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Abstract 
 

 

Present-day tectonic activity at the southern end of the Upper Rhine Graben in central Western 

Europe is evidenced by significant seismicity, which has been documented over hundreds of 

years. The hazard that is posed by this activity was violently demonstrated in 1356, when an 

earthquake with an estimated magnitude of ML≈6.5 caused extensive damage to the area of Basel 

in north-western Switzerland. A sound understanding of the regional tectonic deformation field is 

a prerequisite for the accurate assessment of this hazard. However, long-term deformation rates in 

this region are very low. Together with the presence of a network of fault families of different age 

and orientation, which results from the complex tectonic evolution of this area in the Neogene, 

this makes the characterisation of the regional deformation field and the identification of active 

faults difficult. Nevertheless, for a better comprehension of the active tectonic processes in 

general, and for the assessment of the seismic hazard in this region in particular, an improved 

understanding of the regional tectonic evolution in the recent geological past is indispensable. 

This thesis addresses the recent tectonic history of the Basel area by combining seismological 

data with an investigation of the geomorphological evidence of tectonic activity. The fact that 

tectonic activity can be recorded and preserved by the landscape provides an additional source of 

information that has been little used so far. It offers an opportunity to extend the time-scale of 

observation from the decades covered by (instrumental) seismologic and geodetic records further 

into the past. Whereas a wide range of geomorphic features can carry signatures of past tectonic 

events, the focus in this work is laid on fluvial geomorphology. 

The fluvial system in the northern Alpine foreland has been affected by a number of large-

scale tectonic events since the late Oligocene. Apart from processes related to the Alpine orogeny 

and the rifting of the Upper Rhine Graben and Bresse Graben, the evolution of the Jura fold-and-

thrust belt, the most external element of the Alpine orogen, dramatically influenced the drainage 

system. Sedimentary and morphological evidence of former river courses allow further 

constraining the evolution of the drainage system between the Oligocene and the Quaternary.  

The tectonic history in the Quaternary was studied using a quantitative geomorphological 

approach. On the basis of a digital elevation model, geomorphic indices (steepness and concavity 

index) were determined to characterise the longitudinal profile for a large number of rivers in the 

area of the southern Upper Rhine Graben and the eastern Jura fold-and-thrust belt. The spatial 
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distribution of these indices indicates uplift of a region roughly corresponding to the Jura fold-

and-thrust belt, as well as subsidence of the interior parts of the Upper Rhine Graben relative to 

the Tabular Jura. A morphological analysis of Late Quaternary alluvial terraces in the lower Aare 

valley, northern Switzerland, was carried out using a high-resolution digital elevation model. The 

results suggest regional northward tilt during the past 20’000 years, compatible with both a 

general (isostatic) uplift of the Swiss Molasse basin, and continuing convergence due to ongoing 

Alpine collision.   

The geomorphic data revealed no unambiguous evidence of recent tectonic activity on 

individual faults. Furthermore, no evidence of recent or ongoing thin-skinned deformation in the 

Mesozoic sedimentary cover could be identified. The study area at the junction of the Upper 

Rhine Graben and the Jura fold-and-thrust belt is characterised by a pronouncedly diffuse 

distribution of deformation, typical for regions where strain is accommodated on inherited 

tectonic structures. The superposition of large-scale regional uplift and small-scale deformation on 

individual faults, as well as seismic and aseismic movements, results in a distinct heterogeneity of 

deformation styles in the northern Alpine foreland.  
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Chapter 1 
   

Introduction 
 

 

Most of the deformation of the earth’s crust is concentrated at lithospheric plate boundaries. 

However, the interior of these plates is likewise subjected to deformation, although at much lower 

rates compared to the plate boundaries themselves. The deformation pattern away from plate 

boundaries is often difficult to resolve, as long-term strain rates are usually too low to be reliably 

measured. Correspondingly, the return periods of large earthquakes (M > 6) in continental 

interiors often range from thousands to tens of thousands of years, making the threat they pose 

difficult to characterise due to limited historical record lengths. Despite these long time spans 

involved, considerable stresses can build up and lead to devastating earthquakes such as in New 

Madrid (1812), in the interior of the North American plate (Johnston and Schweig, 1996), and in 

Bhuj (Gujarat, India) in 2001 (Gupta et al., 2001).  

In intraplate tectonic environments, the reactivation of pre-existing structures often plays an 

important role in the accommodation of tectonic deformation. This fact, combined with generally 

low deformation rates, frequently leads to diffuse – rather than localized – deformation, and faults 

rupturing through to the surface are less common compared to other tectonic environments. For 

this reason, standard neotectonic methods, such as trench analyses or GPS measurements, are 

often of little help to decipher recent and current tectonic activity and deformation rates of these 

regions. 

In order to characterise the deformation patterns of low deformation-rate tectonic domains, and to 

advance the assessment of the seismic hazards in these areas, the results from different methods – 

such as geodetic measurements or seismotectonic analyses – have to be combined and 

complemented by alternative approaches. One method that has proven particularly useful in the 

past few years is the study of landforms. Landforms are sensitive to active tectonics, and 

quantitative investigation of landscape shape can provide information about deformation patterns 

(Burbank and Anderson, 2001). The use of geomorphic indices allows the objective comparison 

of landforms. 

The geomorphological analysis of fluvial systems is particularly informative. Rivers respond very 

sensitively to along-channel gradient changes resulting from vertical tectonic deformation. Often, 
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Figure 1: Overview of the topographic and tectonic situation in the study area in central Western 
Europe (NW Switzerland), based on SRTM data.  

 

these riverbed adjustments leave their marks in the landscape and may still be visible after long 

periods of time (Holbrook and Schumm, 1999).  

This thesis addresses the recent tectonic activity of the Basel area in NW Switzerland. The Basel 

area is characterised by its location at the touchpoint of the Upper Rhine Graben rift area and the 

most external parts of the continental collision zone of the Alps (Figure 1). It was here that the 

largest known earthquake in central Western Europe, a magnitude ~6.5 shock, occurred in 1356 

(Meyer et al., 1994). Although the seismic activity of this area is proven, an understanding of the 

recent and current deformation is difficult to establish, as large earthquakes are rare, and geodetic 

measurements indicate very low present-day deformation rates of less than 1 mm/a (Schlatter, 

2006). In order to better constrain the recent and current regional deformation pattern, and to 

localise recently active tectonic structures, various geomorphological methods are integrated and 

 2



Introduction 
_________________________________________________________________________________________________________________ 

combined with information about the present-day stress field derived from seismological data in 

this thesis. 

In the following, a brief summary of the Cenozoic tectonic evolution of the study area is provided, 

and the approaches followed in the different chapters are outlined.  

 

1.1 Tectonic evolution of the study area in the Paleogene and Neogene 

The Cenozoic tectonic history of the study area in the northern foreland of the Alps was 

dominated by two main tectonic events: the main phase of the Alpine orogeny (Late Eocene to 

Miocene), and the formation of the Upper Rhine Graben during the Oligocene. The Upper Rhine 

Graben forms part of the European Cenozoic Rift System, which extends across the continent 

from the Mediterranean Sea to the North Sea (Ziegler, 1992; Dèzes et al., 2004). Its orientation 

and timing of formation indicate an approximately E-W oriented minimum stress during the 

Oligocene. The rift zone of the Upper Rhine Graben is continued to the northwest by the Lower 

Rhine Graben, and to the southwest by the Bresse Graben, to which it is linked by the Rhine-

Bresse Transfer Zone (Lacombe et al., 1993; Madritsch et al., 2008 (accepted)). The location and 

orientation of the faults of the Rhine-Bresse Transfer Zone are probably controlled by a ca. WSW-

ENE trending, Late Paleozoic basement trough system, which extends from the Bresse Graben in 

the west to the Lake Constance area in the east,  and seems to be transpressionally reactivated in 

the current stress field (Diebold and Noack, 1996; Ustaszewski, 2004). 

At its southern end, the sedimentary infill of the Upper Rhine Graben borders the Lower 

Triassic to Upper Jurassic sediments of the Jura region (Figure 2). This sedimentary cover was 

partly detached from its Palaeozoic basement during the latest stages of the Alpine orogeny in the 

Miocene–Pliocene, forming the Jura fold-and-thrust belt (Laubscher, 1961; Burkhard, 1990). The 

overall transport direction of the Jura fold-and-thrust belt indicates a major change in the regional 

stress field from E-W extension to NW-SE compression associated with convergence in the Alps. 

Time constraints on the beginning of the Jura fold-and-thrust belt formation are provided by 

sediments that were either included in the folding process (Juranagelfluh and Bois de Raube 

conglomerates, 14.5 – 9.8 Ma (Kälin, 1997)), or were overridden by external thrusts in the Bresse 

Graben (Chauve et al., 1988). Due to a general lack of younger sediments, time constraints on the 

evolution of the Jura fold-and-thrust belt after the Late Miocene are sparse. Folding of Pliocene 

fluvial gravels in the Ajoie region of eastern France (Giamboni et al., 2004) indicates that 

contractional deformation continued at least until the Late Pliocene. The deformation style, 

however, appears to be no longer predominantly controlled by thin-skinned decollement, but by 

transpressional faulting involving the crystalline basement (Ustaszewski and Schmid, 2007). 
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Figure 2: Main tectonic elements and drainage system in north-western Switzerland. 

 

1.2 Quaternary tectonic activity in NW Switzerland 

The Quaternary tectonic activity in north-western Switzerland after ca. 5 Ma is not very well 

resolved. This is mainly the result of a major hiatus in the sedimentary record of the northern 

Alpine foreland. After the deposition of the youngest preserved Molasse units (Upper Freshwater 

Molasse, OSM) at around 11-12 Ma (Bolliger, 1998; Rahn and Selbekk, 2007), an overall 

erosional regime largely prevented the deposition or preservation of younger sediments over wide 

areas in northern Switzerland. Cederbom et al. (2004) estimated that since ca. 5 Ma, at least 1 km 

of sediments has been eroded in the northern Alpine foreland, based on fission-track data 

indicating erosional cooling. Younger sediments are preserved only from the beginning of the 

Quaternary, when repeated climatic changes with glacials and interglacials led to enhanced 

erosion in the Alps and the deposition of glacio-fluvial sediments in the northern Alpine foreland 

(Müller et al., 2002). Few age constraints are available for either the Upper Freshwater Molasse 

and the Quaternary sediments due to their coarse-grained composition, which makes the 

preservation of datable fossils unlikely, and the application of dating techniques like optically 

stimulated luminescence (OSL) difficult.    
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A complete sequence of Quaternary sediments is found in the Upper Rhine Graben, 

indicating progressive subsidence during this time period (Bartz, 1974). Outside the Upper Rhine 

Graben, however, the fluvial Quaternary sediments are very discontinuous (Penck and Brückner, 

1909; Wittmann, 1961; Graul, 1962). Nevertheless, they have been investigated in a number of 

studies dealing with neotectonics in NW Switzerland. For instance, Graf (1993) studied gravels of 

the Higher Cover Gravels unit (~2 Ma) of Alpine origin that lie north of the topographic high 

formed by the Mandach thrust fault, suggesting that this north-vergent fault was active in the 

Pleistocene. A number of studies address the relatively well-preserved late Quaternary terrace 

systems (Low Terrace Gravels) of the rivers Rhine and Aare (Haldimann et al., 1984; Verderber, 

2003), pointing to possible recent tectonic deformation. However, the young age (ca. 20 ka) of 

these sediments (Bitterli et al., 2000), in combination with the low tectonic deformation rates, has 

so far not allowed for a characterisation of the regional deformation pattern or for the delineation 

of active structures based on deformation features of these deposits. 

 

1.3 Seismological and geodetic evidence 

Present-day tectonic activity in the area of the Upper Rhine Graben and the eastern Jura 

mountains is mainly manifest from the earthquake record and geodetic measurements. Although 

seismicity has been monitored in all of the tectonic units in this region, it is clearly concentrated at 

the eastern border of the Upper Rhine Graben and in the Jura mountains to the south of it (Bonjer, 

1997). The majority of the focal mechanisms indicate strike-slip deformation; pure and oblique 

normal faulting also occur. Thrust faulting events are rare. Due to the uncertainty of the 

hypocentre locations, and the large number of pre-existing faults in the area, seismic activity can 

usually not be attributed to a particular fault. This is also true for the largest earthquake known in 

this area, the 1356 Basel event (Meyer et al., 1994). The regional stress field in the northern 

Alpine foreland has been investigated using focal mechanisms (Kastrup et al., 2004) and borehole 

breakouts (Becker, 2000), yielding a maximum horizontal stress axis orientation of NW-SE in the 

crystalline basement, and NNW-SSE to N-S in the sedimentary cover of the Jura mountains.  

Geodetic constraints on the present-day deformation pattern mainly come from precise-

levelling measurement campaigns. Precise levelling has been carried out in Switzerland for a 

period of ca. 100 years. The results suggest uplift in the area of the Folded Jura relative to the 

Tabular Jura, and a tendency to regional uplift of the southern parts of the Alpine foreland 

compared to the northern parts (Müller et al., 2002; Schlatter, 2006). Geodetic measurements 

across the eastern Main Boundary Fault of the Upper Rhine Graben point to ongoing subsidence 

of the Graben relative to the Graben shoulder (Zippelt and Dierks, 2007), an observation that is 
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confirmed by morphological studies in the Freiburg area (Niviere et al., 2008). However, the 

measurement uncertainties are still very large compared to the deformation rates, and a consistent 

deformation pattern cannot be distinguished. Likewise, the record of GPS measurements of this 

area covers ca. 20 years only, and does not yet yield horizontal deformation values above the 

measurement uncertainties (Rózsa et al., 2005). However, it does allow constraining the 

horizontal deformation rates to below 1 mm/a. 

 

1.4 Open questions and approach of this study 

Despite in-depth analysis of data from different sources, the tectonic deformation pattern in the 

boundary area of the Jura fold-and-thrust belt, the Tabular Jura, and the Upper Rhine Graben is 

not yet well understood. In particular, the question as to whether the observed vertical 

deformations can be attributed to regional uplift or local tectonic processes remains open.  

In an attempt to extend the time-scale of observation from the decades covered by instrumental 

seismology and geodetic measurements into Late Quaternary times, this thesis applies a 

geomorphological approach to study the effect of tectonic deformation on the landscape in north-

western Switzerland. While investigating the shape of different landforms has always been an 

important part of neotectonic studies, the technological advancements of the past decades have 

revolutionised this field. GPS measurements, precise levelling data over long time periods, radar 

interferometry, and laser altimetry now allow the quantitative characterisation and comparison of 

landforms, especially in combination with geographic information systems (GIS). By integrating 

this information with knowledge about the different landscape-shaping processes, the effects of 

tectonic activity may be distinguished from other influences on the landscape (such as resistance 

to erosion) and further the understanding of the recent tectonic deformation pattern.  

 

1.5 Thesis organisation 

In this thesis, the interactions between tectonic activity and the fluvial system in NW Switzerland 

are investigated on different time scales.  

 

On the largest temporal and spatial scale covered here, the response of the drainage system to the 

evolution of the Jura fold-and-thrust belt and the Upper Rhine Graben is studied (Chapter 2). In 

the Miocene and Pliocene, the evolution of the Jura fold-and-thrust belt created a new watershed 

that had a dramatic impact on the drainage system of the northern Alpine foreland. The sediments 

deposited by different rivers during that period are used to determine the flow patterns at different 
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times. This information is complemented by the analysis of fluvial landforms, in particular wind 

and water gaps created by rivers cutting through growing anticlines, and incised river channels in 

general. Chapter 2 presents a synthesis of a large number of previous studies, embeds new 

morphological data into the existing concept, and proposes a new interpretation of the drainage 

system evolution of this tectonically complex area from the Oligocene to the Quaternary. This 

chapter has been submitted to the Swiss Journal of Geosciences, with P.A. Ziegler as first author 

and M. Fraefel as second author. The first author proposed the concept of the study, carried out 

most of the literature review and wrote the manuscript. The second author provided all 

illustrations and  substantially contributed to the manuscript with discussions and revisions. 

 

Because rivers respond to vertical deformation, systematic mapping of river gradients – for 

individual rivers as well as groups of rivers – allows the delineation of zones of varying uplift. 

This effect of tectonic activity on the drainage system is studied in Chapter 3. 50 rivers are 

analysed in the boundary area of the tectonic units of the Jura fold-and-thrust belt, the Tabular 

Jura and the Upper Rhine Graben. Geomorphic indices (steepness index and concavity index) are 

determined to make quantitative comparison of river characteristics possible. These studies are 

combined with geological field investigations in order to distinguish tectonic from lithologic 

influences on river gradients. This chapter represents a manuscript in preparation for submission, 

with M. Fraefel as first author and A.L. Densmore as second author. The first author developed 

the concept of the study and performed all necessary DEM (digital elevation model) analyses, 

data processing and field investigations herself. She also wrote the manuscript. The second 

author provided scientific advice and support with the interpretation of the results and the 

writing.  

 

Chapter 4 presents a morphological study of the alluvial terraces of one of the largest rivers in 

northern Switzerland. By incision, the river Aare has formed a fluvial terrace system in the course 

of the Quaternary. The youngest and lowest unit of these deposits is relatively well preserved 

(Niederterrasse, or Low Terrace Gravels). The terrace treads represent former river bed positions, 

acting as “markers” for tectonic deformation. Using the altitude information from a high-

resolution (2 m) digital elevation model, the occurrence and 3D orientation of the terrace surfaces 

are analysed for signs of tectonic activity in the time period spanning the last ca. 20 ka since the 

deposition of the Low Terrace Gravels.  
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To characterise the present-day state of stress in the lithosphere of the study area and determine on 

which fault sets deformation most probably occurs, the seismological record in the wider study 

area is investigated (Chapter 5). Focal mechanisms from a set of 115 earthquakes between 1961 

and 2006 are analysed using the Right-Dihedra method and compared to a series of earthquakes 

that were induced by the stimulation of a geothermal reservoir in 2006/2007. Apart from the 

investigation of the mean regional stress field, different subsets of the data set are analysed 

individually in order to find spatial stress field variations. 
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Abstract 

The eastern Jura Mountains consist of the Jura fold-thrust belt and the autochthonous Tabular Jura 

and Vesoul-Montbéliard Platform. They are drained by the river Rhine, which flows into the 

North Sea, and the river Doubs, which flows into the Mediterranean. The internal drainage 

systems of the Jura fold-thrust belt consist of rivers flowing in synclinal valleys that are linked by 

river segments cutting orthogonally through anticlines. The latter appear to employ parts of the 

antecedent Jura Nagelfluh drainage system that had developed in response to Late Burdigalian 

uplift of the Vosges-Back Forest Arch, prior to Late Miocene-Pliocene deformation of the Jura 

fold-thrust belt.  

The following stages are recognized in the evolution of the Jura Mountain drainage systems: 

1) middle to late Tortonian (10-7.2 Ma) folding-related overpowering and partial reversal of the 

south-directed Jura Nagelfluh drainage system, 2) Messinian to early Pliocene (7.2-4.2 Ma) Aare-

Danube and proto-Doubs stage, 3) early to middle Pliocene (4.2-2.9 Ma) Aare-Doubs stage, 4) 

late Pliocene to early Quaternary (2.9-1.7 Ma) Aare-Rhine and Doubs stage and 5) Quaternary 

(1.7-0 Ma) Alpine-Rhine and Doubs stage.  

Development of the thin-skinned Jura fold-thrust belt controlled the first three stages of this 

drainage system evolution, whilst the last two stages were essentially governed by the subsidence 

of the Upper Rhine Graben, which resumed during the late Pliocene. Late Pliocene and 

Quaternary deep incision of the Aare-Rhine/Alpine-Rhine and its tributaries in the Jura Mountains 

and Black Forest is mainly attributed to lowering of the erosional base level in the continuously 

subsiding Upper Rhine Graben. Incision of the Doubs and Dessoubre canyons reflects uplift of the 

Franches-Montagnes and Franche-Comté in response to thick-skinned deformation of the Jura 

fold-thrust belt, which had commenced around 3 Ma. 
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Geodetic data indicate that uplift of the Jura Mountains, relative to the Tabular Jura, presently 

continues at very low strain rates whilst the Upper Rhine Graben subsides very slowly and the 

Black Forest is relatively stable. 

 

2.1 Introduction 

The Jura fold-thrust belt (JFTB), forming the core of the Jura Mountains, is the youngest and most 

external element of the Central Alpine orogenic system. It has accounted for up to 30 km of 

essentially thin-skinned shortening since late Miocene times (Laubscher, 1961; 1992; Philippe et 

al., 1996; Affolter and Gratier, 2004) and is still seismotectonically active (Becker, 2000; 

Lacombe and Mouthereau, 2002; Edel et al., 2006). The JFTB is flanked to the SE by the flexural 

Swiss Molasse foreland basin of the Alps whilst its most external elements encroach on the Bresse 

and Upper Rhine grabens (Figure 1; Chauve et al., 1980; Dèzes et al., 2004).  

Evolution of the JFTB combined with the development of the Upper Rhine Graben (URG) 

and the Bresse Graben, exerted strong control on the location of the repeatedly shifting 

watersheds between the rivers Danube, Doubs and Rhine, which flow into the Black Sea, the 

Mediterranean and the North Sea, respectively. Numerous studies have addressed the evolution of 

the headwaters of these major drainage systems and the underlying tectonic processes (Liniger, 

1966; 1967; Hofmann, 1996; Petit et al., 1996; Villinger, 1998; Kuhlemann and Kempf, 2002; 

Müller et al., 2002; Berger et al., 2005a; Ziegler and Dèzes, 2007), or have analyzed neotectonic 

deformation controlling drainage pattern changes at the boundary between the Jura Mountains and 

the URG (Giamboni et al., 2004a; Giamboni et al., 2004b; Braillard, 2006). However, only few 

studies have addressed the development of drainage systems within the JFTB (Heim, 1919; 

Liniger, 1953; 1966; Laubscher, 1967). 

In an effort to further constrain the evolution of the JFTB and its drainage systems, this paper 

builds on a literature review, including the pioneering work of Liniger (1953; 1966; 1967) and 

Laubscher (1981; 1986; 1992), and presents a morphotectonic analysis of the drainage system. In 

particular, we studied the distribution of water and wind gaps (Figure 2), considered as vestiges of 

antecedent rivers, and classified the different river segments, according to their history (Figure 3). 

In this context it is important to note that the pre-orogenic sedimentary record of the JFTB and its 

surroundings ends in Serravallian to early Tortonian times. On the other hand, its late syn-

deformational sedimentary record is restricted to its northern deformation front where it 

commences in the late Early Pliocene (Berger et al., 2005a; Berger et al., 2005b). As sediments of 

mid-Tortonian to mid-Quaternary age are missing within the JFTB, we had to use 

geomorphologic criteria to further constrain its structural evolution and the development of its 
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Figure 1: Tectonic map of NW Switzerland and adjacent areas (after Ustaszewski (2004) and Chauve et al. 

(1980)).  

 

drainage systems. In addition, we compared indications for neotectonic activity with the results of 

geodetic surveys. 

 

2.2 Geological and topographic setting of the area addressed 

The main morpho-tectonic units of the Eastern Jura Mountains and their French and German 

foreland comprise the JFTB, which was activated during the Late Miocene, the Tabular Jura on 

the southern slopes of Black Forest basement arch, the Upper Rhine Graben (URG) into which the 

Mulhouse High projects, and on the southern slopes of the Vosges basement arch the Vesoul-

Montbéliard Plateau, which grades NW-ward into the Haute Plateau de Saône (Figures 1 and 2). 

The JFTB and the undeformed Tabular Jura underlie the high topography of the Eastern Jura 

Mountains. The width of the essentially thin-skinned JFTB decreases from 60 km in its western 

parts to zero at its eastern termination. In its western, widest parts the JFTB accounts for 25-30 

km shortening. This value decreases eastward to 13 km and 7 km in the Delémont and Aarau 
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Figure 2a: Main tectonic elements of the study area. Crosses: outcropping basement, light grey: Tabular 
Jura and equivalents, dark grey: Jura fold-thrust belt, white: Cenozoic sedimentary basins. 

Figure 2b: Prominent water and wind gaps of the study area. Same legend as 2a. 
 

transects, respectively, and to 1 km in the Lägern anticline (Philippe et al., 1996; Affolter and 

Gratier, 2004).  
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East of the city of Olten, the JFTB consists of a 5-8 km wide stack of thrust sheets and 

thrusted anticlines, tapering to zero at the eastern end of the Lägern anticline, and attains 

elevations of up to 950 m (Figure 2). West of Olten, the JFTB broadens to 38 km, advances to the 

southern margin of the URG and is dominated by flexural-slip and thrust-faulted anticlines and 

broad synclines. Synclinal valleys and anticlinal ridges dominate the morphology of this province. 

Ridges attain elevations of up to 1300 m along the southern, internal margin of this province, and 

decrease in its northern, external parts to 800 m and less. This valley-and-ridge province grades 

westward into the undulating and gently north-sloping up to 1000 m high plateau of the Franches-

Montagnes and Franche-Comté. This plateau is flanked to the south by the deep, synclinal St. 

Imier valley and the 1500 m high Mont d’Amin-Chasseral anticline, and to the north by the 

frontal Lomont and Ormont anticlines, thus accounting for a total fold-belt width of 60 km. Main 

topographic features of the Franches-Montagnes and Franche-Comté are the deeply incised 

canyons of the rivers Doubs and Dessoubre (Figure 3).  

In the foreland of the JFTB, to the east of Basel, monoclinally south-dipping Jurassic and 

Triassic sediments underlie the Tabular Jura. These are progressively eroded as they rise towards 

the Black Forest in which the crystalline basement is exposed. The western part of this monocline 

is transected by an array of mainly NNE-SSW striking normal faults that form part of the URG 

extensional system, whereas its eastern part is disrupted by the Mandach and Mettau thrusts 

(Müller et al., 2002; Laubscher, 2003; Diebold et al., 2006). Similar to the Tabular Jura, the rather 

low lying Vesoul-Montbéliard Plateau, which flanks the Vosges to the south, is also underlain by 

gently south-dipping Triassic and Jurassic sediments transected by N-S to NNE-SSW striking 

normal faults. The URG consists of several rotational fault blocks that are delimited by NNE-

SSW striking, west-dipping normal faults, such as the Allschwil, Ferrette and Illfurth faults 

(Giamboni et al., 2004b; Ustaszewski, 2004; Hinsken et al., 2007). The Rhine Valley Flexure 

marks the eastern margin of the morphologically expressed URG and bounds the Tabular Jura to 

the west (Figure 2). 

The evolution of these tectonic elements had a strong bearing on the development of the 

drainage systems in the study area. In the following section we address the configuration of the 

present-day drainage systems of the Jura Mountains before discussing their step-wise evolution in 

sections 4 to 8. 

 
2.3 Morphotectonic analysis of the modern drainage systems of the Jura 

Mountains 
The modern drainage systems of the Eastern Jura Mountains consists of (i) rivers draining 

southward into the river Aare, which flows NE along the southern margin of the Jura Mountains 
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and joins the Rhine near Waldshut, (ii) rivers flowing north into the Rhine, which debouches into 

the North Sea, and (iii) the river Doubs, which flows into the Saône and ultimately joins the river 

Rhône, which flows into the western Mediterranean (Figure 3).  

A large number of tributaries to these rivers, as well as the Aare and Doubs rivers 

themselves, cut more or less perpendicularly through anticlines and in some cases through thrust-

controlled structures. We systematically mapped these breaches and assigned them to water gaps, 

if a major river occupies the gap today, or to wind gaps, if a well developed breach is not 

occupied by a significant river. These gaps (Klusen) are interpreted as evidence of antecedent 

river courses that predate development of the JFTB. 

The distribution of these features is summarized in Figure 2b. Important water gaps occur 

particularly in the valley-and-ridge province of the JFTB, which is characterized by a trellis-type 

drainage pattern consisting of synclinal river valleys, linked by water gaps. Interestingly, the 

external Glaserberg and Blauen Anticlines of the valley-and-ridge province are not cut by wind or 

water gaps, whilst the frontal Florimont, Réchesy, Banné, Vendlincourt, Ferrette and Landskron 

anticlines are breached by gaps related to northward flowing rivers. The rivers Doubs and 

Dessoubre of the Franches-Montagnes and Franche-Comté are prominent examples of entrenched 

meandering streams that wind through synclinal valleys and a number of water gaps. 

In the Tabular Jura, a dendritic drainage pattern dominates. However, some of the long, 

north-directed valleys of Rhine tributaries (e.g. Frenke) are aligned with NNE-SSW striking 

Rhine Graben-related faults. In the easternmost Jura Mountains, the external Mettau thrust is cut 

by water gaps whilst the Mandach thrust element to the south forms a prominent local drainage 

divide.  

Based on the distribution of water and wind gaps, and in the context of the tectonic evolution 

of the study area, we have classified the rivers of the Jura Mountain drainage systems (Figure 3), 

according to their history, into different categories, applying the classification schemes of Skinner 

and Porter (1995) and Twidale (2004). Accordingly, we assigned the rivers or river segments of 

the study area to one of the following groups: 

 
Consequent: Rivers following the slope of a newly uplifted land mass 

Insequent: Dendritic pattern of tributaries developing by random headward erosion little 

influenced by the structure and lithology of incised strata  

Antecedent: Rivers maintaining their initial course across a land mass or fold that is uplifted 

across their path, rather than flowing around it 

Subsequent: Rivers flowing in structurally controlled valleys that developed in response to 

folding of an area initially drained by consequent rivers 
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Figure 3: Modern drainage system of the study area. Dashed lines: drainage divides. Yellow: consequent 
rivers related to Burdigalian uplift of Vosges-Black Forest Arch and to Alpine fans in the Molasse Basin. 
Rivers related to Jura folding and uplift of the Molasse Basin: subsequent (green), resequent (light blue), 
obsequent (dark blue), antecedent to late Jura folding (purple). Insequent rivers related to Pliocene-
Quaternary subsidence of the URG (red). Abbreviations: FE Freiburg Emabayment, KS Kaiserstuhl 
volcanic complex. For discussion see sections 4 to 8. 
 

Resequent: Rivers flowing after folding of an area in the same direction as the initial 

consequent drainage system, employing segments of antecedent rivers  

Obsequent: Rivers flowing after folding of an area in a direction opposite to the initial 

consequent drainage system, involving reversal of antecedent river segments  

Superposed: Rivers incised in strata that do not control their course that was inherited from 

the configuration of overlying strata or landforms 

 

A step-wise reconstruction of tectonic processes, which controlled the development of this 

drainage system starting in Oligocene times, is presented in the following sections. 
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2.4 Oligocene to early Miocene Rhine Graben stage of the Jura domain 

During the Oligocene and early Aquitanian, intermittent communications were established 

between the flexural Molasse Basin and the rifted URG via the Rauracian Depression that crossed 

the area of the future Eastern Jura Mountains in the SW prolongation of the URG (Kuhlemann 

and Kempf, 2002; Berger et al., 2005a). The axial parts of this shallow depression coincide with 

the valley-and-ridge province of the Jura Mountains and were controlled by tensional fault 

systems that extend from the URG SW-ward (Laubscher, 1981; 1998; 2003). In this area, the 

middle and late Aquitanian corresponds to an erosional hiatus, which has been variably attributed 

to the development of an Alpine flexural forebulge (Laubscher, 1992; 2001) or to the build-up of 

intraplate compressional stresses causing transpressional reactivation of pre-existing basement 

discontinuities (Laubscher, 2003; Ziegler and Dèzes, 2007). In response to these deformations, the 

upper Aquitanian conglomeratic “older Jura Nagelfluh” was shed SE-ward from the Black Forest 

into the area of the Tabular Jura (Diebold et al., 2006) and the Hegau (Schreiner, 1965; Müller et 

al., 2002). These depositional areas formed part of the northern margin of the continuously 

subsiding Molasse Basin in which fluvial clastics derived from the Alps were transported ENE-

ward since the late Oligocene (Untere Süsswassermolasse, USM). During the late Burdigalian 

high-stand in sea level, the Molasse Basin was invaded by seas, which entered it from the SW and 

E. At the same time much of the area of the future Jura Mountains was overstepped by 

transgressions advancing from the Molasse Basin, controlling the deposition of brackish-marine 

series (Obere Meeresmolasse, OMM) (Kuhlemann and Kempf, 2002; Berger et al., 2005a; Bieg, 

2005).  

 

2.5 Late Burdigalian uplift of the Vosges-Black Forest Arch 

At about 18 Ma lithospheric folding controlled rapid uplift of the Vosges-Black Forest Arch, 

which at the level of the Moho discontinuity extends from the Massif Central to the Bohemian 

Massif. In the process of this, the southern parts of the URG were uplifted and its border faults 

transpressionally reactivated (Dèzes et al., 2004; Rotstein et al., 2005a; Ziegler and Dèzes, 2007). 

At the same time a regional erosional unconformity developed in the Molasse Basin that preceded 

the OMM transgression (Kempf et al., 1999; Kuhlemann and Kempf, 2002). These deformations 

reflect the build-up of intraplate compressional stresses in the foreland of the Alps at the onset of 

imbrication of their external crystalline massifs (Fügenschuh and Schmid, 2003; Dèzes et al., 

2004).  
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Figure 4: Serravallian to early Tortonian (Jura Nagelfluh stage, 13.6-10 Ma, no palinspastic restoration). 
The SW flowing Glimmersand stream drains the Molasse Basin whilst from a watershed near the 
Kaiserstuhl the proto-Rhine flows N in the Upper Rhine Graben. 
 

During the late Burdigalian the WSW-directed estuarine “Glimmersand” stream developed in the 

Molasse Basin in a depression that straddled its present-day northern margin. This depression was 

flanked to the south by alluvial fans, which originated in the Alps, whilst to the north it was 

flanked by the Vosges-Black Forest Arch and its extension into the Bohemian Massif. This fluvial 

to lacustrine drainage system (Obere Süsswassermolasse, OSM) persisted, despite falling sea 

levels, during Langhian and Serravallian times and probably even during the earlier parts of the 

Tortonian (Figure 4; Hofmann, 1960; 1996; Kuhlemann and Kempf, 2002; Berger et al., 2005a; 

Bieg, 2005). Compared to the late Oligocene-early Miocene ENE directed drainage system of the 

Molasse Basin, the late Burdigalian development of the WSW directed Glimmersand systems 

reflects a reversal of its drainage pattern (Kuhlemann and Kempf, 2002). This suggests that during 

the late Burdigalian to Serravallian early uplift phases of the Central Alpine External Massifs the 

western parts of the Molasse Basin subsided faster than its eastern parts.  
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Late Burdigalian uplift of the Vosges-Black Forest Arch caused the development of a S- and 

SE-directed consequent drainage system on its southern flank that debouched into the 

Glimmersand depression. In the domain of the future Eastern Jura Mountains and the Hegau, 

related rivers initially truncated the OMM and locally incised into Jurassic carbonates, forming up 

to 100 m deep valleys, and later controlled the deposition of the Vosges-derived “Bois de Raube” 

and the Black Forest-derived “Jura Nagelfluh” formations (Figure 4; Liniger 1953; 1966; 1967; 

Hofmann, 1996; Kälin, 1997; Berger et al., 2005a). In the Jura Mountain valley-and-ridge 

province, remnants of the Bois de Raube and the Jura Nagelfluh formations are preserved in the 

broad Delémont and Laufen synclines, attain thicknesses of up to 130 m, span Serravallian to 

early Tortonian times (14.5-9.8 Ma) and consist of predominantly coarse fluvial conglomerates 

and minor sands and marls (Kälin, 1997; Kemna and Becker-Haumann, 2003; Braillard, 2006). In 

the Tabular Jura, the so-called “younger Jura Nagelfluh” is preserved near the thrust front as a 

coherent, up to 200 m thick sequence of lacustrine marls and freshwater carbonates that contains 

intercalations of fluvial sands and conglomeratic layers. This sequence dips 3-4° to the south, 

rests unconformably on truncated OMM and Late Jurassic series, spans Serravallian to earliest 

Tortonian times and grades southward into the Glimmersand facies of the OSM (Berger et al., 

2005b; Diebold et al., 2006). In the Hegau, remnants of the “younger Jura Nagelfluh” range in age 

from late Burdigalian to late Serravallian (17.5-12 Ma) and similarly grade SE-ward into the OSM 

Glimmersand, which probably extends into the early Tortonian (Hofmann, 1960; Hofmann, 1969; 

1996; Kuhlemann and Kempf, 2002; Müller et al., 2002; Bieg, 2005; Rahn and Selbekk, 2007).  

Additional remnants of the Bois de Raube and Jura Nagelfluh formations have been reported 

from the more internal parts of the Jura Mountain valley-and-ridge province to the SW and S of 

the Delémont and Laufen synclines (e.g. Montfaucon, Bellelay, Mt. Raimeux, Vermes, Schelten 

Pass). Moreover, scattered remnants of the probably time-equivalent “Höhenschotter” have an 

even wider distribution and occur as far south as the Pierre Pertuis wind gap (Liniger, 1953). 

Therefore, the underlying south-directed drainage system probably extended across the entire area 

of the future Jura Mountains and linked up with that of the Glimmersand Depression along the 

northern margin of the Molasse Basin (Liniger, 1966; Hofmann, 1969; 1996; Kälin, 1997; Berger 

et al., 2005a). The conglomeratic fans of the Jura Nagelfluh and Bois de Raube formations were 

apparently channelled by fault systems that extended southward from the Rhine Graben into the 

area of the future Jura Mountains, such as the Wehratal-Zeiningen fault, the Rhine Valley Flexure 

and the Allschwil, Ferrette-Caquerelle, Illfurth and Belfort faults (Figures 2 & 4; Liniger, 1966; 

Kälin, 1997; Laubscher 2001; Kemna and Becker-Haumann, 2003). Similarly, the “younger Jura 

Nagelfluh” fans of the Hegau were apparently channelled by reactivated basement faults of the 
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Hegau-Bodensee Graben (Schreiner, 1965; Hofmann, 1996; Müller et al., 2002). By contrast, the 

“younger Jura Nagelfluh” of the Tabular Jura, with a clearly erosional base, was apparently 

deposited on a near-planar S- to SE-dipping surface against which it on-lapped northward 

(Diebold et al., 2006).  

As the top of the Jura Nagelfluh and its equivalents is everywhere erosional, their youngest 

parts are missing and may have extended into the middle or even the late Tortonian (10–7.2 Ma), 

particularly in the external parts of the Jura Mountains. The size of clasts contained in the Jura 

Nagelfluh and Bois de Raube formations (Kälin, 1997; Kemna and Becker-Haumann, 2003), and 

their incision into Oligocene sediments and Jurassic carbonates (Liniger, 1966; 1967), are 

indicative of clastic transport by relatively high-energy rivers. Deep truncation to total removal of 

the Jura Nagelfluh and its equivalents in the more internal parts of the valley-and-ridge province 

of the Jura Mountains renders it impossible to reconstruct details of the underlying drainage 

system. Yet, circumstantial evidence for the configuration of this drainage system is provided by 

the distribution of wind and water gaps, which were incised by Jura Nagelfluh streams into 

anticlines that started to grow during the early deformation phases of the JFTB (Liniger, 1953).  

 

2.6 Late Miocene to early Pliocene folding phase of the Jura Mountains 

As the Jura Nagelfluh and its equivalents are clearly involved in the structures of the Eastern 

JFTB (Liniger, 1966; Laubscher, 1998; 2001; Diebold et al., 2006), and as there is no evidence for 

their syn-depositional deformation (Kälin, 1997), it is unlikely that the main parts of the JFTB 

were activated before the middle Tortonian (10-9 Ma). Nevertheless, in the southernmost parts of 

the JFTB, which branch off from the Subalpine Chains near Chambéry, thrusting had commenced 

already during the Burdigalian (Deville et al., 1994).  

Shortening in the essentially thin-skinned JFTB is kinematically linked to the Alps by thrust faults 

which ramp up through the upper crust at the northern margin of their external Aare, Aiguilles 

Rouges and Belledonne massifs, extend as sole-thrusts in Triassic sediments across the Molasse 

Basin and ramp up in the Jura Mountains in multiple splays through Triassic and Jurassic series. 

In the hanging wall of these sole-thrusts the sedimentary fill of the Molasse Basin was passively 

translated NW-ward, uplifted and tilted to the NE (Laubscher, 1961; Guellec et al., 1990; 

Laubscher, 1992; Burkhard and Sommaruga, 1998; Affolter and Gratier, 2004). Uplift and 

erosional unroofing of the external Alpine massifs accelerated around 10 Ma (Fügenschuh and 

Schmid, 2003) and, thus, is compatible with an intra-Tortonian onset of the main deformation 

phase of the JFTB.  
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Figure 5: Middle to late Tortonian (early folding phases of the Jura Mountains, 10-7.2 Ma, no palinspastic 
restoration). The drainage direction of the Molasse Basin has changed to NE; a new watershed has formed 
in the Jura fold-and-thrust belt. 
 

2.6.1 Drainage reversal in the Molasse Basin 

In the course of the middle Tortonian (10-9 Ma), the WSW-directed Glimmersand drainage 

system was abandoned owing to uplift and NE-ward tilting of the western parts of the Swiss 

Molasse Basin during the early folding phases of the Jura Mountains. With this, a new ENE-

directed drainage system began to develop that can be regarded as the precursor of the Aare-

Danube system (Figure 5; Hofmann, 1960; 1996; Müller et al., 2002; Kuhlemann and Kempf, 

2002; Berger et al., 2005a). In this context it is important to note that the preserved sedimentary 

record of the Swiss Molasse Basin ends in the Serravallian, and that about 700 m of sediments 

have been eroded from its eastern parts and over 2000 m from its western parts. Correspondingly, 

the timing of this drainage reversal is poorly constrained in Switzerland and has been inferred 

from the middle Tortonian NE- and E-ward deflection of Alpine alluvial fans in the Bavarian and 

Upper Austrian Molasse Basin (Kuhlemann and Kempf, 2002; Müller et al., 2002; Berger et al., 

2005a; Berger et al., 2005b). 
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Figure 6: Messinian to early Pliocene (Aare-Danube and proto-Doubs stage, 7.2-4.2 Ma, no palinspastic 
restoration). Sediments attributed to the river Aare-Danube occur on the SE flank of the Black Forest. The 
headwaters of the proto-Doubs extends into the foreland of the Jura fold-and-thrust belt. 

 

The ENE-flowing former Aare-Danube River is documented by undated relics of epidote-

bearing quartz gravels occurring in the lower Aare valley (Geissberg near Villigen), on the eastern 

flank of the Black Forest (Eichberg near Blumberg) and in the upper Danube valley (Figure 6). 

This river presumably came into existence during the late Tortonian (8-7.2 Ma) or in the course of 

the Messinian (7.2-5.3 Ma) and persisted until the early Pliocene (4.2 Ma) (Hofmann, 1996; 

Villinger, 1998; Müller et al., 2002; Villinger, 2003; Berger et al., 2005a; Berger et al., 2005b; 

Sissingh, 2006).  

 

2.6.2 Drainage reversal in the valley-and-ridge province 

The occurrence of water and wind gaps is largely limited to the valley-and-ridge province of the 

Eastern Jura Mountains, which is characterized by major, thrust-related flexural-slip folds and 

large synclinal depressions. Nearly linear chains of water and wind gaps cutting across adjacent 

anticlines are interpreted as marking branches of the antecedent south-directed Jura Nagelfluh 
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drainage system, which had begun to incise into growing anticlines during the middle and late 

Tortonian (Liniger, 1953). For example, water and wind gaps seem to be aligned in the southward 

prolongation of the Wehratal-Zeiningen fault system and the Rhine Valley Flexure (Figure 2). 

Similarly, N-S and NNE-SSW aligned wind and water gaps indicate the course of former 

southward flowing rivers in the prolongation of the Allschwil and Ferrette faults, corresponding to 

the Chaibeux Jura Nagelfluh river and the Charmoille Bois de Raube river as defined by Liniger 

(1953) (Figure 4). Locally river incision was apparently accompanied by the development of 

doubly plunging anticlines (Simpson, 2004b; a) as seen at Soyhières and Tiergarten.  

In the course of the evolution of the JFTB, involving rapid and perhaps not strictly in-

sequence NW-ward fold and thrust propagation (see analogue model of Philippe et al., 1996), the 

southward flowing consequent Jura Nagelfluh drainage system was gradually overpowered and 

partly reversed. This led to the development of new drainage systems consisting of subsequent 

and obsequent segments (e.g. river Birs), or subsequent and resequent segments (e.g. river 

Dünnern; Figure 3). Unfortunately the exact timing of the different steps in this drainage 

reorganization cannot be further constrained for want of a corresponding sedimentary record. As 

folding continued, some earlier formed water gaps were employed by the new drainage systems, 

which accounted for their further incision into growing anticlines, whilst others were abandoned 

and uplifted and now form wind gaps. This drainage reorganization also explains why some 

present-day creeks with small drainage areas, corresponding to low discharge, employ large gaps 

that they cannot have incised on their own (e.g. Soyhières, Tiergarten, Gänsbrunnen gaps; Figure 

2).  

These new drainage systems also interacted with anticlinal structures that started to develop 

in the younger, more external parts of the Jura Mountains. Of special interest are anticlines that 

lack wind and water gaps. These were either not transected by antecedent rivers during the initial 

stage of their evolution or they developed only after such rivers had been abandoned. For 

instance, the external Bueberg, Glaserberg and Blauen anticlines are not breached by water gaps, 

apart from the Laufen gap through the eastern end of the Bueberg structure (Figure 2). These 

anticlines probably began to develop during a later stage (late Tortonian-Messinian?), after the 

Jura Nagelfluh drainage system had been abandoned and the northward flowing river Birs had 

been established. Correspondingly, it is likely that it was the river Birs that cut the Laufen and 

Angenstein gaps through the eastern, plunging ends of the Bueberg and Blauen anticlines, 

respectively. Incision of two partial wind gaps in the western part of the Bueberg anticline 

presumably commenced during this drainage system reorganization and continued subsequently in 
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response to headward erosion by the subsequent river La Lucelle that flows eastward between the 

Bueberg and Glaserberg anticlines. 

The fact that even the most internal anticlines of the JFTB are locally breached by water 

gaps, such as near Bienne and Oensingen (Figure 2), supports the hypothesis that antecedent 

rivers once crossed the entire Jura Mountain domain and probably built out fans on the floodplain 

of the Glimmersand Depression, as already inferred above from the distribution of the Jura 

Nagelfluh, Bois de Raube and equivalent sediments (Figure 4). On the other hand, an embayment 

of the Glimmersand Depression may have extended between Bienne and Oensingen across the 

area of the Montoz and Weissenstein anticlines, which are not cut by water gaps, whilst the 

Graitery anticline to the north is transected by the Court water gap and the Gänsbrunnen wind 

gap. This interpretation is compatible with the occurrence of Glimmersand intercalations in the 

Tortonian (Serravallian?) lacustrine carbonates of the Court syncline, which separates the Graitery 

and Montoz-Weissenstein anticlines, as well as in those of the St. Imier syncline (Hofmann, 

1969). 

 

2.6.3 Franches-Montagnes and Franche-Comté 

During the middle and late Tortonian, the deformation front of the JFTB apparently advanced 

across the Franches-Montagnes and reached the Faisceau Salinois by early Pliocene times. This 

narrow deformation belt links up to the NE with the Mont Terri anticline and the SW with the 

Lédonien thrust sheet (Figures 1 & 2). The latter overrode the eastern margin of the Bresse 

Graben at the Miocene-Pliocene transition (Chauve et al., 1980; Chauve et al., 1988; Guellec et 

al., 1990; Roure et al., 1994). Moreover, it is likely that the Lomont anticline, which lies on trend 

with the Mont Terri, Bueberg and Glaserberg anticlines, was activated during the Messinian to 

early Pliocene whilst deformation of the Faisceau Bisontin may have begun during the early 

Pliocene (Figures 5 & 6).  

In this area several prominent water gaps occur that can be linked to roughly NNE-SSW 

trending faults, which extend from the URG and the Vosges into the Jura domain, such as the 

Illfurth and Belfort faults, and probably exerted controls on the antecedent late Miocene drainage 

system (Figures 2 & 4). Several water gaps of the rivers Doubs and Dessoubre are located in the 

southward prolongation of the river Savoureuse, which now flows from the Vosges Mountains 

into the Doubs (Figure 3); however, it might once have been part of a longer river that flowed 

southward towards the Molasse Basin, following Vosgian fracture systems. Thus we assume that 

the upper reaches of the river Doubs developed during the late Tortonian to early Pliocene 

deformation of the JFTB, consequently employing synclinal valleys and obsequently using water 
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gaps initially cut through rising anticlines by southward-flowing consequent Vosgian rivers. From 

Montbéliard the meandering proto-Doubs flowed SW-ward towards the Bresse Graben in a gentle 

depression that was flanked to the SE by the Faisceau Bisontin, which marks the boundary 

between the Ornans Plateau, the Avant-Monts Zone and the Montbéliard Plateau (Figure 1; 

Madritsch et al., 2008 (accepted)).  

 

2.6.4 Eastern thrust belt 

In the thrust-dominated easternmost Jura Mountains, water gaps occur only where the river Aare, 

and its tributaries Reuss and Limmat, incised into the evolving fold-thrust belt (Figure 2). South 

of the city of Olten the doubly plunging Born anticline is transected at its culmination by the river 

Aare, and thus conforms to the erosion-induced anticlinal growth model (Simpson, 2004a,b; see 

Ziegler & Dèzes, 2007). Yet, the thrust stack immediately to the north of Olten is not breached by 

water or wind gaps. Therefore we postulate that antecedent rivers originating in the Black Forest 

were not able to cut water gaps in this area. This is compatible with the fact that in this part of the 

Jura Mountains the “younger Jura Nagelfluh” deposits display a distinctly lacustrine affinity 

(Diebold et al., 2006) that does not imply the presence of persisting high-energy streams. Based 

on these considerations, and assuming that the thin-skinned Born anticline is not a late out-of-

sequence structure, we postulate that deformation of the easternmost parts of the Jura Mountains 

commenced only after the Aare-Danube and its tributary rivers Reuss and Limmat had been 

established, perhaps as early as during the late Tortonian (8.0-7.2 Ma) or more likely in the course 

of the Messinian (7.2-5.3 Ma). This would account for the development of the water gaps that 

these rivers carved through the eastern-most elements of the JFTB. It is noteworthy that the Aare-

Danube drainage system essentially employed the Glimmersand drainage system in an obsequent 

mode (Figures 5 and 6). 

 

2.7 Pliocene and Quaternary reorganization of drainage systems in the foreland 
of the Jura Mountains  

During the late early Pliocene (4.2 Ma) the palaeo-Aare river was deflected into a western 

direction at the eastern end of the JFTB near Waldshut and began to flow along the southern flank 

of the Black Forest in an isoclinal valley of the Tabular Jura towards the Sundgau and via the 

Franche-Comté, the Bresse Graben and the Rhône Valley into the Mediterranean (Figure 7; 

Liniger, 1966; 1967; Hofmann, 1996; Villinger, 1998; Laubscher, 2001; Sissingh, 2006). This 

Aare-Doubs deposited gravels dominated by Alpine clasts in the Sundgau, on the Vesoul- 
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Figure 7: Mid-Pliocene (Aare-Doubs stage, 4.2-2.9 Ma, no palinspastic restoration). In response to 
headward erosion of the proto-Doubs, the river Aare is deflected to the W. The river Aare-Doubs deposited 
the Sundgau Gravels. 
 

Montbéliard Plateau and Forêt de Chaux as well as in the Bresse Graben. In the Forêt de 

Chauxand Bresse Graben these gravels are known as “Cailloutis de Desnes” and are dated as 4.2-

2.9 Ma (Petit et al., 1996; Fejfar et al., 1998). These gravels were uplifted and eroded throughout 

the Besançon zone, which represents the NW-most segment of the JFTB (Madritsch et al., 2008 

(accepted)), but are preserved in the Sundgau area. These “Sundgau Gravels” were deposited on a 

nearly planar, relatively wide surface by a shallow braided stream system, characterized by 

shifting channels, and form an up to 30 m thick layer (Giamboni et al., 2004a; Giamboni et al., 

2004b). The base of these gravels is erosional and there is evidence for reworking of the 

underlying Bois de Raube formation (Liniger, 1967; Braillard, 2006). 

Deflection of the river Aare towards the west is attributed to its capture by the proto-Doubs 

drainage system, which had developed in front of the evolving JFTB during the late Tortonian and 

Messinian and collected the consequent Vosges and Black Forest and the new obsequent Jura 

rivers. By early Pliocene times, the headwaters of the proto-Doubs drainage systems, which had 
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its base level in the subsiding Bresse Graben (Ziegler and Dèzes, 2007), extended into the 

foreland of the Eastern Jura thrust belt and started to interfere with the Aare-Danube drainage 

system, ultimately capturing the river Aare around 4.2 Ma (Figure 6; Liniger, 1966; Hofmann, 

1996; Villinger, 1998; Sissingh, 2006). With this, the water and sediment load of the newly 

established Aare-Doubs increased sharply (Figure 7).  

During these times the proto-Rhine flowed northward from a watershed near the Kaiserstuhl 

into the continuously subsiding northern parts of the transtensional URG (Hagedorn, 2004; 

Haimberger et al., 2005; Lopes Cardozo and Behrmann, 2006; Hagedorn and Boenigk, 2008). 

Rivers originating on the southern slopes of the Black Forest Massif, corresponding to the 

headwaters of the S-flowing consequent Jura Nagelfluh drainage system now debouched into the 

westward flowing Aare-Doubs (Villinger, 1999). Similarly, the obsequent drainage system of the 

Tabular Jura in front of the Jura thrust belt and the combined subsequent and obsequent drainage 

system of the Jura valley-and-ridge province formed tributaries of the Aare-Doubs. This is 

compatible with the compositional spectrum of the Sundgau Gravel components (Liniger, 1967).  

The Aare-Doubs drainage system persisted until about 2.9 Ma (Fejfar et al., 1998) when the 

river Aare was deflected into the URG at Basel and joined the northward flowing proto-Rhine, 

thus forming the Aare-Rhine (Figure 8; Liniger, 1966; Villinger, 1998; Laubscher, 2001; 

Giamboni et al., 2004a,b). In the sedimentary record of the URG, this is reflected by a massif 

influx of Alpine heavy minerals, commencing towards the end of the late Pliocene (Hagedorn, 

2004; Hagedorn and Boenigk, 2008; Rolf et al., 2008). In the Lower Rhine Graben, however, the 

first occurrence of Alpine heavy minerals has been reported from the Oebel Beds of the Waalre-1 

Formation, which clearly pre-dates the Pliocene-Quaternary boundary (Gauss-Matuyama 

magnetic reversal at 2.58 Ma; Kemna, 2008) and has been tentatively assigned an age of 2.8-2.58 

Ma (Westerhoff et al., 2008).  

Owing to the late Pliocene diversion of the river Aare into the URG, the water and sediment load 

of the river Doubs decreased sharply. Deflection of the Aare into the Rhine drainage system was 

induced by transtensional subsidence of the southern parts of the URG, which resumed during the 

late Pliocene and continues to the present, as evidenced by the occurrence of up to 240 m of upper 

Pliocene and Quaternary sediment in the fault-controlled Geiswasser Basin adjacent to the 

Kaiserstuhl (Bartz, 1974; Dèzes et al., 2004; Lang et al., 2005; Ziegler and Dèzes, 2007). 

LatePliocene and Quaternary subsidence of the URG was accompanied by a gradual lowering of 

its alluvial plain, and with this, a lowering of the erosional base level of the Aare-Rhine. Outside 

the graben this led to the progressive incision of the Aare-Rhine and its tributaries, such as the 

Klettgau-Rhine. As a result, around 1.7 Ma, the latter captured the Alpine headwaters of the river 
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Figure 8: Late Pliocene to early Quaternary (Aare-Rhine and Doubs stage, 2.9-1.7 Ma, no palinspastic 
restoration). The river Aare is deflected into the Upper Rhine Graben. Headward erosion of Aare tributaries 
intensified in response to lowering of the base level in the subsiding Upper Rhine Graben.  
 

Rhine in the area of Lake Constance in response to headward erosion, assisted by the run-off 

ofglacial melt waters during the Donau/Günz glacial stages (Figure 9; Villinger, 2003). With this, 

the water and sedimentary load of the newly formed Alpine Rhine increased strongly (Hofmann, 

1996; Villinger, 1998; Müller et al., 2002; Villinger, 2003; Hagedorn, 2004; Hagedorn and 

Boenigk, 2008).  

During the Quaternary the Alpine Rhine and its tributaries in the Jura Mountains and the Black 

Forest continued to incise in response to progressive lowering of their erosional base level in the 

continuously subsiding URG, and possibly to gentle uplift of the Black Forest. This is evidenced 

by distinct cut-and-fill terrace systems of the Alpine Rhine upstream from Basel and along the 

lower reaches of the river Aare (Haldimann et al., 1984; Verderber, 1992; Müller et al., 2002; 

Verderber, 2003). On the eastern flank of the Black Forest, continuing river incision resulted in 

the capture of the Feldberg-Danube by the river Wutach, a tributary of the Rhine, between 19-20 

ka (Hofmann, 1996; Villinger, 2003).  
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Figure 9: Late Quaternary (Alpine Rhine and Doubs stage, 1.7-0 Ma). Capture of the Alpine Rhine and the 
headwaters of the Danube by tributaries of the river Aare. 
 

2.8 Evidence for Pliocene and Quaternary tectonic activity 

In the foreland of the Eastern Jura thrust belt, the thin-skinned Mandach and Mettau thrusts 

(Figure 2a; Bitterli and Matousek, 1991; Diebold et al., 2006) probably developed during the 

Quaternary. This is suggested by the occurrence of remnants of “Höhere Deckenschotter” gravels 

(2.6-1.6 Ma) N of the Mandach thrust that were deposited by a northward flowing river, the 

course of which was apparently blocked by the development of the Mandach thrust (Müller et al., 

2002). Moreover, the Etzgerbach and Sulzerbach rivers originate on the northern flank of the 

Mandach structure, which is not breached by gaps, and cut through the Mettau thrust in water 

gaps (Figure 2b). Therefore, these creeks probably developed on the northern slope of the 

Mandach structure prior to activation of the Mettau thrust. Furthermore, minor compressional 

structures observed in the projection of the Mandach thrust and at Klingnau in the lower Aare 

Valley may have been active during the Quaternary (Haldimann et al., 1984; Müller et al., 2002).  
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Upstream from Basel, small remnants of the Sundgau Gravel equivalent Mühlbach Series are 

preserved between Laufenburg and Waldshut (Hofmann, 1996; Verderber, 2003). These deeply 

weathered gravels are characterized by the same heavy mineral spectrum as the Pliocene Sundgau 

Gravels (4.2-2.9 Ma). Moreover, sediment-petrographically they differ profoundly from the 

garnet-rich “Höhere Deckenschotter” gravels (Hofmann, 1996) that range in age between 2.6 and 

1.6 Ma (Müller et al., 2002; Villinger, 2003). In view of this, and as the Mühlbach Series is 

characterized by normal magnetisation (Fromm, 1989), it was probably deposited during the 

Pliocene Gauss epoch (3.580-2.588 Ma) rather than during the early Quaternary Olduvai epoch 

(1.95-1.77-Ma), as postulated by Verderber (2003). 

In the Rhine Valley upstream from Basel the distribution of remnants of Sundgau Gravel 

equivalent deposits (4.2-2.9 Ma) and of older river terraces (“Deckenschotter”, 2.6-0.78 Ma) is 

generally too limited to record potential tectonic activity along fault systems extending from the 

Black Forest into the Tabular Jura. Nevertheless, scattered remnants of the Deckenschotter 

suggest a subtle gradient increase across the Rhine Valley flexure, indicative of its tensional 

reactivation (Kock et al., in prep.). The uniform gradients of the well-preserved younger Rhine 

river terraces (“Hoch- and Niederterrassen”) suggests that during the last 0.78 Ma the fault 

systems of the Black Forest and Tabular Jura were essentially quiescent, perhaps with exception 

of the Rhine Valley flexure across which Niederterrasse gradients increase gently (Haldimann et 

al., 1984; Verderber, 1992; 2003).  

In the Sundgau, by contrast, the Pliocene Sundgau Gravels are still well preserved in front of the 

valley-and-ridge province of the Jura Mountains where they were deposited on a wide floodplain. 

In the Bresse Graben their equivalents (Desnes Gravels) attain thicknesses of up to300m (Petit et 

al., 1996; Giamboni et al., 2004a), thus attesting to its tensional reactivation (Dèzes et al., 2004). 

In the Sundgau and Ajoie, the Sundgau Gravels are involved in the frontal folds of the Jura 

Mountains. Moreover, there is evidence for Quaternary changes in drainage patterns and 

anomalies in river gradients, as well as for the deformation of terraces, indicating late stage 

compressional deformation of the Mulhouse High (Niviere and Winter, 2000; Giamboni et al., 

2004a; Giamboni et al., 2004b; Carretier et al., 2006) and the Ajoie (Braillard, 2006). 

Deformation of the Mulhouse High and its Sundgau Gravel cover involved the development of 

several gentle folds (Giamboni et al., 2004a) and sinistral reactivation of the Paleogene URG-

related Illfurth fault (Figure 2a; Le Carlier de Veslud et al., 2005; Rotstein et al., 2005b; 

Ustaszewski and Schmid, 2007). The frontal Florimont and Réchésy folds of the Ajoie, which 

also involve the Sundgau Gravels, are associated with compressionally reactivated WSW-ENE 

striking Permo-Carboniferous basement faults and, thus, are thick skinned (Giamboni et al., 
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2004a; Ustaszewski et al., 2005). It is unknown whether this also applies to the Banné and 

Vendlincourt anticlines to the south that may have developed during the Pliocene and Quaternary 

(Braillard, 2006). Further to the east, the thin-skinned frontal Ferrette and Landskron folds, which 

are associated with the Paleogene Ferrette and Allschwil faults of the URG, respectively, probably 

began to develop prior to the deposition of the Sundgau Gravels (Ustaszewski and Schmid, 2006) 

and presumably continued to grow during the late Pliocene and Quaternary compressional 

deformation of the Mulhouse High.  

These young anticlines are all characterized by minor wind and/or water gaps (e.g. gaps in 

the Ferrette anticline at Durlinsdorf and Ferrette; Figure 2b). Moreover, they are located to the 

north of the Blauen, Glaserberg and Mont Terri anticlines, which are devoid of wind and water 

gaps. Thus, development of these gaps must be attributed to rivers that originated in the earlier 

elevated ranges of the Jura Mountains to the south, and that incised into the evolving frontal 

anticlines during their Pliocene and Quaternary development (Giamboni et al., 2004a; Braillard, 

2006). 

Regarding the Pliocene and Quaternary evolution of the Franches-Montagnes and the 

adjacent parts of the Franche-Comté, the relatively high sinuosity of the rivers Doubs and 

Dessoubre indicates that they developed as low gradient rivers prior to their incision by 300-400 

m into the gently undulating relief of this plateau, which apparently was nearly peneplained after 

its mid-Tortonian to end-Messinian main deformation. The indicated timing of the main 

deformation of the Franches-Montagnes and the Franche-Comté is compatible with (i) the fact 

that deformation of the internal Mont d’Amin anticline (Figure 2a) had ceased by early Pliocene 

times, as evidenced by a geopetal karst fill dated as MN15 (4.1-3.6 Ma; Bolliger et al., 1993), and 

(ii) that the Lédonien thrust sheet (Figure 1) had overridden the eastern margin of the Bresse 

Graben at the Miocene-Pliocene transition but became inactive thereafter (ca. 5.3 Ma; Chauve et 

al., 1988; Guellec et al., 1990; Roure et al., 1994). Mid-Pliocene to Quaternary (ca. 4-0 Ma) uplift 

of the Franches-Montagnes and Franche-Comté, causing deep incision of the rivers Doubs and 

Dessoubre, is attributed to late-stage thick-skinned deformation of the Jura Mountains, involving 

the inversion of Permo-Carboniferous troughs, as indicated by reflection-seismic data and seismic 

activity (Roure et al., 1994; Philippe et al., 1996; Becker, 2000; Lacombe and Mouthereau, 2002; 

Pfiffner, 2006; Ustaszewski and Schmid, 2007). 

During the Pliocene and Quaternary, compressional deformation of the Bisontin belt 

continued and ultimately also affected the Avant-Monts domain to the NW (Figure 1). The 

Clerval water gap through the Ormont anticline (Figure 2b) speaks for the antecedence of the river 

Doubs with respect to the development of the Bisontin belt. Growth of the Bisontin bundle of 

 32



Chapter 2 
_________________________________________________________________________________________________________________ 

folds, as well as of the Lomont Anticline had confined the deposition of the Sundgau Gravels and 

their equivalents to the Montbéliard Plateau and Avant-Monts domain (Figure 7; Madritsch et al., 

2008 (accepted)). 

 

2.9 Geodetic constraints on neotectonics 

Precision levelling data (Müller et al., 2002) indicate that the thrust belt of the Eastern Jura 

Mountains currently rises at rates of 0.25–0.35 mm/a, whilst the Swiss Tabular Jura appears to be 

stable and the Dinkelberg Block to the north subsides gently with respect to a reference point at 

Laufenburg. Assuming for the Jura thrust belt a basal 30° ramp, its uplift rate can be translated 

into ongoing horizontal displacement rates of 0.5–0.7mm/a (Müller et al., 2002). The Swiss GPS 

Reference Network LU95, however, has not yet detected corresponding horizontal displacements 

(Brockmann et al., 2005). Furthermore, precision levelling shows that adjacent to the Freiburg 

embayment the alluvial plain of the URG subsides relative to the Black Forest at rates of 0.5-0.6 

mm/a, with the fault systems of the Freiburg embayment being tectonically and seismically active 

(Behrmann et al., 2003; Rózsa et al., 2005). Moreover, precision levelling data indicate that the 

valley-and-ridge province and the Franches-Montagnes gently subside with respect to the 

Laufenburg reference point, possibly in response to strike-slip reactivation of URG-related 

basement-involving fault systems that extend beneath these areas (Schlatter et al., 2005). This is 

compatible with the fault-plane solutions of earthquakes occurring in the area of the Eastern Jura 

Mountains (Deichmann et al., 2000; Müller et al., 2002). Yet, repeated levelling surveys, carried 

out during the last 30 years near the city of Basel, have not detected any movements on the Rhine 

Valley Flexure (Schlatter et al., 2005), even though it has a distinct morphological expression. 

Considering that the terraces of the Rhine do not give clear evidence for late Quaternary tectonic 

activity (Wittmann, 1961; Haldimann et al., 1984; Villinger, 2003), this may mean that either 

stresses are currently building up on this important fault, or that tectonic deformation is 

partitioned over a number of faults and thus, is difficult to detect. 

GPS data acquired during the last 17 years show only minor differential horizontal 

displacements for campaign stations located within the JFTB; these are at best close to the level of 

significance (Brockmann et al., 2005) but do not reflect a consistent deformation pattern. On the 

other hand, data derived from the European network of continuously operating GPS reference 

stations indicate sinistral transtensional displacement rates of up to 0.76 mm/a between the flanks 

of the URG and similar transpressional to compressional displacement rates across the Bresse-

URG transfer zone (Tesauro et al., 2005). 
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2.10 Summary 

Thin-skinned deformation of the JFTB commenced probably around 10-9 Ma during the middle 

Tortonian and continued during the Pliocene when thick-skinned deformation became 

increasingly important (Becker, 2000; Ustaszewski and Schmid, 2007). During the Tortonian 

initial deformation pulses the pre-existing south-directed consequent drainage system that had 

developed in response to late Burdigalian (ca. 18 Ma) uplift of the Vosges-Black Forest Arch 

(Figure 4) was gradually overpowered. With this, development of the modern drainage systems of 

the JFTB and its fore- and hinterlands commenced, as outlined below:  

 

1) During the initial deformation stage of the JFTB, spanning approximately middle and late 

Tortonian times (10-7.2 Ma), the deformation front propagated NW-ward across the 

Franches-Montagnes into the upper reaches of the river Doubs and across the Delémont 

Basin to the Les Vorbourgs, Movelier and Thierstein anticlines, but probably not much 

beyond the Langenbruck area into the eastern thrust belt (Figures 2 and 5). During this 

stage, development of major water and wind gaps commenced in the valley-and-ridge 

province, owing to incision of the S-directed consequent Jura Nagelfluh drainage system 

into the rising anticlines. As folding progressed, this drainage system was gradually 

overpowered and new subsequent drainage systems developed, which were linked by 

resequently and obsequently employed segments of the antecedent Jura Nagelfluh river 

system, thus accounting for further incision of major water gaps. Contemporaneous uplift, 

ENE-ward tilting and erosion of the Swiss Molasse Basin in response to thin-skinned 

shortening in the JFTB, controlled the abandonment of the WSW-directed Glimmersand 

drainage system and the gradual development of an ENE-directed precursor of the Aare-

Danube drainage system. 

2) During the second stage, spanning approximately Messinian and early Pliocene times 

(7.2-4.2 Ma), the deformation front of the JFTB propagated into the Franche-Comté and 

Sundgau, activating the Lomont, Mt. Terri, Bueberg, Glaserberg and Blauen anticlines, as 

well as into the eastern thrust belt (Figures 2 & 6). During this stage, the combined 

subsequent and resequent Suze and Dünnern drainage systems of the internal Jura 

Mountains debouched S-ward via water gaps into the ENE-ward flowing river Aare-

Danube (Figure 3). By this time, the Aare-Danube and its tributary rivers Reuss and 

Limmat had cut water gaps through the rising Born, Chestenberg and Lägern anticlines. 

On the other hand, the combined subsequent and obsequent Birs drainage system of the 

valley-and-ridge province flowed N-ward, cutting the Laufen and Angenstein gaps, and 
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joined the consequent Black Forest rivers at the southern end of the URG, thus forming 

the headwaters of the evolving SW-ward flowing proto-Doubs river. Moreover, the 

combined subsequent and obsequent upper reaches of the river Doubs probably developed 

during this stage, employing water gaps that initially were carved through evolving 

anticlines by the S-ward flowing river Savoureuse. 

3) The third stage in the evolution of the Jura Mountain drainage systems commenced with 

the late early Pliocene (4.2 Ma) capture of the river Aare by the proto-Doubs drainage 

system at the eastern end of the JFTB. As evidenced by the Sundgau and Desnes Gravels 

(4.2-2.9 Ma), this new Aare-Doubs flowed in the foreland of the Jura Mountains SW-ward 

into the tensionally subsiding Bresse Graben where it found its erosional base level 

(Figure 7). During the deposition of the Sundgau Gravels shortening persisted in the 

eastern Jura thrust belt and in front of the valley-and-ridge province, where the thin-

skinned Landskron and Ferrette anticlines, as well as the Vendlincourt and Banné 

anticlines continued to grow. These evolving structures were transected by N-ward 

flowing rivers, which originated on the flanks of earlier-formed anticlinal ridges of the 

Jura Mountains to the south, thus causing the development of water/wind gaps. At the 

same time the deformation front advanced further into the Franche-Comté and uplift of the 

Franches-Montagnes and Franche-Comté commenced, controlling incision of the 

meandering rivers Doubs and Dessoubre. 

4) The fourth stage in the evolution of the Jura Mountain drainage systems commenced in 

the late Pliocene (2.9 Ma) with the deflection of the river Aare into the URG, the southern 

parts of which resumed subsiding in a transtensional stress regime. This provided the 

combined Aare-Rhine with a new erosional base level (Figure 8). Continued subsidence of 

the URG caused incision of the river Aare and its tributaries in the Jura Mountains and in 

the gently rising Black Forest upstream from Basel. During the late Pliocene and early 

Quaternary (2.9-1.7 Ma), shortening persisted in the JFTB, as evidenced in the Sundgau 

and Ajoie by folding of the Sundgau Gravels, that was controlled by dextral 

transpressional reactivation of ENE striking Permo-Carboniferous basement faults 

(Florimont and Réchésy anticlines) and by sinistral reactivation of SSW trending URG-

related basement faults (Mulhouse High) (Becker, 2000; Ustaszewski and Schmid, 2006; 

2007). 

5) The final, Quaternary (1.7-0 Ma) evolutionary stage of the Jura Mountain drainage 

systems was dominated by continued subsidence of the URG, involving further lowering 

of the erosional base level of the river Aare-Rhine. The latter captured the Alpine 

 35



Chapter 2 
_________________________________________________________________________________________________________________ 

headwaters of the river Rhine in the area of Lake Constance around 1.7 Ma, and the 

Feldberg-Danube on the eastern flank of the Black Forest around 19-20 ka (Figure 9). 

With this the water and sediment load of the newly formed Alpine Rhine increased 

significantly. Continued compressional deformation of the JFTB, though at low strain 

rates, is evidenced by (1) the development of the thin-skinned Mandach and Mettau 

thrusts in the eastern parts of the Tabular Jura sometime after 1.6 Ma, (2) further 

deformation of the Mulhouse High, and (3) changes in the drainage pattern of the Sundgau 

and Ajoie – controlled by both structure and headward erosion – that had repercussions on 

the location of the watersheds between the rivers Rhine, Ill and Doubs. 

 

Present-day tectonic activity in the domain of the Jura Mountains is evidenced by their seismic 

record and geodetic measurements. Seismicity testifies to on-going reactivation of pre-existing 

crustal discontinuities under the prevailing NW-directed compressional stress field (Becker, 2000; 

Deichmann et al., 2000; Lacombe and Mouthereau, 2002; Müller et al., 2002). Repeated precision 

levelling, covering time spans of 25 to 60 years, indicates that the thrust belt of the Eastern Jura 

Mountains is currently being uplifted at rates of 0.25-0.35 mm/a, the valley-and-ridge province 

and the Franches-Montagnes subside gently, while the alluvial plain of the URG subsides at rates 

of 0.5-0.6 mm/a and the Black Forest is apparently relatively stable with respect to a reference 

point at Laufenburg. In the Eastern JFTB no appreciable shortening can be deduced from GPS 

data, which cover a time span of 17 years (Müller et al., 2002; Brockmann et al., 2005; Schlatter 

et al., 2005).  

 

2.11 Conclusions 

We distinguish five stages in the development of the modern drainage systems of the Jura 

Mountains, taking into account the distribution of water/wind gaps, which we consider as 

evidence of former river courses. These stages are intimately related to the evolution of the JFTB 

and the URG. The timing and scope of the underlying deformation stages of the JFTB are, 

however, poorly constrained, owing to the general lack of a syn-deformational sedimentary record 

within the Jura Mountains and to the limitation of stratigraphic controls in their foreland to Mid-

Pliocene and younger times. Consequently, the timing of the five evolutionary stages of the Jura 

Mountain drainage systems, as summarized above, must be considered as tentative. In this 

respect, special attention has to be paid to the Pliocene and Quaternary deformation of the Jura 

Mountains and their surroundings. 
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Compared to the thin-skinned deformation of the JFTB that had commenced around 9-10 Ma, 

its thick-skinned transpressional to strike-slip deformation apparently played an increasingly 

important role from about 3 Ma onward, controlling folding of the Sundgau Gravel. This is 

evidenced by reflection-seismic data (Ustaszewski & Schmid, 2006), seismicity and 

geomorphologic features indicating late-stage broad uplift of the Franches-Montagnes and 

Franche-Comté that controlled deep incision of the rivers Doubs and Dessoubre. This Pliocene-

Quaternary phase of thick-skinned deformation of the JFTB, which involved reactivation of ENE 

striking Permo-Carboniferous troughs and fault systems (Roure et al., 1994; Philippe et al., 1996; 

Ustaszewski and Schmid, 2007; Madritsch et al., 2008 (accepted)), reflects an increase in the 

magnitude of NW-directed compressional intraplate stresses in the Alpine foreland. From about 

2.9 Ma onward, these stresses governed the renewed transtensional subsidence of the southern 

parts of the URG, continued subsidence of its northern parts (Dèzes et al., 2004) and probably 

also moderate uplift of the seismically still active Vosges-Black Forest Arch (Edel et al., 2006). 

Beyond the area of the URG, these stresses controlled the late Pliocene–early Quaternary 

accelerated tensional subsidence of the Lower Rhine Graben, and by lithospheric folding, 

accelerated subsidence of the North Sea-North German Basin (for refs. see Dèzes et al., 2004; 

Ziegler and Dèzes, 2007).  

In the Tabular Jura, the 3-4° southern dip of the Jura Nagelfluh (Diebold et al., 2006) reflects 

gentle post-early Tortonian uplift of the Black Forest. Late-stage uplift of the Black Forest Arch is 

furthermore supported by the occurrence of gravels attributed to the Messinian to early Pliocene 

Aare-Danube at 600 m above MSL in the lower Aare valley (Geissberg), and downstream at 900 

m above MSL on the eastern flank of the Black Forest (Eichberg near Blumberg) (Figure 6; 

Hofmann, 1996; Müller et al., 2002). It is, however, uncertain whether this late-stage uplift of the 

Black Forest contributed to the westward deflection of the river Aare from its previous easterly 

course around 4.2 Ma, as postulated by Hofmann (1996), or whether it post-dates this drainage 

system reorganization. 

Present-day seismicity seems to concentrate on fault systems that extend SSW-ward from the 

URG and to ENE trending fault systems that outline Permo-Carboniferous troughs (Ustaszewski, 

2004; Ustaszewski et al., 2005; Ustaszewski and Schmid, 2007). Late Pliocene to present-day 

thick-skinned deformation of the Jura Mountains probably involves the activation of an intra-

crustal detachment horizon that extends from the Alps beneath the Molasse Basin into the Jura 

domain (Mosar, 1999; Lacombe and Mouthereau, 2002; Edel et al., 2006; Pfiffner, 2006; 

Ustaszewski and Schmid, 2007). The geodetic record, combined with geomorphologic evidence, 

indicates that the Eastern JFTB, which has accounted for up to 30 km of thin-skinned shortening 
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in its western parts during the last 9-10 million years (Philippe et al., 1996; Affolter and Gratier, 

2004), is currently tectonically still active but deforms at very low horizontal displacement rates 

of less than 1 mm/a. 
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Chapter 3 
 

Quaternary tectonic activity in the eastern Jura Mountains: 
Implications from stream gradient analysis 
 

 

Abstract 

A complicated tectonic setting characterises the area at the southern end of the Upper Rhine 

Graben in the northern foreland of the Central Alps. While the recorded seismicity and geodetic 

measurements demonstrate ongoing tectonic activity near the eastern Main Border Fault of the 

Upper Rhine Graben and in the Jura mountains, these data do not allow constraining the regional 

deformation pattern or determining individual active faults due to low deformation rates of less 

than 1 mm/a.  

In this study, we investigate the effect of differential vertical deformation on the fluvial 

system at the boundary of the Jura mountains, consisting of the Jura fold-and-thrust belt and the 

Tabular Jura, and the Upper Rhine Graben. To this aim, we analyse the gradient distribution in the 

longitudinal profiles of 50 rivers in this area, based on a digital elevation model with a spatial 

resolution of 25 m. For each river, the shape of the longitudinal profile is characterised by 

calculating two geomorphic indices, the steepness and concavity index. In addition, the steepness 

index is determined for river segments, enabling us to detect alongstream changes. From the 

distribution of the steepness indices we deduce, relative to the Tabular Jura, uplift of a region 

roughly corresponding to the Jura fold-and-thrust belt, as well as subsidence of the interior parts 

of the Upper Rhine Graben.  

 

3.1 Introduction 

The border region of Switzerland, France and Germany in the vicinity of Basel is characterised by 

the adjoining tectonic units of the Upper Rhine Graben and the Jura fold-and-thrust belt. The 

Upper Rhine Graben represents a part of the European Cenozoic Rift System, which extends from 

the Mediterranean Sea to the North Sea (Ziegler, 1992). The thin-skinned Jura fold-and-thrust belt 

developed after the main rifting phase in the Miocene and forms the most external element of the 

Central Alpine orogen (Burkhard, 1990). While the evolution of these partly overlapping and 
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interfering structures is quite well understood on a large timescale (Burkhard and Sommaruga, 

1998; Dèzes et al., 2004), the youngest (Late Miocene to Quaternary) tectonic development of the 

region remains less well constrained. In particular, the question of if and where shortening, or 

tectonic activity in general, persists today in the Jura fold-and-thrust belt is difficult to answer. 

This is mainly due to a major hiatus in the sedimentary record between the Middle Miocene 

(Early Tortonian) and the Middle Pliocene, and the difficulties associated with dating the existing 

Miocene as well as the Plio-/Pleistocene fluvial sediments. However, knowledge about where 

deformation is concentrated and which faults are likely reactivated in the current stress field is 

crucial to better define the earthquake hazard. It is evident from the Basel earthquake of 1356, the 

largest earthquake north of the Alps in historic times (Mayer-Rosa and Cadiot, 1979), that this 

hazard is substantial. Seismologic and geodetic measurements indicate ongoing tectonic activity, 

but do not describe the deformation pattern in much detail due to their relatively short observation 

periods (Müller et al., 2002).  

In this study, we apply geomorphological methods to complement existing geological, 

seismological and geodetic information. The fact that tectonic deformation can be accumulated 

and preserved in the shape of the landscape provides an additional source of information and 

offers an opportunity to extend the time-scale of observation from the few decades covered by 

seismologic and geodetic records further into the past. A wide variety of geomorphic features, 

such as mountain front morphology, valley shapes, or drainage patterns, can reveal information 

about past tectonic events (Burbank and Anderson, 2001; Keller and Pinter, 2002). In this study 

we concentrate on the characteristics of river channels and, in particular, river gradients. A 

number of recent studies have successfully used stream gradient analysis to detect differential 

vertical deformation (Merritts and Vincent, 1989; Lague et al., 2000; Snyder et al., 2000; Kirby et 

al., 2003; Hodges et al., 2004). Our aim is to apply these methods in an attempt to better define 

the recent regional tectonic deformation pattern in NW Switzerland, an essential step towards 

assessing the seismic hazard in this densely populated area. 

 

3.1.1 Geographic and tectonic setting 

The study area in the eastern Jura mountains of northwestern Switzerland covers about 2500 km2 

and comprises part of the tectonic units of the Folded Jura, the Tabular Jura and the Upper Rhine 

Graben (Figure 1). The Upper Rhine Graben forms a part of the Western European Cenozoic rift 

system, together with the Lower Rhine Graben and the Bresse Graben, to which it is linked by the 

Rhine-Bresse Transfer Zone (Ziegler, 1992; Dèzes et al., 2004). At its southern end, the Tertiary 

sedimentary fill of the Upper Rhine Graben is bordered by Mesozoic sediments, ranging from the  
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Fig. 1: Main tectonic elements of the study area. Black rectangle shows extent of Figures 4, 6, 7, and 10. 
 

Lower Triassic to the Upper Jurassic. The Triassic sequences include sandstones, dolomites, 

(bioclastic) limestones and evaporites, whereas in the Jurassic marls, clays and (oolitic) 

limestones predominate (Meyer, 2001; Diebold et al., 2006). The thickness of distinct lithological 

units varies from ca. 20 m to ca. 100 m. In the autochthonous Tabular Jura, the sedimentary layers 

are still more or less horizontal, which gives the landscape its table-like appearance. In the Folded 

Jura, the sedimentary cover was detached from the basement on highly incompetent Triassic 

evaporites, creating anticlines and synclines that still define the ridges and valleys of this region 

today. It is commonly interpreted as a text-book example of a thin-skinned foreland fold-and-

thrust belt (Jordan, 1992; Burkhard and Sommaruga, 1998).  

The highest ridges of the Folded Jura define the drainage divide between the river Rhine in 

the north and, in the south, the river Aare, which drains into the Rhine at the eastern termination 

of the Jura fold-and-thrust belt (Figure 1). The Upper Rhine Graben constitutes the regional base 

level of all rivers in this analysis. 

 

3.1.2 Tectonic evolution since Oligocene times  

The Neogene stress regime in the Northern Alpine foreland has been subject to important 

changes, which have led to a complex tectonic setting with multiple fault sets of different 

orientations. Rifting of the Upper Rhine Graben started in the Late Eocene in a stress field 
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compatible with E-W extension (Dèzes et al., 2004). Contemporaneously, rifting occurred in the 

Bresse Graben, linked to the Upper Rhine Graben by the Rhine-Bresse Transfer Zone, which 

acted as a zone of left-lateral transtension (Lacombe et al., 1993; Ustaszewski et al., 2005; 

Madritsch et al., 2008). The formation of this transfer zone was controlled by pre-existing, ~ENE-

WSW trending basement faults related to a Permo-Carboniferous trough system.  

In the Miocene, the regional stress field underwent a major change from E-W extension to 

NW-SE shortening associated with convergence in the Alps. The stresses emanating from the 

Alpine arc subsequently led to the detachment of the sedimentary cover on a Triassic decollement 

horizon and the formation of the Jura fold-and-thrust belt (Laubscher, 1961). Constraints on the 

timing of Jura deformation are given by the (late) Middle Miocene Bois de Raube and 

Juranagelfluh fluvial sediments (Kälin, 1997), originating from the Vosges and Black Forest 

mountains, respectively. These conglomerates were affected by folding in the region W of Basel 

(Giamboni et al., 2004a) and overridden by external thrusts in the Bresse graben and thus predate 

the beginning of folding (Chauve et al., 1988). Complex interactions between tectonic activity in 

the Jura fold-and-thrust belt and the southern Upper Rhine Graben are demonstrated by the fact 

that the Mesozoic of the frontal part of  the fold-and-thrust belt was thrusted onto Rhine Graben 

sediments (Dèzes et al., 2004), while at the same time Rhine Graben-related faults can be 

followed further south and into the Folded Jura (Figure 1; (Laubscher, 2001; Ustaszewski and 

Schmid, 2006). In addition, the position of Permo-Carboniferous faults in the crystalline basement 

predetermined the location of thrust faults that developed in the Jura belt during the Miocene 

(Laubscher, 1986; Noack, 1995). Since the Late Pliocene, compressional reactivation of these 

basement faults has appeared to control folding in the sedimentary cover, which is very probably 

ongoing at present (Ustaszewski and Schmid, 2006). This “thick-skinned” deformation style is 

also documented by folded Pliocene fluvial gravels in the Ajoie region of eastern France 

(Giamboni et al., 2004a). No sediments have been preserved in the region from the timespan 

between ~10 and 5 Ma.   

 

3.1.3 Previous geomorphological studies on neotectonics in the eastern Jura mountains – Upper 

Rhine Graben area 

A number of studies have used geomorphologic approaches to analyse recent or active tectonic 

deformation in the area of the eastern Jura mountains and the Upper Rhine Graben. Giamboni et 

al. (2004b) inferred ongoing subsidence of the Upper Rhine Graben as well as local uplift at the 

front of the Folded Jura from the analysis of deformed sedimentary terraces and changes in 

drainage patterns. Graf (1993) studied Late Pliocene gravels (~2 Ma) of Alpine origin that lie 
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north of the topographic high formed by the Mandach thrust fault, suggesting that this north-

vergent fault was active in the Pleistocene. Due to their relatively continuous distribution, a 

number of studies have addressed the Late Quaternary cut-and-fill terrace systems of the rivers 

Rhine and Aare (Penck and Brückner, 1909; Wittmann, 1961; Graul, 1962). Haldimann et al. 

(1984) studied the lower Aare river pattern and terrace systems, as well as the morphology of the 

bedrock channel below the Quaternary valley fill, between Aarau and the confluence with the 

Rhine; they suggested a regional tilt to the north in Late Pleistocene and Holocene times. From an 

investigation of the present-day position of the Rhine terraces between Basel and Schaffhausen, 

Verderber (2003) inferred possible vertical tectonic dislocations in the vicinity of the Upper Rhine 

Graben. Together, these analyses demonstrate that evidence of recent tectonic activity can be 

found at several locations in NW Switzerland, but they do not allow conclusions to be drawn 

about the general deformation pattern, mainly because detailed information from the Jura fold-

and-thrust belt itself is missing.  

 

3.1.4 Seismotectonic and geodetic constraints on present-day tectonic activity  

Information on present-day tectonic activity in the study area mainly comes from seismologic and 

geodetic data, which both indicate continuing tectonic deformation (Müller et al., 2002). The 

occurrence of large earthquakes in historical times, such as the 1356 event in Basel with a 

magnitude MW between 6.2 (Lambert et al., 2004) and 6.9 (Fäh et al., 2003), demonstrates the 

ongoing tectonic activity and the potential for destructive earthquakes in this intraplate region. 

Fault plane solutions indicate mainly strike-slip and normal-faulting deformation in the area 

around Basel, where many earthquakes are large enough for calculating a fault plane solution. 

However, there seems to be a change in the predominant faulting style from strike-slip and normal 

to reverse going further west (Figure 2; see also discussion in Chapter 5). Stress inversion of a 

large number of fault plane solutions in NW Switzerland yields a maximum horizontal stress 

direction of approximately SE-NW in the basement (Kastrup et al., 2004), while surficial in-situ 

stress measurements (from a combination of different borehole measurement techniques) carried 

out in the Jura fold-and-thrust belt point to a ca. NNW-SSE directed maximum horizontal stress 

orientation (Becker, 2000). This is in agreement with an observed orientation change of borehole 

breakouts in a borehole that crosses the Triassic detachment horizon (Müller et al., 1987), 

implying a decoupling of the stress field at this boundary. However, this is no proof for ongoing 

decollement processes, as the detachment horizon may be too shallow today to deform in plastic 

style (Ustaszewski and Schmid, 2007), due to uplift and erosion of at least 1 km of sediments in 

the past 5 Ma in the Alpine foreland (Cederbom et al., 2004).  
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Figure 2. Fault plane solutions in the wider study area (Jura mountains, southern Upper Rhine Graben, 
Rhine-Bresse Transfer Zone). Sources: See Chapter 5. 
 

Despite the observed earthquake activity and a relatively dense seismic network, it remains 

difficult to assign the seismicity to individual faults. Active faults have been postulated to belong 

to the Permo-Carboniferous trough system in the crystalline basement (Meyer et al., 1994; 

Ustaszewski and Schmid, 2006), and activity cannot be excluded on the Upper Rhine Graben fault 

system. The most pronounced structure of this NNE-SSW oriented fault system in the study area 

is the so-called Rhine Valley flexure (Figure 1), which represents the southward extension of the 

eastern Main Border Fault of the Upper Rhine Graben. In addition, Ferry et al. (2005) suggested 

recent normal faulting activity on an ESE-dipping fault – the so-called Basel-Reinach fault 

(Figure 1) – based on the interpretation of trench investigations south of the city of Basel.  

Precise levelling measurements over decadal time scales appear to provide some evidence for 

differential relative uplift in NW Switzerland (Schlatter, 2006), although this is fairly equivocal 

due to the low measurement point density. However, levelling points in the Folded Jura seem to 

be uplifted with reference to stations in the Tabular Jura. Maximum rates of this relative 

movement are ca. 0.25 mm/a, i.e. close to the level of uncertainty (Schlatter, 2007; Zippelt and 

Dierks, 2007). Significant subsidence of ca. 0.6 (± 0.15) mm/a was found in the Upper Rhine 

Graben south of Freiburg, relative to a reference point at the Tabular Jura – Black Forest 
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boundary (Zippelt and Dierks, 2007). In contrast, levelling measurements carried out across the 

eastern Main Border Fault of the Upper Rhine Graben in the vicinity of Basel, covering a time 

span of ca. 30 years, could not detect any differential vertical movement above uncertainty 

(Schlatter et al., 2005). GPS measurements, which have been carried out for a maximum of ca. 20 

years, show displacements that are still within uncertainty of the measurement (Rózsa et al., 

2005). 

 

3.2 Geomorphological indicators of tectonic activity  

The shape of the landscape in a tectonically active setting is the result of the competing forces of 

tectonic and surface processes. Tectonic deformation leaves a signal in the shape of the surface, 

which is then subjected to erosional and sedimentary processes. A fingerprint of differential uplift 

can be observed at the surface if the tectonic event was recent enough (or ongoing) in order to not 

be erased by erosion and sedimentation. This approach has also been used quantitatively in the 

study of hillslope distributions (using digital elevation models) to trace tectonically active 

structures (Wobus et al., 2006b). However, a young tectonic signal is often not easy to detect in 

the distribution of hillslope gradients: In areas with high uplift rates, hillslopes have a threshold 

steepness above which the slope morphology is controlled by landsliding processes (Montgomery 

and Brandon, 2002), whereas in areas with low deformation rates the hillslope distribution is often 

dominated by older (and possibly inactive) structures (like inherited folds) and other factors, such 

as resistance to erosion.  

Because of their higher erosive power, rivers are less subject to threshold gradients and to the 

influence of varying erodibility. For this reason, they tend to develop a characteristic longitudinal 

profile where the river gradient continuously decreases with downstream increasing discharge 

(‘concave up‘), all else being equal, as documented in numerous studies (e.g., Mackin (1948); 

Hack (1957). This observation can be explained by a model of stream incision in which the 

erosive power of a stream is a function of the discharge and the slope at any point in the river 

(Leopold et al., 1964; Howard and Kerby, 1983; Tucker and Slingerland, 1996; Whipple and 

Tucker, 1999). A number of variations on this general model have been proposed; for a review, 

see Whipple (2004). 

Rivers are very sensitive to tectonically induced changes (e.g., varying uplift rates) along 

their courses. In steady-state conditions, where rock uplift is balanced by river incision, the form 

of the river profile may contain information on spatial variations in rock uplift rate (Whipple and 

Tucker, 1999; Snyder et al., 2000; Kirby and Whipple, 2001; 2002). Alternatively, in transient 
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conditions when rock uplift and incision rates are not in equilibrium, departures from the expected 

longitudinal river profile can be used to suggest recent or ongoing tectonic activity (Burbank and 

Anderson, 2001; Kirby et al., 2007; Oskin and Burbank, 2007). The fact that rivers are sensitive to 

tectonic forcing and hence are capable of recording spatial variations in rock uplift rates in their 

longitudinal profiles has been demonstrated in experimental studies (Ouchi, 1985) as well as in 

studies on rivers in tectonic settings with known uplift rates (Merritts and Vincent, 1989; Kirby 

and Whipple, 2001; Duvall et al., 2004). 

To quantify departures from the equilibrium profile, we use the observation that stream 

gradient and upstream drainage area at every point along the river can be described by a power-

law function (e.g., Hack, 1973; Flint, 1974; Howard and Kerby, 1983)(Hack, 1973; Flint, 1974; 

Howard and Kerby, 1983): 

 

S = k A-θ           [1] 

 

where S is the slope, A is the upstream drainage area, while k and θ are constants. Drainage area 

is typically assumed to be a proxy for discharge. Although this may not always be the case 

(Huang and Niemann, 2006), it is often a reasonable assumption for the largest part of many 

rivers, apart from their uppermost reaches. 

 

It follows that  

 

log S = ks – θ log A         [2] 

 

with ks = log(k). This relationship plots as a linear correlation between slope and drainage area in 

double-logarithmic diagrams (Figure 3), downstream of some critical drainage area Acr which is 

commonly interpreted as the transition from hillslope or debris-flow to fluvial processes (Dietrich 

et al., 1993; Stock and Dietrich, 2003). The constants ks and θ represent the increment and slope 

of this straight line and are referred to as steepness index and concavity index, respectively. They 

can be calculated by a linear regression and used to compare the complete longitudinal profiles of 

different rivers as well as different segments of a single river. The value of θ mainly reflects the 

characteristics of basin hydrology and the dominant erosion process, while ks is influenced by 

rock strength, channel bed material, runoff, and sediment load (Whipple and Tucker, 1999; 

Snyder et al., 2000).  For an in-depth description of this method, as well as for field examples, see 

Snyder et al. (2000), Kirby et al. (2003), and Wobus et al. (2006a). 
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Figure 3. Linear double-logarithmic relation between slope and catchment area for the Etzgerbach (river 

38, Table 1). Slope and area values are re-sampled using a moving window over a constant vertical interval 

of 10 m; area values are normalised by the median catchment size Ar.  

 

While river longitudinal profiles and the concept of stream gradients decreasing downstream have 

been used to infer tectonic deformation for many years (Hack, 1973; Merritts and Vincent, 1989), 

slope-area investigations have only recently gained importance due to the increasing availability 

and higher accuracy of digital elevation models with a reasonable resolution (for a notable 

exception see Howard and Kerby (1983)). A major advantage of this approch is that changes in 

channel slope that may occur at river confluences, due to the corresponding increase in runoff, are 

not considered in the analysis, in contrast to studies that compare channel slope and river length. 

Whereas a number of analyses have been carried out in the Himalayas and California, where high 

(relative) uplift rates prevail, only few studies have investigated slope-area relations in intraplate, 

low-deformation rate settings (e.g., Marple and Talwani, 2000). 

Small-scale erodibility variations along the river course due to lithological changes in a 

geologically complex area could be expected to introduce a large amount of non-tectonic 

disturbances into the slope-area distribution. However, if the steepness and concavity indices are 

calculated over the whole length of the rivers, and if the widths of the different lithologies that are 

crossed by the river are very short compared to the total length of the river, we can assume that 

most of these variations will be averaged out in the regression. To determine if this assumption is 

valid also for the analysis of river segments, we combined our slope-area investigations with the 

available lithological information from geological maps and field observations.  

Another possible factor causing deviations from equilibrium conditions are past climatic 

changes. The northern Alpine foreland has experienced approximately 26 changes from a cool to 

a warm climate and back during the last 2.6 Ma (Müller et al., 2002). The influence of these 
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variations on river profiles has been recently investigated by Carretier et al. (2006), who modelled 

the effect of different climatic variations on river profiles featuring knickpoints in the southern 

Upper Rhine Graben. They showed that a) the amplitudes of the climatically-induced model 

knickpoints were much smaller than those observed in the field, and b) the response time of the 

system to climatic oscillations is greater than the oscillation wavelength. From this we conclude 

that the effect of climatic changes on the shape of the river profiles we see today is negligible in 

the study area.  

 

3.3 Methodology 

We examined 50 rivers in the eastern Jura mountains and the adjoining southern Upper Rhine 

Graben (Figure 4), focussing on spatial patterns in the steepness and concavity index distributions. 

Our analysis is based on the information in a (mainly) contour-line derived digital elevation model 

(DEM) with a cell size of 25 m and a mean vertical accuracy of 2 m (DTM25, Swisstopo). After 

removing internal hydrological sinks (i.e., artefacts resulting from inaccuracies in the data) the 

flow paths were constructed using built-in flow-direction, flow-accumulation and flow-length 

procedures in a GIS (Geographic Information system). Rivers were selected for our analysis if 

they had a minimum length of 3 km and if their courses showed no significant anthropogenic 

influence, such as dams or diversion, which are common due to the intensive use of the area. 

Trunk streams were defined following the maximum flowlength (distance to the drainage divide) 

from a chosen starting point. For each river, an individual point dataset was created containing 

altitude, upstream drainage area and distance to the drainage divide, with points every 25 to 35 m. 

The starting point of each river was set at a minimum drainage area of 100 cells (62500 m2).  

To assess the quality of these automatically derived data, they were compared with the plan-view 

river courses on 1:25000 topographic maps and, in a few cases, with longitudinal profiles 

determined from the contour lines on 1:10’000 topographic maps (Figure 5). Field investigations 

yielded additional information on the accuracy of the data. Fit to the map-view river course  

was generally very good, while the longitudinal profile derived from the DEM in some cases did 

not fully capture the incision of very small channels (see Figure 5). A significant difference 

between the automatically derived river course and the one given by the topographic map 

occurred in one case (river No 41). For river No 19 the procedure did not yield a representative 

longitudinal profile because of the occurrence of karst in the drainage basin. The channel slope 

was calculated using elevation and distance over three cells. For the calculation of the concavity 

and steepness indices over the whole length of the rivers, the longitudinal profiles were smoothed 

by re-sampling to a constant vertical interval of 10 m, in order to avoid any bias related to the  
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Figure 4: Overview of the studied rivers, with the 25 m DEM shaded relief as background. For river details 
see Table 1. Reproduced by permission of swisstopo (BA081777).  

 
vertically irregular data point distribution, as well as to eliminate small errors in the digital 

elevation model and other minor discrepancies from the true river course (e.g., bridges). For a 

more extensive discussion of different smoothing methods, see Wobus et al. (2006a). The effect 

of DEM resolution on different drainage basin characteristics was analysed by Hancock (2005). 

His results suggest that while some detail in the slope-area relationship is lost with increasing cell 

size of the digital elevation model, the slope of the straight portion of the regression line 

essentially remains the same; however, the intercept seems to be systematically lower at larger 

cell sizes. This implies that for a purely comparative use of the indices, it is not necessary to work 

with higher-resolution data. 

In a first step, we calculated the steepness index and the concavity index for each river in a 

linear regression, determining both variables at the same time, and we analysed their spatial 

distribution. In order to remove the scale dependence from the slope-area relation given in 

equation [1] (Sklar and Dietrich, 1998), we normalised the area data by the median catchment size 

Ar (=1.4x106 m2), thus using the new equation 

 

S = SR * (A/Ar)-θ          [3] 
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Figure 5: Comparison of the longitudinal profile of the Lolibach (river 14, Table 1) derived from the 25 m 
digital elevation model and a 1:10’000 topographic map (10 m contours). Note the generally excellent 
agreement, except for the lowermost reaches of the profile where the river flows through a narrow gorge. 

 

and calculating SR instead of ks (SR = increment of the straight line in this relation). Other studies 

have demonstrated that the results from this method are comparable to those obtained by 

calculating ks using a fixed value for θ to remove the interdependence (e.g., Snyder et al., 2000; 

Kirby et al., 2003). 

In a second step, the steepness and concavity index distributions were analysed in more 

detail. For that purpose, the rivers were divided into segments of 1 km length. In order to calculate 

the steepness index for such segments, the data could no longer be smoothed using constant 

vertical intervals because of the small number of data points within each segment. Hence, in this 

case, the data were subjected to a procedure that removed small-scale peaks in the longitudinal 

profile. Instead of normalising the area data by a common reference area we used a fixed θ, 

corresponding to the regional mean of the free regression; this makes the steepness indices ks of 

the segments comparable. Note that the segments were arbitrarily defined as 1 km long, without 

previous analysis of the longitudinal profiles and the location of potential irregularities.  

 

3.4 Results 

Figures 6 and 7 show the steepness indices (SR) and concavity indices (θ) resulting from the free-

fit calculation using data over the entire length of the river courses. All values are listed in Table 1.  
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Figure 6: Map with steepness index SR for entire river courses (yellow: 0-0.035, light blue: 0.035-0.055, 
dark blue: 0.055-0.113). High steepness indices are mainly found in rivers originating in the Jura fold-and-
thrust belt, whereas low steepness indices concentrate in the Upper Rhine Graben. Numbers refer to Table 1. 

 

 

Figure 7: Map with concavity index θ for entire river courses (green: 0-0.3, blue: 0.3-0.5, purple: 0.5-
0.9273). No systematic spatial distribution is found for the concavity indices in the study area. Numbers 
refer to Table 1. 
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ID river name concavity index 

(entire river) 
steepness index 
(entire river) 

variations of 
ks for segments 

comments 

      
      
1 Feldbach 0.567 0.031 small  
2 Geischbach 0.645 0.037 small  
3 Ill 0.372 0.025 small  
4 Thalbach 0.313 0.020 small  
5 Lertzbach 0.573 0.033 small  
6 Binnbach 0.469 0.058 large variation can be explained by lithol. effects 
7 Dittingerbach 0.412 0.078 small  
8 Gabiare 0.445 0.082 large partly explained by lithological effects 
9 Scheltenbach 0.421 0.083 small  
10 Wahle 0.584 0.066 small  
11 Lüssel 0.506 0.087 large  
12 Ibach 0.393 0.090 large  
13 Chastelbach 0.012 0.064 large  
14 Lolibach 0.325 0.084 small  
15 Arlesheimerbach 0.506 0.082 large  
16 Gretlibach 0.927 0.017 small  
17 Arisdörferbach 0.546 0.048 small  
18 Rösernbach 0.464 0.060 small  
19 Orisbach 0.797 0.098 large karst in upper part of catchment 
20 Hintere Frenke 0.704 0.113 large  
21 Vordere Frenke 0.432 0.067 large  
22 Buechhalden 0.155 0.059 small  
23 Talbächli 0.499 0.057 small  
24 Diegterbach 0.532 0.080 small  
25 Homburgerbach 0.460 0.057 small  
26 Eibach 0.436 0.059 large  
27 Ergolz 0.540 0.059 small  
28 Duebach 0.682 0.051 small  
29 Hemmiker 0.494 0.037 small  
30 Rickebächli 0.630 0.051 small  
31 Magdenerbach 0.368 0.044 large  
32 Fischingerbach 0.372 0.055 large  
33 Bruggbach 0.531 0.070 small  
34 Dorfbach (Sissle) 0.519 0.066 small  
35 No 35 0.396 0.044 small  
36 Zeiherbach 0.521 0.048 small  
37 Sulzerbach 0.393 0.047 small  
38 Etzgerbach 0.473 0.045 small  
39 Schmittenbach 0.415 0.035 small  
40 Talbach 0.513 0.054 small  
41 Aabach 0.515 0.075 large artefact from dem 
42 Erzbach 0.512 0.082 large  
43 Stüssliger 0.556 0.064 small  
44 Dorfbach 0.425 0.080 small  
45 No 45 0.255 0.102 small  
46 No 46 0.303 0.094 small  
47 Cholersbach 0.137 0.089 large explained by lithological effects 
48 Augstbach 0.273 0.064 large explained by landslide effects 
49 Limmerenbach 0.331 0.099 small  
50 Mümliswilerbach 0.548 0.088 large explained by landslide effects 
      
 range 0.012 – 0.927 0.017 – 0.130   
 arithmethic mean 0.464 0.064   
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The SR values vary from 0.017 to 0.113, around an arithmetic mean of 0.064. The geographic 

distribution shows that the rivers can be roughly divided into three groups (Figure 6). Rivers 

originating in the main part of the Folded Jura and from the Gempen Plateau (e.g. No 15) show 

the highest steepness values (SR > 0.055). Rivers in the Tabular Jura and the easternmost Folded 

Jura have lower steepness values, mostly between 0.035 and 0.055, while rivers in the Upper 

Rhine Graben and the outermost Folded Jura have the lowest values (SR < 0.035). Length and 

orientation of the river courses do not seem to have a significant effect on SR (Figures 6 & 9).  

The concavity values (θ) show a mean of 0.464 ±0.157 (1 s.d.), which is in good agreement with 

the values determined in other studies (Snyder et al., 2000; Densmore et al., 2007), but display a 

very wide range from 0.012 to 0.927. This range reflects the occurrence of highly concave rivers 

as well as rivers with markedly convex reaches (ie, downstream increasing gradient; see 

Appendix). As Figure 7 demonstrates, their variations do not depend systematically on either the 

location or the orientation of the rivers, nor is there any correlation between concavity index and 

river length. However, the scatter around the arithmetic mean decreases with increasing river 

length (Figure 10). 

The steepness indices ks for river segments of 1 km length were calculated with a constant 

concavity index corresponding to the mean value of all rivers (0.46). ks values for segments cover 

a range from 5.1 to 234.7. Each segment was assigned to one of the following classes of ks: 0 – 

30, 30 – 60, 60 – 90, and 90 – 235 (Figure 8). Grouping the rivers according to their geographic 

position as before, we see that the rivers in the Upper Rhine Graben group (rivers No 1, 2, 3, 4, 5, 

16) show consistently low steepness values apart from some small irregularities (mean ks of these 

rivers = 21). The rivers in the Tabular Jura group display slightly higher values, mostly up to ks = 

50 (mean ks of these rivers = 30). Interestingly, the lowermost reaches of some of the rivers 

flowing into the Rhine have particularly high ks values, the highest in this group (rivers No 31, 32, 

37). The highest ks values and also the highest variations along an individual river are found in the 

rivers of the Folded Jura group (mean ks of these rivers = 45). Some of these rivers show very 

large variations along their course, covering all four ks classes. 

Large steepness index variations along a river may either be the result of (local or regional) 

tectonic acitivity, lithological changes inducing erodibility variations, or local base-level control. 

To investigate the effect of lithologic variations along the river courses, we performed a closer 

examination of all 16 rivers whose segments fall into at least three of the classes defined above  

______________________________________________________________________________  

Table 1 (opposite): Concavity and steepness indices for the free-fit calculation of the entire rivers, and the 
variation of the segment-wise steepness index values (see text). 
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(“large” variation of ks in Tab. 1). This corresponds to a downstream variation in ks of at least 30 

over the length of a river and includes all rivers with very high-ks segments (90 – 235). 

Lithological variations were studied using geological maps and field observations. The lithologies 

occurring in the study area show large differences in erodibility. Typical lithologies with high 

erosional resistivity are oolitic limestones, whereas marls have moderate resistivity and clays and 

evaporites have low resistivity.  

The results of this analysis showed that the ks variations of three rivers (No 6, 8, and 47) can 

easily be explained by erodibility contrasts and are therefore not interpreted as a sign for 

neotectonic activity (see Table 1). Two rivers are apparently affected by landslide processes that 

locally influence their longitudinal profiles (No 48 and 50). However, neither erodibility contrasts 

nor landslides were found to explain irregularities of the other 11 rivers in our analysis. Therefore, 

we assume that lithological variations play a minor role in determining the spatial pattern of ks 

variations across the study area. 

 

3.5 Discussion 

The steepness index values (SR) for the entire river lengths allow us to divide the study area into 

three distinct regions with relatively uniform SR values (Figure 6). These three regions roughly 

correspond to the three main tectonic units in the area – the Upper Rhine Graben, the Folded Jura 

and the Tabular Jura. More specifically, the rivers from the Tabular Jura  have  higher SR values 

than those from within the Upper Rhine Graben, and the SR values of rivers in the Folded Jura are 

higher than those in the other two groups.  

A changing steepness index SR has been shown to correspond to changing uplift rates in a 

number of studies (Snyder et al., 2000; Kirby et al., 2003). However, at the basin scale SR 

essentially describes the ratio of relief to river length, and hence different SR values do not 

necessarily point to ongoing differential uplift. In the case of the rivers flowing from the Folded 

Jura into the Rhine, the high relief could be a feature inherited from the Miocene-Pliocene Jura 

folding activity and have nothing to do with recent uplift relative to the Tabular Jura; the higher 

SR values in the Tabular Jura could simply be an effect of the relief resulting from earlier 

uplift/subsidence events and would now be at equilibrium.  

However, arguments supporting the hypothesis of ongoing differential uplift are the long time 

period since the end of the main phase of detachment tectonics at ca. 5 Ma (Ustaszewski and 

Schmid, 2006) and the spatial pattern of the steepness index ks, calculated over segments of 1 km 

(Figure 8). The ks values are consistently higher in the Folded Jura compared to the Tabular Jura, 

where they are again higher compared to the Upper Rhine Graben. In particular, some of the  
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Figure 8: Map with steepness index ks (constant θ) for segments of 1km length. The segments with the 
highest values (red) all lie within the Jura fold-and-thrust belt. Numbers refer to Table 1. 
 

Rhine tributaries from the Tabular Jura steepen in their lowermost reaches before flowing into the 

Rhine, and have correspondingly high ks values there (e.g., rivers No 31 and 32). We interpret this 

as a response to incision of the Rhine into the Tabular Jura due to recent subsidence of the Upper 

Rhine Graben. Incision of the Rhine and Aare upstream from the Upper Rhine Graben is also 

evidenced by 1) the system of erosional terraces formed in the past ca. 20 ka (Low Terrace 

Gravels, Bitterli et al. (2000)), and 2) the fact that bedrock is exposed at various places on the 

Rhine river bed between Basel and the Aare confluence (Isler et al., 1984). From this we conclude 

that the higher SR values in the Tabular Jura and the Folded Jura, when compared to those in the 

Upper Rhine Graben, are at least partly an effect of ongoing subsidence of the Upper Rhine 

Graben and resulting incision of the Rhine and Aare.  

The fact that the rivers from the Folded Jura have systematically higher steepness index 

values (SR) than those from the Tabular Jura – despite the fact that they cross more or less the 

same lithologies – seems to imply that the Folded Jura is also being uplifted relative to the 

Tabular Jura. Again this is supported by the irregular distribution of the steepness index ks, which 

indicates that these rivers are not in equilibrium, and that their high SR values are not simply a 

result of the topography resulting from pre-Quaternary tectonic events.  The reaches with the 

highest ks values are located within the Folded Jura, suggesting recent uplift of the Folded Jura  
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Figure 9: Steepness index SR vs. river length. No correlation between steepness indices and the length of 
the studied rivers is observed. 
 

 

Figure 10: Concavity index θ vs. river length. Note larger θ values for short rivers. 
 

area relative to the Tabular Jura.   

This interpretation is compatible with the results of precision levelling measurements carried 

out over the past ca. 100 years (Schlatter, 2007; Zippelt and Dierks, 2007). These data indicate 

uplift in the Folded Jura relative to the Tabular Jura of ca. 0.25 mm/a as well as minor subsidence 

in the southern Upper Rhine Graben, although the values for the latter are not significant. Recent 

(post-Pliocene) subsidence in the southern Upper Rhine Graben is, however, also evidenced by 

the terrace systems of rivers flowing from the Sundgau area north into the Upper Rhine Graben 

(Giamboni et al., 2004b), thus supporting our interpretation. In addition, it is compatible with 

earthquake focal mechanisms, which point to pure and oblique normal faulting activity along 

Rhine Graben-related faults.   

Geomorphological and geological studies at the front of the Jura fold-and-thrust belt have 

yielded relative uplift rates of ca. 0.05 mm/a (Ustaszewski and Schmid, 2007; Giamboni et al., 
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2004b), comparable to the rates determined by geodetic measurements. Assuming that (long-term) 

relative uplift rates are in the same order of magnitude, and average erosion rates ca. 0.1 mm/a 

(Carretier et al., 2006), a tectonic signal should be visible in the river profiles after a few tens to 

hundreds of thousands of years, although tectonic deformation rates are probably not uniform, and 

erosion rates are expected to vary during climatic cycles. Estimating response times of rivers is, 

however, not straightforward (Whipple and Tucker, 1999), and in order to better constrain the 

time frame covered by the stream gradient analysis it would be necessary to model the erosion and 

tectonic influence on the river systems using varying parameter sets.  

Interestingly, the concavity index θ shows a very irregular spatial distribution (Figure 7). 

Rivers with high and low concavities occur in all three groups  defined by the steepness index SR. 

The large scatter of both the steepness and concavity indices is also remarkable. While there 

seems to be no trend for the steepness index with river length, the scatter of the concavity index is 

largest for short rivers and decreases with river length (Figure 10). This indicates that the analysis 

of rivers below a certain length might not yield useful results. The fact that short rivers show a 

greater variability in the concavity index might be explained by the fact that these rivers are too 

small to average out changing lithologies. 

Comparison of the resulting stream gradient pattern with field data revealed that it is difficult 

to assign the discussed irregularities of the river profiles to specific tectonic structures. In the west 

of the study area, where the structures of the Folded Jura and Upper Rhine Graben-related faults 

interfere more strongly, our data suggest that a boundary between two tectonic units with different 

uplift rates runs along the Rhine Valley flexure before turning west, following the Blauen 

anticline. In addition, the river Birs has a tendency to run at the eastern side of its valley south of 

Basel, compatible with ongoing normal faulting along the Rhine Valley flexure. But despite the 

distinct morphological expression of this structure, it does not seem to accommodate any 

substantial offset resulting from recent subsidence of the Upper Rhine Graben for a number of 

reasons. Whereas there is a concentration of earthquake epicentres along the eastern Main Border 

Fault north of Basel, no increased earthquake activity can be observed in its southern continuation 

(Bonjer, 1997). Although a drop in outcrop elevation of the Mid-Pleistocene Lower Cover 

Gravels across the Rhine Valley flexure is indicative of normal faulting, the well-preserved Late 

Quaternary terrace surfaces (Low Terrace Gravels) of the Rhine do not record a noticable change 

in gradient where they cross this structure (Kock et al., in prep.), as would be expected for an 

active normal fault. Moreover, the varying thickness of the Quaternary sediment fill in the Upper 

Rhine Graben indicates that subsidence has been largest to the southwest of the Kaiserstuhl 

volcanic complex, at some distance from the Graben boundary, in the Quaternary (Bartz, 1974). 
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The cut-and-fill terraces of the Rhine accordingly continue across the Rhine Valley flexure and 

into the Upper Rhine Graben before they end and give way to a normal sedimentary sequence 

(Wittmann, 1961). Significantly, the river Birs has also created a system of cut-and-fill terraces 

after the Würm glacial at ca. 10 ka (Bitterli-Brunner et al., 1984). It therefore seems more 

plausible that subsidence-related deformation is distributed on several tectonic structures and not 

necessarily on the exact prolongation of the eastern Main Border Fault of the Upper Rhine 

Graben. Normal faulting on the western side of the Birs valley (Basel-Reinach fault) is not 

supported by our results. However, only one short river could be analysed in this area due to the 

low-relief topography and the high population density.  

In the eastern part of the study area, the boundary between the “Tabular Jura” rivers and the 

“Folded Jura” rivers, as determined from the SR distribution, does not exactly follow the boundary 

between the autochthonous and the thrusted Mesozoic. For instance, three rivers from the Gempen 

Plateau, which is part of the Tabular Jura (Figure 4), fall into one category with the rivers from the 

Folded Jura with respect to their steepness index values (note that river No 45 is not included in 

the interpretation because of karst in its drainage basin). On the other hand, a few rivers that 

originate in the easternmost parts of the fold-and-thrust belt have SR values corresponding to the 

majority of rivers from the Tabular Jura. This indicates that detachment tectonics, i.e. ongoing 

thin-skinned deformation of the Jura fold-and-thrust belt, cannot explain observed steepness index 

pattern. Moreover, according to fission track cooling ages in the Molasse Basin, at least 1 km of 

sediments was eroded in this area in the Pliocene-Pleistocene (Cederbom et al., 2004). We 

therefore suspect that compressive stresses might not be transmitted from the Alps to the Jura 

mountains anymore because of the missing sedimentary wedge in the Molasse Basin, and that the 

evaporitic detachment layer might be too shallow today to deform in a plastic style. 

 The differential uplift inferred from our data might instead be related to the (transpressional) 

reactivation of basement faults in the area of the Late Paleozoic Trough system, similarly to the 

observations at the front of the Folded Jura to the west of Basel. There, the ENE-WSW-trending 

faults of the Permo-Carboniferous troughs in the crystalline basement seem to have been 

transpressionally reactivated (Giamboni et al., 2004a; Madritsch et al., 2008). Further to the east, 

no such reactivation has been observed so far, but the trough system is known to continue to the 

east, passing underneath the easternmost Jura mountains (Diebold and Noack, 1996; Ustaszewski 

et al., 2005). A compressional reactivation of ENE-WSW trending basement faults would be in 

agreement with the NW-SE maximum principal stress direction in the basement, determined from 

earthquake focal mechanisms (Kastrup et al., 2004) and borehole breakouts (Becker, 2000). 

However, seismological data show that the predominant faulting mechanisms are normal and 
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strike-slip faulting; therefore, any appreciable thrust faulting along these ENE-WSW trending 

basement faults would have to be accommodated by an aseismic process.  

 

3.6 Conclusions 

It was the main motivation of this study to better characterise the recent tectonic deformation 

pattern in the eastern Jura fold-and-thrust belt and adjacent areas, which was hitherto poorly 

constrained. Calculating steepness and concavity indices for 50 rivers from a digital elevation 

model allowed us to divide the area into three parts, each subject to a different relative uplift rate. 

Based on the spatial pattern of the steepness index for the entire rivers, SR, and the steepness 

index for segments of 1 km length, ks, the following distribution of (vertical) tectonic deformation 

is suggested: One part of the study area that roughly corresponds to the Jura fold-and-thrust belt is 

uplifted relative to the Tabular Jura, probably as a result of the reactivation of faults in the 

underlying basement, which is, however, not visible in the available earthquake focal 

mechanisms. At the same time, ongoing subsidence of the Upper Rhine Graben causes incision 

and, partly, local steepening of upstream rivers. This interpretation is in agreement with the 

expected deformation style in a stress regime with a N-S to NW-SE oriented maximum principle 

stress axis, as indicated by earthquake focal mechanisms (Kastrup et al., 2004). It is also in 

accordance with the observed inversion of Late Paleozoic basement faults at the southern 

boundary of the Upper Rhine Graben (Giamboni et al., 2004a; Ustaszewski and Schmid, 2006), 

and at the north-western front of the Jura fold-and-thrust belt (Madritsch et al., 2008), in the 

Pliocene and Pleistocene. Our method does, however, not allow us to confidently determine any 

active faults or folds along which deformation is concentrated. As suggested by the results of 

geodetic measurements, the deformation rates in NW Switzerland appear to be very low (< 0.5 

mm/a), which is probably one reason why active faulting is difficult to detect. In addition, our 

results suggest that vertical displacement in this area is distributed over many faults, which further 

impedes the identification of active structures, thus highlighting the importance of inherited fault 

systems on the present-day deformation pattern.  

Furthermore, our results imply that short rivers should be used with caution in stream 

gradient analyses, as their stream power might be too low for them to adjust to alongstream 

lithological variations. The minimum length of rivers that should be included in the analysis will 

probably depend on the scale of the erodibility changes. We suggest that the steepness index for 

the entire river may be the best indicator to gain information about the recent tectonic history, 

since it is less likely to be affected by changing erodibilities along the river courses. 
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Appendix 
 

Longitudinal river profiles of all 50 rivers in this study (smoothed) and slope-area distribution (re-
sampled). Coordinates are for the drainage system outlet. 
 
 
 
1 Feldbach (585 374 / 267 897) 

 

2 Geischbach (589 445 / 267 827) 

 

3 Ill (585 993 / 271 206) 
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4 Thalbach (587 190 / 275 802) 

   

5 Lertzbach (610 858 / 270 935) 

   

6 Binnbach (608 518 / 261 557) 

   

7 Dittingerbach (605 451 / 253 240) 
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8 Gabiare (594 243 / 246 285) 

   

9 Scheltenbach (599 597 / 244 115) 

  

10 Wahle (604 669 / 251 557) 

   

11 Lüssel (606 499 / 253 830) 
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12 Ibach (609 823 / 254 790) 

    

13 Chastelbach (610 826 / 254 246) 

  

14 Lolibach (612 474 / 257 979) 

    

15 Arlesheimerbach (612 624 / 261 550) 
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16 Gretlibach (613 520 / 262 148) 

   

17 Arisdörferbach (621 150 / 265 330) 

  

18 Rösernbach (621 775 / 260 173) 

 

19 Orisbach (622 325 / 259 704) 
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20 Hintere Frenke (622 300 / 256 551) 

  

21 Vordere Frenke (623 176 / 258 897) 

      

22 Buechhalden (625 480 / 257 830) 

 

23 Talbächli (626 151 / 257 678) 
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24 Diegterbach (628 990 / 257 394) 

   

25 Homburgerbach (629 980 / 256 999) 

    

26 Eibach (620 650 / 265 384) 

     

27 Ergolz (631 270 / 257 353) 
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28 Duebach (635 779 / 256 826) 

    

29 Hemmiker (632 890 / 257 626) 

   

30 Rickebächli (631 920 / 257 299) 

    

31 Magdenerbach (626 724 / 267 379) 
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32 Fischingerbach (636 422 / 266 335) 

    

33 Bruggbach (640 990 / 267 202) 

       

34 Dorfbach (Sissle) (641 573 / 259 625) 

   

35 No 35 (643 844 / 262 251) 
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36 Zeiherbach (646 300 / 261 579) 

 

37 Sulzerbach (648 871 / 267 554) 

      

38 Etzgerbach (650 710 / 269 252) 

   

39 Schmittenbach (659 397 / 264 426) 
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40 Talbach (654 263 / 255 810) 

      

41 Aabach (647 399 / 251 720) 

   

42 Erzbach (643 855 / 248 976) 

    

43 Stüssliger (639 626 / 246 154) 
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44 Dorfbach (635 404 / 245 473) 

    

45 No 45 (632 668 / 243 503) 

      

46 No 46 (632 151 / 243 510) 

   

47 Cholersbach (630 775 / 241 972) 
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48 Augstbach (620 493 / 241 240) 

   

49 Limmerenbach (620 490 / 243 296) 

  

50 Mümliswilerbach (618 815 / 239 696) 
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Chapter 4 
 

Neotectonic activity in NW Switzerland: Evidence from the 
study of Late Quaternary alluvial terraces of the river Aare 
 

 

4.1 Introduction 

The geology of the subsurface of the Swiss Molasse basin in the northern Alpine foreland is being 

intensively studied as a potential site for the safe disposal of nuclear waste by Nagra (National 

Cooperative for the Disposal of Radioactive Waste). In particular, the Lower Jurassic Opalinuston 

formation appears to represent a suitable lithology due to its extremely low hydraulic conductivity 

(Croisé et al., 2004), and because it occurs at favourable depths for a nuclear-waste repository. 

Since the host rock of a waster repository should also be tectonically stable to minimise the hazard 

that the conatiners are exposed to, it is essential to know the tectonic activity in this area, in 

particular during the Quaternary (neotectonics) – quite aside from the immediate earthquake 

hazard this activity poses for the population.  

Tectonically, the northern Alpine foreland is relatively stable today. The main tectonic events 

that have affected the region are, apart from the Alpine orogeny, the formation of the Upper Rhine 

Graben in the Paleogene (Ziegler, 1992) and the formation of the Jura fold-and-thrust belt in the 

Late Miocene (Burkhard, 1990) (Figure 1). Compressional deformation has been shown to be 

active in the southern Upper Rhine Graben west of Basel (Giamboni et al., 2004a), but the style of 

deformation seems to have changed from mostly thin-skinned (only affecting the sedimentary 

cover) to the reactivation of basement faults in the Late Pliocene (Ustaszewski and Schmid, 

2007). The present-day stress field is consistent with ca. NW-SE oriented compression in the 

crystalline basement (Müller et al., 2002; Kastrup et al., 2004), and ca. N-S oriented compression 

in the sedimentary cover (Becker, 2000). In general, tectonic deformation rates are very low, and 

it is therefore difficult to detect active structures. Geodetic measurements suggest gentle uplift in 

the area of the Folded Jura relative to a reference point at Laufenburg (Müller et al., 2002; 

Schlatter, 2006). Recent tectonic activity in the easternmost Jura mountains has not yet been 

substantiated (Müller et al., 2002), even though moderate earthquake activity is recorded 

(Deichmann et al., 2000).  
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Figure 1: Main tectonic units and drainage system in the Aare valley area, central northern Switzerland. 
 

 
Figure 2: Shaded-relief map (DHM25, swisstopo) with occurrences of the Low Terrace gravels in the study 
area of the lower Aare valley, between Olten and Koblenz. Reproduced by permission of swisstopo 
(BA081622).  
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If the area of central northern Switzerland was tectonically active in the past 2 Ma, this 

should be visible in the deformation of the Quaternary fluvial terraces of the river Aare, which 

crosses the Jura fold-and-thrust belt in its lower reaches (Figure 2). A fluvial terrace forms when 

the aggradational river bed is abandoned due to incision of the river (Merritts et al., 1994). If this 

happens repeatedly, a terrace system with a series of abandoned surfaces develops, as is the case 

with the Aare river. These terraces, which are initially approximately planar features with 

submeter to meter scale topography, would be expected to represent ideal markers that record 

tectonic deformation within the Jura fold-and-thrust belt.  

The lower Aare valley has already been studied by Haldimann et al. (1984), who focused on 

a longitudinal profile of the terraces and the analysis of the bedrock channel below the Quaternary 

valley fill to detect recent tectonic activity. In the meantime, a new high-resolution digital 

elevation model has been produced (Swisstopo, 2007), which obviously contains a large amount 

of additional morphological information. The aim of this study is to analyse these elevation data 

for the effects of tectonic deformation on the morphological terraces of the lower Aare valley 

between Aarau and Koblenz. In addition, the results are compared to those of the previous Nagra 

study by Haldimann et al. (1984), as well as to new precise levelling data (Zippelt and Dierks, 

2007). Moreover, the usefulness of the additional topographic information in a high-resolution 

digital elevation model is evaluated. 

 

4.2 Tectonic Geomorphology 

The landscape in a tectonically active area is the result of the interaction of tectonic and surface 

processes (Burbank and Anderson, 2001). When tectonic activity causes vertical and horizontal 

rock movements, the resulting topography is subjected to erosional and depositional processes. In 

turn, erosion and deposition can also affect tectonic processes (e.g., enhanced uplift due to 

erosional unloading; Montgomery, 1994; Simpson, 2004) .  

Tectonic geomorphology is the study of the interactions between tectonic and surface 

processes. A wide variety of geomorphic features, such as mountain front morphology, valley 

shapes, and drainage patterns, store information about past or ongoing tectonic movements 

(Burbank and Anderson, 2001; Keller and Pinter, 2002). Of particular interest are features that can 

be used as markers to track tectonic deformation, and quantify deformation rates provided their 

age is given. A marker can be any feature for which the original geometry is known. For instance, 

originally horizontal shorelines can evidence tectonic deformation if they are tilted or warped 

today (Adams et al., 1999). Similarly, river channels and terraces can be used as geomorphic 

markers, even though they are not originally horizontal. When a river is not affected by tectonic 
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deformation, or other external influences (such as landslides, lithological changes or confluences), 

it tends to develop a typical gradient continuously decreasing downstream (“equilibrium profile”, 

e.g., Hack, 1957). If only a relatively short part of the river far away from the source is analysed, 

the equilibrium profile can roughly be approximated as a straight line. A deviation from this shape 

can, therefore, be an indicator for tectonic activity (Burbank and Anderson, 2001; Kirby et al., 

2007).  

Apart from the active river channel, river terraces can also record tectonic deformation. 

Fluvial terraces represent a former river bed that has been abandoned due to downcutting of the 

river into its own sediments or a bedrock channel. Assuming that the river was in equilibrium at 

the time the terrace formed, the same considerations concerning river profiles can also be applied 

to river terraces. It has to be kept in mind that the formation of fluvial terraces itself can be an 

effect of tectonically induced base-level fall.  

Since terraces above the active channel are no longer directly influenced by the river, they 

can accumulate tectonic deformation over time since they became abandoned (Merritts et al., 

1994). Moreover, if a number of terrace levels have been preserved, systematic differences in 

terrace shape between these levels can point to progressive tectonic deformation.  

Apart from the shape of the longitudinal profile, other characteristics of terrace morphology 

and river geometry can be used to infer tectonic activity, including stream pattern changes and 

lateral movement of the channel. Possible effects of different tectonic deformation styles on rivers 

and terraces are summarised in the following, based on the detailed descriptions by Burbank and 

Anderson  (2001), Keller and Pinter (2002) and Holbrook and Schumm (1999). 

 

A   Effects of vertical deformation (normal faulting, reverse faulting, folding) 

Aggradation/Degradation: The vertical deformation associated with many tectonic processes 

causes the river gradient to increase or decrease in the vicinity of the fault or fold. This leads 

to locally enhanced erosion and deposition, respectively (Figure 3a). 

Knickpoints: A knickpoint in a longitudinal river profile marks the sudden transition from a 

low gradient upstream to a higher gradient downstream. Knickpoints can propagate upstream 

due to continuous erosion.  

Surface faulting of terraces: A fault that reaches the surface can be evident by offsetting 

terrace treads and risers. Continuous faulting leads to a larger offset on older terraces. 

Discontinuous terraces can be difficult to correlate without absolute surface ages. If, however, 

terrace surface ages are available, even slip rates on the fault can be determined. 
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a      
 

 

b      
 

 
 

d    
 

 

c    
 
Figure 3: Possible effects of tectonic activity on river courses and terraces. a) Knickpoint generation at a 
fault, leading to aggradation and degradation. b) Warped terraces resulting from locally enhanced uplift. c) 
Tilting of terraces in the flow direction due to differential regional uplift. d) Lateral channel movement as 
an effect of regional tilting.  

 

 

Warped terraces: If a terrace system crosses a fold or blind fault, the local deformation can 

cause warping of the terraces. Over time, continuing deformation is recorded by the terraces, 

with older terraces accumulating more deformation than younger ones (Figure 3b). 

Changing river patterns: The differential vertical displacement associated with tectonic 

deformation sometimes leads to a change in sinuosity across the structure. This increases or 

decreases the channel length, compensating for the change in gradient. Similarly, the river 

pattern (braided, straight, meandering, or anastomosing) may change in the area of varying 

uplift.   

Deflected river courses: If a stream encounters a zone of increased uplift and does not have 

sufficient erosional power to maintain its course, its path will be deflected around the 

structure, for instance, a propagating anticline (or into a zone of subsidence).  
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B   Effects of strike-slip deformation 

Surface faulting of terraces: Analogous to normal or thrust faults, terrace surfaces and risers 

can be used as markers recording offset by strike-slip faults. Again, surface (or deposition) 

ages may allow determination of deformation rates.  

Offset river courses / beheaded rivers: When a stream crosses an active strike-slip fault, its 

downstream reaches are offset relative to the reaches upstream from the fault. This will result 

in increased lateral erosion and an asymmetric river cross-section, if the stream power is high, 

or an increasingly distinct deviation of the river course.  

 

C   Effects of regional tilting 

Tilted terraces (laterally or longitudinally): Regional tilting in the direction or opposite to the 

flow direction increases or decreases the longitudinal gradient of the terrace surfaces 

compared to the present-day river, assuming that the river itself is at equilibrium with the 

deformation. If deformation is continuous, higher (older) terrace surfaces will show a more 

pronounced difference than younger surfaces, resulting in downstream convergence or 

divergence (Figure 3c). Tilting perpendicular to the flow direction of the stream will result in 

a higher position of the terraces on one side of the river compared to the corresponding terrace 

treads on the other side. However, if the terraces are not continuous or incompletely 

preserved, it might not be possible to correctly correlate surfaces that formed at the same time. 

Lateral channel movement: Regional lateral tilting cannot only affect the abandoned terrace 

surfaces, but also the active channel. Slow tilting will force an alluvial river to progressively 

shift to one side, eroding mainly on the down-thrown side (Figure 3d). Thus, channels and 

terraces on the uplifted side are more likely to be preserved. If the river is confined by valley 

sides, it may erode and undercut one side, resulting in an asymmetric valley cross-section.  

 

All these features shoud be used with caution to infer past or ongoing tectonic processes, since 

most of them also occur in settings without tectonic activity. For instance, changing discharge or 

sediment load caused by climatic changes can force a river to incise or aggrade. The same 

accounts for base-level fall or rise, which itself might be a response to regional tectonics, but can 

also be a result of sea-level changes. Irregularities in the river longitudinal profile or pattern can 

be an effect of varying lithology (erodibility contrasts). Deflection of river courses can be caused 

by inactive faults, especially if the faulted rock is more easily eroded than the surrounding 
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material. Other factors contributing to stream deflection are tributaries with high sediment input 

and normal deposition processes on a floodplain that block the flow path. Moreover, also human 

modifications of the fluvial system have to be taken into account.  

In specific tectonic environments, different scales of surface deformation are expected. A 

growing anticline is likely to influence the gradient of a river that crosses it on a width of several 

kilometres, depending on the wavelength of the fold. Surface rupture causes gradient changes 

within a few metres; if faulting does not reach the surface, however, deformation will have a 

longer wavelength comparable to that of folding. The response of the alluvial river can have an 

even larger extent upstream and downstream of the zone of deformation. Therefore, if differential 

uplift due to folding or faulting on blind faults is taking place, the expected gradient changes of 

the river terraces would have a scale of several kilometres. Low-rate regional tilting may be 

visible over tens of kilometres only. 

 

4.3 Quaternary fluvial sediments in northern Switzerland 

After the deposition of the youngest preserved Molasse units (Upper Freshwater Molasse, OSM) 

around 11-12 Ma ago (Bolliger, 1998; Rahn and Selbekk, 2007), an overall erosional regime 

largely prevented the deposition or preservation of younger sediments over wide areas in northern 

Switzerland. From the beginning of the Quaternary, repeated climatic changes with glacials and 

interglacials led to increased erosion in the Alps and the deposition of glacio-fluvial sediments in 

the northern Alpine foreland (Müller et al., 2002). Repeated incision caused the formation of new 

valleys and a system of alluvial terraces. This terrace system is usually divided into four main 

groups (Figure 4, from top to bottom): the Höhere Deckenschotter (Higher Cover Gravels), the 

Tiefere Deckenschotter (Lower Cover Gravels), the Hochterrassenschotter (High Terrace Gravels) 

and the Niederterrassenschotter (Low Terrace Gravels). They have traditionally been correlated 

with the four glacial stages recognized in SW Germany (Günz, Mindel, Riss, Würm), based on the 

classification by Penck and Brückner (1909). The highest terraces are the oldest, but radiometric 

or biostratigraphic ages are sparse. The classic morphostratigraphic concept applied to the 

northern Alpine foreland interprets the different sedimentary groups as deposits in front of the 

Alpine glaciers, based on alternating phases of accumulation and erosion. Increased sediment 

production at the end of each glacial is thought to have resulted in the accumulation of thick 

glacio-fluvial deposits. Continuous discharge combined with decreased sediment production, and 

general uplift relative to the base level in the Upper Rhine Graben caused incision into these 

sediments or into the underlying bedrock. This concept is probably adequate to describe the  
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Figure 4: Schematic view of the terrace system in northern Switzerland.  
 

general evolution of the present-day drainage system, and the assumption that the older deposits 

have a higher topographic position than the younger deposits appears to hold. However, it has 

been shown that a simple division into four groups does not capture the complex deposition and 

erosion history of the Quaternary gravels in northern Switzerland (Schlüchter, 1976; Graf, 1993). 

In the following, a short overview of the occurrence and the formation of the main gravel deposits 

is given. 

The Higher Cover Gravels, a distal fluvio-glacial sediment, were deposited on a nearly planar 

surface after filling some pre-existing shallow valleys (Bitterli et al., 2000; Ivy-Ochs et al., 2006). 

Their age is uncertain. Graf (1993) discriminated the influence of a series of glaciations, and 

inferred from the normal polarity of the oldest sedimentary units that they were deposited during 

the Jaramillo reversal in the Matuyama chronozone, which corresponds to a minimum age of ca. 

0.95 Ma. Bolliger (1996) determined an age between 1.8 and 2.1 Ma for the Higher Cover Gravels 

at the Irchel location, based on fossil mammals. Other ages vary between ca. 0.65 Ma (van Husen, 

2004) and 2.35 (+1.08/-0.88) Ma (Häuselmann et al., 2007), determined using cosmogenic 

nuclide methods; these ages were, however, not determined in the Swiss Higher Cover Gravels, 

but equivalent sediments in Austria and Germany, respectively. The deposits of this unit are 

generally highly weathered and form isolated outcrops at relatively high altitudes (ca. 550-750 m 

a.s.l. compared to ca. 350 m a.s.l. of the present-day Aare river; Graf, 1993).  

The following phase of incision initiated the formation of a new valley system in the Swiss 

Alpine foreland (Graf, 1993; Bitterli-Dreher et al., 2007), after which the Lower Cover Gravels 

were deposited. These, too, are difficult to correlate and date; proposed ages vary from ca. 0.45 

Ma (marine isotope stage 12; van Husen, 2004) and 0.68 (+0.23/-0.24) Ma (Häuselmann et al., 

2007).  
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This phase was again followed by a period of valley incision (ca. 150 m) before the 

deposition of the High Terrace Gravels, which can be roughly divided into three levels (Bitterli et 

al., 2000).  

Apparently separated from the High Terrace Gravels by a glacier advance, the Low Terrace 

Gravels were deposited. In this unit, a series of accumulation and erosion episodes led to the 

formation of cut-and-fill terraces (Müller et al., 2002). They now consist of a large number of 

terrace levels; only segments of the highest level, the accumulation level, can be plausibly 

correlated at some places (Bitterli et al., 2000; Bitterli-Dreher et al., 2007). Due to the lack of age 

constraints it is not clear if the gravels were deposited in one accumulation period with subsequent 

incision, or whether erosion was followed by additional accumulation episodes. Downstream from 

the confluence of the Aare and the Rhine, deposition ages of 11-27 ka have been determined for 

different levels of the Low Terrace based on optically stimulated luminescence (OSL; Kock et al, 

submitted). In the lower Aare valley, however, dateable material has so far been limited to 

mammoth tusks and bones, which provided ages between ca. 19.7 ka and 32.6 ka (MBN-AG, 

1998; Bitterli et al., 2000). In this reach the system of the Low Terrace Gravels was influenced by 

the water and sediment input from the Rhone, Aare, Reuss and Rhine-Linth glaciers (Graul, 

1962). This further adds to the complexity of the terrace system.  

 

4.4 Tectonic activity in Northern Switzerland in the Quaternary: different 
scenarios and their expected effects on fluvial terraces 

The Neogene tectonic history of northern Switzerland was dominated by the main phase of the 

Alpine orogeny (late Eocene to Miocene) and the formation of the Upper Rhine Graben in the 

Paleogene (for a short overview, see Müller et al., 2002). During the latest stages of the Alpine 

orogeny, the Jura fold-and-thrust belt evolved as a result of decollement tectonics in the NE 

Alpine foreland. To the east of the Jura fold-and-thrust belt, the Molasse deposits remained 

generally undeformed.  

The tectonic evolution after ca. 5 Ma is not very well resolved, due to low deformation rates 

and a generally erosive regime. Cederbom et al. (2004) have estimated that since ca. 5 Ma, at least 

1 km has been eroded in the Swiss part of the Molasse basin based on fission-track data, which 

would imply some degree of isostatic rebound following this erosion. This isostatic uplift might 

still be responsible for a regional tilt towards the north in the study area.  

Folding of the Pliocene Sundgau gravels west of Basel points to ongoing deformation at least 

until the Late Pliocene (Giamboni et al., 2004b). The interpretation of seismic lines indicates that 

this deformation was caused by the transpressional reactivation of basement faults, in contrast to 
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the thin-skinned decollement tectonics typical of the Jura fold-and-thrust belt (Ustaszewski and 

Schmid, 2006). These basement faults are probably related to a Permo-Carboniferous trough 

system that extends from the area of the Bresse Graben in the west to Lake Constance in the east 

(Diebold and Noack, 1996; Ustaszewski and Schmid, 2007).  

As most of the preserved Quaternary sediments in northern Switzerland are very 

discontinuous, they are only of limited use for neotectonic analyses. Graf (1993) studied the Late 

Pliocene Cover gravels of Alpine origin that lie north of the topographic high formed by the 

Mandach thrust fault, suggesting that this north-vergent fault was active in the Pleistocene. Other 

studies have focused on the occurrence and distribution of the Low Terrace gravels, the youngest 

sedimentary unit, which has been preserved best (Penck and Brückner, 1909; Wittmann, 1961; 

Graul, 1962).  

Here, special attention will be given to the work of Haldimann et al. (1984). These authors 

studied the river pattern and terrace systems, as well as the morphology of the bedrock channel 

below the Quaternary valley fill of the lower Aare reach between Aarau and the confluence with 

the Rhine. They suggested mainly three types of potential tectonic movements. First, from the 

upstream diverging terrace gradients, and the observation that the terraces were generally steeper 

in the N-S reaches, they deduced a regional tilt to the north (ca. 0.7 mm/a). Second, a gentle ridge 

in the bedrock channel, here consisting of soft Opalinuston clay, underneath the Quaternary valley 

fill along the eastern prolongation of the Mandach thrust near Böttstein, suggested thrusting 

activity on this fault (uplift rate of ca. 0.08 mm/a). This could also explain a suspicious terrace 

riser in this area. Third, activity on an anticlinal structure (uplift rate of ca. 0.04 mm/a) was 

inferred from an elevation in the bedrock channel surface near Klingnau, an area where the river 

course seems to be diverted. The rates of these movements were supposed to be in the order of 

0.04 – 0.7 mm/a.  

The present-day tectonic activity in the Swiss northern Alpine foreland is mainly 

constrained by seismotectonic and geodetic data. The seismicity in northern Switzerland has 

been described in detail by Deichmann et al. (2000); a summary of this report is given in 

Müller et al. (2002). In northern Switzerland, earthquake activity is concentrated in the area of 

the southern Upper Rhine Graben and the Dinkelberg on one hand and in the region of north-

eastern Switzerland (Thurgau, Zürich, Central Switzerland) on the other hand. Seismicity is 

relatively low in the central part of northern Switzerland. The majority of the focal 

mechanisms show strike-slip deformation; pure and oblique normal faulting also occur 

(compare Chapter 5 in this thesis). In most cases the focal planes of the earthquakes seem to 

have a NW-SE or NNE-SSW strike. Faults related to the strike of the Permo-Carboniferous  
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Figure 5: Selected vertical velocities in northern Switzerland, relative to a reference point near the Aare-

Rhine confluence (Laufenburg, shown by the star) (after Schlatter (2007)). 

 

trough system in the basement seem to be inactive, their orientation relative to the principal 

stress axes being unfavourable. The direction of maximum horizontal compression inferred from 

the analysis of focal mechanisms varies between 325° and 350° from west to east. Most 

hypocentres are located at a depth of > 2 km in the crystalline basement, but the occurrence of 

shallower earthquakes cannot be excluded completely. Due to the uncertainty of the hypocentre 

location and the large number of faults in the area, individual faults can usually not be identified. 

The earthquake record after 1999 generally confirms the findings by Deichmann et al. (2000).  

In a newer study of the present-day stress field in northern Switzerland, Kastrup et al. 

(2004) inferred a regional NW-SE directed maximum horizontal stress axis in the crystalline 

basement, changing along the Alpine arc, from stress inversion using focal mechanisms. This 

does not, however, exclude local variations of the stress field. Becker (2000) analysed the 

stress field in the sedimentary cover of the Jura fold-and-thrust belt, using borehole breakout 

measurements, and derived a general maximum horizontal stress orientation (SH) of NW-SE 

to N-S for the eastern and northwestern parts of the belt. Müller et al. (1987) observed an 

orientation change of borehole breakouts in a borehole that crosses the Triassic detachment 

horizon, implying a decoupling of the stress field at this boundary (SH ca. 135° below, ca. 7° 
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above the boundary). However, this is no evidence of ongoing decollement tectonics. 

Morover, the detachment horizon may be too shallow today to deform in plastic style 

(Ustaszewski and Schmid, 2007). 

Geodetic constraints on the recent deformation pattern mainly come from precise levelling 

campains, since the record of GPS measurements only covers ca. 20 years (Müller et al., 2002). In 

contrast, precise levelling measurements have been carried out in Switzerland for a period of ca. 

100 years. The results suggest differential uplift in N Switzerland, in particular uplift in the area of 

the Folded Jura relative to the Tabular Jura, and a tendency to regional uplift of the southern parts 

of the Alpine foreland compared to the north (Schlatter, 2006; 2007; Zippelt and Dierks, 2007). 

However, the measurement uncertainties are still very large, and precise statements cannot be 

made. Maximum rates of relative vertical movements of the Folded Jura relative to a reference 

point in the Rhine valley (Laufenburg) are ca. 0.25 mm/a, very close to the level of uncertainty 

(Figure 5).  

Despite in-depth analysis of evidence from different sources, the tectonic deformation pattern 

in northern Switzerland is still not very well constrained. In particular, the question as to whether 

the observed vertical deformations can be attributed to large-scale tectonic deformation (regional 

tilt) or local processes on descrete structures (Mandach thrust and its eastern continuation, Jura 

folds and thrusts, basement faults) remains open. Therefore, there exist several possible scenarios 

of tectonic processes that might currently affect the study area in northern Switzerland. These are 

given in Table 1, together with the expected effects on the Low Terrace Gravel system. 

 

4.5 Key questions and objectives of this study 

The focus of this study lies on the occurrence and morphological characteristics of the alluvial 

Low Terrace in the lower Aare valley between Aarau and Koblenz. The main objective is to 

analyse the terrace system with respect to neotectonic activity using the new 2 m-resolution digital 

elevation model DTM-AV (Swisstopo, 2007) and to compare the results to those of Haldimann et 

al. (1984). Therefore, the same transect lines as in the previous investigation are studied. This 

approach also allows evaluating the advantages of using high-resolution digital elevation data in a 

Geographic Information System (GIS). 

The key research questions to be addressed are:  

- What additional information about terrace morphology can be drawn from the new high-

resolution digital elevation model? 
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Tectonic processes that might currently be 
affecting the study area in N Switzerland: 

 Expected effects of each of these scenarios on 
the Late Quaternary terraces in the lower Aare 
valley: 

   
A: River incision, due to base-level fall in the 
Upper Rhine Graben / climate-driven (no 
tectonic activity) 
 
 

B: Large-scale regional tilt to the north, due to 
general differential uplift of the Alps and the 
nearby foreland (isostatic rebound) 
 
 
 
 
 
 
 
C: Ongoing compression of the Alpine 
foreland, either thick-skinned or thin-skinned 
→ folding, thrusting 
 
 
 
 
D: A combination of any of the above 

 A: Progressive lowering of the river bed, 
incision and terrace formation; younger terrace 
treads are lower and steeper at the same point 
along the river course 
 

B: Reaches in S-N direction: higher (older) 
terraces are steeper than lower (younger) 
terraces 
Reaches in W-E direction: terraces on S side 
are higher than corresponding terraces on N 
side; tilted terrace surfaces towards the river / 
away from the river; lateral movement of the 
river course (to the N); higher terrace risers in 
the S than in the N 
 
C: Effects of individual folds or thrust faults: 
reduced gradient in front of, increased gradient 
behind the structure; more deformation on 
older terraces. Effects of entire fold-and-thrust 
belt: deflection; reduced and increased 
gradient as above 
 
D: Superposition of any of the above 

   
Table 1: Different plausible neotectonic scenarios for northern Switzerland and expected corresponding 
effects on the terrace system. 

 

- Can different terrace levels – corresponding to different ages – be correlated and followed 

alongstream? If so, how do these correlations relate to the interpretation of Haldimann et 

al. (1984)? 

- Where can we find deviations from the “equilibrium” properties of a terrace system 

expected for an alluvial river in a tectonically stable environment? What kind of tectonic 

activity could explain these features? Are there alternative, non-tectonic explanations for 

them? 
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- If a tectonic influence seems probable, how does the proposed tectonic activity relate to 

other evidence or hypotheses about Quaternary tectonics in northern Switzerland? 

To answer these questions, the morphological terraces are mapped and then analysed using 

longitudinal profiles as well as maps with terrace surface orientations.  

 

4.6 Digital terrain model DTM-AV 

In recent years, airborne laser scanning has become a well-established technique for topographic 

surveys (Ackermann, 1999; Pfeifer, 2003). The procedure is based on the emission of near-

infrared waves from an airplane that are reflected from the ground (Figure 6). The travel times 

back to the airplane are recorded and converted to distance. Compared to other surveying methods 

(such as photogrammetry), it has several advantages (Baltsavias, 1999). The emitted signal 

(partly) penetrates ground-covering vegetation and, therefore, allows capture of the ground 

surface even in forested areas. The high point density leads to a very detailed description of the 

topography, reaching a vertical accuracy of 10 cm. Due to the high degree of automatisation in the 

data processing, the measured data points can efficiently be transferred into a surface model. This 

procedure includes filtering of the data cloud, removing objects (such as buildings or trees) that 

are not part of the ground surface.  

To complement their contourline-derived digital elevation model with a cell size of 25 m 

(DHM25), swisstopo have created a new digital terrain model based on airborne laser scanning. 

The DTM-AV (Digitales Terrainmodell der Amtlichen Vermessung) covers the entire area of 

Switzerland lying below 2000 m a.s.l. (Swisstopo, 2007). The data acquisition was completed in 

2007. The surveys yielded a data set with an average point density of 1 point / 2 m2, which was 

then subjected to filtering to remove trees and other objects not belonging to the terrain surface. 

The measured points have a vertical accuracy of ca. 30 cm, whereas the accuracy of the model  
 

 

 

 

 

 

 

Figure 6: Principle of the laser scanning technique. 
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a     

b     

Figure 7: Comparison between the DHM25 digital elevation model (a) and the DTM-AV digital terrain 
model (b), showing terraces in the Rupperswil area. Reproduced by permission of swisstopo (BA081622). 
 

amounts to ca. ± 50 cm (standard deviation) in open terrain. From the raw data, 2 m gridded 

terrain models were interpolated using Inverse Distance Weighting.  

The comparison of the DTM-AV to the older 25 m cellsize digital elevation model shows that 

with the new terrain model, geomorphological features can be distinguished in much more detail, 

in particular in low-relief areas (Figure 7).  

 

4.7 Methods 

The first step in the morphological analysis of the Late Quaternary terraces in the lower Aare 

valley consists of the detailed mapping of all surfaces belonging to the Low Terrace gravels and 
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younger alluvial plains, using DTM-AV data and existing geological maps. These surfaces are 

then analysed in a longitudinal profile, following the transect line given by Haldimann et al. 

(1984), and compared to their results. Furthermore, the surfaces are approximated by individual 

“trend planes” to study the aspect and slope of the terraces to gain additional 3D morphological 

information. The terrace distribution, the alongstream correlations and gradient changes as well as 

the general orientation of the terraces are then analysed for deviations from the equilibrium trend 

and the results integrated into the context of other evidence of Quaternary tectonics in northern 

Switzerland. 

 

4.7.1 Terrace surface mapping 

The morphological terrace surfaces in this study are defined as planar areas within the mapped 

extent of the Low Terrace gravels. To map these areas as individual polygons using ArcGIS 

software (ESRI Inc.), information from the DTM-AV was used in different ways. First, the 

altitude distribution itself was displayed using different height intervals, displaying areas of one 

altitude in one colour. In order to include flat, but gently dipping surfaces, additional information 

was used from derivatives of the DTM-AV. The hillshade view calculated by ArcGIS highlighted 

the transitions from steep to flat areas, delineating terrace steps, but also abandoned channels on 

terrace surfaces, for example. Different light source positions (315/35 and 225/35) helped find 

steps of different orientations and eliminate steps caused by channels, roads or railway lines 

(Figure 8). In addition, the “Neighborhood Statistics” tool was used to determine the internal 

roughness of a surface, calculating for each cell the topographic relief (ie, the maximum altitude 

difference) within a window of 10 x 10 cells (Figure 9).  

This information was combined with the extent of the Low Terrace deposits and alluvial plains 

given in the geological maps (Mühlberg, 1908; Bitterli et al., 2000; Graf, 2006). It is important to 

note that only the upper surface of a terrace was mapped, without the terrace risers. Also, 

colluvium and alluvial fans deposited on the terrace surfaces were excluded where 

distinguishable. Other deviations from the natural terrace surfaces, such as gravel pits or railroad 

embankments, were omitted if located at the edge of a polygon. Every polygon that was drawn 

using these criteria was given a unique number to make it easily identifiable in the course of the 

further data processing.  

 

4.7.2 Longitudinal profiles 

Once the terrace polygons were defined, their orientation along the longitudinal valley profile of 

Haldimann et al. (1984) was analysed. The profile line used by these authors was added to the  
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Figure 8: Hillshade view of a section of the Aare valley. Left: light source at 315/35, right: light source at 
225/35. Coordinates are in metres (CH1903 LV95 national coordinate system). Reproduced by permission 
of swisstopo (BA081622). 
 

 

Figure 9: Topographic relief over a 10 cell (20 m) window of the DTM-AV data: no colour: ≥ 3 m, red: < 3 
m, orange: < 2 m, yellow: < 1 m. Reproduced by permission of swisstopo (BA081622). 
 

DTM-AV and converted into a “Route”. This procedure assigns to every point of the line the 

upstream distance along the line (Figure 10). Rows of points were manually set within the 

polygons, roughly parallel to the profile line. This manual procedure allowed exclusion of man-

made structures and erosional channels produced after the initial formation of the terrace  
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Figure 10: Points used to construct the longitudinal valley profile. The profile line, also used by Haldimann 
et al. (1984), is given in red. Background consists of a shaded relief image and a colour-coded extract of the 
DTM-AV altitude data. Reproduced by permission of swisstopo (BA081622). 
 

surface.Each point was then attributed by the number of the polygon it falls into and the altitude 

value from the DTM-AV. By projecting the points perpendicularly onto the profile line, the 

altitude values of the terrace surfaces were related to the distance along the profile line. This 

allowed construction of the longitudinal valley profile in Excel and comparison of the trend of the 

along-valley terrace elevations for all terrace levels simultaneously. In addition, the terrace levels 

inferred from the DTM-AV could easily be compared to the results of Haldimann et al. (1984) by 

overlaying the longitudinal profiles. 

 

4.7.3 Terrace aspect and slope 

The profile view only provides information about the spatial orientation of the terrace 

surfaces in the direction of the main valley. However, the projection to the profile can sometimes 

introduce artefacts, due to the distortion where the orientation of the profile changes (profile 

“kinks”) as well as the fact that the river that formed a terrace did not necessarily flow parallel to 

the profile. Therefore, the 3D orientation of the terrace surfaces, as well as their slope, were also 

analysed. To this aim, extracts from the DTM-AV were produced using each polygon as a mask 

(Figure 11, above). The surface of each of these partial DTMs was then approximated by a plane, 

using the “Trend” function in ArcGIS to calculate a 1st order regression surface (Figure 11,  
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Figure 11: Above: Extracts from the DTM-AV altitude data for two terrace polygons. Below: TIN planes 
representing the general trend (dip) of the terrace surfaces (1st order regression). Altitude is given by colour 
code. Reproduced by permission of swisstopo (BA081622). 
 

below). For these planes, the aspect and slope could then be determined and displayed in map 

view.  

To account for the disturbances introduced by man-made structures and erosional / 

depositional features, for each polygon the resulting regression plane was compared to the DTM-

AV by eye to confirm that a meaningful trend was calculated.An automatic procedure to define 
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the aspect of the terrace surfaces, such as averaging the aspect, did not prove successful. Due to 

the high internal roughness of the surfaces, the dominant aspect of the individual cells (if such a 

dominant aspect existed) did not necessarily represent the general aspect of the whole surface. 

The same applies to the definition of the general slope of the surface.  

 

4.8 Results 

4.8.1 Terrace surface mapping 

The mapped surfaces of the Low Terrace of the Aare river are shown in Figure 12. The Low 

Terrace and the lower levels of the High Terrace (if present at all) could usually be distinguished 

without difficulty. However, sometimes the Aare terraces could not be clearly differentiated from 

those of the tributaries, in particular, those of the Bünz and Limmat. Terrace surfaces at tributary 

junctions were included in the map, even if a fan was visible, because this could also be taken into 

account at a later stage of the analysis. If a part of the Low Terrace did not clearly belong to one 

or the other of two terrace surfaces (e.g., near Rupperswil), or if intensive human modification 

made it impossible to identify the original morphology (e.g., in the area of Aarau), no terrace 

surface was mapped. 

In general, the use of the DTM-AV and its derivatives (e.g., shaded relief) allowed reliable 

mapping of the terrace surfaces. Problems arose where the modification of the terrain by roads, 

railroads, and building is strong, but also where many of the original fluvial structures are still 

visible, which in some cases made it difficult to discern the braided river system from an 

abandoned surface. 

Extensive terraces are mainly found in the area between Olten (Dulliken) and Wildegg and 

between Stilli and Koblenz. In the reach between Wildegg and Stilli the Aare valley is narrower, 

and terraces are small and confined to the immediate neighbourhood of the river (Figure 12). 

Between Aarau and Wildegg, terraces occur almost exclusively on the southern side of the 

present-day Aare river. On the northern side, the river course follows the edge of the Jura fold-

and-thrust belt.  

 

4.8.2 Longitudinal profiles 

The longitudinal valley profile (Figure 13) demonstrates the difficulty of correlating specific 

terrace levels alongstream. The lowermost terraces (or the recent alluvial plain, respectively) can 

be followed relatively easily between Aarau and the Limmat confluence (Stilli), and again in the 

area around Klingnau. The higher Low Terrace levels are highly discontinuous, and the along-  
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Figure 12: Terrace surfaces mapped as polygons in ArcGIS, Low Terrace gravels, Aare valley. Red line: 
profile line used for the longitudinal valley profile. Reproduced by permission of swisstopo (BA081622). 
 
profile gradient varies strongly between the different terraces as well as within individual terraces. 

A correlation of left- and right-bank terraces is for the most part impossible. There seems to be a 

continuous upper terrace level between Stilli and the Rhine confluence, which might be 

interpreted as the accumulation surface of the Low Terrace. Further upstream, however, such a  
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Figure 13: Longitudinal valley profile along the 
line given by Haldimann et al. (1984) (Figure 12), 
with different signatures for the terraces on the 
left and right side of the river. 
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distinction is not possible, since from their surface morphology, aggradational terraces cannot be 

distinguished from degradational terraces. 

In Figures 14 to 16, the longitudinal profile is divided into three parts. The slope of individual 

terraces is manually approximated by a line, linking only points that fall into the same terrace 

polygon (see Figure 12). This interpretation considers the fact that the terrace slope as it appears 

in the longitudinal profile can be affected in different ways. First, artefacts in the digital elevation 

model, such as inaccurate removal of buildings, lead to irregular gradients within individual 

terraces. A similar effect is produced by small-scale erosional features on the terrace surface, 

which cannot always be avoided when the points are chosen. Apart from this, terrace slopes may 

be controlled by tributary fans; in this case the terraces do no longer represent the fluvial system 

of the Aare. In addition, the orientation of the terrace-forming river may have been perpendicular 

to the profile line at a certain place, making this terrace appear steeper in the profile than a terrace 

formed where the river flowed parallel to the profile line. Finally, the point lines could not always 

be set strictly parallel to the profile line, which may introduce a similar bias (steepening or 

flattening) if a terrace dips towards the river. Where these effects are recognised (by comparison 

of the longitudinal profile and the map view of the elevation points), they are highlighted in 

Figures 14 – 16. 

The level of the lowermost terrace surfaces can be approximated by a straight line between 

Aarau and Stilli (Figure 13). However, this line cannot be continued across the gap where low 

terrace levels are missing to the Rhine confluence, because the lowest terraces downstream lie at 

higher levels than the extrapolation of the line would suggest. The lowest terraces between profile 

kinks 5 and 6 allow two different interpretations. If a uniform gradient for the entire Aare reach is 

assumed, there is an offset between the lowest terrace levels upstream and those downstream from 

Böttstein, the latter appearing at a higher altitude than expected. Alternatively, the relatively high 

position of the terraces below profile kink 5 might be due to a gradient decrease downstream from 

the confluences of the Reuss and Limmat.  

Interestingly, the intermediate terrace levels seem to follow the gradient of the present-

day river Aare in the region between Aarau and Wildegg, but many of the terraces between 

Wildegg and Turgi have a very low along-stream gradient, appearing almost horizontal in the 

profile (Figure 15). Downstream from Turgi, the gradients increase again. This results in a general 

trend of the terrace gradients to decrease in the area of Wildegg, and increase again after the 

confluences of Reuss and Limmat. 

Figure 16 shows that the gradient of some of the low and intermediate terraces changes  
 

 103



Chapter 4 
_________________________________________________________________________________________________________________ 

  

 
Figure 14 (a): Close-up of the first part of the longitudinal profile (Aarau to Wildegg). 

 

 

Figure 14 (b): Same extract as Figure 14 (a), with terrace surfaces belonging to the same polygon 
approximated by a line. Influences on the (apparent) gradient as mentioned in the text are indicated.  
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Figure 15 (a): Close-up of the central part of the longitudinal profile (Wildegg to Stilli). 
 

 

Figure 15 (b): Same extract as Figure 15 (a), with terrace surfaces belonging to the same polygon 
approximated by a line.  
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Figure 16 (a): Close-up of the last part of the longitudinal profile (Stilli to Klingnau). 
 

 

Figure 16 (b): Same extract as Figure 16 (a), with terrace surfaces belonging to the same polygon 
approximated by a line.  
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downstream, resulting in a warped line in the longitudinal profile (e.g., terraces no. 14 and 20). 

However, these irregularities cannot be seen in the gradients of higher terraces at the same point 

along the river, which would be expected (even in an enhanced form) if the warping were due to 

progressive tectonic deformation. This is particularly true for the reach between Stilli and 

Klingnau, where the highest terrace levels are well-preserved and display a uniform gradient. 

 

4.8.3 Comparison of the longitudinal profile with the results of Haldimann et al. (1984) 

The match between the terrace points resulting from our dtm study and the profile drawn by 

Haldimann et al. (1984) is generally good (Figure 17). Although some differences in altitude 

exist, most of the terraces defined by Haldimann et al. (1984) were also identified from the DTM-

AV. A comparison of the results from both studies is impeded by the different method used by 

Haldimann et al. (1984) to define the terraces, namely describing each terrace by one straight line. 

Because of this, the interpretation of their data basis could not always be followed. 

Agreement between the profiles is quite good between the Rhine confluence and Brugg. 

Between Brugg and Wildegg, a lot of terraces were found using the DTM-AV which were not 

reported by Haldimann et al. (1984). The reach upstream from Wildegg shows mainly a good 

match; however, some terraces could be followed over a longer distance using the DTM-AV, in a 

few cases resulting in different correlations and, correspondingly, different gradients (e.g., 

Oberfeld – Suret between Wildegg and Aarau, and terraces 84 and 85, respectively). 

 

4.8.4 Terrace aspect and slope 

Figure 18 shows the results from the analysis of the terrace slope and aspect in map view. Terrace 

slope is given by the colour of the polygon, whereas the aspect (dip direction) of the terrace 

surface is given by an arrow. A comparison to the original digital elevation model showed that in 

a few cases (7 out of 177 polygons), the “Trend” plane was strongly influenced by man-made 

structures such as road embankments or underbridges. These polygons were not included in the 

analysis and are not shown on the map in Figure 18. 

Generally, the terrace surface aspect follows the direction of the present-day river, or the main 

direction of the valley. This direction can, however, vary by as much as 90°; i.e., most terraces 

have an aspect between parallel to the present-day river course and perpendicular to it, dipping 

towards the river. Most terrace surfaces are very flat, with a dip of not more than 1 ‰, similar to 

the present-day river, which has a gradient of ca. 1-1.5 ‰. Steeper terraces, usually dipping 

towards the valley, are often observed at higher altitudes, e.g., between Dulliken and Aarau (both 

sides of the river) and on the left-bank side between Wildegg and Brugg.  
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Figure 17: Comparison of terraces defined using the digital elevation model in this study (points) with the 
interpretation by Haldimann et al. (1984) (thin lines). 
 

Interestingly, between Turgi and Böttstein relatively steep terraces are found at the lowermost 

levels. In the narrow valley between Wildegg and Villnachern, the main dip direction of the 

terrace surfaces is towards the present-day Aare. 

As was to be expected by the effect of tributary fans visible in the longitudinal profile, the aspect 

(and to a lesser degree, the slope) also differs from the general trend where tributaries, even small 

ones, join the Aare (e.g., terraces 60/63/66, between Wildegg and Villnachern, or 79/107, 

upstream from Aarau). However, the aspect of the “Trend” planes does not always exactly 

represent the gradient observed in the longitudinal profile, pointing to differences due to the 

different data processing techniques (single points vs. trend function).  

 

4.9 Discussion: Sedimentologic and tectonic effects on the morphology of the 
Low Terrace system in the lower Aare valley  

The terrace surfaces of the lower Aare valley cannot be correlated over long distances, nor 

between the sides of the present-day river, due to their relictic occurrence (Figure 13). This is 

typical for a terrace system that was formed by a river with frequently shifting channel(s), which 

eroded laterally during incision. The alongstream correlation of specific terrace treads would be 

facilitated if different levels of aggradation and degradation within the Low Terrace Gravels could  
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Figure 17 (continued). 
 

be distinguished. In the case of the Aare river, the morphology of the terrace treads did not allow 

differentiation of aggradational and erosional surfaces. This is not surprising because both types 

represent the (vertical) position of the river bed at a certain time, either the highest level reached 

by the river during a phase of aggradation, or an interval of relative stability during a phase of 

general downcutting. Which of the two possibilities applies to each terrace surface could only be 

determined if the terrace materials showed clear compositional differences, or if deposition ages 

of the terraces could be defined.  

In the longitudinal profile (Figure 13), the terrace surfaces generally show an alongstream 

gradient decrease at Wildegg. Downstream from Turgi, the general gradient goes back to values 

similar to those upstream from Wildegg, or even slightly higher. This could be explained by uplift 

in the area of the Jura fold-and-thrust belt (Figure 1), which would be expected to introduce a 

southward tilt to the terraces south of the main uplift zone, thus decreasing their downstream 

gradient. Accordingly, the terraces downstream of the main uplift zone would be tilted in the flow 

direction and thus steepened. A similar observation was made by Haldimann et al. (1984), namely 

a lower gradient of the terraces across the area of the Jura fold-and-thrust belt, suggestive of local 

uplift. The main uplift zone would be located in the area of Turgi, where the gradient increases 

again. However, this is where the tributaries Limmat and Reuss join the Aare river. Both have a 

discharge comparable to that of the Aare, and probably did so during the main deposition of the  
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Figure 18: Slope and aspect (dip direction) of the terrace surfaces in the lower Aare valley. Slopes are given 
by colour code (green: flat, red: steep), arrows show the aspect of the terraces.  
 

Low Terrace Gravels, considering their position in front of the Rhine and Reuss glaciers, 

respectively. This implies that their sediment input might have been high enough to significantly 

influence the Aare system. Therefore, it seems plausible that the changing gradients of the Low 

Terrace across the Jura fold-and-thrust belt are the effect of a very large fan-like structure, formed 
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by the sediment input of the Reuss and Limmat rivers. In addition, low gradients also 

predominatein the Aare reach between Villnachern and Turgi, even though the river runs parallel 

to the Jura fold-and-thrust belt here.  

Processes related to the deposition of the gravels also have to be considered when looking at 

the discontinuity in the lowest terrace levels upstream and downstream from Stilli. If these 

terraces are approximated by straight lines of the same gradient, an offset results that implies 

uplift of the area downstream from Stilli relative to the upstream area. However, no structure is 

presently known in this area that would have such an effect. Alternatively, since the discontinuity 

is located where the rivers Reuss and Limmat join the Aare, it also seems plausible to interpret the 

discontinuity of the lowest Aare terrace surfaces across this area as a gradient change due to an 

increased discharge (and sediment input), with no relation to tectonic activity. 

The varying orientations of the terrace surfaces can partly be explained by the effect of a 

main river channel that followed different flow paths on a wide valley floor. In other words, a 

terrace surface might have formed at a time when the river locally flowed perpendicularly to the 

strike of the valley, as can be observed today in the area between Dulliken and Aarau, or 

downstream of Böttstein. Consequently, this terrace will have a different aspect, and possibly a 

different slope, in relation to the longitudinal valley profile or the general strike of the valley, 

compared to terraces that formed when the river flowed in a direction closer to that of the valley. 

It is important to note, however, that the terrace surfaces generally do not have dip directions 

opposite to the valley trend, which could be interpreted as a clear sign of recent tectonic activity.  

Some of the steeper terrace surfaces are very narrow. This suggests that erosional and 

depositional surface processes – colluvium accumulation at the upslope side and erosion at the 

downslope side – have affected the terrace surface since its formation, which has a stronger effect 

on the general slope of narrow terraces, because no part of the terrace showing the original surface 

may remain.  

The terrace polygon map (Figure 12) illustrates the pronounced asymmetry in the terrace 

distribution between Aarau and Wildegg. Terraces occur almost exlusively on the southern, right-

hand side of the present-day river. Since the elevation of the terrace surfaces continuously 

decreases towards the river, the Aare must have laterally shifted to the north during the incision 

that followed the main (highest) Low Terrace accumulation. Whether this trend of incision was 

interrupted by aggradational phases or not is irrelevant in this regard. A significant amount of 

sediment may have been delivered by tributaries from the south, as the wide alluvial tributary 

valleys imply. However, this cannot have been the cause for the lateral shift of the river Aare, 

because the highest, southernmost terrace risers must have formed after the main sediment  
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Figure 19: Map of the thickness of the Quaternary sediments (Jordan, 2007), showing a lower bedrock–
sediment boundary on the southern side of the Aare valley. Reproduced by permission of swisstopo 
(BA081622). 

 

deposition from the tributaries. The comparison of the position of the Aare and its terraces with a 

map of the thickness of the Quaternary sediments (Figure 19; Jordan, 2007) shows that the 

sediment thickness is actually lower on the northern side of the valley, where the Aare flows 

today. This makes it improbable that the lateral migration of the river course was an effect of 

differential compaction of the sedimentary valley fill. Therefore, it is suggested that the northward 

shift of the river Aare is a result of tectonic activity, either a regional tilt to the north as proposed 

by Cederbom et al. (2004), or localised uplift to the south of Aarau, possibly caused by a gentle 

anticlinal structure between Aarau and Lenzburg. The lateral displacement of the river Aare 

amounts to ca. 1500 m in the time span since the deposition of the hightest Low Terrace gravels at 

ca. 11 ka (Kock et al., submitted). The altitude difference between the highest Low Terrace levels 

and the present-day position of the river is ca. 38 m. However, to determine a tilt rate it would be 

necessary to know which part of this altitude difference is due to incision. Without this 

knowledge, only a maximum tilt rate can be calculated assuming that the entire altitude difference 

is a result of tilting. This maximum tilt rate amounts to ca. 0.013° / 100 a, or  relative uplift of 23 

cm / 100 a over a distance of 1 km. This value, however, is much higher than what can be 

deduced from geodetic measurements and not plausible in the tectonic setting the the study area.  
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Figure 20: Detail of the DTM-AV with mapped terraces in the Beznau area. Low Terrace is given in 
orange; Mandach thrust after Bitterli et al. (2000). Reproduced by permission of swisstopo (BA081622). 
 

The comparison of the results with the interpretation by Haldimann et al. (1984) shows that a 

large part of the terraces in the longitudinal profile coincide (Figure 17). The DTM-AV allowed 

definition of additional surfaces, sometimes of very narrow terraces, especially at intermediate 

elevations in the central part of the profile. In the following, the main interpretations from the 

previous study are re-evaluated using the new altitude information. 

In the previous study, a gradient difference was described between the higher and the lower 

terraces in the area between Brugg and Koblenz. No pronounced trend of this kind could be 

observed in the DTM-AV data. However, if the interpretation of a regional tilt to the north is 

correct, higher gradients of the older, topographically higher terraces in the S-N oriented reaches 

would indeed be expected. The precise levelling results (Schlatter, 2007) indicate that the station 

at Wildegg is vertically displaced by ca. 0.4 mm/a relative to the station at Koblenz. Extrapolation 

of this value over an estimated age of the Low Terrace Gravels of ca. 20 ka would result in a 

vertical displacement of ca. 4 m, and a gradient increase of ca. 0.02° (or 0.35 ‰) along the river 

course for the oldest terrace surfaces. Thus, the highest terraces would be steeper by ca. a third 

compared to the lowest terraces. This does not seem to be the case from the analysis of the present 

data set.  
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A series of small terraces in the Stilli area, which have similar gradients and occur at similar 

altitudes, give the impression of several offsets, but can easily be explained by the formation 

process of the terraces, as explained above, as abandoned former river plains that were only partly 

preserved. The same accounts for a suspicious terrace riser that forms the extension of the 

Mandach thrust to the east (Figure 20). It can be interpreted as the right-hand bank of the river 

flowing E-W here before incising down to its present-day elevation. In the longitudinal profile, no 

activity is evident above the Mandach thrust. However, hardly any terraces can be followed across 

this structure (Fig. 16b). Similarly, only very few terraces cross the proposed anticlinal structure 

at Klingnau, most of them at low elevations and therefore probably very young. Terrace No. 4 

significantly steepens across this area, however, it is very narrow and not very well defined, as 

this region is highly used for agriculture and building activity.  

In summary, from the analysis of the Low Terrace system of the lower Aare valley using the 

DTM-AV digital terrain model no active tectonic structure which is crossed by the Aare can 

reliably be inferred. Tectonic activity could be deduced from a possible vertical offset of the 

lowest terraces in the Stilli area; however, this cannot be said with certainty, because of the 

influence of the Reuss and Limmat confluences upstream from this reach. It seems likely, though, 

that the Aare river has been affected by a regional tilt to the north in the past 20 ka, resulting in a 

lateral shift in the area between Aarau and Wildegg, or possibly by a local compressional structure 

south of this Aare reach. 

According to their relatively young age, the Low Terrace Gravels have recorded only little 

deformation. But while the higher units of the Quaternary terrace system in this region have been 

exposed to tectonic processes for longer, they have also been more strongly affected by erosional 

and depositional processes. The Higher and Lower Cover Gravels are only preserved in 

fragmentary outcrops, and their eroded surfaces do not offer a traceable landscape feature. The 

High Terrace Gravels are more completely preserved; however, they are often covered by moraine 

or loess deposits, and aggradational or erosional surfaces can generally not be identified. 

 

4.10 Conclusions 

The results from the analysis of the high-resolution digital terrain model DTM-AV indicate that 

the terrace system of the Low Terrace Gravels in the lower Aare valley formed by the dynamics 

of a braided river and was heavily influenced by the sediment input from its tributaries. No clear 

evidence of tectonic influence can be found in the longitudinal valley profile. This may partly be 

due to the difficulty in the downstream correlation of different terrace levels, which in turn results 

from the lack of surface (or deposition) ages. The distribution of terrace slope and aspect values 
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seems to reflect the changing flow directions of the incising river and erosional processes that 

have affected the terraces after their formation.  

The asymmetric distribution of terraces between Aarau and Wildegg suggests that here, the 

river Aare was deflected to the north after the main deposition of the Low Terrace Gravels. This 

can be explained by a regional northward tilt, which would be in agreement with a general, 

northward decreasing uplift in the Alpine foreland as described by Müller et al. (2002), and 

suggested by precise-levelling data (Zippelt and Dierks, 2007). Alternatively, a more localised 

zone of active uplift to the south of this area would have a similar effect, but has not been reported 

so far.  

The analysis of the DTM-AV in a GIS permitted to map terrace surfaces in detail, even if 

they are defined only by very small differences in altitude. The interpretation of the data was 

greatly facilitated by the use of a GIS, which allowed viewing, analysing and presenting different 

types of data simultaneously. In addition, some of the necessary calculations could be automatised 

using the GIS utilities, significantly reducing the time required (e.g., extraction of parts of the 

digital elevation model, or aspect calculation). However, the high resolution of the DTM leads to 

a large amount of noise in the topographic surface; therefore, some essential steps were found to 

be best done by hand, such as the terrace mapping itself and the choice of the points used for the 

longitudinal profile. The high roughness also required a smoothing procedure before general 

trends and expositions could be systematically analysed. As another effect of the high resolution, 

many objects unrelated to the terrace system are visible (e.g., roads) and complicate the 

interpretation of geomorphologic features. 

The comparison of the results from this study with the longitudinal profile by Haldimann et 

al. (1984) shows a generally good match of the terraces. Nevertheless, the use of the digital terrain 

model DTM-AV allowed including additional terrace levels and to draw a more complete picture 

of the terrace system of the lower Aare valley. The systematic and reproducible approach makes it 

possible to follow the procedure and can easily be transferred from this study to other terrace 

systems.  
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Chapter 5 
 

Seismotectonics and state of stress in north-western 
Switzerland: Analysis of natural and induced earthquake focal 
mechanisms 
 

 

5.1 Introduction 

The occurrence of earthquakes reflects the location of active brittle deformation in the lithosphere. 

This makes the seismologic record an important source of information for the characterisation of 

the current deformation pattern of a region, especially when no surface faulting can be observed. 

However, for the assessment of the seismic hazard not only the location of faulting is relevant, but 

also the deformation style – thrust, normal or strike-slip faulting – that is to be expected. In 

addition, it is critical to know the orientation of faults that are most likely reactivated. These 

questions can be answered if the state of stress in the lithosphere is known, or, in other words, the 

regional tectonic regime, which determines the predominant faulting style.  

The key to this information is the analysis of earthquake faulting mechanisms. These are 

determined by constructing a fault plane solution, a stereographic projection of the deformation 

caused by the earthquake. This information has been used in a variety of tectonic settings to 

analyse the regional deformation pattern, and to determine the orientation of the principal stress 

axes (e.g., Harmsen, 1994; Plenefisch and Bonjer, 1997; Baroux et al., 2001; Clark and Leonard, 

2003). This allows putting constraints on the orientation of faults that are likely reactivated and is 

crucial for the assessment of the seismic hazard, for the safety of above-ground infrastructure as 

well as of subsurface structures like tunnels or nuclear waste disposal sites.  

In this chapter, the spatial distribution of earthquakes that occurred in the Basel area between 

1961 and 2006 is analysed in the tectonic context. The associated focal mechanisms are used to 

characterise the current state of stress and the deformation regime(s) related to it. Data from 

previous seismotectonic studies (e.g., Kastrup et al., 2004) are combined and complemented with 

the focal mechanisms of recent earthquakes (e.g., Deichmann et al., 2006; Baer et al., 2007). The 

principal aim of this study is to determine if the analysis of focal mechanisms with the Right 

Dihedra method allows lining out regions with contrasting tectonic regimes and determining on 

which fault set(s) seismic deformation most probably occurs. These data are supplemented by and 
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compared to the focal mechanisms of a series of earthquakes that were triggered by the injection 

of fluids during the stimulation phase of a geothermal-energy project in Basel (Häring et al., in 

press). The results from these analyses are then discussed in the context of the regional (neo-

)tectonic situation and other evidence of the present-day deformation pattern.  

 

5.1.1 Determining the regional state of stress from earthquake focal mechanisms 

Earthquakes occur when deviatoric stresses build up and are released in the crust. In a pre-

fractured rock body, this stress release is usually located on pre-existing fault planes, because they 

form zones of weakness in the crust, and the forces required to generate a new fault are higher 

than those required to reactivate an existing fault. Whether a given deviatoric stress tensor can 

cause slip on a specific plane depends on the orientation of the fault (and the frictional forces 

opposing slip). Conversely, possible orientations of the stress tensor can therefore be determined 

from the fault-plane orientations (McKenzie, 1969).  

In the ideal case of a planar fault plane and a 1D slip vector (double-couple assumption), the 

radiation pattern that is observed at the earth surface allows remote determination of the faulting 

mechanism (Lay and Wallace, 1995). To achieve this, the initial motion that reaches the surface is 

recorded, i.e. whether the first movement arriving at a point from the source is “up” or “down” 

(Figure 1). The position of the corresponding receiver station relative to the orientation of the ray 

path from the source is projected in a stereogram. The resulting pattern reflects the orientation of 

the compressional and dilatational quadrants around the source. The compressional and 

dilatational quadrants are separated by great circles, which are orthogonal and represent the two 

nodal planes of the focal mechanism. One of these two planes is the fault plane on which slip 

occurred, the other one is an auxiliary plane with no physical significance. Which of the two nodal 
 

 

Figure 1: (a) Illustration of the focal sphere and the motion recorded on the earth surface resulting 
from slip on the fault plane. (b) Projected quadrants of compression and dilatation (focal mechanism) 
(after Mussett and Khan, 2000). 
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planes is the fault plane, and which one the auxiliary plane, can only be determined with 

additional information, such as the hypocentre locations of aftershocks or surface rupture.  

The maximum deformation is localised in the centre of each quadrant. The bisectors of the 

nodal plane orientations represent the principal strain axes (directions of maximum shortening and 

extension, respectively) and are called T axis (for the compressional quadrant) and P axis (for the 

dilatational quadrant). The P and T axes are often used to approximate the σ1 and σ3 directions. 

 

5.1.2 The Right Dihedra Method 

In the last decades, a number of methods have been developed to determine the regional state of 

stress in the lithosphere from fault-slip data (Etchecopar et al., 1981; Gephart and Forsyth, 1984; 

Carey-Gailhardis and Mercier, 1987; Michael, 1987). One of the most straightforward approaches 

is the Right-Dihedra method (Angelier and Mechler, 1977; Angelier, 1984). It corresponds to a 

simple graphic procedure and, in contrast to some of the other methods, allows testing if all fault-

slip data are compatible with a single stress tensor. In general, these data can come from fault 

striation analysis, earthquake focal mechanisms or calcite twins (Pfiffner and Burkhard, 1987). 

The Right Dihedra Method has been applied to earthquake focal mechanisms in various 

settings (Galindo-Zaldivar et al., 1993; González-Casado et al., 2000; Baroux et al., 2001). It is 

based on the concept that the two nodal planes of a focal mechanism – the actual fault and the 

auxiliary plane – define four quadrants (or dihedra), two with compressional and two with 

tensional deformation around the source. For an individual earthquake, the only restriction on σ1 

is that it must lie somewhere in the dilatational quadrant, and σ3 accordingly somewhere in the 

compressional quadrant, assuming that the slip on the plane was parallel to the direction of the 

maximum resolved shear stress (Bott, 1959). Note that σ1 and σ3 are not identical to the P and T 

axis commonly used in seismology, which represent the strain tensor and are located at the centre 

of each quadrant. 

If all studied earthquakes occurred in one homogeneous stress field, and provided the 

different fault planes are mechanically independent, the σ1 direction must fall into the dilatational 

dihedron of all focal mechanisms. The direction of σ1 (and σ3, respectively) can thus be confined 

to the common area of all dilatational dihedra in the stereogram by superposing the stereographic 

projections of all focal mechanisms. Conversely, if such a common area does not exist, this means 

that no stress field can be found that is compatible with all the earthquake focal mechanisms in the 

analysis (Carey-Gailhardis and Vergely, 1992).  

Because σ1 and σ3 can lie anywhere in the dilatational or compressional dihedra, respectively, 

this method takes into account that earthquakes usually do not occur on ideally oriented, newly 
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created faults but reactivate existing fault planes, if they are favourably oriented. No assumption 

as to which of the two nodal planes was the actual fault plane is made. 

The orientation of the stress tensor then indicates the tectonic regime, i.e., whether the 

deformation corresponds to an environment of compressive, extensive or strike-slip deformation. 

Moreover, if a common stress tensor is found, and if the principal stress axes are well-defined, 

their orientation may be used to determine on which one of the two nodal planes slip occurred. 

However, well-constrained σ1 and σ3 directions can only be determined if the strike directions of 

the fault planes vary strongly.  

 

5.2 Earthquake activity and state of stress in the Basel area 

5.2.1 The earthquake record in NW Switzerland and surrounding areas 

The earthquake record in Switzerland covers a time span of almost 1800 years (Fäh et al., 2003). 

For the time period before the beginning of the 20th century, the record largely relies on historical 

accounts of earthquake shocks and caused damage. The most prominent of the historical 

earthquakes in Switzerland is the Basel earthquake of 1356 (Meyer, 2006). With an estimated 

magnitude between 6.2 (Lambert et al., 2004) and 6.9 (Fäh et al., 2003), it is the largest known 

historical earthquake in central western Europe.  

The operation of a national instrumental measurement network started in 1975 (Deichmann et 

al., 2000; Swiss Seismological Service, 2002). For seismological investigations in NW 

Switzerland, also the national earthquake records of bordering countries play an important role 

(the German Seismological Service of the Landesamt für Geologie, Rohstoffe und Bergbau 

Baden-Württemberg and the French RéNaSS (Réseau National de Surveillance Sismique)). 

The instrumental and historical records are complemented by paleoseismological studies. 

However, because not many active faults (surface or sub-surface) are known in the area, the 

possibilities of investigating surface faults (trenching) are limited. One example for trench 

analyses of a suspected seismogenic fault is a study south of Basel, from which a NNE-SSW 

trending, east-dipping normal fault was inferred (Ferry et al., 2005). Together with sediment 

dating, the trenching results suggested the occurrence of five events during the past 13.2 ka. 

Limnogeological studies in two lakes near Basel (Becker et al., 2002), using reflection seismics 

and dated drill cores, indicate that five earthquakes large enough to trigger mass movement of 

lake sediments occurred in the past 12 ka (M ≥ 5.5).  

Generally, the highest seismicity in Switzerland is recorded in the Valais, Central 

Switzerland, the Alpine Rhine Valley and the Basel area. Near Basel, seismic activity is 

concentrated in the area of the eastern Main Border Fault, which separates the Upper Rhine 
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Figure 2: Location of earthquakes with available fault-plane solutions 1961-2006, and the main 
tectonic units in the study area.  
 

Graben from the Black Forest crystalline massif (Figure 2). At the southern border of the Upper 

Rhine Graben, the earthquake occurrence is more diffuse. Potentially active fault systems include 

faults related to the Rhine Graben in its southward continuation, ca. ENE-WSW striking faults 

related to Late Paleozoic basement troughs, and ca. NE-SW to E-W striking faults related to the 

Neogene Jura fold-and-thrust belt. West of Basel, in particular, the dominant fault system is that 

of the Rhine-Bresse Transfer Zone, which trends mainly ENE-WSW and is linked to the 

underlying basement trough system (Diebold and Noack, 1996; Ustaszewski and Schmid, 2007).  

 

5.2.2 Previous studies of the stress field 

The hypocentre distribution as well as the style of seismic faulting and the related stress field in 

the Basel area have been investigated in a number of studies. Bonjer (1997) analysed earthquakes 

in the area of the eastern Main Border Fault of the Upper Rhine Graben. They show a variety of 

faulting mechanisms, but most of them indicate oblique normal faulting. The nodal planes include 

the general direction of Rhine-Graben faults that are visible at the surface (NNE-SSW), but the 

earthquakes cannot easily be attributed to individual faults because the hypocentre locations have 

an accuracy of 2-3 km. The stress tensor deduced from all focal mechanisms in the area of the 
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southern Upper Rhine Graben represents a regime intermediate between normal and strike-slip 

faulting. Plenefisch and Bonjer (1997) investigated earthquakes in northern Switzerland and 

derived a horizontal SSE-NNW direction for σ1, a horizontal WSW-ENE direction for σ3, and a 

vertical σ2. These authors also pointed out a change of the stress tensor with depth for the southern 

Rhine Graben area, a strike-slip regime dominating in the upper crust (<15 km) and an 

extensional regime prevailing in the lower crust. They suggested that this change with depth was 

caused either by the increasing overburden with depth or by different effects of subduction and 

collision of the European and African crust at different depth levels. Using data from a temporary 

seismometer network, Lopes Cardozo and Granet (2003) calculated 15 focal mechanisms for 

earthquakes in the southern Upper Rhine Graben and adjacent areas. From the analysis of these 

focal mechanisms they deduced mainly left-lateral faulting on the eastern Boundary Faults and 

underneath the Jura Mountains. Kastrup et al. (2004) analysed 138 focal mechanisms in the 

northern Alpine foreland and the Alps. Their stress inversion yielded a general NE-SW direction 

for SH (max. horizontal stress); however, SH exhibits a counter-clockwise rotation from east to 

west, following the strike of the Alpine chain. This indicates that the NW-SE stress field of 

Western Europe (Reinecker et al., 2005) may be locally perturbed by the Alpine chain. For the 

area of the eastern Upper Rhine Graben, Kastrup et al. (2004) defined a tectonic regime of strike 

slip, whereas the faulting style in the Basel area to the south of it varies from strike-slip to normal.  

In addition to stress inversion from focal mechanisms, evidence of the principal stress 

directions can be obtained from the deformation in boreholes. Müller et al. (1987) describe a 

change in the maximum horizontal stress directions across the Triassic detachment horizon in a 

study of borehole breakout measurements in northern Switzerland. From this, they inferred a 

decoupling of the stress field at this boundary and ongoing decollement tectonics. Becker (2000) 

compiled results from different down-hole stress measurement methods to analyse the stress field 

in the sedimentary cover of the Jura fold-and-thrust belt, and found a general maximum horizontal 

stress orientation (SH) of NW-SE to N-S for the eastern and northwestern parts of the belt. From 

the fact that the stress orientations do not change at tectonic boundaries within the fold belt, nor 

between the fold belt and the rest of the northern Alpine foreland, this author deduced that thin-

skinned decollement tectonics are no longer active in the Jura area. This view is shared by Bossart 

and Wermeille (2003), who also pointed out the difficulties in measuring principal stress 

directions in the anisotropic rocks of the Jura Mountains. 
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5.2.3 The stress field in the Basel area from the analysis of fault-plane solutions 

For this study, a set of 115 focal mechanisms was compiled for earthquakes that occurred between 

1961 and 2006 in the northern Alpine foreland (46.5 to 48.0 northern latitude and 5.2 to 8.5 

eastern longitude). A complete list of these events, together with the literature sources, is given in 

the Appendix (p 119).  

The magnitudes of these events range from 1.1 to 5.2. The majority of the focal mechanisms 

in this area show strike-slip or oblique normal faulting (Figure 2). However, some pure normal 

faulting as well as (oblique) thrust faulting also occurs. The dominant nodal-plane strike 

orientations are NW-SE and NNE-SSW. The uncertainty of the hypocentre location usually does 

not allow the identification of individual active faults, considering the large number of pre-

existing faults of various orientations in the study area. 

The distribution of the P axes orientations of all 115 earthquakes is shown in Figure 3a. The 

directions vary between horizontal in a NW-SE direction and vertical, showing a distinct girdle 

distribution. The T axes directions are better confined, being mostly subhorizontal in a NE-SW 

direction (Figure 3b). This points to an overall tectonic regime of strike-slip to normal faulting.  

Figure 3b shows that a number of T axes deviates from this simple pattern, having a subvertical or 

ca. NW-SE orientation. This points to local thrust faulting, or a component of SE-NW extension, 

respectively, incompatible with the regional state of stress. The location of the corresponding 

earthquakes (eight events, highlighted in Figure 4) shows that they do not concentrate in a distinct 

region. Therefore, they cannot be interpreted as belonging to a different tectonic unit or 

deformation regime than the rest of the earthquakes.  

 

  

Figure 3: Equal-area lower-hemisphere plots of the P axes (a) and T axes (b) of all 115 earthquakes in 
the study area for which a focal mechanism could be obtained. In (b), open circles are T axes of eight 
events that were omitted in the second Right-Dihedra analysis. Sources see text.  
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Figure 4: Epicentre locations (red stars) of earthquakes with a subvertical, SE or NW orientation of 
their T axis (see Figure 3b).  

 

The focal mechanism data of these earthquakes were analysed using the Right-Dihedra method in 

the TectonicsFP program (Reiter and Acs, 1996-2003). For a small number of earthquakes (15), 

the nodal plane orientations first had to be computed from the P / T axes information. The result 

of the Right-Dihedra analysis is shown in Figure 5 and yields directions of 148/13 for σ1, 336/77 

for σ2 and 239/02 for σ3. Note that this result is a best-fit solution, and not necessarily compatible 

with all focal mechanism data. Therefore, it cannot be used to determine the active fault plane of 

individual focal mechanisms.  

Because of the irregular distribution of the P / T axes (Figure 3), which points to an 

inhomogeneous regional stress field, the data set was divided into different sub-sets, for which 

separate Right-Dihedra analyses were performed. A distinct difference in the resulting principal 

stress axis orientations was found for a subdivision into two sub-sets along a ~N-S trending line 

separating the Rhine-Bresse Transfer Zone and the central/western Jura Mountains from the main 

part of the Upper Rhine Graben and the region to the east of it (Figure 6). For the western part, the 

result points to a strike-slip regime with a tendency to transpression, σ1 being horizontal at 148/02 

and σ2 nearly vertical at 048/77 (Figure 7a). In contrast, the eastern part of the study area seems to 

be dominated by a stress regime with a stronger normal-faulting component (19° dip of σ1, Figure 

7b).  
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Figure 5: Best-fit stress tensor from the Right Dihedra analysis of all 115 events. 

 

For comparison, an additional subdivision in the area of the eastern Border Fault of the Upper 

Rhine Graben was performed following the groupings by Kastrup et al. (2004) (Figure 8). It 

shows that the transtensional regime applies predominantly to the area of the eastern Jura fold-

and-thrust belt and the adjacent Tabular Jura, south of the Black Forest crystalline massiv. The 

events in the Black Forest and the interior of the Upper Rhine Graben show a mixture of strike-

slip, normal and thrust faulting and do not represent a clear tectonic regime.  

 

5.2.4 Interpretation of the FPS data set 

The analysis of 115 focal mechanisms in the area of the southern Upper Rhine Graben and the 

eastern Jura fold-and-thrust belt yields a P- and T-axes distribution that is best compatible with a 

general tectonic regime between normal faulting and strike-slip faulting. The fact that the 

earthquakes with focal mechanisms that do not conform to this mean stress field did not occur 

geographically separated from the rest of the earthquakes (Figure 4) implies that they do not 

belong to a distinct tectonic unit with a different deformation regime. Also, these earthquakes with 

different focal mechanisms are not concentrated at a certain depth, but occurred at depths between 

6 and 21 km. However, the analysis of different data sub-sets using the Right-Dihedra method 

suggests that a certain change in tectonic regime exists between the eastern and western part of the 

study area, with a tendency towards transpression in the west, although this result is based on a 

relatively small number of earthquakes.  

An explanation for this difference might be found in the depth distribution of the studied 

earthquakes. This question was addressed by Plenefisch and Bonjer (1997) for earthquakes in the 
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Figure 6: Division of the studied earthquakes into two sub-sets, an eastern and a western part. The 
results of the respective Right-Dihedra analyses are given in Figure 7.  
 
 
 

               

Figure 7a: Best-fit stress tensor from the Right Dihedra 
analysis of events in the western part of the study area, 
see Figure 6. 

Figure 7b: Best-fit stress tensor from the 
Right Dihedra analysis of events in the 
eastern part of the study area, see Figure 6. 
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a)    

b)    

Figure 8: Subdivision of the earthquake dataset in the eastern part of the study area according to the F4 (a) 
and F3 (b) groups by Kastrup et al. (2004) (p. 9), and corresponding Right-Dihedra results.  
 

Upper Rhine Graben area, who found a stress regime of predominantly strike-slip deformation in 

the upper crust (z<15 km) and mainly normal faulting in the lower crust (z >15 km). Because the 

average hypocentre depth of the earthquakes in the eastern group (15 km) is lower than the mean 

depth of the western group (10 km), this might have an effect on the general tectonic regime 

found in the Right-Dihedra analysis.  

However, there are other possible explanations for ambiguities of the focal mechanisms. The 

presence of active faults might locally modify the stress field, leading to a deviation of the 

principal stress tensor and, accordingly, earthquakes with focal mechanisms different from the 

regional trend. A similar effect would be caused by the movement of rigid blocks, which may 

locally change the stress field and cause slip on fault planes that would not be activated by the 

regional stress field (Carey-Gailhardis and Mercier, 1992). In this case the different activated fault 

planes would not be mechanically independent. Finally, some earthquakes may be the result of 

displacement on a fault that overcompensates the accumulated stress, thus causing an earthquake 

on the same fault, but with a faulting style opposite to the first shock. Further studies to solve 

these questions are hindered by the limited number of earthquakes of a sufficient magnitude in the 

Jura fold-and-thrust belt and the Rhine-Bresse Transfer Zone. 
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5.3 Induced earthquake activity and state of stress in Basel 

5.3.1 Enhanced Geothermal Systems and induced seismicity 

The heat stored in the earth’s interior is an almost unlimited source of energy. In recent decades, 

this potential has been increasingly recognised, and several attempts have been made to exploit it 

on a large scale (Majer et al., 2007). In contrast to the heat extraction on a small scale (e.g., to heat 

individual buildings), power generation from geothermal resources requires a high flow rate of 

very hot water to be economic. This is only the case at locations where a) hot rock is found not 

too far from the surface and b) the flow rate of water through the rock volume is high enough. In 

this case, water can be pumped into the hot rock, circulates in the pores and fractures and is 

heated, and can then be pumped back to the surface where the heat is transformed into electric 

energy. At many places, hot rock is found close to the surface, but the natural permeability is too 

low to economically exploit the heat. Therefore, techniques have been developed to increase the 

permeability of the rock by injecting water under high pressure (stimulation). The fractured rock 

body is called an Enhanced Geothermal System.  

This method relies on the fact that increased pore pressure reduces the effective stress on 

existing fault planes; thus, friction is reduced and slip can occur on planes that would not be 

activated in the natural stress field. The injection pressure is usually not high enough to create 

new fractures. This is in contrast to the hydraulic fracturing method, which uses water pressure for 

the dilatational opening of new fractures. In the case of Enhanced Geothermal Systems, new 

tensile fractures are not desired because they would simply close again after the stimulation 

injection has been stopped. It is lateral slip on existing fault planes with their asperities that 

creates a permanent increase of the fracture volume. 

The stress release related to the movement on pre-existing fault planes leads to the emission 

of seismic waves, which are perceived as earthquakes at the earth surface. In order to determine 

where in the rock body slip has occurred and, consequently, new pore space has been created, 

these earthquakes are monitored and their hypocentres are calculated. At the same time, these 

induced earthquakes can potentially cause damage, depending on their magnitude and the 

vulnerability of the infrastructure near the site. 
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5.3.2 The Basel Deep Heat Mining project 

In the Basel area, rocks with an estimated temperature of 195°C are found in the crystalline 

basement at a depth of 5 km (Häring et al., in press). The high temperature gradient is due to the 

situation at the edge of the Rhine Graben rift system, where the crust has been thinned and mantle 

heat is more easily transported to the surface. However, permeability of the granitoid rock found 

at this depth is low. Therefore, stimulation of the reservoir was started on 02 December 2006 with 

the aim of increasing the fracture volume in the rock. Injection rates reached a maximum of 3300 

l/min, and the well-head pressure reached 296 bar (Häring et al., in press). The injection was 

stopped on 08 December 2006 after an earthquake with ML = 2.7 had occurred (Schanz et al., 

2007).  

 

5.3.3 Induced seismicity and earthquake focal mechanisms 

A microseimic network, consisting of 6 borehole geophones, was installed to monitor the induced 

seismicity and to precisely locate the hypocentres within a limited volume around the open hole 

section of well Basel 1 (Häring et al., in press). As expected, seismicity increased few hours after 

the onset of injection. A maximum of ca. 200 seismic events per hour were monitored on 08 

December, shortly before the well was shut in. During the phase of pressure release the 

earthquake with the highest magnitude was recorded (ML = 3.4, 08 December), and a few more 

shocks with a magnitude > 3 occurred after the pressure release was completed (January and 

February 2007). Seismicity then continuously decreased but had not reached the background level 

by May 2008. 

The spatial distribution of the hypocentres shows that they are located predominantly along 

an oblate ellipsoid structure trending ca. NNW-SSE, and a minor branch trending ESE-WNW. For 

the 27 largest events that occurred in the Basel 1 reservoir during and after the stimulation, single-

event focal mechanisms were calculated by the Swiss Seismological Service, using P-wave first 

motion observations (Deichmann et al., 2007). The nodal planes of all earthquakes have very 

similar strike orientations (Figure 9). In most cases, the faulting mechanism was almost pure 

strike slip. Some fault plane solutions indicate oblique normal faulting. Magnitudes of the 

earthquakes with an interpreted focal mechanism range from 1.7 to 3.4.  

The P axes (circles) and T axes (triangles) are shown in Figure 10a. The T axes show 

consistent subhorizontal SW-NE orientations. The P axes have a SE-NW orientation; their 

plunges vary between horizontal and ca. 60°.  
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Figure 9: Orientation of the nodal planes of all triggered earthquakes in Basel. 
 

5.3.4 Results of the Right Dihedra Analysis 

The Right Dihedra method was applied to the whole dataset of 27 earthquakes for which a fault 

plane solution could be obtained. The earthquakes that were triggered by the stimulation injection 

in Basel are assumed to have been caused by the same stress field, since they all occurred within a 

rock volume of ca. 1 km3 (Häring et al., in press). The result of the analysis is given in Figure 10b 

and reflects the similarity of the fault plane solutions. The best-fit orientations of the principal 

stress axes are NW-SE for σ1 (316/01), SW-NE for σ3 (046/11), and subvertical for σ2 (222/79). 

However, due to the uniform orientation of the nodal planes the field into which σ1 can fall is 

relatively big. Therefore, the precise orientations of the principal stress axes remain ill-

constrained.  

 

5.3.5 Discussion 

The result of the Right Dihedra analysis suggests that the tectonic regime at the drilling site in 

Basel is one of almost pure strike-slip deformation. The occurrence of two normal-faulting events 

seems to be responsible for a slight asymmetry in the Right Dihedra plot, suggesting a more 

girdle-like distribution for σ1 and a slightly more constrained orientation for σ3. This behaviour is 

consistent with the assumption that all earthquakes occurred in a rock volume that is subjected to 

a homogeneous stress field.  However, it cannot be excluded that some of the smaller earthquakes, 

for which no focal mechanism could be determined, had faulting styles different from those 

analysed here, and accommodated local (and temporal) stress field variations.  

If a well-constrained stress tensor can be calculated from a set of focal mechanisms, it might in 

some cases be possible to distinguish the (favourably oriented) fault plane from the auxiliary 
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Figure 10a: Equal area plot of the P axes 
(circles) and T axes (triangles) of 27 earthquakes 
associated with hydraulic stimulation in Basel. 

Figure 10b: Result of the Right-Dihedra analysis for 
the focal mechanisms of the same 27 earthquakes as 
in Figure 9, showing the orientations of the best-fit 
solutions for σ1, σ2 and σ3. Contour lines show 
percentages. 

plane. In the case of the Basel earthquakes, the similarity of the nodal-plane orientations 

prevented determining a well-confined stress tensor and did not allow the definition of the actual 

fault plane.  

The orientation of the nodal planes – predominantly N-S and E-W – does not correspond to 

any of the main fault systems in this region. Most of the hypocentres are aligned within two steep 

conjugate planes striking ca. NNW-SSE and WNW-ESE, each about 30° from the maximum 

horizontal stress direction of 315° from the Right-Dihedra analysis. This suggests that earthquake 

foci concentrated on planes of shear stress concentration caused by the regional stress field and 

activated small-scale fault planes with a N-S or E-W strike. Alternatively, and especially if the 

SHmax value of ca. 144° from borehole breakouts in the well Basel 1 is considered (Häring et al., in 

press), the activation of N-S trending fault planes seems more plausible than slip on E-W trending 

structures. 

 

5.4 Conclusions 

The Right Dihedra method allows the use of focal mechanism data for the determination of the 

predominant regional stress field. This method has been applied to a data set of 115 earthquakes 

that occurred in the area of the southern Upper Rhine Graben, the Jura Mountains, the Rhine-

Bresse Transfer Zone and the Swiss Molasse basin. The principal stress directions resulting from 
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the analysis of the entire data set are 148/13 for σ1, 336/77 for σ2 and 239/02 for σ3 and agree well 

with the regional stress field determined by in-situ measurements. The tectonic regime is 

characterised by normal to strike-slip faulting, as found in earlier studies. A number of 

earthquakes with a thrust component cannot be explained by this general tectonic regime and 

seem to represent a transition to a more transpressive regime in the western part of the study area 

(Rhine-Bresse Transfer Zone and and northwestern Jura fold-and-thrust belt), as well as some 

effects of local stress field disturbances.  

In comparison, the focal mechanisms of the earthquakes that were induced by fluid injection 

are much more homogeneous. This is probably due to the fact that they all occurred in a very 

limited volume of rock (ca. 1 km3). The Right-Dihedra analysis gives principal stress axes 

orientations (σ1: 316/01, σ2: 222/79, σ3: 046/11) that do not differ strongly from the orientations 

determined for the “natural” earthquakes. Therefore, the faulting mechanisms of the induced 

earthquakes in Basel seem to reflect the regional stress field. 

Under this stress regime, the general faulting mechanisms to be expected are mainly left-

lateral normal faulting on the west-dipping faults of the Rhine-Graben system and right-lateral 

thrust faulting on the faults related to the Late Paleozoic basement trough system. This is in 

agreement with the results from geological studies by Giamboni et al. (2004) and Ustaszewski and 

Schmid (2007) in the Rhine-Bresse Transfer Zone. To gain an improved understanding of 

deformation patterns and, hence, seismic hazard in the Basel area, improved hypocentre 

localisation on one hand and more earthquake recordings (e.g., using temporary networks) on the 

other hand would be necessary, in particular in the low seismicity areas of the Jura Mountains and 

the Rhine-Bresse Transfer Zone.  
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Appendix 
 
Fault plane solution data for 115 earthquakes in the study area (1961-2006) 
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Chapter 6 
 

Synthesis and conclusions 
 

 

This thesis addresses the recent tectonic history of the eastern Jura fold-and-thrust belt and the 

southern Upper Rhine Graben. While the tectonic evolution of this region up to ca. 5 Ma ago is 

relatively well resolved, the younger history is less well defined, due to the combined effect of 

low deformation rates (less than 1 mm/a, vertical as well as horizontal) and a lack of datable 

sediments younger than ca. 5 Ma. However, improved understanding of the tectonic processes in 

the recent geological past is essential for the assessment of the seismic hazard in this densely 

populated area, and in order to arrive at a concept of the future evolution of the study area 

indispensable for the search of a suitable repository for nuclear waste. In an attempt to bridge this 

gap, the focus of this thesis is laid on a combination of geomorphological and seismotectonic 

analyses, with the aim of better defining the recent deformation history in north-western 

Switzerland. The approaches chosen cover different time scales and concentrate on different 

regions within the larger study area. The results and conclusions of this study are summarised in 

the following.  

On the largest temporal and spatial scale, the response of the drainage system in the northern 

Alpine foreland to tectonic processes between the Oligocene and the Quaternary was examined 

(Chapter 2). Geomorphic and sedimentary evidence of former river courses allows reconstructing 

the drainage system evolution to a large extent. This drainage system evolution primarily reflects 

the formation of the thin-skinned Jura fold-and-thrust belt, which introduced a new watershed 

between areas draining into the Black Sea (Danube) and into the Mediterranean (Doubs), 

respectively, in the Miocene. The transitions between different stages of drainage organisation are 

reflected in the widespread occurrence of water and wind gaps in Jura anticlines. These gaps 

allow for the reconstruction of river courses in the area of the Jura fold-and-thrust belt at the 

beginning of folding, and for the tracking of the folding process through time. The observed 

stages in the development of the drainage system suggest a general fold-belt propagation to the 

north and west that was, however, not entirely in sequence. Apart from the effects of the Jura fold-

and-thrust belt, the drainage system was significantly affected by larger-scale tectonic processes 

leading to differential vertical deformation in the Rhine and Bresse grabens, the Vosges-Black 

Forest Arch, and the Molasse basin.   
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The geomorphic response of rivers in the eastern Jura mountains (Jura fold-and-thrust belt 

and Tabular Jura) and the southernmost Upper Rhine Graben to tectonic activity following the 

main decollement phase in the Miocene was investigated in a stream gradient analysis (Chapter 

3). From the topographic information in a 25 m cell size digital elevation model, slope and 

drainage area data were calculated, and steepness and concavity indices determined for rivers as 

well as river segments. In the Upper Rhine Graben, steepness index values are found to be 

relatively low; intermediate values characterise rivers from the Tabular Jura, whereas the highest 

values are found in the Folded Jura. This suggests that subsidence of the southern Upper Rhine 

Graben (relative to the Tabular Jura) has continued after 5 Ma, and is probably still ongoing. The 

complete sedimentary sequence that was deposited in the Upper Rhine Graben in the Quaternary 

(Bartz, 1974) supports this interpretation, as does the occurrence of the Lower Cover Gravel 

terraces along the river Rhine, indicating an alongstream gradient increase across the eastern Main 

Boundary Fault of the Upper Rhine Graben (Kock et al., in prep.). Postulated ongoing graben 

subsidence is also in agreement with the predominant normal faulting mechanism for earthquakes 

in the area of the SE Upper Rhine Graben (Chapter 5), and with the present-day tectonic stress 

regime of strike-slip to normal faulting in north-western Switzerland, determined by focal 

mechanism stress inversion (Kastrup et al., 2004).  

The steepness index distribution further suggests that relative to the Tabular Jura, an area that 

roughly corresponds to the Jura fold-and-thrust belt has been uplifted in the Latest Quaternary 

(after ca. 100 ka). This observation confirms a trend in geodetic data  that indicate slightly higher 

uplift rates in the Jura fold-and-thrust belt compared to a reference point at the border of the 

Tabular Jura and the Black Forest crystalline massif (Schlatter, 2007; Zippelt and Dierks, 2007). 

Two different tectonic mechanisms can in principle be invoked to explain this uplift: ongoing 

detachment tectonics, i.e. continuing shortening activity of the thin-skinned Jura fold-and-thrust 

belt, as opposed to the differential vertical movement induced by reactivation of faults in the 

crystalline basement. Basement faults related to the Late Paleozoic Trough system that crosses the 

area of the eastern Jura mountains underneath the Mesozoic sediments have a favourable 

orientation (ENE-WSW) for transpressive reactivation in the present-day stress field, which is 

characterised by a SE-NW oriented maximum principal stress axis, especially since the 

intermediate principal stress axis is not exactly vertical, as determined in the seismotectonic 

analysis (Chapter 5). At the north-western front of the Jura fold-and-thrust belt, Madritsch et al. 

(2008) report transpressional inversion of basement faults after the Early Pliocene as well as 

active thrust faulting evident from earthquake fault plane solutions. In the eastern Jura mountains, 

however, thrust faulting plays only a marginal role in the seismotectonic record of the area. This 
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apparent contradiction might be explained by a) an aseismic faulting process in this part of the 

Jura mountains, or b) the fact that elastic deformation is presently accumulating in the lithosphere. 

Alternatively, if differential relative uplift rates are caused by ongoing thin-skinned thrusting, 

and thus deformation along the evaporitic detachment layer, this would imply that the evaporites – 

mainly anhydrite – behave in a plastic way today, despite their shallow position at depths of less 

than 1 km. Madritsch et al. (2008) suggest that this mechanism might still be at work at the north-

western front of the Jura fold-and-thrust belt (France), causing anticline growth after the Middle 

Pliocene. GPS measurements in the eastern Jura mountains neither give evidence of the horizontal 

movements corresponding to detachment tectonics, nor do they rule them out, due to the higher 

measurement uncertainty of this technique compared to precise levelling (Brockmann et al., 

2005). However, the fact that a large amount of material has been eroded in the Molasse Basin 

between the Alps and the Jura fold-and-thrust belt in the Pliocene-Pleistocene (Cederbom et al., 

2004) raises the question of how the horizontal stresses that might lead to detachment in the Jura 

mountains could be transmitted across the Molasse Basin today. Therefore, it seems more 

probable that processes in the crystalline basement underneath the detachment horizon are 

responsible for the observed differential uplift in the area of the eastern Jura mountains.  

Additional information about the most recent part of the Quaternary tectonic history in north-

western Switzerland is provided by a geomorphologic study of Late Quaternary fluvial terraces in 

the lower Aare valley (Chapter 4). After the accumulation of the Low Terrace Gravels at ca. 20 

ka, a system of erosional terraces developed due to incision of the Aare, possibly interrupted by 

additional aggradational phases. Based on a high-resolution (2 m cell size) digital elevation 

model, the occurrence and morphology of these terraces were studied, including the analysis of a 

longitudinal profile along the lower Aare valley and the 3D orientation of the terrace treads. 

Although the longitudinal profile of the terraces does not yield any conclusive evidence of 

localised tectonic activity or active faults – in part also due to the very fragmentary preservation 

of the terrace surfaces –, asymmetries in the terrace distribution suggest a regional tilt to the north 

in this area during the past 20 ka. Such a tilt might be caused by differential uplift in the northern 

Alpine foreland due to erosional unloading of the Molasse basin in the Quaternary, as proposed by 

Cederbom et al. (2004). This tilt would be expected to decrease to the north, thus explaining why 

the Low Terrace along the river Rhine does not show any pronounced asymmetry along reaches in 

E-W direction (Kock et al., in prep.). However, the observed terrace asymmetry downstream from 

Aarau might also be a more local effect, caused by a gentle anticlinal structure to the south of the 

valley. Alternatively, it could be the result of a rotating basement block underneath the Quaternary 

valley fill. This is, however, highly hypothetical and not supported by the seismological record.  
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In summary, the observations made in the stream gradient analysis and the terrace study can most 

plausibly be explained by a combination of ongoing, largely aseismic, basement-related 

transpressive tectonic deformation, and an elastic rebound effect of the central northern Alpine 

foreland due to massive erosional unloading in the Quaternary. Considering the apparent tilt along 

an ~E-W axis, systematic analyses of terrace geomorphology in differently oriented tributary 

valleys might provide additional information on the tilting mechanism and deformation pattern in 

this region. 

The regional present-day stress tensor derived from an analysis of an updated compilation of 

earthquake focal mechanisms in the southern Upper Rhine Graben, Rhine-Bresse Transfer Zone, 

Jura fold-and-thrust belt, and Tabular Jura indicates a NW-SE oriented maximum stress axis 

(Chapter 5). Focal mechanisms from a series of induced earthquakes in Basel point to a strike-slip 

stress regime with a weak tendency to transtension, and are hence consistent with the regional 

stress field in this area. This is in agreement with the results from focal mechanism inversions in 

previous studies (Plenefisch and Bonjer, 1997; Kastrup et al., 2004). However, the results 

presented in this thesis demonstrate substantial small-scale stress variations, which are expressed 

by the fact that earthquakes with faulting mechanisms indicating different stress fields occur close 

to each other. This implies that the large number of faults of different age lead to stress 

perturbations and a heterogeneous deformation pattern in this area. In addition, the seismologic 

data show a tendency of the stress regime to change from transtension in northern and north-

western Switzerland and along the eastern Main Boundary Fault of the Upper Rhine Graben, to 

transpression to the west and north-west (western Switzerland and Rhine-Bresse Transfer Zone), 

thus confirming the observations made by Madritsch et al. (2008). In the light of the 

geomorphologic investigations, however, this variation might also be due to different deformation 

mechanisms in the east and west, i.e. that a larger component of convergence is accommodated by 

aseismic movement in the area of the eastern Jura mountains compared to the region west of the 

southern Upper Rhine Graben.  

In summary, this thesis provides new evidence for continuing tectonic activity in the Alpine 

foreland in the vicinity of the Upper Rhine Graben since Pliocene times. Distinct faults or folds 

along which tectonic deformation is focused could not be conclusively identified, which indicates 

that the near-surface deformation takes place in poorly constrained deformation zones today, 

rather than concentrating on distinct faults. In particular, along the eastern boundary of the Upper 

Rhine Graben, deformation appears to be distributed on a set of normal faults of limited length. 

Field observations of deformed Quaternary sediments within the southern Upper Rhine Graben, 

indicating active normal faulting on several faults, are reported by Kock et al. (in prep.) and 

support this interpretation.  
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Focal mechanism data show that the faulting style of a majority of earthquakes in this region 

has a predominant strike-slip component. This deformation at depth, if it is transferred to the 

surface, is expected to have a minor effect on the gradients of rivers and terraces, and is therefore 

difficult to detect by the geomorphological methods used in this thesis. To monitor lateral 

deformation, the systematic analysis of GPS measurements promises some success; however, the 

low strain rates in the study area necessitate data from a longer time interval than the period 

covered today, if detailed knowledge of the deformation field is needed. Considering the 

deformation rates in the study area and the error of this measurement technique, relative 

movement of several mm (since the beginning of GPS measurements) would be required for 

significant results, which can be expected to be reached in about 20 years from now (Brockmann 

et al., 2005). Continued precise levelling, and possibly also the comparison of INSAR images, 

may allow delineating active structures more precisely. In addition, a possible approach would be 

the operation of temporary high-resolution seismometer networks to achieve a more complete 

earthquake record (including weak events), and a better definition of their hypocentre locations to 

delineate the location of active structures.  

Additional terrace studies in the Low Terrace Gravels across the whole Jura region would 

complement the results from this study and provide more extended insight into the tectonic 

activity of the study area. For these investigations, better age constraints on the surfaces that are 

investigated are critical, which will be difficult to obtain considering the coarse-grained nature of 

most of the young, well-preserved sediments in this area. While radiocarbon dating on organic 

material (wood) found in the gravels, as well as Optically Stimulated Luminescence dating on 

fine-grained sediments that may occur within the terrace deposits, may provide more information 

about the deposition ages of the terrace material, more detailed knowledge of the erosion history 

would be equally crucial to allow for the correct correlation of terrace surfaces alongstream as 

well as on both sides of the river. Exposure dating of the terrace surfaces (e.g., using cosmogenic 

isotopes) is, however, difficult on the coarse fluvial sediments covered by soil and vegetation that 

prevail in the study area.   

The digital elevation models used in this thesis have been demonstrated to be a valuable data 

source for systematic analyses of river gradients and terrace morphology at a very detailed level. 

This type of data, combined with appropriate software and geological methods, opens a promising 

avenue for the study of tectonic activity in areas of low deformation rates. Without doubt, in these 

settings the combination of different methods constitutes a prerequisite  to gain further insight into 

the tectonic activity in the recent past, which is fundamental for the understanding of the present-

day tectonic activity and its consequences for society. 
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