEK-293                                                                                    LN319 

 

            a).                                                                 b).   

 

Figure 56. Restoration of DTX1 expression using histone deacetylases inhibitor.  

 

Most probably, the same mechanism may be operative in inhibiting DTX1 expression in 

GBM tumour cell lines. To confirm this hypothesis, the LN319 cell line was treated with 

trichostatin A (TSA) at 1µM for 24hrs, and cDNA was analyzed for the expression of 

DTX1. In TSA treated cells, DTX1 expression was reinduced confirming that DTX1 

undergoes epigenetic suppression (figure 56b). LN319 required a higher concentration of 

TSA compared to HEK293 cells.  

 

Relevance for cancer 

                  Next, we studied the effect of a proper DTX1 expression in cancer cell lines. 

Two important cancer related pathways in GBM downstream of receptor tyrosine kinases 

(RTKs), namely MAP kinase and PI3kinase, were analyzed. We found that DTX1 

expression in HEK293 cells induced the phosphorylation of ERK, while it did not change 
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the status of Akt phosphorylation. In the U373 GBM cell line, the stable expression of 

DTX1 resulted in an increase of P-ERK and a decrease of P-Akt (figure 57). 

                                                                          HEK-293                       U373 

 

                                                                                  

 

 

 

Figure 57. DTX1-myc expression induces P-ERK while reducing P-Akt in GBM cell line. 

 

Next, we studied the effect of DTX1 expression on proliferation and apoptosis. We did 

not find an increase of background apoptosis in the U373 cell line while a slight decrease 

in proliferation was noticed. We can conclude that a proper DTX1 expression is able to 

modulate the signaling downstream of RTKs. This is of interest since the U373 cell line, 

upon DTX1 expression, shows a modulation in the PI3K pathway, which overcomes the 

lack of PTEN. 

 

Role of DTX1 in different cell types 

                  To assess the effect of DTX1 on the Notch receptor in different cell types, we 

stably expressed DTX1-myc in the following: HEK293 (normal embryonic kidney line) 

(figure 54), U373 (a GBM line) (figure 55) and MCF-7 (a breast cancer line) (figure 58).  
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Figure 58. Role of DTX1 is the same in variable cell types. 

 

The protein extracts were subjected to western blotting. The Deltex-myc expression level 

varied among the cell lines. It was very high in HEK293 (figure 54), moderate in U373 

(figure 55) and low in MCF-7 (figure 58). The level of Notch1 and Notch2 in the DTX1-
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myc expressing line was decreased when compared to the parental line. From these 

experiments, we can conclude that lack of a full length DTX1 leads to an accumulation of 

Notch receptors. We can conclude that DTX1 play a role in the regulation of Notch 

receptor degradation. 

 

Conclusion 

                  In this section, we studied the role of DTX1 in the regulation of Notch 

receptor expression in different cell lineages. All components required for Notch 

degradation, apart from regular DTX1, were expressed in GBM cell lines. Over-

expression of DTX1 in control as well as GBM cell lines resulted in an enhanced 

degradation of Notch receptors. Moreover, we could re-induce the regular DTX1 

expression using epigenetic modulators such as TSA. Since the Dtx1 turnover rate seems 

to be faster in GBM cells (U373) which express the transgene, we may not see the 

degradation of Notch receptors in TSA treated samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 84 

Discussion 

                  The glial cell-derived tumors of the central nervous system (CNS) include 

glioblastomas (GBM), astrocytomas, oligodendrogliomas (OG) and oligoastrocytomas. 

The most malignant is GBM that can either develop de novo (> 90%) as primary GBM or 

through progression from low-grade astrocytoma, as secondary GBM (Zhu and Parada, 

2002). The incidence rate of GBM is approximately 2-3 per 100,000 people in a year. 

GBM represents 2% of all cancers. Mean patient survival is less than 10 months (Ohgaki 

and Kleihues, 2007). On the other hand, OG represents 5% of glial brain tumours. They 

were found to have combined allelic loss at chromosome arms 1p and 19q in 70-80% of 

the tumours (Boulay et al., 2007; Kleihues, 2000; Smith et al., 1999). Combined 1p and 

19q loss in OG is associated with better prognosis, and possibly better responsiveness to 

chemotherapeutic treatment with a mean patient survival of about 10 years (Cairncross et 

al., 1998; Ino et al., 2001). In fact, combined 1p/19q loss results from a translocation 

t(1;19)(q10;p10) (Griffin et al., 2006; Jenkins et al., 2006). This shows that loss of 

chromosome 1p is a marker for a subgroup of OG with a more favourable clinical 

behaviour (Ohgaki and Kleihues, 2007). Despite intense investigations, the putative 

tumour suppressor gene(s) on chromosome 1p and 19q remains to be identified.  

 

Although surgical resection, radiotherapy and chemotherapy can significantly improve 

the prognosis of patients with breast, lung or prostate cancer, current treatment results 

only in a modest prolongation of survival in GBM cancer patients. The purpose of this 

work is to identify and unwind the molecular intricacy of such clinical differences, which 

is crucial in order to find new treatment strategies for GBM. 

 

NOTCH2 is a common deletion target in a subgroup of gliomas 

                  Based on somatic deletion mapping of chromosome 1, we found that in a 

subgroup of OG and GBM, the common deletion at the NOTCH2 locus was associated 

with better survival (Boulay et al., 2007). This has suggested a possible causal 

relationship between NOTCH2 status and tumour behaviour. NOTCH2 is located at 

chromosome band 1p11, near the breakpoint cluster area of OG with 1p/19q loss, 

suggesting that NOTCH2 inactivation is associated with the recently described OG 
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translocation t(1;19)(q10;p10) (Griffin et al., 2006; Jenkins et al., 2006). Allelic loss at 1p 

microsatellite D1S2696, located in the intron 11 of NOTCH2, represents a favourable 

prognostic marker in GBM as well as in OG. Furthermore, among the glioma with 1p 

centromeric loss, the N2/N2N test determines the relative genomic dosage of NOTCH2 at 

1p11 compared to N2N at 1q21 that allows the distinction between OG and GBM with 1p 

loss. The N2N gene at centromere represents a highly conserved N-terminal duplication 

of NOTCH2. 

 

Presently, 1p telomeric and subtelomeric molecular markers in combination with 19q 

markers are used in the identification of OG with 1p/19q loss. Our results show that 

diagnostic assessment of 1p telomeric markers cannot distinguish between subgroups of 

prognostically better OG and poor GBM with 1p deletions. In contrast, the N2/N2N test 

excludes GBM with poor survival in all (21/21) cases. We also found that GBM with 

interstitial deletions located in the 1p22-32 intervals had the poorest prognosis. This 

subgroup of GBM may target a suppressor gene that is linked with rapid progression. 

Interestingly, this interstitial region between telomere and centromere does not contain 

several proposed candidate genes, in contrast to the region 1p36 with, TP73 (Mai et al., 

1998), RAD54 (Husemann et al., 1999), CDKN2C (Bello et al., 2000), CAMTA1 

(Barbashina et al., 2005) and CHD5 (Bagchi et al., 2007). In contrast, GBM with 

deletions at the 1p11-13 intervals have a significantly better prognosis than GBM with 

interstitial or telomeric deletions patterns and GBM without 1p loss, displaying genetic 

similarities to OG with 1p loss. Both OG and this subgroup of GBM may target a 

centromeric gene located on 1p that is linked with a distinct prognostically better glioma 

pathway.  

 

A classification of OG into two distinct prognostic groups as a function of the 1p/19q 

status relative to other OG is further supported by the observation that among OG, 1p/19q 

loss and TP53 mutations are mutually exclusive events. This suggests that OG with either 

genetic alteration follow distinct tumour developmental pathways (Bigner et al., 1999). 

Consistently, genetic profiling of primary OG revealed that both genetic alterations are 

part of two distinct molecular subgroups of OG (Mukasa et al., 2002). In conclusion, we 
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have found the breakpoints in OG and in a subgroup of GBM that all converge to the 

NOTCH2 gene locus. These finding are derived from of somatic deletion mapping and 

further substantiated by the detection of homozygous deletions in primary OGs. These 

findings form the basis for the hypothesis of a role for NOTCH2 in brain tumour 

development. We further propose the combination of two NOTCH2 genetic markers 

(DIS2696 and N2/N2N) to robustly diagnose low-grade and malignant OG and to 

thoroughly estimate patient prognosis.   

 

NOTCH2 sequencing 

                  The sequencing analysis of NOTCH2 in primary tumour samples and cell 

lines was based on the NOTCH mutation hotspots described in Drosophila (Brennan et 

al., 1997; Rebay et al., 1993). In Hs683, we found a transversion mutation in NOTCH2 

codon 1711 (CTG to ATG), where leucine is replaced by methionine. Interestingly, this 

codon lies within the RAM domain, which represents the protein-protein interaction 

domain for the transcription factor RBP-J". Recreation of this mutation in vitro has 

resulted in functional inactivation of Notch canonical signaling and is similar to a 

functional inactivation mutation introduced in the RBP-J" binding motif  “GTGGGAA” 

(Tun et al., 1994). Apart from this rare mutation, absence of frequent mutations in GBM 

cell lines and primary tumours confirmed the previous observation that NOTCH genes 

are rarely mutated in common solid tumours (Lee et al., 2007). We sequenced the 

complete intracellular domain and the mutational hotspots in the extracellular domain, 

but not the entire reading frame of NOTCH2 and can therefore not rule out mutations in 

other coding and non-coding regions including the promoter of the gene. The duplication 

of the N-terminal part of NOTCH2 (between NOTCH2 and the pericentromere) does not 

interfere with the interpretation of the sequencing results. Another possibility for 

impairing gene function may be haploinsufficiency since Notch and Notch2 levels were 

found to be tightly regulated by gene dosage in Drosophila (Heitzler and Simpson, 1991) 

and murine B-cell development, respectively (Saito et al., 2003). LOH at the NOTCH2 

locus may therefore impair protein function. Although NOTCH2 is a reasonable and 

attractive candidate suppressor gene, we can, however, not rule out that another gene in 

the vicinity of or even within NOTCH2 is the targeted gene.  



 87 

Notch signaling and cancer 

                  Notch signaling represents an evolutionarily conserved pathway operative 

between two neighbouring cells that controls key stages in development, cell growth and 

differentiation. Notch signaling amplifies and consolidates the molecular differences 

through two distinct local regulations: lateral inhibition and inductive signaling 

(Artavanis-Tsakonas et al., 1999). In the CNS, Notch signaling has shown to be a critical 

regulator of neural stem cell pool maintenance and differentiation of glial lineage (Gaiano 

and Fishell, 2002; Louvi and Artavanis-Tsakonas, 2006). Notch signaling actively 

promotes glial fate such as differentiation into astrocytes (Tanigaki et al., 2001), radial 

glial cells in the forebrain and the cerebellum (Gaiano et al., 2000; Yoon et al., 2004). In 

contrast, Notch signaling inhibits oligodendrogliogenesis in the optic nerve (Wang et al., 

1998) while promoting the differentiation of neural progenitor cells into oligodendrocytes 

through an alternative pathway driven by interaction with a new class of ligands such as 

F3/contactin, NB-3 (Cui et al., 2004; Hu et al., 2003). Animal models for mutations in the 

Notch receptor invariably result in developmental abnormalities and thus human 

pathologies (Artavanis-Tsakonas et al., 1999). Notch1 and Notch2 are involved in 

neoplastic disease (Radtke and Raj, 2003), e.g. leukemia (Ellisen et al., 1991; Hubmann 

et al., 2002) and skin cancer (Nicolas et al., 2003). In human medulloblastoma, Notch1 

and Notch2 have opposite effects (Fan et al., 2004). Notch1 was regarded to be either an 

oncogene or a tumour suppressor, depending on the cellular context (Radtke and Raj, 

2003). This dependability on the cellular context may also be applied to Notch2.  

 

Notch over-expression and effect of its inactivation in GBM cells 

                  We found that GBM retaining the NOTCH2 gene (i.e. haplotypes H1-H7, 

figure 1 & 2) had a worse prognosis (Boulay et al., 2007). Interestingly, we found 

amplifications of NOTCH2 in 4/8 (50%) of GBM cell lines. This may be a possible basis 

of Notch2 over-expression and is reminiscent of EGFR tandem-like amplification in 

GBM (Libermann et al., 1985; Wong et al., 1987). This finding raises the hypothesis of a 

role of NOTCH2 in brain tumour development. Micro-array based expression analysis of 

NOTCH2 and its pathway components in primary tumour samples and in GBM cell lines 

showed a higher RNA content not only for NOTCH2, but also for NOTCH1 and 
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NOTCH3 in comparison to normal brain control. We found DLL1 and DLL3 to be highly 

expressed in low-grade astrocytomas, whereas JAG1 was highly expressed in primary 

GBM. These findings are in line with several preliminary studies (Phillips et al., 2006; 

Purow et al., 2005; Somasundaram et al., 2005). However, expression of Notch 

downstream targets had not been correlated with NOTCH genes in these studies. Our 

micro-array data show a correlation between expression of NOTCH1 and NOTCH2, and 

the downstream target genes HES-1 and HES-5. In GBM samples, NOTCH2 expression 

was highly correlated with HES-1, and NOTCH1 more with HES-5.  

 

The involvement of HES-1 in astrocytic cell fate determination lends support to a role of 

NOTCH2 in astrocytic differentiation (Wu et al., 2003). Our micro-array data showed 

significant correlation between NOTCH2 and HES-1 expression in GBM. This is in line 

with increased expression of HES-1 observed in GBM (Somasundaram et al., 2005). 

GBM display a more undifferentiated morphology (Holland, 2001) and express high 

levels of Notch2 according to our immunohistochemical staining. In this context, it is 

intriguing that Notch2 was found to be expressed in immature glial cells in the germinal 

zones of the normal brain (Irvin et al., 2001; Tanaka and Marunouchi, 2003; Wang and 

Barres, 2000). Moreover, over-expression of dominant-negative MAML1, one of the 

down-stream effectors of Notch signaling, led to down-regulation of HES-1 in GBM 

cells, a finding that has also been observed in T-cell acute lymphoblastic leukemia (T-

ALL) (Weng et al., 2003). All these data support the concept that Notch2 directly leads to 

HES-1 expression in GBM. In parallel, nestin, a marker of neural precursors and GBM, 

also possesses a RBP-J" responsive element (Shih and Holland, 2006) which implies the 

possible role of Notch2 in the maintenance of glioma cells in the undifferentiated state. 

Conversely, the Notch2 loss-of-function mutation in Hs683 cells; a malignant 

oligodendroglioma cell line represents an inactivation mechanism to inactivate Notch2 in 

this OG line (together with LOH of the remaining allele). In addition, homozygous 

deletions detected in primary OG with 1p loss must also be considered to be a mechanism 

of downregulating Notch2 signaling (Boulay et al., 2007). Thus, OG development 

appears to be dependent on Notch2 loss in the majority of OGs that also display a 1p loss.  
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Our results show that inhibition of canonical Notch signaling by i) over-expression of 

dominant-negative MAML1, ii) shRNA against RBP-J" or iii) by pharmacological 

inhibitors such as &-secretase inhibitors resulted in the inhibition of GBM cell growth. 

This is in line with growth inhibition of T-cell acute lymphoblatic leukemia (T-ALL) 

cells by expression of dominant-negative MAML1 (Weng et al., 2003). In parallel, we 

found that inactivation of non-canonical DTX1-mediated Notch signaling, using shRNA 

against DTX1, resulted in induction of background apoptosis and decreased colony-

forming ability of GBM cells. In cervical cancer, dominant-negative DTX1 also blocked 

epithelial-mesenchymal transition and E6- and E7- mediated transformation in HaCaT-

JAG1 cells, but did not induce apoptosis (Veeraraghavalu et al., 2005). 

 

Role of Notch in GBM cell migration 

                  The key feature of highly malignant glial cells is their invasive nature (Maher 

et al., 2001; Merlo, 2003), which is among other factors, driven by EGFR, PTEN and 

FAK (Jones et al., 2001b; Maier et al., 1999). PTEN is inactivated in 50% of GBM 

(Knobbe et al., 2002; Merlo and Bettler, 2004; Sansal and Sellers, 2004). Tenascin-C is 

also considered to play an important role in tumour cell migration (Lange et al., 2008). 

Notch1 and Notch2 proteins, which are expressed in the glial lineage, are inducers of  

TN-C. This association is based on the frequent NOTCH2 gene amplification and high 

protein expression we found in GBM. The identification of a RBP-J" responsive element 

in a minimal TN-C promoter together with the association between RBP-J" and TN-C 

expression in GBM primary samples and cell lines propose a novel mechanism of TN-C 

trans-activation. The molecular cooperation between Notch2 and RBP-J" has been 

observed previously in B cell development, where Notch2- and RBP-J"-targeted mice 

present a common phenotype both lacking a B cell subset (Saito et al., 2003; Tanigaki et 

al., 2002), and in B cell leukemia, where Notch2 together with RBP-J" upregulate 

CD23a transcription (Hubmann et al., 2002). Nevertheless, 5 out of 19 TN-C-positive 

GBM primary tumours were RBP-J"-negative, suggesting that RBP-J"-independent 

regulatory pathways for TN-C might also be operative in GBM. This is supported by the 

observation in human fibroblasts where the TN-C promoter is activated by platelet-

derived growth factor (PDGF) and transforming growth factor (TGF)-! (Jinnin et al., 
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2004; Jinnin et al., 2006). Since TGF-! signaling promotes PDGF-!-dependent cell 

proliferation in glioma (Bruna et al., 2007), activation of the TN-C promoter by TGF-! 

signaling may also apply in glioma.  

 

TN-C-deficient mice show compromised proliferation/migration of neural precursors, and 

accelerated oligodendrocyte differentiation (Garcion et al., 2001). Consistently, GBM 

lines and biopsies showed strong TN-C expression, while OG did not, although an OG 

subset has been described as moderately positive (McLendon et al., 2000). Strong TN-C 

expression is associated with the invasive front in many tumour types and is a diagnostic 

marker for glioma progression, implying a role for TN-C in tumour promotion (Orend 

and Chiquet-Ehrismann, 2006). This supports the hypothesis of Notch2/RBPJk/TN-C 

signaling to be operative in GBM, but not in OG development. From a clinical point of 

view, conventional therapeutic interventions based on tumour resection and radio- and 

chemotherapy have only moderately improved glioma patient survival over the past 

decades (Sanai et al., 2005). In addition to directly targeting TN-C (Merlo et al., 1997; 

Reardon et al., 2002), our data also show that the use of &-secretase inhibitors may be of 

therapeutic value in blocking GBM cell migration. We propose that the 

Notch/RBPJk/TN-C pathway regulates tumour cell migration, a hallmark of invasive 

GBM. This molecular cascade provides a novel mechanism through which Notch acts in 

tumour progression and possibly in normal development of the neuronal and glial cell 

lineages.  

 

Role of Notch2 in GBM cell survival 

                  One of the hallmarks of tumour cells is their ability to evade cell death 

(Hanahan and Weinberg, 2000). In GBM, several key signaling components have been 

implicated in increasing the resistance of tumour cells to pro-apoptotic signals (Merlo, 

2003). In this thesis, the focus has been directed on the two anti-apoptotic proteins Bcl-2 

and Mcl-1, members of the Bcl-2 family of modular proteins involved in cell death 

regulation (Danial and Korsmeyer, 2004). In GBM cell lines, we found high expression 

levels of Bcl-2 and Mcl-1. This is in conformity with previous observations of altered 

expression of Bcl-2 family proteins in GBM associated with tumour grade and clinical 



 91 

outcome (Deininger et al., 1999; Fels et al., 2000). Furthermore, we have observed over-

expression of Notch2, its ligands and its pathway components in GBM cell lines as well 

as in primary tissues. High expression of Notch pathway components were also observed 

in other cancer phenotypes and have been shown to be tumourigenic in several tumour 

models (Radtke and Raj, 2003). Consistently, we observed that down-regulation of 

endogenous Notch2 in GBM cells by shRNA resulted in increased apoptosis. By 

screening for anti-apoptotic proteins down-regulated by Notch2 in GBM cells, we 

identified Bcl-2 and Mcl-1 to be involved in increased apoptosis in GBM cells. 

Furthermore, we found that over-expression and down-regulation of Notch2 in HEK293 

cells resulted in up- and down-regulation of Bcl-2 and Mcl-1. However, inhibition of 

downstream canonical Notch signaling using dominant-negative MAML1 or shRNA 

against RBP-J# in GBM cell lines as well as in HEK293 cells expressing N2-IC did not 

alter the expression of Bcl-2 and Mcl-1. This is consistent with the role of Notch proteins 

in enhancing survival of neural stem cells by up-regulating Bcl-2 and Mcl-1 through a 

RBP-J" independent signaling pathway, which has been the case for Notch1 (Oishi et al., 

2004).  

 

It is noteworthy that GBM and progenitor cells share common phenotypical features, 

including cell morphology and expression patterns (Holland, 2001). Given that Notch2 

expression in GBM is reminiscent of Notch2 expression in immature glial cells in the 

germinal zones of the normal brain (Irvin et al., 2001; Tanaka and Marunouchi, 2003; 

Wang and Barres, 2000), Notch2 may regulate survival in GBM cells as well. Moreover, 

Notch2 inactivation in a mouse model led to widespread cell death in the CNS (Hamada 

et al., 1999). Furthermore, Notch2 protects B-cell leukemic cells from cell death 

(Duechler et al., 2005; Hubmann et al., 2002). All these findings lend support to the 

concept of Notch2 in cell survival. Overall, these observations are consistent with the 

possible role of Notch receptors in tumour cell survival, apart from their role in cell 

proliferation and progenitor maintenance (Miele and Osborne, 1999).  

 

Notch degradation 

                  We observed strong expression of Notch2 protein in primary GBM samples 
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and cell lines by immunohistochemistry and immunoblotting. Notch2 appears to have a 

dual function. On one side, loss of chromosome 1p targets NOTCH2 at 1p11, which is 

associated with significantly longer patient survival (mostly in the majority of OG and in 

a subgroup of GBM) and express low or absent levels of Notch2 protein. On the other 

side, high expression of Notch2 protein is observed in the majority of GBM which do not 

display allelic loss at NOTCH2, (i.e. haplotypes H1-H7, figure 1 & 2) and have a 

significantly worse prognosis (Boulay et al., 2007). Notch2 appears to function as an 

oncogene in the majority of GBM that do not display deletions on centromeric 1p. In half 

of the GBM cell lines analyzed (4/8), we detected amplifications of NOTCH2, but not 

activating point mutations of NOTCH2. This is consistent with the observation that 

activating mutations of NOTCH are uncommon in solid tumors (Lee et al., 2007). The 

mutations in the PEST domain found in T-ALL samples enhance the stability of activated 

N1-IC by preventing the Fbw-7 mediated ubiquitination and degradation (Weng et al., 

2004). Several studies have observed higher expression of Notch receptors and their 

components in different tumour types in vivo and in vitro (Miele and Osborne, 1999; 

Radtke and Raj, 2003), including GBM (Purow et al., 2005; Somasundaram et al., 2005). 

But, the cause for the presence of abundant Notch receptors is not clearly understood. 

Hence, we put an effort in investigating the role of Notch degradation pathways in GBM 

cells. Among the genes involved in Notch degradation, FBW-7, ITCH, NUMB and !-

ARRB -1& -2, but not DTX1, were found to be expressed. In Drosophila, DTX contains a 

RING finger protein with a E3-ubiquitin ligase for the Notch receptor (Mukherjee et al., 

2005). We found that a proteasome inhibitor could not block the degradation of Notch 

receptors even in the longer time period (24 hours). This finding allows the interpretation 

that high Notch protein levels are probably due to inefficient or defective degradation of 

Notch1 and Notch2 receptors in GBM cells. Furthermore, we found that restoration of 

DTX1 transgene expression in GBM cell line U373 enhanced the degradation of Notch1 

and Notch2, which could be blocked by the proteasome inhibitor. Expressing DTX1 in 

HEK293 and the breast cancer line MCF-7 cells suggests a ubiquitous role for DTX1 in 

the degradation of Notch receptors. But what is the mechanism that leads to lack of 

expression of DTX1 in these distinct tumours? The finding that the histone deacetylase 

inhibitor TSA restored the endogenous DTX1 expression in GBM cells suggests that 
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DTX1 expression is suppressed through epigenetic silencing. What are the functional 

consequences of a lack of degradation of Notch proteins? The accumulation of Notch 

receptors might help to enhance the cellular pro-survival or anti-apoptotic program within 

neoplastic cells, and also enhance tumour cell migration. 

 

Conclusion 

                  We found that a subgroup of GBM and OG showed LOH at the NOTCH2 

locus on chromosome 1p11 that is positively correlated with patient prognosis. The 

tumours that showed retention at the NOTCH2 locus expressed high Notch2 protein 

levels. Using molecular or pharmacological inhibition, we showed the partial inhibition 

of proliferation of GBM cells. Inhibition of an alternative Notch signaling pathway using 

shRNA against DTX1 increased background apoptosis and reduced colony-forming 

ability, supporting the oncogene concept of Notch2 in the majority of GBM that do not 

target the NOTCH2 locus. In GBM cells, we showed that TN-C is a novel canonical 

target gene of Notch signaling. Inhibition of Notch signaling results in the down-

regulation of TN-C protein and GBM cell migration. Moreover, we found that Notch2 

expression promotes GBM cell survival through up-regulation of the anti-apoptotic 

proteins Bcl-2 and Mcl-1, independent of canonical Notch signaling. In addition, we 

found that DTX1, an E3-ubiquitin ligase for Notch receptors degradation, is not 

expressed in GBM cells, resulting in abundance of Notch proteins. Restoration of DTX1 

expression enhanced the degradation of Notch receptors in GBM cells. Moreover, 

epigenetic silencing of DTX1 expression in GBM cells can be restored using histone 

deacetylases inhibitors. In contrast to the 3# end of the DTX1 gene, which is present in 

GBM cells, we did not find expression of the 5# end of the DTX1 gene. We therefore 

propose that an alternative form of DTX1 is expressed in tumour cells that still has to be 

molecularly defined. Most likely, an alternative promoter is used in tumour cells that 

epigenetically silence regular DTX1. This study suggests a role of Notch proteins, of 

Notch2 in particular, in aberrant cancer signaling, impinging on tumour cell proliferation, 

survival and migration. These results provide a molecular basis for new therapeutic 

approaches against GBM. 
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Materials and methods 
 

Tissue culture  

                  The mutational status of the human glioma cell lines U87, U343, U373, LN18, 

LN71, LN215, LN229, LN319, LN401, LN405 and Hs683 for the TP53, p16/p14 and 

PTEN genes has been previously established (Ishii et al., 1999). HeLa, MCF-7 and Calu-

6 are human cervical carcinoma, breast cancer and colon cancer cell lines respectively. 

HEK-293, the human embryonic kidney derived non-cancer cell line is used as a control. 

All these cell lines were cultured at 37°C in 5% CO2 in a humidified atmosphere. The 

culture medium was Dulbecco’s Modified Eagle Medium (DMEM, No: 10938-025, 

Invitrogen Corporation, Carlsbad CA, USA) supplemented with 10% (v/v) fetal bovine 

serum (FBS, No: S1810, Labforce, Basel, Switzerland), 1% Glutamax solution (v/v) (No: 

35050-038, Invitrogen Corporation, Carlsbad CA, USA) and 1% (v/v) antibiotics solution 

(No: 15240-062, Invitrogen Corporation, Carlsbad CA, USA). Cell detachment was 

performed with 1x trypsin-EDTA (No: 25300-054, Invitrogen Corporation, Carlsbad CA, 

USA) for 5 minutes at 37°C.  

 

Western analysis and antibodies  

                  Cells were washed with 1xPBS, scraped in cold 1xSDS sample lysis buffer 

(2% (w/v) sodium dodecyl sulfate (SDS), 50mM Tris-Hcl pH 6.8, 10% (v/v) glycerol, 

0.1M DTT), boiled at 95°C for 5 minutes and stored at –20°C. For the analysis, protein 

lysates were separated according to their size by denaturing SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) with the concentration of the polyacrylamide ranging from 

8 to 12% (v/v), depending on the molecular weight to be resolved. The separated proteins 

were transferred to nitrocellulose membranes (Hybond, ECL, Amersham Biosciences, 

USA). Subsequently, the membrane were blocked with 5% (w/v) non-fat dry milk in 

TBS-Tween (10 mM Tris-Hcl, 150 mM NaCl, 0.05% (v/v) Tween 20) and 1% (w/v) 

BSA. The membranes were probed with the following primary antibodies: Notch-1, 

Notch-2, Jagged-1 (Developmental Studies Hybridoma Bank, University of Iowa, Iowa 

city CA, USA), Notch-3 (Abcam, Cambridge, UK), Delta-like-1, Bcl-2, Mcl-1, p21, 

phospho-ERK (Tyr 204 of p42 and p44), c-myc, !-arrestins-1 and -2, myc-tagged (Santa 
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Cruz Biotechnology, Santa Cruz CA, USA), Akt, phospho-Akt (Ser-473) (Millipore, 

Billerica MA, USA), ERK (p42 and p44) (New England Biolabs, Ipswich MA USA), 

actin (Sigma-Aldrich, SaintLouis MO, USA), anti-TN-C B28-13 (a kind gift from Prof. 

Ruth Chiquet-Ehrismann, FMI, Basel), anti-RBP-J" (Institute of Immunology, Tokyo, 

Japan), anti-GFP (Roche Diagnostics, Rotkreuz, Switzerland). Primary antibodies were 

diluted either in TBS-Tween or in 5% (v/v) non-fat dry milk, 1% (w/v) BSA in TBS-

Tween overnight at 4°C. Three additional washes with TBS-Tween were performed 

before incubation with the appropriate secondary antibody (Horseradish peroxidase-

conjugated anti-mouse, anti-rabbit, anti-goat and anti-rat immunoglobulins obtained from 

New England Biolabs, Ipswich MA, USA). Then, after three washes in TBS-Tween, 

signal detection by super signal (Pierce, Rockford IL, USA) was performed on X-ray 

films (Fujifilm, Tokyo, Japan). Protein bands were quantified using the software ImageJ 

(NIH, Bethesda MD, USA). 

 

Anti-DTX-1 serum production 

                  No good antibodies against the human Deltex-1 protein are available; 

therefore we generated a rabbit anti-serum for human Deltex-1 using two synthetic 

peptides located in the middle and in the c-terminus of the protein:  

1. VRRYMQKVKNPPDEDC  

2. PNPGKKFTTARGFPRHC.  

Although multiple protein bands were present, a down-regulated band (blue arrow $60 

KDa) of the proper size could be identified using this ani-serum as shown in figure 47.  

 

Proliferation determination by BrdU incorporation  

                  Aliquots of number of required cells were plated to grow for 24 hours. Then 

the cells were incubated with the respective experimental inhibitors and drugs for the 

required time. BrdU (bromo-deoxyuridine) was added to the medium at 10µM final 

concentration and the cells were incubated at 37°C. After one hour, the cells were 

detached and prepared according to the manufacturer’s instructions (BD Biosciences 

Pharmingen, San Diego CA, USA). Then, the cells were labelled with an anti-BrdU and a 

DNA staining dye. Combined detection of BrdU incorporation and DNA content was 
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performed using FACS (fluorescent automated cell sorting) analysis. 

 

Apoptosis assessment by Annexin-V staining  

                  Dead and viable cells were pooled and stained with 1µg/ml PI (propidium 

iodide) and Annexin-V-FITC, (BD Bioscinces Pharmingen, San Diego CA, USA), 

according to the instructions of the manufacturer. The cells were incubated at room 

temperature for 15 min and analyzed by flow cytometry. Annexin-V binds to those cells 

that present phosphatidylserine on the outer layer of the cell membrane, and PI stains the 

cellular DNA of those cells with a compromised cell membrane. This allows the 

discrimination between live cells (unstained with either fluorochrome), apoptotic cells 

(stained only with Annexin-V) and necrotic cells (stained with both Annexin V and PI). 

Dead cells were propidium iodide and/or Annexin-V positive. 

 

Soft agar colony formation assay 

                  The 0.6% (w/v) base agar of was prepared in 6 cm culture dishes, using 2.0% 

(w/v) stock agar solution (Agar Noble, Becton Dickinson, USA) and DMEM (without 

phenol red) (Invitrogen Corporation, UK) containing 10% (v/v) FCS, 1% (v/v) Glutamine 

and antibiotics solution. The mixture was poured into the plates, after the proper 

solidification of the agar, the cells were trypsinized and counted. Then, 0.3% (v/v) top 

agar was prepared with DMEM containing 5000 cells/plate and poured on the dishes and 

left at RT until the solidification of the agar. The plates were incubated at 37°C in 

humidified incubator for 10 to 15 days. At the end of the incubation period, the plates 

were stained with 0.5 ml of 0.005% (w/v) Crystal violet for at least one hour. Colonies 

bigger than 50µm were counted using a dissecting microscope. The histograms show the 

average value and the standard deviation resulting from three independent experiments.  

 

Lentiviral packaging and transduction 

                  HEK-293 cells were seeded at 40% density on 10 cm plates. After 24 hours, 

the packaging plasmid (pCMV_dr8_91), the plasmid coding for the envelope proteins 

(pMD2-VSV-G) and vector (pLKO.1-Scr, pLKO.1-puro containing shRNA for 

NOTCH2, RBP-J# and DTX-1 from Sigma) that carries the gene of interest were 

transfected on HEK-293 cells using the CaCl2 precipitation method. Within 8 to 10 hours 
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of the transfection, the medium was changed. At the end of 36 hours the supernatant was 

collected and centrifuged at 3500 RPM for 10 minutes. The supernatant was passed 

through a 0.45µm filter. The viral supernatant was mixed with protamine sulphate (at a 

final concentration of 5µg/ml). Then, the final filtrate was aliquoted and stored in -80°C. 

The supernatant was titrated on HeLa cells to ascertain the viral transduction efficiency. 

Then, the GBM cell lines were transduced and selected against the puromycin marker for 

stable clones.  

 

shRNA sequences: 

NOTCH2:     “CCGGCCCACTAATAAGTGGTACTATCTCGAGATAGTACCACTTATTAGTGGGTTTTT” (3-UTR) 

RBP-J#:        “CCGGGCTGGAATACAAGTTGAACAACTCGAGTTGTTCAACTTGTATTCCAGCTTTTT” (3-UTR) 

DTX-1:          “CCGGGACCAAGAAGAAGCACCTTAACTCGAGTTAAGGTGCTTCTTCTTGGTCTTTTT” (1476) 

                                 “CCGGCCACTGCTATCTACCCAACAACTCGAGTTGTTGGGTAGATAGCAGTGGTTTTT” (1938) 

 

Gene cloning and sub-cloning 

                  Activated Notch2 (N2-IC, from nucleotides 5107 to 7425 of the NOTCH2 

cDNA sequence AF308601) was cloned into plasmid pcDNA3 (Invitrogen, Carlsbad, 

CA, USA). The plasmid, pEGFP-N3-MAML1(DN) encodes amino acids 12-74 of the 

human MAML1 gene, is a dominant negative mutant (kind gift from Prof. Jon C. Aster, 

Brigham Women#s Hospital, USA) (Weng et al., 2003). Human DTX1-myc (kind gift 

from Prof. Kimie Ohta, Keio University, Japan) (Matsuno et al., 1998) was sub-cloned 

into pcDNA 3.0-IRES-EGFP. The construct dominant-negative RBP-J# (Kato et al., 

1996) was kindly provided by Prof. Tasuku Honjo (Kyoto University, Japan).  

 

Site directed mutagenesis 

                  In the Hs683 cell line, a mutation was found (L1711M) in the NOTCH2 gene 

within the RBP-J" binding domain (RAM 23) (Tun et al., 1994). Using the site directed 

mutagenesis kit (Stratagene, La Jolla CA, USA), the same mutation was recreated in the 

pcDNA3.0-N2-IC construct. 
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Transfections and stable expression 

                  In order to have stable expression for a given gene, the selected cell lines have 

been seeded at the required density. After, 24 hours, the cells were transfected with 

respective expression plasmids using the CaCl2 precipitation method. Eight hours after 

transfection, the medium was changed and the cells were allowed to recover from the 

shock. After, the medium was replaced with selection medium containing the appropriate 

antibiotic at the required concentration. Within 15 to 20 days stable clones started to 

emerge. They were expanded and analyzed for expression of the transgene. The stable 

clones were used for further experiments. 

 

Nucleic acid extraction and analysis 

 

Genomic DNA 

                  Genomic DNA was extracted using the genomic DNA purification kit 

(Qiagen, Hilden, Germany). Real-time quantitative PCR was performed on an ABI Prism 

sequence 7700 detector (PE Applied Biosystems, Foster, CA, USA) using the following 

primers: 

marker D1S2696 

forward : 5# gaattacatcccaggcaatctga 3# 

reverse :  5# cacacaacaggcccctaatca 3# 

probe:     5# FAM-agcccatgctcattcccactacactgg-TAMRA 3#.  

 

GAPDH 

forward: 5# aatgggactgaggctcccac 3# 

reverse:  5# ttatgggaaagccagtcccc 3# 

probe:    5# FAM-atccaagactggctcctccctgctg-TAMRA 3#.  

 

RNA isolation 

                  Each cell line was grown in 10 cm plates to 90% confluence. The medium 

was sucked off and the cells were washed with 1x PBS, lyzed in 1.0 mL Trizol 

(Invitrogen Corporation, Carlsbad CA, USA) and incubated for 3 minutes at room 
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temperature (RT). The cell lysates were homogenized and after 5 minutes, the cells were 

transferred into microfuge tubes and left at RT for another 3-5 minutes. 200!l 

choloroform was added and the tubes were vortexed for 30 seconds and left at RT for 5 

min. After centrifugation at 14000 rpm for 15 min at 4°C, the upper (aqueous) phase was 

transferred into fresh tubes. Genomic DNA and protein contaminations were carefully 

avoided during this step. RNA was precipitated by addition of 500!l isopropanol. The 

RNA precipitate was pelleted down at 14000 rpm for 10 min at 4°C. The supernatant was 

removed and the RNA was washed with 1 mL 75% ethanol and pelleted down at 12000 

rpm for 5 min at 4°C, air-dried on ice and re-suspended in 100 !l DEPC-treated H2O. 5 !l 

of RNA solution was added to 495 dH2O. Optical density was measured at 260 and 280 

nm. The RNA in the remaining 95!l was precipitated by addition of 9.5 !l 4M LiCl, and 

380 !l 100% EtOH. The concentration of RNA was calculated based on the OD260nm, 1 OD 

unit is equivalent to 40 !g/mL. 

 

cDNA synthesis 

                  The volume corresponding to 5µg of RNA was centrifuged at 14000 rpm at 

4°C for 20 min. The supernatant was carefully withdrawn. The pellets were air-dried on 

ice and re-suspended in 9 µl of DEPC-treated H2O + l!l of random hexamer 

oligonucelotides. The RNA samples were denatured at 65°C for 5 min. cDNA synthesis 

master mix was added as per manufacturer’s instructions (Invitrogen Corporation, 

Carlsbad CA, USA). The cDNA synthesis took place at 50 °C for 1 hour. The 

Thermoscript-RT was heat-inactivated at 85 °C for 5 min and the RNA template was 

degraded by 1 µl RNAse H at 37 °C for 20 min. Finally, the sample volume was adjusted 

to 50 !l by addition of DEPC-treated H20. PCR actin primers checked the quality of the 

prepared cDNA. 

 

At the end of the PCR, 12.5µl of each sample was mixed with 2,5 !l of gel loading buffer 

(GLB) and run on a 1.0% agarose gel to check for amplification of the target template. 

Once the cDNA quality was checked, it was used with other primer sets to study the 

expression of different genes.  
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Program used for amplification 

 

 95°C   2 min 

 95°C  30 sec 

58 1 min  35 cycles 

72 1 min 

72  5 min 

 

Primers: 

MAML1:   forward- 5# ggagaagcaacagtttcagc 3#,   reverse- 5# atctgggttatgccagaagc 3# 

MAML2:   forward- 5# tagtatggcaagcatgccac 3#,    reverse- 5# tgggtctcatttgcactgct 3# 

DTX1:   forward- 5# ttgagaacgtgctgaaggag 3#,    reverse- 5# atgtccatatcgtaggccgt 3#         

                  forward- 5# gtactccaatggcaacaaggat 3#, reverse- 5# ggatccaaactcggtcttgt 3# 

HES-1:      forward- 5# cagccagtgtcaacacgaca 3#,    reverse- 5# tcgttcatgcactcgctgaag 3# 

HES-5:      forward- 5# gcccaactccaagctgga 3#,       reverse- 5# tggaagtggtacagcagctt 3# 

MCL-1:     forward- 5# ttatctctcggtaccttcgg 3#,       reverse- 5# tccagcaacacctgcaaaag 3# 

BCL-2:      forward- 5# gatgactgagtacctgaacc 3#,    reverse- 5# tcacatcaccaagtgcacct 3# 

NUMB:     forward- 5# ggttaagtaccttggccatg 3#,     reverse- 5# ttgacagccatgaagcagtg 3# 

NUMBL:   forward- 5# gtgtgtgaagatgcggtgaa 3#,    reverse- 5# agtgccagaaaacatggca 3# 

ITCH:        forward- 5# tgatcctcttggtccattgc 3#,       reverse- 5# cataggctatctgaggtcca 3# 

FBW-7:     forward- 5# tgctccctaaagagttggca 3#,     reverse- 5# gtgctgtctgatgtatgcac 3# 

ACTIN:     forward- 5#  ggtgtaacgcaactaa 3#,          reverse- 5# gcatggagtcctgtggcatccacg 3# 

 

Real-time PCR 

                  Real-time quantitative PCR was performed on cDNA derived from GBM cell 

lines for HES-1, HES-5 and GAPDH in ABI Prism sequence 7700 detector (PE Applied 

Biosystems, Foster, CA, USA). Relative expression was determined for each gene in 

comparison with GAPDH as internal control. 
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GAPDH 

forward: 5# aatgggactgaggctcccac 3# 

reverse:  5# ttatgggaaagccagtcccc 3# 

probe:    5# FAM-atccaagactggctcctccctgctg-TAMRA 3#.  

 

HES-1 

forward: 5# ggacattctggaaatgacagt 3# 

reverse: 5# agcgcagccgtcatctg 3# 

probe:   5# FAM-cctccggaacctgcagcggg-TAMRA 3#.  

 

HES-5 

forward: 5# gcccaactccaagctgga 3# 

reverse: 5# gacgaaggctttgctgtgc 3# 

probe:   5# FAM-gccatctccaggatgtcggcctt-TAMRA 3#.  

 

DNA Sequencing: cDNA and genomic 

                  NOTCH2 cDNAs from glioma cells and primary tumour were sequenced (310 

Genetic analyser, applied biosystems, Foster, CA, USA) at mutation hot spots, i.e. EGF 

repeats 11-14, 24-25, 29 and 32, Lin-12 domains and the entire N2-IC. The NOTCH2 

mutation L1711M found in Hs683 cDNA was confirmed by sequencing genomic DNA. 

 

Transwell migration assays 

                  Transwell migration assays were performed using modified Boyden chamber 

units with polycarbonate filters of 8!m porosity (Costar, Appleton Woods, Birmingham, 

UK). The lower side of the filter was coated with 10!g/ml fibronectin for 2 hours at room 

temperature. The bottom chamber was filled with serum-free DMEM containing 0.1% 

(w/v) BSA plus/minus increasing amounts of purified human TN-C. The cells (10
4
 

cells/well in serum-free DMEM) were plated in the upper chamber and incubated for 16 

hours at 37°C. After removal of the remaining cells from the upper surface of the filter, 

migrated cells at the bottom of the filter were fixed with 3.7% (v/v) formaldehyde in PBS 
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and stained with 0.1% (w/v) crystal violet. For each condition, the cells in five fields of 

three independent experiments were counted.  

 

Statistical analysis  

                  The significances of RNA and protein expression were established with the “t-

Test: Two-sample assuming unequal variances” and correlation was calculated using 

“Pearson#s correlation” available in Mac Microsoft excel.  
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Abbreviations 

APC: astrocytic precursor cells  

BMP4: bone morphogenic protein 4 

CDK: cyclin-dependent kinases 

cDNA: Complementary DNA 

CKI: CDK inhibitors 

CML: Chronic myeloid leukemia 

CNS: central nervous system 

CTMP: carboxyl-terminal modulator protein  

ECM: Extra-cellular matrix 

EGF: Epidermal growth factor 

EGFR: epidermal growth factor receptor 

FAK: Focal adhesion kinase 

FB: Fetal brain 

FGF2: Fibroblast growth factor 

GBM: Glioblastoma multiforme 

GF-RTK: growth factor receptor tyrosine kinases 

GIST: Gastro-intestinal tumour 

GPC: glial progenitor cells 

HIF-1: Hypoxia inducible factor-1 

LOH: Loss of heterozygosity 

MDM2: mouse double minute 2 

MMTV: Mouse mammary tumour virus 

NB: Normal brain 

NF-1: Neurofibromatosis type 1  

N-IC: Notch intracellular domain 

NSC: neural stem cells 

NSCLC: Non-small cell lung cancer 

OG:Oligodendrogliomas 

OPC: Oligodendrocyte precursor cells 

PCR: Polymerase chain reaction 
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PDGF: Platelet derived growth factor 

PIP3: phosphatidylinositol(3,4,5)-triphosphate 

RB: retinoblastoma protein 

RTK: Receptor tyrosine kinase 

SCLC: Small cell lung cancer 

TAD: Transcription activation domain 

T-ALL: T-cell acute lymphoblastic leukemia 

TCR-!: T-cell receptor !-chain 

TGF-!: Transforming growth factor-! 

TSA: Trichostatin-A 

VEGF: Vascular endothelial growth factor 

WHO: World Health Organization 
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Annex-1 

CNS cellular differentiation 
 

                  Multipotent neural stem cells in the ventricular/subventricular zones of the 

embryonic neural tube give rise to three main cell types: neurons, oligodendrocytes and 

astrocytes. The expression of specific markers identifies and defines the various stages of 

neural epithelial stem cell differentiation into astrocytes or oligodendrocytes. The growth 

factors that are involved in the promotion of specific lineage commitment, inhibition of 

differentiation, induction of proliferation and maintenance of cells at particular stages 

highlighted in green, red and blue respectively. 

 

 

 

 

 

 

 

 

                          

                                                                

                                                               Eric C.Holland, Nature Reviews Genetics, 2001. 
 

The glial-restricted precursors give rise to both astrocyte-restricted precursors and O2A 

progenitors, which develop into both astrocytes and oligodendrocytes. Platelet-derived 

growth factor (PDGF) signaling drives cells early in development towards the O2A 

progenitor cell type and maintain these cells in a proliferating state. Withdrawal of PDGF 

and fibroblast growth factor 2 (FGF2), and stimulation by ciliary neurotrophic factor 

(CNTF) and epidermal growth factor (EGF), drives these cells towards astrocyte and 

oligodendrocyte differentiation. Type 1 and type 2 astrocytes differ in morphology and 

marker expression. (A=A2B5, E=EGF receptor, F=FGF receptor, G=GFAP, 

GalC=galactocerebroside, M=myelin basic protein, P=PDGF receptor, PLP=myelin 

proteolipid protein, O=O4, S=S100, V=vimentin). 
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Annex-2 

CNS glial tumour precursors 

                  It is generally believed that neural stem cells first differentiate into two 

distinct progenitor cells, which further differentiate into neurons or glia respectively. 

Glial restricted progenitor cells further differentiate into astrocytes or oligodendrocytes.   

 

 

     

                    

 

 

 

 

 

The classification of neurological tumours is based on their predominant cell type(s). 

Astrocytomas are composed primarily of astrocytes, oligodendrogliomas are composed 

primarily of oligodendrocytes and oligo-astrocytomas contain both astrocytic and 

oligodendroglial components. 

 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Yuan Zhu & Luis F. Parada, Nature Reviews Cancer, 2002. 
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Annex-3 

Classification of gliomas 

                  In the early 20
th

 century, Bailey and Cushing introduced the seminal system to 

classify and grade glial tumours that was based on comparison of histological 

appearances and putative developmental stages of glia. Later, it was the basis for the 

current World Health Organization (WHO) classification and grading revised in 2000.  

 

 

                                            WHO grading system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system divides diffusive gliomas into astrocytic tumours, oligodendrogliomas and 

mixed oligo-astrocytomas. The degree of malignancy as determined by histopathological 

criteria, grades them on the scale of I to IV. The clinical outcome of patients entirely 

depends on the tumour grade since gliomas rarely metastasize outside the CNS. In 

parentheses survival duration has been given for each tumour type and grade. The 

survival time dramatically varies between grade-I and IV.  

 

 

 

 

 

 

 

 

 

    WHO II                  Astrocytoma        Oligo-astrocytoma        Oligodendroglioma  

                                    (3-10 yrs)                (5-12 yrs)                          (8-20 yrs) 

 

   WHO III                  Anaplastic             Anaplastic                   Anaplastic 

                                   astrocytoma           oligo-astrocytoma       oligodendrogliomas 

                                    (2-5 yrs)                  (2-8 yrs)                            (2-10 yrs) 

 

   WHO IV                 Astrocytomas  

                                    (1-2 yrs) 

 David N. Louis et al., American Journal of Pathology, 2001. 
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Annex-4 

Two pathways to GBM 

                  There are two sub-types of Glioblastoma multiforme (GBM), primary and 

secondary GBM. Both sub-types differ in their kinetics of gliomagenesis. Primary GBM 

forms de novo without earlier low-grade lesion. In contrary, secondary GBM is a 

progressive type that progress from low-grade lesion to higher-grade through the 

acquisition of additional mutations. In practice, GBM diagnosed with no earlier clinical 

record are considered as primary GBM. The mutations listed in the figure are subsets of 

those found in these tumours that have some correlation with tumour grade and type. 

Also, the biological effect of these mutations and changes in gene expression that 

contribute to gliomagenesis are highlighted.  

 

 

 

 

 

 

 

 

 
                                                                                   

 

 

 

                                                                                     

 

 

 

                                                                                      Eric C.Holland, Nature Reviews Genetics, 2001. 
   

The analysis of mutations in both tumour sub-types indicates that the same genetic 

pathways (growth and cell cycle regulation) are targeted and that the frequency of 

specific genetic mutations differs between the sub-types. The median survival is 

statistically similar for both sub-types, which show equal capacity in proliferation, 

invasion and resistance to therapeutics. Both tumour sub-types are composed of highly 

infiltrative and more un-differentiated cells than low-grade astrocytomas. 
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Annex-5 

Notch signaling 

                  Notch receptors, single precursor proteins are cleaved by a Furin-like 

convertase in Golgi and transported to the cell surface as heterodimers. Within the Golgi, 

Fringe glycosyltransferases modify EGF-like repeats by adding N-acetylglucosamine. 

The signaling is initiated after ligand-receptor interaction, which induces two sequential 

proteolytic cleavages. The first one within the extracellular domain is mediated by the 

metalloprotease TACE (tumour necrosis factor "-converting enzyme).  

 

 

 

 

 

 

 

 

 

 

 

The cleaved extracellular subunit of the receptor is ‘trans-endocytosed’ by the 

neighbouring ligand-expressing cell. This process seems to be controlled by Neuralized 

and/or Mindbomb E3 ubiqutin ligases. The second cleavage occurs within the 

transmembrane domain and is mediated by the #-secretase activity of the multi-protein 

complex of presenilins (PS) (Nicastrin, APH-1 and PEN-2). The released Notch 

intracellular domain (N-IC) translocates into the nucleus and binds to the transcription 

factor CSL (CBF1 in humans, Supressor of Hairless in Drosophila and LAG in C. 

elegans). This interaction displaces the co-repressors (CoR) and simultaneous recruitment 

of co-activators (CoA), including mastermind-like proteins (MAML1). Receptors 

modified by Fringe glycosyltransferases cannot mediate signaling via Jagged ligands. 

            Freddy Radtke et al., EMBO reports, 2005.  
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Annex-6 

 

Notch signaling role in CNS development 

                As in the figure, Notch signaling affects several differentiation stages of neural 

precursors during development and in in vitro culture. The role of Notch signaling in 

each stage of neural precursor differentiation is revealed by both loss and gain of function 

studies. Notch signaling is important for the maintenance of self-renewing stem cells. The 

self-renewing stem cells can give rise to neuronal progenitors, the progression of which 

to neurons can be inhibited by Notch signal activation. Moreover, during adult 

neurogenesis Notch signaling involved in the maturation of neurons.  

 

 

 

 

        

 

 

 

 

 

                                                    

 

                                            Yoon K & N Gaiano, Nature Neuroscience, 2005. 

 

By contrast, a glial progenitor derived from a stem cell differentiates into an astrocyte 

with the help of Notch signals. Finally, oligodendrocyte precursors derived from glial 

progenitors fail to differentiate into mature oligodendrocytes in the presence of active 

Notch signals. 

 

 

 



 111 

Annex-7 

Notch signaling in cancer 

                  Members of the Notch family of transmembrane receptors play an important 

role in cell fate determination. A role for Notch in the pathogenesis of hematological and 

solid malignancies has become apparent in the last decade. Notch signaling modulates 

numerous cellular functions and microenvironment cues associated with tumourigensis, 

including proliferation, apoptosis, adhesion, epithelial-to-mesenchymal transition and 

angiogenesis. From extensive studies across different cell types, it is becoming 

increasingly evident that Notch signaling can be both oncogenic and tumour suppressive.   

 

 

 

 

 

 

 

 

 

 

So, it is becoming important to identify the cellular factors that determine the role of 

Notch signaling in tumourigenesis. Several factors determine the role of Notch signaling 

whether Notch should promote or suppress tumourigenesis; that includes specific Notch 

paralog activation (breast tumour, brain tumours), cell type (lung cancer), presence of 

specific cytokines/growth factor (GM-CSF) and dosage of Notch signaling (T-cell 

lymphoblastic lymphoma). Work on many different cancer types have advanced our 

understanding of the dual function of Notch signaling as both oncogene and tumour 

suppressor. Applying this knowledge to the Notch-related malignancies in the near future 

will hopefully lead to rational development of clinical therapeutics.    

 

 

  Kevin G. Leong & Aly Karsan, Blood, 2005.                                             
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Annex-8 

Notch degradation 

               Notch signaling, a developmental pathway, is tightly regulated by a variety of 

molecular mechanisms at different levels as marginal oscillation is sufficient to bring out 

the desired phenotypical changes. Loss and gain of function mutations in the Notch 

receptor and its pathway components are resulting in developmental defects and cellular 

transformation. Endocytosis is regulating the steady-state level of receptors, ligands and 

associated factors at the cell surface level. Lysosome mediated protein degradation is one 

mechanism that regulates the turnover of proteins in the cells and requires the ubiquitin 

machinery to ubiquitinate the targeted protein. That includes the ubiquitin activating 

enzyme (E1), conjugating-enzyme (E2) and E3-ubiquitin ligase.   

 

 

 

 

 

 

 

 

 

 
                                                                                                    Eric. C.Lai, Current Biology, 2002. 

 

Notch receptors are undergoing degradation through two different E3-ubiquitin ligase 

mediated processes. Su(dx)/Itch may ubiquitinate and regulate plasma membrane 

associated Notch. Sel-10/Fbw-7 recruits an SCF complex that ubiquitinates nuclear and 

phosphorylated N-IC, thereby targeting it for degradation by proteasome. Neur is 

targeting Delta for endocytosis and subsequent degradation while LNX is targeting 

Numb, for degradation by proteasome. 
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