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Abstract

The asialoglycoprotein receptor (ASGP-R) is a carbohydrate-binding protein from

the C-type lectin family that is expressed exclusively and in high numbers on

mammalian hepatocytes. The human ASGP-R is a transmembrane protein,

consisting of two homologous subunits (H1 and H2), that recognizes and binds

desialylated glycoproteins with terminal galactose or N-acetylgalactosamine

residues. The binding process is followed by receptor-mediated endocytosis of

the receptor-ligand complex by the parent hepatocyte. The ASGP-R is then

recycled back to the surface, whereas the ligand is ferried to the lysosomes for

enzymatic degradation. Due to its location and efficient ligand uptake, the ASGP-

R has for a long time been a validated target for liver-specific drug delivery.

Furthermore, there is substantial evidence that the ASGP-R is involved in

hepatitis B and C virus entry into the liver cells.

The focus of this thesis was to design and synthesize various high affinity ligands

for the ASGP-R that could be used as (1) drug carriers for liver-specific drug

delivery, (2) small molecular weight inhibitors of hepatitis B/C entry, (3) a spin-

labeled GalNAc-based molecular probe for second binding site screening by

NMR, and (4) a set of trivalent compounds for investigating the local

concentration effect on ligand affinity towards the ASGP-R by surface plasmon

resonance (BIACORE).

The trivalent drug carrier for liver-specific drug delivery was shown to bind with

high affinity and selectivity to the ASGP-R, and is now awaiting the next step,

namely, its conjugation to a therapeutic agent and in vivo testing.

The TEMPO spin-labeled GalNAc derivative was successfully used as a first-site

ligand for second-site screening by NMR, in which imidazole was identified as a

potential second-site ligand. Therefore, after the removal of the TEMPO spin

label the first-site ligand will be used in further studies, involving “in situ click
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chemistry”, in order to find the appropriate linker for joining the first- and second-

site ligands.

The four trivalent compounds synthesized for investigating the local

concentration effect had an identical molecular mass and scaffold, but differed in

the ratio of D-galactose to D-glucose moieties per molecule. Since the affinity of

glucose towards the ASGP-R is > 20 mM, and that of galactose is 2.2 mM, the

affinity was expected to increase with increasing number of galactose moieties.

However, the compound bearing two galactose and one glucose residue

unexpectedly showed an affinity greater than that for a compound with three

galactose residues. The phenomenon is yet to be explained and verified by

further experiments. Nevertheless, the results presented in this work did confirm

that the statistical local concentration effect has a weaker influence on

multivalency than the chelate effect.
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Abbreviations

[α]D Optical rotation at λ=589 nm

AIBN 2,2’-Azobisisobutyronitrile

ASGP Asialoglycoprotein

ASGP-R Asialoglycoprotein receptor

ASOR Asialoorosomucoid

ax. axial

Con A Concavalin A

CRD Carbohydrate recognition domain

DCC N,N’-Dicyclohexylcarbodiimide

DCE Dichloroethane

DCM Dichloromethane

DIPEA Diisopropylethylamine

DMF N,N-Dimethylformamide

DMSO Dimethylsulfoxide

EcorL Erythrina corallodenrum lectin

EDTA Ethylenediaminetetraacetic acid

eq. equatorial

ESI-MS electrospray ionization mass spectrometry

Gal D-Galactose

Gal-3 Galectin 3

GalNAc D-N-Acetylgalactosamine

Glc D-Glucose

H1/H2 Human ASGP-R subunit 1/2

HBV Hepatitis B virus

HCV Hepatitis C virus

HepG2 Human hepatocellular carcinoma cell line

HOBt 1-Hydroxybenzotriazole

HSQC Heteronuclear single quantum coherence

IFN-α Interferon-α
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KD Equilibrium dissociation constant

LCMS Liquid chromatography mass spectrometry

NIS N-iodosuccinimide

NMR Nuclear magnetic resonance

NOE Nuclear Overhauser effect

o.y. Overall yield

PAA Polyacrylamide

r.t. Room temperature

RHL-1 Rat hepatic lectin subunit 1

RP-C18 Reverse phase silica gel

SAR Structure-activity relationship

SPR Surface plasmon resonance

TEMPO 2,2,6,6-Tetramethylpiperidine-N-oxyl

THF Tetrahydrofuran

TLC Thin layer chromatography

Tris 2-Amino-2-(hydroxymethyl)-1,3-propanediol
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Chapter 1: General introduction to the ASGP-R

1.1 Introduction

In spite of their relative weakness, carbohydrate-protein interactions have been

shown to be very specific. Nevertheless, the endogenous ligands are often

complex carbohydrates or glycoproteins that are unsuitable for therapeutic use.

Therefore, it is of extreme importance for medicinal chemistry to design

carbohydrate mimics with simplified structures, improved biostabilities and higher

affinities towards their targets.

The asialoglycoprotein receptor (ASGP-R) is a carbohydrate-binding protein, or

lectin, which recognizes and binds glycoproteins with terminal, non-reducing

galactose or N-acetylgalactosamine residues. It is located in high numbers on

hepatocytes [1], and was originally discovered by Ashwell and Morell [2]. Binding

of the ligand to the ASGP-R leads to receptor-mediated endocytosis of the

ligand-receptor complex by the hepatocyte. The exact physiological function of

the ASGP-R still remains unclear. However, it is definitely involved in clearing

desialylated glycoproteins from the blood, thus maintaining serum glycoprotein

homeostasis [3].

Due to its high level of expression on the hepatocytes, and its efficient

endocytosis of appropriate ligands, the ASGP-R has for long been a validated

target in medicinal chemistry for liver-specific drug and gene delivery [4].
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1.1.1 Receptor structure

The focus of this thesis is on the human ASGP-R, which is an integral

transmembrane protein composed of two subunits designated H1 and H2 (Mr =

46 kDa and 50 kDa, respectively), with exoplasmic C-termini and endoplasmic N-

termini [1]. The subunits share 57% sequence homology and have the same

polypeptide domain construct. Moreover, both are post-translationally modified

by the addition of N-linked oligosaccharides and palmitoylation [1]. Each subunit

is a type II transmembrane protein, and the subunits oligomerize in the ratio of

1:2-5 (H1:H2) [1]. The ASGP-R is located on the basolateral (circulation facing)

membrane of the parenchymal liver cells, and it is estimated that there are

approx 500,000 ASGP-R subunits/cell, however the number varies according to

cell type and method of estimation [5,6].

Starting from the N-terminus (Figure 1A), the H1 or H2 subunit of the ASGP-R is

composed of a cytosolic domain, a trans-membrane domain consisting of approx.

20 hydrophobic amino acids, a stalk region and a C-terminal carbohydrate

recognition domain, or CRD (Figure 1B). The stalk region is involved in the

oligomerization of the subunits. The X-ray crystal structure of the H1-CRD has

recently been published [7].

cytosolic
end

stalk
region

Carbohydrate
recognition

domain (CRD)

N

C

trans-
membrane

domain

N

Galactose Binding Site

Calcium 1

Calcium 3

Calcium 2

C

A B

Figure 1. (A) The H1-subunit of the ASGP-R. (B) H1-CRD (Picture courtesy of D. Ricklin).
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The ASGP-R belongs to the C-type lectin family, which implies that the ligand

binding is calcium-dependent and requires an optimal calcium concentration of

0.1-2 mM [8-10].

The H1-CRD contains three Ca2+ ions (Figure 1B). One is located in the binding

site, and interacts directly with the terminal Gal or GalNAc residue of the ligand,

the other two are responsible for structural integrity. The H1-CRD also contains 7

cysteins, 6 of which form 3 disulfide bonds [7].

The binding site of the ASGP-R is specific for D -galactose and D-N-

acetylgalactosamine, with a 50-fold higher affinity for the latter [11,12].

Both subunits contain a sugar binding site, however, it is believed that only the

H1 subunit is responsible for sugar recognition and high affinity binding [13],

whereas the H2 subunit simply serves to generate the functional native receptor

since both subunits are necessary for efficient ligand binding and internalization

by the hepatocyte [14-16].

Furthermore, the ASGP-Rs cluster together on the hepatocyte surface to form

receptor patches. However, the exact in vivo arrangement of the native receptor

subunits is not accurately known [17].

1.1.2 Physiological role of the ASGP-R

The exact physiological function of the ASGP-R is not yet fully elucidated.

However, it is definitely involved in clearing desialylated glycoproteins from the

blood, thus maintaining serum glycoprotein homeostasis [3]. This is supported by

the findings that patients with liver diseases like cirrhosis or liver cancer have
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elevated levels of asialoglycoproteins, presumably because of impaired liver –

and hence ASGP-R – function [18].

The penultimate Gal/GalNAc residue on N-linked oligosaccharides of serum

glycoproteins is practically always capped by a sialic acid. When this saccharide

is removed by sialidases, an asialoglycoprotein (ASGP) is created which binds to

the ASGP-R and gets internalized by the liver (Figure 2).

Enzymatic
desialylation

Asialoglycoprotein

= Gal/GalNAc = Sialic acid

SIGNAL FOR ENDOCYTOSIS!

Serum glycoprotein

Figure 2. Generation of asialoglycoproteins by the action of sialidases in the serum.

The desialylating activity in the serum is ubiquitous and random, hence there is a

steady production of desialylated glycoproteins, which should be

degraded/recycled. An example of this is the clearance of remnants of

apolipoprotein E, which is secreted in the sialoprotein form, and subsequently

desialylated in the serum [19].

Another function of the ASGP-R could be the uptake of glycoproteins essential

for the liver, such as immunoglobulin A (IgA), which contains terminal Gal and

GalNAc residues on its oligosaccharides [20].
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Bivalent receptor

Bivalent receptor

A

B

Bivalent ligand

Bivalent receptor

Bivalent receptor

Multivalent ligand

1.1.3 Ligand structure: Multivalency

Multivalency consists of two components [21,22] that are illustrated in Figure 3.

The first is the chelate effect, which leads to binding affinity enhancement due to

simultaneous spanning of two or more binding sites by the ligand. The second is

the statistical effect, which increases the binding due to an increased local

concentration of the available ligand or binding motives on one ligand.

Figure 3. (A) Multivalency consisting of both the chelate and the statistical effect. (B) The

multivalent ligand is unable to bridge two binding sites, and hence only the statistical effect

operates.

In cases where the ligand is unable to bridge two binding sites on the receptor,

the purely statistical effect operates (Figure 3B).

Since the H1 and H2 subunits oligomerize in the 1:2-5 ratio, respectively, and

each subunit contains one CRD, this implies that 3-6 sugar binding sites per

receptor are presented on the cell surface.
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The dissociation constants (KD) for ligands possessing single Gal or GalNAc

residues are low, being in the millimolar range. However, a dramatic increase in

affinity is observed for ligands that are oligovalent with respect to the number of

terminal Gal or GalNAc residues. The binding hierarchy is: tetraantennary ≥

triantennary >> diantennary >> monoantennary, with the binding affinities being

10-9, 5x10-9, 1x10-6 and 1x10-3 M, respectively. This phenomenon is known as

the cluster glycoside effect [23,24].

Many studies using natural and synthetic ligands have illustrated the importance

of the spatial arrangement of the terminal Gal/GalNAc residues for the binding

affinity to the ASGP-R. Based on affinity studies on several neoglycoproteins with

defined sugar arrangements and geometries [25], it was concluded that the

terminal sugar residues position themselves at the corners of a triangle, whose

sides measure 15, 22 and 25 Å [26]. Hence, structures with shorter

intergalactose distances or lower flexibility had a lower affinity than that for

compounds in which the spatial arrangement of sugar residues was

complementary to the arrangement of the receptor binding sites [26].

A further effect exerted by multivalent ligands on biological systems is the

induction of receptor subunit clustering on the cell surface, which in the case of

lectins was demonstrated by Kiessling et al. [27]. The studies were performed on

the soluble periplasmic glucose/galactose binding protein (GGBP) on E. coli,

which is responsible for recognizing chemoattractants (i.e. glucose/galactose)

and thus mediating chemotaxis. It was thus shown that galactose-bearing

polymers increased bacterial chemotaxis in proportion to the number of

galactose residues on the polymers. It was also shown by fluorescence

microscopy that the multivalent galactose-bearing polymers did indeed induce

chemotactic receptor clustering on the bacterial periplasmic membrane. Since

receptor subunit clustering is also involved in the ASGP-R-mediated endocytosis,
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it is possible that multivalent ligands induce the endocytic cycle by increasing

receptor clustering. However, this has to be further verified experimentally.

The interaction energies for multivalent ligands with their targets are discussed in

detail by Toone et al. [24]. The overall entropy of a particle in solution consists of

four terms: the translational, rigid-body rotational, conformational and solvation-

associated. The translational and rotational terms logarithmically depend on the

molecular mass, i.e. the greater the overall mass of the particle, the greater the

translational and rotational entropies. Thus, upon tethering of two monovalent

ligands, the entropy balances out and remains at a value roughly equivalent to

that of a monovalent ligand, i.e. 15-20 kJ/mol. Attempts to quantify these entropy

terms in solution are fraught with uncertainty, especially for cases involving a

highly participating solvent like water. The value for translational and rigid-body

rotational entropy in solution is often quoted to be around 43 kJ/mol [28],

however recent studies have placed the estimate at almost half that value [24].

Conformational entropy tends to decrease upon ligand tethering, with an

estimated value of around 5.8 kJ/mol [29], and solvation effects on the entropy of

multivalent ligand formation are still poorly understood [24].

The enthalpic component of multivalent binding results mainly from the linker

itself. If the linker is able to interact favorably with the protein surface, this leads

to favorable changes in the free energy of binding. However, the conformational

effects on the linker upon folding are highly influenced by its rotational

characteristics, i.e. the rotational barrier about the C-C bond for ethane is around

12.5 kJ/mol. Therefore, if the linker is capable of assuming an energetically

favorable “relaxed” conformation while at the same time presenting the binding

residues in an optimal orientation, this leads to favorable enthalpic

consequences, e.g. the eclipsed form of butane (about the C2-C3 bond) is 21-25

kJ/mol higher than the lowest energy anti-conformation.
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1.1.4 Receptor-mediated endocytosis

The ASGP-R-mediated endocytic pathway is schematically summarized in Figure

4, and is reviewed in detail by Spiess et al. [3].

Figure 4. Diagram illustrating the ASGP-R-mediated endocytic pathway inside the hepatocyte,

with associated pH changes. 1) Ligand association; 2) Receptor clustering; 3) Endocytosis; 4)

Clathrin-coated vesicle; 5) Endosome; 6) Fusion with lysosome; 7) Ligand degradation; 8)

Recycling of receptor. (Picture courtesy of Daniel Ricklin)

The initial step of the ASGP-R-mediated endocytosis involves clustering of the

receptors on the hepatocyte cell membrane into clathrin-coated pits, which cover

an area of ≈ 0.1 µm2 [30]. Upon ligand binding, the membrane invaginates, and

the ligand-receptor complex gets internalized, ending up in a clathrin-coated

vesicle, which upon clathrin uncoating fuses with a lysosome.

The pH dependence of ligand binding is an important general feature of most

endocytic receptors for it enables ligand release in the acidic environment of the

endosomes, caused by the H+-translocating ATPase [31].
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The ASGP-R is also internalized via clathrin-coated pits without the presence of

the ligand; hence, almost two-thirds of the receptor is located intracellularly.

However, binding of the ligand increases the rate of internalization by a factor of

two [15,32].

1.1.5 Endosomal Compartments

In the ASGP-R-mediated endocytic cycle, the endosome is a central

compartment, since it gives rise to distinct vesicles that either proceed to fuse

with the lysosome (degradative pathway) or return to, and fuse with the cell

membrane (recycling pathway) [1].

After ligand binding followed by membrane invagination and clathrin-coated

vesicle formation, the clathrin coat is eventually removed by uncoating ATPase

[33], the vesicles then fuse with endosomal compartments called early

endosomes. Ligand binding to the ASGP-R is only effective above pH 6.5, so the

lower pH in the early endosomes (pH 6.0) causes an acid-induced

conformational change of the protein, which results in the dissociation of the

ligand-receptor complex. The ligand is then segregated into the late endosomes

(pH = 5.5), which subsequently fuse with the terminal endocytic compartments,

the dense lysosomes, where the pH is even lower and the ligand undergoes

degradation. The receptor, on the other hand, is rapidly returned from the early

endosomes via recycling vesicles to the cell membrane [3].

Kinetic studies [34,35] have shown that an ASGP is internalized within minutes at

37 °C, and that the receptor is recycled back to the surface within a half-time of

5-7 minutes, whereas 50-75% of the internalized ASGPs is retained within the

cell [36].
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Furthermore, the kinetics of the endocytic cycle were studied in detail by

Schwartz et al. [37] using HepG2 human hepatoma cells, a reliable model for

human hepatocytes [38], in which the entire cycle (ligand binding to ASGP

reaching the lysosome) took around 15 minutes. At high ligand concentration,

binding to the receptor occurred within 1 minute, internalization was within 2

minutes, and after ligand-receptor complex dissociation, the receptor was

recycled back to the surface in 4.2 minutes. The studies measured the linear 125I-

asialoorosomucoid (125I-ASOR) uptake at an average rate of 0.02-0.03

pmol/min/106-cells at 37 °C. This value was slightly lower than, but comparable

to that of isolated hepatocytes, i.e. 0,07-0.1 pmol/min/106 cells at 37 °C [39].

Upon binding of 125I-ASOR at 4 °C, removal of excess ligand and a temperature

shift to 37 °C, most of the bound 125I-ASOR was internalized with in 6-8 minutes,

in a process that reached a steady state after 30 minutes. The mean lifetime of

the receptor ligand complex after internalization was determined to be 2.16

minutes. The main differences between HepG2 cells and normal parenchymal

hepatocytes are in the number of receptor subunits on the cell surface, i.e.

150,000 on HepG2 vs. 500,000 on hepatocytes, and in the percentage of the

receptor found in the cytoplasm, i.e. 14% in HepG2 vs. 60% in isolated rat

hepatocytes [40]. However, the number of intracellular receptors is strongly

influenced by the ligand concentration [37].

1.1.6 Targeting hepatocytes for gene and drug delivery

The liver is a major metabolic organ, which can be damaged by various

xenobiotics, by-products of metabolism (e.g., radical species), inflammatory

mediators (e.g., cytokines) and microorganisms. Therefore, delivering drugs or

genes directly to the liver is a highly promising therapeutic strategy for modifying

errors in metabolism, preventing liver damage and inhibiting hepatitis viral

replication [4].
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An example of ASGP-R-mediated gene delivery in vivo was done by Wu et al.

[41], and involved injecting rats with a poly-L-lysine-DNA complex that was

covalently linked to asialoorosomucoid. This resulted in DNA incorporation into,

and expression by the liver cells.

The efficiency of the degradative pathway is known to be less than complete.

Hence, some substances internalized via the ASGP-R have been shown to

escape degradation in the lysosome. This was demonstrated using an

asialoglycoprotein-diphtheria toxin A construct that was still lethal to the

hepatocyte after being internalized [42,43].

Liver-specific drug delivery was demonstrated by De Vrueh et al. [44]. The

authors showed that a derivative of the anti-hepatitis B drug 9-(2-

phosphonylmethoxyethyl)adenine [45] (PMEA, adefovir), when conjugated to a

carrier designed to bind specifically to the ASGP-R, was much more efficiently

taken up by the liver in rats (69% of dose vs. <5% free drug) and a lot less by the

kidneys (<2% of dose vs. >45% free drug).
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2.1 Abstract

A series of novel, fluorescent ligands designed to bind with high affinity and

specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized

and tested on human liver cells. The compounds bear three non-reducing, β-

linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial

interaction with the binding site of the ASGP-R. The final constructs were

selectively endocytosed by HepG2 cells derived from parenchymal liver cells -

the major human liver cell type - in a process that was visualized with the aid of

fluorescence microscopy. Furthermore, the internalization was analyzed with flow

cytometry, which showed the process to be receptor-mediated and selective. The

compounds described in this work could serve as valuable tools for studying

hepatic endocytosis, and are suited as carriers for site-specific drug delivery to

the liver.

KEYWORDS : asialoglycoprotein receptor (ASGP-R); drug delivery; flow

cytometry; fluorescence microscopy; fluorescent probes
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2.2 Introduction

The asialoglycoprotein receptor (ASGP-R) is located on hepatocytes and is a

Ca2+-dependent carbohydrate-binding protein, or C-type lectin. It is expressed on

mammalian liver cells [1]. Its main function is to maintain serum glycoprotein

homeostasis by the recognition, binding and endocytosis of asialoglycoproteins

(ASGPs), i.e., desialylated glycoproteins with terminal galactose or GalNAc

residues. After internalization via clathrin-coated pits and their fusion with

endosomes, the ASGPs are released in the acidic environment of the endosome

and transported to lysosomes for degradation, while the receptor is recycled back

to the cell surface [2,3].

In addition to the ASGP-R, there are three additional Gal/GalNAc-receptors in the

C-type lectin family: the Kupffer cell receptor, the macrophage galactose lectin

and the scavenger receptor C-type lectin (SRCL) [4-7]. Their binding properties

were recently profiled by Drickamer et al. [8].

The affinity and specificity of the ASGP-R is a consequence of oligovalent

interactions with its physiological ligands, a process termed cluster glycoside

effect by Lee et al. [9]. The receptor consists of two homologous subunits,

designated H1 and H2 in the human system, which form a non-covalent

heterooligomeric complex with an estimated ratio of 2-5:1, respectively. Both

subunits are single-spanning membrane proteins with a calcium-dependent

galactose/N-acetylgalactosamine recognition domain [10]. Recently, the X-ray

crystal structure of the carbohydrate recognition domain (CRD) of the major

subunit H1 was elucidated [11].

Many studies have been performed with both natural and synthetic

carbohydrates to establish the structure-affinity relationship for the ASGP-R.

Baenzinger et al. [12,13] have shown that the human receptor exhibits specificity

for terminal Gal and GalNAc (with an approx. 50-fold higher affinity for the latter)
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on desialylated glycoproteins. Triantennary ligands displayed a higher affinity

than their mono- and diantennary counterparts. Furthermore, the studies led to

the conclusion that only the terminal residues are necessary for specific

recognition, and that the binding process proceeds through a simultaneous

interaction of 2 to 3 sugar residues with 2 to 3 binding sites of the

heterooligomeric receptor. On the native receptor on the hepatocyte surface

these binding sites are 25-30 Å apart.

Studies on rabbit hepatocytes by Lee et al. [9,14], using synthetic

oligosaccharides, further reinforced the binding hierarchy of polyvalent ligands:

tetraantennary > triantennary >> diantennary >> monoantennary. The IC50-

values for mono-, di-, tri- and tetraantennary oligosaccharides were found to be

approx. 1x10-3, 1x10-6, 5x10-9 and 10-9 M, respectively. In other words, although

the number of Gal residues/mol of ligand increased only 4-fold, the inhibitory

potency increased 1’000’000-fold. Because the fourth Gal moiety present in the

tetraantennary ligand does not markedly enhance the affinity, it was assumed

that the binding requirements of the cell-surface receptor are largely satisfied by

the triantennary structure [15].

The optimal distance of the Gal moieties in these oligosaccharides was

determined by binding assays with synthetic carbohydrates representing partial

structures of N-linked glycans [16], high-resolution NMR and molecular modeling

studies [17]. Based on these results, Lee et al. [9,16] presented a model for the

optimal spatial arrangement of the terminal sugar residues (Figure 1).
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Figure 1. Binding model for ASGP-R ligands in an optimal conformation to the heterooligomeric

receptor consisting of H1 and H2 subunits. Dashed line indicates the distance between the C-4 of

each Gal moiety; filled line represents approximate distance between branching point and C-6 of

Gal (14-20 Å). Adapted from Lee et al. [16].

Due to its specificity, predominant expression on hepatocytes and high capacity

for receptor-mediated endocytosis, the ASGP-R has been validated as a

potential target for drug and gene delivery to the liver [7,8,19]. As an alternative

to ex vivo gene transfer to the liver, which requires invasive surgery [20], there is

much interest in vivo protocols: (i) Wu et al. [21] demonstrated successful in vivo

gene transfer to hepatocytes with poly-L-lysine linked asialoorosomucoid, (ii)

Hara et al. [22-24] showed that asialofetuin-labeled liposomes that encapsulate

plasmid DNA cause gene expression and (iii) successful gene transfer to

hepatocytes using liposomal gene carriers that possess synthetic galactose

residues as a targetable ligand for parenchymal liver cells has been reported

[25].
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In order to further exploit the ASGP-R for therapeutic purposes, trivalent ligands

with pendant Gal or GalNAc residues connected by flexible spacers with

appropriate lengths to a common branching point were synthesized. All these

ligands incorporate 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) as the

branching point (Figure 2). Kempen et al. [26] synthesized the trivalent, Gal-

terminated ligand 1, where the carbohydrate moieties were directly linked to Tris.

When 1 was labeled with cholesterol and incorporated into liposomes, they were

mainly taken up by the Kupffer cells, via the Gal/Fuc-recognizing receptor, and

not by the parenchymal liver cells via the ASGP-R.

Therefore, a new generation of ligands with optimal spacers was created.

Biessen et al. [27,28] extended the distance between the Tris branching point

and the Gal residues by using tetraethylene glycol spacers approximately 20 Å in

length. This indeed led to ligands with improved affinities (see 2, Ki = 0.2 µM,

Figure 2) determined in a competition assay with 125I-labeled asialoorosomucoid.

In 1999, Sliedregt et al. [29] designed a second generation of cluster glycosides

containing an essential modification (see 3, Ki = 93 nM, Figure 2). To enhance

the chemical stability, the methylene acetal groups in 2, which connect the

spacers to Tris, were replaced by acid stable ether bonds. Furthermore, the

spacers were no longer based on tetraethylene glycol to achieve the appropriate

spacing between the Gal residues, but rather on a twelve atom fragment

containing two amide bonds. Finally, Rensen et al. [30] combined the various

features from 2 and 3 to generate compound 4 (Ki = 2 nM, Figure 2), which

exploited the expected 50-fold higher affinity of GalNAc over Gal towards the

ASGP-R [31].
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Figure 2. Trivalent compounds 1, 2, 3 and 4 were specifically designed for, and tested on, the

ASGP-R [26-30]. Compounds 5a and 5b are the trivalent, Cbz-protected intermediates introduced

herein.

Based on the knowledge gained in previous studies, we set out to synthesize the

optimal trivalent carrier (19, Scheme 1) with reduced synthetic complexity and

high in vivo stability. Furthermore, the flexibility and hydrolytic stability of the

quintessential spacers was improved without compromising their solubility in

water. The resultant intermediates 5a and 5b (Figure 2), which possess terminal

Gal or GalNAc moieties, respectively, were then fluorescently labeled and tested

for selective uptake by hepatocytes using fluorescence microscopy and flow
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cytometry. Moreover, since most of the previous research was done on rat [26-

30] and mouse [32] liver cells, and the final aim of this research is liver-selective

drug delivery in humans, all our biological assays were performed using cell lines

of human origin.

2.3 Results and Discussion

The main structural features of the trivalent ASGP-R ligands 5a and 5b are as

follows: (i) Tris is the central branching point, (ii) the spacers are based on

polypropylene oxide, which combines flexibility with amphiphilicity, (iii) the linkage

between Tris and the spacers is a hydrolytically stable ether bond and (iv) the

length of the spacers can be easily varied.

The glycine acylating the amino group of Tris in 4 (Figure 2) has been replaced

with Cbz-protected γ-aminobutyric acid, which upon deprotection furnishes a

versatile primary amino group for the attachment of fluorescent labels and, at a

later stage, therapeutic agents. For our studies, the amino group was coupled to

Alexa Fluor® 488 fluorescent label [33] (→ 6 and 7, Figure 3), but in theory it

could also be coupled to a therapeutic agent. As a negative control for the

fluorescence microscopy studies, and especially to demonstrate the significance

of the polypropylene oxide spacers featured in our final compounds 6 and 7, we

also synthesized compound 8 (Figure 3) The latter, in contrast to 6 and 7, has

only short spacers, and therefore does not fulfill the spatial requirements for

trivalent binding to the ASGP-R.
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2.3.1 Synthesis of fluorescent, trivalent ligands 6 and 7 and the

negative control 8

Starting from 2-amino-2-hydroxymethyl-1,3-propanediol (Tris, 9), the

polypropylene oxide spacers were gradually extended by repetitive allylation-

oxidative hydroboration steps using 9-BBN in THF followed by H2O2 and

aqueous NaOH (Scheme 1). For the synthesis of compounds 12 and 14, several

allylation procedures were examined using NaH, KOH, K2CO3 as bases in

various solvents (e.g., THF, DMF, dioxane), with and without the addition of

crown ethers and quaternary ammonium salts as phase transfer catalysts. All

procedures, including the literature procedure used to obtain 10 [34] in 68%, led
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to unacceptably low yields of approx. 40% for 12, along with a considerable

amount of a tetraallylated side product. The desired triallylated compounds could

finally be obtained in almost quantitative yields with only traces of N-allylation, by

employing liquid-liquid phase transfer catalysis [35]. Thus, 12 and 14 were

obtained in 95 and 90%, respectively, from the corresponding triols using allyl

bromide in refluxing DCM/50% aqueous NaOH (1:1) with a catalytic amount of

15-crown-5. Oxidative hydroboration and acetylation gave 13 and 15 in excellent

overall yields. The peracetylation step (→ 11, 13 and 15) was applied in order to

facilitate purification and characterization of the intermediate triols. The

subsequent deacetylation of 11 and 13 was achieved under standard Zemplén

conditions. For the elaboration at the N-terminus of 15, the Boc protecting group

was selectively removed using 4 M HCl in dioxane leading quantitatively to 16.

Subsequent condensation with the N-Cbz-protected γ-aminobutyric acid linker 17

[36] using PyBOP in DMF/dioxane (1:3) and DIPEA as base yielded 18. In the

final step, deacetylation under Zemplén conditions furnished the trivalent glycosyl

acceptor 19 in an overall yield of 27%, starting from Tris (9).
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Scheme 1. (a) i. 9-BBN, THF, rt, 24 h, then aq. NaOH, H2O2, 0 °C → rt, 24 h; ii. Ac2O, pyridine, rt,

3 h, (11: 81%; 13: 87%; 15: 88%); (b) i. NaOMe, MeOH, rt, 24 h, quant.; ii. allyl bromide, 15-

crown-5, DCM/50% (w/v) aqueous NaOH, reflux, 24 h, (12: 95%; 1 4: 90%); (c) 4M HCl in

dioxane, rt, 30 min, quant.; (d) PyBOP, DIPEA, dioxane/DMF, rt, 24 h, 85%; (e) NaOMe, MeOH,

rt, 4 h, 90%.

Galactosylation of 1 9 with ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-

galactopyranoside (20) [27] using DMTST as promoter furnished the trivalent

intermediate 21 in a 68% yield (Scheme 2).  Debenzoylation (→ 5a) followed by

cleavage of the Cbz protecting group gave 22, which was coupled to the N-

hydroxysuccinimidyl (NHS)-activated Alexa Fluor® 488 fluorescent label to yield

compound 6 in 81% yield. Alexa Fluor® 488 was found to be the optimal

fluorescent label for our purposes, combining high chemical and photostability

with high fluorescence intensity. An analogous sequence of reactions was

applied for the synthesis of 7 . First, the N-acetylgalactosamine trimer 24
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(Scheme 2) was obtained in 91% by glycosylating 19 with ethyl 3,4,6-tri-O-acetyl-

2-deoxy-1-thio-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-galactopyranoside

(23) [37]. After cleavage of the Troc protecting group, the free amine was directly

acetylated to furnish 2 5. Upon deprotection of the N-acetylgalactosamine

moieties (→ 5b), the Cbz group was cleaved yielding compound 26, which was

labeled with Alexa Fluor® 488 producing 7 in a 90% yield.
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Scheme 2. (a) DMTST, 4 Å MS, DCM, 0 °C →  10 °C, 48-72 h, 68% for 21, 91% for 24; (b)

NaOMe, MeOH/dioxane, rt, 4 h, 94% for 5a, 72% for 5b; (c) H2, Pd/C, EtOH/dioxane, rt, 24 h,

87% for 22, 95% for 26; (d) Alexa Fluor® 488-NHS, DIPEA, 4 Å MS, DMF/dioxane, rt, 4 d, 81%

for 6, 90% for 7; (e) Zn dust, Ac2O, dioxane, rt, 24 h, 82%.

As a negative control for cellular assays, compound 8 (Scheme 3) was

synthesized via acylation of Tris (9) with N-Cbz-protected γ-aminobutyric acid

(17) [36] using EEDQ in pyridine [38], yielding compound 27 in a 77% yield. The
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latter was then galactosylated with donor 20 [27] using NIS/TfOH as promoter to

give 28 in 51%. After debenzoylation (→ 29), the Cbz group was cleaved by

hydrogenolysis to furnish compound 30, which was subsequently coupled to the

N-hydroxysuccinimidyl (NHS)-activated Alexa Fluor® 488 fluorescent label

yielding 8 in a 96% yield.
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Scheme 3. (a) EEDQ, pyridine, 90 °C, 24 h, 77%; (b) NIS, TfOH, 4 Å MS, DCE/Et2O, 0 °C, 1 h,

51%; (c) NaOMe, dioxane/MeOH, rt, 6 h, 85%; (d) H2, Pd/C, MeOH, rt, 48 h, 87%; (e) Alexa

Fluor® 488-NHS, DIPEA, 4 Å MS, DMF, rt, 4 d, 96%.

2.3.2 Biological Evaluation

The trivalent ligands 6-8 were examined for their selective binding to, and

internalization by the ASGP-R applying fluorescence microscopy and flow

cytometry. Two different cell lines of hepatic origin were used: HepG2 cells

derived from a human hepatocellular carcinoma expressing the ASGP-R [39],

and the human more endothelial-like SK-Hep1 cells which lack the receptor [40].
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Figure 4. Fluorescence microscopy images depicting the ASGP-R-specific uptake of Alexa

Fluor® 488-labeled compounds. A) Compound 6 in HepG2 cells; B) Compound 6 with SK-Hep1

cells; C) Compound 7 in HepG2 cells; D) Compound 7 with SK-Hep1 cells; E) Compound 8 with

HepG2 cells; F) Compound 8 with SK-Hep1 cells; G) Control HepG2 cells; H) Control SK-Hep1

cells.

2.3.3 Fluorescence Microscopy

The cells were incubated with the Alexa Fluor® 488-labeled compounds 6, 7, or 8

for 1.5 h on ice to allow binding of the compounds to the receptor while

preventing unspecific uptake. In a washing step, unbound ligand was removed,

and the cells were incubated for an additional 40 min at 37 °C to allow receptor-

mediated endocytosis of bound compounds to take place. The specific uptake

led to punctuate staining of the cells representing endosomes containing the

ligands, which were visualized by fluorescence microscopy. HepG2 cells showed

specific uptake of 6  and 7, and only negligible uptake of 8. The fluorescent

content of the endosomes can be distinctly seen (Figure 4, panels A and C) for

compounds 6 and 7, respectively. Because the cells were grown and incubated

on glass cover slips, which were then mounted upside down for visualization,

enriched fluorescence can only be observed in cytosolic areas which are not

blocked by the nuclei. Panel E shows little or no such fluorescent vesicles, since

control compound 8 was not internalized via the ASGP-R owing to insufficient

spacer length. As expected, no internalization into SK-Hep1 cells (which do not

express the ASGP-R) could be observed for compounds 6 and 7 (Figure 4,

panels B and D). However, compound 8 showed a minor tendency to be

internalized by this cell line in an ASGP-R-independent manner (Figure 4, panel

F). Panels G and H show the autofluorescence of non-treated HepG2 and SK-

Hep1 cells as controls.
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2.3.4 Flow Cytometry

Flow Cytometry: The ASGP-R-mediated uptake of compounds 7 and 8

(negative control) was quantitatively evaluated by flow cytometry (Figures 5-6).

Instead of performing the previously described steps (prebinding on ice, removal

of the excess and internalization of bound compound), the cells were

continuously incubated with the test compounds at 37 °C and analyzed.

The median fluorescence intensity (MFI) of cells incubated with compound 7 at

concentrations ranging from 0.4 to 12.5 µM revealed low uptake of the compound

into SK-Hep1 cells compared to HepG2 cells, in which the uptake leads to a

saturation hyperbola as it is typical for a receptor-mediated process (Figure 5)

[41].
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SK-Hep1

Figure 5. Titration of compound 7: Adherent HepG2 and SK-Hep1 cells were incubated with

compound 7 at concentrations ranging from 0.4 to 12.5 µM for 40 min at 37 °C. MFI is the shift in

median fluorescence intensity from untreated to treated cells.
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Uptake of compound 7 into HepG2 cells via the ASGP-R at a concentration of 10

µM was competitively inhibited by the presence of monosaccharide ligands:

GalNAc (IC50 = 4.55 ± 0.32 mM) (Figure 6 A) and asialofetuin (IC50 = 45.60 ±

2.70 µM) (Figure 6 B), whereas the uptake into SK-Hep1 was low and not

affected by the presence of asialofetuin.
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Figure 6. Competitive uptake of compound 7 at a concentration of 10 µM in the presence of

either GalNAc (0.3-100 mM) (A) or asialofetuin (0.3-100 µM) (B).  The graphs represent the mean

of median fluorescence intensitiy (MFI) ± SD of 3 independent experiments. (C) Uptake of control

compound 8 at a concentration of 10 µM in the presence of asialofetuin (0.3 –100 µM) into

HepG2 and ASGP-R-negative SK-Hep1 cells.
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In ASGP-R-bearing HepG2 cells, uptake of control compound 8 was low and

proved to be unspecific as it could not be inhibited by asialofetuin, a natural high

affinity ligand of the receptor (Figure 6 C). ASGP-R-negative SK-Hep1 cells, on

the other hand, evinced high uptake of compound 8, unaffected by the presence

of asialofetuin (Figure 6 C) which could be explained by their high endocytic

activity that is usually associated with endothelial cells.

2.4 Conclusion

Studies using fluorescent-labeled ligands for the ASGP-R have been carried out

before. Ishihara et al. [42] prepared fluorescein isothiocyanate-labeled,

galactosylated polystyrene ligands and analyzed their interaction with the ASGP-

R by flow cytometry. Wu et al. [43] introduced a new synthetic route, based on

solid phase peptide synthesis, towards fluorescent, synthetic, trivalent, N-

acetylgalactosamine-terminated glycopeptides [43] as a ligands for the ASGP-R.

However, in this study we have introduced a set of novel, fluorescent, trivalent,

simplified oligosaccharide mimics as ligands for the ASGP-R (6 and 7, Figure 3).

These compounds not only comply with the afore-mentioned optimal ASGP-R

ligand criteria, but also are synthetically easily accessible and hydrolytically

stable. Both criteria are a prerequisite for a therapeutic application at a later

stage.

Moreover, using fluorescence microscopy and flow cytometry, we have shown

that compounds 6 and 7 exhibit selective uptake by the ASGP-R on HepG2 cells

derived from human parenchymal liver cells – the major liver cell type. The

formation of distinct endocytic vesicles could be clearly visualized. Furthermore,

competition with asialofetuin, a naturally occurring serum glycoprotein and known

ligand of the ASGP-R, and GalNAc confirmed the involvement of the ASGP-R in

the uptake of 7. Experiments using compound 8 have further re-enforced the
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generally accepted assumption that the sugar residues have to be in an optimal

spatial arrangement in order to interact selectively and with high affinity with the

native ASGP-R. In final analysis, we have demonstrated that compound 7 has a

high potential for use in site-specific delivery of therapeutic agents

(chemotherapeutics, DNA, etc.) to the liver. The follow-up experiments are

currently being performed.
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2.6 Experimental Section

2.6.1 General Methods

NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz)

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D

methods (COSY, HSQC, TOCSY). Chemical shifts are expressed in ppm using

residual CHCl3, CHD2OD and HDO as references. Optical rotations were

measured using a Perkin-Elmer Polarimeter Model 341. ESI-MS spectra were

measured on a Waters Micromass ZQ mass spectrometer. Reactions were

monitored by TLC using glass plates coated with silica gel 60 F254 (Merck) with

the following mobile phases: A) petrol ether/EtOAc (4:1); B) petrol ether/EtOAc

(1:1); C) petrol ether/EtOAc (3:7); D) EtOAc; E) EtOAc/MeOH (9:1); F)

DCM/MeOH/H2O (10:4:0.8). Carbohydrate-containing compounds were

visualized by charring with a molybdate solution (0.02 M solution of ammonium

cerium sulfate dihydrate and ammonium molybdate tetrahydrate in aqueous 10%

H2SO4). Compounds 6, 7 , and 8  were visualized with UV light. All other

compounds were visualized with KMnO4 solution (2% KMnO4 and 4% NaHCO3 in
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water). Column chromatography was performed on silica gel 60 (Fluka, 0.040-

0.060 mm). Size exclusion chromatography was performed on Sephadex LH-20

and Sephadex G-15 (Pharmacia). Methanol (MeOH) was dried by refluxing with

sodium methoxide and distilled immediately before use. Pyridine was freshly

distilled under argon over CaH2. Dichloromethane (DCM) and dichloroethane

(DCE) were dried by filtration over Al2O3 (Fluka, type 5016 A basic).

Tetrahydrofuran (THF), dioxane, diethyl ether (Et2O) and toluene were dried by

refluxing with sodium and benzophenone. Dry DMF was purchased from Fluka

(absolute, ≥99.8%) and was further dried over powdered 4 Å molecular sieves.

Molecular sieves (4 Å) were activated in vacuo at 500 °C for 2 h immediately

before use. Alexa Fluor® 488 carboxylic acid succinimidyl ester (A20000, mixture

of isomers) was purchased from Molecular Probes, Eugene, Oregon, USA. Zinc

dust was activated according to standard procedures [44].

All cell culture media, supplements and phosphate buffered saline (PBS) were

purchased from Invitrogen, except collagen type S from rat’s tail was obtained

from Roche Applied Science. Paraformaldehyde, NaN3 and N-propyl gallate were

obtained from Fluka. Bovine serum albumin (BSA) was from Sigma and Mowiol

4-88 from Hoechst. HepG2 (human hepatocellular carcinoma) and SK-Hep1

(human liver adenocarcinoma) cell-lines were obtained from DSMZ (Deutsche

Sammlung für Mikroorganismen und Zellkulturen). Both cell lines were

propagated in Dulbecco’s modified Eagle’s medium (DMEM) high-glucose,

without phenol red, supplemented with fetal bovine serum (FBS, 10%) 2 mM L-

glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin (complete medium).

During the incubation steps of the cells outside the incubator, medium with a

CO2-independent buffer system was used (DMEM high-glucose, without phenol

red and FBS, containing 25 mM HEPES).
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2.6.2 Abbreviations

NIS, N -iodosuccinimide; TfOH, trifluoromethanesulfonic acid; NHS, N -

hydroxysuccinimide; PyBOP, benzotriazol-1-yl-oxytripyrrolidino-phosphonium

hexafluorophosphate; Tris, 2-Amino-2-(hydroxymethyl)-1,3-propanediol; EEDQ,

e thy l  1 ,2 -d ihyd ro -2 -e thoxy -1 -qu ino l i neca rboxy la te ;  DMTST,

dimethyl(methylthio)sulfonium tr i f luoromethanesulfonate; DIPEA,

diisopropylethylamine; HEPES, 4-(2-hydroxyethyl)-1-piperazine-1-ethanesulfonic

acid.

2.6.3 General procedure A: preparation of triacetylated

compounds 11, 13 and 15

To the corresponding triallylated compound (3.54 mmol) was added 9-BBN (0.5

M in THF, 38 ml) dropwise. The solution was then stirred at rt under argon for 24

h. The mixture was cooled to 0°C, and aqueous NaOH (3 M, 39 ml) was added

dropwise, followed by the dropwise addition of H2O2 (30%, 8.9 ml). The resultant

mixture was stirred vigorously at rt for 24 h. The mixture was saturated with

K2CO3, and the organic layer was separated. The aqueous layer was then

extracted with THF (3 × 80 ml), and the combined organic layers were dried

(Na2SO4) and concentrated under reduced pressure. The residue was dissolved

in pyridine (33.5 ml), acetic anhydride (33.5 ml) was added, and the mixture was

stirred at rt for 3 h. The mixture was co-evaporated with toluene (200 ml), and the

resultant syrup was purified by silica gel chromatography to afford compound 11,

13 or 15 as an oils.

Tris(5-acetoxy-2-oxapentyl)-N-(tert-butyloxycarbonyl)-methylamine (11):

According to general procedure A, compound 10 [34] (1.21 g, 3.54 mmol) was

reacted with 9-BBN (0.5 M in THF, 38 ml), and then treated with aqueous NaOH
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(3 M , 39 ml) and H2O2 (30%, 8.9 ml). After peracetylation, work-up and

chromatography on silica gel (petrol ether/EtOAc 8:2 → 7:3; Rf 0.52 B) 1.49 g

(81%) of 11 were obtained. 1H-NMR (500 MHz, CDCl3): δ = 1.42 (s, 9H, CMe3),

1.88 (m, 6H, 3 × OCH2CH2CH2OAc), 2.04 (s, 9H, 3 × OAc), 3.50 (t, J = 6.1 Hz,

6H, 3 × OCH2CH2CH2OAc), 3.63 [s, 6H, C(CH2O)3], 4.13 (t, J = 6.5 Hz, 6H, 3 ×

OCH2CH2CH2OAc), 4.90 (s, 1H, NH); 13C NMR (125 MHz, CDCl3): δ = 21.1 (3C,

3 ×  C H 3C=O), 28.4 (3C, CM e3), 28.9 (3C, 3 ×  OCH2CH2CH2OAc), 58.5

[C(CH2O)3], 61.7 (3C, 3 × OCH2CH2CH2OAc), 67.8 (3C, 3 × OCH2CH2CH2OAc),

69.5 [3C, C(CH2O)3], 79.1 (CMe3), 154.8 [N-(C=O)O], 171.1 (3C, 3 × CH3C=O);

Anal. Calcd for C24H43NO11: C, 55.26; H, 8.31; N, 2.69. Found: C, 55.20; H, 8.24;

N, 2.70.

Tris(9-acetoxy-2,6-dioxanonyl)-N-(tert-butyloxycarbonyl)-methylamine (13):

According to general procedure A, compound 12 (1.82 g, 3.54 mmol) was

reacted with 9-BBN (0.5 M in THF, 38 ml), and then treated with aqueous NaOH

(3 M , 39 ml) and H2O2 (30%, 8.9 ml). After peracetylation, work-up and

chromatography on

silica gel (petrol ether/EtOAc 3:1 → 3:2; Rf 0.32 B) 2.14 g (87%) of 13 were

obtained. 1H-NMR (500 MHz, CDCl3): δ = 1.42 (s, 9H, CMe3), 1.78-1.91 [m, 12H,

3 ×  (OCH2CH2CH2)2OAc], 2.05 (s, 9H, 3 ×  OAc), 3.45-3.50 (m, 18H, 3 ×

OCH2CH2CH2OCH2CH2CH2OAc), 3.62 [s, 6H, C(CH2O)3], 4.15 (t, J =  6.5 Hz,

6H, 3 × OCH2CH2CH2OAc), 4.93 (s, 1H, NH); 13C NMR (125 MHz, CDCl3): δ =

21.0 (3C, 3 ×  CH3C=O), 28.4 (3C, CM e3), 29.0, 29.9 [6C, 3 ×

(OCH2CH2CH2)2OAc], 58.4 [C(CH2O)3], 61.8 (3C, 3 × OCH2CH2CH2OAc), 67.2,

67.9, 68.3, (9C, 3 × OCH2CH2CH2OCH2CH2CH2OAc), 69.5 [3C, C(CH2O)3], 79.1

(CMe3), 154.8 [N-(C=O)O], 171.1 (3C, 3 ×  CH3C=O); Anal. Calcd. for

C33H61NO14: C, 56.96; H, 8.84; N, 2.01. Found: C, 57.67; H, 8.80; N, 2.56.

Tris(13-acetoxy-2,6,10-trioxatridecyl)-N-(tert-butyloxycarbonyl)-methylam-

ine (15): According to general procedure A, compound 14 (2.44 g, 3.54 mmol)
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was reacted with 9-BBN (0.5 M in THF, 38 ml), and then treated with aqueous

NaOH (3 M, 39 ml) and H2O2 (30%, 8.9 ml). After peracetylation, work-up and

chromatography on silica gel (petrol ether/EtOAc 1:1 → 3:7; Rf 0.1 B) 2.71 g

(88%) of 15 were obtained. 1H-NMR (500 MHz, CDCl3): δ = 1.39 (s, 9H, CMe3),

1.75-1.88 [m, 18H, 3 × (OCH2CH2CH2)3OAc], 2.01 (s, 9H, 3 × OAc), 3.41-3.47

(m, 30H, 3 × [(OCH2CH2CH2)2OCH2CH2CH2OAc], 3.59 [s, 6H, C(CH2O)3], 4.12

(t, J =  6.5 Hz, 6H, 3 × OCH2CH2CH2OAc), 4.90 (s, 1H, NH); 13C NMR (125 MHz,

CDCl3): δ = 20.9 (3C, 3 × CH3C=O), 28.4 (3C, CMe3), 28.9, 29.6, 29.9 [9C, 3 ×

(OCH2CH2CH2)3OAc], 58.4 [C(CH2O)3], 61.7 (3C, 3 × OCH2CH2CH2OAc), 67.2,

67.7, 67.8, 67.9, 68.3, 68.4 [15C, 3 × (OCH2CH2CH2)2OCH2CH2CH2OAc], 69.4

[3C, C(CH2O)3], 78.8 (CMe3), 154.7 [N-(C=O)O], 171.0 (3C, 3 × CH3C=O); Anal.

Calcd. for C42H79NO17: C, 57.98; H, 9.15; N, 1.61; O, 31.26. Found: C, 58.08; H,

9.17; N, 1.70; O, 31.11.

2.6.4 General procedure B: preparation of triallylated

compounds 12 and 14

The corresponding triacetylated compound (4.6 mmol) was dissolved in a

solution of sodium methoxide in MeOH (0.1 M, 40 ml), and the resultant solution

was stirred at rt for 4 h under argon. The solution was neutralized with Dowex

50X8 (H+-form), and the solvent was removed under reduced pressure to afford

the desired product in a quantitative yield as a colorless oil, which was used

without further purification.

The corresponding triol (1 mmol) was then dissolved in DCM (5 ml) and the

solution was added to a mixture of 50% aqueous NaOH (16 ml, w/v) and 15-

crown-5 (19.8 µl, 0.1 mmol). Allyl bromide (1.64 ml, 19.1 mmol) was then added,

and the resultant mixture was refluxed with vigorous stirring for 24 h. The mixture

was cooled, and the DCM (top) layer was separated, dried with Na2SO4, and the
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solvent evaporated in vacuo. The resultant syrup was purified by silica gel

chromatography to yield compound 12 or 14 as a yellow oil.

Tris(5-allyloxy-2-oxapentyl)-N-(tert-butyloxycarbonyl)-methylamine (12):

According to general procedure B, compound 11 (2.39 g, 4.6 mmol) was

deacetylated under Zemplén conditions, and after work-up, reacted with allyl

bromide (7.5 ml, 87.9 mmol) under phase transfer catalysis conditions. After

work-up and chromatography on silica gel  (petrol ether/EtOAc 19:1 → 9:1 → 4:1;

Rf 0.25 A) 2.25 g (95%) of 12 were obtained.1H-NMR (500 MHz, CDCl3): δ = 1.38

(s, 9H, CMe3), 1.79 (quintet, J = 6.3 Hz, 6H, 3 × OCH2CH2CH2O), 3.43-3.48 (m,

12H, 3 ×  OCH 2CH2CH2O), 3.59 [s, 6H, C(CH2O)3], 3.91 (m, 6H, 3 ×

CH2CH=CH2), 4.90 (s, 1H, NH), 5.17 (m, 6H, 3 × CH2CH=CH2), 5.86 (m, 3H, 3 ×

CH2CH=CH2); 
13C NMR (125 MHz, CDCl3): δ =  28.4 (3C, CMe3), 30.0 (3C, 3 ×

OCH2CH2CH2O), 58.5 [C(CH2O)3], 67.4, 68.2 (6C, 3 × OCH2CH2CH2O), 69.6

[3C, C(CH2O)3], 71.9 (3C, 3 × CH2CH=CH2), 78.8 (CMe3), 116.7 (3C, 3 ×

CH2CH=CH2), 135.0 (3C, 3 × CH2CH=CH2), 154.8 [N-(C=O)O]; Anal. Calcd. for

C27H49NO8: C, 62.89; H, 9.58; N, 2.72; O, 24.82. Found: C, 62.66; H, 9.61; N,

2.68; O, 24.87.

Tris(9-allyloxy-2,6-dioxanonyl)-N-(tert-butyloxycarbonyl)-methylamine (14):

According to general procedure B, compound 13 (3.2 g, 4.6 mmol) was

deacetylated under Zemplén conditions, and after work-up, reacted with allyl

bromide (7.5 ml, 87.9 mmol) under phase transfer catalysis conditions. After

work-up and chromatography on silica gel  (petrol ether/EtOAc 4:1 → 1:1; Rf 0.64

B) 2.86 g (90%) of 14 were obtained. 1H-NMR (500 MHz, CDCl3): δ = 1.42 (s, 9H,

CMe3), 1.78-1.87 (m, 12H, 6 ×  OCH2CH2CH2O), 3.45-3.52 (m, 24H, 6 ×

OCH2CH2CH2O), 3.62 [s, 6H, C(CH2O)3], 3.96 (m, 6H, 3 × CH2CH=CH2), 4.93 (s,

1H, NH), 5.22 (m, 6H, 3 × CH2CH=CH2), 5.91 (m, 3H, 3 × CH2CH=CH2); 
13C

NMR (125 MHz, CDCl3): δ  =  28.4 (3C, CM e3), 29.9, 30.1 (6C, 6 ×

OCH2CH2CH2O), 58.4 [C(CH2O)3], 67.3, 67.8, 68.4 (12C, 6 × OCH2CH2CH2O),
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69.5 [3C, C(CH2O)3], 71.8 (3C, 3 × CH2CH=CH2), 79.0 (CMe3), 116.7 (3C, 3 ×

CH2CH=CH2), 134.9 (3C, 3 × CH2CH=CH2), 155.0 [N-(C=O)O]; Anal. Calcd. for

C36H67NO11: C, 62.67; H, 9.79; N, 2.03; O, 25.51. Found: C, 62.67; H, 9.72; N,

2.10; O, 25.37.

Tris(13-acetoxy-2,6,10-trioxatridecyl)-methylamine hydrochloride (16):

Compound 15 (680 mg, 0.781 mmol) was dissolved in 4 M HCl in dioxane (10

ml), and the resultant mixture was stirred at rt under argon for 30 min. The

solvent was removed in vacuo to yield 16 (630 mg, quantitative) as an oil. 1H-

NMR (500 MHz, CDCl3): δ = 1.68-1.77 [m, 18H, 3 × (OCH2CH2CH2)3OAc], 1.92

(s, 9H, 3 × OAc), 3.35-3.44 [m, 36H, 3 × (OCH2CH2CH2)2OCH2CH2CH2OAc,

C(CH2O)3], 4.01 (t, J  =  6.5 Hz, 6H, 3 × OCH2CH2CH2OAc); 13C NMR (125 MHz,

CDCl3): δ  = 20.5 (3C, 3 ×  C H 3C=O), 28.6, 29.3, 29.6 [9C, 3 ×

(OCH2CH2CH2)3OAc], 59.1 [C(CH2O)3], 61.6 (3C, 3 × OCH2CH2CH2OAc), 66.7,

67.0, 67.4, 67.6, 68.3, 68.7  [18C, 3 ×  (OCH2CH2CH2)2OCH2CH2CH2OAc,

C(CH2O)3], 171.5 (3C, 3 × CH3C=O); ESI-MS: Calcd. for C37H72NO15 (M+H)+:

770.49 ; Found m/z 770.54.

N-{Tris[13-acetoxy-2,6,10-trioxatridecyl]methyl}-4-(benzyloxycarbonyl-

amino)-butyramide (18): Compound 16 (239 mg, 0.297 mmol), 17 [36] (70.4

mg, 0.297 mmol) and PyBOP (186 mg, 0.357 mmol) were dissolved in

dioxane/DMF (4 ml, 3:1 v/v), and DIPEA (229 µl, 1.34 mmol) was added. The

mixture was stirred at rt under argon for 24 h. The resultant solution was

partitioned between DCM (15 ml) and H2O (15 ml). The DCM layer was

separated, and the aqueous phase was extracted with DCM (25 ml). The DCM

fractions were combined, dried (Na2SO4), and the solvent was removed under

reduced pressure. The resultant syrup was purified by silica gel chromatography

(petrol ether/EtOAc 1:1→3:7→0:1) to afford 18 (250 mg, 85%, Rf 0.22 D) as a

yellow oil. 1H-NMR (500 MHz, CDCl3): δ  = 1.76-1.90 (m, 20H, 3 ×

[(OCH2CH2CH2)3OAc, NCH2CH2CH2C=O], 2.03 (s, 9H, 3 × OAc), 2.07-2.19 (m,
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3H, NCH2CH2CH2C=O), 3.20-3.24 (m, 3H, NCH2CH2CH2C=O), 3.41-3.50 [m,

30H, 3 × (OCH2CH2CH2)2OCH2CH2CH2OAc], 3.66 [s, 6H, C(CH2O)3], 4.13 (t, J =

6.5 Hz, 6H, 3 × OCH2CH2CH2OAc), 5.07 (s, 2H, CH2Ph), 5.28 (br s, 1H, NH,

Cbz), 5.86 (s, 1H, NH, Tris), 7.28-7.34 (m, 5H, C6H5); 
13C NMR (125 MHz,

CDCl3): δ =  20.9 (3C, 3 × CH3C=O), 25.8 (1C, NCH2CH2CH2C=O), 29.0, 29.8,

30.1 [9C, 3 × (OCH2CH2CH2)3OAc], 34.4 (1C, NCH2CH2CH2C=O), 40.3 (1C,

NCH2CH2CH2C=O), 59.8 [C(CH2O)3], 61.8 (3C, 3 × OCH2CH2CH2OAc), 66.5

(1C, C H 2Ph) ,  67 .3 ,  67 .7 ,  67 .9 ,  68 .4  [15C,  3  ×

(OCH2CH2CH2)2OCH2CH2CH2OAc], 69.1 [3C, C(CH2O)3], 128.0, 128.1, 128.5,

136.7 (6C, C6H5), 156.6 [N-(C=O)O], 171.1 (3C, 3 × CH3C=O), 172.4 (C=O,

amide); Anal. Calcd. for C49H84N2O18: C, 59.50; H, 8.56; N, 2.83; O, 29.11.

Found: C, 59.12; H, 8.36; N, 2.98; O, 29.56.

4-(Benzyloxycarbonylamino)-N-{tris[13-hydroxy-2,6,10-trioxatridecyl]-

methyl}-butyramide (19): Compound 18 (231 mg, 0.233 mmol) was dissolved in

a solution of sodium methoxide in dry methanol (0.05 M, 20 ml), and the resultant

solution was stirred at rt under argon for 4 h. The reaction mixture was

neutralized with Dowex 50X8 (H+-form), and the solvent was removed in vacuo.

The resultant oil was purified by silica gel chromatography (EtOAc/MeOH

95:5→9:1) to afford 19 (181 mg, 90%, Rf 0.2 E) as an oil. 1H-NMR (500 MHz,

CDCl3): δ = 1.76-1.83 [m, 20H, 3 × (OCH2CH2CH2)3OH, NCH2CH2CH2C=O], 2.18

(t, J =  6.8 Hz, 2H, NCH2CH2CH2C=O), 2.62 (bs, 3H, 3 × OH), 3.21 (m, 2H,

NCH2CH2CH2C = O ) ,  3 . 4 3 - 3 . 5 1  ( m ,  2 4 H ,  3  ×

OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OH), 3.58 [t, J  =  5.8 Hz, 6H, 3 ×

OCH2CH2CH2(OCH2CH2CH2)2OH], 3.67 [s, 6H, C(CH2O)3], 3.73 (t, J =  5.7 Hz,

6H, 3 × OCH2CH2CH2OH), 5.07 (s, 2H, CH2Ph), 5.45 (s, 1H, NH, Cbz), 6.00 (s,

1H, NH, Tris), 7.28-7.34 (m, 5H, C6H5); 
13C NMR (125 MHz, CDCl3): δ = 25.7

(NCH2CH2CH2C=O), 29.8, 30.0, 32.0 [9C, 3 ×  (OCH2CH2CH2)3OH], 34.3

(NCH2CH2CH2C=O), 40.3 (NCH2CH2CH2C=O), 59.9 [C(CH2O)3], 61.7 (3C, 3 ×

OCH2CH2CH2OH), 66.5 (C H 2Ph), 67.7, 68.1, 68.3 (12C, 3 ×
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OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OH), 69.2 [3C, C(CH2O)3], 69.7 [3C, 3

×  OCH2CH2CH2(OCH2CH2CH2)2OH], 128.0, 128.1, 128.5, 136.7 (6C, C6H5),

156.7 [N-(C=O)O], 173.5 (C=O, amide); ESI-MS: Calcd. for C43H78N2O15Na

(M+Na)+: 885.53; Found m/z 885.68.

N-{Tris[13-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyloxy)-2,6,10-

trioxatridecyl]methyl}-(4-benzyloxycarbonylamino)-butyramide (21):

Compounds 19 (151 mg, 0.173 mmol) and ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-

D-galactopyranoside (20) [27] (670 mg, 1.04 mmol) were dissolved in dry DCM

(10 ml), and the mixture was stirred with 4 Å molecular sieves (500 mg) at rt

under argon for 2 h. The mixture was cooled to 0 °C, and DMTST (538 mg, 2.08

mmol) was added. The reaction was stirred at 0 °C for 24 h, and then at 10 °C for

another 24 h under argon. The mixture was then filtered and extracted with

aqueous NaHCO3 solution (10 ml, 1 M) and brine (10 ml). The organic phase was

dried (Na2SO4), and the solvent was removed under reduced pressure. The

resultant syrup was purified by silica gel chromatography (EtOAc/petrol ether 1:1

→  7:3 → 1:0) to afford the desired product 21 (301 mg, 68%, Rf 0.15 C) as a

colorless solid. [α]D = +72.9 (c 1, CHCl3); 
1H-NMR (500 MHz, CDCl3): δ = 1.64-

1.69, 1.76-1.85 [m, 20H, 3 × (OCH2CH2CH2)3OGal, NCH2CH2CH2C=O], 2.16 (m,

2H, NCH2CH2CH2C=O), 3.18 (m, 2H, NCH2CH2CH2C=O), 3.22-3.47 [m, 30H, 3 ×

(OCH2CH2CH2)2OCH2CH2CH2OGal], 3.66, [s, 6H, C(CH2O)3],  3.68, 4.01-4.06

(m, 6H, 3 × OCH2CH2CH2OGal), 4.32 (m, 3H, 3 × H5-Gal), 4.40 (dd, J5,6 = 6.7,

J6,6’ = 11.3 Hz, 3H, 3 × H6-Gal), 4.68 (dd, J5,6’ = 6.4, J6,6’ = 11.2 Hz, 3H, 3 × H6’-

Gal), 4.81 (d, J1,2 = 7.9 Hz, 3H, 3 × H1-Gal), 5.07 (s, 2H, CH2Ph), 5.27 (bs, 1H,

NH, Cbz), 5.61 (m, 3H, 3 × H3-Gal), 5.78 (m, 3H, 3 × H2-Gal), 5.86 (s, 1H, NH,

Tris), 5.99 (m, 3H, 3 × H4-Gal), 7.22-7.26, 7.28-7.35, 7.37-8.09 (m, 65H, 13 ×

C6H5); 
13C NMR (125 MHz, CDCl3): δ = 26.6 (NCH2CH2CH2C=O), 29.7, 29.8,

29.9 [9C, 3 ×  (OCH2CH2CH2)3OGal], 35.1 (NCH2CH2CH2C=O), 42.2

(NCH2CH2CH2C=O), 59.8 [C(CH2O)3], 61.9 (3C, 3 × C6-Gal), 67.0 (CH2Ph), 67.4,

67.8, 67.9 [12C, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGal], 68.1 (3C, 3 × C4-Gal),
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68.4 (3C, 3 × OCH2CH2CH2OGal), 69.1 [3C, C(CH2O)3], 69.8 (3C, 3 × C2-Gal),

71.2 (3C, 3 × C3-Gal), 71.7 (3C, 3 × C5-Gal), 101.8 (3C, 3 × C1-Gal), 128.0-

136.7 (78C, C6H5), 165.2-166.0 (13C, 13 C=O); Anal. Calcd. for C145H156N2O42:

C, 67.01; H, 6.05; N, 1.08. Found: C, 66.51; H, 6.12; N, 1.13.

4-(Benzyloxycarbonylamino)-N-{tris[13-(β-D-galactopyranosyloxy)-2,6,10-

trioxatridecyl]methyl}-butyramide (5a): Compound 21 (30 mg, 0.015 mmol)

was dissolved in dry dioxane (1 ml), and a solution of sodium methoxide in

methanol (0.1 M, 1 ml) was added. The resultant mixture was stirred at rt under

argon for 4 h, after which it was neutralized with Dowex 50X8 (H+-form), filtered,

and the solvent was removed under reduced pressure. The residue was purified

by silica gel chromatography (DCM/MeOH/H2O 10:3:0 → 10:4:0→ 10:4:0.1 →

10:4:0.2 → 10:4:0.4) to afford 5a (14.6 mg, 94%, Rf 0.2 F) as a colorless solid.

[α]D = –5.73 (c 0.96, MeOH); 1H-NMR (500 MHz, MeOD): δ = 1.73-1.88 [m, 20H,

3 ×  (OCH2CH2CH2)3OGal, NCH2CH2CH2C=O], 2.19 (t, J  = 7.3 Hz, 2H,

NCH2CH2CH2C=O), 3.15 (t, J = 6.8 Hz, 2H, NCH2CH2CH2C=O), 3.44-3.75 [m,

54H, 3 ×  H2-Gal, 3 ×  H3-Gal, 3 ×  H5-Gal, 3 ×  H6-Gal, 3 ×

(OCH2CH2CH2)2OCH2CH2CH2OGal, C(CH2O)3, 3 × OCH2CH2CH2OGal-Ha], 3.82

(m, 3H, 3 × H4-Gal), 3.95 (m, 3H, 3 × OCH2CH2CH2OGal-Hb), 4.20 (d, J1, 2 = 7.4

Hz, 3H, 3 × H1-Gal), 5.07 (s, 2H, CH2Ph), 7.29-7.35 (m, 5H, C6H5); 
13C NMR

(125 MHz, MeOD): δ  = 27.5 (NCH2CH2CH2C=O), 31.0, 31.1 [9C, 3 ×

(OCH2CH2CH2)3OGal], 35.0 (NCH2CH2CH2C=O), 41.1 (NCH2CH2CH2C=O), 61.6

[C(CH2O)3], 62.4 (3C, 3 ×  C6-Gal), 67.4 (C H 2Ph), 67.9 (3C, 3 ×

OCH2CH2CH2OGal), 68.8 (3C, 3 × C[CH2O]3), 69.4 (3C, 3× C4-Gal), 68.8, 70.2,

72.6, 75.0, 76.6 [24C, 3 ×  C2-Gal, 3 ×  C3-Gal, 3 ×  C5-Gal, 3 ×

(OCH2CH2CH2)2OCH2CH2CH2OGal], 105.1 (3C, 3 × C1-Gal), 128.9-129.5, 138.4

(6C, C6H5), 158.9 [N-(C=O)O], 175.6 (C=O); ESI-MS: Calcd. for C61H109N2O30

(M+H)+: 1349.71; Found m/z 1349.87.
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4-Amino-N-{tris[13-(β-D-galactopyranosyloxy)-2,6,10-trioxatridecyl]methyl}-

butyramide (22):  Compound 5a  (25 mg, 18.5 µmol) was dissolved in

ethanol/dioxane (2 ml, 1:1 v/v), and Pd/C (10% Pd, 20 mg) was added. The

mixture was vigorously stirred under a H2 atmosphere (1 atm) at rt for 24 h. The

mixture was then diluted with ethanol, filtered and concentrated in vacuo to yield

22 as a colorless solid (19.5 mg, 87%). [α]D = –5.8 (c 1, MeOH); 1H-NMR (500

MHz, MeOD): δ  = 1.79-1.89 [m, 20H, 3 ×  (OCH2CH2CH2)3OGal,

NCH2CH2CH2C=O], 2.31 (t, J = 7.1 Hz, 2H, NCH2CH2CH2C=O), 2.87 (t, J = 7.3

Hz, 2H, NCH2CH2CH2C=O), 3.44-3.56 [m, 39H, 3 × H2-Gal, 3 × H3-Gal, 3 × H5-

Gal, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGal], 3.60-3.75 (m, 15H, 3 × H6-Gal,

C[CH2O]3, 3 × OCH2CH2CH2OGal-Ha), 3.82 (m, 3H, 3 × H4-Gal), 3.96, (m, 3H, 3

× OCH2CH2CH2OGal-Hb), 4.2 (d, J1, 2 = 7.2 Hz, 3H, 3 × H1-Gal); 13C NMR (125

MHz, MeOD): δ  = 26.9 (NCH2CH2CH2C=O), 30.7, 31.0, 31.1 [9C, 3 ×

(OCH2CH2CH2)3Gal], 34.6 (NCH2CH2CH2C=O), 48.3 (NCH2CH2CH2C=O), 62.5

(3C, 3 ×  C6-Gal), 67.9, 68.8, 68.9, 69.4, 69.7 [21C, 3 ×

(OCH2CH2CH2)2OCH2CH2CH2OGal, 3 ×  OCH2CH2CH2OGal, C(CH2O)3], 70.2

(3C, 3× C4-Gal), 72.6 (3C, 3× C2-Gal), 75.0 (3C, 3× C3-Gal), 76.6 (3C, 3× C5-

Gal), 105.1 (3C, 3 × C1-Gal); ESI-MS: Calcd. for C53H103N2O28 (M+H)+: 1215.67;

Found m/z 1215.91.

Fluorescent-labeled, Gal-terminated compound (6):  A stock solution

containing compound 22 (10 mg, 8.23 µmol), DIPEA (20 µl, 156 µmol) and 4 Å

molecular sieves (25 mg) in dry DMF/dioxane (1 ml, 1:1) was stirred at rt under

argon for 2 h. The solution (500 µl) was transferred to a small vial containing

Alexa Fluor® 488-NHS (1 mg, 1.55 µmol), 4Å molecular sieves (25 mg), and a

stirring bar. The resultant mixture was stirred in the dark at rt under argon for 4 d.

The mixture was then diluted with MeOH, filtered, and the solvents were

removed in vacuo. The residue was purified by gel filtration on a Sephadex LH-

20 column (2.5 × 35 cm) using MeOH as eluant, then on an RP-18 column

(H2O/MeOH stepwise gradient 1:0 to 1:1) to yield 6 (2.2 mg, 81%) as a red solid
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after final lyophilization from water. ESI-MS: Calcd for C74H112N4O38S2
2– (M/2)–:

864.32; Found m/z 864.85.

N-(Tris{13-[3,4,6-tri-O-acetyl-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-

galactopyranosyloxy]-2,6,10-trioxatridecyl}methyl)-(4-benzyloxycarbonyl-

amino)-butyramide (24): Compound 19 (15 mg, 17.3 µmol) and ethyl 3,4,6-tri-

O-acetyl-2-deoxy-1-thio-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-

galactopyranoside (23) [37] (54.6 mg, 104 µmol) were dissolved in dry DCM (1

ml) and stirred with 4 Å molecular sieves (50 mg) at rt under argon for 2 h. The

suspension was cooled to 0 °C, and DMTST (53.8 mg, 208 µmol) was added.

The mixture was stirred at 0 °C for 24 h, then at 10 °C for 48 h. The reaction was

quenched with triethylamine (50 µl), diluted with DCM (5 ml), washed with brine

(5 ml), dried (Na2SO4) and the solvent was removed in vacuo. The residue was

purified by silica gel chromatography (petrol ether/EtOAc 1:4 → 1:9) to afford 24

(35.1 mg, 91%, Rf 0.32 D) as a colorless solid. [α]D = –3.6 (c 1.76, CHCl3); 
1H-

NMR (500 MHz, CDCl3): δ  = 1.76-1.84 [m, 20H, 3 × (OCH2CH2CH2)3OGalN,

NCH2CH2CH2C=O], 1.96 (s, 9H, 3 × OAc), 2.03 (s, 9H, 3 × OAc), 2.14 (s, 9H, 3 ×

OAc), 2.20 (m, 2H, NCH2CH2CH2C=O), 3.22 (m, 2H, NCH2CH2CH2C=O), 3.43-

3.56 [m, 30H, 3 ×  (OCH2CH2CH2)2OCH2CH2CH2OGalN], 3.60 (m, 3H, 3 ×

CH2OGalN-Ha), 3,66, [s, 6H, C(CH2O)3], 3.85-3.90 (m, 3 × H2-GalN, 6H, 3 × H5-

GalN), 3.97 (m, 3H, 3 × CH2OGalN-Hb), 4.05-4.19 (m, 6H, 3 × H6-GalN, 3 × H6’-

GalN), 4.56 (d, J1,2 = 7.7 Hz, 3H, 3 × H1-GalN), 4.66, 4.75 (A, B of AB, J = 11.7

Hz, 6H, 3×CH2, Troc), 5.08 (s, 2H, CH2Ph), 5.14 (m, 3H, 3 × H3-GalN), 5.35 (m,

3H, 3 × H4-GalN), 5.78 (d, J = 7.6 Hz, 3H, N-H, GalN), 5.95 (bs, 1H, NH, Tris),

7.32 (m, 5H, C6H5); 
13C NMR (125 MHz, CDCl3): δ = 20.6, 20.7, 20.8 (9C, 9 ×

CH3, AcO), 25.8 (NCH2CH2CH2C=O), 29.6, 29.7, 29.8 [9C, 3 ×

(OCH2CH2CH2)3OGalN], 34.8 (NCH2CH2CH2C=O), 40.7 (NCH2CH2CH2C=O),

59.8 [C(CH2O)3], 61.4 (3C, 3× C6-GalN), 66.6 (CH2Ph), 66.9 (3C, 3 × C4-GalN),

67.4, 67.5, 67.6 [15C, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGalN], 68.4 (3C, 3 ×

OCH2CH2CH2OGalN), 69.1 [3C, C(CH2O)3], 70.1 (3C, 3 × C3-GalN), 70.5 (3C, 3
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× C5-GalN), 95.6 (3C, 3 × CCl3, Troc), 101.6 (3C, 3 × C1-GalN), 128.0-128.5

(6C, C6H5), 154.3, 154.5  [4C, 4 × N-(C=O)O], 170.3-171.2 (10C, 10 × C=O);

Anal. Calcd. for C88H132Cl9N5O42: C, 46.95; H, 5.91; N, 3.11. Found: C, 47.22; H,

6.00; N, 3.03.

N-{Tris[13-(2-acetamido-3,4,6-tri-O-acetyl-β-D-galactopyranosyloxy)-2,6,10-

trioxatridecyl]methyl}-(4-benzyloxycarbonylamino)-butyramide (25):

Compound 24 (20 mg, 8.88 µmol) was dissolved in dry dioxane (1 ml), and

activated Zn dust (55 mg, 84.1 mmol) was added, followed by acetic anhydride

(272 µl, 2.66 mmol), and the reaction mixture was stirred at rt under argon for 16

h. The mixture was filtered and the solvents were removed in vacuo. The residue

was purified by silica gel chromatography (DCM/MeOH stepwise gradient

99:1→93:7) to afford 25 (13.5 mg, 82 %, Rf 0.13 E) as a colorless solid. [α]D =

–12.2 (c 0.5, CHCl3); 
1H-NMR (500 MHz, CDCl3): δ = 1.76-1.85 [m, 20H, 3 ×

(OCH2CH2CH2)3OGalN, NCH2CH2CH2C=O], 1.95 (s, 9H, 3 × NAc), 1.99, 2.04,

2.14 (s, 27H, 9 ×  OAc), 2.19 (m, 2H, NCH2CH2CH2C=O), 3.22 (m, 2H,

NCH2CH2CH2C = O ) ,  3 . 4 4 - 3 . 4 8  [ m ,  3 0 H ,  3  ×

(OCH2CH2CH2)2OCH2CH2CH2OGalN], 3.58 (m, 3H, 3 × CH2OGalN-Ha), 3,67 [s,

6H, C(CH2O)3], 3.89-3.96 (m, 6H, 3 × H5-GalN, 3 × CH2OGalN-Hb), 4.00 (m, 3H,

3 × H2-GalN), 4.09-4.18 (m, 6H, 3 × H6-GalN, 3 × H6’-GalN), 4.64 (d, J1,2 = 8.3

Hz, 3H, 3 × H1-GalN), 5.08 (s, 2H, CH2Ph), 5.23 (m, 3H, 3 × H3-GalN), 5.34 (s,

3H, 3 × H4-GalN), 5.41 (m, 1H, NH, Cbz), 6.05 (d, J = 8.6 Hz, 3H, NHAc), 7.30-

7.34 (m, 5H, C6H5); 
13C NMR (125 MHz, CDCl3): δ = 20.6 (9C, 9 × CH3, AcO),

23.3 (3C, 3 × CH3, AcHN), 25.9 (1C, NCH2CH2CH2C=O), 29.9, 29.8, 29.6 [9C, 3

× (OCH2CH2CH2)3OGalN], 34.5 (NCH2CH2CH2C=O), 40.3 (NCH2CH2CH2C=O),

51.3 (3C, 3 × C2-GalN), 59.8 [C(CH2O)3], 61.4 (3C, 3 × C6-GalN), 66.5 (CH2Ph),

66.7 (3C, 3 × C4-GalN), 67.0 (3C, 3 × OCH2CH2CH2OGalN), 67.7 [15C, 3 ×

(OCH2CH2CH2)2OCH2CH2CH2OGalN], 69.0 [3C, C(CH2O)3], 70.0 (3C, 3 × C3-

GalN), 70.4 (3C, 3 ×  C5-GalN), 101.2 (3C, 3 × C1-GalN), 127.9, 128.0,

128.5,136.6 (6C, C6H5), 156.7  [1C, N-(C=O)O], 170.2-172.5, (13C, 13 × C=O);



57

Anal. Calcd. for C85H135N5O39: C, 55.15; H, 7.35; N, 3.78. Found: C, 54.84; H,

7.34; N, 3.61.

N-{Tris[13-(2-acetamido-β-D-galactopyranosyloxy)-2,6,10-

trioxatridecyl]methyl}-4-(benzyloxycarbonylamino)-butyramide (5b):

Compound 25 (35 mg, 18.9 µmol) was dissolved in dry dioxane (1 ml), and a

solution of sodium methoxide in methanol (0.1 M, 1 ml) was added. The mixture

was stirred at rt under argon for 4 h, after which it was neutralized with Dowex

50X8 (H+-form), filtered, and the solvent was removed under reduced pressure.

The residue was purified on an RP-18 column (H2O/MeOH, stepwise gradient,

1:0→2:3) to afford 5b (20.1 mg, 72%, Rf 0.1 F) as a colorless solid. [α]D = –1.7 (c

1, MeOH); 1H-NMR (500 MHz, MeOD): δ  = 1.75-1.82 [m, 20H, 3 ×

(OCH2CH2CH2)3OGalN, NCH2CH2CH2C=O], 1.99 (s, 9H, 3 × NAc), 2.20 (t, J =

7.3 Hz 2H, NCH2CH2CH2C=O), 3.16 (t, J = 6.8 Hz, 2H, NCH2CH2CH2C=O), 3.47-

3.49 [m, 33H, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGalN, 3 × H5-GalN], 3.54-3.61

(m, 6H, 3 × CH2OGalN-Ha, 3 × H3-GalN), 3,67 [s, 6H, C(CH2O)3], 3.72-3.79 (m,

6H, 3 × H6-GalN), 3.83 (m, 3H, 3 × H4-GalN), 3.89-3.95 (m, 6H, 3 × CH2OGalN-

Hb, 3 × H2-GalN), 4.36 (d, J1,2 = 8.4 Hz, 3H, 3 × H1-GalN), 5.07 (s, 2H, CH2Ph),

7.24-7.35 (m, 5H, C6H5); 
13C NMR (125 MHz, MeOD): δ = 23.1 (3C, 3 × CH3,

AcHN), 27.6 (NCH2CH2CH2C=O), 31.0, 30.1 [9C, 3 × (OCH2CH2CH2)3OGalN],

35.0 (NCH2CH2CH2C=O), 41.1 (NCH2CH2CH2C=O), 54.3 (3C, 3 × C2-GalN),

61.6 [C(CH2O)3], 62.5 (3C, 3 × C6-GalN), 67.4 (4C, 3 × OCH2CH2CH2OGalN,

CH2Ph), 68.9, 68.8, 68.6 [15C, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGalN], 66.4

(3C, 3 × C4-GalN), 69.6 [3C, C(CH2O)3], 73.3 (3C, 3 × C3-GalN), 76.6 (3C, 3 ×

C5-GalN), 103.1 (3C, 3 × C1-GalN), 128.8, 128.9, 129.5, 138.4 (6C, C6H5), 158.9

[N-(C=O)O]; ESI-MS: Calcd. for C67H117N5O30Na (M+Na)+: 1494.77; Found m/z

1495.41.
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N-{Tris[13-(2-acetamido-β-D-galactopyranosyloxy)-2,6,10-

trioxatridecyl]methyl}-4-amino-butyramide (26): Compound 5b (15 mg, 10.2

µmol) was dissolved in methanol/dioxane (2 ml, 1:1 v/v), and Pd/C (10% Pd, 15

mg) was added. The resultant suspension was vigorously stirred under a H2

atmosphere (1 atm) at rt for 3 h. The mixture was then diluted with methanol,

filtered and concentrated in vacuo to yield 26 as a colorless solid (13 mg, 95%).

[α]D = –1.49 (c 0.67, MeOH); 1H-NMR (500 MHz, MeOD): δ = 1.78-1.82 [m, 20H,

3 × (OCH2CH2CH2O)3GalN, NCH2CH2CH2C=O], 1.99 (s, 9H, 3 × NAc), 2.29 (t, J

= 7.2 Hz, 2H, NCH2CH2CH2C=O), 2.82 (m, 2H, NCH2CH2CH2C=O), 3.48-3.51

[m, 33H, 3 × (OCH2CH2CH2)2OCH2CH2CH2OGalN, 3 × H5-GalN], 3.55-3.63 (m,

6H, 3 × CH2OGalN-Ha, 3 × H3-GalN), 3.67 [s, 6H, C(CH2O)3], 3.70-3.79 (m, 6H, 3

× H6-GalN), 3.84 (m, 3H, 3 × H4-GalN), 3.89-3.95 (m, 6H, 3 × CH2OGalN-Hb, 3 ×

H2-GalN), 4.35 (d, J1,2 = 8.4 Hz, 3H, 3 × H1-GalN); 13C NMR (125 MHz, MeOD):

δ = 23.1 (3C, 3 × CH3, AcHN), 27.5 (1C, NCH2CH2CH2C=O), 31.0, 30.1 [9C, 3 ×

(OCH2CH2CH2)3OGalN], 34.7 (NCH2CH2CH2C=O), 41.2 (NCH2CH2CH2C=O),

54.3 (3C, 3 × C2-GalN), 61.6 [C(CH2O)3], 62.5 (3C, 3 × C6-GalN), 67.4 (3C, 3 ×

OCH2CH2CH2O G a l N ) ,  6 8 . 6 ,  6 8 . 8 ,  6 8 . 9  [ 1 5 C ,  3  ×

(OCH2CH2CH2)2OCH2CH2CH2OGalN), 69.4 (3C, 3 ×  C4-GalN], 69.7 [3C,

C(CH2O)3], 73.3 (3C, 3 × C3-GalN), 76.6 (3C, 3 × C5-GalN), 103.1 (3C, 3 × C1-

GalN), 174.0, 175.2 (4 × C=O); ESI-MS: Calcd. for C59H112N5O28 (M+H)+:

1338.75; Found m/z 1339.22.

Fluorescent-labeled, GalNAc-terminated compound (7): A stock solution

containing compound 26 (10 mg, 7.47 µmol), DIPEA (50 µl, 292 µmol) and 4 Å

molecular sieves (25 mg) in dry DMF/dioxane (1 ml, 1:1) was stirred at rt under

argon for 2 h. The resultant solution (500 µl) was transferred to a small vial

containing Alexa Fluor® 488-NHS (1 mg, 1.55 µmol), 4Å molecular sieves (25

mg), and a stirring bar. The mixture was stirred in the dark at rt under argon for 4

d, then diluted with MeOH, filtered, and the solvents were removed in vacuo. The

residue was purified by gel filtration on a Sephadex LH-20 column (2.5 × 35 cm)
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using MeOH as eluant, then on an RP-18 column (H2O/MeOH stepwise gradient

1:0 to 1:1) to yield 7 (2.6 mg, 90%). ESI-MS: Calcd. for C80H121N7O38S2
2– (M/2)–:

925.86; Found m/z 926.05.

4-(Benzyloxycarbonylamino)-N-{[tris(hydroxymethyl)]methyl}-butyramide

(27): Compound 17 [36] (3.01 g, 12.6 mmol) and EEDQ (3.26 g, 13.2 mmol) were

stirred in dry pyridine (100 ml) at rt under argon for 1 h. Tris (9) (1.33 g, 10.9

mmol) was then added, and the resultant suspension was stirred at 90 °C for 24

h. The solvent was removed in vacuo, and the residue was triturated with EtOAc

and a few drops of MeOH. The product was filtered off, washed with EtOAc, then

with cold water, and dried under high vacuum to yield 27 (2.88 g, 77%) as a

white solid. 1H-NMR (500 MHz, MeOD): δ = 1.79 (quintet, J = 7.0 Hz, 2H,

NCH2CH2CH2C=O), 2.28 (t, J = 7.4 Hz, 2H, NCH2CH2CH2C=O), 3.16 (t, J = 6.8

Hz, 2H, NCH2CH2CH2C=O), 3.73 (s, 6H, C[CH2O]3), 5.09 (m, 2H, CH2Ph), 7.28-

7.35 (m, 5H, C6H5); 
13C NMR (125 MHz, CDCl3): δ = 27.1 (NCH2CH2CH2C=O),

34.5 (NCH2CH2CH2C=O), 41.0(NCH2CH2CH2C=O), 62.5 [3C, C(CH2O)3], 63.6

[C(CH2O)3], 67.4 (CH2Ph), 128.8, 129.0, 129.4, 130.6, 138.3  (6C, C6H5), 159.0

[N-(C=O)O], 176.6 (C=O); ESI-MS: Calcd. for C16H24N2O6Na (M+Na)+: 363.15;

Found m/z 363.13.

N-{[Tris(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyloxy)methyl]methyl}-(4-

benzyloxycarbonylamino)-butyramide (28): Compounds 27 (100 mg, 0.294

mmol) and ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranoside (20) [27]

(753 mg, 1.17 mmol) were stirred with 4 Å molecular sieves (500 mg) in

DCE/Et2O (20 ml, 1:1) at rt under argon for 2 h. The mixture was cooled to 0 °C,

and a solution of NIS (263 mg, 1.17 mmol) and TfOH (0.117 mmol, 10.2 µl) in

DCE/Et2O (10 ml, 1:1) was added. The resultant mixture was stirred at 0 °C

under argon for 1 h, upon which it turned deep brown. The mixture was diluted

with DCM (50 ml), filtered through Celite, washed with Na2S2O3 (1 M, 25 ml),

followed by NaHCO3 (0.1 M, 25 ml), and dried with Na2SO4. The solvent was

removed under reduced pressure, and the residue was purified by silica gel
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chromatography (petrol ether/EtOAc 3:1 → 1:1) to yield 28 (311 mg, 51%, Rf

0.23 B) as a colorless solid. [α]D = +39 (c 1, CHCl3); 
1H-NMR (500 MHz, CDCl3):

δ = 1.65 (m, 2H, NCH2CH2CH2C=O), 1.86 (m, 2H, NCH2CH2CH2C=O), 3.09 (m,

2H, NCH2CH2CH2C=O), 3.52 (d, A of AB, J = 10.2 Hz, 3H, 3 × CH2OGal-Ha),

3.72 (m, 3H, 3 × H5-Gal), 4.10 (d, J1,2 = 8.0 Hz, 3H, 3 × H1-Gal), 4.32 (dd, J5,6’ =

7.4, J6,6’ = 11.2 Hz, 3H, 3 × H6’-Gal), 4.35 (d, B of AB, J = 10.1 Hz, 3H, 3

×CH2OGal-Hb), 4.51 (dd, J5,6 = 6.2, J6,6’ = 11.2 Hz, 3H, 3 × H6-Gal), 5.02 (m, 2H,

CH2Ph), 5.32 (s, 1H, NH, Cbz), 5.38 (dd, J4,3 = 3.3, J2,3 = 10.3 Hz, 3 × H3-Gal),

5.62 (dd, J1,2 = 8.1, J2,3 = 10.2 Hz, 3 × H2-Gal), 5.75 (s, 1H, NH, Tris), 5.84 (d,

J3.4 = 3.2 Hz, 3H, 3 × H4-Gal), 7.21-8.10 (m, 65H, 13 × C6H5); 
13C NMR (125

MHz, CDCl3): δ  = 25.2 (NCH2CH2CH2C=O), 33.8 (NCH2CH2CH2C=O), 40.1

(NCH2CH2CH2C=O), 59.4 [C(CH2O)3], 61.4 (3C, 3 × C6-Gal), 66.4 (CH2Ph), 67.8,

67.9 [6C, C(CH2O)3, 3 × C4-Gal], 69.9 (3C, 3 × C2-Gal), 71.0, 71.1 (6C, 3 × C3-

Gal, 3 × C5-Gal), 101.8 (3C, 3 × C1-Gal), 127.9-136.7 (78C, 13 × C6H5), 156.5

[N-(C=O)O], 164.9-172.6 (13C, 13 × C=O); Anal. Calcd. for C118H102N2O33: C,

68.27; H, 4.95; N, 1.35. Found: C, 67.81; H, 5.08; N, 1.36.

4-(Benzyloxycarbonylamino)-N-{[tris(β-D-galactopyranosyloxy)methyl]-

methyl}-butyramide (29): Compound 28 (241 mg, 0.115 mmol) was dissolved in

dry MeOH/dioxane (35 ml, 2.5:1), and sodium metal (65 mg, 2.83 mmol) was

added. The resultant mixture was stirred at rt under argon for 6 h, after which it

was neutralized with Dowex 50X8 (H+-form), filtered, and the solvent was

removed under reduced pressure. The residue was purified on a Sephadex G-25

column, and, after the removal of water in vacuo, washed with Et2O:DCM (ca.

2:1) to afford the desired product 29 (81.5 mg, 85 %, Rf 0.11 F) as a white

powder. [α]D = –0.2 (c 1, MeOH); 1H-NMR (500 MHz, MeOD): δ = 1.78 (m,

NCH2CH2CH2C=O), 2.22 (t, J = 7.1 Hz, 2H, NCH2CH2CH2C=O), 3.16 (t, J = 6.9

Hz, 2H, NCH2CH2CH2C=O), 3.45-3.54 (m, 9H, 3 × H2-Gal, 3 × H3-Gal, 3 × H5-

Gal), 3.69 (dd, J5,6’ = 5.2, J6,6’ = 11.3 Hz, 3H, 3 × H6’-Gal), 3.76 (dd, J5,6 = 6.9,

J6,6’ = 11.4 Hz, 3H, 3 × H6-Gal), 3.81 (m, 3H, 3 × H4-Gal), 3.93 (d, A of AB, J =
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10.2 Hz, 3H, 3 × CH2OGal-Ha), 4.27 (d, J1,2 = 7.6 Hz, 3H, 3 × H1-Gal), 4.32 (d, B

of AB, J = 10.2 Hz, 3H, 3 × CH2OGal-Hb), 5.07 (s, 2H, CH2Ph), 7.29-7.35 (m, 5H,

C6H5); 
13C NMR (125 MHz, MeOD): δ  = 27.1 (NCH2CH2CH2C=O); 35.0

(NCH2CH2CH2C=O), 41.2 (NCH2CH2CH2C=O); 62.5 (3C, 3 × C6-Gal), 67.4

(CH2Ph); 69.3 [3C, C(CH2O)3], 70.4 (3C, 3 × C4-Gal), 72.6 (3C, 3 × C2-Gal), 74.9

(3C, 3 × C3-Gal), 76.7 (3C, 3 × C5-Gal), 105.5 (3C, 3 × C1-Gal), 127.9-129.5

(6C, C6H5), 159.0 [N-(C=O)O], 175.9 (C=O); ESI-MS: Calcd. for C34H54N2O21Na

(M+Na)+: 849.31; Found m/z 849.44.

4-Amino-N-{[tris(β-D-galactopyranosyloxy)methyl]methyl}-butyramide (30):

Compound 29 (27.2 mg, 32.9 µmol) was dissolved in methanol (2.5 ml), and

Pd/C (10% Pd, 25 mg) was added. The resultant mixture was vigorously stirred

under a H2 atmosphere (1 atm) at rt for 48 h. The mixture was then filtered and

concentrated in vacuo to yield 30 as a colorless solid (19.9 mg, 87%). [α]D = +3.1

(c 1, MeOH); 1H-NMR (500 MHz, MeOD): δ = 1.89 (m, 2H, NCH2CH2CH2C=O),

2.32 (m, 2H, NCH2CH2CH2C=O), 3.00 (m, 2H, NCH2CH2CH2C=O), 3.43-3.50 (m,

9H, 3 × H2-Gal, 3 × H3-Gal, 3 × H5-Gal), 3.68 (dd, J5,6’ = 5.1, J6,6’ = 11.2 Hz, 3H,

3 × H6’-Gal), 3.72 (dd, J5,6 = 6.9, J6,6’ = 11.3 Hz, 3H, 3 × H6-Gal), 3.77 (m, 3H, 3

× H4-Gal), 3.87 (d, A of AB, J = 10.1 Hz, 3H, 3 × CH2OGal-Ha), 4.25 (d, J1,2 = 6.8

Hz, 3H, 3 × H1-Gal), 4.31 (d, B of AB, J = 10.1 Hz, 3H, 3 × CH2OGal-Hb); 
13C

NMR (125 MHz, MeOD): δ = 24.5 (NCH2CH2CH2C=O), 34.7 (NCH2CH2CH2C=O),

40.3 (NCH2CH2CH2C=O), 61.3 [C(CH2O)3], 62.6 (3C, 3 × C6-Gal), 69.1 [3C,

C(CH2O)3], 70.8 (3C, 3 × C4-Gal), 73.0 (3C, 3 × C2-Gal), 75.3 (3C, 3 × C3-Gal),

77.1 (3C, 3 × C5-Gal), 105.8 (3C, 3 × C1-Gal), 174.9 (C=O); ESI-MS: Calcd. for

C26H49N2O19 (M+H)+: 693.29; Found m/z 693.39.

Fluorescent-labeled, Gal-terminated control compound (8): A stock solution

containing compound 30 (12 mg, 17.3 µmol), DIPEA (50 µl, 291 µmol) and 4 Å

molecular sieves (50 mg) in dry DMF (1 ml) was stirred at rt under argon for 2 h.

The resultant mixture (500 µl) was transferred to a small vial containing Alexa
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Fluor® 488-NHS (1 mg, 1.55 µmol), 4Å molecular sieves (25 mg), and a stirring

bar. The mixture was then stirred in the dark at rt under argon for 4 d. The

mixture was then diluted with MeOH, filtered, and the solvents were removed in

vacuo. The residue was purified on an RP-18 column (H2O/MeOH gradient 1:0 to

19:1) to yield 8 (1.8 mg, 96%) as a red solid after final lyophilization from water.

ESI-MS: Calcd. for C47H59N4Na2O29S2 (M+2Na+H)+: 1253.25; Found m/z

1253.59.

2.6.5 Ligand binding and internalization

2.6.5.1 Fluorescence microscopy:

One day before the experiments, the cells were seeded at a density of 2 x 105

cells/well into 12-well plates containing-collagen coated glass cover slips. The

cells were washed once with PBS, and then serum-starved for 30 min on ice in 1

ml of DMEM containing 25 mM HEPES. They were then incubated with 500

µl/well of the Alexa Fluor® 488-labeled compounds 6-8 (100 µM) in the same

medium on ice for 1.5 h in the dark. After the binding step, the cells were washed

carefully 4 times with cold PBS. Then fresh, prewarmed, complete DMEM

medium (1 ml/well) was administered and the cells were incubated for 40 min in

an incubator at 37 °C in a humidified CO2 atmosphere (5 %, v/v), leading to the

internalization of the receptor-bound compounds into the cells. After the

internalization step, the cells were washed twice with PBS and then fixed with 3%

paraformaldehyde (PFA) in PBS for 30 min at 4 °C. After fixation, the cover-slips

were washed abundantly with PBS and mounted upside down, in a Mowiol 4-88

mounting buffer containing N-propyl gallate, onto glass slides.

Selective cellular uptake of the Alexa Fluor® 488-labeled compounds was

visualized using a Zeiss Axiovert 135 microscope with a 63 x planapo objective
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(numerical aperture = 1.4, oil) with the appropriate filter set (450/490, FT 510, LP

520) equipped with a Zeiss AxioCam MRm CCD camera run by AxioVision 3.1

imaging software.

2.6.5.2 Flow cytometry:

Cells were grown for 24 h in collagen coated (80 µg/ml) 24-well plates at a

density of 3 x 105 cells/well or in 96-well plates at 1.5 x 105 cells/well.

The titration experiments were performed in 24-well plates, the cell-layers were

first washed twice with cold PBS before incubation with compound 7  at

concentrations ranging from 0.4 to 12.5 µM (1:2 serial dilutions) in 200 µl of

DMEM without FBS for 40 min at 37 °C. Then the cells were washed twice with

cold PBS, detached and stripped from surface-bound compound by incubating

them in a mixture containing 0.025% trypsin and 5 mM EDTA in PBS for 10 min

on ice. Addition of complete medium quenched this process. The detached cells

were collected and centrifuged at a speed of 1500 rpm for 3 min. Finally, the cells

were fixed in 2% PFA in PBS for 15 min on ice followed by an aldehyde-

quenching step with 100 mM lysine in PBS for 10 min. The fixed cells were then

washed once with FACS buffer (PBS containing 0.5% BSA and 0.1% NaN3) and

resuspended in 200 µl of the same buffer for measuring.

The competitive uptake experiments were performed with cells grown in 96-well

plates. 20 µl of asialofetuin dilutions at concentrations ranging from 0.6 to 200

µM or GalNAc at 0.6 to 200 mM were added directly to the cells, immediately

followed by the addition of 20 µl of compound 7 or 8 diluted to 20 µM in DMEM

without FBS and then incubated for 60 min at 37 °C in the incubator. The cells

were washed, detached and fixed as described above.
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Analyses were performed on a CyAn ADP flow cytometer with Summit 4.1

software (Dako Cytomation). An example for the analysis of HepG2 cells is given

in Figure 7. The forward and side scatter gate R1 was set to count 30’000 intact

cells of each sample (Figure 7, dot plot A). In gate R2, the cells counted in gate

R1 were discriminated for doublets (Figure 7, dot plot B). Histogram C depicts an

overlay of the log of fluorescence intensity at 488 nm of untreated (grey) and

treated HepG2 cells (green) from gate R2. Uptake of a compound into cells was

evaluated by comparing the shift in median intensity of fluorescence (MFI)

between untreated cells (background fluorescence) and treated cells.

Figure 7. Example of flow cytometry analysis showing uptake of compound 7 into HepG2 cells.

Dot plot (A) represents the HepG2 cell population gated for analysis (R1=30’000), plotted as a

function of forward scatter (FS) and side scatter (SS). Dot blot (B) represents the population of R1

gated for single cells (R2) as a function of pulse-width and FS-area and histogram (C) depicts the

log fluorescence intensity at 488 nm of the cells gated in R2. SK-Hep1 cells were analyzed in the

same way, with a more compact population of cells and less debris in gate R1 and therefore

smaller peaks due to less clumping of the cells (data not shown).

Further analysis and IC50 calculations were done with GraphPad Prism 4

software.
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Chapter 3: Directed library of small molecular

weight ligands for the ASGP-R

3.1 Introduction

In the past, most research efforts in designing high affinity ligands for the ASGP-

R were focused on multivalent compounds, with high molecular weights, for use

as homing devices in liver-specific drug and gene delivery [4]. However, for a

number of years it has also been postulated that the ASGP-R could be involved

in hepatitis B [46] and C [47] entry into the liver cells. Therefore, antiviral therapy

involving small molecular weight drugs that bind to the ASGP-R is a promising

field of research.

3.1.1 Hepatitis B

In 2003, more than 350 million people worldwide suffered from hepatitis B virus

(HBV) infection [48], with chronic infections resulting in liver cirrhosis and/or

hepatocellular carcinoma [49].

Chronic hepatitis B treatment involves antiviral drugs such as lamivudine and

adefovir and immune system modulators such as pegylated interferon alpha

(IFN-α) [50].

HBV particles possess three related envelope glycoproteins: S, preS1 and preS2

[51]. Experiments by Treichel et al. [46] on ASGP-R-containing human

hepatocellular carcinoma HepG2 cells [38] and on the purified receptor have

demonstrated that the ASGP-R is able to specifically bind the HBV via the preS1

and preS2 envelope proteins. The study also suggested that this attachment
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could lead to viral endocytosis by the hepatocytes, which could be a mechanism

for viral entry into its host. Moreover, the binding of HBV to the ASGP-R was

inhibited by natural ligands (asialofetuin and ASOR), EDTA (which is known to

chelate and sequester Ca2+, necessary for the structural integrity of the binding

site), anti-ASGP-R antibodies and monoclonal anti-preS1 antibodies.

Furthermore, the binding and inhibition data indicated that the interaction

occurred via specific, D-galactose-containing glycosides on the HBV preS1

glycoprotein.

In contrast, earlier studies showed that despite being highly glycosylated, the

preS2 envelope protein contains no D-galactose residues on its N-linked glycans

[52], therefore the role of preS2 in HBV attachment is yet to be clarified.

Further studies on HBV attachment to, and entry into hepatocytes suggested that

the endocytosis of HBV particles by hepatocytes is a prerequisite for HBV liver

infection [53].

3.1.2 Hepatitis C

According to World Health Organisation estimates [54], around 170 million

people around the world are infected with the hepatitis C virus (HCV). More than

70% of those infected fail to clear the virus and have a persistent infection which

may also lead to liver cirrhosis and/or hepatocellular carcinoma [55,56].

The exact details regarding the early stages of viral infection remain largely

unknown, however it is generally accepted that the HCV envelope proteins (E1

and E2) play a crucial role in binding to the host cell [47].

Since hepatocytes are the primary site of HCV infection, it has been suggested

that the virus may also utilise the ASGP-R for binding and entry [47]. The
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envelope proteins on HCV are glycosylated, and it has been shown that they can

bind to, and get internalised by human hepatocellular carcinoma (HepG2) cells

[57]. The fact that the HCV envelope proteins could bind to the ASGP-R via a

carbohydrate-protein interaction involving the ASGP-R sugar binding site was

supported by the following: (1) the binding was inhibited by EDTA, and (2) the

binding was also inhibited by asialoorosomucoid, a known natural ligand of the

ASGP-R [57, 58].

Treatment of hepatitis C also involves antiviral drugs such as ribavirin, as well as

IFN-α. However, even a combination of these leads to a viral clearance in only

about 50% of the patients [59].

The facts described above suggest that blocking of HBC/HCV attachment to

hepatocytes in vivo could be a promising new route to anti-hepatitis therapy.

Thus, there is an obvious need for the development of a small molecular weight

Gal/GalNAc mimic that would bind with a higher affinity to the ASGP-R than the

carbohydrates on the viral envelope proteins. Such a mimic could then be used

for anti-hepatitis B/C therapy by inhibiting viral attachment to the hepatocytes via

the ASGP-R.

Furthermore, by replacing the Gal/GalNAc residues on multivalent ligands (1,

Figure 5) with a higher affinity mimic, a compound with an even higher affinity

would be generated improving existing multivalent ligands intended for liver-

specific drug delivery [60].

O O O O
N
H

NHCbz

O

3

1

O

HO

HO

N

N

N

R
GalNAc mimic

Figure 5. A hypothetical trivalent ligand (1) for the ASGP-R featuring a GalNAc mimic attached

via the 6-position for use in liver-specific drug delivery.
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3.1.3 Design of a small molecular weight ASGP-R ligand

Relatively little research has been done on increasing the affinity of monovalent

ligands towards the ASGP-R. Up to now, the highest affinity small molecular

weight, monovalent ligand for the ASGP-R has been N-acetylgalactosamine

(GalNAc, 2, Figure 6A). The chemical structure and physicochemical properties

of GalNAc make it a poor candidate for therapeutic use. Its high polarity, due to

the many hydrogen bond donors and acceptors, causes it to violate Lipinski’s

rules for good absorbance, and makes it prone to fast elimination. It has a highly

metabolically labile anomeric center susceptible to oxidation, reduction and

metabolism leading to a low plasma half-life.

O

HO
OH

HO

N OH
H

O

O

R2O
R1

R2O

N3

R1, R2 = H: 3
R1 = OAc, R2 = Ac: 4

Anomeric center
removed

2

Anomeric center =
metabolic hot spot

Points into solvent

Coordinate to Ca2+

Lipophilic alpha-face
stacks onto W243
residue

Methyl group makes
van der Waals interaction
with H256

A B

Figure 6. (A) Lead compound N-acetylgalactosamine (GalNAc, 2), showing important interactions

with the binding site of the ASGP-R H1-CRD; (B) Compound 3 is dehydroxylated at the 6-

position.  Compound 4  is the protected scaffold used for directed library.

Therefore, the focus of this project was to design a GalNAc mimic, which would

be more lipophilic, metabolically stable, synthetically easily accessible and have

a higher affinity towards the ASGP-R than GalNAc.
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3.1.4 Binding mode of GalNAc to the ASGP-R

Taking GalNAc as the lead compound, it was first necessary to examine its

interaction with the binding site of the ASGP-R H1-CRD. The model (Figure 7),

based on the crystal structure of H1-CRD [7], clearly illustrates the important

interactions involved in the binding of GalNAc to the ASGP-R. These interactions

are further summarized in Figure 6A. Thus, the 3-OH and the 4-OH of GalNAc

must be equatorial and axial [61], respectively, and cannot be modified because

they coordinate to the Ca2+ ion. The hydrophobic patch on the α-face of GalNAc,

formed by the circular arrangement of ring C-H bonds, is involved in a lipophilic

interaction by stacking onto the indole side chain of Trp243.

Trp243

GalNAc GalNAc

4-OH
3-OH

Ca2+

A B

Figure 7. A model of GalNAc docked into the sugar binding site of the H1 CRD. (A) Illustration of

the hydrophobic interaction between Trp243 and the α-face of GalNAc. (B) Illustration of the 3-

and 4-OH groups coordinating to the calcium ion. (Picture courtesy of M. Spreafico, manual

docking trial, MacYeti 7.05)
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The anomeric centre is strictly speaking not necessary for binding; and since it

acts as a metabolic hotspot, it can be totally removed making the compound

more metabolically stable. The 6-OH is not required for binding because it points

into the solvent, and has enough space around it to accommodate a wide range

of substituents [61]. Therefore, it could always be removed altogether (compound

3, Figure 6B) or replaced by a more lipophilic substituent in order to improve the

Lipinski parameters. Alternatively, the 6-OH could also serve as an attachment

point for further elaboration or conjugation to oligovalent carriers, fluorescent

labels, etc. (cf. Figure 5). The acetamido substituent in the 2-position must be

equatorial, but could in principle be replaced by other substituents.

The theoretical binding mode of Gal/GalNAc to the ASGP-R has been further

reinforced by several groups, which performed binding studies using galactose

derivatives [62,63]. Studies using the closely related rat hepatic lectin subunit 1

(RHL-1) [62], showed that acylating the amino group of galactosamine with

carboxylic acids featuring alkyl chains longer than 2 carbons led to a decrease in

affinity. For example, by simply replacing the N-acetyl group in GalNAc with a

bulkier N-benzoyl group, several independent research groups proved that the

affinity towards the related rat ASGP-R dropped by up to 9-fold [63-65].

Nevertheless, as it is evident from molecular modeling studies [66] and affinity

data for ligands synthesized in this work, the binding pocket has a shape that on

the one hand quickly leads to a steric clash with bulky substituents (cf. Figure 8A

and B), but on the other hand has a definite capacity to accommodate a wide

variety of other substituents in the 2-position provided they satisfy some essential

criteria, which will be described further on.

Thus, the possibility to modify the 2-position made GalNAc a good lead

compound for the generation of a directed library of small drug-like molecules. By

removing the anomeric center, and replacing the acetamido group with an azide,

a versatile scaffold (4, Figure 6B) was created. It was then used to generate a
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library of 1,4-disubstituted-1,2,3-triazoles attached directly to the tetrahydropyran

ring via a Huisgen 1,3-dipolar cycloaddition.

3.1.5 Structure and topology of the binding site

A closer look at the binding pocket surrounding the 2-position of GalNAc reveals

a dumbbell-shaped cavity (Figure 8A).

Figure 8. (A) A model of a hypothetical substituted triazole compound 5, similar in structure to the

compounds generated in this work, docked with the ASGP-R H1-CRD [66]. Colors: red =

positively charged amino acids; blue = negatively charged amino acids; purple = Ca2+; green =

polar amino acids; brown = hydrophobic amino acids; grey = aromatic amino acids. (B)

Schematic representation of the orientation of the 4-substituent of the triazole in the dumbbell

binding pocket.



75

This may explain why bulky and/or long substituents in the 2-position cause a

drop in the affinity due to a direct steric clash with the protein surface (Figure 8B)

[67]. Nevertheless, the dumbbell-shaped binding pocket offers enough room for

the substituents to seek interactions at the sides, by orienting themselves approx.

90° with respect to the scaffold-triazole axis (Figure 8B).

3.1.6 The Huisgen 1,3-dipolar cycloaddition

In general, cycloaddition reactions are defined as two components coming

together to form two new σ-bonds leading to ring formation. Cycloadditions are

pericyclic reactions, proceeding through a characteristic cyclic transition state

with a concerted movement of electrons resulting in a simultaneous breaking and

forming of bonds. Furthermore, they are usually suprafacial [68].

In the Huisgen 1,3-dipolar cycloaddition of azides and alkynes [69] (Figure 9), the

azide is a 1,3-dipole. This group is isoelectronic with an allyl anion, having a

conjugated system of three p-orbitals on three atoms forming a four electron

conjugated system. Due to its mesomeric structure, both ends of the 1,3-dipole

have nucleophilic and electrophilic properties. The other component of the

cycloaddition reaction, the alkyne, is a dipolarophile. There is a wide possibility of

structures of 1,3-dipoles, with the participating atoms being carbon, nitrogen,

oxygen or sulphur in any combination, with double or triple bonds connecting

them.
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Figure 9. Mechanism of the classical Huisgen 1,3-dipolar cycloaddition between an alkyne and

an azide.

The mechanism of the reaction is basically an electron shift (Figure 9). Two π-

electrons of the dipolarophile and four electrons of the 1,3-dipole are shifted in

the concerted and pericyclic manner, as described before. Electron-donating and

withdrawing substituents modify the reactivity.

The regioselectivity of the reaction depends on steric and electronic

characteristics of the starting materials, and is partially predictable, with the 1,4-

disubstituted triazole being favoured on steric grounds. Furthermore, in order for

the reaction to go to a fast completion, either the dipolarophile or the dipole must

be electron rich, while the other must be electron poor. Therefore, the discovery

of copper(I) catalysts for this process [70] which then leads exclusively to the 1,4-

product, and increases the rate of the reaction, opened up many possibilities for

applying the reaction in organic synthesis [71].

The reaction taking place via a copper(I) catalyst, is a stepwise reaction, and can

therefore no longer be called a concerted classical Huisgen 1,3-dipolar

cycloaddition [68] (Figure 10).
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Figure 10. Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction cycle. Adapted from

Rostovtsev et al. [72]

In the first step (1), the alkyne is activated and forms a Cu(I)-acetylide complex A

[72-73]. In the second step (2), the Cu(I)-acetylide complex reacts with the azide

leading to the formation of intermediate B. Step 3 is called ligation, and proceeds

to form a six-membered copper-containing intermediate C. Step 4 finally leads to

the formation of a thermally and hydrolytically stable triazole (D). The copper(I)

catalyst E is liberated (Step 5) and reacts with the next alkyne (Step 1). A

heterocyclic chelate ligand (L, Figure 10) is often added to accelerate the rate of

the reaction [74], however, the reaction can still proceed under “ligand-free”

conditions [73].

Due to the structure of intermediate B, this reaction is highly regioselective, and

leads exclusively to the formation of a 1,4-disubstituted 1,2,3-triazole. However,

the yield does greatly depend on the nature of both the dipole and the

dipolarophile [68].
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Thus, due to its high regioselectivity, which allows the substituent in the 4-

position of the triazole to point directly into the dumbbell-shaped binding pocket

(Figure 8), and the large variety of available alkynes, the copper(I)-catalyzed

Huisgen 1,3-dipolar cycloaddition was chosen for the generation of the directed

library (Figure 11).

O

AcO
OAc

AcO

N3

O

AcO
OAc

AcO

N

N

N

R

O

HO
OH

HO

N

N

N

R

Deprotection

Final compound purified 
by LC-MS and ready 
for biological testing

Scaffold (4)

+ R

Huisgen 1,3-dipolar
cycloaddition

Alkyne

Figure 11. General strategy for the synthesis of compounds for the directed ASGP-R ligand

library.

The compounds produced in the directed library were then tested for affinity

towards the ASGP-R using a competitive binding assay (Appendix 1).

3.2 Results and Discussion

3.2.1 Scaffold synthesis

For the synthesis of the scaffold (4, Scheme 1), galactosamine hydrochloride (6)

was peracetylated using acetic anhydride in pyridine (→  7). Treatment of N-

acetylgalactosamine with acetyl chloride, a known procedure for synthesizing

glycosyl chlorides [75], resulted in poor yields of 8 (< 30%). Therefore, a new

procedure was developed, which involved treating 2-acetamido-1,3,4,6-tetra-O-

acetyl-2-deoxy-D-galactopyranoside (7) with TiCl4 in DCM, giving yields of up to
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89% of 8. The latter was then reductively dehalogenated using (Bu)3SnH and

AIBN in refluxing toluene, yielding 9 quantitatively, which upon deacetylation (→

10), amine-azide exchange [76] (→ 11) and subsequent peracetylation furnished

the scaffold 4 in a 76% yield over three steps.

O

AcO
OAc

AcO

AcHN

O

HO
OH

HO

NH2

O

AcO
OAc

AcO

N3

(d) (e) (f)O

HO
OH

HO

N3

(g)

O

AcO
OAc

AcO

AcHN

O

HO
OH

HO

NH2 OH

HCl

OAc

O

AcO
OAc

AcO

AcHN
Cl

(a) (b) (c)

7 8 9

10 11 4

6

Scheme 1. (a) Ac2O, pyridine, 0 °C → r.t., 24 h, 89%; (b) TiCl4, DCM, r.t., 3 d, 89%; (c) (Bu)3SnH,

AIBN, PhMe, reflux, 1 h 20 min, quant.; (d) KOH, 18-crown-6, dioxane/H2O, reflux, 6.5 h; (e) TfN3,

NaHCO3, CuSO4•5H2O, H2O/PhMe/MeOH, r.t., 24 h; (f) Ac2O, pyridine, r.t., 24 h, 76% (3 steps);

(g) NaOMe/MeOH, r.t., 3 h, 100%.

Compound 4 was deprotected under standard Zemplén conditions yielding 11

quantitatively. The latter was submitted as a control compound for biological

testing.
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3.2.2 Synthesis of phenyl propargyl ethers

For the synthesis of substituted phenyl propargyl ethers (Scheme 2), the

corresponding substituted phenols (12, 13 or 14) were alkylated with propargyl

bromide in refluxing acetone, using K2CO3 as base (→  1 5 , 1 6 or 1 7 ,

respectively). Compound 19 was synthesized by an analogous procedure

starting from 8-hydroxyquinoline (18). Compound 21 was obtained in a 69% yield

by treating 20 [77] with triflic anhydride in DCM in the presence of triethylamine.

OH

R1

O

R1

12: R1 = Ph
13: R1 = n-Pr
14: R1 = CO2Et

(a)

15: R1 = Ph
16: R1 = n-Pr
17: R1 = CO2Et

N

OH

(a)

O

N

19

O

NH2

(b)

O

NHSO2CF3

20 21

18

Scheme 2. (a) Propargyl bromide, K2CO3, acetone, reflux, 5 h, (15: 84%; 16: 99%; 17: 73%; 19:

88%); (b) Tf2O, Et3N, DCM, 0 °C → r.t., 24 h, 69%.
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3.2.3 Library synthesis

When the Huisgen 1,3-dipolar cycloaddition was done under the relatively

popular “click chemistry” conditions [78] (Scheme 3), i.e. CuSO4 as the source of

Cu(II), and sodium ascorbate as the reducing agent for the formation of

catalytically active Cu(I) in t-BuOH/water, the reactions gave only low yields or

even failed to give detectable amounts of product. Therefore, a new procedure

was devized (Scheme 3), which involved the use of CuCl as the direct source of

Cu(I), triethylamine as base, in DCM. The latter proved to be the best solvent for

the reactions, with the highest yield of 97% obtained for compound 22, whereas

when the same reaction was done with THF, no product could be detected.

O

AcO
OAc

AcO

N3

O

AcO
OAc

AcO

N

N

N

(Me)3Si

4

22

(a)

(b) or (c)

Scheme 3. (a) Ethynyltrimethylsilane, CuCl, Et3N, DCM, r.t., 24 h, 97%; (b)

Ethynyltrimethylsilane, CuCl, Et3N, THF, r.t., 24 h; (c) Ethynyltrimethylsilane, CuSO4•5H2O,

sodium ascorbate, t-BuOH/H2O, r.t., 24 h.
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Thus, Scheme 4 illustrates the application of the new synthetic strategy, with the

results summarized in Table 1.

O

AcO
OAc

AcO

N3

O

R2O
OR2

R2O

N

N

N

R1

4

(a)

O

R3O
OR3

R3O

N

N

N

R1

(b), (c) or (d)OR1

Scheme 4. (a) CuCl, Et3N, DCM, r.t., 24 h; (b) NaOMe/MeOH, 3 h, r.t.; (c) H2O/MeOH/Et3N

(5:5:1), r.t., 24 h; (d) NaOH, H2O/MeOH, r.t., 24 h.

Table 1. Summary of compounds synthesized by the strategy shown in Scheme 4.

Entry Alkyne R1 = R2 = Ac
Yield

(%)
R3 = H

Yield

(%)

1 15 28 74 38 93

2
23

[79]
Br

29 85 39 34

3 16 30 96 40 41

4
24

[77]
NO2 31 95 41 33

5
25

[80]
CN 32 98 42(1) 81

6 19
N

33 80 43 85
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7
26

[81]

FF

F F

F 34 73 44 68

8 17 CO2Et 35 82 45(1) 74

9 21 NHSO2CF3 36 41 46 73

10
27

[79]
Br 37(1) 84 – –

11 47 48 93 49 45

(1) Compounds 32  and 35  were deprotected using conditions (c) and (d) (Scheme 4),

respectively, while all other compounds were deprotected using conditions (b). Compound 37

was not deprotected since it was intended for use in coupling reactions.

Morpholine and N -methylpiperazine often appear as privileged motifs in

medicinal chemistry, therefore, organometallic chemistry was employed to couple

these to compound 37. Thus, compound 51 was synthesized via a Buchwald-

Hartwig Pd-catalyzed coupling [82] (Scheme 5). The aryl bromide (37) was

treated with morpholine in the presence of Pd2(dba)3, ligand 50 [83], Cs2CO3 in

toluene, furnishing 51 in a 40% yield. Using THF or dioxane instead of toluene

gave no detectable product. Compound 51 was deacetylated under standard

Zemplén conditions to give 52 in a 57% yield.

Attempts to synthesize compound 54 by the same procedure failed. Therefore,

54 was synthesized using a different ligand [84] (53, Scheme 5) for the catalyst.

Zemplén deacetylation gave the desired product (55), in a 44% yield over two

steps.
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Scheme 5. (a) morpholine, Pd2(dba)3, Cs2CO3, PhMe, 80 °C, 24 h, 40%; (b) N-methylpiperazine,

Pd2(dba)3, Cs2CO3, PhMe, 80 °C, 24 h; (c) NaOMe/MeOH, r.t., 24 h, (52: 57%; 55: 44%).
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3.2.4 Competitive binding assay

(Performed by Daniela Stokmaier, Institute of Molecular Pharmacy, University of

Basel)

The final compounds from the directed library were then tested for their affinity

towards the ASGP-R H1-CRD using a competitive binding assay (Appendix 1),

and the results are summarised in Table 2.

Table 2. Competitive binding assay results of directed library compounds.

Entry Compound rIC50 ± s. d.

1 GalNAc 1.0 ± 0.3

2 11 13.7 ± 4.3

3
R =

49
0.8 ± 0.2

4(1)
R =

38

-

5(1)

Br

R =

39

-

6(1) R =

40
-

7(1) NO2R =

41
-

8(1)

42

CNR =
-
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9(1)
N

R =

43

-

10
FF

F F

FR =

44

2.6 ± 0.7

11(2) CO2NaR =

45
8.7

12(1) NHSO2CF3R =

46
-

13(1)

52

NR = O
-

14
55

NR = NMe
1.1

(1) Compounds were not soluble in the 10% DMSO/buffer solution used for the assay.

(2) Compound 45 was turned into a sodium salt by dissolving the acid precursor in MeOH,

and adding an equimolar amount of 0.1 M NaOH(aq.), followed by solvent removal in vacuo.

Solubility of the library products proved to be a crucial point. As can be seen from

the data (Table 2), most compounds were insoluble in the 10% DMSO/buffer

solution used in the assay. This is probably due to the presence of two lipophilic

aromatic moieties (compound 56 , Figure 12), which are known to π-stack

together, and thus hinder solubilization. Furthermore, the lipophilic α-face of the

scaffold, formed by the non-polar C-H groups on the underside of the scaffold

ring, further increases the probability of stacking and/or aggregate formation. For

the compounds that did dissolve, it seems to be beneficial not to remove the 6-

OH group from the original scaffold as it could be vital for aqueous solubility.
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Lipophilic α-face

Aromatic rings

O

HO OH

HO

N

N

N

O

R

6-OH

56

Figure 12. Compound 56 represents a general structure of the compounds synthesized in the

directed library.

Nevertheless, the biological testing results showed that two compounds (49 and

55, Table 2) with quite different structures bound to the H1-CRD with an affinity

comparable to that of GalNAc - the best small molecular weight ligand for the

ASGP-R so far.
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3.3 Conclusion

The results presented in this chapter indicate that the strategy for synthesizing

the triazole based ligands for the ASGP-R (see Figure 11, p. 78) is efficient, and

was successfully used to generate a set of compounds with diverse functional

groups. However, the main drawback of the final compounds was their poor

aqueous solubility, which could perhaps be overcome by the addition of

solubilizing gtroups.

By comparing the structures of 49 and 55 (Figure 13), and assuming that both

compounds have the same binding mode, it is evident that there is ample room in

the binding pocket for accommodating substituents in the para-position of the

phenyl group. This further reinforces the “dumbbell-shaped binding pocket”

hypothesis that was central to this strategy. Hence, after further molecular

modeling studies, it would be worthwhile to generate compounds with other

substituents in the para-position, that would interact favourably with the protein

and improve the affinity even more.

49

O

HO OH

HO

N

N

N

O

55

O

HO OH

HO

N

N

N

O

N
N

Substituent is accommodated well
by the dumbbell-shaped binding pocket

Figure 13. A comparison of the structures of the best binding ligands generated in the directed

library described in this thesis.
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3.4 Experimental

General methods are described in Appendix 4, p. 147.

3.4.1 Scaffold synthesis: compound 4

2-Acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-galactopyranoside (7): Acetic

anhydride (23.7 ml, 230 mmol) was added dropwise to a suspension of

galactosamine hydrochloride (6, 5.00 g, 23.0 mmol) in dry pyridine (50 ml) at 0

°C under argon. After the addition was complete, the reaction mixture was

allowed to reach r.t. and stirred overnight. The solvent was removed in vacuo,

and ice was added to the resultant paste. The resultant white precipitate was

filtered, washed with H2O (2 × 100 ml) and dried (P2O5) giving compound 7 (8.04

g, 89%) as a white powder. The analytical data were identical to those found in

literature [85].

2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl chloride (8):

Titanium tetrachloride (185 µl, 1.69 mmol) was added to a suspension of 7 (500

mg, 1.28 mmol) in dry DCM (5 ml). The mixture was stirred at r.t. under argon for

3 d. The solvent was removed in vacuo, and the residue was purified by flash

chromatography on silica gel (petrol ether/EtOAc 2:3 → 1:4), yielding 8 (419 mg,

89% Rf 0.27 B). The analytical data were identical to those found in literature

[86].

2-Acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol (9): Com-

pound 8 (2.24 g, 6.12 mmol) was dissolved in dry PhMe (33 ml) and the resultant

solution was degassed in an ultrasound bath under a steady flow of argon for 30

min. Tributyltin hydride (2.14 g, 7.35 mmol) and AIBN (ca. 25 mg) were added

and the resultant mixture was refluxed under argon for 1h 20 min. The solvent

was removed in vacuo, and the residue was purified by flash chromatography on
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silica gel (PhMe/EtOAc (1:4 → 1:9 → 0:1), yielding 9 (2.03 g, quant., Rf 0.26 C).
1H-NMR (500 MHz, CDCl3): δ 1.93 (s, 3H, NAc), 2.02, 2.04, 2.14 (s, 9H, 3 ×

OAc), 3.15 (t, J = 11.1 Hz, 1H, H1 ax.), 3.76 (m, 1H, H5), 4.06 (m, 2H, H6), 4.18

(dd, J = 5.2, 11.3 Hz, 1H, H1 eq.), 4.40 (m, 1H, H2), 4.92 (dd, J = 3.3, 11.2 Hz,

1H, H3), 5.35 (m, 1H, H4), 5.69 (d, J = 8.0 Hz, 1H, NH); 13C NMR (125 MHz,

CDCl3): δ 20.6, 20.7, 20.8 (3 × CH3, OAc), 23.2 (CH3, NAc), 46.5 (C2), 62.2 (C6),

67.1 (C4), 68.6 (C1), 71.5 (C3), 75.0 (C5), 170.25, 170.3, 170.5, 171.4 (4 ×

C=O); Anal. calcd. for C14H21NO8: C, 50.75; H, 6.39; N, 4.23. Found: C, 51.07; H,

6.49; N, 4.12.

2-Amino-1,5-anhydro-D-galactitol (10): Compound 9 (3.17 g, 9.58 mmol) was

dissolved in dioxane (8.5 ml). Water (6.5 ml), 18-crown-6 (21.1 mg) and

potassium hydroxide (840 mg, 15.0 mmol) were added. The reaction mixture was

refluxed for 5 h. Another 5 eq. (2.10 g) of potassium hydroxide was then added,

and the mixture was refluxed for another 1.5 h. According to TLC, no starting

material was left. The solvent was removed in vacuo and the crude product (10,

3.91 g) was used without further purification in the next step.

3,4,6-Tri-O-acetyl-1,5-anhydro-2-azido-2-deoxy-D-galactitol (5): Triflyl azide

stock solution preparation: sodium azide (3.49 g, 53.7 mmol) was dissolved in

water (8.7 ml). Toluene (8.7 ml) was added, and the mixture was cooled down to

0 °C with stirring. Then triflic anhydride (5.8 ml, 34.4 mmol) was added dropwise.

The biphasic reaction mixture was stirred vigorously at 0 °C for 1 h and at 10 °C

for another 2 h. The reaction mixture was neutralized with saturated aqueous

NaHCO3. The phases were separated, and the aqueous phase extracted with

toluene (2 × 8 ml). The organic layers were combined to give the triflyl azide

stock solution.

Amine-azide exchange: compound 10 (1.56 g, 9.56 mmol), NaHCO3 (319 mg,

38.0 mmol) and CuSO4•H2O (95.0 mg, 380 µmol) were dissolved in water (6.4

ml). The triflyl azide stock solution (21 ml, 9.56 mmol) was added. The biphasic

reaction mixture was made homogenous by the dropwise addition of MeOH. The
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mixture was stirred at r.t. overnight. The colour of the mixture turned from blue to

green. The solvent was removed in vacuo; the residue contained 1,5-anhydro-2-

azido-2-deoxy-D-galactitol (11).

The residue containing 11 (1.81 g, 9.6 mmol) was dissolved in dry pyridine (36

ml, 447 mmol), and acetic anhydride (8.2 ml, 86.2 mmol) was added. The

reaction mixture was stirred at r.t. under argon overnight. The solvent was

removed in vacuo. The mixture was purified by flash chromatography (petrol

ether/EtOAc 20:1 → 9:1) to give 4 (2.31 g, 76%, Rf 0.59 D). [α]D = + 0.04° (c 1,

CHCl3); 
1H-NMR (500 MHz, CDCl3): δ 2.09, 2.16, 2.22 (s, 9H, 3 × OAc), 3.24 (t, J

= 11.3 Hz, 1H, H1 ax.), 3.79 (dt, J = 0.9, 6.5 Hz, 1H, H5), 3.93 (m, 1H, H2), 4.08

(d, J = 6.5 Hz, 2H, H6), 4.12 (dd, J = 5.4, 11.6 Hz, 1H, H1 eq.), 4.91 (dd, J = 3.3,

10.4 Hz, 1H, H3), 5.40 (d, J = 0.9 Hz, 1H, H4); 13C-NMR (125 MHz, CDCl3): δ

20.6, 20.8, 22.1 (3 × CH3), 55.9 (C2), 61.9 (C6), 67.1 (C4), 68.1 (C1), 73.4 (C3),

74.9 (C5); Anal. Calcd. for C12H17N3O7: C, 45.72; H, 5.43; N, 13.33. Found: C,

45.90; H, 5.44; N, 13.18.

3,4,6-Tri-O-acetyl-1,5-anhydro-2-azido-2-deoxy-D-galactitol (11): Compound

4 (20 mg, 63.4 µmol) was dissolved in MeOH (2 ml) and sodium metal (10 mg)

was added. The solution was stirred overnight, the solvent was removed in vacuo

and the residue was purified on an RP-C18 column (H2O/MeOH 20:0 → 9:1,

stepwise gradient) yielding 11 (12 mg, quant., Rf 0.37 E). [α ]D = - 0.12° (c 1,

MeOH); 1H-NMR (500 MHz, CD3OD): δ  3.07 (t, J = 11.1 Hz, 1H, H1 ax.), 3.38

(m, 1H, H5), 3.50 (dd, J = 3.3, 9.9 Hz, 1H, H3), 3.62-3.72 (m, 3H, H2, H6), 3.83

(d, J = 3.0 Hz, 1H, H4), 3.95 (dd, J = 5.4, 11.2 Hz, 1H, H1 eq.); 13C-NMR (125

MHz, CDCl3): δ 60.6 (C2), 62.9 (C6), 69.1 (C1), 70.6 (C4), 75.3 (C3), 81.0 (C5);

ESI-MS: Calcd. for C6H11N3O4Na [M+Na]+: 212.06; Found m/z 213.94.

3.4.2 Synthesis of substituted phenyl propargyl ethers

1-Phenyl-4-(2-propynyloxy)-benzene (15): 1-Hydroxybiphenyl (12, 1.19 g, 6.99

mmol) was dissolved in dry acetone (7 ml), and K2CO3 (3.01 g, 21.7 mmol)  was
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added, followed by propargyl bromide (855 µl, 7.92 mmol). The mixture was

refluxed for 5 h, after which it was poured onto ice and the resultant precipitate

was filtered off, dried and recrystallized from hexane to yield 15 (1.21 g, 84%).

The analytical data were identical to those found in literature [87].

8-(2-Propynyloxy)-quinoline (19): Prepared according to the procedure for 15,

from 8-hydroxyquinoline (17, 1.01 g, 7.01 mmol), propargyl bromide in PhMe

(855 µl, 791 mmol) and K2CO3 (3.01 g, 21.7 mmol) in refluxing acetone (7 ml).

The residue was purified by flash chromatography on silica gel (petrol

ether/EtOAc 9:1 → 7:3), yielding 19 (1.12 g, 88%, Rf 0.20 D). 1H-NMR (500 MHz,

CDCl3): δ 2.53 (m, 1H, CH), 5.03 (d, J = 2.2 Hz, 2H, OCH2), 7.26-7.50 (m, 4H,

H3, H6, H7, H8 quinoline), 8.12 (m, 1H, H4 quinoline), 8.94 (m, 1H, H2

quinoline); 13C NMR (125 MHz, CDCl3): δ 56.5 (OCH2), 46.1 (CH), 78.3 (CQ),

109.9 (C8 quinoline), 120.7, 121.7, 126.4 (3C, C3, C6, C7 quinoline), 129.5 (C5

quinoline), 135.9 (C4 quinoline), 140.4 (C10 quinoline), 149.5 (C2 quinoline),

153.1 (C9 quinoline); Anal. calcd. for C12H9NO: C, 78.67; H, 4.95; N, 7.65.

Found: C, 77.19; H, 5.19; N, 7.39.

1-Propyl-4-(2-propynyloxy)-benzene (16): Prepared according to the procedure

for 15, from p-propylphenol (953 mg, 7.01 mmol), propargyl bromide in PhMe

(855 µl, 791 mmol) and K2CO3 (3.01 g, 21.7 mmol) in refluxing acetone (7 ml).

The mixture was poured onto ice and extracted with Et2O (2 × 20 ml). The

combined organic fractions were dried (Na2SO3), filtered, and the solvents were

removed under low vacuum. The residue was purified by flash chromatography

on silica gel (petrol ether 100%), to give 16 (1.20 g, 99%, Rf 0.66 F). 1H-NMR

(500 MHz, CDCl3): δ 0.92 (t, J = 7.3 Hz, 3H, CH3), 1.60 (m, 2H, CH2CH2CH3),

2.50 (m, 3H, CH2CH2CH3, CH), 4.64 (d, J = 2.2 Hz, 2H, OCH2), 6.87-6.89, 7.08-

7.10 (AA’BB’, 4H, C6H4); 
13C NMR (125 MHz, CDCl3): δ  13.7 (CH3), 24.6

(CH2CH2CH3), 37.1 (CH2CH2CH3), 55.7 (OCH2), 75.2 (CH), 78.7 (CQ), 114.6 (2C,

2 × C-ortho), 129.2 (2C, 2 × C-meta), 135.7 (C-para), 155.6 (C-ipso); Anal. calcd.

for C12H14O: C, 82.72; H, 8.10. Found: C, 82.66; H, 8.14.
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Ethyl 4-(2-propynyloxy)-benzoate (17): Ethyl 4-hydroxybenzoate (500 mg, 3.01

mmol) was dissolved in dry acetone (5 ml), and K2CO3 (580 mg, 4.21 mmol) was

added, followed by propargyl bromide (651 µl, 6.02 mmol), and the mixture was

refluxed for 3 h. The mixture was then diluted with DCM (50 ml), washed with

H2O (25 ml) and brine (25 ml), dried (Na2SO4), and the solvent was removed in

vacuo. The residue was purified by flash chromatography on silica gel (petrol

ether/EtOAc 20:1 → 4:1), yielding 17 (452 mg, 73% Rf 0.26 F). 1H-NMR (500

MHz, CDCl3): δ 1.36 (t, J = 7.2 Hz, 3H, OCH2CH3), 2.55 (t, J = 2.4 Hz, 1H, CH),

4.33 (q, J = 7.2 Hz, 2H, OCH2CH3), 4.73 (d, J = 2.4 Hz, 2H, CH2, propynyl), 6.98

(AA’ of AA’BB’, J = 9.0 Hz, 2H, 2 × CH-ortho), 8.00 (BB’ of AA’BB’, J = 9.0 Hz,

2H, 2 × CH-meta); 13C NMR (125 MHz, CDCl3): δ 14.3 (OCH2CH3), 55.7 (OCH2),

60.5 (OCH2CH3), 76.0 (CH), 77.8 (CQ), 114.4 (2C, 2 × C-ortho), 123.7 (C-para),

131.4 (2C, 2 × C-meta), 161.0 (C-ipso), 166.2 (C=O); Anal. calcd. for C12H12O3:

C, 70.58; H, 5.92. Found: C, 70.58; H, 5.93.

1-Trifluoromethylsulfonamido-4-(2-propynyloxy)benzene (21): Compound 20

[77] (100 mg, 679 µmol) was dissolved in dry DCM (3 ml). Triethylamine (103 µl,

747 µmol) was added, followed by the dropwise addition of triflic anhydride (123

µl, 747 µmol) at 0 °C. The resultant solution was allowed to reach r.t. and stirred

under argon overnight. The solvent was removed in vacuo and the residue was

purified by flash chromatography on silica gel (petrol ether/EtOAc 19:1 → 9:1),

yielding 21 (130 mg, 69% Rf 0.27 F). 1H-NMR (500 MHz, CDCl3): δ 2.54 (t, J =

2.4 Hz, 1H, CH); 4.69 (d, J = 2.4 Hz, 2H, OCH2); 6.97 (AA’ of AA’BB’, J = 8.9 Hz,

2H, 2 × CH-ortho); 7.23 (BB’ of AA’BB’, J = 8.9 Hz, 2H, 2 × CH-meta); 13C NMR

(125 MHz, CDCl3): δ 56.1 (OCH2), 76.1 (CH), 77.9 (CQ), 115.8 (2C, 2 × C-ortho),

119.8 (J = 322.8 Hz, CF3), 126.6 (C-para), 126.9 (2C, 2 × C-meta), 157.2 (C-

ipso); Anal. calcd. for C10H8NO3F3S1: C, 43.01; H, 2.89; N, 5.02. Found: C, 42.95;

H, 3.00; N, 4.97.
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3.4.3 Library synthesis: Huisgen 1,3-dipolar cycloaddition

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-phenoxyme-

thyl-1,2,3-triazole (48): Compound 4 (50.0 mg, 158 µmol) was dissolved in dry

DCM (3 ml). The mixture was degassed in an ultrasound bath under a flow of

argon for 20 min. Copper(I) chloride (31.2 mg, 316 µmol), DIPEA (54.4 µl, 316

µmol) and phenyl propargyl ether (47, 40.6 µl, 316 µmol) were added. The

mixture was stirred under argon at r.t. for 24 h. The solvent was removed in

vacuo, and the crude mixture was purified by flash chromatography (petrol

ether/EtOAc 3:2) to yield compound 48 (66.5 mg, 93%, Rf  0.25 D). 1H-NMR (500

MHz, CDCl3): δ 1.81, 2.08, 2.19 (s, 9H, 3 × CH3), 4.00-4.07 (m, 2H, H1 ax., H5),

4.15 (d, J = 6.4 Hz, 1H, H6), 4.33 (dd, J = 5.1, 11.6 Hz, 1H, H1 eq.), 4.92 (dt, J =

5.0, 11.0 Hz, 1H, H2), 5.22 (s, 2H, CH2OPh), 5.50 (dd, J = 3.2, 11.0 Hz, 1H, H3),

5.54 (d, J = 2.5 Hz, 1H, H4), 6.95-6.99, 7.26-7.30 (m, 5H, C6H5), 7.62 (s, 1H, H

triazole); 13C-NMR (125 MHz, CDCl3): δ 20.3, 20.7, 20.7 (3 × CH3), 56.0 (C2),

61.8 (2C, CH2OPh, C6), 67.0 (C4), 68.7 (C1), 71.5 (C3), 75.3 (C5), 114.7, 121.4,

122.7, 129.6 (6C, C6H5), 118.5 (C5 triazole), 144.3 (CQ triazole), 169.3, 170.0,

170.5 (3 × C=O); ESI-MS: Calcd. for C21H26N3O8 [M+H]+: 448.17; Found m/z

448.25.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-phenoxymethyl-1,2,3-triazole (49):

Compound 48 (65.0 mg, 145 µmol) was dissolved in dry MeOH (5 ml) and

sodium metal (20.0 mg, 869 µmol) was added. The solution was stirred at r.t.

under argon for 3 h, after which the solvent was removed in vacuo and the

residue was purified by LCMS to give compound 49 (21 mg, 45%, Rf 0.52 G).

[α]D = + 36.4° (c 0.17, MeOH); 1H-NMR (500 MHz, CD3OD): δ 3.31 (t, J = 1.6 Hz,

1H, H5), 3.61-3.81 (m, 2H, H6), 3.84 (t, J = 11.1 Hz, 1H, H1 ax.), 3.99 (d, J = 3.0

Hz, 1H, H4), 4.14-4.18 (m, 2H, H1 eq., H3), 4.81 (dt, J = 5.0, 10.8 Hz, 1H, H2),

5.16 (s, 2H, CH2), 6.93-7.01 (m, 5H, C6H5), 8.14 (s, 1H, H5 triazole); 13C-NMR

(125 MHz, CD3OD): δ 60.7 (C2), 62.3 (CH2OPh), 62.9 (C6), 69.8 (C1), 70.4 (C4),

73.5 (C3), 81.5 (C5), 122.2, 125.8, 130.6, 159.8 (6C, C6H5), 115.9 (C5 triazole),
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144.53 (CQ triazole); ESI-MS: Calcd. for C15H20N3O5 [M+H]+: 322.14; Found m/z

322.07.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-phenylphe-

noxy)methyl-1,2,3-triazole (28): Prepared according to the procedure described

for 48, using 4 (50.0 mg, 160 µmol) and 1-phenyl-4-(2-propynyloxy)-benzene (15,

65.8 mg, 316 µmol). The compound was purified by flash chromatography

(hexane/EtOAc 3:1 → 1:1) to give 28 (61.0 mg, 74%, Rf 0.28 D). 1H-NMR (500

MHz, CDCl3): δ 1.81, 2.07, 2.18 (s, 9H, 3 × CH3), 4.00-4.07 (m, 2H, H1 ax., H5),

4.15 (d, J = 6.4 Hz, 1H, H6), 4.34 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.93 (dt, J =

5.0, 11.0 Hz, 1H, H2), 5.26 (s, 2H, CH2OPh), 5.51 (dd, J = 3.2, 10.9 Hz, 1H, H3),

5.54 (d, J = 2.6 Hz, 1H, H4), 7.02-7.54 (m, 9H, biphenyl), 7.65 (s, 1H, H5

triazole); 13C-NMR (125 MHz, CDCl3): δ 20.3, 20.6, 20.7 (3 × CH3), 56.0 (C2),

61.8 (C6), 62.0 (CH2OPh), 67.0 (C4), 68.7 (C1), 71.5 (C3), 76.3 (C5), 115.0 (C2

biphenyl), 122.8 (C5 triazole), 126.7, 126.8, 128.2, 128.8, 134.5, 140.5, (9C,

biphenyl), 144.2 (CQ triazole), 157.6 (C1 biphenyl), 169.3, 169.9, 170.5 (3C, 3 ×

C=O); ESI-MS: Calcd. for C27H30N3O8 [M+H]+: 524.20; Found m/z 524.22.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-phenylphenoxy)methyl-1,2,3-

triazole (38): Compound 28 (51.0 mg, 97.4 µmol) was dissolved in MeOH (5 ml)

and sodium metal (20.0 mg, 869 µmol) was added. The solution was stirred at r.t.

under argon for 3 h upon which the deacetylated product precipitated. The

solvent was removed in vacuo and the residue was washed with MeOH (2 × 5

ml) and dried in vacuo to give 38 (36.1 mg, 93%). 1H-NMR (500 MHz, DMSO-

d6): δ 3.42-3.58 (m, 3H, H5, H6), 3.66 (t, J = 10.9 Hz, 1H, H1 ax.), 3.86 (s, 1H,

H4), 4.00 (m, 2H, H1 eq., H3), 4.73 (m, 1H, H2), 5.17 (s, 2H, CH2OPh), 7.14-7.63

(m, 9H, biphenyl), 8.33 (s, 1H, H5 triazole); 13C-NMR (125 MHz, CDCl3): δ 58.8

(C2), 60.6 (C6), 61.3 (CH2OPh), 68.0 (C1), 68.1 (C4), 71.8 (C3), 80.1 (C5), 124.8

(C5 triazole), 115.1, 126.2, 126.8, 127.8, 128.9, 132.9, 139.8 (9C, biphenyl),

142.0 (CQ triazole); ESI-MS: Calcd. for C21H23N3O5Na [M+Na]+: 420.41; Found

m/z 420.23.
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1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(3-bromophen-

oxy)methyl-1,2,3-triazole (29): Prepared according to the procedure described

for 48,  using 4  (50.0 mg, 160 µmol) and 1-bromo-3-(2-propynyloxy)-benzene

[79] (23 , 66.7 mg, 316 µmol). The compound was purified by flash

chromatography (hexane/EtOAc 7:3 → 3:2) to give 29 (70.1 mg, 85%, Rf 0.29 D).
1H-NMR (500 MHz, CDCl3): δ 1.83, 2.08, 2.19 (s, 9H, 3 × CH3), 4.02-4.08 (m, 2H,

H1 ax., H5), 4.16 (d, J = 6.4 Hz, 1H, H6), 4.33 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.),

4.94 (dt, J = 5.0, 11.0 Hz, 1H, H2), 5.19 (s, 2H, CH2OPh), 5.51-5.56 (m, 2H, H3,

H4), 6.89-6.91, 7.10-7.16 (m, 5H, C6H5), 7.65 (s, 1H, H triazole); 13C-NMR (125

MHz, CDCl3): δ 20.2, 20.5, 20.6 (3C, 3 × CH3), 56.0 (C2), 61.8 (C6), 62.0

(CH2OPh), 66.9 (C4), 68.6 (C1), 71.4 (C3), 75.2 (C5), 113.4 (2C, 2 × C-ortho),

118.5 (C5 triazole), 122.8 (C-Br), 124.4 (C-para), 130.6 (2C, 2 × C-meta), 143.6

(CQ triazole), 158.7 (C-ipso), 169.2, 169.9, 170.4 (3 × C=O); ESI-MS: Calcd. for

C21H25BrN3O8 [M+H]+: 526.08; Found m/z 526.18.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-bromophenoxy)methyl-1,2,3-

triazole (39): Compound 29 (70.0 mg, 133 µmol) was deacetylated according to

the procedure described for 49. The final product was purified by LCMS to give

39 (18.0 mg, 34%). 1H-NMR (500 MHz, CD3OD): δ 3.62 (m, 1H, H5), 3.72 (dd, J

= 4.9, 11.4 Hz, 1H, H6a), 3.77-3.85 (m, 2H, H1 ax., H6b), 3.98 (d, J = 2.9 Hz, 1H,

H4), 4.13-4.18 (m, 2H, H1 eq., H3), 4.81 (dt, J = 5.0, 10.8 Hz, 1H, H2), 5.16 (s,

2H, CH2OPh), 6.98-7.21 (m, 4H, C6H4), 8.14 (s, 1H, H5 triazole); 13C-NMR (125

MHz, CD3OD): δ 60.8 (C2), 62.6 (CH2OPh), 62.9 (C6), 69.8 (C1), 70.4 (C4), 73.5

(C3), 81.5 (C5), 119.3 (C5 triazole), 123.8 (C-Br), 114.8, 125.3, 126.0, 132.0 (4C,

C6H4), 144.0 (CQ triazole), 160.7 (C-ipso); ESI-MS: Calcd. for C15H19BrN3O5

[M+H]+: 400.05; Found m/z 400.05.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-bromophen-

oxy)methyl-1,2,3-triazole (37): Prepared according to the procedure described

for 48, using 4 (200 mg, 634 µmol) and 1-bromo-4-(2-propynyloxy)benzene [79]
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(27, 267 mg, 1.07 mmol). The compound was purified by flash chromatography

(hexane/EtOAc 1:1) to give 37 (279 mg, 84%, Rf 0.24 D). 1H-NMR (500 MHz,

CDCl3): δ 1.74, 2.00, 2.11 (s, 9H, 3 × CH3), 3.93-4.00 (m, 2H, H1 ax., H5), 4.07

(d, J = 6.4 Hz, 1H, H6), 4.24 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.86 (dt, J = 5.0,

11.0 Hz, 1H, H2), 5.10 (s, 2H, CH2OPh), 5.43-5.47 (m, 2H, H3, H4), 6.77 (AA’ of

AA’BB’, J = 8.9 Hz, 2H, H-ortho), 7.30 (BB’ of AA’BB’, J = 8.9 Hz, 2H, H-meta),

7.57 (s, 1H, H triazole); 13C-NMR (125 MHz, CDCl3): δ 20.2, 20.5, 20.6 (3 × CH3)

56.0 (C2), 61.8, 61.9 (C6, CH2OPh), 66.9 (C4), 68.6 (C1), 71.4 (C3), 75.2 (C5),

113.5 (C-Br), 116.5 (2C, 2 × C-ortho), 122.8 (C5 triazole), 132.3 (2C, 2 × C-

meta), 143.7 (CQ triazole), 157.0 (C-ipso), 169.2, 169.9, 170.4 (3 × C=O); ESI-

MS: Calcd. for C21H25BrN3O8 [M+H]+: 526.08; Found m/z 526.16.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-propylphen-

oxy)methyl-1,2,3-triazole (30): Prepared according to the procedure described

for 48, using 4 (50.0 mg, 160 µmol) and 16 (55.0 mg, 316 µmol). The compound

was purified by flash chromatography (hexane/EtOAc 7:3 → 3:2), yielding 30

(74.2 mg, 96%, Rf 0.33 D). 1H-NMR (500 MHz, CDCl3): δ 0.92 (t, J = 7.4 Hz, 3H,

CH2CH2CH3), 1.59 (sextet, J = 7.6 Hz, 2H, CH2CH2CH3), 1.81, 2.07, 2.18 (s, 9H,

3 × CH3), 2.52 (t, J = 7.6 Hz, 2H, CH2CH2CH3), 4.02-4.08 (m, 2H, H1 ax., H5),

4.15 (d, J = 6.4 Hz, 1H, H6), 4.32 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.94 (dt, J =

5.1, 10.9 Hz, 1H, H2), 5.18 (s, 2H, CH2OPh), 5.51-5.55 (m, 2H, H3, H4), 6.87

(AA’ of AA’BB’, J = 8.6 Hz, 2H, H-ortho), 7.08 (BB’ of AA’BB’, J = 8.6 Hz, 2H, H-

meta), 7.66 (s, 1H, H triazole); 13C-NMR (125 MHz, CDCl3): δ 13.6 (CH2CH2CH3),

20.2, 20.5, 20.6 (3 × CH3), 24.6 (CH2CH2CH3), 37.0 (CH2CH2CH3), 55.9 (C2),

61.8 (C6), 61.9 (CH2OPh), 67.0 (C4), 68.6 (C1), 71.4 (C3), 75.1 (C5), 114.4 (2C,

2 × C-ortho), 122.7 (C5 triazole), 129.3 (2C, 2 × C-meta), 135.5 (C-para), 144.4

(CQ triazole), 156.0 (C-ipso), 169.2, 169.9, 170.4 (3 × C=O); ESI-MS: Calcd. for

C24H32N3O8 [M+H]+: 490.22; Found m/z 490.24.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-propylphenoxy)methyl-1,2,3-

triazole (40): Compound 30 (42.5 mg, 86.8 µmol) was deacetylated according to
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the procedure described for 49, and purified by LCMS to yield 40 (13.0 mg,

41%). 1H-NMR (500 MHz, CD3OD): δ 0.92 (t, J = 7.4 Hz, 3H, CH2CH2CH3), 1.61

(sextet, J = 7.4 Hz, 2H, CH2CH2CH3), 2.54 (t, J = 7.5 Hz, 2H, CH2CH2CH3), 3.74

(m, 1H, H5), 3.78-3.90 (m, 3H, H1 ax., H6), 4.09 (d, J = 3.0 Hz, 1H, H4), 4.20-

4.27 (m, 2H, H1 eq., H3), 4.94 (dt, J = 5.1, 10.9 Hz, 1H, H2), 4.87 (m, 1H, H2),

5.20 (s, 2H, CH2OPh), 6.97 (AA’ of AA’BB’, J = 8.6 Hz, 2H, H-ortho), 7.15 (BB’ of

AA’BB’, J = 8.5 Hz, 2H, H-meta), 8.20 (s, 1H, H triazole); 13C-NMR (125 MHz,

CD3OD): δ 13.9 (CH2CH2CH3), 25.6 (CH2CH2CH3), 37.8 (CH2CH2CH3), 60.4

(C2), 62.3 (CH2OPh), 62.5 (C6), 69.4 (C1), 69.9 (C4), 73.1 (C3), 81.1 (C5), 115.7

(2C, 2 × C-ortho), 126.1 (C5 triazole), 130.4 (2C, 2 × C-meta), 136.9 (C-para),

144.4 (CQ triazole), 157.2 (C-ipso); ESI-MS: Calcd. for C18H26N3O5 [M+H]+:

364.19; Found m/z 364.18.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-nitrophenyl-

oxy)methyl-1,2,3-triazole (31): Prepared according to the procedure described

for 48, using 4 (50.0 mg, 158 µmol) and 1-nitro-4-(2-propynyloxy)-benzene [77]

(24, 49.7 mg, 316 µmol). The compound was purified by flash chromatography

(petrol ether/EtOAc 1:1) to give 31 (74.0 mg, 95%, Rf 0.22 D). 1H-NMR (500

MHz, CDCl3): δ 1.80, 2.03, 2.15 (s, 9H, 3 × CH3), 3.99-4.04 (m, 2H, H1 ax., H5),

4.12 (d, J = 6.4 Hz, 2H, H6), 4.30 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.93 (m, 1H,

H2), 5.26 (s, 2H, CH2OPh), 5.49-5.52 (m, 2H, H3, H4), 7.02 (AA’ of AA’BB’, J =

9.3 Hz, 2H, H-ortho), 7.70 (s, 1H, H5 triazole), 8.15 (BB’ of AA’BB’, J = 9.3 Hz,

2H, H-meta); 13C-NMR (125 MHz, CDCl3): δ 20.3, 20.6, 20.7 (3 × CH3), 56.2

(C2), 61.9, 62.3 (C6, CH2OPh), 67.0 (C4), 68.6 (C1), 71.4 (C3), 75.3 (C5), 114.8

(2C, 2 × C-ortho), 123.2 (C5 triazole), 125.9 (2C, 2 × C-meta), 141.9 (C-para),

142.8 (CQ triazole), 163.0 (C-ipso), 169.3, 170.0, 170.5 (3 × C=O); ESI-MS:

Calcd. for C21H24N4O10 [M+H]+: 493.16; Found m/z 493.20.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-nitrophenoxy)methyl-1,2,3-

triazole (41): Compound 31 (74.0 mg, 150 µmol) was deacetylated according to

the procedure described for 49. The final product was purified by LCMS to give
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41 (18.0 mg, 33%). 1H-NMR (500 MHz, CD3OD): δ 3.76-3.87 (m, 2H, H5, H6),

3.90 (t, J = 11.2 Hz, 1H, H1 ax.), 4.10 (d, J = 3.1 Hz, 2H, H4), 4.24 (dd, J = 5.1,

11.2 Hz, 1H, H1 eq.), 4.28 (dd, J = 3.2, 10.6 Hz, 1H, H3), 4.87 (m, 1H, H2), 5.38

(s, 2H, CH2OPh), 7.23 (AA’ of AA’BB’, J = 9.3 Hz, 2H, H-ortho), 8.29 (m, 3H, H5

triazole, H-meta); 13C-NMR (125 MHz, CD3OD): δ 60.3 (C2), 62.5, 62.6 (C6,

CH2OPh), 69.3 (C1), 69.8 (C4), 72.9 (C3), 81.0 (C5), 116.1 (2C, 2 × C-ortho),

126.5 (C5 triazole), 127.0 (2C, 2 × C-meta), 142.6 (C-para), 143.3 (CQ triazole),

164.5 (C-ipso); ESI-MS: Calcd. for C15H19N4O7 [M+H]+: 367.13; Found m/z

367.15.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-cyanophe-

nyloxy)methyl-1,2,3-triazole (32): Prepared according to the procedure

described for 48, using 4 (50.0 mg, 158 µmol) and 1-cyano-4-(2-propynyloxy)-

benzene [80] (2 5, 49.7 mg, 316 µmol). The compound was purified by flash

chromatography (petrol ether/EtOAc 1:1 → 0:1) to give 32 (73.0 mg, 98%, Rf

0.33 C). 1H-NMR (500 MHz, CDCl3): δ 1.79, 2.04, 2.16  (s, 9H, 3 × CH3), 3.99-

4.04 (m, 2H, H1 ax., H5), 4.12 (d, J = 6.4 Hz, 2H, H6), 4.30 (dd, J = 5.0, 11.6 Hz,

1H, H1 eq.), 4.92 (dt, J = 4.9, 10.7 Hz, 1H, H2), 5.22 (s, 2H, CH2OPh), 5.48-5.52

(m, 2H, H3, H4), 7.01 (m, 2H, H-ortho), 7.56 (m, 2H, H-meta), 7.67 (s, 1H, H5

triazole); 13C-NMR (125 MHz, CDCl3): δ 20.2, 20.5, 20.6 (3 × CH3), 56.1 (C2),

61.7, 61.9 (C6, CH2OPh), 66.9 (C4), 68.6 (C1), 71.3 (C3), 75.2 (C5), 115.4 (2C, 2

× C-ortho), 118.8 (C-para), 123.0 (C5 triazole), 134.0 (2C, 2 × C-meta), 142.9 (CQ

triazole), 161.2 (C-ipso), 169.2, 169.8, 170.4 (3 × C=O); ESI-MS: Calcd. for

C22H24N4O8 [M+H]+: 473.17; Found m/z 473.06.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-cyanophenyloxy)methyl-

1,2,3-triazole (42): Compound 32 (73.0 mg, 155 µmol) was dissolved in

H2O/MeOH/Et3N (5:5:1, 5.5 ml) and stirred at r.t. overnight. The solvent was

removed in vacuo and the residue was purified by flash chromatography

(DCM/MeOH 9:1) to give 42 (44.0 mg, 81%, Rf 0.62 G). 1H-NMR (500 MHz,

CD3OD): δ 3.62 (m, 1H, H5), 3.73 (dd, J = 4.9, 11.4 Hz, 1H, H6a), 3.80 (dd, J =
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7.1, 11.4 Hz, 1H, H6b), 3.84 (t, J = 11.1 Hz, 1H, H1 ax.), 3.99 (d, J = 3.0 Hz, 1H,

H4), 4.14-4.18 (m, 2H, H1 eq., H3), 4.82 (dt, J = 5.0, 10.9 Hz, 1H, H2), 5.36 (s,

2H, CH2OPh), 7.17 (AA’ of AA’BB’, J = 8.9 Hz, 2H, H-ortho), 7.67 (AA’ of AA’BB’,

J = 9.2 Hz, 2H, H-meta), 8.19 (s, 1H, H5 triazole); 13C-NMR (125 MHz, CD3OD):

δ 60.7 (C2), 62.6 (CH2OPh), 62.9 (C6), 69.7 (C1), 70.3 (C4), 73.5 (C3), 80.5

(C5), 105.3 (CN), 116.8 (2C, 2 × C-ortho), 120.0 (C-para), 126.2 (C5 triazole),

135.2 (2C, 2 × C-meta), 143.5 (CQ triazole), 163.2 (C-ipso); ESI-MS: Calcd. for

C16H19N4O5 [M+H]+: 347.14; Found m/z 347.12.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(quinol-9-

yloxy)methyl-1,2,3-triazole (33): Prepared according to the procedure

described for 48, using 4 (50.0 mg, 160 µmol) and 19 (55.0 mg, 316 µmol). The

compound was purified by flash chromatography (DCM/MeOH/Et3N stepwise

gradient 95:5:0.1) to give 33 (63 mg, 80%, Rf 0.43 H). 1H-NMR (500 MHz,

CDCl3): δ 1.70, 2.03, 2.13  (s, 9H, 3 × CH3), 3.95-4.09 (m, 2H, H1 ax., H5), 4.10

(d, J = 6.4 Hz, 1H, H6), 4.28 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.85 (dt, J = 5.0,

11.0 Hz, 1H, H2), 5.45-5.55 (m, 4H, H3, H4, CH2OPh), 7.21 (m, 1H, H3

quinoline), 7.37-7.42 (m, 3H, H6, H7, H8 quinoline), 7.76 (s, 1H, H5 triazole),

8.09-8.12 (m, 1H, H4 quinoline), 8.89-8.90 (m, 1H, H2 quinoline); 13C-NMR (125

MHz, CDCl3): δ 20.2, 20.5, 20.6 (3 × CH3), 55.9 (C2), 61.8 (C6), 62.7 (CH2OPh),

66.9 (C4), 68.6 (C1), 71.4 (C3), 75.1 (C5), 109.7 (C8 quinoline), 120.2, 121.6,

126.6 (C3, C6, C7 quinoline), 123.4 (C5 triazole), 129.4 (C5 quinoline), 135.9 (C4

quinoline), 140.2 (C10 quinoline), 144.0 (CQ triazole), 149.3 (C2 quinoline), 153.6

(C9 quinoline), 169.2, 169.9, 170.4 (3 × C=O); ESI-MS: Calcd. for C24H27N4O8

[M+H]+: 499.18; Found m/z 499.23.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(quinol-9-yloxy)methyl-1,2,3-

triazole (43): Compound 33 (63.0 mg, 126 µmol) was deacetylated according to

the procedure described for 49, and purified by LCMS to yield 43 (40.0 mg,

85%). 1H-NMR (500 MHz, DMSO-d6): δ 3.50 (m, 1H, H5), 3.55 (m, 2H, H6), 3.70

(t, J = 11.0 Hz, 1H, H1 ax.), 3.84 (m, 1H, H4), 4.01-4.08 (m, 2H, H1 eq., H3),
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4.69 (t, J = 5.5 Hz, 1H, 6-OH), 4.76 (dt, J = 5.0, 10.8 Hz, 1H, H2), 4.88 (d, J = 4.9

Hz, 1H, 4-OH), 5.14 (d, J = 6.9 Hz, 1H, 3-OH), 5.34 (s, 2H, CH2OPh), 7.44 (m,

1H, H3 quinoline), 7.52-7.56 (m, 3H, H6, H7, H8 quinoline), 8.33 (m, 1H, H4

quinoline), 8.39 (s, 1H, H5 triazole), 8.83 (m, 1H, H2 quinoline); 13C-NMR (125

MHz, DMSO-d6): δ 55.8 (C2), 60.7 (C6), 61.8 (CH2OPh), 68.1 (C1), 68.2 (C4),

71.7 (C3), 80.0 (C5), 109.9 (C8 quinoline), 120.0, 121.9, 126.8 (C3, C6, C7

quinoline), 125.0 (C5 triazole), 129.1 (C5 quinoline), 135.8 (C4 quinoline), 139.7

(C10 quinoline), 141.9 (CQ triazole),149.0 (C2 quinoline), 154.0 (C9 quinoline);

ESI-MS: Calcd. for C18H21N4O5 [M+H]+: 373.15; Found m/z 373.20.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(2,3,4,5,6-pen-

tafluorophenyloxy)methyl-1,2,3-triazole (34): Prepared according to the

procedure described for 48, using 4  (50.0 mg, 158 µmol) and 1,2,3,4,5-

pentafluoro-6-(2-propynyloxy)-benzene [81] (26, 70.2 mg, 316 µmol). The

compound was purified by flash chromatography (petrol ether/EtOAc 4:1 → 1:1)

to give 34 (62.0 mg, 73%). 1H-NMR (500 MHz, CDCl3): δ 1.85, 2.05, 2.18  (s, 9H,

3 × CH3), 3.97-4.02 (m, 2H, H1 ax., H5), 4.13 (d, J = 6.4 Hz, 2H, H6), 4.29 (dd, J

= 5.0, J = 11.6 Hz, 1H, H1 eq.), 4.95 (dt, J = 5.0, J = J = 11.0 Hz, 1H, H2), 5.27

(s, 2H, CH2OPh), 5.49-5.53 (m, 2H, H3, H4), 7.74 (m, 1H, H5 triazole), 13C-NMR

(125 MHz, CDCl3): δ 20.1, 20.5, 20.6 (3 × CH3), 56.1 (C2), 61.8 (C6), 66.9 (C4),

67.6 (CH2OPh), 68.6 (C1), 71.3 (C3), 75.2 (C5), 123.6 (C5 triazole), 136.9, 139.0,

141.1, 142.9 (6C, C6F5), 142.5 (CQ triazole), 169.3, 169.9, 170.4 (3 × C=O); ESI-

MS: Calcd. for C21H21F5N3O8 [M+H]+: 538.12; Found m/z 538.09.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(2,3,4,5,6-pentafluorophenyloxy)

-methyl-1,2,3-triazole (44): Compound 34  (60.0 mg, 111 µmol) was

deacetylated according to the procedure described for 49. The final product was

purified by LCMS to give 44 (31.0 mg, 68%). 1H-NMR (500 MHz, CD3OD): δ 3.59

(m, 1H, H5), 3.69 (dd, J = 4.9, 11.4 Hz, 1H, H6a), 3.75-3.90 (m, 2H, H1 ax.,

H6b), 3.97 (m, 1H, H4), 4.10-4.14 (m, 2H, H1 eq., H3), 4.78 (dt, J = 5.0, 10.8 Hz,

1H, H2), 5.24 (s, 2H, CH2OPh), 8.17 (s, 1H, H5 triazole); 13C-NMR (125 MHz,
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CD3OD): δ 60.7 (C2), 62.9 (C6), 68.4 (CH2OPh), 66.5 (C1), 70.4 (C4), 73.5 (C3),

81.5 (C5), 126.9 (C5 triazole), 142.9 (CQ triazole); ESI-MS: Calcd. for

C15H15F5N3O5 [M+H]+: 412.09; Found m/z 412.10.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-(N-morpho-

lino)phenoxy)methyl-1,2,3-triazole (51): Compound 37 (50.0 mg, 95.0 µmol)

and Cs2CO3 (46.2 mg, 189 µmol) were azeotropically dried with PhMe, and

Pd2dba3 (2.00 mg, 1.91 µmol), 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl

[82] (50, 5.00 mg, 7.59 µmol), morpholine (16.5 mg, 189 µmol) and dry PhMe (2

ml) were added. The resultant mixture was stirred at 80 °C under argon for 24 h.

The solvent was then removed in vacuo, and the residue purified by flash

chromatography (petrol ether/EtOAc 1:1 → 1:3) to give 51 (20.0 mg, 40%, Rf

0.37 C). 1H-NMR (500 MHz, CDCl3): δ 1.82, 2.07, 2.18 (s, 9H, 3 × CH3), 3.07 (bs,

4H, (CH2)N), 3.86 (bs, 4H, (CH2)O), 3.99-4.05 (m, 2H, H1 ax., H5), 4.15 (d, J =

6.5 Hz, 2H, H6), 4.32 (dd, J = 5.0, 11.6 Hz, 1H, H1 eq.), 4.91 (dt, J = 5.0, 11.0

Hz, 1H, H2), 5.16 (s, 2H, CH2OPh), 5.50 (dd, J = 3.2, 10.9 Hz, 1H, H3), 5.14 (d, J

= 2.6 Hz, 1H, H4), 6.90 (bs, 4H, C6H5), 7.61 (s, 1H, H5 triazole); 13C-NMR (125

MHz, CDCl3): δ 20.4, 20.7, 20.8 (3 × CH3), 50.7 (2C, (CH2)2N), 56.0 (C2), 61.9

(C6), 62.4 (CH2OPh), 67.0 (3C, (CH2)2O, C4), 68.8 (C1), 71.5 (C3), 75.3 (C5),

117.7 (6C, C6H4), 123.4 (C5 triazole), 144.5 (CQ triazole), 169.4, 170.0, 170.5 (3

× C=O); ESI-MS: Calcd. for C25H33N4O9 [M+H]+: 533.55; Found m/z 533.32.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-(N-morpholino)phenoxy)me-

thyl-1,2,3-triazole (52): Compound 51 (14.0 mg, 26.3 µmol) was deacetylated

according to the procedure described for 49. The final product was purified on an

RP-C18 column (H2O/MeOH stepwise gradient 1:0 → 4:1) to give 50 (6.00 mg,

57%, Rf 0.75 G). 1H-NMR (500 MHz, DMSO-d6): δ 3.07 (t, J = 4.7 Hz, 4H,

(CH2)2N), 3.49 (m, 1H, H5), 3.54 (m, 2H, H6), 3.65 (t, J = 11.0 Hz, 1H, H1 ax.),

3.73 (t, J = 4.7 Hz, 4H, (CH2)2O), 3.83 (d, J = 2.7 Hz, 1H, H4), 3.98 (dd, J = 5.0,

10.8 Hz, 1H, H1 eq.), 4.02 (dd, J = 3.0, 10.5 Hz, 1H, H3), 4.71 (m, 1H, H2), 5.04

(s, 2H, CH2OPh), 6.92 (m, 4H, C6H5), 8.27 (s, 1H, H5 triazole); 13C-NMR (125
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MHz, DMSO-d6): δ 49.6 (2C, (CH2)2N), 58.6 (C2), 60.6 (C6), 61.4 (CH2OPh),

66.2 (2C, (CH2)2O), 68.1 (2C, C1, C4), 71.6 (C3), 79.9 (C5), 115.1 (2C, 2 × C-

ortho), 116.9 (2C, 2 × C-meta), 124.4 (C5 triazole), 142.3 (C-para), 145.6 (CQ

triazole), 151.8 (C-ipso); ESI-MS: Calcd. for C19H27N4O6 [M+H]+: 407.19; Found

m/z 407.18.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(1-N-methyl-4-

N-piperazino)phenoxymethyl-1,2,3-triazole (54): Compound 37 (75.0 mg, 142

µmol) and Cs2CO3 (64.8 mg, 199 µmol) were azeotropically dried with PhMe, and

Pd2dba3 (3.00 mg, 2.89 µmol) ,  2-d icyc lohexy lphosphino-2 ’ ,4 ’ ,6 ’ -

triisopropylbiphenyl [83] (53, 1.35 mg, 2.84 µmol), N-metylpiperazine (17.0 µl mg,

157 µmol) and dry PhMe (3 ml) were added. The resultant mixture was stirred at

80 °C under argon for 24 h. The solvent was then removed in vacuo, and the

residue purified by flash chromatography (EtOAc/MeOH 9:1 → 4:1) to give 54,

which was still impure according to NMR. The compound was used without

further purification in the next step.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(1-N-methyl-4-N-piperazino)-

phenoxymethyl-1,2,3-triazole (55): Compound 54 (35.1 mg, 64.3 µmol) was

deacetylated according to the procedure described for 49. The final product was

purified by flash chromatography (DCM/MeOH 9:1 →  7:3) to give 55 (12 mg,

44%, Rf 0.19 I). 1H-NMR (500 MHz, CD3OD): δ 2.63 (s, 3H, NCH3), 3.02 (m, 4H,

(CH2)2NCH3), 3.18 (m, 4H, (CH2)2NPh), 3.59 (m, 1H, H5), 3.69 (dd, J = 4.9, 11.4

Hz, 1H, H6a), 3.74-3.82 (m, 2H, H1 ax., H6b), 3.95 (d, J = 3.0 Hz, 1H, H4), 4.10-

4.13 (m, 2H, H1 eq., H3), 4.02 (dd, J = 3.0, 10.5 Hz, 1H, H3), 4.76 (m, 1H, H2),

5.07 (s, 2H, CH2OPh), 6.92 (m, 4H, C6H5), 8.09 (s, 1H, H5 triazole); 13C-NMR

(125 MHz, CD3OD): δ  44.7 (NCH3), 49.5 (2C, (C H 2)2NCH3), 55.4 (2C,

(CH2)2NPh), 60.7 (C2), 62.8 (2C, C6, CH2OPh), 69.7 (C1), 70.4 (C4), 73.4 (C3)
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81.4 (C5), 116.7 (2C, 2 × C-ortho), 119.9 (2C, 2 × C-meta), 125.8 (C5 triazole),

144.6 (C-para), 146.4 (CQ triazole), 154.7 (C-ipso); ESI-MS: Calcd. for

C20H30N5O5 [M+H]+: 420.22; Found m/z 420.27.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-ethoxycar-

bonylphenoxy)methyl-1,2,3-triazole (35): Prepared according to the procedure

described for 48, using 4 (50.0 mg, 160 µmol) and 17 (64.5 mg, 316 µmol). The

compound was purified by flash chromatography (hexane/EtOAc 3:2 → 2:3) to

give 35 (62.0 mg, 82%, Rf 0.15 D). 1H-NMR (500 MHz, CDCl3): δ 1.35 (t, J = 7.1

Hz, 3H, CH2CH3), 1.79, 2.05, 2.16 (s, 9H, 3 × OAc), 3.99-4.10 (m, 2H, H1 ax.,

H5), 4.13 (d, J = 6.4 Hz, 1H, H6), 4.29-4.34 (m, 3H, H1 eq., CH2CH3), 4.92 (dt, J

= 4.9, 10.9 Hz, 1H, H2), 5.23 (s, 2H, CH2OPh), 5.49-5.53 (m, 2H, H3, H4), 6.95

(AA’ of AA’BB’, J = 8.9 Hz, 2H, H-ortho), 7.66 (s, 1H, H5 triazole), 7.96 (BB’ of

AA’BB’, J = 8.9 Hz, 2H, H-meta); 13C-NMR (125 MHz, CDCl3): δ 14.3 (CH2CH3),

20.2, 20.5, 20.6 (3 × CH3), 56.0 (C2), 60.6 (CH2CH3), 61.8 (C6, CH2OPh), 66.9

(C4), 68.6 (C1), 71.4 (C3), 75.2 (C5), 114.2 (2C, 2 × C-ortho), 122.9 (C5 triazole),

131.5 (2C, 2 × C-meta), 131.6 (C-para), 143.5 (CQ triazole), 161.5 (C-ipso),

169.2, 169.9, 170.4 (3 × C=O); ESI-MS: Calcd. for C24H30N3O10 [M+H]+: 520.19;

Found m/z 520.37.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-carboxyphenoxy)methyl-

1,2,3-triazole (45): Compound 35 (62.0 mg, 119 µmol) was dissolved in

MeOH/H2O (4 ml, 1:1), and NaOH (170 mg, 4.72 mmol) was added. The solution

was stirred at r.t. for 24 h, after which the solvent was removed in vacuo, and the

residue was purified by flash chromatography (DCM/MeOH 5:1 → 2:1) to give 45

(32.0 mg, 74%, Rf 0.47 J). 1H-NMR (500 MHz, CD3OD): δ 3.62 (m, 1H, H5), 3.73

(m, 2H, H6), 3.81 (t, J = 11.3 Hz, 1H, H1 ax.), 3.99 (d, J = 3.0 Hz, 1H, H4), 4.11-

4.17 (m, 2H, H3, H1 eq.), 4.80 (m, 1H, H2), 5.20 (s, 2H, CH2OPh), 7.02 (AA’ of

AA’BB’, J = 8.8 Hz, 2H, H-ortho), 7.93 (BB’ of AA’BB’, J = 8.8 Hz, 2H, H-meta),

8.19 (s, 1H, H5 triazole); 13C-NMR (125 MHz, CD3OD): δ 60.6 (C2), 62.4
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(CH2OPh), 62.9 (C6), 69.7 (C4), 70.5 (C1), 73.3 (C3), 81.2 (C5), 115.1 (2C, 2 ×

C-ortho), 126.0 (C5 triazole), 127.5 (C-para), 132.5 (2C, 2 × C-meta), 144.1 (CQ

triazole), 162.8 (C-ipso), 173.7 (C=O); ESI-MS: Calcd. for C16H18N3O7 [M]–:

364.11; Found m/z 364.12.

1-(3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-D-galactitol-2-yl)-4-(trifluorome-

thylsulfonamidophenyloxy)methyl-1,2,3-triazole (36): Prepared according to

the procedure described for 48, using 4 (50.0 mg, 158 µmol) and 21 (88.2 mg,

316 µmol). The compound was purified by flash chromatography (petrol

ether/EtOAc 3:1 → 1:1) to give 36 (39.0 mg, 41%, Rf 0.18 D).1H-NMR (500 MHz,

CDCl3): δ 1.81, 2.06, 2.18 (s, 9H, 3 × CH3), 4.00-4.05 (m, 2H, H1 ax., H5), 4.14

(d, J = 6.4 Hz, 2H, H6), 4.32 (dd, J1e,2 = 5.0, J1a,1e = 11.6 Hz, 1H, H1 eq.), 4.95

(m, 1H, H2), 5.12 (s, 2H, CH2OPh), 5.50-5.53 (m, 2H, H3, H4), 6.88 (AA’ of

AA’BB’, J = 8.8 Hz, 2H, H-ortho), 7.22 (BB’ of AA’BB’, J = 8.8 Hz, 2H, H-meta),

7.68 (s, 1H, H5 triazole), 8.56 (s, 1H, NH); 13C-NMR (125 MHz, CDCl3): δ 20.2,

20.6, 20.7 (3 × CH3), 56.3 (C2), 61.7, 61.9 (C6, CH2OPh), 67.0 (C4), 68.6 (C1),

71.4 (C3), 75.2 (C5), 115.4 (2C, 2 × C-ortho), 119.84 (q, J = 323.1 Hz, CF3),

123.2 (C5 triazole), 126.6 (2C, 2 × C-meta), 127.1 (C-para), 143.5 (CQ triazole),

157.3 (C-ipso ), 169.5, 170.1, 170.6 (3 ×  C=O); ESI-MS: Calcd. for

C22CuH25F3N4O10 [M+Cu]+: 657.05; Found m/z 656.99.

1-(1,5-Anhydro-2-deoxy-D-galactitol-2-yl)-4-(4-trifluoromethylsulfonamido-

phenoxy)methyl-1,2,3-triazole (46): Compound 36 (39.0 mg, 61.6 µmol) was

deacetylated according to the procedure described for 49. The final product was

purified by flash chromatography on silica gel (DCM/MeOH 10:1) to give 46 (21.2

mg, 73%, Rf 0.63 I). 1H-NMR (500 MHz, CD3OD): δ 3.58 (m, 1H, H5), 3.68 (dd, J

= 4.8, 11.4 Hz, 1H, H6a), 3.73-3.81 (m, 2H, H1 ax., H6b), 3.95 (d, J = 3.0 Hz, 1H,

H4), 4.10-4.13 (m, 2H, H1 eq., H3), 4.77 (dt, J = 5.1, 10.8 Hz, 1H, H2), 5.11 (s,

2H, CH2OPh), 6.94 (AA’ of AA’BB’, J = 9.0 Hz, 2H, H-ortho), 7.13 (BB’ of AA’BB’,

J = 9.0 Hz, 2H, H-meta), 8.11 (s, 1H, H5 triazole); 13C-NMR (125 MHz, CD3OD):

δ 60.7 (C2), 62.6 (CH2OPh), 62.9 (C6), 69.7 (C1), 70.4 (C4), 73.4 (C3), 81.4
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(C5), 116.3 (2C, 2 × C-ortho), 121.9 (q, J = 323.9 Hz, CF3), 125.9 (C5 triazole),

126.8 (2C, 2 × C-meta), 131.4 (C-para), 144.3 (CQ triazole), 158.0 (C-ipso); ESI-

MS: Calcd. for C16H19F3N4O7SNa [M+Na]+: 491.08; Found m/z 491.10.
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Chapter 4: Local Concentration

4.1 Introduction

The most basic assumption in ligand-receptor interactions, and this includes

drug-receptor interactions, is that the ligand has to collide with a small portion of

the receptor (the binding site) in the right orientation and stay bound long enough

to either stimulate (agonist) or block (antagonist) a biological effect mediated by

that receptor. This was first formulated in the late 1800s by Paul Ehrlich, who

coined the term “Corpora non agunt nisi fixata”, which means “a drug does not

work unless physically bound to its target”. The statement was based on his

proposed theory that a drug can not only chemically react with its target (e.g.

alkylating agents) but also interact via a supramolecular or “physical”

mechanism, which is now accepted as being the general mechanism by which

most drugs interact with their target receptors.

Carbohydrate-protein interactions tend to be a lot weaker than protein-protein

interactions, therefore to enhance the affinity of carbohydrate-protein

interactions, nature often uses multivalency, i.e. linking several sugar units of low

affinity together to generate a compound with a higher overall affinity [24]. The

resulting increase in affinity is usually attributed to simultaneous interactions of

more than one sugar residue with more than one binding site present on the

same or different receptor subunits. However, the effect of having several sugar

units on one molecule, and hence having a locally higher sugar concentration per

molecule, on carbohydrate-protein interactions has not been thoroughly

investigated in the case of the ASGP-R.
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In this chapter, a series of trivalent compounds 57, 58, 59 and 60 (Figure 14) is

introduced that were synthesized to investigate the effect of local sugar

concentration on the affinity of the ligands towards the ASGP-R H1-CRD using

BIACORE. The SPR signal depends on the mass change on the surface of the

BIACORE chip. Since Glc and Gal are epimers, compounds 57, 58, 59 and 60

have identical molecular masses and scaffolds, which is important when

comparing SPR sensograms, but have different numbers of Gal residues (0-3),

and hence were expected to have a different affinity towards the H1-CRD.
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Figure 14. Trivalent compounds 57, 5 8 , 59 and 60 synthesized for investigating the local

concentration effect on ligand binding to the ASGP-R H1-CRD, showing the expected increase in

affinity.

On the molecular level, the interaction on the BIACORE chip between one

immobilized H1-CRD protein and one of the trivalent compounds can be

assumed to follow a one-to-one binding model. That is: one trivalent ligand binds

only to one H1-CRD subunit via one sugar residue, without bridging two or more

subunits, and hence the equilibrium dissociation constant KD
 of this binding

interaction can be deduced.

Since each ligand possesses three sugar residues, and therefore three possible

binding candidates, the probability of a correct collision between a sugar residue

and the ASGP-R H1-CRD sugar binding site is three times higher than that for a

monovalent ligand, i.e. with just one sugar residue. This can also be expressed in
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terms of a higher local sugar concentration. Thus, according to our estimates the

binding hierarchy of the four compounds (57, 58, 59 and 60) should be as shown

in Figure 14.

Compounds 57, 58, 59 and 60 were screened using BIACORE (Appendix 2), and

their affinities were measured and compared to standards (Glc, Gal, GalNAc).

The underlying assumption in all the BIACORE experiments was that no

chelation or bridging of two H1-CRD subunits by one trivalent ligand was

possible on the BIACORE chip. This was due to short inter-sugar distances on

the ligands, and distances between immobilized H1-CRD proteins that could not

be spanned by one molecule.

4.2 Results and Discussion

4.2.1 Synthesis of compounds 57, 58, 59 and 60

The Gal trimer 60 was prepared by glycosylating 61 [88] with 2,3,4,6-tetra-O-

acetyl-1-bromo-α-D-galactopyranoside [89] (62, Scheme 6) using Hg(CN)2/HgBr2

as promoter (→ 63), and was obtained in a 24% o.y. after deacetylation under

standard Zemplén conditions.
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Scheme 6. (a) Hg(CN)2, HgBr2, CH3CN, r.t., 17 h, 43%; (b) NaOMe, MeOH, r.t., 2 h, 56%; (c)

NIS, TfOH, DCM/Et2O, 4 Å MS, 0 °C, 75%.

The Glc trimer 57 was prepared by glycosylating 61 [88] with ethyl 2,3,4,6-tetra-

O-benzoyl-1-thio-β-D-glucopyranoside [90] (64, Scheme 6) using NIS/TfOH as

promoter (→  65), and was obtained in a 69% o.y. after debenzoylation under

standard Zemplén conditions.

For the synthesis of mono-Gal-di-Glc (58) and mono-Glc-di-Gal (59), two of the

three hydroxy groups on 61 were protected via a benzylidene acetal using

dimethoxy benzaldehyde and catalytic pTsOH•H2O to give the corresponding

isomers of cis-66 and trans-66 (1.2:1, respectively) in a 99% yield (Scheme 7).

The structure of the cis-66 and trans-66 diastereoisomers was determined by

NMR according to the procedure described by Eliel et al. [91].
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Scheme 7. (a) DBA, pTsOH•H2O, CH3CN, r.t., 24 h, 99%, cis/trans mixture (1.2:1).

Compound cis-66 was then glycosylated with ethyl 2,3,4,6-tetra-O-benzoyl-1-

thio-β-D-galactopyranoside [92] (67, Scheme 8) using NIS/TfOH as promoter (→

68), the benzylidene protecting group was cleaved using 80% aqueous acetic

acid giving 69, which was glycosylated with ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-

β-D-glucopyranoside [90] (64) using NIS/TfOH in DCM/Et2O as promoter yielding

70. The latter was debenzoylated under standard Zemplén conditions to give the

mono-Gal-di-Glc trimer 58 in a 27% o.y. starting from cis-66.
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Scheme 8. (a) NIS, TfOH, DCE/Et2O, 4 Å MS, -10 °C, 71%; (b) CH3CO2H (80% in H2O), 50 °C, 5

h, 60%; (c) NIS, TfOH, DCM/Et2O, 4 Å MS, 0 °C, 71%; (d) NaOMe, MeOH, r.t., 1.5 h, 89%.

By an analogous strategy, mono-Glc-di-Gal (59) was prepared (Scheme 9) in a

34% o.y. starting from cis-66.
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Scheme 9. (a) NIS, TfOH, DCE/Et2O, 4 Å MS, 0 °C, 83%; (b) CH3CO2H (80% in H2O), 50 °C, 5 h,

quant.; (c) NIS, TfOH, DCM/Et2O, 4 Å MS, 0 °C, 59%; (d) NaOMe, MeOH, r.t., 2 h, 69%.
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4.2.2 Biological evaluation on BIACORE

(Performed by Daniel Ricklin, Institute of Molecular Pharmacy, University of

Basel)

The four final compounds 57, 58, 59 and 60 were tested on BIACORE (Appendix

2) for their affinity towards the ASGP-R H1-CRD. The equilibrium dissociation

constants (KDs) were measured, and the results are summarized in Table 3.

Table 3. Summary of the BIACORE results for the trivalent compounds.

Entry Compound KD (mM)

1 GalNAc (2) 0.12

2 Gal 2.2

3 Glc >20

4 Gal-Gal-Gal (60) 2.1

5 Gal-Gal-Glc (59) 1.3

6 Gal-Glc-Glc (58) 3.4

7 Glc-Glc-Glc (57) 12

The results presented in Table 3 show a binding hierarchy that deviates from the

expected one in Entries 4 and 5 (compounds 60 and 59, respectively). Since the

affinity of galactose is more than 10-fold higher than that of glucose (Table 3), it

was expected that compound 60 (three Gal moieties) would have higher affinity

than 59 (two Gal moieties), however even after repeated BIACORE experiments

with different batches of protein, the binding hierarchy remained unchanged.

Thus, it could be that the one Glc moiety in 59 makes an interaction with a part of

the protein other than the binding site. Another possibility is due to the fact that

the compounds are relatively compact and possess a restricted flexibility with a

concomitant formation a tight network of hydrogen bonds that somehow

influences the binding characteristics.
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The increase in affinity due to multivalent interactions is a result of two

components: statistical binding probability and the chelate effect [22]. The fact

that no dramatic increases in affinity are observed for compounds 57, 58, 59 and

60 is a proof that the local concentration effect in this system is operating on a

purely statistical level, i.e. more sugars in the vicinity of the binding site implies a

higher probability of collision. The statistical component of multivalent

interactions is less potent and influential than the chelate effect [22], and since

there is no multivalent binding possible, no substantial increase in affinity is

observed. This may also explain why compound 60 showed almost an identical

KD to that of Gal, in spite of possessing three vs. one Gal moiety.

A similar result was observed by Kiessling et al. [93], who synthesized

lactosylated neoglycopolymers for binding to galectin 3 (Gal-3) and Erythrina

corallodenrum lectin (EcorL). In spite of the neoglycopolymer presenting many

more sugar residues than the monovalent lactose, no exponential increase in

relative affinity was observed, rather a small increase for statistical reasons was

seen. The explanation for this is that both Gal-3 and EcorL possess sugar

binding sites that are located on the opposite faces of the lectins, and hence no

chelate effect by simultaneously binding to both sites was possible.

In contrast, the same research group managed to observe exponential

enhancements in the binding affinity of mannose-substituted polymers designed

to bind to the concavalin A (Con A) lectin [94]. Unlike Gal-3 and EcorL, Con A

has the sugar binding sites on the same face of the protein, which does allow

chelation to take place.
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4.3 Conclusion

In this chapter, a set of four trivalent compounds (57, 58, 59 and 60) with a

different affinity for the ASGP-R was introduced. The compounds were

synthesized, and their KD was measured on BIACORE. In order to understand

and explain the surprising discrepancy in the binding hierarchy caused by

compounds 59 and 60, it might be useful to perform some modeling and NMR

studies on the conformation of the compounds to determine the actual binding

mode.

Furthermore, if the main reason for the observed KD values for 59 and 60 is

excessive sterical rigidity of the compounds, it might help to increase the spacer

length between the trivalent branching point and the sugar residues (i.e.

compound 74, Figure 15), which would enable the sugars to rotate more freely

for optimal binding.
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Figure 15. Structure of the proposed trivalent compound featuring extended spacers for

increased flexibility.

Nevertheless, the results presented in this chapter further reinforce the accepted

theory that the statistical local concentration component of multivalency is a lot

weaker that the chelate effect [24].
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4.4 Experimental

General methods are described in Appendix 4, p. 147.

cis/trans-5-Benzyloxycarbonylamino-5-hydroxymethyl-2-phenyl-1,3-

dioxane (cis/trans-66):

O

O

NHCbz

HO
O

O
CbzHN

HO

    cis-66  trans-66

Compound 62 [88] (1.00 g, 3.92 mmol) was dissolved in dry CH3CN (30 ml), and

benzaldehyde dimethylacetal (901 µl, 5.87 mmol) followed by p-toluenesulfonic

acid monohydrate (74.1 mg, 0.392 mmol) were added. The solution was stirred

at r.t. under argon for 24 h, quenched with triethylamine (2 ml), and the solvent

was removed in vacuo. The residue was purified by flash chromatography on

silica gel (petrol ether/EtOAc 7:3 → 3:2 → 1:1, with 0.5% triethylamine), yielding

the two completely separated diastereoisomers of 66  (1.34 g, 99%, 1.2:1

cis/trans ratio, Rf 0.28 cis, 0.36 trans, K) as oils, which crystallized upon storage.

cis-66: 1H-NMR (500 MHz, CDCl3): δ 3.76 (s, 2H, CH2OH), 3.86, 4.24 (A, B of

AB, J = 11.7 Hz, 4H, H4, H6), 4.29 (bs, 1H, OH), 5.12 (s, 2H, CH2Ph), 5.48 (s,

1H, H2), 5.84 (s, 1H, NH), 7.33-7.50 (m, 10H, 2 × C6H5); 
13C NMR (125 MHz,

CDCl3): δ 53.86 (C5), 64.2 (CH2OH), 67.2 (CH2Ph), 71.5 (2C, C4, C6), 101.9

(C2), 125.9, 128.1, 128.3,128.6,129.2, 135.8, 137.2 (12C, 2 × C6H5), 156.8

(C=O); Anal. Calcd. for C19H21NO5: C, 66.46; H, 6.16; N, 4.08. Found: C, 66.22;

H, 6.18; N, 3.91. trans-66: 1H-NMR (500 MHz, CDCl3): δ 2.95 (bs, 1H, OH), 4.06

(s, 2H, CH2OH), 4.16 (m, 4H, H4, H6), 5.07 (s, 2H, CH2Ph), 5.08 (s, 1H, NH),



118

5.51 (s, 1H, H2), 7.36-7.46 (m, 10H, 2 × C6H5); 
13C NMR (125 MHz, CDCl3): δ

52.0 (C5), 62.7 (CH2OH), 66.9 (CH2Ph), 68.9 (2C, C4, C6), 101.5 (C2),

126.1,128.1, 128.3, 128.6, 129.1, 135.9, 137.3 (12C, 2 × C6H5), 155.5 (C=O);

Anal. Calcd. for C19H21NO5: C, 66.46; H, 6.16; N, 4.08. Found: C, 65.80; H, 6.18;

N, 3.90.

5-(2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl)oxymethyl-5-benzyloxy-

carbonylamino-2-phenyl-1,3-dioxane (68): Compound cis-66 (100 mg, 0.291

mmol) and ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranoside [92] (67,

373 mg, 0.582 mmol) were dissolved in dry DCE/Et2O (20 ml, 1.5:1 v/v) and

stirred with activated 4 Å mol sieves (1 g) at r.t. for 1 h under argon. The solution

was cooled to -10 °C, and NIS (131 mg, 0.582 mmol) was added. The mixture

was stirred for another 20 min before a drop of TfOH was added. The reaction

was stirred at -10 °C under argon until completion (TLC), after which it was

filtered through Celite diluted with DCM (10 ml) and washed with aqueous

Na2S2O3 (1 M, 25 ml), then aqueous NaHCO3 (0.1 M, 25 ml). The organic phase

was dried with Na2SO4, filtered and concentrated in vacuo. The residue was

purified by flash chromatography on silica gel (petrol ether/EtOAc 7:3) obtaining

68 (190 mg, 71%, Rf 0.22 L) as a colorless solid. [α]D = +54.9 (c 1, CHCl3); 
1H-

NMR (500 MHz, CDCl3): δ 3.88 (A of AB, J = 11.8 Hz, 1H, CH2O, dioxane), 3.98

(A of AB, J = 11.8 Hz, 1H, CH2O, dioxane), 4.07 (A of AB, J = 10.7 Hz, 1H,

CH2OGal), 4.19-4.24 (m, 3H, B of AB CH2O, dioxane, B of AB, CH2OGal, H5-

Gal), 4.30 (B of AB, J = 11.7 Hz, 1H, CH2O, dioxane), 4.44 (dd, J = 6.6, 11.2 Hz,

1H, H6a-Gal), 4.66 (dd, J = 6.6, 11.3 Hz, 1H, H6b-Gal), 4.75 (d, J = 7.45 Hz, 1H,

H1-Gal), 4.96, 5.07 (A, B of AB, J = 12.2 Hz, 2H, CH2Ph), 5.24 (s, 1H, H acetal)

5.32 (s, 1H, N-H), 5.61 (dd, J = 2.2, 10.4 Hz, 1H, H3-Gal), 5.79 (m, 1H, H2-Gal),

6.00 (s, 1H, H4-Gal), 7.23-8.12 (m, 30H, 6 × C6H5); 
13C NMR (125 MHz, CDCl3):

δ  52.6 (CQ, dioxane), 62.0 (C6-Gal), 66.4 (CH 2Ph), 68.1 (C4-Gal), 69.7

(CH2OGal), 69.8 (C2-Gal), 70.3 (2C, 2 × CH2O, dioxane), 71.2 (C3-Gal), 71.3

(C5-Gal), 101.4 (C acetal), 102.1 (C1-Gal), 125.1, 128.0-130.0, 133.2-134.1,
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136.1, 137.3, 137.4 (36C, 6 × C6H5), 155.3 (C=O, Cbz), 165.2-165.9 (4C, 4 ×

C=O, OBz); ESI-MS: Calcd. for C53H48NO14 [M+H]+: 922.31; Found m/z 922.52.

Tris[(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)oxymethyl]-N-benzyloxy-

carbonylmethylamine (63): To a solution of 61 [88] (50.1 mg, 0.196 mmol),

Hg(CN)2 (99.1 mg, 0.392 mmol) and HgBr2 (141 mg, 0.392 mmol) in dry CH3CN

(3 ml) was added a solution of 2,3,4,6-tetra-O -acety l -1 -bromo-α-D-

galactopyranoside [89] (62, 322 mg, 0.784 mmol) in dry CH3CN (3 ml) dropwise

over 30 min at r.t. under argon. After 2.5 h, more donor 62 (80.5 mg, 0.196

mmol) was added and the reaction was stirred for 13.5 h at r.t. under argon. The

mixture was then diluted with DCM (50 ml), washed with aqueous KI solution

(30%, 20 ml), then aqueous NaHCO3 solution (0.1 M, 20 ml), followed by H2O

(20 ml), and dried with Na2SO4. The solvent was removed in vacuo, and the

residue was purified by flash chromatography on silica gel (DCM/acetone 20:1 →

9:1) obtaining 63 (105 mg, 43%, Rf 0.16 M) as a colorless solid. [α]D = -9.2 (c 1,

CHCl3); 
1H-NMR (500 MHz, CDCl3): δ 1.96,1.98, 2.03, 2.13 (s, 36H, 12 × OAc),

3.78 (A of AB, J = 10.3 Hz, 3H, 3 × CH2O), 3.85 (m, 3H, 3 × H5-Gal), 4.03 (B of

AB, J = 10.3 Hz, 3H, 3 × CH2O), 4.09 (m, 6H, 3 × H6-Gal), 4.40 (d, J = 7.5 Hz,

3H, 3 × H1-Gal), 4.96-5.07 (m, 5H, 3 × H3-Gal, CH2Ph), 5.12 (dd, J = 8.0, 10.4

Hz, 3H, 3 × H2-Gal), 5.33 (m, 4H, 3 × H4-Gal, N-H), 7.33 (m, 5H, C6H5); 
13C

NMR (125 MHz, CDCl3): δ 20.6 (12C, 12 × CH3, OAc), 58.2 (3C, 3 × C6-Gal)

66.8 (4C, 3 × C4-Gal, CH2Ph), 68.4 (CQ), 68.8 (6C, 3 × C2-Gal, 3 × CH2O), 70.4

(6C, 3 × C3-Gal, 3 × C5-Gal), 101.6 (3C, 3 × C1-Gal), 128.2, 128.3, 128.4, 136.0

(6C, C6H5), 154.7 (C=O, Cbz), 169.2, 169.8, 170.1, 170.2 (12C, 12 × C=O, OAc);

ESI-MS: Calcd. for C54H72NO32 [M+H]+: 1246.4; Found m/z 1246.65; Anal. Calcd.

for C54H71NO32: C, 52.05; H, 5.74; N, 1.12. Found: C, 52.68; H, 6.05; N, 1.23.

Tris[(β-D-galactopyranosyl)oxymethyl]-N-benzyloxycarbonylmethylamine

(60): Compound 63 (125 mg, 0.099 mmol) was dissolved in dry methanol (2.5 ml)

and a solution of NaOMe in MeOH (0.1 M, 2.5 ml) was added. The resultant
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mixture was stirred at r.t. under argon for 2 h. The solution was neutralized with

Dowex 50X8 (H+-form), filtered and the solvent removed in vacuo. The residue

was purified on an RP-C18 column (H2O/MeOH, stepwise gradient 20:0 → 17:3)

to give 60 (42 mg, 56%, Rf 0.25 N). [α]D = -0.085 (c 1, MeOH); 1H-NMR (500

MHz, CD3OD): δ 3.45-3.54 (m, 9H, 3 × H2-, 3 × H3-, 3 × H5-Gal), 3.69 (dd, J =

5.4, 11.4 Hz, 3H, 3 × H6a-Gal), 3.75 (dd, J = 6.9, 11.3 Hz, 3H, 3 × H6b-Gal), 3.81

(d, J = 3.2 Hz, 3H, H4-Gal), 3.90 (A of AB, J = 10.3 Hz, 3H, 3 × CH2O), 4.24-4.28

(m, 6H, 3 × H1-Gal, 3 × CH2O), 4.59 (bs, 1H, N-H), 5.03 (m, 2H, CH2Ph), 7.27-

7.37 (m, 5H, C6H5); 
13C NMR (125 MHz, CD3OD): δ 60.1 (CQ, Tris), 62.4 (3C, 3 ×

C6-Gal), 67.2 (CH2Ph), 69.6 (3C, 3 × CH2O), 70.3 (3C, 3 × C4-Gal), 72.4 (3C, 3 ×

C2-Gal), 74.8 (3C, 3 × C3-Gal), 76.7 (3C, 3 × C5-Gal), 105.6 (3C, 3 × C1-Gal),

129.1, 129.6, 138.1 (6C, C6H5), 157.4 (C=O, Cbz); ESI-MS: Calcd. for

C30H47NO20Na [M+Na]+: 764.26; Found m/z 764.40.

Tris[(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)oxymethyl]-N-benzyloxy-

carbonylmethylamine (65): Compound 61 [88] (50.1 mg, 0.196 mmol) and ethyl

2,3,4,6-tetra-O-benzoyl-1-thio-β-D-glucopyranoside [90] (64 , 500 mg, 0.785

mmol) were dissolved in dry DCM/Et2O (15 ml, 2:1 v/v) and stirred with activated

4 Å mol sieves (500 g) at r.t. for 2 h under argon. The solution was cooled to 0

°C, and NIS (176 mg, 0.785 mmol) was added, followed by a drop of TfOH. The

reaction was stirred at 0 °C under argon for 1 h, then more TfOH (10 µl) was

added, and the reaction was stirred at r.t. under argon until completion (TLC).

The mixture was then filtered through Celite, diluted with DCM (10 ml) and

washed with aqueous Na2S2O3 (1 M, 25 ml), then aqueous NaHCO3 (0.1 M, 25

ml). The organic phase was dried with Na2SO4, filtered and concentrated in

vacuo. The residue was purified by flash chromatography on silica gel (petrol

ether/EtOAc 7:3 → 3:2) obtaining 65 (293 mg, 75%, Rf 0.61 A) as a colorless

solid. All analytical data were consistent with those published [88].
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5-(2,3,4,6-Tetra-O-benzoyl-β-D-glucopyranosyl)oxymethyl-5-benzyloxy-

carbonylamino-2-phenyl-1,3-dioxane (71): Compound cis-66 (100 mg, 0.291

mmol) and ethyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-glucopyranoside [90] (64, 373

mg, 0.582 mmol) were dissolved in dry DCM/Et2O (20 ml, 1.5:1 v/v) and stirred

with activated 4 Å mol sieves (1 g) at r.t. for 2 h under argon. The solution was

cooled to 0 °C, and NIS (131 mg, 0.582 mmol) was added. The mixture was

stirred for 1 h before TfOH (15 µl, 0.172 mmol) was added. The reaction was

stirred at 0 °C under argon until completion (TLC), when it was filtered through

Celite, diluted with DCM (10 ml) and washed with aqueous Na2S2O3 (1 M, 25 ml),

then aqueous NaHCO3 (0.1 M, 25 ml). The organic phase was dried with

Na2SO4, filtered and concentrated in vacuo. The residue was purified by flash

chromatography on silica gel (petrol ether/EtOAc 4:1 → 7:3) obtaining 71 (230

mg, 83%, Rf 0.25 L) as a colorless solid. [α]D = +12.5 (c 1, CHCl3); 
1H-NMR (500

MHz, CDCl3): δ 3.82 (A of AB, J = 11.7 Hz, 1H, CH2O, dioxane), 3.91 (A of AB, J

= 11.7 Hz, 1H, CH2O, dioxane), 3.95-4.04 (m, 2H, H5-Glc, A of AB, CH2OGlc),

4.19-4.24 (m, 3H, 2 × B of AB CH2O, dioxane, B of AB, CH2OGlc), 4.45 (dd, J =

4.9, 12.2 Hz, 1H, H6a-Glc), 4.65 (dd, J = 2.9, 12.1 Hz, 1H, H6b-Glc), 4.75 (d, J =

7.6 Hz, 1H, H1-Glc), 4.90, 5.04 (A, B of AB, J = 12.3 Hz, 2H, CH2Ph), 5.22 (s,

1H, N-H), 5.28 (s, 1H, H acetal), 5.51 (dd, J = 8.0, 9.8 Hz, 1H, H2-Glc), 5.68 (t, J

= 9.7 Hz, 1H, H4-Glc), 5.87 (t, J = 9.7 Hz, 1H, H3-Glc), 7.25-8.55, 7.83-8.06 (m,

30H, 6 × C6H5); 
13C NMR (125 MHz, CDCl3): δ 52.4 (CQ, dioxane), 62.7 (C6-Glc),

66.4 (CH2Ph), 68.8 (CH2OGlc), 69.5 (C4-Glc), 69.8, 70.3 (2C, 2 ×  CH2O,

dioxane), 71.8 (C2-Glc), 72.2 (C5-Glc), 72.6 (C3-Glc), 101.5 (C acetal), 101.7

(C1-Glc), 125.9-129.8, 133.1,133.3, 133.4, 133.5, 137.4 (36C, 6 × C6H5), 155.3

(C=O, Cbz), 165.1, 165.7, 166.1 (4C, 4 × C=O, OBz); ESI-MS: Calcd. for

C53H47NO14Na [M+Na]+: 944.29; Found m/z 944.43; Anal. Calcd. for C53H47NO14:

C, 69.05; H, 5.14; N, 1.52. Found: C, 68.60; H, 5.14; N, 1.61.

2-(2,3,4,6-Tetra-O-benzoyl-β-D-glucopyranosyl)oxymethyl-2-benzyloxy-

carbonylaminopropan-1,3-diol (72): Compound 71 (110 mg, 0.119 mmol) was

dissolved in 80% aqueous acetic acid (5 ml), and the resultant solution was
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heated at 50 °C for 3 h. The solvent was removed in vacuo, and the residue was

purified by flash chromatography on silica gel (petrol ether/EtOAc 3:2 → 1:1)

giving 72 (99 mg, quant., Rf 0.17 D) as a solid. [α]D = +13.7 (c 1, CHCl3); 
1H-NMR

(500 MHz, CDCl3): δ 3.48 (m, 2H, CH2OH), 3.65 (m, 2H, CH2OH), 3.87, 4.02 (A,

B of AB, J = 10.1 Hz, 2H, CH2OGlc), 4.09 (m, 1H, H5-Glc), 4.44 (dd, J = 5.1, 12.2

Hz, 1H, H6a-Glc), 4.67 (dd, J = 2.9, 12.2 Hz, 1H, H6b-Glc), 4.80 (d, J = 7.9 Hz,

1H, H1-Glc), 4.89, 4.99 (A, B of AB, J = 12.2 Hz, 2H, CH2Ph), 5.48 (dd, J = 7.9,

9.8 Hz, 1H, H2-Glc), 5.68 (t, J = 9.7 Hz, 1H, H4-Glc), 5.74 (s, 1H, N-H), 5.92 (t, J

= 9.7 Hz, 1H, H3-Glc), 7.25-8.04 (m, 25H, 5 × C6H5); 
13C NMR (125 MHz,

CDCl3): δ 59.3 (CQ, Tris), 62.7 (C6-Glc), 63.8 (2C, 2 × CH2OH), 66.9 (CH2Ph),

69.4 (C4-Glc), 70.5 (CH2OGlc), 72.0 (C2-Glc), 72.3 (C5-Glc), 72.4 (C3-Glc),

101.4 (C1-Glc), 128.0-128.8, 129.7, 129.8, 133.2, 133.5, 136.0 (30C, 5 × C6H5),

156.9 (C=O, Cbz), 165.1, 165.7, 165.8, 166.2 (5C, 5 × C=O, OBz); ESI-MS:

Calcd. for C46H43NO14Na [M+Na]+: 856.26; Found m/z 856.23

Tris[(β-D-glucopyranosyl)oxymethyl]-N-benzyloxycarbonylmethylamine

(57): Compound 65 (276 mg, 0.139 mmol) was dissolved in dry methanol (2.5

ml), a solution of NaOMe in MeOH (0.2 M, 2.5 ml) was added, and the resultant

mixture was stirred at r.t. under argon for 1.5 h. It was then neutralized with

Dowex 50X8 (H+-form), filtered and the solvent removed in vacuo. The residue

was purified on an RP-C18 column (H2O/MeOH, stepwise gradient 1:0 → 3:1) to

give 57 (95 mg, 92%, Rf 0.44 N). All analytical data were consistent with those

reported [88].

2-(2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl)oxymethyl-2-benzyloxy-

carbonylaminopropan-1,3-diol (69): Compound 68 (115 mg, 0.125 mmol) was

dissolved in 80% aqueous acetic acid (5 ml), and the resultant solution was

heated at 50 °C for 5 h. The solvent was removed in vacuo, and the residue was

purified by flash chromatography on silica gel (petrol ether/EtOAc 3:2 → 1:1)

giving 69 (62 mg, 60%, Rf 0.17 D) as a solid. [α]D = +61.7 (c 1, CHCl3); 
1H-NMR
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(500 MHz, CDCl3): δ 3.39-3.65 (m, 4H, 2 × CH2OH), 3.81 (A of AB, J = 10.1 Hz,

1H, CH2OGal), 3.98 (B of AB, J = 10.1 Hz, 1H, CH2OGal), 4.21 (t, J = 6.5 Hz 1H,

H5-Gal), 4.35 (dd, J = 6.6, 11.3 Hz, 1H, H6a-Gal), 4.54 (dd, J = 6.6, 11.3 Hz, 1H,

H6b-Gal), 4.71 (d, J = 7.7 Hz, 1H, H1-Gal), 4.82, 4.94 (A, B of AB, J = 12.2 Hz,

2H, CH2Ph), 5.58 (dd, J = 3.2, 10.4 Hz, 1H, H3-Gal), 5.64 (m, 1H, H2-Gal), 5.69

(s, 1H, N-H), 5.91 (d, J = 3.1 Hz, 1H, H4-Gal), 7.14-8.01 (m, 25H, 5 × C6H5); 
13C

NMR (125 MHz, CDCl3): δ 59.3 (CQ, Tris), 61.8 (C6-Gal), 63.7, 64.1 (2C, 2 ×

CH2OH), 66.9 (CH2Ph), 67.9 (C4-Gal), 69.9 (C2-Gal), 70.5 (CH2OGal), 71.0 (C3-

Gal), 71.5 (C5-Gal), 101.8 (C1-Gal), 128.0-129.9, 133.3-133.6, 136.0 (30C, 5 ×

C6H5), 156.7 (C=O, Cbz), 165.4, 165.5, 165.8, 165.9, 166.0 (5 × C=O, OBz); ESI-

MS: Calcd. for C46H43NO14Na [M+Na]+: 856.26; Found m/z 856.37.

(2,3,4,6-Tetra-O-Benzoyl-β-D-galactopyranosyl)oxymethyl-bis[(2,3,4,6-tetra-

O-benzoyl-β-D-glucopyranosyl)oxymethyl]-N-benzyloxycarbonylmethyl-

amine (70): Compound 69 (61 mg, 73.1 µmol) and ethyl 2,3,4,6-tetra-O-benzoyl-

1-thio-β-D-glucopyranoside [90] (64, 164 mg, 0.256 mmol) were dissolved in dry

DCM/Et2O (15 ml, 2:1 v/v) and stirred with activated 4 Å mol sieves (500 mg) at

r.t. for 2 h under argon. The solution was cooled to 0 °C, and NIS (57.6 mg,

0.256 mmol) was added, followed by TfOH (15 µl, 0.175 mmol). The reaction was

stirred at 0 °C under argon until completion (TLC), after which it was filtered

through Celite, diluted with DCM (10 ml) and washed with aqueous Na2S2O3 (1

M, 25 ml), then aqueous NaHCO3 (0.1 M, 25 ml). The organic phase was dried

with Na2SO4, filtered and concentrated in vacuo. The residue was purified by

flash chromatography on silica gel (petrol ether/EtOAc 7:3) obtaining 70 (104 mg,

71%, Rf 0.47 D) as a solid. [α]D = +13.1 (c 1, CHCl3); 
1H-NMR (500 MHz, CDCl3):

δ 3.36-3.43 (m, 5H, CH2OGal, CH2OGlca, CH2OGlcb, H5-Glca, H5-Glcb), 3.66 (t, J

= 6.6 Hz, 1H, H5-Gal), 3.79 (d, J = 7.9 Hz, 1H, H1-Glca), 3.85 (d, J = 7.9 Hz, 1H,

H1-Glcb), 4.01 (d, J = 7.9 Hz, 1H, H1-Gal), 4.06 (B of AB, J = 10.6 Hz, 1H,

CH2OGlca), 4.17-4.28 (m, 5H, H6a-Gal, H6a-Glca, H6a-Glcb, CH2OGal,

CH2OGlcb), 4.39-4.45 (m, 3H, H6b-Gal, H6b-Glca, H6b-Glcb), 4.66 (s, 2H,

CH2Ph), 5.16-5.21 (m, 2H, H2-Glca, H2-Glcb), 5.24 (dd, J = 3.5, 10.5 Hz, 1H, H3-
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Gal), 5.34 (m, 2H, H4-Glca, H4-Glcb), 5.45-5.58 (m, 3H, H2-Gal, H3-Glca, H3-

Glcb), 5.73 (d, J = 3.3 Hz, 1H, H4-Gal), 7.13-7.99 (m, 65H, 13 × C6H5); 
13C NMR

(125 MHz, CDCl3): δ 58.7 (CQ, Tris), 61.9 (C6-Gal), 62.9, 63.0 (2C, C6-Glca, C6-

Glcb), 66.1 (CH2Ph), 67.9 (C4-Gal), 68.2, 68.5, 68.7 (3C, CH2OGlca, -Glcb, -Gal)

69.4 (2C, H4-Glca, H4-Glcb), 69.8 (H4-Gal), 70.5, 71.0, 71.2, 71.7, 71.9, 72.4

(C2-Glca, -Glcb, C3-Glca, -Glcb, -Gal, C5-Glca, -Glcb, -Gal), 101.3 (C1-Glcb), 101.5

(C1-Glca), 101.9 (C1-Gal), 127.6-130.3,133.2-133.7, 136.4 (78C, 13 × C6H5)

154.8 (C=O, Cbz), 164.5-166.1 (12C, 12 × C=O, OBz); ESI-MS: Calcd. for

C114H95NO32Na [M+Na]+: 2012.57; Found m/z 2013.74; Anal. Calcd. for:

C114H95NO32 C, 68.77; H, 4.81; N, 0.70. Found: C, 68.61; H, 5.04; N, 0.81.

(β-D-Galactopyranosyl)oxymethyl-bis[(β-D-glucopyranosyl)oxymethyl]-N-

benzyloxycarbonylmethylamine (58): Compound 70 (90.1 mg, 45.2 µmol) was

dissolved in dry methanol/dioxane (3 ml, 2:1 v/v) and a solution of NaOMe in

MeOH (0.2 M, 1 ml) was added. The resultant mixture was stirred at r.t. under

argon for 1.5 h. The solution was neutralized with Dowex 50X8 (H+-form), filtered

and the solvent was removed in vacuo. The residue was purified on an RP-C18

column (H2O/MeOH, stepwise gradient 1:0 → 3:1) to give 58 (30 mg, 89%, Rf

0.32 N). [α]D = -11.6 (c 1, MeOH); 1H-NMR (500 MHz, CD3OD): δ 3.18-3.22 (m,

2H, H2-Glca, H2-Glcb), 3.28 (m, 2H, H4-Glca, H4-Glcb), 3.31 (m, 2H, H5-Glca, H5-

Glcb), 3.36 (m, 2H, H3-Glca, H3-Glcb), 3.45-3.55 (m, 3H, H2-Gal, H3-Gal, H5-Gal)

3.64 (m, 2H, H6a-Glca, H6a-Glcb), 3.70 (dd, J = 5.3, 11.4 Hz, 1H, H6a-Gal), 3.76

(dd, J = 6.9, 11.4 Hz, 1H, H6b-Gal), 3.82-3.93 (m, 6H, CH2OGlca, CH2OGlcb,

CH2OGal, H6b-Glca, H6b-Glcb, H4-Gal), 4.22-4.33 (m, 6H, H1-Glca, H1-Glcb, H1-

Gal, CH2OGlca, CH2OGlcb, CH2OGal), 5.04 (s, 2H, CH2Ph), 7.27-7.37 (m, 5H,

C6H5); 
13C NMR (125 MHz, CD3OD): δ 60.1 (CQ, Tris), 62.4 (C6-Gal), 62.7 (2C,

C6-Glca, C6-Glcb), 67.2 (CH2Ph), 69.5 (3C, CH2OGlca, -Glcb, -Gal), 70.2 (C4-Gal)

71.5 (2C, C4-Glca, C4-Glcb), 72.5 (C2-Gal), 74.8 (C3-Gal), 75.0 (2C, C2-Glca,

C2-Glcb), 76.7 (C5-Gal), 77.9, 78.0 (4C, C3-Glca, C3-Glcb, C5-Glca, C5-Glcb)
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104.9 (2C, C1-Glca, C1-Glcb), 105.4 (C1-Gal), 128.9, 129.0, 129.5, 138.2 (6C,

C6H5), 157.5 (1C, C=O, Cbz); ESI-MS: Calcd. for C30H47NO20Na [M+Na]+:

764.26; Found m/z 764.34.

Bis[(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)oxymethyl]-(2,3,4,6-tetra-

O-benzoyl-β-D-glucopyranosyl)oxymethyl-N-benzyloxycarbonylmethyl-

amine (73): Compound 72  (50.1 mg, 59.9 µmol) and ethyl 2,3,4,6-tetra-O-

benzoyl-1-thio-β-D-galactopyranoside [92] (67 , 134 mg, 0.209 mmol) were

dissolved in dry DCM/Et2O (15 ml, 2:1 v/v) and stirred with activated 4 Å mol

sieves (500 mg) at r.t. for 2 h under argon. The solution was cooled to 0 °C, and

NIS (46.9 mg, 0.209 mmol) was added, followed by TfOH (10 µl, 20.9 µmol). The

reaction was stirred at 0 °C under argon until completion (TLC), after which it was

filtered through Celite, diluted with DCM (10 ml) and washed with aqueous

Na2S2O3 (1 M, 25 ml), then aqueous NaHCO3 (5% w/v, 25 ml). The organic

phase was dried with Na2SO4, filtered and concentrated in vacuo. The residue

was purified by flash chromatography on silica gel (petrol ether/EtOAc 7:3 → 3:2)

obtaining 73 (70 mg, 59%, Rf 0.45 D) as a solid. [α]D = +17.4 (c 0.5, CHCl3); 
1H-

NMR (500 MHz, CDCl3): δ 3.42 (m, 1H, H5-Glc), 3.51-3.57 (m, 3H, CH2OGala,

CH2OGalb, CH2OGlc), 3.71 (t, J = 6.7 Hz, 1H, H5-Galb), 3.76 (t, J = 6.6 Hz, 1H,

H5-Gala), 3.82 (d, J = 7.8 Hz, 1H, H1-Glc), 4.06 (d, J = 7.9 Hz, 1H, H1-Gala)

4.10-4.16 (m, 3H, H1-Galb, CH2OGala, CH2OGalb), 4.22-4.37 (m, 4H, CH2OGlc,

H6b-Gala, H6b-Galb, H6b-Glc), 4.41-4.55 (m, 3H, H6a-Gala, H6a-Galb, H6a-Glc)

4.74 (s, 2H, CH2Ph), 5.24-5.38 (m, 3H, H2-Glc, H3-Gala, H3-Galb), 5.42 (t, J =

9.7 Hz, 1H, H4-Glc), 5.56 (t, J = 9.7 Hz, 1H, H3-Glc), 5.59-5.66 (m, 2H, H2-Gala,

H2-Galb), 5.81-5.84 (m, 2H, H4-Gala, H4-Galb), 7.21-8.31 (m, 75H, 13 × C6H5);
13C NMR (125 MHz, CDCl3): δ 58.8 (CQ, Tris), 61.7, 61.9 (C6-Gala, C6-Galb),

62.9 (C6-Glc), 66.0 (CH2Ph), 68.1, 68.5, 68.9 (CH2OGala, -Galb, -Glc), 69.1. 69.2

(3C, C2-Gala, C2-Galb, C4Glc), 71.1, 71.2 (4C, C3-Gala, C3-Galb, C5-Gala, C5-

Galb), 71.7 (C2-Glc), 72.0 (C5-Glc), 72.3 (C3-Glc), 101.4 (C1-Glc), 101.8 (C1-

Galb), 102.0 (C1-Gala), 128.2-129.9, 133.2-133.7, 136.4 (78C, 13 × C6H5), 154.8
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(C=O, Cbz), 164.5-166.0 (12C, 12 ×  C=O, OBz); ESI-MS: Calcd. for

C114H95NO32Na [M+Na]+: 2012.57; Found m/z 2014.00; Anal. Calcd. for:

C114H95NO32 C, 68.77; H, 4.81; N, 0.70. Found: C, 68.55; H, 4.89; N, 0.83.

Bis[(β-D-galactopyranosyl)oxymethyl]-(β-D-glucopyranosyl)oxymethyl-N-

benzyloxycarbonylmethylamine (59): Compound 73 (70.1 mg, 35.2 µmol) was

dissolved in dry methanol/dioxane (3 ml, 2:1 v/v) and a solution of NaOMe in

MeOH (0.2 M, 1 ml) was added. The resultant mixture was stirred at r.t. under

argon for 2 h. The solution was neutralized with Dowex 50X8 (H+-form), filtered

and the solvent removed in vacuo. The residue was purified on an RP-C18

column (H2O/MeOH, stepwise gradient 1:0 → 9:1) to give 59 (18 mg, 69%, Rf

0.30 N). [α]D = -6.1 (c 1, MeOH); 1H-NMR (500 MHz, CD3OD): δ 3.19 (m, 1H, H2-

Glc), 3.27 (m, 1H, H4-Glc), 3.29 (m, 1H, H5-Glc), 3.35 (t, J = 8.9 Hz, 1H, H3-Glc)

3.44-3.54 (m, 6H, H2-Gala, H2-Galb, H3-Gala, H3-Galb, H5-Gala, H5-Galb), 3.63

(m, 1H, H6a-Glc), 3.69 (dd, J = 5.4, 11.4 Hz, 2H, H6a-Gala, H6a-Galb), 3.75 (dd,

J = 6.9, 11.4 Hz, 2H, H6b-Gala, H6b-Galb), 3.81 (d, J = 3.14 Hz, 2H, H4-Gala, H4-

Galb), 3.83-3.92 (m, 4H, H6b-Glc, CH2OGlc, CH2OGala, CH2OGalb), 3.93-4.29

(m, 5H, H1-Gala, H1-Galb, CH2OGlc, CH2OGala, CH2OGalb), 4.31 (d, J = 7.8 Hz,

1H, H1-Glc), 5.03 (m, 2H, CH2Ph), 7.27-7.37 (m, 5H, C6H5); 
13C NMR (125 MHz,

CD3OD): δ 60.1 (CQ, Tris); 62.4 (2C, C6-Gala, C6-Galb); 62.6 (C6-Glc); 67.3

(CH2Ph); 69.6 (3C, CH2OGala, -Galb, -Glc); 70.2 (2C, C4-Gala, C4-Galb), 71.5

(C4-Glc), 72.5 (2C, C2-Gala, C2-Galb), 74.8 (2C, C3-Gala, C3-Galb), 75.0 (C2-

Glc), 76.6 (2C, C5-Gala, C5-Galb), 77.8 (4C, C3-Gala, C3-Galb C5-Gala, C5-Galb),

104.8 (C1-Glc), 105.4 (2C, C1-Gala, C1-Galb), 129.0, 129.5, 138.1 (6C, C6H5),

158.8 (C=O, Cbz); ESI-MS: Calcd. for C30H47NO20Na [M+Na]+: 764.26; Found

m/z 764.34.
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Chapter 5: Synthesis of spin-labeled GalNAc for

second-site screening by NMR

5.1 Introduction

Traditionally in the pharmaceutical industry, identification of high affinity ligands

for therapeutic targets is done by biochemical/biological screening of vast

compound libraries either from corporate collections or those generated by

combinatorial chemistry, in hope of finding a “hit” - a compound that binds with a

relatively good affinity to a particular target. This “hit” then becomes the lead

compound, which is optimized by laborious medicinal chemistry efforts, and

enters clinical trials. Thereafter, should the trials be successful, it assumes the

status of a drug.

Medicinal chemistry is an ever-changing science, with a major portion of

research efforts being focused on the speeding up of the drug discovery and

development process. New techniques for the design, synthesis and testing of

drug candidates are constantly being introduced.

The focus of this project was to synthesize a spin-labeled compound (termed

first-site ligand) that binds to the known binding site on the ASGP-R H1-CRD.

The ligand is intended for use in NMR screening for a second-site ligand that

might bind to a different and unknown binding site on the same protein. As the

first-site ligand, GalNAc (2, Figure 6A, p. 71) was chosen, since it is the best

known ASGP-R ligand and has a KD of 120 µmol [95]. GalNAc was therefore

labeled with a TEMPO spin label to generate compound 75 (Figure 16), and used

successfully in the screening of a library of second-site candidates.
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Figure 16. GalNAc-TEMPO adduct 75, the first-site ligand for second-site NMR screening.

5.1.1 NMR in drug discovery and development

In recent years, NMR spectroscopy has become an integral part of modern drug

discovery and development. A pioneering NMR-based technique called “SAR by

NMR” was introduced that greatly narrowed down the number of compounds

necessary for first-site screening [96]. SAR by NMR is used for finding a ligand

for the first or “already known” binding site, optimizing it, finding a ligand for the

second binding site, also optimizing it, and finally linking the two compounds

together [97]. The second-site ligand should ideally bind simultaneously to the

protein at a different binding site than that of the first ligand, but in the vicinity of

it. The technique mainly relies on 15N-labeled protein, whose residue signals

experience discernible chemical shifts in the 15N-HSQC spectrum upon ligand

binding. By knowing the structure of the protein, and using chemical shift analysis

and intermolecular protein-ligand NOE, one could then deduce not only the

location of the binding site, but also the actual ligand that bound to it as well as

its binding mode. However, identification of the second-site ligand requires the

saturation of the first binding site with the first-site ligand in order to prevent the

potential second-site ligand from also binding there, and thus resulting in a false

positive hit [97]. However, saturation is often not possible due to the poor

solubility of the first-site ligand.
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Therefore another technique, which involves second-site NMR screening with a

spin-labeled first ligand, was developed [98]. The method enables the

identification of a ligand from a diverse library of compounds, which binds to a

second-site on the same target protein (Figure 17). The first ligand without the

spin label is then chemically linked to the second-site ligand.

Figure 17. Basic illustration of the second-site NMR screening process that literally takes place in

the NMR tube.

5.1.2 Paramagnetic relaxation enhancement

The physical principle behind second-site NMR screening with a spin-labeled first

ligand is called paramagnetic relaxation enhancement effect or R2para. The spin-

spin relaxation rates (R2) of two resonating species, i.e. nuclei or electrons, are

proportional to the product of the squares of their gyromagentic ratios, γ. Thus,
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the greater the γ value of one or both species, the greater is the R2. The

gyromagnetic ratio of an unpaired electron is 658 times greater that that of a

proton, hence a proton in the vicinity of such an electron experiences a dramatic

increase in its relaxation rate (R2) relative to nuclear-nuclear relaxation. In the

NMR spectrum, the R2para effect manifests itself in line broadening and

occasional small shifts of the signal for the particular proton in the vicinity of the

spin label. The effect can only be detected if the first-site spin-labeled compound

and the second-site ligand bind simultaneously to the protein, within a maximum

distance of 20 Å from each other. Thus, the problem of binding site overlap that

can occur in “SAR by NMR” [96] is eliminated.

5.1.3 Linking of first- and second-site fragments

The < 20 Å distance also allows the design of a reasonable length spacer for

linking the two fragments. Furthermore, the protons on a second-site candidate

that are the closest to the spin label experience greater paramagnetic relaxation

enhancement than the one on the distant side of the ligand. This gives a clue to

the ligand’s relative orientation, and provides valuable information for optimal

linker design. Due to its high sensitivity, the technique also requires lower protein

amounts per screen than other NMR-based techniques [99].

Once the 1st and 2nd site ligands a linked together, the association and

dissociation of one of the ligands is strongly influence by the binding event of the

other ligand to the neighboring binding site. The first and second-site ligand

fragments may have relatively low KDs in the milli- to micromolar range. However,

due to additive binding energies and favorable entropic terms, upon chemical

linkage a compound is generated whose KD is the product of both fragment KDs,

and can be in nano- to picomolar affinity range [100] (Figure 18). The final

dissociation constant, KD3 is also influenced by a term that accounts for the

changes in the binding affinity caused by linking, and is derived largely from
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changes in translational and rigid-body rotational entropy of the linked fragments,

and can make the Gibbs free energy of binding less favorable [100].

Figure 18. Schematic representation of the resultant KD after chemical linking of the individual

first- and second-site fragments.

5.1.4 Spin Labels

NMR spin labels are generally organic nitroxides, in which the oxygen atom on

the nitrogen has an unpaired electron [98]. Such compounds are termed stable

radicals, and are paramagnetic by nature. Spin labels are commercially available

with many additional functional groups, which allow their facile conjugation to the

target protein, nucleic acid, organic molecule, etc. A widely employed spin label

is 2,2,6,6-tetramethylpiperidine-N-oxyl or TEMPO (76, Figure 19A). Figure 19B

depicts the 4-carboxy version of TEMPO (77) designed for labeling primary

amines.
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Figure 19. (A) 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO, 76). (B) A scheme illustrating the

use of 4-carboxy-TEMPO (77) as a spin label for a target with a primary amine.

In general, TEMPO (76) is a very stable and chemically inert compound. It is

compatible with most organic solvents as well as water, and can be used in the

pH range of 3-10 [101]. The four methyl groups prevent the paramagnetic oxygen

atom from nitroxide dimer formation and disproportionation by acting as steric

shields [101].
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5.2 Results and Discussion

5.2.1 Synthesis of compound 75

In order to retain the original affinity of GalNAc, the TEMPO spin label was

attached via a 4-atom spacer to the 1-position of GalNAc (75, Figure 16), which

is known to be less important for binding to the ASGP-R [102].

The synthesis of TEMPO-labeled GalNAc (75, Scheme 10) began with the

formation of the α-bromide of GalNAc (78), which involved treating 7 with HBr in

acetic acid. Attempts to synthesize the GalNAc oxazoline (79) by the procedure

of Jeanloz et al. [103] failed to give a product. Therefore, a new procedure was

devised, which involved treating crude 78 with silver triflate in the presence of

pyridine leading to the formation of the oxazoline 79 in an 89% yield starting from

7. Compound 79 was then used as the donor for the stereospecific glycosylation

of Cbz-protected ethanolamine [104] (80), promoted by triflic acid, yielding 81 in

an 85% yield. The next two steps gave quantitative yields, and involved

deacetylation under Zemplén conditions (→ 8 2) and Cbz group removal by

catalytic hydrogenation (→  83). The resultant amine (83) was conjugated to 4-

carboxy-TEMPO (77) via an amide bond using DCC and HOBt in DMF to give

compound 75 in a 47% yield. For the determination of the NMR spectrum,

compound 75 was reduced directly in the NMR tube (→ 84) with a slight excess

of sodium ascorbate in D2O.
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Scheme 10. (a) HBr/CH3CO2H, Ac2O, DCM, r.t., 24 h; (b) AgOTf, pyridine, CH3CN/PhMe (1:2), 4

Å MS, r.t., 24 h, 89% (2 steps); (c) TfOH, DCM, 4 Å MS, r.t., 24 h, 85%; (d) NaOMe, MeOH, r.t.,

24 h, quant.; (e) H2, Pd/C, MeOH, r.t., 24 h, quant.; (f) DCC, HOBt, DMF, r.t., 24 h, 47%.

The presence of an unpaired electron in compound 75 had a dramatic effect on

its NMR spectrum (Figure 20). As previously mentioned, it could also be seen

that, the protons closest to the paramagnetic center were affected the most, i.e.

the 12 protons of the four TEMPO methyl groups give a prominent signal in the

spectrum of the reduced form, whereas this signal is almost completely

diminished in the spectrum of the oxidized form (compound 84, Figure 20).
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Figure 20. (Top) NMR spectrum of the oxidized, radical form of 75 showing the paramagnetic

influence on the four methyl groups adjacent to the oxygen. (Bottom) NMR spectrum of the

reduced form (compound 84).

It can also be seen in Figure 20, that the signals for the protons further away

from the oxygen radical are also affected, but to a lesser extent.

5.2.2 Testing of compound 75 in the competitive binding assay

(Performed by Daniela Stokmaier, Institute of Molecular Pharmacy, University of

Basel)

To verify that as a result of TEMPO addition, GalNAc did not lose its affinity

towards the ASGP-R H1-CRD, 75 was tested with an in-house polymer assay

(Appendix 1). The IC50 for 75 was determined as 0.17 mM, which was close to

the value for GalNAc (0.12 mM) as determined in the same assay. These results

84
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indicate that compound 75 is a suitable first-site ligand for second-site NMR

screening.

5.2.3 Transverse relaxation rate (T1rho) measurements

(Performed by Dr. Brian Cutting, Institute of Molecular Pharmacy, University of

Basel)

The NMR measurements, to quantitate the interaction of TEMPO-GalNAc (75)

with the H1-CRD, involved an in-house protocol (Appendix 3) which measures

transverse relaxation rates (T1rho), but is less sensitive to magnetic field

inhomogeneity, which may be caused by switching from the free ligand to the

ligand with the protein. In spite of being a primarily qualitative assay, T1rho

measurements can give an accurate indication of protein-ligand binding. Since

the rate of transverse relaxation increases with molecular weight, T1rho can be

used as a parameter to investigate ligand binding because the protein-ligand

complex has a greater molecular weight than the free ligand [105]. In effect, this

can be seen as a decrease in specific signal intensities in the NMR spectrum.

Thus, Figure 21 shows the typical changes in the signal pattern of a ligand (from

a mixture of potential second-site compounds) that binds to a second-site. Part A

shows the signal of a proton of the free ligand in solution. Part B shows the

decrease in its signal intensity upon addition of the ASGP-R. As the ligand binds

to the protein, the overall mass of the ligand-receptor complex is greater than

that of the free ligand, which leads to faster T1rho relaxation times with

concomitant signal intensity loss, so only 65% of the original signal remains.

Upon addition of the spin-labeled compound 75 (C), the signal experiences

paramagnetic relaxation enhancement and diminishes further in intensity to 56%.
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Upon addition of sodium ascorbate, which reduces TEMPO, the signal regains its

intensity to the same level as it had in the presence of only the protein.

A B C D

Figure 21. A typical NMR signal pattern evinced by a potential 2nd site candidate (SH-41 =

imidazole; OK 212 = compound 75).

This change in the second-site ligand’s NMR peak pattern indicates that it does

indeed bind simultaneously with first-site ligand, but to a different binding site on

the ASGP-R.

After deconvolution of the library, the ligand was identified as imidazole. The next

step would involve the linking of the imidazole to GalNAc via an optimal linker

selected by in situ click chemistry [106].
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5.3 Conclusion

Compound 75 was successfully synthesized and tested by two independent

assays, which confirmed that it can indeed be used for second-site screening by

NMR. The screening itself identified imidazole as a possible second-site ligand,

which should be linked to GalNAc and the resulting adduct tested for its affinity

towards the ASGP-R. The linking procedure is termed in situ click chemistry

[106], and is schematically outlined in Figure 22.

Figure 22. An illustration of an in situ click chemistry experiment.



139

The procedure would involve combining homologous series of the first- and

second-site ligands featuring alkyne and azide functional groups, respectively, in

the presence of the ASGP-R H1-CRD. The protein is intended to act as a

template by bringing the appropriate length azide and alkyne into close proximity

and in a favorable orientation to react via a Huisgen 1,3-dipolar cycloaddition,

thus linking the two components by an optimal length linker. The strength of the

approach lies in the fact that the best possible compound is selected from a

mixture of several possible compounds by the protein itself, therefore eliminating

the need to synthesize a series of compounds with different spacer lengths and

testing them individually in a biological assay.
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5.4 Experimental

General methods are described in Appendix 4, p. 147.

2-Methyl-4,5-(3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyrano)-Δ2-oxazoline

(79): Compound 7 (851 mg, 2.18 mmol) was dissolved in dry DCM (18 ml) in an

amber glass flask, and acetic anhydride (100 µl) was added. To the resultant

solution, HBr in acetic acid (3.4 ml, 19.7 mmol) was added, and the solution was

stirred at r.t. for 24 h. The mixture was diluted with DCM (30 ml) and washed with

ice cold water (100 ml), followed by saturated NaHCO3 solution (100 ml) and

brine (100 ml), dried (Na2SO4) and the solvent was removed in vacuo to give a

foam containing mainly compound 78 , which was used without further

purification.

Compound 78 (895 mg, 2.18 mmol) was dissolved in dry CH3CN/toluene (6 ml,

1:2) in an amber glass flask, 4 Å mol sieves (300 mg) were added, and the

resultant suspension was stirred at r.t. under argon for 2 h. Dry pyridine (260 µl,

3.27 mmol) was then added, followed by AgOTf (840 mg, 3.27 mmol), and the

mixture was stirred at r.t. under argon for 24 h. The mixture was then filtered

through Celite, and the solvents were removed in vacuo. The residue was

purified by flash chromatography on silica gel (toluene/EtOAc/Et3N 100:200:1),

yielding 79 (640 mg, 89%, Rf 0.22 C). The analytical data were identical with

literature values [107].

(2-Benzyloxycarbonylamino)ethyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-

D-galactopyranoside (81): Compound 79 (240 mg, 729 µmol) and 80 [104] (170

mg, 874 µmol) were dissolved in dry DCM (3 mL) and stirred with activated mol.

sieves (4 Å, 200 mg) for 2 h at r.t. under argon. Triflic acid (64 µL, 729 µmol) was

then added, and the resultant mixture was stirred for 24 h at r.t. under argon. The

reaction was quenched with triethylamine (100 µL), filtered through Celite, and
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the solvent was removed in vacuo. The residue was purified by flash

chromatography on silica gel (petrol ether/EtOAc 1:9 → 0:1), yielding 81 (325

mg, 85%, Rf 0.24 C). [α]D = –9.5 (c 1, MeOH); 1H-NMR (500 MHz, CD3OD): δ

1.86, 1.90, 1.97, 2.07 (s, 12H, 4 × CH3CO), 3.27 (m, 2H, OCHaHbCH2N), 3.59 (m,

1H, OCHaHbCH2N), 3.81 (m, 1H, OCHaHbCH2N), 3.97 (m, 1H, H5), 4.04-4.13 (m,

3H, H2, H6), 4.55 (d, J = 8.4 Hz, 1H, H1), 5.01-5.07 (m, 3H, H3, CH2Ph), 5.30 (d,

J = 3.0 Hz, 1H, H4), 7.25-7.31 (m, 5H, C6H5); 
13C NMR (125 MHz, CD3OD): δ

20.5, 20.6, 22.9 (4C, 4 × CH3CO), 41.7 (OCH2CH2N), 51.4 (C2), 62.7 (C6), 67.4

(CH2Ph), 68.1 (C4), 69.6 (OCH2CH2N), 71.7 (C3), 71.9 (C5), 102.6 (C1), 128.8,

128.9, 129.4, 138.1 (6C, C6H5), 158.6 (C=O, Cbz), 171.6, 172.0, 173.8 (4C, 4 ×

C=O, Ac); Anal. calcd. for C24H32N2O11: C, 54.96; H, 6.15; N, 5.34. Found: C,

54.65; H, 6.09; N, 5.15.

(2-Benzyloxycarbonylamino)ethyl 2-acetamido-2-deoxy-β-D-galactopyrano-

side (82): Compound 81 (180 mg, 343 µmol) was dissolved in dry MeOH (5 mL)

and sodium (30 mg) was added. The resultant mixture was stirred for 24 h at r.t.

under argon. The solvent was removed in vacuo, and the residue was purified on

a reverse phase RP-C18 column (H2O/MeOH 1:0 → 4:1, stepwise gradient),

yielding 82 (136 mg, quantitative, Rf 0.47 G). [α]D = –3 (c 2, MeOH); 1H-NMR

(500 MHz, CD3OD): δ 1.95 (s, 3H, CH3CO); 3.20 (m, 2H, OCHaHbCH2N); 3.41 (t,

J = 6.0 Hz, 1H, H5); 3.47-3.53 (m, 2H, OCHaHbCH2N, H3); 3.65 (m, 2H, H6);

3.73-3.81 (m, 2H, OCHaHbCH2N, H4); 3.88 (m, 1H, H2); 4.28 (d, J = 8.4 Hz, 1H,

H1); 4.97 (s, 2H, CH2Ph); 7.18-7.25 (m, 5H, C6H5); 
13C NMR (125 MHz, CD3OD):

δ 22.3 (CH3CO), 42.0 (OCH2CH2N), 54.9 (C2), 62.5 (C6), 67.5 (CH2Ph), 69.6

(2C, OCH2CH2N, C4), 73.0 (C3), 76.8 (C5), 102.9 (C1), 128.9, 129.1, 129.5,

138.3 (6C, C6H5), 158.8 (C=O, Cbz), 175.5 (C=O, Ac); ESI-MS: Calcd. for

C18H27N2O8 [M+H]+: 399.18; Found m/z 399.15.

(2-Amino)ethyl 2-acetamido-2-deoxy-β-D-galactopyranoside (83): Com-

pound 82 (72.1 mg, 181 µmol) was dissolved in dry MeOH (2.5 mL) and Pd/C
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(10% Pd, 24 mg) was added. The mixture was vigorously stirred under a H2

atmosphere (1 atm) at r.t. for 24 h. The resultant mixture was filtered through

Celite, and the solvent was removed in vacuo yielding 83 (47 mg, quantitative),

which was used without further purification. [α]D = –5.3 (c 1, MeOH); 1H-NMR

(500 MHz, D2O): δ 2.01 (s, 3H, CH3CO), 2.75-2.83 (m, 2H, OCHaHbCH2N), 3.60-

3.66 (m, 2H, OCHaHbCH2N, H5), 3.68-3.79 (m, 3H, H3, H6), 3.85-3.90 (m, 3H,

OCHaHbCH2N, H2, H4), 4.42 (d, J = 8.4 Hz, 1H, H1); 13C NMR (125 MHz, D2O): δ

22.2 (CH3CO), 40.0 (OCH2CH2N), 52.4 (C2), 60.9 (C6), 67.7 (C4), 70.8 (C3),

71.0 (OCH2CH2N), 75.0 (C5), 101.8 (C1), 174.8 (C=O); ESI-MS: Calcd. for

C10H21N2O6 [M+H]+: 265.14; Found m/z 265.02.

2-(2,2,6,6-Tetramethyl-N-oxylpiperydyl-4-carbonyl)aminoethyl 2-acetamido-

2-deoxy-β-D-galactopyranoside (75): Compound 83 (32.7 mg, 124 µmol),  4-

carboxy TEMPO (77, 25 mg, 124 µmol), DCC (56.2 mg, 273 µmol) and HOBt (19

mg, 124 µmol) were dissolved in dry DMF (2 mL) and the mixture was stirred

under argon at r.t. in the dark for 24 h. The solvent was then removed in vacuo

and the residue purified on a reverse phase RP-C18 column (H2O/MeOH 1:0 →

9:1, stepwise gradient), yielding 75 (26 mg, 47%, Rf 0.32 G). For NMR

measurements, sodium ascorbate (10 mg) was added to the sample dissolved in

D2O in the NMR tube. Compound 84: [α]D = –5.4 (c 1, MeOH); 1H-NMR (500

MHz, D2O): δ 1.15 (s, 6H, CH3, TEMPO), 1.16 (s, 6H, CH3, TEMPO), 1.64 (m,

2H, CH2, TEMPO), 1.76 (m, 2H, CH2, TEMPO), 1.91 (s, 3H, CH3CO), 2.69 (m,

1H, CH, TEMPO), 3.25 (m, 2H, OCHaHbCH2N), 3.53-3.69 (m, 5H, OCHaHbCH2N,

H3, H5, H6), 3.72-3.81 (m, 3H, OCHaHbCH2N, H2, H4), 4.31 (d, J = 8.5 Hz, 1H,

H1); 13C NMR (125 MHz, D2O): δ 19.2 (2C, 2 × CH3, TEMPO), 22.3 (CH3CO),

28.8 (2C, 2 × CH3, TEMPO), 34.9 (CH, TEMPO), 39.3 (OCH2CH2N), 40.0 (2C, 2

× CH2, TEMPO), 52.3 (C2), 60.9 (C6), 62.5 (CQ, TEMPO), 67.7 (C4), 68.0

(OCH2CH2N), 70.9 (C3), 75.1 (C5), 101.5 (C1), 174.6 (C=O, Ac), 177.0 (C=O,

TEMPO); ESI-MS: Calcd. for C20H37N3O8 [M+H]+: 448.27; Found m/z 448.26.
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Appendix 1

Polymer assay

(Performed by Daniela Stokmaier, Institute of Molecular Pharmacy, University of

Basel)

The competitive target-based assay, or polymer assay, was developed by D.

Stokmaier [108] at our institute, and is illustrated in Figure 23. The basic outline

of the assay is as follows: flat-bottom 96-well microtiter plates are coated with

recombinant human H1-CRD. Then the library compound (inhibitor) is added,

directly followed by the addition of the preformed conjugate-complex of

biotinylated GalNAc-PAA and streptavidin-peroxidase. The plates are incubated

for 2 h at r.t. in a humid chamber on a laboratory shaker. Then ABTS-substrate is

then added to each well. The colour is allowed to develop for 2 min, after which

the reaction is quenched with 2% aqueous oxalic acid. Bound GalNAc-PAA-

complex is measured by determining the optical density of the formed blue-green

soluble product at λ = 415 nm. The IC50 values for the tested compounds are

calculated with the help of GraphPad Prism 4 software.

Figure 23. Outline of the competitive binding assay.
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Appendix 2

BIACORE

(Performed by Daniel Ricklin, Institute of Molecular Pharmacy, University of

Basel)

BIACORE is a bioanalytical technique that has become an integral part of the

modern drug discovery process [109]. It is based on the surface plasmon

resonance (SPR) effect, and enables real time and label-free monitoring of

molecular interactions, i.e. between proteins and their ligands. BIACORE

technology not only measures the equilibrium dissociation constants (KDs) but

can also be used to obtain kinetic data for a particular interaction [110]. During a

BIACORE experiment, a sensogram showing response vs. time is obtained

(Figure 24).

When performing measurements with compounds presented in this thesis, H1-

CRD was immobilized on a sensor chip, and the ligand (analyte) was injected in

solution. Ligand binding to the protein caused an increase in mass on the chip,

which in turn led to changes in the refractive index of the chip’s surface. The

changes in the refractive index were detected and plotted as a sensogram.
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Figure 24. A typical BIACORE sensogram. Steps A-F represent the various phases of the

measurement. (Picture courtesy of A. Vögtli)

In Figure 24, (A) represents the baseline, when only the protein is immobilized on

the chip. Analyte injection leads to the association phase (B) when the ligand

begins to bind to the protein. A steady state (C) occurs when the interaction

reaches equilibrium, which is then followed by the dissociation phase (D). After a

regeneration phase (E), the response returns to the baseline level (F).
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Appendix 3

Second-site screening by NMR

(Performed by Dr. Brian Cutting, Institute of Molecular Pharmacy, University of

Basel)

During the actual second-site NMR screening experiment, the TEMPO-labeled

first-site ligand, the protein and a set of potential second-site ligands are

subjected to a 90° pulse with a spinlock for a variable duration (10-200 ms). If the

first- and second-site compounds bind simultaneously and in the vicinity of each

other to the protein, then the second-site ligand will experience a paramagnetic

relaxation enhancement. The R2para effect is not observed after ascorbic acid,

which reduces TEMPO, is added. In a control experiment, when both ligands are

analyzed in the absence of the protein, no R2para effect is observed.

The protein concentrations were in 20 µM range, while a GalNAc-TEMPO

(compound 75) concentration of approximately 200 µM was used. For all T1rho

experiments, the buffer consisted of 20 mM Tris-d11 (pH 7), 1 mM CaCl2 in

99.5% D2O.

To estimate the transverse relaxation rate, five decay times, beginning from 10

ms and ending at 200 ms, were measured. All T1rho measurements were

performed on a 500 MHz Brucker DRX NMR spectrometer. The signal loss with

increasing relaxation times was quantified and analyzed with the Prism curve-

fitting software package from GraphPad Software, Inc.
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Appendix 4

General Methods.

NMR spectra were recorded on a Brucker Avance DMX-500 (500 MHz)

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D

methods (COSY, HSQC, TOCSY). Chemical shifts are expressed in ppm using

residual CHCl3, CHD2OD and HDO as references. Optical rotations were

measured using a Perkin-Elmer Polarimeter Model 341. ESI-MS spectra were

measured on a Waters Micromass ZQ mass spectrometer. Reactions were

monitored by TLC using glass plates coated with silica gel 60 F254 (Merck) with

the following mobile phases: A) toluene/EtOAc 4:1; B) toluene/EtOAc 1:4; C)

EtOAc; D) petrol ether/EtOAc 1:1; E) EtOAc/MeOH 9:1; F) petrol ether/EtOAc

9:1; G) DCM/MeOH 5:2; H) DCM/MeOH 9:1; I) DCM/MeOH 3:2; J) DCM/MeOH

2:1; K) petrol ether/EtOAc/Et3N 1:1:0.1; L) petrol ether/EtOAc 7:3; M)

DCM/acetone 9:1; N) DCM/MeOH/H2O 6:4:1. Carbohydrate-containing

compounds were visualized by charring with a molybdate solution (0.02 M

solution of ammonium cerium sulfate dihydrate and ammonium molybdate

tetrahydrate in aqueous 10% H2SO4). All other compounds were visualized with

KMnO4 solution (2% KMnO4 and 4% NaHCO3 in water). Column chromatography

was performed on silica gel 60 (Fluka, 0.040-0.060 mm). Methanol (MeOH) was

dried by refluxing with sodium methoxide and distilled immediately before use.

Pyridine was freshly distilled under argon over CaH2. Dichloromethane (DCM)

and dichloroethane (DCE) were dried by filtration over Al2O3 (Fluka, type 5016 A

basic). Tetrahydrofuran (THF), dioxane, diethyl ether (Et2O) and toluene were

dried by refluxing with sodium and benzophenone. Dry DMF was purchased from

Fluka (absolute, ≥99.8%) and was further dried over powdered 4 Å molecular

sieves. Molecular sieves (4 Å) were activated in vacuo at 500 °C for 2 h

immediately before use.
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