Geller, M. R. and Loss, D.. (2000) Coulomb blockade in the fractional quantum Hall effect regime. Physical Review B, Vol. 62, H. 24. pp. 16298-16301.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5254738
Downloads: Statistics Overview
Abstract
We use chiral Luttinger liquid theory to study transport through a quantum dot in the fractional quantum Hall effect regime and find rich non-Fermi-liquid tunneling characteristics. In particular, we predict a remarkable Coulomb-blockade-type energy gap that is quantized in units of the noninteracting level spacing, power-law tunneling exponents for voltages beyond threshold, and a line shape as a function of gate voltage that is dramatically different than that for a Fermi liquid. We propose experiments to use these unique spectral properties as a probe of the fractional quantum Hall effect.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss) |
---|---|
UniBasel Contributors: | Loss, Daniel |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | American Institute of Physics |
ISSN: | 0163-1829 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: | |
Last Modified: | 22 Mar 2012 14:25 |
Deposited On: | 22 Mar 2012 13:48 |
Repository Staff Only: item control page