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Zusammenfassung 
Plasmodium falciparum verursacht die schwerste Form von menschlicher Malaria 

und ist jährlich für 1-2 Millionen Todesfälle verantwortlich, wovon die meisten auf 

Kinder unter 5 Jahren entfallen, die südlich der Sahara leben. Der Schweregrad der 

Krankheit variiert von asymptomatischen Infektionen, d.h. ohne jegliche Symptome, 

bis hin zur schweren Malaria mit Organversagen, schwerer Blutarmut und Koma. Die 

meisten dieser Symptome werden auf das Anheften von infizierten roten 

Blutkörperchen an Endothelzellen der Kapillargefässe zurückgeführt. Durch Anheften 

an Wirtsrezeptoren wie CD36, ICAM1 oder CSA verhindert der Parasit, dass die 

Wirtszelle in der Milz beseitigt wird und verlängert dadurch seine Lebensspanne. 

Eine Schlüsselrolle in diesem Prozess kommt dem variablen Oberflächenprotein 

Plasmodium falciparum Erythrozyten Membran Protein 1 (PfEMP1) zu, einem vom 

Parasiten produzierten Protein, welches zur Oberfläche der roten Blutkörperchen 

transportiert wird um Zytoadhärenz zu vermitteln. Durch diesen Prozess setzt sich 

der Parasit aber dem Immunsystem des Wirtes aus, was zur Produktion von 

spezifischen Antikörpern führt. Um dieser Immunantwort zu entgehen variiert der 

Parasit dieses Antigen (antigenic variation), in dem er ein anderes Protein der 

gleichen Familie an der Oberfläche präsentiert. PfEMP1 wird von circa 60 Genen pro 

haploidem Parasitengenom codiert und wird auf eine sich gegenseitig 

ausschliessende Art und Weise exprimiert, d.h. nur eines von 60 var Genen ist aktiv, 

während die Aktivität der verbleibende 59 unterdrückt wird. Es gibt Hinweise darauf, 

dass sich der Schutz vor schwerer Malaria grösstenteils durch die allmähliche 

Ansammlung von anti-PfEMP1 Antikörpern während der frühen Kindheit entwickelt, 

da Erwachsene zwar noch immer infiziert werden aber nur sehr selten Symptome 

einer klinischen oder schweren Malaria aufweisen. 

Neuste Beobachtungen deuten darauf hin, dass nicht alle PfEMP1 Proteine 

gleichermassen virulent sind, sondern, dass nur eine bestimmte Anzahl von var 

Genen dazu führt, dass manche Parasiten eine deutlich schwerere Krankheit 

verursachen als andere. Zur Entwicklung von Methoden um eine schwere Malaria zu 

verhindern, müssten nun diese bestimmten var Gene identifiziert werden. Bis heute 

gibt es nur 6 Studien, die das Repertoire von exprimierten var Genen in Menschen 

untersucht haben. Wir haben Proben aus Papua Neu Guinea aus einer Fall-Kontroll-

Studie benutzt und das var Gen Repertoire mittels reverser Transkription und 
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anschliessender Klonierung und Sequenzierung analysiert. Wir haben zusätzlich die 

3 verschiedenen var Gen-Gruppen (upsA, B, und C) ermittelt und die Daten in Bezug 

auf den Schweregrad der Krankheit der Kinder analysiert. 

In der Anzahl gefundener upsB und upsC Transkripte gab es keine signifikanten 

Unterschiede zwischen Kindern mit asymptomatischer, milder oder schwerer Malaria, 

wohingegen eine grössere Anzahl von upsA Genen in Kindern mit Symptomen 

gefunden wurden als in Kindern ohne Symptome. Eine Substitution einer 

Aminosäure konnte identifiziert werden, die vor allem in Kindern ohne Symptome 

aber mit sehr hohen Parasitendichten zu finden war. Möglicherweise beeinflusst die 

Expression dieser Variante die Bindungsaffinität der infizierten roten Blutzelle. Mit 

phylogenetischen Analysen war es uns jedoch nicht möglich, bestimmte var Gene 

oder var Gen Gruppen zu identifizieren, die mit schwerer Malaria assoziiert waren. 

Um Informationen über die Gruppenzugehörigkeit der jeweiligen DBL1α-Sequenz 

(upsA, B, oder C) zu erhalten, wurde diese mit dem 3D7 Genom verglichen. Hierbei 

zeigte sich, dass diese Methode nur für upsA Gene geeignet ist, während 28% der 

upsB und 62% der upsC var Gene der falschen Gruppe zugeordnet wurden. Obwohl 

7% der identifizierten Sequenzen in mehr als einem Kind vorkamen, zeigten 

bioinformatische Analysen, dass das var Gen Repertoire in dieser Region von PNG 

nicht begrenzt ist. 

Es wurde bereits gezeigt, dass Parasiten, die eine schwere Malaria verursachen, 

häufiger durch Antikörper erkannt werden, als solche die nur eine milde Form der 

Krankheit verursachen. Im zweiten Teil dieser Arbeit galt es Informationen über die 

Bedeutung/Wichtigkeit bestimmter PfEMP1 Domänen bei der immunologischen 

Erkennung durch den Wirt zu erlangen. Hierfür wurden 2 repräsentative var Gene, 

die mit schwerer Malaria assoziiert werden, rekombinant in E. coli exprimiert und 

untersucht ob Seren von natürlich exponierten Individuen aus unterschiedlichen 

geographischen Regionen dieses Antigen erkennen. Synthetische Peptide 

komplementierten diese ELISA Experimente mit rekombinanten Proteinen, wenn die 

Expression bestimmter Domänen nicht möglich war. ELISA und Western Blot 

Analysen konnten 3 rekombinante Fragmente und 2 synthetische Peptide 

identifizieren, die möglicherweise bei der Produktion von schützenden Antikörpern 

eine Rolle spielen. Die Anzahl untersuchter Proben war jedoch sehr klein und weitere 

Untersuchungen sind nötig, um diese Ergebnisse zu bestätigen. 
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Im dritten Teil dieser Arbeit sollte die Anwendbarkeit des GeneMapper® Analyse-

Programms bei der Genotypisierung von var Genen untersucht werde. Diese 

Methode wurde bereits erfolgreich für die Genotypisierung des polymorphen 

Markergens msp2 etabliert und da var Gene auch einen gewissen Grad an 

Längenpolymorphismus aufweisen, wurde untersucht, ob diese Technik die bisherige 

Analyse von var Gen-Diversität mittels mühsamen Klonierens und anschliessender 

Sequenzierung ersetzen kann. Dazu wurden aufgereinigte PCR Produkte der UTR-

DBL1α Domänen, die während des ersten Teils dieser Arbeit (Sequenzanalyse) 

generiert wurden, mit fluoreszenz-markierten, DBL-spezifischen Primern re-

amplifiziert und mit GeneMapper® analysiert. Die Ergebnisse wurden dann mit den 

Daten aus der Sequenzanalyse verglichen. Die Grössenbestimmung mit 

GeneMapper® war mit einer durchschnittlichen Abweichung von 1 Basenpaar sehr 

genau und zeigte grosse Übereinstimmung mit den Sequenzierdaten. Des Weiteren 

wurden mit GeneMapper® 141 Sequenzen detektiert, die durch Sequenzierung nicht 

identifiziert wurden. Im umgekehrten Fall gab es nur 16 Sequenzen, die mit 

GeneMapper® nicht detektiert wurden. Es gab allerdings auch einen grossen Anteil 

an Sequenzen, die mit GeneMapper® nicht unterschieden werden konnten, da deren 

DBL1α Domänen die gleiche Länge aufwiesen. Trotz dieses Nachteils sind wir der 

Meinung, dass GeneMapper® die Analyse von exprimierten var Genen und deren 

Dynamik bedeutend vereinfachen könnte. 
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Summary 
Plasmodium falciparum causes the worst form of human malaria and leads to 1-2 

million deaths annually, most of them children below the age of 5 living in sub-

saharan Africa. Morbidity varies from asymptomatic infections with no symptoms to 

severe malaria accompanied by organ failure, severe anemia and coma. Most of 

these clinical presentations are associated with sequestration of infected red blood 

cells (iRBC) on host endothelium. By attaching the parasitized erythrocyte to host 

receptors such as CD36, ICAM or CSA the parasite prevents the cell from being 

cleared by the spleen and therefore prolongs its own survival.  

A key protein involved in this process is the variant surface antigen Plasmodium 

falciparum erythrocyte membrane protein 1 (PfEMP1) which is a parasite derived 

protein transported to the RBC surface to mediate cytoadherence. With this process 

exposes the parasite itself to the host immune system leading to the production of 

specific antibodies. In order to evade this host immune response the parasite 

undergoes antigenic variation by switching to another member of the same protein 

family. PfEMP1 is encoded by approximately 60 var genes per haploid genome and 

is expressed at the surface in a mutually exclusive manner, i.e. only 1 of the 60 

proteins is expressed and exposed at any one time whilst the others remain silenced. 

Protection against severe malaria is thought to be mediated to a large degree by the 

piecemeal acquisition of anti-PfEMP1 antibodies during early childhood, since adults 

still get infected but rarely develop severe malaria symptoms. 

Recent observations suggest that not all PfEMP1 proteins expressed by a parasite 

are equally virulent, but only a subset of distinct var genes might render a parasite 

more pathogenic than parasites expressing different var gene variants. To generate 

potential anti-severe disease interventions members of this particular subset need to 

be identified. To date, only 6 studies have been published investigating the repertoire 

of expressed var genes in vivo. We have further used samples collected in Papua 

New Guinea from a case control study and analyzed var transcripts by RT-PCR 

followed by cloning and sequencing. We determined the 3 main groups of 5’UTR and 

analysed the data with respect to the clinical presentation of the children they were 

collected from. 

The detected number of different var group B and C transcipts was not significantly 

different between asymptomatic, mild or severe malaria cases, whereas an increase 
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of group A var genes was observed in symptomatic cases when compared to 

children without any malaria symptoms. We identified an amino acid substitution 

mainly occurring in asymptomatic children with high parasitemia that might influence 

the binding affinity of parasites expressing these variants. However, using 

phylogenetic analyses we were not able to identify other distinct var genes or subsets 

associated with severe malaria. Blasting DBL1α domains against the 3D7 genome to 

obtain information on the upstream region was found to be suitable for group A var 

genes only, whereas 28% of group B and 62% of group C sequences were assigned 

to the wrong subgroup using this method. Even though we observed a 7% sequence 

overlap, bioinformatic analyses estimated the var gene repertoire in this region of 

PNG to be unlimited.  

It has previously been shown, that isolates causing severe disease are recognized 

more frequently than those causing mild malaria. In the second part of this thesis, we 

wanted to obtain information on the importance of distinct PfEMP1 domains in the 

recognition by the host immune system. For that purpose, fragments of 2 

representative var genes shown to be associated with severe malaria were 

recombinantly expressed in E.coli and analyzed for their recognition by naturally 

exposed sera of different origin. Analysis of synthetic peptides using the same sera 

served to complement the results of ELISAs using recombinant proteins if expression 

of distinct domains was not possible. ELISA and Western blot analysis determined 

that 3 recombinant fragments and 2 synthetic peptides harbor epitopes that might 

play a role in the generation of protective antibodies. However, since sample size 

was small further investigations are required to confirm these findings. 

In the third part of this thesis, we tested the usefulness of the GeneMapper® analysis 

software to genotype var genes. It has been successfully established for genotyping 

the polymorphic marker gene msp2 and since var genes also show some length 

polymorphism it was investigated whether this technique could replace tedious 

cloning and sequencing approaches, used so far to dissect var gene diversity. 

Therefore, purified PCR products of UTR-DBL domains generated during the 

sequence analysis were reamplified with fluorescently labeled DBL-specific primers 

and analyzed by GeneMapper®. The results were then compared to the sequencing 

data. GeneMapper® sizing was highly accurate with a mean deviation of 1bp and 

showed a high consistency with sequencing data. Furthermore, GeneMapper® 

detected 141 sequences which were not identified with the sequencing approach, 
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whereas vice verca, this was only the case for 16 sequences. However, a significant 

proportion of var genes could not be distinguished because the analyzed DBL 

domains were identical in size. Despite this shortcoming, we belive that 

GeneMapper® would greatly facilitate the analysis of expressed var genes and their 

dynamics.  
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Abbreviations 
AP       Alkaline phosphatase 

ATS       Acidic terminal segment 

AVG       Average value 

BCIP       5-bromo-4-chloro-3-  

       indolyl phosphate 

CIDR       Cysteine-rich interdomain region 

CSA       Chondroitin sulphate A 

DBL       Duffy-binding like domain 

DHFR       Dihydrofolate reductase 

DNA       Deoxyribonucleic acid 

EDTA       Ethylenediaminetetraacidic acid 

ELISA       Enzyme-linked immunosorbent assay 

EPT       End point titer 

EtOH       Ethanol 

g       9.81m/s2 

gDNA       genomic DNA 

HA       Hyaluronic acid 

HS       Heparan sulfate 

ICAM-1      Inter-cellular adhesion molecule 1 

IDV        Integrated density value 

IgG       Immunoglobulin G 

IL       Interleukin 

IPTG       Isopropyl-beta-D-thiogalacto- 

       pyranoside 

iRBC       Infected RBC 

KAHRP      Knob-associated histidine-rich protein 

kDa       Kilo Dalton 

MC       Maurer’s clefts 

MHC       Major histocompatibility complex 

NBT       Nitroblue Tetrazolium 

Ni-NTA      Nickel-nitrilotriacidic acid 

NTS       N-terminal segment 
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OD       Optical density 

PAM       Pregnancy-associated malaria 

PBS       Phosphate buffered saline 

PBS/T       PBS/Tween 

PCR       Polymerase chain reaction 

PEG       Polyethylene Glycol 

PfEMP1      Plasmodium falciparum erythrocyte 

       membrane protein 1 

PNG       Papua New Guinea 

PNP       Para-nitro-phenol 

RBC       Red Blood Cell 

Rif       Repetitive interspersed family 

RT       Reverse Transcription 

SDS-PAGE      Sodiumdodecylsulfate- 

       poly-acrylamide gel electrophoresis 

Stevor       Subtelomeric variable open  

       reading frame 

TB       Teriffic broth 

TBE       Tris-Borate-EDTA 

TE       Tris-EDTA 

TNFα       Tumor necrosis factor α 

TNT       Tris-NaCl-Tween 

TZA       Tanzania 

TSP       Thrombospondin 

Ups       Upstream 

UTR       Untranslated region 

VCAM-1      Vascular cell adhesion molecule-1 
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INTRODUCTION: 
Malaria is endemic in about 90 countries of the world, half of which are in Africa. 

Every year, 300-500 million people get infected, with 90% of all cases occurring in 

Africa. Plasmodium falciparum is only one of four Plasmodium ssp. infecting humans, 

but with an estimated 1 to 3 million deaths annually, the most devastating of its kind. 

Despite extensive research over the last decades, drug resistance is on the advance 

and an effective vaccine is still lacking. 

Malaria and its clinical presentations 

Malaria presents with a large spectrum of disease outcome ranging from 

asymptomatic infections with no clinical symptoms but parasites detectable in the 

blood to uncomplicated and severe malaria. Uncomplicated malaria symptoms are 

unspecifc and resemble those of a minor viral infection comprising headache, fatigue, 

abdominal pains, fever, chills and vomiting.1 Without treatment the parasite burden 

continues to increase and severe malaria causing severe anemia, prostration, 

convulsions and respiratory distress might develop within a few hours. Involvement of 

the brain might lead to cerebral malaria with impaired consciousness and coma. If 

untreated, severe malaria is fatal and even if proper treatment is given, the mortality 

rate lies between 5 and 15%.2,3 The exact mechanism underlying the development of 

a severe malaria episode is incompletely understood but host factors such as age, 

immune status and genetical background, as well as transmission intensity and 

composition of the circulating parasite population were proposed to be involved.4 

Additionally, in recent years, the hypothesis of excessive release of pro-inflammatory 

cytokines like TNFα and IL-1 as the primary driving force of disease and death has 

been on the advance.5,6 

The course of a malaria infection 

Plasmodium falciparum is transmitted by the female Anopheles mosquito. Injected 

sporozoites migrate through the skin and enter the blood circulation. They actively 

invade liver cells and undergo a first round of asexual multiplication forming 

thousands of infective merozoites. This phase of the life cycle does not cause any 

clinical symptoms. However, infected hepatocytes burst and released merozoites 

commence the blood stage of an infection during which clinical malaria symptoms 
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may develop. Having entered the RBC merozoites undergo a second round of 

multiplication and differentiate into ring – trophozoite - and schizont stage, which 

finally releases another 16-32 daughter merozoites upon rupture. The majority of 

merozoites, will again infect red blood cells and a new cylce of infection starts. A 

small proportion of merozoites will undergo an alternative pathway and differentiate 

into male and female gametocytes which are eventually taken up by a feeding 

mosquito where sexual reproduction occurs. A further complicated series of 

differentiation and growth, leads to the production of infective sporozoites in the 

salivary glands of the mosquito. 

On the one hand, red blood cells perfectly qualify as host cells since they do not 

express MHC molecules on their surface, which renders them immunologically inert. 

On the other hand, erythrocytes are devoid of any organelles and do not possess a 

trafficking machinery used by most eukaryotic cells to transport proteins to their final 

destination. Therefore, in order to facilitate its survival, the parasite needs to set up a 

new sytem on its own for trafficking soluble and membrane-associated or membrane-

integrated proteins.7,8 Extensions of the parasite’s vacuolar membrane, known as the 

tubulovesicular network, and structures referred to as Maurer’s clefts (MC) occur in 

the RBC cytosol. Several parasite-derived proteins become associated with the 

erythrocyte cytoskeleton or are inserted into the host cell membrane.9 On the outer 

membrane, this results in electron dense structures called “knobs” as observed by 

electron microscopy. Knobs are mainly composed of the knob-associated histidine 

rich protein (KAHRP)10,11, but also Plasmodium falciparum erythrocyte membrane 

protein 1 and 3 (PfEMP1 and 3)12,13 are part of the knob structure. PfEMP1 is 

inserted into the erythrocyte membrane, probably anchored via PfEMP3 and KAHRP 

and attached to the cytoskeleton at spectrin/actin junctions.These parasite-induced 

modifications increase the rigidity of the cell which would cause the iRBC to be 

cleared by the spleen. However, the parasite-derived proteins inserted into the 

surface of the infected erythrocyte membrane enable the parasite to sequester away 

from the blood circulation, thus preventing spleenic clearance, by binding to different 

host cell receptors – a phenomenon unique to P. falciparum called “cytoadherence”. 
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Cytoadherence  

Cytoadherence describes the adhesion of erythrocytes infected with mature stages of 

P. falciparum to other cell types of the host. Infected RBCs can either adhere to 

endothelial cells14,15,16 known as sequestration, to uninfected RBCs - a phenotype 

called rosetting17,18 or to other iRBCs (auto-agglutination/clumping).19,20 For the host, 

this binding ability has severe consequences. Sequestered parasites occlude the thin 

blood vessels which causes impaired oxygen supply and disfunction of affected 

organs may occur.21,22  

Numerous host molecules have been identified which can act as receptors for iRBCs. 

CD36, thrombospondin (TSP), ICAM-1, VCAM-1, CD31, P- and E-Selectin serve as 

receptors on endothelial cells.23,24,25,26,27,28,29,30,31,32 Chondroitin sulfate A (CSA) and 

hyaluronic acid (HA) have been shown to be involved in placental malaria.33,34,35 For 

rosetting, the following molecules have been implicated: IgM36, heparan sulfate 

(HS)37, CR138, blood group antigens A and B39 and FactorD40. Via CD36 iRBC can 

also adhere to monocytes and dendritic cells with effects on phagocytosis and 

clearance of iRBCs41 and immunosuppression.42 

Despite this huge number of host molecules, field studies have demonstrated 

pronounced differences in the host receptor specificity and extent of cytoadherence. 

Whereas most isolates can adhere to CD36 and ICAM-1, minimal or no adhesion to 

E-Selectin, VCAM-1 or CSA has been reported.43 Therefore, it was hypothesized that 

cytoadherence to certain of these receptors might be associated with particular 

clinical syndromes, such as cerebral malaria. A paradigm for such a relationship is 

malaria in pregnancy. Women living in endemic areas who already established semi-

immunity become susceptible again during their first pregnancy with dileterious 

effects for both mother and child. Parasites sequestered in the placenta specificially 

adhere to syncitial trophoblasts via CSA or HA. The placenta presents a new niche 

for circulating parasites and probably selects for parasites expressing ligands with 

the ability to occupy this new niche. In subsequent pregnancies women acquire 

specific antibodies blocking this adherence, even if the original parasite which 

caused disease came from another continent.44 Thus, parasites causing malaria 

during pregnancy seem to express var genes of a restricted subset which might 

qualify as future vaccine candidates. The relationship between other receptors and 

morbidity seems less obvious: some evidence supports a role for ICAM-1 in the 
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development of severe malaria, in particular cerebral malaria45,43,46, however, 

negative association between ICAM-1 and severe disease could also be found47. 

Similar results were obtained when searching for a link between rosette formation 

and severe disease outcome. While rosetting in The Gambia48,49, and Kenya50 could 

be associated with cerebral malaria, studies conducted in Thailand51 and Papua New 

Guinea52,53 could not confirm this finding. However, there is good evidence that this 

might be due a CR1 polymorphism occurring at high frequencies in South East 

Asia.54 An association between autoagglutination and severe malaria was 

demonstrated in children from Kenya.55 

Even though several receptors have been identified for cytoadherence in the human 

host, from a parasite-point–of-view only few molecules have been proposed to act as 

ligands for cellular adhesion. The best described molecule implicated in 

sequestration so far is the P. falciparum erythrocyte membrane protein 1 (PfEMP1) 

having been shown to mediate adhesion to a range of host receptors.37,38,56,57,58  

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and the var 

gene family 

PfEMP1 is encoded by the var gene family. These genes vary in size, from 6 to 15kb 

and are extremely divergent in sequence. In 3D7 59 var genes per haploid genome 

were identified59, scattered throughout the 14 chromosomes of P. falciparum. var 

genes can be classified into 3 major groups (var group A, B, C)60 and 2 intermediate 

groups (B/A and B/C) according to their chromosomal location and their upstream 

(Ups) 5’ untranslated region (UTR).61 UpsC var genes are located in the center of the 

chromosome. UpsB var genes are either subtelomeric and transcribed towards the 

centromere or chromosome central in tandem arrays with other upsB and UpsC var 

genes. UpsA var genes are subtelomerically located and transcribed into the 

opposite direction, towards the telomeres. Chromosomal location seems to influence 

transcriptional regulation. Transcription of central var genes lasts 4-8 hours longer 

than transcription of subtelomeric var genes.62 Furthermore, there is evidence of 

specific var groups being involved in disease morbidity. UpsA var genes were found 

to be upregulated in culture after selecting for var genes expressed by parasites 

causing severe malaria.63 In vivo, UpsA and/or UpsB var genes, both from 

subtelomeric regions were associated with severe malaria in children from 
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Tanzania64 and Papua New Guinea (PNG)65, whereas upsC var genes were mainly 

found in asymptomatic children.65 In 2005, Bull et al.66 proposed a var gene 

classification model based on specific sequence tags with differering numbers of 

cysteine residues within a specific domain. The distribution of sequence tags was 

found to be different among the 3 var subgroups: whereas in subgroup B and C 

mainly 4 cysteine residues (cys4) were found, the DBL1α domain of subgroup A 

mostly contained only 2 cysteines (cys2). In Brazil, the cys2 sequences could be 

associated with severe non-cerebral malaria.67 Further evidence for a specific subset 

of var genes being involved in malaria morbidity comes from Mali68, where children 

with cerebral malaria predominantly expressed var genes with DBL-1-like domains 

corresponding to cys2, whereas isolates from children with no symptoms of severe 

malaria predominantly transcribed var genes with DBL-0-like domains which 

correspond to cys4 type var genes. 

 
Figure 1. Chromosomal orientation of var genes. var genes are classified according to 

their upstream region (UpsABC). Arrows indicate direction of transcription. In blue 

chromosomal ends (telomeres) are indicated, the black dot represents the telomere 

associated repreat elements. (Figure adapted from 69) 

 

Despite the huge sequence polymorphism var genes share a similar gene 

organization with 2 exons being separated by an intron. The polymorphic exon1 is 

building up the extracellular part of the protein whereas the rather conserved exon2 

encodes the cytoplasmic acidic terminal segment (ATS), which is thought to anchor 

the protein to the cytoskeleton of the RBC via binding to proteins of the knob 

structure.The extracellular domain is highly variable but mainly consists of 4 building 

blocks: the N-terminal segment (NTS), the Duffy-binding like domain (DBL because 

of its homology to the Duffy blood group antigen in P.vivax), the cysteine-rich 

interdomain region (CIDR) and C2. On the basis of sequence homology DBL 

domains can be divided into 6 (α, β, γ, δ, ε and X) and CIDR into 3 (α, β and γ) 

different sequence types.70 PfEMP1 proteins have a related protein architecture, but 

Telomere UpsB UpsA UpsC,UpsB 
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the sequence, number, location and type of domains differ significantly60. Semi-

conserved head structures like DBL1α - CIDR1α13 and DBLδ-CIDRβ make up a 

protein “prototype” (Figure 2a) found in nearly all small PfEMP1s.71 By the integration 

of additional domains the flexibility of large proteins (Figure 2b) may increase and 

provide a selection advantage, such as the ability to bind to multiple receptors.  

 

 
Figure 2. Illustration of PfEMP1 domain architecture. 
(a) A small PfEMP1 representative is shown consisting of the NTS domain, the DBL1α-

CIDR1α head structure and the ATS domain. In (b) a larger variant is shown harboring 

additional DBL and CIDR domains, as well as C2 regions. Host cell receptors found to be 

involved in binding are indicated at their corresponding PfEMP1 domains (Figure from 71). 

Association of host receptors and specific PfEMP1 domains 

For a number of host receptors specific binding sites within the various domains have 

already been mapped (Figure 2b). The most detailed information is available for the 

interaction of CD36 and the CIDR1α domain. A minimal binding motif of 179aa 

required for binding could be identified.21 The rosetting phenotype via CR1 and 

binding to heparin sulfate is mediated by the DBL1α domain.72,39 ICAM-1 binding may 

be achieved by DBL2β domains usually in combination with a downstream C2 

element.73,58,74,75 An adhesion trait to CSA in the placenta has been mapped to 

CIDR1α76 and DBL357,77, but another study reported about a CSA-binding PfEMP1 

lacking this specific DBL domain.78 Finally, CD31/PECAM binding was shown to be 

mediated via CIDR1α, DBL2δ and the DBL5δ domain.31,79 
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Antigenic variation and var gene switching 

As a consequence of placing “alien” proteins or antigens into the membrane of an 

otherwise immunologically “silent” host cell, the parasite exposes itself to the host 

immune system which will eventually result in the generation of antibodies against 

the proteins displayed on the infected RBC surface. These antibodies successfully 

clear the parasites from the blood circulation resulting in a reduction of parasite 

density. However, before complete clearance can be achieved, subpopulations of 

parasites arise that express another variant of PfEMP1 on their surface, a process 

called antigenic variation. By switching the expressed var gene, the parasite changes 

its antigenic properties and antibodies produced against this protein variant become 

ineffective. This change in var gene expression was correlated with functional 

changes resulting in altered adhesive phenotypes80 which in turn might influence the 

virulence of a parasite isolate during the course of an infection. Therefore, antigenic 

switching allows the parasite to subvert the host immune response and to eventually 

establish persistent chronic infections. Information about the sequence of var gene 

switching e.g. whether it occurs randomly or follows a defined order is still missing. 

However, results by Horrocks et al.81 propose that the switching history might 

influence the ability to switch to certain var genes and the presence of short-lived 

cross-protective antibodies might lead to the sequential dominance of var genes.82 

The speed of switching var genes in P. falciparum was investigated in vitro in the 

absence of immune pressure and a switching rate of 2% per generation was 

calculated.19 However, in another study much slower rates between 0.25% and 

0.025% have been reported81. Results from in vivo studies are available from 

laboratory-induced P. falciparum infections in naive human volunteers.83 Switching 

rates as high as 16% or even higher for the initial switch were proposed, however 

subsequent switching occurred at much lower rates. Mathematical modeling predicts 

0.03%84 and 18%.85 Parameters like switching-on and switching-off rates have been 

proposed84 and differences in switching rates between isolates distinguish fast- from 

slow-switching var genes85,86 with different expression patterns during the course of a 

malaria infection. In a previous publication, these differences were shown to be 

independent of the 5’UTR of var genes81, however recent reports do find differences 

that correlate with chromosomal location.87  
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Besides PfEMP1 four other multigene families undergoing antigenic variation have 

been described namely the rif 88, stevor89, surf 90 and the Pfmc-2TM family.91 All of 

these genes are located  subtelomerically in close proximity to the var gene family. 

The rif (repetitive interspersed family) gene family comprises about 200 genes 

encoding the variant RIFIN proteins of 30-40kDa. They are expressed at trophozoite 

stage and can be targeted by the host immune system.92 Cotransport with PfEMP1 

via MCs to the iRBC surface have been reported.93 They were implicated to act as 

cofactors in rosetting88 and binding to CD3192, however their actual function is yet 

unclear. Highly similar to rifs are the members of the stevor (subtelomeric variable 

open reading frame) family. Due to their high degree of polymorphism they were 

used as genotyping tools to distinguish P. falciparum isolates.94,95 The Stevor 

multigene family consist of 30-40 genes depending on the parasite isolate. They are 

expressed in gametocytes and sporozoites96 as well as in trophozoites and schizont 

stage97 and therefore are thought to have multiple functions. They were found to be 

located in MC and trafficked to the iRBC membrane at schizont stage.98 Recently, 

they were shown to be expressed at the apical end of merozoites98 and they might be 

associated with erythrocyte invasion.99 The third multigene family is the recently 

described Pfmc-2TM family comprising 13 gene members.91 Indirect 

immunofluorecent studies have shown that Pfmc-2TM localize to Maurer’s clefts and 

are transported to the erythrocyte surface. Complete expression profiles of these 

proteins are missing but a restricted expression in mid-trophozoite stage has been 

suggested recently.100  

In 2005, Winter et al.90 identified another class of polymophic proteins. The surface 

associated interspersed proteins called SURFINs are encoded by a small family of 

only 10 surf genes, including 3 pseudogenes. They were shown to be contransported 

to MCs and the iRBC surface with RIFINs and PfEMP1. SURFINs were also found to 

be part of an amorphous layer attached to the apex of released merozoites. 

Information about the function of all these proteins remains elusive. 

Var gene regulation 

The ability to switch between different var genes enables the parasite to prolong its 

survival in the human host. However, this can only be achieved if not all var genes 

are expressed at the same time. If that was the case, the host immune system would 
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produce antibodies against all of them at once and eliminate the iRBC immediately. 

Therefore, the parasite has to be economical with the expression of its var genes, in 

order to not expend the repertoire before transmission is completed. The process 

used by the parasite to have only one var gene active at any one time while the 

others remain silent is called “mutual exclusion”.  

For long time the mechanisms of var gene switching and mutual exclusion remained 

unclear. However, advances in recent years have contributed to shed light on this 

topic. According to recent publications mutual exclusion seems to be regulated at the 

level of transcription and it seems to involve multiple layers of control. The interaction 

between promoters of different regions of var genes (UTR and intron)101,102 and the 

presence of sterile RNAs103,104 seem to play important roles in var gene silencing. 

Furthermore, epigenetic mechanisms, such as chromatin - and histone modifications 

were shown to be involved in the control of var gene expression.105,106,107 Methylation 

processes of histones were described that “bookmark” certain var genes for 

activation or silencing at the onset of the next cycle, providing “transcriptional 

memory” for antigenic variation.108,109 Another level of var gene regulation involves 

the subnuclear localization of var genes105,110,111 with transciptionally active var genes 

in the center of the nucleus and silenced var genes at the nuclear periphery in the 

region of condensed heterochromatin. 

Var gene diversity  

PfEMP1 proteins have a central role in the biology of P. falciparum infections26,112 

and its dual character is of major importance. On the one hand it mediates 

cytoadherence to various host receptors in various organs, which is a critical process 

for the survival and transmission of the parasite, but also the cause of the high 

virulence and severe disease outcome. On the other hand PfEMP1 undergoes 

antigenic variation to evade the host immune system which is the underlying basis for 

the establishment of chronic infections. With 50-60 var genes per haploid genome 

the var gene repertoire is huge. Recombination and gene shuffeling events during 

meiosis113,114 and probably mitosis generate additional diversity. The telomeric 

location of var genes further facilitates recombination. Clustering of telomers into 

“bouquets” has been suggested as a potential mechanism for bringing var genes into 

close proximity for recombination to generate diversity within the family.113 Global 
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sequence comparisons have reveiled that the diversity of var genes is immense with 

almost no overlap among repertoires from different geographical regions115 or 

between different isolates.116,66 The overall sequence similarity in the 3D7 genome 

ranges from 24-98%.117 The DBL1α which is the most conserved domain of the 

extracellular part of PfEMP1 shows a sequence similarity of only 25%. Therefore, 

PfEMP1 as vaccine candidate is considered rather unfeasible, however adhesive 

functions probably require the restriction of its variability and keep the molecule semi-

conserved to a certain degree. 

Immunity 

Constant exposure to P. falciparum and the survival of repeated malaria infections in 

endemic areas will eventually lead to semi-immunity. While clinical immunity 

protecting against severe disease is acquired relatively rapidly118, asymptomatic 

infection and infections leading to only mild malaria symptoms still occur. The vast 

diversity of var genes is probably the reason why individuals get repeatedly infected 

and never develop sterile immunity.  

Specific antibodies from reconvalescent serum, probably directed against PfEMP1 

were shown to agglutinate the infecting parasite strain after acute infection but not 

other isolates.119,120 These variant specific antibodies were strongly implicated in the 

acquisition of protective immunity.120,121,122 However other studies also show the 

existence of cross-reactive antibodies suggesting the presence of conserved 

epitopes.123,124,125,126,127,128 If the development of cross-reactive antibodies confers 

protection as suggested by Marsh&Howard129 PfEMP1 might be considered a 

potential vaccine candidate. If, however most antibodies are variant specific as 

suggested by Newbold et al. 130, then the situation is more challenging due to the 

tremendous sequence diversity. The finding of isolates causing severe malaria being 

more frequently recognized than those that cause mild disease131 and studies 

showing that isolates causing severe malaria are antigenically less diverse132 imply 

the existence of a restricted subset of var genes. By identifying representatives of 

this subset and including them into a multicomponent vaccine candidate, the creation 

of an anti-severe disease intervention might be feasible. 



Chapter 1. General Introduction 

 25

Aims and objectives 

1. Analysis of Plasmodium falciparum var genes expressed in children from 

Papua New Guinea. 

Specific objectives of this topic: 

- To investigate the overall diversity of expressed var genes in children from Papua  

  New Guinea. 

- To identify differences in diversity among children with different 

   clinical presentations. 

- To test whether disease outcome was related to var genes determined by their  

  upstream sequences  

- To identify potential subgroups of var genes associated with severe malaria. 

2. Identification of immunodominant epitopes of PfEMP1. 

Specific objectives of this topic: 

-  To obtain information about the importance of distinct PfEMP1 domains in the 

   recognition by the host immune system. 

- To indentify domains recognized by semi-immune adults but not by children which 

  might be implicated in the generatin of protective antibodies. 

3. Application of capillary electrophoresis sizing technique as new var gene 

genotyping tool. 

Specific objectives of this topic: 

- To investigate whether GeneMapper could replace approaches of expressed var  

  gene typing by cloning and sequencing 

- To investigate whether GeneMapper could be applied to trace expressed var genes 

   in naturally occurring infections over time 
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Abstract: 

Background: The variable antigen PfEMP1 is a major virulence factor in malaria. A large 

number of var genes encode PfEMP1 and we hypothesized that a restricted PfEMP1 

repertoire is involved in clinical disease. To test this we conducted a case control study in 

Papua New Guinea and analysed expressed var genes in naturally infected individuals.  

Methods: var mRNA was isolated from 79 children with asymptomatic, mild, and severe 

malaria. We prepared cDNA from the upstream region into the DBL1α domain, and picked 

20 clones from each reaction for sequencing. 

Results: 25% of centrally located var genes were shared between children whilst only 5% 

of subtelomeric genes were shared, indicating a lower diversity in the former group. 

Linkage between upstream sequences of group B or C var genes and DBL1α groups was 

not observed making determination of the var gene group by Blast analysis of DBL1α 

against 3D7 impossible. Although diversity of var genes is vast but varying between sites, 

we could identify certain amino acid stretches in the DBL1α domain which seem to 

determine severity of disease.  

Conclusion: Despite this vast diversity restricted disease associated var genes can be 

identified and might be used for innovative interventions based on PfEMP1.   

 

Keywords: malaria, PfEMP1, field study, var gene expression, phylogenetic trees, case 

control study, species richness estimation 
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Introduction 

Antigenic variation is an important evasion mechanism associated with sequestration and 

virulence of Plasmodium falciparum malaria. Adherence of parasitized red blood cells to 

endothelial cells and to non-infected erythrocytes (rosetting) characteristic for P. 

falciparum leads to microvascular obstructions in various organs [1-3]. This is mediated by 

the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 

(PfEMP1). This protein is encoded by 1 of approximately 60 var genes [4] scattered 

throughout all chromosomes. var genes can be classified into 3 major groups (var group A, 

B and C) and 2 intermediate groups (B/A and B/C) according to their chromosomal 

location and their 5’ upstream region [5]. var group A and B genes are subtelomerically 

located in contrast to var group C genes which are arranged in the centre of 

chromosomes. Differences in transcriptional regulation between var group B and C have 

been described [6] and might indicate differences in their function. 

PfEMP1 is structured into several distinct domains with an extra-cellular part composed of 

a variable N-terminal segment (NTS), various Duffy binding-like domains (DBL), and 

cysteine-rich interdomain regions (CIDR)[5]. These domains have been associated with 

different binding specificities for host receptors [7-10]. The extracellular part is followed by 

a transmembrane domain and the conserved intracellular acidic terminal segment (ATS) 

anchoring the protein to the cytoskeleton [9, 11, 12]. PfEMP1 enables the parasite to avoid 

splenic clearance by sequestration but consequently is presented to the immune system 

eliciting an immune response. Therefore, the parasite undergoes antigenic variation by 

switching expression to alternative PfEMP1s to subvert the immune response. This switch 

is often accompanied by changes in adhesive properties [13]. 

Because of antigenic variation PfEMP1 is often not considered a feasible malaria vaccine 

candidate. However, recent studies have shown that structural similarities exist in the 

molecules head structure [14], and only few PfEMP1 variants have been associated with 

certain clinical presentations such as variants binding chondroitin sulfate A (CSA) with 

pregnancy associated malaria (PAM)[15]. Other PfEMP1 molecules have been associated 

with more severe disease [16-19], e.g. PfEMP1 molecules with DBL1-like domains lacking 

1 or 2 cysteines characteristic for group A and B/A var genes [20,21]. Up-regulation of 

group A and B var genes in children with severe malaria was observed in Tanzania but not 

in a study from Kenya [22, 23]. In Papua New Guinea, upregulation of var group B genes 

in severe malaria was evident, but not of var group A [24]. 
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Despite inconsistencies, these results support the notion that a limited number or 

structures of disease-related var genes exist and that their identification would enable the 

development of anti-severe disease interventions. 

 

To study the association of expressed var genes and clinical malaria presentation, we 

analysed var transcripts of parasites from children with severe, mild and asymptomatic 

malaria of a case-control study in PNG. var mRNA was reverse transcribed and PCR 

amplified, followed by cloning and sequencing. Sequences were classified on amino acid 

motifs and numbers of cysteine residues in the DBL1α domain as proposed previously 

[22]. This is one of few studies addressing var expression in vivo and which adds to 

understand the clinical relevance of PfEMP1. Using bioinformatic tools we assessed the 

diversity but also highlight the limits of the current approach to identify specific subsets of 

expressed var genes.  
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Materials and Methods 

Study samples 

Samples were collected during a case-control study in Madang in PNG as described [24]. 

Ethical clearance was obtained from the MRAC of PNG. Blood samples were analysed 

from 16 children with severe malaria as defined by WHO criteria [25], from 29 mild malaria 

cases with no further symptoms of another disease, and from 34 parasitemic but 

asymptomatic, age-matched children.  

Isolation of var transcripts and cDNA synthesis 

var mRNA isolation and reverse transcription (RT) was performed as described [26]. 

Briefly, parasite RNA was extracted using TRIzol (Invitrogen) following the manufacturer’s 

instructions. RNA was treated twice with RQ1 DNase (Promega). Full-length var 

transcripts were obtained by incubation of RNA with biotinylated oligonucleotides 

complementary to the ATS domain and captured using streptavidin-linked Dynal beads 

(Dynal,UK). RT was performed on captured hybrids using Sensiscript reverse transciptase 

(Qiagen). Sample aliquots without reverse transcriptase served as negative control.  

Amplification of DBL1α -domain and var group-specific PCR 

Degenerated DBL1α-5’ and DBL1α-3’ primers were used to amplify DBL1α-domains as 

described [26] (referred to as DBL1only). Upstream sequences were amplified using var 

group A, B and C-specific forward primers (figure 1) and DBL1α-3’ reverse primers 

resulting in products of approximately 1.4 kb (referred to as 5’UTR-DBL1). PCR conditions 

were 94°C, 5 min followed by 35 cycles, 30 sec at 95°C, 60 sec at 52°C, and 90 sec at 68 

°C. PCR products were purified using the High Pure PCR Purification Kit (Roche).  

Cloning and sequencing 

PCR products were processed for sequencing as described [26]. Briefly, fragments were 

ligated into pGEM-T (Promega) or pET vectors for TOPO cloning (Invitrogen) according to 

the manufacturer’s instructions, and transfected into E. coli SURE cells (Stratagene). If 

possible, at least 20 clones were picked per transfection and sequenced on an automated 

sequencer (Applied Biosystems) using the forward primer T7 (pGEM-T) or M13 (TOPO). 
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Sequence analysis 

Sequences were checked, edited, and analyzed using MT Navigator (ABI, version 1.02b3), 

DNASTAR (version 4; http://www.dnastar.com), NCBI BLAST 

(http://www.ncbi.nlm.nih.gov) and CLUSTALW (http://www.ebi.ac.uk). 

Mostly, a consensus sequence was represented by several sequences from the same 

transfection. Sequences were considered identical if they differed by <5 nucleotides. 

Nucleotide sequences were translated using ExPASY translate tool 

(http://www.expasy.org) and checked for identity using a 95% identity cut-off. 

Sequences were classified based on the number of cysteine residues and specific amino 

acid motifs (positions of limited variability (PoLV)) within DBL1α domains as proposed by 

Bull et al. [22]. DBL1α sequences were assigned to one of six groups proposed and their 

distribution was analyzed with regard to var groups A, B and C and the clinical status of 

the child from whom the sequences were isolated. 

Multiple sequence alignments were performed in ClustalX (version 1.83; 

http://www.clustal.org) and unrooted, minimum evolution, phylogenetic trees (based on 

amino acids, p-distance) were created with 1,000 bootstrap replicates in MEGA (version 

3.1; Molecular Evolutionary Genetics Analysis). Multidimensional scaling (MDS) analysis 

and Analysis of Similarities (ANOSIM) were performed using Primer 6.1.9 (Primer-E Ltd., 

UK). 1-way ANOSIM, a non-parametric permutation procedure (999 permutations) tests 

the null hypothesis of no differences between two groups and was based on a Poisson-

corrected distance matrix of amino acid sequences, as was MDS, a non-metric 

multivariate ordination method. 

All sequences have been submitted to GenBank with accession numbers EU787517-

EU787985. 

Statistical analysis 

Intercooled Stata (version 8.2) was used for univariate analysis, Fisher’s Exact, and Mann-

Whitney U tests. All tests were 2-tailed and considered significant if p<0.05. 

Species richness estimation 

For sequence richness determination, sequences from PNG were compared to a 

sequence set from Tanzania (unpublished), to published sequence data from Mali [20], 

and from a global sequence collection [27]. DBL1α sequences from all samples were 

compared against each other with BLASTCLUST [28]. 95% sequence identity were 

assigned the same sequence type. Number of sequence types depended on how many 
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samples were taken into account. Perl scripts were developed to simulate the sequential 

inclusion of all samples in all possible combinations. Accumulation curves were generated 

by plotting the increase in recovery of new sequences as a function of sampling effort.  
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Results 

Sequence data on 5’UTR-DBL1α was available for 24 asymptomatic, 29 uncomplicated, 

and 14 severe children. DBL1α-only sequences were available for 28 asymptomatic, 23 

mild, and 14 severe malaria cases (Table 1). DBL1α-only sequences were primarily used 

to analyze diversity of var transcripts, while phylogenetic analysis was performed on 

5’UTR-DBL1α sequences .  

var group distribution in clinical subgroups 

On average, we found 6.4 different DBL1α-only sequences per child with no differences 

between asymptomatic, mild or severe malaria, even when adjusting for numbers of 

infecting parasite strains per child. var group B and C transcripts were found at equal 

numbers in the three clinical subgroups, but only one var group A sequence was observed 

in asymptomatic malaria cases (Table 1). 

27 of 109 (24.8%) group C 5’UTR-DBL1α sequences were detected in several children, 

but only 11 of 231 (4.8%) group B sequences were shared by several children (Fisher’s 

Exact Test, p<0.001). Most var group B or C sequences found in several children were 

shared in asymptomatic and uncomplicated cases, whilst only 19 group A sequences were 

found once in these children.  

Distribution of motifs in DBL1α sequences 

The sequences from block D (ARSFADIGDI) to block H (WFEEW)(Figure 1)[9] of all 

DBL1α sequences were grouped according to the number of cysteines in this region and 

distinct amino acid motifs called positions of limited variability (PoLV) as previously 

proposed [22]. 

Figure 2A shows the distribution of sequence groups 1 to 6 in var group A, B or C 

transcripts. The majority of var group B and C transcripts contained sequences of group 4 

to 6, with group 4 being the dominant. var group A almost exclusively contained group 1 to 

3 sequences.  

Group 1 to 3 sequences were shown previously to be more likely associated with severe 

disease [20-22, 29-31]. Although the majority of var transcripts in this study belonged to 

var group 4 to 6 (Figure 2B), group 1 to 3 sequences were significantly less common in 

asymptomatic children than in clinical cases (Fisher’s Exact test p=0.007)(Figure 2B). A 

more detailed analysis of transcripts and associations with sequence length and PoLV 

motifs can be found in the supplement. 
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Upstream region of DBLonly sequences 

The importance of upstream regions for classification of var genes has been recognized, 

but its determination is difficult. To test whether blasting DBL1α sequences against the 

3D7 genome might predict the upstream region in field samples we blasted the DBL1α 

domains of UTR-DBL1α sequences for which we knew the upstream sequence against the 

3D7 genome to determine the var group in silico. 

DBL1α domains in linkage with upsA sequences were correctly determined in all but one 

case (17/18), whereas 28% (21/74) of group B sequences were assigned wrongly as 

group C sequences and 62% (30/48) of confirmed group C sequences were wrongly 

assigned to group B sequences. Overall, this lead to assignments to the wrong var group 

of 37% of sequences (51/140), showing that prediction of var groups is impossible using 

the DBL1α sequence. 

Phylogenetic analysis of NTS-DBL1α sequences 

A distance-matrix based, radial phylogenetic tree of NTS-DBL1α sequences of obtained 

var transcripts and 3D7 var genes as reference shows seven main clusters (Figure 3). 

Several clusters have an increased proportion of var sequences with specific 

characteristics as described below. 

var group A cluster: this was the only cluster clearly separated and transcripts from 

rosetting parasites were found in this group.  

Clusters with commonly expressed var genes: common transcripts found in several 

children mainly grouped into 2 clusters (Figure 3, blue clusters). One cluster comprised 

group B and C transcripts and three 3D7 var genes of group BA or BC, representing var 

genes with complex domain structures including DBL2β-C2. In 2 of 4 children with cerebral 

malaria the group C sequence s44s36a35C13 was the most abundant after cloning and 

sequencing. The second cluster contained exclusively 3D7 var type B sequences.  

var group C cluster: this cluster comprised mainly var group C or BC sequences (Figure 3, 

green cluster). Two closely related sequences (a59C6, a38C5) originated from two 

children with asymptomatic malaria but with very high parasitemia of 108,000 and 44,000 

parasites/µl and low haemoglobin levels. These var group C sequences were the dominant 

var transcript in these children and no var group A or B transcript was amplified confirming 

previous quantitative PCR data [24]. These sequences have a distinct DBL1α block A with 

a cysteine substitution to a tyrosine (Figure 4). Subsequently, this substitution was found in 

19 different var transcripts of which 14 were var group C genes, deriving from 18 children 

(median age 46 months; 4 severe, 5 mild, 9 asymptomatic cases). These children had a 7 
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times higher parasitemia (median parasitemia: 64,000 parasites/µl) than children not 

expressing this var variant (median parasitemia: 8,920 parasites/µl) (Mann-Whitney U 

Test, p=0.067). 

Clustering of var transcripts of severe and asymptomatic malaria cases  

While no clustering of full-length NTS-DBL1α sequences of severe malaria cases was 

obvious, a multidimensional scaling (MDS) plot showed significant clustering of the DBL1α 

stretch from block E to F [9] (Figure 5, Figure S4 in supplement) of dominant var 

transcripts of severe malaria cases (1-way Analysis of Similarities (ANOSIM) permutation 

test, p=0.002). 7 of 12 var sequences from severe malaria clearly grouped apart (Figure 5) 

also evident in a distance tree of this sequence stretch containing all var transcripts 

(supplement Figure S4). This distinct cluster contained var transcripts of parasites from 14 

children, of which 7 had severe malaria (Fisher’s Exact test, p=0.006). var transcripts 

expressed in 3 of 4 children with cerebral malaria grouped in this cluster (Fisher’s Exact 

test, p=0.025).  

Species richness determination 

To estimate diversity of var DBL1α sequences, we simulated species accumulation curves 

based on four datasets (Figure 6). For each dataset, the number of DBL1α sequence 

types was plotted against the number of samples studied, and empirical plots were well 

fitted by a linear function. Different non-parametric estimators of species richness 

implemented in eco-tool (http://www.eco-tools.net) were applied to all datasets but none 

was stabilized before reaching the full number of samples.  

In all cases, curves did not reach a plateau which indicated that the diversity of DBL1α 

sequences is vast, and more sampling efforts are needed to capture the complete 

sequence diversity. The slopes of the curves varied among datasets (Figure 6) reflecting 

different sequence diversity. Other factors such as the source of sequences (cDNA or 

genomic DNA) or the number of clones sequenced per sample also contributed to the 

observed differences.  
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Discussion 

Little information is available on var gene expression in naturally infected malaria cases 

[20-24, 32]. To describe the expression of var genes, we conducted a case control study in 

PNG and analyzed var transcripts of parasites isolated from 79 children with 

asymptomatic, mild, and severe malaria.  

 

The number of different var transcripts of group B or C detected by cloning and 

sequencing was not significantly different between asymptomatic, mild or severe malaria 

cases which is in concordance with data from Mali [20]. We reported previously a 

significant quantitative shift by real-time PCR from var group B to C transcripts in the same 

symptomatic and asymptomatic malaria cases [24]. However, quantitative analysis based 

on cloning and sequencing of PCR products introduces bias through primers, amplification 

plateaus, and cloning, and cannot be compared directly with quantitative PCR [33]. A 

combination of quantitative and qualitative information on var transcripts provides the most 

meaningful data.  

An increase of var group A transcripts in symptomatic malaria cases was observed when 

compared to asymptomatic malaria. This is in agreement with a study by Bull et al. [22] 

and subsequent studies [20, 29-31] which showed that DBL1α sequences of cys2 type 

(groups 1 to 3, mainly group A var genes) were mainly found in symptomatic children. 

However, this shift in distribution of DBL1α groups between clinical presentations was only 

evident in dominantly expressed sequences.  

7% of all DBL1αonly sequences were found in more than one child in a total of 370 

different detected sequences. This indicates a larger diversity in DBL1α sequences than 

observed by Barry and colleagues [27] in the Amele population, a small subpopulation 

within our study area who identified only 187 different DBL1α sequences. This might 

indicate a geographic population structure with locally restricted subpopulations of var 

types.  

Approximately 25% of all group C sequences were detected more than once in several 

children whilst only 5% of group B sequences were shared. Because there are 

approximately three times more group B than group C var genes in 3D7, this confirms 

previous findings of high recombination rates especially between group B genes [30, 34-

36]. Phylogenetic analyses also suggested frequent genetic exchange between group B 

and C genes because they did not cluster separately, and Blast analysis using the DBL1α 

sequence was unable to determine the respective var group. 
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Only 16 children with severe malaria (including 4 cerebral cases) were admitted to the 

hospital during the 4 months study period. The low incidence of severe malaria has been 

attributed to good access to antimalarials, omnipresence of P. vivax, and to the genetic 

background of Papua New Guineans [37]. Therefore, finding the same var NTS-DBL1α 

sequence dominantly transcribed in 2 of 4 children with cerebral malaria was surprising. In 

a distance tree, this sequence clustered with other frequently detected var transcripts and 

with 3 genes of complex structure of the 3D7 group BA/BC genes. These 3D7 var genes 

contain additional domains such as DBL2β-C2 which previously was found associated with 

binding to the intercellular adhesion molecule 1 (ICAM-1) and cerebral malaria [38-40]. 

Another of these genes, PFL0020w, was previously found to be the second most 

transcribed var gene in an artificial P. falciparum 3D7 challenge infection in a non-immune 

human host [41]. PFL0020w has an identical DBL1α sequence (DQ519151) as a var 

transcript of parasites isolated from heart tissue of two fatal paediatric malaria cases in 

Malawi [32]. Thus, special attention should be paid to var genes within this cluster as they 

might be candidates strongly associated with morbidity of malaria. 

 

While no clustering of NTS-DBL1α sequences of severe malaria cases was obvious, MDS 

analysis within block E to F of the DBL1α showed significant sequence clustering in a large 

subset derived from severe malaria cases. This cluster contained var transcripts from 3 of 

4 children with cerebral malaria, suggesting a restriction associated with severe malaria.  

Finding a subset of var sequences associated with severe disease and detected in several 

children agrees with previous studies [16, 18, 42] and suggests the existence of conserved 

var genes that are readily expressed in less immune hosts increasing parasite survival by 

providing distinct binding abilities to vital organs.  

 

Two older asymptomatic children had unusually high parasitemia (>40,000 parasites/µl) 

with no accompanying symptoms. Parasites from these children almost exclusively 

expressed only one var group C transcript and previously had shown a strong proportional 

increase of var group C transcripts [24]. These two sequences were closely related to 

each other and the 3D7 var gene PF08_0107 that previously was associated with weak 

IgG recognition in semi-immune children and with high expression in unselected 3D7 

parasites [19]. In these var sequences and in several others within a cluster containing 

mainly var group C types a cysteine was replaced by tyrosine. It remains to be confirmed 

whether this motif is a marker for a distinct var type or whether it is involved in immune 
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recognition or binding. Such replacement of a cysteine providing disulfide bridges with an 

aromatic tyrosine might lead to changes in the tertiary structure of PfEMP1. 

Our finding suggests that var group C genes are primarily expressed in older, semi-

immune hosts who already developed immunity against those var genes that are involved 

in severe pathogenesis. Unselected cultured parasites showed var group C genes highly 

expressed [own observation, 19, 43] with low switch-off rates [43]. This might explain the 

exclusive transcription of group C genes in some semi-immune children. It is yet unclear 

whether high parasite loads in these children are a result of a var group C expression. A 

“hole in the antibody repertoire” [19, 44, 45] due to the rare expression of these antigens or 

by other strategies to evade protective immune responses could explain this. The fact that 

these children were asymptomatic despite the high parasitemia suggests that these 

PfEMP1 molecules could not mediate cytoadherence in vital organs.  

 

In conclusion, we showed that in symptomatic malaria cases a higher proportion of var 

group A or cys2 DBL1α sequences are present, and we provide evidence that a subset of 

frequently encountered var genes with complex DBL1α structure might be associated with 

more severe forms of malaria. We also described another subset of var group C genes 

which are frequently expressed in older children with asymptomatic high parasitemia. 

However, we were unable to clearly identify an association of defined var gene expression 

with severe malaria. Apart from technical reasons such as the small number of severe 

malaria cases and technical challenges inherent to a cloning and sequencing approach 

from field samples, this lack of an association could also be due to the mixture of parasites 

found in peripheral blood samples expressing many different var genes as previously 

reported by Montgomery and colleagues [32]. Further research on var gene expression in 

natural infections and in different settings is urgently needed to understand the dynamics 

of var gene expression and the associated pathogenesis. Only then, innovative advanced 

proteomic studies can be facilitated to identify PfEMP1 molecules that might become 

targets of new anti-disease interventions.  
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Table 1: Number of detected var transcripts grouped according to clinical status (n = 

number of children) A) Number of 5’UTR - DBL1α sequences with number of total 

sequences, number of different sequences (with full-length DBL1a sequence) and average 

number of different sequences per child (range) B) Identical to A) but only the DBL1α 

domain was amplified  

 

A) 

 

 

B) 

 

 
Number of total 
DBL1α sequences 

Number of different 
DBL1α sequences 

Average number / 
child (range) 

Asymptomatic 482 148 6.3 (1-14) 

Uncomplicated 280 141 6.7 (2-14) 

Severe 163 75 6.1 (1-9) 

Total 925 364 6.4 (1-14) 

 

 
Number of total  
var sequences 

Number of different  
var sequences 

Average number / 
child (range) 

upsA 133 19 0.4 (0-3) 
Asymptomatic 4 1 0 (0-1) 
Uncomplicated 107 13 0.6 (0-3) 
Severe 22 5 0.4 (0-2) 
upsB 607 78 4.3 (0-13) 

Asymptomatic 227 28 3.2 (0-11) 
Uncomplicated 252 28 4.8 (0-13) 
Severe 128 22 5.1 (0-9) 
upsC 603 51 2.4 (0-6) 

Asymptomatic 256 21 2.3 (0-6) 
Uncomplicated 237 22 2.3 (0-6) 
Severe 110 8 2.8 (0-5) 

Total 1343 148 7.1 (0-14) 
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Figure legends 

Figure 1: var gene structure and PCR products generated with var group specific 5’ UTR 

forward or DBL1α forward and DBL1α reverse primer. 

 

Figure 2: Grouping of different DBL1α sequences into 6 sequence groups according to the 

classification model of Bull et al. [2005]. A) DBL1α sequence groups in var group A, B and 

C. B) DBL1 α sequence groups and clinical status 

 

Figure 3: Unrooted minimum evolution, consensus radial tree (1,000 bootstrap replicates, 

bootstraps above 50 indicated) of the var NTS-DBL1α amino acids stretch of study var 

transcripts with 3D7 var genes as reference. “■” var sequences detected in several 

children, “●”sequences with the Y motif in block B of DBL1α, “▲” an identical NTS-DBL1α 

sequence found in 2 children with cerebral malaria and “♦” var sequences of rosetting 

isolates. Labeling of study sequences: small letters a, u or s mark “asymptomatic”, 

“uncomplicated” or “severe” malaria; the first number refers to age of children in months, 

big letters A, B or C refer to var groups with 2nd number indicating the sequence number. 

Successive small letters and numbers refer to the same sequence found in several 

children. 

 

Figure 4: Multiple sequence alignment of DBL1α block A from cysteine 1 to cysteine 3. 

Selection of study and 3D7 var sequences with amino acid differences between groups in 

bold.  

 

Figure 5: Multidimensional scaling analysis of a distance matrix of var sequences between 

semi-conserved DBL1α blocks E and F from children with severe and asymptomatic 

malaria. Letters A, B and C indicate var groups of these sequences.    indicates children 

with asymptomatic malaria,   indicates children with severe malaria. Letters without 

triangles are sequences derived of children with mild malaria.  

 

Figure 6: Comparison of PfEMP1 DBL1α accumulation curves simulated for different 

datasets.             Mali,        Tanzania,         PNG,           global. The value of x axis 

represents the number of patient samples or cloned isolates studied. The data set are 

described in the figure table. 
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„.C....I”

„EYD.KK.“

u36A4         CFG------RNQDRFSEDQESECGN-KIRDYKSENV-G----TSCAP

a23B11        CK------HKSEKRFSDTEGAQCDDRKIRGSDK-TSNG----GACAP

a59C2         CKD-----RWEI-RFSDKYGGQCTNSKIH-GNELKNG--KDVGACAP
u35u12s21C14  CKELS-GE-MGVKRFSDTLGGQCTNTKIK-GNRYIER--QDVGACAP

MAL6P1.316    CGN-----RQTV-RFSDEYGGQCTFNRIKDSEHNN----NDVGACAP
PF07_0050     CDR-----RWPV-RFSDESRSQCTKNRIKDS---TS---DTVGACAP
a21B65        CGN-GSGKGEYVNRFSDKQQAEYDNKKMKCSNGSNG---KDEGACAS
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Supplement: 

The distribution of var sequences from this study into the 6 sequence groups according to 

a model proposed by Bull et al. [1] was similar to the distribution of var sequences from 

Plasmodium falciparum 3D7 strain with four exceptions: one var group A sequence was 

classified as a group 4 sequence, one var group C sequence contained a group 2 motif 

and two var group C sequences contained a group 3 motif.  

 

Distinct length distribution of sequences associated with specific PoLV motifs 

Bull et al. [2] showed an association between sequence length and PoLV motifs, and that 

the length distribution of the six different groups was similar in sequences originating from 

three different geographic locations suggesting similar structural features. DBL1α 

sequences derived from this study were assigned to group 1 to 6 and analyzed for their 

length distribution. Similar to the results obtained of Bull and colleagues [2] sequences 

containing the MFK* or the *REY motifs were associated with shorter DBL domains 

(Figure S1). MFK* and *REY motifs  were mutually exclusive, and MFK* was 

predominantly found in DBL1α domains containing group 1 motifs, but it was also found in 

three group 6 sequences that lack the second cysteine residue between PoLV3 and 

PoLV4. When the PoLV distribution of DBL1-only sequences of this study was compared 

with those occurring in 3D7, there was a high degree of concurrency with most PoLV 

motifs also found in 3D7 (Figure S2). The distribution of these motifs was also highly 

similar between the two sets of sequences, which is consistent with data from Kenya [2]. In 

contrast, PoLV motifs occurring with high frequencies in clinical cases were also found 

frequently in asymptomatic children (Figure S3). 

The length distribution of sequences associated with distinct PoLV motifs was similar to 

the distribution found in Kenya [2] which might indicate that structural features determine 

size. Similar to Bull and colleagues [2] we also identified PoLV motifs found in 3D7 in the 

samples from PNG. However, PoLV motifs frequently occurred both in samples from 

symptomatic and asymptomatic children which is in contrast to data by Normark et al. [3] 

who suggested the presence of specific amino acid motifs in certain PfEMP1 DBL 

sequences predisposing the induction of severe malaria. Motifs associated with rosetting 

parasites or severe malaria cases were only found at low frequencies and no associations 

were detected.  
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Clustering of var transcripts of severe versus asymptomatic malaria cases  

In a minimum evolution distance tree on a DBL1α stretch from block E to F [4], a group of 

sequences clustered apart which contained var transcripts of parasites of 14 children, of 

which 7 had severe malaria (Fisher’s Exact test, P=0.006)(Figure S4). 3 of 4 children with 

cerebral malaria expressed var transcripts which grouped in this cluster (Fisher’s Exact 

test, P=0.025). 

 

Supplemetary references 

1 Bull PC, Berriman M, Kyes S, et al. Plasmodium falciparum variant surface antigen 

expression patterns during malaria. PLoS Pathog. 2005;1:e26. 

2 Bull PC, Kyes S, Buckee CO, et al. An approach to classifying sequence tags 

sampled from Plasmodium falciparum var genes. Mol Biochem Parasitol. 

2007;154:98-102.  

3 Normark J, Nilsson D, Ribacke U, et al. PfEMP1-DBL1alpha amino acid motifs in 

severe disease states of Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 

2007; 104:15835-40.  

4 Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH. Classification of 

adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 

family. Mol Biochem Parasitol. 2000; 110:293-310. 
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Figures in supplement: 

 

Figure S1: Length distribution of sequences grouped into group 1 to 6 according to the 

number of cysteines and PoLV.  

 

Figure S2: Distribution of PoLV motifs in 3D7 and in PNG samples. Sequences not shared 

between the two data sets are indicated with “OTHER”.  

 

Figure S3: Distribution of PoLV motifs in children with asymptomatic and clinical malaria.  

 

Figure S4: A) Multiple alignment of a sequence stretch between block E and F of DBL1α 

with dominantly transcribed var sequences of parasites of asymptomatic and severe 

malaria cases. Sequences highlighted in red grouped apart in the MDS analysis which 

showed a significant clustering of dominant var transcripts of severe versus asymptomatic 

malaria cases. The sequence stretch underlined was used further for phylogenetic 

analysis (see B). B) Minimum evolution unrooted distance tree with 1,000 bootstrap 

replicates (bootstraps above 40 are indicated) based on the above underlined sequence 

stretch using all study var sequences. Red circles indicate the 7 var sequences of severe 

malaria cases which grouped apart in the MDS analysis. Yellow triangles indicate further 

var transcripts of severe malaria cases.  
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Introduction 

In malaria endemic areas, semi-immunity is acquired after repeated exposure to the 

malaria parasite. Passive transfer of antibodies from immune to non-immune individuals 

suggested that immunity is, at least in part, mediated by antibodies.1,2 Parasite-derived 

antigens inserted into the RBC membrane are potential targets for this protective immunity 

since they are exposed for a long period on the erythrocyte surface and serve critical 

biological functions.3 Currently, Plasmodium falciparum erythrocyte membrane portein 1 

(PfEMP1) is the best characterized of these parasite-induced proteins proposed as targets 

for naturally acquired immunity4 and the presence of anti–PfEMP1 antibodies has been 

associated with clinical immunity.5,6,7,8  

Despite the large var gene repertoire coding for PfEMP1, the architecture of this protein is 

rather conserved. Most PfEMP1 variants are build up by four 4 building blocks: the N-

terminal segment (NTS), the Duffy-binding like domain (DBL), the cysteine-rich 

interdomain region (CIDR) and the more conserved domain C2. Sequence comparisons 

identified 6 DBL (α, β, γ, δ, ε and X) and 3 CIDR (α, β and γ) subgroups.9 The number and 

the location of these domains varies considerably among different PfEMP1 proteins10, 

however certain headstructures or tandem repeats, always made up of the same domains, 

are also oberserved.11,12 Recently, structural conservation within these head-structures 

has been reported.13  

Several studies in different epidemiological settings were performed, investigating a 

possible link between severe malaria and the expression of particular PfEMP1 protein 

sequences. Upregulation of upsB var genes was found in severe and mild malaria cases in 

Africa and PNG, whereas upsC var genes were upregulated in asymptomatic children.14,15 

UpsA var genes have also been shown to be upregulated in the 3D7 laboratory strain after 

selection for severe malaria.16 Other studies reported on particular DBL domains 

predominantly transcribed in patients with severe malaria.17 The best understood 

correlation between disease and expressed var gene variant is that of pregnancy 

associated malaria (PAM) and var2csa expression.18,19 After one or two pregnancies 

transcendent antibodies develop that recognize placental iRBC from different geographical 

regions and correlate with protection from malaria.20,21 The binding region of var2csa is 

probably located in the DBL3X domain, since it showed cross-reaction to antibodies raised 

against the DBL3γ domain of var1csa, which block adhesion to CSA.22 A more recent 

report showed that the DBL6ε domain might also play a role in protection against PAM.23  
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In 1992, Newbold et al.24 postulated that most anti-PfEMP1 antibodies are variant-specific. 

However, more recent data also report about the existence of cross-reactive antibodies 

raised against different DBL and CIDR domains.25,26,27,28 Therefore, understanding the 

naturally occurring antibody response to the various DBL and CIDR domains of PfEMP1 is 

an important part of evaluating the usefulness of PfEMP1 as a vaccine candidate.  

Previous serological studies using recombinant protein fragments of different parasite 

isolates implicated the CIDR1α29, CIDR2β30 and the DBL1α31 in protection against malaria 

episodes. 

In the third part of this thesis, we tried to add information to these existing data by 

recombinant expression of DBL and CIDR domains of 3D7 PFD1235w/var4 and 

FCR3S1.2-var1. The former was shown to be up-regulated in 3D7 culture after selecting 

for var genes expressed by parasites causing severe disease, whereas the latter has been 

identified as the rosetting ligand which is in turn associated with severe malaria. Screening 

with naturally exposed sera of different origin should provide insight into the importance of 

these PfEMP1 domains in the recognition by the host immune system. 
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METHODS 

Generation of recombinant var gene fragments 

Saponin lysis of parasites 

Saponin lysates of 3D7 and FCR3S1.2 parasite cultures were spun down for 5 min at 500g 

in a 15ml Falcon tube. The supernatant was discarded and the pellet was resuspended in 

10 pellet- volumes of freshly prepared lysis buffer containing 0.03% of saponin in PBS. 

After 5min of incubation on ice and centrifugation at 400g for 10min, the supernatant was 

carefully removed and the pellet was washed twice with PBS. 

DNA extraction 

The pellet was dissolved in 465µl of TE and 20µl of 20% SDS, 10µl 0.5M EDTA and 5µl 

ProteinaseK (20mg/ml) were added. The mixture was incubated in a 60°C heat-block 

overnight. To extract DNA 400µl of H2O-saturated phenol and 400µl chloroform were 

added and the mixture was shaken for 5min and centrifuged for 10min at 12000g at 4°C. 

The aqueous upper phase was transferred to a new tube and the extraction was repeated 

twice albeit in the last cycle 500µl of chloroform were used instead of phenol/chloroform 

mixture. 

DNA precipitation 

DNA was precipitated by adding 1/10 volume of 3M Na-acetate (pH 5.2) and 3 volumes of 

absolute EtOH to 1 volume of dissolved DNA. The mixture was incubated at -80°C for at 

least 1 hour and centrifuged for 30min at 12000g at 4°C. The supernatant was removed 

and the pellet was washed with 75% EtOH and incubated for 3min at 60°C until residual 

EtOH had evaporated. The precipitated DNA was then dissolved in 40µl of TE buffer and 

stored at 4°C. 

Amplification of var gene fragments 

Amplification of PFD1235w/var4 fragments 

The nucleotide and amino acid sequences of PFD1235w/var4 were available at 

www.plasmodb.org. The extracellular part of the var gene was divided into 10 fragments 

(Figure 1a) and PCR reactions with specific primers (Appendix 1) were carried out on a 

Mastercycler gradient machine (Eppendorf).  
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The PCR contained the following reagents: 2U FIREPol® DNA polymeraseI and 10x BD 

buffer (both Solis BioDyne), 200µM dNTPs, 400nM forward and reverse primer each, 

1.5mM MgCl2 and 1µl of 3D7 gDNA. The reaction was carried out in a total volume of 50µl. 

PCR conditions were as follows: After an initial denaturation step of 7min at 94°C, 30 

cycles of denaturation for 45s at 95°C, primer annealing for 60s at 50°C and extension for 

60s at 72°C followed. A final elongation step for 5min at 72°C was added. 

 

 

 
 
Figure 1. Domain structure of PFD1235w/var4 (a) and FCR3S1.2-var1 (b) and relative 
location of PCR fragments. PFD1235w/var4 is a rather huge var gene with 7 domains compared 

to var1 of FCR3S1.2 with only 4 domains. Fragments schematically represent the 10 and 4 regions 

that were intended to be recombinantly expressed in E.coli. 

a) 

b) 
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Amplification of FCR3S1.2-var1 fragments 

The nucleotide and amino acid sequences of FCR3S1.2-var1 were retrieved from 

www.pubmed.org (accession number AF003473). The extracellular part of this var gene 

was divided into 4 fragments (Figure 1b) and PCR reactions with specific primers 

(Appendix 1) were carried out on a Mastercycler gradient machine (Eppendorf). The PCR 

contained the following reagents: 2U FIREPol® DNA polymeraseI and 10x BD buffer (both 

Solis BioDyne), 200µM dNTPs, 400nM forward and reverse primer each, 1.5mM MgCl2 

and 2µl of FCR3S1.2 gDNA. The reaction was carried out in a total volume of 50µl. PCR 

conditions were as follows: After an initial denaturation step of 7min at 94°C, 30 cycles of 

denaturation for 60s at 95°C, primer annealing for 30s at primer specific temperatures 

(Appendix 1) and extension for 30s at 72°C followed. A final elongation step for 5min at 

72°C was added. 

Gel Electrophoresis 

1.5% agarose was dissolved in 0.5x TBE buffer and poured into a gel chamber. PCR 

products were loaded with Blue Juice (30% glycerol, a spatula tip of bromphenol blue and 

xylene cyanol, 70% TE), run at 120V constant current and stained in ethidium bromide 

(1µg/ml in 0.5x TBE) for visualization under a White/UV Transilluminator.  

Purification of PCR products 

Positive PCR products were purified using the Nucleospin® PCR purification columns 

(Macherey-Nagel) according to the manufacturer’s instructions. The concentration of the 

purified PCR products was estimated on a 0.7% agarose gel or using a Nanodrop 

spectrometer (Witec AG). 

Cloning of PCR products into cloning vectors 

For PFD1235w/var4, PCR fragments were initially cloned into pGEM-T and TOPO cloning 

vectors in order to avoid a frameshift causing a stop codon when ligating certain fragments 

into the expression vector. Subsequently, the PCR products were subcloned into 

expression vector pQE30 (carrying a N-terminal tag of 6 histidine residues) using 

restriction enzymes SacI/XhoI and PstI/SphI for fragments cloned into TOPO and pGEM-

T, respectively.  

PCR products of FCR3S1.2-var1 were cloned into expression vector pQE60 (carrying a 

6xhis-tag at the C-terminus of the multiple cloning site) using restriction enzymes NcoI and 

BglII. 
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For both var genes ligation using T4 DNA ligase was done overnight in a water bath at 

16°C. The ligation mix was purified by phenol/chloroform extraction before precipitation 

with NaAc (3M pH 4.5), absolute ethanol and t-RNA at -80°C for 1 hour. After 30min of 

centrifugation at 12000g at 4°C, the supernatant was removed and the pellet was washed 

with 75% ethanol and airdried. The precipitated DNA was dissolved in 10µl ddH2O and 

stored at -20°C until further use.  

Preparation of electrocompetent E. coli cells 

M15 E.coli cells were grown overnight at 37°C in 5 ml LB containing kanamycin (25mg/µl). 

E.coli of this strain contain a pREP4 plasmid which confers resistance to kanamycin. 1ml 

of the overnight culture was transferred to 800ml LB containing kanamycin. Bacteria were 

grown for 4 hours until an optical density at 600nm (OD600) of 0.5-0.6 was reached. Cells 

were kept on ice for 30min at 4°C. After centrifugation at 2500g for 15min, the supernatant 

was discarded and the pellet was resuspended in 800ml cold and sterile ddH2O. Cells 

were spun again for 10min, the supernatant was discarded and the pellet was 

resuspended in 400ml ddH2O as described before. This step was repeated twice before 

resuspending the pellet in ddH2O containing 10% glycerol. The solution was centrifuged 

for 10min, the supernatant was discarded and the pellet was resuspended in 1ml of ddH2O 

again containing 10% glycerol. Aliquots of 45µl were transferred into 500µl Eppendorf 

tubes, immediately frozen in liquid nitrogen and stored at -80°C until further use. 

Electroporation of E.coli 

40 µl of electrocompentent M15 cells were transformed by electroporation (voltage:2500V, 

capacity: 25µF, shunt: 201Ω, pulse: 5ms) and immediately transferred to an Eppendorf 

tube containing 1ml of pre-warmed LB medium. Bacteria were allowed to recover in a 

water bath at 37°C for 30min, plated on agar plates containing 100µg/ml ampicillin and 

kanamycin (25µg/ml) and incubated at 37°C overnight. 

Screening of electroporated cells and isolation of plasmids 

To check whether bacteria had taken up the plasmid with the correct insert, a PCR with 

the corresponding vector primers was performed and a masterplate of the colonies to be 

checked was prepared and incubated at 37°C overnight. The PCR products were analyzed 

on an agarose gel as described before. Clones with a correct insert were picked from the 

masterplate and grown in LB containing ampicillin at 37°C overnight. Plasmids from the 

overnight culture were isolated by miniprep and inserts were cut out with the appropriate 

restriction enzymes to test for correct sizes. 
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Small scale expression 

 For all recombinant fragments expression was tried first in a small scale experiment. 20ml 

of TB medium containing ampicillin and kanamycin were inoculated with 1ml of overnight 

bacterial culture grown in 4ml of LB medium containing the same antibiotics. The freshly 

inoculated culture was shaken at 37°C and OD600 was measured in constant intervals. 

When the culture had reached an OD600 of approximately 0.6, 1ml of culture was removed 

and kept at -20°C as uninduced control. Expression in the remaining culture was induced 

by adding IPTG to a final concentration of 1mM and incubated for 4 hours. 1ml of the 

induced culture was transferred to an Eppendorf tube. Remaining cells were harvested, 

centrifuged at 2000g for 5 min and stored at -20°C until further use (“determination of 

solubility” see below). Both samples, induced and uninduced, were centrifuged for 5min at 

10000g. The pellet was resuspended in 100µl of Laemmli buffer and heated up to 96°C for 

5min to denature proteins and break disulfide bonds. The protein samples were separated 

by SDS-PAGE (see below). 

SDS-PAGE and Western Blot 

Protein samples were separated on a 12.5% SDS polyacrylamide gel for 1.5 hours at 

30mA. Separated proteins were transferred to a nitrocellulose membrane (Hybond™-C 

Extra, Amersham Biosciences) using a semi-dry blotter (BioRad). Blotting was carried out 

for 3 hours at 42mA in Tris-glycine buffer containing 20% methanol. Membranes were 

blocked for 1 hour with TNT (0.1M Tris-HCl, 0.15M NaCl, 0.05% Tween 20, pH 8) 

containing 5% non-fat milk powder. The primary mouse anti-6xHis antibody (dilution 

1:2000 in 1% TNT) was incubated for 4 hours at room temperature. Afterwards, the 

membrane was washed 6 times for 5min in TNT. As secondary antibody, a goat anti-

mouse antibody labeled with alkaline phosphatase (Sigma; dilution 1:20000 in 1% TNT) 

was used and the membrane was incubated for 1 hour. After another round of extensive 

washing in TNT, the membrane was incubated with Tris-buffer containing 300µg/ml 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and 150µg/ml nitro blue tetrazolium (NBT). 

The color reaction was stopped with ddH2O. 

Determination of solubility and large scale expression 

Cell pellet of remaining culture from small scale expression was used to determine the 

solubility of the recombinant protein fragments following QIAexpressionist™ protocol 5 

“Determination of target protein solubility”. In brief, the cell pellet was resuspended in 5ml 

of lysis buffer A for native purification and frozen in dry ice/methanol. After thawing in cold 
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water, lysate was treated with 1mg/ml of lysozyme and 20µg/ml RNase and DNase for 

30min. Lysate was sonicated 6x 10 seconds using a sonicator (Branson Sonifier). After 

centrifugation for 30min at 10000g the supernatant containing the soluble fraction (extract 

A) was transferred into a new tube. The pellet containing the insoluble fraction (extract B) 

was suspended in 5ml of lysis buffer. An aliquot of soluble and insoluble fractions were 

combined with 2x SDS sample buffer and analyzed on a 12.5% SDS gel. Once the 

solubility of the proteins was determined protein lysates of 500ml large scale expression 

cultures were prepared according to protocols 8 and 9 of the QIAexpressionist™. 

Purification of recombinant var fragments 

Affinity purification was carried out according to QIAexpressionist™ protocols 11 and 15 

for soluble and insoluble protein fragments, respectively. In short, the clear lysate obtained 

under native conditions was mixed with 1ml of Ni-NTA agarose and shaken for 1 hour at 

4°C to allow the recombinant protein fragments to bind to the Ni-NTA via the His-tag. The 

slurry mixture was then transferred into a plastic column containing a fibreglas filter 

previously saturated with lysis buffer A .The Ni-NTA protein mixture was run through the 

column and the flow-through was collected. Subsequently, the column was washed twice 

with 4ml wash buffer and protein fragments were eluted in 4 fractions (0.5ml) of elution 

buffer pH 8.0. 

For purification under denaturing conditions the incubation with Ni-NTA agarose was 

performed at room temperature. The lysate, stored in buffer B containing 8M urea, was 

loaded onto a column previously saturated with buffer B and the flow-through was 

collected. After washing the column twice with 4ml of wash buffer (pH 6.3) under 

denaturing conditions the recombinant fragments were eluted 4 times in 0.5ml elution 

buffer pH 5.9 and 4 times in 0.5ml elution buffer pH 4.5.  

Fractions were analyzed by Western blot and protein concentration was roughly estimated 

by Nanodrop at 280nm. Fractions containing the highest concentration of the recombinant 

protein were pooled and stored at -20°C and 4°C for soluble and insoluble fragments, 

respectively. 

ELISA on recombinant protein fragments of PFD1235w/var4 

Recombinantly expressed protein fragments of PFD1235w/var4 were used as antigens in 

an Enzyme-linked Immunosorbent Assay (ELISA) and screened for recognition by sera 

from 48 adults from PNG, 37 pairs baseline/follow-up samples from Tanzanian children as 

well as from 7 children with asymptomatic and 8 children with severe malaria from 

Tanzania and PNG. 2.5µg/ml of recombinant protein in fresh PBS were coated on 
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Maxisorp 96-well plates (Nunc) and incubated over night at 4°C (Figure 2). Plates were 

washed once in ddH2O containing 0.05% Tween20 using an ELISA washer and blocked 

for 1 hour at room temperature with 5% non-fat milk powder in PBS/0.01% Tween20 

(PBS/T). Plates were washed again and incubated with serial dilutions of human sera 

starting from dilution 1:200 for adults and 1:100 for children in 1% non-fat milk powder in 

PBS/T. After incubation for 2 hours at room temperature, the plates were washed 3 times 

on the ELISA washer and incubated with the secondary goat anti-human IgG AP-labeled 

antibody (1:5000) in 1% non-fat milk powder in PBS/T for 1 hour at room temperature. 

After washing, the plate was incubated with PNP (1mg/ml) in alkaline substrate buffer 

(160mM NaHCO3, 130mM Na2CO3, 1mM MgCl2, pH 8.6) and the signal was detected by 

an ELISA reader at 405nm. 

 
Figure 2. ELISA plate layout. 2.5µg/ml of each of the 4 recombinant PFD1235w/var4 fragments 

and the unrelated control fragment were coated in each well. 6 different sera as well as a positive 

and a negative serum pool were serially diluted starting from 1:200 to a final dilution of 1:409600. 

ELISA analysis and data management  

Adults’ and children’s sera described above were tested for recognition on recombinant 

protein fragments of PFD1235w/var4. Recombinantly expressed DHFR was used as a 

control to assess background levels. A serum pool consisting of 20 individual sera from 

PNG served as positive control and a serum pool of malaria-negative blood donors was 

used to calculate the threshold of recognition. All OD405 values were recorded and 

corrected for DHFR recognition by subtraction: ODserum-ODDHFR. The corrected values 

were plotted against the logarithmic dilution. The mean value of the negative serum pool 

plus two standard deviations was used to calculate the threshold for each plate 
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individually. The endpoint titer corresponded to the dilution where the curve of the plotted 

sera met the threshold line. 

Synthetic peptides of PFD1235w/var4 

Because only some fragments could be obtained as recombinant proteins, synthetic 

peptides were used to bridge the gaps. Coverage was not complete but representative 

peptides were chosen (Figure 3).  

Selection of synthetic peptides 

Amino acid sequences of parts of PFD1235w/var4 which could not be recombinantly 

expressed were loaded into the PeptideSelect™ DesignTool avaiable at 

http://peptideselect.invitrogen.com and checked for antigenicity, hydrophobicity and 

surface accessibility. According to the STABLECOIL analysis tool 

(http://www.bionmr.ualberta.ca/bds/software/stablecoil; website currently under 

reconstruction), PFD1235w/var4 does not contain any stable coiled-coil structures which 

are thought to adapt their natural conformation in aqueous solution and which would have 

rendered recognition in an ELISA more reliable. Therefore peptides were also chosen from 

regions with predicted intrinsically unstructured characteristics as well as from regions with 

predicted globular structure (for sequence information see Appendix 2). In order to obtain 

strong adherence of the peptides to the plastic surface of the ELISA plates, peptides were 

ordered with a biotin-label at the N-terminus and ELISAs were carried out on streptavidin-

coated 96-well plates (Nunc). A PEG-linker between the biotin and the peptide sequence 

should facilitate the accessibility to the peptide when bound to the plate. 
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Figure 3. Location of synthetic peptides. Detailed schematic representation of the 9 synthetic 

peptides 2.1, 2.2, 3, 4.1, 4.2, 7, 8, 9 and 10 and their relative location to the recombinant fragments 

of PFD1235w/var4 are indicated. Numbers below black bars indicate amino acid boundaries of 

recombinant fragments. 

Peptide ELISA 

Streptavidin-coated 96-well plates (Nunc) were pre-washed 4 times on the ELISA washer. 

2.5µg/ml of the 9 synthetic peptides 2.1, 2.2, 3, 4.1, 4.2, 7, 8, 9 and 10 were coated in 

fresh PBS (pH 7.2) for 1.5 hours at room temperature. Plates were washed 3 times on the 

ELISA washer before blocking the plates for 1 hour in PBS containing 5% non-fat milk 

powder. Plates were washed twice and human sera (same as used above) were applied in 

a high salt dilution buffer (2.5 % non-fat milk powder, 0.05% Tween20 in PBS and 0.363M 

of NaCl) in a dilution of 1:200 for adults and 1:100 for children (Figure 4). Plates were 

incubated at room temperature for 60min and washed again twice. Secondary goat anti-

human IgG labeled with alkaline phosphatase (Sigma) was added in a dilution of 1:5000 in 

PBS/5%milk/0.05% Tween20 and incubated for 60min at room temperature on a rotary 

shaker. Afterwards, plates were washed and PNP substrate was added in alkaline 

substrate buffer (see above) in a 1:100 dilution. OD405 was measured by an ELISA reader. 
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Figure 4. Layout of peptide ELISA. 44 individual sera per plate were analyzed in duplicates. 

Positive and negative serum pools were pipetted in quatruplicates.  

Analysis of peptide ELISA 

Streptavidin-coated plates are very expensive and therefore we decided not to go for serial 

dilutions, but only to look for “responder” and “non-responder” (serum-wise) or “recognition 

“and “no recognition” (peptide-wise). A serum pool of 20 semi-immune sera from an 

endemic area served as positive control. Background recognition was accounted for by 

subtracting OD405 values of an uncoated plate without the corresponding peptide. A serum 

pool of European blood donors without any history of malaria served as negative control. 

The threshold of recognition for each individual peptide was set as the mean OD405 of the 

negative serum pool on each plate plus two standard deviations. 

Re-expression of recombinant fragments of FCR3S1.2-var1 

To secure sufficient protein amounts, additional expression of recombinant fragments had 

to be done. Overnight cultures from glycerol stocks and large scale expression 

experiments as described above were made to re-express protein fragments in 

appropriate amounts. However, even after several rounds of re-expression, protein yields 

remained low and were not enough to be tested in ELISA. Transformation into several 

different E.coli cell types did not help to solve the problem. Therefore, instead of ELISA, 

Western blot analysis requiring much less material was performed. 

Western blot on recombinant fragments of FCR3S1.2-var1 

100µl of recombinant protein were combined with 100µl of 2xSDS sample buffer and 

incubated for 5min at 96°C. The mixture was loaded on a 12.5% SDS acrylamide gel and 

SDS-PAGE was performed as described above. In order to test human sera of different 

origin (same as used in ELISA on PFD1235w/var4) the membrane was cut into 24 strips. 

Strips were blocked for 1 hour in TNT containing 5% non-fat milk powder. After washing 

the membrane once in TNT the primary antibody was applied in a 1:1000 dilution in TNT 

1 2 3 4 5 6 7 8 9 10 11 12
A posSP S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
B posSP S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22
C posSP S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33
D posSP S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44
E negSP S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
F negSP S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22
G negSP S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33
H negSP S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44
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containing 1% non-fat milk powder for 1 hour at room temperature. Positive and negative 

serum pools were the same as described previously. Since all recombinant proteins 

contained a 6xhis-tag, a mouse anti-6xhis antibody was included as additional control. 

After washing 3 times for 5min in TNT membrane strips were incubated for 1 hour with 

secondary goat anti-human (1:5000) and goat anti-mouse antibodies (1:10000). Washing 

3 times for 5min with TNT and once 5min in Tris for Western (0.1M Tris, 0.5mM MgCl2, 

1.5M NaCl, pH 9.5), BCIP and NBT (1:100 in Tris for Western) were added and the color 

reaction was stopped with ddH2O. 

Analysis of Western Blot signals 

Signal intensity was determined using the Spot Density tool of AlphaEase FC software® 

(Alpha Innotech Corporation). The positive serum pool served as internal control and was 

used to normalize the signals of the individual sera. The signal of the anti-6xhis antibody 

was used to distinguish between specific recognition of the recombinant protein fragments 

and additional unspecific bands in the positive serum pool probably due to recognition of 

residual E. coli fragments that failed to be removed during purification. To account for 

differences in the “window size” used to measure the singals, not the absolute values but 

the average value (AVG) was measured which is the integrated density value (IDV) 

divided by the area in which the corresponding signal was detected. The negative serum 

pool was subtracted as unspecific background levels. 
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RESULTS 

Recognition of PFD1235w/var4 in naturally exposed individuals 

With the predicted size of 405kDa PFD1235w/var4 is a rather large var gene with multiple 

domains conferring different receptor bindings. Several var gene domains like DBL1α and 

the CIDR1α were implicated in binding to different host receptors. Since PFD1235w/var4 

was associated with severe malaria previously16, we were interested in finding possible 

immunodominant epitopes of this specific var gene that might be associated with the 

generation of protective anti-PfEMP1 antibodies. Due to the large size, the protein could 

not be expressed as a whole, but should have been expressed in 10 recombinant 

overlapping fragments. 

Amplification of PFD1235w/var4 fragments was previously carried out in our lab. 

Unfortunately, only 5 of 10 fragments (fragments 1,5,6,8 and 9) could be expressed 

(Figure 5), 4 of which were available as glycerol stocks (fragments 1,5,6 and 8) and were 

re-expressed in order to obtain reasonable amounts of protein to perform ELISA.  

 
Figure 5. Schematic representation of PFD1235w/var4 and the recombinant protein 
fragments at their relative position. Protein fragments which could be expressed are indicated in 

green, fragments which failed to express are indicated in red.  

 

It is preferrable to use native protein in ELISA experiments, but the failure to express the 

protein fragments under native conditions made it necessary to extract them under strong 

denaturing conditions. In several large scale expression experiments sufficient amounts of 

protein could be produced (Figure 6). Predicted sizes of the 4 fragments were 43.4kDa, 

53.3kDa, 49.1kDa and 45.6kDa for fragment 1, 5, 6, and 8, respectively. Figure 6 shows 

the 4 recombinant protein fragments after purification. Most of the additional bands are 

probably due to degradation, however, some of them might also be attributed to histidine-

containing E. coli proteins.   
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Figure 6. Western Blot of recombinantly expressed PFD1235w/var4 domains. 
Proteins were purified over a Nickel column, size-separated on a 12.5% SDS-PAGE and detected 

with a mouse anti-6xhis and an alkaline phosphatase (AP)-labeled anti-mouse IgG antibody. In the 

first lane Precision Plus Protein all blue standard marker is indicated with its 75kDa, 50kDa, 37kDa 

and 25kDa bands highlighted. Lanes 1-4 correspond to recombinant fragments 1, 5, 6 and 8, 

respectively. 

 

ELISA on recombinant PFD1235w/var4 fragments 

ELISA on recombinant PFD1235w/var4 fragments using semi-immune adults’ sera 

The 4 recombinantly expressed fragments 1, 5, 6, and 8 were tested in ELISA for their 

differential recognition by sera of different origin. In brief, proteins were immobilized on 96-

well plates and endpoint titers were measured for 48 sera from asymptomatic, semi-

immune adults collected during a case-control study in PNG. The data were assessed as 

shown in Figure 2. 

In general, there were striking differences in recognition (Table 1+2). Fragments 5 and 6 

corresponding to the DBL3β and C2-DBL4γ region were well recognized by nearly all sera 

(42/48 and 45/48) with a mean endpoint titer (EPT) of approximately 1:14000. Fragment 8 

corresponding to DBL5δ was recognized equally well (41/48)  but with a much lower mean 

EPT of 1:5500. Fragment 1 corresponding to the NTS-DBL1α domain was the least 

recognized protein (11/48) with a mean EPT of only 1:3600. Most sera (28/48) recognized 

3 of the 4 recombinant fragments. Similar numbers of sera (8/48 and 9/48) recognized 2 

75 

50 

37 

25 

M      1     2     3     4 



Chapter 3. Identification of immunodominant epitopes of PfEMP1. 

 82

and 4 fragments and 3 sera were infrequent responders with only one recognized 

fragment. Interestingly, individual sera did not only differ in their ability to recognize 

different protein fragments but also in the strength these fragments were recognized with. 

As an example, SUK 80 recognized fragment 6 in a dilution of 1:102400, fragment 8 was 

only recognized up to 1:1600, but fragments 3 and 5 were not recognized at all This 

indicates, that differences in recognition frequencies are really due to the recognition of 

different domains and not simply because the donor was a good responder with high titers 

against all recognized antigens.  

 

 
 
Table 1. Frequency of recognition (FoR) and mean endpoint titers (EPT) of adult sera from 
PNG. FoR and mean EPT are indicated for all sera tested (total) as well as for men and women 

separately. 

 

Fragment 1 Fragment 5 Fragment 6 Fragment 8
FoRtotal 11/48 42/48 45/48 41/48

FoRmales 4/27 26/27 25/27 23/27

FoRfemales 7/21 16/21 20/21 18/21

Mean EPT Total 3618 14319 13844 5507
Mean EPT M ale 2000 16515 16672 3748
Mean EPT Female 4543 10750 10310 7756
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Table 2. Endpoint titers of semi-immune adults from PNG tested on the 4 recombinant 
fragments of PFD1235w/var4. 
Differences in recognition are indicated by a color code ranging from white (no recogntion) to dark 

brown (strong recognition) and their corresponding reciprocal endpoint titers in the range between 

0 and 102400. 

 

ID F ra g m e n t 1 F ra g m e n t 5 F ra g m e n t 6 F ra g m e n t 8
4 5 0 2 5 6 0 0 1 2 8 0 0 0
4 6 0 1 6 0 0 1 2 8 0 0 2 0 0
4 7 0 1 2 8 0 0 2 5 6 0 0 6 4 0 0
4 9 0 8 0 0 8 0 0 1 6 0 0
5 2 0 6 4 0 0 3 2 0 0 3 2 0 0
5 3 0 0 6 4 0 0 1 0 2 4 0 0
4 3 0 2 5 6 0 0 1 2 8 0 0 1 2 8 0 0
4 4 0 6 4 0 0 6 4 0 0 4 0 0
5 0 0 1 6 0 0 3 2 0 0 1 6 0 0
5 1 0 3 2 0 0 6 4 0 0 1 6 0 0
5 3 0 8 0 0 1 6 0 0 8 0 0
5 9 0 6 4 0 0 2 0 0 8 0 0
6 1 0 0 3 2 0 0 0
6 2 0 6 4 0 0 2 5 6 0 0 1 2 8 0 0
6 4 0 3 2 0 0 0 0
6 5 4 0 0 1 6 0 0 2 0 0 4 0 0
6 6 0 0 0 8 0 0
6 7 2 0 0 1 2 8 0 0 3 2 0 0 1 6 0 0
6 8 0 0 6 4 0 0 3 2 0 0
7 2 0 1 2 8 0 0 1 2 8 0 0 6 4 0 0
7 3 0 1 2 8 0 0 5 1 2 0 0 6 4 0 0
7 6 0 6 4 0 0 5 1 2 0 0 6 4 0 0
8 0 0 0 1 0 2 4 0 0 1 6 0 0
8 1 0 3 2 0 0 6 4 0 0 2 0 0
8 3 0 3 2 0 0 1 2 8 0 0 0
8 6 8 0 0 1 2 8 0 0 6 4 0 0 1 6 0 0
8 8 8 0 0 1 2 8 0 0 1 2 8 0 0 3 2 0 0
8 9 0 4 0 0 6 4 0 0 1 6 0 0
9 0 0 6 4 0 0 6 4 0 0 8 0 0
9 3 0 6 4 0 0 1 2 8 0 0 1 6 0 0
9 4 0 1 0 2 4 0 0 2 5 6 0 0 3 2 0 0
9 5 3 2 0 0 6 4 0 0 3 2 0 0 2 0 0
9 8 0 1 2 8 0 0 3 2 0 0 1 6 0 0

1 0 3 8 0 0 2 0 0 8 0 0 8 0 0
1 0 5 0 3 2 0 0 1 2 8 0 0 0
1 0 8 0 8 0 0 2 0 0 0
1 0 9 3 2 0 0 5 1 2 0 0 6 4 0 0 4 0 0
1 1 0 0 2 5 6 0 0 6 4 0 0 6 4 0 0
1 1 3 8 0 0 2 5 6 0 0 1 2 8 0 0 3 2 0 0
1 1 5 0 1 0 2 4 0 0 3 2 0 0 1 2 8 0 0
1 2 2 3 2 0 0 0 1 6 0 0 6 4 0 0
1 2 7 2 5 6 0 0 6 4 0 0 0 1 6 0 0
1 2 8 0 6 4 0 0 1 2 8 0 0 3 2 0 0
1 3 1 0 1 6 0 0 3 2 0 0 1 6 0 0
1 3 4 0 6 4 0 0 5 1 2 0 0 1 6 0 0
1 3 6 8 0 0 3 2 0 0 3 2 0 0 8 0 0
1 3 7 0 5 1 2 0 0 1 2 8 0 0 0
1 3 9 0 3 2 0 0 5 1 2 0 0 1 6 0 0
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Sex-specific recognition of recombinant 
PFD1235w/var4 fragments
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Differences in recognition frequencies regarding sex 

Of the 48 donors, 27 were male and 21 were female. In order to test, whether recognition 

was dependent on sex, frequencies of recognition were analyzed for male and female, 

seperately. Fragments 6 and 8 seem to be recognized equally well by both sexes. 

However, whereas females tended to better recognize fragment 1 the frequency of 

recognition for fragment 5 was slightly higher in serum samples of male donors (Table 1 

and Figure 7) However differences in recognition were not significant (p= 0.17 for fragment 

1 and p=0.07 for fragment 5 using Fisher’s exact test).  
 

 

Figure 7. Gender-specific frequencies of recognition 
Frequency of recognition of the 4 recombinant PFD1235w/var4 fragments were analyzed for male 

(blue) and female (red) donors separately. 

ELISA on recombinant PFD1235w/var4 fragments using children’s sera 

In order to investigate whether recognition frequencies in adults differed from that in 

children, which might indicate the presence of protective antibodies against certain 

epitopes, we analyzed serum samples from 36 African children collected in a longitudinal 

study. In general, both, frequency of recognition and antibody titers were much lower in 

children’s sera when compared to adults’ sera (Table 3 and Table 4). 
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6 months laterBaseline6 months laterBaseline6 months laterBaseline6 months laterBaseline

Fragment 8Fragment 6Fragment 5Fragment 1

 
Table 3. Recognition frequencies of and dynamics of antibody titers to recombinant 
fragments in children from Tanzania.  
Differences in recognition are indicated by a color code ranging from white (no recognition) to 

orange (strongest recognition) and their corresponding reciprocal endpoint titers in the range 

between 0 and 6400. 

 

In children, as in adults, fragment 6 was the one most frequently recognized (table 3 and 

4; with a mean EPT of 1:1367 at baseline), fragment 8 was moderately (mean EPT= 

1:524) and fragment 1 was only poorly (mean EPT 1:344) recognized. Interestingly, 
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fragment 5 which was well recognized in adults was hardly recognized in children. 

Children sera were collected in Tanzania and adults sera were coming from PNG and 

therefore this difference in recognition might be due to the different geographical origin of 

children and adults sera. However, it should be mentioned that 3D7 is a parasite strain of 

unknown origin. 

 

 

 

 
Table 4. Frequency of recognition (FoR) and mean endpoint titers (EPT) of children  
sera from Tanzania. FoR of the 4 recombinant PFD1235w/var4 fragments and mean EPT of 

baseline and follow-up samples are indicated separately. 

 

Recognition patterns of baseline and follow-up samples were included to gain insight into 

dynamics of antibodies against the 4 recombinant fragments (Figure 8). 

The frequency of recognition slightly increased for all recombinant fragments when 

baseline and follow-up samples were compared. Comparison of mean EPT of the these 

two sample groups showed a slight increase for fragments 1 and 8 and a slight decrease 

for fragments 5 and 6. However, neither of the two changes was statistically significant and 

therefore no real increase or decrease in antibody titers to any of the 4 fragments could be 

observed if baseline and follow-up sample were compared. 
 

 

 

 

 

 

 

 

 

 
Figure 8. Antibody dynamics of longitudinal samples. FoR of the 4 recombinant 

PFD1235w/var4 fragments for baseline and follow-up samples are indicated. 

In order to test whether recognition of any of the 4 recombinant fragments might be due to 

protective antibodies, a small set of children’s sera with 7 asymptomatic and 8 well defined 

Fragment 1 Fragment 5 Fragment 6 Fragment 8
FoRbaseline 9/36 6/36 21/36 17/36

FoRfollow-up 12/36 7/36 28/36 20/36

Mean EPT baseline 344 367 1367 524

Mean EPT follow-up 458 243 1164 690
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severe malaria cases from Tanzania was analyzed. Due to the small sample size, age-

matched children with asymptomatic and severe malaria from PNG were included as well. 

ELISA revealed that none of the children with severe malaria was able to recognize 

fragment 5, whereas 57% of children with asymptomatic malaria did recognize it (Figure 9) 

with no difference between children coming from PNG or Tanzania. However, due to the 

small sample size, this difference was only borderline significant (p=0.08). A difference in 

recognition of the remaining fragments between children with asymptomatic and severe 

malaria could not be observed. 

In conclusion, recognition patterns of fragments 1, 6 and 8 were similar between adults 

and children. In contrast, fragment 5 was well recognized by adults’ sera whereas children 

could only hardly recognize this specific protein. Additional experiments comparing 

recognition between children with asymptomatic and severe malaria revealed a borderline 

significant difference between these two groups with no recognition in severe children and 

57% of recognition in asymptomatic children. Therefore, fragment 5, corresponding to the 

DBL3β domain, might contain epitopes implicated in the generation of protective 

antibodies.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Recognition of recombinant PFD1235w/var4 fragments by children with severe 
and asymptomatic malaria from PNG and Tanzania. 

ELISA on PFD1235w/var4 synthetic peptides using semi-immune adults’ sera 

9 synthetic peptides fused to biotin were incubated on streptavidin-coated 96-well plates 

and tested for recognition by children’s and adults’ sera from endemic areas used before. 

In semi-immune adults from PNG peptides 2.2 and 7 corresponding to parts of the CIDR1α 
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and the DBL4γ domain of PFD1235w/var4 (Figure 3) were best recognized reaching 

median OD405 values of 0.46 and 0.33, respectively (Figure 10). Peptides 2.1, 4.1, 4.2, 8 

and 9 were moderately recognized (median OD405 = 0.18, 0.21, 0.11, 0.26 and 0.15, 

respectively) whereas peptides 3 (median OD405=0) and 10 (median OD405=0.02) were 

hardly recognized. Differences in the recognition of synthetic peptides were found to be 

statistically significant (p< 0.01; Kruskal-Wallis test). 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10. Signal intensities of semi-immune adult sera tested on the 9 synthetic peptides of 
PFD1235w/var4. 
The x-axis shows the 9 different peptides. On the y-axis the signal intensity (OD405) is indicated. 

The horizontal bar marks the median of recognition for each of the 9 peptides separately. 

 

When recognition patterns of adult and children sera (same as used before) were 

compared (Figure 11), adults had significantly higher antibody titers for peptides 2.1 (p= 

0.0007), 2.2 (p= 0.0001), 4.1 (p=0.002), 4.2 (p=0.0001), 7 (p=0.004) 8 (p=0.0001) and 10 

(p=0.0001; Wilcoxon-Mann-Whitney-U test).  

When children with asymptomatic and severe malaria from PNG and Tanzania were 

compared (Figure 12), differences in recognition were only significant for peptide 2.1 

(p=0.03, Wilcoxon-Mann-Whitney-U test) corresponding to the interface between the 

DBL1α and the CIDR1α domain, and peptide 4.1 (p=0.049) covering part of the DBL2β-C2 

region, with the latter one being only borderline significant. Recognition of peptides was 

found to be independent from the geographical origin of the tested sera (data not shown). 
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Western blot analysis for recombinant protein fragments of FCR3S1.2-var1 

The var1 of FCR3S1.2 is a rather small protein and thus, it was intended to be expressed 

as 4 recombinant fragments. Previously, 3 fragments could be cloned and expressed 

(Fragment 2, 3 and 4). Fragments 2 and 3 were isolated from the insoluble pellet, whereas 

fragment 4 was found in the soluble protein fraction. However, the very N-terminal part 

containing the DBL1α domain could not be expressed in reasonable amounts, even after 

several rounds of trying and dividing fragment 1 into smaller pieces. In general, protein 

yields were very low. Attempts to transform three alternative E.coli strains were not 

successful. Thus, it was not possible to perform ELISA with such little protein amounts and 

therefore we decided to analyze their intensity of recognition by Western Blot.  

Analysis of signal intensity showed that in adults antibody titers were significantly higher 

for fragment 2 (p<0.001) and 4 (p<0.001) compared to children whereas recognition of 

fragment 3 was very similar in these two groups (Figure 13a). Difference in recognition 

was also significant when antibody responses against fragment 2 (p=0.011) and 4 

(p=0.02) where compared in children with asymptomatic and severe malaria (Figure 13b). 

However, whereas for fragment 2 intensity of recognition was higher in asymptomatic 

children, fragment 4 was better recognized in children with severe malaria. For children 

with severe malaria, the geographical origin of the sera did not seemed to play a role. 

However, this was not the case for children with asymptomatic malaria (Figure 13c): on the 

one hand children from PNG showed significantly higher signal intensities than 

asymptomatic children from Tanzania for fragment 2 (p=0.013) and fragment 3 (p=0.009). 

On the other hand, asymptomatic children from Tanzania had significantly higher immune 

responses for fragment 4 (p=0.0017) than their counterparts from PNG. 
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Discussion 

The ability of P. falciparum to attach to endothelial receptors in various tissues and to 

undergo antigenic variation poses a tremendous pressure on the host immune system. 

Since PfEMP1 mediates both of these evasion strategies it represents a key virulence 

factor. Despite the fact that the var gene repertoire is huge, the overall architecture of 

PfEMP1 proteins seems to be conserved among different parasite isolates. Adhesion traits 

of several domains have already been mapped12 and a few specific domains were even 

implicated in severe malaria.32,3,33,34,23 Previously, a serological study using recombinant 

protein fragments of the 3D7 group A var gene PF11_0008 revealed that antibodies 

against the CIDR2β domain might be involved in protection against malaria episodes in 

Tanzania30. Another study also using sera from Tanzania found out that antibodies against 

the CIDR1α of var4, predict protection against malarial anemia and febrile episodes29. The 

latest publication reports a positive correlation between the presence of anti-DBL1α 

antibodies and the protection from subsequent clinical malaria in individuals being parasite 

negative at the time of bleed in Kenya.31  

In this part of the thesis, we tried to identify immunodominant epitopes of two 

representative var genes which have been associated with severe malaria previously.16,35 

For that purpose, fragments of about 700-1500bp in size were expressed in E.coli. ELISA 

screening with sera of different origin should provide information about the frequency of 

recognition of the recombinant fragments and potentially reveal epitopes involved in the 

generation of protective antibodies. 

Expression of recombinant fragments in E.coli 

Cloning of all 10 PFD1235w/var4 fragments was successful, however expression was only 

possible for 4 of them and protein yield was generally very low. Similarly, only 3 of 4 

overlapping fragments could be expressed of the rather short var1 of the rosetting strain 

FCR3S1.2. Using E.coli as heterologous expression system has both advantages and 

disadvantages. In the first place, the transfection and cultivation of E.coli is simple and fast 

and a cheap method to produce large amounts of antigens for biological examinations. 

However, malaria antigens are among the most difficult proteins to express with in vitro 

methods because of their extreme genetic codon usage.36 Codons like arginine, leucine, 

isoleucine and proline are frequently found in P. falciparum but are rarely present in E.coli, 

which will inhibit the translation process and result in truncated products of the desired 

protein. This might be a possible explanation for the multiple bands of different molecular 
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weights obtained after purification. Additional transcriptional start and termination sites in 

E.coli and the fact that E.coli also contains some histidine rich proteins might also account 

for these additional bands. As expression was done in the absence of protease inhibitors 

protein products might in principle also be due to degradation by bacterial proteases. 

However, all but one of the recombinant fragments were isolated from inclusion bodies 

which are confined structures used by bacteria to avoid toxic effects of accumulating 

aggregates of incorrectly folded proteins. These insoluble protein contents needed to be 

isolated under very harsh conditions with 8M urea and therefore all potentially active 

proteases would have been denaturated. In order to increase the solubility, expression 

was only initiated at post-log growth phase as suggested by Flick et al.36. However, the 

desired effect of increased soluble protein fractions was not achieved. Expression at room 

temperature to allow for proper folding did not help to increase solubility either. Further 

attempts to improve the protein quality and yield by transformation of E.coli strain BL21 

Condon plus RIL which contains an additional plasmid that codes for the rare t-RNAs, 

were not successful (data not shown). Another option to generate correctly folded proteins 

would be to change the expression system. Several organisms like baculovirus37,38, 

Dictyostelium discoideum39,40,41,42, Xenopus41, yeast43,44,45,46, transgenic tobacco plants47, 

goats48,49 and mice50 were used to produce recombinant malaria antigens. However, 

toxicity, low protein yields or time-consuming codon optimization and removal of 

glycosylation sites renders these expression systems cost-ineffective in large-scale 

production.  

In conclusion, there is no standard protocol for the production of recombinant antigens 

which are soluble, intact and functional. Temperature, pH, density, amino acid composition 

and cell line, might influence protein expression and therefore optimization has to be done 

for each recombinant protein individually.  

Recognition of recombinant PFD1235w/var4 fragments by naturally exposed 
individuals 

Investigating the recognition frequency using sera of semi-immune adults  

In a first experiment, 4 recombinant fragments expressed in amounts sufficient to perform 

ELISA, were screened for recognition by 48 semi-immune adults from PNG. Overall, 

fragments 5,6 and 8 corresponding to the DBL3β, C2-DBL4γ and the DBL4δ domain of 

PFD1235w/var4 were well recognized by adults. In contrast, fragment 1 representing the 

DBL1α domain was only poorly recognized which might be due to low antigenicity or that 

this particular DBL domains is not presented in the parasite population of PNG. 
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Furthermore, DBL1α domains might contain several structural epitopes which would have 

been destroyed during purification under denaturing conditions. The remaining linear 

epitopes might not be as immunogenic as the ones present in other recombinant 

fragments. However, these hypotheses are highly speculative.  

Recognition was found to be selective. The variation in recognition, e.g. sera recognizing 

some recombinant proteins strongly and others not at all, indicates that these differences  

are indeed due to specific recognition and not to overall low or high responsiveness. 

Similar findings were also reported by Mackintosh et al.31 for var1 of the A4 paraiste strain. 

Since approximately half of our study samples came from female and half from male 

donors, we tested whether recognition of the recombinant proteins was sex-dependent. 

Fragments 6 and 8 were equally well recognized by both sexes but there was a slight 

difference in antibody titers between men and women for fragment 1 and 5. Whereas 

females tended to recognize fragment 1 more frequently, the frequency of recognition for 

fragment 5 was slightly higher in serum samples of male donors. However, these 

differences were not significant. Gender-specific recognition of malaria antigens has only 

been observed in PAM. Multigravid women generate antibodies blocking the adhesion of 

iRBC to placental CSA whereas sera collected from men are not able to recognize these 

parasites51,52 or the level and prevalence of antibodies are substantially lower.53 Since 

PFD1235w/var4 neither shows much homology to the var2csa nor does it contain a DBL3γ 

or any DBLx or DBLε domains implicated in PAM previously34,22,23, gender specific 

differences in recognition were not expected.  

Investigating the recognition frequency using sera obtained from children 

In order to identify potential epitopes playing a role in the production of protective 

antibodies, recognition of sera was assessed and compared to data found previously in 

adults. In sera collected longitudinally in Tanzania, antibodies titers in children were 

considerably lower than in adults which was expected since exposure time of children has 

been much shorter. Fragments 1, 6 and 8 were similarly recognized in children as in 

adults. However, fragment 5 which was well recognized in adults was only poorly 

recognized in children. Since children and adult sera originated from different continents 

this difference in recognition was analyzed again with a small sample set of children sera 

from PNG. Results of this second study led to the same finding and further investigations 

with sera from children with asymptomatic and severe malaria showed that only children 

with asymptomatic malaria were able to recognize fragment 5, whereas children with 

severe malaria did not. Fragment 5 corresponds to a DBLβ-C2 headstructure, which is 
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only present in 24% of the 3D7 var genes and almost exclusively found in var group A 

previously associated with severe malaria. However, difference in recognition was only 

borderline significant and further analysis would be needed to test whether fragment 5 

really elicits protective antibodies. 

In a previous study by Joergensen et al.54 the very same domain was the least recognized 

part of the three PFD1235w/var4 domains tested with Tanzanian samples, with similar 

frequency of recognition in children aged 2-4 years and adolescent between 15-19 years 

of age. Whereas our proteins were all purified under denaturing conditions, Joergensen et 

al.54 managed to express and purify their fragments with glutathione transferase tags 

which are highly soluble. Therefore, these differences in recognition might simply be due 

to differences in protein preparation. 

 

Samples from baseline and 6 months follow-up samples were compared in order to 

analyze potential dynamics in the antibody repertoire of children from Tanzania. We 

observed a slight increase in the frequency of recognition for all recombinant fragments. 

However, when EPT of baseline and follow-up sample were compared, an increase in 

antibody titer could not be observed anymore for all fragments. Furthermore, when 

analyzing paired samples individually, antibody titers against fragments 1, 6 and 8 

increased in some children during the six months period whereas those of others 

decreased. This might be further evidence that antibodies against these domains do not 

contribute to clinical immunity. 

Peptide ELISA on 9 synthetic peptides of PFD1235/var4 using semi-immune adult 
and children sera 

Since only 4 of 10 overlapping fragments spanning the whole PFD1235w/var4 could be 

expressed as recombinant proteins, 9 biotinylated synthetic peptides were analyzed to 

bridge protein gaps at least in part.  

Recognition of synthetic fragments was tested in ELISA with the same set of adult and 

children sera used before. Signal intensities were much lower when compared to 

recombinant proteins which was expected since recombinant proteins were much bigger in 

size and therefore contained more epitopes accessible for antibodies present in the 

different sera. The overall recognition pattern was similar in adults and children with 

peptides 2.2 and 7 being well recognized, peptides 2.1 4.1, 4.2 and 8 were morderately 

recognized and peptides 3 and 10 were the least recognized proteins in both adults and 

children. Fragment 9 was the best recognized peptide in children whereas in adults this 
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peptide was only moderately recognized. Peptides 2.1, 2.2, 4.1, 4.2, 8 and 10 were found 

to be significantly better recognzied by adults than by children which might be explained by 

prolonged exposure time of adults compared to children. However, only the recognition of 

peptides 2.1 and 4.1 remained significantly different when children with asymptomatic and 

severe malaria were compared, rendering these two peptides potential candidates which 

might play a role in the generation of protective antibodies. This difference in recognition 

was found to be independent of the geographical origin of the sera since recognition 

patterns of children from Tanzania and PNG were similar. 

 

In summary, we detected a significant difference in recognition for two of the ten 

PFD1235w/var4-derived peptides. Synthetic peptides 2.1 and 4.1 were significantly better 

recognized by asymptomatic children when compared to children with severe malaria 

which might indicate their potential role in the generation of protective antibodies.  

However, the number of tested sera was very small and therefore further studies are 

required to confirm these findings. 

We did not observe significant differences in recognition (or any recognition at all) for the 

remaining peptides which might have several reasons: 

 

Firstly, the peptides were chosen by screening the var gene for regions of antigenicity, 

hydrophobicity and surface accessibility. These calculations are based on amino acid 

composition only and since to date no 3D structure of complete PfEMP1 proteins exists, 

we cannot be sure that the chosen peptides are really accessible to antibodies. Secondly, 

completely different results might have been obtained if peptides of other regions would 

have been chosen or if peptides would have been longer or shorter than the chosen 30 

amino acids. Peptides of this size probably contain several epitopes improving their 

antigenicity but they might also form stable secondary structures, which might not 

necessarily mimic the ones in the native protein. Thirdly, the peptides chosen - even if 

exposed - might be located in regions of the protein which are simply not important for the 

generation of protective antibodies. Fourthly, antibody titers were generally very low and 

therefore, recognition of peptides might not have been sufficiently high to make a potential 

difference visible.  

 

3D7 has been in culture for more than 20 years and probably none of the donors tested 

has ever been infected with this strain. Nevertheless, some recombinant fragments and 

synthetic peptides were recognized by numerous adults and children sera which clearly 
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indicates, that there is serological cross-reactivity between PfEMP1 proteins expressed by 

different parasites. The selective recognition of only some but not all fragments or peptides 

further indicates the exchange of specific domains between var genes rather than the 

preservation of full-length proteins within parasite populations54. 

Western blot with 3 recombinant fragments of FCR3S1.2-var1 using semi-immune 
adults’ and children’s sera 

Recombinant fragments of FCR3S1.2-var1 were tested for their recognition by semi-

immune adults’ sera and sera from children with asymptomatic and severe malaria and 

signal intensities were compared. Whereas signal intensities for fragment 3, corresponding 

to the DBL2δ domain, were similar for adults and children, fragments  2 and 4, 

corresponding to domains CIDR1α and CIDR2β, seemed to be recognized with higher 

antibody titers than the ones found in children. This pattern of signal intensity hold true 

when children with asymptomatic and severe malaria were compared and was found to be 

independent of the geographical origin of children sera for children with severe malaria. 

However, when asymptomatic children from PNG and Tanzania were analyzed separately, 

fragment 2 and 3 were significantly better recognized by children from PNG whereas for 

fragment 4 it was the other way round which might indicate that in PNG epitopes contained 

in fragment 2 and 3 are implicated in the generation of protective antibodies whereas in 

Tanzania epitopes of fragment 4 are more important for the acquisition of semi-immunity. 

However, due to the many comparative analyses, the finding of significant differences 

might simply be due to chance.  

In the present study, the very N-terminal part of the FCR3S1.2-var1, corresponding to the 

DBL1α domain could not be expressed which would have been important as FCR3S1.2 is 

a rosetting strain and rosetting was shown to be mediated by this particular DBL domain. It 

would have been interesting to see whether this region was significantly better recognized 

in adults compared to children and especially in children with asymptomatic malaria when 

compared to children with severe malaria. 

It should be worth mentioning that such a study would rather focus on samples from 

Tanzania where rosetting was associated with severe malaria. Contrarily, in PNG, such an 

association could not be found due to a frequent mutation in the CR1 receptor, which was 

found to be the binding partner of the DBL1α domain. Therefore, one would not expect a 

singificant difference in recognition between asymptomatic and severe children from PNG 

if binding was mdiated by CR1. However, the DBL1α domain for FCR3S1.2-var1 was 
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shown to bind to negatively charged sulfated glycosaminoglycans (GAGs)35, e.g. heparan 

sulfate on RBCs and therefore samples from PNG might still be included. 

 

I would like to conclude by pointing out that using recombinant fragments as well as 

synthetic peptides can only give us a rough idea about the presence or absence of specific 

antibodies and their corresponding titers. Probably most of the detected antibodies are 

directed against linear epitopes since proper folding of eukaryotic proteins by prokaryotic 

organisms seems very unlikely. Therefore, we might miss part of the protective antibody 

repertoire as soon as the antibodies are directed against structural epitopes. 
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Abstract 

Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is 

encoded by approximately 60 var genes per haploid genome and the total var gene 

repertoire in the population is highly diverse. Switching from one PfEMP1 to another has 

been shown to not only alter the protein being expressed at the erythrocyte surface but 

also to cause functional changes resulting in altered adhesive phenotypes which 

potentially influence disease outcome. var gene dynamics and switching of var genes at 

the time of transition from an asymptomatic to a mild or severe malaria status is of major 

interest in patients naturally infected with P. falciparum. To identify switches and to record 

the dynamics of var gene expression in naturally occurring infections specific var cDNA is 

currently synthesized, cloned, and subsequently sequenced. This is tedious, laborious, 

expensive, and most probably biased. Because the var gene repertoire is vast the 

outcome of this strategy depends highly on the number of clones analyzed, which can sum 

up to thousands of clones for sequencing even in small studies involving few patients. 

Technical limitations further decrease the chance of analyzing a representative population 

of expressed var genes. Therefore, a new and efficient technology is urgently needed.  

Methods: Here we present an innovative genotyping tool to potentially replace the tedious 

and error prone cloning and sequencing technique. The approach is based on capillary 

electrophoresis and fragment sizing using the GeneMapper® program which initially has 

been tested to study var gene transcription in a 3D7 in vitro culture. Subsequently, we 

used the technique on field samples to validate its applicability. The target sequence was 

the DBL1α domain, which is highly diverse in sequence and size, and GeneMapper® was 

evaluated by comparing sizing data to data obtained by cloning and sequencing during a 

previous study.  

Results: GeneMapper® sizing is highly accurate with a mean deviation of ~1bp from the 

size determined by sequencing. In samples of 42 infected children GeneMapper® showed 

a high consistency with sequencing data, and 83.2% of clones identified by sequencing 

were also detected by GeneMapper®. Within the overall population of var genes, a 

significant proportion cannot be distinguished because the analyzed DBL1α domains were 

identical in size. However, in only four children two var gene sequences were present 

which could not be identified as different by this technique because the respective 

domains were of identical size. Furthermore, GeneMapper® detected many additional 

fragments which were not observed by cloning and sequencing. 
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Conclusions: Despite some limitations, GeneMapper® greatly facilitates studies of var 

gene transcription and dynamics because switches in expression can rapidly be detected. 

The technique is straight forward, and costs and labour are a fraction of the approach 

using cloning and sequencing.  
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Introduction  

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a major virulence 

factor. It is encoded by approximately 60 var genes albeit only one type of PfEMP1 is 

dominantly expressed at the erythrocyte membrane at any one time 1. According to their 

chromosomal location and their 5’ untranslated region (UTR), var genes can be divided 

into 3 major groups (var groups A, B and C) 2. The extracellular part of PfEMP1 molecules 

is mainly composed of several Duffy binding like (DBL) and cysteine-rich interdomain 

region (CIDR) domains. The number, location and sequence of DBL and CIDR domains 

varies significantly among different PfEMP1 proteins. PfEMP1 is responsible for 

sequestration by attaching iRBCs to various host cell receptors resulting in the occlusion of 

tissue capillaries and contributes significantly to the pathogenicity of P. falciparum. 

PfEMP1 is a surface exposed protein and is targeted by the host immune system. To 

escape the adaptive immune system, PfEMP1 undergoes antigenic variation by switching 

the expressed var gene(s). Several attempts have been made to examine the composition 

and the dynamics of var gene transcripts in longitudinal studies in vitro and in vivo3,4,5,6,7,8 

and studies investigating the speed of antigenic switching have shown that switching rates 

might vary significantly from 0.025% to 18%. Other studies have been conducted to 

identify var genes or groups of var genes involved in severe malaria.9,10,11,12,13,14  

Previously, analyzing var gene transcription required the isolation of RNA and subsequent 

reverse transcription into cDNA. This was then cloned and in most studies between 50 and 

100 clones were sequenced for each sample. This approach has been seriously hampered 

by the fact that within a patient several var transcripts were found and in order to capture 

the true diversity of expression such large number of clones had to be sequenced. The 

isolation of RNA can be a major undertaking due to low parasite densities, and subsequent 

cloning and sequencing increases the difficulties of this appraoch because of differences 

in the performance of primers, differences in PCR efficiency, and the limitations in cloning 

and ligation. To overcome these shortcomings, we have used an automatic sizing 

technique based on capillary electrophoresis to distinguish different var gene domains by 

their specific sizes. GeneMapper® analysis software was tested as a new genotyping tool 

to potentially replace the tedious and error prone cloning and sequencing approach.  

GeneMapper® is a semi-automatic capillary-electrophoresis-based genotyping tool 

exploiting sequence length polymorphism. Fluorescently labeled primers render PCR 

products detectable for a laser and according to an internal size standard, individual PCR 

fragments are assigned a specific length. This technique has been extensively used for 
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polymorphic marker genes such as msp2 15,16 but also for polymorphic marker genes of P. 

vivax.17Since var genes also exhibit length polymorphism we established GeneMapper® 

analysis on the amplified DBL1α domain with fluorescently-labeled primers. Initially, we 

tested this approach on a 3D7 culture monitored over a long period of time and finally 

analyzed samples from a case-control study in Papua New Guinea (PNG). With these 

samples we were able to compare the GeneMapper® approach with data obtained from 

cloning and sequencing (Falk 2008, submitted). 
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METHODS 

GeneMapper® Software (Applied Biosystems, version 3.7) is an analytical tool that 

exploits sequence length polymorphism. Target sequences are PCR amplified using 

fluorescently-labeled primers and products are detected by a laser after capillary 

electrophoresis. DNA fragments of defined length serve as internal size standard for the 

creation of a size calibration curve. According to the manufacturer this allows for a size 

differentiation of up to 1bp. The length of the labeled PCR products is then determined 

using this calibration curve and each peak is assigned a defined size. var gene domains 

also exhibit size polymorphism to a certain degree, and a fluorescently 6-FAM-labeled 

DBL1α reverse primer was used in combination with ‘tailed’ DBL 1α forward primer. A 

specific 7-basepair tail of the forward primer increases the likelihood of the addition of a 

non-template A (Figure 1) and reduces ambiguity in sizing of fragments.18  

P. falciparum in vitro culture 

To evaluate the Genemapper® method, subsequent samples of a 3D7 in vitro culture were 

analyzed. The culture was monitored for var gene expression for a period of 168 days and 

in total 18 samples of 3-21 days intervals were taken. For each time point 10ml of 3D7 

parasite culture at 5% hematocrit were harvested at ring stages, washed once with PBS, 

pelleted, dissolved in 3ml TRIzol (Invitrogen), incubated for 5 min at 37°C and stored at -

80°C. 

Isolation of RNA and reverse transcription 

The isolation of (full-length var) mRNA and reverse transcription was performed as 

described elsewhere7. Briefly, total RNA of ring-stage parasites was extracted using Trizol 

in accordance with the manufacturer’s protocol. RNA was treated twice with 3U of RQ1 

DNase (Promega). To obtain full length var transcripts, RNA was incubated with 

biotinylated oligonucleotides complementary to the conserved exon 2. 200µg Dynabeads® 

M-280 Streptavidin were added to the RNA. After washing, reverse transcription (RT) was 

performed on the captured full-length var transcripts using random primers and 

Sensiscript™ reverse transcriptase (Qiagen). A sample without reverse transcriptase was 

included as a contamination control (RT(-)). After RT, cDNA was treated with RNase A. All 

cDNA samples were checked by PCR with degenerated DBL1α primers (DBLα-5’ and 

DBLα-3’) as described previously.7 
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Polymerase chain reaction (PCR) with samples obtained from culture 

To amplify the target sequence, a PCR was set up consisting of 2U FIREPol® DNA 

polymeraseI, 10x PCR buffer BD (Solis BioDyne), containing 80mM Tris pH 9.4, 20mM 

(NH4)2SO4, 1.5mM MgCl2, 500nM of forward (5’-GC ACGAAGTTTTGCAGATAT(A/T)GG-

3’) and reverse primer (5’-AA(A/G)TCTTC(T/G)GCCCATTCCTCGAACCA-3’) each and 

200µM dNTPs in a volume of 30µl. 1µl of cDNA was added to the reaction mix. PCR 

conditions were initially 5 min at 94°C, followed by 30 cycles 95°C, 30 sec, 54°C, 1 min, 

and 68°C, 40 sec. Amplification was stopped after a final elongation step at 68°C for 7 min. 

PCR products were run on a 1% agarose gel and positive RT(-) samples were discarded 

whilst remaining samples were amplified with GeneMapper®- specific primers. PCR 

conditions were identical except for primers which were a tailed forward (5’-7bp-tail- GC 

ACGAAGTTTTGCAGATAT(A/T)GG-3’) and a 6-FAM-labeled DBL1α reverse primer (5’-6-

FAM- AA(A/G)TCTTC(T/G)GCCCATTCCTCGAACCA-3’).  

Sample preparation for GeneMapper® analysis of samples obtained from culture 

Since higher salt concentrations disturb analyses on automated sequencers, labeled PCR 

samples were precipitated over night at -20°C with 2.5 volumes of absolute ethanol and 

1/10 volume of 3M NaAc pH 5.2. After washing with 100µl 75% ethanol pellets were 

resolved in 25µl 5mM Tris-HCl pH7. DNA concentration was estimated on a 1% agarose 

gel and samples were diluted to ~2ng/µl with 5 mM Tris-HCl. 10µl of diluted DNA were 

added to 10µl of a 1:40 dilution of GeneScan™ 500 ROX™ size standard (Applied 

Biosystems) and dried over night. For electrophoresis on a 96-capillary sequencer, the 

samples were sent to the Genomics Core Facility of the MRC Clinical Science Centre in 

London. After electrophoresis results were analyzed with GeneMapper® software version 

3.7 (Applied Biosystems).  

Polymerase chain reaction and GeneMapper® analysis for field samples  

1µl of purified primary PCR product previously generated during a case control study in 

Papua New Guinea (PNG) (Falk et al. 2008, manuscript submitted) served as template. In 

brief, primary PCR products were generated using subgroup-specific forward primers 

(upsA-5’-AACTTACCATAAATTATCATCAAA-3’,upsB-5’ATGTAATTGTTGTTTTTTTTTTT 

GTTAGAATATTTAAA-3’ or upsC-5’- CACATATA(A/G)TACGACTAAGAAACA-3’) and the 

DBL1α reverse primer (see above) with the following conditions: Initial denaturation 94°C 

for 5 min followed by 25 cycles of 30 s at 95°C, 1 min at 52°C, and 1 min at 64°C. A final 

elongation of 7 min at 64°C was performed at the end of the reaction. 
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PCR products were diluted 10- to 40-fold in water. 2.5µl of this mixture were added to 10µl 

of a 1:40 dilution of GeneScan™ 500 ROX™ size standard and treated as described 

above.  

To evaluate GeneMapper®, obtained fragment sizes of DBL1α PCR products ranging from 

373 to 496 bp were either compared to sequence data available at PlasmoDB for 3D7 or 

to sequencing data obtained from these samples. Peaks were considered when above an 

artificial cut-off of 100 or 500 fluorescent units for culture or field isolates, respectively. 

Peaks of low fluorescent intensity in close proximity (3bp) to a high density peak were 

considered as “shoulder peaks” and excluded from further analysis. The expected length 

of the DBL1α domains was calculated by counting basepairs between and including 

primers used for amplification plus 8 basepairs due to the 7-basepair tail and the added 

nucleotide.  
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RESULTS 

Virtual discrimination power of GeneMapper® in 3D7 

Using the published sequence of the 3D7 genome we virtually determined the number of 

differently sized DBL1α fragments which would be amplified with our primer set. Of 60 

published var sequences we were able to unequivocally distinguish 39 (65%) when using 

upstream-specific forward primers for ups A, B and C (Table1). In 4 cases the reverse 

primer did not match perfectly and it is likely that these var genes may not amplify. The var 

gene PFL0030c (var2) does not contain a DBL1α domain and cannot be detected. 

In the ups A group DBL1α domains fell into 8 different size groups of which 3 contained 

more than 1 sequence (3x2). For ups B and ups C there were 21 and 10 different DBL1α 

size groups of which 8 (1x6, 1x4, 6x2) and 3 (3x2) contained more than one sequence, 

respectively. Sequences of group B/C or B/A were amplified with ups B forward primers.  

Monitoring of 3D7 in vitro culture 

A 3D7 in vitro culture was monitored over a time period of 168 days. Samples of 18 time 

points were taken in 3 to 20 days intervals and analyzed by GeneMapper®. Figure 2 

shows an electropherogram, the typical output format of GeneMapper®. 

A dominant peak of 422bp was observed throughout the complete monitoring period 

(Figure 3). The peak at 422bp potentially could have been derived from 3 var genes: 

PFD0995c and PFD1000c, both ups C, and PF07_0050 belonging to the intermediate var 

group upsB/C (Table 1), since the DBL1α domains of these var genes are identical in size. 

In this case, these fragments could not be differentiated by subgroup because DBL1α-

specific primers were used only. Besides the 422bp fragment, fragments with the lengths 

of 413bp, 416bp and 419bp were observed frequently. Overall, at all time points, more 

than one peak was observed and the number of fragments varied between 2 -18.  

GeneMapper® analysis of field samples 

GeneMapper® analysis was applied to field samples of 42 patients collected during a case 

control study conducted in PNG which has been described previously (Kaestli 2006). In 

order to increase discrimination power, the primary PCR amplification was done using 

primers binding to sequences in the 5’ untranslated region of ups A, B and C var genes. A 

nested PCR was subsequently performed with GeneMapper® primers and analyzed as 

described above. Because all samples had been amplified, cloned and sequenced 

previously (Falk et al. 2008, manuscript submitted), it was possible to directly compare the 
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composition of samples collected. Fragments were identified manually using an artificial 

cut-off of 500 fluorescent units and the 8bp-tail was subtracted for comparison with 

obtained sequence data. 

From 42 children 132 cloned domains were identified by sequencing (Table 2). Of those, 

119 were unique and 13 sequences were found in more than one child. 

In the same children GeneMapper® detected 253 genotypes of which 77 were different by 

size and upstream region. 55 sequences were found repeatedly (between 2-11 times) in 

more than one child. When sequencing data and GeneMapper® results were compared, 

99 genotypes were detected by both methods. 9 cloned fragments identified by 

sequencing were initially detected by GeneMapper® but fell below the cut-off and 7 were 

not detected by GeneMapper® at all. Additional 4 fragments could not be detected by 

GeneMapper® since DBL1α domains of identical size but different sequence occurred in 

the same child. Therefore, if sequencing is used as a Gold Standard the sensitivity of 

GeneMapper® in this sample set was 83.2%. However, GeneMapper® detected 141 

genotypes which were not detected by sequencing (Figure 4), whereas vice versa this was 

only the case for 20 sequences. Sizing was extremely precise with a mean deviation of 

1bp from the calculated fragment length. 
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Discussion 

PfEMP1 is a major virulence factor. With its dual character of mediating sequestration and 

preventing effective immune responses by antigenic variation PfEMP1 presents a 

tremendous challenge for the immune system of the human host. Switching from one 

PfEMP1 to another not only alters the protein being expressed at the erythrocyte surface 

but is usually accompanied by functional changes resulting in altered adhesive 

phenotypes.19 However, whether var gene switching occurs randomly or follows a defined 

order is yet unknown and remains to be investigated. Changes of this molecule at the time 

of transition from asymptomatic to mild or severe malaria status would also be of major 

interest and therefore var gene dynamics in patients of different clinical presentations have 

been studied.3,7,8 This has been done by cloning and sequencing of isolated and reverse 

transcribed RNA. In order to capture the true diversity 20 to 100 clones from each sample 

have been sequenced in various studies on var gene expression in naturally occurring 

infections. This is not only extremely expensive and cumbersome, also differences in PCR 

and cloning efficiencies hamper this approach. Therefore, new tools allowing a rapid 

assessment of the dynamics of var gene expression are needed. In this study we 

investigated whether fragment sizing by capillary electrophoresis together with 

GeneMapper® analysis software could be applied to the analysis of var gene expression. 

This technology has been previously successfully implemented for genotyping of P. 

falciparum msp2 15,16 and for other marker genes of P. vivax 17. In a first approach we 

tested this techique with samples collected from a longterm 3D7 in vitro culture, which was 

monitored for var gene expression and potential switching for 168 days. For this pilot study 

only DBL1α-specific PCR primers were used on cDNA of full-length var genes that did not 

allow to distinguish between the major var gene groups. Nevertheless, a virtual analysis of 

the 3D7 genome showed that 27 of 60 var genes can be distinguished by size. Although 

the discrimination power in this case is not particularly high, a potential switch would be 

detected with a probability of 45%.  

During 168 days we identified 25 of 27 distinguishable var genes in the long term culture of 

3D7. This reflects a very large diversity of var genes with 2-18 different variants expressed 

per time point (Figure 3). However, throughout the observation period only one var gene 

was dominantly expressed suggesting that switching from one var gene to another did not 

occur in a concerted manner but that switches occurred randomly at low frequency 

underlying a stable expression of one gene. 
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Antigenic switching has been investigated in vitro6,20,21 and in vivo3,5,7,8,22 and switching 

rates were calculated from as low as 0.025% to up to 18% per generation. This implies 

that switching rates might differ among var genes and recently it was indeed shown that 

different var genes have intrinsically different switching rates dependent on their 

chromosomal location.23 We were not able to detect any significant var gene switching 

during 168 days in our 3D7 culture but there were fluctuations in the expression of minor 

variants. The culture was not selected for a particular phenotype and it is also possible that 

the repertoire of expressed var genes was non-homogenous because we used non-

synchronized parasites probably expressing many var genes1,24. Despite the fact that the 

dominant peak could have arisen from 3 different var genes (PFD1000c, PFD0995c and 

PF07_0050) we are very confident that we would have detected a switch with our 

approach. 

When fragment sizing and GeneMapper® were applied to field samples, cDNA was 

amplified from the 5’ UTR to the DBL1α domain. In order to improve the discrimination 

power, a primary PCR was done for each var gene subgroup (group A, B, and C) 

separately and was followed by a DBL1α-specific PCR with labeled primers. Table1 shows 

the increase of discrimination power by approximately 20% resulting in 39 of 60 potentially 

distinguishable var genes. This approach adds also the information on the expressed var 

gene subgroup which has been show to be an important determinant for disease 

severity.10,12,13,21 

When sizing by capillary electrophoresis and GeneMapper® was compared to sequencing 

data from the same samples (Falk et al. 2008, manuscript submitted), GeneMapper® was 

able to detect 83.2% of sequences. 9 sequences (7.5%) would have been detected but 

were below the artificial cut-off and 7 DBL1α sequences (5.8%) were not detected at all. 

Thus, improving determination of cut-off would increase the sensitivity of the approach 

significantly. Whereas with sequencing only 13 fragments were found in more than one 

child this number was much larger for GeneMapper® as in these 42 children many DBL1α 

domains were present with identical size but different sequence. Hence, discrimination 

power might be further increased by using sequence domains of higher diversity.  

Most importantly, the case that 2 DBL1α domains in the same individual were different in 

sequence but not in size and thus could not be detected by GeneMapper® was only 

observed in 4 children (9.5%). This reflects the power by which GeneMapper® can identify 

switches only by sizing of var gene domains.  

 

 



Chapter 4. Capillary electrophoresis sizing technique as new var genotyping tool. 

 119

With the two parameters of DBL1α size and upstream region (upsABC) GeneMapper® 

was able to distinguish 253 sequences in 42 children. GeneMapper® detected 141 var 

fragments which were not detected with cloning and sequencing whereas vice versa this 

was only the case for 20 sequences. This is partly due to the higher sensitivity of 

GeneMapper® as previously shown16 but also to the much simpler processing of samples 

comprising a nested PCR only compared to the numerous steps involved in cloning, 

ligation and sequencing. The representation of diversity is in particular highly dependent 

on the number of sequences generated by cloning from each sample whilst all fragments 

are detected in 3 PCRs (upsABC) by GeneMapper®.  

It is noteworthy that the analyzed samples derived from a case control study and 

subsequent var gene switches could not be determined in the same child. However, this 

technology enables the analysis of longitudinal samples and thus will provide information 

about var gene dynamics within the same individual. For that purpose, the frequency of var 

genes with DBL1α domains identical in size but different in sequence occurring in 

subsequent samples of the same patient remains to be investigated. It is promising to see 

that in only 4 children two var gene domains were observed which had identical sizes but 

were different by sequence. 

In conclusion, sizing by capillary electrophoresis and GeneMapper® as a genotyping tool 

to study var gene dynamics is a great improvement over previously used techniques 

employing cloning and sequencing of PCR fragments. This cloning strategy is expensive 

and cumbersome and limitations lie in the ‘collector’s problem’, i.e. how many clones need 

to be sequenced to obtain a representative sample. A major problem faced by all methods 

to study expression pattern in naturally occurring infections is the stability of RNA and the 

isolation of sufficient amouts. Despite the fact that these problems will remain, studies on 

var gene transcription and dynamics as previously performed by others3,4,7,8 would have 

greatly benefited from the new GeneMapper® approach.  
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Table1.var genes in 3D7. First column indicates predicted length of the DBL1α PCR amplicon in 

base pairs. In the second and third column the corresponding 3D7 var genes and their upstream 

regions are listed. The colored boxes indicate var genes with the DBL1α domains of the same size. 

The fourth column shows the number of mismatches in the reverse primer. var2 does not contain a 

DBL1α domain. In the last column the probability of not detecting a switch because of identical size 

is indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted Corresponding Upstream Reverse primer Probability of 
DBL1α size var gene region matching undetected switch

368 PFF0010w ups B/A 5 bases mismatch 0
371 PF08_0141 ups A 0.034

PFE1640w ups A 0.034
380 PF13_0003 ups A 0
383 PFD0020c ups A 0
389 PFF0020c ups A 8 bases mismatch 0

MAL7P1.55 upsB/C 0
392 PFI1820w ups A 0

PF08_0140 ups B/A 0
395 PFA0015c ups A 0.034

PF11_0521 ups A 0.034
PFL0020w ups B/A 0

398 PF07_0139 upsB 0.1
PFL0005w upsB 0.1
PFC0005w upsB 0.1
PFF1595c upsB 0.1
PFD1005c upsB/C 0.1
PFL1950w upsB/C 0.1

401 PFF0845c upsC 5 bases mismatch 0
404 PFD1235w ups A 0.03

MAL7P1.1 ups A 0.03
PF10_0406 upsB 0
PFD1015c upsC 0

407 PFL2665c upsB 0.03
PFA0765c upsB 0.03

410 PF10_0001 upsB 0
413 PFA0005w upsB 0
416 PFF1580c ups B/A 0.07

PFL1955w upsB/C 0.07
PF08_0103 upsB/C 0.07
PF08_0106 upsB/C 2 bases mismatch 0.07
MAL7P1.56 upsC 0

419 PF08_0142 upsB 0
PFL1960w upsC 0.03
PF07_0048 upsC 0.03

422 PFD1000c upsC 0.03
PFD0995c upsC 0.03
PF07_0050 upsB/C 0

425 PFD1245c upsB 0.03
PF11_0007 upsB 0.03
PF07_0049 upsC 0

428 PF11_0008 ups A 0
PFB0010w upsB 0

431 PFL0935c upsB 0.03
PFC1120c upsB 0.03
PF08_0107 upsC 0

437 PFI1830c upsB 0
440 PFI0005w upsB 0.03

PFB1055c upsB 0.03
443 PFD0005w upsB 0.03

MAL7P1.50 upsB/C 0.03
446 PF07_0051 upsC 0
449 PFD0615c upsC 0
452 PFD0625c upsC 0.03

PFD0630c upsC 0.03
458 PFD0635c upsB/C 0
461 PF13_0364 upsB 0
470 PFE_0005w upsB 0.03

PF13_0001 upsB 0.03
PFL0030c no DBL1α



Chapter 4. Capillary electrophoresis sizing technique as new var genotyping tool. 

 123

Table 2. var genes observed by sequencing and GeneMapper® analysis. The total number of 

sequences, the number of different sequences and the number of sequences occurring in several 

children are indicated for both techniques. 

 
 

 Fragments detected by 

cloning and sequencing 

Fragments detected by 

GeneMapper® 

Total number of 

sequences  
132 253 

Number of different 

sequences 
119 77 

Number of sequences 

occurring more than once  
13 55 
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Figure legends 

Figure 1. Schematic drawing of primer modification (Figure adapted from “User 

Bulletin ABI PRISM™ Linkage Mapping Set Version 2.5”). 

Figure 2. Example of a GeneMapper electropherogram. The x-axis corresponds to the 

size of the DBL1α fragments in bp. The y-axis indicates the fluorescent intensities of 

detected peaks. 6FAM–labeled DBL1α fragments are shown in blue. ROX-labeled 

fragments of the size standard are indicated in red. Example depicted here derived from a 

field sample. 

Figure 3. var gene transcription pattern of the 3D7 in vitro culture. Dark purple fields 

indicate the dominant (highest) peak in every sample. The white number in the dark purple 

field shows the peak height in fluorescence-units. Other colours indicate the percentage of 

the particular peak height in relation to the dominant peak. The day of harvesting and the 

parasitemia of the culture is indicated. The numbers on the left side indicate the predicted 

var DBL1α fragment lengths according to the PlasmoDB database. 

Figure 4. Number of var genes detected by sequencing and GeneMapper. The total 

number of clones detected are listed patient-wise. The number of sequences identified by 

both techniques are indicated in orange. 9 fragments were only detected by sequencing 

because they fell below the artificial cut-off (blue) and an additional 7 fragments were not 

detected by GeneMapper at all (yellow). Sequences only detected by GeneMapper but not 

with sequencing are indicated in green. Asteristics indicate fragments representing two 

sequences of the same size but different sequence in the same child. 
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Figures 

Figure 1 
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General Discussion 

In the first part of this thesis a cloning and sequencing approach was used to identify a 

previously suggested subset of var genes responsible for the development of severe 

malaria. Despite the fact that DBL1α domains with reduced number of cysteines were 

mainly found in symptomatic children which support previous findings66,133,68 we were not 

able to identify particular var gene sequences associated with malaria morbidity. With our 

sequencing approach we could not confirm an upregulation of upsB in severe cases or 

upsC in children with asymptomatic infections reported previously134,65 since the number of 

detected sequences were similar for upsB and upsC regardless of the children’s clinical 

presentation. Neither did we find specific motifs or homologous sequence stretches that 

were shared among var genes isolated from children with severe disease which - once 

more - clearly shows the extensive polymorphism of this multi-gene family. In contrast, in 

some asymptomatic children we identified a cysteine to tyrosine amino acid substitution 

and var genes carrying this substitution were mainly of var group C type which were 

interestingly found in children who showed far higher parasitemias than children infected 

with parasites not harboring such substitution it could be speculated that children might 

tolerate such high parasitemias without showing any clinical symptoms because these 

parasites show a decreased binding affinity, as a substitution of cysteine residues forming 

disulfide bonds might result in significant structural modifications. Thus, this substitution 

might lead to less adherence and consequently to higher parasite populations. However, 

why such an increased number of circulating parasites is not cleared by the spleen more 

rapidly remains to be elucidated. Furthermore, linking malaria morbidity to specific var 

genes or groups of var genes might be hampered by the fact that only the parasite 

population cirulating in the peripheral blood can be investigated. It has been shown that 

circulating genotypes only form a subset of those sequestered in the tissues135 implicating 

that with the common approaches the most important variants might be missed. A recent 

study on fatal pediatric malaria patients in Malawi supports this finding as over 100 

different var variants were expressed in a single patient with up to 49 different variants in a 

single organ. Additional data from the postmortem study in Malawi point towards organ-

specific sequestration of expressed var genes which implies that the type of PfEMP1 

determines the site of cytoadherence.136 DBL1α sequence tags identified by Bull et al.66 

were not associated with the site of sequestration. The majority of sequences contained 4 

cysteine residues compared to only 13% with 2 cysteine residues, a motif previously 
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associated with severe malaria67 and many sequences were found to be highly similar to 

3D7 which both resembles our findings. 

var gene diversity hampers the design of universal primers and therefore most sequencing 

projects - just like ours - focus on the analysis of distinct sequence stretches rather than 

whole genes. Analyzing only the DBL1α domain is intrinsingly an analytical restriction in a 

large gene and other parts might play equally or more important roles in pathology but are 

not analyzed. 

Transformation-associated recombination (TAR) cloning137 might be a possible approach 

to sequence full-length var genes therefore gaining access to the sequences further 

downstream of the DBL1α domain. Multiple alignments and bioinformatic analyses might 

help to identify sequence homologies or distinct sequence motifs in patients with different 

clinical presentations. Including patients from different geographical region would further 

broaden the knowledge about the diversity of the var gene repertoire existing worldwide. 

Sequence analyses of full length var genes will certainly provide more meaningful data 

than comparing discrete regions of var genes only.  

However, it should be kept in mind that despite the extreme polymorphism, PfEMP1s of 

different sequence exhibit similar protein architectures60 which might indicate that 

structural analyses are much more powerful than primary sequence comparisons. 

var genes possess up to 7 different domains61 and up to now, antigenic epitopes within 

most of them remain elusive, as does their involvement in the generation of protective 

antibodies. Therefore, we tried to address this issue in the second part of the thesis by 

recombinant expression of var gene regions including domains further downstream of the 

frequently analyzed DBL1α domain. Screening of recombinant domains with sera from 

naturally exposed individuals should give information about the importance of these 

regions for the production of anti-PfEMP1 antibodies and their potential involvement in 

immunological protection. Of the 2 representative var genes reported to be associated with 

severe malaria63,37, 3 recombinant fragments and 2 synthetic peptides were found to be 

significantly differently recognized by adults compared to children as well as asymptomatic 

children compared to children with severe malaria. However, sample sizes were small and 

therefore more data are required to confirm a potential involvement of these fragments and 

peptides in the generation of protective antibodies. Furthermore, since not all fragments 

could be expressed we might have missed important epitopes and generally, data 

obtained in ELISA with heterologously expressed protein fragments should be considered 

with care. Thus, investing into the identification of novel and more suitable expression 

systems might be crucial.  
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With var genes, there is an added issue, which is the fact that due to the vast diversity, 

many domains may never be seen by certain individuals. The domains tested here all 

derived from cultured isolates of different origin and tested patients might not have seen 

these sequences. Nevertheless, many sera did show reactivity against several domains 

which implies similarities- to a certain degree- among different parasite isolates, but we did 

not find any evidence for these strain-transcendent immune responses to play a role in 

protection. 

Identifying such potentially important domains in ELISA might serve as a pre-selection for 

peptides on a protein microarray which would greatly facilitate this search, since many 

more sera could be analyzed simultaneously. A protein microarray would greatly facilitate 

the identification of distinct epitopes conferring protection and thus would allow directly to 

study the differential recognition in healthy and diseased children. Since such protein 

arrays would require only little amounts of sera, many more children samples, which are 

usually only available in very small volumes, could be tested, with paired 

acute/reconvalescent follow-up samples being the most valuable ones. Alternative 

systems would be very useful and a recent application of the BioPlex100 system by Cham 

et al.138 showed promising results. In the bead-based BioPlex100 approach, recombinant 

proteins are covalently coupled onto sets of beads which are impregnated with different 

dyes emitting their specific detection signal upon excitation. Recombinant proteins can be 

detected by biotinylated secondary antibodies with phycoerythrin-conjugated streptavidin 

used as a reporter. Theoretically, one hundred different antigens could be analyzed 

simultaneously in 1µl of sample by this technique. Cham et al.138 evaluated 28 unique 

bead populations coated with recombinant Plasmodium falciparum 3D7 DBL and CIDR 

domains and found the assay to be sensitive, accurate, reproducible and high throughput. 

 

In the last part of this thesis we tried to establish a new genotyping tool in order to facilitate 

the analysis of var gene dynamics and diversity in the field. GeneMapper® technology was 

used for var gene tracking and differentiation to finally replace the tedious cloning and 

sequencing approach which is a common strategy to study var gene diversity and 

switching and which was also the method of choice for sequencing analysis in the first part 

of this thesis. Comparisons with sequencing data revealed that GeneMapper® sensitivity 

is equally good or even better. Using DBL1α-specific primers on subgroup-specific primary 

PCR products identified a large var gene repertoire present in 42 analyzed children. 

Sequencing only identified 13 fragments which were found in more than one child, 

GeneMapper® identified 55 DBL1α types occurring more than once in several children. 
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This was due to a large number of equally sized fragments with different sequences. var 

gene domains with an upsB promoter region and a size of 401bp were observed in 11 

children resulting in a frequency of 0.04. Thus, the probability of detecting two var genes of 

identical size in different children or in sequential samples of the same child is 0.0016. 

Therefore, despite some shortcomings GeneMapper® holds a large potential to replace 

cloning and sequencing. The latter technology, not only is extremely cumbersome and 

expensive but is probably not representative and suffers from bias and other limiting 

factors. However, further evaluation and optimization of GeneMapper® is required. 

Experiments using the 5’ UTR of var genes as target sequence might improve the 

resolution, as well as the regions downstream of the DBL1α domain. However, since the 

DBL1α domain, apart from the acidic terminal sequence, is thought to be the most 

conserved var gene domain, it might be challenging to design universal primers for these 

downstream elements. Further improvement of resolution could be obtained by enzymatic 

digestions, but would increase hands on time and costs. 

 

The number of publications implicating PfEMP1 in the development of semi-immunity 

keeps growing. The latest one was presented by Beeson et al. 2008 at the MAM 

conference, claiming 80% of the antibody responses against the iRBC surface to be 

directed against PfEMP1. However, it is worth mentioning that more than 50% of the 

3D7139 proteins are still of unknown function and that PfEMP1 is not the only protein on the 

surface of the iRBC. Other proteins like the RIFINs88, SURFINs90 or STEVORs96 -about 

which only little is known so far-may also be implicated in malaria morbidity and therefore 

should be included in further analyses.  

Finally, although anti-disease immunity is mainly thought to be mediated by antibodies, the 

power of the innate immune system should not be neglected. Recent publications by Clark 

et al.5 even claim that sequestration is only a secondary effect of a systemic inflammation, 

characterized by the release of pro- and anti-inflammatory cytokines and that an 

imbalance between those is responsible for disease outcome. 
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Appendix 1 

Primer sequences (including restriction sites) used to amplify PFD1235w/var4 
fragments. 

Primer name Primer sequence 

FWD1 5’-GGATCCATGGGGAATGCATCATCATCAG-3’ 

RWD1 5’-GGATCCATCACGACATGCTTCCTTAACC-3’ 

FWD2 5’-GGATCCAATGATTATTGTGGCCATGGTG-3’ 

RWD2 5’-GGATCCTGCGCCTTCTGAATCTTTCGTAC-3’ 

FWD3 5’-GGATCCACACCATCATCACACAAAGTTCC-3’ 

RWD3 5’-GGATCCTTCGGCCCATTCCGTCATCC-3’ 

FWD4 5’-GGATCCTTACGTTCAGACTGGTGGGAAG-3’ 

RWD4 5’-GGATCCAAGTAACACATCGCCCAATAAGG-3’ 

FWD5 5’-AGATCTGATTATAGTCGTGGAGGTACG-3’ 

RWD5 5’-AGATCTGCAATCACACGCTGTAGCATAC-3’ 

FWD6 5’-AGATCTGGTGTGCACACCGTGTATTC-3’ 

RWD6 5’-AGATCTACTGGCGACGTCATCGATAC-3’ 

FWD7 5’-GGATCCGGTACTAGTGATGCTACGGG-3’ 

RWD7 5’-GGATCCAGCGGACTTCACAAAGGCGTG-3’ 

FWD8 5’-GGATCCGACACAAGTGAGAATGGTGCC-3’ 

RWD8 5’-GGATCCATTACCTCCATCACCATTACTTC-3’ 

FWD9 5’-GGATCCGGTGCTAGTGGTACCGGCG-3’ 

RWD9 5’-GGATCCACCTGCACCCTGACAAATGCC-3’ 

FWD10 5’-AGATCTGGTAGTTGTGGGAGTGCTAAG-3’ 

RWD10 5’-AGATCTCGCCGCAAAACCGATACCTAC-3’ 
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Primer sequences (including restriction sites) used to amplify FCR3S1.2-var1 
fragments 

 

Primer name Primer sequence Annealing 
temperature 

Frag_fwd1a 5’-AACCATGGCGACTTCAGGAGG-3’ 55.2°C 

Frag_rev1a 5’-TTTAGATCTTACTGTTTCTCGATTCG-3’ 55.2°C 

Frag_fwd1b 5’-AACCATGGCAGTATGGGGAGCC-3’ 54.0°C 

Frag_rev1b 5’-TTTAGATCTGCAATATTCCGATCG-3’ 54.0°C 

Frag_fwd2 5’-AACCATGGAACCCTGTCCCGACTGTGG-3’ 56.5°C 

Frag_rev2 5’-TTTAGATCTCGCTCCTTCTTGTGCTACTGCC-3’ 56.5°C 

Frag_fwd3 5’-AACCATGGGACATGGATTACCACGTGTCG-3’ 56.5°C 

Frag_rev3 5’-TTTAGATCTTAGACCACTGACCCCACAATTACC-

3’ 

56.5°C 

Frag_fwd4 5’-AACCATGGCAAATGGGAACTGCGATGGTAAAG-

3’ 

50.2°C 

Frag_rev4 5’-TTTAGATCTGCGTAAAGGTGGAGGGGTATCAG-3’ 50.2°C 
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Appendix 2 

Amino acid sequences of PFD1235w/var4 synthetic peptides 

 

 

Peptide Name Peptide Sequence 

var4-2.1 Biotin-PEG-RNQRNEFEKQKKKYYKEIQTYTSKDAKTDS 

var4-2.2 Biotin-PEG-WAKTKENEWKKVKTIYKNENGNTNNYYKKL 

var4-3 Biotin-PEG-SKDSCPPSVDTKTNPCAKPPGSKPTKSVKQ 

var4-4.1 Biotin-PEG-GGKKGPPPATHPYKSVNTRDKRDATDDTTP 

var4-4.2 Biotin-PEG-EANETMLKNSSNGNDKDESKLKGKAEEGDY 

var4-7 Biotin-PEG-TWLKNWKTQYKTQSKKYFDDKRKELYKSID 

var4-8 Biotin-PEG-YNTDSNGKDKKIQQVKATDNTDLFQKLKKD 

var4-9 Biotin-PEG-RSYRKWIERKKTEYEKQESAYSKQKSNYVN 

var4-10 Biotin-PEG-EEEEETDSHIYEDYSDSDAEEDDEDEAVTE 
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time PCR, magnetic bead‐based isolation of gene‐specific mRNA, RT‐PCR ELISA and SDS 

PAGE/Western blot. 

Bioinformatics: 

Application of various programs for sequence analysis and database search, e.g. Seqman 

of DNAstar, CLUSTALW, CLUSTALX, Phylip, NCBI BLAST, PlasmoDB and 

GeneMapper. 

Additional Courses: 

2006‐ 2007   Participation in the 6.th Round of the Women into Industry Mentoring  

    Program, a Collaboration between the University of Basel and Novartis 

2008    Good Clinical Practice Course training modules 1&2 at the Center for Clinical 

    Research in Zurich.Courses included the following topics: 

    Study methodology, GCP principles, study documents, study procedures, 

    adverse event reporting, quality assurance, SOPs, archiving and statistical 

    principles. 

 

LANGUAGES  German, mother tongue 

       English, fluent 

      French, basic knowledge 
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PUBLICATIONS 

Falk N, Maire N, Sama W, Owusu‐Agyei S,Smith T, Beck HP,Felger I. 

Comparison of PCR‐RFLP and Genescan‐based genotyping for analyzing infection 

dynamics of Plasmodium falciparum. Am J Trop Med Hyg. 2006 Jun;74(6):944‐50. 

 

Mugittu K, Abdulla S, Falk N, Masanja H, Felger I, Mshinda H, Beck HP, Genton B. 

Efficacy of sulfadoxine‐pyrimethamine in Tanzania after two years as first‐line drug for 

uncomplicated malaria: assessment protocol and implication for treatment policy 

strategies.Malar J. 2005 Nov 18;4(1):55. 

 

Falk N, Kaestli M, Qi W, Ott M, Baea K, Cortés A, Beck HP. Analysis of Plasmodium 

falciparum var genes expressed in children from Papua New Guinea.  

Manuscipt submitted to the Journal of infectious diseases. 

 

Falk N, Wittmer K, Beck HP. Application of capillary electrophoresis sizing technique as 

new var gene genotyping tool  

Manuscipt in preparation. 
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          Phone: 061 284 81 17 
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During my studies I attended lectures and courses of the following lecturers: 

H.C. Imhof, H.J. Güntherodt, C. Schönenberger, H.Sigel, U.Séquin, A.Wiemken, H.P. 

Hauri, Senn, M. Spiess, M. Affolter, B. Baur, W. Gehring, Strazewski, T. Boller, W.Keller, 

U. Jenal, U. Aebi, S. Arber, H. Reichert, T. Schwede, M. Rüegg, G. Cornelis, C. Dehio, R. 

Brun, A.Seelig,  I. Felger, H.P. Beck, G. Pluschke, C. Daubenberger, N. Weiss, M. Tanner, 

P. Vounatsou, T. Smith,  M. Lister. 


