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Summary

The important progress made in nanolitography processes in the last decades has had
a profound impact in our daily lives, by making possible the miniaturization of con-
sumer electronics. Unbeknownst to most consumers, it is nowadays possible to fab-
ricate free-standing nanoscale devices, that will naturally vibrate under thermal or
external excitation. Over the last decade, a new subfield of physics devoted to study-
ing these objects emerged: nanomechanics.

In this thesis, we study electronic transport in such nanostructures where mechan-
ical degrees of freedom play an important role. More precisely, we calculate the full
transport properties (e.g. average current, frequency-dependent current noise) of dif-
tferent mesoscopic detectors in the presence of coupling to a nanomechanical oscilla-
tor. The objective of our study is twofold. First, there is a strong interest in under-
standing the effect that the coupling to electronic degrees of freedom has on the state
of the mechanical system. We will show that under many conditions the interaction
with the detector can be understood in terms of an effective thermal bath, but also
discuss the limitations of this effective environment model. A second main aspect of
the work presented here is the calculation of the signature of the mechanical object
in the transport properties of the detector. As one of the primary goal in the field
of nanoelectromechanical systems is to use the output of such electrical detectors to
achieve position measurements at the quantum limit, this question obviously is of
great relevance to the field.

This thesis is organized in 3 main parts, each associated with a different electronic
detector. After a short introduction to nanoelectromechanical systems, we focus in
Part IT on a system composed a single-electron transistor coupled capacitively to a
classical mechanical oscillator. We present a complete study of the transport prop-
erties of the coupled system, going beyond the usual weak-coupling approximation.
In Part III, we discuss the properties of a system where a tunnel junction is coupled
to the mechanical object. Looking at this system from the point of view of quantum
measurement, we analyze the transport properties of a system composed of two in-
dependent tunnel junctions coupled to the same oscillator and demonstrate how, by
using the cross correlated output of the two detectors, one can improve the sensitiv-
ity of position measurements beyond the usual quantum limit. In this part, we also
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SUMMARY

demonstrate that the current noise of a system composed of two tunnel junctions (one
with fixed transmission amplitude, the other with position-dependent transmission
amplitude) can contain information about the momentum of the mechanical oscilla-
tor. Lastly, in Part IV we study a system composed of a mechanical oscillator coupled
to a superconducting single-electron transistor. The coupled dynamics of the oscilla-
tor and mesoscopic detector are in this case very complex, and we demonstrate how
a numerical approach based on a solution of the Liouville equation can be used to
validate results obtained from approximate analytical approaches. We also demon-
strate, by looking at the frequency-dependence of the charge fluctuations on the su-
perconducting single-electron transistor, limitations to the model where the effect of
the detector back-action on the oscillator is modeled as an effective environment.
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Part1

Nanomechanical systems: an
introduction






CHAPTER

Nanoelectromechanical systems: Applications
and fundamental interests

mechanics, n. The branch of applied mathematics
that deals with the motion and equilibrium of bodies
and the action of forces, and includes kinematics,
dynamics, and statics. Now often distinguished as
classical mechanics (as opposed to quantum
mechanics).

Oxford English Dictionary

The definition of the word “mechanics” as found in the Oxford English dictionary
(reprinted above) nicely expresses the prevailing preconception of the overall physics
community that mechanical systems are described by the laws of classical mechanics.
As people are mostly accustomed to mechanical systems that are huge on the micro-
scopic scale (e.g. a pendulum clock), their opinion is actually quite justified: classical
mechanics governs the macroscopic world, and quantum mechanics the behavior of
objects at the atomic scale. In this regard, mechanical systems with typical dimen-
sions of a few hundreds of nanometers (nanomechanical systems) are of a particular
fundamental interest: at these scales the distinction between micro and macro or, by
extension, between classical and quantum becomes blurry.

Besides being relevant in the study of fundamental issues like the quantum-to-
classical transition, nanoelectromechanical systems (NEMS) have a huge technologi-
cal potential, mainly as highly sensitive sensors. The purpose of this chapter is to give
the reader a broad overview of the field of “nanomechanics”, covering both techno-
logical applications of nanometer-scale mechanical systems as well as explaining their
relevance in fundamental research. The chapter is organized as follows: in Sec. 1.1
we define precisely what the term ‘nanoelectromechanical system’ refers to. Then, in
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1. NEMS: APPLICATIONS AND FUNDAMENTAL INTERESTS

Sec. 1.2 we discuss the technological applications of such devices before (Sec. 1.3) ex-
plaining how nanomechanical systems can be used to probe questions of fundamental
interest in quantum physics.

1.1 Nanoelectromechanical systems

In a recent review[Blencowe(05a], M. P. Blencowe defined nanoelectromechical sys-
tems as “nano-to-micrometer scale mechanical resonators coupled to electronic de-
vices of similar dimensions”. While this definition is not very precise, it efficiently
summarizes the two defining characteristics of NEMS: these are very small objects
with active mechanical degrees of freedom whose mechanical response is either con-
trolled or monitored via an electronic device placed nearby.

Typically, the mechanical element of the NEMS is a cantilever: a long, thin, free-
standing rod that is clamped at either one or two ends to a substrate. In the limit
of low amplitude oscillations, the cantilever effectively acts as a harmonic oscillator
whose properties are a function of both the geometry of the device as well as the
material used in the fabrication. In this thesis, we will mostly concentrate on systems
where the mechanical element is a doubly-clamped cantilever of length /, width w and
thickness t. For this geometry, the fundamental flexural mode of a rod corresponds
to the fundamental mode of a harmonic oscillator[Cleland04] of with effective mass
(M), spring constant (k) and frequency () given by

Mg = 0.7351twr (1.1a)
32E3w
Kett = B (1.1b)

Et
Qust = 27{(1.05)\/;1—2 (1.1c)

with r is the density of the material used and E its Young’s modulus. This strong de-
pendence of the device characteristics on its geometry combined with the wide range
of materials that can be used to create the cantilever! make it possible to create me-
chanical devices that operate in very different regimes. As mentioned in [Schwab02],
nanometer-sized resonators of frequency ranging from hundreds of kHz to 1 GHz and
of mass between 10> and 102! kg have been demonstrated. An important charac-
teristic of mechanical resonators is that they exhibit extremely high quality factors —
much higher than LC oscillator — with typical Q ranging from 103 to 10° [Ekinci05a].
This makes mechanical oscillator perfect candidates for low power applications and

IFor example, nanomechanical oscillators have been fabricated from, for example, Si
single-crystals[Cleland96], GaAs / AlGaAs [Blick98], SiC [Yang01], AIN [Cleland01], metals
[Flowers-Jacobs07] and even carbon nanotubes [Jensen06].
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1.2. Applications

for fundamental research, as a high Q translates to a weak coupling to the environ-
ment.

As stressed in the first sentence of this section, the mechanical element is only
one part of the nanoelectromechanical system. To be able to effectively monitor the
mechanical oscillations, one needs a transduction stage that converts a mechanical in-
put into an electrical signal. In principle, one could also use an optical transducer,
i.e. convert mechanical motion to an optical signal. Such systems, referred to as
“optomechanical systems”, will not however, be discussed in this thesis. Over the
years, a multitude of different transduction methods have been demonstrated (see
e.g. [Ekinci05a] for a description of many transduction mechanisms), but no kind of
electrical transducers shows more promise for high-sensitivity position measurement
at the nanoscale than mesoscopic electronic systems like the (superconducting) single-
electron transistor and the tunnel junction. Importantly, these transducers can be very
precisely described theoretically, a property that will prove invaluable when it comes
to evaluate the efficiency of these detectors (Sec. 4.2). This is the kind of detectors on
which we will focus in this thesis.

1.2 Applications

Mechanical systems have been used for a long time as high-precision force sensors.
Already in 1785, Coulomb used a mechanical torsion balance to establish the 1/ r? de-
pendence of the electrostatic force between two charges. With the progress in tech-
nology, many applications have been found for mechanical systems that can be con-
trolled or monitored electrically. As of today, the typical size of the mechanical sys-
tems used in commercial application ranges between Imm and 1ym: these are called
microelectromechanical systems (MEMS). Typical applications of MEMS range from
inkjet printer heads, pressure sensors, to accelerometers controlling the deployment
of airbags in cars. The usage of MEMS in commercial devices is forecasted to in-
crease dramatically over the next few years: according to a french think tank, the total
market from MEMS-based system should reach USD 103B by 2012, from USD 40B in
2006[yol08].

What about NEMS? More precisely, for which type of application is it useful to put
efforts into scaling down MEMS into NEMS? To answer this question, we can look at
the attribute scaling of mechanical systems with system size. Defining for a moment
a typical lengthscale ¢ of the system, i.e. | = [{, w = @/ and t = /, and looking at the
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1. NEMS: APPLICATIONS AND FUNDAMENTAL INTERESTS

scaling the effective parameters defined in Eq. (1.1), we find

Mgt = [0.7351Fwr] 2, (1.2a)
Ef|1
Qusf = IZN(LOS)\ET_Z] 7 (1.2b)
~3 ~
Ko [32?#} ‘. (1.2¢)

Going from the microscale to the nanoscale (decreasing /) therefore leads to a de-
creased mass, an increased typical resonance frequency as well as a decreased stiffness
kess of the resonator. A direct consequence of this scaling of the resonator’s attributes
with size is that, from a technological point of view, NEMS offer an advantage over
MEMS in the realm of mass-sensing, high frequency applications, and ultrasmall-force
detection.

The case where it is easier to understand the intrinsic advantage of NEMS over
MEMS is mass-sensing. In a resonant mechanical mass sensor, one measures the shift
in resonant frequency of the oscillator as the particles that have to be weighted deposit
on the cantilever. To a good approximation, the shift Af is given by[EkinciO5a]

AM

Af = — ik (1.3)
As the sensitivity 0 M of the device is related directly to Af, one expects the sensitivity
of such devices to scale like /~%: by going to the nanoscale regime, one both decreases
the mass (increasing the relative mass difference AM that is to be measured) as well
as increases the frequency of the oscillator, leading to a larger (in absolute magnitude)
frequency shift. Recently, a NEMS-based mass-sensor with a sensitivity of 1.3 x 1072
kg Hz!'/2 has been demonstrated[Jensen08]. This sensitivity allows to monitor the de-
position of single Au atoms on the resonator, an important step towards the develop-
ment of fully mechanical mass-spectrometers[Knobel08].

For force-sensing applications, it is the reduced stiffness of the resonator with re-
duced ¢ makes NEMS-based systems attractive. Intuitively, the response of a very stiff
(high k) resonator to a small force is much smaller than the response of a very compli-
ant (low k) resonator to the same force. NEMS-based detection system have demon-
strated zeptonewton-scale force sensitivities at cryogenic temperatures[Mamin01].
This exquisite force sensitivity opens the door to exciting applications like magnetic
resonance force microcopy at the single spin level[Sidles91; Rugar(04].

1.3 Nanomechanical systems in basic science

Besides a great potential for technological applications, the miniaturization of MEMS
into NEMS also opens new research avenues in fundamental science. As shown in
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1.3. Nanomechanical systems in basic science

Eq. (1.2b), the mechanical resonance frequency Q) typically increases for smaller res-
onators and devices with (3 = 27 x 1GHz have been demonstrated. Since nowa-
days experimentalists worldwide are able to easily cool solid-state devices to temper-
atures of only a few dozens mK, cooling down nanomechanical resonators to tem-
peratures of the order of T ~ 7()/kp seems within experimental reach (recall that
10mK ~ 200MHz). At this point, it is expected that the quantum-mechanical behav-
ior of the harmonic mode could be observed, a remarkable feat when one remembers
that the resonator, while “small” by daily-life standards, is composed of about mil-
lions of atoms and is therefore quite large by quantum standards. Such a mechanical
oscillator in the quantum mechanical regime could in principle be prepared in a su-
perposition of states that are macroscopically different (for example, a superposition
of two wave packets positioned at a finite distance from each other), or even to entan-
gle a resonator with a two-level system[Armour02]. The study of macroscopic quan-
tum systems as well as their interplay with the environment (causing decoherence)
is perhaps the most stunning example of the possibilities offered by NEMS in basic
research?.

As of today, the quantum-mechanical behavior of a mechanical system has still
not been demonstrated experimentally. Nevertheless, a great deal of basic science has
been achieved using nanoscale mechanical systems, for example in condensed matter
physics. In 2000 such systems have been used to demonstrate that heat transport in
ballistic phonon systems is quantized[Schwab00], thereby confirming the existence of
a phononic equivalent of the Landauer formula for charge transport[Pendry83]. They
also have been used to probe spin-torque effects at interfaces between ferromagnetic
and normal (non-ferromagnetic) materials[Mal’shukov05; ZolfagharkhaniO8]. More
generally, mechanical systems found an application as experimental playgrounds
in many fields of physics, including non-linear dynamics (chaos, synchronization)
[Shim07; Lifshitz08], stochastic processes (for example, via a demonstration of me-
chanical stochastic resonance [Badzey(05]), the Casimir force [Buks01], etc.

On the experimental level, a great deal of efforts has been put towards achiev-
ing quantum-limited position measurement. Indeed, a prerequisite to any study of
quantum behavior in a mechanical system is to be able to monitor the position of the
mechanical system extremely accurately. While the basics of quantum measurement
will be explained in detail in Chap. 4, let us just mention at this point that quantum
mechanics enforces a limit to the sensitivity of a position measurement of any har-
monic oscillator. This limit holds whatever the state of the oscillator, i.e. it is pos-
sible to make a quantum-limited measurement of a harmonic oscillator in a thermal
state characterized by a “high temperature” T >> ()/kp. There are many conditions
that must be fulfilled in order for a position measurement to reach the quantum limit

2For a more detailed commentary regarding the role of NEMS in the study of the quantum-classical
transition, see [Ball08] or the older [Schwab05].



1. NEMS: APPLICATIONS AND FUNDAMENTAL INTERESTS

(Sec. 6.1.2); importantly, not all detectors (i.e. the electronic part of the NEMS) satisfy
these conditions and a thorough theoretical analysis of the different possible position
detectors must be carried out in order to identify those that could in principle lead to
quantum-limited position measurement.

More generally, important efforts have been made by many theoretical groups to
study the behavior of quantum systems (qubits, mesoscopic detectors, spins) coupled
to mechanical resonators. Importantly, the frequency range in which mechanical res-
onators operate sets them apart from other ‘harmonic-oscillator like” systems like op-
tical cavities[Raimond01] and superconducting striplines[Wallraff04]; they are there-
fore characterized by different physics. The work presented in this thesis fits nicely
this broad description.

As will be shown in the next parts, we investigated three “quantum systems” (de-
tectors) coupled to a mechanical oscillator: the single-electron transistor (Part II), the
tunnel junction (Part III) and the superconducting single-electron transistor (Part IV).
Even if the specific question investigated in each part differs, throughout this thesis
we used an appropriate description of both the mechanical degree of freedom and the
detector in an effort to describe (i) the effect of the detector on the oscillator as well as
(i) the signature of the coupling to the oscillator in the detector’s output. Read on to
learn how we used the concepts of noise and measurement back-action to gain new
insights about nanoelectromechanical systems.

1.4 Detailed outline of the thesis

Before continuing, we take a brief moment to discuss the structure and content of the
thesis. The main part of the text is comprised of 3 parts (II - IV).

In Part II, we study a system composed of a single-electron transistor (SET) cou-
pled to a mechanical oscillator. In Chap. 2, we will introduce the system in detail,
commenting on the basic theoretical description of the SET as well as describing the
experimental realization of the system considered. In Chap. 3, we present a numeri-
cal study of this system in the strong coupling regime. This chapter is mainly derived
from [Doiron06], but also contains a previously unpublished section regarding the
system properties away from the charge degeneracy point (Sec. 3.4).

In Part III of the thesis, we study tunnel junction displacement detectors. As one of
the main issues discussed in this section is quantum measurement, we start in Chap. 4
with a short review of continuous measurements in quantum mechanics. In Chap. 5,
we explain the basics of quantum measurement with tunnel junctions, reviewing both
theoretical and experimental work on the topic. In Chap. 6, we introduce the “effec-
tive environment’ model often used in the context of NEMS to describe the effect of
detector back-action on the mechanical oscillator and derive the quantum limit on the

8



1.4. Detailed outline of the thesis

sensitivity of a position measurement. In this chapter, we also give an example of how
to use the effective environment approach by describing the back-action of a tunnel
junction position detector on a resonator. In Chap. 7, we discuss the equation-of-
motion approach that will be used in the following chapters. Interestingly, in Sec. 7.2
we rederive the effective environment model introduced in Chap 6 by using a Born-
Markov master equation approach. In the last section of 7, we detail how the master-
equation approach can be used to derive the results that will be presented in Chaps. 8
and 9. Chapter 8 presents the work originally published as[Doiron07]. In this chapter,
we demonstrate how, by using detector cross correlations, the quantum-mechanical
bound on the sensitivity of a position measurement (derived for a single detector)
can be overcome. In Chap. 9, we demonstrate that, by using two tunnel junctions
(with only one of them coupled to a mechanical oscillator), the total current noise can
be used to measure the momentum of the oscillator. The content of this chapter was
originally published as[Doiron08].

Part IV of this thesis is devoted to the study of a mechanical oscillator coupled to a
superconducting single-electron transistor. In Chap. 10, we describe the system and
its experimental realizations, using the linear-response approach to understand the
different regimes in which the detector can drive the oscillator. Part of the discussion
presented in this chapter is adapted from [Koerting08]. The author of this thesis was
mainly involved with the numerical aspects of the study presented in [Koerting08],
and Chap. 11 presents a detailed summary of a numerical approach based on the so-
lution of the Liouville equation that was used in this context.

Concluding remarks are presented in Part V. Appendices, one on the MacDonald
formula, one on the Caldeira-Leggett model of quantum dissipation and one that con-
tains a derivation of the condition on quantum limited detection [Eq. (4.17)], can be
found after the conclusion.






Part 11

Nanomechanics with single-electron
transistors
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CHAPTER

Nanomechanical oscillators coupled to
single-electron transistors

In this first part of the thesis, we will focus on the interaction of a nanomechani-
cal oscillator with a single-electron transistor (SET). Historically the SET was first
recognized as an amazingly sensitive electrometer. However, already in 1993
it was proposed that the SET charge sensitivity could be leveraged to measure
displacement[White93]. As we will show in this chapter, this is a consequence of
the equivalence between (i) varying the charge on a gate capacitively coupled to the
SET island while keeping the gate capacitance constant like in an electrometer or (ii)
varying the capacitive coupling between the gate and the island while keeping the
charge on the gate fixed, like in a displacement meter.

This chapter is organized as follows. Before discussing the interaction of single-
electron transistors with mechanical systems, we take a moment to introduce, in
Sec. 2.1, the operating principle of the SET. Since many high-quality reviews are avail-
able on the topic[Devoret92; Kastner92; Devoret00], we will keep this discussion short.
Afterwards, in Sec. 2.2, we review recent experimental and theoretical advances re-
garding displacement measurement using single-electron transistors.

2.1 The single-electron transistor

A single-electron transistor is formed by putting two tunnel junctions in series, form-
ing an ‘island’ as depicted in Fig. 2.1. This island is coupled capacitively to an electro-
static gate, via the gate capacitance C;. Taking into account the finite capacitance of
each tunnel junction (Cy, Cr), the total capacitance of the island is Cy, = Cg + Cp, + Cr.
By making the central island sufficiently small, the energy cost to add a charge e (the
charging energy E. = ¢?/2Cs) can be made much larger than the thermal energy kpT.
In this limit (and for junction resistances R > h/¢?), the electron number on the island

13



2. NANOMECHANICAL OSCILLATORS COUPLED TO SINGLE-ELECTRON TRANSISTORS

n is a well-defined integer.

In the ‘orthodox theory” of the SET, transport in this system is the consequence of
a sequence of independent tunneling events. In this sequential tunneling regime, the
tunneling rates are governed directly by the electrostatic energy difference between
states with different number of charges on the island. The orthodox theory of the SET
will be detailed in the next section so here we will just try to explain qualitatively the
operating principle of this detector. The main idea behind the SET is that its transport
properties heavily depend on the voltage applied at the capacitively-coupled gate.
Indeed, in presence of this gate, the electrostatic energy of a charge Q on the island

is given by E,; = —QVg + Q?/2C,, which can be rewritten (up to some constant) as
[Kastner92]
E = E. (n — np)? 2.1)
where
ny = CGeVG , (22)

is an ‘equilibrium charge’ that minimizes the energy of the system induced by the ca-
pacitive coupling to the gate on the island. This charge can be varied continuously
(i.e. it does not only take integer values) by tuning the gate voltage. When ny = n is
an integer, the charge fluctuations on the island are heavily suppressed (we take the
bias voltage as smaller than the charging energy). Since transport is impossible with-
out charge fluctuations, the charge current in this case vanishes: this is the Coulomb
blockade regime. On the other hand, when ny — |ng| ~ 1/2, the energy difference
between the states with n and 7 4 1 charges on the island becomes minute, allowing
charge fluctuations and therefore transport. The important dependence of transport
properties in 1 is what makes the SET an excellent electrometer, which demonstrated
charge sensitivity of the order of 10~%¢ Hz /2 [Schoelkopf98].

To conclude this short introduction to the SET, we note that the current through the
island never vanishes completely, even in the Coulomb blocade region. Indeed, in this
regime higher-order processes (cotunneling), involving the simultaneous tunneling of
2 or more electrons leads to a small ‘leakage current’.

2.2 The SET as a displacement detector

Practical implementations of oscillator-coupled SET transistors can be realized by
combining nanofabricated resonators with metallic SETs, as depicted in Fig. 2.1. In
this case, one uses the resonator itself as a second gate, applying a voltage Vy be-
tween metallized the beam and the island. In the experimentally relevant limit where
the displacement of the oscillator is very small with respect to the distance between

14



2.2. The SET as a displacement detector

the resonator’s equilibrium position and the island, the capacitive coupling Cy be-
tween the resonator and the island can be written as Cy(x) = C% + (dCy/dx)x. In
this case, a displacement Ax of the oscillator corresponds to a change

AI’ZO = {VN%} Ax (23)
of the equilibrium charge 7 on the island. This change in 7 is reflected in the trans-
port properties of the SET, such that by monitoring the current fluctuations through
the SET on can infer the position fluctuations of the mechanical oscillator. As seen
from Eq. (2.3), the coupling between the SET and the resonator is a function of (i) a ge-
ometric coefficient % that is typically fixed for a given sample and (ii) the voltage Vi
applied on the resonator. In practice, the coupling between the SET and the resonator
can therefore be tuned by adjusting this voltage. Following a detailed semi-classical

Q Ve

Vi@—| island |—Q V&

XI 1 O VN

Figure 2.1: Schematic representation of a SET-based displacement detector. The res-
onator (depicted as a cantilever clamped at one end) is coupled capaci-
tively to the island and acts as a second, x-dependent, gate.

analysis [Blencowe(00; Zhang02] of this experimental setup, the first experimental re-
alization of the device depicted in Fig. 2.1 was demonstrated by Knobel and Cleland in
2003[Knobel03]. In this experiment, a 3u long, 250 nm wide, and 200nm thick doubly-
clamped cantilever located 250 nm away from the SET island was patterned in a GaAs
single crystal. The frequency of the fundamental in-plane mode of the beam was mea-
sured to be 116MHz, with a quality factor around 1700. Using this device, the authors
demonstrated a measurement sensitivity! of 2.0 x 10~°m Hz~1/2 at 30mK. In this
case, an improvement of about two orders of magnitude in the sensitivity would had
been necessary to be able to monitor the purely thermal displacement fluctuations of
the oscillator; only driven oscillations could be detected. This being said, in this ex-
periment the authors compared the sensitivity of the SET-based displacement detector

!The measurement sensitivity is a measure of the output noise due to the detector, referred back to
the oscillator. It will be formally defined, along with the quantum limit on measurement sensitivity, in
Sec. 6.1.2
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2. NANOMECHANICAL OSCILLATORS COUPLED TO SINGLE-ELECTRON TRANSISTORS

with the more common magnetomotive detection scheme [Cleland96] and found the
SET-based method to provide substantially improved sensitivity.

From a theoretical point of view, much work has also been done regarding
this system. For example, the transport properties of the SET coupled to a clas-
sical oscillator were shown to be greatly influenced by the state of the oscillator
[Chtchelkatchev04]. Strong feedback effects in the weak-coupling regime were inves-
tigated in [Blanter04; Blanter05] and demonstrated to be possible only in the presence
of energy-dependent tunneling rates [Usmani07]. Perhaps the most complete analy-
sis of the dynamics of the coupled system in the weak-coupling limit was presented
in [Armour(04b; Armour04a], and reviewed concisely in [Blencowe05a]. In these two
articles, it was demonstrated that the effect of the SET on the oscillator could be mod-
eled as an effective thermal environment: in this regime, the interaction with the SET
damps the oscillator’s motion, bringing it to a gaussian (thermal) state. The descrip-
tion of the system used in these articles will be described in detail in Sec. 3.1.

2.3 Mechanical degrees of freedom in SET-like systems,

Before concluding this chapter, we note that the configuration presented before,
with a cantilever capacitively coupled to a SET, is not the only relevant experi-
mental realization of a system where both charging energy and ‘mechanical” de-
grees of freedom play a role. These two elements are central to discussions re-
garding electronic transport through molecular systems, as they can be character-
ized by a large charging energy and an important electron-phonon coupling (see e.g.
[Park00; Koch05; Hubener07; PistolesiO8]). Another related system is the “electronic
shuttle”, where instead of using the SET as a way to measure the displacement of a
nearby oscillator, the central island of a SET is itself allowed to mechanically oscil-
late between the two leads, such that electrons can tunnel on the island if the island
has approached one lead and leave it again once it has mechanically moved to the
other lead. These shuttles have been investigated in great detail [Gorelik98; Weiss99;
Erbe01; Gorelik01; Pistolesi04; Isacsson04; Novotny04; PistolesiO6].
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CHAPTER

Electrical transport through a single-electron
transistor strongly coupled to an oscillator

Adapted from Phys. Rev. B 74, 205336 (2006)

In this chapter, we will consider a SET transistor coupled to a classical harmonic os-
cillator. This system has already been studied extensively [Armour(04a; Armour04b].
However, previous studies investigated the regime where the coupling between the
oscillator and the SET is weak and the question what happens when the coupling is
increased is still of great theoretical interest,[Blencowe(05a] even if this regime might
not be readily accessible in the current generation of experiments. In this chapter, we
will use a combination of a master-equation approach and a numerical Monte Carlo
procedure to calculate the electrical current, its second and third cumulants, and study
how they are modified by coupling to the oscillator, in the regime where the coupling
is strong. We will also study the frequency dependence of the transport noise.

The chapter is organized as follows: in Sec. 3.1, we present in more detail the sys-
tem under study, reviewing the model and the master-equation approach used in
[Armour04b] to study this system in its weak-coupling limit. This section also intro-
duces the important dimensionless coupling parameter « that is the ratio of the typical
mechanical energy scale and the source-drain voltage. Next, in Sec. 3.2, we present
a calculation of the third cumulant of the current in the weak-coupling limit. The
remainder of the chapter presents our numerical results. First, we present results in
the ‘symmetric’ case where the average charge state of the island is (N) = 0.5 : in
Sec. 3.3.1, we calculate the probability distributions of the position of the oscillator if
the SET is in state N or N + 1 using a numerical Monte Carlo procedure and find that
the Gaussian form predicted by the weak-coupling approach is modified dramati-
cally in the strong-coupling regime. In Sec. 3.3.2, we calculate the average current
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=

Figure 3.1: Circuit diagram of the system studied. The gate capacitance of the SET de-
pends on the displacement of a mechanical oscillator, leading to a coupling
of the electrical transport through the device and the mechanical motion
of the oscillator.

through the device, then, in Secs. 3.3.3, 3.3.4 we complete our studies of the system
at the charge-degeneracy point by looking at current noise and the third cumulant
of the current. The last part of the chapter presents numerical results away from the
degeneracy point.

3.1 Coupled SET-oscillator system description

To describe the coupled SET-nanomechanical oscillator system, we use the formal-
ism introduced in [Armour04b]. The system we consider is shown in Fig. 3.1 in a
schematic way. It consists of two symmetric tunnel junctions, each with resistance R
and capacitance C, connected in series. Transport through the SET is described us-
ing the orthodox model, where only two charge states are considered and where the
current arises only from sequential tunneling.[Averin91; Beenakker91] In this case,
transport is governed by four tunneling rates I'Y where i = R, L is the lead index and
o = 4+, — indicates the direction of the tunneling. In this work, we adopt the conven-
tion that the forward (4) direction, given by the polarity of the bias voltage, is from
the right to the left lead. The tunneling rates can be calculated using Fermi’s golden
rule and are a function of the difference in free energy AE of the system before and
after a tunneling event

1
[T = 2 OE f(AEY), (3.1)
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3.1. Coupled SET-oscillator system description

where f(x) = (1 — e */k8T)=1 with T the electronic temperature. The energy differ-
ences AEY are given by

. 1 E
AEf = —AE; = eVa,(5+ (2N —2Ng + 1)ev;>

1 E
AEf = —AER = eVa,(5 — (2N —2Ng + Doy ).
S

(3.2)

where Vj; is the applied drain-source voltage, E. = ¢®/(2C + Cg) is the charging
energy of the island and Ny = C,V, /e is the optimal number of charges on the island.
Knowing the different rates, the average current I flowing through the SET can be
calculated using

I/e = PyyI} — PNI; = PaTx — Pyialy (3.3)

where Py(n41) is the probability to find the island in charge state N(N + 1) in the
stationary limit.

Our model of the SET remains valid as long as its charging energy E. is large com-
pared to the electronic thermal energy kT, and the source-drain bias eVj;. We will
neglect higher-order tunneling processes (cotunneling).

In this work, the nanomechanical oscillator is modeled as a single, classical, har-
monic oscillator of mass M and frequency (). Introducing a time scale

Tt = Re/ Vyq (3.4)

which has the physical meaning of an average time between tunneling events, we can
use the dimensionless parameter

e=0Q15=0— (3.5)

to compare the typical electrical and mechanical timescales.

A particular state of the oscillator is represented by a position x and velocity u.
We choose x = 0 to be the equilibrium point of the oscillator when N charges are
on the SET. When the charge state of the island is changed, for example, from N to
N + 1, the change in the electrostatic forces between the oscillator (kept at constant
potential V) and the SET effectively shifts the equilibrium position of the resonator.
The distance between the equilibrium positions when N and N + 1 charges are on the
island defines a natural lengthscale x( of the problem,

—2E:Ng
MQ2d -

Here, d is the distance separating the oscillator’s equilibrium position and the SET

island, such that the gate capacitance depends on x like Cg(x) ~ (d+x) "1 ~ 1 —x/d.

X0 = (36)
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3. ELECTRICAL TRANSPORT THROUGH A SET STRONGLY COUPLED TO AN OSCILLATOR

From now on, we will also use dimensionless rates, i.e., all the rates will be given in
units of 7, L.

Coupling a SET and a nanomechanical oscillator system is readily done by using
the oscillator itself as the SET’s gate (Sec. 2.2). In this configuration, the capacitive
coupling between the oscillator and the SET depends on the distance between them
and, by extension, on the oscillator’s position, effectively allowing one to monitor the
dynamics of the oscillator via the SET. As long as the amplitude of the oscillations
around its equilibrium position is small compared to the distance d separating the
oscillator and the SET island, the gate capacitance C¢(x) can be treated as linear in
x. As a consequence, we obtain position-dependent dimensionless tunneling rates of
the form

_ X X
00 = () [ - () |3 - w2 evi)
) N . (37)
+ a = - —_— —_ JE—
T "(x) = ( )[AR+Kx0}f<( ) {ARJFKxO} eVds> ,
where the coefficients!
1 E.
Ap ==+ (2N —2Ng +1)—— — kN
2 eVis
1 L (3.8)
AR = E — (ZN_ZNg+1)€VdS +KN

are the position-independent part of the full dimensionless rate I'/ (x) that fulfill A; +
Ar = 1. Here
K = MO?x3/ (eVy) (3.9)

is a dimensionless coupling parameter that will play an important role in the follow-
ing. Note that A, Ag can become negative in the strong-coupling limit. The average
dimensionless current in the presence of position-dependent rates can be calculated
as an average of the different rates weighted by the probability to find the oscillator
at a position x:

I— / " dx (P (0T (x) — Py(x)T; (1))
oo (3.10)
= [ e (N ITE ()~ P (TR ()

with Py(n41)(x) the probability to find the oscillator at position x while the island
charge state is N(N + 1).

IThese coefficients were called 'y, I'g in Ref. [Armour04b]. Since they are not rates (e.g., they can
become negative in the strong-coupling limit), we have chosen a different notation
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3.1. Coupled SET-oscillator system description

In the zero-temperature limit, the Fermi functions in Egs. (3.7) are in fact Heaviside
step functions that determine the possible transport direction as a function of the po-
sition of the oscillator. Indeed, at zero temperature, xt = Apxg/x and xR = —Agxy/x
define points where the current direction at lead L and R changes sign. For xR < x,
the current in the right junction can only be directed towards the island while in the
opposite case only charge transfer from the island to the right lead is possible. Equiva-
lently, transfer through the left junction is allowed from the island to the lead if x < x*
and from the lead to the island otherwise. It is interesting to note that transport can
be blocked altogether via this mechanism, leading to so-called ‘distortion blockade’
[PistolesiO7]. For example, if N 4 1 electrons are on the island and the oscillator is in
position x > xI, transport of the extra charge from the island to any lead is effectively
forbidden, our choice of bias direction imposing x® < xL. This possibility is discussed
in more detail in Sec. 3.3.

The canonical way of dealing with an SET in the sequential tunneling regime is to
introduce a master equation for the different charge states of the island. If the oscillator
is coupled to a nanomechanical oscillator, such a simple master equation cannot be
written, since the tunneling rates depend on the stochastic evolution of the oscillator.
Following Ref. [Armour04b] we can introduce the probability distributions Py (x, u; t)
and Pyn1(x,u;t) to find at a time ¢, the oscillator at position x, u# in phase space and
the SET in charge state N and N + 1 respectively and, derive a master equation for
these new objects:

9 , 9 9
EPN(X' u; t) =0 XEPN(X, u;t) — uﬁPN(x, u; t) (3.11a)
+ [T (x) + T (0)] Pnsa(x,u;t) — [T (x) +Tp (x)] Py(x, u;t)
0 d d
gPNH(X, u; t) =02 (x — xo)apNH(xf u;t) — “aPNH(X, u;t) (3.11b)

— [Tf (x) + T (x)] Pnga(x,u;8) + [Tf (x) + T (x)] Py(x,u;t)

As pointed out in Ref. [Armour04b], when the coupling between the oscillator and
the SET is weak (x < 1) and when the gate voltage V; is such that the system is tuned
far from the Coulomb-blockade region, one can make the approximation that x* — oo
and xR — —oo and then write the tunneling rates as

I“EL(x):AL—Kxi, I (x)=0,
0

i (3.12)
FIJ{(x):ARnLKx—O, Ix(x)=0.

This weak-coupling form of Eq. (3.7) effectively corresponds to neglecting any back-
currents and the possibility of position-induced current blockade. However, the mas-
ter equation is then simple enough to allow analytical solutions.
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3. ELECTRICAL TRANSPORT THROUGH A SET STRONGLY COUPLED TO AN OSCILLATOR

3.2 Weak-coupling case : Analytic approach to the
calculation of transport properties

Originally, the interest in SETs was motivated by the suppression of the current in the
Coulomb-blockade regime and the high sensitivity of the current to small variations of
the gate voltage. However, it is clear that a complete description of the transport pro-
cesses in these devices requires not only knowledge of the current, but also of current-
current correlations like e.g., the current noise [Hershfield93; Korotkov94]. Recently,
higher-order correlations have also been studied both theoretically and experimen-
tally in nanoscale devices, in the framework of full counting statistics (FCS) (see
[Nazarov03] for a collection of articles on this topic, and Refs. [Bagrets03; Belzig05]
for a description of FCS in the context of transport through SETs). The FCS approach
consists in studying the probability distribution Py (t¢) that n electrons are transferred
through one lead of the SET within a time period t, in the limit where ty is by far the
longest time scale in the problem. The full information about the transport proper-
ties is contained in the cumulants of this distribution function, the first three of which
are given by the average u; = (n), the variance yy = (n?) — (n)?, and the skewness
uz = ((n — (n))?) that measures the asymmetry of the distribution. For example, the
current I = e(n)/t is proportional to the mean of this distribution, while the zero-
frequency shot noise power S(0) = e?us /1 is determined by its second cumulant.

It is instructive to start by considering the weak-coupling case ¥ < 1, since in this
regime we can calculate the noise and higher cumulants without resorting to Monte
Carlo simulations by solving directly for (ni(tp)) in the long-time limit (tyy > 1). In
this section, we generalize the work that was done in [Armour04a] where a method to
calculate the current-noise using the moments of the steady-state probability distribu-
tion Py(n+1) (%, 1) of the oscillator in phase space was described. In this approach, the
current-noise is calculated from the solution of the equation of motion of (n?(t)), the
average square of the number of charges that went through a lead in a time ¢t. Here,
we extend this method for the calculation of higher cumulants by deriving the equa-
tion of motion for the general quantity (n™(t)) from which the m—th cumulant can
be extracted.

To proceed, we write a master equation for the probability PK]( N+1) (x,u;t) to find,
at time ¢, the oscillator at position x with velocity u, the island being in charge state
N(N +1), and n charges having passed through a lead of the SET in the interval [0; t].
We will again make the assumptions leading to Eq. (3.12). Considering for definitive-
ness the left lead, at zero temperature and neglecting any extrinsic damping, one finds
[Armour04a]
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properties
J 9 J
S PN ust) = Q% PRy (x, us ) — usPR(x,5t) (3.13a)
+ T ()P (v ust) = T (x) PR(x 5t
9 d d
= P (1) = O (x — X0) 5 PN (0 15) — iz Pys (%, u) (3.13b)

— I (x) PR q (%, u;t) + T () PRy (x, u;t)

where the rates are taken from Eq. (3.12). Defining the coupled moments (x/u*n™)
and (x/u*n™) .1 as

n" k) Zn /du/dxxjuk [P (x,1;T) + Pl (v, 15T)] (3.14a)
(n"xl kY Ny = Zn /du/dxxjukpﬁ,ﬂ(x,u;r), (3.14b)

one can calculate the equation of motion for these quantities using Eq. (3.13). With x
in units of x¢ and u in units of u(, one finds

d, . ke i

E<x]uknm>N+1 —ke? [< j+1 k 1 m>N+1 _ <x]uk 1nm>N+1] +]<x] 1uk+lnm>N_H
— (uFn™) g1 + AR (T uFn™) + k(P ukn™) , (3.15a)

d ik, m 2 i+1, k—1_m i, k—1,_m

E(x]u n™) = —ke [(x] w ™)y — (Ju"n >N+1}

. m_l . . . .
—i—j(xfflukﬂnm) + Z (T) [AL<x]uknl>N+1 —K<x7+1uknl>N+1} . (3.15b)
i=0

Here, averages that are independent of 1 (averages of the form (x/u*n°)) are time-
independent and can be evaluated in the stationary limit, i.e., Eqs. (3.15a-3.15b) can
be used to generate a closed linear system of equations.> The terms (x/u*) of order
j+k = c are connected to the terms (x/u¥) 1 of order j + k = ¢ — 1. This means that
to solve for a moment (x/u*), we must use the ¢ + 1 equations of the type of Eq. (3.15b)
where j 4+ k = c and the c equations of the type of Eq. (3.15a) where j +k = c — 1.
This method can be used to calculate any moment of the form (x/u¥) and (x/u¥)y 1.
Knowledge of (x/u*) enables one to calculate the long-time behavior of the coupled
moments of the charge and oscillator’s position in phase space (x/ "u¥'n'), and thus the
i-th moment (n') of P,.

2These equations agree with the system of equations shown in the Appendix of [Armour04b]; the
factor k? displayed there is a typo and should read k.
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The ratio of the zero-frequency shot noise power and the average current (times e),
or equivalently, the ratio of the second and first cumulants of P, is called Fano factor
and is readily calculated using this approach. Since it shows a complex dependence
on the coefficients Aj, Ag, and on the parameters x and ¢, it is convenient to expand
the result in powers of k. Introducing a parameter « defined viaa = Ay — (1 +x)/2
(or, equivalently, « = —Ag + (1 — k) /2) that measures the difference between A; and
its value at the degeneracy point, one can write down the Fano factor in a way that
underlines its symmetry with respect to this point:

0 1 1 1 2
—21) = 5 + 202 + 4%k + 6a%K% + (E - 2“2) g - (E + 20‘2> Z_z + O(Kg) . (3.16)

For e < 1, the Fano factor is dominated by the term ~ x/ €2, like in the case where
one considers a system of two SETs coupled by an oscillator.[Rodrigues05] Finally,
we note that current conservation implies that the Fano factor is identical in both
leads.[Blanter(00]

Equation (3.15) is one of the main result of this chapter, as it allows for the calcu-
lation of higher cumulants of the current by integrating the equation of motion for
the moments of the form (x/u*n"™(t)) with m > 0. For example, we calculated the
normalized third cumulant p3/(n) of Py (tg). The results are presented in Fig. 3.2.
We stress that these results have been obtained by integrating the equation motion
for (n3(t)) valid in the weak-coupling regime and not via a Monte Carlo simulation.
Starting from the value 1/4 at x = 0,[Bagrets03] the normalized third cumulant de-
creases rapidly when « is increased. On further increase of «, it reaches a minimum
at an e-dependent value of k. The inset of Fig. 3.2 shows that the leading contribution
to the normalized third cumulant in the weak-coupling regime is of the form e *. As
a consequence, we note that the asymmetry of the probability distribution P, that is
determined by y3, can effectively be tuned by changing the frequency of the oscillator
or ;. The scaled quantity e*u3/(n) shows contributions of higher-order corrections
in € to the normalized third cumulant.

3.3 Numerical study of the strong coupling regime at
the degeneracy point

We now present our numerical investigation of the system beyond the weak-coupling
approximation. We note that, in this section, we will not study the effect of extrinsic
damping (i.e., a finite quality factor of the oscillator) and of finite temperatures, since
they were discussed extensively in [Armour(04a; Armour(04b].
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Figure 3.2: Normalized third cumulant as a function of x for different values of €, as
calculated within the weak-coupling approximation and scaled by €*. Dot-
ted line: € = 0.4, dashed line: ¢ = 0.3, solid line: ¢ = 0.2, dash-dotted
line: € = 0.1. The inset shows the e-dependence of the normalized third
cumulant at k = 0.1 (symbols), as calculated within the weak-coupling
approximation. The solid line is a fit to a power law ~ e . These results
were obtained by integrating the equation of motion for (n®(t)) following
from Eq. (3.15).

3.3.1 Dynamics of the oscillator in the strong-coupling regime

In the weak-coupling limit ¥ < 1, it was found[Armour(04b] that the interaction be-
tween the SET and the oscillator introduces an intrinsic damping mechanism. The
damping, characterized by a decay rate 7 = xe? (in units of 7,7 1) leads to a steady-
state solution for the probability distributions Py(y1)(x, #). In particular, the prob-
ability distributions Py(n.1)(x) = [ du Py(n41)(x, 1), from which one can calculate
the average current, have been shown to be well approximated by Gaussians centered
at x = 0 and x = xo for Py and Py, respectively. From this thermal-like stationary
state, it was proposed that the back-action of the detector on the resonator could me
modeled as an effective thermal bath[Blencowe05a], with associated damping rate
v = xe* and effective temperature To = eVy(P)n(P)ny1. This idea of modeling
the back-action of the detector as an effective thermal bath will be a recurring theme
throughout this thesis: it will be introduced formally in Sec. 6.1.

One of the main goals of the work presented in this chapter is to study deviations
from the weak-coupling behavior. Without the simplifications possible for x < 1
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leading to Eq. (3.12), the stationary probability distributions Py(n41)(%,%) can no
longer be investigated analytically and numerical methods must be used. In this
work, we used a Monte Carlo approach to simulate the stochastic nature of the SET-
nanomechanical oscillator system in the parameter regime where the typical mechan-
ical energy MQO?x3 is comparable to the bias energy eVj,. Details of our implementa-
tion of the Monte Carlo method are given in Sec. 3.6.

We study the probability distribution of the oscillator in the charge-degenerate
case, where (Py) = (Pn+1), with (Py) = [ dxPy(x). Atthis point, the current flowing
through the SET is maximal. In the presence of the oscillator, charge degeneracy is
reached when A; = 1/2 + x/2. This relation, exact in the weak-coupling limit, has
been empirically verified over the whole range of « studied. In the weak-coupling
limit, this relation can be shown using (Pn+1) = Ag. In our case, at the degeneracy
point symmetry considerations impose (x) = xp/2 and the position dependence of
the rate I'}; (x) must be taken into account, such that (Pyy1) = 5 = Ag + x(x/xp).
This effectively corresponds to (Pyi1) = Ap —x/2.

As can be seen from Fig. 3.3, as « is increased, the stationary position probability
distribution evolves continuously from the weak-coupling Gaussian form to a distri-
bution showing two sharp peaks at x = 0 and x = xp in the limit where x = 1. This
evolution is the result of a sharpening of each of the two subdistributions Py(n1)(x)
around their equilibrium position when « is increased, allowing one to resolve the two
subdistributions individually. This should not only be seen as natural consequence
of the fact that the typical distance x( scales like \/k. In fact, the main cause of the
appearance of the two sharp peaks is that small amplitude oscillations about each of
the two equilibrium points become very stable when « is increased.

We also note that the qualitative shape of each subdistribution evolve when « is
increased. While at low coupling the subdistribution Py(x) (resp. Pn41(x)) is sym-
metric about x = 0 (resp. x = xp), this is not the case for x 2 0.4. This asymmetry
arises only at higher coupling since for low «, the probability to find the oscillator at
x < xRor x > x! is negligible. When « > 0.4, the probability of the oscillator being in
a region transport is forbidden becomes important. Symmetry breaking arises since
these regions are located only on one side of each equilibrium point.

Finally, we note that the important changes in Py (1) (x) that accompany a vari-
ation in x are also seen in the stationary velocity subdistributions Pyn1)(#) =
J duPy(n41)(x,u). These are approximatively given by Py (u/eug) =~ Py(x/xp) and
Pny1(u/eug) ~ Pni1((x — x0)/x0), where 1y = x¢/ 1 is the typical velocity scale in
the problem.

For ¥ > 1, our numerical investigations show that the current is strongly sup-
pressed, rendering the intrinsic damping mechanism discussed at the beginning of
this section ineffective. In this case, the system cannot be characterized by a steady-
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x/xg

Figure 3.3: Upper panel: Total probability distribution P(x) = Pn(x) + Pn+1(x) of
the oscillator’s position for different values of the coupling constant x
[Eq. (3.9)]. Lower panel: Probability distribution Py (x) to find the oscilla-
tor at position x if the SET is in charge state N. Py 1(x) can be obtained by
the symmetry relation Pyy1(x) = Px(1/2 — x). In both panels, lines are
shifted for clarity by 2k, and the difference between neighboring curves
is Ax = 0.05. All calculations were done at ¢ = 0.3 and at the charge-
degeneracy point. For the definition of €, see Eq. (3.5).
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Figure 3.4: Current (in units of e/ 7;) as a function of « at the degeneracy point (Py) =
(Pn+1), for € = 0.3. The dots are the results of the Monte Carlo calcula-
tion and the solid line is the analytic form found within the weak-coupling
approximation.

state probability distribution, and our model is not appropriate. Therefore, we only
studied the parameter range ¥ < 1. A similar reasoning applies to Coulomb-blockade
region, where the damping of the oscillator’s motion is severely suppressed.

3.3.2 Average current

The average current flowing through the SET is closely tied to the oscillator’s position
distributions via the position-dependent tunneling rates. Consequently, one expects
that the deviations from the weak-coupling behavior observed in P(x) = Py(x) +
Pn+1(x) would affect the current characteristics when « is increased.

Just like in the previous section, we focus on the degeneracy point where the
average charge state of the island is N + 1/2. At this point, the weak-coupling
theory predicts|Armour(04b] that the current decreases linearly with increasing x:
I = %(e /7). This decrease in the current can be explained in a qualitative way
by the reduction of the overlap of the distributions Py(x) and Pyy1(x) as the cou-
pling is increased, each distribution becoming more localized around its equilibrium
point, see Fig. 3.3.

Figure 3.4 shows the average current as a function of . Like in the weak-coupling
limit, the localization of the different probability distributions around its equilib-
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3.3. Numerical study of the strong coupling regime at the degeneracy point

rium points leads to an overall decrease in the current when the coupling grows
stronger. For x 2 0.3, however, we see that the numerical results deviate from the
weak-coupling behavior: for stronger coupling the current is higher than the weak-
coupling result. This can be explained using the rates given by Eq. (3.12). When either

| xof dx Pyiqor | fl; dx Py is not negligible, these rates allow unphysical backward cur-
rents that are not present in the full master equation. For example, a point located at
x > xF in the steady-state probability distribution Py 1(x, ) would contribute nega-
tively to the average current when using the rates calculated within the weak-coupling
approximation while it would not contribute to the current when taking into account
the full expression for the rates given in Eq. (3.8).

Over the range of frequencies that we studied numerically (0.1 < € < 0.4), the
current was found to be practically independent of € for all but the strongest couplings
(x = 0.8). For instance, at x = 0.9, the difference between the calculated currents at
€ = 0.1 and € = 0.4 is on the order of a few percent.

3.3.3 Zero-frequency noise and higher cumulants

In this section, we study in detail the second and third cumulants of the probability
distribution function P, (tg) in the case of a coupled SET-nanomechanical system.

It is unfortunately not straightforward to generalize the method described in
Sec. 3.2 for calculating the cumulants of P, outside the weak-coupling regime. The
presence of x-dependent Fermi functions in the tunneling rates as well as the possi-
bility of charge flow against the direction set by the bias voltage due to the position
of the oscillator gives rise to a system of equations that is not closed and cannot be
solved analytically. Even if we neglect transport against the dominant direction of
the current I (x) ~ 0, but keep the position dependence of the Fermi distributions

in F;r (x), it is still not possible to derive a system of equations coupling only objects

of the form (x/u¥n™). Therefore, we will use a numerical approach to evaluate the
cumulants of P,,.

Indeed, the Monte Carlo method described in Sec. 3.6 can be used to measure
the FCS of electron transport, analogously to the experimental approach used in
[Gustavsson06]. A very long Monte Carlo run is divided into intervals of duration
to > 7~ !, here, 7 = xe? is the damping constant defined at the beginning of Sec. 3.3.1;
v~1 is the longest intrinsic time scale of the problem. By counting the number of
charges going through one lead during each interval, one can reconstruct the proba-
bility distribution P, (to), and from it calculate the cumulants.

We study current correlations at the charge degeneracy point, where the average
charge state of the island is N + 1/2. The top panel of Fig. 3.5 compares the weak-
coupling Fano factor to the numerical Monte Carlo results for different values of the
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coupling parameter «. Naturally, for x < 0.2, the agreement between the numerical
results and those obtained analytically is very good. Beyond this point, the numer-
ically calculated Fano factor shows an interesting non-monotonic behavior, with a
maximum at ¥ ~ 0.35 and a minimum at k ~ 0.85. The lower panel of Fig. 3.5 also
shows the evolution of the normalized third cumulant of P, giving the asymmetry
of this probability distribution about its mean (n). Starting from the x = 0 value
of 1/4 derived for a simple SET device, our results show that this quantity is, in the
weak-coupling limit, very sensitive to variations of x. Indeed, the normalized third
cumulant changes sign twice in the region « < 0.35, reaching a maximum value ap-
proximatively in the middle of this region. This contrasts with the strong-coupling
behavior: u3/(n) stays practically constant for 0.5 < x < 0.9.

We will now address the question of the dependence of the previous results on the
frequency of the oscillator. Figure 3.6 shows the dependence of the Fano factor and the
normalized third cumulant as a function of x for different values of €. First, we note
that the actual value of the Fano factor is increased dramatically for lower oscillator
frequencies, as expected from the term ~ x/e? that dominates in the low-frequency
regime. In the weak-coupling region (x < 0.3), the magnitude of the normalized
third cumulant is also heavily affected by a change in frequency, in agreement with
the weak-coupling leading order dependence ~ e~*. Despite these major changes
in magnitude of both the Fano factor and the normalized third cumulant, the overall
qualitative effect of an increase in coupling does not seem to depend heavily on €, in
the frequency range we investigated. In particular, the position of the maximum in
the Fano factor remains constant. Also, the normalized third cumulant always shows
a change of sign, albeit at an e-dependent value of x, and goes to a positive for x — 1.
Remarkably, the value of the normalized third cumulant is much less sensitive to € in
the strong-coupling regime. This might be the signature of a transport regime in the
k¥ — 1 region that is radically different of the one found for x ~ 0.2.

3.3.4 Frequency-dependent noise

In systems that exhibit internal dynamics like the one we study, it is especially in-
teresting to look at the frequency-dependence of the current-current correlations. In
Ref. [Armour04a], the frequency-dependent noise S(w) of a SET weakly coupled to a
nanomechanical oscillator was thoroughly studied. It was found that, the noise spec-
trum shows only two peaks at finite frequency at Q' and 2(), where () = Q1 —«
is the effective frequency of the damped harmonic oscillator. In this section, we ex-
tend the work of Ref. [Armour04a] by studying the frequency-dependent noise power
S(w) in the strong-coupling regime (0.2 S « < 1).
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Figure 3.5: Upper panel: Fano factor as a function of x at the degeneracy point (Py) =
(PN+1). The dots are the results of the numerical calculation and the solid
line is the analytic form found within the weak-coupling approximation.
Lower panel: Normalized third cumulant y3 of the probability distribution
Py. For both panels, e = 0.3.
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Figure 3.6: Fano factor (upper panel) and normalized third cumulant (lower panel
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and inset) as a function of x for different values of €: € = 0.1 (squares in
the upper panel and in the inset), e = 0.2 (diamonds), € = 0.3 (circles), and
€ = 0.4 (triangles). Note the logarithmic y-axis in the upper panel.



3.3. Numerical study of the strong coupling regime at the degeneracy point

In order to calculate the frequency-dependent noise using our Monte Carlo
method, we follow the approach developed by MacDonald [Appendix A] that was
used recently to study the noise properties of mesoscopic systems, including cou-
pled SET-nanomechanical systems in the weak-coupling regime. In general, the
symmetrized-in-frequency current noise power at junction i is defined as (see Chap. 4)

Siilw) =5 [ drdT ({10, 61(0)}) (3.17)

To proceed with the MacDonald approach, §1; = I; — (I;), must be assumed to be a
statistically fluctuating variable, such that the autocorrelation function (§1;(7), 61;(0))
is independent of ¢. In this case, the MacDonald formula relates the fluctuation én
about the average of the number of charges n that went through a junction in time 7,

41
om () = m(0) = (T = [ at (L(¥) — (1), (3.18)

to the current-noise power via

)= | " 41 sin(wr) %((éni(r))z) , (3.19)

where ((6n;(7))?) = (n?(1)) — (I)*1%. Since (n*(7)) and (I;) are easily accessible
through the Monte Carlo simulation, S(w) can be calculated by taking a numerical
time-derivative of ((6n;(7))?) and then evaluating the Fourier sine-transform. Note
that we consider only the particle current fluctuations here. The electrical current
noise at finite frequencies includes a contribution from displacement currents, which
depend on the capacitive couplings between the island and the leads[Blanter00]. Since
we assume that our frequencies of interest are much smaller than the relevant RC-
frequencies, we can neglect the displacement currents here, see e.g. the discussion in
Refs. [Cottet04b; CottetO4a].

The results of the Monte Carlo simulation are shown in Fig. 3.7. Like in the weak-
coupling case, S(w) shows two main finite-frequency features. Surprisingly, even for
strong coupling, we do not find any features for frequencies higher than 2(). We find
a low-frequency peak that defines the frequency Q' (which will be different from the
weak-coupling prediction (2y/1 — x in the general case). The second feature evolves
from the peak located at 2()’ predicted by the weak-coupling theory. While both peaks
are considerably broadened by an increase in the coupling strength, their respective
shapes evolve in a qualitatively different way. Whereas the first peak is shifted in
absolute frequency, the second peak broadens in a very asymmetric way, with much
of the weight shifting to lower frequencies. The slope of its left shoulder decreases
with increasing «x until it forms a plateau at around x ~ 0.7. On increasing x even
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Figure 3.7: Frequency-dependent noise power in the strong-coupling regime. In each
curve, the SET is tuned to the charge-degeneracy point and € = 0.3.

turther, the two peaks merge, leading to super-Poissonian frequency-dependent noise
throughout the frequency range w < 1.5Q.

Figure 3.8 shows the position of the maxima of the first peak in the frequency-
dependent noise power as a function of k. By comparing the position of the first
peak extracted from the curves shown in Fig. 3.7 (data points in Fig. 3.8) to the weak-
coupling prediction () = Q+/1 — « (solid line in Fig. 3.8), we find quantitative agree-
ment only for ¥ < 0.2. Beyond this point, the ratio ()’ /() still decreases, albeit slowly,
when « is increased. It reaches a saturation value O’ ~ 0.7Q) for ¥ = 0.7.

This behavior can be understood by interpreting the frequency shift in terms of an
effective damping mechanism caused by electron tunneling. Since there is no damp-
ing without current, the natural modification of the weak-coupling damping constant
v = x€? in the strong-coupling regime is to renormalize the weak-coupling result by
the probability P* to find the oscillator in a position where in principle current is al-
lowed, i.e., for xR < x and charge state N, or x < xLand charge state N + 1. Defining
a renormalized damping constant ¢ = P*ke?, it is possible to estimate the position
of the first peak as a function of « using values of P* extracted from curves presented
in Fig. 3.3. The result is shown as the dashed curve in Fig. 3.8 and agrees with the data
points obtained by the Monte Carlo method in a quantitative way.
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Figure 3.8: Position ()’ of the first peak in the frequency-dependent noise power as a
function of x. The solid line gives the weak-coupling prediction (2y/1 — x,
the data points are the numerical Monte Carlo results, and the dashed line
was obtained using an effective damping constant, see text.

3.4 Numerical study of the transport properties away
from the degeneracy point

The numerical results presented thus far explained how the strong oscilllator-SET cou-
pling affects the electronic transport when the SET is gated at the degeneracy point
(N) = 1/2, where current is maximal. This is the point where one can expect the
weak-coupling approximation to be the most accurate, since away from this point the
approximation used to get from Eq. (3.7) to Eq. (3.12) is less likely to be valid. In this
section, we present a numerical investigation how of the oscillator affects the trans-
port properties of the SET when (N) # 1/2.

Like in Eq. (3.16), we will consider a change in the gate voltage via the asymmetry
parameter « = A; — (1 + x)/2. Figure 3.9 shows the calculated average current as a
function of « for different coupling strengths. Strikingly, I(«) shows a pronounced
discontinuity at «# = #(1 — x)/2. Beyond this point, the current vanishes com-
pletely for all values of x. This blockade of purely mechanical origin, and was coined
‘distortion-blockade’ by some authors [Pistolesi07].3 It can be seen as a classical ana-
logue of the Franck-Condon blockade, responsible for current suppression in sys-

3The original title of Ref. [Pistolesi07] was Distortion blockade in a classical nano-electromechanical res-
onator.
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Figure 3.9: Average current as a function of the asymmetry parameter (~ gate volt-
age), for different coupling strengths. The solid line is the analytical re-
sult for k = 0, and the dashed line the average current for x = 0.2
within the weak-coupling approximation. All the numerical curves show
a pronounced discontinuity: when the asymmetry parameter reaches a (x-
dependent) threshold value, the current is heavily suppressed.

tems with strong electron-phonon interaction like, for example, some single-molecule
devices[Braig03; Weig04; Koch05; Koch06; Mozyrsky06]. These results should be
compared with the analytic form for the current in the weak coupling regime that
can be calculated from Eq. (3.10),
(15~ a2
(I) = e (3.20)
In Fig. 3.9, we plotted the weak-coupling result for ¥ = 0.2, as the dashed-dotted line.
As discussed earlier, the agreement with the numerical results soon gets worse as the
system is tuned away from the degeneracy point. As discussed in Sec. 3.3.2, this dis-
agreement is again due to unphysical counter-currents that do are not included in the
original master equation but that are introduced in the weak-coupling approximation
when Eq. (3.12) becomes violated. Also, the weak-coupling approximation does not
capture the discontinuity in the average current that occurs when the asymmetry in
increased.
The relative simplicity of our classical system allows for a simple interpretation
of the current suppression. For transport to happen, the system must be allowed to
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Figure 3.10: Left panel: Py(n.1)(x) for for x = 0.4 and & = —0.2, relatively close to
the discontinuity. Right panel: Py(y1)(x) for for x = 0.4 and a = —0.3,
at the discontinuity.

fluctuate between the N and N + 1 charge states. Just before the discontinuity, the
system is on average strongly localized close to the equilibrium position of the oscil-
lator associated with one of the two charge states, depending on the sign of «. This
can be seen from Fig. 3.10, where Py(x) and Py1(x) is plotted both close to the dis-
continuity and at the last point before the current suppression. For charge transport to
happen, the charge state of the island must oscillate between N and N + 1. However,
a change of charge state in our model is associated with a change of the equilibrium
position of the oscillator. On top of the usual electrical energy cost associated with
charge transfer, there is therefore a mechanical energy barrier that must be overcome
for transport to happen (the « x term in Eq. (3.7)). To illustrate this, let us look more
closely at the situation depicted in the right panel of Fig. 3.10, in the case where there
are N + 1 charges on the island and the oscillator is almost localized at x = x(. In this
case, I = Ap —xx/xg = a + (k +1)/2 — xx/xg, such that for x ~ xo, I} ~ 0. The
situation is similar for I';, such that overall in this case the transport is heavily sup-
pressed. In this case, the configuration with N + 1 charges on the island and x ~ xj is
therefore quite stable*. Once the N +1 — N transition occurs, a finite current can flow
through the island for a considerable time, until the N — N + 1 transition happens
at the same time as x ~ xg. Close to the threshold value for «, the system therefore
exhibits bistability, switching between current-carrying and current-blocking states.

4By quite stable, we mean not completely stable, as, in a numerical experiment, x never is identically
X0-
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3.4.1 Analysis of the bistability regime

We can analyze this bistable behavior more quantitatively. In the bistable regime,
transport properties can be written in terms of the switching rates between the two
states and the average current in each state. Noting “1” the current-carrying state and
“0” the state where current is suppressed, the total average current through the system
is given by the current in state 1 weighted by the probability to be in state 1,[Jordan04]

T'on

= ] 3.21
Fo1+T1p ! (3.21)

where I'; j is the rate at which the system switches from state i to j and I is the average
current in state 1. In the last expression, we assumed that the current in the ‘off-state’
(0) is Iy ~ 0. The discontinuity in the current for |a| greater than the threshold value
needs to be interpreted as I'g1(a) « O[(1 — k) /2 — |«|]. Beyond a threshold value for
«, the off-state is, at least at zero temperature, stable: once the system reaches it, it
does not switch back to the on-state.

The signature of this bistable regime can be seen in the current noise [Jordan04;
Flindt05b; Pistolesi07; Harvey(08], where an added telegraph-type contribution to
the noise[Machlup54] leads to a significant enhancement of the Fano factor close to
the threshold®. Taking Iy = 0, the full Fano factor can be written as a sum of two
contributions[Jordan04]: (i) the noise associated with I; (noted F;), weighted by the
probability to find the system in this state, and (ii) the telegraph-noise associated with
the switching between the two metastable states

Tt [0
F=—_ 0 p. (I —) : .
Fo1+T1p ! Ve (To17 + I'107)?

(3.22)

When the typical timescale between switching events is much longer than ; (ie., when
I'jt < 1), then the telegraph-noise contribution dominates. Beyond the threshold,
taking o1 = 0, then the Fano factor becomes « (I'; g7;) ! and the important differ-
ence between the typical electronic transport timescale 7; and the switching timescale
I’l_, 3 leads to a considerable increase in the Fano factor. As depicted in Fig. 3.11, this
scenario is confirmed numerically. We can try to estimate the switching rate I'g ;, by
adopting the point of view that a potential barrier separates the current-carrying (1)
state from the localized state where current is blocked (0) [Pistolesi07]. Indeed, we
know thatthe N +1 — N charge transfer can happen forall x < x, with xt' = xoAL /%
as defined earlier. In other words, the 0 — 1 transition is allowed only when the os-
cillator’s energy E > Ej;, with E;, = mw?(xF — x0)?. The energy E; can be seen as a

5The Monte Carlo procedure used is not adapted to the evaluation of the Fano factor in the region
where current is suppressed. In this case the calculation of the Fano factor involves the numerical
evaluation of the ratio of two very small quantities. For a — 0,b — 0 expression of the kind a/b are
numerically very badly behaved.
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Figure 3.11: Fano factor as a function of the asymmetry parameter (~ gate voltage), for
different coupling strengths. For each value of x, the Fano factor diverges
when |a| approaches the critical value a.(x) = (x + 1) /2. The results are
symmetric with respect to & = 0. Due to numerical limitations, the Fano
factor was calculated only in the range of « where the average current is
non-zero.

potential barrier that must be overcome for transport to happen. It can be rewritten
in terms of the difference between «a and the critical value a.(x) = (x + 1)/2 where
the current displays the discontinuity at zero temperature

Ey(0) = 0lJad — fae(m)]] (] — [ac(x)])? 3.23)

3.4.2 Finite-temperature studies

In a classical system at zero temperature, the effective potential barrier separating the
localized and current carrying states can never be overcome unless E — Ay > 0, mak-
ing it difficult to estimate the relevance of the energy scale E;. The zero-temperature
results merely indicate the presence of such a potential barrier without allowing to
probe its dependence on system parameters. However, at finite temperatures the sit-
uation is quite different, as thermal fluctuation enable the barrier to be crossed. To
estimate the rate I'y_,; at which thermal fluctuation bring the system over the barrier,
we can use Kramer’s reaction rate theory [Kramers40; Hanggi90] whose main result
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Figure 3.12: Natural logarithm of the current in units of ¢/1; as a function of the in-
verse of the bath temperature eV /kpT for different values of the “distance
to the current discontinuity” |«| — |a.(x)| (number given in the legend).
System parameters used for this plot: x = 0.6, € = 0.3, and weak external
damping 7o = xe?/100.

states that
Ep

1"0,1 ~ Ae kT ’ (324)

with the pre-factor A typically depending on the shape of the potential configuration
and details of the problem. Thermally activated escape from the potential minimum
is exponentially suppressed when the temperature is much lower than the barrier’s
height, a result also known as Arrhenius’s law. By running Monte Carlo simulations
with the oscillator coupled to a thermal bath at finite temperature (see Sec. 3.6.1 for de-
tails), we could test our model for Ej, as well as test whether the features encountered
earlier survive at finite temperatures.

The Arrhenius plot presented in Fig. 3.12 confirms that, at low temperatures and
for all values of the asymmetry parameter «, the transport is mainly due to thermally
activated switching to the current-carrying state of the SET. Indeed, for low currents,
the logarithm of the current (taken in units of e/ 1) behaves like a linear function of
the inverse temperature. Due to the relatively high number of simulations needed
to create this figure, each point was estimated from an average over only 50000 runs.
Combined with the fact that the current is displayed on a logarithmic scale that mag-
nifies the numerical imprecisions at low current, this explains the pretty large scatter
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Figure 3.13: Barrier height governing the switching between the zero-current state to
the current-carrying state, as a function of |a| — |a.|, for k = 0.6, = 0.3,
for different values of external damping yo. The symbols were obtained
by numerically fitting log(I) = f(1/T) curves obtained numerically (see
Fig. 3.12 for an example). The solid line is the prediction from the simple
model of Eq. (3.23).

of the data points on this figure. However, the numerical accuracy is good enough
to prove the hypothesis of thermally activated switching. We can push the analy-
sis a step further and numerically evaluate the barrier height E; by fitting the linear
(low current) part of each curve. This was done for a specific value of the coupling
(x = 0.6). The results are presented in Fig. 3.13, for three different values of the ex-
trinsic damping . The agreement between the values extracted numerically and the
model presented at the end of Sec. 3.4.1 is very good, considering that there are no
tit parameters in the model. Also, we note that the observed variation of E; with the
value of the external damping rate (not included in the model) is minimal, consider-
ing that -y is varied over two orders of magnitude. The good agreement between our
model and the numerically extracted barrier heights makes increases our confidence
in the model we presented. It also makes it less likely that the current discontinuity
could be observed experimentally. Indeed, within our model, extremely low temper-
atures are needed for the discontinuous behavior in the current to be observable, since
for kgT 2> E, the discontinuity is rapidly washed out. Using E;/eVy o (|a| — |ac|)?,
we see that the observed zero temperature behavior is due to a barrier of vanishingly
small height at the discontinuity. Numerically, for x = 0.6, = 0.3, = 0.1xe2, we
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3. ELECTRICAL TRANSPORT THROUGH A SET STRONGLY COUPLED TO AN OSCILLATOR

can confirm that already at kgT = 0.001eV;, the current goes to zero as smoothly as in
the uncoupled case.

3.5 Summary

In this chapter, we have studied the strong-coupling limit of a SET transistor coupled
to a classical harmonic oscillator. We have used a combination of a master-equation
approach and a numerical Monte Carlo procedure to calculate the position distribu-
tion of the oscillator, the electrical current, and the zero-frequency noise in both the
weak-coupling and strong-coupling regime. With increasing coupling, we found that
the position distribution of the oscillator evolves from a broad Gaussian to a a func-
tion sharply peaked around each of the charge-state dependent equilibrium positions
of the oscillator. We found that the average current in the strong-coupling regime
is higher than the value predicted by the weak-coupling theory and that the Fano
factor varies in a non-monotonic fashion when coupling is increased. We have gen-
eralized the weak-coupling theory to allow the calculation of higher cumulants of
the current, and have presented results for the third cumulant. In the weak-coupling
regime, the third cumulant was found to depend strongly on the frequency of the os-
cillator, whereas in the strong-coupling regime it becomes practically independent of
this parameter. We have also studied the frequency-dependent transport noise. Even
in the strong-coupling regime, there are no peaks for frequencies higher than 20}, and
the two peaks found in the weak-coupling limit merge on increasing the coupling
strength. By introducing a generalized expression connecting the damping rate in the
strong-coupling regime, we were able to understand the evolution of the oscillator’s
damping-renormalized frequency as a function of coupling. Analyzing the system
away from the degeneracy point, we found an interesting discontinuity in the aver-
age current as a function of gate-voltage that is related to “distortion-blockade’. This
blockade was interpreted as a sign of bistability in the system.

3.6 Details of the Monte Carlo approach used

Monte Carlo methods have been used for a long time to calculate numerically the
transport properties of mesoscopic systems like SETs|Amman89]. When dealing with
a simple SET system, the idea of the Monte Carlo approach is to solve the master
equation for the charge states of the SET by discretizing time into small intervals and
allowing charge transfer to and from the dot with a probability of tunneling P; that is
proportional to the tunneling rates and the time interval At; between two attempts.
If the SET is coupled to a harmonic oscillator, we can proceed in a similar way, by
considering charge transfer attempts at a finite frequency (A7) !, where A < 1isa
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3.6. Details of the Monte Carlo approach used

dimensionless step size. The success probability PZ"T for a charge transfer is evaluated
from the oscillator’s position-dependent instantaneous rates I'/ (x) calculated at the
time of the attempt. This value is then compared to a randomly chosen double preci-
sionnumber 0 < N < 1. f N < PZ"T, then the charge transfer takes place. Between
different attempts, the oscillator’s state evolves according to the classical equation
of motion, whose solution depends on the charge state of the SET, the equilibrium
position of the oscillator being shifted by xp when the charge state is changed from
N — N +1 or by —x in the opposite case. At the beginning of each run, the state
of the system is determined randomly from the stationary probability distributions
Pn(x,u) and Py41(x, u). In practice, this can be implemented by using the final state
of the (n — 1)-th Monte Carlo run as the initial state of the n-th run. We use the high-
quality, high-performance MRG32k3a number generator[L'Ecuyer99] distributed with
the Intel MKL library.

We consider runs of total time t(7;, such that each run consists of N5 = ty/A steps.
Both the time scales ty7; and At; are chosen in a way such that increasing to or decreas-
ing A does not affect the value of the different physical quantities we extract from our
calculation. In practice, this corresponds to choosing A < 0.02 and fp7; an order of
magnitude greater than the typical damping time 1.

A consequence of this last constraint is that the Monte Carlo approach is partic-
ularly useful in the strong-coupling regime, where the number of steps N; per run
can be kept relatively small, allowing for more runs to be made in the same amount
of computer time. Most results obtained in the strong coupling limit are the result
of Monte Carlo simulations consisting of (for each data point) 2.5 x 10° runs, with
to = 30007; and A = 0.02. For the calculation of the frequency-dependent current
noise, we had to increase the length of the simulation considerably in order to better
resolve the peaks and remove high-frequency (w > 2Q)) noise. In this case, we took
600 x 10° runs, with tg = 10007; and A = 0.025.

As canbe seen in Fig. 3.14, our code reproduces the analytical results of [Bagrets03]
for the dependence of the Fano factor and the third cumulant on the a y coefficients
Ap — Ag in the ¥ = 0 limit. Also, we note that the probability distributions Py/(x, 1)
and Pn1(x, 1) that we calculate using the Monte Carlo approach coincide with the
results one finds when solving Eq. (3.11) on a grid[Armour(04b].

3.6.1 Finite temperature simulations

To study the effects of a finite temperature bath on the transport properties of the
SET, we used an approach based on the stochastic differential equations for x, p for a
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Figure 3.14: Comparison of the Monte Carlo results (dots) and the exact results found
in Ref. [Bagrets03], for the Fano factor (left) and third moment (right) in
the uncoupled case (x = 0). This simulation was done with 10° runs, with
to = 1000T; and A = 0.025.

classical damped harmonic oscillator[Breuer(2],

dx(t)
dp(t)

% n(1)dt, (3.252)
—MOPx(t)dt — yop(t)dt + /2Myokg TdAW(t) , (3.25b)

with dW the increment of a Wiener process[vanKampen92], dW(t) = W(t + dt) —
W(t) and ¢ the intrinsic damping rate of the oscillator associated with the finite
quality factor of the oscillator. In an effort to reduce the number of parameters in
our in our zero-temperature study, we had set this intrinsic damping to zero for
all simulations. However, since the connection to the thermal bath is done via the
damping rate (cf. fluctuation-dissipation theorem) we cannot set g = 0 to study the
effects of finite temperatures. Besides this point, Monte Carlo simulations at finite
temperature proceed in a very similar as the zero-temperature ones, except that the
stochastic differential equation (3.25) governing the evolution of the oscillator must
also be integrated numerically. To proceed, we first rewrite the noise contribution
in Eq. (3.25b) in a more numerically convenient form. Thinking of the Wiener pro-
cess as integrated gaussian white noise, the differential element AW can be written as
¢idt, with ¢y a gaussian-distributed random contribution, with mean 0 and variance
dt (evidently, in the numerical simulation, dt is small but finite). A second set of ran-
dom numbers must therefore be generated to simulate thermal noise. This time, the
MCG31 random number generator (also distributed as part of the Intel MKL library)
was used, in GAUSSIAN_.BOXMULLER mode, to generate gaussian-distributed random
numbers. Since a linear function of a gaussian-distributed random variable is itself
a gaussian-distributed random variable (with different mean and variance), our im-
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plementation used gaussian-distributed random numbers, with mean zero and unit
variance®.

Finally, we note that not all numerical methods available for the solution of ordi-
nary differential equations can be easily adapted to solve stochastic differential equa-
tions like Eq. (3.25). We first tried a simple “Euler” algorithm to compute the evolution
of the oscillator’s state, but this technique did not prove accurate enough to be use-
ful. With a time step of 0.0057;, numerical errors introduced by the Euler algorithm
effectively pumped energy in the system. This of course conflicts with any attempt
to calculate the temperature dependence of the transport properties. To solve this
problem, we instead used a predictor-corrector (Heun) algorithm[Press96] to solve
the equation of motion of the oscillator. With this technique, the energy pumped in
the system when using a time step of 0.0057; is seven order of magnitude less impor-
tant than when the Euler method was used.

®To be precise, we coded the stochastic differential equations (9.13-9.14) of Ref. [Lemons02], where
the noise contribution to dp is given in terms of the unit variance, mean zero, gaussian distribution.
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Nanomechanics with tunnel junctions
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CHAPTER 4

Quantum measurement

At the undergraduate level, quantum measurements are usually abstracted to the
maximum, i.e. one writes “we measure observable g” without paying any attention
to how the measurement is done. Given a state |ip), the operator 4 as well as its eigen-
states |7, ), the probability to measure the (non-degenerate) eigenvalue g, is

Py = |<1P|qn>|2/' (4.1)

this is the von Neumann measurement postulate. Amusingly enough, quantum me-
chanics makes it easy to calculate the outcome of a measurement but difficult to de-
scribe in detail what happens during a measurement.

During the last few decades, there has been a growing desire to use quantum
coherence in technological applications (e.g. for quantum computing). For these
applications to materialize, a thorough understanding of the process of quantum
measurement is necessary: one must understand how to describe the interaction
of a (typically macroscopic) detector with a quantum system. In this chapter, we
will review the advances made since the 1980’s in the description of quantum mea-
surement, specifically focusing on aspects related to the measurements used in the
context of nanoelectromechanical systems. We therefore will not discuss ‘quan-
tum non-demolition” (QND) measurements[Braginsky80; Braginsky95], where the
detector is coupled to an observable that commutes with the Hamiltonian, making
the quantum measurement repeatable. Although some possible implementations
QND measurements for nanoelectromechanical systems have been proposed (see e.g.
[Santamore04; Ruskov05a; Martin07; Jacobs08]), they have yet to be demonstrated
experimentally.
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4. QUANTUM MEASUREMENT

4.1 Basics of quantum measurement

If it occupies a central place in quantum mechanics, why is the question of measure-
ment almost never discussed in the context of classical mechanics? In classical me-
chanics, the act of measuring something - say, the speed of a boat - does not affect the
system: the properties of the measured object are not modified in any way by the mea-
surement. This is not the case in quantum mechanics, where every measurement of an
observable that does not commute with the Hamiltonian leads to a back-action that
disturbs the state of the quantum-mechanical system. This back-action can be seen
as a consequence of the Heisenberg uncertainty principle. For example, we know
that because the position and momentum operators do not commute, [£, p] = i, the
product of the uncertainties on position and momentum is bound from below:

AxAp > g . 4.2)

The Heisenberg uncertainty principle ensures that a very sensitive measurement of
position (which would decrease Ax) is accompanied by a back-action that increases
the uncertainty on the momentum of the measured object.

4.1.1 The Heisenberg microscope

The best way to illustrate the concepts of quantum-limited measurement and quan-
tum back-action is via an example, the so-called Heisenberg microscope. Let’s there-
fore consider the very simple example of a position measurement of a free particle
of mass M in one dimension. Imagine doing a position measurement with a tunable
error AXmeas, i.€. the measurement outcome is

X = X1 £ AXmeas - 4.3)

The momentum perturbation caused by the measurement can be read from Eq. (4.2):

h
A > — 4.4
Ppert = A Xmens ( )

Now consider a second measurement of position at a time 7 after the first measure-
ment. At this time, the uncertainty on the position measurement will be the sum of
the measurement uncertainty Axmeas and a contribution from the perturbation in the
momentum caused by the first measurement,

AP ertT
Ax T) = P 4.5
The second measurement outcome can therefore be written

ht

X=2x=* (Axmeas + (4.6)

2AXmeas]\/l) .
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4.1. Basics of quantum measurement

From these two measurements, we can infer the momentum and the position of the
oscillator

X1+ X2 X1 — X2
- 4 - M 7
2 P T
as well as the uncertainties on the evaluation of each quantity. For the position mea-
surement

4.7)

1/2
1

it 1 2
Ax = 2 (Axmeas)2 + (Axmeas)2 + (m Axmeas) ] . (4.8)

The error Ax contains terms that are (i) proportional and (ii) inversely proportional to
the error Axmeas On each measurement. As a consequence, there is an optimal value
(Axmeas)2 = ht/2M that minimizes the overall error. When Axmeas is too large, the
sum of the different measurement errors dominates the total measurement error. On
the other hand, if Axmeas is made too small, then the added back-action noise will be
the main contribution to the total error. At the optimal point, the total measurement
error is equal to the error introduced by the quantum-mechanical back-action Ax,gq4

and
| ht
Ax = AXSQL = m . (49)

The last equation introduced the so-called standard quantum limit (SQL), the uncer-
tainty on a position measurement where Axpeas is optimally chosen to minimize the
total error. Different choices of Axmeas lead to Ax > Axggr. Proceeding in a very sim-
ilar way, we can show that the error on a measurement of p obtained from Eq. (4.7) is

always such that
/M

The product of the two standard quantum limits AxsorApsqr = %/2 is “Heisenberg-
limited” in the sense where it is exactly equal to /1/2.

While simple, the example of the Heisenberg microscope introduces the main
concepts of quantum measurement. Importantly, it shows that a measurement will
only be quantum-limited once the measurement error and the error due to quantum-
mechanical back-action are of comparable magnitude.

Finally, we note that even if we presented a derivation of the standard quantum
limit using the simple example of a free particle, there is an equivalent quantity for
the case of the position measurement of an harmonic oscillator of frequency (2 and
mass M. In this case, one finds[Caves80; Braginsky95]

AXSQL = W—Q . (411)

This quantity will be discussed in Sec. 6.1.2.
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4.2 Continuous linear quantum measurement

The previous discussion, while instructive, did not provide a precise description of
what happens during a quantum measurement. Moreover, it did not relate the mea-
surement error to concrete properties of the detector used. In this section, follow-
ing the linear-response approach pioneered by Averin[Averin03a; Averin03b] and
Clerk[Clerk03b; Clerk04a], we describe how the Heisenberg uncertainty principle
manifests itself in the context of a linear continuous measurement of a quantum sys-
tem.

Let’s first clarify the question of what we mean by linear continuous quantum
measurement. The meaning of ‘continuous’ is pretty obvious: in a continuous mea-
surement, one turns on the interaction between the detector and the quantum sys-
tem to be measured and then continuously measures (classically) the output of the
detector. This continuous monitoring can be seen as a sequence of individual mea-
surements. In this context, Braginsky and Khalili explain that linear continuous mea-
surements are those where the uncertainty relation for the observable monitored
is independent of the state of the measured object[Braginsky95]. For example, the
two-time uncertainty relation for the position measurement of a free particle reads
Ax(t)Ax(t') > h|t — ¥'|/2M; it depends only on the mass M of the particle (a con-
stant) and not on the quantum state of the free particle. They also note that this is the
most important class of quantum measurements’.

Figure 4.1 presents a schematic view of the quantum measurement process. The
total Hamiltonian of the system depicted on this figure can be written as

H = Hgs + Hp + Hint. , (4.12)

with Hg the Hamiltonian of the quantum system that is to be measured, Hp the detec-
tor’s Hamiltonian and finally Hj,; models the interaction between the quantum sys-
tem and the detector. At this point, it is easy to draw a parallel between a continuous
linear quantum measurement and an open quantum system, where open quantum
system refers to a quantum object (~ Hg) coupled to a bath (~ Hp) via an interac-
tion term Hiy (see for example [Breuer02]). In this context, coupling to a bath can
be used, for example, to model environment-induced decoherence of a two-level sys-
tem. The main difference between both problems is that often, in the context of open
quantum systems, the (typically macroscopic) bath is considered to be in equilibrium
and unaffected by the coupling to the (typically microscopic) quantum system. On
the contrary, the output of any useful detector is affected by the quantum system.

INaturally, there also exist nonlinear quantum measurements. For example, the perturbation
caused to x by a measurement of the energy of a harmonic oscillator E can be evaluated from the uncer-
tainty relation AEAx > h|(p)|/2M [Braginsky95]. In this case, the right-hand side of the uncertainty
relation is o |(p)| and therefore depends on the state of the system.
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input output
x(t)
I(#)
Quantum system Detector —
F(t)

Figure 4.1: Schematic representation of a continuous linear quantum measurement.

We consider the general interaction Hamiltonian
Hine = AFZ%, (4.13)

with A a dimensionless coupling constant, £ an observable of the quantum system (to
be measured) and F the operator characterizing the input port of the detector. The
output port of detector is characterized by an observable [. The strength of the linear-
response approach presented here is that it allows the study of a very generic system,
without the need for further description of the detector. Conclusions reached using
this approach are therefore quite universal, provided the coupling between the sys-
tem and detector is weak, such that the response of the detector to variations of the
quantum systems remains linear.

To evaluate the response of the detector to a change in the quantum system, we
expand the time-evolution operator U (t) = exp(—iHt/h) with H as given in Eq. (4.12)
to lowest order in H;,;. Using the expansion, the expectation value for I(t) can be
written (see e.g. [Bruus(04])

(I(5)) = (I(£))o + A/dt’A(t ) (4.14)

with A(t —t') the x-to-I gain given by
Mt~ 1) = 20— ){10), E(1)]) (@.15)
where the average is taken over the stationary density matrix of the detector in the

uncoupled (A = 0) case. In general, we will be interested in the Fourier transform of
the gain,

Mw) = /_ 0:0 dTe“TA(T) . (4.16)

As proven in Appendix C, quantum mechanics imposes a constraint on the gain of a
detector[Clerk04al]:

2
51(@)SH(w) > 1 (RelA(w) ~ V(@) + (Re[Sir(@)])’,  @17)
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with S the symmetrized correlation functions (we denote 61 = I — (I))

S (w) = % / °:o dt et ({51(1),51(0)}) (4.18)
Sp(w) = % / °; dt et ({5E(1), 6E(0)}) (4.19)
Sir(w) = % / °; dt e {51(8), 5E(0)}) (4.20)

and where we introduced the “reverse gain”

N(w) = % /0  dte <t ([B(1), 1(0)]) - 421)

This last quantity describes the gain in a situation where one couples x to I in an
attempt to measure F.2

Equation (4.17) is one of the main results regarding quantum measurement that
can be obtained using a linear response approach. Essentially, it expresses the fact
that a detector with finite gain A # 0 will exert a back-action force Sr on the quan-
tum system that is inversely proportional to the bare output noise S of the uncoupled
detector. At equal gain A, a detector with lower S; will perturb the quantum system
more (i.e. larger Sr) than a detector with high S;. For a detector where both sides of
Eq. (4.17) are equal, a strong parallel can therefore be drawn to the simple example
given in Sec. 4.1.1, where a measurement with smaller Axmeas lead to an increased
back-action force. In the present case however, Eq. (4.17) expresses the quantum-
mechanical constraint in terms of concrete, measurable, parameters of the detector.

Itis also important to emphasize that Eq. (4.17) is an inequality. Detectors for which
both sides of the equation are equal,

- = h? / 2 = 2

S1(w)Sk(w) = 7 (Re[Mw) = A/(w)])" + (Re[Sir(w)])” (4.22)
are said to be “quantum-limited”. In this case, it can be shown that all the informa-
tion acquired by the detector about the quantum system is contained in the detector’s
output[Clerk03a]. In other words, no information is lost by these detectors.

Of course, not all detectors are quantum-limited and some are only in certain
regimes. This can be illustrated particularly nicely by considering the case of the
single-electron transistor studied in Part 1 of this thesis. As discussed in Sec. 2.1,
this device can be operated in one of two regimes: sequential tunneling or cotun-
neling. From a classical point of view, the former regime looks extremely attractive.

2The reverse gain has been shown to vanish completely (A’ = 0) for most mesoscopic detectors
(SET, tunnel junctions) [Clerk03b].
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It is characterized by a large current and a large sensitivity (~ dI/dx). By compari-
son, the cotunneling regime seems much less attractive, as one expects smaller cur-
rents and, correspondingly, a reduction in the absolute magnitude of the sensitivity.
As shown in Refs. [Shnirman98; Averin00; Mozyrsky04], this classical point of view
is totally wrong and the SET is a quantum-limited detector only in the cotunneling
regime. When operated in the sequential tunneling regime, the increased gain of the
SET can be shown to be accompanied by an even more pronounced increase of back-
action (charge) noise of the detector that leads to a departure from the quantum limit.
This can be understood intuitively from the information theoretical (“no information
should be lost”) point of view. In the sequential tunneling regime, the electron tun-
nels from a lead to the island, where it remains for a finite time, before tunneling again
to the second lead. The finite dwell time on the island leads to phase-averaging and
therefore to a loss of information, contrary what happens during a - phase coherent -
cotunneling event. The lesson to be learned from this example is that the quantum-
limit is defined in terms of the interplay between bare-output noise, back-action noise
and sensitivity, and not in terms of individual parameters.

4.21 Continuous monitoring of a qubit and the Korotkov-Averin
bound

More insight about continuous quantum measurements can be gathered by treating
the example of a qubit measurement. Equation (4.17) also applies in this case, as dur-
ing our derivation no assumption whatsoever was made about the system we were
studying.® In this subsection, we will present a derivation of the ‘Korotkov-Averin’
bound* on the signal-to-noise ratio of a continuous weak measurement of a qubit.
This bound appears as a direct consequence of Eq. (4.17).

To begin, we consider a two-level system (qubit) coupled to a detector measuring
0. The Hamiltonian of the total system is given by H = Hy + Hget + Hint, with

Hy = —%Aax , (4.23)
Hin = —%P, (4.24)

with 0;s the Pauli matrices and where we absorbed the dimensionless coupling con-
stant A in F. Again, we will use linear-response arguments so we do not need to spec-
ify Hget, the Hamiltonian of the bare detector. As before, we will simply assume that
it couples to the quantum system via an operator F and that we read-out the output

3We treated £, F as general quantum-mechanical operators without ever specifying Hp or Hs.
4This result was first derived in [Korotkov01b; Korotkov0la; Averin03a] and is also discussed in,
e.g. [Goan01; Ruskov03; Shnirman04]
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variable [. Assuming that the detector’s response time is much faster than any intrin-
sic timescale of the qubit, we can consider the back-action noise to be J-correlated

(F(t+1)E(t))o = Spo(T) , (4.25)
(I(t+7)E(t))o = Sipd(r —0T), (4.26)

with the infinitesimal shift in the delta-function playing the role of a finite response-
time of the detector. Since we consider é-correlations, the gain A(w) is frequency-
independent. It is given by[Eq. (4.16)]

r=2 /O " dte ot ([1(), £(0)]) = %Im /0 " dtet (1(£)E(0)) = %ImSIF L @)

Using I(t) = Iy(t) — Aoz(t) /2, we can write the total® current-noise S 1ot as [Jordan05]

2
gI,’cot(w) = gl(w) + %gz(w) ’ (4.28)
where S, = [ dtexp(iwt)({oz(t),02(0)}) must be explicitly calculated, taking into
account the coupling to the detector. This can for example be done by expanding the
evolution operator for o, (including both the evolution due to the qubit Hamiltonian
and the contribution associated with Hin;) to second-order in F and then tracing out
the detector degrees of freedom using Eq. (4.25)[Korotkov01b]. One finds that the
evolution of the matrix elements o;; of 0 (t) follow

011 = AIm[O'lz] ’ (429&)
(712 = (ie — F¢)c712 — iAU'll , (4.29b)
[7'22 = —0’11 (4.29C)

where we introduced the dephasing rate[Makhlin01; Averin03a][see also Sec. 5.1]

Sk
_ JF 4.30
P op2 (2.30)

In the case where 0 (t) has the largest variations over time (¢ = 0), the o fluctuation
spectrum is found by solving Eq. (4.29) for (0 (t)o%):

A2 2T ()

Sl,tot(w) = Sl(w) + 4 (w2 _ QZ)Z + wZI‘é ’

(4.31)

where we denoted (2 = A/ the frequency of the qubit.

5We use the notation gl,tot to describe the total symmetrized output current noise of the detector
in presence of coupling and keep S; to denote the bare symmetrized current-noise, in the absence of
coupling.
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In the fast detector limit we are considering, the bare current noise S;(w) can be
seen as constant background in §1lt0t close to Q). The second contribution (x A?) to
the total output noise can then be seen as the ‘signal’ part of the total detector output.
This signal is maximum exactly at w = Q, and it is given by A%/ 2I'y. Recalling the
expression of I'y in terms of the spectral density of the back-action noise Sg, we can
rewrite the maximal signal as Smax = H2A2/ Sr. This allows for the ratio R of signal-
over-noise to be written as

_ 215
R = Smax _ AT (4.32)
S SESI
Using Eq. (4.17) (with A’ = 0), this becomes
412 \2
A 4, (4.33)

T 122 RV
h“A? + 4(ReSyr)

where the equality is reached for (i) a quantum-limited detector that fulfills the equal-
ity in Eq. (4.33) and (ii) ReS;r = 0. The signal-to-noise ratio in a weak-measurement
of a qubit is therefore bounded: it cannot be made higher than 4. This result, known
as the Korotkov-Averin bound, is universal: it does not depend on the details of the
experimental measurement setup or on the physical implementation of the qubit. It
is valid as long as the measurement is weak enough to be described accurately using
linear-response. In Sec. 8.2, we will show that an equivalent relation arises when con-
sidering the linear measurement of the displacement of a nanomechanical oscillator.
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CHAPTER

The tunnel junction as a quantum measurement
device

From the first experimental confirmation of the quantization of the conductance in
mesoscopic systems[Wees88; Wharam88] to the development of the “full counting
statistics” approach to transport[Levitov92; Levitov96], the study of the tunnel junc-
tion (or, more generally, of the quantum point contact) played a crucial role in the
development of central concepts in mesoscopic physics. One of the reasons why the
study of these devices proved so fruitful is without a doubt their intrinsic simplicity.
These devices lend themselves to a relatively simple theoretical description that repro-
duces accurately their behavior. In this chapter, after a short introduction describing
the use of the tunnel junction for qubit measurements, we will focus on explaining
how tunnel junctions can be used as position detectors, reviewing both recent theo-
retical and experimental developments in this area.

5.1 Qubit measurement and measurement-induced
dephasing

There is a strong conceptual overlap between the measurement of quantum states in
two-level systems and the measurement of the position of nanomechanical oscilla-
tors, and it is therefore instructive to review the basics of qubit measurements using
tunnel junctions'. To use a tunneling detector to measure the quantum state of a two-
level system, one needs to engineer a device where the transmission amplitude of the

!In this thesis, a “tunnel junction” is considered to be a low transparency “quantum point contact”,
such that quantities that are of higher-than-second order in the tunneling amplitude are taken to be
Zero.

59



5. THE TUNNEL JUNCTION AS A QUANTUM MEASUREMENT DEVICE

junction varies depending on whether the qubit is in the |1) or |2) state?,
tot = to + A0z, (5.1)

with tg the bare tunneling amplitude of the junction and A a coupling constant.
Such systems have been studied at length, both theoretically [Gurvitz97; Levinson97;
Aleiner97; Korotkov02; Pilgram02; Clerk03b; Averin05] and experimentally[Buks98;
Hayashi03; Petta04]. While we do not want to review this system in detail, it turns out
that it allows for a nice, simple, illustration of the concept of measurement-induced
dephasing[Averin(06], a concept that can also be applied to position measurements.
In a nutshell, measurement-induced dephasing refers to the fact that measuring the
system destroys coherent superposition of states, leading to an (exponential) decay of
the non-diagonal elements of the density matrix.

This can be better understood by considering the following example, inspired
from [Averin05]. Consider a two-level system (with H = €0, /2), prepared in state
lp) = c1]|1) + c2]2), with |c1]|?> + |c2|*> = 1. The system is coupled to a tunnel junc-
tion detector whose transmission amplitude is given by Eq. (5.1). In our example, this
state-dependent amplitude will be described by two scattering matrices[Datta95] Sy,

and Sy, each of the form
r; tf
Siiy = ( t: rlfﬁ ) . (5.2)

Consider now an electron (in state |incoming)) coming from the left lead that scatters
at the junction coupled to the qubit. Schematically, the measurement process is written

lincoming) ® c1|1) + ¢2|2) — c1 [r1|L) + t1|R)]|1) + c2 [r2|L) + t2|R)] |2) ,  (5.3)

where in final state (right of the arrow) the electron is in the left lead (|L)) provided it
was reflected or in the right lead (| R)) if it was transmitted. Tracing out the electronic
state, we can look at the evolution of the element p; ;. of density matrix of the qubit
due to the measurement, (where j, k = {1,2})

Pjk = C]'C;; — C]'C,t [t]'t;: + I’ji’lﬂ . (54)

Since |t;t; + rjri| < 1, one sees that an individual measurement decreases the mag-
nitude of the off-diagonal elements of the density-matrix while keeping the diago-
nal elements unchanged ( |tj|? 4 |rj|*> = 1). Combining a sequence of measurements
during a finite time, one finds exponentially-decaying matrix elements |p1,(7)| =
|012(0)|e~T¢T [Averin05]. In the tunneling regime,

2 eV

eV
rqb:ﬁﬂtﬂ—“z” —EAZ, (5.5)

2We denote |1), |2) the eigenstates of ¢
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provided the state-dependent transmission amplitude is given by Eq. (5.1). As will
be shown in Sec. 7.2, a very similar relation can be derived for position measurements
using scattering detectors.

5.2 Displacement measurement with tunnel junctions:
Theoretical investigations

In the present section, we shortly outline recent theoretical progress regarding the tun-
nel junction displacement detector. Very intuitively, for a tunnel junction to be used
to measure the displacement of a nanomechanical oscillator the tunneling amplitude
of the junction must be a function of the position of the oscillator,

tot = to + Af(R) . (5.6)

As will be shown in Sec. 5.3, many different experimental approaches can be used to
reach this goal. However, they can all be described within the same general theoretical
framework.

Historically, the idea to use electron tunneling was first developed in the context of
gravitational-wave sensing[Bocko88]. At the time, the idea was basically to use a scan-
ning tunneling microscopy type of experimental setup to monitor the displacement of
large masses. This idea was further explored, with many different groups using semi-
classical approaches to estimate the back-action (associated with momentum kicks of
the oscillator due to electron tunneling) associated to displacement measurement of
large classical masses[Stephenson89; Yurke90; Presilla92; Onofrio93; Schwabe95]. A
general feature of these investigations is that tunneling is treated like the problem of
transmission of a particle through a barrier (the vacuum) of x-dependent width.

The first fully quantum approach to the problem of a tunnel junction coupled to
a harmonic oscillator was presented in[Mozyrsky02]. The Hamiltonian used in this
paper can be written as a sum of three parts: the Hamiltonian of the leads (Hjeaq4s), the
Hamiltonian of the quantum harmonic oscillator (Hosc) and an interaction (tunneling)
Hamiltonian (Hyun) between the systems.

Hieads = Zekczck + qucgcq , (5.7a)
k q
MQZxAZ 2
Hose = ———+ 40, (5.7b)
Hin =Y fiq(£)ciey + Hec., (5.7¢)
k.q

with k(g) is a wave vector in the right (left) lead. This Hamiltonian is also the start-
ing point of the work presented in Chaps. 6-9 of this thesis and of many other in-
vestigations of this system[Smirnov03; Clerk04b; Wabnig05; Wabnig07; Pauget08].
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The common link between the methods used in each of those papers it that they
all adopt the second-quantized Hamiltonian [Eq. (5.7c)] to describe the interaction
between the oscillator and the junction instead of solving the full problem of trans-
mission through a barrier. Most studies were performed in the linear approximation
frq(£) = f,? s fk1 e but an exponential dependance of the tunneling amplitude on
the position was also studied[Smirnov03].

Using the Hamiltonian given in Eq. (5.7), the effect of the tunnel junction on the os-
cillator as well as the average current through the junction was calculated[Mozyrsky(2;
Smirnov03], followed by calculations of current noise in the Markovian[Clerk04b;
Wabnig05] and non-Markovian limits[Wabnig07]. We keep the details of these cal-
culations for later (Chap. 7), and instead present the different experimental imple-
mentations of Eq. (5.7) in NEMS.

5.3 Displacement measurement with tunnel junctions:
Experimental realizations

The quantum point contact detector was used in the context of displacement mea-
surement of a radio-frequency nanomechanical oscillator for the first time in 2002
[Cleland02], where a quantum point contact embedded in the resonator was shown
to be sensitive enough to measure the displacement of a driven oscillator. The next ex-
perimental milestone was reached in 2007, when two different groups demonstrated
experimentally displacement detection with the sensitivity required to resolve the
brownian motion of an (undriven) oscillator using two different implementations of
a quantum point contact [Flowers-Jacobs07; Poggio08]. We will now present these
experiments in more detail®.

5.3.1 Quantum point contact mounted on the resonator

As we just mentioned, the first step towards displacement measurement using point
contact was made by creating a QPC directly on the nanomechanical resonator. In
[Cleland02], a GaAs-AlGaAs heterostructure was etched into an approximately 10pm
long, 4ym wide and 720nm thick doubly-clamped beam. To form the quantum point
contact, top gates were evaporated directly on the surface of the resonator, constrain-
ing further the 2D electron gas formed at the interface between the two semicon-
ductors. Owing to to the intrinsic piezoelectric character of GaAs, the out-of-plane
flexural vibrations of the beam generated an out-of-plane electric field that acted
in a similar way as a top gate on the transmission characteristics of the point con-
tact, adding a displacement-dependent contribution to the QPC transmission ampli-

3We note that the concept of “displacement sensitivity” will be formally defined in Sec. 6.1.2.
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tude. The displacement sensitivity of the device was measured to be on the order of
3 x 1072m/+/Hz, a better figure than what had been achieved using optical interfer-
ometry on nanoscale cantilevers. However, the device was not sensitive enough to
resolve the thermal motion of the resonator (on the order of 1 x 10~°m /+/Hz for this
device at 4.2K). Moreover, the displacement sensitivity was shown to be limited by
voltage-noise in the amplification circuit and not by shot-noise or back-action due to
the measurement.

5.3.2 Atomic point contact

The next major experiment was carried out in the group of Konrad Lehnert at the Uni-
versity of Colorado at Boulder[Flowers-Jacobs07]. A schematic representation of the
experimental setup used is depicted in Fig. 9.1. Their experimental device consisted
of a doubly-clamped Au nano-resonator originally attached to a gate electrode via a
small constriction. Using electromigration, a small (~ 1nm) gap between the gate and
the resonator was created, allowing the latter to undergo brownian motion. Due to
the large intrinsic energy scales of the atomic point contact (the work function of gold
is W ~ 5eV and the bias voltage usally is V' ~ mV) the device could be operated
at relatively high temperatures (I' ~ 10K), where the thermal motion of the beam
is increased. The device exhibited 5 mechanical resonances in the frequency range
comprised between 18 and 58 MHz, each with a typical quality factor around 5000.
This device was sensitive enough to measure the displacement of the undriven
beam, achieving a displacement imprecision /S, = 2.3fm/+/Hz. Even more interest-
ing, it was shown that the measurement sensitivity was limited by the QPC itself, and
not by the noise of the post-amplification circuit used, and this throughout the whole
gain range explored in this experiment. In the low gain region, the shot noise from the
QPC dominated the total output noise. By increasing the gain, the ratio of shot noise
over back-action noise could be reduced, as expected [Eq. (6.19)]. Moreover, even
at the highest gain the shot noise contribution to the noise remained higher than the
noise due to post-amplification circuit (which scales like one over the second power
of the gain). Unfortunately, experimental issues limited the maximum gain that could
be applied without seriously heating the device and therefore it was not possible to
reach the back-action dominated measurement regime. Moreover, while one expects
the atomic point contact to be a quantum-limited detector (Sec. 6.2.3) and therefore
be characterized by a product v/S;Sr that fulfills Eq. (4.22), a greatly increased back-
action force was observed, and v/S;Sr = (1700 4 400)(%|A|/2) was measured at the
optimal measurement point. The reason why the back-action noise measured was
more important than predicted is still an open issue. At this optimal point, the total

added displacement noise was measured to be 4 /§x,add = (42£9)4/ g‘;j;fé N
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5.3.3 Off-board quantum point contact

A different approach to displacement measurement with a scattering detector was de-
veloped at IBM’s Almaden research laboratory[Poggio08]. In this case the device used
was basically a simple gate-defined QPC coupled capacitively to the nanomechanical
resonator (a simply-clamped cantilever in this case) that was brought in proximity
to the QPC?. By applying a static voltage difference between the 2DEG and the can-
tilever, the displacement of the resonator could be monitored by looking at the current
through the QPC. Like for the SET system (Sec. 2.2), in this case the resonator acted
as a second, position-dependent, gate. This approach is novel in the sense that the
resonator and the QPC are more or less independent of each other. This represents an
immense advantage over earlier experimental schemes since:

e Both the resonator and the QPC can be optimized independently.

e The 2DEG does not need to be chemically etched to fabricate the resonator, a
step that decreases considerably the 2DEG’s mobility [Cleland02].

o The resonator does not need to be built from a piezoelectric material.

e There is no need to evaporate top gates on the resonator, typically degrading its
quality factor.

¢ A single QPC can be used to measure different cantilevers.

The authors measured the displacement spectral density around a mechanical res-
onance of their cantilever located at about 5kHz, using the QPC as well as laser-
interferometry[MaminO1]. The measurement done with QPC showed a pronounced
improvement in terms of sensitivity, achieving a displacement imprecision of 4 x
10~'2m/+/Hz, a full order of magnitude better than the optical measurement. How-
ever, due to the relatively low frequency of the cantilever, the electrical measurement
was limited by 1/ f charge noise: the measurement was therefore not limited intrin-
sically by the QPC (shot or back-action noise). This low-frequency noise floor corre-
sponds to a displacement imprecision of ~ 65 times the quantum limit. Besides the
1/ f noise, another downside of this approach as presented here is that the interaction
between the cantilever and the metallic gates used to define the QPC lead to a signif-
icant (up to one order of magnitude) decrease of the quality factor of the mechanical
resonance when a voltage is applied to either the cantilever or the gates, due to non-
contact friction caused by near-surface fluctuating electric fields interacting with static

*During the measurement, the tip of cantilever was kept at a height of z = 70nm, measured per-
pendicularly from the surface of the heterostructure. This is a relatively large distance when compared
to the expected tip displacement due to thermal forces: x;;, ~ 0.14nm at 4.2K for the device studied.
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surface charge[Stipe01]. Luckily, the importance of this effect can be reduced by us-
ing local oxidation to define the QPC (see e.g. [Graf06]) instead of using metallic top
gates.
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CHAPTER

Tunnel junction coupled to an harmonic oscillator:
what can you learn from linear response?

In Chap. 4, we used the linear-response approach to derive the general condition un-
der which a detector can be said to be quantum-limited [Eq. (4.22)]. In the present
chapter, we again use a linear-response approach, this time to discuss the effect of
measurement as seen from the quantum system. Also, while the discussion of Chap. 4
remained very general and applies to many physical systems, we now focus our at-
tention to nanoelectromechanical systems and study explicitly the displacement mea-
surement of a harmonic oscillator using a linear detector. We will first describe the
effects of measurement using a generic detector on a quantum harmonic oscillator,
reviewing the main results obtained by Clerk in Ref. [Clerk04a], an article that proved
quite influential in the field of nanomechanics. Afterwards, in Sec. 6.2, we apply the
linear-response theory to treat explicitly the pedagogical example of a tunnel junction
displacement detector.

6.1 Linear response for a general detector: the quantum
noise approach

We again consider a coupled detector — quantum-system setup like the one discussed
in Sec. 4.2. This time the quantum system is a quantum damped harmonic oscilla-
tor, characterized by a damping rate 7p. The coupling between the detector and the
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oscillator takes the form!
Hy = AE %, (6.1)

with £ the position operator of the oscillator, F a typical observable of the input port
of the detector and A a dimensionless coupling constant. In the weak-coupling (A —
0) limit, Clerk showed[Clerk04a, Appendix A], via a perturbative calculation of the
oscillator’s Keldysh Green'’s functions?, that the displacement of the oscillator obeys
the Langevin equation

M3(t) = —MO?x(t) + | — oM (t) + Fo(t) | + [AF(t) — A2 / at'y(t = )M ()]
(6.2)

In this equation, M and Q) are respectively the oscillator’s renormalized mass and fre-
quency. The terms contained in the first set of brackets originate from the coupling of
the oscillator to the thermal environment: 7 is the damping rate of the oscillator in
the absence of the detector and Fy(t) represents a thermal fluctuating force. For the
equilibrium ohmic bath at temperature Ty considered here, the symmetrized correla-
tion function of Fj is given by

hw
Sr,(w) = Myohw coth (2kBTO> : (6.3)

The most interesting part of Eq. (6.2) is contained in the rightmost bracket. This term,
that vanishes in the A = 0 limit, describes the influence of the detector on the oscil-
lator. It contains both a ‘fluctuation force’ term (F) and a ‘damping’ term () pro-
portional to x. Clerk showed that the spectrum of F(t) can be directly related to the
symmetrized-in-frequency force noise of the detector

Sp(w) = 5 [ et ({SFSRO)}) = S [Sp(@) +Se(-w)],  (69)
where again

S(w) = / °; dte ! (5E(t), 6E(0)) (6.5)

n [Clerk04a], the interaction Hamiltonian is defined as Hj,; = —AF# in Eq. (1), but this is incon-
sistent with Egs. (2) and (11). Other results of [Clerk04a] generally are not affected by the presence of a
minus sign. Finally, in the next sections we will define the interaction as F £, without explicitly men-
tioning A. It is introduced here mainly because it is useful to be able to tune the interaction strength to
optimize displacement sensitivity (Sec. 6.1.2).

2We will not discuss in detail Clerk’s derivation of Eq. (6.2), since in Sec. 7.2, we will show explicitly
how this result can be recovered using an equation-of-motion approach.
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is the unsymmetrized force noise spectrum, calculated in the A — 0 limit. In fre-
quency space, the damping rate y(w) can also be written in terms of Sp(w):

1w) = g [Sr(@) ~ Sr(~w)] . (6.6)

It is proportional to the anti-symmetrized force noise of the detector.

Taken together, Egs. (6.2), (6.5) and (6.6) allow the back-action of a totally generic
detector to be understood as the coupling of the oscillator, via a damping rate y(w), to
a second bath characterized by a fluctuation spectrum Sp(w). Extraordinarily, these
quantities can be expressed solely in terms of the unsymmetrized noise spectrum of
the (uncoupled) detector. A simple calculation of Sg(w) for a specific detector there-
fore allows to understand how a harmonic oscillator is affected when coupled to this
detector[Clerk05]. This result is very similar to the case discussed in [Pilgram(2],
where the measurement-induced dephasing and relaxation rates of a qubit could be
written in terms of a similar correlator. It also explains the denomination “quantum-
noise” approach: the effect of the detector on the oscillator can be understood from
a combination of the symmetrized and anti-symmetrized noise correlators of the de-
tector, the anti-symmetrized part of the noise often being referred to as a ‘quantum’
contribution.

6.1.1 Effective temperature

Looking closely at Eq. (6.2), it is difficult not to notice the strong similarity between the
form of the couplings of the oscillator to the environment and to the detector. Usually,
in a Langevin equation, an equilibrium thermal bath is characterized by a dissipa-
tion term (7p) and a fluctuation term, both related to each other via the temperature
through a fluctuation-dissipation relation [Eq. (6.3)]. Since in general detectors are
out-of-equilibrium systems?®, we cannot expect the detector-induced dissipation and
fluctuation terms to also be related via the physical temperature of the detector. How-
ever, in the context of nanomechanical systems, it is still useful to define an effective
temperature T,¢(w) via which 7 (w) and S(w) are related

— hw
Sr(w) = My(w)hwcoth | ———F+— ] . 6.7
() = Mrtw) <2kBTeff(w)) ©7)
Using the concept of an effective temperature, we reestablished the equilibrium
fluctuation-dissipation relation between Sr and -y, even for a non-equilibrium detec-
tor. The price to pay for this is that the effective temperature of the detector is now
generally frequency-dependent. While at first the idea of such a frequency-dependent

3In fact, one can show[Clerk03b] that a quantum-limited detector cannot be in equilibrium.
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(Detector) (Environment)

A2y Y0
Teft Oscillator Ty

Figure 6.1: The oscillator coupled to two independent thermal baths. The first one
(right) is the physical thermal environment, at temperature Ty while the
second bath (left) represents the detector acting as an effective thermal bath
at temperature Teg.

temperature might seem useless, it recently proved invaluable in providing a sim-
ple way to understand different schemes of “back-action cooling” of nanomechan-
ical oscillators (see e.g. [Naik06b] or Sec. 10.3.2). Indeed, as the response-function
of nanomechanical oscillators is strongly peaked around (), this system is sensitive
mainly to 7(Q) and T.¢(Q)).* We note that in general the effective temperature will
be related to some internal energy scale of the detector and totally unrelated to a phys-
ical temperature. For example, in Sec. 6.2, we will show that in the case of a tunnel
junction displacement detector the effective temperature is given by half the bias volt-
age applied between the two leads.
Since, for x < 1,

xcoth(x) =1+ O(x?), (6.8)

in the high-temperature limit (To, Tegt(Q2) > 1Q)/kp), Egs. (6.3) and (6.7) simplify con-
siderably, and, at the resonance, we find

gF = ZM’)/kBTeff . (69)

In this limit, the coupling of the oscillator to the two baths (the detector and the envi-
ronment) is easily understood in terms a coupling to a single bath at temperature Tio;
via a damping rate yiot, with

Yiot = A2y + 0, (6.10a)
A%4T, T,
Toot = =1 "fj 70°0 (6.10b)
(0)

A consequence of Eq. (6.10) is that, as was demonstrated in [NaikO6b], the physi-
cal temperature of the oscillator can be experimentally tuned from the cryostat tem-

4In general, in this text when the frequency-dependance of (w) or Tog(w) is omitted, we implicitly
consider w = Q.
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perature Ty to the effective detector temperature T.¢ by going from the uncoupled
("Ytot = 70) regime to the strongly coupled (A% > () one.

6.1.2 Total output noise and bound on the added displacement
noise

Linear response does not only allow to estimate the detector’s back-action on the os-
cillator, but also to calculate the signature of the coupling with the oscillator in the
detector’s output, via

I(f) = Io(t) + AAx(t), (6.11)

where x(t) is governed by the Langevin equation [Eq. (6.2)]. Since the back-action
force [F(t)] due to the detector and the thermal force [Fy(¢)] are uncorrelated, we can
write [Averin03a]

x(t) = /0 " drg(T)[Folt — ) + E(t — 1)) 6.12)

with ¢(7) the inverse Fourier transform of the oscillator’s response function

1 1

(@) = M =D Tiwl T AT (@) (6.13)

The total output noise spectrum is (classically) [Averin03a; Clerk04a]

§I,tot(w) = gI,eq(w) + gI,add((")) : (6-14)

Here, we separated the contribution of the equilibrium fluctuations of the oscillator
(written in terms of the output I, i.e. gl,eq ) from the rest of the output. For simplicity,
we work in the limit where the detector-induced damping A% is small with respect
to the coupling to the environment 7y such that the g(w) can be taken as independent
of the detector. Explicitly, we find

Sieq(w) = [AM(w)*Ig(w)[*SE, (w, To) , (6.15)
Sadd(w) = Sj(w) + A4M(w)]2\g(w)|zgp(a}) — 2A2Re[g(a))§1p(w)] , (6.16)

with gp/o(w, To) the spectrum of the physical thermal environment at temperature
To, as given in Eq. (6.3). When monitoring a nanomechanical oscillator undergoing
brownian motion, this corresponds to the interesting part of the signal. Sj .44 on the
other hand term describes the portion of the signal that is detector-dependent:

e the bare output noise of the detector in the uncoupled limit (~ Sj),
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e the signal coming from the position fluctuations due to the back-action force of
the detector (~ Sg),

¢ aterm that arises from the real part of the IF correlation function of the detector.
This term is typically much lower in magnitude than the first two terms.

The quantity gl,add defines the sensitivity of the detector. To understand why, it is
useful to introduce the total displacement noise Sy ot(w), given by the ratio of the
total output noise and the square x-to-I gain of the detector,

g o gI,’rot(w) . gI,eq(("]) gI,add(w)
el =R T AR T AE

= gx,eq(w) + §x,add(w) . (6.18)

(6.17)

Here, Sy oq is related to the displacement fluctuations due to the thermal forces, while
Sy add(w) is the so-called “added displacement noise”: it corresponds to the displace-
ment noise that depends on the detector used. In a nutshell, if gx,eq(w) is what we
want to measure, then S, ,q4(w) is an unwanted contribution reflecting the detec-
tor’s influence on the measurement. The form of the added displacement noise can
be read from Eq. (6.14): it can be written as a sum of a shot noise, back-action and

IF-correlation contributions[Clerk04a]

Sxadd(w) = &fzj)z + A%g(w)[*SF(w) — ZReWgTS;\)SIF(w)] - (619)

As per Eq. (6.19), the actual ‘form’ of the added noise depends on the coupling A.
Taking for a moment the shot noise contribution to be frequency-independent around
(), we can see that for low couplings it will dominate, and the added displacement
noise will correspond to background noise in the spectrum. At the other extreme,
in the high-coupling regime the back-action term Sp will dominate and the added
displacement noise will show up as displacement fluctuations of an oscillator at a
temperature that differs from Tj, the temperature of the thermal environment. It is
important to note that, even in the case where the oscillator is truly, physically being
heated by the detector, the added “signal” associated with the increased temperature
of the oscillator is not useful to the measurement of the displacement fluctuations of
the original thermal oscillator. In both shot-noise and back-action dominated regimes,
the added displacement noise hinders the measurement of gx,eq: this is why it is used
to define the sensitivity of the measurement.

In the remainder of this section, we will derive the quantum limit on the sensitivity
of a displacement measurement by finding the conditions under which the added
displacement noise is minimal. Looking at Eq. (6.19) we see that the dependence of
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gx,add on the coupling strength has the form®

X
Sxadd ~ 73 + A’y 4z, (6.20)

Minimizing with respect to A, we find Agpt = /x/y, which leads to

A2 :( Si(w) )1/2. (6.21)
o A2[g(w) [2Sp(w)

The optimal coupling constant corresponds to the point where the contribution of the
bare-output (shot) noise and the back-action noises are equal, exactly like in the case
of the Heisenberg microscope presented in Sec. 4.1.1. At this optimal coupling, the
added noise is bounded by

S Si(w)Sp(w)  2Re[A* e @)S p(w
Suasalw) 2 2gle)] || BB

(6.22)

where we wrote g(w) = |g(w)|e“). The S;(w)Sr(w)/|A|? term in this expres-
sion is minimized when using a quantum-limited detector that satisfies Eq. (4.22).
Subsequently minimizing with respect to S;r(w), one finds a condition on the IF
correlation function that must be satisfied for the added displacement noise to be
minimal[Clerk0O4a]

Sir(w) = g}\ cotp(w) . (6.23)

For (i) a quantum-limited detector (ii) used at the optimal coupling point and where
(iii) S;r(w) satisfies this equation, we find[Caves80]

Sradd(@) > Staqa(@) = Sveq(w, To = 0) = hllmg(w)|; (6.24)
the added displacement noise is always at least as important as the zero-temperature
displacement fluctuation of the measured harmonic oscillator.

In the literature, this result is not always written in terms of an added displacement
spectral density. Sometimes measurement sensitivities are instead given in terms of
Axsor, [Eq.(4.11)], the standard quantum limit for position measurement of a harmonic
oscillator. To convert from the added displacement noise to an absolute position res-
olution Ax, one uses

A% = /S ada ¥ Af = \/Suaaa7/2 (6.25)

>We remind the reader that we are considering the regime where A%y < < such that g(w) is
independent of A.
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with Af = /2 the bandwidth of the measurement [NaikO6a]. Moreover, at the reso-
nance,

A Syadd
=, (6.26)

—min

Sl Sx,add

such that for all practical purposes results can be easily converted from one notation to
the other. Also, note the convention often used in the literature to write directly S, =
S1/|A?| to define the sensitivity of a measurement when back-action is not observed
(note that here the subscript ‘add” was left out).

To conclude this section, we want to stress that experimentally reaching the bound
on the added displacement noise is really the next milestone that should be achieved
in the quest to observe quantum behavior in NEMS. Moreover, we mention that lot of
ideas regarding the creation and manipulation of non-classical states of the harmonic
oscillator via quantum feedback[Hopkins03; Ruskov05b] rely on the use of position
detectors that operate close the quantum limit. Also, while in this section the quantum
limit was derived for a generic detector, we note that the derivation in the specific case
of a tunnel junction displacement detector is presented in Sec. 8.4.

6.2 Linear response for a tunnel junction

In this section, we apply the general results derived previously to the specific case of
a tunnel junction displacement detector. This should allow the reader to get a deeper
understanding of these results. At the same time, this will allow an easier comparison
of the linear-response predictions and the ones obtained using equation-of-motion
approaches presented in the next chapter.

As discussed in Chap. 5, the Hamiltonian describing a tunnel junction can be writ-
ten as the sum of a “leads” and a “tunneling” Hamiltonian

H = Hjeads + Htun , (6.27)
where
Hieads = Zskcltck + Zechcq , (6.28)
k q
fo + to +
Hun = ﬂ gckcq + m gcqck . (6.29)

(1)

Here, ¢, ' creates (annihilates) an electron with wave-vector «, k(g) is a wave-vector
in the right (left) lead and A an average density of states in the leads. The coupling to
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6.2. Linear response for a tunnel junction

the harmonic oscillator is realized via

Hit = RF, (6.30)
p_ B + G +
F = m—Agcqu—an_—AgCﬂ]Ck, (631)

the same generic form as the one given Eq. (6.1). The output of the detector [ is nothing
else than the time derivative of the average number of electrons on the right lead,

N, =Y, c]‘:ck.

d o 1 71 — I t * T
dtNr - 7’2 [Htun/ Nr] = EM % (tOCqu — tOCqu> . (632)

N)

We note that, in the spirit of the linear response, the contribution of the interaction
Hamiltonian to the tunneling amplitude (~ t1) should not be included in the detector
output operator I.

To calculate the correlation functions Sy () (w), we need to know the form of Fand
[ in the interaction picture. It is given by

n i

B(t) = O (1)1 (1) = ezmz(toc,tmcq(t) —tiehDedn) , (639)

o t;
E(t) = Ud (1) B (¢ Zm\ ch )+ B, (634)
kg

where the interaction picture representation of the creation and annihilation operators
is given by
cp(t) = e et/ Mg (6.35)
i (t) = efut/hel (6.36)

6.2.1 Calculation of the correlation functions

Using the formalism just introduced, we can calculate explicitly the correlation func-
tions Sj(w), Sp(w) and Sir(w) needed to describe the effect of the detector on the
oscillator. Each calculation is pretty straightforward. Starting with Sg(w), we find

-/ e (B (1) E(0) 63
2 e |

— (2|7t;’ /_OO kZ[ (eg—ex+hw) t/hf ( fk) +e—1(sq—sk—hw)t/hfk(1 _fq)] ’

(6.38)
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where f represents the equilibrium Fermi distributions in each lead

(chew) = fidipe s (6.39)
(cheq) = faboq o (6.40)
<c,th/> = (c;rck/> =0, (6.41)

with fi = fr(ex) and f; = f1(g4). Noting v(E) the density of states in the leads, we
perform the substitution

Z - / dey deqv(er)v(eq) - (6.42)

kg

In this section, we consider a non-superconducting tunnel junction such that we can
approximate the density of states as constant (v(gx) = A) in the relevant energy range
close to the Fermi level. Proceeding with the integration, taking into account the pres-
ence of a bias voltage via two different chemical potentials yi;, = g + eV, we find

eV-l—hcu)

Rt ?
N 2kgpT,

Sr(w) 27

(eV + hw) coth ( (6.43)
with T, the electronic temperature in the leads. In the kT, — 0 and |eV| > hiw limit,
this simplifies to

_ Rt

Sr(w) 27

(leV]+nhw) , (6.44)

since coth(x) — =£1 for x — =co. Similarly, we find that the symmetrized current
noise is given by [Blanter00, Equation 127],[ Yang92]

2
= 0 hiw + eV B hw — eV
Si(w) = 2h|t0| {(hw-l—eV) coth (—ZkBTe ) + (hw — eV) coth <—2kBTe ﬂ ,
(6.45)
2
~ Tltol? x max([fwl, leV])  [for kgT. — 0] (6.46)

Calculating the IF correlation function, we find

Sir(w) = % {toti‘ /defR(e)[l — fL(e —hw)] — tit /defL(e)[l — fr(e — hw)]] :

(6.47)

By writing the complex tunneling amplitudes in polar form t; = |t;|e?, we see that
Sir depends only on the phase difference 7 = ¢; — ¢o between ty and t;, as

tit1 = |toty|e . (6.48)
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6.2. Linear response for a tunnel junction

In terms of 77, we find that the real and imaginary parts of the fully symmetrized IF
correlation function are given by

Sir(w) + Sip(—w)

Re[ > ]
e . hw —eV hw + eV
= E!totll siny X [(hw —eV) coth (W) + (hw + eV) coth (W)} ,
(6.49)
o~ %]totll siny X max(|iw|, [eV]) [for kgT, — 0] . (6.50)
[ SE) +2SIF(_‘”)] = %\totﬂ cosny x eV . (6.51)

6.2.2 Effective environment

From the different correlation functions derived in the previous section, we can di-
rectly calculate the back-action of the tunnel junction displacement detector on the
nanomechanical resonator, in the effective environment picture. First, the detector-
induced damping is, following Egs. (6.6) and (6.43),

h|t 2 (eV 4+ hQ)) coth ("’V”m) — (eV — 1)) coth (ev’h())

2kp T, 2kgTe,
1(Q) = - — =5 ? , (652)
hilty |2
~ —2’7;]1/1 [for kgT, — 0] . (6.53)

From this equation, we see that the contribution of the tunnel junction position de-
tector to the total damping is always positive and quadratic in the coupling t;. In the
high-temperature limit, using Egs. (6.9) and (6.43), we find that the effective temper-
ature associated with the tunnel junction is given by

_|eV|

(6.54)

This nicely proves that the effective temperature seen by oscillator is related to an im-
portant energy scale of the tunnel junction, and is totally unrelated to the physical
‘temperature’ of the electron in the leads forming the junction (T;). Since both the ef-
fective temperature and the damping rate are always positive, the steady-state of a
nanomechanical oscillator coupled to a tunnel junction is always a thermal state, con-
trary to what is observed for a superconducting single-electron transistor (see PartIV).
In the presence of measurement, the oscillator therefore behaves in the exact same way
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6. TUNNEL JUNCTION DISPLACEMENT DETECTOR: LINEAR-RESPONSE APPROACH

as an oscillator with damping rate 7ot coupled to a bath at temperature T, with

— o+ ML (6.55)
,)/tOt - ,)/0 27TM 7 .
Bty [2leV]
Tp + Ahler]
Tiot = 00" —dmM (6.56)
Ytot

6.2.3 Quantum-limited detection

Using the correlation functions calculated in Sec. 6.2.1, we can estimate the measure-
ment efficiency A [Clerk03a], defined as the ratio of the right and left hand sides of
the inequality (4.17)

A 1 (Re[A(w) = (@) + (RefSir(@)])” _ | 657)

S$1(w)Sk(w)

The measurement efficiency quantifies the “quantum-limitedness” of a detector. A
detector with A/ < 1 is very poor from a quantum measurement point of view,
whereas N/ = 1isreached only for a quantum-limited detector that satisfies Eq. (4.22).
Using Eq. (C.2) to rewrite A/ only in terms of the symmetrized I, F, IF correlation func-
tions of the detector we find

N(w)

_ ISip(w) + Sip(=w)|?

In general, N will depend on the frequency w, and again N (Q)) is the relevant quan-
tity when considering the measurement of a quantum system with typical timescale
(1/0)). However, since the timescales characterizing tunnel junctions are typically
very short compared to the inverse of the frequency of mechanical oscillator, we can
use N(Q) ~ N(0) in this context.

First, let us study the dependence of N in the phase difference 7 [Eq. (6.48)] be-
tween the two tunneling amplitudes tg, t;. Both S; and Sr are independent of 7, such
that the phase difference appears only in the numerator of Eq. (6.58). From Egs. (6.50)
and (6.51), we see that in the kgT, — 0,eV > hQ) limit,

(6.58)

2

2 e 2 e .
’S[p(w)—FS[F(—w)‘ :’E’totlle‘/COSﬂ} —|—‘E’t0t1’€VSIH17 , (6.59)

e 2
= (5-ltotrleV)”. (6.60)

In this (experimentally relevant) limit, the efficiency is therefore totally independent
of 17 [Doiron08]. Moreover, the calculation confirms that the tunnel junction is a
quantum-limited detector[Korotkov99; Averin03a]

e?ltot1]?(eV)? 2w h

N=—""4p b [2eV] e2[to|2eV] —

1, (6.61)
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6.2. Linear response for a tunnel junction

Figure 6.2:

0.8

Efficiency
I
(o))

©
o~

0.2

€V/kBT€

10

Main panel: Efficiency N (Q) of the tunnel junction as a quantum de-
tector, as defined in Eq. (6.58). Inset: 1 — N, plotted on a logarithmic
scale that allows better resolution in the region where A is very close to
1. In both cases, the solid line corresponds the “high-temperature” case
(kpT, = 1000A(2), and the dashed line and dash-dotted lines correspond
to the low-temperature regime, kT, = () and kT, = 1)/ 4 respectively.
Since the efficiency is plotted as a function of eV /kgT,, note that the mag-
nitude of the bias voltage is also reduced in these two last cases.

Since we have the full expression of the different correlators for finite (3, kgTg, we
can evaluate how N decays away from the 1Q)/eV,kgTr/eV — 0 point. In Fig. 6.2,
we present \ as a function of eV / kg T, for two different values of kg T, /i) and 7 = 0.
As seen from this figure, the efficiency of the tunnel junction is extremely high, as long
as eV > hQ), kgT,. Physically, this reduction in the efficiency comes from the presence
of thermal (Johnson-Nyquist) noise from equilibrium currents at finite temperature,
that increases S; but does not affect the gain A. Also, note that the efficiency in all
regimes is independent of the parameters t1, fp and that numerically we verified that
N(Q) — N(0) — 0in the eV > hQ), kgT, regime.

79






CHAPTER 7

Equation-of-motion approaches

The original results that will be presented in Chaps. 8, 9 and 11 were obtained using
an equation-of-motion approach, where the effective time evolution of the density
matrix of the oscillator in the presence of the detector is studied. In many respects, this
approach can be seen as the quantum equivalent of the equation-of-motion approach
for the probability density of a classical oscillator presented in Chap. 3. Also, it is
important to stress that the applicability of the approach is not limited to the study of
NEMS, but that it also generally applies to open quantum systems, in quantum optics,
etc.

The cornerstone of the equation-of-motion approach is the so-called master equa-
tion, that describes the evolution of the density matrix of a quantum system in the
presence of a bath. Just like we did in Chap. 6, we will first derive this equation for
a general system (Sec. 7.1), following mainly [Gardiner04]. Afterwards, we will ap-
ply the formalism to NEMS in general (Sec. 7.2) and finally specifically to the tunnel
junction displacement detector (Sec. 7.3).

7.1 Derivation of the Born-Markov master equation

In the study of open quantum systems (quantum systems coupled to one or more
baths), one of the main theoretical objective is to find an effective description of the
system that takes into account the effect of the bath, without solving for the complete
system+bath problem. The master equation we will derive in this section provides
just that.

We consider a quantum system with Hamiltonian Hgys coupled to a bath (Hpg) via
an interaction term H;y;, such that

Htot = Hsys + HB + Hint . (7-1)
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7. EQUATION-OF-MOTION APPROACHES

We denote pyot the total density matrix of the system and the bath. The time-evolution
of ptot Obeys the von Neumann equation

d 1
gfPtot = E[H’cot/ Ptot) - (7.2)

This is the starting point in the derivation of the more interesting equation-of-motion
of the reduced density operator psys = Trg[ptot]. In the interaction picture, with

U(t) = e (HsystHe)t/h (7.3)
Plot(t) = U™ (Hprat(HU(1) (7.4)
Hint(t) = U™ (t) HineU (1) , (7.5)
Eq. (7.2) takes the form
d 1 :
dtptot( ) = = [Hint(), pior (1)) - (7.6)

To proceed, we assume that the system and bath are initially independent, such
that the total density matrix at time O factorizes

Prot(0) = psys(0) ® pp . (7.7)

Moreover, we consider the bath to be much larger than the system and limit ourselves
to weak system-bath coupling. In these conditions, the properties of the bath (namely,
its density matrix) will not be affected by the coupling to the quantum system. Using
the initial condition given in Eq. (7.7), we can integrate the von Neumann equation
[Eq. (7.6)] iteratively up to time t. After two iterations, one finds

Piot() Ptot h/ dt’ { Hine(t )Ptot h/ dt” mt( "), Ptot( ”)H . (7.8)

While it is possible to continue the expansion to get terms of higher order in the in-
teraction, it is more convenient to differentiate the last expression with respect to t,
to find an integro-differential equation for the total density matrix in the interaction
picture

d ; 1

@ io1) = - [Hin(1), ()] — -

[t [Hi ), i), )] 79)

To go from an equation for pi_,() to one for the reduced system density matrix péys,
we trace both sides of the last equation over the bath variables. Assuming that the
Trg [Hint(t),osys<0) X PB] = 0,1 we find

Sota(0) =~ [Ty { [Hi0), Hun )b} - 720

IThis is not a required assumption, since any part of the interaction Hamiltonian that would con-
tribute to this trace can be included in the system Hamiltonian.
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7.2. Born-Markov master equation in the context of NEMS

This last equation for the reduced density matrix still involves in the right hand side
the total density matrix pi . In the regime of weak-coupling between the system and
the bath, we can extend the condition of factorizing initial conditions [Eq. (7.7)] to
finite times

ot () ~ plyat) @ p 7.11)
This weak-coupling approximation is referred to as the Born approximation[Breuer(02].
Even within the Born approximation, the master equation of Eq. (7.10) is non-local in
time. To make it local in time, we perform the Markov approximation that the evo-
lution of the system at time ¢t depends only on the density matrix at this time ¢, and
therefore that knowledge of psys (o) is allows for the calculation of psys(t) forall t > ¢ .
This leads to the Redfield equation[Redfield57]
t
%plsys(t) - —% [ty { [Fi0) (i), pye0 005]]} - 12
When dealing with systems where the bath correlations decay on a timescale 73 that
is much shorter than the typical timescale 75 characterizing the system, it is justified
to further simplify the equation by letting the lower bound of the integration region
go to —oo, provided we are interested in probing the system on the 75 timescale?. This
leads to the Born-Markov master equation

otn() = [ T { [Fia(t), (Hi (0= O, el @ 5]}, 010

that can also be written as an equation-of-motion for the density matrix in the
Schrodinger picture

T0rs(t) = [y (0] — 5 [ T { [P [Fin(—1), ys(t) @ pl]} 714
For completeness, we note that the approximations made while deriving the Born-
Markov master equation, while in general valid in the context of nanoelectromechan-
ical systems, cannot be justified for all physical systems. Most notably, when studying
systems where the timescale at which the bath evolves is long with respect to the typ-
ical system timescales, one expects non-Markovian effects to be important.

7.2 Born-Markov master equation in the context of
NEMS

Approaches based on quantum master equations have proven useful in the study of
nanomechanical systems [Utami04; Rodrigues05]. In the aforementioned articles, the

2We emphasize that the Markovian approximation corresponds to a “coarse-graining” of the time
axis and that the resulting master-equation cannot be used to probe the dynamics of the system on very
short timescales (7g).
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authors used the master equation approach to describe the effect of coupling a specific
detector to the mechanical resonator. However, just like in the case of linear response
(Sec. 6.1), we can learn a lot about the effect of a general detector (bath) coupled to a
harmonic oscillator using the Born-Markov master equation without the need for a
detailed description of the detector. To proceed, we simply use the system and inter-
action Hamiltonian we introduced in Chap. 6,

5 (7.15)

Hine = F%, (7.16)

1 2 MQO?Zi?
_ + _ P
Hsys_hQ(aa+—>—2M+ 5 ’

with F a general input variable of the detector and # the position operator of the os-
cillator.?

Inserting the interaction Hamiltonian in Eq. (7.14) and developing the commuta-
tors, we find

d 1
apsys(t) = E [HSYS/ Psys(t)}

- % [t [15(=1)ps(t) = 21 pou(D3] (FOE(—)) (17
1 [ee]
2o
where the trace on the bath was carried out, giving rise to the averages on the bath
operators F. Using the properties of the correlation function of an hermitian operator
A

(A(=£)A(0)) = (A(0)A(t)) = (A(£)A(0))" (7.18)

and introducing the compact notation
Fo(t) = ({E(1), B(0)}) = 2Re(B(HP(0)) = +F+ (1), (7.19)
F_(t) = ([E(t), F(0)]) = 2dm(E(t)F(0)) = —F_(—t), (7.20)

for the symmetrized and anti-symmetrized time correlators, Eq. (7.17) can be brought
into a simpler form

%ps}’s(t) :;[Hsyslpsys(t)]
— % OOO dtl[f, [J?(—t/)lpsys(t)]]f+(t/) (7'21)
— % OOO dtl[f, {f(—tl)zpsys(t)}]f:— (tl) .

3To keep concise, now integrate the dimensionless coupling constant A present in Chap. 6 to F
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Using Eq. (7.15), the position operator in the interaction picture can be written as
2(t) = U§ () 2Uo(t) , (7.22)
1
= X cos(Qt) + mﬁ sin(Qt) . (7.23)

Inserting this result into Eq. (7.21) leads to

d —i 1

_PsyS(t) = [HsySIPsyS(t)] - £, [%, PsyS(t)H oodt/ cos(Qt')f+(t')
dt h 0

212
1 ©
o pas [8 P (0]) [ a sin(f) 7 (1)
1 o0
— (2, {2, psys(B)}] / dt' cos(QF ) F_(F')
2h 0
1 o
s [ (D s8] /O dt' sin(QF ) F_ (1) .
(7.24)
Introducing the parameters
Dpp = %/ dt' cos(Qt) Fo (), (7.25a)
0
I S D
i = e /0 dt' sin(Q) F_ (), (7.25b)
2 l 0 / / /
_ b : 7.2
A Mh/o dt’ cos(Qt") F_(t'), (7.25¢)
. 1 . / /
Dpx = o /0 dt' sin(Q) Fo (1), (7.25d)

one finds that the equation of motion for the reduced density matrix is of Caldeira-
Leggett (CL) [Caldeira83; Breuer02] form

d i p> M(Q?—A?)%?
- _[ + /Psys]

7’11 2M 2 i ) (7.26)
- ?DPP [J?, [.‘f, Psys]] - %[3?/ {ﬁ/ Psys}] + EDPX [32/ [f)/ Psys]] ’

%Psys =

with a damping (~ %), diffusion (~ Dpp) term, a term that renormalizes the frequency
of the oscillator (~ A?) and another contribution. As will be discussed in detail in
Appendix B, the CL equation describes the evolution of the density matrix of a particle
undergoing quantum brownian motion, i.e. a particle in a thermal environment.* The
physical interpretation of Eq. (7.26) is therefore that a detector very generally acts as
a thermal bath for the oscillator. Amazingly, in this section we derived in only few
lines (and in a totally different way) the main result of [Mozyrsky02; Clerk04al].

The reader that is totally unfamiliar with the Caldeira-Leggett equation would surely benefit from
reading Appendix B before continuing reading the current chapter.
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Link with the linear response result

Just like in the linear-response approach, the different parameters [Eq. (7.25)] of the
CL equation can be written solely in terms of the detector’s correlation functions 7.
Fortunately, we can demonstrate that the expression of two parameters derived in
the linear-response approach (the damping and diffusion coefficients) are identical to
the ones given in the master-equation approach. First, we examine the case of the
damping rate. In the master equation approach, we wrote it as [Eq. (7.25b)],

P Y L B S

V_ZZMHQ/O dt’ sin(Qt") F_(t'), (7.27)
_ 1 <o /
= 0 /_oodte F_(t), (7.28)

where we used the fact that F_ is anti-symmetric in time to expand the integration
range over the whole real axis. Using now F_(t) = ([F(t), F(0)]), one finds that

/ N dt' e F_(t') = Sp(Q) — Sp(—Q) , (7.29)
such that
7= gt 1SF(0) — S (-0)] 7.30)

One therefore sees directly that the obtained damping rate is consistent with the linear
response calculation. Also, itis clear in this approach that the effective damping rate at
the frequency of the oscillator is relevant quantity from the point of view of the oscillator.
Similarly, looking at Dpp and relating it to T,¢ via Eq. (B.18),

Dpp = 2M§kpTeg = % /O dt' cos(Qt') Fy () (7.31)
1—
= ESF(Q) , (7.32)

one finds that the effective temperature is a function of the symmetrized F correlation
function

_ Sr(Q)
kpTets = W , (7.33)

exactly like in Eq. (6.9)..

5In the literature, there are two conventions regarding the damping term. Damping brings a con-
tribution —p to p in the first one and —2%p in the second one. For historical reasons, both conventions
are used in this text. However, since we identified the situations where the second convention is used
by writing 4 instead of v, this should not pose problems.
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Caldeira-Leggett model and quantum measurement

We already mentioned that the direct physical interpretation of the fact that the
equation-of-motion for the harmonic oscillator coupled to a displacement detector
is of CL form is that the detector acts as an effective thermal environment. Look-
ing at the system from the complementary point of view of quantum measurement
however, allows a slightly different interpretation of the CL equation as a manifesta-
tion of measurement-induced dephasing (Sec. 5.1), where off-diagonal elements of the
density matrix decay under the effect of measurement. Since in this precise case we
measure in the position basis, it is in this basis that measurement-induced dephas-
ing appears more clearly[Hornberger07]. Neglecting the Dpx and A? contributions
to Eq. (7.26), the contribution of the measurement to the evolution of (x|p(t)[x") =
p(x,x';t) given by

i ’. _ i . - _ ﬁ s[5 l PN /
(dtp(x,x ,t‘))meaS (dtp(x,x ,i‘)>nomeas = — (x| ; %, {p,p}] + thpp[x, £, p]]|x) .

(7.34)
In the position basis, the diffusion term (ex Dpp) takes the form
_1 oS PN I __ _1 N2 /
—7 Dep(xl[%, %, plll2") = — Do (x —x")" (x]p]x) , (7.35)

and therefore to a term that does not affect diagonal elements of p(x, x") but expo-
nentially suppresses the off-diagonal elements in the density matrix. Forgetting for a
moment the damping term, the diffusion term leads to

0(x, ' t) ~ =T wo(x, ;1) — p(x, ;) = p(x,x';0)e Tt (7.36)

Recalling the expression of Dpp in terms of the effective temperature characterizing
the detector, Dpp = 2M#kpTet, we can write the dephasing rate I',, v as

Dpp

5 x_x/ 2
l_'x/x/ = ?(x — x/) — 47‘[7@

, (7.37)
A7

with AZ the square of the ‘thermal’ De Broglie wavelength,

27th?
2
AT = ks Tog (7.38)

The “position-dephasing’ rate is linear in the effective damping rate ¥, and it heavily
suppresses coherence on lengthscales larger than the thermal wavelength.

While measurement-induced dephasing seems to be a very appropriate descrip-
tion of the role of the diffusion term in the CL equation, so far in the discussion we
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totally neglected the damping contribution to the equation of motion of the density
matrix. In the position basis, this contribution reads

—1

3

_?i'ﬂx”’e' {p.o}llx') = —= (x =) (xl{p,p}tIx') ; (7.39)

:" ‘

it does not have the simple form of a constant multiplying p(x, x’; t) like the diffusion
term. Again, in this case a lot can be learned from the qubit measurement problem.
In the example presented in Sec. 5.1, the measurement was done in the basis in which
the qubit is diagonal. It was shown [Stace04; Li05] that for measurements not done in
the diagonal basis® inelastic processes lead to relaxation. Here, since the Hamiltonian
of the harmonic oscillator is not diagonal in the measured observable (£), we observe
a similar effect.

7.3 Master equation approach for the tunnel junction
displacement detector

In the last section, we established the strong link between the linear-response and
master-equation approaches. At this point, one might wonder about the advantages
of one method over the other. In this section, we will therefore describe one benefit
of the master-equation approach, namely that with only a slight modification this ap-
proach allows for the calculation of the complete transport properties of a detector. To
proceed, we will treat the case of a tunnel junction position detector. For complete-
ness, but also because this calculation also serves as an important basis to understand
the model used in Chaps. 8 and 9), most details of the derivation will be included such
that the reader should be able easily to follow through all steps of the calculation.

Our starting point is basically the same as in Sec. 6.2, with total Hamiltonian of a
DC-biased tunnel junction coupled to an harmonic oscillator as a sum of an unper-
turbed Hamiltonian Hy = Hosc + Hieaqs and interaction (tunneling in this case) one.
Explicitly,

Hopse = hQ(ata +1/2), (7.40)
Hieads = Y EkCECk + Y_€q4CaCq , (7.41)
K 7
Huun = T(x) Y cfeg + TH(x) Y chex, (7.42)
kg kg

where g is a wave vector in the left lead and k a wave vector in the right lead.

®This happens when, for example, you consider a tunnel junction whose transmission amplitude
depends on o, coupled to a qubit whose Hamiltonian has the form H ~ eo; + Aoy, with A # 0.
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7.3. Master equation approach for the tunnel junction displacement detector

7.3.1 Charge-resolved density matrix

In the tunneling Hamiltonian [Eq. (7.42)], we introduced T, the x-dependent tunnel-
ing amplitude. If we defined T simply as T ~ to + t; £, then we could simply follow
the general method presented in the last section and derive a CL equation for the
oscillator written in terms of the spectral density of the back-action force acting on
it. However, in order to investigate electronic transport in the coupled system, it is
useful to refine this approach to keep track of m, the number of charges that passed
through the detector. This allows one to calculate an equation of motion for the m-
resolved density-matrix[Clerk04b; Rammer(04; Wabnig05], a quantum equivalent to
the m-resolved master equation approach widely used in the study of transport prop-
erties of classical nanomechanical systems[Armour04b; Doiron06] and discussed in
Part II.

Noting posc(t) = Trp[ptwot(t)] the reduced density matrix of the oscillator, we de-
fine its matrix element as (m|p,sc(t)|m) = p(m;t). Physically, p(m,t) represents the
reduced density matrix of the oscillator at time ¢ provided that exactly m charges have
been transfered from the left to the right lead. Of course, by tracing out the m index
one finds back psc:

Posc(t) = Zp(m; t) = Z(m]posc(t)]m). (7.43)

In order to be able to track the transfer of charge associated with a tunneling event,
we define the tunneling operator as
- (to + e”7t1x> Yt, (7.44)
27A '
with Y(*) an auxiliary operator that increases (decreases) the number of charges m that
went from left to right in the junction. The action of this operator is more precisely
described in terms of its action on the matrix elements of the density matrix

(mYYTo(t)|m) = p(m;t), (7.45)
(m|Y*Yp(t)|m) = p(m; 1), (7.46)
(m|Y*o(t)Y|m) = p(m —1;t), (7.47)
(m|Yo(t)YT|m) = o(m +1;¢) (7.48)

Finally, since, as discussed in the last chapter, only the phase difference 77 between
the tunneling amplitudes ty and t; is relevant for this system7, we will treat the two
amplitudes as real in what follows.

7Recall that in Eq. (6.48) we defined 7 via the polar representation of the tunneling amplitudes
tit = |totq |et(#1—90)=ltot1|e™
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7. EQUATION-OF-MOTION APPROACHES

7.3.2 Equation of motion for the full density matrix

To proceed, we start from the Born-Markov master equation [Eq. (7.14)] and identify
system, bath, and interaction terms with, respectively, the oscillator, the leads and the
tunneling. This leads to

d 1 1 [
Eposc(t) - E [HO/ Posc(t)] - ? /0 dt,Trleads { [Htun; [Htun(_t,)/ Posc(t) & pleads]] } .

(7.49)

In this system, the Born approximation refers to the second-order perturbation the-
ory in the tunneling. Within this approximation, the electrons tunnel independently,
one after the other, and higher-order processes like cotunneling are disregarded. The
Markov approximation on the other hand compares the typical timescales of the detec-
tor and the quantum system, and is valid as long as correlations in the bath (detector)
decay much faster than those in the quantum system (1/Q in our case). For a tunnel
junction, the correlations decay approximatively on timescales of the order of the in-
verse of the so-called “attempt-frequency” (eV /h). Semi-classically, this corresponds
to the time it takes between two consecutive events where an electron tries to tunnel®.

In the interaction picture, the tunneling part of the Hamiltonian can be written as

Hiun(t) = U (£) Huunlo(t) , (7.50)

= T(t) Y cf()eqg(t) + TT(H) Y i (t)ex(t), (7.51)
kg kq
where

T(+) (t) — eiHosct/hT(-l-)e_iHosct/h , (752)

t _ iHaast/ht o —iHieaast/H ek t/ B

Ck(q)(t) — ptHieadst/ chie iHjeadst /Tt _ ezsii(q) Ch(q) » (7.53)

Ck(q)(t) = elHleadSt/th(q)e_lHleadSt/h = eizsk(’?)t/hck(q) . (754)

As in Sec. 6.2, we assume that the leads are in local equilibrium, and therefore use
Eq. (6.39) when tracing out the leads to obtain Fermi distributions. After some ma-

8The attempt frequency is obtained by arguing that the total current (in order words, the total
charge transfered by unit time) is given by the product of the electron charge with the probability for
an incoming electron to successfully be transmitted from one lead to the other (per unit time). This
success probability is given by the product of the probability for one electron to successfully tunnel
(|to|?) and the attempt frequency f at which an electron “tries” to tunnel. Since the Landauer formula
gives I = e?V|ty|/h, we find f = h/eV.
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7.3. Master equation approach for the tunnel junction displacement detector

nipulations, the term under the integral can be rewritten

Trleads{ [Htun/[Htun(_t,)r Posc(t) ® pleadsH } =
TTH(—)posc(t) = T (=t )posc(t) T| e /0™ (1 — )

- T+Pos€(t)T(_t/)_ ei(gq_gk)tl/hfk(1 - fq)
. (7.55)

+ o+
7 £ £
T =

o

A

~~

=

~

—~

%

N—"

~3

=4+

T (=) posc (1) — T(—t ) posc(TT] =0/, (1 — f)

+ Y pose (O TH(—)T — Toosc () TH (=) | e =8/ f (1 — £) .
g B

=

7.3.3 Equation of motion for the m-resolved density matrix

To get the equation of motion for p(m;t), we consider at this point a matrix element
(m|---|m) of Eq. (7.49),

S50 1) = [Ho, p(m )]

1 e (7.56)
- ?/O dt/<m|Trleads { [Htun/ [H’cun(_t/)/ Posc(t) ® plezzds]] } |m> .
Rewriting the tunneling amplitude as
& +
T = 27TATY (7.57)
(7.58)

(with 7 = tp + t1£) allows us evaluate straightforwardly the (m|...|m) matrix element
of Eq. (7.55) to find

(27TA m|Trleads{ [Htunr Hyun(— )/ pOSC(t) ® PleadSH }|m> =
TTH(—)p(m;t) — T (—)p(m + L) T | e o/ (1 £

()T (—#) T = Tho(m + LT ()| e /hp (1 - )

+

+

THT(—t)p(m;t) — T(~t)p(m — LT el /g (1 — )

_|_

()T ()T — Tp(m — LOTH(—) | e s/ (1 g

>
<
R

(7.59)
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7. EQUATION-OF-MOTION APPROACHES

The equation of motion of p(m; t) is coupled to the equation of motion of p(m £ 1; ).
This is due to the Born approximation: we only consider processes that transfer one
electron at a time.

At this point, one can be lead into thinking that it is necessary to solve an infi-
nite set of coupled differential equations (one equation per value of m) to evaluate
the transport properties of the system. Luckily, that is not the case. Instead, we can
Fourier transform the last equation in the charge index, introducing a counting field
X, conjugate to the transfered charge m:

t) =Y eXMp(m;t) . (7.60)

The quantity p(x;t) plays the role of the characteristic function[vanKampen92] de-
scribing charge transfer events. Indeed, if we denote P(m; t) the probability distribu-
tion for the number of charges m transfered after a time ¢, all moments (m"(t)) of this
distribution can be calculated via

) =i

n

P t))

= Trosc [Zm”p(m;t)] . (7.61)

dx =0

Importantly, the introduction of the counting field x allows to effectively decouple the
system of differential equations. With o = £1,

Zeixmp(m +o;t) =e *p(x;t) . (7.62)
In terms of p(; t), the Born-Markov master equation [Eq. (7.56)] becomes
d 1 1 o o
ﬁm%>—hummMm—@;ﬁ;Acu%Auxmu> 7,69
with
AQokgtt) = |[TTH=)o(ut) - BT | e e g1 - f)
+ et T(=#)T" < ><'ﬂ enet /hp (1— f,)
[T (=)0 - T | e 0/ng, (1= f)
+@<ﬂﬁ<>7‘hx, H(—t) | el et gy (1 — fy)

eix—1) [Tp( DT (—)e e t/h] f— ) (7.64)

(

~ (eiX — 1) [T(—t’)p(x;t)T"Lel(sq*g")t/h} fa(1 = fi)
( .
(
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7.3. Master equation approach for the tunnel junction displacement detector

From this point on, the rest of the derivation is pretty straightforward. We first expand
7 (t) using the interaction picture representation of £ [Eq. (7.23)] then proceed with
the integration over t/, using

/ dt et = 5 (w) £ipv (;) . (7.65)

Focusing on the real part’, we replace the sum on the wave-vectors (k, g) by an integral
over energy, with constant density of states A

o / de; A.. | (7.66)
0

We formulate the result of the integration over the Fermi functions of the leads in
terms of the inelastic tunneling rates (I'+ (E))

W () = [ deltol*f(e — ux) [1 = fle— e+ E)] 7.67)

HL(E) = [ deltofe — o) (L - fle—px+ B)] (7.69)

with p; the chemical potential in lead i. These are the rates at which electrons ex-
changing an energy E tunnel from left to right (+) or right to left (—). After some
manipulations, the different terms of Eq. (7.63) can be written as [Clerk04b]

d 1 Do 1o
T0() = — [Hose = Fo() %, p(x; 1) Z Yo [ AP} + 1~ (% (£ p(x: )]
ixe _ . .
B ) o WWW (o)
Yo -1 o1 2 —io ~
+0_;ﬂ% (e AL > [foh (e Tho(x;t) —e ”p(x;t)P)}
¥y 1)((7_1
+U_Zﬂ%< P ) B (poCc % - 20(60p)| -
(7.69)
with
h
%—4—<t—1) [Fo(hO) ~ To(~hQY)] .70
%(t—l) [To(hQ) 4 T (1)) , (7.71)
HSin

F(n) = ( ) Y oD, . (7.72)

9From Sec. 7.2, we know that the principal value integral (the imaginary part) leads to the ~ A2, Dpx
terms, and not to the main contributions to detector back-action (damping, heating).
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7. EQUATION-OF-MOTION APPROACHES

In Eq. (7.69), F(1) represents an average force applied on the oscillator by the detector
that will in practice only lead to a shift of the equilibrium position of the oscillator. The
quantities ¢, and D, are directly related to the 7y, Dpp parameters discussed in Sec. B,
only they are split in two contributions, one from the electrons transfered following
the direction prescribed by the bias (¢ = +) and the other by electrons transfered
against the bias (¢ = —). In the regime where the tunnel junction is an efficient detec-
tor (eV > kgT,) (Sec. 6.2.3), one therefore expects the ¢ = — contributions to vanish.
The Caldeira-Leggett form of Eq. (7.69) also allows to easily introduce the effect of a
finite quality factor of the oscillator in our calculations. Recalling that we considered
an undamped harmonic oscillator to obtain this equation of motion and knowing that
the finite quality factor manifests itself in such an equation of motion via the damp-
ing and diffusion terms [Eq. (B.16)], a finite quality factor oscillator can be modeled
simply by adding terms
I in (a Dy ., ..
—p T B AR PO} + 7 [% (2 p(x )] (7.73)

with 99, Dy as defined in Appendix B. This way, the total damping rate in the system
is Yot = Y0 + Lo Vo

To understand the structure of Eq. (7.69), it is useful to look at how p(x = 0;t)
evolves with time. This is particularly interesting since

p(x =0;t) =) p(m;t) = posc(t) , (7.74)

as per Eq. (7.43). The equation of motion of p(x = 0;t) is therefore the equation of
motion of the reduced density matrix of the oscillator only; it does not contain any
information about the electronic transport. In this case, both terms ~ (¢’X” — 1) van-
ish and the resulting equation is of CL form, exactly like in the generic case treated in
Sec. 7.2. Since they appear only when considering the charge-resolved master equa-
tion, it becomes obvious that the two terms ~ (¢X? — 1) are useful chiefly for the
calculation of transport properties. Knowing this, it becomes easier to understand
why the modification to Eq. (7.69) to include the coupling to the environment takes
the form presented in Eq. (7.73): since the coupling to the thermal bath is indepen-
dent of charge transport (and of the tunnel junction in general), it does not couple the
equation-of-motion of p(m; t) with the one of p(m £ 1;t). It therefore does not modify
the ~ (¢!X” — 1) terms.

7.3.4 Transport properties from the m-resolved equation of motion

In this last section, we will present the method which is used to derive the transport
properties of the system from Eq. (7.69). For maximum simplicity, we will focus on the
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7.3. Master equation approach for the tunnel junction displacement detector

case where (i) all the damping is due to the detector (ii) 7 = 0 and (iii) the electrons in
the leads are at zero temperature. None of these simplification are necessary and the
calculation can easily be done without doing any of them; the expressions obtained are
just bulkier. Also, note that the results of a calculation in the case of a finite tunneling-
phase difference 7 is presented in Chap. 9. The calculation of the current properties
follows from the definition of p(x; t) as a generating function for the transfered charge
probability distribution: the average current is proportional to the rate of change of
(m), which can be calculated via

d , d
E(m) =iTr (ap()(, t)>X:0 . (7.75)
For the eV >> kT, case, this leads to[Mozyrsky02]
2
F=eLimy =Y [té + 2ty (x) + t%(xﬂ e (7.76)
dat h
Recalling that the effective tunneling amplitude is
T =ty+ 1z, (7.77)

the term o eV /h corresponds exactly to the result one would obtain from the Lan-
dauer formula assuming a static object centered at the position (x). It arises from the
contribution ~ (eiX —1)D of Eq. (7.69). The last term (§) is a quantum correction
that follows from the ~ (e'X —1)4, term. At first, it might seem as if this term could,
for low-enough voltages, lead to an average current against the direction set by the
bias. However, if we instead include the quantum correction in the main bracket, the
current becomes

e2V hQ

I=—= 15+ 2toty (x) + 15 (x?) — 13 (ﬁ) Axg] (7.78)
with Ax3 = 11/(2MQ) the zero-point motion of the oscillator. Written in this form,
it becomes clear that, if we stay in the validity regime of our Markov approximation
(eV > hQ)), the last term cannot lead to counter-currents.

Like in Chap. 3, we will use the MacDonald formula [Appendix A] to calculate the
symmetrized-in-frequency current noise from the equation of motion of ((m?(t))). In
this regard, the first step is of course to calculate

() = (1)) — 20m) & (1)) 779
From Eq. (7.69), we have

%<m2(t)> - %(m(t)) +257 (B{m) + 210t (xm) + B(2m)) 27 (m) . (7.80)
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Combining this equation with our expression for the average current, we find

T2 (0)) =S m(0)) + 257 () + 2toty () + B(xPm)) — 27 m) e
— 2(m) [% (t(z) + 2oty (x) + t%<x2>> — '7+] ,
such that

L (m2 (1)) =S m()) + 257 (2ot (x(Om() + B2 OmOY) . 782)

The first term is the purely Poissonian part of the noise and the second is the correction
due to the detector. Writing S; = ¢(I) + AS; and identifying the second term of the
last equation as AS; we find

AS; =

63 00
Zth /0 dt sin(wt) (zt0t1<<x(t)m(t)>>+t%<<x2(t)m(t)>>) . (7.83)

In general, the first (~ tpt;) term will dominate over the (~ t%) one'?. The calculation
of the current noise therefore involves solving for the time dependence of the correla-
tion between position and transfered charge, ((xm)). Again, we use Eq.(7.69) to write

%<<xm>> _ <<7§C;>> + % [2t0t1(<xx>>] — ’7+i—(1) , (7.84a)
& {4y = —MOP{ o))~ 27 (G} + L it (xp -+ px) 20 p))] , 7840

where, since the time-derivative of ((xm)) involves ((pm)), we also calculated the
equation-of-motion for the correlations between momentum and charge. In order
for the current-current correlation function to be time-translational invariant (i.e., for
(I(t 4+ t')I(t)) to be independent of t), we replace all averages that do not contain m
by their stationary expectation value. Combining Egs. (7.84a)-(7.84b), we find

2 e
) + 27 o))+ (o)) =25 (S 20 00%) = 7. 2) . 789)

This is a second order differential equation for which we need 2 boundary conditions
to obtain the full solution. Since we have m = 0 at t = 0, then ({(xm(t = 0))) = 0 and
((pm(t = 0))) = 0. Using Eq. (7.84), we find that the two initial conditions in this

101n fact, the signature of the « t% term in the current noise was never observed on one of the leading
experimental realization of a tunnel junction displacement detector[Flowers-Jacobs, private communi-
cation].
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problem are

((xm(0))) =0, (7.86a)
%<<xm>> » = % [(2t0t1)<<x2>>] - «hi—? . (7.86b)

Using these boundary conditions, the differential equation [Eq. (7.85)] can be solved,
using for example Mathematica. The expression obtained is more compact after inte-
gration,

Agglst order) _

zivw /Ooo dt sin(wt)2toty ((x(t)m(t))) , (7.87)

_ eV 5 [ eV Y+ =
= T(2;50t1) <7 - 2(x2>t%> Sy(w) . (7.88)

Using Eq. (7.70), this can be re-expressed as [Clerk04b; Doiron07]

—(1st order 3y V o Q Ax3 \-
agttstorder) ‘37(2t0t1)2 (% . Eﬁ) 5.(w), (7.89)
with
gx(w) — 2(2,7t0t)02<<x2>> (790)

(w? = O2) + 455,02

where, for completeness, we introduced back the finite environmental damping in the
tinal result. The physical interpretation of this result will be commented on at length
in the next chapter.

In a very similar fashion, we can calculate the contribution of the second or-
der (~ #3) to find that it is proportional to [ dw’Sy(w’)Sx(w — w'). Even if all the
calculations presented in this section were done considering a finite DC bias, the
same path can be followed to calculated noise properties arising for AC biasing of
the tunnel junction. In this case, instead of one main peak ~ Sy(w) at the natu-
ral frequency of the oscillator, one finds two satellite peaks at () + w,, with w; the
driving frequency [Clerk04b; Poggio08]. In closing, we mention that it was recently
demonstrated[Bennett08] that it is possible to calculate the full counting statistics of
the system starting from Eq. (7.69). This allows to study some deviations from the “de-
tector as an effective bath” model that manifest themselves in higher-order cumulants
of the current.
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CHAPTER

Displacement measurement using detector cross
correlations

Adapted from Phys. Rev. B 76, 195312 (2007)

In the current generation of experiments with tunnel junctions, the coupling
between the resonator and the mesoscopic detector is typically very weak. The
displacement measurement can therefore not be seen as a strong projective mea-
surement. It is better described within the framework of weak continuous mea-
surement theory that was recently developed in the context of solid-state quantum
computing[Averin03a; Korotkov01b; Pilgram02; ClerkO3b] and presented in Sec. 4.2.
This theory describes a continuous measurement process where the information about
the measured object can be extracted, for instance, from the spectral density of the de-
tector (and not simply from its average output). An important result in this theory
is the Korotkov-Averin bound (Sec. 4.2.1), which puts an upper limit of 4 to the ra-
tio of the contribution of the measured state to the detector’s spectral density, and
the intrinsic background detector noise, for any linear detector measuring a two-level
system.

Since a quantum displacement measurement by a mesoscopic detector can be de-
scribed within the same theoretical framework as a qubit measurement, one might
ask if such a bound also exists in the case of a displacement measurement. In this
chapter, we first show that, for fixed system parameters, the peak-to-background ra-
tio in the spectral density of a position detector weakly coupled to an oscillator is also
bounded from above. This result is obtained by considering the example of a single
tunnel-junction detector, discussed at length in the previous chapters.

Besides showing that the peak-to-background ratio is bounded in the typical
single-detector displacement measurement, in this chapter we also propose two sim-
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ple experimental configurations (Fig. 8.1) where, by using the cross correlations be-
tween two detectors, the bound on the peak-to-background ratio can be overcome. As
the oscillator-independent parts of the output signal of the two detectors are uncorre-
lated, the background noise in these configurations is zero and therefore the peak-to-
background ratio diverges. In the context of qubit readout, this idea has already been
proposed in an insightful work by Jordan and Biittiker [Jordan05] and was shown ex-
perimentally to improve readout fidelity[Buehler03]. Experimentally, displacement
measurements should also profit from using cross-correlated detector outputs. We
analyze in detail the two configurations presented in Fig. 8.1 and obtain analytical
results for the optimal cross-correlated signal as a function of different detector pa-
rameters.

In Sec. 6.1.2, we derived for a generic detector a bound on the sensitivity of a linear
measurement. In this chapter, after showing exactly how this bound manifests itself
in the specific case of a tunnel junction displacement detector, we will show that the
double-detector setup proposed here can in fact be used to almost totally get rid off
the added displacement noise of the oscillator due to detector back-action. This is a
remarkable result that nicely complements the general single-detector analysis made
in Chap. 6.

The chapter is organized as follows: in Sec. 8.1, we introduce the formalism used
in the rest of the paper, the master equation for the m-resolved density matrix[see
Sec. 7.3], this time in a double-detector setup. In Sec. 8.2, the formalism is applied to
the case of one position detector coupled to the oscillator: we analyze the peak-to-
background ratio and show that this quantity is always bounded from above. This
bound cannot be made arbitrarily large simply by increasing the detector sensitivity.
Sec. 8.3 generalizes this treatment to a configuration with two detectors and demon-
strates that measuring the current cross correlations of the two detectors allows one to
get arbitrarily high values of the peak-to-background ratio: i.e., it is possible to elimi-
nate the bound that exist in the single-detector case. In Sec. 8.4, we demonstrate how
the proposed setup can be used to diminish the added position noise of the oscillator
induced by the presence of the detector, allowing displacement measurement beyond
the standard quantum limit derived for a single detector.

8.1 Equation of motion for the density matrix

As shown in detail in Chap. 7, by writing the equation of motion for the density matrix
of the full (detector and oscillator) system and tracing out the detector degrees of free-
dom, one can obtain an equation of motion for the reduced density matrix describing
the evolution of the oscillator taking into account the coupling to the detector.

To study the current cross correlations between two tunnel junction position detec-
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Figure 8.1: The two typical detector configurations examined in this chapter. In both
cases, the movement of the oscillator is along the x direction in the xy
plane, as depicted by the < sign. top) In-phase configuration, where two
detectors (with bias Vj and V), respectively) are located on the same side
of the central part of the oscillator, such that both detectors couple in the
same way to the position of the oscillator. This is covered in Sec. 8.3.1.
bottom) Out-of-phase configuration, where the detectors are located on each
side of the oscillator. When the position of the oscillator is such that the
tunneling amplitude of one junction is increased, the tunneling amplitude
of the other junction is therefore decreased. This is covered in Sec. 8.3.2.

tors coupled to an oscillator, we use a fully quantum approach very similar to the one
presented in Sec. 7.3. We label the detectors with the index « = 1,2 and model each
of them as a pair of metallic leads with constant density of states A, (in the energy
range relevant to tunneling) coupled via the tunneling Hamiltonian Hyn. The Hamil-
tonian for one detector can therefore be written as a sum of a bath Hamiltonian Hp ,
describing the leads of junction « and a tunneling Hamiltonian Hn o

Hdet,oc = HB,oc + Htun,a (8.1)
Hp, = Zsk,,xc};ack,a + qu,ac;“,acq,“ (8.2)
k q
Huuna = Ta(2) Y3 Y ¢} 1+ Ta (£)Ya Y €l aCha s (8.3)
k,q k/q

where k(q) is a wave vector in the right(left) lead. The coupling between the detector
and the position of the oscillator is modeled by a linear x —dependence of the tunnel-
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ing amplitude

Ty(%) <T0,a + e rl,,xae) . (8.4)

27,
In this equation, 1y, is the bare (oscillator-independent) tunneling amplitude of de-
tector a, £ is the position operator of the oscillator and T 4 is the part of the full tunnel-
ing amplitude detector a that depends on the position of the oscillator. We allow for
a general relative phase 7,, describing the details of the coupling between the tunnel
junction and the oscillator. Such a phase can in principle be controlled by a magnetic
flux penetrating an extended tunnel junction consisting of a loop containing two junc-
tions, one of which couples to the oscillator (Chap. 9). Note that in our notation 1,
is dimensionless and 17 , has dimensions of one over length and that we assume for
simplicity that the tunneling amplitudes do not depend on the single particle ener-
gies € 4(g,q)- The operator Y,JS” decreases (increases) m,, the number of charges that
tunneled through junction «. Its presence in the tunneling Hamiltonian allows one to
keep track of the transport processes that occur during the evolution of the system.

We are interested in calculating the equation of motion for the reduced, m,-
resolved, density matrix

p(my, my; t) = (my, ma|Posc|my, ma) , (8.5)

where posc = Trp{prot } is the reduced density matrix thatis obtained by tracing out the
leads’ degrees of freedom from the full system density matrix. Within a Born-Markov
approximation, the equation of motion of posc. can be expressed as

d i 1 0 -
aposc(t) = _E[HOSCIPOSC(t)] - ? /_oo dt TrB{[Htun/ [Htun(t )/Posc(t) ® PB]]} , (8.6)

where Hyyn = Hiun1 + Hiunp is the total tunneling Hamiltonian, the trace is on both
pairs of leads, pp is the coupled density matrix of the two sets of leads and

p2  MO?#?
Hosc = hQ(ﬁJrﬁ + 1/2) = 273\4 + > , (8.7)
Htun(t) = ZeiHO’at/thun,aeiiHO’at/h . (8.8)
o

with Hyy = Hosc + Hp,. In our system, the Born approximation corresponds to as-
suming that tunneling in both tunnel junctions is weak enough so that it can be treated
using second-order perturbation theory. The Markov approximation, on the other
hand, is valid as long as the typical correlation times in the leads (i/eV) are much
shorter than 277/(), i.e. the typical evolution time of the oscillator. In practice, this
limits the applicability of the following results to the strongly biased case eV > h().
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8.1. Equation of motion for the density matrix

Since the leads of detector 1 are totally independent of those of detector 2, pp can be
written as a tensor product of the density matrices describing each pair of leads pp =
pB, ® pB,. Also, as Hyn « has no diagonal contribution in the basis that diagonalizes
Hp ,, the trace over leads a of a quantity that is linear in Hyn 4 vanishes. As a result of
those two properties, the trace in Eq. (8.6) can be rewritten as a sum over two traces,
each involving only one pair of leads

Trp{[Heun, [Heun (F), posc(t) @ pB]]} = ZTrBa{[Htun,m [Heun,a (£), posc(t) @ pB, ]} -
(8.9)

This effectively makes the two-detector problem two single-detector problems. The
trace over the leads’s degrees of freedom is then carried out in the standard way
[Blum96].

As mentioned above, we are interested in calculating the time-evolution of the m,-
resolved density matrix. Thus, we have to calculate (17, m5|0¢posc| 1, M2). We use the
relations

my, ma|Y1 Y] posc () |my, mo
ma, m2|Y1+Posc(t)Y1 |m1/ ny
my, mZ‘nylposc(t) ‘mlr my

o~ o~~~
~ ~ ~ ~——

my, ma|Yiposc(t) Y7 |my, my

as well as the equivalent identities for detector 2 in Eq. (8.6) to find the equation of
motion for p(my, my; t).

Following a counting-statistics approach[Belzig04; Blanter06], it is particularly
useful to express the equation of motion in terms of a counting field x,, the conjugate
quantity to the transfered charge m,. Indeed, Fourier-transforming in the transfered-
charge indices m,,

(o) (o)

Pxixzt) =Y eXm N eX2M2p(my,my;t) (8.10)

mp=—0o0 My=—0o0

leads to an equation of motion from which the time-dependence of all moments of
m (for example, 9;(m,),d;(m?2),...) can be determined. The current-current correla-
tions can then be obtained by taking successive derivatives with respect to (ix,) of
the equation of motion of g(x1, x2; t)-

In the regime of weak coupling between the oscillator and the detectors, we can
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write the equation of motion of §(x1, x2;t) as

—1

7 [Hoso p(t)]

—|—EZ[F32 Z’me p(t)}] — hlz ZD‘”‘[)?’ % p(1)]]

d
dtp(Xll X2/ ) -

(8.11)

eloXe — 1 2D , .
+Z< 2 ) . ( hg'a (T, + €171 o 2)0(t) (T0,0 + €711y 0 X)

Since p(x1 = 0,x2 = 0;t) = Y, L, p(m1,m2;t), taking x1 = x2 = 0 corresponds
to completely tracing out the charge degrees of freedom. In this case, one finds that
p(0,0;1) is of Caldeira-Leggett form (Sec. 7.2, Appendix B). We can thus identify the
constants D, , and § 4 as, respectively, the diffusion and damping constants induced
by forward (¢ = +) or backward (¢ = —) propagating currents in detector «. We can
also identify F, as the average back-action force exerted on the oscillator by detector
«. We find explicitly

hz T, 2 ~ ~
DO-/“ - Z p— I:r)/o'/“ (hQ) + r)/g-,a(—hQ)] 4 (8'12)
0,0
. _ _h T 2 Yo,u (M) — Yo u(—1OY)
You = MO <T0,“) ( 5 , (8.13)
= 1 . T0,u
F, = —sin(1,) (-) Y 20Dy, (8.14)
h Tl,tx o

where the two inelastic tunneling rates are given by

(eq0) (1= feal(eqa +E)) (8.15)

T-alE) = 'TO""z

/ dskocfkoc Ser) (1 _fq,a(sk,a+E)> (8.16)
involving a transfer of energy E from the oscillator to the lead electron. We denote
by 9+, the forward tunneling rate, i.e. the rate at which electrons tunnel in the di-
rection favored by the voltage bias. The backward rate §_ , corresponds to the re-
verse process. In Egs. (8.15) and (8.16), fry = fra(€ky) is the Fermi distribution
function describing the local thermal equilibrium of the right lead of detector & and
fax = fLa(€ga) is the same for the left lead.

Comparing these relations with the one derived previously in the single-detector
case[Eq. (7.69)] shows that the full damping and diffusion coefficients governing the
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8.2. Single-detector case: Bound on the peak-to-background ratio

evolution of the oscillator are the sum of two single-detector contributions. The
Caldeira-Leggett form of Eq. (8.11) allows us to include the effect of direct coupling
of the oscillator to the environment by adding detector-independent contributions
Dy = 2M+okpTp and §9 = Q/(2Qp) (where Qq is the extrinsic quality factor of the
mode) to the previously derived diffusion and damping constants. The evolution
of the oscillator is then governed by the two constants Diot = Do + Y., 4 Do, and
Fot = Y0+ Lo« Vou- For the specific case where the electronic temperature is zero and
where eV, > h(), current will only be possible along the (¢ = +) direction, and both
¥_» and D_ , will be zero. In this case one can also show that ¥ , = hTf ./ (4tM)
and that the diffusion parameters are given by D , = MY 4eV,.

The equation of motion for different moments (x/p*) of the oscillator can be eval-
uated by taking the trace of x/p¥$(0,0;t). More generally, equations of motion for
combined moments of charge and oscillator quantities can be obtained by also con-
sidering derivatives with respect to the counting fields x,

o(n3+ny)
a(m )"38(17(2

o =Ty

)mﬁ(xl,m; t)) . (817)
x1=x2=0

8.2 Single-detector case: Bound on the
peak-to-background ratio

One of the main motivations for studying displacement measurements using cross-
correlated detector outputs is to remove the bound on the peak-to-background ratio
that appears in the single-detector case, just like in the case of a weak measurement of
a two-level system[Jordan05]. In this section, we first review the results of Clerk and
Girvin (CG) [Clerk04b] for the single-detector configuration, in the case where one
considers the dc-biased, T = 0, tunnel junction where the x—dependent tunneling
phase is 7 = 0. We then carefully analyze the peak-to-background ratio and show
that this quantity is bounded from above in the single-detector case, for finite bias
voltage and oscillator displacement.

When treating the case of the single detector, we showed [Eq. (7.89)] first non-
vanishing order in 77, the current noise of a tunnel junction position detector is given

by

3

— 1% V QA% =
Sitot(w) = e(I) + ET(ZTOq)Z <% _ E%) Sy(w), (8.18)

where Ax3 = 1/(2MQ) is the average of x? in the ground state of the (quantum)
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8. DISPLACEMENT MEASUREMENT USING DETECTOR CROSS CORRELATIONS

harmonic oscillator and

g (C(J) _ 47t0t02<x2>
X T AR2 2 2 42)2
4Yiw? + (% — w?)

(8.19)

its power spectrum. The full current noise is the sum of the usual frequency-
independent Poissonian (shot) noise and the contribution of interest due to the cou-
pling of the junction to the oscillator. This second part is itself expressed as the differ-
ence of a classical part (which is proportional to V?) and a quantum correction (which
is proportional to V).

A relevant figure of merit of such detectors is the peak-to-background ratio R (w):
the ratio of the contribution of the oscillator to the full current noise at frequency w
over the unavoidable frequency-independent intrinsic detector noise. This ratio is
maximal at @ = Q and, in the case where one only considers the « V2 contribution
in Eq. (8.18), was shown to be given by

_EI,O(Q)—eU)_ eV ,52
RO == = T+ B

where we used (I) = (9;ym1(t)) ~ V1§ (1+ p?) /h and introduced the dimension-
less sensitivity parameter f> = 12(x?)/73.! At this point, one should proceed with
care when maximizing R with respect to the sensitivity parameter, as Jiot = J0 + ¥+
depends on B through 74 = (Q1G/2m)(Ax3/(x?))B?. Writing out explicitly all terms
in R that depend on f, one finds that

412 eV 2 A2 L\ B>
R(Q) = —Qo <1+Qo—°—°ﬁ2> (8.21)

(8.20)

7o) 7T (x?) 1+ B2

is a non-monotonic function of the sensitivity parameter 8. For a given (x?), one can
then find an optimal value

4 T (x?)
= -—, 8.22
ﬁopt QOTOZ Ax% ( )
for which R is maximal
-2
QoTg eV Qo Axg
=4 — 1 =3 _ Y 2
Rinax 70 + T () (8.23)

!t is important to distinguish the detector’s sensitivity parameter B introduced in Sec. III from the
displacement sensitivity Sy ,q4(w) discussed in Sec. V. The former allows an easy comparison of the
relative weight of the position-dependent (x le) and independent (cx ’L’OZ) part of the current. The latter
characterizes the detector-dependent signal in a displacement measurement, in terms of displacement
fluctuations of the oscillator. It is typically independent of 1.
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8.2. Single-detector case: Bound on the peak-to-background ratio

We can examine this result in two different limits. The first is when the damping
is mainly detector-independent (49 > 9+ ), like in the case where the extrinsic quality
factor of the resonator is low, Qp < (x2)/ (73 Ax3). In this case, the maximal peak-to-
background ratio,

R ~g Z)eV (r&%%)( P )

A_x(%h_Q o (x2) ] \1+ B2

() eV (13Qo 533
T AGRQ N\ o (x?) )

(8.24)

is reached when the sensitivity parameter 8 is extremely large. However, since the
rightmost term of Eq. (8.24) is by definition small in this limit, the peak-to-background
ratio cannot become extremely large when the extrinsic resonator damping dominates
the detector-induced one.

Indeed, the real maximum of R is reached when one considers the opposite limit
of a very high resonator Q-factor[Clerk04a], Qp > (x?)/(t3Ax3). For 79 = 0, the
peak-to-background ratio can be shown to obey

(x2) eV 1 < (x?) eV

~ 4 — — .
R Ax3 hQ 1+ B2 = Ax3 hO)

(8.25)
In the single-detector case and for given system parameters (¢V and (x?)), the peak-to-
background ratio is therefore always bounded whatever the strength of the coupling
and the bound does not depend on Qg and 7. As can be seen from Eq. (8.22), the
peak-to-background ratio is in this second case maximal in the limit § — 0 of vanish-
ing coupling. While the optimal R can be increased by increasing the bias voltage,
we stress that our bound on R denotes the optimal value of the peak-to-background
reachable for a set of fixed system parameters.

The nature of the true bound on R (i.e., the one found in the case Qy — ©0) is very
similar to the Korotkov-Averin bound that arises in the context of a weak measure-
ments of a qubit. To make this more apparent, we can derive this bound following the
linear-response approach that has been used to derive the bound on R in the mea-
surement of two-levels systems, treating the detector as a position-to-current linear
amplifier with responsivity (dimensionful gain) A = 2¢*V 171 /h. As noted by CG,
considering only the dominant & V2 term in Eq. (8.18) corresponds to writing AS| =
Sy —e(I) = A?Sy(w). Atresonance, the power spectrum AS; = A%(x?) /4 is inversely
proportional to the damping rate , in the same way that the response of the detector
measuring a qubit is inversely proportional to the dephasing rate due to the measure-
ment device. Moreover, in both cases one can show that the dephasing (damping rate)
is proportional to the fluctuations of the bare input of the detectors. For a position de-
tector in the high effective temperature limit kg T > h1(), we showed [Eq. (6.9)] that
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8. DISPLACEMENT MEASUREMENT USING DETECTOR CROSS CORRELATIONS

the detector-induced damping is indeed proportional to the symmetrized detector
force noise (29) = Sp/2MkpTeg, such that AS; < 4MA?(x?)kpTug/SF. Also, since for
a tunnel junction detector there is no reverse gain A’ and the real part of the cross cor-
relator S;r(w) vanishes for sin(7) = 0 [Eq. (6.50)], the condition on quantum-limited
efficiency of the position measurement[Eq. (4.17)]

(Re[A — A'])? + (Re[S £])? (8.26)

becomes exactly the one used to derive the Korotkov-Averin bound S;Sp > Fi—Az. We
then find that R = AS;/S; < 8(x?)kpTesr/ (HQAX3). Using kgTegr = eV /2 in the tun-
nel junction system, this result corresponds exactly to Eq. (8.25), the bound previously
derived using the equation-of-motion approach.

8.3 Peak-to-background ratio in current cross
correlations

Extending ideas from the qubit measurement problem[Jordan05], we now demon-
strate how to eliminate the bound on the peak-to-background ratio in a displace-
ment measurement. Calculating the current-current correlations between two tunnel-
junction position detectors, we show that for cross correlation measurements, R di-
verges. We also obtain analytical results for the cross correlations in two typical cases.

To calculate the current cross correlations, we use the generalized MacDonald for-
mula [A], a general result (valid for stationary processes) that provides a way, in the
present case, to relate the symmetrized cross correlations to the Fourier sine-transform
of the time-derivative of the covariance of m; and mj;, the number of charges that tun-
neled through each junction. The generalized MacDonald formula reads

§11,12(w) = ezw/ dtsin(wt)Kq2(t) , (8.27)
0

where we defined

d

Kia(t) = [E(<m1m2>t’ - <m1>t/<m2>t’)} (8.28)

=
In this last equation (mqmy) corresponds to Trmy my (0,0, t) and represents the cou-
pled moment of m; and m; at time t.

To proceed further, we restrict ourselves to the case of zero electronic tempera-
ture and dc-bias. In the following subsections, we analyze in detail the two differ-
ent cases depicted schematically in Fig. 8.1. We have in mind that a realization of
the setup shown in Fig. 8.1 is made in a similar way as the single-detector setup in

108



8.3. Peak-to-background ratio in current cross correlations

Ref. [Flowers-Jacobs07]. This means that the tunnel junctions correspond to atomic
point contacts (formed by electromigration) which are separated by about 1 nm from
the oscillator. In contrast, the two detectors are assumed to be separated from each
other by at least 20 nm. Therefore, capacitive cross-talking between the detectors will
play a negligible role.

8.3.1 In-phase configuration

We will first consider the case where both 777 = 7, = 0, the case where both tunnel
junctions are located on the same side of the oscillator, cf. Fig. 8.1 a). To calculate the
cross correlations, we use Eq. (8.17) (with n; = ny = 0), to find that

d eV, 5

o (made = 28 (B +2T0aT1a () + T () = Taa s
d eV,
dt<m1m2 i ( g (ma) + 27101111 (XM +T11<x2m2>>

eVh
T <T 0o (my) t+2702712<xm1>t+T12(x2m1> >
Y1(ma)e — Fo2(mi)t,

and therefore that K; »(t) in this case is given by
eV eVq
Kia(t) =2 017, ((xm2))s + =713 ((xPma) )

eV eV
+272T012T1,2<<xm1>>t + 72Tf2(<x2m1>>t .

(8.29)

where the double bracket denotes the covariance of two quantities: ((ab)); = (ab); —
(a)(b);. This means that, to lowest order in 7y ,, the full cross-correlated output of the
detectors is given in this configuration by

§11/12 ( )

eV eV;
=0 = 2¢ ‘U/ dt sin(wt) (Tlfo 1711 (xm2) ) + 72T02T1 2({xm))e ) -
112=0

(8.30)

The cross-correlated signal does not contain any oscillator-independent contribu-
tion. Using Eq. (8.17), a closed system of differential equations involving ((pmy,)):
and ((xmg)): can be generated. This system can be solved, using the boundary
conditions m,(0) = 0 and assuming that all averages that do not contain m,
are time-independent and can therefore be evaluated in the stationary (f — o)
limit[ Armour04a].

109
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Solving for the different covariances, we find that the current cross correlations
can be written as

2 2
<tot 2 e“ViVs B e(V1 + Vz) (@) AXO —
Si 1, (w) =e“(279,170,2) (2T1,171,2) ( 2 A () Sy(w), (8.31)
hQ eV +eVp) Ax3 ) =
— MMy (1 3
172 < 4eVieVy  (x2) Sx(w), (8.32)

where we introduced the gains A, = Zezro,aTMVa cos(1y)/h. Evidently, the cross-
correlated output of the detectors (8.31) does not contain any frequency-independent
background noise. The peak-to-background ratio R (Q2) therefore diverges for all val-
ues of 9o/ ¥+, not because of an increased signal but due to the absence of background
noise in this configuration.

For this type of measurement, a relevant figure of merit of the detection system
R. is the ratio of the cross-correlated output over the frequency-independent noise
power of individual detectors : R = Sy, 1, 10t(€2)/ v/ S152, where S, = e(l,). For our
position detector, we find

R.— S, 1ot _ 4 1 T, T2 VViVa e(Vi+ V) (x2)

¢~ /. 7 2 2 2

V5152 1+%%¢ﬂ+ﬂ9“+ﬁ@ql+q2%+W§ Q. Axd
(8.33)

< €(V1 —+ Vz) (x2>
- Qo Ax3

(8.34)

where we used 2xy < (x? + y?). From this inequality, we see that the maximal cross-
correlated output is found for (i) twin-detectors (where 11 1 = 171 2) and (ii) equal bias
voltages V1 = V. Also, like in the single-detector case, R, is maximal in the limit
where there is no extrinsic oscillator damping 9 and where the correction to the av-
erage current due to the coupling to the oscillator vanishes (8, — 0).

Once again it is instructive to compare our value of R, for twin detectors with
the equivalent result in the case of a weak measurement of a qubit using cross
correlations[Jordan05]. In the latter case, the cross-correlated output was shown to
be limited to 1/2 of the single-detector signal due the increased (doubled) detector-
induced dephasing. This is the same here.

8.3.2 Out-of-phase detection

We can also analyze the case where one detector couples to +x and the other to —x,
as would happen if the two detectors were located on opposite sides of the resonator
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8.4. Bound on the added displacement noise

(see Fig. 8.1). In terms of the tunneling phases 1,, this corresponds to taking r7; = 0
and 7, = 7. Using Eq. (8.27), the cross correlations are then given by

— 0 . eV; eV,
511,12((,0)‘171:0 = Zezw/o dt sm(wt) (71T011T111<<xm2>>t — TZT0,271,2<(xm1)>t) .

=7

(8.35)

As the coupling between detector 1 and the oscillator is the same as in the previ-
ous case ((xmj)); remains unchanged in this second configuration. The covariance
((xmy) ) on the other hand changes sign (but keeps the same norm) in this new con-
tiguration. Equation (8.35) then yields

§[1/12(CU) ;11:0 = _gll,lz(w) ;71:0 . (836)
=" 1712=0

The cross correlations in the second configuration are the same as in the first one, but
of negative sign. From an amplifier point of view, this is easily explained since putting
12 = 7t corresponds to transforming A, — —A7 in gll/ L = A1A5S,. Finally, note that
this configuration was analyzed for two single-electron transistor position detectors
coupled to a classical oscillator, in Ref.[Rodrigues05] by Rodrigues and Armour. In
their article, these authors only explicitly calculated zero-frequency cross correlations
between the currents in both detectors, but they conjectured that, at the resonance
frequency of the oscillator, this detector-configuration (corresponding to 173 = 0,772 =
7t in our approach) should yield strong negative cross correlations, just like the ones
predicted here.

8.4 Bound on the added displacement noise

As shown in Sec. 8.2, to derive the equivalent of the Korotkov-Averin bound in a dis-
placement measurement, one needs to consider the full current noise, where no dis-
tinction is made between the signal due to the intrinsic equilibrium fluctuations of
the oscillator Sjeq(w) and the remainder of the signal S; ,q4(w). This second contri-
bution contains, amongst other things, the added signal due to heating of the oscilla-
tor by the detector. As mentioned in Sec. 6.1.2, when trying to measure precisely the
equilibrium fluctuations of a nanomechanical oscillator however, it is important to
consider the two contributions separately: 5;¢q(w) is exactly what you would like to
measure while S; ,4q(w) limits the sensitivity of the measurement. When using a sin-
gle linear detector like the tunnel junction, this measurement sensitivity is quantum-
mechanically bounded from below[Clerk04a].

When discussing this bound on added noise, one usually considers the added dis-
placement noise, that corresponds to the added current noise referred back to the os-

111



8. DISPLACEMENT MEASUREMENT USING DETECTOR CROSS CORRELATIONS

cillator. We therefore introduce the total displacement noise gx,tot, defined as

— Srtot(w
Sx,tot(w) = I/tj\tz( )

= Sx,add(w) + Sx,eq(w) ’ (8.37)
where A is the x-to-I gain of the detector, S, ,qq4(w) is the part of the full displace-
ment spectrum that arises due to the presence of the detector. In the relevant limit
of a detector with a high power gain (eV > h()), it was shown using general ar-
guments that S, ,44(Q) > 1/2MQtot: as derived Sec. 6.1.2 in the best possible de-
tector therefore adds exactly as much noise as a zero-temperature bath of frequency
O)[Clerk04a; Caves82].

Before discussing the limit on the added displacement noise in a cross correla-
tion setup, it is helpful to describe how the quantum limit on gx,add(Q) is reached
when considering the specific example of a tunnel junction displacement detector.
Let’s consider for definitiveness the experimentally relevant configuration where
eV > kgTp > hQ). For a measurement to be quantum limited, the effective temper-
ature of the oscillator Tesr = (§+eV /2 + GokpTo)/ (kpFtot) must not be dramatically
higher than Tj. This is natural, since added fluctuations due to the higher effective
temperature are, by definition, unwanted back-action noise. In this regime, one there-
fore cannot expect §x,add to be close to the quantum limit unless ¥, < §o. The regime
of ¥4+ /%0 in which quantum-limited displacement sensitivity can be achieved is there-
fore very different from the one where the bound on the peak-to-background ratio can
be reached.

Using the expression for the full current noise derived earlier [Eq. (8.18)], we write
the full position noise as

< hQ Ax2\ —
Sx,tot(w) = Slltf\tz(w) = e/<\.12> + ( - _ZeV_<xJ;-(;) Sx(w) ’ (8.38)
hQ))?
= )@ + 4MFrotkp Tege|g (w) > — M%ot( ) g(w)]?, (8.39)

with the ¢(w) oscillator’s response function as defined in Eq. (6.13). Splitting the sec-
ond term into a detector dependent and independent part, we find

Sxeq = 4MokpTo|g(w)[?, (8.40)
— e(l _(hO)?
Suata = o +4M7, Y [5(@) P - M g(@)? . (841)

This way of writing the equilibrium fluctuations implies that we consider 4ot >~ %o
in g(w), in agreement with our previous assumption that 4 < 9¢. The added noise
contains three contributions, corresponding to the detector shot noise, the detector-
induced heating of the oscillator and a correction (ex 1()/eV) arising from the cross
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correlation between the detector output noise and the back-action force, S;r, respec-
tively. Explicitly, taking (I) ~ ¢?>73V /h,? we obtain

nh | hreVig(w)? o (hQ)*
26V712+ 27 — Mo~ Ig(w)]” (8.42)

gx,add =
For a fixed bias voltage, the relevant tunable parameter is directly the detector-
oscillator coupling 77 (and not the dimensionless sensitivity parameter §, since gx,add
is independent of 19).> For strong coupling, Sy .44 is dominated by heating of the
oscillator, while for weak coupling, the shot noise contribution (x 1/7?) domi-
nates. This is the regime in which the current generation of experiments are operated
[Flowers-Jacobs07]. There is an optimal coupling 77 opt = 71/ (eV[g(w)]) that mini-
mizes the total added noise. At the resonance, we recover the inequality

Sxadd(Q)) > (1

h ) f (8.43)

© 2eV ) 29eMQ 7
where the bound is reached when 71 = Ty gt This is the quantum limit on the added

displacement noise for the single-detector configuration. In passing, we note that the
effective temperature of the oscillator when the coupling strength 7 is optimal is

Tetr = To + ZT(Z , (8.44)
in agreement with the general analysis of Ref. [Clerk04a]. The heating of the oscillator
by the detector is, as expected, very low when doing a quantum-limited measurement.

We can now show how cross correlations can be used to beat the quantum limit
on gx,add derived in the single-detector case. In both cross correlation configurations
(n=0,m), gx,tot = §11, 1,/ AMAzisidentical. Like in the single-detector case, we separate
the total position fluctuations in two parts

gx,eq - 4]\/I'T’OkB T0|g(w) |2 s (8.45)
Sy add B - _ (1Q)%(eVy +eVp)
W =2 ;'YJr,ocEVa Ytot 2eVieV, . (8.46)

The cross-correlated position spectrum does not contain the frequency-independent
shot noise contribution that diverges for low coupling ( 1/7?). Therefore, one does

2The derived bound is therefore valid up to a positive correction of order 2.

3In principle, we could use the bias voltage eV as an optimization parameter. In this case, we would
find that Sy ,qq4 — 0 for eV /i) — 0; there is no limit on the added position noise in the low power
gain regime (eV ~ 7)) [Clerk0O4a; Caves82]. However, since Eq. (8.18) was derived in the high bias
regime, it is better in the present case to optimize the coupling strength 71 while keeping eV /i) >> 1
fixed.
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not need to tune the coupling to equilibrate the “shot noise” and back-action “heat-
ing” contributions. Instead, one can freely tune the couplings 71 , such that S, ,q4(w)
vanishes completely. We find gx,add = 0 for Tf wopt = 47t MY+ u,0pt/ 11, where

i Frot (B ?
Y+a,0pt = —,Y;Ot (W) . (8.47)
o

At the optimal coupling point, the effective temperature of the oscillator is

Q) hQ) Q) (8.48)

Tote = T —+ | .
et = fo+ (ev1 o) 8y
In the regime of interest (eV, >> h(}), the additional heating of the oscillator consid-
erably reduced from the single-detector value.

8.5 Summary

In this chapter, we have shown that, for a tunnel-junction position detector coupled to
ananomechanical oscillator, the optimal peak-to-background ratio R at the resonance
frequency of the oscillator is bounded. In contrast to the universal (independent of
all system parameters) bound derived for a continuous weak measurement of qubits
(R < 4), the new bound derived for displacement measurements is a function of the
effective temperature of the oscillator and its average displacement. We have also
shown that adding a second detector and using the cross correlations between the
two detectors allows one to eliminate this bound on R. We have analyzed in detail
the cross-correlated output of the position detectors in two typical configurations, and
have shown that in both cases the optimal cross-correlated signal is measured by twin
detectors. We also investigated the quantum-limit on the added displacement noise
and shown that it is possible to totally eliminate the added displacement noise by
doing a cross-correlated measurement. This configuration therefore opens the door
for displacement measurement with sensitivities better than the quantum limit.
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CHAPTER

Measuring the momentum of a nanomechanical
oscillator through the use of two tunnel junctions

Adapted from Phys. Rev. Lett. 100, 027202 (2008)

In previous chapters, we always considered NEMS where the detector was cou-
pled via the position operator to the mechanical object: the detector therefore acted
solely as a displacement detector. As discussed, using these detectors displacement
measurements with close to quantum-limited sensitivity have been demonstrated.
From a fundamental point of view, it is desirable to go further, i.e. to prepare and
manipulate NEM oscillators in the quantum regime. A quantum NEM system would
allow us to study an ideal realization of a continuous variable quantum system
[Braunstein05]. The exploration of such systems has to be seen as complementary
to the wide study of two-level systems done in the context of quantum computing.

In order to be able to fully characterize a continuous variable quantum system
that is described by two non-commuting operators £ and p, we need to be able
to measure expectation values of moments of both of them [Duan00]. Only this
allows, for instance, to detect the entanglement between two (or more) NEM de-
vices [Eisert04]. The literature already contains proposals regarding quantum mea-
surements of the momentum of macroscopic objects like those used for gravity-
wave detection [Braginsky80; Braginsky90; Braginsky(00; Braginsky03]. However,
none of these proposals have been realized in practice. In this Letter, we propose
a way to measure the momentum of a nanometer-sized resonator. This is a non-
trivial task since the coupling between the detector and the oscillator is naturally
described by an x-dependence but not a p-dependence. Nevertheless, the proposed
setup (shown in Fig. 9.1b) allows for a measurement of the momentum spectrum
Syp(w) = [dtet ({p(t), p(0)})/2 of the oscillator. This can be done because we have

115



9. MOMENTUM MEASUREMENT USING TUNNEL JUNCTIONS

found a way to tune the phase of the tunnel coupling term that is sensitive to the posi-
tion of the oscillator by an Aharonov-Bohm (AB) flux ®, see Fig. 9.1b. Related setups
have been investigated recently in the context of dephasing due to the coupling of an
AB ring structure to a NEM device [Armour(1]. The typical tunnel junction position

a b T
T(&) II : T
4D:'7 bias V “ bias V LD u

1 . ;

Ty(z :

T(2) W nw @
—— A
1 -

Figure 9.1: (a) Position detector. The tigure shows schematically a position detector
of the motion of a NEM oscillator (red). The detector is based on a tunnel
junction with a tunnel matrix element T(£) which depends on the position
of the oscillator. The shaded regions (yellow) are assumed to be conduct-
ing. (b) Position and/or momentum detector. The figure illustrates a detector
which contains two tunnel junctions that form a loop threaded by a mag-
netic flux ®. Tuning the flux will change the performance of the detector
from being able to detect the power spectrum of the position operator of
the oscillator to being able to detect the power spectrum of the momentum
operator of the oscillator. For clarity, the two insets show a simplified illus-
tration of the detectors in a and b.

position detector which has been discussed at length in the present part of this thesis
is depicted in Fig. 9.1a. It is composed of a single tunnel junction coupled to a NEM
oscillator. The thorough analysis of the coupled quantum system (Sec. 7.3) leads to
the result that the output signal of the detector is sensitive to the position spectrum
Sy(w) = [dtet({2(t),£(0)})/2 of the oscillator. The modification of the detector
shown in Fig. 9.1b instead allows for a measurement of S, (w).

9.1 Model

We use exactly the model presented in Sec. 7.3, with the Hamiltonian of the coupled
system H = Hosc + Hp + Hiun written as the sum of the Hamiltonian of the (quan-
tum) harmonic oscillator Hys. (With mass M and frequency (1), the bath Hamiltonian
Hp (describing the leads of the detector), and the tunneling Hamiltonian Hy,n (Which
couples the dynamics of the electrons that tunnel across the junction to the motion of
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the oscillator):

1, p* MO8
_ to N _ P
Hp =Y ecier + quc;cq , (9.2)
k q
Hyun = T(i’?)lﬁ ZCZCEI + Tt (ﬁ)YZc:;ck . (9.3)
kg kg

Again, k (g) is a wave vector in the right (left) lead, c(*) is the electron annihilation
(creation) operator, and Y*) is an operator that decreases (increases) m, the number
of electrons that have tunneled through the system, by one. It allows one to keep track
of the transport processes during the evolution of the system.

We first discuss the model in the standard configuration shown in Fig. 9.1a and
later on describe the new setup in Fig. 9.1b. For small displacements with respect to
the tunneling length (which is the relevant regime in typical experiments on NEM
devices), the tunneling amplitude T (%) can be taken as a linear function of £, namely

ei(PO

T@) - 2TA

(ro T ef'irlae) ) (9.4)

where 1) and 7y are real, and A is the density of states. The phases ¢y and 7 de-
scribe details of the detector-oscillator coupling. The overall phase ¢ is a gauge-
dependent quantity and does not affect the observable output of the detector. As
proven in Sec. 6.2.3, this detector is quantum-limited for all values of 7.

Within the single-junction setup (Fig. 9.1a), the relative phase 1 is sample-
dependent and cannot be tuned experimentally. In a typical device, the x-dependence
of the phase of T(%) is much weaker than the x-dependence of the amplitude. Then,
as discussed in the last Chapter, we can set # ~ 0, and the tunnel junction acts as a
position-to-current amplifier where the frequency-dependent current noise S;(w) of
the detector contains a term proportional to the position spectrum S, (w) of the oscil-
lator, i.e. ASj(w) = S;(w) — e(I) ~ A2S,(w) with A, the gain of the amplifier.

9.2 Tuning the relative phase 7.

We now demonstrate that a tunnel junction with a phase # = 7/2mod 7T acts as a
momentum detector and AS;(w) ~ )\%S p(w), where A, is the gain of the momentum-
to-current linear amplifier. The critical requirement to build a momentum detector
is to be able to vary 7 experimentally. This can be done using the AB-type setup
shown in Fig. 9.1b: a metallic ring where one arm is a standard tunnel junction
position detector with tunneling amplitude T;(%£), and the other arm is a position-
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9. MOMENTUM MEASUREMENT USING TUNNEL JUNCTIONS

independent tunnel junction with tunneling amplitude T, !. The total transmission
amplitude T (%, ®) of the device is the sum of both tunneling amplitudes 2. Since
only one arm shows a position-dependence, the induced phase difference between
the two arms affects the position-independent and the position-dependent parts of
the tunneling amplitudes 1) and 77 in a different way. Explicit calculation shows that
the tunneling amplitude is given (up to a global gauge-dependent phase factor) by
T(%,®) = (19(P) + " ®)1y%) /(2 A) with

D
Tg'(CID) = T(‘;Z’d + T()Z,u + 27,4 To,u COS (27130 + Qo4 — §00,u>,
q) (2 = - u
n(®) = 27130 + @14 — QouArg <T0,u 4 ¢/ 7w T P0a— 0, )T0’d>, (9.5)

where we have defined T, = eig"o'”rolu, T, = eiod To.d + elPLa T 4% 1 = T4, and
®y = I/e3. The position-independent part of the tunneling amplitude 7y(®) displays
the standard AB oscillations as a function of flux. Likewise, the relative phase 7(®P)
shows a distinct dependence on the flux. Importantly, for 1y, > 79 4, the phase 1 (P)
can be tuned continuously in the whole range [—7, 7t|. In the limit, where 1, > Ty 4,
n(P) ~ 27'[% +17(® = 0) varies linearly with the applied flux. In the opposite regime
To,u < Toq, 11 no longer depends on ®. Therefore, it is crucial to put the tunneling
amplitudes in the regime where 77(®) can be tuned to 77/2. We will show below that
a feasible way to calibrate #(®) to the p-sensitive point 77/2 is a measurement of the
flux dependence of the current through the AB detector.

We study the coupled system using the quantum equation of motion for the
charge-resolved density matrix within the Born-Markov approximation, assuming
that eV > h(), exactly like in Sec. 7.3.

It has been derived previously that, under the assumption that the tunneling am-
plitude depends linearly on £, the equation of motion for the reduced density matrix
of the oscillator is of Caldeira-Leggett form [Mozyrsky02; Clerk04b; Wabnig05]. Thus,
it contains both a damping and a diffusion term. When the electron temperature is
much smaller than the applied bias (and taking V' > 0), the detector-induced damp-

A similar device in a different context (without a position-dependent tunneling amplitude) has
been realized in the electronic Mach-Zehnder interferometer [Ji03]

2We assume that the size of the AB detector is smaller than the phase coherence length (which can
be several microns in metallic thin films at low temperatures) and that it is large enough such that we
do not have to take into account the change of the area of the AB loop due to the fluctuating position
of the oscillator. Furthermore, the setup is designed such that the electrons can not make roundtrips
in the AB loop but leave the ring instead after going either through the upper or the lower arm. This
explains why (in general) |T(%,®)|? # | T(£, —®)|?. See [Biittiker86] for details.

3Strictly speaking, the analysis in Eq. (9.5) is only valid in the single-channel case. For the multi-
channel case with N channels in the AB loop, the magnitude of the AB oscillations is reduced by a
factor 1/N

118



9.3. Transport properties with finite 7.

ing coefficient is ¥, = h’rlz /(4tM) and the diffusion coefficient is D = 2M¥y 1 kpTeg
with Ty = eV /2kp.

In general, the oscillator is not only coupled to the detector but also to the environ-
ment. The coupling to this additional bath is controlled via 49 = Q/(2Qp) (related to
the finite quality factor Qp of the mode, which in current experiments varies from 10
to 10° [Ekinci0O5b]) and the associated diffusion constant Dy = 2M“kg Teny that must
be added to the detector-induced damping and diffusion constants to find the total
damping coefficient §iot = 9+ + §o and the total diffusion coefficient Dot = Dy + D-..
Tenv denotes the temperature of the environment. In typical experiments, it varies
from 30mK to 10K. Within our model, all the these system parameters are indepen-
dent of the applied flux.

It is now straightforward to calculate the current and the current noise of the de-
tector. Since they were presented in Sec. 7.3, here we skip the details of the calculation
and directly turn to the results. The average current of the detector is given by

2
I = % (Tg +2cos T (x) + 712<x2>>

_ 2eY4+ 0

he s (p) e (96)

For 7 # 0mod 7, the average current contains a term proportional to the average mo-
mentum of the oscillator that does not vary with the applied bias [Wabnig05]. How-
ever, since (p) = 0 in the steady-state, the average current contains no information
about the momentum of the oscillator. Therefore, the current of the detector can not
be used as a p-detector in the steady-state. Nevertheless, the current is important
to calibrate 7 to the p-sensitive value 7t/2. A careful analysis of the current I as a
function of ® shows that the inflection points of I(®) correspond precisely to val-
ues of ¥ = 7r/2mod 7. Therefore, we can use a current measurement to tune # to a
p-sensitive value.

9.3 Transport properties with finite 7.

In the experimentally relevant regime, where 17 (x?) < 13, and for w ~ ), the domi-
nant contributions to the current power spectrum of the detector are

Si(w) = e(I)

0 oY 9.7
~|—4ezw/ dt sin(wt) [% cos 7oy ((xm)) — ,Y{;O siny((pm))| , 67)
0 1

where ((ab)) = (ab) — (a)(b). We now further analyze the added noise due to the
presence of the oscillator, AS = S;(w) — e(I). This noise spectrum is the sum of a
contribution arising due to correlations between the transfered charge m and position
(term ~ ((xm)) in Eq. (9.7)), which we call AS;, and one due to correlations between
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9. MOMENTUM MEASUREMENT USING TUNNEL JUNCTIONS

m and the momentum of the oscillator (term ~ ((pm)) in Eq. (9.7)), which we call
AS,. The full spectrum is therefore AS = AS; + AS, with

_ hQ AXj MQ eV <
_ 2[4 MY Axy ) ME2 24,2
s = [ (1 22V <<x2>>> (‘g T3 i) |5+
MeV \ ((p?))  2(Q*—w?)
A, (11— 9.8
(1= 57) 5 et s o o -
= MeV \ <
ASy(w) = A2 (1——)5 w 9.9)
A= B g e
hQ Ax3 » (MQ 5, 5, eV
e (1 " 2ev <<x2>>> 43 (G E gy )|
y 2MO?((x2))(Q? — w?)
47iw? + (w2 = 2)2
where the position and the momentum gain are given by
Ay = 2etyTi(eV/h) cosn , Ay = (e/2TM) 19Ty siny , (9.10)

respectively. We now discuss several limits of the current noise Sj(w) of the detector
in the case of a general phase #. For 7 = O0mod 7r, we recover Eq. (7.89) — the posi-
tion detector result. More interestingly, for # = 77/2mod 71, Ay = 0 and the detector
output contains only two terms: The first one is proportional to S,(w) and therefore
peaked around Q. The second one is proportional to (Q? — w?) and contributes neg-
ligibly near resonance w ~ (). Hence, for 7 = 71/2, we obtain

MeV \ =
AS(wzQ)z)\%(l— )

o Sp(w). (9.11)

Thus, the added noise is directly proportional to the momentum spectrum of the os-
cillator. This is the key result of this chapter.

From the parameter dependence of each gain, we can estimate that the momen-
tum signal at 7 = 71/2 should be typically smaller than the position signal at 7 = 0
by a factor (eV /hQ)?. Nevertheless, it is unambiguously possible to identify a p sig-
nal in the current noise. We now describe three different ways to do this. First, since
Ax &« V while A, is independent of V, the bias voltage dependence of the noise spec-
trum can also be used to confirm that momentum fluctuations are measured. Sec-
ondly, for an oscillator undergoing Brownian motion, the temperature dependence of
both signals differs qualitatively. Like in the position detector case, the momentum
signal is reduced by a quantum correction (the term proportional to —MeV / ((p?))
in Eq. (9.11)) that arises from the finite commutator of £ and p. However, there is
a fundamental difference between the x-detector result (Eq. (7) of Ref. [Clerk04b])
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9.3. Transport properties with finite 7.

and the p-detector result (Eq. (9.11)). In the former case, the quantum corrections
are always small compared to the leading terms and therefore the peak at resonance
is always positive. In contrast, the two terms in Eq. (9.11) can be of equal magni-
tude and compete about the sign of AS(w ~ Q). The p-sensitive current noise in
Eq. (9.11) changes sign when the effective temperature of the oscillator is equal to
(eV/kp)(1 — 94 /2%t0t) /(1 — ¥+ /Ftot). For a cold environment Teny < eV, AS(w)
is negative at the resonance, whereas, for a hot environment Teny > eV, AS(w) is
positive. This change of sign never appears during a position measurement, so this
pronounced difference between a x-dependent and a p-dependent signal can be used
distinguish the two. We illustrate the change of sign in the inset of Fig. 9.2, where the
added current noise for 7 = 71/2 is plotted for different Tonv?.

0.4 T T T T T T

Agl (CL)) /EIO

—04 L 1 L 1 L 1 L
0.9 0.95 1 1.05 1.1

w/O

Figure 9.2: Added current noise (normalized by ely = 373V /h) of the proposed mo-
mentum detector due to the presence of the oscillator. For all curves, the
bias is eV = 50h€), ¥4+ = Ftot/4 and Fiot = 2/200. The main panel shows
the total detector output for different values of the tunneling phase 77 and
for Teny = 0. The (blue) solid, (black) dotted, and (red) dashed lines corre-
spond to 257/ = 1,1.005, and 1.01, respectively. In the inset, the current
noise at the p-sensitive phase 7 = 71/2 is plotted for two different tem-
peratures of the environment Teny = 0 (solid line) and Teny = 5eV /kp
(dash-dotted line).

In the main panel of Fig. 9.2, we plot the full detector output for different values

“The plots are done for an oscillator in the thermal regime: ((p?)) = MkpTugs with it T =
Tenvyo + 7+ (€V/2k3)
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9. MOMENTUM MEASUREMENT USING TUNNEL JUNCTIONS

of 17 near the optimal operation point for momentum detection. Away fromy = 77/2,
contributions to the current noise ~ A2 become important and wash out the momen-
tum signal ~ )\%. Indeed, for small Ay = 1 — 71/2, the ratio Ax /A, ~ (—An)(eV /1Y)
of the two amplification factors becomes large as soon as |Ay| > iQ)/eV. In the high-
bias regime (eV > h()), momentum detection therefore requires good experimental
control over the applied flux. At moderate bias eV > (), the requirement on Ay be-
comes less restrictive. Finally, the current noise spectrum at 7 = 71/2 shows a strong
symmetry around () that makes the optimal operation point easily identifiable.

9.4 Summary

In conclusion, we have shown how a modified tunnel junction position detector can
be designed to detect the momentum fluctuations of a NEM oscillator. By using two
tunnel junctions in an AB-type setup, it is possible to precisely tailor the interaction
Hamiltonian between the detector and the oscillator via an external magnetic field.
We have demonstrated how the proposed detector can be made sensitive to either
displacement or momentum fluctuations of the oscillator.
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Part IV

Nanomechanics with superconducting
single-electron transistors
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CHAPTER 1 O

Nanomechanical resonators coupled to

superconducting single-electron transistors

Adapted in part from arXiv:0810.5718
[cond-mat.mes-hall]

In this thesis, we put a strong emphasis [see e.g. Secs. 7.2, 6.1.1] on the idea that
the measurement back-action caused by a tunnel junction displacement detector on a
nanomechanical oscillator could be understood from the point of view of an effective
thermal bath coupled to the resonator. In the weak-coupling regime, this was also
shown to hold for a normal-state SET[Blencowe05a]. In both cases, the effective tem-
perature of the thermal bath was of the order of the voltage difference between the
two leads, a quantity that is usually very large with respect to both the temperature of
the bath and 7Q)/kp, such that the overall effective temperature of the oscillator was
increased due to the measurement.

In this third part, we will focus on displacement measurement using a supercon-
ducting SET (SSET) where both the SET leads and the island are superconducting,
allowing not only sequential tunneling of quasiparticles through the SET but also the
coherent transfer of Cooper pairs. This second transport channel opens the possibility
of displacement measurement in new transport regimes, where it is possible to cool
the oscillator as well as drive the resonator into a state of self-sustained oscillations. In
this chapter, we will first (Sec. 10.1) describe the different transport regimes supported
by the SSET. Afterwards, in Secs. 10.2 and 10.3, we will review recent experimental
regarding the SSET displacement detector and discuss the theoretical explanation of
the features observed in the experiment.
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10. NANOMECHANICAL RESONATORS COUPLED TO SUPERCONDUCTING SETs

10.1 The superconducting single-electron transistor

As we just mentioned, the SSET is in many ways similar to the SET. In both cases,
the mesoscopic detector is composed of two leads tunnel-coupled to a central (small)
island. Associated with the small size of the island is a charging energy that needs to
be paid to add an electron (or more generally, a charged quasiparticle) to the island.
The main difference between the SET and the SSET (where both leads as well as the is-
land are superconducting) is the possibility for Cooper pairs to coherently tunnel (via
Josephson tunneling) from one part of the system to the other. The total Hamiltonian
describing the SSET can be written as

H=H; +Hr+H;+Hr+ Hc . (10.1)

The first three terms Hy g ; are standard BCS Hamiltonians and describe two super-
conducting leads (left and right) and a superconducting island,

Hy = Y €ukoClioCoko - (10.2)
k,o
Here, c,i, are annihilation operators for quasiparticles of momentum k and spin ¢ in
the system a (x = L, R, I). The dispersion relation €,4, accounts for the supercon-
ducting gap of width 2A which we assume to be equal for the three systems. The
chemical potentials in the left and right leads are determined by the applied bias volt-
age V = VI — Vg, while the island chemical potential can be tuned by applying a gate
voltage V.
The left and right leads are connected to the central island by quasiparticle tunnel-
ing and Cooper pair tunneling. Denoting by ¢, the superconducting phase difference
at the junction « = L, R, the quasiparticle tunneling term takes the form

Hrgpp = Y, e Y Tichipcgo +he., (10.3)

«=L,R kg0
where Tj, are the tunneling amplitudes which can be used to calculate[Choi01] the
quasiparticle tunneling rates I';, g. Cooper pair tunneling is accounted for by the term

HT,CP = — Z ]zx CcOos (sz ’ (10.4)
a=L,R
where |, are the Josephson energies of the two junctions. Hence, the total tunneling
Hamiltonian is given by Hr = Hr 4, + Hr cp.
The final ingredient for the SSET Hamiltonian is the Coulomb energy of the island.
If we denote by ny, and ng the number of electrons that have tunneled from the island
to the left and right lead, respectively, then n = —ny — ng is the excess number of
electrons on the island. Then, the charging term can be written as

He = Ec(n+no)? +eVng, (10.5)
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eV a

4A T

AEC 4
2A+Ec +
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Figure 10.1: The different transport regimes of the SSET. For eV > 4A, the bias volt-
age is high enough to break the Cooper-pairs into quasiparticles, and the
system behaves as a normal state SET where quasiparticles are trans-
ported instead of electrons, leading to the appearance of Coulomb dia-
monds (grey). For 4A > eV > 2A + Ec, transport is only allowed via the
Josephson quasiparticle cycle (JQP), along resonance lines in the V — V,
plane(orange). At lower voltages, transport happens only around reso-
nance points(red) in the V — V; plane via the double Josephson quasipar-
ticle cycle (DJQP). For a description of the different transport cycles, see
text.

where Ec is the charging energy and 7 can be controlled by the gate voltage. In
terms of the capacitances of the two junctions Cy, g, the gate C; and the resonator Cy,
the charging energy is given by Ec = ¢?/(2Cx), where Cs = Cp + Cg + Cg + Cn
is the total capacitance. While the capacitances, Josephson energies and quasiparticle
tunneling rates are essentially determined by the experimental setup, the most impor-
tant tunable parameters are the bias voltage V and the gate voltage V. The transport
properties of the SSET are then determined by how these voltages are related to the
superconducting gap 2A and the charging energy Ec. In Fig. 10.1 we schematically
present the different transport regimes that are supported by the SSET.

For high bias voltages eV > 4A, the difference in chemical potentials allows quasi-
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particles on both junctions to overcome the superconducting gap' and a quasiparticle
current can flow. But even for lower bias voltages, one observes a finite current at cer-
tain values of the gate voltage. A possible mechanism is the Josephson-quasiparticle
(JQP) resonance [Fig. 10.2] which is a cyclic process that starts with the tunneling of
a Cooper pair on one of the junctions followed by two subsequent quasiparticle tun-
neling events on the other junction [Averin89; vandenBrink91; Nakamura96]. This
process is possible for voltages where eV > 2A + Ec.

For even lower bias voltages, isolated current resonances can be observed which
are due to the onset of the double Josephson quasiparticle (DJQP) resonance. A
schematic picture of this process is shown in Fig. 10.2. It starts with a Cooper pair tun-
neling across, say, the left junction. Next, a quasiparticle tunnels out through the right
junction, followed by a Cooper pair. Finally, after a quasiparticle tunnels through the
left junction, the initial system state is reached again. This process is energetically al-
lowed only in a restricted parameter regime: Cooper pair tunneling is only possible
if the chemical potentials of the lead and the island (taking into account the Coulomb
energy) are on resonance while quasiparticle tunneling requires a difference in chem-
ical potentials sufficient to overcome the superconducting gap. For the DJQP process,
it is easy to show that the resonances occur at bias voltages eV = 2E¢ and half-integer
island charges ny.

In the following, we will focus our attention mainly on the properties of the SSET
biased close this last type of resonance. The parameter regime which we investigate
is therefore characterized by a charging energy Ec, a superconducting gap 2A and a
bias voltage V which are of the same order of magnitude. Roughly speaking, these
energy scales are very large compared to the quasiparticle tunneling rates I'y g, the
Josephson energies |1 g and the oscillator energy Q).

10.1.1 Quantum measurement with a SSET

Since we ultimately want to use the SSET as a measurement device, we now take the
time to discuss the measurement efficiency of this detector. Like for the normal-state
SET, to use the SSET as a detector one typically couples it capacitively to the quantum
system, leading to an interaction Hamiltonian Hy,; = —AF £, where in this case F « 7
is the operator associated with number of charges on the island and £ is the operator
of the quantum system to be measured[Koerting08, Appendix A]. The back-action
force on the measured system will therefore be caused by the charge fluctuations on
the island, and the state of the system can be probed by looking at the current through

1 An energy of 2A is required to break a Cooper-pair into two quasiparticles, and, since we consider
symmetric junctions, the potential difference between one lead and the island is only one half of the
total applied bias voltage.
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The Josephson QP resonance (JQP) The double Josephson QP resonance (DJQP)
o o
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Figure 10.2: Left) The JQP cycle: (i) Cooper pair tunneling through the left junction,
(ii) quasiparticle tunneling through the right junction, and (iii) quasipar-
ticle tunneling through the right junction. Right) The DJQP cycle: (i)
Cooper pair tunneling through the left junction, (ii) quasiparticle tunnel-
ing through the right junction, (iii) Cooper pair tunneling through the
right junction and (iv) quasiparticle tunneling through the left junction.

the SSET.

In Sec. 4.2, we explained that the normal-state SET in the sequential tunneling
regime is not a quantum-limited detector (i.e., it does not fulfill Eq. (4.22).). Due to the
high similarity between the sequential-tunneling regime for a SET and the transport
in the high bias (eV > 4A) region, we also expect the SSET not to be a quantum-limited
detector in this regime.

The situation is however quite different when the SSET is biased near one of the
transport resonances depicted in Fig. 10.2. In this case, the measurement efficiency N
[Eq. (6.57)] is (for symmetric junctions) a function of the Josephson energy (J]) of the
junctions over the quasiparticle tunneling rate(I') [Clerk02; Clerk05]. For J/hT' ~ 1,
the measurement efficiency is V' ~ 0.5 for both the JQP and the DJQP: the measure-
ment efficiency close to these resonance is therefore much higher than in the quasi-
particle tunneling regime. Physically, this can be traced back to the coherent nature
of the Cooper pair tunneling. Finally, comparing both transport regimes, one finds?
that the optimal measurement efficiency is higher for the DJQP, but that for ] < T,
where experiments are more easily carried out, then A is higher for the JQP.

10.2 Displacement measurement with SSETs:
Experimental realizations

Combined with the typically large gain associated with JQP /DJQP transport regimes,
the high measurement efficiency of the SSET close to these resonances motivated ex-

2See e.g. [Clerk05, Fig. 10], where a quantity ~ N ~! is plotted.
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perimentalists to actually carry out experiments where a nanomechanical resonator
is coupled to a superconducting SET. The first of these experiments was done in the
Schwab group in 2004[LaHaye04]. They built a ~ 8um long, 110 nm wide by 120 nm
thick SiN resonator weighting M = 9.7 x 10~ '°kg in close proximity (600 nm) to a
SSET. They studied a resonant mode around 19.7 MHz characterized by a high qual-
ity factor (Q = 2/ ~ 50000 at 30 mK) by looking at the response of the SSET when
it was biased to near the DJQP. As explained in Sec. 2.2, in this experiment the ef-
fective coupling could also be controlled by varying the voltage difference between
the resonator and the island. At the resonance, the authors measured an optimal dis-

placement sensitivity /S, .q¢ = 3.8fm/+/Hz. This is roughly 5 times higher than

the quantum-limited value Sy ¢, (Q, T = 0) [Eq. (6.24)]. In this case, the measurement
was shot-noise limited, as the authors reported not seeing the signature of measure-
ment back-action in the response of the oscillator. This means that in principle the
sensitivity of the measurement could have been improved by increasing the coupling
voltage on the resonator. On this device estimates show that the back-action domi-
nated regime would have been reached for coupling voltages higher Vyr = 27V, but
the authors kept the voltage Vyr < 13V in order to keep the device safe from electrical
breakdown.

Two years later, the same group presented a second generation device where
back-action effects could be observed[NaikO6b]. In this second experiment, they
used a resonator of similar shape (10ym x 100nm x 100nm), resonance frequency
() = 27 x 22MHz and slightly higher quality factor (Q ~ 1.2 x 10°) than in the pre-
vious experiment. The main improvement in this second experiment was that the
resonator’s equilibrium position was brought closer to the island of the SSET. The
shape of the island was also optimized in order to maximize the capacitive coupling
between the resonator and the SSET. Since for this device | ~ I'/4, the SSET was bi-
ased in the vicinity of the JQP resonance for maximum measurement efficiency. Using
this device, the authors observed directly the effect of the detector back-action on the
device: they even used back-action to cool the resonator from 500 mK to 200mK. This
is possible because, as will be discussed in the next section, the effective temperature
associated with the SSET near the JQP/DJQP resonances can be made vanishingly
small. For this device, the authors measured \/S;Sg/A2 = 15k /2 whereas for a per-
fect quantum-limited detector one would find /S;Sp/A%2 = h/2 [Eq. (4.22)]. This
imposes a limit on the position measurement sensitivity of v/15 ~ 4 times the quan-
tum limit [Eq. (6.22)].
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10.3 Theoretical description of the system at the DJQP
resonance

While none of two experiments presented in the last section reached the quantum limit
on the added position noise, they nevertheless proved that the SSET is an extremely
good position detector. The article of Naik et al. also contained very interesting results
regarding the dependence of the back-action effects on the biasing point of the SSET.
They found a totally different behavior of the resonator depending on the side of the
JQP resonance where the system was biased. In this section, we will describe how this
observation can be explained, at least on a qualitative level. Specifically, we will use
a linear-response calculation to derive what happens when the SSET is biased near
the DJQP. However, we stress that the behavior of the system around both resonances
is qualitatively similar, such that the main conclusions we reach from studying the
DJQP are also valid at the JQP3.

10.3.1 Quantum noise approach: Calculation of the charge noise
spectrum

Maybe the easiest way to get a general understanding of the measurement back-
action of the SSET on the mechanical oscillator is to use the ‘quantum noise” approach
(Secs. 6.1, 7.2) to estimate the properties (7, Ts) of the effective environment asso-
ciated with the charge-fluctuations on the superconducting island, Sp(w). As men-
tioned earlier, in this system the interaction Hamiltonian can be written [Koerting08,
Appendix A]

Hiyy = —Aft = —AF %, (10.6)

with the charge state of the superconducting island playing the role of the “input” pa-
rameter of the detector. This means that the effective damping rate -y and the effective
temperature T, usually given by [Eq. (6.7), (6.6)]

A(w) =A ot [Se(w) — Se(~w)] (107)
Sr(w) =My (w)hw coth <#ﬁ(w)) : (10.8)

are directly related to the charge noise on the SSET island. Again, we recall that the
amazing thing about the quantum noise approach is that both v and T,¢ depend solely

Due to its relative simplicity, the problem of a nanomechanical oscillator coupled to a SSET
near JOP was more thoroughly studied in the literature [Blencowe05b; Clerk05; Rodrigues07b;
Rodrigues07a; Harvey08] than the DJQP, who was discussed in the general context of NEMS in
[Clerk05] and only shortly investigated in [Blencowe05b]
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on the detector, since the correlation function Sp(w) is evaluated in the A = 0 limit.
The only relevant parameter of the oscillator in this case is its frequency (), since the
effective environment must be calculated using the back-action force noise power at
w =

To proceed, we first look at the evolution of the density matrix describing the SSET.
We denote p the full (system+bath) density matrix. In the limit we consider the charg-
ing energy is high and it is convenient to express the reduced density matrix of the
island in term of charge states, defining p; ; = (i[Trp[p]|j). Since only Josephson cou-
pling leads to a coherence between two charge states, we can reduce the problem size
by keeping only off-diagonal elements that correspond to charge states involved in
Josephson tunneling, i.e. explicitly set all elements p; ; to 0 when |i — j| # 2. Writing
the non-zero density matrix elements in vector form*

T
) = (p-1,-1 P11 P11 P-11 P22 P20 Po2) (10.9)

one can write the equation of motion [Chap. 7] of these non-zero elements as[Koerting(08]

Lo} = ~Mlp) +ilile)/2, (10.10)

where ¢ = (0,0,0,0,0,1, —1)T and the evolution matrix M is given by

Iy 0 —iJr/2 iJr/2 0 0 0
0 0 iJr/2 —iJr/2 —TI'g 0 0
—i]R/z i]R/z 1—‘[4/2—1—1'61,,1 0 0 0 0
M = l]R/z _IIR/z 0 FL/Z—ié‘l’_l 0 0 0
0 0 0 0 I'r iJL/2 —ifp/2
ifr/2 iJ1/2 0 0 i Tr/2+iey 0
—iJp /2 —i]p/2 0 0 —iJr 0 I'r/2 — i€y
(10.11)

Here, €;; is the difference in energy between states with i and j charges on the
island. In terms of the average number of electrons on the island 7y and the bias
voltage eV, these are given by

€1,-1 =4Ecng +eV, (10.12)
€2,0 = 4Ec<1’lo + 1) —eV. (10.13)

In passing, we note that Eq. (10.10) allows for a simple calculation of the stationary
density matrix of the island. Using p ., = 0, this equation gives directly

0aiar) = /LM 1) /2. (10.14)

“We used the trace condition on the density matrix (Tr, Trgo = 1) to reduce the size of the system
of equations, removing the equation for pg g.
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This generalizes to non-symmetric junctions (J; # Jr, 'L # I'r) previous results
[Clerk03al].
To calculate the charge noise in the DJQP we need to evaluate the expression

Su(w) = /_ °:o dte ((n(D)n(0))) , (10.15)
= [ dtcos(wn) ((((t)n(0))) + ((n(~t)m(0))))

° (10.16)
+i/0 dtsin(wt)(((n(t)n(0)>> - ((n(—t)n(0)>>>

Following the approach used in [Choi03] for the JQP, we introduce two functions

x(t) = Trgle 1/ Tppettit/n] (10.17)
n(t) = Trgle /T one! /1], (10.18)

which have the properties ((n(t)n(0))) = Tr,[nx(t)] — (n)? and ((n(—t)n(0))) =
Tr,[ny(t)] — (n)2. Arranging x,7 in the same vector form as p (i.e. following
Eq. (10.9)), we can show that these functions fulfill the same differential equation as p

L) = —Mlx) +ilin)l)/2, (10.19)

L) = M) +iju(mle) /2, (10.20)

with different initial conditions®

x(0)) = Trp[np] = (K+ +K-)[p), (10.21)
7(0)) = Trslon] = (K4 —K-) |p), (10.22)

SWe stress that Trp[np] # Trp[on], since cyclic invariance of the trace applies only for the complete
trace: Tr, Trp[np] = Tr,Trg[on].
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where K are the diagonal coupling matrices

-1 .
1 .
.o 00
Ki=|. . .0 . . .], (10.23)
2 .
1 .
1
0 .
0 .
N
Ko=1|. .. -1 .. .1]. (10.24)
0 .
1 .
—1
We find
((n(H)n(0))) + ((n(=£)n(0))) = 2(nle” ™" (K4 — (n)) |p) , (10.25)
((n(H)n(0))) = ((n(=£)n(0))) = 2(nle"™K_|p) . (10.26)

with (n| = (—1,1,0,0,2,0,0) the representation of the charge operator in the vector
form used to rewrite p. Inserted in Eq. (10.16), these lead to

M (w/Q)

() =20l ey (K= (m) o) + 24l

oL wpK-le), (1027)

That'’s the final expression for the frequency-dependent charge noise spectrum.

10.3.2 Quantum noise approach: Results

In the quantum noise approach, Eq. (10.27) contains all the information required to
evaluate the influence of the detector on the resonator. In Figs. 10.3-10.4, we plot
respectively the antisymmetric and the symmetric part of the noise near the DJQP.
Recalling that the resonance condition for the DJQP is fulfilled for a bias voltage eV =
2Ec and half-integer island charges 79, we conveniently rewrote the €;;’s in term of
the difference in bias and effective gate voltage with the resonance point

AeV = w , (10.28a)

Ce €1,—1 T €20
S === 10.28b
AotV 5 ( )
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Figure 10.3: The anti-symmetric part of the back-action (charge) noise Sp(w) —
Sr(—w), in units of O, as a function of the two detunings from the
resonance defined Eq. 10.28. The detunings are given in units of /().
I'L =Tr =100, i = Jr = 510

Both quantities are zero exactly at the resonance, and in the remainder of this text we
set 4Cc = Cg for simplicity.

Let’s first look at Sp(w) — Sp(w), a quantity directly proportional damping rate.
Very interestingly, the effective damping rate is anti-symmetric with respect to the
AeV = 0line. This means that there is a regime of negative damping in which the inter-
action with SSET brings a term +|v|(p) to the equation for p: energy is pumped into
the mechanical system by the SSET. Physically, this can be traced back to the resonant
character of transport near the DJQP: transport is only allowed for specific points in
the eV — V; plane. When the bias voltage is slightly higher than eV = 2E,, the DJQP
cycle is still allowed provided the extra energy AeV is transfered from the electronic
to the mechanical system. Oppositely, for eV < 2Ec, the cycle extracts energy from
the oscillator. The situation is similar when the SSET is biased near the JQP resonance
[Blencowe05b; Clerk05].

To analyze the impact of the possibility of negative damping, we look at the total

135



10. NANOMECHANICAL RESONATORS COUPLED TO SUPERCONDUCTING SETs
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Figure 10.4: The symmetric part of the back-action (charge) noise Sp(w) = [Sp(w) +
Sr(—w)]/2, in units of O~!, as a function of the two detunings from the
resonance defined Eq. 10.28. The detunings are given in units of 7). I'y, =
Iz =100, J; = Jr = 5hQ)

effective environment [Eq. (6.10)] of the oscillator,

A%Sp(w) + 10To
Ytot ’
Yot = A%y + 70, (10.29b)

Ttot -

(10.29a)

In this expression, we used the high-temperature form of y T ~ Sr to simplify the
upcoming discussion. The numerator of the total effective temperature of the oscilla-
tor is always positive (as seen from Fig. 10.4, Sp(Q)) is positive in the whole AV, — AeV
plane). To better understand the system, three regimes need to be investigated: (i)
A%y >0, (ii) —y9 < A%y < 0and (iii) A%y < —y < 0.

The first regime corresponds to the one we have been investigating in previous
parts of the thesis, where the detector acts as a ‘normal’ thermal bath. However, this
does not make this regime uninteresting: contrary to the tunnel junction case, the
back-action spectral density does not scale with eV (which typically is very large in
front of Q) but it is a function of the distance to the DJQP resonance in the eV — V5
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plane. In certain cases, one finds T < Tp, such that the total temperature of the
oscillator

T, T T T
Ttot:’Yeff+’Yoo<70+Voo:TO, (10.30)

Ytot Ytot

can be smaller than the environment temperature Ty. In this regime, measurement
back-action can therefore be used to cool the oscillator. This was experimentally
demonstrated in [Naik06b].

In the second regime, the detector-induced damping is negative, but of lower mag-
nitude than the intrinsic damping associated with the physical environment. The total
damping rate of the oscillator is reduced from its uncoupled value and one therefore
expects e.g. the width of the resonance in Sy (w) to be reduced. Since in this case both
the numerator and denominator of Eq. (10.29a) stay positive, we expect the effective
thermal environment model to hold: the coupling of the oscillator to the thermal bath
is strong enough to allow the extra energy transfered from the electronic system to the
mechanical system to be dissipated in the environment.

In the third case, the negative damping caused by the interaction with the detec-
tor more than completely compensates the damping associated with the finite quality
factor of the mechanical oscillator. The total temperature in this case [Eq (10.29a)]
becomes negative, suggesting a breakdown of the effective thermal bath model. This
is not completely surprising since the linear-response approach is valid only as long
as the SSET itself is not affected by the oscillator (all the averages are taken in the
A = 0 limit). In the negative damping regime, the high amplitude of the mechanical
oscillations affects the biasing point of the SSET, rendering the linear-response calcu-
lation invalid. The study of the system in this regime requires a different theoretical
approach (see Sec. 10.3.3). In all cases, one finds that in this regime the stationary
state of the oscillator is highly non-thermal: instead, the system is driven to a state of
self-sustained oscillation[Rodrigues07b].

Taken together, these three regimes allow for a qualitative understanding of the
experimental results presented in [Naik06b]. Sadly, a quantitative comparison of the
effective damping A%y measured and calculated shows that the calculation underes-
timates this quantity by about an order of magnitude. The cause of this disagreement
is still an open issue.

10.3.3 Theoretical description in the driven regime

Even if the linear-response approach fails in the A%y < —v regime, there a many
ways one can still gain insight about the behavior of the system in this regime. To pro-
ceed analytically, one can derive an effective theory with position-dependent damp-
ing [Clerk05; Bennett06]. A fully numerical approach like the one described in detail
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in the next chapter can also be used[Rodrigues07b; Harvey08; Koerting08]. Yet an-
other possibility is to use mean-field master equations [Blencowe05b; Rodrigues07b;
Harvey08; Koerting08].

Historically, the motivation behind the numerical investigation of the system near
the DJQP presented in the next chapter was to complement a study realized using
such a mean-field master equation. Hence, we will shortly explain the idea behind
this method. The mean-field master equation approach is in many way similar to the
method used in Sec. 3.2 to derive the transport properties of the SET coupled to an
oscillator in the weak-coupling regime. Here however, one uses the equation of mo-
tion for the density matrix (and not for the classical probability distribution like in
Chap. 3) to write out a system of coupled differential equations for quantities of the
form (p; ;x"p™(t)). The name “mean-field” comes from the fact that we study how ex-
pectation values evolve. Unfortunately, unlike for the SET case, when considering the
SSET biased near a transport (JQP /DJQP) resonance, the system of equations gener-
ated does not naturally close. For example, the equation of motion for (x") involves
(x"*1). To obtain a finite system, the hierarchy must be truncated at some order. This
is done by explicitly setting the n-th order cumulant of operator expectation values to
zero. For example, a truncation to ‘third order” corresponds to replacing quantities of
the form (abc) by (a)(bc) + (b){ac) + (c)(ab) — 2(a)(b){(c), taking care to symmetrize
the expectation values properly, making sure that commutation relations are not vio-
lated by the truncation[Harvey08].

In practice, this technique is limited by the fact that the size of the system of dif-
ferential equations that must be solved grows very rapidly with the truncation order.
Naturally, when one expects a thermal state, a gaussian approximation where higher-
than-second order cumulants of different operators makes sense, as we know that for
example ((x?)) = 0. However, when the system enters a driven state, the applicabil-
ity of such a second-order truncation is more questionable; in this case the truncation
at low orders is more or less an uncontrolled approximation. Moreover, it is then dif-
ficult to evaluate the accuracy of the results obtained using these methods, with one of
the only way to estimate the validity of the approximation being to solve the system at
even higher truncation orders. This is one of the main reasons why such “mean-field”
approaches are often combined with numerical studies like the one presented in the
next chapter[ Armour(04b; Harvey08; Koerting(8].
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CHAPTER

Dynamics of a harmonic oscillator coupled to a
SSET: A numerical solution of the Liouville
equation

Adapted in part from arXiv:0810.5718
[cond-mat.mes-hall]

As seen before, the coupled dynamics of a SSET biased near one transport reso-
nance and coupled to a nanomechanical resonator is highly non-trivial, and in certain
parameter regimes one expects the linear-response approach to fail. Like in the case
of the normal-state SET coupled to a classical harmonic oscillator, the numerical com-
putation of the properties of the coupled mesoscopic detector - mechanical system can
prove very useful in this case. In this chapter, we use an numerical approach to the
solution of the Liouville equation of a coupled harmonic oscillator - SSET system. We
tirst (Sec. 11.1-11.3.3) present the details of the method, then in Sec. 11.4 give the ex-
plicit form of the Liouville operator in the case where we consider a SSET biased near
the DJQP, before presenting (Sec. 11.5) typical numerical results. Finally, the details
of the numerical implementation are given in Sec. 11.7.

11.1 The Liouville equation

In Chap. 7, the equation of motion for the density matrix of an open quantum system
(a quantum system coupled to an environment) was derived directly from the von
Neumann equation [Eq. (7.2)]. In general, the equation obtained this way contains
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term with operators present on both the left and the right of the density matrix

% () =) (Aip(t) +p(1)B;) +}_ (Cip(H) D)) , (11.1)
L]

1

with the A;, B;, C;, Di’s quantum mechanical operators have a representation in a
Hilbert space. This same equation can be rewritten by introducing the Liouville su-
peroperator £ governing the evolution of the density matrix

Lo() = Lo(t), (112

Comparing Egs. (11.1-11.2), we realize that the superoperator L is a two-sided opera-
tor, acting both on the left and right side of the density matrix. It is common to write
the total Liouvillian as a sum of independent contributions associated with i) the co-
herent evolution of the system and ii) the dissipative contributions due to the bath(s)
the open system is coupled to. In the case of a nanomechanical oscillator coupled to
a SSET, the complete Liouvillian can be written as [Rodrigues07a]

L= Lo+ Lo+ La, (11.3)

where L, refers to the coherent (Hamiltonian) evolution, £, refers to the dissipative
part of the Liouvillian associated with quasiparticle tunneling and L to the coupling
of the nanomechanical oscillator to the environment, modeled via Caldeira-Leggett
type dissipation and diffusion terms (as discussed in Appendix B).

The form of Eq. (11.2) proposes that the problem of finding the steady-state density
matrix of the problem (defined as 5o = 0) is akin to a finding the null-space of £, or,
in other words, that the steady-state density matrix can be seen as the right eigenvector
of the Liouvillian associated with the eigenvalue 0. This is in fact the case, although
some subtleties must be addressed first.

11.1.1 The Liouville space

The Liouvillian, being a two-sided operator, does not have the usual matrix-representation
of an operator in Hilbert space. Matrix algebra can however be used to construct an
operator that has a single-sided matrix representation in Liouville space. The transfor-
mation between the usual Hilbert space representation and the Liouville space rep-
resentation is done by ‘vectorizing’ the Hilbert space operators and then using the
following identity;,

vec(ABC) = (CT @ A)vec(B), (11.4)

140



11.1. The Liouville equation

valid for general A,B,C matrices (see e.g. [Minka0O; Loan(0] for a review and related
identities). In the last equation, we introduced the vec-form of a matrix, where the
columns of a M x N matrix are stacked one-after each other to form a MN x 1 vector:

ai

asz1

a a a a

Vec([ 11 412 131): 12 (11.5)
a1 dpp azs az

ai13

a3

In Eq. (11.4), the symbol ® denotes the Kronecker product, a special case of tensor
product. For a M x N matrix A and a P x Q matrix B, the Kronecker product forms
A ® B, a MP x NQ block matrix!:

_auB s alnB
A@B=| : . (11.6)

_amlB st amnB

[ay1byy apbiy - apby - oo apbn aybiy - aby |
aitbyr  anbyn - anby oo o0 oAby abn - a1by
aptbpr  anbpy - anbpy - o abpr arbpy - a1bpg
ambir ambrz -0 ambyy 0 o Amnbin Amabia - amnby
amibor  ambn -+ agabyy 0 o Amnbar Amabr - amnbag

_amlbpl amlpr T amlbpq T amnbpl ﬂmnbpz T amnbpq_

(11.7)

Using the identity (11.4), the Liouville superoperator can be made into a normal
(single-sided) operator acting on the vec-form of the density matrix. Within this in-
terpretation, the problem of finding a stationary solution to Eq. (11.2) really becomes
a standard eigenproblem, with the important downside that, for a Hilbert space of di-
mension N (i.e., for a N x N density matrix), the matrix representation of L is of size
N? x N2. Since in this formalism a (Hilbert) quantum mechanical operator O needs to
be considered in its vec-form, the notation |O)) is often used to stress the vector nature

1We wrote-out the matrix explicitly in Eq. (11.7) mainly to help the reader realize that the resulting
matrix is huge.
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this operator has in Liouville space.[Flindt04; Jakob04] In this case, the inner-product
of two such vectors is defined as

((A|B)) = Tr[ATB] . (11.8)

11.2 System properties in the long-time limit

One of the main interest of using numerical solutions of the Liouville equation is that
they give direct access to all properties of the system in the long-time (stationary) limit
by allowing the calculation of the stationary density matrix. To illustrate how this can
be done, we follow [Harvey08] and (neglecting the possibility of degeneracies), write
the eigendecomposition of £ as

L=Y Anlra)) (] . (11.9)

Due to the presence of dissipative terms, the Liouvillian is in general not hermitian.
Therefore, its eigenvalues A, are not necessarily real. Moreover, the right and left
eigenvectors (|r,)), ((In|) are not simply related by hermitian conjugation.

Since our system is coupled to dissipative baths, we expect that a stationary solu-
tion exists. This, combined with the form of the the evolution operator V(1) ~ e*7,
implies that Ay = 0 and that the real part of the other eigenvalues is negative
[ReA, < 0 for (n > 0)] such that all solutions of the evolution equation except the
stationary one equation are damped over time [Jakob04].

The problem of finding the stationary density matrix (0stat = Lpstat = 0) therefore
corresponds, as hinted earlier, to the eigenvalue problem in Liouville space

Llro)) = 0[ro)) , (11.10)

with |rg)) = vec(pstat). Since for any complex number C # 0 the vector C|rg)) also
fulfills Eq. (11.10), we use the condition Tr[pstat] = 1 to remove all ambiguity in the
calculation of pstat. The details of the numerical solution of the eigenvalue problem
are given in Sec. 11.7.

Having obtained pstat, the expectation value of any function of system operators
in the long-time limit can be calculated, via (O) = Tr[Op]. Of course, if O is a system
operator then so is O?, such that we can in fact evaluate all moments (O") of operators.

11.3 Finite-frequency correlation functions

In general, we are not only interested about the stationary value of system quantities.
Indeed, there is a lot of information to be harvested from finite-frequency correlations

142



11.3. Finite-frequency correlation functions

functions, particularly in the region w ~ Q). Luckily, the form of the correlation func-
tions of system (i.e. not bath) variables, can be derived within the Liouville formalism
using the quantum regression theorem [Lax63]. In this section, we obtain the formal
expression for finite-frequency correlations functions; the technical details associated
with the numerical implementation of the calculation of these quantities are given in
Sec. 11.7.2.

11.3.1 The quantum regression theorem

Let’s first review shortly the basic ideas behind the quantum regression theorem. We
are interested in calculating correlation functions of the form (O (t + 7)O,(t)) as well
as their Fourier-transforms (with respect to T), where O;(t) is a system operator in
the Heisenberg picture. In the case where the total density matrix can be written as
Prot = Ps @ pp this correlation function is written (we switched back to the Schrédinger
picture)

(O1(t 4+ 1)0x(t)) = Treys [TrB [T/ G, = HHT/MG =il pBH (11.11)

This formulation, while valid, contains an annoying trace on the bath. One of the
main objective of the derivation presented in Sec. 7.1 was to find an effective equation
of motion for the system part of the density matrix, after tracing out the bath, and
therefore Eq. (11.11) feels like a step backwards. However, we can rearrange the terms
in this equation, using the hypothesis that O is a system operator to take it out of the
trace on the bath.

(O1(t+1)02(t)) = Treys [OlTrB [e T/ 100401 () T/ hﬂ , (11.12)
— Tryys [OlTrB[X(r, t)]] , (11.13)

where we introduced the quantity
X(1,t) = e 1 0yp,0 (1) T/ (11.14)

on which the trace on the bath is taken. This quantity contains a single system opera-
tor. Interestingly, the time-derivative of X (7,t) with respect to T

d 1

—_— = — X .
—X(0) = = [H X(x,1)] (11.15)
has exactly the same form as the one for the density total density matrix [Eq. (7.2)].
Therefore, following the derivation presented in Sec. 7.1, one can show that the evolu-

tion of Trp X' (7, t) is governed by same master equation as the reduced density matrix.
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11. NUMERICAL SOLUTION OF THE LIOUVILLE EQUATION

To write the QRT in the form where it is usually found in reference works
[Gardiner04; Carmichael02], we now introduce the operator V (#,, 1) that evolves the
density matrix from time t; to t, > t;:

o(t2) = V(ta, t1)p(t) - (11.16)

This evolution operator is the identity for t, = t;, and follows the same equation of
motion as the density matrix.
d

2Vt o) = LV(t,to). (11.17)

This is easily proved by taking time derivatives on both sides of Eq. (11.14). As men-
tioned previously, X'(7,t) and the density matrix evolve in the same way. The time
evolved X can therefore be written in terms of V,

Trp[X (T, 1)] = V(t+ 1, 1)Trp[X(0,1)] = V(t 4+ 1,1) [O20(t)] . (11.18)
Putting this last result in Eq. (11.13), one finds the usual expression of the QRT:

(O1(t+1)02(1)) = Treys [O1V(t+ 7, 1) [O2p(1)] ] , (11.19)
(O1(1)0a2(t + 1)) = Treys [O2V (t+ T, 1) [p(£)O1] ], (11.20)

where we also included the result for (O1 (t)Oy (¢ + 7)) that can be obtained in a similar
way. In the last equation, we kept the terms located right of V(f + 7,t) in brackets
to make explicit the fact the two-sided evolution operator acts on the whole bracket.
Finally, since we are interested calculating correlation functions in the steady-state
that depend only on the time-difference T and not on the absolute time ¢, we will use
the stationary density matrix pss,: in place of p(t). Also, for our time-independent
Liouvillian, we will usually write V(7,0) simply as

V(t,0) = -7, (11.21)

as obtained by straightforward integration of Eq. (11.17).

11.3.2 Projection operators in Liouville space

When using the Liouvillian formalism in general, and for the derivation of finite-
frequency correlation functions in particular, it is very useful to introduce two pro-
jection operators in Liouville space[Flindt04],

P = |ro))((lo] , (11.22)
Q=Y |ru))((lu]l=1-P . (11.23)
n>0
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Recalling that the vec-form of the stationary density matrix is the right eigenvector
(noted |rg))) of the Liouvillian associated with the eigenvalue 0,

Llro)) = 0[ro)) , (11.24)

we see that P projects to the subspace associated with the eigenvalue 0,? and therefore
that Q projects outside this subspace.

Besides the identities P?> = P, Q> = Q verified for all projection operators, the
projectors P, Q obey useful relations®

PL=LP =0 (11.25)
QLY=L (11.26)

As an example of how to use the notation introduced in this section, let us describe
explicitly how the projection operators can be used on a vector in Liouville space | A))
associated with the Hilbert-space operator A.

PlA)) = [ro)){{h]A)) (= vec(pstar) Trsys[A]) (11.27)
QlA)) =14)) —Iro)){(lolA)) (= vec(A) — vec(pstat) Treys[A]) . (11.28)

11.3.3 Expression of the correlation functions

Using the QRT and the projector formalism we just introduced, we can write formal
expressions for the (unsymmetrized)auto-correlation function of an observable 6O =
O — (O). Before proceeding, we will rewrite the autocorrelation spectrum as a sum of
symmetric and anti-symmetric in frequency contributions,

So(w) = [So(w) +250(—w)} n {So(w) —250(—60)] ’ (11.29)
_ /0 4t ({50(1),60(0)}) cos(wT) + i /O " 4t ([60(1), 60(0)]) sin(wT) .
(11.30)

Since this last form contains only integrals for t > 0, we can use the QRT to write
the expectation values in terms of the evolution operator V(t,0) = 7. Importantly,
in this section we will derive the formal expression for both the symmetrized and
anti-symmetrized noise, whereas previous studies (e.g. [Flindt05a]) focused solely on
symmetrized noise.

2We note that the associated left eigenvector can be found using ((ly|rg)) = 1 in combination with
Tr[pstat] = 1, to find ((lp|= vec(1), where 1 is the Hilbert-space identity operator.
3The first relation follows from the eigendecomposition of the Liouvillian:

PL = |ro)) (Il (Zho0 Aplr) ({1pl) = (Zhl0 8porplro) ) ({1pl) = Aolro)){(lo]= 0
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11. NUMERICAL SOLUTION OF THE LIOUVILLE EQUATION

Symmetrized noise

Let us first look at the expression for the symmetrized noise,

So(w) = % / o:o<{5é(t),(5©(0)}>ei‘*’t _ /0 " 4H{50(t), 50(0)}) cos(wt), (1131

with 60 = O — <O) We split the last integral into two terms (+iwt), and look at the
first one (+). Rewriting the integrand as

the integral can be rewritten as
/ dt({60(t),60(0) })e't = Tryys / dts0e {60, pstar }'* . (11.34)
0 0

We add a convergence factor w — w + i1, (5 — 07), then proceed with the integration
to find

Following [Flindt05b], we write
(iw+ L)' = (iwP +iwQ+QLQ)™". (11.36)
This way the inverse can be readily found,
P 1
(iwP +iwQ+ QLAY) ' = o +Q£+in. (11.37)
We now define
B 1

to get
NS A ~ [P , R
—Trsys[00 (iw + L) 1450, Pstat }] = —Trsys[60 (E + R(zw)) {60, pstat}] - (11.39)

This allows us to write, including the second contribution which is identical to the
first one but with w — —w,

So(w) = — %Trsys [60 (% + R(iw)) {560, pstat }]
1T 50 P R(—i 50 (40
- 5 rsys[ (_E + (_Zw)> { /Pstat}] ’
= STrael60 (R(—i) + R(iw)) {60, paa}] (11.41)

where in the last line we added the reverse contributions of £P/(iw). This is the
expression for the symmetrized noise of operator O at frequency w. The details re-
garding how to numerically evaluate this quantity are given in Sec. 11.7.2.
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Anti-symmetrized noise

As advertised previously, the anti-symmetrized noise

So(w) = Solw) _250(_“’)] — /0 T at([50(1),50(0)]) sin(wt) , (11.42)

can also be calculated using the numerical Liouville approach. To proceed, we again
write

([60(1),50(0)]) = Trsys[00e* [60pstat]] — Trsys[00e ! [05tat60]] (11.43)
= Trsys[060e“'[60, pstat]] (11.44)

We can follow the same route as before, splitting the integral in two, to find,

So(w) =— %Trsys [60 (% + R(iw)) [60, pstat]]
: o ) (11.45)
+ ETrsys [60 <_Z + R(—iw)) 100, pstat]] ,
= %Trsys [60 (R(iw) — R(—iw)) [60, pstat]] — Trsys [5@%[56), p]], (11.46)

This time the w ™! term does not drop out naturally. We can however evaluate it

Trsys [SOP[60, p]] = ((60[r0)) ({1060, pstar])) (11.47)
= Trsys [(Sopsmt] Trsys [[(501 PstatH ’ (11.48)

and, since the trace of a commutator is always zero, see that it also never contributes
to the correlation function. Therefore, the final expression for S, (w)

S5(w) = —%Trsys [60(R (iw) — R(—i))[60, pstat]] (11.49)

It is important to stress that, using Egs. (11.41) and (11.49), we have access to the un-
symmetrized, frequency-dependent noise of any system observable.

11.4 Explicit form of the Liouville operator

Having presented in detail the Liouvillian formalism, we now apply this formalism
to our physical problem of a NEMS coupled to a SSET biased near a DJQP. A natural
tirst step is to derive the Liouville operator in this case. The von Neumann equation

[Eq. (7.2)]

1
Lp = ﬁTrB [Heot, Ptot) , (11.50)
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11. NUMERICAL SOLUTION OF THE LIOUVILLE EQUATION

provides a natural way to calculate £ for a general system. In the case we are in-
terested in, the reduced density matrix Trpptot contains information about both the
charge state of the SSET and the oscillator. As in Sec. 10.3.1, we will note p; ; the ma-
trix element (i|Try,, Trppiot|j) of the SSET’s density matrix (with |i),|j) two charge
states of the island). In the opposite fashion, we denote the eigenstates of the oscilla-
tor |nesc) and use superscripts to denote the matrix elements of the oscillator part of
the density matrix

Nmax Nmax

2 2
Trpptor = p = Z Z 2 Z PZ;')SC’mOSC|i><j|®’”OSC><mosc| (11.51)

i=—1 j=—1 1sc=0 mosc=0

As hinted at earlier [Eq. (11.3)], the total Liouvillian can be written as a sum of
three contributions,

E — ECO + Eqp + ECZ ’ (11.52)

with L., describing the coherent evolution of the coupled system, £, a Caldeira-
Leggett type contribution to the evolution of the complete density matrix that models
the coupling of the oscillator to the environment (Sec. B) and L, a contribution asso-
ciated with dissipative quasiparticle transport.

The coherent evolution contribution to the Liouvillian is given by

1
Ly, p= 7 [Heo, 0] (11.53)

where H,, is the complete systern Hamiltonian, i.e. the Hamiltonian describing the
undamped oscillator and the coherent processes in the SSET (Josephson tunneling,
charging energy) as well as the interaction Hamiltonian. The second term L;, de-
scribes the effect of the quasiparticle transport on the reduced density matrix. Its form
can be read-out directly from Eq. (10.10)

. | I TN
Lopp =T1d-1004 10 = 5T{d-1,-1,0} + Tr21pd3, — 5Tr{d22, 0}, (11.54)

where we introduced operators 4i; = |j)(k| describing the quasiparticle tunneling
event that changes the charge state of the island from |k) to |j). Finally, the £ con-
tribution is, as described in Chap. 7, given by

Do.. .. o o
Lcrp =— h—zo %, [%,0]] — Zl;[x, {0}, (11.55)

with Dy = MvohQ coth [1Q)/2kpTg| /2. Naturally, this term is independent of the
charge state of the island. Using Eq. (11.4), the matrix representation of the Liouvil-
lian associated with our problem can be constructed, starting from the (Hilbert space)
matrix representation of the p, £ and gj;.
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11.5 Numerical results

We now present results of numerical calculations realized using the approach we just
detailed. At this point, it is good to warn the reader that we cannot hope to use this
kind approach to map-out the complete parameter space of the problem of an oscil-
lator coupled to a SSET biased near the DJQP. Indeed, at least 9 parameters* could
in principle be tuned over a wide range of experimentally accessible values. This
is why such a numerical study is particularly helpful when combined to analytical
approaches where it is easier to understand the effect of each parameter. This is pre-
cisely the case here: the results presented in this section were obtained to complement
a study using an approximate master-equation approach. For a detailed comparison
between the numerical and the results obtained this master-equation approach, refer
to [Koerting08]. In the remainder of this section, we will focus on presenting results
that are not readily obtained via the semi-analytical approach described in Sec. 10.3.3.

11.5.1 Stationary state determination

The Fock-state occupancy P(nosc) = Tty (nosc|0]Mosc) is a good example of a quantity
that is both very useful to describe the state of the system and that cannot be easily
accessed using the mean-field approach. This quantity allows for a direct identifica-
tion of the state of the oscillator. In the thermal case P (1,5 ) monotonically decreases
with increasing 71,sc, following

—(nosc+1/2)hQ

P(npsc) ~e 8T , (11.56)

In the driven state, effective theories [Clerk05] predict that P(n.sc) is a totally different,
gaussian-like distribution peaked away from n,sc = 0. The Fock-space occupancy
can therefore be used as “smoking-gun” evidence to prove that the stationary state
of a system is a driven state. This is very different from the mean-field approach,
where only the average energy is calculated, making difficult to differentiate between
a high-temperature thermal state and a driven state. Finally, by looking at P(1s.) one
can also identify regions where the system exhibits bistability (the system switches
between thermal and driven states): in this case P(nsc) is the weighted average of a
thermal-like and a driven-like distribution.

Figure 11.1 shows the evolution of the Fock-space occupancy as the bias voltage
is increased from the ¢y > 0 (AeV = —2h(}) region through the regime the linear-
reponse approach breaks down (AeV > 5hQ)). For eV > 5hi(), we notice the presence

4These are: the detunings in gate voltage and bias voltage away from the resonance, the Josephson
energy of each junction, the two quasiparticle tunneling rates, the coupling strength, the temperature
of the thermal bath, and the quality factor of the oscillator.
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Figure 11.1: Fock-space occupancy P(#osc) = Try(fosc|p]nosc) for different values of
the bias voltage AeV /h(). The parameters used for the calculation are:
I'n =Tr =120, Jp = Jr = 51Q, 79 = Q/1000, Ty = 31Q/kp, A =
0.1XO/hQ.

of a maximum in P(#,s) located away from n,sc = 0. As mentioned earlier, this can
be use to confirm that the stationary state of the oscillator is in this case a driven state.

In passing, we mention that another way to confirm the observation of bistable be-
havior is via the probability distribution function P(x) = Tr, (x|p|x). This information
is also not available via the mean-field approach, where one typically only calculates
the first few cumulants of P(x), like (x) and ((x?)). From P(x) one can directly ver-
ify the validity of the truncation made in the system of equations (Sec. 10.3.3). This
quantity can also serve as another way to discern the type of stationary state reached
by the oscillator due to the interaction with the SSET. Figure 11.2 shows three typi-
cal probability distributions that can be observed. On the left, the standard thermal
state, where P(x) is gaussian-distributed around the equilibrium position ({x) ~ 0)
is displayed. The middle panel shows P(x) for a driven state, with two maxima at
finite |x|. The rightmost panel displays the position probability distribution in the
case where the system is bistable. In this case, P(x) is a sum of a driven and a thermal
distribution, the driven state showing up as two shoulders at large |x|.
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Figure 11.2: Position probability distribution P(x) for three different type of oscillator
states: thermal (left), driven (center) and bistable (right). The position is
given in units of Axg = (/2MQ)'/? the zero-point motion of the oscilla-
tor.

11.5.2 Frequency-dependent charge noise

The possibility of identifying without ambiguity the nature of the stationary state of
the oscillator using our numerical approach is mostly interesting when combined to a
master-equation approach where the parameter space can be rapidly mapped out.
The numerical approach presented in this chapter should however not be seen as
something that is only to be used in conjunction with the master-equation approach.
It can be very useful “on its own”, as we demonstrate in this section.

The description of the detector as an effective bath proved very successful in pro-
viding a simple physical explanation of experiments (as discussed in e.g. Sec. 10.3).
However, some of its shortcomings have started to be identified in recent theoret-
ical works[Bennett08; Rodrigues08]. For example, it was very recently proposed
[Rodrigues08] that the signature of the oscillator in the charge noise spectrum of a
generic detector is not one of a thermal oscillator. In the light of these findings, the
calculation of the full frequency-dependent charge noise spectrum of the SSET near
the DJQP in the presence of an oscillator becomes relevant, especially since the charge-
noise spectrum is an experimentally accessible quantity. Luckily, the frequency-
dependent charge noise is readily calculated from Eq. (11.41).

Figure 11.3 shows the symmetrized (in frequency) charge-noise spectra, S, (w) ob-
tained for different values of the bias-voltage detuning from the DJQP resonance. The
oscillator state, i.e. thermal or driven, can be determined from the Fock space prob-
ability distribution in Fig. 11.1. The inset shows that the signature of the oscillator
in S, (w) appears prominently around the natural frequency of the oscillator. Away
from w ~ (), the charge spectrum is only weakly affected by the oscillator, this one
changing only slightly the effective biasing conditions of the SSET.
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Figure 11.3: Symmetrized frequency-dependent charge noise S,(w) of the SSET ver-
sus w /() for different values of the bias voltage AeV /(). Parameters are
identical to Fig. 11.1. While there is no structure in the case AeV = 0, we
can distinguish if the oscillator is driven or damped by the symmetry of
the peak at w = Q). Inset: Comparison between the frequency-dependent
charge noise in the presence of the oscillator and in the uncoupled case,
over a larger frequency range.

The main panel of Fig. 11.3 shows the evolution of the charge-noise spectra when
the system is taken from the “cooling” region (AeV = —1h()) through the resonance
point (AeV = 0), to the voltage regime where the state of the oscillator becomes
highly non-thermal. Unsurprisingly, the overall signal around () increases dramati-
cally when the oscillator enters the driven regime, reflecting the overall increase in the
magnitude of Sy(w ~ Q) when the oscillators energy is increased. Associated with
this increased magnitude is a reduction of the width of the resonance, that is again ex-
plained rather straightforwardly via the decreased total damping rate in this region
(A%2y < 0).

The most interesting observation to be made about Fig. 11.3 is perhaps the striking
similarity between the spectra at AeV < 0 and eV > 0. In both cases, we find not only
a resonance at the renormalized frequency of the oscillator, but also an anti-resonance
at its bare frequency, exactly as derived in [Rodrigues08] for a generic detector.’ Ex-
actly at the resonance the two effects cancel, although a very weak resonance-anti-

Note that the renormalized frequency Q,(eV) = 1/Q2 — [y + A27/2]2 depends on the detuning
eV via the v parameter (see e.g. Fig 10.3 for a qualitative overview of the dependence of v on AeV).
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resonance can be seen on a finer scale. In the region AeV > 0 and A%y < 0, the
situation is reversed and the resonance appears at frequencies (), higher than Q).

When coupled to a purely thermal oscillator, the charge noise spectrum S, (w) does
not contain any anti-resonance [Rodrigues08]. The presence of this anti-resonance on
all curves, or more precisely, for all values of detuning AeV, even in cases where the
Fock state probability distribution function P(1ns.) decays exponentially®, suggests
that this anti-resonance is associated with correlations between n and x that arise in
our system, and not for a back-action free thermal oscillator. To explain this result
qualitatively, we can look at the effective Langevin equation of the problem [Eq. (6.2)]
and write it in terms of a single effective environment. In this case, the effective total
force on the oscillator is given by

SE tot (W) = Mytothw coth ( ) ) (11.57)

2kB Ttot

A real physical thermal bath at temperature Tier, = Ttot coupled to the oscillator via
a damping rate Ytherm = 7tot Would also have

_ hw
SE therm (W) = Mtothiw coth ( ) . (11.58)
2kB Ttot

However, this real, physical, thermal bath would be totally uncorrelated to E. This is not the
case for the effective bath:

(Fiherm (£)E(£)) =0, (11.59)
(Fot(t)F(t)) #0 (11.60)

the ‘effective thermal’ force felt by the oscillator is correlated with F < n, the charge
on the island. This is an important difference that can explain the difference in the
observed S,(w) and the one predicted for a simple thermal oscillator. It is also con-
sistent with numerical evidence showing no anti-resonance when the thermal force
Fy overwhelms the back-action force (i.e. 79Ty > A?YT.g, the anti-resonance disap-
pear).

The numerical data presented in this subsection not only confirms that the simple
model used in [Rodrigues08] also applies to the complex SSET-resonator system, it
demonstrates that the “Fano-like” lineshape, where both a resonance and an anti-
resonance appear in the spectrum of the charge noise, characterizes nicely the charge
noise spectrum on both the “driving” and “cooling” sides of the resonance.

6 Again, refer to Fig. 11.1 to compare the different voltage points.
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11.6 Summary

In this chapter, we have presented the details of a numerical approach based on
the Liouville equation that was used to complement a mean-field master equation
study [Koerting08] of a system composed of a nanomechanical oscillator coupled to
a SSET biased near the DJQP transport resonance. The numerical approach allows
the calculation of both average properties of the coupled system in the long-time
limit and of correlation functions of system variables. Importantly, it gives access to
quantities that are not readily available from the mean-field approach like the Fock-
space occupancy distribution or the position probability distribution P(x), making
it a perfect companion tool to master-equation studies. We also computed and dis-
cussed the spectrum S, (w) of the charge fluctuations on the SSET island. In the range
of frequencies close to the resonator’s frequency, we found that the spectrum dis-
played both a resonance and an anti-resonance, irrespective of the sign of the detun-
ing from the DJQP resonance AeV. The observed “Fano” lineshape, while inconsistent
with the signature of a purely thermal oscillator, is consistent with the prediction of
[Rodrigues08]: it is symptomatic of the limitations of the effective environment model
described in Sec. 6.1.

11.7 Implementation details

The main downside of using a Liouville approach in the context of nanomechanical
systems is that the discrete but unbounded spectrum characterizing the harmonic os-
cillator cannot be treated numerically without truncating the infinite spectrum. This
is usually not a problem, as long as the occupation of the discarded eigenstates van-
ishes, like it is the case at low temperatures. However, when dealing with systems
that exhibit negative effective damping (like the one studied here), one must be care-
ful and keep an elevated number of phonon states (noted N). Due to the bad scaling
( N*) of the number of elements of the Liouville matrix with N, the eigenproblem
soon becomes numerically challenging: when only the 200 lowest oscillator energy
eigenstates are considered, the Liouville matrix for the DQJP problem is of dimension
(16N? x 16N? = 640000 x 640000). Even after further simplification of the problem
(Sec. 11.7.3), the large size of the Liouville matrix makes both the calculation of the
stationary density matrix and the evaluation of the frequency-dependent correlation
functions [Egs. (11.41),(11.49)] numerically demanding.

11.7.1 The eigenvalue problem

Let’s first address our implementation of the eigenvalue solver. To address this dif-
ficult problem, different paths were used by different groups. For example, in the
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context of nanomechanical systems, some used in-house developed MATLAB imple-
mentations of the Arnoldi iteration technique[ Arnoldi51; Golub96], while others used
the inverse-iteration approach[Golub96]. We found neither of those approach satis-
tying. First, there is no real advantage in rewriting code for a common task as sparse
eigenvalue problems. Second, the inverse-iteration technique requires the inversion
of the Liouville matrix, a time-consuming and memory-hungry, procedure. Moreover,
it does not calculate the eigenvalues explicitly; it only allows access to the eigenvectors
associated with known eigenvalues. While the Ay = 0 eigenvalue is a priori known,
the others must be “guessed” [Harvey08]!

We therefore decided to leverage the power of the sparse eigensolver library
ARPACK7[Lehoucq96 ; Lehoucq97], a FORTRAN 77 implementation of the implicitly
restarted Arnoldi iteration approach to eigenvalue problems[Sorensen92], a general-
ization of the better-known implicitly restarted Lanczos method used for symmetric
matrices. This collection of subroutines is designed to compute “few” (nev) eigen-
values of a m x m matrix A using only m x O(nev) + O(nev?) auxilliary memory in-
stead of the O(m?) typically required by eigenvalue routines. These routine do not
require the storage of the full matrix A, also decreasing the memory requirements.
Finally, these routines return the eigenvalues and associated eigenvectors computed
to user-specified accuracy that can be as stringent as the working precision (~ 1016
for double-precision complex numbers).

The library is based around a reverse communication interface that requires the user
to provide a routine that returns a vector w, constructed from w = Op(A, v) for any
given vector v. In most situations, Op(A,v) — Av is simply the matrix-vector prod-
uct of A and v. The reverse communication interface is one of the main features of
ARPACK. It allows the user to implement a key section of each Arnoldi iteration in
the best, problem-dependent, way. The particular way to use the reverse communi-
cation interface is presented on the right side of Table 11.1.

Typically, the Arnoldi iteration method is appropriate to calculate few exterior
eigenvalues of a large matrix, i.e. the nev eigenvalues with the largest magnitude.
Calculating the eigenvalues with the smallest magnitude, like is needed in our case,
is therefore quite involved when using the standard approach. Sylvester-type condi-
tioning might be needed to ensure convergence[Jauho04]. When the methods fails to
converge even after conditioning of the Liouville matrix, some damping kernels have
been shown to be easier to deal with numerically [Flindt04]. By using ARPACK, we
get rid of most of these numerical stability problems. Indeed, the library provides an
implementation of ‘shift-invert’ mode of the Arnoldi iteration method via the driver
routine zndrv2. This mode allows the calculation of the part of the eigenvalue spec-

7ARPACK and its parallel implementation PARPACK are open-source libraries distributed under
a BSD license. They can be downloaded from http://www.caam.rice.edu/software/ ARPACK/.

155


http://www.caam.rice.edu/software/ARPACK/

11. NUMERICAL SOLUTION OF THE LIOUVILLE EQUATION

Table 11.1: Comparison of the way a standard eigenvalue routine (left) and an
ARPACK routine with the reverse communication interface (right) is in-
cluded in a code. On the right, the matrix A is given as an input to the
routine that afterwards outputs the results (e.g. the eigenvectors) in B. On
the right, the ARPACK routine is called repetitively after each iteration,
until convergence (done .eq. .true.) is obtained. As part of each iter-
ation, w must be evaluated from an operation Op of the matrix A and a
vector v given by the routine (for every iteration, v is different). The user
must provide its own routine to evaluate w, which is afterwards fed back
as an input parameter of the ARPACK routine. When (done .eq. .true.),
the results can be read from v, for example.

call normal_routine(A,B) 10 continue
call arpack_routine(w,v,done)
if (done .eq. .false.) then

w=0p (A, v)
goto 10
endif

trum closest to a shift . Summed up briefly, in this mode the code calculates the
eigenvalues of A closest a the shift o by first estimating the eigenvalues with maximal
magnitude of (A — 01) ™. Since we are interested in the eigenvalues closest to zero,
we choose a small but finite value for the shift (¢ ~ 10719). This finite shift leads to
an increased numerical accuracy.

In the shift-invert mode, the user-provided operation w = Op(A, v) is not simply
the product of A and v. Instead, the routine expects to be returned w = (A — 10) ~!v.
Of course, we do not have to inverse A. Instead, we solve the linear equation

(A—1lo)w=v (11.61)

for w. The solution of sparse linear systems of high order is an extremely well-studied
problem in computer science, mainly because these systems arise naturally in many
engineering and physics problems (for example, in finite-element simulations). A
wide range of libraries is therefore available to solve such systems. We decided to use
the PARDISO linear solver[Schenk04; Schenk06] developed at the University of Basel.
Many reasons explain this choice. First, it is available free or charge for academic use®,
and is also distributed as part of the Intel MKL performance package, making it easy
to access. It has multiprocessor support. More importantly, it is adapted to problems
where one system needs to be solved many times for different right-hand sides (in our

case, for different v in Eq. 11.61). The factorization of the main matrix (A — 10) can

8See http:/ /www.pardiso-project.org/ for details.
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be used for each iteration and therefore only needs to be calculated once. Finally, this
library proved one of the most efficient and numerically stable in a recent comparison
of different solvers[Gould07].

By using a combination of ARPACK and PARDISO, our code calculates the lowest
eigenvalue and associated eigenvector of a matrix of order 500 000 in less than 15
minutes on a recent workstation. Since we know that the lowest eigenvalue should
be Ag = 0, we can evaluate the accuracy of our truncation scheme by looking at the
calculated value of Ag. In a perfect case, the magnitude of the calculated eigenvalue
tends to zero (|Ag] < 107%°). However, when the population of energy state near
the cutoff is not-negligible, then the zero-eigenvalue can become large (|Ag| ~ 107°),
signaling that the number of phonon states kept should be increased.

Finally, we tested the accuracy of the code by comparing the numerical results to
i) analytic results when they are available (for example, in the uncoupled case) and
ii) to the results obtained from a master-equation approach [Koerting08]. In the very
weak coupling regime, where we expect the master equation approach to be valid, we
always found extremely good agreement.

11.7.2 The calculation of finite-frequency correlation functions

Besides the eigenvalue problem, the other computationally intensive section of the
code is the correlation of finite-frequency correlation functions. As can be seen from
Eqgs. (11.41,11.49), this typically requires the numerical evaluation of quantities of the
form

Trsys[AR (x)B]. (11.62)

Since R(x) = Q(L + x)'Q, one might think that the numerical inversion of the
Liouville matrix would need to be performed in order to evaluate So(w). This is
luckily not the case, as one can calculate R(x)B using a linear solver. To understand
how this is done, let us first rewrite Eq. (11.62) using the vector notation

Trsys[AR (x)B] < ((A|R(x)|B)) , (11.63)

and, following Flindt et al. [Flindt04], define auxiliary Hilbert space operator ¢ and
the associated Liouville space vector |¢)) = vec(¢) from

8)) = R(x)[B)) . (11.64)

Using this vector, Eq. (11.62) simplifies to ((A|¢)). To find |{)), we solve the linear
equation

&) = Q(L+x)"1Q|B)), (11.65)
(L+x)[g)) = (L+x)Q(L+x)"'Q|B)), (11.66)
(L +x)[¢)) =Q[B)), (11.67)
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where we used the fact that, for x a number, (£ + x)Q = Q(L + x). This last equation
has the form Y = MX, with Y, X dense vectors and M = (£ + x) a sparse matrix and
at this point this system linear system of equations could be solved, for example by
using the PARDISO solver. However, this is not the best way to proceed. Indeed, the
solution to Eq. (11.67) is not unique. Defining |&")) = |&)) + z|ro)), we have

LIg") = L(1¢)) +zlr0))) (11.68)
= L[¢)) +zL]ro))) (11.69)
= £|e)) . (11.70)

Therefore, if |¢)) is a solution, |¢’)) is one also. The solution is determined uniquely
by using

Pl§)) =PQL'QIB)) =0 (11.71)
since PQ = 0. Writing out the left hand side explicitly, we have

PlE)) = |ro)) ({lo]g)) = [ro)) Trsys[€] =0, (11.72)

and therefore Trqys[¢] = 0. A corollary of P|¢)) = Oisthat Q|&)) = |¢)), and therefore,
from any result |¢’)) the unique solution |{)) can be obtained using

18)) = Qlg")) =1&")) — |7’0>>Trsy5[§/] (11.73)

It is in general not a good idea to proceed directly, first solving for any |¢)) and then
using Eq.(11.73) to find the unique solution because in this case the matrix badly con-
ditioned. Moreover, the presence of an infinite number of solution for this undeter-
mined system of equation was shown empirically to affect significantly the numerical
accuracy of the solution.

We instead solve Eq.(11.67) under the condition Tr[¢] = 0, again using the PARDISO
solver. By inserting directly this condition in (£ + x), the obtained solution always
verifies Q|¢)) = |¢)) and the numerical accuracy of the results is increased. We ver-
ified that our implementation of the algorithm presented in this chapter reproduces
the complete (unsymmetrized) charge-noise spectrum of the SSET near the DJQP, as
well as the displacement spectrum Sy(w) of a thermal oscillator coupled solely to a
thermal bath.

11.7.3 Reducing the size of the problem

To improve the speed of the calculation, and, more importantly, to increase numerical
accuracy, we can manually discard matrix elements of p which we know will be zero.
For example, as discussed in the last chapter, no coherence can be created between
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states with 1 and 2 charges, since they are not coupled by any Josephson coupling.
We can therefore drop the whole p; » subspace of the density matrix, as well as other
subspaces corresponding to charge states not coupled via a cooper-pair tunneling pro-
cess. Instead of dealing with a vec(p) of dimension 16N? x 1, we concentrate on the
relevant (8N? x 1) non-zero matrix elements. In the code, this is implemented using
a “selection” matrix S that allows to transfer from the complete space to the relevant
space.

To explain the idea behind the selection matrix, let us look at the how it can be
used in the case we have only a SSET biased near a DJQP (and no oscillator). In this
case, only the density matrix contains 16 elements, but 8 of them are known to be zero.
Using the matrix S

(11.74)

O O O O O O O
O O O O O O oo
O OOk OO o O
O O O O O O OO
O OO OO O OO
O O O O O O~ O
O O O O OO oo
O R OO O O OO
OO Rk OO O oo
O OO DO OO OO
O O O O Ok, OO
O O O O OO OO
O OO OO O OO
_ o O O O o o o
O OO DO OO OO
OO OO, O OO

where SST = 1, we can exclude the irrelevant terms in p by looking at

P-1,-1
00,0
P11
02,2
01,—1
P-11
02,0
00,2

Svec(p) = = vec(ps) , (11.75)

where we defined vec(ps), the vectorized form of the density matrix in the S subspace.
The original eigenproblem

Lvec(p) = Avec(p) (11.76)

can be recast in the relevant (S) subspace using the selection matrix:

Lvec(p) = Avec(p) —SLvec(p) = A Svec(p) (11.77)
—SLS Svec(p) = A S vec(p) (11.78)
—Lsvec(pp) = Avec(ps) (11.79)
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with SLST = L the expression of the Liouvillian in the relevant subspace. Equation
(11.79) can be solved for vec(ps) as explained in Sec. 11.7.1, with the added advantage
that the size of the problem is now halved. From vec(p;), the full density matrix is
obtained from

Stvec(ps) = STSvec(p) = vec(p). (11.80)

When considering a finite number of phonon states, one cannot use S as presented
above, but most adapt S to the number of phonons. In particular, due to the vectoriza-
tion of the density matrix, it is not right to replace each ‘1" in the previous expression
of P by a N2 x N? identity matrix. Finally, we note that the ‘selection-matrix” formal-
ism described here can be adapted to make a further selection in phonon space (i.e.,
drop terms pZiSC’”OSCJFA for |A| > 1). For A ~ 25, a value that corresponds to keep-
ing all terms in a 50-lines wide diagonal band, this makes it possible to truncate the
spectrum at N ~ 750 on a workstation with 8GB of RAM and at N 2 1000 with 16GB.
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CHAPTER

Conclusions and outlook

A detailed summary of the original research presented in this thesis was already given
in Secs. 3.5, 8.5, 9.4, and 11.6, so we refrain from simply repeating the content of these
sections here. Instead, at this point we will try to look back at the results from a broad,
overall perspective: What did we learn? What are the general conclusions that can be
drawn from the work presented here?

If we had to answer these question in only two sentences, we would say: “The
effective environment model accurately describes the back-action of a detector on the
mechanical oscillator. This model has, however, some limitations”.

Indeed. A constant theme throughout this thesis was the idea that the back-action
of the detector on the oscillator could be modeled as an effective environment. This
result, first formulated in the context of NEMS in [Mozyrsky02] and formalized in
[ClerkO4a] was even rederived in a totally new way from a master-equation approach
in Sec. 7.2. This model was shown to accurately describe the stationary state of a
mechanical oscillator coupled to a SET in the weak-coupling regime (as discussed
in Chap. 3) and of a mechanical oscillator coupled to a tunnel junction (Part III). It
also proved invaluable to describe the back-action of the SSET near the DJQP. More
generally, this model is central to the many schemes of “back-action cooling” of the
oscillator that have been proposed lately.

The work presented in this thesis however shows that the description via an effec-
tive environment has its limitations. The first one was encountered in our study of the
SET - mechanical resonator system in the strong coupling regime. In this regime, the
stationary state of the oscillator was proven to be far from gaussian. The breakdown
of a model derived in the weak-coupling limit when coupling is increased, or in the
presence of strong feedback effects, is not surprising. This is however a limitation that
must be kept in mind when using the effective thermal model. Another limitation of
the model is that it does not always describe the effect of the oscillator on the detector
reliably. For example, the signature of the oscillator in the charge-noise spectrum of
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the SSET was shown to differ from the one of a purely thermal oscillator. Another
example is the presence of quantum corrections in the average current and current-
noise of the tunnel junction [Egs. (7.76), (7.89)] that lead to the possibility of measuring
momentum fluctuations of the oscillator using position-coupled tunnel junctions.

12.1 Outlook

In the light of the work presented in this thesis, it is tempting to discuss some ideas
about the different research directions that could be followed in the future.

A simple extension of the work presented here would be to investigate the proper-
ties of the quantum point contact displacement detector, that is go beyond the |fg| < 1
approximation used in Part III. This problem is especially relevant when one realizes
that the gain of the tunnel junction is proportional to t(, such that from a practical point
of view the very low transparency limit is not the most attractive regime to carry out
experiments. Indeed, the two most recent experiments reviewed in Chap. 5 where re-
alized outside the |tg| < 1 parameter range. In the weak-coupling limit, one expects
the effective environment model to hold. Considering the case of a QPC embedded
in a 2DEG where the coupling term can be written in terms of the interaction between
the mechanical element and a charge density in the QPC, the effective environment
can be derived from the calculation of the charge noise properties of the QPC. In this
case, the role of screening and quantum capacitance in position measurements could
be estimated[Pedersen98; Pilgram02].

More generally, but still in the spirit of the work presented in this thesis, it would
be very interesting to refine the effective environment paradigm. The strong analogy
between the coupling to the environment and the coupling to the detector expressed in
the effective environment model suggests that the many refinements to the Caldeira-
Leggett model developed in the context of quantum dissipation could be exploited to
develop a more elaborate understanding of the general effect that the detector back-
action has on the oscillator.

From the point of view of a theorist, it is of course very tempting to consider
the realm of quantum NEMS: entanglement of mechanical objects with other quan-
tum systems, superposition of states, non-classical states etc. Recent demonstra-
tions of back-action cooling as well as theoretical proposals of schemes that allow
back-action cooling to the ground state of the oscillators fueled the theoretical inter-
est in this direction, and some exciting new physics might arise deep in the quan-
tum regime (for example, new decoherence channels like the “gravitational collapse”
[Diosi89; Penrose96; Kleckner08]).

My personal opinion is however that the most interesting currently open problems
are not those where the oscillator in taken to be in this deep quantum limit. Indeed,
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resonators at temperatures well below /() are not especially exciting unless they can
be controlled and monitored or, in other words, unless quantum-limited sensitivity
for displacement detection is available experimentally. From this point of view, the
relatively poor quantitative agreement between theory and experiments in the field
of nanomechanics could be seen as worrying. One of the most compelling arguments
in favor of using mesoscopic detectors as the electrical element in NEMS is (besides
their exquisite sensitivity) the possibility to accurately describe these systems theoret-
ically and evaluate the regimes in which the very stringent conditions for quantum-
limited position sensing can be reached. From this aspect, it becomes of primary in-
terest to investigate whether the observed deviations between theory and experiment
are intrinsic to the detectors used (i.e. due to higher-order processes not considered
in the current theoretical models) or simply due to technical issues that could be im-
proved in next-generation devices. Here, only three detectors were discussed (the
SET, the tunnel junction, and the SSET), while in fact multiple other candidates for
quantum-limited detection have recently been realized experimentally, for example
the SQUID[Etaki08] and the microwave cavity[Regal08]. At the time of writing this
thesis, it is too soon to foresee which type of detector, if any, will allow the quantum
limit to be reached. Only the continued theoretical and experimental exploration of
all these avenues will provide this answer.
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APPENDIX A

The MacDonald formula

In many chapters of this thesis a result known as ‘the MacDonald formula” was
used. In this appendix, we present a derivation of this result{fMacdonald49c;
MacDonald49a; MacDonald49b; MacDonald62]. For definitiveness, we will derive
it in the context of a current noise, but this result can be applied very generally to
express the symmetrized power spectrum of some quantity in terms of a generalized
displacement.

Let’s first explain what we mean by generalized displacement. Consider y(t), a
statistically stationary variable!. The generalized displacement Y (T) is defined as

to-+T
Y(T) = /t y(t)dt . (A1)
0
In our example where y(t) is a current, Y(T) is the number of charges transmitted
through the junction from time ty to fop + T. Had y(t) referred to the momentum
[y(t) < p(t)] of a particle undergoing Brownian motion, then Y(T) = x(T) — x(to)
would have been the displacement of this particle between times T and tj, since
x(T) — x(ty) = ftOTHO p(t)dt/M. Since we consider stochastically stationary pro-
cesses, we can set ty = 0 in the following discussion without loss of generality.
From Eq. (A.1), we obtain

T T
OAT) = [ dr [ arty(tue)) (A2)
Introducing the symmetric correlation function

Ky(t) = (y(t+)y(t)) , (A3)

In this context, the term “statistically stationary” reflects the fact that the correlation function
(y(t2)y(t1)) is a function of t, — t; only (at not of #; or t; individually). Importantly, from this def-
inition one sees that a statistically stationary variable necessarily has mean zero. For variables where
(y) # 0, one should consider the zero-mean variable y — (y).
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which, in the steady-state is a function only of T, we see that the average Y?(T) is
related to the integral of the correlation function K, (t — t'). In terms of center-of-mass

and relative time coordinates
t=t+1t,
r=t—t",

this integral can be rewritten
Ay =2 [CdE [ k().
OT ’ Tt _
:2/0 dtr/o dEKy (L),

_2 /OT dt, (T — t)K, (t,) .

In Eq. (6.4), we defined the symmetrized power spectrum

S)@) =5 [ @y e,

—2 /0 dt cos(wt)Ky(T) .

(A.4)
(A.5)

(A.6)
(A7)

(A.8)

(A.9)

(A.10)

Taking the inverse Fourier transform of the last expression, we can express the corre-

lation function as
00 — dw
K, (1) = /0 cos(@T)8,(w) 5

We now insert Eq. (A.11) into Eq. (A.8) to find

Y*(T)) = Z/Tdt (T —t )/OO cos(wt,)S (w)d—w
0 r r 0 r y 27_[ .
Using
T _ 1—cos(wT)
/0 cos(wt)(T —t)dt = —
this is rewritten as
® 1 —cos(wT)—= dw
2 _ =
(Y2(T)) _2/0 S (@)
Taking the time derivative on both sides
d, o _ @sin(wT) < dw
SOAM) = [P EETS, (@) 7.

Finally, by applying an inverse Fourier transform, we find

Syw)=w [ a sin(wt) T (¥2(1))
0
This is the MacDonald formula.
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APPENDIX B

The Caldeira-Leggett master equation

Since it describes quantum brownian motion, the Caldeira-Leggett equation obtained
in Eq. (7.26) plays a central role in the context of nanomechanical systems and we will
therefore, in this Appendix, outline the basic ideas behind its derivation for a thermal
environment. First however let us focus for a moment on the very broad question of
dissipation (damping) at the quantum mechanical level, considering for definitiveness
the example of the undriven damped harmonic oscillator’.

When studying the classical harmonic oscillator, damping can be introduced by
modifying the equations of motion of x, p

x=p/M, (B.1a)
p=—MQ%x, (B.1b)
to include a dissipative force term
x=p/M, (B.2a)
p=—MO*x—yp. (B.2b)

This leads to the well-known second-order differential equation for x,
X4 9%+ MO*x =0. (B.3)

How can this be translated to the quantum regime? Following the usual (canoni-
cal quantization) approach, one associates to the classical variables x, p the quantum-
mechanical operators £, p that fulfill the commutation relation [£, p] = ifi. In the ab-
sence of damping, one can show that the associated equation of motion (calculated
using the commutation relation of the operator with the Hamiltonian) for the expecta-
tion values (x), (p) are equivalent to Eq. (B.1). Moreover when, following the classical

IThe historical part of the discussion is inspired from [Harris90; Grabert88]
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Newtonian equation-of-motion, one adds a term —p to the equation-of-motion for
p, then the time-evolution of the expectation values of £, p in the quantum case follow
Eq. B.2. Sadly, in this case one finds that the time-evolution of the commutator [£, p]
is

d
18, Pl = =15, ], (B.4)

and, in other words, that [£(t), p(t)] = ihe™7". This exponential decay of the commu-
tator leads to a violation of Heisenberg’s uncertainty principle, an unphysical result
that proves that one cannot simply expect a quantized version of the classical New-
tonian equations-of-motion for the damped harmonic oscillator to describe quantum-
mechanical dissipation[Senitzky60; Carmichael02].

In fact, historically the problem of dissipation at the quantum level turned out
to be quite resilient. While the (undamped) harmonic oscillator was one of the first
problem solved using modern quantum-mechanics[Heisenberg25], there was as re-
cently as 1980 no consensus regarding the optimal way to include damping in this
system[Dekker81]. At the time, two of the leading models used to treat damping
at the quantum-mechanical level were the “Kanai” model[Kanai50], where damping
was introduced via the time-dependent Hamiltonian H = (p?/2m)e~ " + V(x)e,
and the “Kostin” model[Kostin72], that used a time-independent, non-linear po-
tential to model damping. While these models did reproduce some of the ex-
pected features of a damped harmonic oscillator, they also lead to some unphysical
conclusions[Greenberger79] and were therefore not deemed satisfactory models for
quantum dissipation.

A salient trait of these early models is that they tried to include damping via a
modification of the description of the isolated harmonic oscillator. In [Caldeira81;
Caldeira83], Caldeira and Leggett adopted the point of view that dissipation arises
from the interaction of the quantum system with the environment and is therefore
not a property of the isolated quantum system. By including both the system and
the environment in their description, one could use ‘standard” quantum mechanics
to obtain a satisfactory description of dissipation at the quantum level. This led to
the Caldeira-Leggett description of quantum brownian motion, a model sometimes
referred to as “the prototype of a system-reservoir model for the description of dissi-
pation phenomena in solid-state physics”[Breuer(2].

In the Caldeira-Leggett approach, one assumes that the full (system+environment)
Hamiltonian is given by Hiot = Hsys + Hp + Hint The bath is assumed to consist of a
large number of harmonic oscillators of frequency w;, and mass m,, such that

1 H2 M2 x>
_ t o) — Pn n*n'n
Hgp = ;hwn(bnbn + 2) ; (2mn +— ) , (B.5)
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with b} the annihilation (creation) operator associated with the n-th harmonic oscil-
lator. The interaction between bath and system is assumed to be linear in x,, the
coordinate of oscillator 7 as well as in £, the position operator of the system:

Hint = sznxn = - (B.6)

where, as previously, used F to denote the bath operator. This combination of a har-
monic oscillator bath and linear interaction turns out to generally be a good descrip-
tion for a generic environment?. To make the damping translation-invariant, a counter-
term is also included in the model,

Ho=22Y —" . (B.7)

Taken together, Eqgs. (B.5-B.7) describe dissipation in the CL model.

To solve for the equation of motion of the density matrix of the system in the pres-
ence of the bath, methods of a varying level of sophistication can be used[Grabert88],
allowing for different regimes of approximations to be explored. Here we present a
simple derivation of the CL master equation for a harmonic oscillator (of mass M and
frequency )) whose starting point is the Born-Markov equation of motion Eq. (7.14):
it is therefore valid in the weakly-damped (Born approximation), high-temperature
limit (Markov approximation). Since the interaction Hamiltonian [Eq. (B.6)] has ex-
actly the same form as Eq. (7.16), the equation of motion of the system density matrix
can be directly rewritten as Eq. (7.24), the only difference being the counter term H.

d —i
EPSyS(t) = 7[Hsys + He, psys(t)] —

21?[&, (2, psys(1)]] / " cos(O) F (1)
b8 [P pe(O]] [ dt'sin(OF) F (1)
= L8 {5 0 (D)) /O dt’ cos(Qt') F_(t')

2h2
12, {p, psys(D)}] /0 dt' sin(QF) F_(F') .
(B.8)

2Mh2

Once again, the effect of the bath on the oscillator depends on the correlation functions
of the bath

Fo(t) = {E(#), F(0)}) = Tr{F(t), F(0) }pz , (B.9)
F-(t) = ([F(t), F(0)]) = Tr[F(t), F(0)]p - (B.10)

2We note that this exact form of Hg, Hin had already been used to model dissipation as early as
the mid-sixties [Senitzky60; Senitzky61; Ford65; Grabert88].
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The environment (the bath), is in thermal equilibrium (at temperature T) such that
density matrix pp is given by
e_.BHB

e P (B.11)

PB =

with ,3_1 = kgT. Following [Breuer02], we write the different correlation functions
Fi

Fi(t) = 2h/ dw J(w) coth (ZZBT) cos(wt) , (B.12a)

F_(t) = —2ih/0 dw J(w) sin(wt) , (B.12b)

in terms of the spectral density J(w)

2
J(w)=Y 2m’;"wn<s(w — W) (B.13)

In order for the environment to provide frequency-independent damping, we con-
sider an Ohmic spectral density, with a “Lorentz-Drude” cutoff function
2M% w?

Jw)=——w—7">5, (B.14)

with w, a cutoff-frequency chosen to be large when compared to the natural frequency
() of the harmonic oscillator. Using this spectral density, the correlation functions
[Eq. (B.12)] can be evaluated analytically and then inserted back into Eq. (B.8). Taking
the limit w, > (), we find that[Breuer02, Chap. 10] :(i) the ~ [x, {x, p}] term cancels
exactly the counter-term H, (ii) the ~ [%, [§, psys(t)]] can be neglected® and (i)

16,2 0] [ cos(QU)FL(F) = 5 MiAOcoth (;“T) %, £, peys (1))

2h
(B.15a)
1. o L oto 14
siana & 1P osys(£)}] /O di’' sin(QF) F (1) = =272, {P, psys (D) }] - (B.15b)
Putting all the terms together, one finally finds the CL master equation,
d i 1 .. Vi fa
E,Osys = - E[Hsys/ Psys] - ?D[x/ [xz Psys” - %[x/ {P/ Psys}] ’ (B.16)

3More precisely, the term ~ [%, [, psys(t)]] only contributes by a factor ~ Q/w. < 1 as much as
the ~ [%, [£, psys(t)]] term.
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with the “diffusion constant” D given by

. hQ)
D = M%hQ) coth <2kBT) (B.17)
~ 2M~7kgT [when kgT > hQ)] (B.18)

The first term describes the coherent dynamics of the quantum system, the second
term models the thermal fluctuations and the last term (~ ) gives rise to damping*.

In order to illustrate that Eq. (B.16) reproduces the motion of a damped harmonic
oscillator one can look at the equation of motion for different expectation values. Us-
ing the general relations

winkity a1 (1 i1 R
T ¥ o, ] =it (811 941) — MOPK( 1) )

2 (B.19)
2. o1—2 ~k 2 af ~k—2
+ 5 (310 D295 - MOk - (5 2) )
Tr £/ pX(%, {p, 0}] = — 2ihk (21 p*) — 12 jk (&1~ 1p*=1) (B.20)
Tr #/p[%, [£, 0] = — WPk (k — 1)(&/p*2) (B.21)
we find
d, . _(p)
2 (p) = ~27(p) - MO(x), (B23)
d, o 1.
g0 = 3 Txp +pa) (B.24)
d _ 2,0 2.2\ na
g+ px) =+ {p7) — 2(MOT) = 27 (xp + px) (B.25)
%<p2> = —MQ2<xp + px) — 4%(p) + 4M7kpT . (B.26)

These correspond exactly to the equations of motion for the two first moments of co-
ordinate and momentum of a damped harmonic oscillator and prove the applicability
of the description of coupling to a thermal bath provided by the CL model. Also, in
the density-matrix formalism, it is easy to verify that the commutator [£, p] does not
evolve - at least in the mean-level: ([£, p](t)) = Tr{[%, plp(t)} = ihTr{p(t)} = ih.

As mentioned earlier, the Caldeira-Leggett model plays a central role in the discus-
sion of quantum dissipation. It was therefore studied at length, and the avid reader
who wants to learn more about this model is invited to look into e.g. [Breuer(2] and
references therein.

“Note that the damping term is sometimes defined with a pre-factor (1/2). In this case, the damping
contribution to equation of motion for (p) reads —y(p) and not —2%(p) as in Eq. (B.23). Since for
historical reasons both conventions are used in different part of this document, we took care to use a
tilde to distinguish both definitions: 24 = +.
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APPENDIX C

Derivation of the condition on quantum-limited

detection

To conclude this chapter, we sketch a derivation of Eq. (4.17). We proceed along the
lines suggested in [Clerk(04a], generalizing the derivation presented in Ref. [Clerk03b]
to finite frequencies. We start by writing the different symmetrized correlation func-
tions as a sum over transitions from initial (|7)) to final states (|f)), with |i) and |f)
eigenstates of Hp with energy E; )

EI(UJ) = 7th Z<1|PD,O|1> [5(Ef — El' +hw) +5(Ef — Ei — hw)] }<f|f|l>|2 ,

if
(C.1a)
Se(w) = h'Y (ilopoli) [6(Ef — Ei + hw) + 6(Ef — E; — haw)] |(f|E[i)]?,
if
(C.1b)
() S l) 5ol [6(Ey — Es+ o) + 6(E; — Es— ho)] (FITIANGIELS)
if
(C.10)

We assumed that pp o, the stationary density matrix describing the detector, is diag-
onal in the basis of the eigenstates of Hp. As pointed out in [Averin03a; Averin03b;
Clerk03b], each line of Eq. (C.1) can be interpreted as a scalar product over the space
defined by the matrix elements of [, F at a given energy. The Cauchy-Schwarz in-
equality associated with this scalar product reads

S1(w)Sp(w) > \Slp(w) +2SIF(_w) ‘2
= (tm[ 27 ) +25”E(_w) )2 + (Re[ ) +2SIF(_°U)])2 . (€2
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C. DERIVATION OF THE CONDITION ON QUANTUM-LIMITED DETECTION

We note that the inequality does not relate SiSr directly to SiF, but to Sip(w) +
Sir(—w), a quantity totally symmetric in w whereas Im[S;r(w)] = —Im[S;r(—w)],
as can be seen from

[SH:((JJ) + S[P(_UJ)*] . (C.3)

NI~

§1p(w) =

Also, sincel,

MM w) = M (w)*] = =i[Sip(w) = Sip(-w)], (C4)

we can associate the imaginary part of the symmetrized Sir correlation function to
the x-to-I gain

Sir(w) +251F(—w)] _ ;Re[/\(w) —M(w)] . (C.5)

Im|

Finally, using

Re[SIF(w) +2511:(—w)

we can combine Egs. (C.2) and (C.5), to finally find Eq. (4.17),

] = Re[glp(CU)] , (C6)

2
S1@)Sr(w) > 1 (Re[A(w) ~ X(w)])* + (Re[Sir(w)])” . )

This completes the proof of Eq. (4.17).

IThis relation does not correspond to Eq. (B1) of [Clerk04a], but it matches Averin’s result
[Averin03b, Eq. (11)]. Clerk’s result is one of three typographic errors in Appendix B. It is clearly a
mistake, as it would lead to A ~ Im[S}F], a quantity that Clerk shows vanishes as #1Q)/kT.g. This error
is also corrected in [Clerk08].
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