Biogeosciences, 5, 129–132, 2008 www.biogeosciences.net/5/129/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. # The fate of N_2O consumed in soils B. Vieten, F. Conen, B. Seth, and C. Alewell Institute of Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland Received: 8 August 2007 – Published in Biogeosciences Discuss.: 24 September 2007 Revised: 17 December 2007 – Accepted: 5 January 2008 – Published: 1 February 2008 **Abstract.** Soils are capable to consume N₂O. It is generally assumed that consumption occurs exclusively via respiratory reduction to N₂ by denitrifying organisms (i.e. complete denitrification). Yet, we are not aware of any verification of this assumption. Some N₂O may be assimilatorily reduced to NH₃. Reduction of N₂O to NH₃ is thermodynamically advantageous compared to the reduction of N2. Is this an ecologically relevant process? To find out, we treated four contrasting soil samples in a flow-through incubation experiment with a mixture of labelled (98%) ¹⁵N₂O (0.5–4 ppm) and O₂ (0.2-0.4%) in He. We measured N2O consumption by GC-ECD continuously and δ^{15} N of soil organic matter before and after an 11 to 29 day incubation period. Any ¹⁵N₂O assimilatorily reduced would have resulted in the enrichment of soil organic matter with ¹⁵N, whereas dissimilatorily reduced ¹⁵N₂O would not have left a trace. None of the soils showed a change in $\delta^{15}N$ that was statistically different from zero. A maximum of 0.27% (s.e. $\pm 0.19\%$) of consumed $^{15}N_2O$ may have been retained as ¹⁵N in soil organic matter in one sample. On average, ¹⁵N enrichment of soil organic matter during the incubation may have corresponded to a retention of 0.019 % (s.e. $\pm 0.14\%$; n=4) of the $^{15}N_2O$ consumed by the soils. We conclude that assimilatory reduction of N₂O plays, if at all, only a negligible role in the consumption of N₂O in soils. #### 1 Introduction Nitrous oxide (N_2O) is produced in soils during the processes of nitrification and denitrification (Firestone et al., 1980). Since industrialisation, the global atmospheric N_2O concentration increased from about 270 ppb in 1800 to 319 ppb in Correspondence to: B. Vieten (b.vieten@unibas.ch) 2005 (IPCC, 2006). Currently, more than one third of all N₂O emissions are of anthropogenic origin and primarily due to agriculture (IPCC, 2006). However, soils can also act as a sink for N₂O (reviewed in Chapuis-Lardy et al., 2007). In general, it is implicitly assumed that complete denitrification (reduction of N₂O to N₂) is the only process responsible for observed sink activity. Once produced by a soil organism, a molecule of N₂O is presumed to take one of the three known routes (Ostrom et al., 2007) (Fig. 1): (1) complete denitrification to N₂ within the cell prior to its escape into the gas phase (reviewed in Zumft, 1997); (2) escape from the cell into the gas phase of soil and potentially to the atmosphere; or (3) complete denitrification to N2 upon re-entering a cell capable to reduce N₂O (e.g. Neftel et al., 2000; Clough et al., 2005). To the best of our knowledge other pathways have not been considered in natural soil so far. Here, we hypothesise a fourth pathway of assimilatory reduction to NH₃ may be responsible for some of observed N2O consumption in soil The only enzyme known to reduce N₂O to NH₃ is nitrogenase. First evidence was provided by Mozen and Burris (1954). Later studies confirmed that N₂O can be a substrate for nitrogenase which reduces N₂O to N₂ with subsequent reduction of N₂ to NH₃ (Hoch et al., 1960; Hardy and Knight, 1966; Jensen and Burris, 1986). However, one year later, reduction of N₂O to N₂ was already questioned by Yamazaki et al. (1987). They concluded from the stable isotope kinetics during N2O fixation by Azotobacter vinelandii that N2O fixation by nitrogenase must be an apparent one-step reaction transforming N2O directly into NH3, without the intermediary N_2 . This conclusion was supported by a re-interpretation of the original results of Jensen and Burris (1986) by Burgess and Lowe (1996). The re-interpretation suggested there may be an additional pathway from N2O to NH3 which does not involve N2 as an intermediary. Enzyme kinetics indicate a low affinity of N_2O to nitrogenase. A k_m value of 24 kPa for purified component proteins from Klebsiella pneumoniae **Fig. 1.** Origin and possible fate of N_2O in soil. (1) Complete denitrification to N_2 before escape from the cell; (2) escape from cell; (3) re-entering a cell and subsequent reduction to N_2 , or (4) assimilatory reduction to NH₃. The ecological relevance of pathway (4) in natural soil is unknown and the focus of this study. has been determined by Jensen and Burris (1986). Yet, (apparent) substrate affinity can vary substantially between organisms and possibly methods. For N₂O consumption by anoxic soil incubations and denitrifiers, for example, k_m values differing by a factor of 2000 have been reported (Conrad, 1996). Even so, we would not expect nitrogenase to substantially contribute to N2O consumption within the range of naturally occurring N2O concentrations. Yet, other, unknown processes may account for some of the observed N2O consumption in soil. Discovery of new processes and responsible organisms continues to our days (e.g., Strous et al., 1999). Strong support for the possible existence of assimilatory reduction of N2O to NH3 comes from thermodynamical considerations. Shestakov and Shilov (2001) concluded after the theoretical study of model reactions involving N₂O that a direct reduction of N2O to NH3 would be possible and thermodynamically advantageous to a reduction of N₂. The dissociation energy for the N-N bond in N₂O is only half that of the N₂ molecule (Herzberg, 1966). Our objective was to clarify whether such a reduction of N2O is an ecologically relevant process occurring in soil. #### 2 Material and methods Samples were obtained from the upper 10 cm of soil at three locations in Switzerland and one location in South-West Germany. The first site, A, is located at Zurich-Reckenholz (47°26′ N, 8°32′ E at 491 m a.m.s.l.), the sec- ond site, B, is located in central Switzerland (47°17′ N, 7°44′ E at 450 m a.m.s.l.; for more details see Flechard et al. 2005). Both sites have soil types classified as cambisol and are experimental grassland sites of the Research Station ART (Agroscope Reckenholz-Tänikon), Switzerland. The third site, C, is located close to Basel (47°28′ N, 7°42′ E at 476 m a.m.s.l.) in a mixed deciduous forest on pseudogley over limestone; and the fourth site, D, is an open pine (*Pinus spp.*) forest on a peat bog in the Black Forest located 70 km north of Basel (47°52′ N, 8°06′ E at 975 m a.m.s.l.). The soils of these sites range in texture from sandy loam to clay loam and organic, in pH from 2.9 to 7.0, in the C:N ratio from 9.4 to 28.8 and in the soil moisture from 23.0 to 93.6% (Table 1). Fresh samples were broken into aggregates of \leq 6.2 mm within 5 h after collection from the field sites and 200 g were placed into an incubation vessel (glass, 415 cm³) at 20°C for a 24 h pre-incubation period. To minimise entry of atmospheric N_2 into the sample environment, we placed the incubation vessel during the entire experiment in an aluminium coated foil bag (volume about 21), which was continuously flushed with He (200 ml min⁻¹). During the incubation, the samples were exposed to a mixture of labelled (98%) ¹⁵N₂O (0.5-4 ppm) and O₂ (0.2-0.4%) in He (with a purity of 99.9999%). Labelled ¹⁵N₂O had been produced by the following thermal method. An amount of 0.1 g fully (98%) labelled NH₄NO₃ (Cambridge Isotope Laboratories, Inc., Andover, USA) was gently heated with 5 ml 6M HNO₃ and 0.05 g NaCl. The arising ¹⁵N₂O was collected in a syringe. Later it was transferred with a stream of He into a 101He bottle filled to 1.1 bar pressure and topped up with He to 6 bar. Close to 100% labelling of N₂O with ¹⁵N was confirmed by mass spectrometry (T. Blunier, personal communication). In the incubation experiment, a gas stream of the labelled ¹⁵N₂O, O₂ and He was mixed together and monitored by mass-flow controllers. It passed a humidifier and was divided into two equal streams with flow rates around 30 ml min⁻¹. One of the gas streams passed through the incubation vessel containing the soil sample before entering a 6-port selection valve (Valco Instruments Co. Inc., Houston, Texas, USA). The second gas stream arrived directly at the selection valve. This valve selected alternating one of the gas streams and sent it through a Nafion dryer (MDTM Series Gas dryer, Perma Pure LLC., Toms River, N.J., USA) to a 2 ml sample loop on an injection valve (10-port selection valve, Valco Instruments Co. Inc., Houston, Texas, USA) for 5 min, while the other gas stream was vented to the atmosphere. Concentrations of N₂O were measured by GC-ECD (SRI8610C Gas Chromotograph; SRI Instruments Inc., Las Vegas, N.V., USA). By varying the concentration of N₂O in the gas mixture, we were able to determine rates of gross production and gross consumption of N2O from a linear regression fitted through the measured net N2O fluxes against N2O concentrations (Vieten et al., 2007). The $\delta^{15}N$ of soil organic matter (SOM) was measured (on three or more sub-samples) before and after an 11 to 29 day incubation period (Table 1) | Sample | A | В | С | D | |---|------------|-----------|------------|----------| | Ecosystem | Grassland | Grassland | Forest | Forest | | Soil type | Cambisol | Cambisol | Pseudogley | Histosol | | Texture | Sandy loam | Clay loam | Loam | Organic | | C:N ratio | 11.2 | 9.4 | 14.6 | 28.8 | | pH in 0.01 M CaCl ₂ | 6.1 | 5.7 | 7.0 | 2.9 | | Moisture [%] | 23.0 | 33.9 | 33.3 | 93.6 | | dry weight of sample [g] | 154 | 132.2 | 133.4 | 12.8 | | Initial mass of ¹⁵ N in sample [mg] | 1.02 | 1.55 | 1.91 | 0.82 | | Duration of incubation [days] | 11 | 20 | 12 | 29 | | ¹⁵ N ₂ O offered to sample [mg ¹⁵ N] | 1.23 | 1.86 | 0.81 | 1.84 | | ¹⁵ N ₂ O consumed [mg ¹⁵ N] | 0.21 | 0.18 | 0.29 | 0.20 | | Shift in δ^{15} N during incubation [] | 0.12 | -0.23 | -0.09 | 0.66 | | | | | | | **Table 1.** Summary of soil sample properties and the results of the incubation experiments with ^{15}N labelled N_2O . on the Flash Elemental Analyser (Thermo Finnigan; Milano, Italy) connected to a CF-IR-MS (DELTA^{plus}XP; Thermo Finnigan MAT; Bremen, Germany). ### 3 Results and discussions During the incubation period of 11 to 29 days, between 0.81 and 1.86 mg of fully labelled ¹⁵N₂O were flowing through each soil sample, containing a background of 0.82 mg to 1.91 mg of ¹⁵N in organic matter (Table 1). During this time, 0.18 mg to 0.29 mg of the offered ¹⁵N₂O was consumed (Table 1). Figure 2 presents the fraction of consumed $^{15}N_2O-N$ that might have been retained as part of the soil organic matter. This fraction was between -0.20% ($\pm 0.11\%$) and 0.27% $(\pm 0.19\%)$ with an average across all four soils of 0.019% $(\pm 0.12\%)$. None of the measured values were significantly different from zero (p>0.05). Thus, we can consider them as measurement noise. Still, their presentation is useful insofar as it serves to illustrate the sensitivity of our method. This sensitivity was about one order of magnitude larger than that of the classical assay for N2 fixation by acetylene reduction, as for example described by Weaver and Danso (1994). This sensitivity was brought about by the long duration of the incubation, the large atom fraction of ¹⁵N in the consumed N_2O (>0.98) and the high rates of N_2O consumption by the soil samples. During the incubation period, an equivalent of 11.6% to 24.4% of ¹⁵N initially present in the soil samples was consumed as $^{15}N_2O$ (Table 1). No significant N_2O production by the soil samples themselves was detected during these experiments. Therefore $^{15}N_2O$ would have been the principal source for potential N_2O assimilation. During our experiments, we incubated the soils with He (purity of 99.9999%) plus small amounts of O_2 and $^{15}N_2O$. Since we flushed the aluminium-coated foil bag that was around the incubation vessel continuously with He, we reduced the potential influx of atmospheric N_2 into **Fig. 2.** Proportion of consumed $^{15}\mathrm{N}_2\mathrm{O-N}$ that might have been retained in four soil samples. Error bars indicate ± 1 standard error of the measurement as determined by the measurements of $\delta^{15}\mathrm{N}$ in soil organic matter on replicate sub-samples before and after the incubation period. The proportion retained has been calculated as: Shift in $\delta^{15}\mathrm{N}$ during incubation [‰]/1000 [‰] * initial mass of $^{15}\mathrm{N}$ in sample [mg]/ $^{15}\mathrm{N}_2\mathrm{O}$ consumed [mg] *100 [%]. the sample. We did not measure N_2 concentrations in the sample air but estimate that it has been in the order of ppm rather than per mil. Compared to the natural environment, the competitive advantage of N_2O (here: 0.5–4 ppm) relative to N_2 to be assimilated had been shifted by orders of magnitude in favour of N_2O . Thus, the likelihood for soil organisms to reduce N_2O instead of N_2 to NH_3 was substantially increased. Maybe, we should underline here that it was not our objective to measure nitrogenase activity but to find out whether some proportion of N_2O consumed in soil is assimilated, by whatever reduction pathway possible. Our method of choice ($^{15}N_2O$ labelling) would be unable to tell us anything specific about the nature of the pathway. We still chose this method because detection of ¹⁵N in tissues of biological systems exposed to labelled N gas is the only direct, unequivocal method for demonstrating that its assimilation occurred (Weaver and Danso, 1994). The negative result regarding N₂O assimilation is unexpected, considering the observed large rates of N2O consumption, the thermodynamical advantage of N₂O over N₂ as a substrate for the production of NH3 (Shestakov and Shilov, 2001), and the evidence of direct N₂O to NH₃ reduction as a biological process (Yamazaki et al., 1987) albeit only for a low affinity enzyme (Jensen and Burris, 1986) so far. One would expect natural selection to have favoured organisms assimilating N2O rather than N2. We can not completely rule out that N₂O assimilation may have some ecological importance, at least in N limited soils. Still, our results strongly indicate that in environments similar to those studied here, N₂O assimilation is an ecologically irrelevant pathway in N₂O consumption by soil. Thus, the general assumption that N2O is exclusively consumed by dissimilatory reduction to N₂ (i.e. complete denitrification) almost certainly applies in these environments. Acknowledgements. We thank Thomas Blunier from the Institute of Climate and Environmental Physics of the University of Bern for analysing our labelled ¹⁵N₂O. This study was supported by the Swiss State Secretariat for Education and Research through grant Nr. C04.0254 to COST Action 856 and the Swiss National Science Foundation. ## References - Burgess, B. K. and Lowe, D. J.: Mechanism of molybdenum nitrogenase, Chem. Rev., 96, 2983–3011, 1996. - Chapuis-Lardy, L., Wrage, N., Metay, A., Chottes, J. L., and Bernouxs, M.: Soils, a sink for N₂O? A review, Global Change Biol., 13, 1–17, 2007. - Clough, T. J., Sherlock, R. R., and Rolston, D. E.: A review of the movement and fate of N₂O in the subsoil, Nutr. Cycl. Agroecosys., 72, 3–11, 2005. - Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS, N₂O, and NO), Microbiol. Rev., 60, 609–640, 1996. - Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: Nitrous Oxide from Soil Denitrification: Factors Controlling Its Biological Production, Science, 208, 749–751, 1980. - Flechard, C. R., Neftel, A., Jocher, M., Amman, C., and Fuhrer, J.: Bi-directional soil/atmosphere N₂O exchange over two mown grassland systems with contrasting management practices, Global Change Biol., 11, 2114–2127, 2005. - Hardy, R. W. F. and Knight, E.: Reduction of N₂O by biological N₂-fixing systems, Biochem. Bioph. Res. Co., 23, 409–414, 1966. - Herzberg, G.: Molecular spectra and molecular structure: Electronic spectra and electronic structure of polyatomic molecule, 3, Van Nostrand, Reinhold, New York, 778 pp., 1966. - Hoch, G. E., Schneider, K. C., and Burris, R. H.: Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules, Biochimica et Biophysica Acta, 37, 273–279, 1960. - IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IGES, Japan, 2006. - Jensen, B. B. and Burris, R. H.: N₂O as a substrate and as a competitive inhibitor of nitrogenase, Biochemistry, 25, 1083–1088, 1986. - Mozen, M. M. and Burris, R. H.: The incorporation of ¹⁵N-labelled nitrous oxide by nitrogen fixing agents, Biochimica et Biophysica Acta, 14, 577–578, 1954. - Neftel, A., Blatter, A., and Schmid, M.: An experimental determination of the scale length of N₂O in the soil of a grassland, J. Geophys. Res., 105, 12 095–12 103, 2000. - Ostrom, N. E., Pitt, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., and Roberston, G. P.: Isotopologue effects during N₂O reduction in soils and in pure cultures of denitrifiers, J. Geophys. Res., 112, G02005, doi:10.1029/2006JG000287, 2007. - Shestakov, A. F. and Shilov, A. E.: On the coupled oxidationreduction mechanism of molecular nitrogen fixation, Russian Chemical Bulletin, International Edition, 50, 2054–2059, 2001. - Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M.: Missing lithotroph identified as new planctomycete, Nature, 400, 446–449, 1999. - Vieten, B., Blunier, T., Neftel, A., Alewell, C., and Conen, F.: Fractionation factors for stable isotopes of N and O during N₂O reduction in soil depend on reaction rate constant, Rapid Commun. Mass Sp., 21, 846–850, 2007. - Weaver, R. W. and Danso, S. K. A.: Dinitrogen fixation: Methods of soil Analysis, Part 2. Microbiological and Biochemical Properties, Bigham, J. M., Soil Science Society of America, Inc., Madison, 1019–1045, 1994. - Yamazaki, T., Yoshida, N., Wada, E., and Matsuo, S.: N₂O reduction by Azotobacter vinelandii with emphasis on kinetic nitrogen isotope effects, Plant Cell Physiol., 28, 263–271, 1987. - Zumft, W.: Cell biology and molecular basis of denitrification, Microbiology and Moecular Biology Reviews, 61, 533–616, 1997.