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Abstract 

 Friction and wear are not desired for many applications. One way to diminish the 

wear of a component is to coat it by Physical Vapor Deposition (PVD) with a thin, wear 

resistant hard coating. This approach has proved very successful for the past decades. 

Although increasing the wear resistance and thus the lifetime of the coated components, 

almost all wear resistant coatings used in industry nowadays do not solve the problems 

associated with friction, e.g. excessive heating, high energy losses, etc. Lubrication with 

various liquid and solid lubricants has been known to be a good solution to these problems 

for millennia. However, nowadays environmental and technical requirements reduce more 

and more the fields of application of the above mentioned lubrication methods. Therefore, it 

would be very beneficial for industry if high hardness, wear resistance and lubricating 

properties can be all combined in a coating. Thus both friction and wear problems will be 

diminished without the need to use external lubrication. In this work an effort is made to 

design a group of such PVD coatings by mixing doping a hard, wear resistant phase  (TiN) 

with a well-known solid lubricant (MoS2). The mixing is made by sequential deposition of 

thin layers of both phases in order to realize a multilayer TiN/MoS2 structure and by co-

deposition of both components in order to realize mixed-phase TiN+MoS2 coatings. The 

influence of the deposition conditions on the structure and the tribological and mechanical 

properties of the above mentioned coating architectures is studied. A conclusion about the 

feasibility of both concepts (multilayer and mixed coatings) is also made in this work.
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I. Introduction 

I.1. Friction, wear, lubrication and surface modification 

Friction and its “son” – wear, both are phenomena that occur everywhere around us. 

They are intuitively accepted as inevitable. It is difficult to imagine our life without friction 

and wear. We could not have a grip at things and our cars would not brake without friction. 

Equally unable we would be to sharpen our knives without wear. Our everyday-life 

encounters with friction and wear help us to define and comprehend them intuitively. 

However these phenomena are extremely complex in nature. Their complexity is studied and 

described by a whole science called tribology. Therefore it is worth making a brief description 

of the most important tribological relations and factors that govern the complex and not yet 

fully understood world of friction and wear. 

I.1.1. Friction 

Let us consider the simple case of two 

bodies in contact as shown on Figure I.1. Here, 

the cube is pressed against the plane with a 

force Fn that is normal to both surfaces. In the 

same time, a gradually increasing lateral force 

Fl is applied to the cube. This force tends to 

slide it over the flat and is tangential to both 

surfaces. However the cube will not start sliding until Fl reaches a certain value. This is 

because a force Ff, called friction force, opposes Fl. The magnitude of Ff depends on the 

magnitude of Fn in the following manner: 

nf FF   (I.1) 

where µ is the so-called friction coefficient. Therefore, friction can be defined as a 

phenomenon that opposes sliding between two surfaces brought in contact to each other by a 

normal force. Although the relation between Ff and Fn is simple, µ is a complex value and 

depends on many factors such as: 

 Chemical and physical nature of the surfaces in contact; 

Fig. I.1. The friction force explanation 

 Fn 

 Fl  Ff 
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 The presence of a third body or a fluid between them; 

 Surface topography; 

 Environment (temperature, atmosphere, radiation, etc.); 

 In many cases – the normal force Fn; 

 Sliding velocity – the speed at which the two surfaces slide over each other can, for 

example, influence the temperature in the contact zone. 

There are 3 components of the friction coefficient [1]: 

 Friction due to asperity interlocking and deformation. Sliding surfaces can not be 

ideally smooth and always have asperities. When these asperities are brought to 

contact by Fn, they interlock and oppose friction. Overcoming the interlocking by 

means of the deformation of the asperities contributes to the friction coefficient. This 

mechanism dominates the initial stages of sliding but can also contribute to value of 

the friction coefficient in the later stages in case new asperities are generated during 

sliding. 

 Friction due to ploughing of the wear particles created during friction. Ploughing 

influences the friction coefficient most strongly the intermediate and late stages of 

sliding. 

 Friction due to adhesion of the sliding surfaces to each other. Once the surfaces in 

contact have been activated by the friction (creation of dangling bonds, vacancies, 

revealing of pure reactive surfaces, etc.), adhesion between the sliding surfaces 

opposes the sliding thus contributing to the value of the friction coefficient. 

In most tribological systems µ < 1. However, there are cases where the interactions 

(chemical and/or physical such as cold welding) between the two surfaces can increase µ to 

values greater than 1. 
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I.1.2. Wear 

Wear is the removal of material from solid surfaces sliding relative to each other. The 

most common and widely accepted wear mechanisms are as follows: 

 Adhesive wear – the sliding surfaces adhere strongly enough to each other that a very 

thin layer (usually – the asperities) of the softer one are removed from it and remain 

attached to the harder one. 

 Abrasive wear – this type of wear occurs in sliding pairs where one of the materials 

is substantially harder than the other. Plastic flow of the softer material is responsible 

for the smoothening of its asperities and gradual removal of material atom by atom. 

 Fatigue and delamination wear – cycling loading and unloading of the surface 

generates fatigue-induced cracks. After the crack onset, they propagate rapidly. Crack 

branching and merging lead to liberation  and removal of material in the friction zone. 

 Chemical wear – chemical reactions might be induced in the contact area by the 

chemical properties of the environment, the sliding materials or both. The combined 

effect of the sliding and the chemical reactions results in removal of material from the 

sliding surfaces. 

As seen in (1), the amount of friction is defined by the friction coefficient. A widely 

adopted measure for the amount of wear is the so called wear rate K:  

sF

V
K

n.
  (I.2) 

where V is the volume of the material removed from the surface in question, Fn is the normal 

force as defined in eq. I.1 and s is the sliding distance. Formally, the dimension of the wear 

rate is  m
2
.N

-1
. However, a much more instructive way of expressing K is in m

3
/(N.m). Such 

expression represents directly the physical meaning of K since the denominator has a 

dimension of energy. Hence K is the measure of the volumetric amount of removed material 

per unit energy input in the system. Typical values of K for many systems are in the range of 

10
-15

 m
3
/(N.m) and less. Besides, in wear tests the volume of the removed material is in the 

range from zero to few mm
3
. For these reasons, K is widely expressed in mm

3
/(N.m). 
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I.1.3. Lubrication 

For many engineering applications such as bearings, gears, cutting tools and others 

friction and wear are unwanted. Lubrication is one of the most widely used means of their 

diminishing. There are two main groups of lubrication methods employed in industry: fluid 

pressure lubrication and surface film lubrication. The first method is based on the 

hydrodynamic phenomena that occur during sliding when a relatively thick (1-100 µm) layer 

of liquid lubricant is introduced between the sliding bodies. The pressure created in the 

lubricant layer keeps the surfaces of the sliding bodies entirely separated. In surface film 

lubrication the surfaces in contact are only partially kept apart from each other by very thin 

films attached to them by physical or chemical adsorbtion. Lubricant chemistry plays a very 

critical role in this lubrication mode. The second lubrication method is called surface film 

lubrication and has one very important subgroup that will be discussed in more detail. This is 

the so called solid lubrication which is realized by introducing a solid third body between the 

sliding surfaces. This solid body can be in the form of powder or a thin/thick film over one or 

both sliding surfaces. Clearly, not every solid possesses lubricating properties. Table I.1 gives 

a review of the most common types of lubricating solids. 

Type Lubrication Principle Examples 

Soft 

materials 

Easy shearing and plastic 

deformation of the bulk material 

Pb, In, Sn, Ag, Au, CaF2, BaF2, PbO, 

PbS, CdO 

Lamellar 

solids 

Easy shear of layered-lattice structure Dichalcogenides: MoS2, WS2 and 

diselenides, ditellurides, graphite, 

BNhex, graphite fluoride, AgxNbSe2 

Organic 

polymers 

Polymers with low intermollecular 

bonding (cohesion) and low surface 

energy 

PTFE, FEP, PFA, PTFCE, nylon, 

acetals, polyimides, metal soaps, 

waxes, solid fatty acids, esters 

Chemical 

conversion 

layers 

Surface oxides (reduce cold welding, 

shear) 

Porous surfaces (lubricant reservoir) 

Increased hardness 

Oxide films 

Anodized surfaces 

Phosphated surfaces 

Table I.1. Most common types of solid lubricants 

Although solid lubrication is not an ideal solution for diminishing friction and wear, it 

offers many advantages over liquid lubrication. The most important of them, along with some 

d i s a d v a n t a g e s ,  a r e  m e n t i o n e d  i n  T a b l e  I . 1 .



 5 

Table I.2. Advantages and disadvantages of solid lubrication 

From all types of solid lubricants mentioned in Table I.1, lamellar solids attract most 

industrial interest because compared to the other groups of solid lubricants, they have the 

following advantages: 

 Wide range of operating temperatures. Soft metals and organic polymers harden  and 

become brittle at cryogenic temperatures. This leads to loss of lubricating properties. 

Polymers can not withstand temperatures over 250 °C for long periods. Fluorides 

(such as CaF2) are lubricants only at high temperatures. 

 No need of special environment for providing lubrication. Unlike chemical conversion 

layers, lamellar solids need no chemical reaction of the sliding surfaces with each 

other and/or the environment. 

 No radiation aging. Unlike organic polymers, lamellar solids are inorganic and hence 

do not suffer ageing when exposed to radiation. 

The lubricating properties of lamellar solids and MoS2 in particular will be discussed 

in more detail later in this work.

Advantages Disadvantages 

 Vacuum/clean room – no evaporation 

and contamination/loss of lubricant 

 Suitable for wide range of temperatures 

(from cryogenic to high) – no viscosity 

change, no freezing, evaporation or 

cracking; 

 Not flammable; 

 High load bearing capacity 

 High velocity lubrication– less friction 

dependence; 

 Maintenance - good for difficult access; 

 Ecological – minimal quantity; fluids 

pollute water + soil 

 Non-contaminating – e.g. food, textiles 

 Resistant to radiation – nuclear 

applications 

 Poor thermal conductivity 

 Sensitive to atmosphere and 

humidity 

 Difficult or impossible to re-coat  

 No cooling effect, e.g. during 

metal working 



 6 

I.1.4. Surface modification and coatings deposition 

Dramatic reduction of wear coefficient can be achieved by modifying the surface 

properties of the materials while preserving the useful properties of the bulk. It should be 

noted that wear reduction does not necessarily mean reduction of friction. Surface 

modification is another widely used method for diminishing wear. Two approaches are 

currently employed for improving the wear and friction properties of engineering surfaces. 

The first of them is surface hardening by means of various techniques such as ion 

implantation, laser-induced surface hardening processes, nitriding and spark hardening. 

Coating the surface with a layer of a well adherent wear resistant material is another method 

of choice for many applications and has been is gaining increasing popularity for almost 4 

decades. Both surface modification and hard coatings have their advantages and application 

niches and both suffer some disadvantages. However, hard coatings are by far the most 

widely used means for wear reduction by modifying the surface properties. In the recent years 

approximately 80% of all metal working operations (drilling, cutting, turning, milling, etc.) 

are performed with coated tools [2]. Techniques including plasma and flame spraying, 

Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), electroplating, liquid 

salt electrolysis and others are within the arsenal of the modern coatings industry. Vapour 

deposition methods, however, have been most widely used in this field because they yield 

coatings with controllable and uniform thickness that meets even the tightest dimensional 

tolerances set by the machinery designers. Historically, the terms “PVD” and “CVD” were 

introduced by Powell et al. [3] in 1966 and represent the two deposition methods that are most 

widely commercialized and provide the vast majority of wear protective coating industry 

output.  

Because of the relatively high temperatures needed in thermal CVD (800 °C and 

higher) the choice of cutting tool material to be coated was initially limited to only WC-Co 

and some other cemented carbides. Steels could not withstand such high temperatures without 

deformation, annealing and other undesired effects on their structure. By means of PVD dense 

coatings can be deposited even at room temperature although most commercial PVD coatings 

are deposited at temperatures above 200 °C. Non-toxic and inexpensive precursors are used 

and the deposition process is very suitable for automatic control and optimisation.  

The first coated cutting tools were introduced to the marked in the late 1960s [4] 

although the first efforts on the topic published in periodicals became available in the middle 
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of the 1970s [5], [6], [7], [8], [9], [10]. This, in turn, was a very strong basis for further 

development of wear protective coatings and towards the middle of the 1980s a significant 

amount of knowledge in the field was already accumulated [11]. Two main streams can be 

distinguished in the development of wear protective coatings : 

 Hard coatings based ot TiN, TiC, Ti(C,N), (Ti,Al)N, (Ti,Al)(C,N), ZrN, CrN, Al2O3, 

diamond-like carbon (DLC) and others. These coatings posses high hardness (typically 

HV0.5 above 20 GPa), low wear rate and relatively high friction coefficients. 

 Solid lubricant coatings of soft metals, lamellar solids, some organic polymers and 

DLC, as listed in Table I.1.  This group of coatings have low friction coefficient and 

their wear-diminishing properties are brought about by providing solid lubrication. 

Significant disadvantages of the coatings in this group, however, are their relatively 

low hardness and low wear rate compared to the hard coatings. 

I.2. Goal of this work 

Currently there is a big gap between the hard coatings and the solid lubricant coatings 

[12]. The only exception is DLC which has both high hardness (often exceeding HV0.5 60 

GPa [13]) and low friction coefficient. The strong dependence of the tribological properties of 

DLC on the environment (especially on the presence of oxygen and water vapor in it), the 

significant stress levels in the coatings and the high wear rates when sliding against ferrous 

materials are the among the most serious disadvantages of the DLC coatings. Good overviews 

on the tribological properties of DLC are made in [14], [15], [16]. Despite the big amount of 

published effort on both hard and solid lubricant coatings, only in the recent decade research 

was published in the field of self-lubricating hard coatings. Methods other than vapour 

deposition have been also used [17], [18], [19], [20] but in this work only CVD and PVD 

coatings will be treated. The pioneering works of Bae et al. [21], [22], [23] were the first 

source in the field. His work was soon followed by others [24], [25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], [35], [36], [37], [38], [39] , [40], [41], [42], [43], [44], [45]. 

These publications represent almost all published effort in the field. Very little if no 

systematic study on the deposition conditions-structure-properties relation has been ever 

reported. The opposite approach is illustrated by the efforts of Fox et al. who improve the 

tribological properties of solid lubricant (MoS2) coatings by doping them with Ti [46]. This is 

somewhat surprising since the development of a new type of coatings that combine the high 
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hardness and low wear rate of the hard coatings with the low friction coefficient of the solid 

lubricant coatings would be beneficial for many applications by: 

 Reducing or completely eliminating the need of fluid lubrication in metal working, 

bearings, linear guides, etc. Mineral and synthetic fluid lubricants bring increasing 

environment- and health-protection concerns. 

 Increasing the lifetime and reliability of existing solid lubricant coatings in space and 

other high-tech applications. Solid lubricants are widely used in space exploration 

[47], [48] where reliability and long service life of the components and mechanisms 

are of critical importance. 

 Increasing the lifetime of existing hard coatings in components and cutting tools. The 

high price of modern cutting tools, their difficult re-sharpening and the need to 

interrupt the cutting process in order to change the tool are very significant 

contributors to the overall price of the modern metal working. 

This work aims at studying the concept of lowering the friction coefficient of a hard 

coating by means of adding a solid lubricant in its structure. In the scope of this work the 

hard coating should be considered the host (or “matrix”) and the solid lubricant should be 

considered the dopant. Hence from this point on the solid lubricant doped hard coatings 

will be denoted as self-lubricating hard coatings. PVD will be used as a deposition method 

for the these coatings because of its advantages over other deposition methods such as CVD. 

The resulting PVD coatings should combine the high hardness and low wear rate typical 

for hard coatings (HV0.5 20 GPa and 10
-6

 mm
3
/(N.m), respectively [49]) with the low 

friction coefficient close to that of solid lubricant coatings. It should be pointed out clearly 

that this work does not aim at the development of a wear protective coating that in terms of 

wear resistance surpasses many or even any coatings reported in the literature. Since both 

wear resistance and friction coefficient strongly depend on the test set-up and conditions, 

any comparison of these values reported by authors who have used different test conditions 

and/or different testing equipment would be inconclusive and therefore useless. To prove or 

reject the above-mentioned concept, pure hard benchmark coating, a typical solid lubricant 

coating and self-lubricating hard analogues, all with identical thicknesses, will be deposited 

in the same deposition system on identical substrates at identical deposition conditions. 

Then their tribological and mechanical properties will be studied using identical testing 

condition and the same testing equipment. Friction coefficient of the self-lubricating hard 
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coating of a value between these of the benchmark hard coating and the benchmark solid 

lubricant coating and similar or lower wear rate of the self-lubricating hard coating 

compared to the hard benchmark coating will be the merit for assessing the prove of 

concept. 

I.3. Approach 

The study will be divided in the following sections: 

Section 1. Definition of the materials for the hard phase and the solid lubricant 

Section 2. Definition of the possible coating architectures of self-lubricating hard coatings 

Section 3. Definition of the methods for deposition and deposition arrangement 

Section 4. Definition of the methods for studying of the structure and the chemical 

composition of the coatings 

Section 5. Definition of the methods for studying of the tribological and mechanical 

properties of the coatings and the coating-substrate composites 

 Section 5.1. Characterization of the tribological properties 

 Section 5.2. Characterization of the hardness 

 Section 5.3. Characterisation of the adhesion 

Section 6. Definition of the materials for the substrates and their surface finish 

Section 7. Deposition of the benchmark coating as defined in WP 6 

Section 8. Deposition, structural and tribological characterization of TiN/MoSx multilayer 

coatings 

Section 9. Deposition, structural and tribological characterization of co-deposited TiN+MoSx 

coatings 

Section 10. Concluding remarks and recommendations for further studies 

  For the sake of simplicity, ease of reading and logical dividing, reference lists will be 

made after each chapter. 
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Section 1. Definition of the materials for the hard phase and the solid 

lubricant 

As mentioned earlier, the self-lubricating hard coatings that are the object of the current study 

consist of two components: a hard phase and a solid lubricant. Many wear protective coatings, 

both hard and solid lubricating, are used in the modern industry. However only one material 

should be selected from each of these two groups. 

1.1. Hard phase 

The ideal candidate for the role of the hard phase in the self-lubricating hard coatings 

that are the objective of this work would match the following requirements: 

 Relatively simple crystalline lattice 

 Relatively simple chemical composition, preferably a binary compound 

 Good tribological properties such as high hardness and low wear rate 

 Sufficiently high friction coefficient against many materials in order to be able to 

distinguish the effect of the solid lubricant when added to its structure 

 To be well studied and widely used as a wear protective coating 

 To allow doping with various elements in wide range of compositions 

 To be relatively easy to deposit by PVD. 

Titanium nitride (TiN) represents the first and most widely studied hard wear 

protective coating material. Since the late 1960s ample amount of published effort has been 

devoted to the study of the structure and properties of both PVD and CVD deposited TiN 

coatings because of the high hardness, low wear rate and good resistance towards oxidation of 

this material. Good reviews on the development, structure and properties of TiN coatings have 

been also made  [1], [2], [3], [4], [5], [6], [7]. Further improvement of the tribological 

properties of TiN coatings has been carried out in the direction of alloying TiN with various 

elements and compounds. Ternary and quaternary coatings such as Ti(C,N), (Ti,Al)N and 

(Ti,Al)(C,N) have proved to be very useful in many applications [8], [9], [10], [11], [12]. A 

good overview on the development of (Ti,Al)N coatings is made by [13]. In all cases, 

however, these coatings are based on a TiN host lattice in which the other elements are 

dissolved to yield stable or metastable solid solutions. A typical example of stable solid 
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solutions is the ternary Ti(C,N) system where perfect miscibility exists in the pseudo-binary 

phase diagram TiC-TiN [14]. Ternary nitrides containing Ti are well reviewed in [15]. In 

(Ti,Al)N there is a miscibility gap [16], [17], [18], [19], [20]. 

The hardness of bulk TiN is 18-21 

GPa [15] and a simple NaCl-type face-

centered cubic (fcc) crystal lattice as 

illustrated on Figure 1.1.  This phase exists 

in a relatively broad range of compositions 

from TiN0.6 to TiN1.1 and belongs to the 

group of the so-called interstitial nitrides 

where the N atoms, being much smaller than 

the Ti atoms, nest in the interstices of the Ti 

sub-lattice. In substoichiometric TiN<1 the N 

sublattice is deficient and in 

overstoichiometric TiN>1 the Ti lattice is 

deficient. Significant concentration of 

vacancies in both sub-lattices also exist in 

stoichiometric TiN. The Ti-N phase diagram 

shown on Figure 1.2. The phase Ti2N exists 

as a result of vacancy ordering at TiN<0.6. 

 The reported friction coefficient of 

TiN against many materials varies in very 

wide range from 0.05 against sapphire in air 

[21] to 1.15 against chromium steel in air 

[22]. However, most authors that have 

studied TiN coatings tribology have reported 

values for the friction coefficient against 

various materials well above 0.3 [23]. 

From all these considerations it is 

apparent that TiN matches very well the requirements set. For this reason it was selected as 

the material for the hard phase in the self-lubricating hard coatings as well as a benchmark 

hard coating needed for proof of concept.

Fig. 1.1. Crystal structure of TiN 

Fig. 1.2. Phase diagram of the system Ti-N 
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1.2. Solid lubricant 

Analogically to the material for the hard phase, the material for the solid lubricant 

needs to satisfy the following requirements: 

 Compatible with Ti and N 

 Low friction coefficient 

 Relatively simple and understood lubricating mechanism independent on the 

environment and the friction counterpart 

 Easy to deposit by PVD 

 Widely used and studied 

Molybdenum disulfide (MoS2) is a material that meets very well all these criteria. The 

first MoS2 coating deposited by PVD was reported by Spalvins in 1969 [24]. This publication 

has triggered a lot of further studies of the deposition process conditions that govern the 

structure and the tribological properties of these coatings. Significant amount of knowledge 

has been accumulated by the researchers leading to the following conclusions: 

 MoS2 is compatible with Ti and N. Furthermore, Ti is intentionally used as a dopant of 

MoS2 coatings in order to improve their tribological properties, as reported by many 

researchers [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. No report on the 

detrimental influence of N on the tribological properties of MoS2 coatings could be 

found.  A beneficial effect on nitrogen ion implantation on the tribological properties 

of sputter-deposited MoS2 was reported by [35]. WS2 is a solid lubricant very similar 

to MoS2 in structure and chemical and tribological properties. Doping WS2 with N has 

a beneficial effect on its tribological properties according to the studies of Nossa et al. 

[36], [37], [38].  

 The friction coefficient of MoS2 coatings depends on the friction environment [39], 

[40], [41] and the structure of the coating [42], [43], [44], [40], [45], but is generally 

low with values in the range of 0.01-0.1. 

 The lubrication mechanism of MoS2 in general  is described by Fleischauer [46] based 

on the electronic structure of MoS2 and molecular orbitals theory. The lubrication 
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mechanism in MoS2 coatings in particular is widely studied and relatively well 

understood [47], [48], [49], [50], [51],  [52], [46], [53], [54]. 

 MoS2 coatings are easy to deposit by PVD using sputtering from MoS2 targets and 

there are many publications studying the effect on various deposition parameters on 

the structure and properties of the coatings deposited. 

For all these reasons MoS2 was chosen as the solid lubricant material in the scope of this 

work. Figure 1.3 shows the specific crystal structure of MoS2 which is a layered hexagonal 

2H type structure. It consists of S-Mo-S stacks 

layered upon each other. The Mo-S bonds 

inside the stacks are strong covalent while the 

S-S bonds between the stacks are week van der 

Waals type. The stacking is along the c-axis of 

the unit cell and the S-Mo-S stacks have (001) 

Miller indexes. The structure is strongly 

anisotropic and the week van der Waals bonds 

between the stacks are responsible for the 

lubricating properties of this type of structures 

since the stacks can easily slide relative to each 

other when shearing stress is applied on the 

crystal. The blue insert in Figure 1.3 denotes 

the plane of sliding which coincides with the plane with Miller indexes (002). 

1.3. Summary of Section 1 

TiN was chosen as the material for the hard phase and MoS2 was chosen as the solid 

lubricant for combining in one self-lubricating hard coating. The influence of the coating 

architecture as well as the TiN/MoS2 ratio on the structure and the tribological properties of 

the coatings will be studied. 
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Section 2. Definition of the possible architectures of self-lubricating hard 

coatings 

Possible combinations of a hard phase and a solid lubricant can have, in principle, the 

architectures shown on Figure 2.1.  

2.1. Mixed and nanocomposite coating 

architectures 

The mixed and the composite coating 

architectures are realised by the simultaneous 

deposition of the hard phase and the solid 

lubricant as shown on Figure 2.2. Such a 

deposition arrangement is often called co-

deposition and this term will be adopted in this 

work. The vapour can be delivered to the 

substrate by using two or more sources 

pointing at the direction of the substrate or by 

using one composite source, containing both 

the hard phase and the solid lubricant. The content of both in the coating can be controlled by 

varying as follows 

 For the case of sputtering from two or more sources: by controlling the sputter rate of 

every source which is made by varying the power supplied to the sources. 

 For the case of sputtering from a composite source: by controlling the content of each 

component (hard phase and solid lubricant) in the source. 

It is difficult to predict the resulting architecture of coatings obtained by co-deposition of 

a hard phase and a solid lubricant. This question is open at the present moment and will be 

clarified experimentally in this work. In the mixed coatings, the matrix and the dopant are 

mixed on atomic level. The resulting solid solution is monophase and can be amorphous or 

crystalline. In the composite coatings at least 2 phases can be distinguished. Clusters (mono-, 

polycrystalline or amorphous) of the solid lubricant some nanometers in size are uniformly 

dispersed within the hard phase matrix (amorphous or crystalline). Some solubility of the 

solid lubricant in the hard phase and vice versa is also be possible. The mechanism of solid 

Fig. 2.1. Possible architectures of the 

self-lubricating coatings 
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lubrication in the nanocomposite coatings can be easily predicted. As the coating wears, there 

are always reservoirs of solid lubricant exposed 

at the surface of the wear track. 

These reservoirs provide solid lubricant thus 

diminishing the friction. The lubrication 

mechanism of the mixed coatings, however, is 

difficult to predict. Furthermore, it is not even 

clear whether this structure, if obtained at all, 

will have any self-lubricating properties. This 

question will also be clarified in this work. 

Therefore, from now on, the mixed and the 

nanocomposite coatings will be denoted as co-

deposited coatings based on the method for 

their deposition. Once information about their 

structure becomes available, the coatings will 

be denoted as mixed or nanocomposite.  

2.2. Bilayer and multilayer coating 

architectures 

The bilayer and multilayer architectures 

are realised by the sequential deposition of the 

constituents as shown on Figure 2.3. The 

thickness of each individual layer can be 

controlled by means of controlling the sputter 

rate of each source and controlling the time that 

the substrate is kept under the source in 

question. The solid lubricant is to be present 

throughout the entire volume of the coating in 

order to keep the friction coefficient low during 

its entire period of service. The bilayer coating 

structure is not considered to be useful in the 

scope of this work since once the top layer of 

solid lubricant is worn, no further lubrication 

Fig. 2.2. Possible co-deposition 

arrangements: a) from multiple 

sources; b) from a mixed source 

Fig. 2.3. Sequential deposition 

arrangement 
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will be provided for the underlying hard phase. In other words, one can not benefit 

simultaneously from the useful properties of the solid lubricant and the hard phase although 

the effect of decreasing the friction and wear when a layer of a solid lubricant deposited on a 

hard coating has been observed [1], [2], [3]. The multilayer structure can be useful in a real 

friction situation since such an effect, if constantly repeated many times throughout the 

multilayer coating wear life can lead to the overall effect observed with the composite and 

probably the mixed coatings. If the individual layers of the solid lubricant and the hard phase 

are very thin, in the range of few nanometers, overlapping of the effects of each phase on the 

overall properties of the coating will take place. Furthermore, due to local fluctuations in 

friction conditions, the multilayer coatings never wear layer by layer in such a way that there 

is only one phase present at the entire surface of the wear track at any moment. Rather, all the 

phases that present in the coating (i.e. all types of individual layers) are exposed at different 

parts of the wear track thus being able to exhibit their properties. 

2.3. Summary of Section 2 

For reasons mentioned above, in this work only co-deposited and multilayer coatings 

will be deposited and studied. For the sake of clarity, they will be described in separate 

chapters. Since the multilayer coatings contain their constituent phases in pure state, they will 

be studied first.  

Reference List to Section 2 

 

1.  Spalvins, T. Wear vol.46, no.1  1978 295-304 

2.  Srivastav, A., Kapoor, A., and Pathak, J. P. Wear 155 2  1992 229-236 

3.  Guizhen, Xu, Zhongrong, Zhou, Jiajun, Liu, and Xiaohua, Ma Wear 225-229 1  

1999 46-52 



 23 

Section 3. Definition of the methods for deposition and deposition 

arrangement 

In this group of deposition methods the material to be deposited is brought to the 

surface of the substrate in gaseous state. The deposition is carried out in chambers at pressures 

below atmospheric although there are some exceptions such as atmospheric CVD. Typical 

values are difficult to outline because of the wide range of pressures used varying from as low 

as possible to obtain with the current vacuum pumps to atmospheric. Nevertheless, most 

processes operate in the range of 0.1 ÷ 100 Pa. Based on the way in which the material to be 

deposited is brought to gaseous state, 2 main groups of vapour deposition methods are 

distinguished: CVD and PVD.  

3.1. CVD 

In CVD all materials to be deposited are delivered to the deposition chamber in the 

form of gases such as CH4, SiH4, etc. or vapours of volatile compounds such as TiCl4, 

organometallics and so on. These gasses decompose in the chamber yielding solid materials 

that condense at the substrate. Below is a typical example for a gaseous state reaction widely 

used in the coating industry to deposit TiN coatings: 

TiCl4 + NH3 + ½H2 ―heating→ TiN + 4HCl 

The gas decomposition is caused by 

some sort of energy input in the chamber, for 

example thermal energy (thermal CVD), ion 

bombardment (plasma-assisted CVD, often 

denoted as PACVD), light (laser-CVD) and 

so on. A thermal CVD chamber is shown on 

Figure 3.1. Although many types of energy 

input decompose the gasses even at low 

temperature, dense and well adherent wear 

protective CVD coatings are obtained only 

when heating the substrate. In some very 

widely commercialised processes such as 

thermal CVD these temperatures very often exceed 800 °C. Because of this, the choice of 

materials to be coated was initially limited to only WC-Co and some other cemented carbides. 

Fig. 3.1. A typical thermal CVD 

arrangement 
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Steels could not withstand such high temperatures without deformation, annealing and other 

undesired effects on their structure. Introducing the Plasma-Enhanced CVD (PECVD) 

broadened the range of substrate materials because of the lower operating temperature of the 

PECVD (typically about 400 °C) compared to thermal CVD. However even this reduction in 

operating temperature is not sufficient to satisfy the requirements of many engineering 

materials. Another drawback of CVD is the use of expensive, toxic, explosive and flammable 

gaseous precursors. Handling these precursors and providing safe working environment is 

rather challenging not only from technical but also from economical point of view. A big 

advantage of CVD is the ability to uniformly coat very complex shapes and even inner 

surfaces of tubes and other similar geometries. The current state of the art in the CVD 

coatings is reviewed very well by Choy [1]. 

3.2. PVD 

In PVD at least one of the materials to be deposited is brought to gaseous state by 

means of evaporation from a solid source or a melt facing the substrate or at least being at 

oblique angle relative to it. Gasses such as N2, CH4, O2 and others might also be introduced in 

the chamber in order to react with the vapour so the product of the reaction is deposited on the 

substrate. This process is known as reactive deposition. A typical PVD deposition system is 

shown of Figure 3.2. The vapour source can be positioned above, below or aside the 

substrates depending on the design of the deposition system. Various techniques have been 

successfully used in PVD to evaporate solids and melts. Two groups of such techniques can 

Fig. 3.2.  A typical PVD deposition system 
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be distinguished based on the type of input of energy needed for evaporation: thermal 

(thermal evaporation) and momentum transfer (physical sputtering). 

3.2.1. Thermal evaporation 

In thermal evaporation the material is heated to a temperature at which its vapour pressure 

is sufficiently high for providing reasonable rate of deposition on the substrate. Heating is 

achieved with either of the following: 

 Electrical resistive heating – the material to be evaporated is placed in a container 

made of refractory metal (W or Mo). Electric current is fed through the container resulting in 

Joule heating of the latter. For deposition of refractory metals and their compounds often no 

container is used and the current is fed directly through the metal which is in the form a 

filament or foil. Electrical resistive heating is not used, at least not industrially, for the 

deposition of wear protective coatings because of the low degree of ionisation of the 

evaporated species resulting at insufficiently strong adhesion of the coatings to the substrates. 

Another serious disadvantage of resistive evaporation is that alloys can not be evaporated with 

the vapour composition sufficiently uniform over the time due to difference in the vapour 

pressure of the elements of the alloy. When compound coatings are to be deposited by 

evaporation, individual evaporators are used for every component of the coating. This is also 

inconvenient since it complicates the design of the deposition system and limits the lateral 

compositional uniformity of the coating. Mostly low melting point substances such as Cu, Pb, 

Al, Se, etc. are evaporated by means of resistive heating. 

 Electron beam heating – the material to be evaporated is placed in refractory metal 

container and subjected to intensive electron beam bombardment. The method offers the 

advantage of being able to deliver high degrees of ionisation of the vapour cloud by means of 

ionising collisions between the vapour species and the electrons from the electron beam. Thus 

plasma is created near the evaporation source. The ions from the plasma can be accelerated 

towards the substrate by means of applying negative bias to it. As a result dense and well 

adherent coating can be deposited. Another advantage of the method is that only the material 

to be evaporated is directly heated by the electron beam. Therefore the refractory container is 

subjected to substantially lower temperature compared to that used in resistive heating. This 

minimizes the chemical interaction with the contained material and also the vapour pressure 

of the material the container is made of. 
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 Cathodic arc evaporation – this method was first used by T. Edison [2] for plating 

phonograph cylinders. The principle of 

operation of the cathodic arc evaporation is 

shown on Figure 3.3. An electric arc is ignited 

and sustained between the material to be 

evaporated (cathode) and an anode. In many 

cases the grounded deposition chamber walls 

play the role of the anode. The temperature of 

the point at which the arc strikes the cathode is 

in the order of 10
4
 K and combined with the 

very high electron current in the arc, this results in very high degree of ionisation of the 

evaporated species, typically 90% or more [3]. The kinetic energy of the ions and neutrals is 

thus in the range 40-100 eV . Negative bias applied to the substrate accelerates the ions 

further. Very effective sputter-cleaning of the substrate and shallow implantation of the ions 

takes place when the accelerated ions collide with the surface of the substrate and the growing 

coating. These features result in dense and very well adherent coatings [4]. Small particles, 

typically from less than 1 to few micrometers in size are ejected from the molten pool, travel 

to the substrate and remain embedded in the growing film. These particles are huge compared 

to the size of the ions and the neutral species in the plasma. Therefore they are called 

macroparticles. The surface of a typical arc-deposited coating and a cross-section of a tri-layer 

coating with an embedded macroparticle are shown on Figure 3.4.  

 

a b 

Fig. 3.4. The macroparticle problem: a) surface of an arc-deposited coating with the 

macroparticles clearly visible; b) a cross-section of a coating with a macroparticle 

embedded in it 

Fig. 3.3. Cathodic arc 

evaporation 
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The macroparticles can be harmful for the tribological properties of the coatings. Especially 

unacceptable they are for applications where smooth and defect-free surfaces are needed such 

as magnetic storage devices, optics and microelectronics. Substantial reduction of the number 

of macroparticles  per unit area can be made by using special magnetic filters placed between 

the cathode and the substrate to be coated [5]. This technique is called Filtered Cathodic 

Vacuum Arc (FCVA) and is used widely in modern coating industry. A schematics of  FCVA 

source and a photograph of the source in action are shown on Figure 3.5.  

The ions and electrons of the plasma produced by the cathodic arc source are guided through 

a toroidal magnetic field due to the interaction of their charge with it. Ducting plasma through 

straight and curved magnetic fields was pioneered by Aksenov and his co-workers [6] and 

was further studied in detail in [7,8,9,10,11,12,13,14]. The field itself is created by a bent 

solenoid. Since the microdroplets are either neutral or their electric charge is very small 

compared to their mass, they are trapped in the filter so the plasma on its exit contains very 

small amount of microdroplets. Double-bent (S-shape) filters provide further reduction of the 

number of microdroplets at the exit of the filter so very smooth coatings suitable for 

electronics can be produced by FCVA nowadays [15]. In summary, cathodic vacuum arc 

evaporation offers the following advantages: 

 Similarly to the other evaporation methods, cathodic arc evaporation can 

operate in physical vacuum. 

 The coatings obtained are dense and very well adherent because of the high 

energy of the ions and neutrals generated by the cathodic arc. 

Fig. 3.5. a) Schematics of a FCVA source. A – anode, C- cathode, T – trigger, S1 – 

focusing solenoid, S2 – guiding solenoid, B – duct, G – glass tube; b) the source in 

operation 
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 High deposition rates can be achieved. 

 Control of the energy of the ions arriving at the substrate can be controlled by 

applying bias to it 

 No poisoning (see below) of the cathode occurs in contrast to reactive 

sputtering 

However, cathodic arc evaporation has some important disadvantages: 

 Impossible to evaporate dielectrics. 

 Generation of macroparticles (greatly reduced by using magnetic filters). 

 Cathode difficult to manufacture – cast metallic cathodes are practically the 

only choice. 

 High thermal load on the target. 

The advantages of cathodic arc evaporation make the method very widely applied in the 

modern wear protective coating industry. Advances in magnetic arc filtering reduce the 

macroparticle content to levels acceptable for electronics and magnetic storage devices. 

3.2.2. Sputtering 

The term “sputtering” has its origin from the Latin verb “sputare” which means “to 

emit saliva with noise”. The physical process of sputtering was first reported by Grove in 

1852 [16]. He sputtered from a needle held close to a highly polished silver surface at a 

pressure of about 0.5 Torr. There was deposit on the silver surface when it was used as the 

anode and the needle was used as the cathode. The sputtering process is illustrated on Figure 

3.6 and can be described as a removal of material from a solid surface (referred to as a target) 

by bombarding it with particles with sufficient kinetic energy.  The removed material is in 

gaseous (vapour) state and consists of neutral atoms, ions and electrons. Unlike the 

evaporation techniques described above, sputtering does not melt the material to be 

evaporated which is a very big advantage of the method. This means that the vapour has the 

same composition as the target. Hence, alloys and compounds can be evaporated with 

constant chemical composition of the vapour over the time. 
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Although the principle of sputtering is simple to comprehend, the interaction of an accelerated 

particle with a solid surface is very complex. Some of the processes that take place when an 

accelerated particle collides with a surface are shown on Figure 3.7. From all these processes 

secondary electron emission and sputtered particles are the most important 

products for the scope of sputtering.

Fig. 3.6. The nature of sputtering process. 

Fig. 3.7. Surface and subsurface processes following a collision of an accelerated 

particle with a solid surface 
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The particles bombarding the target are in most cases ions. They are charged particles 

and can be accelerated easily unlike neutral atoms or molecules. In order to avoid chemical 

interaction of the accelerated ions with the target, noble gasses are used for sputtering. Argon 

is the usual choice 

because it is inert, 

inexpensive, non-toxic, 

stored easily under 

pressure and, most 

important, its atom is 

heavy enough to sputter 

practically any material. 

The way the ions are 

accelerated towards the 

target divides sputtering 

into many types. The ions 

can be created away from 

the target and accelerated towards it by ion sources like the one shown on Figure 3.8. In most 

industrial sputter-deposition systems, however, sputtering is realized by the 

so-called glow discharge method.

Fig. 3.8. An ion source principle 
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3.2.2.1. Glow discharges 

When increasing voltage is applied to the target placed in low-pressure noble gas 

environment, a voltage-current dependence as shown on Figure 3.9 is observed.  

The phenomena in the different regions of the voltage-current curve are as follows: 

A to B: the applied electric field accelerates residual ions and electrons that are due to the 

background radiation in the system (from cosmic rays, radioactive materials in the room 

construction, etc.). These ions and electrons move towards the electrodes. 

B to C: as the applied voltage increases, eventually all the available residual charges are 

swept up. This causes the current through the tube to saturate. The system is now operating in 

the saturation regime. 

C to E: as the applied voltage increases beyond C, the E field is now large enough that 

remaining electrons can ionize  gas atoms that they collide with before reaching the anode. As 

the voltage increases further, secondary electrons can also cause ionization. 

Fig. 3.9. Glow discharge V-I characteristics 



 32 

D to E: once in the Townsend regime, coronal discharges can occur at various edges, sharp 

points or wires in the gas. This is due to the electric field enhancement  that happens at such 

sites. These can be visible. 

At E: at point E, electrical breakdown occurs. The voltage is high enough now that ionization 

occurs due to secondary electrons in the gas as well as the generation of additional secondary 

electrons at the cathode due to ion impact there. There is a sudden increase of current by 

several orders of magnitude causing an avalanche. 

F to G: after breakdown from E to F, the gas enters the normal glow where the voltage is 

almost independent of current over several orders. As the current increases, the fraction of the 

cathode occupied by plasma increases until the plasma covers the entire cathode surface at G. 

G to H: in the abnormal glow regime, further increases in voltage causes increases in current 

to provide the desired current in the system. This is the region of operation for most sputtering 

and other plasma systems. At this state, the ions extracted from the plasma by the negative 

charge of the target bombard it with sufficient kinetic energy to cause sputtering. 

H to K: at H, the electrodes have become sufficiently hot that the cathode can now emit 

electrons thermionically and a second avalanche can happen. If the power supply is capable 

(low internal impedance), a transition from glow to arc happens in H to I. In the arc regime 

from I to K, the discharge voltage decreases as current increases until J. 

3.2.2.2. Magnetrons 

Secondary electrons emitted from the target and the electrons of the plasma are both 

repelled away from the target due to its negative potential. These electrons travel through the 

plasma and many of them leave it without undergoing collision(s) with the neutral atoms of 

the plasma. Thus ionization of the plasma can be improved by somehow trapping the 

electrons near the surface of the target thus increasing the probability for ionising collisions. 

Logically, the more ions exist in the plasma, the more ions will be accelerated towards the 

target and the more effective the sputtering process will be. The confinement of the electrons 

near the target was first reported by Penning in 1936 [17] who patented his idea in 1939 [18]. 

He used a combination of electric and magnetic field around the target with the magnetic field 

lines parallel to it surface. This allowed for better ionization of the plasma, shorter distance 

for acceleration of the positive ions towards it and as a result, effective sputtering at lower 

pressures and with higher rates. The devices that use magnetic fields for enhanced sputtering 
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are called magnetrons. Magnetic fields that emerge from and re-enter into the target’s surface 

have proved to be more efficient than that parallel to the target surface. Such magnetic 

electron confinement was patented by Knauer in 1965 [19]. However, his device was not 

primarily intended for sputtering but was an ion-getter pump. Clarke was the first to introduce 

magnetically-enhanced sputtering device in 1968 [20] called Sputter-gun or S-gun which had 

a tubular target geometry. Penfold and Thornton invented the post magnetron [21], [22]. The 

first planar target magnetron was reported by Corbani in 1973 [23]. However, Chapin is 

recognized to be the inventor of the planar magnetron [24], [25]. In the modern coating 

industry, planar magnetrons are most used most frequently for sputtering. The operating 

principle of a planar magnetron is shown on Figure 3.10. The electrons in the plasma spiral 

around the magnetic field lines. This increases 

the length of their paths through the plasma, 

hence the probability for ionising collisions 

with the neutral atoms in it. If the magnets at 

the periphery of the magnetron have the same 

strength as the central magnet, the magnetron is 

of the so-called balanced type (because the 

magnetic fields around it are balanced). The 

degree of ionization of the plasma are high only 

very close to the surface of the target of a 

Fig. 3.10. The planar magnetron 

schematics 

Fig. 3.11. Unbalanced magnetron 

schematics 
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balanced magnetron. Extending the plasma away from the target has a beneficial effect on 

increasing the reactivity of the reactive gasses fed into the chamber (if any) and providing 

mild ion bombardment of the growing coating. The latter results in more adherent, hard and 

dense coatings. The plasma extension can easily be provided by using of peripheral magnets 

stronger than the central one as shown on Figure 3.11. The peripheral magnets are stronger 

than  the central one. Thus their field lines are 

not compensated (balanced) by the central 

magnet and extend into the deposition chamber. 

The electrons spiral around these lines thus 

sustaining the plasma away from the target. 

This configuration of a magnetron is called 

unbalanced magnetron. It was first introduced 

by Windows and Savvides in 1986 [26] and is 

the type of a magnetron that is used most 

widely in coating industry nowadays. For both 

balanced and unbalanced magnetrons, the target 

is eroded non-uniformly because the magnetic field is not uniform above it. The so-called 

“racetracks” form at the regions subjected to most intensive sputtering. Such racetracks are 

illustrated on Figure 3.12. This is a certain disadvantage of magnetrons since it allows not 

more than approximately 30% of the target volume to be used before the target is perforated. 

One possible way to improve the uniformity of the target usage is to use electromagnets with 

variable configuration of the field instead of permanent magnets. This, however, increases the 

energy consumption, complexity and price of the magnetron. 

A further increase of the ion bombardment of the growing coating can be made by 

applying negative bias to the substrate. This extracts ions from the plasma and accelerates 

them towards the growing coating. Such energy bombardment improves the coating 

characteristics such as adhesion to the substrate, density and hardness. It also modifies the 

structure of the coatings by affecting the nucleation and crystal growth processes. 

As shown on Figure 3.7, heat is one of the products of the collision of the incident ion 

with the target. This generated heat is a substantial portion of the total energy input of the 

magnetron. Cooling with water is therefore needed. Some magnetrons use either direct water 

flow flushing the back of the target and others use water-flushing a the face of the magnetron 

Fig. 3.12. “Racetrack” on a used 

magnetron-sputtering aluminum target 
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at which the target is tightened. Usually the first approach provides much more effective 

target cooling but it requires the target to be bonded to a copper backing plate. Silver-filled 

epoxy resins or indium are used in most cases for target bonding. The second approach to 

target cooling allows targets without backing plates to be used (including porous targets) but 

in this case the target cooling is not so effective and lower magnetron power is to be used in 

the case of temperature-sensitive targets. 

Non-conductive targets can only be sputtered if polarity-changing voltage is fed to the 

magnetron. The frequency band of 13.56 MHz is internationally permitted for sputtering 

purposes. This band is in the radio-frequency range, hence sputtering with voltage modulated 

at 13.56 MHz is called Radio-Frequency (RF) sputtering. Besides providing the capability to 

sputter dielectrics, RF sputtering does not lead to charge accumulation at the target. Charge 

accumulation leads to arcing and special (and expensive) measures are to be taken to prevent 

it. However, in most industrial systems Direct-Current (DC) sputtering is used because it is 

more simple than RF sputtering, metallic targets are mostly used and arcing problems are not 

so severe. 

If metal compound coatings are to be deposited such as oxides, nitrides, carbides, etc., 

usually sputtering of a metallic target is used to provide the metallic vapour and reactive gas 

is used to provide the non-metallic element such as oxygen, nitrogen, CH4, C2H2, etc. These 

gasses are seldom used pure and in almost all cases are mixed with the sputtering gas (usually 

Ar). This deposition method is called reactive sputtering and the vast majority of wear-

protective coatings are deposited using it. However, the flow rate of the reactive gas fed to the 

deposition chamber is to be carefully controlled. If the flow is too low, mostly metallic films 

are deposited. If the flow is too high, the so-called poisoning of the target takes place. This is 

caused by reaction of the target surface with the reactive gas and formation of a compound 

film on its surface that hinders sputtering. This phenomenon is not observed with arc 

evaporation. 

3.3. Summary of Section 3 

 For the current study, a small research and development RF unbalanced magnetron 

sputtering system was used. Figure 3.13 shows the schematics of the system. It is supplied 

with 3 unbalanced magnetrons, two of which have RF power supplies capable of delivering 

up to 500 W to each magnetron. The third magnetron is supplied with a DC power supply 

capable of delivering 600 W power to the magnetron. Al three magnetrons can accommodate 
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disk targets with 5 cm diameter and 6 mm height. DC bias voltage up to 750 V can be 

supplied to the substrate table. The substrate table is radiation-heated with two standard quartz 

lamps and rotated under each magnetron.  

The temperature is measured with a K-type thermocouple inserted in a stainless steel disk and 

Fig. 3.13. Schematics of the deposition system used in this work 
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electrically insulated from the substrate. For the sake of preciseness, the temperature was 

measured only when the magnetrons are not operated and there is no DC bias supplied to the 

substrate table. This is made in order to avoid charging of the thermocouple by the plasma and 

hence obtaining a false reading. The substrate-to-target distance can also be varied. The 

pressure is measured by a Pirani cold cathode pressure gauge and was in all cases below 10
-3

 

Pa prior to deposition. The preparation for deposition included 15 minutes of simultaneous 

operation of the magnetrons blocked by the shutters (for cleaning and preheating the targets) 

and ion sputter-cleaning of the substrates by applying -750 V DC bias to the substrate table.  
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Section 4. Definition of the methods for studying of the structure and the 

chemical composition of the coatings  

4.1. TEM basics 

According to the classical Raleigh criterion that applies for light microscopy, the 

smallest distance between adjacent points that can be resolved by a light microscope δd, also 

called resolution due to diffraction, is 








 61.0

sin

61.0
d (4.1) 

Where λ is the wavelength, µ is the refractive index of the viewing medium and β is 

the semi-angle of collection of the magnifying lens. With good preciseness the denominator α 

(also called numerical aperture) can be approximated to unity. Thus the resolution is roughly 

equal to half of the wavelength of the light used. For green light, for example, that is in the 

middle of the visible spectrum, the resolution of a good optical microscope can not exceed 

300 nm. Overcoming this limit has been the main motivation for Knoll and Ruska who 

initially developed the  idea of using electrons and electron lenses for imaging. They 

introduced the term “electron microscope”, built the instrument and demonstrated electron 

images taken with it in [1]. For this contribution Ruska received, with a big delay, the Nobel 

Prize for physics in 1986. It is interesting to mention that Ruska revealed that at the time he 

contributed to the invention of the TEM, he had not been aware about the ideas of de Broglie 

about the wave nature of the electrons. So 

Ruska thought that the wavelength limit does 

not apply for electrons. In fact it does. 

According to de Broglie, the electrons have 

dual nature and posses the characteristics of 

both particles (mass and charge) and waves 

(wavelength). The relation between these 

characteristics is as follows 

vm

h

0

 (4.2) 

Where λ is the electron wavelength, m0 is the 

electron rest mass and v is the speed of motion Fig. 4.1. Electron gun with thermal 

electron source 
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of the electron. In a TEM the electrons are accelerated by a device shown on Figure 4.1 and 

called electron gun. Electrons can be emitted by thermoelectron emission or field emission. 

The first is realized by heating a W filament or a LaB6 monocrystal and the latter is realized 

by applying high voltage to a W needle. The potential difference between the Wenhelt and the 

anode plate is called accelerating voltage. The kinetic energy that an electron acquires in an 

electron gun is 

eVvm 2

0
2

1
(4.3) 

Where e is the electron charge and V is the accelerating voltage. Combining (4.2) and (4.3.) 

we obtain 

eVm

h

02
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In a modern TEM operating with accelerating voltage of 200 kV and more, the electrons 

acquire substantial speed and their mass, according to the theory of relativity, increases and a 

relativistic correction is to be introduced. Finally, taking into account the relativistic 

correction,  

)/1(2 2

00 cmeVeVm

h


 (4.5) 

Where c is the speed of light in vacuum. For example, for accelerating voltage of 200 kV 

λ=0.00251 nm. 

The trajectory of a charged particle, which an electron is, can be influenced by either 

magnetic or electric field. In TEMs magnetic fields are used because of the difficulties related 

with the intense electric fields needed for deflecting accelerated electrons, among which is 

charging of the specimen, arcing and so on. So instead of glass lenses which is the case in 

light microscopy, TEMs use magnetic lenses. The motion of an electron in a magnetic field 

obeys the right-hand rule and is shown on Figure 4.2. 
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For this reason, in contrast with the optical microscopes, the image in a TEM is always 

rotated relative to the specimen and the degree of rotation depends on the strength of the lens, 

i.e. on the magnification. A schematic of a magnetic lens is shown on Figure 4.3.  

The current fed through the copper coils creates a magnetic field which is shaped by the 

polepieces. The electrons passing through the magnetic field in the gap between the 

polepieces are redirected in a way described in the figure. By varying the current through the 

coils one can vary the strength of the lens. While nowadays almost perfect lenses can be 

manufactured for light microscopy, even the best magnetic lens is very far away from being 

perfect. Using a magnetic lens for electron microscopy can be compared to using the bottom 

of a glass bottle for light microscopy. In other words, the resolution of a TEM is limited not 

by the wavelength of the electrons used but by the imperfections (mainly the spherical 

Fig. 4.2. Spiral motion of an electron in a) magnetic field and b) a magnetic lens 

a) b) 
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Fig. 4.3. a) magnetic electron lens; b) electron beam path through the polepiece 
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aberration) in the lenses that are used to create the electron image. The main defect of a 

magnetic lens is the so-called spherical aberration and is shown on Figure 4.4.  

The spherical aberration of a lens is due to 

radial-uneven strength of the lens. Thus rays 

passing through the periphery of the lens are 

refracted more strongly than the rays passing 

through it central part. The quality of the 

image produced by a lens with spherical 

aberration is highest in the so-called disk of 

least confusion where the sum of the image 

distortions is minimal. One possible way to 

minimize the spherical aberration is to 

collect a very narrow part of the rays, close to the optical axis of the lens. This is the reason 

for the very small semi-angles of collection β in a TEM, being typically a fraction of a degree 

and the resolution limit δs of a TEM due to spherical aberration is given by 

3 ss C (4.6) 

Where Cs is the spherical aberration 

coefficient of the lens. The overall 

instrument resolution is then 

 /61.03  sds C (4.7) 

Since magnetic lens with smaller Cs can not 

be made currently, the only way to increase 

the resolution of a TEM is to decrease λ by 

increasing the accelerating voltage. This is 

also limited by technical difficulties and 

increasing probability for electron beam-

induced damage of the specimen. The 

dependence of δs and δd on α is represented 

graphically on Figure 4.5. Optimum value of α occurs when δs=δd. Then 

sC 61.04  (4.8) 

Fig. 4.5. Optimum combination of the 

values for δd and δs results in minimum α 

Fig. 4.4. Origin of the spherical 

aberration in a lens 
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One year after Knoll and Ruska built their microscope  the resolution of the light microscope 

was surpassed and constantly improved through the years until individual atomic columns 

were observed for the first time in the middle of the 1970s. Nowadays a TEM has a typical 

resolution of about 0.15 nm. Because this resolution is sufficient for studying the atomic 

structure of the materials by imaging, improving the resolution of the TEM is not a paramount 

and the instrument is currently being developed in other directions.  

The optical configuration of a TEM is shown on Figure 4.6. Since electrons interact 

very strongly with matter (including scattering from gasses), TEMs operate in vacuum. The 

mean free path of an electron should be greater than the electron gun-viewing media distance. 

Vacuum also prevents arcing in the electron gun and contamination/oxidation of the sample 

during observation. In principle a TEM consists of 2 main optical subsystems: illumination 

Fig. 4.6. Ray diagram of a TEM in imaging and diffraction mode. Note the difference 

in the objective and selected area diffraction (SAD) apertures and also the strength of 

the intermediate lens in both cases 
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system that provides the electron beam arriving at the specimen with the desired 

characteristics and imaging system that brings the electrons transmitted through the specimen 

onto the appropriate imaging detector. The current illumination systems are capable of 

producing electron beams only few Å in diameter thus allowing analysis of very small regions 

of the specimen to be made. As seen from the figure, a TEM has two basic operation modes: 

imaging and diffraction. In imaging mode, the strength of the intermediate lens is such that it 

focuses into one point the beams scattered from the same point of the specimen. In diffraction 

mode the strength of the intermediate lens (often called diffraction lens) is such that it focuses 

in one point the beams scattered from the specimen at the same direction (i.e. the parallel 

beams leaving the specimen). This is the main difference between the two operation modes of 

a TEM. 

4.2. Diffraction  

Crystal lattices are good diffraction 

grids for the electrons used in a TEM due to the 

small wavelength of the latter. As it is with X-

ray diffraction, electron diffraction is governed 

by the same basic geometrical law known as 

Bragg’s law. The Bragg’s law is schematically 

represented on Figure 4.7. The electron wave 

front reaches the crystal planes and is reflected 

by them. The difference in paths Δ passed by 

beams reflected by neighboring planes is  

 sin2d (4.9) 

Constructive interference between the reflected beams occur when Δ equals an integer 

number of wavelengths: 

 sin2dn (4.10) 

or 

 sin2dn (4.11) 

or 

Fig. 4.7. Electron reflection from crystal 

planes.  
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In other words, the interplanar distance d can be calculated by the angle at which these planes 

diffract the electron beam with given wavelength λ. Since in a TEM the electron beam is 

monochromatic, it is diffracted by the interplanar distances characteristic for the crystalline 

specimen at specific angles corresponding to that distances through the Bragg’s law. On the 

imaging device the diffracted beam forms an image known as electron diffraction pattern. For 

the case of a monocrystalline specimen the electron diffraction pattern looks like the one 

shown on Figure 4.8.   

For a polycrystalline specimen there are many 

crystals randomly oriented relative to the 

incident electron beam. This random 

orientation will give rise to superposition of all 

the beams diffracted from the individual 

crystallites. The resulting electron diffraction 

pattern for a polycrystalline specimen is 

shown on Figure 4.9 for the case of a 

completely random orientation of the crystals 

in the whole range 0-360°. If the crystallites 

are oriented randomly relative to the electron beam but only in a certain range of angles (i.e. if 

there is the so-called preferred orientation or texture in the specimen) the electron diffraction 

Fig. 4.8. Formation of a diffraction 

pattern from a monocrystalline specimen 

Fig. 4.9. Formation of a diffraction 

pattern from a polycrystalline specimen 

Fig. 4.10. Formation of a diffraction 

pattern from a textured polycrystalline 

specimen 
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pattern looks like the one shown on Figure 4.10. The angle of the arcs on that diffraction 

pattern corresponds to the range of the angles at which the crystals are oriented relative to the 

electron beam. The monocrystalline and random polycrystalline diffraction patterns can be 

considered the two extremes of the preferred orientation diffraction pattern. 

In order to calculate the interplanar distances of the crystalline phase(s) present in the 

specimen, the values of λ and Ө are needed. Knowing the accelerating voltage, the electron 

wavelength is easily calculated using equation 2.4.5. The diffraction angle cal be calculated 

using the concept shown on Figure 4.11.  

The camera length L on the figure is the distance between the specimen and the recording 

media and in a TEM does not correspond to the physical distance between them due to the 

influence of the lenses. Rather, the camera length is given directly by the instrument for every 

given strength of the lenses. Because of the very short wavelength of the incident beam, the 

diffraction angles are very small, typically in the range of one to few degrees. Then it can be 

assumed with good preciseness that sinӨ = Ө. The radiuses of the diffraction rings or arcs (or 

the distance from the central spot to the diffraction spot for the case of monocrystalline 

specimen) are measured easily. By means of inserting an aperture (called diffraction aperture) 

in the intermediate image plane a  diffraction pattern of only the region selected by the 

aperture can be taken. This method is called Selected Area Electron Diffraction (SAED) and 

Fig. 4.11. Calculation of  the TEM camera constant 
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is an extremely powerful technique for studying the crystalline structure of very small regions 

of the specimen. Unfortunately, the size of that region is limited because of the imperfections 

of the magnetic lenses used. Spherical aberration of the objective lens makes the actual 

position of the diffraction aperture differ from its position on the image. In other words, there 

is uncertainty in the position of the diffraction aperture so SAED pattern may be taken from 

different region than thought. For this reason SAED can be performed with sufficient 

accuracy only from regions about 200 nm in diameter. For smaller regions of the specimen 

other electron diffraction techniques are used which are not in the scope of this work. 

4.3. Imaging 

Since electrons are charged particles, their interaction with matter (especially with 

condensed matter, which most TEM specimens 

are) is very strong and generates many useful 

signals, as shown on Figure 4.12. Detecting 

these signals and relating them to the structural 

and chemical characteristics of the specimen 

extends the capabilities of a modern TEM far 

beyond being simply a higher resolution 

analogue of the light microscope. Arguably the 

TEM is probably the most powerful and 

versatile tool for studying the materials on 

atomic and even sub-atomic scale. The strong 

interaction of the electrons with condensed 

matter, however, is not only the blessing but 

also the curse of TEM because one should use 

very thin specimens in order to  fully benefit from the high resolution of the instrument. For 

lattice-resolution imaging specimen thicknesses in the range of 50 nm and less depending on 

the average atomic weight of the specimen are only acceptable. The specimen preparation 

technique used in this work will be described later.  

From the electron-material interaction processes described in Figure 4.12 scattering is 

probably the most important one. It is responsible for the imaging capabilities (i.e. the 

ultimate purpose of a TEM) and also for studying the crystalline state of the specimen by 

means of electron diffraction. When an accelerated electron passes through a thin foil 

Fig. 4.12. Signals generated by the 

interaction of the incident beam with the 

specimen 
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(specimen) of some material, there is a probability that it will scatter from its original 

direction. Electrons scattered in directions opposite to the incident beam are called 

backscattered electrons and the phenomenon is called backscattering. This signal is usually 

not detected in TEM but is of great importance for Scanning Electron Microscopy. The 

electrons scattered in the direction of the incident beam are called forward scattered electrons 

and the phenomenon is called forward scattering. This is by far the most useful signal in a 

TEM. Inelastic or elastic scattering is observed depending on whether the forward-scattered 

electrons have lost part of their energy or not, respectively. The overall probability for 

scattering is called scattering cross-section and the probability for scattering from a singe 

atom σT  is the sum of the cross sections of the elastic σE and inelastic σI scattering from this 

single atom: 

IET   (4.13) 

For a specimen with thickness t, density ρ and average atomic weight A the number of 

scattering events per unit distance that the electron travels through the specimen Q is 

A

N
Q T0 (4.14) 

where N0 is the Avogadro’s number. If the specimen has a thickness t, then the total number 

of scattering events for and electron traveling through the entire specimen QT would be 

A

tN
QtQ T

T

)(0 
 (4.15) 

The term (ρt) is called mass-thickness of the 

specimen. In other words, thicker and/or 

heavier parts of the specimen will scatter more 

strongly than thinner and/or lighter parts of it. 

This mechanism is very important for imaging 

in the cases of studying amorphous specimens 

with non uniform thickness and/or distribution 

of the elements. The image contrast obtained 

in this case  is called mass-thickness contrast. 

In case the electron beam passes through an 

amorphous specimen with uniform thickness 

Fig. 4.13. A TEM image of a 

polycrystalline specimen 
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and uniform distribution of the elements, no contrast, i.e. no image will be formed on the 

viewing device. Clearly, this mechanism of contrast formation is valid also for crystalline 

specimens but in this case another mechanism also contributes for the image contrast. In the 

case of observation of a polycrystalline specimen with uniform thickness and distribution of 

the elements, strong contrast will be still be formed due to the fact that crystallites with 

different orientation will scatter (diffract) the incident beam in different (Bragg’s) angles. A 

typical TEM image of a polycrystalline specimen is shown on Figure 4.13 where a layer of 

pure Si with uniform thickness is shown. The different crystallites are oriented in different 

angles to the incident beam and appear with different intensity on the image. 

In the case of crystalline specimens structural features such as dislocations, vacancy clusters, 

grain boundaries, amorphous inclusions, etc. also contribute to contrast formation and allows 

their study. The two most important imaging techniques used in a TEM, the so-called bright 

field and dark field imaging, are shown on Figure 4.14. As seen on the figure, bright field 

images are formed by the electrons scattered at small angles near the direct beam (central spot 

on the electron diffraction pattern). In dark field imaging only electrons scattered in a 

randomly selected direction are used to create the image. In other words, only the electrons 

Fig. 4.14. a) bright field imaging; b) objective aperture dark field imaging; c) 

tilted beam dark field imaging 
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from a selected spot of the electron diffraction pattern form the dark field image. There are 

two ways to select only these electrons. In the first, the objective aperture is placed off-center 

in such a way that it blocks the central beam and its opening coincides with the desired 

direction from which the electrons are brought on the viewing device. In the second and more 

widely used way, the incoming beam is tilted in such a way that the beam of electrons 

scattered in the desired direction coincides with the optical axis of the microscope.  

In practice, dark field images are formed by the following sequence of actions: 

 Bringing the specimen’s area of interest in the middle of the bright field image; 

 Inserting a diffraction aperture so that only the area of interest is seen on the viewing 

device; 

 Switch the microscope to diffraction mode so that SAED pattern is seen on the 

viewing device; 

 Tilt the incident beam (specimen illumination) in such a way that the desired 

spot/arc/ring from the SAED pattern is in the center of the viewing device. Now the 

central spot is not anymore in the center; 

 Switch back to imaging mode, remove the diffraction aperture and insert the objective 

aperture, 

Dark field imaging allows only electrons scattered by particular crystalline planes to 

contribute to the image formation. This is a very useful technique when studying the 

orientation of the crystals in polycrystalline specimens. A typical bright field and dark field 

images from the same region of the specimen are shown on Figure 4.15.  

Fig. 4.15. a) a bright field image; b) the corresponding SAED pattern; c) a dark field 

image taken of the same region using the squared part of the SAED pattern 
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4.4. Image recording 

 In order to convert the electrons in a visible light image various devices can be used. 

Historically the first devices were the fluorescent screens. They are based on the fact that 

electron bombardment of some substances such as ZnS leads to the emission of visible light. 

Cathode radiation tubes of the TVs operate on the same principle. In TEMs plates coated with 

ZnS particles (typically 50 µm in size) are used. The ZnS is doped in order to give green light 

with wavelength of 550 nm. Such devices are very widely used for observation. 

 For recording an image special electron photographic plates were widely used. With 

the advance of electronics Charge-Coupled Device (CCD) cameras become more and more 

popular for both observation and image recording. A CCD camera can be (and usually is) 

connected with appropriate image-processing software. All this facilitates the work with the 

instrument so much that many modern TEMs have only CCD cameras and no fluorescent 

screens.  

4.5. Spectroscopy 

 As seen on Figure 4.12, one of the signals generated when the incident electron beam 

interacts with the specimen is the so-called characteristic X-rays. When an accelerated 

electron collides with an atom, it can knock-off an electron from one of the inner electron 

shells as shown on Figure 4.16.  

This sets the atom in excited state which is 

relaxed by filling the electron hole with an 

electron from the outer electron shells. This 

electron transition emits a quantum, usually in 

the X-ray spectrum. The energy of this 

quantum is characteristic for the given 

transition. For example when a hole in the K-

shell of a Ca atom is filled with an electron 

from its inner L-shell, the transition is referred 

to as CaKα1 where K denotes the shell of the filled hole, α denotes that the electron to fill the 

hole comes from the first neighboring shell (in this case – the L-shell) and 1 denotes that the 

electron comes from the first (outermost) sub-shell of the neighboring shell. A more detailed 

idea about the various electron transitions can be obtained from Figure 4.17. 

Fig. 4.16. Characteristic X-ray generation 

due to electron bombardment 



 52 

The CaKα1 transition emits an X-ray quantum with energy of 3.69 keV. The energy of the 

transition KKα1 is 3.31 keV. The α-transitions are 7-8 times more intensive than the β-

transitions. Thus every element has its own X-ray “signature” which is tabulated and this 

allows information of the chemical composition of the specimen to be determined. 

Furthermore, by using narrow electron beams, chemical analysis of very small regions of the 

specimen can be made. This technique is called Energy-Dispersive X-ray Spectroscopy 

(EDXS or, shorter, EDX or EDS). In this word the abbreviation EDX will be used. A typical 

EDX spectrum is shown on Figure 4.18. One disadvantage of EDX is the low sensitivity for 

light elements which makes quantitative analysis difficult for elements with atomic weight 

below 20 carbon units. 

Fig. 4.17. Possible electron transitions in a relaxing atom and their designations 
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4.6. Details of the TEM techniques used in this work 

 For studying the structure and chemical composition of the coatings that are the 

objective of this work, a transmission electron microscope PHILIPS CM 200 operating at 200 

kV accelerating voltage is used. The instrument is equipped with EDX spectrometer allowing 

EDX analyses to be made. Bright field and dark field imaging, SAED and EDX were used to 

obtain structural and chemical information about the coatings studied. A Gatan CCD camera 

was used for taking the images. Gatan Digital Micrograph® software package was used to 

control the CCD camera and for image editing. The spots, arcs and rings in the SAED patterns 

have very high intensity which might damage the very sensitive CCD camera. For this reason 

the SAED patterns were recorded on photographic plates. 

Fig. 4.18. An EDX spectrum obtained with a TEM operated at 200 kV accelerating 

voltage. Note the difference in intensities of the TiKα and TiKβ lines 
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4.7. Specimen preparation 

 As mentioned previously, the specimens for TEM study need to be very thin due to the 

strong interaction of electrons with matter. For thicker specimens the following major 

unwanted phenomena are observed: 

 Low electron image intensity: need for longer exposure times (i.e. the image might be 

strongly influenced by specimen drifting), higher noise level if a CCD camera is used 

for taking the images, lower contrast 

 Overlapping of structural elements in the specimen leading to misinterpretation of the 

images. 

 Loss of contrast. 

To bring a material to a very thin (few tens of nanometers and less) foil without altering its 

structure and/or chemistry is a challenging task. Mechanical thinning is an obvious 

possibility but even before the foil becomes thin enough to be electron-transparent, it is 

already very sensitive to mechanical disturbance. This is especially true for brittle materials 

such as ceramics, semiconductors and glasses. For metals mechanically-induced structural 

changes (dislocation movement, recrystallization, etc.) also pose severe limits. Therefore, 

mechanical thinning is used mostly in the initial stage of specimen preparation when the foil 

is sufficiently thick and strong to withstand the mechanical stresses without being damaged. 

Although mechanical thinning still has been reported to give good results in some cases 

[2,3,4,5,6,7], it is by far not an universal method for TEM specimen preparation, especially 

in the case of samples with high or even moderate internal stress. To further thin the 

specimen to electron transparency other, non-mechanical methods are applied.  

Chemical and electrochemical thinning is a non-mechanical method for TEM 

specimen preparation that has been successfully used for metallic materials [8]. However, 

this method is applicable almost only to metals and some conductive materials and is not 

generally suitable for ceramics, glasses and semiconductors. 

Ion bombardment has proven to be a very good approach to preparing TEM specimens 

with large electron-transparent areas [9], [10], [11], [12], [13], [14], [15], [16]. The method 

is often called ion milling. Its principle of operation is shown on Figure 4.19. The surface of 

the specimen is controllably bombarded with accelerated ions and/or neutrals produced and 

accelerated by the ion guns. Neutral particles have the advantage that they do not charge 
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dielectric samples. However, the question 

whether even neutrals undergo ionization 

when they collide with the specimen or not is 

still open. As a result of these collisions, 

sputtering of the specimen occurs and leads to 

its gradual thinning. The most important 

process parameters are as follows: 

 Accelerating voltage – typically 

in the range of 3-10 kV. 

Although such voltages provide relatively low kinetic energy of the accelerated 

species, substantial ion-induced surface damage (mostly amorphization) of the 

specimen may occur [17], [18], [19]. To minimize this damage, low-voltage 

ion milling has been proposed by Barna [20] with an ion gun operating at 0.1-2 

kV. 

 Angle of incidence – very small angles of incidence should be used, typically 

between 0 and 15°. Angles greater than 15° cause implantation of the 

sputtering species in the specimen. The amorphization also intensifies strongly 

with increasing angle of incidence and is small at angles below 10° [20]. 

Because of the low angles of incidence ion milling is very often referred to as 

low angle ion milling. 

 Sample rocking/rotation – in order to achieve uniform sputtering of all 

asperities, the specimen is to be rotated/rocked during milling [18]. 

 Sputtering gas – Ar is probably the best choice since it is chemically neutral, 

its ions/atoms heavy enough to cause high rate sputtering, it does not 

contaminate the ion milling chamber and other hardware and is an element 

which does not normally exist in many materials. 

 Milling time – the end of the milling process is defined mostly by the 

appearance of a small hole in the specimen. The edges of the hole are very thin 

and electron transparent. Observation of the sample and the operator’s 

experience are the most reliable ways to interrupt the milling process in the 

appropriate moment although CCD cameras combined with image-processing 

Fig. 4.19. Double beam ion milling 

principle  
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software to do the job are also available in the specialized ion milling 

equipment. 

The intensive ion bombardment may introduce some artifacts in the specimen the 

researcher should be well aware of. Implantation, amorphisation and changes (chemical 

and/or structural) are some of the most important ones. To minimize the heating of the sample, 

cooling is sometimes necessary for temperature-sensitive samples. 

In the current work the specimens were prepared by means of mechanical thinning 

followed by low-angle ion milling to electron transparency. 

4.7.1. Mechanical thinning 

 “Sandwiches” of 0.3 mm thick polished Si(100) wafer substrates with the coatings to 

be studied were made according to a procedure shown on Figure 4.20. Transparent thermal-

curing epoxy was used as a glue. The resulting “sandwiches” were then cut into the shape 

shown on Figure 4.21 by means of a diamond wire saw. The width of the sandwich of 2.5 mm 

has turned out to adequately match the capabilities of the specimen holder. The thickness of 

the sandwich is determined by the 

thickness of the Si(100) substrates and is 

approximately 0.65 mm. The height of the 

sandwich is not so critical and is dictated 

mostly by convenience of handling. It was 

found that height of approximately 10 mm 

is completely sufficient. A special device 

called tripod and shown on Figure 4.22 is 

used for mechanical polishing of the 

specimen. The sandwich obtained is glued 

Fig. 4.21. Coated Si(100) wafer “sandwich” 

architecture 

Fig. 4.20. Coated Si(100) wafer “sandwich” preparation procedure 
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to the glass mount of the tripod as shown on Figure 4.23. The 2.5 x 0.65 mm face of the 

sandwich is then ground with several diamond grit sandpapers with grit size decreasing as 

shown on Table 4.1. 

 

 Initially, all three legs of the tripod are 

brought into one plane with the face of the 

sandwich to be ground. This is made by 

putting the tripod on a leveled plain surface, 

retracting the third leg completely and 

bringing the two other legs and the face to be 

ground in a horizontal plane by means of the 

their micrometric screws. The bubble-level of 

the tripod is a measure for horizontality. Once 

this is made, the third leg is brought into 

contact with the leveled surface. Then, before the grinding 

with the 30 µm grit diamond sandpaper, the three legs are 

retracted with 150 µm using the micrometric screws. The 

grinding with 30 µm grit diamond paper starts and 

continues until the third leg touches the sandpaper and the 

sandwich stops leaving a track on the sandpaper. This 

means that 150 µm of the sandwich height have been 

removed. The sandpaper is changed to the next size, the 

three legs are retracted with the corresponding distance 

Diamond 

sandpaper 

grit size, µm 

Specimen 

thickness to 

be removed 

30 150 

15 100 

6 50 

3 20 

1 10 

0.5 10 

Table 4.1. Diamond sandpaper 

grit sizes used 

micrometric screws 
L-bracket 

leg 1 

leg 2 

micrometric screws 
L-bracket leg 1 

leg 2 

leg 3 

Fig. 4.22. A tripod with a) the L-bracket removed; b) fully assembled 

a) b) 

glass 
mount 

Fig. 4.23. Mounting of the “sandwich” 

for the first stage of the mechanical 

polishing. The surface of the sandwich 

that is to be polished faces down-right 
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and the above mentioned polishing takes place until the third leg touches the sandpaper. The 

step  is repeated until the final polishing 

with 0.5 µm paper is finished. Then the 

polishing wheel is changed with a felt 

wheel and polishing with 30 nm particle 

size silica water suspension is carried out 

for about 2 minutes. The specimen is then 

rinsed very well with deionised water. 

Optical microscope inspection of the 

polished surface is made between the steps. 

In case chips, cracks and other defects are observed, the step is to be repeated. Only the 

sandpaper marks should be visible on the surface if the step is carried out properly. After the 

final polishing with the silica suspension, a uniform, extremely smooth surface should be seen 

in the microscope. Then the sandwich is removed from the glass mount and a piece of it is cut 

as shown on Figure 4.24 by means of a diamond wire saw. The L-bracket is mounted on the 

tripod and the two legs are brought into one 

plane with the glass mount as shown on Figure 

4.25. Then the bottom of the glass mount is 

ground with 6 µm grit diamond sandpaper until 

its surface is uniformly ground and free of 

scratches. The goal of this procedure is to 

ensure that the bottom of the glass mount will 

be coplanar with the diamond sandpaper during 

the next stages of specimen thinning. The L-

bracket is then removed from the tripod and the 

cut specimen is glued to the bottom of the glass 

mount with its polished side facing the glass 

mount as shown on Figure 4.26. Then the L-bracket is mounted back on the tripod. Then the 

grinding starts using diamond sandpapers in the same order as shown on Table 4.2 

Diamond sandpaper grit size, µm Residual specimen thickness after grinding 

Fig. 4.24. The “sandwich” ready for the 

second stage of tripod polishing. The side 

polished in the first stage is hatched. 

Fig. 4.25. Leveling of the tripod by 

means of a leveled table. The bubble-

level gauges are marked with red circles 
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 The residual thickness of the sandwich is 

measured by the focus of the optical 

microscope and a linear displacement 

measurement device attached to the object table 

of the microscope. The final stages of grinding 

are controlled by the color of the sandwich in 

transmitted light. Grinding with 0.5 µm grit 

sandpaper is stopped when no scratches are 

observed on the surface and the sandwich is 

orange in transmission. Then the specimen is 

polished with silica suspension as described 

above. After polishing and rinsing with deionised water the L-bracket is removed from the 

tripod and placed in acetone for ungluing the specimen. Once the specimen is detached from 

the glass mount, it is glued to an aluminum horseshoe specimen holder by means of 

ARALDITE Rapide® epoxy as shown on Figure 4.27a. Prepared in such way, the specimen is 

ready for low angle ion milling. 

Table 4.2. Diamond sandpaper grit sizes used for the second stage of polishing 

4.7.2. Ion-milling 

The specimen, as glued on the horseshoe holder, is installed on a titanium ion milling 

holder and introduced in a BALTEC RES 100 ion milling system equipped with CCD camera 

for specimen observation during milling. First one side of the specimen is milled with Ar
+
 

accelerated with 2.5 kV and 4° angle of incidence for 30 minutes. During this stage, the 

specimen is rocked with amplitude of 20°. This stage is needed for removing the 

contamination and the small scratches and pits that almost inevitably exist on this side of the 

specimen. Then the holder is flipped and a high angle (15°) ion milling is performed at 4 kV 

accelerating voltage. During milling the specimen is rocked with amplitude of 20°. This stage 

is needed for rough thinning of the specimen and is terminated when either a perforation 

30 200 

15 100 

6 50 

3 20 (Si becomes brown in transmission) 

1 10 (Si becomes red in transmission) 

0.5 Until Si is orange in transmission 

Fig. 4.26. Installation of the specimen on 

the glass mount of the tripod for the 

second stage of polishing 
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occurs at or near the region with the coating (the middle of the sandwich) or the eroded 

“saddle” reaches the coating (the middle of the sandwich). The second case, which is more 

frequent, is illustrated on Figure 4.27b. The termination of this stage is decided based on 

optical observation of the sample during milling. The experience of the operator plays a very 

important role here. Once this stage is finished, the milling continues for 30 minutes at 4° 

angle of incidence and 2.5 kV accelerating voltage. The specimen is rocked with amplitude of 

20°. The aim of this stage is to remove the amorphous layer caused by the previous, high 

angle and high voltage, stage and to also remove any residual asperities on the surface of the 

specimen. After accomplishing this stage, the specimen is ready for observation. All 

specimens are stored in a vacuum chamber in order to avoid or at least minimize their 

oxidation. 
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Section 5.1. Characterization of the tribological properties 

  As mentioned earlier, coatings with specific tribological properties such as friction and 

wear coefficients are the central topic of this work. For the characterization of these properties 

a standard Pin-On-Disk (POD) method will be used for the following reasons: 

 It is very suitable for material screening, measurement of the friction and wear 

coefficients and wear mechanism analysis. The value for the friction coefficient is 

instantly provided by the testing equipment. 

 The testing equipment is relatively simple, commercially available and usually 

software-controlled so the experimental data is easy to process. 

 Although it is very difficult if not impossible to directly relate the tribological 

properties of a material as determined with POD tests with the tribological behavior of 

this material in a real application, the POD test is good in comparative analysis of the 

tribological properties of materials, including wear protective coatings. 

 The author had direct access to a piece of equipment. 

The POD method is the subject of an international interlaboratory exercise aimed at 

standartization under the auspices of the Versailles Project on Advanced Materials and 

Standards (VAMAS). The results of this exercise are published by Czichos et al. [1], [2]. 

The instrument that uses the POD method for the evaluation of the tribological 

properties of the materials is called a POD tribometer. For the sake of simplicity, in this work 

from now on it will be referred to as tribometer. The principle of operation of this instrument 

an explanatory image of the tribometer used in this work are shown on Figure 5.1.1. The 

counterpart can be either a ball with a certain diameter of a pin with spherical cap. It is 

pressed with a normal force Fn against the coated flat substrate by means of a dead weight. 

The substrate is rotated with a chosen radial speed of rotation that can be varied. The 

tangential speed of rotation (also known as the speed of sliding or sliding velocity) is defined 

by the radial speed of rotation and the offset of the counterpart from the axis of rotation. This 

offset is equal to the wear track radius r and can also be varied. The overall sliding distance is 

defined by the total number of revelations and the wear track radius. In order to measure the 

wear coefficient, the wear track is scanned with either a mechanical stylus or a laser scanner. 

The wear track cross section area S is calculated from the scan and input in the equation 

already familiar from Section 1: 
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where K is the wear coefficient, V is the volume of the wear track and s is the total sliding 

distance of the experiment. A scan and a SEM image of a typical abrasive wear track are 

shown on Figure 5.1.2. 

The instrument is equipped with displacement 

gauge attached to the counterpart holder. The 

latter is suspended on a spring with a known 

elastic constant so the friction force is 

calculated easily. The normal force is input in 

the tribometer software prior to the test and the 

value of the friction coefficient is given directly 

by the tribometer for every given moment 

versus the elapsed sliding distance. The 

graphical tribometer’s output is referred to as a 

friction curve and an example for it is given of Figure 5.1.3. As mentioned above, every 

modern tribometer is controlled by a software package and the data for the friction coefficient 

versus the elapsed sliding distance, number of revelations or elapsed test time is stored as an 

appropriate file format, usually TXT or XLS. 

Fig. 5.1.1. a) principle of the POD test; b) the POD test instrument used in the 

current work 

a) b) 

Fig. 5.1.2. A SEM image of a typical 

abrasive wear track 
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 The counterpart material and the topography of its surface, the Relative Humidity (RH) 

and gas composition of the test environment (e.q. dry air, humid air, N2, Ar, etc.), the normal 

force, the sliding velocity, and the wear track radius are the important parameters that need to 

be carefully selected for every specific case study. These factors are worth being described in 

a little more detail. 

5.1.1. Counterpart material 

 As mentioned earlier in this work, 

friction and wear depend strongly on the 

chemistry and topography of the sliding 

surfaces. If there is significant difference in the 

hardness of the sliding bodies, adhesive wear 

may take place. The harder material will be 

coated with the softer one thus the sliding will 

take place between this “transfer” layer and the 

counterpart. Hence, no useful information will 

be derived about the tribological properties of the harder surface. A wear track with such 

transfer layer is shown on Figure 5.1.4. If adhesion between the two surfaces is not sufficient 

to lead to adhesive wear, the wear of the softer 

body generates big amount of wear particles, 

also referred to as wear debris. These particles 

can strongly influence the friction by 

ploughing in the softer surface. This can also 

be a source of erroneous conclusions about the 

tribological properties of the harder material. 

To avoid all these unwanted influences on the 

interpretation of the tribological experiments 

data, a counterpart that meets the following 

requirements is to be used: 

 Surface roughness as low as possible in 

order to minimize the effect of asperities on the friction and wear as well to minimize 

the generation of wear particles 
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Fig. 5.1.3. A typical friction curve 

generated by the POD tribometer used 

in this work. The sliding distance is 

expressed in number of turns (i.e. laps) 

Fig. 5.1.4. A SEM image of a typical 

adhesive wear track in the case of steel 

sliding against a hard coating. The red 

circles show some of the islands of the 

transfer film from the softer steel bal 

counterpart 
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 Hardness comparable to that of the coating 

 Chemical inertness to minimize the possible chemical interaction with the coating 

 Simple geometry and ease of manipulation 

 Availability and recognition for engineering purposes. 

A counterpart that meets very well these requirements is a polished polycrystalline Al2O3 ball 

with diameter of 6 mm supplied by SKF, Inc. They are used in ceramic ball bearings and are 

easily available with very good reproducibility of all their mechanical and chemical properties. 

5.1.2. Test environment 

 Since most metal working processes and sliding and rolling components operate in 

humid air, laboratory air with controlled RH=50% was chosen for POD testing of the coatings 

studied in this work. In many applications the friction takes place at high temperatures and 

tribometers operating at these temperature range do exist. However, access to such 

instruments is difficult. For this reason the tests in the scope of this work were carried out at 

room temperature. These conditions have also been used in the VAMAS project. 

5.1.3. Sliding speed 

 In the VAMAS project mentioned above the sliding speed has been selected to be 10 

cm/s and this parameter was adopted in the current study. 

5.1.4. Normal force 

 As mentioned above, the normal force influences the Hertzian pressure in the contact 

zone. In the VAMAS project the Hertzian pressure is calculated to be 1000 MPa. For an the 

Al2O3 balls used in the current work a normal force of 5 N would result in 1200 MPa Hertzian 

pressure which is close by value to that used in the VAMAS project. Therefore, a dead weight 

providing a normal force of 5 N was used in this work. 

5.1.5. Wear track radius 

 The wear track radius was selected to be 5 mm which allows for easy measurement of 

the wear track cross section area. 
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5.1.6. Test duration and stop criterion 

 For the correct measurement of the wear coefficient of a coating, the wear track is to 

have a certain cross section area so it can be measurable with the scanning stylus. On the 

other hand, the coating should have not been worn in such a way that the wear track 

penetrates in depth to the substrate. Therefore a test stop criterion is to be carefully selected 

separately for each case. This criterion can be defined for the tribometer control software as 

number of turns (laps), sliding distance passed or test duration. In this work it is made on the 

basis of the trial-and-error method. 5000 laps were initially defined as a test stop criterion 

based on previous experience with hard coatings. Then the wear track was scanned with 

Rank-Taylor ruby stylus profilometer. In case the depth of the wear track was greater than 

100 nm and smaller than the coating thickness, the test stop criterion was set to be 5000 laps 

also for the other coatings. 

Reference List to Section 5.1. 
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Section 5.2. Characterization of the hardness 

 Hardness of a material is defined as its resistance towards indentation. As such, it is 

measured by the size of the indent that it left after indenting the studied material with an 

indenter with a specific and defined geometry pressed towards the studied material with a 

certain known force. In order to minimize the deformation of the indenter during hardness 

measurement, it is usually made of a material substantially harder than  the material studied. 

The ideal indenter material is diamond and for this reason it is widely used for that purpose. 

 There are many indentation techniques for measuring hardness of bulk materials. 

However, for coatings the situation is somewhat more specific because of the small thickness 

of most industrially used wear protective coatings, usually varying from one up to several 

micrometers. The depth of indenter penetration 

is in this range for the most popular 

conventional hardness measurement methods 

and if they are used for determining the 

hardness of a coating, the hardness of the 

coating-substrate composite will be measured 

instead that of the coating itself. Development 

of a hardness measurement method with very 

small depth of penetration of the indenter was made in late 1970s and early 1980s [1], [2], [3]. 

The method is called Nano Hardness Test (NHT) and is very widely used for hardness 

measurement in coating research and development. The principle of operation of the NHT 

method and a Scanning Probe Microscope (SPM) image of an indent created with it are 

shown on Figure 5.2.1. As seen from the figure, the NHT method is very similar to the 

conventional hardness measurement methods with the only difference that very small loads 

Fig. 5.2.1. NHT measurement principle 
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and penetration depths are used. The studies of Ohmura et al. have clearly demonstrated that 

the penetration depth should be maximum 20% and 10% of the coating thickness for metallic 

(i.e. relatively soft, such as Al, Au and Pt) and ceramic (i.e. hard such as TiN) coatings, 

respectively, in order to avoid interference from the substrate [4], [5]. For hard coatings with 

thickness in the range of 1-5 µm the maximum penetration depths should be in the range of 

100-500 nm. Such penetration depths correspond to loads in the range of 0.1-30 mN. 

Consequently, the equipment to realize and precisely measure these loads and penetration 

depths is very sensitive and more sophisticated than that used for conventional hardness 

measurement methods. Special care should be taken to insulate the instrument from possible 

interference from the laboratory environment such as vibrations (including sound), 

temperature and humidity fluctuations and even radio signals. The following test parameters 

are defined by the operator: 

 Final load 

 Loading rate 

 Multiple indents – since the surface of the coating may contain macroparticles, pores 

or other defects, several indentations are normally made and the results from them are 

averaged. Thus a spatial indentation “matrix” can be made and its shape (for example 

for 10 indentations it can be 2x5, 5x2, 10x1 or 1x10 elements) as well as the space 

between its elements (indentations) can be defined. 
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The instrument is computer-controlled and the 

result of the measurement is given as a the so-

called load-displacement curve shown on 

Figure 5.2.2. where the term “displacement” 

denotes simply the penetration depth as 

measured by the displacement sensor of the 

instrument. The indenter that is used for NHT is 

known as Berkovich indenter and its geometry 

is as well as an AFM image of an indent made 

with it are shown on Figure 5.2.3. The triangular pyramid is relatively easy to obtain with 

reproducible geometry and thus the Berkovich indenter is a standard that is used for coating 

characterization. As mentioned above, diamond is the best material for manufacturing of such 

indenters because of its unsurpassed hardness so the indenters are almost always made of 

diamond. The hardness of the coating H is calculated as 

2

m

m

h

kP
H   

Where k is a dimensionless constant related to the geometry of indenter (for Berkovich 

indenter k = 0.0408), Pm is the maximum load and hm is the maximum penetration depth. The 

hardness has a dimension of pressure and is therefore expressed in Pa or, more frequently, as 

GPa. 

 Using NHT not only the hardness but also many other coating parameters can be 

studied. However, they are not germane for the scope of this work.

Fig. 5.2.2. A typical NHT load-

displacement curve 

loading 

unloading 
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Summary of Section 5.2. 

 A CSM Instruments nanohardness tester equipped with a diamond Berkovich indenter 

was used for all hardness measurements. Load of 5 mN was used for all indentations. This 

value was selected experimentally so that in all cases the penetration depth does not exceed 

1/10 of the coating thickness. The loading rate was 10 mN/min. Prior to and after each test, 

calibration of the instrument was made with a polished fused silica specimen with known 

hardness of 12 GPa. The standard deviation from this value was in the range of 1 GPa which 

is considered acceptable. For every specimen a matrix of 10 (5x2) indentations was realized 

with distance of 50 µm between the indentations. The hardness was averaged over the values 

obtained from all 10 measurements. Then these with deviation of more than 20% from the 

average value were excluded and the final value of the coating hardness was the average of 

the remaining (minimum 5) measurement results. 
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Section 5.3. Characterisation of the adhesion 

 Adhesion of a coating to the substrate is a parameter of the coating-substrate 

composite that has a very strong influence on its wear-protective properties. Schönjahn et al. 

demonstrated that adhesion of a coating is in direct relation with the lifetime of the coated tool 

[1]. Therefore adhesion is one of the coating parameters that are to be addressed when new 

coatings are developed. Formally, the adhesion strength is defined as the force per unit area 

needed for detaching the coating from the substrate also known as pull-off force. This 

parameter, however, is rarely equal to the actual adhesion of the coating, i.e. the strength of 

the interface between the coating and the substrate. In most cases the pull-off force value is 

smaller than the actual adhesion. For example, a coating with actual adhesion of 100 MPa 

may be pulled-off applying a force of only half of that value or less due to the fact that in 

most wear protective coatings intrinsic stresses exist. Thus the actual adhesion is counteracted 

by a very complex combination of the stress in the coating and the pull-off force. One of the 

factors that influence the amount of intrinsic stress in the coating is the coating thickness. 

Thus thicker coatings accumulate greater intrinsic stress and therefore comparative 

measurements are only to be made between coatings with equal or very similar thickness.  

Numerous methods exist for assessing the adhesion in the coating-substrate composite. 

The simplest of them is illustrated on Figure 5.3.1. It measures directly the pull-off force of 

the coating-substrate composite. This method, 

however, is applicable only for the cases 

where the strength and adhesion of the 

adhesive to the coating is greater than the pull-

off force, which is rarely the case for wear 

protective coatings. Another and very widely 

used adhesion measurement method, 

illustrated on Figure 5.3.2, is the so-called 

scratch test where a diamond stylus with 

spherical shape is slid over the surface of the 

coated substrate. The normal force with which 

the stylus is pressed against the coating is 

gradually increasing during the sliding thus forming a scratch on the surface of the coating. At 

a certain moment (corresponding to a certain normal force called critical load), a coating 

Fig. 5.3.1. Pull-off adhesion strength 

measurement test 
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failure event occurs. The most common coating failures are appearance of cracks inside or 

outside the sliding track, coating spallation and coating perforation down to the substrate 

inside the sliding track. These events are illustrated on Figure 5.3.3.  

Some previous work [2] has already considered 

both intrinsic parameters (scratching speed, 

loading rate, diamond stylus radius and 

diamond wear) and extrinsic parameters 

(substrate hardness, coating thickness, substrate 

and coating roughness, friction coefficient and 

friction force) which need to be taken into 

account in order to improve the interpretation of 

critical load results. Although the method does 

not directly measure the pull-off force, adhesive 

spallation (if any) of the coating is a typical 

event where the coating-substrate composite suffers adhesive failure. The critical load of 

adhesive spallation is a quantitative measure of the adhesion strength of the coating and can 

be used as such in comparative studies of coatings with equal thickness and similar hardness. 

To measure the adhesion properties of coatings with thickness of less than 1 µm, a variant of 

the scratch test is used called micro-scratch test (MST). The method was developed in the 

early 1990s [3], [4] and successfully used for measuring the adhesion properties of very thin 

(95 nm) TiN coatings [5]. It uses smaller normal forces and diamond styluses with smaller 

radii than the “macro” scratch test. A comparison between the range of test parameters used 

by MST and “macro” scratch-test instruments is shown on Table 5.3.1 .

Fig. 5.3.2. The scratch test principle 

a) b) c) 

Fig. 5.3.3. Examples for coating failure event. Optical microscope images of: a) circular 

cracks in the scratch; b) adhesive spallation; c) coating perforation 
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Test parameter MST Macro 

Normal force range 30 mN to 30 N 0.5 to 200 N 

Force resolution 0.3 mN 3 mN 

Maximum friction force 30 N 200 N 

Friction force resolution 0.3 mN 3 mN 

Maximum scratch length 120 mm 70 mm 

Scratch speed 0.4 to 600 mm/min 0.4 to 600 mm/min 

Maximum depth 1 mm 1 mm 

Depth resolution 0.3 nm 1.5 nm 

XY stage movement 120x20 mm 70x20 mm 

XY resolution 0.25 µm 0.25 µm 

Table 5.3.1. Comparison between a MST and a “macro” scratch test main features  

The modern MST instruments are fully computer-controlled and allow for parameters such as 

penetration depth, friction force, friction coefficient and acoustic emission to be effectively 

monitored during the test and easily recorded once the test is accomplished. For visual  

assessment of the failure events the instruments are supplied with a CCD camera mounted on 

an optical microscope with appropriate magnification. 

Summary of Section 5.3. 

MST was used in this work in order to compare the adhesion of the self-lubricating 

hard coatings with that of the benchmark coating and also to study the effect of solid lubricant 

addition on the adhesion of the coatings. The direct access to MST equipment and the 

relatively small thickness of the coatings being 1.5 µm were the factors to determine the 

choice of MST over the “macro” test. A CSM Instruments microscratch tester was used 

equipped with a Rockwell C type of indenter (200 µm radius spherical diamond tip). The 

initial normal force was 0.1 N and the final normal force was 30 N. The normal force was 

increased with a rate of 100 N/min and the scratching speed was 10 mm/min. This resulted in 

total scratch length of 3 mm. Visual observation using a microscope attached to the 

instrument was used to determine the coating failure events. 
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Section 6. Definition of the materials for the substrates and their surface 

finish 

As already mentioned in Section 4, Si(100) wafers were used as substrates for TEM 

characterization of the coatings because they are easy to process both mechanically and by 

means of ion-milling. For tribological and mechanical characterization, however, the self-

lubricating hard coatings are to be deposited on substrates satisfying the following criteria: 

 To be easily available 

 To be chemically inert and possible to store for long periods in laboratory air without 

corrosion 

 To be possible to machine with the in-house equipment available 

 To be of such size as to fit in the deposition system substrate holder and the 

tribological and mechanical characterization equipment 

 To be used widely in engineering applications 

 To be mechanically stable and tough 

 To have hardness comparable to that of the coatings used in order to avoid substrate 

interference during NHT measurements 

 To be able to withstand temperatures of 400 °C which is the maximum temperature 

the deposition system is capable of achieving 

Cermets (also known as hardmetals) of the type WC-Co are widely used in tribological 

applications such as cutting and forming tools, bearing components and others. Their 

properties meet all the above mentioned requirements. Therefore, WC-6%Co hardmetal grade 

HT-600 was chosen as a substrate material for the coatings intended for tribological and 

mechanical studies. This material consists of WC crystals with average size of 300 nm 

embedded in a Co matrix. HT-600 disks with 20 mm diameter and 5 mm height were 

available in-house and were found to be appropriate in terms of geometrical properties. 

In order to minimize the influence of the surface roughness on the tribological and 

mechanical characterization of the coatings, the substrates were polished with diamond 

compound with grit size of 1 µm to surface roughness Ra<0.02 µm as measured by a Rank-

Taylor surface profilometer equipped with a ruby stylus. 
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Section 7. Deposition of the benchmark coatings as defined in Section 6 

 As stated in the introduction, comparison of the tribological properties and hardness of 

the self lubricating hard coatings with these of a pure hard coating (TiN) and a typical MoS2-

based solid lubricant will serve as a basis for judgment of whether the concept of this work 

has been achieved. For this purpose, TiN and MoSy-based solid lubricant coating have been 

deposited and their tribological properties and hardness were studied. 

7.1. Deposition and tribological properties of the benchmark hard coating 

 TiN coating was deposited in the deposition system described in Section 3 by RF 

sputtering of a TIN target. Such a sputtering arrangement (also known as non-reactive 

sputtering) does not require precise control of the N2 flow typically needed for deposition of 

TiN coating by sputtering of Ti targets in Ar+N2 reactive atmosphere. Furthermore, using 

non-reactive deposition TiN coatings with higher hardness are deposited at low substrate bias 

voltages compared to reactive deposition [1]. Based on previous laboratory experience, 3 TiN 

benchmark coatings were deposited at 0.4 Pa, 0 V substrate bias (grounded substrate) and 

temperatures of 150, 280 and 380 °C. The thickness of the coatings was 1.5 µm and a 170 nm 

thick Ti layer was deposited under them in order to improve the adhesion. The substrates and 

their surface quality are described in Section 6. In all cases the chamber was evacuated to 

pressure of <10
-3

 Pa prior to deposition. The deposition temperature was maintained and 

measured as described in Section 3. The substrates were sputter-cleaned for 15 minutes by 

applying -750 V bias to the substrate table at Ar pressure of 2.4 Pa. The tribological and 

mechanical properties of the resulting coatings were measured with the techniques and at the 

test conditions described in Section 5. The results of these measurements are summarized in 

Table 7.1. 

Deposition 

temperature, °C 

Hardness HV0.5, 

GPa 

Average stable 

friction coefficient 

Wear coefficient, 

x10
10

 mm
3
/Nm 

150 18.3 0.83 5.9 

280 32.0 0.76 1.73 

380 35.0 0.80 1.24 

Table 7.1. Properties of the TiN benchmark coatings deposited at different temperatures 

The coating deposited at 150 °C has hardness and wear resistance substantially lower to that 

of the coatings deposited at 280 and 380 °C. The deposition carried out at 380 °C was found 

to lead to excessive heating of the target. This effect can be minimized when depositing 

multilayer coatings. 
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7.2. Deposition and tribological properties of the benchmark solid lubricant coating 

 Doping of MoS2 coatings with Ti has been widely used to improve their tribological 

properties [2], [3]. Significant amount of experience has been gained at the Swiss Center for 

Electronics and Microtechnology in the field of MoS2-Ti solid lubricant coatings. Based on 

this experience, MoS2-Ti coating was chosen as a solid lubricant benchmark. It was deposited 

at exactly the same conditions and architecture as the TiN benchmark coating deposited at 

280 °C. The solid lubricant benchmark has hardness HV0.5 of 16.8 GPa, stable friction 

coefficient of 0.06 and wear coefficient of 3.7.10
-11

 mm
3
/m. 

 

Reference List to Section 7 

 

1.  Mayrhofer, P., Kunc, F., Musil, J., and Mitterer, C. Thin Solid Films 415  2002 151-

159 

2.  Sun, Kyu Kim, Young, Hwan Ahn, and Kwang Ho Kim  Surface and Coatings 

Technology 169-170  2003 428-432 

3.  Renevier, N., Hampfire, J, Fox, V., Witts, T, Allen, T, and Teer, D. Surface and 

Coatings Technology 142-144  2001 67-77 



 79 

Section 8. Deposition, structural and tribological characterization of 

TiN/MoSx multilayer coatings 

8.1. Introduction 

PVD coatings consisting of alternating layers of different materials have been extensively 

studied in the past 2 decades. In the early works it was shown that TiN/TiCN multilayer 

coatings have superior cutting life compared to the individual TiN and TiC coatings [1]. Later 

it was demonstrated that multilayer coatings with thickness of the individual layers in the 

range of 2-10 nm have exceptionally high hardness in the order of 50 GPa [2]. The 

strengthening mechanisms in such structures have been studied extensively and explanations 

for it such as dislocations blocking by the layer interfaces [3], [4] and Hall-Petch 

strengthening [5]. Various combinations of metal/metal, metal/ceramic and ceramic/ceramic 

multilayers were studied and significant improvement of the mechanical and tribological 

properties of the obtained multilayer coatings compared to the coatings from the pure 

constituents has been reported. On this basis, it is somewhat surprising that there is very little 

published effort in studying hard phase/MoS2 multilayer coatings. Coatings with metal/MoS2 

multilayered structure have been reported by some authors [6], [7], [8], [9], [10], [11], [12] . 

However, the authors introduced metal layers in the MoS2 coatings not to combine the 

tribological properties of MoS2 with these of the metal but rather to control the structure and 

growth of MoS2. Sun et al. used a mixture of Au and rare-earth metal fluoride for this purpose 

[13]. Watanabe et al. used multilayering of MoS2 with WS2 which is also a solid lubricant 

very similar in structure and properties to MoS2 [14]. The authors deposited MoS2/WS2 

coatings with improved tribological properties compared to pure MoS2 and WS2 coatings 

deposited at the same conditions.  

To the author’s knowledge, so far no work has been published dedicated to the 

deposition of multilayer coatings consisting of MoS2 and a hard phase in order to combine the 

solid lubricant properties of MoS2 and the high wear resistance and hardness of the hard phase. 

When combining two phases in a multilayer coating, the structure of each phase 

strongly influences the structure of the coating as a whole and hence its properties. 

Furthermore, the growth of each phase can be strongly influenced by the structure of the other. 

Since the thickness of the individual layers is in the order of few nanometers, the initial stages 

of structure formation of each phase play a key role in the overall coating structure. Therefore, 

prior to deposition of a functional TiN/MoS2 multilayer coating, the initial stages of growth of 
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MoS2 on magnetron-sputtered TiN layers are to be studied in detail. This will allow to control 

the structure of the MoS2 layers by selecting the deposition parameters resulting in the desired 

MoS2 structure. 

The structure of magnetron sputtered MoS2 coatings has been studied widely in the 

past 3 decades. It was reported that it strongly influences the tribological properties of the 

coatings [15], [16], [17], [18], [19], [20]. Generally 3 structural types of MoS2 coatings were 

reported by the researchers: 

 Type I 2H MoS2 coatings with their c-axis oriented parallel to the substrate 

 Type II 2H MoS2 coatings with their c-axis oriented perpendicular to the 

substrate 

 Amorphous MoS2 coatings 

Type II coatings have lower friction coefficient and higher wear life compared to type I 

coatings as reported by the authors. Spalvins [16] stated that amorphous coatings had no 

lubricating properties. Friction-induced reorientation of the type I crystallites into type II was 

reported to be responsible for the lubricious properties of type I MoS2 coatings [21], [22], 

[23], [19], [24], [25], [26], [27], [28], [29]. Another advantage of type II over type I MoS2 

coatings is the better oxidation resistance of the former [17]. For these reasons type II is the 

preferred structure of MoS2 coatings.  

It was also noted that sputter-deposited MoS2 coatings are substoichiometric  with a 

general chemical composition MoSx where x<2 [30], [31], [32]. Some controversy exists on 

the relation between the stoichiometry of the MoSx coatings and their tribological properties. 

Christy et al. reported that coatings with composition close to the stoichiometric have better 

properties than sub-stoichiometric MoSx [33]. Dimigen et al. [34] reported that sulfur-

deficient films exhibit lower friction coefficient and wear rate than stoichiometric coatings 

with optimum tribological performance at x=1.5. Coatings with x<1 had no lubricious 

properties. This observation was confirmed by the same group in another publication [32] 

while Bolster et al. found no relation between stoichiometry and tribological properties of 

MoSx [35]. Aubert et al. observed minimum friction coefficient for coatings with x=1.5÷1.6 

[18]. Similar observation was made by Moser et. al [36] who reported minimum friction 

coefficient for coatings with x=1.5  The authors observed no lubricious properties for coatings 

with x=0.8. The coatings with x=2.5 had low friction coefficient but short wear life. 
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Based on these considerations, from now on in this work the term “MoS2” will be referred 

to as “MoSx” when used in the context of MoS2-based coatings. 

The most important deposition parameters that influence the orientation (type I or type II) 

of magnetron-sputtered MoS2 coatings are as follows: 

 Temperature. The influence of temperature on the structure and chemical composition 

of MoSx coatings has been studied by many authors. Amorphous MoSx coatings 

deposited at room temperature or below are reported by Spalvins [16], [37], [25], 

Dimigen et al. [34], Kuwano and Nagai [38], Moser and Levy [39]. MoSx films 

deposited at room temperature with nanocrystalline structure were reported by 

Nozhenkov et al. [21], [26], Lince and Fleischauer [22] and Bertrand [40], [29], [41]. 

Coatings deposited at elevated temperatures were reported to be crystalline [34], [16], 

[21], [22], [40], [42], [37], [43], [44], [25], [26], [29]. Change from type II to type I 

coatings with increasing substrate temperature has been reported by some authors [45], 

[46], [47]. The deposition temperature influences not only the structure of the MoSx 

coatings but also their stoichiometry. Reichelt and Mair studied reactive deposition of 

MoSx by sputtering of a Mo target in Ar+H2S reactive atmosphere [31]. The authors 

noticed decrease of x with increasing temperature and explained it with the desorbtion 

of S atoms at elevated temperature. The same observation was made by Dimigen et al. 

for MoSx coatings deposited by sputtering of MoS2 target [34]. Bichsel et al., however, 

reported little influence of temperature on stoichiometry of MoSx coatings deposited in 

the range of -70÷150 °C. The slightly higher value of x observed for coatings 

deposited at higher temperature was ascribed to increased reactivity of Mo sites on the 

surface of the growing coating at higher temperatures [48]. Similar to this was the 

observation reported by Moser et al. [36] who found little influence of deposition 

temperature on the stoichiometry of MoSx coatings deposited in the temperature range 

100÷500 °C. 

 Chamber pressure. This deposition parameter has also a very pronounced effect on the 

structure and chemical composition of sputter-deposited MoSx coatings. Its influence 

on the has been studied by many authors. Buck reported a well pronounced type I 

structure at deposition pressure of 1.73 Pa [49]. Moser et al. [36] obtained amorphous 

MoSx at 0.3 Pa, type II MoSx at 1 Pa and type II MoSx at 6 Pa at room temperature. 

The same authors deposited type II MoSx coatings at 0.3 Pa and type I MoSx coatings 
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at 0.4 Pa, both at substrate temperature of 300 °C [29]. Change of orientation from 

type I to type II with increasing deposition pressure has also been reported by other 

authors [46], [47], [50]. The influence of pressure on the chemical composition has 

been also studied and the general conclusion made by the researchers was that the 

parameter x increases with increasing pressure [34], [48], [46], [51], [50]. However, 

Ito and Nakajima found the opposite dependence [30] while Weise et al. found no 

influence of the deposition pressure on stoichiometry of the MoSx coatings [20]. 

 Substrate bias. Ion bombardment of the growing MoSx coatings has a very strong 

effect on its stoichiometry. Applying negative bias voltage to the substrate intensifies 

the ion bombardment of the growing coating. In the case of MoSx, ion bombardment 

leads to preferential sputtering of the S atoms adsorbed at the surface of the coating or 

even already chemically bonded to a Mo atom. This effect has been reported for MoSx 

coatings [34], [32], [36], [48], [52], [53], [46], [47] and for bulk MoS2 as well [54], 

[55], [56]. Substrate bias strongly influences the structure and orientation of sputter-

deposited MoSx films. Tendencies towards formation of type II structure at moderate 

substrate bias and type I structure at no or low substrate bias are reported [36], [49] 

while no influence of the bias on structure has been found by some authors [46], [47]. 

Amorphisation of MoSx coatings treated by post-deposition Ar
+
 bombardment has 

been reported [57]. Densification of the structure of MoSx coatings by Ar
+
 ion 

bombardment either during [42], [58] or after [59] deposition has also been observed. 

In summary, some controversy on the effects of the main deposition parameters on the 

structure and chemical composition of MoSx coatings still exists. Most studies report findings 

based on the whole volume of the coatings and very little has been published on the 

nucleation and initial stages (fist few nm of film thickness) of growth of MoSx coatings. 

Spalvins has reported ridge formation (type I structure) in the fist stages of growth [25], [23]. 

He used plain-view TEM so unfortunately no information on the MoSx-substrate interface is 

available from his studies. Moser et al. published very valuable findings on the sputter-

deposited MoSx growth on Si(100) substrates presenting lattice-resolution TEM images of the 

cross-section of the MoSx-substrate interface [36], [60]. However the authors did not 

systematically study the influence of the main deposition parameters on the structure of the 

interfacial region. A similar study carried out by Lee and More reported on CVD deposition 

of MoSx. The authors found out a change from type II to type I structure with temperature 
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increasing from 320 °C to 430 °C. Shimada studied the influence of substrate chemistry on 

the orientation of MoSx nanoclusters deposited by molecular beam epitaxy on Al2O3 and TiO2 

particles [61]. No study could be found describing the nucleation and first stages of growth of 

MoSx coatings deposited on TiN substrate although TiN has been used as a substrate for MoSx 

coatings [62]. The significant scattering of the reported result strongly suggests that the 

influence of the deposition parameters on the structure and stoichiometry of MoSx coatings is 

very complex and depends on “random” factors such as deposition system geometry and the 

nature of the sputtering target. 

8.2. Experimental details 

 On the basis of the published effort mentioned above no prediction can be made about the 

structure of MoSx deposited on TiN layers at different conditions in the deposition system 

used in this work. For this reason, an experiment was carried out to study the influence of 

substrate temperature, deposition pressure and substrate bias on the structure of MoSx 

coatings with thickness of <50 nm deposited on TiN. The deposition parameters matrix is 

shown on Table 8.1. A thin TiN layer was deposited under each MoSx coating so a multilayer 

coating as described on Figure 8.1 was obtained. The coatings are marked as follows: 

 LTLP (Low Temperature Low Pressure): the multilayer coating deposited at 150 °C 

and 0.4 Pa 

 LTHP (Low Temperature High Pressure): the multilayer coating deposited at 150 °C 

and 2.4 Pa 

 MTLP (Medium Temperature Low Pressure): the multilayer coating deposited at 

280 °C and 0.4 Pa 

 MTHP (Medium Temperature High Pressure): the multilayer coating deposited at 

280 °C and 2.4 Pa 

 HTLP (High Temperature Low Pressure): the multilayer coating deposited at 380 °C 

and 0.4 Pa 

 HTHP (High Temperature High Pressure): the multilayer coating deposited at 380 °C 

and 2.4 Pa. 
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Substrate 

temperature 

T, °C 

Deposition 

pressure p, 

Pa 

Substrate 

bias, V 

MoSx Layer 

identification 

Multilayer 

coating 

indentification 

150 0.4 -50 LTLP-50 

LTLP 

150 0.4 -25 LTLP-25 

150 0.4 0 LTLP0 

150 0.4 50 LTLP50 

150 0.4 100 LTLP100 

150 2.4 -50 LTHP-50 

LTHP 

150 2.4 -25 LTHP-25 

150 2.4 0 LTHP0 

150 2.4 50 LTHP50 

150 2.4 100 LTHP100 

280 0.4 -50 MTLP-50 

MTLP 

280 0.4 -25 MTLP-25 

280 0.4 0 MTLP0 

280 0.4 50 MTLP50 

280 0.4 100 MTLP100 

280 2.4 -50 MTHP-50 

MTHP 

280 2.4 -25 MTHP-25 

280 2.4 0 MTHP0 

280 2.4 50 MTHP50 

280 2.4 100 MTHP100 

380 0.4 -50 HTLP-50 

HTLP 

380 0.4 -25 HTLP-25 

380 0.4 0 HTLP0 

380 0.4 50 HTLP50 

380 0.4 100 HTLP100 

380 2.4 -50 HTHP-50 

HTHP 

380 2.4 -25 HTHP-25 

380 2.4 0 HTHP0 

380 2.4 50 HTHP50 

380 2.4 100 HTHP100 

Table 8.1. Deposition conditions matrix 

 The separate MoSx layers in these coatings are marked with the same abbreviation with the 

value of the substrate bias voltage added in the end of the abbreviation. For example the 

abbreviation HTLP-25 means MoSx layer deposited at 0.4 Pa, 380 °C and -25 V substrate bias. 

The structure of all coatings was studied by means of TEM imaging, SAED and EDX 

spectroscopy, all carried out in the same TEM as described in 4. The specimen preparation 

procedure is also described in the same chapter. Such an architecture is very beneficial for 

studying the structure of MoSx deposited on TiN layers because: 

 It simulates multilayer TiN/MoSx coatings. MoSx is deposited on a freshly deposited 

TiN layer without breaking the vacuum in the deposition chamber. 
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 All MoSx layers are deposited at the 

same preconditioning state of the 

deposition chamber thus avoiding 

variation of the residual water vapor 

and oxygen partial pressures which are 

reported to influence the growth of 

MoSx [63]. 

 A TEM specimen preparation is time 

and effort consuming a procedure. 

Using the coating architecture shown 

on Figure 8.1. reduces the number of 

TEM specimens needed for studying 

the growth of MoSx from 30 to 6. 

Furthermore, the possible artifacts 

introduced during sample preparation 

will be the same for all MoSx layers in 

one sample thus reducing the 

probability of misinterpretation of the 

TEM images and SAED patterns. 

In all cases the chamber was evacuated to 

pressure of <10
-3

 Pa prior to deposition. The deposition temperature was maintained and 

measured as described in 3. The substrates were sputter-cleaned for 15 minutes by applying -

750 V bias to the substrate table at Ar pressure of 2.4 Pa. Then the layered architecture was 

deposited by moving the substrate table under a TiN and MoS2 targets to deposit TiN and 

MoSx layers, respectively. During the deposition of one component the source of the other 

was shut down. The deposition pressure was maintained at the desired value by feeding Ar in 

the chamber through a needle valve. 

8.3. Deposition parameters – MoSx structure relationship 

In this part the influence of the deposition parameters substrate temperature, deposition 

pressure and substrate bias on the properties of the resulting MoSx layers will be studied and a 

brief summary of the deposition parameters - layer structure will be made. 

Fig. 8.1. TiN/MoSx multilayer 

architecture used for studying the effect 

of the deposition conditions on the 

structure of the near-interface region of 

MoSx 
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8.3.1. LTLP multilayer coating 

 The SAED pattern of multilayer coating LTLP is shown on Figure 8.2. It consists of a 

typical polycrystalline SAED pattern superimposed over the monocrystalline SAED pattern of 

the Si(100) substrate. The presence of the Si(100) SAED pattern is due to the fact that the 

diffraction aperture used was bigger than the overall thickness of multilayer coating LTLP. 

Such a superposition, however, is useful because it gives information about the preferred 

orientation (if any) of the crystal phases relative 

to the surface of the substrate. In this case the 

diffraction spot produced by the (100) plane of 

the Si(100) substrate is marked with a red 

square. This crystal lattice plane is actually 

parallel to the surface of the Si(100) substrate 

and all diffraction spots that lay on the red line 

shown on the figure are parallel to the surface 

of the substrate. The crystalline state of the TiN 

is fcc, as defined from the diffraction rings. A 

more detailed information (i.e. preferred 

orientation relative to the substrate surface, 

crystal size, etc.) can be defined from the 

SAED pattern. However, it is not the objective 

of this work. What is important, however, is to 

find out what is the state of the MoSx layers in 

coating LTLP. A more careful look at the 

region around the central spot of the SAED 

pattern reveals a pair of diffraction arcs situated 

around the red line as shown on the insert where these arcs are marked with orange arrows. 

These arcs correspond to a lattice spacing of 1.3 nm which is in good agreement with the (001) 

lattice spacing of 2H MoS2. Therefore, 2H MoSx exists in coating LTLP with its c-axis 

perpendicular to the substrate surface (type II). 

8.3.1.1. Layer LTLP-50 

A TEM bright field image of the layer is shown on Figure 8.2a. The growth direction 

is shown with an orange arrow on the figure. The orientation of the TEM images on all 

Fig. 8.2. SAED pattern of multilayer 

coating LTLP. The red line denotes the 

planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 



 87 

figures from now on will be the same unless stated differently. Small crystallites (circled in 

red) embedded in an amorphous matrix are seen on the figure. Some of these crystals are 

common for the neighboring TiN and MoSx layer which strongly supports the conclusion that 

local epitaxy takes place at this case. Local epitaxy in (Ti,Al)N/Mo multilayer coatings has 

been reported by Tavares et al. [64]. The presence of metallic Mo in ion-irradiated MoS2 has 

been proved by Feng and Chen [56]. Dark field TEM image taken from the TiN (111) 

diffraction ring and presented in Figure 8.2b reveals the similarity of the structure of the 

crystals with fcc TiN.

 

 

10 nm 

10 nm 

a) 

b) 

MoS0.92 

TiN 

TiN 

MoS0.92 

TiN 

TiN 

Fig. 8.2. a) TEM bright field image of layer LTLP-50; b) TEM dark field image of the 

same layer. The red circles show some of the cubic crystals found in the layer and the 

orange arrow shows the growth direction 
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Therefore the conclusion can be made that the structure of layer LTLP-50 consists of 

fcc Mo-based MoSy crystals embedded in an amorphous MoSz matrix. The numbers y and z 

can not be defined with the equipment used but the overall value of x was estimated to be 0.92 

so the overall layer chemical composition is MoS0.92, as shown on the figure. 

8.3.1.2. Layer LTLP-25 

This layer has 2H structure as seen from Figure 8.3. The (001) lattice fringes are 

clearly seem on the image and the crystals are oriented with their c-axis perpendicular to the 

substrate surface (type II). The crystals are extremely small, being only about 5 nm in lateral 

dimension and consisting of only 3-5 (001) layers in height. They are embedded in an 

amorphous matrix. The chemical composition of this layer was estimated to be MoS0.96. 

 

8.3.1.3. Layer LTLP0 

This layer is completely amorphous as seen on Figure 8.4. The chemical composition 

of this amorphous phase was estimated to be MoS1.22. The higher value of x compared to that 

10 nm 

MoS0.96 

TiN 

TiN 

Fig. 8.3. TEM bright field image of layer LTLP-25. The lattice fringes of the 2H MoSx 

(001) planes are clearly seen. 
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of the MoSx layers deposited with negative substrate bias suggests that preferential sputtering 

of the S atoms occurs during deposition on negatively biased surfaces. This is in good 

agreement with the observations made by previous researchers. 

 

8.3.1.4. Layer LTLP50 

A TEM image of this layer is shown on Figure 8.5. The layer has 2H structure with its 

crystallites substrantially bigger than these observed in the case of the layer deposited at -25 V 

substrate bias. The stoichiometry of the layer corresponds to MoS1.50. Some type I oriented 

crystals are observed. 

10 nm 

MoS1.22 

TiN 

TiN 

Fig. 8.4. TEM bright field image of layer LTLP0. The layer is completely amorphous. 
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8.3.1.5. Layer LTLP100 

A TEM inage of this layer is shown on Figure 8.6. No significant difference in both 

structure and stoichiometry was found compared to layer LTLP50. 

10 nm 

MoS1.50 

TiN 

TiN 

Fig. 8.5. TEM bright field image of layer LTLP50. 
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8.3.2. LTHP multilayer coating 

 The SAED pattern of LTHP multilayer coating is shown on Figure 8.7. The most 

significant difference compared to the SAED pattern of the LTHP multilayer coating is the 

presence of another pair of diffraction arcs corresponding to the 2H MoS2 (001) crystal planes, 

as shown on the figure. These two new arcs are rotated at 90° relative to the red line. This 

means that in the LTHP multilayer both type I and type II 2H MoSx exist, in contrast to the 

case of the LTLP multilayer where only type II 2H MoSx was identified by both SAED and 

lattice-resolution TEM. 

10 nm 

MoS1.50 

TiN 

TiN 

Fig. 8.6. TEM bright field image of layer LTLP100  
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8.3.2.1 Layer LTHP-50 

The MoSx layer deposited at -50 V has 

a dual structure, as shown on Figure 8.8. The 

initial 5 nm or more of the growth result in 

amorphous structure. Then a sudden initiation 

of growth of type I oriented 2H crystals takes 

place. Some small type II crystallites are also 

seen at some places of the layer. The overall 

chemical composition of the layer corresponds 

to MoS1.44 

8.3.2.2. Layer LTHP-25 

This layer also consists of 2 types of 

structures as shown on Figure 8.9. In the 

initial few nm of layer growth, a mixed 2H + 

amorphous structure is formed which later 

switches to 2H type I. The chemical 

composition of the layer was estimated to be MoS1.70. 

 

10 nm 

MoS1.44 

TiN 

Fig. 8.8. TEM bright field image of layer LTHP-50. Note the type II MoSx crystals in the 

left part of the image. 

Fig. 8.7. SAED pattern of multilayer 

coating LTHP. The red line denotes 

the planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 
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8.3.2.3. Layer LTHP0 

At 0 V substrate bias the MoSx layer deposited at LTHP conditions is almost fully 

crystalline with 2H structure as seen from Figure 8.10. The first few nm of the film are type II 

followed by transition into type I crystals. The chemical composition of the layer is MoS2.03. 

10 nm 

MoS1.70 

TiN 

Fig. 8.9. TEM bright field image of layer LTHP-25. 

10 nm 

MoS2.03 

TiN 

Fig. 8.10. TEM bright field image of layer LTHP0. 
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8.3.2.4. Layer LTHP50 and layer LTHP100 

These layers have the same structure as the layers deposited at 0 V substrate bias, as 

evident from Figure 8.11 and 8.12. The only difference between the three types of layers is 

their stoichiometry which is MoS2.13 and MoS2.23 for the layers deposited at 50 V and 100 V 

substrate bias, respectively. 

 

 

8.3.3. MTLP multilayer coating 

 The SAED pattern of this multilayer coating is presented on Figure 8.13. It is very 

similar to that of the LTLP multilayer coating. The only 2H MoSx crystals identified on this 

SAED pattern are of type II. The other crystalline phase identified is fcc TiN. 

10 nm 

MoS2.13 

TiN 

Fig. 8.11. TEM bright field image of layer LTHP50. 

10 nm 

MoS2.13 

Ti
N Fig. 8.12. TEM bright field image of layer LTHP100. 
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8.3.3.1. Layer MTLP-50 

 This layer consists of cubic crystallites 

embedded in amorphous matrix (encircled in 

red), as seen from Figure 8.14. The amount of 

the amorphous matrix is less compared to layer 

LTLP-50. The overall chemical composition of 

the layer corresponds to MoS1.00. 

8.3.3.2. Layer MTLP-25 

 This layer is very similar to layer 

MTLP-50. A TEM image of layer MTLP-25 is 

shown on Figure 8.15. In this case, the amount 

of the amorphous phase is more significant and 

the size of the cubic crystals (encircled in red) 

is smaller than that in layer MTLP-50. The 

overall chemical composition of this layer 

corresponds to MoS1.05. 

8.3.3.3. Layer MTLP0 

 As seen from Figure 8.16, this layer consists of 2H crystals with type II orientation 

embedded in a small amount of amorphous phase. The overall composition of the layer is 

MoS1.63. 

8.3.3.4. Layer MTLP50 

 This layer also consists of type II 2H crystals as seen from Figure 8.17. It is difficult to 

estimate by imaging whether amorphous phase presents in this layer. The overall chemical 

composition of the layer corresponds to MoS1.50. 

Fig. 8.13. SAED pattern of multilayer 

coating MTLP. The red line denotes 

the planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 
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10 nm 

MoS1.05 

TiN 

Fig. 8.15. TEM bright field image of layer MTLP-25. The red circles show some of the 

cubic crystals. 

10 nm 

MoS1.00 

Ti
N 

Fig. 8.14. TEM bright field image of layer MTLP-50. The red circles show some of the 

cubic crystals. 
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8.3.3.5. Layer MTLP100 

The structure of this layer is very similar to that of layer MTLP50, as seen from Figure 

8.18. The structure consists of type II 2H crystals and the chemical composition of the layer 

corresponds to MoS1.53. 

10 nm 

MoS1.63 

Ti
N 

Fig. 8.16. TEM bright field image of layer MTLP0. The lattice fringes of the 2H MoSx 

(001) planes are clearly seen. 

MoS1.50 

Ti
N 

10 nm 

Fig. 8.17. TEM bright field image of layer MTLP50. The lattice fringes of the 2H MoSx 

(001) planes are clearly seen. 
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8.3.4. MTHP multilayer coating 

 The SAED pattern of this coating is shown on Figure 8.19. Similarly to the SAED 

pattern of multilayer coating LTHP, diffraction arcs corresponding of both type I and type II 

2H crystals are observed. The rest of the SAED pattern consists of diffraction rings 

corresponding to fcc TiN polycrystalline structure and the diffraction spots of the 

monocrystalline Si(100) substrate. 

8.3.4.1. Layer MTHP-50 

 As seen from Figure 8.20, this layer consists of cubic crystals (encircled in red) 

embedded in an amorphous matrix. The overall chemical composition of the layer 

corresponds to MoS1.00. 

MoS1.56 

Ti
N 

10 nm 

Fig. 8.18. TEM bright field image of layer MTLP100. The lattice fringes of the 2H MoSx 

(001) planes are clearly seen. 
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8.3.4.2. Layer MTHP-25 

 This layer consists of type II 2H crystals 

embedded in an amorphous matrix, as evident 

from Figure 8.21. Sharp transition is observed 

from this structure to type I 2H crystals at 

certain points of the layer. The overall layer 

stoichiometry corresponds to MoS1.17. 

8.3.4.3. Layers MTHP0, MTHP50 and 

MTHP100 

These 3 layers have very similar 

structures. It is difficult to estimate the presence 

of amorphous phase in the layers, as seen from 

Figures 8.22, 8.23 and 8.24, respectively. The 

first 3-5 nm of the layers consist of type II 2H 

crystals. After that a sharp transition to type I 

2H structure is observed. The overall layer 

stoichiometry corresponds to MoS1.78, MoS2.10 

and MoS1.78 for layers MTHP0, MTHP50 and MTHP100, respectively. 

10 nm 

MoS1.00 

TiN 

Fig. 8.20. TEM bright field image of layer MTHP-50. The red circle shows some of the 

cubic crystals. 

Fig. 8.19. SAED pattern of multilayer 

coating MTHP. The red line denotes 

the planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 
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10 nm 

MoS1.78 

TiN 

Fig. 8.22. TEM bright field image of layer MTHP0. Note the type II 2H MoSx crystals. 

Fig. 8.23. TEM bright field image of layer MTHP50. Note the type II 2H MoSx crystals. 

10 nm 

MoS1.17 

TiN 

Fig. 8.21. TEM bright field image of layer MTHP-25. Note the type II 2h MoSx crystals 
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8.3.5. HTLP multilayer coating 

 The SAED pattern of this multilayer is 

shown on Figure 8.25. Two weak diffraction 

arcs (as shown by arrows in the insert) suggest 

the presence of type II 2H crystals in the 

coating. The remaining phases that can be 

identified from the pattern are fcc TiN and the 

monocrystalline Si(100) substrate. 

8.3.5.1. Layer HTLP-50 

As seen from Figure 8.26, this layer 

consists of cubic crystals. Very little (if any) 

amorphous phase presents in the layer as 

evident from the strong contrast in the HTLP-

50 layer on the dark-field image shown on 

Figure 8.26b. The chemical composition of the 

layer corresponds to MoS0.88. 

8.3.5.2. Layer HTLP-25 

The structure of this layer, as seen from Figure 8.27, is very similar to that of layer 

HTLP-50. The chemical composition of layer HTLP-25 corresponds to MoS0.82. 

10 nm 

MoS1.78 

TiN 

Fig. 8.24. TEM bright field image of layer MTHP100. Note the type II 2H MoSx crystals. 

Fig. 8.25. SAED pattern of multilayer 

coating HTLP. The red line denotes the 

planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 
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8.3.5.3. Layer HTLP0 

In this layer 3 phases coexist: type II 2H (encircled in red) and cubic (encircled in blue) 

crystals are embedded in an amorphous matrix, as seen from Figure 8.28. The stoichiometry 

of the layer corresponds to MoS1.22. 

8.3.5.4. Layer HTLP50 

This layer consists of type I and type II 2H crystals. Some amorphous phase is also 

evident from Figure 8.29. Initially the layer starts growing as type II 2H crystals embedded in 

the amorphous matrix. After the first 20-30 nm of the growth the structure of the layer starts 

switching to type I. The overall chemical composition of the layer corresponds to MoS1.33. 

 

10 nm 

MoS0.88 

Ti
N 

20 nm 

Ti
N 

TiN 

MoS0.88 

Fig. 8.26. a) TEM bright field image of layer HTLP-50; b) TEM dark field image of the 

same layer taken from the 111 diffraction rings of the fcc TiN crystalline pase. Note the 

local epitaxy.  

a) 

b) 
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10 nm 

MoS0.88 

TiN 

TiN 

Fig. 8.27. TEM bright field image of layer HTLP-25.  

10 nm 

MoS1.22 

TiN 

TiN 

Fig. 8.28. TEM bright field image of layer HTLP0. The red circles show some of the 2H 

crystals and the blue circle shows a cubic crystal. 



 104 

 

8.3.5.5. Layer HTLP100 

This layer has a structure very similar to that of layer HTLP50, as seen from Figure 

8.30. The stoichiometry of the layer corresponds to MoS1.22. 

10 nm 

MoS1.33 

Ti
N 

Ti
N 

Fig. 8.29. TEM bright field image of layer HTLP50. The lattice fringes of the 2H MoSx 

(001) planes are clearly visible. 

10 nm 

MoS1.22 

TiN 

TiN 

Fig. 8.30. TEM bright field image of layer HTLP100. The lattice fringes of the 2H MoSx 

(001) planes are clearly visible. Note the type I crystals in the left part of the image.  
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8.3.6. HTHP multilayer coating 

 The SAED pattern of this multilayer 

coating reveals the existence of both type II and 

type I 2H crystals (as shown in the insert) and 

fcc TiN crystals, as seen from Figure 8.31. 

8.3.6.1. Layer HTHP-50 

 As seen from Figure 8.32, this layer 

consists of cubic crystals. The stoichiometry of 

the layer corresponds to MoS0.82. 

8.3.6.2. Layer HTHP-25 

 This layer consists of 2H and cubic 

crystals embedded in an amorphous matrix, as 

evident from Figure 8.33. The chemical 

composition of the layer corresponds to MoS1.17. 

10 nm 

MoS0.82 

Ti
N 

Ti
N 

Fig. 8.32. TEM bright field image of layer HTHP-50.  

Fig. 8.31. SAED pattern of multilayer 

coating HTHP. The red line denotes 

the planes parallel to the surface of the 

Si(100) substrate. The red square 

shows the Si(100) diffraction spot. The 

orange arrows show the 2H MoS2 

(001) diffraction arcs. 
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8.3.6.3. Layer HTHP0 

 In this layer, as seen from Figure 8.34, type II 2H crystals are embedded in an 

10 nm 

MoS1.17 

TiN 

TiN 

Fig. 8.33. TEM bright field image of layer HTHP-25. The red circles show some of the 2H 

crystals and the blue circles show some of the cubic crystals. 

10 nm 

MoS1.38 

TiN 

TiN 

Fig. 8.34. TEM bright field image of layer HTHP0. Note the type I 2H MoSx crystals in the 

left part of the image. 
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amorphous matrix. At certain points after 20-30 nm of growth the structure switches to type II 

2H crystals. The overall layer stoichiometry corresponds to MoS1.38. 

8.3.6.4. Layers HTHP50 and HTHP100 

 Layers HTHP50 and HTHP100 have very similar structures, shown on Figures 8.35 

10 nm 

MoS1.44 
TiN 

TiN 

Fig. 8.35. TEM bright field image of layer HTHP50. The lattice fringes of the 2H MoSx 

(001) planes are clearly visible. 

10 nm 

MoS1.50 

TiN 

TiN 

Fig. 8.36. TEM bright field image of layer HTHP100. The lattice fringes of the 2H MoSx 

(001) planes are clearly visible. 
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and 8.36, respectively. In both cases in the initial 10-20 nm of layer growth the structure is 

crystalline, type II 2H. After that the structure switches to type I 2H. The chemical 

compositions of layers HTHP50 and HTHP100 are MoS1.44 and MoS1.50, respectively. 

8.4. MoSx layers and influence of the parameters: summary 

 For simplicity, the structure and chemical compositions of all MoSx layers described 

so far are summarized on Figure 8.37 and Figure 8.38 for the low and high pressure 

depositions, respectively. The chemical compositions of the MoSx layers are graphically 

represented on Figure 8.37 and 8.38, respectively. Based on these findings, the following 

conclusions about the initial stages of growth of MoSx can be made: 

8.4.1. Low pressure experiments: 

At low pressure, temperature and bias voltage have very strong influence on the 

morphology and chemistry of the early-stage growth of MoSx films. In general, negative bias 

voltages (-50 and -25 V) result in poorer S content compared to non-negative (0, 50 and 100 

V) ones. This is clearly related to the resputtering of S by the Ar
+
 from the plasma at negative 

bias voltages. Temperature, however, has a more complex influence. It influences the sticking 

coefficient of the S atoms at the surface of the growing film. Thus at higher temperature the 

probability of desorbtion of the S atom before it is bonded is greater than that at lower 

temperature. Crystallisation of 2H MoSx apparently needs temperature higher than 150 ºC at 

zero bias voltage although the S content is sufficient for the crystallization of 2H phase to take 

place (comparing the films deposited at 150 ºC, 0 V bias and 380 ºC, 0 V bias – they have the 

same stoichiometry). Although with lower S content, the film deposited at 150 ºC, -25 V, is 

hexagonal because the energy needed for crystallization is supplied by Ar
+
. At the same time, 

crystallization is an important factor for S “gettering” of the film. Vacancies at crystalline 

surfaces act as S bonding “traps” much better than the amorphous surfaces. Compare the rapid 

increase of S content of the films deposited at 150 ºC, (0 V and 50 V) (amorphous to 

crystalline) compared to the decrease in S content of the films deposited at 250 ºC (0V and 50 

V) that are both crystalline. 
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150 ºC 280 ºC 380 ºC Bias, V 

-50 

100 

-25 

0 

50 

amorphous 

cubic 

MoS0.92 

 amorphous 

hexagonal 

MoS0.96 

 
amorphous 

MoS1.22 

amorphous 

cubic 

MoS1.00 

amorphous 

cubic 

MoS0.92 

 amorphous 

hexagonal 

MoS1.63 

 amorphous 

hexagonal 

MoS1.50 

 amorphous 

hexagonal 

MoS1.56 

amorphous 

cubic 

MoS0.88 

amorphous 

cubic 

MoS0.82 

 amorphous 

hexagonal 

MoS1.22 

cubic 

 amorphous 

hexagonal 

MoS1.33 

 

hexagonal 

MoS1.50 

amorphous 

 

hexagonal 

MoS1.50 

amorphous  

hexagonal 

MoS1.22 

amorphous 

Fig. 8.37. Summary of the deposition conditions – structure and chemical composition relationship for MoSx layers deposited at 0.4 Pa 
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150 ºC 280 ºC 380 ºC Bias, V 
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amorphous 

MoS1.44 

 amorphous 

hexagonal 

MoS1.70 

MoS2.03 

amorphous 

cubic 

MoS1.00 

MoS1.17 

amorphous 

cubic 

MoS0.82 

hexagonal 

hexagonal 

MoS2.13 

hexagonal 

MoS2.23 

hexagonal 

amorphous 

hexagonal 

MoS1.78 

hexagonal 

MoS2.13 

hexagonal 

MoS1.78 

hexagonal 

amorphous 

cubic 

MoS1.00 

 
MoS1.38 

amorphous 

hexagonal 

MoS1.44 

MoS1.50 

hexagonal 

hexagonal 

Fig. 8.38. Summary of the deposition conditions – structure and chemical composition relationship for MoSx layers deposited at 2.4 Pa 
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8.4.2. High pressure experiments: 

The temperature and bias voltage play a very important role in controlling the chemistry and 

structure of the ealry stages of MoSx growth also at higher deposition pressure. Whether one 

phase or another will present in the layers depends on the S content  which, in turn, depends 

on both temperature and bias voltage. Negative bias voltages and high temperature result in 

lower S content which yields layers of cubic crystals distributed in amorphous MoSx phase. In 

all the cases where hexagonal MoSx was present, edge-growth was triggered after a certain 

thickness of the underlayer. At high pressures, the arriving species have lower energy due to 

the increased number of thermalising collisions with the species present in the gas phase. This 

results in better adsorbtion of the S and less renucleation during film growth. Hence, the film 

grows closer to its thermodynamic equilibrium mode, which is type I [65]. 

8.5. Functional TiN/MoSx coating 

After studying the influence of the deposition conditions on the structure and the chemical 

composition of MoSx layers deposited on TiN layers, appropriate structure of the MoSx layers 

should be selected for deposition of a functional TiN/MoSx multilayer coating and its 

structure and tribological properties are to be studied. 

8.5.1. Introduction 

As seen from the above findings, several possible choices for the structure of the MoSx 

layers in a functional TiN/MoSx multilayer coatings exist. Cubic structure is not promising 

since the S content in it is very low. MoSx coatings with x<1 have no lubricating properties, 

as demonstrated by Dimigen et al. [34] and Moser et al [36]. MoSx layers where transition to 

type II structures is observed are also not suitable since this orientation of the MoSx crystals 

does not provide a dense structure. Besides, type II MoSx coatings have been reported to have 

inferior friction and wear properties than type II coatings, as shown above. The same is valid 

for amorphous MoSx coatings, Therefore, type II is obviously the best choice for the structure 

of MoSx  in TiN/MoSx multilayer coatings. Best tribological performance was reported for 

MoSx coatings with x=1.5 compared to coatings with other values of x [34], [18], [36]. 

Therefore, type II MoS1.5 was chosen for the MoSx layers in the functional TiN/MoSx 

multilayer coating. The deposition conditions at which type II MoS1.5 is obtained correspond 

to these of layer MTLP50 and MTLP100. To avoid possible intensive electron heating of the 

substrate, the lower bias voltage (50 V) was selected for the deposition of the MoS1.5 layers.  
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8.5.2. Experimental details 

The TiN layers were deposited at the same pressure and temperature (MTLP conditions) 

as the MoS1.5 layers but at zero substrate bias (grounded substrate) based on previous 

laboratory experience. The thickness of the layers was selected to be 10 nm for the TiN layers 

and 5 nm for the MoS1.5 layers so the expected coating structure is shown of Figure 8.39. The 

coating was deposited on substrates described in Section 6. 

8.5.3. Structure 

The films deposited this way have 

very low cohesive strength and delaminate as shown on Figure 8.40. Apparently, the cohesion 

of the MoS1.5 layers and/or their adhesion to the TiN layers are too weak to withstand the 

residual stress in the multilayer coating. No TEM specimens were possible to prepare from 

this coating. 
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Fig. 8.39. Expected structure of the 

functional TiN/MoS1.5 multilayer 

coating. 

b) 

a) 

Fig. 8.40. SEM images of the functional 

TiN/MoS1.5 functional multilayer coating: 

a) plain view; b) side view of a cleaved 

coated Si(100) wafer. The red line helps 

separating the coating from the 

substrate. 

Si(100) 

coating 
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8.5.4. Complementary experiment – TiN/MoSx-Ti multilaers 

8.5.4.1. Introduction 

Since the combination TiN/type II MoS1.5 does not posses the mechanical strength needed 

for tribological applications, a MoSx-based solid lubricant substitute for the type II MoS1.5 is 

to be found. This substitute must to meet the following requirements: 

 Good adhesion to TiN 

 Higher hardness than 2H MoS2 

 No presence of 2H crystals in order to improve cohesion 

A well-studied candidate meeting these requirements is the MoSx-Ti coating used as a solid 

lubricant benchmark. Hard, wear-resistant solid lubricant MoSx-Ti coating has been 

successfully deposited on a TiN layer at MTLP conditions and 50 V substrate bias. Its 

structure is summarized on Figure 8.41.  
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The coating consists of cubic crystals (as seen 

from the SAED pattern shown on Figure 8.41a. 

The size of these crystals is in the range of 2-3 

nm as seen from the dark field image taken from 

the diffraction arc boxed in orange, as shown on 

Figure 8.41b. Some columns of these crystals, 

although not very well defined, are seen in the 

structure of the coating, as shown on Figure 

8.41c. The interface of the coating with the TiN 

POD test conditions: 
Sliding speed: 10 cm/s 
Normal force: 5 N 
Sliding radius: 4 mm 
Friction counterpart: ø6 mm 100Cr6 steel ball 
RH: 50% 

Temperature: 20 °C 

Fig. 8.42. Tribological properties of 

the MoSx-Ti coating compared to a 2H 

MoSx coating deposited in MTLP 

conditions (each 1.5 µm thick). 

a) b) 

c) d) 

50 nm 10 nm 

50 nm 

Si(100) 

TiN 

MoSx-Ti 

Si(100) 

TiN 

MoSx-Ti 

Si(100) 

TiN MoSx-Ti 

native 

SiO2 

Fig. 8.41. TEM investigation of the structure of the MoSx-Ti coating used as a 

substitute of the MoS1.5: a) SAED pattert; b) dark field image of the coating taken 

from the diffraction arc squared in orange; c, d) bright field images 
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underlayer is sharp and no local epitaxy is observed as shown on Figure 8.41d. The coating 

has a wear life more than two orders of magnitude longer than that of a type II MoSx coating 

deposited at the same conditions, as seen from Figure 8.42.  

8.5.4.1. Experimental details 

The MoSx-Ti system described above was used for the deposition of a multilayer coating 

with structure shown previously on Figure 8.39. In this case, the MTLP50 layers were 

substituted by MoSx-Ti layers with the same thickness of 5 nm. The thickness of the TiN 

layers was also kept the same as in the figure and they were deposited at 50 V substrate bias. 

8.5.4.2. Structure 

A TEM image of the resulting coating structure is shown on Figure 8.43. As seen from 

this figure, the structure of the coating has well defined layers of fcc TiN and quaiamorphous 

MoSx-Ti with thickness of 10 and 5 nm, respectively. No local epitaxy is observed and the 

interfaces between the layers are sharp. 

 

50 nm 20 nm 

Fig. 8.43. TEM images of the functional TiN/MoSx-Ti multilayer coating. 
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8.5.4.3. Tribological properties 

The tribological properties of the TiN/MoSx-Ti multilayer coating were studied with the 

POD method described in Section 5.1. The test conditions are also described there.  

 After the first few laps, however, total failure of the coating occurs as shown on Figure 

8.44. The coating is immediately worn down to the substrate due to cohesive failure. 

Evidently, the superposition of the intrinsic 

coating stress with the stresses resulting from 

the friction test yields stress levels surpassing 

the cohesive strength of the coating. It is 

difficult to estimate whether the adhesion 

between the TiN and MoSx-Ti layers or the 

strength of the MoSx-Ti layers itself is 

responsible for the low cohesive strength of the 

coating. 

8.5.4.4. Conclusions for section 8.5. 

Combining layers of TiN with thickness of 

10 nm and layers of 2H MoS1.5 or MoSx-Ti with 

thickness of 5 nm results in multilayer coatings with poor cohesive strength. The solid 

lubricant layers do not posses the strength and/or adhesion to the TiN layers sufficient to 

support the intrinsic stress of the coating and the stress posed by the friction in the given POD 

test conditions. It can be concluded that the TiN/MoSx-based solid lubricant multilayer 

architecture is not suitable for combining the beneficial properties of a hard phase and a 

MoSx-based solid lubricant. 
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Section 9. Deposition, structural and tribological characterization of co-

deposited TiN+MoSx coatings 

9.1. Introduction 

The idea of including lubricant into the structure of a hard, wear resistant coating is not 

completely new. Small oil droplets were included in an electrochemically deposited Ni-P 

matrix in 1985 [1]. A decade later Bae et al. reported a successful attempt to include MoS2 

into the structure of TiN by thermal CVD at 800 °C [2]. The authors report hexagonal 2H 

MoS2 clusters with their (002) planes parallel to the substrate surface and embedded in fcc 

TiN hard matrix. The friction coefficient of this coating was 0.2 against 440C type stainless 

steel and was twofold lower than the friction coefficient of their TiN benchmark coatings 

measured in the same conditions. This work was the first report on a combination of MoS2 

and a hard phase by means of co-deposition. A very similar study was reported by the same 

authors [3] where they mention friction coefficients of about 0.07 to 0.3 against Si3N4 ball. In 

a third publication on the topic from the same group, the authors varied the TiN/MoS2 ratio 

and reported that with increasing MoS2 content the phase composition of the coatings changes 

from fcc TiN through fcc TiN + 2H MoS2 to 2H MoS2 [4]. The same results were published 

also elsewhere [5]. The first self-lubricating hard coatings deposited by PVD were the TiB2-

MoS2 coatings reported by Gilmore et al. [6]. The authors used magnetron sputtering from a 

composite target consisting of two halves for the deposition of the coatings. One half was 

made of TiB2 and the other half was made of MoS2. Even at small MoS2 contents a significant 

reduction of the friction coefficient of the TiB2-MoS2 coatings against a steel ball was 

observed compared to the relatively high friction coefficient for pure TiB2 benchmark coating. 

No simultaneous existence of TiB2 and 2H MoS2 phases was reported. Later the same group 

reported similar results using the same approach for the deposition of TiN+MoS2 self-

lubricating hard coatings [7]. They obtained coatings in which no simultaneous existence of 

fcc TiN and 2H MoS2 could be detected. With increasing MoS2 content the structure of the 

coatings changed from fcc TiN through quasiamorphous to 2H MoS2. It is supposed by the 

authors that Mo and S atoms dissolve in the fcc TiN matrix at low MoS2 content. The friction 

coefficient against a steel ball was close to 0.1 for the coatings deposited at -100 V substrate 

bias. Goller et al. [8] used cathodic arc evaporation as a source of TiN and magnetron 

sputtering as a source of MoS2 to deposit TiN+MoS2 coatings containing 8 mol% MoS2 with 

friction coefficient of 0.1-0.2 against Al2O3 ball. The coatings obtained had typical fcc TiN 

structure that supports the assumption that the Mo and S atoms are dissolved in the fcc TiN 
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matrix thus yielding a metastable solid solution. Heinisch et al. doped (Ti,Al)N with MoS2 to 

obtain amorphous coatings [9]. Unfortunately no friction and wear results were reported for 

these coatings. Electron evaporation of Ti and magnetron sputtering of MoS2 were used by 

Cosemans et al. to deposit TiN+MoS2 coatings with gradient of the MoS2 concentration over 

its thickness. The friction coefficient of this coating against Al203 was reported to be 0.4 while 

the friction coefficient of pure TiN deposited in the same conditions was reported to be 

approximately 0.9. Spassov et al. deposited a (Ti,Al)(C,N)+MoS2 coating by means of 

magnetron sputtering of TiAl, C and MoS2 target in Ar+N2 reactive gas [10]. Friction 

coefficients of 0.09 and 0.8 against 100Cr6 ball bearing steel were reported for the 

(Ti,Al)(C,N)+MoS2 and pure (Ti,Al)(C,N) coatings, respectively. The (Ti,Al)(C,N)+MoS2 

coating consisted of nanocrystalline fcc (Ti,Al)(C,N)-based phase embedded in amorphous 

matrix as demonstrated by TEM imaging and SAED. Audronis et al. studied CrB2+MoS2 

coatings deposited by magnetron sputtering of targets consisting of mixture of Cr, B and 

MoS2 [11]. The friction coefficients of the resulting coatings against chromium steel ball 

were measured with a scratch-tester and varied in the range 0.14-0.19. No co-existing of the 

MoS2 with the CrB2 phase was observed. Efeoglu et al. have deposited a (Ti,B)(C,N)+MoS2 

coating with friction coefficient against WC-6%Co ball in the range of 0.04. Crystalline TiB2, 

TiC and 2H MoS2 phases were reported to co-exist in this coating. Haider et al. used 

magnetron sputtering from Ti and MoS2 targets in Ar+N2 reactive atmosphere in order to 

deposit TiN+MoS2 coatings [12]. By varying the power supplied to the MoS2 target the 

authors varied the MoS2 content in the coatings. All coatings consisted of nanocrystalline fcc 

TiN and the size of the crystallites decreased with the MoS2 content increasing. The friction 

coefficient of the coatings against WC-Co hardmetal ball was about 0.35 while the friction 

coefficient of a pure TiN coating deposited at the same conditions was 0.80. Rahman et al. 

deposited TiN+7wt%MoS2 coatings by means of magnetron sputtering from a Ti and a MoS2 

target in Ar+N2 reactive atmosphere [13]. The coatings had a fcc TiN structure and friction 

coefficient against WC ball of 0.4-0.5. The friction coefficient of a pure TiN coating 

deposited in the same conditions was reported to be 0.8. Ding et al [14] reported a 

(Ti,Si)N+MoS2 coatings deposited by magnetron sputtering from a Ti, Si and MoS2 targets in 

Ar+N2 reactive atmosphere with Mo content from 0 mol.% to 13.5 mol.%. The coatings had 

fcc TiN structure and exhibited friction coefficient of 0.4-0.5 against Al2O3 ball. A summary 

of the main results reported in the studies mentioned so far is given in Table 9.1. 
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Reference System Deposition method MoS2 content Phase composition Friction 

coefficient 

Friction 

counterpart 

Wear rate, 

mm
3
/(Nm) 

[2] TiN+MoS2 Thermal CVD 54-80 mol% mixed fcc TiN + 2H MoS2 0.20 440C steel ball n/a 

[3] TiN+MoS2 Thermal CVD Varied but no 

values given 

mixed fcc TiN + 2H MoS2 at 

high MoS2 content and single-

phase fcc TiN at lower MoS2 

content 

0.07-0.30 

depending on 

the MoS2 

content 

Si3N4 ball n/a 

[5] TiN+MoS2 Thermal CVD Varied but no 

values given 

mixed fcc TiN + 2H MoS2 at 

high MoS2 content and single-

phase fcc TiN at lower MoS2 

content 

0.07-0.30 

depending on 

the MoS2 

content 

Si3N4 ball n/a 

[6] TiB2+MoS2 Magnetron sputtering from 

a composite TiB2+MoS2 

target 

11-62 mol% nanocrystalline hexagonal TiB2 

at low MoS2 content and 

quasiamorphous at high MoS2 

content 

0.09-0.60 

depending on 

the MoS2 

content 

steel ball n/a 

[7] TiN+MoS2 Magnetron sputtering from 

a composite TiN+MoS2 

target 

20-66 mol% nanocrystalline fcc TiN 0.1-0.2 

depending on 

the Mos2 

content 

steel ball n/a 
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Reference System Deposition method MoS2 content Phase composition Friction 

coefficient 

Friction 

counterpart 

Wear rate, 

mm
3
/(Nm) 

[8] TiN+MoS2 

PVD, cathodic arc 

evaporation of Ti and 

magnetron sputtering of 

MoS2 in Ar+N2 reactive 

atmosphere 

8 mol% fcc TiN 0.1-0.2 Al2O3 ball  

[9] (Ti,Al)N+MoS2 

Magnetron sputtering of 

TiAl and MoS2 targets in 

Ar+N2 reactive atmosphere 

16mol% amorphous n/a n/a n/a 

[15] TiN+MoS2 

Electron beam evaporation 

of Ti and magnetron 

sputtering of MoS2 in 

Ar+N2 reactive atmosphere 

8 wt% fcc TiN 0.4 Al2O3 ball 1.5.10
-6

 

[10] (Ti,Al)(C,N) 

Magnetron sputtering of 

TiAl, C and MoS2 in Ar+N2 

reactive atmosphere 

30 vol% fcc TiN in amorphous matrix 0.09 100Cr6 ball  

[11] CrB2+MoS2 

Magnetron sputtering from 

lose mixtures of Cr, B and 

MoS2 powders 

15-27 mol% 
nanocrystalline CrB2-type 

structure 
0.14-0.19 Cr-steel ball n/a 
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Reference System Deposition method MoS2 content Phase composition Friction 

coefficient 

Friction 

counterpart 

Wear rate, 

mm
3
/(Nm) 

[16] Ti(B,C)2+MoS2 

Magnetron sputtering from 

TiB2, Ti, C and MoS2 

targets 

n/a 
nanocrystalline hexagonal TiB2, 

fcc TiC and 2H MoS2 

0.04-0.09 

depending on 

the normal 

force 

WC-6%Co 

ball 
n/a 

[12] TiN+MoS2 

Magnetron sputtering of Ti 

and MoS2 targets in Ar+N2 

reactive atmosphere 

3-11 wt% 

fcc TiN at lower MoS2 content 

and amorphous at higher MoS2 

content 

0.35 WC ball 6.0.10
-7

 

[13] TiN+MoS2 

Magnetron sputtering of Ti 

and MoS2 targets in Ar+N2 

reactive atmosphere 

7 wt% fcc TiN 0.40-0.50 WC ball n/a 

[14] (Ti,Si)N+MoS2 

Magnetron sputtering of Ti, 

Si and MoS2 targets in 

Ar+N2 reactive atmosphere 

0-13.5 mol% fcc TiN 0.40-0.50 Al2O3 ball 
5.0.10

-7
-

2.0.10
-6

 

Table 9.1. Summary of the found published effort devoted on co-deposited hard phase + MoSx coatings
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From these results it is obvious that addition of MoS2 to a hard phase leads to markedly lower 

friction coefficient and (where reported) wear coefficient of the resulting coatings compared 

to the “pure” hard phase coating. However, the following questions still remain unanswered: 

 How does the structure of a hard phase coating change with the addition of increasing 

amount of MoS2 added to it? 

 What is the state of the MoS2 in case no 2H MoS2 is detected as a separate phase in the 

resulting coatings? 

Systematic variation of the MoS2 content while keeping all other deposition parameters 

constant, combined with TEM study of the structure of the resulting coatings, is the approach 

adopted in the current work for answering the above questions. As mentioned in Section 1, 

TiN was chosen as a hard phase. 

9.2. Experimental details 

The coatings were deposited in the PVD system described in Section 3. Co-deposition 

from two sources, as shown on Figure 2.2a, has the following serious disadvantages: 

 Lateral variation of the chemical composition 

 Too low deposition rates due to too great a substrate-to-target distance 

To avoid these unwanted effects, deposition from a mixed target was chosen as shown on 

Figure 2.2b. To obtain TiN+MoS2 coatings, sputtering of Ti and MoS2 in a reactive 

atmosphere of Ar+N2 can be used. However, this requires a good control of the N2 flow rate 

which was not feasible with the deposition system available. As mentioned in Section 7, TiN 

coatings can also be obtained by sputtering of a TiN target in Ar atmosphere. Therefore, non-

reactive sputtering was selected as a source of TiN also for the co-deposition of the 

TiN+MoS2 coatings. The mixed target had a cake-like design consisting of 24 exchangeable 

segments as shown on Figure 9.1. The MoS2 content of the coating can be varied by varying 

the number of MoS2 segments in the target. The segments were arranged in the desired 

configuration and bonded to a copper plate by soldering with indium. Care was always taken 

to distribute all segment uniformly across the target in order to avoid lateral variation of the 

chemical composition of the coatings. 

The deposition rates of TiN and MoSx deposited in the same conditions by sputtering of TiN 

and MoS2 targets were measured to be 6.05 nm/min and 18.36 nm/min, respectively. The 
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MoSx content in the coatings 

was chosen to vary from the 

possible minimum to about 50 

vol%. For assembling of a 

symmetrical target, a minimum 

of 2 MoS2 segments can be used 

and in order to achieve about 50 vol.% MoS2 in the coating, 8 MoS2 segments should be used 

in the target. Therefore, depositions from targets with 2, 3, 4, 5, 6 and 8 MoS2 segments were 

made and the resulting coatings were labeled C1, C2, C3, C4, C5 and C6, respectively. A 

layer of Ti with thickness of approx. 170 nm was deposited under each coating in order to 

improve the adhesion to the substrate so the 

coating architecture is as shown on Figure 9.2. 

The coating labeling, target composition and 

chemical composition as measured by EDX 

are shown on Table 9.2. The coatings were 

deposited on the substrates defined in Section 

6. The deposition conditions were exactly the 

same as for the TiN benchmark coating 

deposited at 280 °C. The coatings structure 

and chemical composition were studied with 

TEM and EDX, respectively, as described in 

Section 4. The tribological and mechanical 

properties of the coatings were investigated with the methods described in Section 5. 

Fig. 9.1. a) TiN-MoS2 segmented target. The orange segments are TiN and the grey 

ones are MoS2; b) the target bonded to a Cu backing plate 

a) b) 

Coating 

No. 

MoS2 

segments 

Mo, 

at. % 

S,    

at. % 

(TiNy), 

mol. % 

MoSx, 

mol.% 

C1 2 14 20 66 17.5 

C2 3 17 34 49 25.8 

C3 4 25 38 37 40.3 

C4 5 25 46 29 46.3 

C5 6 30 48 23 56.6 

C6 8 28 54 18 60.9 

Table 9.2. Coating labeling, target composition and 

coating chemical composition. 

 Substrate

 Ti

 TiN-MoSx  1500 nm

 170 nm

Fig. 9.2. Architecture of coatings C1-C6 



 127 

9.3. Results: structure 

9.3.1. Coating C1 

The structure of the coatings is summarized on Figure 9.3. It is a typical columnar 

structure of type Zone T as defined by the model of Thornton [17]. The coating is monophase 

and consists of fcc TiN crystals as seen from the SAED pattern. No amorphous phase was 

identified in the coating. Local epitaxy of this solid solution from the Ti adhesion layer is 

observed, as seen from the bright field images and especially from the dark field image where 

columns starting from the Si(100) substrate and growing through the whole coating thickness 

are observed. 
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Fig. 9.3. TEM study of the structure of coating C1: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 

a) b) 

c) d) 



 128 

9.3.2. Coating C2 

The structure of coating C2 is shown on Figure 9.4. The columns are shorter and less 

well defined than these of coating C1. The crystalline phase was identified as fcc TiN. Some 

amorphous phase also exists as seen from the SAED pattern and the dark field image. It is 

difficult to determine whether local epitaxy with the Ti adhesion layer takes place in the case 

of coating C2. 
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Fig. 9.4. TEM study of the structure of coating C2: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 
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9.3.3. Coating C3 

The structure of this coating is summarized on Figure 9.5. As seen from the figure, 

the coating consists of isometric crystals with size of approx. 7 nm. These crystals are fcc TiN, 

as determined from the SAED pattern, and are embedded in amorphous matrix. Similarly to 

the case of coating C2, it is difficult to determine whether local epitaxy with the Ti adhesion 

layer exists. 
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Fig. 9.5. TEM study of the structure of coating C3: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 
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9.3.4. Coating C4 

The structure of this coating is represented on Figure 9.6. In this case, for TEM study 

a coating with a thinner Ti adhesion layer and a smaller overall thickness compared to the 

other coatings was deposited in the same conditions as the functional coating C4. The 

functional C4 coating has the same architecture and thickness as the other coatings described 

in this chapter. It is seen from the SAED pattern that the coating consists of fcc TiN crystals. 

Their size is extremely small, typically 4-5 nm and they are embedded in an amorphous 

matrix. 
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Fig. 9.6. TEM study of the structure of coating C4: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 
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9.3.5. Coating C5 

The structure of this coating is shown on Figure 9.7. Similarly to coating C4, it 

consists of very small fcc TiN crystals embedded in an amorphous matrix. The size of the 

crystals is approximately 3 nm and the amount of the amorphous phase is greater compared to 

the case of coating C4. 
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Fig. 9.7. TEM study of the structure of coating C5: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 
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9.3.6. Coating C6 

The structure of this coating is shown on Figure 9.8. The same conclusions can be 

made for this coating as for coating C5. However, more amorphous phase presents in coating 

C6 compared to coating C5. 

 

9.4. Results: mechanical and tribological properties of the coatings 

The hardness of coatings C1 - C6 is compared on Figure 9.9. For comparison, the 

hardness of the TiN and MoSx-Ti benchmark coatings is also shown on the figure. It is seen 

that there is practically no decrease in hardness when small amount of MoSx is added to TiN, 
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Fig. 9.8. TEM study of the structure of coating C6: a) SAED pattern. The red 

rectangle shows the part of the rings from which the dark field image was taken; b) 

dark field image; c), d) bright field images 
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as it is the case for coating C1. With the 

amount of MoSx in the coating 

increases, the hardness decreases 

almost monotonically.  

The crytical loads of the 

coatings are summarized on Figure 

9.10. In all cases a cohesive spallation 

was the coating failure event, as shown 

on Figure 9.11. The critical load tends 

to decrease with increasing MoSx 

content of the coating. Some deviation 

from this rule is observed, however. 

The friction curves of coatings 

C1 – C5 and the benchmark coatings 

are summarized on Figure 9.12. It is 

apparent from that figure that all 

coatings exhibit friction coefficients 

approximately an order of magnitude 

lower than that of the TiN benchmark 

and comparable to that of the MoSx-Ti 

benchmark. This result is of critical importance for this work and proves that the co-deposited 

coatings have self-lubricating properties. The stable friction coefficients of all coatings 

studied are summarized on Figure 9.13. The 

stable friction coefficients were calculated as 

an average of all measured values over which 

the variation is less than 20 %. 

The wear coefficients of the coatings 

studied are summarized on Figure 9.14. The 

values of the wear coefficients of the co-

deposited coatings are much lower (up to an 

order of magnitude for the case of coating C1) 

than that of the TiN benchmark coating which 
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Fig. 9.9. The hardness of coatings C1 – C6 

compared to these of the TiN and MoSx-Ti 

benchmarks 
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Fig. 9.10. The crytical loads of coatings C1 

– C6 compared to these of the TiN and 

MoSx-Ti benchmarks 

Fig. 9.11. The cohesive failure observed 

in coatings C1 – C6 and the TiN and 

MoSx-Ti benchmarks 
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is another proof of concept for this work. 

9.5. Discussion 

There is an obvious trend for decreasing the crystalline size of the fcc TiN with 

increasing amount of the MoSx present in coatings C1 – C6. Coating C1 has a monophase 

crystalline structure but contains a significant amount of MoSx (17.5 mol.%). No amorphous 

phase (if any) that corresponds to this MoSx content was identified in the coating. This 

strongly supports the assumption that the Mo and S atoms are dissolved in the TiN lattice to 

yield a (Ti, Mo)(N,S) metastable solid solution. The existence of fcc TiN even of large 

concentration of both Ti and N sub-lattice vacancies is a good basis for incorporation of 

foreign atoms in its structure. It can be concluded that at least 17.5 mol.% of MoSx can be 

dissolved in the fcc TiN lattice at the conditions used for the deposition of coating C1. 

Monophase crystalline co-deposited coatings at low MoSx content have been reported by 

some authors, as seen from Table 9.1. The question whether
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Fig. 9.12. The friction curves of coatings C1 – C6 compared to these of the TiN and 

MoSx-Ti benchmarks. The latter is shown in blue. Note the run-in period observed in 

coating C1 as shown in the insert 
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amorphous phase presents or not along with the crystalline phase, however, was not clarified 

by the authors. It is clear from the TEM 

study of coating C1 that amorphous phase 

does not present at the given MoSx 

content and deposition conditions. With 

increasing MoSx content, however, the 

columnar structure begins to break and the 

size of the fcc (Ti, Mo)(N,S) crystals 

decreases. Amorphous phase appears and 

its concentration increases with increasing 

MoSx content. Such amorphization with 

increasing MoSx content has also been 

reported by some authors listed in Table 

9.1 however no information was provided 

about the presence or not of crystalline 

phase along with the amorphous phase. 

Obviously, at MoSx content between 17.5 

and 25.8 mol.% saturation of the (Ti, 

Mo)(N, S) solid solution in MoSx takes 

place and the excess of MoSx is present as 

an amorphous phase. It is difficult to 

figure out whether the amorphous phase 

contains Ti and N or it is pure MoSx and 

all Ti and N present in the fcc 

(Ti,Mo)(N,S) phase. As seen from Section 8, pure MoSx deposited at similar conditions has 

crystalline 2H structure. It is therefore logical to expect that if the MoSx phase in coatings C2-

C6 is pure, it would not be amorphous. Another argument that supports the assumption of the 

presence of Ti and N atoms in the MoSx amorphous phase is the fact that MoSx-Ti co-

deposited coatings tend to be amorphous [18]. Doping WSx, which is very similar to MoSx, 

with N has also been reported to yield amorphous coatings [19], [20], [21]. Therefore it can 

be concluded that it is very likely to expect presence of Ti and N in the amorphous phase of 

coatings C2-C6. The reduction of the crystalline size of the fcc crystals with the MoSx 

content increasing (i.e. with the amount of the amorphous phase also increasing) can be 
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Fig. 9.14. The wear coefficients of 

coatings C1 – C6 compared to these of the 

TiN and MoSx-Ti benchmarks 
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explained with hindering the crystal growth of the crystalline nuclei by the amorphous phase 

around them. The structures of coatings C1 – C6 are summarized on Figure 

9.15.

 

In the case of coating C1, an initial period of higher friction coefficient is observed. 

This period is referred to as “run-in period” and the part of the tribological curve that 

represents it is shown magnified in the insert of Figure 9.12. Such a behaviour was observed 

by Gilmore [7] for TiN+MoSx coatings. The lubrication in amorphous MoSx-based coating is 

provided via mechanically-induced formation and/or reorientation of 2H MoSx in the contact 

zone [22]. While this process is very fast in amorphous MoSx-based coatings, it is apparently 

slower in coating C1 where no amorphous MoSx-containing phase is present. Crystallisation 

of 2H MoSx in the contact zone is the only step that an amorphous MoSx-based coating needs 

to pass in order to provide solid lubrication. In contrast, in coating 1 the MoSx needs first to 

be leached out from the fcc TiN-based solid solution at the contact zone and then to crystallise. 

The process of leaching apparently takes some time (during which the run-

 C3, 40.3 mol.% MoSx   C2, 25.8 mol.% MoSx   C1, 17.5 mol.% MoSx  

Fig. 9.15. Chematical summary of the structure of coatings C1 – C6. 
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in period is observed) and its mechanism is not understood. In all the other 5 coatings 

amorphous phase exists and therefore no run-in period is observed. Another factor that can 

potentially affect the duration of the run-in period is the formation of a transfer layer on the 

Al2O3 counterpart. Being the hardest one, coating C1 would yield such a transfer layer slower 

than coatings C1 - C5. However, the influence of this phenomenon on the existence of a run-

in period in coating C1 is unlikely since the difference in hardness between coatings C1 and 

C2 is only approximately 10%. Hence it is logical to predict that some run-in period will still 

be observed in coating C2, which is not the case. Surface roughness can strongly influence the 

presence and duration of a run-in period as reported in [23]. This factor, however, can also be 

excluded since the surface roughness of all coatings was measured to be less than Ra=0.01. 

Two additional POD tests were carried out with coating C1 in humid air. In the first, the test 

was stopped after 1000 laps which is just after the end of the run-in period. In the second, the 

test was extended to 10000 laps. In all tree tests (1000, 5000 and 10000 laps) the wear track of 

the coating had almost the same cross section area being 10.2, 10.7 and 11.7 µm
2
, respectively. 

This is a clear indication that most wear takes place during the run-in period. Surprisingly, 

coating C2 shows higher friction coefficient than coating C1. For this reason the deposition 

 C6, 60.9 mol.% MoSx   C5, 56.6 mol.% MoSx   C4, 46.3 mol.% MoSx  

Fig. 9.15. continued 
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was repeated. The tribilogical curve of the second coating was very similar to that of the first 

one. So far the author has not found explanation for this “anomalous” tribological behavior. 

The tribological behaviour of coatings C3 - C6 including the benchmark MoSx-Ti coating are 

very similar as seen from the tribological curves. Therefore, no distinction between them is 

made on the graph. 

9.6. Conclusions 

Incorporation of small amount of MoSx (up to 17.5 %. mol in the reported series of 

depositions) in a TiN coating by co-sputtering does not promote the appearance of amorphous 

phase in the structure of the coating. Practically all MoSx is dissolved in the fcc lattice of the 

TiN. Hence, the structure can be referred to as an fcc TiN-based (Ti, Mo)(N, S) solid solution. 

The resulting coating retains the high hardness and good adhesion of the TiN while it exhibits 

low friction coefficient in both humid air, being an order of magnitude lower than that of the 

pure TiN benchmark and only two times higher than that of a typical MoSx-Ti solid lubricant. 

The wear resistance of the TiN-MoSx coating is an order of magnitude higher than that of the 

pure TiN benchmark coating. Higher MoSx concentrations promote the formation of 

amorphous phase with fcc (Ti, Mo)(N, S) crystallites dispersed in it. The size of the 

crystallites decreases and the amount of the amorphous phase increases with increasing MoSx 

concentration in the coating. The hardness and cohesion follow the same trend while the wear 

rate remains almost constant. No decrease in adhesion compared to the TiN benchmark was 

found. The excellent tribological performance of all the MoSx-containing coatings C1 - C6 in 

humid air suggests that they can be successfully used as wear protective coatings in a very 

wide range of environments. 
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Section 10. Concluding remarks and recommendations for further studies 

10.1. Concluding remarks 

In this work, the possibility for combining a hard wear resistant coating with a solid 

lubricant was studied. As a result, a coating that combines the high hardness and wear 

resistance of the hard phase and the low friction coefficient of the solid lubricant is expected 

to be deposited, denoted as a self-lubricating hard coating. For the scope of this work TiN was 

chosen as a hard phase and MoS2 was chosen as a solid lubricant. Two possible architectures 

of the self-lubricating hard coating were explored: a multilayer structure where a number of 

alternating hard phase and solid lubricant layers are deposited one after another and co-

deposited coatings where the hard phase and the solid lubricant were deposited 

simultaneously. The tribological and mechanical properties of these coating architectures 

were compared with these of a TiN and MoSx-Ti benchmark coatings. The conclusions from 

the investigation of the structural, mechanical and tribological properties of the self-

lubricating hard coatings are as follows: 

 Multilayer structures have poor cohesive strength due to the low shear strength of 

the solid lubricant layers and/or their insufficient adhesion to the TiN layers. Such 

structures are advised not to be used for tribological applications. 

 The structure of the co-deposited coatings consists of fcc crystals of (Ti,Mo)(N,S) 

metastable solid solution. At low MoSx content (17.5 mol.%) the crystals form 

columns and no amorphous phase is identified. With increasing MoSx content the 

columns break into fcc (Ti,Mo)(N,S) metastable solid solution crystals embedded 

in an amorphous matrix. The size of the crystals decreases and the amount of the 

amorphous phase increases with increasing MoSx content which is related to the 

saturation of the fcc (Ti,Mo)(N,S) solid solution in MoSx. Co-deposited coatings 

have friction coefficients depending on their MoSx content. In all cases their 

friction coefficients are much lower than that of the TiN benchmark and in most 

cases are very close to that of the MoSx-Ti benchmark. At the same time their 

wear coefficients are also much lower than that of the TiN benchmark, in some 

case over an order of magnitude. The addition of MoSx to the TiN hard phase was 

not found to have any detrimental effect on the adhesion of the coatings to the 

substrate. The cohesive strength of the coatings was found to decrease with the 

increasing MoSx content. The same trend was observed for the hardness of the 
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coatings. However, no decrease in either cohesive strength or hardness compared 

to that of the TiN benchmark was observed for small MoSx content (17.5 mol.%). 

At this case, however, both friction coefficient and wear coefficient are an order 

of magnitude lower than these of the TiN benchmark. Thus the concept was 

proved and the goal of this work was fulfilled. 

10.2. Recommendations for further studies 

Once the concept has been proved, there is a lot of room for further optimization and 

studies of the self-lubricating hard coatings in the system TiN-MoSx. The following scheme 

can be proposed in this field: 

 Study of the influence of temperature on the structure and properties of the 

coatings 

 Broadening the range of chemical complexity of the coatings by including Al and 

C in the structure to obtain (Ti,Al)(N,C)-MoSx coatings 

 Investigation of the tribological behavior in vacuum and at elevated temperatures 

 Investigation of the chemical resistance of the coatings in aggressive media and at 

high temperature in air. 



 142 

Table of contents 

I. Introduction _____________________________________________________________ 1 
I.1. Friction, wear, lubrication and surface modification _______________________________________ 1 
I.1.1. Friction ________________________________________________________________________ 1 
I.1.2. Wear __________________________________________________________________________ 3 
I.1.3. Lubrication _____________________________________________________________________ 4 
I.1.4. Surface modification and coatings deposition __________________________________________ 6 
I.2. Goal of this work __________________________________________________________________ 7 
I.3. Approach ________________________________________________________________________ 9 

Section 1. Definition of the materials for the hard phase and the solid lubricant _______ 13 
1.1. Hard phase __________________________________________________________________ 13 
1.2. Solid lubricant __________________________________________________________________ 15 
1.3. Summary of Section 1 ____________________________________________________________ 16 

Section 2. Definition of the possible architectures of self-lubricating hard coatings _____ 20 
2.1. Mixed and nanocomposite coating architectures ________________________________________ 20 
2.2. Bilayer and multilayer coating architectures ___________________________________________ 21 
2.3. Summary of Section 2 ____________________________________________________________ 22 

Section 3. Definition of the methods for deposition and deposition arrangement _______ 23 
3.1. CVD __________________________________________________________________________ 23 
3.2. PVD __________________________________________________________________________ 24 
3.2.1. Thermal evaporation ____________________________________________________________ 25 
3.2.2. Sputtering ____________________________________________________________________ 28 
3.2.2.1. Glow discharges ______________________________________________________________ 31 
3.2.2.2. Magnetrons __________________________________________________________________ 32 
3.3. Summary of Section 3 ____________________________________________________________ 35 

Section 4. Definition of the methods for studying of the structure and the chemical 

composition of the coatings __________________________________________________ 39 
4.1. TEM basics _____________________________________________________________________ 39 
4.2. Diffraction _____________________________________________________________________ 44 
4.3. Imaging ________________________________________________________________________ 47 
4.4. Image recording _________________________________________________________________ 51 
4.5. Spectroscopy ____________________________________________________________________ 51 
4.6. Details of the TEM techniques used in this work ________________________________________ 53 
4.7. Specimen preparation _____________________________________________________________ 54 
4.7.1. Mechanical thinning ____________________________________________________________ 56 
4.7.2. Ion-milling ____________________________________________________________________ 59 

Section 5.1. Characterization of the tribological properties _________________________ 62 
5.1.1. Counterpart material ____________________________________________________________ 64 
5.1.2. Test environment _______________________________________________________________ 65 
5.1.3. Sliding speed __________________________________________________________________ 65 
5.1.4. Normal force __________________________________________________________________ 65 
5.1.5. Wear track radius _______________________________________________________________ 65 
5.1.6. Test duration and stop criterion ____________________________________________________ 66 

Section 5.2. Characterization of the hardness ____________________________________ 67 
Summary of Section 5.2. ______________________________________________________________ 70 

Section 5.3. Characterisation of the adhesion ____________________________________ 72 
Summary of Section 5.3. ______________________________________________________________ 74 

Section 6. Definition of the materials for the substrates and their surface finish ________ 76 

Section 7. Deposition of the benchmark coatings as defined in Section 6 ______________ 77 
7.1. Deposition and tribological properties of the benchmark hard coating _______________________ 77 
7.2. Deposition and tribological properties of the benchmark solid lubricant coating _______________ 78 



 143 

Section 8. Deposition, structural and tribological characterization of TiN/MoSx multilayer 

coatings __________________________________________________________________ 79 
8.1. Introduction ____________________________________________________________________ 79 
8.2. Experimental details ______________________________________________________________ 83 
8.3. Deposition parameters – MoSx structure relationship _____________________________________ 85 
8.3.1. LTLP multilayer coating _________________________________________________________ 86 
8.3.1.1. Layer LTLP-50 _______________________________________________________________ 86 
8.3.1.2. Layer LTLP-25 _______________________________________________________________ 88 
8.3.1.3. Layer LTLP0 ________________________________________________________________ 88 
8.3.1.4. Layer LTLP50 _______________________________________________________________ 89 
8.3.1.5. Layer LTLP100 ______________________________________________________________ 90 
8.3.2. LTHP multilayer coating _________________________________________________________ 91 
8.3.2.1 Layer LTHP-50 _______________________________________________________________ 92 
8.3.2.2. Layer LTHP-25 _______________________________________________________________ 92 
8.3.2.3. Layer LTHP0 ________________________________________________________________ 93 
8.3.2.4. Layer LTHP50 and layer LTHP100 _______________________________________________ 94 
8.3.3. MTLP multilayer coating ________________________________________________________ 94 
8.3.3.1. Layer MTLP-50 ______________________________________________________________ 95 
8.3.3.2. Layer MTLP-25 ______________________________________________________________ 95 
8.3.3.3. Layer MTLP0 ________________________________________________________________ 95 
8.3.3.4. Layer MTLP50 _______________________________________________________________ 95 
8.3.3.5. Layer MTLP100 ______________________________________________________________ 97 
8.3.4. MTHP multilayer coating ________________________________________________________ 98 
8.3.4.1. Layer MTHP-50 ______________________________________________________________ 98 
8.3.4.2. Layer MTHP-25 ______________________________________________________________ 99 
8.3.4.3. Layers MTHP0, MTHP50 and MTHP100 __________________________________________ 99 
8.3.5. HTLP multilayer coating ________________________________________________________ 101 
8.3.5.1. Layer HTLP-50 ______________________________________________________________ 101 
8.3.5.2. Layer HTLP-25 ______________________________________________________________ 101 
8.3.5.3. Layer HTLP0 _______________________________________________________________ 102 
8.3.5.4. Layer HTLP50 ______________________________________________________________ 102 
8.3.5.5. Layer HTLP100 _____________________________________________________________ 104 
8.3.6. HTHP multilayer coating ________________________________________________________ 105 
8.3.6.1. Layer HTHP-50 _____________________________________________________________ 105 
8.3.6.2. Layer HTHP-25 _____________________________________________________________ 105 
8.3.6.3. Layer HTHP0 _______________________________________________________________ 106 
8.3.6.4. Layers HTHP50 and HTHP100 _________________________________________________ 107 
8.4. MoSx layers and influence of the parameters: summary __________________________________ 108 
8.4.1. Low pressure experiments: ______________________________________________________ 108 
8.4.2. High pressure experiments: ______________________________________________________ 111 
8.5. Functional TiN/MoSx coating ______________________________________________________ 111 
8.5.1. Introduction __________________________________________________________________ 111 
8.5.2. Experimental details ___________________________________________________________ 112 
8.5.3. Structure ____________________________________________________________________ 112 
8.5.4. Complementary experiment – TiN/MoSx-Ti multilaers ________________________________ 113 
8.5.4.1. Introduction ________________________________________________________________ 113 
8.5.4.1. Experimental details __________________________________________________________ 115 
8.5.4.2. Structure ___________________________________________________________________ 115 
8.5.4.3. Tribological properties ________________________________________________________ 116 
8.5.4.4. Conclusions for section 8.5. ____________________________________________________ 116 

Section 9. Deposition, structural and tribological characterization of co-deposited 

TiN+MoSx coatings _______________________________________________________ 120 
9.1. Introduction ___________________________________________________________________ 120 
9.2. Experimental details _____________________________________________________________ 125 
9.3. Results: structure _______________________________________________________________ 127 
9.3.1. Coating C1 ___________________________________________________________________ 127 
9.3.2. Coating C2 ___________________________________________________________________ 128 
9.3.3. Coating C3 ___________________________________________________________________ 129 



 144 

9.3.4. Coating C4 ___________________________________________________________________ 130 
9.3.5. Coating C5 ___________________________________________________________________ 131 
9.3.6. Coating C6 ___________________________________________________________________ 132 
9.4. Results: mechanical and tribological properties of the coatings ____________________________ 132 
9.5. Discussion_____________________________________________________________________ 134 
9.6. Conclusions ___________________________________________________________________ 138 

Section 10. Concluding remarks and recommendations for further studies ___________ 140 
10.1. Concluding remarks ____________________________________________________________ 140 
10.2. Recommendations for further studies _______________________________________________ 141 

 


