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Abstract

Abstract

This study analyses the tectono-metamorphic evolution of metasedimentary units belonging to 

the Valaisan and adjacent European domains at the north-eastern border of the Lepontine dome (Cen-

tral Alps). The investigated area is characterized by a remarkable metamorphic gradient ranging from 

subduction-related HP/LT metamorphism in the NE to collision-related Barrovian overprint in the SW. 

Detailed structural fieldwork and petrological investigations including Raman spectroscopy of carbon-

aceous matter were carried out in order to reconstruct the tectono-metamorphic evolution on a larger 

scale. Furthermore, new 40Ar/39Ar dating of white mica and biotite reveal the timing of both subduction-

related high-pressure metamorphism and collision-related Barrovian overprint. The combination of all 

these investigations allows for deciphering a complete P-T-d-t path (pressure, temperature, deformation 

and time) of an area that occupies a key position in the Alpine orogenic belt for understanding the tran-

sition from subduction to collision.

This study documents for the first time that relics of Fe-Mg carpholite indicating blueschist facies 

conditions occur also within metasedimentary units that are part of the north-eastern Lepontine dome 

where, so far, exclusively Barrovian assemblages were found.  They occur in metasediments from both  

the Valaisan domain (Grava and Tomül nappes) and parts of the adjacent European domain (Peiden slic-

es and Piz Terri-Lunschania unit). These high-pressure units were subsequently overprinted by a thermal 

event, as is documented by the growth of new minerals typical for Barrovian metamorphism.

The investigated metasediments provide clear evidence for a bimodal P-T path in the north-east-

ern Lepontine dome characterized by the following polyphase metamorphic evolution: (1) Subduction-

related syn-D1 (Safien phase) HP/LT metamorphism under blueschist facies conditions (350-400 °C and 

1.2-1.4 GPa) was established at 42-40 Ma, as revealed by 40Ar/39Ar dating of white mica associated with 

Fe-Mg carpholite; the early high-pressure event was followed by “cold” isothermal (or cooling) decom-

pression during D2 nappe-stacking (Ferrera phase) for which an age of 36-33 Ma is inferred based on 
40Ar/39Ar dating of white mica replacing Fe-Mg carpholite. (2) Early collision-related greenschist facies 

overprint (350-425 °C) post-dating substantial decompression and associated D2 deformation was es-

tablished at 32-29 Ma and affected both HP and LP metasediments. This metamorphic event clearly pre-

dates D3 deformation (Domleschg phase, ~25 Ma) as is evidenced by folded isotemperature contours. 

(3) Collision-related Barrovian overprint (500-590 °C and 0.5-0.8 GPa) represents a second and consid-

erably younger (post 20 Ma) “isobaric” heating pulse only preserved in the SW part of the investigated 

area. Hence amphibolite facies metamorphism representing the mature stage of a colliding orogen is 

clearly separated by D2 and D3 deformations, as well as by an intervening greenschist facies event, from 

the D1 high-pressure stage. Amphibolite facies overprint occurred before and/or during the initial stages 

of D4 (Chièra phase), representing a second nappe-refolding event.

This investigation revealed a significant time gap in the order of some 20 Ma between subduction-

related HP/LT metamorphism and collision-related MP/MT Barrovian overprint. This supports the no-

tion of a polymetamorphic evolution associated with a bimodal P-T path. The results of this study argue 

that heat release from radioactive decay of vast amounts of accreted continental-derived basement nap-

pes may play an important role in contributing much to heat production needed for amphibolite facies 

Barrow-type overprint. Based on field evidence, we conclude that heat transfer in the north-eastern Lep-

ontine was essentially conductive during the latest stages of the thermal evolution.
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This thesis is organized as a “cumulative thesis” and consists of a series of seven chapters. Five 

of them (chapters 2-6) can be regarded as individual manuscripts to be published in international peer 

reviewed scientific journals. Chapters 2 and 6 have already been published while the remaining chapters 

have been, or in case of chapter 5, will be submitted soon. An outline of each of these chapters and the 

contributions of the individual co-authors is provided below.

Chapter 1:

Introduction
This chapter presents the scope and aims addressed by this thesis, and briefly provides the general 

geological background as well as an outline of the methodological approach.

Chapter 2:

From subduction to collision: Thermal overprint of HP/LT meta-sediments in the 

north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-

metamorphic evolution of the Alpine orogenic wedge

Wiederkehr, M., Bousquet, R., Schmid, S.M. & Berger, A.

published 2008: Swiss Journal of Geosciences

This chapter is devoted to the structural and metamorphic evolution of metasediments at the north-

eastern edge of the Lepontine dome. In this area subduction-related HP/LT metamorphism and colli-

sion-related Barrovian overprint are spatially closely arranged next to each other. Based on extensive 

fieldwork a new model for the tectono-metamorphic evolution for the Valaisan domain and the adjacent 

European margin has been established. The area is characterized by a bimodal P-T path, whereby Bar-

rovian overprint represents a separate heating pulse that follows isothermal decompression of an earlier 

HP/LT event. Furthermore, a qualitative discussion of the still open and debated question concerning the 

heat sources responsible for Barrovian metamorphism is given, based on the new field data.

The first author carried out all the fieldwork and was responsible for all the analytical investi-

gations by electron microprobe and Raman spectroscopy. Furthermore he wrote a first version of the 

manuscript including figures and tables. The second, third and fourth authors (the thesis supervisors) 

helped with the discussions and interpretation of the data and the preparation of the final version of the 

manuscript.

Chapter 3:

3-D assessment of peak-metamorphic conditions by Raman spectroscopy of 

carbonaceous material: an example from the margin of the Lepontine dome

(Swiss Central Alps)

Wiederkehr, M., Bousquet, R., Ziemann, M.A., Berger, A. & Schmid, S.M.

submitted to: Contributions to Mineralogy and Petrology

This chapter comprises a study that examines the evolution of carbonaceous matter recorded by 

Raman spectroscopy. Combined with metamorphic data, this method is a powerful tool for determining 
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accurate peak-metamorphic temperatures in low-grade metasedimentary units that generally are devoid 

of indicative mineral assemblages and in which the metamorphic zoning is only poorly constrained. 

Combined with detailed structural and metamorphic information the resulting temperature distribution 

pattern can be related to distinct thermal events established during the geodynamic evolution of the Al-

pine orogenic belt, namely during the transition from subduction to collision.

The first author wrote a first version of the manuscript including all figures and tables. He carried 

out the entire sample collection during fieldwork and carried out most of the investigations using Ra-

man spectroscopy at the Raman Laboratory of Potsdam University. The second author provided logisti-

cal and advisory scientific help and assisted in finalizing the manuscript. The third author introduced M. 

Wiederkehr to the Raman Laboratory at Potsdam University and also performed some additional inves-

tigations by Raman spectroscopy. He also provided significant help in writing the related methodologi-

cal part of the chapter and assisted in the general writing process. Furthermore, he provided substantial 

support and discussion during the data acquisition. The fourth and fifth authors helped with the discus-

sions and interpretation of the data and carefully reviewed a first draft of the manuscript. The fifth au-

thor provided substantial help during the writing process and significantly improved the quality of the 

resulting manuscript.

Chapter 4:
40Ar/39Ar dating of the subduction-collision transition in the Central Alps

Wiederkehr, M., Sudo, M., Bousquet, R., Berger, A. & Schmid, S.M.

submitted to: Tectonics

This chapter presents new 40Ar/39Ar ages for both metamorphic stages, i.e. a first subduction-re-

lated HP/LT event and the subsequent amphibolite facies Barrovian overprint. Based on microstructural 

observations several generations of white mica were identified inside Fe-Mg carpholite-bearing quartz-

calcite veins. These were analyzed by in situ UV laser experiments. The recorded ages are interpreted 

to date the HP/LT event and subsequent stages along the retrograde evolution. Investigations focussing 

on biotite, whose occurrences are restricted to areas affected by pervasive amphibolite facies metamor-

phism, provided information on the timing of late-stage Barrovian overprint. These new isotopic ages 

complete the new tectono-metamorphic evolution presented in chapter 2 and provide important data 

concerning the temporal relationships between subduction and collision.

The first author collected most of the samples, performed mineral separation and all 40Ar/39Ar 

measurements at the argon laboratory of Potsdam University. He wrote a first version of the manuscript 

including all figures and tables. The second author introduced M. Wiederkehr to the 40Ar/39Ar dating 

technique and assisted in the 40Ar/39Ar laboratory and helped in the calculation of the ages and in the in-

terpretation of the data. He also assisted during the writing process. The third author provided two sam-

ples from the Engadine Window for dating the HP/LT metamorphic event and assisted developing the 

concept of the investigations. He also reviewed the final version of the manuscript. The fourth author 

carefully reviewed and improved a first draft of the manuscript and helped with the discussion and inter-

pretation of the results. The fifth author provided advisory scientific help and assisted with the prepara-

tion of the final version of the manuscript.
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Chapter 5:

Overprint of an earlier HP/LT metamorphic event by a later Barrow-type event: 

Metamorphic evolution and geodynamic implications

Wiederkehr, M., Bousquet, R., Schmid, S.M. & Berger, A.

This chapter comprises new petrologic data concerning progressive Barrow-type thermal over-

print of HP/LT metasediments at the north-eastern border of the Lepontine dome obtained by P-T cal-

culations. Furthermore, the relationships between the two contrasting types of metamorphic events and 

associated structures will be discussed in the framework of the results presented in the previous chap-

ters, i.e. chapters 2-4 which, allows for reconstructing the geodynamic evolution of Valaisan- and Eu-

rope-derived metasedimentary units.

The first author performed the entire fieldwork and sample selection for the P-T investigations. He 

performed electron microprobe and X-ray fluorescence analyses and the P-T calculations. Furthermore 

he was responsible for a first version of the manuscript including all table and figures. The second, third 

and fourth authors (thesis supervisors) helped in the discussions and interpretations of the data and as-

sisted during the writing process.

Chapter 6:

Metamorphism of metasediments at the scale of an orogen: A key to the Tertiary 

geodynamic evolution of the Alps

Bousquet, R., Oberhänsli, R., Goffé, B., Wiederkehr, M., Koller, F., Schmid, S.M., Schuster, R., Engi, 

M., Berger, A. & Martinotti, G.

published 2008: Geological Society Special Publications

This chapter is devoted to metasediments and their potential in providing important information 

regarding the geodynamic evolution of the Alpine orogenic belt. Based on new data concerning the 

metamorphic evolution of metasediments this study presents the distribution of mineral assemblages at 

the scale of the entire orogen, related to either subduction-induced high-pressure metamorphism or col-

lision-related Barrovian overprint. Their distribution and geodynamic significance is discussed.

The first and second author wrote a first version of the manuscript including all figures and tables. 

The fourth author (M. Wiederkehr) provided new data and first results concerning the north-eastern bor-

der of the Lepontine dome and easterly adjacent areas established during this thesis. Furthermore he re-

viewed a first version of the manuscript. All the other authors provided discussions and help in finalizing 

and improving an early version of the manuscript.

Chapter 7:

Summary and conclusions
This chapter presents the main summary and conclusions of the combined results of the entire 

thesis.
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Chapter 1

Introduction

1.1. Thesis motivation and outline of the incorporated projects
This PhD thesis was carried out within the framework of the project “Tectono-metamorphic studies 

of the Alps”, a long lasting series of studies performed at the University of Basel and initially launched 

by the late Prof. M. Frey in 1992, financed by the Schweizerische Nationalfonds. The general goal of 

these series of former projects, and also for this study, is a better understanding of the tectonic and meta-

morphic evolution of the Alps in space and time and to get more insight in mountain building processes 

in general. The present study was initiated by Profs. Stefan M. Schmid and Romain Bousquet (Potsdam) 

and supported by PD Alfons Berger (Bern/Kopenhagen). It was financed by project NF-200020-113585 

and precursor project NF-200020-103585.

This is a joint thesis (co-tutelle) amongst the Universities of Basel (Switzerland) and Potsdam 

(Germany). The study is devoted to the structural, metamorphic and geochronological evolution of 

metasedimentary units exposed in the Central Alps (northern Valle di Blenio and easterly adjacent areas 

in the Grisons) in order to reveal insights that are of fundamental importance for understanding the ther-

mo-mechanical evolution of collisional orogens in general. Moreover, this work represents a case study 

that addresses the transition from subduction to collision in general and thereby provides important field 

and geochronological data for testing numerical models for the geodynamic evolution of orogenic belts 

(e.g. Bousquet et al. 1997; Jamieson et al. 1998; Roselle et al. 2002; Goffé et al. 2003).

The study addresses a key area for the reconstruction of the Alpine geodynamic evolution at the 

north-eastern margin of the Lepontine dome and easterly adjacent areas where pressure- and tempera-

ture-dominated metamorphic domains are found to be in close contact (Bousquet et al. 2002; Oberhänsli 

et al. 2004). The studied metasediments have a great potential to record the metamorphic evolution and 

can therefore be used for the geodynamic reconstruction of the Alpine orogenic belt. Moreover, these 

metasediments cover large areas and therefore enable observing and correlating the structural and meta-

morphic evolution continuously and over great distances.

The metamorphic structure of the Alps is the result of long lasting plate convergence and final 

collision between the European and Adriatic continental plates in Cretaceous to Cenozoic times (e.g. 

Trümpy 1960; Frisch 1979; Tricart 1984; Schmid et al. 1996). The geodynamic evolution and result-

ing metamorphic zonation related to Cenozoic orogeny can be subdivided into two distinct stages: (1) 

subduction-related pressure-dominated metamorphism and deformation of oceanic lithosphere formed 

during the opening of the Alpine Tethys, as well as parts of the immediately adjacent European lithos-

phere, and, (2) temperature-dominated Barrow-type metamorphism (Frey et al. 1980) related to colli-

sion between Europe and Adria, involving further accretion of massive volumes of crustal material (e.g. 

Lepontine dome and Tauern window; Bousquet et al. 1997; Goffé et al. 2003; Schmid et al. 2004) to the 

upper plate formed by the Austroalpine nappes and previously accreted high-pressure units.

Several pioneering studies on the spatial distribution of index minerals, as well as on different 

metamorphic facies types, resulted in the well established knowledge of the zoning of Alpine metamor-

phism, particularly within the Lepontine dome of the Central Alps (e.g. Wenk 1962, 1970; Niggli and 

Niggli 1965; Trommsdorff 1966; Frey 1969, 1978; Niggli 1970; Frey et al. 1980, 1999; Oberhänsli et 

al. 2004). However, the metamorphic zoning related to pressure-dominated metamorphism needs to be 
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discriminated from that related to Barrovian overprint in the Alps. While the pressure-dominated units 

(blueschists and eclogites) form an orogen-parallel belt, remnants of the temperature-dominated event 

are localized in the Lepontine dome and the Tauern window (e.g. Bousquet et al. 2008). From a geo-

dynamic point of view only the Central Alps (Lepontine dome) and the Tauern window in the Eastern 

Alps reached the mature stage of a colliding orogenic belt that is characterized by pervasive Barrovian 

overprint.

Accordingly, the aims of the study can be summed up in terms of the following five main scien-

tific questions:

(1) What are the relationships between the two contrasting types of metamorphic events rep-

resenting subduction-related HP/LT metamorphism and collision-related Barrow-type ther-

mal overprint in respect to distinct deformation events? Thereby a well-defined relative geo-

chronological sequence based on clear overprinting criteria of different deformation events 

combined with petrological investigations is of particular relevance for the reconstruction 

of the tectono-metamorphic evolution of the study area.

(2) Which units show evidence for subduction-related high-pressure metamorphism and which 

do only show a collision-related metamorphic overprint? The identification of tectonic units 

affected by HP/LT metamorphism is of great importance for the reconstruction of the tec-

tono-metamorphic evolution and for the location of the former Valaisan subduction zone lo-

cated between the Briançonnais micro-continent and distal European margin. Furthermore, 

a precise recognition of subduction- and collision-related mineral assemblages is fundamen-

tal for the geodynamic reconstruction of the study area.

(3) What is the timing of the subduction-related HP/LT metamorphic event of the Valaisan do-

main east of the Lepontine dome? Understanding the metamorphic evolution of orogenic 

belts requires well-constrained time data. Such data are of particular importance regarding 

the geodynamics of subduction, followed by unroofing in a collisional scenario later on. The 

timing of HP/LT metamorphism in the Valaisan high-pressure belt is not only very poorly 

constrained, the few available ages grossly scatter (see review given in Berger & Bousquet 

2008). In this context this thesis provides important new timing constraints for the subduc-

tion-related metamorphic event, absolutely needed for the reconstruction of the geodynamic 

evolution of the Valaisan domain and the Central Alps in general.

(4) What is the shape of the P-T path connecting both subduction-related high-pressure meta-

morphism and collision-related Barrovian overprint? Thereby it is essential to reveal if the 

P-T path is characterized by a bimodal shape whereby Barrovian overprint represents a 

separate heating pulse following isothermal decompression of the early HP/LT stage or, al-

ternatively, if the metamorphic evolution is rather defined by a single clock-wise P-T loop. 

Answering this question is of fundamental importance for a better understanding of the tran-

sition from subduction to collision.

(5) Which are the possible heat sources responsible for collision-related amphibolite facies 

metamorphism in colliding orogenic belts? This old question is of fundamental importance 

for the understanding of the formation of orogenic belts in general. Based on the new data 

provided by this study this question will be addressed qualitatively by the obtained field data 

in order to decipher the thermal evolution of the orogenic wedge during the geodynamic 

evolution of the Alpine belt.
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All these questions were addressed using a multidisciplinary and integrative approach that com-

bines structural, petrological and geochronological methods. This approach required intense scientific 

cooperation with a multinational team of specialists from the Universities of Basel and Potsdam.

The results of this thesis yield new implications regarding the regional tectono-metamorphic evo-

lution of the north-eastern border of the Lepontine dome and easterly adjacent areas. Furthermore, the 

thesis contributes to a better overall understanding of geodynamic processes that occur during the pro-

gressive tectonic and metamorphic evolution of colliding orogens in general.

1.2. Methodological approach
In order to solve the above defined research questions a multidisciplinary approach including pet-

rologic, structural and isotopic investigations was applied.

Petrologic investigations: Extensive fieldwork reveals the spatial distribution of mineral assem-

blages indicative for a specific geodynamic setting, i.e. subduction-related HP/LT metamorphism, or 

collision-related Barrovian overprint. This is of fundamental importance for the presented study, par-

ticularly the finding of occurrences of relics of the early high-pressure event. Identification and mapping 

of such indicative mineral assemblages allows for determining P-T paths which are essential for the 

metamorphic reconstruction.

Structural fieldwork: Detailed structural investigations allow for discriminating several discrete 

deformation events. They provide a relative chronology based on clear overprinting criteria. By com-

bining the petrologic record with the structural data and deciphering the relationships between meta-

morphism and deformation the established relative chronology can be used for the tectono-metamorphic 

reconstruction. Structural measurements are of great importance for the construction of cross-sec-

tions showing the overall architecture of the study area. They also provide hints towards the tectonic 

reconstruction.

Raman spectroscopy of carbonaceous matter: The study area is characterized by a remarkable 

metamorphic field gradient ranging from amphibolite to blueschist facies conditions. The investigat-

ed low-grade (HP/LT and LP/LT) metasediments, the so-called “Bündnerschiefer”, commonly show a 

rather poor mineralogy devoid of indicative mineral assemblages needed for accurate P-T estimations. 

On the other hand carbonaceous material is ubiquitous in such metasediments, which can be used as a 

geothermometer by recording the degree of ordering in its crystallographic structure by Raman spectros-

copy. This geothermometer always records peak-metamorphic conditions, it is very sensitive and allows 

for recording thermal gradients in the order of 10-15 °C. Consequently, this method provides important 

information for mapping the transition from subduction- to collision-related metamorphism. 

40Ar/39Ar isotopic investigations: Absolute dating of metamorphic events provides important in-

formation for the evolution of orogenic belts. Via 40Ar/39Ar dating of white mica the early subduction-

related metamorphic cycle could be dated. Biotite, exclusively found in areas affected by pervasive Bar-

rovian overprint, has been analyzed to date collision-related amphibolite facies overprint.

P-T modeling: The calculation of P-T conditions is important for unraveling the metamorphic re-

cord of a given rock sample. Thermodynamic modeling allows for constructing representative P-T paths 

and is therefore of great importance for the reconstruction of the geodynamic evolution.
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1.3. Geological setting
The studied area is located at the north-eastern edge of the Lepontine dome that represents a dome 

both in a structural and thermal sense. Structurally, this dome consists of Europe-derived basement nap-

pes (Sub-Penninic after Schmid et al. 2004) that represent the deepest exposures within the Central Alps 

(e.g. Froitzheim et al. 1996). These pre-Mesozoic basement nappes are tectonically overlain by Meso-

zoic-age metasedimentary units derived from both the distal European margin (Sub-Penninic cover 

nappes and slices) and the Valaisan Oceanic domain (Lower Penninic), separated from each other by 

the Penninic Basal Thrust. In the easterly adjacent areas the Mesozoic metasediments of the Valaisan-

domain build up an up to 15 km thick pile of metasedimentary cover nappes (Hitz & Pfiffner 1997; see 

crustal-scale transect in Schmid et al. 1996, their Plate 1). Due to the general axial plunge of the whole 

nappe stack to the E, these Valaisan-derived metasediments are seen to be tectonically overlain by nap-

pes derived from the Briançonnais, Piemont-Liguria Ocean, and Austroalpine domain, respectively, still 

further to the east. Within the Engadine window the Valaisan Bündnerschiefer are again exposed within 

a local antiformal dome below the Austroalpine lid.

The sediments originally deposited on the former distal European margin include Urseren-Garvera 

Zone, Scopi unit and Peidener slices (together forming the so-called Gotthard Mesozoic), and addition-

ally, the Piz Terri-Lunschania unit (Probst 1980; Berger et al. 2005, and references therein). In general, 

these sedimentary slices are made up of a Triassic sequence of quartzites, dolomitic marbles, evaporites, 

metapelites and metamarls followed by a lower to middle Jurassic sequence consisting of shales, sand-

stones, limestones, carbonaceous metapelites and calcschists, the latter often resembling the so-called 

Bündnerschiefer of the Penninic (Valaisan-derived) units (Baumer et al. 1961; Probst 1980; Etter 1987; 

Berger et al. 2005).

Sediments derived from the predominantly oceanic Valaisan realm form voluminous and rather 

monotonous sequences, predominantly consisting of calcschists (Bündnerschiefer) thrust along the Pen-

ninic Basal Thrust onto the sediments of the former European margin. These Valaisan Bündnerschiefer, 

flysch units, marbles and ophiolitic occurrences are subdivided into a number of slices. The largest are 

the Grava nappe (including the Prättigau Flysch) and the Tomül nappe, consisting of Cretaceous- to 

Eocene-age calcschists, limestones, shales, marls and sandy limestones (Nänny 1948; Ziegler 1956; 

Steinmann 1994a). The existence of mafic and ultramafic rocks (Nabholz 1945) indicates that at least 

parts of the Valaisan Bündnerschiefer were deposited on oceanic crust (Steinmann 1994a; Steinmann & 

Stille 1999).

The north-eastern rim of the Lepontine dome is the locus of several pioneering studies address-

ing fundamental principles related to the evolution of prograde Barrovian metamorphism (Chadwick 

1968; Frey 1969, 1978; Niggli 1970; Wenk 1970; Fox 1975; Livi et al. 2002). The metamorphic condi-

tions continuously increase form chloritoid-margarite bearing micaschists that are part of the greenschist 

facies area in the Urseren-Garvera Zone (Frey 1978; Livi et al. 2002) to staurolite-kyanite-garnet-biotite 

bearing metasediments indicating amphibolite facies conditions around the Lukmanier area and Pizzo 

Molare (Frey 1969; Chadwick 1968; Thakur 1971). Lower/middle amphibolite facies metamorphic con-

ditions (0.5-0.8 GPa and 500-550 °C) have been estimated for Barrow-type metamorphism in the north-

eastern Lepontine dome (Chadwick 1968; Frey 1969; Engi et al. 1995; Todd & Engi 1997; Frey & Fer-

reiro Mählmann 1999).

To the E low-grade metasediments predominate, but the metamorphic record is ill-constrained due 

to the scarcity of unambiguous mineral assemblages that generally only indicate “greenschist facies” 
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conditions. However, the recognition of Fe-Mg carpholite in the Valaisan-derived metasediments E of 

the Lepontine dome indicates that blueschist facies conditions around 1.2-1.4 GPa and 350-400 °C were 

established before late-stage greenschist-facies overprinting (Goffé & Oberhänsli 1992; Oberhänsli et 

al. 1995; Bousquet et al. 1998).
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Chapter 2

From subduction to collision:

Thermal overprint of HP/LT meta-sediments in the north-eastern 

Lepontine Dome (Swiss Alps) and consequences regarding the 

tectono-metamorphic evolution of the Alpine orogenic wedge

This chapter is published as: Wiederkehr, M., Bousquet, R., Schmid, S.M. & Berger, A. (2008): From subduction 

to collision: Thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and 

consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge. In: Froitzheim, N. & 

Schmid, S.M. (Eds): Orogenic processes in the Alpine collision zone. Swiss Journal of Geosciences 101(Suppl), 

S127-S155.

Abstract
The Cenozoic-age metamorphic structure of the Alps consists of a through-going pressure-domi-

nated belt (blueschists and eclogites) that strikes parallel to the orogen and was later truncated by two 

thermal domes characterised by Barrow-type metamorphism (Lepontine dome and Tauern window). 

This study documents for the first time that relics of Fe-Mg carpholite occur also within meta-sedimen-

tary units that are part of the north-eastern Lepontine structural and metamorphic dome, where so far 

exclusively Barrovian assemblages were found. They occur in meta-sediments of both Valais Ocean-

derived Lower Penninic Bündnerschiefer and structurally lower Europe-derived Sub-Penninic cover 

nappes and slices. These high-pressure units were subsequently overprinted by a thermal event, as is 

documented by the growth of new minerals typical for Barrovian metamorphism. 

We present evidence for a two-stage metamorphic evolution in the northern part of the Lepontine 

dome: (1) Early subduction-related syn-D1 (Safien phase) HP/LT metamorphism under blueschist facies 

conditions (350-400 °C and 1.2-1.4 GPa) was immediately followed by “cold” isothermal (or cool-

ing) decompression during D2 nappe-stacking (Ferrera phase). (2) Collision-related Barrovian overprint 

(500-570 °C and 0.5-0.8 GPa) postdates the D3 nappe-refolding event (Domleschg phase) and repre-

sents a late heating pulse, separated by D2 and D3 from the D1 high-pressure event. It occurred before 

and/or during the initial stages of D4 (Chièra phase) representing a second nappe-refolding event. 

In discussing possible heat sources for the late Barrow-type heating pulse it is argued that heat 

release from radioactive decay of accreted material may play an important role in contributing much to 

heat production. Based on the field evidence, we conclude that heat transfer was essentially conductive 

during these latest stages of the thermal evolution.
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2.1. Introduction
The zoning of Alpine metamorphism is rather complex, evolving over a very long period of time 

before, during and after the collision of Europe with Adria, i.e. from Late Cretaceous to Late Ceno-

zoic times. Mapping of metamorphic facies in the Alps started with early pioneering studies based on 

the spatial distribution of index minerals and mineral assemblages (Wenk 1962; Niggli & Niggli 1965; 

Trommsdorff 1966; Frey 1969; Fox 1975; Frey et al. 1980). Metamorphic maps at the scale of the Al-

pine orogen, showing the spatial arrangement of the different metamorphic facies types, were repeatedly 

synthesised and improved (Ernst 1971; Niggli & Zwart 1973; Frey et al. 1999; Oberhänsli et al. 2004). 

The Cenozoic-age metamorphic pattern is characterised by a pressure-dominated belt (blueschists and 

eclogites) that strikes orogen-parallel but is interrupted by two thermal domes, the Lepontine dome in 

the Central Alps and the Tauern window in the Eastern Alps (Oberhänsli et al. 2004).

Our area of investigation is located at the NE border of the Lepontine thermal dome. There, along 

strike of the tectonic units, a remarkable metamorphic field gradient that ranges from pressure-domi-

nated blueschist facies in the NE to temperature-dominated Barrovian metamorphism in the SW is ob-

served within an amazingly short distance (< 10km, Figs. 2.1 & 2.2). This allows for a clear correlation 

between the two metamorphic events and structures that resulted from a polyphase deformation history. 

Hence, the area is well suited for studying spatial and temporal relationships between these two types of 

metamorphism, including their relative timing in respect to discrete deformation phases linked to par-

ticular geodynamical stages.

The availability of meta-sediments all along strike facilitates the reconstruction of the metamor-

phic and structural evolution in the working area. These meta-sediments contain widespread occur-

rences of Fe-Mg carpholite within an orogen-parallel HP/LT-metamorphic belt in eastern Switzerland 

(Grisons), characterised by blueschist facies conditions (Goffé & Oberhänsli 1992; Oberhänsli 1994; 

Oberhänsli et al. 1995; Bousquet et al. 2002). Approaching the Lepontine dome, the same meta-sedi-

ments become increasingly affected by a temperature-dominated, Barrovian metamorphic event, as is 

documented by amphibolite facies mineral assemblages characterised by garnet, biotite, staurolite and 

kyanite (Chadwick 1968; Frey 1969; Fox 1975; Engi et al. 1995; Frey & Ferreiro Mählmann 1999). No 

evidence is available, so far, that this part of the Lepontine dome, characterised by this Barrow-type MP/

MT metamorphism, could have been previously also affected by HP/LT metamorphism.

This tectono-metamorphic study primarily aims to document this transition from HP/LT blues-

chist facies metamorphism in the east to amphibolite-grade Barrow-type metamorphism within the Lep-

ontine dome further west. This will allow deducing whether these two contrasting types of metamor-

phism evolved at the same time but differently in the different parts of the study area, or alternatively, 

whether they evolved during consecutive stages of the evolution of the Alpine orogen. In the second 

case the pressure-dominated metamorphism represents an early stage related to subduction, followed by 

a temperature-dominated event, as proposed by Bousquet et al. (2008). The latter, i.e. a two-stage meta-

morphic evolution, was also proposed for more southerly located parts of the Lepontine dome. However, 

the question whether the Barrow-type overprint is associated with a second and discrete heating pulse 

that followed high-pressure metamorphism (e.g. Engi et al. 2001), or alternatively, simply represents a 

late stage during isothermal decompression (e.g. Nagel et al. 2002a; Keller et al. 2005a) is of fundamen-

tal importance from a geodynamic point of view. Furthermore, our study will address the important key 

question concerning the heat source of Barrow-type Lepontine metamorphism, debated since the pio-

neering metamorphic studies in the Alps. While Niggli (1970) concluded that regional metamorphism 



9

Chapter 2

P. 
Sc

o
p

i

P. 
M

ed
el

P. 
B

ev
er

in

Ila
n

z

Sa
fie

n

Sp
lü

g
en

P. 
Sc

o
p

i

P. 
M

ed
el

P. 
To

m
ü

l

P. 
B

ev
er

in

Ila
n

z

Sa
fie

n

Sp
lü

g
en

C
hi

èr
a-

sy
nf

or
m

Lu
ns

ch
an

ia
-

an
itf

or
m

V
al

ze
in

a-
sy

nf
or

m

P
en

ni
ni

c
B

as
al

 T
hr

us
t

A
   

d
   

u
   

l  
 a

Le
ve

n
ti

n
a 

-
Lu

co
m

ag
n

o

Si
m

an
o

G
 o

 t
 t

 h
 a

 r 
d

A
   

d
   

u
   

l  
 a

Le
ve

n
ti

n
a 

-
Lu

co
m

ag
n

o

Si
m

an
o

G
 o

 t
 t

 h
 a

 r 
d

Lu
km

an
ie

r

P.
M

ol
ar

e

P.
Te

rr
i

V
rin

Val L
umnezia

Safiental

Va
l L

uz
zo

ne
Valle di Blenio

O
liv

on
e

V
al

se
rt

al

P.
A

ul
V

al
s

A
’A

M
ag

gi
or

e

Lago

M
ag

gi
a

M
ag

gi
a

L
e

p
o

n
t

i
n

e

L
e

p
o

n
t

i
n

e

A
da

m
el

lo

Berg
ell

M
te

R
os

a
M

te
R

os
a

S
ou

th
er

n 
S

te
ep

 B
el

t
S

ou
th

er
n 

S
te

ep
 B

el
t

Engadine
w

in
do

w

Giudicarie lin
e

Giudicarie lin
e

Iv
re

a
Iv

re
a

Lu
ze

rn
Lu

ze
rn

In
su

br
ic

lin
e

In
su

br
ic

lin
e

N
or

th
er

n
S

te
ep

B
el

t

N
or

th
er

n
S

te
ep

B
el

t
H

   
 e

   
 l 

   
v 

   
e 

   
t  

  i
   

 c

n 
   

a 
   

p 
   

p 
   

e 
   

s

H
   

 e
   

 l 
   

v 
   

e 
   

t  
  i

   
 c

n 
   

a 
   

p 
   

p 
   

e 
   

s

A
   

a 
  r G
ot

th
ar

d

A
   

a 
  r

Lu
ze

rn

NN
25

 k
m

25
 k

m

G
ot

th
ar

d

S   i
   l

   v
 r 

  e
   t

   t
   a

S   i
   l

   v
 r 

  e
   t

   t
   a

A
du

la
A

du
la

S
im

an
o

S
im

an
o

Platta

Tambo
Tambo

Sur
et

ta

Sur
et

ta

V
al

ai
sa

n
P

iz
 T

er
ri 

- 
G

ip
fe

lz
on

e 
U

ni
t

P
iz

 T
er

ri 
-

S
ch

up
pe

nz
on

e

G
ra

va
 U

ni
t

To
m

ül
 U

ni
t

O
ph

io
lit

es

A
ul

 U
ni

t

Lo
w

er
/u

pp
er

V
al

se
r 

sl
ic

es
 

B
as

em
en

t a
nd

co
ve

r 
na

pp
es

E
u

ro
p

ea
n

 m
ar

g
in

 / 
S

u
b

-P
en

n
in

ic
 u

n
it

s

H
el

ve
tic

 d
om

ai
n

Ila
nz

er
 V

er
ru

ca
no

F
lim

s 
la

nd
sl

id
e

B
as

em
en

t
na

pp
es

T
ria

ss
ic

,
un

di
ffe

re
nt

ia
te

d

S
co

pi
 U

ni
t

P
ei

de
ne

r
S

ch
up

pe
nz

on
e

B
ri

an
ço

n
n

ai
s

Q
u

at
er

n
ar

y

D
3 

sy
n-

/ a
nt

ifo
rm

 
D

4 
sy

n-
/ a

nt
ifo

rm
 

S
tr

u
ct

u
re

s

5 
km

73
0

73
5

74
0

74
5

75
0

72
5

72
0

71
5

71
0

70
5

70
0

15
0

15
5

16
0

16
5

15
5

16
0

16
5

17
0

17
5

18
0

18
5

Fig. 2.1: Tectonic sketch map of the study area showing the main geographic localities mentioned in the text as well as traces 
of axial planes of major D3 and D4 folds, and the main occurrences of index minerals and mineral assemblages found in the 
meta-sedimentary units (light-grey: Sub-Penninic/European units, dark-grey: Lower Penninic/Valaisan units; symbols are ex-
plained in Figure 2.2). The tectonic map of the Central Alps in the upper left is after Schmid et al. (2004), the frame shows the 
location of the study area. Letters A-A’ mark the trace of the composite cross section shown in Figure 2.3. The dashed line de-
lineates the cut-out shown in greater detail in Figure 2.2.
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in the Lepontine region is caused by tectonic burial during nappe stacking, Wenk (1970) proposed late-

stage thermal doming induced by an additional (magmatic) heat source underneath a pre-existing over-

burden of nappes. The results presented in this study will provide insights that are of fundamental im-

portance for understanding the thermo-mechanical evolution of collisional orogens in general.

2.2. Geological setting and major tectonic units
The investigated area is located at the north-eastern edge of the Lepontine structural dome and ex-

tends from the Lukmanierpass and Pizzo Molare areas in the west to the Safiental area in the east (Fig. 

2.1). The Sub-Penninic nappes, interpreted as derived from the distal European margin (Milnes 1974; 

Schmid et al. 2004), originally occupied a lower tectonic position within the working area. Among these 

nappes are basement nappes that predominantly consist of pre-Mesozoic igneous and meta-sedimentary 

rocks, and cover nappes forming an orogen-parallel belt of Mesozoic meta-sediments. The cover nap-

pes are not interrupted by oblique tectonic contacts (thrusts or faults) and they overlie the pre-Mesozoic 

basement units or nappes (Gotthard “Massif”, Leventina-Lucomagno and Simano nappes). These Sub-

Penninic nappes are structurally overlain by Lower Penninic cover nappes that originated from the Val-

ais Ocean, largely consisting of Mesozoic meta-sediments referred to as Bündnerschiefer. The front of 

the Adula nappe complex only reaches the southern rim of the working area. The occurrences of oceanic 

remnants that are imbricated with typical continental crustal rocks in the overlying Misox Zone (e.g. 

Partzsch 1998), and according to some authors also within the Adula-Cima Lunga nappe complex itself 

(e.g. Trommsdorff 1990, and references therein), indicate that the Adula nappe complex contains sliv-

ers from the continent-ocean transition between the European margin and the Valais Ocean (lithospheric 

mélange; Trommsdorff 1990). The Penninic Basal Thrust represents an early-stage first-order thrust 

along which the Valaisan Bündnerschiefer were originally thrust onto the Europe-derived Sub-Penninic 

units. However, this thrust was subsequently isoclinally refolded and hence penetratively overprinted by 

later structures. The tectonic units, subdivided following the schemes proposed by Schmid et al. (2004) 

and Berger et al. (2005), are mapped in Figures 2.1 and 2.2, as well as in cross section view (Fig. 2.3). 

In the following they are further described.

2.2.1. Sub-Penninic basement nappes
The Gotthard-“massif” is the lowermost thrust sheet of the Sub-Penninic nappe pile (Fig. 2.3) and 

represents a backfolded nappe front (Milnes 1974) rather than a par-autochthonous massif. This unit 

consists of pre-Mesozoic crystalline basement (Steiger 1962; Mercolli et al. 1994) overlain in strati-

graphic contact only by an extremely thin veneer of Early to Middle Triassic quartzites, occasionally 

also containing dolomitic marbles and/or meta-evaporites (Frey 1967).

The Lucomagno-Leventina nappe structurally overlays the Gotthard-“massif”, from which it is 

separated by the Piora Zone, which represents an intervening Sub-Penninic cover nappe (Fig. 2.3). 

The southern realms of the Lucomagno-Leventina nappe predominantly consist of Variscan orthogneiss 

(Leventina gneiss; Casasopra 1939; Köppel et al. 1981; Rütti et al. 2008), forming the deepest outcrop-

ping parts of the Ticino sub-dome within the Lepontine dome (Merle et al. 1989). The northern part of 

the Leventina-Lucomagno nappe reaches the working area and consists of Pre-Mesozoic poly-metamor-

phic meta-sedimentary complexes (Lucomagno crystalline; Bossard 1925, 1929; Chadwick 1968).

The next higher Sub-Penninic basement nappe, i.e. the Simano nappe, contains Caledonian to Var-

iscan orthogneisses and pre-Mesozoic poly-metamorphic pelitic to psammitic meta-sediments (Jenny et 
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Fig. 2.2: Blow-up of the south-western part of the study area (bordered by the dashed line in Fig. 2.1) showing the traces of 
axial planes of major D3 and D4 folds, as well as the main occurrences of index minerals and mineral assemblages found in the 
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al. 1923; Niggli et al. 1936; Keller 1968; Köppel et al. 1981). It is separated from the underlying Luco-

magno-Leventina basement nappe by the Molare Zone, again consisting of cover nappes (Fig. 2.3).
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A thin sliver of pre-Mesozoic meta-sediments (locally Verrucano-type meta-conglomerates of 

presumed Permian age), that is part of the so-called Soja nappe (Jenny et al. 1923; Egli 1966) crops out 

in Val Luzzone at the front of the Adula nappe complex. This Soja nappe can be followed southwards 

where it is seen to separate the Simano nappe from the Adula nappe complex (Soja Zone of Fig. 2.3). 

Most authors correlate the Soja nappe with the Lebendun nappe west of the Lepontine dome (Burck-

hardt 1942; Egli 1966).

The Adula nappe complex represents the highest structural unit within the Sub-Penninic nappe 

pile. It is generally overlain by the Lower Penninic Bündnerschiefer, but in the working area the contact 

between the Adula and overlying units is sub-vertical due to a late stage tectonic event. This nappe com-

plex is not a coherent basement sliver but consists of several thin basement slices, separated from each 

other by Mesozoic slivers (“internal Mesozoic”; Löw 1987) and thin sediment-bearing mélange units, 

including meta-basalts and ultramafics, i.e. remnants of oceanic (presumably Valaisan) crust (Jenny et 

al. 1923; Trommsdorff 1990; Berger et al. 2005). Since it predominantly consists of continental base-

ment rocks, we attribute it to the Sub-Penninic nappe complex (Schmid et al. 2004).

The Adula nappe complex is well known for its high-pressure metamorphism, showing a pro-

gressive increase from blueschist facies conditions (1.2 GPa and 500 °C) in the north to eclogite facies 

conditions (800 °C and > 3 GPa) in the south (Heinrich 1982; Heinrich 1986; Löw 1987; Meyre et al. 

1997; Nimis & Trommsdorff 2001; Nagel et al. 2002a). Slightly different P-T conditions are given by 

Dale & Holland (2003) who estimated 1.7 GPa and 640 °C in the north and 2.5 GPa and 750 °C in the 

south. High-pressure metamorphism is interpreted to be due to Eocene subduction of the distal Euro-

pean margin beneath the Adriatic continent (Becker 1993; Froitzheim et al. 1996; Schmid et al. 1996). A 

pressure-dominated upper blueschist facies event is also reported from the Simano nappe (1.2-1.4 GPa / 

500°C; Rütti et al. 2005; Bousquet et al. 2008). Adula nappe complex and Simano nappe, together with 

the rest of the Sub-Penninic nappe stack from which so far no pressure-dominated metamorphism is re-

ported, were overprinted by Barrow-type metamorphism reaching lower amphibolite facies conditions 

within the investigated area, i.e. 500-550 °C and 0.5-0.8 GPa (Engi et al. 1995; Todd & Engi 1997; Frey 

& Ferreiro Mählmann 1999).

2.2.2. Sub-Penninic cover nappes and slices
The sedimentary sequences found in these nappes and tectonic slices have strong affinities to non-

metamorphic sequences of the southern Helvetic paleogeographic domain (Trümpy 1960). Hence, they 

are interpreted to represent the sedimentary cover of the most distal European margin (Froitzheim et al. 

1996).

The Scopi unit represents a lowermost cover nappe and is characterised by a coherent sedimen-

tary stack in an overturned position. It tectonically overlays a thin veneer of Lower and Middle Triassic 

stratigraphic cover (Melser Sandstone formation and Röti Dolomite formation) of the Gotthard-“mas-

sif” basement nappe (Fig. 2.3; Baumer et al. 1961; Jung 1963; Baumer 1964; Frey 1967; Etter 1987). 

The Scopi unit, together with the structurally higher Forca- and Pianca Zones (Fig. 2.4), forms what is 

often referred to as Gotthard-Mesozoic. These tectonic units are built up of sedimentary units detached 

along the evaporites of the Middle Triassic Röti Dolomite formation from their former crystalline sub-

stratum that has to be looked for south of the Gotthard “massif” (Etter 1987). The Scopi unit compris-

es a series of Late Triassic meta-pelites and meta-marls (Quartenschiefer), stratigraphically overlain 

by Jurassic sediments. The Lower to Middle Jurassic cover in Ultrahelvetic facies consists of carbon-
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ates, calc-schists and meta-pelites that can be sub-

divided into three mappable formations, referred 

to as Stgir, Inferno and Coroi series (Baumer et 

al. 1961).

The Peidener Schuppenzone (imbricate 

zone), which tectonically overlies the Scopi unit, 

consists of incoherent and chaotic sedimentary slic-

es. This imbricate zone can be further subdivided 

into two major parts (Forca and Pianca Zones, Fig. 

2.4; Frey 1967). We interpret the Peidener Schup-

penzone as a sedimentary accretionary complex, 

which contains lithologies that are identical with 

those of the Scopi unit, and they directly underlie 

the Lower Penninic cover nappes along the Pen-

ninic Basal Thrust (Figs. 2.3 & 2.4). The south-

ern and western parts of the Gotthard-Mesozoic, 

which underwent metamorphism under lower to 

middle amphibolite facies conditions (0.5-0.8 GPa 

and 500-550 °C; Chadwick 1968; Frey 1969; Engi 

et al. 1995; Frey & Ferreiro Mählmann 1999), 

represent a classical area of regional Barrow-type 

metamorphism (Frey 1969; Niggli 1970; Wenk 

1970; Fox 1975; Frey 1978).

Another pile of Sub-Penninic cover nap-

pes and slices, referred to as Piz Terri-Lunschania 

unit, forms the core of a large isoclinal antiform 

(the so-called Lunschania antiform; Figs. 2.1 & 

2.3), located in front of the Adula nappe complex. 

The Piz Terri-Lunschania unit is considered as Sub-Penninic because it is structurally in the footwall of 

the folded Penninic Basal Thrust. The Piz Terri-Lunschania unit originally represents the sedimentary 

cover of the basement of the Soja nappe and hence roots below the Adula nappe complex, i.e. also below 

the Penninic Basal Thrust (Figs. 2.1 & 2.3; Probst 1980). The structurally lower cover nappe, the so-

called Piz Terri Gipfelzone unit, consists of thick and rather homogenous black and sandy calc-schists, 

which often resemble the Bündnerschiefer of the Lower Penninic units. The Piz Terri Gipfelzone unit 

was overlain by heterogeneous sedimentary slices consisting of dolomitic marbles, meta-pelites, black 

shales, quartzitic micaschists and layered shaly-sandy calcareous sediments (Piz Terri Schuppenzone). 

These are now found along both limbs of the Lunschania antiform. They have been interpreted as tec-

tonic imbricates (Kupferschmid 1977; Probst 1980; Uhr unpubl.) and they are in direct tectonic contact 

with the Lower Penninic Grava nappe. The stratigraphy of the sediments of the Piz Terri-Lunschania 

unit is ill defined due to intense deformation and scarcity of fossils. A Triassic to Middle Jurassic age is 

inferred, based on lithological criteria and fossil record (Kupferschmid 1977; Probst 1980). So far little 

was known regarding the metamorphic overprint of this zone.
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Fig. 2.4: Tectono-stratigraphic scheme of the Sub-Penninic 
– Lower Penninic transition after Etter (1987).



15

Chapter 2

2.2.3. Lower Penninic cover nappes (Valais Bündnerschiefer)
In the eastern part of the study area (Fig. 2.1) the lower Penninic cover nappes represent an up to 

15 km thick volume of limestones, shales, marls and calc-schists originally deposited in the Valaisan 

Ocean. This thickness diminishes towards the west and around Olivone only very reduced series are 

conserved (Figs. 2.1, 2.2 & 2.3). Further to the east (Grisons area) the Lower Penninic Bündnerschiefer 

can be subdivided into, from top to bottom, the Tomül and Grava nappes, consisting of a Cretaceous- to 

Eocene-age sedimentary sequence (Nänny 1948; Steinmann 1994a, b), and three imbricate zones: Aul 

unit, Upper and Lower Valser Schuppenzone (Steinmann 1994a, b). In contrast to the Sub-Penninic cov-

er nappes all these units are rooted above the Adula nappe (Probst 1980; Steinmann 1994a, b).

Only the Grava nappe reaches the Val Luzzone and northern Valle di Blenio in the central and 

western parts of the working area, respectively, where the base of this cover nappe (here referred to as 

Sosto and Lugnez schists; Probst 1980) forms the Penninic Basal Thrust (Fig. 2.4). In the east, i.e. in the 

area around Vals, Jurassic-age (dating based on stratigraphic criteria; Steinmann 1994a) mafic and ul-

tramafic rocks are associated with meta-sediments, both forming the Aul unit (Figs. 2.1 & 2.3). In some 

places the meta-basalts preserve pillow structures (Steinmann 1994a, b) and are locally associated with 

serpentinites (Piz Aul; Nabholz 1945). This indicates that parts of the Valais Bündnerschiefer were de-

posited on oceanic crust (Steinmann 1994a, b).

The metamorphism of the Valais Bündnerschiefer units is characterised by the occurrence of Fe-

Mg carpholite (Goffé & Oberhänsli 1992; Bousquet et al. 2002), i.e. a typical index mineral for HP/LT 

conditions in meta-sediments (Goffé & Chopin 1986; Bousquet et al. 2008). Interestingly, Fe-Mg car-

pholite is described from both sides of the Lepontine dome, documenting blueschist facies conditions 

for the Petit St. Bernard area in the west (1.7 GPa, 350-400 °C; Goffé & Bousquet 1997) as well as in 

the Grisons including the Engadine window in the east (1.2-1.3 GPa, 350-400 °C; Bousquet et al. 1998). 

Both these high-pressure occurrences follow a northern suture zone between Briançonnais micro-con-

tinent and distal European margin that is formed by tectonic units attributed to the former Valais Ocean 

(Bousquet et al. 2002).

2.3. Structural evolution
In the following, we will first describe the four major deformation phases observed in the studied 

area. These are documented by clearly observable overprinting patterns. We will then correlate struc-

tural and metamorphic evolution in a second step and finally discuss and compare the results obtained 

in the working area with the large-scale geological context concerning the geodynamic evolution of the 

Alps. 

2.3.1. First deformation phase (D1)
The first phase of deformation led to the formation of widespread, often carpholite-bearing calcite, 

quartz and quartz-calcite veins mainly found in calcareous schists in both the Sub-Penninic and Lower 

Penninic meta-sediments (Voll 1976). These veins represent oblique fibrous veins that opened in a tran-

stensive manner by re-precipitation from hydrous solutions, which led to the growth of the fibres (Weh 

& Froitzheim 2001). The veins typically resemble fibrous carpholite pseudomorphs described in the lit-

erature (Fig. 2.5a; Goffé & Chopin 1986; Agard et al. 2001; Rimmelé et al. 2003a; Trotet et al. 2006). 

Such fibres of Fe-Mg carpholite, indicative of HP/LT metamorphic conditions, are typically found only 

within fibrous segregations and rarely in the surrounding rock matrix. Since no major folding structures 
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formed during D1 and since the surrounding rock matrix is occasionally found virtually undeformed 

(Fig. 2.6), we infer semi-ductile behaviour during D1, largely characterised by solution and re-precipi-

tation processes.

Since the HP/LT mineral assemblage carpholite-chlorite-phengite-quartz±chloritoid is found in 

meta-sediments of both Lower Penninic (Grava and Tomül nappes) and Sub-Penninic units (Peidener 

Schuppenzone), the tectonic contact between the most distal European margin and the Valais Ocean, the 

Penninic Basal Thrust, must have already formed during D1. Although the more external Sub-Penninic 

units may also have been affected by D1, these units lack carpholite-bearing veins.

B

C D

A

D1D1

D1D1
D1D1

D2D2

D2D2

D2D2

D3D3

NW SE SW NE

NWSE

Psm Cp

Psm Cp

D4D4

S2S2

S3S3

S2S2

Psm Cp

Psm Cp

Fig. 2.5: Photographs of quartz-calcite veins representing pseudomorphs after Fe-Mg carpholite (Psm Cp). (A) Black arrow 
marks the orientation of characteristic fibrous growth of quartz, typical for pseudomorphs after Fe-Mg carpholite (Val Luzzone, 
716’865/158’363, 1780m). (B) Pseudomorphs after carpholite (related to D1 deformation, Safien phase) are folded by D2 (Fer-
rera phase) and aligned parallel to the main foliation S2 in the fold limbs (Safiental, 739’942/160’530, 2350m). (C) Pseudo-
morph after carpholite, refolded by D2 and D3 (Domleschg phase; Valsertal, 738’292/174’969, 1580m). Generally a new axial 
planar schistosity S3 (“spaced cleavage”) evolved. In D3 fold hinges, S2 and S3 can easily be distinguished. (D) Pseudomorphs 
after carpholite, refolded by D2 (Ferrera phase) and D4 (Chièra phase; Val Luzzone, 716’865/158’363, 1780m).
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2.3.2. Second deformation phase (D2)
This deformation post-dates D1, since the carpholite-bearing quartz-calcite veins are isoclinally 

folded and overprinted by the S2 penetrative main and axial planar schistosity (Fig. 2.5b). Due to poly-

phase overprinting during later phases of folding, the orientations of D2 structures, such as fold axes and 

fold axial planes, show a large spread in orientation. The D2 schistosity completely transposes bedding, 

and possibly, relics of an earlier D1 schistosity that may have existed in pelitic lithologies.

This penetrative, main D2 foliation is largely formed by phengite and chlorite, which indicates 

greenschist facies conditions during D2 deformation. Hence D2 was associated with early exhumation 

of the blueschist-facies rocks. In analogy with the findings of Bucher & Bousquet (2007) and Bucher 

et al. (2003, 2004) in the Western Alps, we interpret this main phase of nappe stacking to be associated 

with the exhumation of high-pressure rocks. Thereby relatively more internal and higher-pressure units 

were thrust onto relatively more external and lower-pressure units.

2.3.3. Third deformation phase (D3)
D3 deformation produces tight mega-folds such as the Lunschania antiform (Figs. 2.1 & 2.3), as 

well as folds observable at the mesoscopic and microscopic scale. A second strong axial planar cleavage 

S3 is associated with D3 folding. However, the distinction between S2 and S3 can only be made in D3 

crinoids

Psm cp

Fig. 2.6: Photograph showing pseudomorphs after carpholite, together with almost undeformed crinoids in the Forca slice of 
the Peidener Schuppenzone (Sub-Penninic sediments; Val Luzzone, 717’364/160’358, 1860m). The black arrow in the lower 
picture is oriented parallel to the quartz fibres.
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fold hinges where S3 represents a spaced cleavage (Fig. 2.5c), while S3 completely transposes S2 in F3 

fold limbs. In most places the main foliation represents a composite S2/S3 schistosity.

Due to D4 overprint in the western part of the working area, the D3 fold axes and fold axial planes 

often show variable orientations. Further east (east of Vrin), D3 fold axes strike SW – NE, plunging gen-

tly either NE or SW; fold axial planes steeply dip SE to SSE. There a crenulation is often associated with 

D3 deformation, the crenulation lineation being oriented parallel to D3 fold axes.

2.3.4. Fourth deformation phase (D4)
D4 deformation is only observed in the SW part of the investigated area (Figs. 2.1 & 2.2), strain 

intensity rapidly decreasing towards the NE. D4 deformation sets in east of Piz Terri while intensive 

folding affects the area around Pizzo Molare and between the southern Lukmanier area and Olivone 

(Figs. 2.2 & 2.3). D4 folds are open, often without an axial planar schistosity. They refold the S2/S3 

composite schistosity (Fig. 2.5d). Typically, D4 folds have an undulating and wavy appearance, pro-

ducing a staircase-like set of syn- and antiforms on the macroscopic scale, striking E-W to ESE-WNW 

(Figs. 2.2 & 2.3).

However, a new axial plane schistosity S4 locally evolves in fold hinges of tighter D4 folds and 

overprints the S2/S3 composite foliation. In such cases this new S4 foliation represents a pressure solu-

tion cleavage producing microlithons within which overprinting of the S2/S3 composite foliation is well 

preserved on a microscopic scale.

The E-W striking D4 fold axes dip moderately (20-40°) towards the E in most of the working area. 

Only around Pizzo Molare and south of Olivone the fold axes dip towards SE-ESE. It is important to 

note that the D4 fold axial planes generally plunge with 30-50° to the NE. Hence the D4 folds represent 

back-folds, which are typical for the so-called Northern Steep Belt at the northern rim of the Lepontine 

dome (Milnes 1974).

2.4. New data regarding the metamorphic evolution of the area
A remarkable metamorphic field gradient is deduced for the investigated area, ranging from low-

temperature (≤400 °C) blueschist facies metamorphism in the east all the way to classical Barrow-type 

amphibolite facies overprint (up to 570 °C) further west (Figs. 2.1 & 2.2). Moreover, for the first time 

we are able to distinguish between two separate metamorphic stages in the Sub-Penninic and Lower 

Penninic meta-sedimentary units in the north-eastern Lepontine: an earlier HP/LT event is followed by 

a MP/MT Barrovian event.

2.4.1. Spatial distribution of index minerals and mineral parageneses
The HP/LT event is documented by the mineral assemblage Fe-Mg carpholite-chlorite-phengite-

quartz±chloritoid, relics of which are widespread in the Lower Penninic Grava and Tomül nappes east 

of the Lepontine dome (Bousquet et al. 2002). Remnants of this assemblage, notably relics and/or pseu-

domorphs after Fe-Mg carpholite, are even found in the westernmost exposures of the Grava nappe as 

far as Pizzo Molare, hence in an area well inside the thermally overprinted realm of the Lepontine dome 

(Fig. 2.2). Relics and pseudomorphs after Fe-Mg carpholite were also found further north within the 

imbricated Sub-Penninic Peidener Schuppenzone. There, such pseudomorphs occur as fibrous quartz-

calcite veins, which crosscut meta-sedimentary units containing almost undeformed crinoids (Fig. 2.6). 

This documents for the first time that HP/LT metamorphic conditions also affected Ultrahelvetic meta-
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sediments, derived from the former distal European margin. This clearly points to the existence of a sec-

ond and more northerly-located Alpine subduction zone with respect to the Upper Penninic Suture Zone, 

as pointed out by several authors (e.g. Stampfli 1993; Stampfli et al. 1998; Bousquet et al. 2002; Nagel 

et al. 2002a; Froitzheim et al. 2003; Pleuger et al. 2003).

The classical Barrow-type amphibolite facies overprint is associated with a pronounced metamor-

phic field gradient. Towards the south-west a gradual succession of newly growing minerals indicates 

an increase in temperature from greenschist to lower/middle amphibolite facies conditions. This is de-

duced from the progressive appearance of chloritoid, zoisite, plagioclase, titanite, biotite, garnet, stauro-

lite, kyanite and finally amphibole (Fig. 2.2). Furthermore, in the south-western part of the working area 

around Pizzo Molare and between Olivone and the southern Lukmanier area, where pseudomorphs of 

Fe-Mg carpholite are also present, the mineral assemblage staurolite-kyanite-garnet-plagioclase-biotite-

phengite±amphibole clearly indicates a thermal overprint under lower to middle amphibolite facies con-

ditions (Chadwick 1968; Frey 1969; Thakur 1971; Engi et al. 1995). Towards the north-east the mineral 

parageneses chloritoid-phengite-chlorite-quartz and zoisite/clinozoisite-chlorite-phengite-quartz-cal-

cite/dolomite indicate greenschist facies conditions related to the same Barrow-type event (Jung 1963; 

Frey 1967; Frey & Ferreiro Mählmann 1999). In contrast to the earlier HP/LT event, restricted to the 

Grava nappe and the Peidener Schuppenzone, the Barrow-type overprint affected all the units of the 

working area (Fig. 2.2). In the following the new data concerning the two metamorphic events will be 

described in more detail.

2.4.2. Data on the earlier HP/LT metamorphic event
Occurrences or relics of the HP/LT mineral assemblage Fe-Mg carpholite-chlorite-phengite-

quartz±chloritoid are only found within quartz- and calcite-bearing veins or segregations. Fibrous mes-

oscopic appearance and characteristic light green silvery colour of such veins or segregations resemble 

the typical Fe-Mg carpholite pseudomorphs described in the literature (Fig. 2.5a; Goffé & Chopin 1986; 

Goffé et al. 1989; Fournier et al. 1991). It is important to emphasise that in the study area Fe-Mg carpho-

lite was never found in the matrix of the rocks; it exclusively occurs within veins and/or segregations. 

This, together with the fact that undeformed crinoids are found in the neighbouring rocks next to these 

veins (Fig. 2.6), indicates that carpholite growth occurred in the context of veining and dehydration, i.e. 

probably during subduction.

However, Fe-Mg carpholite is only preserved in the form of microscopic-scale relics (Fig. 2.7a) 

within quartz-calcite segregations or veins that represent macroscopically visible pseudomorphs after 

large former Fe-Mg carpholite crystals (Fig. 2.5a). No Fe-Mg carpholite crystals preserved on a mac-

roscopic scale, such as described from the Engadine window (Bousquet et al. 1998), were found. The 

macroscopic pseudomorphs are mainly built up by fibrous quartz (Fig. 2.5a). Its shimmering silver-

green lustre is due to a thin layer of chlorite and phengite. In thin section, fibrous quartz is full of inclu-

sions of chlorite, phengite and paragonite. This assemblage often forms needle-shaped pseudomorphs 

after Fe-Mg-carpholite (Fig. 2.7b). Rarely chloritoid has also been found as inclusions in such fibrous 

quartz-calcite veins.

In order to estimate peak-pressure conditions, the chemical compositions of HP/LT minerals were 

determined by wavelength-dispersive X-ray analysis (WDS) using a CAMECA SX-100 electron micro-

probe at the GeoForschungsZentrum (GFZ) Potsdam. The analytical conditions included an accelera-

tion voltage of 15 kV, a beam current of 20 nA and beam diameters of 1-10 μm; PAP corrections were 
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applied. Natural and synthetic minerals were used as standards. Peak counting times were 10-20 s for 

major and 20-40 s for minor elements; backgrounds were counted for 5-20 s.

Relics of Fe-Mg carpholite are hair-thin micro-fibres (10 to 100 μm long, 0.5 to 10 μm wide) em-

bedded in quartz (Fig. 2.7a) documented by Raman spectroscopy and microprobe analysis. In order to 

avoid the effect of contamination by the surrounding quartz, the chemical composition of Fe-Mg car-

pholite [(Mg,Fe,Mn)Al
2
Si

2
O

6
(OH,F)

4
] was calculated on the basis of a fixed atomic number of cations 

(Goffé & Oberhänsli 1992). The value of X
Mg

 [Mg/(Mg+Fe+Mn)] is rather constant, ranging from 0.44 

to 0.55 (mean value 0.49) in the Penninic Bündnerschiefer of the Grava nappe, and from 0.39 to 0.57 

(mean value 0.49) in the Sub-Penninic Peidener Schuppenzone (Table 2.1). Generally the fluorine con-

tent is very low and varies from 0.0 to 0.99 wt %.

White mica is also found as inclusions in quartz grains. Both phengite and paragonite are present 

and associated with chlorite and quartz. They form also part of the pseudomorphs after Fe-Mg carpho-

lite (Fig. 2.7b). There, phengite and paragonite occur as fine-grained flakes without any shape preferred 

orientation. The Si4+ content, reflecting the phengitic substitution in white mica replacing Fe-Mg carpho-

lite, ranges from 3.24 in the Valais Bündnerschiefer to 3.12 p.f.u in the Sub-Penninic Peidener Schup-

penzone (Table 2.1).

Chlorite occurs as randomly arranged grains, together with white mica and quartz, but also within 

pseudomorphs after Fe-Mg carpholite (Fig. 2.7b). In the Valais Bündnerschiefer the Tschermak substi-

tution in chlorites is around 2.57 - 2.70 (Si p.f.u.), X
Mg

 ranging from 0.43 to 0.60. In the Sub-Penninic 

sediments between 2.52 and 2.61 Si p.f.u. and X
Mg

 from 0.44 to 0.48 were measured (Table 2.1).

Only in a few cases chloritoid was found inside quartz-calcite segregations containing relics of 

Fe-Mg carpholite. Such chloritoid forms small prisms with X
Mg

-values varying between 0.12 in the Val-

ais Bündnerschiefer and 0.20 in the Sub-Penninic meta-sediments (Table 2.1). This chloritoid is inter-

preted to have formed during prograde metamorphism by reaction from Fe-Mg carpholite, as shown by 

Vidal et al. (1992); i.e. during the high-pressure stage rather than during a greenschist facies event (see 

discussion in Oberhänsli et al. 2003). 

0.2 mm 0.4 mm

Relic cpRelic cp

Qtz
Qtz

Chl

Phe

BA

Fig. 2.7: Photomicrographs of thin sections showing mineral assemblages related to the HP/LT event, preserved as inclusions 
in quartz-calcite fibrous veins generally interpreted as pseudomorphs after Fe-Mg carpholite. (A) Hair-like fibres represent rel-
ics of Fe-Mg carpholite (cp) as inclusions in quartz (SW of Vrin, 723’990/166’197, 1890m). (B) Phengite, quartz and chlorite 
define a needle-shaped pseudomorph after carpholite. Still preserved relics of carpholite can be found as hair-like fibres (Val 
Luzzone, 720’938/162’275, 2600m).
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2.4.3. Data on the subsequent temperature-dominated event
While remnants of the HP/LT metamorphic event are restricted to quartz-calcite segregations 

within the Lower Penninic Bündnerschiefer and the Sub-Penninic Peidener Schuppenzone, the tempera-

ture-dominated Barrovian event affected all tectonic units (Fig. 2.2). From north-east to south-west, i.e. 

from greenschist to lower/middle amphibolite facies overprint, the following mineral assemblages are 

described.

Greenschist facies: Chloritoid growing during the second metamorphic event and at the expense 

of pyrophyllite and chlorite can be texturally distinguished from that produced by the breakdown of Fe-

Mg carpholite. Whereas the scarce occurrences of HP/LT chloritoid are restricted to microscopic-scale 

inclusions in quartz-calcite veins containing preserved relics of Fe-Mg carpholite, LP/LT chloritoid oc-

curs in the rock-matrix as idiomorphic rosettes, bundles and prisms, together with quartz, white mica 

and chlorite. It is common in shaly formations of the Stgir and Coroi series of the Gotthard-Mesozoic 

(Scopi unit and Peidener Schuppenzone), as well as in quartzitic formations of the Piz Terri-Lunscha-

nia unit (Jung 1963; Frey 1967; Probst 1980; Fig. 2.2). The mineral assemblage chloritoid – white mica 

– chlorite – quartz is typical for the Sub-Penninic sedimentary units in the study area. The overlying 

Lower Penninic Bündnerschiefer are characterised by the mineral assemblage phengite-chlorite-quartz-

calcite/dolomite. However, chloritoid has not been identified with the exception of rare occurrences in 

Unit Valaisan Bündnerschiefer (Grava nappe) Sub-Penninic sediments (Peidener Schuppenzone)

Forca slice Pianca slice

Sample LUZ 0432 LUZ 0416 LUZ 047 LAR 061

Minerals Cp Ctd Chl Phe Pg Cp Chl Phe Cp Ctd Chl Phe Cp Chl Phe

Ananlysis (wt-%) Cp828 Ctd215 Chl219 Phe221 Pg220 Cp849 Chl207 Phe224 Cp9B Ctd16 Chl5 Phe1 Cp12 Chl4 Phe12

SiO2 37.40 24.46 25.36 49.46 48.43 37.63 25.30 48.60 37.85 25.32 23.17 47.18 38.00 23.63 47.20

TiO2 0.19 0.01 0.04 0.20 0.04 0.25 0.06 0.17 0.00 0.00 0.06 0.13 0.27 0.03 0.00

Al2O3 31.11 39.36 22.91 33.52 40.30 31.31 22.40 34.08 32.41 38.80 23.57 35.94 30.02 22.60 36.34

Cr2O3 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

FeO 11.44 25.42 27.37 1.34 0.20 12.64 26.51 1.24 10.92 22.55 27.27 0.81 13.90 27.05 0.49

MnO 0.25 0.06 0.02 0.00 0.01 0.30 0.05 0.00 0.06 0.27 0.01 0.00 0.03 0.08 0.01

MgO 6.32 1.85 12.73 1.39 0.12 5.68 13.39 1.20 6.27 2.83 11.98 0.85 6.49 12.62 0.62

CaO 0.00 0.00 0.00 0.00 0.07 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.02

Na2O 0.00 0.00 0.04 0.67 7.26 0.00 0.00 0.76 0.01 0.00 0.01 0.84 0.04 0.03 0.92

K2O 0.04 0.00 0.02 8.82 1.11 0.03 0.01 9.12 0.02 0.01 0.01 8.75 0.00 0.02 8.59

BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F 0.65 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00

Total 87.43 91.15 88.48 95.39 97.54 88.64 87.72 95.16 88.03 89.78 86.07 94.50 88.76 86.08 94.19

Total corr. 87.17 91.15 88.48 95.39 97.54 88.32 87.72 95.16 87.83 89.78 86.07 94.50 88.76 86.08 94.19

Si 2.00 2.05 2.67 3.24 3.02 2.00 2.67 3.20 2.00 2.13 2.52 3.12 2.00 2.57 3.12

Ti 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Al 1.96 3.90 2.84 2.59 2.96 1.96 2.79 2.64 2.02 3.85 3.02 2.80 1.86 2.90 2.83

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 0.04 0.05 - - - 0.04 - - 0.00 0.02 - - 0.14 - -

Fe2+ 0.47 1.74 2.41 0.07 0.01 0.52 2.34 0.07 0.52 1.56 2.48 0.04 0.47 2.46 0.03

Mn 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00

Mg 0.50 0.23 1.99 0.14 0.01 0.45 2.11 0.12 0.49 0.35 1.94 0.08 0.51 2.04 0.06

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.00 0.00 0.01 0.08 0.88 0.00 0.00 0.10 0.00 0.00 0.00 0.11 0.00 0.01 0.12

K 0.00 0.00 0.00 0.74 0.09 0.00 0.00 0.77 0.00 0.00 0.00 0.74 0.00 0.00 0.72

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F 0.11 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00

XMg 0.51 0.12 0.45 0.46 0.47 0.49 0.18 0.44 0.52 0.45

Table 2.1: Representative microprobe mineral analyses of HP/LT assemblages found as inclusions in quartz-calcite veins, in-
terpreted as pseudomorphs after carpholite of Valaisan (Grava nappe) and Sub-Penninic (Peidener Schuppenzone) meta-sedi-
mentary units given in weight-percents. The locations of the samples are shown in Figure 2.2. The deviations from 100 % are 
mainly due to the OH-content not detected by microprobe analyses. The sums of Fe-Mg carpholite analyses have been cor-
rected for fluorine content; the values given under “Total corr.” take into account that fluorine occupies an oxygen site. The 
structural formulae for carpholite were calculated by using 5 cations for Si and 3 cations for Al, Fe, Mn and Mg, following 
Goffé & Oberhänsli (1992). For chlorite we used 14 oxygens, for white mica 11 and for chloritoid 12, following Chopin et al. 
(1992). The following abbreviations have been used: Cp = Fe-Mg carpholite, Ctd = chloritoid, Chl = chlorite, Phe = phengite, 
Pg = paragonite.
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quartz-calcite veins interpreted as relics of the HP/LT stage, as discussed above. The lack of chloritoid is 

most probably due to the bulk rock composition in the Lower Penninic Bündnerschiefer, which is gen-

erally Ca-rich and Al-poor.

Upper greenschist facies: In the Val Luzzone area, the mineralogical composition of the Lower 

Penninic Bündnerschiefer changes dramatically (Fig. 2.2). Newly formed zoisite/clinozoisite, plagiocla-

se and titanite indicate an increase in temperature. This is corroborated by the mineral assemblage plagi-

oclase – zoisite/clinozoisite – titanite – phengite – chlorite – quartz – calcite/dolomite found in marly or 

calcareous schists of the Grava nappe. When entering the upper greenschist facies stability field, zoisite/

clinozoisite is the first newly grown mineral observed. Based on mineral shape and composition the fol-

lowing two zoisite/clinozoisite types are found within the same rocks (Frank 1983; Kuhn et al. 2005): 

(1) Fine-grained, needle-shaped, prismatic zoisite/clinozoisite, enriched in Fe3+ relative to AlVI with an 

X
Ep

 [Fe3+/(Fe3++Al-2)] of 0.15-0.20. Some grains show distinct compositional zoning, with cores being 

richer in Fe3+ compared to the rims (X
Ep

 core = 0.63; rim = 0.20), and, (2) an almost pure Al-end member 

with X
Ep

 of 0.03-0.05 forming relatively large crystals arranged as rosettes and sheaves, up to 5 cm in 

diameter (Fig. 2.8a). Plagioclase forming black plates up to several mm in size is present as oligoclase, 

with an An-content varying between 0.19 and 0.36. Titanite, another characteristic mineral of this zone, 

forms bi-pyramidal crystals up to 3 mm in size.

Upper greenschist to amphibolite facies transition: Biotite first appears west of the retaining wall 

of Lago di Luzzone within the Lower Penninic Bündnerschiefer (Fig. 2.2). This site roughly coincides 

with the north-eastern border of the Lepontine thermal dome as mapped by Spicher (1980). The assem-

blage biotite – plagioclase – zoisite/clinozoisite – titanite – phengite – quartz – calcite/dolomite ± chlo-

rite is characteristic for the upper greenschist to amphibolite facies transition. The Jurassic sediments of 

the Sub-Penninic units (Stgir series of the Peidener Schuppenzone) are less calcareous and more pelitic 

than the overlying Lower Penninic Bündnerschiefer (Fox 1975). This difference in chemical composi-

tion led to the formation of garnet in the Stgir series, which is absent in the Lower Penninic Bündner-

schiefer in the study area. Garnet first appears north of Olivone (northern Valle di Blenio; Figs. 2.1 & 

2.2) within the assemblage garnet – biotite – plagioclase – phengite – quartz ± chlorite ± zoisite/clino-

zoisite. The co-existence of garnet and biotite is typical for the upper greenschist to amphibolite facies 

transition (Bucher & Frey 2002). The almandine-rich garnets (Alm
0.71

Prp
0.06

Grs
0.21

Sps
0.02

) are chemically 

more or less unzoned and form crystals up to 1 cm in size.

Lower to middle amphibolite facies: Kyanite, staurolite and amphibole appear in addition further 

SW (Valle di Blenio, Pizzo Molare, and south of the Lukmanier pass; Figs. 2.1 & 2.2). Pelitic meta-

sediments of the Sub-Penninic units are characterised by the mineral assemblage staurolite – kyanite 

– garnet – biotite – plagioclase – phengite – quartz (Baumer 1964; Chadwick 1968; Frey 1969; Thakur 

1971; Fox 1975; Probst 1980), typically indicating lower to middle amphibolite facies conditions. In 

general, garnet is almandine-rich and shows a normal zoning pattern with increasing Mg- and decreas-

ing Mn-content from core to rim. Garnets from the Pizzo Molare area yield Alm
0.62

Prp
0.06

Grs
0.23

Sps
0.09

 for 

the core and Alm
0.68

Prp
0.12

Grs
0.20

Sps
0.00

 for the rim. The An-content of plagioclase ranges between 0.16 

and 0.30. The more calcareous chemistry of the Valaisan Bündnerschiefer does not allow for the growth 

of these new minerals; the assemblage biotite – plagioclase - zoisite/clinozoisite – titanite – phengite 

– quartz – calcite/dolomite ± chlorite still persists in this metamorphic zone.
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2.4.4. Correlations between the structural and metamorphic evolution
The early HP/LT event was associated with the formation of quartz-calcite veins containing 

pseudomorphs after Fe-Mg carpholite indicating blueschist facies conditions. We infer that these veins 

formed during D1 since they were folded by isoclinal F2 folds (Figs. 2.5b, c & d). These isoclinal folds 

are associated with a D2 penetrative axial planar foliation that formed under greenschist-facies condi-

tions. From this we deduce that greenschist-facies conditions were already established during D2.

Porphyroblasts related to Barrow-type thermal overprint, such as chloritoid, zoisite/clinozoisite, 

titanite, plagioclase, biotite, garnet, kyanite, staurolite and amphibole, all clearly overgrow the S2/S3 

composite main foliation and have no shape preferred orientation (Figs. 2.8a & b). Big flakes of biotite 

typically grow across the S2/S3 main foliation (“Quer-Biotit”). This implies a temporal hiatus between 

syn-D1 HP/LT metamorphism and post-D2/D3 Barrow-type overprint. Moreover, the random orienta-

tion of porphyroblasts related to Barrow-type thermal overprint, as well as the conservation of an un-

folded internal S2/S3 compositional foliation in the cores of garnets (Fig. 2.8b), both indicate that at 

least the initial stages of the Barrovian overprint occurred under static conditions in most parts of the 

working area. The famous syn-D4 snowball garnets (Chadwick 1968; Fox 1975; Robyr et al. 2007) rep-

resent an exception and are restricted to a specific level of the Stgir series.
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Fig. 2.8: Photographs showing microstructural relationships between porphyroblasts related to Barrowian overprint and de-
formation phases. (A) Rosetta of zoisite growing over the S2/S3 composite main foliation (Val Luzzone, 716’469/158’124, 
1450m). (B) Straight internal S2/S3 composite foliation inside a garnet porphyroblast (Grt), slightly curving at the rim; deflec-
tion of the S2/S3 foliation around the garnet and its relative rotation are the effects of subsequent D4 deformation (Val Luzzone, 
715’029/156’841, 1190m). (C) Zoisite/clinozoisite needles (Zo/Czo) oriented parallel to the S2/S3 composite main foliation are 
broken and bent by D4 deformation (Val Luzzone, 716’093/157’771, 1390m). (D) Needles of kyanite (Ky) kinked by D4 folds 
(S of Pizzo Molare, 709’541/149’308, 2310m).
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In most places the Barrovian mineral assemblages have been overprinted by D4 crenulation de-

formation; needles and prisms of chloritoid, zoisite/clinozoisite and kyanite are kinked, bent or broken 

(Figs. 2.8c & d). Most garnet porphyroblasts show some rotation of the internal S2/S3 foliation towards 

the rims (Fig. 2.8b), indicating that the last stages of the garnet growth occurred during D4. However 

the D2/D3 composite foliation is strongly crenulated in the rock-matrix outside of the garnet, indicating 

that most of the D4 crenulation post-dates the growth of garnet.

In summary (see Figs. 2.9 & 2.10), the Barrovian-type thermal overprint definitely post-dates D3 

and started during a period without any significant deformation. The HP/LT event, however, was syn-D1 

and terminated before D2. This implies that greenschist facies conditions were already established dur-

ing decompression from the HP/LT stage and before the Barrow-type heating event.
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2.4.5. Relations between HP/LT and MP/MT metamorphism: Significance of a metamorphic 

field gradient

Pressure-dominated metamorphic event

Peak-pressure and -temperature conditions can be estimated from the composition of coexisting 

phengite, Fe-Mg carpholite, and chloritoid according to Bousquet et al. (2002). P-T calculations were 

carried out with the GEO-CALC software (Brown et al. 1988), by using the updated JAN92.RGB ther-

modynamic database (Berman 1988), Mg-carpholite data from Vidal et al. (1992), Mg-chloritoid data 

of B. Patrick (listed in Vidal & Theye 1996), and alumino-celadonite data from Massonne (1995). The 

mineral activities used are listed in Bousquet et al. (2002). In the working area, the measured mineral 

compositions of Fe-Mg carpholite, phengite, and chloritoid are similar to those described by Goffé & 

Oberhänsli (1992), Oberhänsli et al. (1995) and Bousquet et al. (2002). The pressure conditions for car-

pholite-bearing rocks are defined by the location of the equilibrium (Fig. 2.11):

2 phengite + chlorite + 5 Quartz + 2 H
2
O = 3 carpholite + 2 phengite (R1)

while the stability field of Fe-Mg carpholite towards higher temperature is limited by the equilibrium:

carpholite = chloritoid + quartz + 2 H
2
O (R2) 

From the mineral chemistry of the observed mineral assemblage and the position of the above-de-

scribed equilibria, peak metamorphic conditions of 1.2-1.4 GPa and 350-400 °C are estimated for both 

Lower Penninic Bündnerschiefer and Sub-Penninic meta-sediments of the Peidener Schuppenzone (Fig. 

2.11), similar to the P-T conditions estimated in the Safiental further to the east (Bousquet et al. 2002).
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Most of the meta-sediments show retrogressed greenschist-facies assemblages documented by 

the widespread mineral assemblage phengite-paragonite-chlorite-quartz-calcite/dolomite. However, the 

preservation of Fe-Mg carpholite relics, as well as a retrograde path mainly characterised by the decay 

of Fe-Mg carpholite to chlorite and phengite (following R1; Fig. 2.11) forming pseudomorphs after 

carpholite, implies a cold (or fast) decompression 

path after the HP/LT metamorphic stage (Gillet 

& Goffé 1988). In the Engadine window and in 

Safiental, no re-heating during this decompression 

can be evidenced from the observed mineral as-

semblages (Bousquet et al. 1998).

Temperature-dominated, Barrow-type overprint: 

Results based on graphite-thermometry

The P-T conditions are only well con-

strained for the pelitic rocks of the Sub-Penninic 

sediments in the south-western part of the working 

area, around Pizzo Molare and the area between 

Olivone and southern Lukmanier. There, earli-

er investigations yielded 500-550 °C and 0.5-0.8 

GPa (Frey 1969; Fox 1975; Engi et al. 1995; Todd 

& Engi 1997; Frey & Ferreiro Mählmann 1999). 

In order to provide more information on the tem-

perature gradient from NE to SW associated with 

the Barrow-type amphibolite facies overprint, we 

performed graphite-thermometry following the 

procedure proposed by Beyssac et al. (2002a). The 

method is based on the degree of crystallization of 

organic material, which is mainly temperature de-

pendent (Buseck & Bo-Jun 1985). Relationships 

between grade of crystallisation and metamorphic 

conditions are empirically calibrated (Beyssac et 

al. 2002a). Since graphitization of organic matter 

is strictly irreversible (Pesquera & Velasco 1988) this geothermometer always records the peak temper-

ature reached by a rock specimen along its P-T loop, with a relative accuracy in the order of 10-15 °C 

(Beyssac et al. 2004). Here we only present the main results of this analysis of the “field thermal gradi-

ent” (Bollinger et al. 2004); details on method and results will be published elsewhere.

The peak temperatures derived from the Raman spectra obtained from over 140 samples collected 

between the Lucomagno/Pizzo Molare area in the west and Safiental in the east continuously increase 

from 350°C in Safiental to 570°C at the Pizzo Molare over an amazingly short distance along strike (Fig. 

2.12). Most of this increase in temperature occurs in the Val Luzzone, i.e. between Piz Terri and Olivone. 

Further east a fairly homogeneous temperature between 350 and 400 °C, with only a moderate gradient, 

has been deduced.

Comparison of the resulting temperature distribution pattern with the geological structures yields 

the following observation: In the south-west, the “isotherms” clearly cut all D2 nappe contacts und D3 
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Fig. 2.12: Map of the temperature distribution obtained by graphite thermometry (Beyssac et al. 2002), combined with the oc-
currence of index minerals. The temperature pattern in the west is young and cuts all nappe boundaries (D1 & D2) and the D3 
mega-folds (Lunschania antiform). In the east, however, the temperature pattern is older and has been affected by the Lunscha-
nia antiform. The overall temperature distribution pattern results from the superposition of pressure-dominated metamorphism 
observed in the eastern part of the working area by a late thermal event, proposed to be caused by tectonically accreted or thick-
ened heat-producing crustal material in the west. Five constructed P-T-d paths arranged from E to W are shown for illustrating 
the tectono-metamorphic evolution of the meta-sedimentary units at the north-eastern rim of the Lepontine dome.
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post-nappe mega-folds, while in the north-east the “425 °C isotherm” is folded around the large scale D3 

Lunschania antiform (Fig. 2.12). This shows that the peak temperatures were reached at different times 

and under different metamorphic conditions in the east and west. The post-D3 temperature increase in 

the SW is related to the later Barrow-type overprint. The folded isotherms in the NE, however, indicate 

that the temperatures derived for this area are “older”, i.e. they pre-date the onset of the Barrovian over-

print and are hence related to the high-pressure event and/or greenschist facies overprint that followed 

isothermal decompression. This in turn implies that a Barrow-type overprint possibly did not exist at all 

in the north-east, or was only associated with temperatures lower than 425 °C, i.e. temperature ranges 

previously reached during the blueschist and/or greenschist facies event.

The temperatures determined by Raman microscopy of carbonaceous rocks are in excellent agree-

ment with previously published temperature estimates based on traditional methods in the SW part of 

the working area (500-550 °C; e.g. Frey & Ferreiro Mählmann 1999). They also indicate temperatures 

of 500-550 °C, reaching 570 °C in the Pizzo Molare area. In the north-east the inferred temperatures 

(<425°-375 °C) are near those inferred for the blueschist facies peak-pressure with traditional methods, 

ranging between 350-400 °C according to our study and that of Bousquet et al. (2002), as well as near 

those obtained for the greenschist facies overprint in the Grisons area (400 °C; Rahn et al. 2002).

The superposition of a Barrow-type over an earlier HP/LT evolution clearly indicates that the no-

tion of a metamorphic field gradient can lead to misinterpretations. Strictly, a metamorphic field gradi-

ent primarily reflects the present-day distribution of pressure and/or temperature and cannot a priori be 

interpreted in terms of a particular geodynamic evolution.

2.5. Discussion and interpretation of the results
In the following we discuss the results obtained within the working area in a regional context and 

address the timing of the geodynamical evolution of the Alps. Then, in a qualitative way, we discuss 

possible heat sources that could be held responsible for Barrovian metamorphism in the north-eastern 

part of Lepontine thermal dome.

2.5.1. Regional correlations of the tectono-metamorphic evolution established in the 

working area and timing constraints 
The D3 and D4 deformation phases led to the major features that are visible in map (Figs. 2.1 & 

2.2) and cross-section (Fig. 2.3) view. D4 deformation resulted in the cascade-like geometry formed 

by a set of parasitic syn- and antiforms in the western part of the working area (Fig. 2.3), related to the 

formation of the Chièra synform which is well-developed only west of the working area (Milnes 1976; 

Etter 1987). There, the composite D2/D3 main foliation generally steeply dips northward and represents 

the overturned nappe-stack characterising the Northern Steep Belt. In our study area (Val Luzzone, Piz 

Terri, Val Lumnezia) the Chièra synform is only weakly developed, and instead, a series of cascade-like 

D4 syn- and antiforms overprint the D3 Lunschania antiform; these gradually fade out further to the east. 

The overall geometry of the cross section in Figure 2.3 is characterised by progressive steepening of the 

main foliation from a sub-horizontal orientation in the south to a generally moderate southward dip in 

the north that is produced by this D4 folding; subvertical and overturned composite D2/D3 foliations 

and nappe contacts are restricted to the structurally lowest levels. 

Our D4-event corresponds to the deformation event which is responsible for the so-called Chièra 

synform (Milnes 1976, Etter 1987) and will be referred to as Chièra phase. This phase can be parallel-
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ised with phase V of Chadwick (1968), D3 of Etter (1987) and Thakur (1971) and B
5
 of Probst (1980), as 

is summarised in Table 2.2. Schmid et al. (1997a) estimated the Chièra phase to have been active during 

the 25-20 Ma age interval. However, new ages in the 20-18 Ma range, obtained on micas and monazite 

related to the Barrow-type overprint near our working area (Pizzo Molare and Val Piora area; Allaz et 

al. 2007; Janots et al. 2007), suggest a substantially younger, i.e. post-18 Ma age for this deformation 

event.

In Val Luzzone a set of D3 mega-folds was mapped. They are, from north to south: Valzeina syn-

form, Lunschania antiform, Alpettas synform and Darlun antiform (Fig. 2.3). The profile construction of 

Figure 2.3 shows that we favour a correlation of the D3 Valzeina synform with the D3 Molare synform. 

The Lunschania antiform is cored by the basement of the Soja nappe, which can be traced southwards 

into the nappe boundary between the Simano nappe and Adula nappe complex. Alpettas synform and 

Darlun antiform were overprinted, deformed and cut out by late-stage faulting at the front of the Adula 

nappe complex.

Our D3 phase corresponds to the Domleschg phase of Pfiffner (1977), who defined this phase east 

of the study area. We emphasise, however, that D3 deformation in the working area is by far more per-

vasive in comparison to areas further east, i.e. at higher structural levels. An age of D3 between 30 and 

25 Ma ago was inferred by Froitzheim et al. (1994) and Schmid et al. (1996), mainly based on the fact 

that this phase post-dates the Bergell intrusion. Its effects are widespread in the Lower and Middle Pen-

nine nappes (Schmid et al. 1990; Baudin et al. 1993; Mayerat Demarne 1994; Marquer et al. 1996; Weh 

& Froitzheim 2001). To the west the D3 large-scale folds can easily be correlated (Table 2.2) with phase 

B of Chadwick (1968), D2 of Thakur (1971), B
3
-B

4
 of Probst (1980). Possibly, the Carassino phase of 

Löw (1987) represents a late stage of D3 deformation, as proposed by Etter (1987). This interpretation 

is mainly based on the fact that the axial planes of both Domleschg and Carassino phase steeply dip to 

the SSE. Parallelisation of the Carassino phase with the Domleschg phase implies that the Leis phase, 

D1
Safien

D2
Ferrera

D3
Domleschg

D4
Chièra

Accretion and
subduction

formation of the
orogenic wedge

Nappe stacking
decompression
formation of the
basal Penninic

thrust

Nappe re-fold
event

formation of
the Southern

Steep Belt

Nappe re-fold
event

formation of
the Northern
Steep Belt

C
or

re
la

tio
n 

of
 d

ef
or

m
at

io
n 

ph
as

es

Northern Steep Belt

Northern Adula

Tambo/Suretta/Schams

Pennine

This study

Chadwick (1968)

Thakur (1971)

Etter (1987)

Probst (1980)

Löw (1987)

Schmid et al. (1996)

Milnes & Schmutz (1978)

Schmid et al. (1990)

Carassino
?

Sorreda Zapport Leis

F1 F2 F3

Phase B Phase V

D2 D3

B1, B2

D1

B3, B4 B5

Avers Ferrera Niemet

D1 D2 D3

Avers Ferrera
Niemet-
Beverin

Domleschg Chièra

Metamorphic
crystallisation
with minor or

no deformation

Major tectonic events

Timing constraints Bergell intrusion
(32-30 Ma)

Metamorphic
crystallisation
(20-18 Ma)

by mica (Ar-Ar),
monazite (U-Pb)

Prättigau Half-Window

Weh & Froitzheim (2001) D1a D1b D2 D3

Table 2.2: Correlation of deformation phases defined in neighbouring tectonic units described in the literature. Grey shaded 
fields represent deformation events, which can be directly correlated. Note that the first and second deformation phase need not 
to be synchronous in all parts of the orogen, since deformation phases related to the accretionary stage migrated from internal 
to external. See text for further discussion of the timing constraints.
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only affecting the Adula nappe complex, has to be older than the Domleschg phase, as is documented by 

clear overprinting criteria between Leis and Carassino structures (Löw 1987). This rules out the correla-

tion between Domleschg and Leis phase proposed by Schmid et al. (1996) and favours a relatively older 

age for the Leis phase, as was already proposed by Pleuger et al. (2003, 2008).

The older deformation phases are more difficult to correlate at a regional scale. D2 can best be 

correlated with the Ferrera phase, defined in the Schams, Tambo and Suretta nappes (Milnes & Schmutz 

1978; Schmid et al. 1990, 1996; Schreurs 1993), based on the fact that both these events are related to 

nappe stacking and that both are responsible for the formation of the first penetrative foliation. Weh and 

Froitzheim (2001) traced the Ferrera phase into the area of the Lower Penninic Bündnerschiefer (their 

D1a, b phase). It has to be emphasised, however, that the Ferrera phase was defined in a structurally 

higher level, i.e. the Middle Penninic Suretta nappe (Milnes & Schmutz 1978). Hence, the correlation 

with our D2 in a geometrical and kinematic sense does not imply that deformation in this structurally 

lower level was contemporaneous with the Ferrera phase, active during the 56-35 Ma age interval in the 

area of the Middle Penninic nappes (Schmid et al. 1996) as also documented by radiometric dating in 

the Suretta nappe (46 ± 5 Ma; Challandes et al. 2003). We emphasise that not all structural correlations 

presented in Table 2.2 imply that deformation producing these structures was contemporaneous at the 

scale of the Alps. 

In the Lower and Middle Penninic units east of our area of investigation, the Ferrera phase has 

been severely overprinted by the Niemet-Beverin phase, which represents a first nappe refolding stage, 

resulting in large scale back-folding and inverting the nappe pile in the upper limb of the recumbent 

Niemet-Beverin mega-fold (Milnes & Schmutz 1978; Schmid et al. 1990; Schreurs 1993; Mayerat De-

marne 1994; Weh & Froitzheim 2001; Pleuger et al. 2003). Interestingly, no effects of this Niemet-

Beverin phase (35-30 Ma; Schmid et al. 1996) were found in our area of investigation. Therefore, it is 

theoretically possible that the D2-event (Ferrera phase) could have lasted until some 30 Ma ago in our 

study area, i.e. at a much deeper structural level and in units occupying a more external paleogeographi-

cal position.

D1-deformation related to formation of quartz-calcite segregations, pre-dating D2 of the work-

ing area, corresponds to the sub-stage D1a of Weh & Froitzheim (2001; Table 2.2). These authors pro-

posed that the formation of tight to isoclinal folds (their D1b; our D2) post-dates the formation of Fe-

Mg carpholite-bearing veins associated with the formation of a penetrative foliation during their D1a 

(our D1). An estimate on the age of D1 in the working area may be obtained by considering the fact that 

D1 is linked with thrusting along the Penninic Basal Thrust, whose age is constrained by the age of the 

youngest sediments involved. Sedimentation in the Lower Penninic Bündnerschiefer realm lasted until 

Lowest Eocene times (i.e. some 50 Ma ago) according to Weh & Froitzheim (2001), but until Bartonian 

times (i.e. some 40 Ma) in the Sardona unit (Lihou & Allen 1996). The paleogeographical position of 

the Sardona unit is considered Ultra-Helvetic by some authors (e.g. Lihou & Allen 1996) but Penninic 

by others (mainly based on sedimentological and age criteria; e.g. Trümpy 1980; Hsü & Briegel 1991). 

Regardless of its precise paleogeographical position, it is extremely unlikely that the Sardona Flysch is 

of more external origin in respect to the Ultrahelvetic sediments of the Peidener Schuppenzone, given its 

high content of siliciclastic detritus partly shed from the “North Prättigau High” (Lihou & Allen 1996). 

Hence, D1-deformation, sediment-accretion and blueschist facies overprint are unlikely to have started 

before the Bartonian, i.e. before some 40 Ma ago. 
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Interestingly, the main nappe stacking Ferrera phase also post-dates an early thrusting event 

formed under HP/LT conditions, known as the Avers phase (Milnes & Schmutz 1978; Schmid et al. 

1997b; Wiederkehr 2004) in the Briançonnais-Piemont-Liguria Ocean contact area in the Avers. How-

ever, since the Avers phase is related to the closure of the Piemont-Liguria Ocean during the Late Pale-

ocene (Schmid et al. 1996), it must substantially pre-date the D1 event in our working area, which is 

related to the closure of the more northerly Valais Ocean.

In summary, this study could, for the first time in the investigated area, decipher the existence of 

an early blueschist-facies tectono-metamorphic event related to subduction and sediment-accretion. We 

refer to this event as the Safien phase (Table 2.2, Figs. 2.9 & 2.10). In contrast to Weh & Froitzheim 

(2001; their D1a and D1b), we emphasise a clear separation between the D1 and D2 events. This sepa-

ration is supported by the fact that D2 formed under greenschist facies conditions. The age of the HP/

LT Safien phase is constrained to post-date Bartonian times, i.e. 40 Ma. D2 deformation in our area is 

probably younger than the Ferrera phase in the Schams area; it probably lasted until the onset of D3-de-

formation, i.e. some 30 Ma ago. The onset of Barrow-type overprint, which post-dates D3 (i.e. 25 Ma 

according to the correlation of D3 with the age of the Domleschg phase; Schmid et al. 1996) is likely to 

be very much younger in respect of the high-pressure event. Given an almost static interval of mineral 

growth and the new radiometric dating of Barrow-type metamorphism in the area (Allaz et al. 2007; 

Janots et al. 2007), this heating pulse post-dates 20 Ma.

2.5.2. P-T-d-t path and reconstruction of the regional tectono-metamorphic evolution
The complex metamorphic evolution char-

acterised by an early HP/LT stage (350-400°C, 

1.2-1.4 GPa), later overprinted by a Barrow-type 

amphibolite facies event (500-570°C, 0.5-0.8 

GPa) can be reconciled with either of two differ-

ent P-T path trends: (1) A single P-T loop whereby 

the amphibolite facies overprint results from heat-

ing during decompression after HP/LT metamor-

phism, or alternatively, (2) a two-stage P-T evo-

lution, whereby the amphibolite facies Barrovian 

overprint represents a separate heating pulse that 

follows earlier isothermal or cooling decompres-

sion from HP/LT conditions (Fig. 2.13). For the 

reconstruction of the regional tectono-metamor-

phic evolution and the interpretation of the geody-

namic scenario, it is crucial to obtain constraints 

on the shape of the P-T path and its timing.

The following facts argue for isothermal or 

slightly cooling decompression of the Lower Pen-

ninic Valaisan Bündnerschiefer and the Sub-Penninic Peidener Schuppenzone after the HP stage: (1) 

very good preservation of Fe-Mg carpholite east of the study area (Engadine window), (2) its replace-

ment exclusively by a lower pressure mineral assemblage (phengite-chlorite-quartz) within the studied 

area, and (3) the preservation of both pseudomorphs and relics of Fe-Mg carpholite within the north-
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Fig. 2.13: Alternative P-T paths connecting the HP/LT event 
and the amphibolite-facies Barrovian overprint. Path A is a 
single P-T path, decompressional heating of the HP/LT stage 
leading to Barrovian overprint. Path B is characterised by 
a two-stage P-T path, Barrovian overprint represented by 
a separate heating pulse that follows isothermal or cooling 
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eastern Lepontine dome. Hence, the breakdown of carpholite in the Valaisan of the study area is entirely 

pressure-controlled and not associated with a temperature increase.

The analysis of the relationships between deformation and metamorphism and the timing con-

straints provide additional arguments in favour of a two-stage P-T-evolution characterised by a sepa-

rate heating pulse that followed isothermal or cooling decompression from earlier HP/LT metamorphic 

conditions:

(1) Both metamorphic events are separated from each other by two deformation phases implying a con-

siderable time gap between them. The HP/LT event predates D2 and was estimated to have started 

ca. 40 Ma ago, certainly before 30 Ma (onset of D3-deformation). Barrow-type amphibolite facies 

overprint post-dates D2 nappe stacking and a first nappe re-folding event D3 (30-25 Ma), and hence, 

was younger than 20 Ma (Figs. 2.9 & 2.10).

(2) Substantial decompression was associated with D2 nappe stacking and therefore predates the heat-

ing pulse that took place after D3. 

(3) The increase in temperature took place under more or less static conditions between D3 and D4. 

(4) Graphite thermometry documents a two-stage temperature distribution pattern. The D3 Lunschania 

antiform folded an older HP/LT-related pattern and a younger, onion-shaped pattern cutting the D3 

Lunschania antiform was associated with Barrovian amphibolite facies overprint (Fig. 2.12). 

We propose the following 5-stage scenario regarding the tectono-metamorphic evolution in the area 

(compare Figure 2.14):

(1) Subduction and sediment-accretion stage (Safien phase): The Lower Penninic Bündnerschief-

er of the Grisons area (mainly Grava and Tomül nappes) that today build up a 20 km thick accretion-

ary wedge of meta-sediments (Hitz & Pfiffner 1997) formed during Cenozoic subduction of the Valai-

san Ocean and the distal European margin beneath the Briançonnais micro-continent. Deeper parts of 

this sedimentary accretionary wedge experienced pressure-dominated metamorphism under blueschist 

facies conditions (350-400 °C, 1.2-1.4 GPa), including parts of the sedimentary cover in Ultrahelvetic 

facies (Peidener Schuppenzone), which were detached from their crystalline basement and incorporated 

into the HP/LT part of the accretionary wedge. The associated deformation (D1 Safien phase) was semi-

ductile and led to the formation of shear fibre veins consisting of quartz, calcite and Fe-Mg carpholite. 

Exact timing of this HP/LT subduction and sediment-accretion stage is not yet possible. It is, however, 

constrained to have occurred during the Late Eocene (after 40 but before 30 Ma ago; see Berger & Bous-

quet 2008), hence substantially after similar but Late Paleocene to Middle Eocene high-pressure stag-

es proposed for the Middle and Upper Penninic units (see overviews given by Froitzheim et al. 1996; 

Schmid et al. 2004; Berger & Bousquet 2008; Bousquet et al. 2008).

(2) Nappe stacking and decompression stage (Ferrera phase): Nappe stacking was associated 

with substantial decompression of the blueschist-facies rocks. The presence of relics of Fe-Mg carpho-

lite indicates decompression under isothermal or cooling conditions. This thermal regime, as well as 

ongoing accretion of the rest of the Sub-Penninic sediments (Scopi unit, Fig. 2.3), suggests that also Eu-

ropean continental basement rocks, such as preserved in the Adula, Simano and Leventina-Lucomagno 

units, became involved in ongoing subduction and accretion during the Ferrera phase. We propose that 

the Ferrera phase in our working area may have outlasted earlier stages of the nappe-stacking Ferrera 

phase that affected the Middle Penninic units (e.g. Baudin et al. 1993), and probably was active until 30 

Ma ago.
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(3) Nappe re-folding (Domleschg phase): This D3 nappe folding event substantially modified the 

Penninic nappe stack in the working area. It post-dates an earlier nappe re-folding phase established only 

within structurally higher North and Middle Penninic nappes east of the working area (Niemet-Beverin 

phase; e.g. Schreurs 1993; Baudin et al. 1993; Marquer et al. 1996; Weh & Froitzheim 2001). D3 defor-

mation produced tight to isoclinal mega-folds with amplitudes up to some 10 km (Figs. 2.3 & 2.14): the 

most prominent Lunschania antiform, but also the Valzeina and Alpettas synforms, as well as the Darlun 

antiform (Voll 1976; Kupferschmid 1977; Probst 1980; Steinmann 1994a, b; Weh & Froitzheim 2001; 

Uhr unpubl.; Figs. 2.1, 2.2 & 2.3). On the scale of the entire Alpine orogen the Domleschg phase, char-

acterised by far less intense folding at higher structural levels, is interpreted as contemporaneous with 

back thrusting along the Insubric mylonite belt (Schmid et al. 1987), which occurred during the 30-25 
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Ma time interval (see discussion given in Schmid et al. 1997b). Note also that this phase is associated 

with ongoing accretion of continental basement (i.e. Lucomagno-Leventina nappe, Fig. 2.14). Regard-

ing the eastern part of the investigated area, the tectono-metamorphic evolution essentially came to a 

halt after D3 deformation (Fig. 2.12). The following metamorphic and tectonic events only affected the 

western part of the working area.

(4) Barrow-type thermal overprint: This thermal pulse occurred during a tectonically quiescent 

phase within the working area (but not necessarily elsewhere, i.e. in the more external parts of the Alps), 

initiating shortly after some 20 Ma ago. Increasing temperatures led to the formation of porphyroblasts 

related to classical Barrow-type amphibolite facies overprint. This thermal overprint was sustained until 

the beginning stages of the last tectonic (D4) event (Figs. 2.12 & 2.14).

 (5) Back-folding in the Northern Steep Belt (Chièra phase): This second nappe re-folding event 

leads to back-folding within the Gotthard “massif” and adjacent areas. It is associated with the forma-

tion of the Northern Steep Belt of the Penninic realm that is well developed only west of our area of in-

vestigation (Milnes 1974). D4 deformation is intense in the south-west but gradually becomes weaker 

towards the north-east and, finally, fades out somewhere east of the Piz Terri-Vrin area (Figs. 2.2 & 2.3). 

A relatively tight synform, the Chièra synform (Milnes 1974; Milnes 1976; Etter 1987), brings the Low-

er Penninic and Sub-Penninic nappe stack into an overturned, steeply north dipping position (Northern 

Steep Belt) at the deepest structural levels. Within most of the working area, a set of parasitic syn- and 

antiforms develops, structurally located between the Chièra synform and the more northerly located 

corresponding Greina or Gotthard antiform (Thakur 1973) which brings the overturned nappe pile back 

into a normal position (Fig. 2.3). Hence, back-folding is much less pronounced in our working area com-

pared to further west (Figs. 2.2 & 2.3). This folding outlasted Barrovian overprint (18-20 Ma; Allaz et al. 

2007; Janots et al. 2007) and hence is very young (probably post-18 Ma) and contemporaneous with the 

N-directed thrusting in the Aar massif in the more external parts of the Alps (Grindelwald phase; Bur-

khard 1988; Schmid et al. 1996; Pfiffner et al. 1997) and movements along the Simplon line associated 

with back folding west of the Lepontine dome (Steck 1984, 1990; Marquer & Gapais 1985; Mancktelow 

1992; Mancktelow & Pavlis 1994; Steck & Hunziker 1994; Keller et al. 2006).

We conclude that Barrovian overprint in the working area, representing a separate heating pulse 

(Fig. 2.14) is surprisingly young (18-20 Ma; Allaz et al. 2007; Janots et al. 2007) when compared to 

the timing of a similar separate heating pulse proposed for the Southern Steep Belt at around 30-27 Ma 

(Engi et al. 2001; Berger et al. 2005; Brouwer et al. 2005; Brouwer & Engi 2005). Barrow-type overprint 

at the western edge of the Lepontine dome, which occurred along a single continuous P-T path, occurred 

before some 20 Ma ago according to Keller et al. (2005a).

Barrow-type metamorphism in the Lepontine area is often referred to as the Lepontine metamor-

phic event. The term “event” is totally misleading since Lepontine Barrow-type metamorphism, rather 

than representing one single event, is diachronous; thermal overprint becomes progressively younger to-

wards the north (Köppel et al. 1981; Engi et al. 1995). Consequently, different relations between defor-

mation and crystallisation are commonly observed (Berger et al. 2005). We emphasise that the separate 

heating pulse described in this study is characteristic for the north-eastern part of the Lepontine dome 

only and that no direct inferences in terms of timing, geodynamic setting or nature of the heat source 

should be drawn regarding the rest of the Lepontine area, particularly its southern part.
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2.5.3. Discussion of potential heat sources of Barrow-type overprint and thermal 

evolution
We now discuss possible heat sources that could potentially be responsible for Barrovian meta-

morphism in the north-eastern part of the Lepontine thermal dome. We do this in a qualitative way, being 

aware of the complexities of the subject. We first briefly introduce the presently known potential heat 

sources and then qualitatively discuss which of these heat sources could best explain the observations. 

The existence of a separate heating pulse raises the old and still widely debated question after the 

heat sources for Barrovian overprint in collisional orogens (e.g. Jamieson et al. 1998). The following 

potential heat sources have been proposed for Barrow-type thermal overprint: (1) Shear or viscous heat-

ing (Burg & Gerya 2005). (2) Advective heat transfer by rising magma, i.e. plutons and dykes (Engi et 

al. 1995; Frey & Ferreiro Mählmann 1999), possibly induced by up-welling of hot asthenosphere due to 

slab break-off (von Blanckenburg & Davies 1995). (3) Advective heat transfer to the upper crust by ex-

humation of hot eclogitic slices within a subduction channel (Becker 1993; Engi et al. 2001), or alterna-

tively, by extension-related exhumation of hot high-pressure rocks (Platt 1986; Ballèvre et al. 1990). (4) 

Accretion of continental crustal rocks characterised by high radioactive heat production (Chamberlain & 

Sonder 1990; Bousquet et al. 1997; Huerta et al. 1998; Roselle et al. 2002; Goffé et al. 2003).

Discussions on shear heating need to (1) evaluate the expected spatial and temporal distribution of 

shearing-induced heat and (2) quantify the amount of heat produced, which depends on strain-rates and 

deformation mechanisms (e.g. Peacock 1996). In the case of the Alpine orogen such shear heating would 

be expected to lead to a thermal zonation, which parallels the strike of the orogen, i.e. parallel to the 

strike of the potential high-strain zones (in general nappe contacts and shear zones associated with the 

formation of the nappe-stack) that produce this heat. This, however, is not the case within the study area 

since isotherms are perpendicular to important structural elements, such as the Penninic Basal Thrust 

and other nappe contacts (Fig. 2.12). Moreover, plate convergence rates in the Alps are considered too 

low (in the order of 1 cm per year; Schmid et al. 1996) to produce enough heat at a nappe or orogen-wide 

scale, while this heat source may play a role in case of localised shear zones. Hence, only at high con-

vergence rates can shear heating be an important heat source at a large scale. This, however, is not the 

case regarding the thermal overprint that occurred at a very late stage, i.e. when the Alpine edifice was 

essentially established. Moreover microstructural observations of porphyroblasts related to Barrovian 

metamorphism indicate that thermal overprint took place under more or less static conditions and was 

not at all associated with deformation. Based on field evidence we conclude that shear heating probably 

had a rather limited influence on the thermal evolution in our working area.

The effect of advective heat transport by magma and/or local melt is also negligible during Bar-

rovian overprint within our working area. While the intrusion of the Bergell pluton and segregating 

migmatitic melts (Berger et al. 1996, 2007; Burri et al. 2005) may additionally contribute to the heat 

budget in case of the Southern Steep belt, these effects can probably be ignored in case of our working 

area at the northern rim of the Lepontine dome.

Exhumation of hot eclogitic slices, combined with radioactive heat production by accreted conti-

nental crust, was proposed as a model for Barrow-type overprint within the Southern Steep Belt (Tecton-

ic Accretion Channel model, e.g. Engi et al. 2001, Roselle et al. 2002). Rising high-temperature eclog-

ites as a potential advective heat source are indeed available outside the working area, i.e. in form of the 

eclogite facies Adula nappe complex. Moreover, in the Western Alps, characterised by the occurrence of 

large volumes of high-pressure and ultra-high-pressure units, such as the Gran Paradiso and Dora-Maira 
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Internal Massifs, no Barrowian thermal overprint is observed (Oberhänsli et al. 2004). It seems that the 

rising of eclogites is not efficient enough to explain Barrovian overprint in our working area, since such 

eclogites are restricted to more southerly areas within the Lepontine dome, and also in view of the large 

temporal hiatus between high-pressure event and Barrovian overprint.

The strongest argument against advective 

heat transport by exhumation of eclogitic materi-

al in the northern Lepontine dome and the Tauern 

window is that the distribution of the HP/LT meta-

morphic units in the Alps is completely different 

from that of the areas characterised by a Barrovian 

overprint (Bousquet et al. 2008). The latter are re-

stricted to dome-shaped areas, such as the Lepon-

tine dome and the Tauern window (Bousquet et al. 

2008). Both the Lepontine dome and the Tauern 

window are characterised by massive accretion 

of granitoid basement units derived from the dis-

tal European margin (Sub-Penninic nappe stack; 

Milnes 1974; Schmid et al. 2004). Hence, Barro-

vian overprint is spatially coupled with exposures 

of large nappe-stacks of continental material, 

characterised by high radioactive heat production. 

However, one might argue that, since both these 

domes represent structural highs, similar Barro-

vian-metamorphism would be expected at depth 

outside these domes. A simple consideration of 

the volume available between the earth’s surface 

and the Moho, which is at approximately con-

stant depth along strike (Waldhauser et al. 1998), 

excludes along-strike doming of the entire crust. 

Hence, this doming is related to the localised ac-

cretion of large volumes of upper European base-

ment, as is documented by the stacking of the Sub-

Penninic basement nappes; in other words, doming 

is the direct isostatic response of such localised 

accretion of European upper crust (see Bousquet 

et al. 2008 for a more detailed discussion). 

The effect of radioactive heat production is 

only relevant if such material is accreted at certain 

depths (locations with primary lower radioactive 

heat productions, see Jamieson et al. 1998). The most likely way to add such heat sources is the combi-

nation of subduction and subsequent thickening (e.g. Jamieson et al. 1998; Engi et al. 2001; Roselle et 

al. 2002; Goffé et al. 2003). Our field observations fulfil these prerequisites since subduction was fol-

lowed by late-stage heating. Hence, we propose that the thermal regime during Barrovian overprint is 
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Fig. 2.15: Very schematic sketches, illustrating the evolu-
tion of isotherms in an orogenic wedge (inspired by Goffé et 
al. 2003) such as the Alps during three geodynamic stages of 
the orogen. Two strongly differing thermal regimes are dis-
tinguished: a low temperature (a & b) and a high tempera-
ture regime (c). The black dot represents the location of the 
meta-sediments of the study area. (a) Typical pattern of iso-
therms during the subduction stage. The wedge is dominated 
by accretion of large amounts of sediments. The deeper parts 
of the wedge are characterised by pressure-dominated met-
amorphism under blueschist facies conditions. (b) Isother-
mal or cooling decompression during nappe-stacking, bring-
ing HP onto LP units; the isotherms remain down-bent. (c) 
Due to massive accretion of continental crustal material af-
ter collision, the rock composition within the wedge changes 
dramatically: Large amounts of upper-crustal European gran-
itoid rocks were accumulated within the wedge (Sub-Pennin-
ic nappe stack). This accumulation of heat-producing crus-
tal material is responsible for increasing temperatures by the 
up-bending of isotherms inducing the late-stage amphibolite-
facies Barrovian overprint observed in the working area.
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determined by the thermal structure during the final stages of subduction and the additional heat release 

from radioactive decay of accreted material. However, these considerations do not quantitatively ex-

plain the observed distribution of temperatures and additional model calculations to those of Bousquet 

et al. (1997), Roselle et al. (2002) and Goffé et al. (2003) are necessary.

Nevertheless the field data can be discussed within the frame of the thermal evolution of the Al-

pine orogenic wedge (see Fig. 2.15). The low-temperature regime is associated with an early subduction 

and sediment accretion stage and led to the formation of mineral assemblages that are typical for sub-

duction processes and related down-folding of the isotherms (Fig. 2.15a). During ongoing subduction, 

deeper parts of the orogenic wedge were thrust onto lower pressure units, a process that is accompanied 

with nearly isothermal or cooling decompression (Fig. 2.15b). The high-temperature regime (Fig. 2.15c) 

occurs after the accretion of additional continental middle crust that led to the formation of the Sub-

Penninic nappe-stack. This temperature regime leads to the up-doming of isotherms, which cut through 

nearly all the structural units (Fig. 2.12). Therefore, we infer that the observable crosscutting isotherms 

are most likely related to a late stage of purely conductive heat transfer. Note that these rising isotherms, 

in the absence of mass transport, elegantly explain the Barrow-type amphibolite facies overprint of HP/

LT units that already experienced substantial decompression before, as is the case in our study area.

2.6. Conclusions
We provided evidence for a two-stage metamorphic evolution of meta-sedimentary units derived 

from the Valaisan Ocean (Grava nappe) and the distal European margin (Peidener Schuppenzone) in the 

north-eastern part of the Lepontine dome. A first HP/LT metamorphic event under blueschist facies con-

ditions (350-400 °C and 1.2-1.4 GPa) was associated with subduction and sediment-accretion. It was 

immediately followed by “cold” isothermal or cooling decompression during nappe stacking. Conti-

nent-collision-related classical Barrow-type amphibolite facies overprint (500-570 °C and 0.5-0.8 GPa) 

represents a separate heating pulse that post-dates the D3 nappe-refolding event. It was induced by post-

collisional accretion of continental crust, and it largely occurred under static conditions, partly during 

the initial stages of the D4 back-folding event that led to the formation of the Northern Steep Belt of the 

Penninic nappe pile. The two metamorphic events are separated by a time gap within our working area, 

estimated to be in the order of 20 Ma. 

Amongst the various possible heat sources of Barrovian metamorphism we regard radiogenic heat 

production by accretion of continental crust during the collisional and post-collisional stages of Alpine 

orogeny, associated with rising isotherms, to be mainly responsible for this separate late-stage heating 

event at the north-eastern rim of the Lepontine dome. We propose that the Lepontine and Tauern thermal 

and structural domes both largely resulted from the local accretion of massive volumes of Sub-Penninic 

basement nappes derived from the distal European margin. This well explains the substantial Barrow-

type thermal gradient observed at the north-eastern rim of the Lepontine dome, cutting across former 

nappe contacts almost perpendicular to strike. We emphasise, however, that in the southern parts of the 

Lepontine dome (Southern Steep Belt) other heat sources such as heat advection by rising eclogitic bod-

ies and melts are probably also very important (e.g. Frey & Ferreiro Mählmann 1999; Nagel et al. 2002a; 

Keller et al. 2005a; Berger et al. 2007).

The new data from the north-eastern rim of the Lepontine dome provide strong evidence for the 

former existence of a contiguous HP/LT belt, representing a second northern suture zone associated with 

the closure of the Valais Ocean. Moreover, relative timing constraints indicate that both HP/LT meta-
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morphism and Barrow-type overprint were diachronous at the scale of the Alpine orogen; hence all indi-

cators of metamorphic zonation such as index mineral zone boundaries must be strongly diachronous.
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Chapter 3

3-D assessment of peak-metamorphic conditions by Raman 

spectroscopy of carbonaceous material: an example from the 

margin of the Lepontine dome (Swiss Central Alps)

This chapter is under review as: Wiederkehr, M., Bousquet, R., Ziemann, M.A., Berger, A. & Schmid, S.M. 3-

D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: an example 

from the margin of the Lepontine dome (Swiss Central Alps). Submitted to Contributions to Mineralogy and 

Petrology.

Abstract
This study monitors the regional changes in the crystallinity of carbonaceous matter (CM) apply-

ing Raman spectroscopy to a total of 214 metasediment samples (largely so-called “Bündnerschiefer) 

collected within the north-eastern rim of the Lepontine dome and easterly adjacent areas of the Swiss 

Central Alps ranging from blueschist to amphibolite facies conditions. The three-dimensional mapping 

of isotemperature contours in map and profile view shows that the isotemperature contours associated 

with the collision-related late-stage Barrow-type Lepontine event cut across nappe contacts and post-

nappe stacking mega-folds, both along and across strike within the north-eastern rim of the Lepontine 

dome. Further to the NE the isotemperature contours reflect temperatures reached during an earlier sub-

duction-related blueschist facies event and/or subsequent near-isothermal decompression and are folded 

around large-scale post-nappe stacking folds. A substantial “temperature jump” across the tectonic con-

tact between frontal Adula nappe complex and surrounding metasediments indicates that, in contrast to 

postulates raised by earlier studies, equilibration of temperatures during the late-stage Lepontine event 

is incomplete in this part of the investigated area.
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3.1. Introduction
The metamorphic structure of the Alps is the result of long lasting plate convergence and final 

collision between the European and Adriatic continental plates in Cretaceous to Cenozoic times (e.g. 

Trümpy 1960; Frisch 1979; Tricart 1984; Schmid et al. 1996). The geodynamic evolution and result-

ing metamorphic zonation related to Cenozoic orogeny, which followed an earlier Cretaceous cycle 

(Froitzheim et al. 1994; Schmid et al. 2008) not addressed by this study, can be subdivided into two 

distinct stages: (1) subduction-related pressure-dominated metamorphism and deformation of oceanic 

lithosphere formed during the opening of the Alpine Tethys as well as small parts of the immediately 

adjacent European lithosphere, and, (2) temperature-dominated Barrow-type metamorphism related to 

collision between Europe and Adria, involving further accretion of massive volumes of crustal material 

(e.g. Lepontine dome and Tauern window; Bousquet et al. 1997; Goffé et al. 2003; Schmid et al. 2004; 

Bousquet et al. 2008) to the upper plate formed by the Austroalpine nappes and previously accreted 

high-pressure units.

Several pioneering studies on the spatial distribution of index minerals as well as on different 

metamorphic facies types resulted in a well established knowledge of the zoning of Alpine metamor-

phism, particularly within the Lepontine dome of the Central Alps (e.g. Wenk 1962, 1970; Niggli & 

Niggli 1965; Trommsdorff 1966; Frey 1969, 1978; Niggli 1970; Frey et al. 1980, 1999; Oberhänsli et 

al. 2004). However, the metamorphic zoning related to pressure-dominated metamorphism needs to be 

discriminated from that related to Barrovian overprint in the Alps: While the pressure-dominated units 

(blueschists and eclogites) form a belt striking orogen-parallel, remnants of the temperature-dominated 

event are localized in the Lepontine dome and the Tauern window (e.g. Oberhänsli et al. 2004; Bousquet 

et al. 2008). From a geodynamic point of view only the Central Alps (Lepontine dome) and the Tauern 

window in the Eastern Alps reached the mature stage of a colliding orogenic belt characterized by per-

vasive Barrovian overprint whereas the Western Alps never reached this mature stage and hence can be 

interpreted as a frozen-in subduction zone (Bousquet 2008).

This study addresses a key area for the reconstruction of the Alpine geodynamic evolution at the 

north-eastern margin of the Lepontine dome and easterly adjacent areas where pressure- and tempera-

ture-dominated metamorphic domains are found to be in close contact (Bousquet et al. 2002; Wieder-

kehr et al. 2008). The studied metasediments have a great potential to record the metamorphic evolu-

tion and can therefore be used for the geodynamic reconstruction of the Alpine orogenic belt (see also 

Wiederkehr et al. 2008). Moreover, these metasediments cover large areas and therefore enable observ-

ing and correlating the structural and metamorphic evolution continuously and over great distances. This 

is in contrast to work on blueschist- and eclogite-facies rocks that mainly investigates mafic systems 

(e.g. Evans 1990; Frey et al. 1991; Abbott 1992). Mafic rocks often only occur within dismembered and 

isolated bodies and hence do not allow for continuous mapping of metamorphic gradients.

Despite of the remarkable progress concerning the metamorphic evolution of low-grade (HP/LT 

and LP/LT) metasediments (see review given by Bousquet et al. 2008), accurate characterization of 

metamorphic gradients and P-T paths still remains problematic, mostly due to the absence of unambigu-

ous mineral assemblages and to large uncertainties concerning thermodynamic data. Therefore, classical 

petrology reaches its limits under low-grade conditions and additional tools are needed for a precise de-

termination of metamorphic conditions that form the basis for reconstructing the geodynamic evolution 

of the Alpine metasedimentary units. A potential tool amongst others is represented by investigating the 

evolution of carbonaceous material.
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This study aims at demonstrating the great potential of using Raman spectroscopy of carbona-

ceous material for the investigation of particularly low-grade metamorphic metasediments. This method 

is, when associated with a detailed petrological and structural study, very powerful for the determina-

tion of maximum temperatures reached during the metamorphic evolution. Provided that the sampling 

uniformly and densely covers a large area this method also reveals three-dimensional information re-

garding temperature gradients. Carbonaceous material (CM) is ubiquitous in metasedimentary rocks in 

the area of investigation. The continuous transformation of the crystalline structure of CM from amor-

phous organic matter to fully ordered graphite (generally called graphitization process; e.g. Teichmüller 

1987), on which the method is based, is mainly temperature dependent. Hence, the crystallinity of CM 

is expected to increase systematically with increasing temperatures and has recently been calibrated as 

a geothermometer by Beyssac et al. (2002a) and Rahl et al. (2005). It is widely accepted that graphitiza-

tion is a thermal irreversible process, which is supported by the observation that, in contrast to metamor-

phic mineral assemblages, the degree of crystallinity of CM is not affected by retrogression (Beyssac et 

al. 2002a). Hence, this geothermometer always and reliably records the peak temperature reached by a 

rock specimen along its P-T loop (e.g. Beyssac et al. 2004; Bollinger et al. 2004; Rantitsch et al. 2004; 

Negro et al. 2006; Beyssac et al. 2007).

This study presents for the first time a systematic and comprehensive investigation of the evolu-

tion of CM using Raman spectroscopy in a large part of the Central Alps located near the north-east-

ern rim of the Lepontine dome and characterized by high topographic gradients. The peak temperature 

distribution maps and profiles cover a large volume of metasedimentary units (generally referred to as 

“Bündnerschiefer”) deposited onto basement belonging to the European continental margin and the 

adjacent Valaisan oceanic domain (Steinmann 1994a; Wiederkehr et al. 2008). The dataset comprises 

a total of 214 samples (Figs. 3.1 & 3.2, Tab. 3.1) and allows for high resolution mapping of maximum 

metamorphic temperatures in three dimensions. Two different calibrations, namely that of Beyssac et 

al. (2002a) and Rahl et al. (2005), were used, and they will be compared with each other. The peak tem-

perature distribution will be discussed in terms of the P-T-paths associated with the high pressure and 

Barrow-type metamorphism, respectively. 

3.2. Geological setting and sampling strategy
The analyzed metasediments of Mesozoic-age are located within the north-eastern rim of the Lep-

ontine dome and in easterly adjacent areas (inset of Fig. 3.1), i.e. in an area that is ideal for studying the 

temperature gradients in a transition zone from subduction- to collision-related metamorphism. The area 

of investigation extends from the Garvera-Lukmanier-Pizzo Molare area in the W to the Prättigau half-

window in the E and also includes the N-S oriented Misox Zone located between the Adula and Tambo 

nappes (Figs. 3.1 & 3.2). The same metasedimentary units can be observed continuously along strike 

from blueschist facies conditions in the E to amphibolite facies Barrovian overprint in the W (Fig. 3.1; 

Wiederkehr et al. 2008).

3.2.1. Tectono-metamorphic background
Pre-Alpine basement nappes dominate in the W and at deeper structural levels. The latter are 

formed by the so-called Sub-Penninic nappes (Trümpy 1960; Milnes 1974; Froitzheim et al. 1996), 

consisting of basement-dominated continental material scraped off the former European margin (e.g. 

Schmid et al. 2004) and accreted to the higher tectonic units during the latest stages of Alpine plate con-
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Fig. 3.1: Geological map of the investigated area indicating the main occurrences of minerals indicative for HP/LT metamor-
phism and Barrovian overprint, as well as the main geographical names mentioned in the text and giving the locations of speci-
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vergence. These nappes include, from bottom to top, the Gotthard, Lucomagno-Leventina, Simano and 

Adula nappes. These nappes form the bulk of the Lepontine structural dome that exposes the deepest 

tectonic units of the Alps. These basement nappes are overlain by thin slivers of Mesozoic metasedi-

ments, which originally were also part of the European margin (Europe-derived metasedimentary units 

of Figs. 3.1 & 3.2), often complexly folded and wrapped around the frontal parts of the Sub-Penninic 

basement nappes (e.g. Thakur 1973; Milnes 1974; Probst 1980). 

The Penninic Basal Thrust separates the Europe-derived Sub-Penninic basement and cover units 

from the Lower Penninic cover nappes and thrust slices that originated from the Valais Ocean (Wieder-

kehr et al. 2008). These almost exclusively consist of Mesozoic metasediments referred to as Bündner-

schiefer (e.g. Probst 1980; Steinmann 1994a; Berger et al. 2005; Figs. 3.1 & 3.2) and constitute a nappe 

stack occupying a structurally higher position that, due to the along-strike axial plunge, is found in the 

eastern parts of the studied area.

The north-eastern rim of the Lepontine dome is the locus of several pioneering studies address-

ing fundamental principles related to the evolution of prograde Barrovian metamorphism (Chadwick 

1968; Frey 1969, 1978; Niggli 1970; Wenk 1970; Fox 1975; Livi et al. 2002). The metamorphic condi-

tions continuously increase from chloritoid-margarite bearing micaschists that are part of the greenschist 

facies area in the Urseren-Garvera Zone (Frey 1978; Livi et al. 2002) to staurolite-kyanite-garnet-biotite 

bearing metasediments indicating amphibolite facies conditions around the Lukmanier area and Pizzo 

Molare (Fig. 3.1; Frey 1969; Chadwick 1968; Thakur 1971). Lower/middle amphibolite facies meta-

morphic conditions (0.5-0.8 GPa and 500-550 °C) have been estimated for Barrow-type metamorphism 

in the north-eastern Lepontine dome (Chadwick 1968; Frey 1969; Engi et al. 1995; Todd & Engi 1997; 

Frey & Ferreiro Mählmann 1999). A similar progressive increase of metamorphic conditions is also 

found in the Misox Zone further to the E (Thompson 1976; Teutsch 1982; Fig. 3.1).

To the E low-grade metasediments predominate, but the metamorphic record is ill constrained due 

to the scarcity of unambiguous mineral assemblages that generally only indicate “greenschist facies” 

conditions. However, the recognition of Fe-Mg carpholite in the Valaisan-derived metasediments E of 

the Lepontine dome indicates that blueschist facies conditions around 1.2-1.4 GPa and 350-400 °C were 

established before late-stage greenschist-facies overprint (Fig. 3.1; Goffé & Oberhänsli 1992; Ober-

hänsli et al. 1995; Bousquet et al. 1998). These findings document the existence of a northern HP/LT 

metamorphic belt, located between Briançonnais micro-continent and distal European margin (Goffé & 

Bousquet 1997; Bousquet et al. 2002; Bousquet et al. 2008). The Valaisan-derived metamorphic belt is 

separated from the well-documented southern HP-belt affecting Piemont-Liguria-derived units by the 

Briançonnais-derived basement nappes, which partly lack such high-pressure overprint (Frey & Ferreiro 

Mählman 1999; Engi et al. 2004; Bousquet et al. 2008).

The subduction-related blueschist facies overprint found in the E, followed by greenschist facies 

retrogression, pre-dates a completely separate metamorphic event, namely collision-related Barrow-

type amphibolite facies metamorphism only developed in the W (see Wiederkehr et al. 2008). Both 

events were diachroneous at the scale of the Alpine orogen and hence all indicators of metamorphic 

zoning such as peak-metamorphic temperature inferred by the present study must be diachroneous as 

well (Brouwer et al. 2005; Berger & Bousquet 2008; Janots et al. 2009). HP/LT metamorphism not only 

affected the metasediments of the Valaisan domain but also parts of the metasedimentary units derived 

from the European margin (i.e. Peidener slices and Piz Terri-Lunschania unit; Figs 3.1 & 3.2) and is 
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clearly separated by at least two deformation events from a MP/MT Barrovian overprint, as is docu-

mented by a typical bimodal P-T path (Brouwer et al. 2005; Zulbati 2008; Wiederkehr et al. 2008).

3.2.2. Sediments derived from the distal European margin (Sub-Penninic cover nappes 

and slices)
The sediments originally deposited on the former distal European margin include Urseren-Garvera 

Zone, Scopi unit and Peidener slices (together forming the so-called Gotthard Mesozoic), and addition-

ally, the Piz Terri-Lunschania unit (Figs. 3.1 & 3.2; see Wiederkehr et al. 2008 for further details). In 

general, these sedimentary slices are made up of a Triassic sequence of quartzites, dolomitic marbles, 

evaporites, metapelites and metamarls followed by a Lower to Middle Jurassic sequence consisting of 

shales, sandstones, limestones, carbonaceous metapelites and calcschists, the latter often resembling the 

so-called Bündnerschiefer of the Penninic (Valaisan-derived) units (Baumer et al. 1961; Probst 1980; 

Etter 1987; Berger et al. 2005). Jurassic-age black shales, marls and calcschists were preferentially se-

lected for sampling due to their high content in CM.

We also sampled Mesozoic metasediments found inside the northern basement-dominated Adula 

nappe complex (so-called “internal Mesozoic”; Löw 1987; sampling points depicted in Figure 3.2 locat-

ed within the Adula nappe complex). In general these sediments consist of Triassic quartzites, dolomitic 

marbles and evaporites that were sliced and imbricated with the Adula crystalline basement. Kyanite-

chloritoid-garnet-zoisite/clinozoisite bearing metamarls and calcschists of probably Lower Jurassic age 

are unambiguously associated with these Triassic sediments in some rare outcrops (Fig. 3.1; Jenny et al. 

1923; Van der Plaas et al. 1958; Löw 1987; Thüring 1990; Wyss & Isler 2007). Due to the strong litho-

logical affinities to the metasediments found in the Scopi unit, we also attribute these occurrences to 

have been derived from the distal European margin.

3.2.3. Sediments derived from the Valaisan Ocean (Lower-Penninic cover nappes and 

slices, Valaisan Bündnerschiefer)
Sediments derived from the predominantly oceanic Valaisan realm form voluminous and rather 

monotonous sequences, predominantly consisting of calcschists (Bündnerschiefer) thrust along the Pen-

ninic Basal Thrust onto the sediments of the former European margin. These Valaisan Bündnerschiefer, 

flysch units, marbles and ophiolitic occurrences are subdivided into a number of slices. The largest are 

the Grava nappe (including the Prättigau flysch) and the Tomül nappe (Figs. 3.1 & 3.2), consisting of 

Cretaceous- to Eocene-age calcschists, limestones, shales, marls and sandy limestones (Nänny 1948; 

Ziegler 1956; Steinmann 1994a). The existence of mafic and ultramafic rocks (Nabholz 1945) indicates 

that at least parts of the Valaisan Bündnerschiefer were deposited on oceanic crust (Steinmann 1994a; 

Steinmann & Stille 1999). Some samples analyzed originate from the Misox Zone, a narrow zone of 

Mesozoic metasediments that also includes ophiolitic slices, structurally located between the Adula 

nappe complex and the overlaying Tambo basement nappe (Gansser 1937; Strohbach 1965; Fig. 3.1) 

and representing the root zone of the Valaisan domain (Probst 1980; Steinmann 1994a).

3.2.4. Sampling strategy
The most densely covered area is that between Lukmanier and Pizzo Molare in the W to Safiental 

in the E, covered by a complementary study presented in Wiederkehr et al. (2008). Sampling is particu-

larly dense between Olivone and Vrin (Fig. 3.2), where the lateral temperature gradient is pronounced 
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Fig. 3.2: Detailed geological map of the south-western part of the study area (see outlines of the map given in Fig. 3.1) show-
ing the locations of specimen numbers 1-184; refer to Fig. 3.1 regarding the locations of all other samples and to Table 3.1 for 
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as indicated by the growth of new porphyroblasts related to Barrovian overprint, such as zoisite/clino-

zoisite, plagioclase, biotite and garnet, over an amazingly short distance along strike.

In order to include also additional samples taken at some further distance E and N from the closer 

area of investigation of Wiederkehr et al. (2008), and in order to increase the sample density, the data-set 

has been completed by reference samples used by previous studies. X-ray diffraction, combustion analy-

sis, thermal analysis and vitrinite reflectance data (Petrova et al. 2002), as well as data from transmission 

electron microscopy (Ferreiro Mählmann et al. 2002), were collected along a profile that stretches from 

that part of the Misox Zone where amphibolite facies conditions prevail (southernmost sample points 

in Fig. 3.1) all the way to in the Prättigau half-window that was only affected by low-grade metamor-

phism (in the NE corner of Fig. 3.1). The samples previously used by these studies were included for the 

present study in order to spatially extend the data set, but also in order to compare these previous results 

with those of our own investigation. Furthermore, additional samples were taken from the collection of 

M. Frey (Basel University), samples that were subject of earlier investigations (Hoefs & Frey 1976; Frey 

1978; Frey et al. 1982; Teutsch 1982; Thoenen 1989). These also include the Urseren-Garvera Zone 

(samples 1-4 in Fig. 3.2) and increase the sample density in the southerly adjacent Lukmanier area and 

in the Misox Zone.

3.3. RSCM method
The continuous transformation of the crystalline structure of CM from amorphous organic mat-

ter to fully ordered graphite (generally called graphitization process; e.g. Teichmüller 1987) is mainly 

temperature dependent, and hence the crystallinity of CM is expected to increase systematically with 

increasing temperatures and can therefore be used to estimate metamorphic conditions of a given rock 

sample (e.g. Quinn & Glass 1958; French 1964; Landis 1971; Grew 1974; Itaya 1981; Buseck & Bo-

Jun 1985).

We monitor the regional changes in the crystallinity of CM by using Raman spectroscopy. The ad-

vantages of this method over others, such as X-ray diffraction, high-resolution transmission electron mi-

croscopy, isotope geochemistry or vitrinite reflectance measurements are (1) that Raman spectra show 

significant changes with increasing metamorphic grade (e.g. Wopenka & Pasteris 1993; Beyssac et al. 

2002b), (2) that the method can be performed in a non-destructive way by in situ analysis and therefore 

permits the characterization of individual grains while preserving their petrological and textural rela-

tions, and (3) that the sample heterogeneity can be quantified thanks to a high spatial resolution and 

short spectrum-acquisition time, which allows for recording numerous spectra in a sample. Hence, Ra-

man spectroscopy provides a powerful and very sensitive geothermometer (Pasteris & Wopenka 1991; 

Yui et al. 1996), especially since the relationships between the degree of crystallinity, as is expressed by 

the shape of the Raman spectra, and metamorphic conditions have been calibrated as a geothermometer 

over a wide temperature interval from 330 to 650 °C (Beyssac et al. 2002a). Recently, a new calibration 

extended the range of the geothermometer to temperatures as low as 100 °C and up to 700 °C (Rahl et 

al. 2005).

Several studies showed that Raman spectroscopy of carbonaceous material (RSCM method) is the 

best-suited method for in situ determinations of the crystallinity of CM in thin sections (e.g. Pasteris & 

Wopenka 1991; Wopenka & Pasteris 1993; Yui et al. 1996; Beyssac et al. 2002b, 2003a). The obtained 

spectra, empirically calibrated against independently determined temperatures (Beyssac et al. 2002a; 

Rahl et al. 2005) by now provide a reliable geothermometer. It is important to note that the thermally 
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Beyssac et al.

(2002)

Rahl et al.

(2005)
# Sample

name X Y

Elev.
(m)

Tect.
Unit

Mineral assemblage
#

sp. Mean SD Mean SD T (°C) CI T (°C) CI

1 MF 856(1) 700'800 167'700 2220 UG Ctd-Mrg-WM-Chl-Qtz 25 0.60 0.08 0.43 0.03 452 5 446 4
2 MF 898(1) 704'500 169'000 1580 UG Ctd-Mrg-WM-Chl-Qtz 25 0.74 0.11 0.47 0.03 432 6 429 4
3 MF 120(2) 709'400 170'500 1420 UG Ctd-Mrg-WM-Chl-Qtz 25 1.11 0.16 0.56 0.03 392 5 396 4
4 MF 922(1) 711'600 172'400 2220 UG Ctd-Mrg-WM-Chl-Qtz 25 1.76 0.13 0.63 0.01 359 2 376 4
5 MF 153(2) 704'000 159'800 1930 S Bt-Mrg-WM-Qtz 25 0.19 0.04 0.24 0.04 534 8 539 14
6 LUK 066 703'915 159'784 1930 S Grt-Bt-Mrg-WM-Chl-Qtz-Cc/Do 15 0.20 0.02 0.26 0.02 525 4 521 5
7 MF 951(3) 704'513 159'622 1960 S Grt-Bt-Zo/Czo-WM-Qtz-Cc/Do 25 0.19 0.03 0.25 0.03 532 5 533 9
8 LUK 069 704'453 159'166 1970 S Plag-WM-Qtz-Cc/Do 15 0.19 0.01 0.25 0.01 532 3 533 6
9 MF 944(2) 704'500 158'900 2000 S Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 30 0.20 0.03 0.25 0.03 528 5 527 9

10 BOV 0612 706'656 158'772 3190 S Ctd-WM-Chl-Qtz 45 0.29 0.07 0.31 0.04 502 6 491 9
11 BOV 064 707'305 157'857 2910 S Plag-WM-Chl-Qtz-Cc/Do 15 0.21 0.03 0.26 0.03 524 7 522 11
12 MF 184(3) 706'577 157'426 2520 S Grt-Bt-Zo/Czo-WM-Qtz 30 0.18 0.03 0.24 0.03 535 5 538 9
13 BOV 063 709'067 158'045 2580 S Plag-WM-Qtz-Cc/Do 25 0.26 0.04 0.30 0.03 508 6 496 10
14 BOV 067 710'904 159'018 2350 S Ctd-WM-Chl-Qtz 25 0.33 0.06 0.34 0.03 491 6 475 9
15 BOV 068 711'421 159'354 2380 S Ctd-WM-Chl-Qtz 25 0.32 0.06 0.33 0.03 494 6 478 9
16 BOV 0611 711'277 157'680 1890 S Grt-Bt-Plag-Zo/Czo-WM-Chl-Qtz 15 0.20 0.03 0.26 0.02 524 5 519 9
17 DÖT 063 708'208 156'187 2530 PS Grt-Bt-Zo/Czo-WM-Chl-Qtz 21 0.17 0.02 0.23 0.02 538 4 542 7
18 DÖT 061 712'281 156'242 2100 PS Grt-Bt-Ctd-Mrg-WM-Qtz 15 0.17 0.03 0.22 0.02 542 6 551 9
19 DÖT 052 713'556 155'867 2099 G Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 10 0.19 0.03 0.25 0.03 529 10 528 17
20 DÖT 0510 712'890 154'745 1465 G Grt-Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 10 0.17 0.03 0.25 0.03 529 9 522 16
21 BLE 0512 715'112 155'757 1090 G Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 19 0.17 0.04 0.23 0.05 538 10 544 18
22 BLE 056 715'097 154'882 980 G Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 10 0.18 0.05 0.24 0.05 534 16 537 29
23 BLE 052 714'864 154'466 910 G Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 31 0.18 0.05 0.24 0.05 535 8 539 15
24 MF 1575(2) 705'900 154'400 1840 PS Ky-Bt-WM-Qtz 20 0.15 0.02 0.20 0.02 550 5 567 8
25 LUK 0630 707'475 154'073 1790 PS Grt-Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 36 0.14 0.03 0.20 0.04 552 5 567 10
26 MF 1581(2) 707'500 154'000 1780 PS St-Ky-Grt-Bt-Plag-WM-Chl-Qtz 25 0.14 0.04 0.20 0.05 553 8 570 16
27 LUK 0644 708'402 154'680 1820 PS St-Grt-Bt-Plag-Zo/Czo-WM-Qtz 20 0.14 0.05 0.19 0.05 557 11 579 21
28 LUK 0641 708'254 153'917 1590 PS St-Ky-Grt-Bt-Plag-Zo/Czo-WM-Chl-Qtz 10 0.14 0.03 0.20 0.04 553 13 569 23
29 MF 1606(2) 709'100 153'500 1470 PS St-Grt-Bt-Plag-Zo/Czo-WM-Chl-Qtz 25 0.13 0.03 0.18 0.04 561 8 585 14
30 LUK 0637 709'495 153'619 1520 PS St-Grt-Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 10 0.16 0.03 0.22 0.03 544 10 553 18
31 LUK 0635 710'870 153'442 1430 PS Grt-Bt-Plag-Zo/Czo-WM-Qtz 20 0.14 0.03 0.19 0.04 555 8 574 15
32 LUK 0646 712'242 153'582 1340 PS Grt-Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 20 0.15 0.02 0.20 0.02 550 5 565 9
33 GRU 061 716'288 150'576 770 G Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 21 0.14 0.03 0.19 0.03 556 6 577 11
34 GRU 062 716'156 149'270 760 G Bt-Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 10 0.12 0.03 0.18 0.03 559 11 579 19
35 GRU 057 715'621 148'504 700 G Bt-Plag-WM-Qtz-Cc/Do 10 0.13 0.03 0.19 0.04 558 11 578 21
36 GRU 053 714'990 149'545 630 PS St-Ky-Grt-Bt-Plag-WM-Chl-Qtz 22 0.12 0.04 0.17 0.06 564 11 589 20
37 GRU 058 715'734 149'305 750 G Bt-Plag-WM-Qtz-Cc/Do 10 0.13 0.02 0.18 0.02 560 6 582 11
38 MOL 051 710'270 149'696 2270 PS St-Ky-Grt-Bt-Plag-WM-Qtz 10 0.12 0.02 0.19 0.03 557 8 574 15
39 MOL 055 709'715 149'780 2400 G Bt-WM-Qtz-Cc/Do 10 0.12 0.02 0.17 0.02 563 7 587 13
40 MOL 062 709'617 150'119 2450 PS St-Grt-Bt-Plag-Zo/Czo-WM-Qtz 10 0.12 0.02 0.18 0.03 560 8 582 15
41 MOL 058 709'468 150'172 2550 G Bt-WM-Qtz-Cc/Do 10 0.13 0.02 0.19 0.03 557 9 576 16
42 MOL 061 709'541 149'308 2310 PS St-Ky-Grt-Bt-Plag-WM-Qtz 10 0.12 0.02 0.17 0.02 563 6 588 12
43 CAR 0516 716'440 155'418 1570 G Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 15 0.23 0.06 0.28 0.05 518 12 512 20
44 CAR 0515 716'834 156'093 1630 G Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 16 0.14 0.07 0.19 0.08 558 19 580 34

45 SOS 051 716'092 156'428 2160 G Bt-Plag-Ttn-Zo/Czo-WM-Qtz 15 0.25 0.05 0.30 0.03 506 7 490 11
46 BLE 0410 715'029 156'841 1190 PS Grt-Bt-Plag-Zo/Czo-Mrg-WM-Qtz-Cc/Do 14 0.20 0.04 0.26 0.04 526 10 522 16
47 BLE 061 715'186 157'232 1210 PS Grt-Bt-WM-Chl-Qtz 22 0.21 0.03 0.27 0.03 522 6 516 10
48 BLE 0413 715'346 157'292 1230 PS Bt-Plag-Ttn-Zo/Czo-WM-Qtz-Cc/Do 13 0.22 0.05 0.27 0.04 519 11 512 19
49 LUZ 0442 716'017 157'831 1390 G Bt-Plag-Zo/Czo-WM-Qtz-Cc/Do 15 0.25 0.09 0.29 0.07 513 18 506 29
50 CAR 0517 716'596 157'598 1650 G Plag-WM-Qtz-Cc/Do 16 0.26 0.07 0.29 0.05 511 12 503 18
51 CAR 055 717'084 157'365 2030 G Plag-Zo/Czo-WM-Chl-Qtz 16 0.20 0.06 0.25 0.04 532 9 536 15

52 CAR 052 717'226 156'393 1680 TL WM-Qtz-Cc/Do 16 0.27 0.06 0.30 0.05 507 11 494 18
53 CAR 0510 717'901 156'992 2140 TL Ctd-WM-Chl-Qtz-Cc/Do 17 0.31 0.11 0.33 0.07 496 15 482 23
54 CAR 059 717'906 157'007 2160 TL WM-Chl-Qtz-Cc/Do 10 0.38 0.06 0.38 0.03 474 9 448 13
55 CAR 0519 716'835 157'783 1580 G Plag-WM-Chl-Qtz-Cc/Do 10 0.26 0.05 0.30 0.04 508 11 496 17
56 LUZ 0456 716'469 158'124 1450 G Plag-Ttn-Zo/Czo-WM-Chl-Qtz-Cc/Do 17 0.24 0.07 0.29 0.06 514 14 505 22
57 LUZ 055 716'865 158'363 1780 G Plag-Ttn-Zo/Czo-WM-Chl-Qtz 10 0.35 0.05 0.36 0.04 480 11 451 15
58 CAV 054 717'107 158'540 1770 G Plag-Zo/Czo-WM-Chl-Qtz-Cc/Do 16 0.35 0.08 0.34 0.04 490 10 475 14
59 LUZ 051 717'825 159'166 1850 G WM-Chl-Qtz-Cc/Do 10 0.33 0.06 0.34 0.03 489 11 468 15
60 CAV 0520 717'808 159'311 1870 G Plag-WM-Qtz-Cc/Do 15 0.35 0.07 0.36 0.04 481 10 457 15
61 CAV 0511 717'618 159'926 1820 PS WM-Qtz 16 0.35 0.06 0.35 0.04 485 9 464 13
62 CAM 062 715'474 159'346 1430 PS WM-Chl-Qtz 15 0.26 0.05 0.31 0.04 504 9 486 15
63 CAM 065 715'367 159'595 1400 S Plag-WM-Chl-Qtz-Cc/Do 25 0.31 0.05 0.33 0.04 496 7 480 10
64 CAM 066 714'841 159'482 1380 S Plag-WM-Chl-Qtz-Cc/Do 22 0.30 0.03 0.32 0.02 498 4 483 7
65 CAM 069 714'624 160'457 1470 S Ctd-WM-Chl-Qtz 18 0.36 0.05 0.37 0.03 478 6 452 10
66 GRE 051 714'727 162'889 2000 S Ctd-WM-Chl-Qtz 25 0.44 0.05 0.39 0.03 468 5 447 6
67 GRE 052 715'664 163'152 2310 S Ctd-WM-Chl-Qtz 15 0.43 0.04 0.38 0.02 474 5 460 7
68 GRE 061 715'971 163'212 2370 S Ctd-WM-Chl-Qtz 22 0.45 0.08 0.38 0.04 471 7 457 10
69 GRE 0610 715'985 162'527 2660 S Ctd-WM-Chl-Qtz 22 0.41 0.05 0.36 0.02 479 5 465 6
70 GRE 069 716'552 161'946 2790 S Ctd-WM-Chl-Qtz 22 0.43 0.05 0.38 0.03 471 5 453 7
71 GRE 068 716'779 162'403 2730 S Ctd-WM-Chl-Qtz 22 0.41 0.07 0.37 0.04 477 7 461 9
72 GRE 067 717'565 162'430 2790 S Ctd-WM-Chl-Qtz 22 0.43 0.06 0.38 0.03 473 6 457 7
73 GRE 062 718'047 163'562 2320 S Ctd-WM-Chl-Qtz 20 0.48 0.05 0.39 0.02 466 5 451 7
74 GRE 065 718'180 162'606 2590 S Ctd-WM-Chl-Qtz 15 0.48 0.08 0.40 0.03 462 7 444 10
75 LAR 0612 718'524 161'805 2050 S WM-Qtz-Cc/Do 10 0.50 0.07 0.41 0.03 460 9 443 11
76 LAR 0614 718'722 160'899 1840 PS WM-Qtz-Cc/Do 15 0.53 0.06 0.41 0.02 458 6 445 7
77 LAR 056 718'780 160'815 1870 PS WM-Chl-Qtz-Cc/Do 10 0.34 0.07 0.35 0.04 486 14 464 20
78 LAR 0615 718'783 160'426 1790 G WM-Chl-Qtz 18 0.49 0.04 0.43 0.02 448 4 412 6
79 MOT 0514 718'843 159'290 1670 TL WM-Qtz-Cc/Do 11 0.36 0.05 0.39 0.03 480 11 456 17
80 GAR 055 719'017 159'367 1680 TL Ctd-WM-Chl-Qtz 10 0.41 0.06 0.39 0.02 468 8 439 10
81 LUZ 0423 719'240 159'596 1780 TL WM-Qtz-Cc/Do 20 0.40 0.08 0.39 0.04 468 9 436 12
82 GAR 054 719'645 159'991 1850 TL WM-Chl-Qtz-Cc/Do 10 0.41 0.07 0.39 0.03 470 11 443 14
83 SCA 052 719'402 158'089 1790 TL WM-Qtz-Cc/Do 11 0.35 0.06 0.36 0.03 482 10 458 15

Table 3.1: This list of samples also includes our own samples, completed by samples from the following studies: (1) Frey 
(1978); (2) Hoefs & Frey (1976); (3) Thoenen (1989); (4) Petrova et al. (2002); (5) Frey et al. (1982). The specimens were taken 
from Valaisan- and Europe-derived metasedimentary units and analyzed by Raman spectroscopy of carbonaceous material in 
this study. The specimen numbers corresponds with those whose location is shown in map and profile view (Figs. 3.1, 3.2 & 
3.8), the coordinates are the Swiss map coordinates. Elevation is given in meters. The origin of the samples (Tectonic unit) is 
also given, whereby: UG = Urseren-Garvera Zone, S = Scopi unit, PS = Peidener slices, TL = Piz Terri-Lunschania unit, G = 
Grava nappe, T = Tomül nappe, M = Misox Zone, AV = Aul and Valser slices, PF= Prättigau flysch, AM = internal Mesozoic 
of the Adula nappe complex. Also listed are observed mineral assemblage, number of recorded Raman spectra (# sp.), R1 and 
R2 ratio (mean value and standard deviation SD), RSCM-inferred mean temperatures and uncertainties are given for the 95 % 
confidence interval (CI) for both calibrations. Temperature uncertainties were determined by dividing the standard deviation of 
the measurements by the square root of the number of measurements, multiplied by a parameter depending on the number of 
measurements as well as the chosen confidence interval. Samples highlighted by bold letters were not considered for the iso-
temperature contours (see text for discussion).
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#

sp. Mean SD Mean SD T (°C) CI T (°C) CI

84 SCA 051 720'104 158'455 2270 TL WM-Qtz-Cc/Do 10 0.30 0.05 0.32 0.03 500 9 489 12

85 SCA 071 720'417 159'022 2540 TL WM-Chl-Qtz-Cc/Do 20 0.43 0.04 0.40 0.02 465 5 437 8

86 GAR 053 720'863 159'895 2060 TL Ctd-WM-Chl-Qtz-Cc/Do 10 0.29 0.04 0.32 0.02 499 8 485 12

87 GAR 052 721'604 160'190 2210 TL Ctd-WM-Chl-Qtz-Cc/Do 12 0.44 0.11 0.40 0.05 465 14 440 17
88 VRI 0622 722'939 160'396 2940 TL Ctd-WM-Chl-Qtz-Cc/Do 23 0.72 0.09 0.46 0.03 438 5 439 4

89 GAR 056 722'366 160'378 2600 TL WM-Qtz-Cc/Do 11 0.46 0.07 0.40 0.02 461 7 435 8

90 MOT 0513 719'622 160'641 1790 G WM-Qtz-Cc/Do 16 0.50 0.13 0.40 0.06 461 14 445 16

91 MOT 0512 720'114 161'192 2090 G WM-Chl-Qtz-Cc/Do 15 0.49 0.09 0.41 0.04 460 10 440 12
92 LUZ 0425 720'598 161'470 2290 G WM-Chl-Qtz 15 0.48 0.07 0.40 0.02 461 6 440 6

93 MOT 051 719'927 161'888 2210 G WM-Chl-Qtz-Cc/Do 15 0.51 0.08 0.41 0.04 461 9 447 11

94 GRE 063 719'274 163'604 2250 S Ctd-WM-Chl-Qtz 22 0.49 0.07 0.41 0.03 460 7 441 8

95 MOT 053 720'455 163'705 2420 PS Ctd-WM-Chl-Qtz 22 0.50 0.10 0.40 0.04 464 8 452 9
96 MOT 059 720'730 163'126 2590 G WM-Chl-Qtz-Cc/Do 16 0.62 0.11 0.44 0.04 445 8 435 7

97 TER 0511 721'621 162'296 2750 TL Ab-WM-Qtz 16 0.25 0.05 0.27 0.03 521 8 525 11

98 TER 0510 721'682 162'126 2900 TL WM-Qtz-Cc/Do 20 0.56 0.13 0.42 0.04 452 9 439 10

99 TER 058 721'830 162'118 2970 TL WM-Chl-Qtz-Cc/Do 17 0.58 0.08 0.43 0.03 448 7 434 7
100 TER 057 721'991 162'147 3020 TL WM-Chl-Qtz-Cc/Do 18 0.55 0.10 0.42 0.04 454 8 442 9

101 TER 056 722'082 162'198 3076 TL WM-Qtz-Cc/Do 18 0.47 0.08 0.39 0.03 466 7 452 7

102 TER 051 722'245 162'212 3150 TL WM-Qtz-Cc/Do 16 0.62 0.07 0.44 0.02 444 6 432 7

103 VRI 0618 724'214 161'412 2480 TL WM-Qtz-Cc/Do 25 0.58 0.06 0.43 0.02 451 4 441 6
104 VRI 0616 724'498 162'815 1890 TL WM-Qtz-Cc/Do 39 0.63 0.15 0.44 0.06 446 9 439 9

105 VRI 0629 724'661 163'907 2260 TL WM-Qtz-Cc/Do 10 0.58 0.06 0.42 0.02 456 5 452 5

106 VRI 0630 723'747 164'637 2450 G WM-Chl-Qtz 18 0.63 0.08 0.43 0.03 451 6 452 5

107 VRI 0633 723'227 164'617 2430 G Ctd-WM-Chl-Qtz 22 0.59 0.12 0.43 0.04 450 9 439 10
108 VRI 061 722'919 165'841 2110 S Ctd-WM-Chl-Qtz 20 0.65 0.08 0.43 0.02 450 5 453 4

109 VRI 064 721'495 166'274 2430 S Ctd-WM-Chl-Qtz 17 0.64 0.17 0.42 0.05 454 12 458 11

110 VRI 0614 723'645 167'250 1870 S Ctd-WM-Chl-Qtz 15 0.71 0.10 0.45 0.03 442 7 447 6

111 VRI 068 724'447 166'316 1630 PS Ctd-WM-Chl-Qtz 15 0.67 0.08 0.45 0.02 442 5 437 6
112 VRI 052 726'018 164'498 1630 TL WM-Qtz-Cc/Do 15 0.77 0.08 0.48 0.02 428 5 424 4

113 VRI 0636 727'363 165'266 2060 TL WM-Qtz-Cc/Do 25 0.74 0.09 0.46 0.03 437 5 440 4

114 VRI 0637 727'363 165'266 2060 TL WM-Qtz-Cc/Do 21 0.79 0.08 0.47 0.02 430 5 434 4

115 VRI 0638 727'890 165'007 2250 G WM-Qtz-Cc/Do 18 0.58 0.07 0.40 0.02 461 5 464 6

116 VRI 0639 728'153 164'660 2520 AV WM-Chl-Qtz 21 0.76 0.06 0.47 0.01 434 3 437 4

117 VRI 0640 728'577 164'464 2670 AV Ab-WM-Chl-Qtz-Cc/Do 31 0.73 0.17 0.46 0.05 436 8 435 7

118 VRI 051 726'304 166'805 1420 G WM-Qtz-Cc/Do 20 0.85 0.13 0.49 0.04 424 8 429 9

119 VRI 075 726'579 167'357 1400 PS Ctd-WM-Chl-Qtz 25 0.72 0.10 0.46 0.02 436 4 435 3
120 VRI 073 727'048 169'497 1500 S WM-Chl-Qtz-Cc/Do 25 0.95 0.12 0.52 0.02 408 4 411 2

121 VRI 0641 728'023 169'054 1280 PS WM-Qtz-Cc/Do 22 0.80 0.19 0.47 0.04 431 8 436 6

122 VRI 0645 728'683 167'957 1570 G WM-Chl-Qtz-Cc/Do 25 0.72 0.10 0.47 0.02 432 4 424 3

123 VRI 0649 729'844 167'225 2120 TL WM-Qtz-Cc/Do 21 0.85 0.07 0.49 0.02 424 3 431 3
124 VAL 062 731'316 168'000 2420 TL WM-Chl-Qtz 21 0.86 0.08 0.49 0.02 424 4 434 3

125 VAL 061 731'491 168'208 2270 TL WM-Qtz-Cc/Do 26 0.95 0.16 0.52 0.03 410 6 412 8

126 VAL 063 731'289 168'354 2340 TL WM-Chl-Qtz 24 0.76 0.09 0.48 0.02 426 4 419 4

127 VAL 064 731'289 168'557 2340 TL WM-Chl-Qtz 18 0.74 0.07 0.46 0.02 437 4 440 4
128 VAL 066 731'805 169'620 2050 G WM-Chl-Qtz-Cc/Do 20 0.84 0.12 0.49 0.03 421 6 422 6

129 VAL 065 731'823 169'913 2050 G WM-Chl-Qtz-Cc/Do 19 0.90 0.11 0.50 0.02 418 5 425 5

130 VRI 072 729'104 170'789 1260 S Ctd-WM-Chl-Qtz 25 1.00 0.13 0.53 0.02 405 4 409 4

131 VRI 0651 730'151 172'057 1370 S Ctd-WM-Chl-Qtz 22 1.39 0.13 0.58 0.02 381 3 403 3
132 VAL 0546 733'770 171'970 1160 G WM-Chl-Qtz-Cc/Do 16 1.21 0.08 0.57 0.01 389 4 402 4

133 VAL 0719 733'311 171'359 1020 G WM-Chl-Qtz-Cc/Do 25 1.01 0.13 0.53 0.02 405 5 412 3

134 VAL 052 733'254 170'168 1050 G WM-Qtz-Cc/Do 16 0.84 0.07 0.50 0.02 421 4 422 4

135 VAL 0720 733'422 169'874 1080 G WM-Chl-Qtz-Cc/Do 27 0.88 0.13 0.51 0.03 416 6 416 5
136 VAL 057 733'765 169'471 1100 TL Ab-WM-Qtz-Cc/Do 16 0.35 0.07 0.33 0.03 496 8 492 10

137 VAL 0624 734'691 169'923 1550 TL WM-Chl-Qtz-Cc/Do 18 1.08 0.06 0.54 0.01 402 2 417 2

138 VAL 055 734'054 169'284 1100 TL WM-Chl-Qtz-Cc/Do 17 0.88 0.12 0.50 0.03 417 7 418 5

139 VAL 056 734'054 169'284 1100 TL Ab-WM-Qtz-Cc/Do 19 0.48 0.14 0.38 0.06 472 12 465 14

140 VAL 067 733'620 169'160 1100 TL WM-Chl-Qtz-Cc/Do 21 0.67 0.09 0.44 0.02 444 5 444 4

141 VAL 0716 734'183 168'768 1180 G WM-Chl-Qtz-Cc/Do 25 0.92 0.09 0.52 0.02 411 4 413 3

142 VAL 0714 732'470 167'831 2000 G WM-Chl-Qtz-Cc/Do 25 0.93 0.13 0.52 0.03 411 5 412 3

143 VAL 0711 732'486 166'320 1950 AV Ctd-WM-Chl-Qtz-Cc/Do 27 0.94 0.13 0.52 0.02 408 4 406 3
144 VAL 0710 731'370 163'971 1960 AV Ctd-WM-Chl-Qtz-Cc/Do 25 0.87 0.09 0.51 0.02 416 4 415 3

145 VAL 0715 734'484 163'945 1750 AV WM-Chl-Qtz-Cc/Do 26 0.94 0.07 0.52 0.02 410 3 414 3

146 VAL 079 734'426 161'844 1740 AM Grt-Zo/Czo-WM-Chl-Qtz-Cc/Do 20 0.24 0.06 0.29 0.04 511 8 499 12

147 VAL 078 734'383 161'757 1790 AM Grt-Ctd-Zo/Czo-WM-Chl-Qtz-Cc/Do 30 0.24 0.05 0.29 0.05 511 8 497 13

148 VAL 076 734'248 161'383 1920 AM Grt-Ctd-Zo/Czo-WM-Chl-Qtz-Cc/Do 22 0.20 0.05 0.27 0.05 522 10 513 18

149 VAL 072 730'645 159'313 2540 AM Ky-Grt-Ctd-Zo/Czo-WM-Chl-Qtz-Cc/Do 27 0.22 0.05 0.28 0.05 515 8 503 14

150 VAL 0724 734'965 158'690 2300 AV Ab-WM-Chl-Qtz-Cc/Do 25 0.71 0.09 0.47 0.03 432 5 424 5
151 VAL 0722 735'836 160'005 1970 AV Ab-WM-Chl-Qtz-Cc/Do 25 0.89 0.10 0.51 0.02 413 3 413 3

152 VAL 0618 737'462 159'815 2930 T WM-Chl-Qtz 18 1.18 0.10 0.55 0.01 397 3 418 2

153 VAL 0617 737'821 160'646 2640 T Ab-WM-Chl-Qtz 18 1.20 0.12 0.55 0.02 396 5 418 4

154 VAL 0615 737'312 160'904 2470 G WM-Chl-Qtz-Cc/Do 18 1.18 0.12 0.55 0.02 397 5 416 4
155 VAL 0614 736'748 162'002 2330 G Ab-WM-Chl-Qtz-Cc/Do 18 1.21 0.09 0.56 0.01 393 3 413 2

156 VAL 0610 736'953 166'914 2020 G WM-Chl-Qtz-Cc/Do 18 1.37 0.16 0.58 0.02 384 4 406 3

157 VAL 0611 736'582 167'233 2040 G WM-Chl-Qtz-Cc/Do 18 1.33 0.13 0.57 0.02 387 4 410 3

158 SAF 072 740'135 171'221 2460 G WM-Chl-Qtz 25 1.58 0.19 0.62 0.02 365 4 379 4
159 SAF 071 740'657 172'842 2590 G WM-Chl-Qtz 25 1.58 0.16 0.62 0.02 367 4 383 4

160 VAL 0561 737'954 172'752 1440 G WM-Chl-Qtz-Cc/Do 25 1.06 0.07 0.54 0.01 399 2 407 2

161 VAL 0574 737'710 173'714 1440 G WM-Chl-Qtz-Cc/Do 25 1.09 0.09 0.55 0.01 395 3 402 2

162 VAL 0578 736'964 174'114 1390 G WM-Qtz-Cc/Do 18 1.19 0.14 0.56 0.03 390 6 401 5
163 VAL 0580 736'871 174'310 1370 G Cp-WM-Chl-Qtz-Cc/Do 20 1.21 0.13 0.56 0.02 390 4 404 2

164 VAL 0718 734'668 175'467 820 PS Ctd-WM-Chl-Qtz 25 1.76 0.16 0.63 0.02 359 3 375 5

165 VAL 0731 735'717 177'200 860 PS Ctd-WM-Chl-Qtz 25 1.52 0.11 0.61 0.01 371 2 390 3

166 VRI 0652 735'316 177'958 1070 S Ctd-WM-Chl-Qtz 22 2.02 0.20 0.65 0.02 353 3 364 8
167 VAL 0717 735'693 179'872 740 S Ctd-WM-Chl-Qtz 25 2.04 0.13 0.66 0.01 348 2 352 5

168 VAL 0729 737'575 177'229 1320 G WM-Chl-Qtz-Cc/Do 30 1.43 0.09 0.60 0.01 376 2 396 2

169 VAL 0726 738'102 175'160 1580 G WM-Chl-Qtz-Cc/Do 25 1.58 0.12 0.61 0.01 368 2 387 3

170 VAL 0727 739'267 174'747 1770 G WM-Chl-Qtz-Cc/Do 30 1.25 0.11 0.57 0.02 386 3 400 2
171 SAF 073 741'354 174'746 2470 G WM-Chl-Qtz-Cc/Do 25 1.51 0.12 0.61 0.01 369 2 384 2

172 VAL 0619 741'880 180'573 1330 G WM-Chl-Qtz-Cc/Do 16 1.93 0.21 0.64 0.02 354 5 365 10

173 SAF 0723 741'859 183'102 820 S Ctd-WM-Chl-Qtz-Cc/Do 30 1.93 0.17 0.66 0.02 348 4 350 8

174 SAF 0715 745'396 182'715 1030 G WM-Chl-Qtz-Cc/Do 25 1.76 0.15 0.64 0.01 356 3 367 6
175 SAF 0527 746'016 178'803 1300 G Cp-WM-Chl-Qtz-Cc/Do 15 1.62 0.16 0.62 0.02 364 4 380 6

176 SAF 0713 745'462 178'127 1300 G WM-Chl-Qtz-Cc/Do 30 1.76 0.14 0.64 0.02 356 3 367 5

177 SAF 0712 744'572 175'876 1290 G WM-Chl-Qtz-Cc/Do 30 1.48 0.07 0.61 0.01 369 2 382 2

178 SAF 0517 741'595 166'949 1700 T WM-Chl-Qtz-Cc/Do 16 1.49 0.11 0.61 0.01 372 3 389 3
179 SAF 0511 741'585 166'188 1700 T Ctd-WM-Chl-Qtz-Cc/Do 15 1.52 0.19 0.61 0.02 372 6 390 6

180 SAF 054 740'977 165'568 1700 T WM-Chl-Qtz_Cc/Do 15 1.35 0.12 0.58 0.02 382 4 400 4

181 SAF 0722 741'959 163'126 1930 T WM-Chl-Qtz-Cc/Do 25 1.17 0.09 0.57 0.01 389 3 398 2

182 SAF 0711 740'451 161'298 2240 T Ctd-WM-Chl-Qtz-Cc/Do 25 1.16 0.08 0.55 0.01 396 3 413 3

183 SAF 0718 739'942 160'530 2350 T WM-Chl-Qtz 25 1.09 0.10 0.55 0.02 398 3 408 3

Table 3.1: continued.
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induced graphitization process is strictly irreversible. Therefore the structure of CM solely depends on 

maximum temperatures reached along a given P-T path and is insensitive for detecting a polymetamor-

phic evolution and/or retrograde overprint (Wopenka & Pasteris 1993; Beyssac et al. 2002a).

Since the 214 samples analyzed were collected in areas either dominated by subduction-related 

HP/LT metamorphism or by collision-related MP/MT Barrovian overprint (Figs. 3.1 & 3.2, Tab. 3.1) in 

terms of temperature, it is only the 3-D pattern of the temperatures derived by this method, combined 

with additional petrological data, which will be able to discriminate between these two events. All the 

results obtained by Raman spectroscopy were converted to peak-metamorphic temperatures by using 

both calibrations (Beyssac et al. 2002a; Rahl et al. 2005). In order to obtain comparable results we strict-

ly followed the analytical instructions given by Beyssac et al. (2002a, 2003b).

3.3.1. Sample preparation
The Raman spectra were recorded in situ on conventional polished petrographic thin sections, al-

lowing for the preservation of the textural relationship between CM and the surrounding mineral matrix. 

Additionally, the surrounding rock matrix facilitates the removal of laser-induced heat, which may af-

fect the degree of organization due the extreme sensitivity of CM to laser-induced heating during spec-

tra acquisition (Beyssac et al. 2003b). Moreover, the recorded Raman spectra are highly sensitive to 

the orientation of CM due to its strong structural anisotropy, particularly in the case of well-crystallised 

graphite (e.g. Wang et al. 1989; Wopenka & Pasteris 1993). To avoid such variations the thin sections 

were cut perpendicular to the main foliation and, whenever possible also parallel to the stretching line-

ation, in order to consequently record Raman spectra in the same orientation, i.e. perpendicular to the 

expected mean stacking axis of the CM. Thereby it is possible to set the polarization of the laser beam 

perpendicular to the mean c-axis orientation of the CM. 

3.3.2. Raman spectrum of carbonaceous material
In general, Raman spectra of CM can be decomposed into first-order (1100-1800 cm-1) and sec-

ond-order (2500-3100 cm-1) regions (Tuinstra & Koenig 1970; Nemanich & Solin 1979; Fig. 3.3). It 

Swiss map

coordinates R1 R2

Beyssac et al.

(2002)

Rahl et al.

(2005)
# Sample

name X Y

Elev.

(m)

Tect.

Unit
Mineral assemblage

#

sp. Mean SD Mean SD T (°C) CI T (°C) CI

184 SAF 075 739'980 160'207 2490 T WM-Chl-Qtz 26 1.07 0.09 0.53 0.02 404 3 419 3
185 MF 2141(4) 738'300 137'025 1200 M Grt-Bt-Plag-WM-Chl-Qtz 35 0.17 0.04 0.23 0.05 541 7 548 13

186 MF 2042(4) 737'600 140'450 900 M Grt-Plag-WM-Chl-Qtz 23 0.20 0.05 0.25 0.04 532 8 535 13

187 MF 1872(5) 736'300 143'800 1240 M Mrg-WM-Chl-Qtz-Cc/Do 20 0.39 0.11 0.36 0.06 480 12 461 18
188 MF 1895(4) 734'900 145'325 1850 M Grt-Plag-WM-Chl-Qtz 25 0.30 0.02 0.33 0.02 493 3 472 6

189 TP 32(4) 734'750 150'350 2220 M Ctd-Zo/Czo-WM-Chl-Qtz-Cc/Do 23 0.31 0.04 0.34 0.02 490 4 467 5

190 TP 31(4) 734'600 152'200 2120 M Grt-Ctd-Zo/Czo-WM-Qtz-Cc/Do 25 0.23 0.04 0.28 0.03 516 6 508 10

191 TP 34(4) 734'450 153'600 1840 M Grt-Ctd-Zo/Czo-WM-Chl-Qtz-Cc/Do 25 0.23 0.03 0.29 0.03 512 5 498 8

192 TP 25(4) 735'325 154'200 1800 M Ab-WM-Chl-Qtz-Cc/Do 17 0.49 0.04 0.41 0.01 460 3 441 4

193 TP 24(4) 738'125 156'475 1770 G WM-Chl-Qtz-Cc/Do 25 0.70 0.10 0.46 0.03 438 5 437 4

194 HINT 079 739'193 153'874 1670 T Cp-Ctd-WM-Chl-Qtz-Cc/Do 25 0.68 0.09 0.45 0.03 441 5 439 4

195 TP 22(4) 741'225 156'675 1620 T Ab-WM-Chl-Qtz 25 0.96 0.07 0.52 0.02 409 3 416 4
196 TP 36(4) 748'700 161'350 2040 T WM-Chl-Qtz 25 1.51 0.23 0.60 0.02 372 4 389 4

197 TP 37(4) 752'000 164'050 1000 T WM-Chl-Qtz-Cc/Do 25 2.39 0.11 0.68 0.00 337 1 314 4

198 TP 20(4) 753'775 168'025 900 T WM-Chl-Qtz-Cc/Do 20 1.99 0.08 0.65 0.01 351 2 360 4

199 TP 19(4) 753'800 169'925 870 T WM-Chl-Qtz-Cc/Do 25 1.52 0.12 0.61 0.02 371 3 391 3
200 TP 15(4) 753'300 173'325 700 T WM-Chl-Qtz 20 1.45 0.08 0.60 0.01 376 2 398 3

201 TP 39(4) 752'350 175'350 760 T WM-Chl-Qtz-Cc/Do 20 1.53 0.16 0.60 0.01 374 3 397 3

202 TP 40(4) 751'850 177'300 670 T WM-Chl-Qtz-Cc/Do 20 1.71 0.14 0.62 0.02 363 3 382 5

203 TP 12(4) 751'275 181'750 630 G Ab-WM-Chl-Qtz-Cc/Do 21 1.63 0.10 0.62 0.01 364 2 382 3
204 TP 11(4) 750'150 183'600 680 G WM-Chl-Qtz-Cc/Do 20 1.83 0.12 0.64 0.01 357 3 374 6

205 TP 9(4) 756'850 188'100 1030 G WM-Chl-Qtz-Cc/Do 20 2.06 0.05 0.66 0.01 349 1 356 3

206 MW 9664(4) 760'650 187'870 800 G WM-Chl-Qtz-Cc/Do 20 2.23 0.13 0.67 0.02 343 3 336 10

207 TP 42(4) 760'250 190'050 610 G WM-Chl-Qtz-Cc/Do 15 2.09 0.19 0.66 0.01 346 3 345 8
208 Ps 7(4) 768'940 189'195 1200 PF WM-Qtz-Cc/Do 10 1.24 0.12 >0.70 <330 255 5

209 TP 7(4) 762'125 196'500 970 G WM-Chl-Qtz-Cc/Do 15 1.95 0.11 0.66 0.01 348 3 353 6

210 TP 5(4) 764'375 200'300 1060 G WM-Chl-Qtz 22 1.42 0.17 0.59 0.02 378 4 398 4

211 Vs 3(4) 766'345 203'635 1250 G WM-Qtz-Cc/Do 10 1.42 0.07 >0.70 <330 268 8
212 TP 1(4) 772'575 202'825 690 G WM-Chl-Qtz-Cc/Do 12 1.47 0.06 >0.70 <330 266 6

213 MF 2987(4) 779'400 208'700 1830 PF WM-Chl-Qtz-Cc/Do 10 0.56 0.02 >0.70 <330 131 5

214 MF 2986(4) 775'300 211'700 2150 PF WM-Chl-Qtz-Cc/Do 10 0.55 0.02 >0.70 <330 135 6

Table 3.1: continued.
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has been shown by several studies that the first-order region is perfectly suited to record the degree of 

order/disorder of CM and thereby to determine peak-metamorphic temperatures (Pasteris & Wopenka 

1991; Wopenka & Pasteris 1993; Yui et al. 1996; Beyssac et al. 2002a, 2002b; Rantitsch et al. 2004; 

Rahl et al. 2005). This first-order region includes up to four Raman peaks or bands (Fig. 3.3a; Tuinstra 

& Koenig 1970; Beyssac et al. 2002a, 2003a; Nasdala et al. 2004). The presence of the G band (~1580 

cm-1), corresponding to the stretching vibration of aromatic carbon layers, is indicative for graphite 

crystals (e.g. Beyssac et al. 2003b). In perfect crystalline CM, i.e. graphite, this G band is the only fea-

ture of the first-order region. In poorly ordered CM, as a consequence of structural disorder, however, 

up to three additional bands (generally called D1, D2 and D3) are present in the first order region (Fig. 

3.3a). These so-called defect bands are related to “physio-chemical defects” (Beyssac et al. 2003b; Ne-

gro et al. 2006). Whereas the D1 band (~1350 cm-1) is the most evident defect band and represents a 

separate peak, the D2 band (~1620 cm-1) is only visible as a shoulder on the dominant G band. Only in 

very poorly ordered CM does a third defect band D3 appear in the form of a very wide band located at 

~1500 cm-1. The degree of ordering is directly linked to appearance and intensity of the defect bands, 

and additionally, to position and peak width of the G band. The intensity of the defect bands decreases 

during progressive graphitization, thereby reflecting the increasing degree of organization (e.g. Pasteris 

& Wopenka 1991). 

The second-order region is characterized by the appearance of two bands, S1 (~2700 cm-1) and 

S2 (~2900 cm-1), respectively, some minor features are also visible at ~2400 cm-1 and ~3300 cm-1 (Fig. 

3.3b; Nemanich & Solin 1979; Wopenka & Pasteris 1993; Beyssac et al. 2003b; Lee 2004). As is the 

case regarding the first order-region there are also systematic changes within the second-order region 

due to increasing graphitization. While the intensity of the S2 band continuously decreases and finally 

completely vanishes, the S1 band becomes progressively narrower and asymmetric, ultimately splitting 

into two bands during the final stages of the graphitization process (e.g. Beyssac et al. 2002a). Such 

splitting is assumed to correspond to the establishment of a triperiodic order in the structure of the CM 

(Lespade et al. 1984).
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Fig. 3.3: Spectral deconvolution of the first- and second-order region of the Raman spectrum of CM, indicating a relatively dis-
ordered structure (sample Nr. 205 for which 350 °C were inferred, see Table 3.1). (a) Position of the graphite G band and the 
D1, D2, D3 defect bands in the first-order region; (b) Position of the graphite S1 and S2 bands in the second-order region.
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During progressive temperature-induced ordering the Raman spectra of CM exhibit a characteris-

tic evolution that is most obvious by looking at the intensities of bands related to disorder in the crystal-

line structure (D1, D2 & D3), but also evident from position and width of the characteristic G band in 

the first-order region and from width and asymmetry of the S1 band in the second-order region (Pasteris 

& Wopenka 1991; Wopenka & Pasteris 1993; Yui et al. 1996; Beyssac et al. 2002a, 2002b; Lee 2004). 

Beyssac et al. (2002a) showed that peak intensity ratio R1 (R1 = D1/G) and peak area ratio R2 (R2 = 

D1/[G + D1 +D2]), both part of the first-order region, are the most reliable indicators for the degree of 

ordering in CM. They found the following linear relationship between the R2 ratio and peak-metamor-

phic temperature in the range of 330-650 °C by calibration with other geothermometers:

T (°C) = -445R2 + 641

Recently, the following revised and slightly more complex calibration, involving both R1 and R2 ratios 

in a bivariate polynomial function, has also been presented (Rahl et al. 2005):

T (°C) = 737.3 + 320.9R1 – 1067R2 – 80.638R12

The R1 ratio, taken into account by this second calibration method, shows significant variations particu-

larly under low- and very low-grade conditions: This contrasts with the R2 ratio, which is rather insen-

sitive below 330 °C and above 650 °C. Therefore, this revised calibration potentially extents the tem-

perature interval to the 100-700 °C interval (Rahl et al. 2005). However, due to uncertainties in the two 

calibration methods absolute temperatures can only be determined to ± 50 °C. It is important to note, 

however, that the relative accuracy is much better and allows for detecting inter-sample variations as 

small as ~ 10-15 °C (Beyssac et al. 2004).

3.3.3. Analytical procedure: spectra acquisition and treatment
Micro-Raman spectroscopy was performed at the Raman Laboratory of the Institute of Geoscienc-

es at Potsdam University using a confocal, notch filter-based spectrometer (LabRam HR 800, HORIBA 

Jobin Yvon) equipped with an Olympus BX 41 microscope, an air-cooled Nd-YAG laser (Compass 

315M, Coherent) for Raman excitation with the 532 nm line and a Peltier cooled CCD detector (Andor 

Technology). A Leica 50x magnification microscope objective was used for sample viewing under both 

reflected and transmitted light, as well as for the Raman measurements. The laser spot diameter at the 

sample surface was about 3 μm and the confocal pinhole was set to 200 μm. The laser power was re-

duced to 2-3 mW at the sample surface by a neutral D1 filter (transmission: 10 % of the laser power) in 

order to exclude effects due to sample heating. The LabSpec software of HORIBA Jobin Yvon has been 

used for data acquisition and estimation of the spectral parameters of the Raman bands. Before each 

session a silicon standard was used for checking the calibration of the spectrometer. Since thin section 

preparation, particularly polishing, induces mechanical damage to the structure of CM (Nemanich & So-

lin 1979; Beyssac et al. 2003b) we focussed the laser beam onto CM matter hiding beneath a transparent 

mineral within the section (Pasteris 1989; Beyssac et al. 2002a, 2003b), preferentially beneath quartz, 

but calcite, feldspar or chloritoid were also used.

The application of a grating of 300 lines/mm and a slit width of 100 μm resulted in the acquisition 

of Raman spectra in the range 175-3300 cm-1 with a spectral resolution of about 10 cm-1. This configu-

ration allowed for the registration of all first-order Raman bands of graphite in the region 1100-1800 

cm-1 used for the estimation of the peak-metamorphic temperatures, and additionally the Raman bands 

of the covering transparent minerals, within a single spectral window. In each sample at least 10, but up 

to 45 independent spots were analyzed in order to gather insight regarding structural heterogeneities of 
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the CM within one and the same sample. Depending on the intensity of the Raman bands between two 

and four accumulations with an acquisition time ranging from 20 to 90 s were performed on each spot 

in order to improve signal to noise ratios of the spectra.

The Raman spectra were processed by using the program PEAKFIT 4.12 (Seasolve Software Inc.) 

with a Voigt function (combined Gaussian and Lorentzian profiles) and a linear background correc-

tion to determine the spectral parameters such as peak position, peak area, peak height and peak width 

FWHM (full width at half maximum).

Table 3.1 summarizes the results of spectrum decomposition for all 214 samples and gives the 

estimated peak-metamorphic temperatures based on both calibrations (Beyssac et al. 2002a; Rahl et al. 

2005) in terms of mean values. Measurement-induced uncertainties regarding the derived temperatures 

are given as 95 % confidence intervals (CI).

3.4. Results of the RSCM investigations

3.4.1. Overall evolution of Raman spectra with increasing metamorphic grade
The change in metamorphic temperature over the entire area of investigation, ranging from lower/

middle amphibolite facies conditions in the SW to lower greenschist facies conditions with occasional 

blueschist facies relics in the NE, is directly illustrated by the corresponding evolution of the Raman 

spectra of CM reflecting the degree of crystallization shown by Figure 3.4. This evolution shows all the 

typical features described in earlier studies (e.g. Pasteris & Wopenka 1991; Wopenka & Pasteris 1993; 

Yui et al. 1996; Beyssac et al. 2002b). The most obvious feature indicating the general trend towards in-

creasing metamorphic grade in the area, by going from NE to SW and up-temperature, is the decrease in 

relative intensity of the D1 band (Fig. 3.4). This band is large and wide in the case of the low-tempera-

ture samples and decreases towards the SW and disappears almost totally in the highest-grade samples. 

The G band appears as a wide band occurring near 1600 cm-1 in very poorly organized samples where 

it is impossible to separate the contribution of the D2 component from that of the G band. From some 

inferred 335°C up-temperature (sample 197 of Fig. 3.4 & Tab. 3.1), this single and wide band splits up 

into the G and D2 bands. Still further up-temperature the D2 component decreases while the G band nar-

rows (Fig. 3.4). In the second-order region, the S1 band represents the main spectral feature (Fig. 3.4). 

In poorly structured CM the second-order spectrum (2500-3000 cm-1) is characterized by the presence of 

two very broad bands at ~2700 and ~2900 cm-1, respectively. With increasing metamorphic grade, the S1 

band becomes prominent over the S2 band. It finally takes on a slightly asymmetric shape at still higher 

grade which indicates incipient splitting of the S1 band into two components while the S2 band further 

decreases in intensity and disappears almost totally (Fig. 3.4).

3.4.2. Comparison between the available calibration methods
Given the exceptionally large number of measured samples and the large temperature interval 

covered by the area of investigation a comparison between the two available calibration methods by 

Beyssac et al. (2002a) and Rahl et al. (2005) is indicated. In this context it is important to note that the 

calibration of Beyssac et al. (2002a) is based on the R2 ratio only, a ratio that shows no change anymore 

below 330 °C and remains stable at ~0.75 (Beyssac et al. 2002a). In contrast, the R1 intensity ratio ex-

hibits an ongoing evolution even towards low to very low metamorphic temperatures (Yui et al. 1996; 

Beyssac et al. 2002a; Rahl et al. 2005). The recent calibration by Rahl et al. (2005) is more complex and 
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Fig. 3.4: Selection of representative first-order and corresponding second-order parts of the Raman spectra, arranged from bot-
tom to top by increasing inferred temperatures and going from SW to NE across the area of investigation, respectively. The po-
sitions of the G, D1, D2, D3, S1 and S2 bands, as well as the estimated peak-metamorphic temperatures are indicated. The num-
bers on the left-hand side refer to the sample numbers listed in Table 3.1, for geographical locations see also Figs. 3.1 & 3.2. The 
small, narrow band at around 1160 cm-1 in the first-order region is due to quartz as overlaying transparent mineral; see text.
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takes into account both ratios R1 and R2 (see section RSCM method for the two formulas used). Since 

R1 appears to be particularly sensitive under very low-grade metamorphic conditions, it was proposed 

that this new calibration has an extended application in the very low temperature domain, extending the 

lower temperature detection limit down to 100 °C (Rahl et al. 2005).

Our dataset allows for comparing the 

estimated temperatures based on both cali-

brations. Figure 3.5 graphically correlates the 

temperature estimates based on Beyssac et al. 

(2002a) and Rahl et al. (2005), respectively. 

In general, the differences between the two 

calibrations are well inside the ± 50 °C uncer-

tainty inherent in the empirical calibration of 

the temperatures, both methods provide simi-

lar temperature estimates, discrepancies be-

ing less than 30 °C (Fig. 3.5). At temperatures 

around 350, 425 and 530 °C both calibrations 

even yield exactly the same temperature es-

timates. In the intermediate temperature in-

tervals some systematic differences are ob-

served, however (Fig. 3.5). In the 450-525 

°C range the temperatures calculated accord-

ing to Rahl et al. (2005) systematically yield 

lower values, while the temperature estimates 

between 350-400 °C and from 550 °C upwards are relatively higher compared to those calculated ac-

cording Beyssac et al. (2002a). The great advantage of the method of Rahl et al. (2005), however, is 

the possibility to estimate reliable metamorphic temperatures in low- to very low-grade metasediments, 

i.e. in the 100-330 °C temperature interval that cannot be handled with the calibration of Beyssac et al. 

(2002a). In general, the relative uncertainties of the temperatures derived by the calibration of Rahl et al. 

(2005) are higher, however, compared to those derived using Beyssac at al. (2002a), especially at tem-

peratures higher than 480 °C (see Table 3.1 and Figure 3.5). In spite of these differences, both methods 

are characterized by a large relative accuracy. This allows to detect inter-sample variations in the order 

of ~ 10-15 °C and points out the powerful abilities of this geothermometer, as will be further demon-

strated when discussing the recorded field thermal gradients.

3.4.3. Mapping field thermal gradients in three dimensions

Method used for contouring field thermal gradients in map and profile view 

Based on the maximum temperatures obtained from the RSCM method we will present what we 

refer to as “isotemperature contours” in map and profile view. These contours simply represent lines that 

connect locations that reached a given maximum temperature in map or profile view, regardless of when 

these locations reached their maximum temperature and at which pressure. Note that these contours do 

by no means necessarily represent true isotherms at a given instant in time, since maximum tempera-

tures could be reached at different times, given the complex metamorphic evolution of the studied area 

(Wiederkehr et al. 2008). Parts of the isotemperature contours reflect the temperatures reached during 
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the earlier HP/LT event, or its subsequent greenschist facies overprint during decompression, and will 

laterally connect with other parts that record the temperatures reached during a later distinct subsequent 

Barrow-type event, depending on which event was associated with the maximum temperature.

When attempting to construct such isotemperature contours it soon became apparent that there is 

a rather small number of locations (16 locations out of a total of 214 measured) that obviously do not 

fit into a regional trend, neither in map nor in profile view, in that they exhibit exceptionally high tem-

peratures in respect to neighbouring specimens. These are highlighted with bold letters in Table 3.1 and 

were not considered for constructing the isotemperature contours. Three reasons are held responsible 

for such discrepancies.

Firstly, such heterogeneities may be caused by the fact that the graphitization process may not 

be solely temperature-dependent for a number of reasons. These include effects of pressure (Diessel 

et al. 1978; Teichmüller 1987), tectonic stress/strain (Bustin et al. 1986; Suchy et al. 1997; Ferreiro 

Mählmann et al. 2002; Nover et al. 2005), duration of the thermal/metamorphic event (Itaya 1981; 

Okuyama-Kusunose & Itaya 1987), host-rock lithology (Grew 1974; Wopenka & Pasteris 1993; Wada et 

al. 1994), catalytic species/minerals (Bonijoly et al. 1982; Okuyama-Kusunose & Itaya 1987, and refer-

ences therein), type of organic precursors (Kribek et al. 1994; Large et al. 1994; Bustin et al. 1995) and 

composition/activity of metamorphic fluids (Large et al. 1994; Guedes et al. 2005).

Secondly, depositional mixing of sedimentary detritus (e.g. Diessel et al. 1978; Itaya 1981) may 

yield peak temperatures valid for the source area rather than the metasediments sampled. We regard it 

more likely that such mixing is the most likely source of the scatter in case of the samples 44, 51, 84, 86, 

97, 115, 136, 139, 140 and 210 (Tab. 3.1). A recent study performed along the metamorphic profile rang-

ing from the Prättigau half-window to the Misox Zone provided evidence for the occurrence of detrital 

graphite in nearly all samples, as is documented by X-ray diffraction data (Petrova et al. 2002). Careful 

analyses of some of our samples showing anomalous peak-metamorphic temperatures (three samples 

originating from the Piz Terri-Lunschania unit; specimens 97, 136 and 139; Tab. 3.1) revealed that such 

depositional mixing of graphite of different degree of graphitization must indeed have occurred. These 

samples are characterized by the presence of large, randomly oriented, isolated flakes of white mica, un-

ambiguously representing detrital white mica.

A third reason for such discrepancies applies to specimens 190 and 191 (Tab. 3.1) originating from 

the Misox Zone close to the contact with the Adula nappe complex, as well as to specimens 146, 147, 

148 and 149 from within the Adula nappe complex. The temperatures recorded by these specimens are 

considered as being related to an upper blueschist/eclogite facies event (considerably higher tempered 

than the surrounding Fe-Mg carpholite bearing blueschist facies rocks) that only affected the Adula 

nappe complex and immediately adjacent parts of the Misox Zone, as will be discussed later.

The isotemperature contours were drawn manually, based on the calibrations of Beyssac et al. 

(2002a) and Rahl et al. (2005), respectively in case of Fig. 3.6, and based on Beyssac et al. (2002a) in 

case of Figs. 3.7 and 3.8. We performed manual contouring, because we were also guided by keeping a 

more or less constant spacing between isolines, had to exclude some of the specimens (see below) and, 

in case of the Lunschania antiform, also used structural information. The resulting manually constructed 

peak-temperature contours were found to be close to those obtained by geostatistical methods using a 

kriging routine.

In case of the temperature vs. distance and temperature vs. altitude profiles presented in Figs. 3.7 

and 3.8, respectively, and prior to the contouring within the plane of the section, the sample locations 
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were projected into the profile plane in a direction parallel to the isotemperature contours, previously 

constructed in map view (Fig. 3.6) and from within a corridor whose width is given in the figure cap-

tions. The sample localities were projected horizontally in the case of Figs. 3.7 and 3.8a, and by using 

the angle of the local axial plunge specified in the figure caption in case of Figs. 3.8b, c, d and e.

Comparison of the field thermal gradients obtained with two alternative calibration methods

We first present the peak-metamorphic temperatures obtained by the RSCM method as a function 

of geographical location (see also Table 3.1). The two maps depicted in Figure 3.6, based on the two 

available calibrations, predict comparable and very reliable peak-metamorphic temperatures that vary 

from <330°C in NE (Prättigau half-window) up to 560-590 °C in the SW (Pizzo Molare, Lepontine ther-

mal dome; Tab. 3.1, Fig. 3.6). 

Both maps show similar shapes of the constructed isotemperature contours, especially for the 425 

and 525 °C range, for which they are located exactly at the same place in both maps (compare Figs. 3.6a 

& b). It is also remarkable that in both maps the 375, 400 and 425 °C isotemperature contours show the 

same characteristic excursion in map view towards the NE. As discussed in Wiederkehr et al. (2008), 

this feature is related to the fact that the 375, 400 and 425 °C isotemperature contours (as well as those 

at < 375°C) record temperatures that were acquired during the earlier metamorphic evolution and were 

subsequently folded around a NE-plunging antiform (Lunschania antiform of Wiederkehr et al. 2008). 

This leads to a map pattern of folded isotemperature contours, nicely illustrating the exceptional qual-

ity of both data sets. This excursion towards north-east is not shown by the isotemperature contours in 

the 450-550 °C range that are aligned more or less parallel to a NW-SE-direction, i.e. perpendicular to 

the predominant metamorphic field gradient in the western part of the investigated area. There these iso-

temperature contours are related to temperatures that prevailed during the Barrow-type event and that 
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are higher than those acquired during the earlier HP/LT stage and/or subsequent greenschist facies over-

print. This Barrow-type event not only post-dates an earlier HP/LT event but also the subsequent folding 

of the earlier formed associated field temperature gradient.

The most obvious discrepancies between Figs. 3.6a and b, i.e. between the field temperature gra-

dients derived from the two alternative calibrations, are found in the NE, i.e. at low temperatures. The 

temperature distribution pattern of Rahl et al. (2005; Fig. 3.6b) generally shows a stronger gradient, as 

is revealed by the contouring of additional isotemperature contours down to 150 °C. This independently 

illustrates the advantages of using the Rahl et al. (2005) calibration at low temperatures. Minor discrep-

ancies are also found in two other areas: In the intermediate-temperature domain above some 450°C the 

isotemperature contours derived on the basis of Rahl et al. (2005) appear more closely spaced, which 

leads to a higher temperature gradient. Particularly the 450 °C isotherm appears relatively shifted to the 

W. Moreover, in the highest-temperature domain slightly higher temperatures are inferred and an addi-

tional isotemperature contour at 575 °C had to be constructed when analyzing the temperatures obtained 

by the calibration of Rahl et al. (2005).

We conclude that despite minor discrepancies both calibrations essentially yield identical fea-

tures above 330°C, features that are mainly characterized by a field temperature gradient that radially 

decreases away from the Lepontine dome in the SW towards the Prättigau half-window in the NE, su-

perimposed with an excursion of the isotemperature contours to the NE that coincides with the locus of 

an antiform which folds the isotemperature contours below some 450°C. In the following, we present 

the peak-metamorphic temperatures obtained in more detail, and we will also present the field thermal 

gradients in profile view, thereby addressing the third dimension.

Peak temperatures along the Pizzo Molare-Domleschg profile

Along this SW-NE oriented profile (Fig. 3.7a) metasedimentary units derived from both the Euro-

pean margin and the Valaisan oceanic domain crop out in a continuous fashion. This allows for a clear 

correlation of deformation events and relative timing of metamorphic events along strike (Wiederkehr et 

al. 2008). These authors showed that both the metasediments of the Valaisan domain (Grava nappe) and 

parts of those derived from the distal European margin (so-called Peidener slices) are characterized by 

a bimodal P-T path whereby amphibolite facies Barrovian overprint represents a separate heating pulse 

that followed isothermal or cooling decompression of an early HP/LT blueschist facies event. Hence, 

a large part of the specimens analyzed derive from this profile that plots temperature versus horizontal 

distance, covering a temperature range from 560-590 °C in the SW down to 350-370 in the NE (Fig. 

3.7a).

The highest temperatures were obtained at localities around Pizzo Molare and Grumo (northern 

Valle di Blenio; Fig. 3.2) which marks the north-eastern edge of the high-temperature part of the Lep-

ontine thermal dome characterized by amphibolite facies Barrow-type metamorphism (e.g. Engi et al. 

1995; Todd & Engi 1997; Frey & Ferreiro Mählmann 1999) and from where temperatures radially de-

crease towards the N and NE. The overall field thermal gradient along this SW-NE section at first exhib-

its a relatively high lateral field thermal gradient along Val Luzzone, ranging from some 540 °C north of 

Olivone down to 430-450 °C around the Piz Terri, over a distance of only some 10 km (Fig. 3.7a). This 

portion with a high lateral gradient coincides with dramatic changes in the mineralogy of the metasedi-

ments (Wiederkehr et al. 2008) and is interpreted to represent the north-eastern edge of the Lepontine 

Barrow-type thermal dome. Further to the NE, between Vrin and Safiental/Domleschg (Fig. 3.1), the 

lateral field thermal gradient is significantly lower within the 450 to 350°C interval (Fig. 3.7a).
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Interestingly, this change in the lateral field thermal gradient also coincides with a change in the 

inclination of the isotemperature contours in a temperature versus altitude profile, as is seen from Figure 

3.8a. This figure allows for a reliable construction of the steepness of the isotemperature contours due 

to the high relief and the exceptionally dense network of sampling localities. Over Val Luzzone the iso-

temperature contours steepen up to some 30-45° inclination to the NE, but flatten out towards the E in 

the area of Piz Terri (Fig. 3.8a). The metamorphic field gradient (not necessarily equal to a geothermal 

gradient) amounts to some 14 °C/km perpendicular to the contours. Further, the change in inclination to-

wards the moderate inclination observed NE of Piz Terri (Fig. 3.8a) coincides with a significant change 

in the trend of the isotemperature contours in map view discussed before: in the SW (i.e. where the con-

tours are steeply inclined in Fig. 3.8a) they cut across the Lunschania antiform while further to the NE 
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(lower right). The samples and inferred temperatures listed in Table 3.1 were projected into the cross-section plane perpendicu-
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7 km to the ESE off the profile trace for profile P. Molare – Urseren-Garvera Zone; (e) 20 km for profile Misox Zone – Prätti-
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they are folded by this same antiform (Fig. 3.6). This supports the interpretation that the isotemperature 

contours reflect the maximum temperatures reached during at least two separate metamorphic events, 

pre-dating and post-dating folding of the Lunschania antiform, respectively.

Peak temperatures along two profiles across folded isotemperature contours

Effects interpreted to be due to the folding of isotemperature contours (Wiederkehr et al. 2008) are 

visualized by two temperature-distance profiles oriented at a high angle to the fold axis of the Lunscha-

nia antiform depicted in Figures. 3.7b (Splügen-Ilanz) and 3.7c (Misox Zone-Ilanz). Both profiles show 

a localized temperature peak reaching some 425 °C in the Valsertal and coinciding with the core of the 

Lunschania antiform, superimposed onto the overall lateral field thermal gradient. This corroborates the 

idea of folded isotemperature contours in the eastern part of the working area. Interestingly, the transi-

tion between folded and intersecting isotherms is located between 450 and 425°C (see Fig. 3.6) which 

is within the temperature interval where the steep lateral field thermal gradient becomes flatter towards 

the E (Figs. 3.7a & 3.8a). All this clearly indicates that the isotemperature contours record the older HP/

LT metamorphic event and/or immediately subsequent greenschist facies overprint in the NE while they 

record the younger Barrow-type event in the SW, where obviously the temperatures associated with the 

older LT event were reset by subsequent Barrow-type thermal overprint. 

Peak temperatures along the Pizzo Molare-Urseren-Garvera Zone profile

Due to the lack of metasediments across the basement of the Gotthard unit this profile (Fig. 3.7d) 

is rather poorly constrained in its northern portion where only four samples (samples 1-4, Tab. 3.1 and 

Fig. 3.2) from a thin veneer of Mesozoic sediments belonging to the E-W striking Urseren-Garvera Zone 

are prone to analysis. Nevertheless, this profile provides important information concerning the northern 

termination of the Lepontine thermal dome in an area that did not suffer a previous HP/LT overprint. 

Hence, the entire field temperature gradient is expected to be solely related to the late-stage Barrow-type 

event. This is corroborated by the field thermal gradient shown in Fig. 3.7d, characterized by a continu-

ous temperature decrease from some 560 °C at Pizzo Molare to 450 °C at Alp Tgom (sample 1) and fi-

nally to 360-375 °C at Garvera (sample 4), a high lateral field thermal gradient that can also be inferred 

from the close spacing of the isotemperature contours in Fig. 3.6 which resembles the similarly high 

gradient recorded along Val Luzzone and visualized in Fig. 3.7a. 

Peak temperatures along the Misox Zone-Prättigau profile

The transition from subduction-related HP/LT metamorphism and associated subsequent green-

schist facies overprint to collision-related Barrow-type metamorphism is also preserved along this pro-

file (Fig. 3.7e), whereby the data from inside the frontal part of the Adula nappe complex (“internal 

Mesozoic”, Löw 1987) and from the adjacent northern Misox Zone (Aul unit), characterized by much 

higher peak-metamorphic temperatures, are also plotted. These units suffered an upper blueschist/eclog-

itic HP/LT event during which considerably higher temperatures were reached compared to the rest of 

the metasediments sampled during this study that only reached blueschist facies conditions (see presen-

tation of the data for the Adula nappe complex below).

Due to the significantly lower density of investigated samples only a rough overview of this pro-

file can be given. Peak-metamorphic temperatures range from 540-550 °C in the southern Misox Zone 

down to 130-140 °C in the north-eastern part of the Prättigau half-window (Fig. 3.6b). The highest tem-

peratures of 540-550 °C measured S of the village of Mesocco can probably be attributed to the amphi-

bolite facies Lepontine Barrow-type event (Fig. 3.7e). Towards the N the overall trend of decreasing 
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temperatures is again not uniform. While a remarkable lateral field thermal gradient is found between 

Mesocco and Splügen, marked by a rapid decrease in temperatures from 540-550 °C down to 370-390 

°C, the temperatures stay remarkably constant and vary between 350-375 °C (Fig. 3.7e) further to the 

north-east. 

When closer focussing on the Misox zone the results indicate a more complex pattern: Samples 

190 and 191 (Tab. 3.1), taken from the boundary region with the Adula nappe complex as well as sam-

ples 146-149 (Tab. 3.1) collected inside the northern Adula nappe complex, indicate locally higher tem-

peratures in the range of 500-520 °C, not compiling with the overall trend of decreasing peak-metamor-

phic temperatures from S to N (“eclogitic HP/LT event” indicated in Figs. 3.7c & e). These anomalously 

high temperatures were obtained from Grt-Ctd micaschists found in the southern continuation of the Aul 

unit (Lower Uccello Zone; Gansser 1937; Steinmann 1994a) as well as from Ky-Grt-Ctd-Zo micaschists 

of the internal Mesozoic of the Adula nappe complex (see further explanations for the Adula below) that 

record metamorphic conditions established during a subduction-related upper blueschist/eclogitic event 

that affected the Adula nappe complex and adjecent Aul unit, as is discussed below.

Peak-metamorphic temperatures obtained for the northern Adula nappe complex

From the frontal part of the Adula nappe complex only four samples (Ky-Grt-Ctd-Zo micaschists 

of the so-called internal Mesozoic) were suitable for analysis (samples 146-149). The obtained peak-

metamorphic temperatures all cluster around 500-520 °C. In respect to the surrounding metasediments, 

where maximum temperatures around 410-430 °C have been estimated, a jump in peak-metamorphic 

conditions in the order of some 100 °C must take place across the nappe boundary (Fig. 3.6). This jump 

in peak temperature clearly points towards a different metamorphic evolution of the Adula nappe com-

plex in respect to the surrounding metasediments (except for the localities of samples 190 and 191 be-

longing to the Aul unit discussed above). These data were excluded for the contouring of the isotempera-

tures depicted in Figure 3.6. Petrological investigations on eclogites, garnet peridotites and metapelites 

report temperature estimates related to high-pressure metamorphism of the northern Adula nappe that 

are consistent with our estimates: 470-540 °C (Löw 1987) and 450-550 °C (Heinrich 1986), respective-

ly, but lower than the 640 °C postulated for this area by Dale and Holland (2003). Hence, the tempera-

tures obtained from the northern part of the Adula nappe complex are associated with upper blueschist/

eclogite facies characterized by considerably higher temperatures established during subduction-related 

HP/LT metamorphic conditions than the surrounding Fe-Mg carpholite bearing blueschist facies meta-

sediments. The spatial and temporal relationships between this upper blueschist/eclogite facies event 

within the northern Adula nappe and the blueschist facies event and subsequent Barrow-type overprint 

recorded within the metasediments surrounding the Adula nappe, constituting the major part of our data 

set, are not yet clear. Structural arguments suggest a late-stage differential N-directed emplacement of 

the Adula nappe into the surrounding metasediments (Wiederkehr et al. 2008). Hence, we decided not to 

draw the isotemperature contours across the frontal part of the Adula nappe complex in Figure 3.6.

Peak temperatures projected into a series of N-S-oriented tectonic cross sections 

In order to better illustrate the three-dimensionality of the pattern of peak temperatures and the 

spatial relationships between isotemperature contours and tectonic units, the inferred maximum tem-

peratures were projected along strike into a series of N-S-oriented tectonic cross sections (Figs. 3.8b, 

c, d & e; see Wiederkehr et al. 2008 for a description of additional structural details revealed in these 

four cross sections). Using the measured axial plunge of the structures and assuming cylindricity of the 
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structures, the profiles are arranged such as to reveal the large-scale structure of the area. Note how-

ever, that, since the isotemperature contours run across strike (see Fig. 3.6) they are discordant to these 

approximately cylindrical structures along strike and therefore should not be connected from one pro-

file to the next perpendicular to strike. Hence, the contours are only valid for the individual profile for 

which they are drawn. It is also important to emphasize that the isotemperature contours in Figs. 3.8b, c, 

d and e are by far less well constrained than is the case for the along-strike profile depicted in Fig. 3.8a 

discussed above. This is because Fig. 3.8a, given the higher density of data in the area, collects a much 

larger number of specimen locations.

Nevertheless, and in spite of considerable uncertainties regarding slope and position of the iso-

temperature contours in case of Figs. 3.8b, c, d and e, the following salient features can be extracted 

from these cross sections with certainty: (1) The inclination of the isotemperature contours flattens out 

in the southerly portions of Figs. 3.8c, d and e, while they steepen up in the northerly portions of the 

same cross sections. This reflects the fact that the Barrovian overprint, that determines the maximum 

temperatures in the northern part of these sections, also cuts across structures in a N-S direction, and not 

only across strike of these structures as is seen in map view (Fig. 3.6). (2) In Fig. 3.8b, which exhibits 

a more complex pattern, the isotherms are no more steeply dipping to the N at the northern end of the 

section while they become folded by the Lunschania antiform, which is not the case in the cross sections 

located further W (Figs. 3.8c, d & e). This supports the inferences already made based on Fig. 3.7b and 

c, namely that it is the older pre-Lunschania antiform LT event (blueschist facies metamorphism and/or 

subsequent greenschist facies overprint) that is recorded by the maximum temperatures in the eastern 

part of the working area, while the isotemperature contours related to the Barrow-type late-stage meta-

morphic event cut across this antiform. This independently confirms inferences made by Wiederkehr et 

al. (2008) based on structural and other petrological criteria.

3.5. Discussion

3.5.1. Comparison of RSCM-derived maximum temperatures with temperatures inferred 

from other petrological data
In Figure 3.9 the RSCM-derived temperatures are compared with occurrences of index minerals, 

as well as with selected P-T-paths derived from mineral parageneses and thermodynamic modelling of 

equilibrium phase diagrams (Wiederkehr et al. 2008 and in preparation). Occurrences of Fe-Mg car-

pholite, a diagnostic mineral that is common in the metasediments of the Valaisan domain and parts of 

the metasediments derived from the distal European margin (Goffé & Oberhänsli 1992; Oberhänsli et 

al. 1995; Bousquet et al. 2002; Wiederkehr et al. 2008), document the HP/LT blueschist facies event in 

the eastern part of the working area. Going westwards from this LT area, relics of carpholite were found 

all the way up to the 500 °C isotemperature contour, while pseudomorphs after carpholite were found 

even further and all the way to Pizzo Molare, i.e. up to >575 °C (Fig. 3.9). This clearly documents that 

formerly this western area was also part of a through-going belt characterized by blueschist facies meta-

morphism, stretching from the Engadine window all the way to the Western Alps (Bousquet et al. 2002, 

2008). Other diagnostic minerals for this earlier subduction-related blueschist facies event are glau-

cophane (Gansser 1937; Nabholz 1945; Oberhänsli 1977, 1994) and jadeite (Santini 1992; Ring 1992). 

Within the low-grade Fe-Mg carpholite-bearing metasediments chloritoid is only rarely found inside Fe-

Mg carpholite-bearing quartz-calcite parageneses, hence most chloritoid occurrences in the area formed 



63

Chapter 3

?? C
hu

r

V
al

sIla
nz

D
is

en
tis

/
M

us
te

r

O
liv

on
e

T
hu

si
s

V
rin

C
hu

r

V
al

sIla
nz

D
is

en
tis

/
M

us
te

r

O
liv

on
e

T
hu

si
s

V
rin

La
nd

qu
ar

t
La

nd
qu

ar
t

K
lo

st
er

s
K

lo
st

er
s

55
0

52
5

50
0

47
5

45
0

42
5

40
0

37
5

425

450 50
0

47
5 52

5
55

0

35
0

35
0

37
5

40
0

55
0

52
5

50
0

47
5

45
0

42
5

40
0

37
5

425

450 50
0

47
5 52

5
55

0

35
0

35
0

37
5

40
0

57
5

57
5

25
0

25
0

15
0

15
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

T
em

pe
ra

tu
re

 [°
C

]

Pressure [GPa]

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0 40

0
60

0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

40
0

60
0

0.
5

1.
5 20

0

1.
0

2.
0

R
SC

M
pe

ak
 T

C
p 

st
ab

ilit
y

fie
ld

su
bd

uc
tio

n-
re

la
te

d 
ev

en
t

co
llis

io
n-

re
la

te
d 

ev
en

t

G
ra

va
 n

ap
pe

(L
P/

LT
 u

ni
ts

)

ea
st

er
n 

Sc
op

i U
ni

t

G
ra

va
 n

ap
pe

,
Pe

id
en

 s
lic

es
G

ra
va

 n
ap

pe
, P

ei
de

n
sl

ic
es

, P
iz

 T
er

ri-
Lu

ns
ch

an
ia

 U
ni

t

U
rs

er
en

-G
ar

ve
ra

Zo
ne

w
es

te
rn

 S
co

pi
 U

ni
t

Pe
id

en
 s

lic
es

G
ra

va
 n

ap
pe

G
ra

va
 n

ap
pe

(L
P/

LT
 u

ni
ts

)

G
en

er
al

 c
ha

rt 
ex

pl
an

at
io

ns

Prättigau half-window

G
ra

va
 n

ap
pe

(H
P/

LT
 u

ni
ts

)
G

ra
va

 n
ap

pe
(H

P/
LT

 u
ni

ts
)

Splügen

Mesocco

Vals / San Bernardino

Pizzo Molare

Southern LukmanierNorthern LukmanierAlp Tgom / Curaglia

Va
l L

uz
zo

ne

Va
l L

um
ne

zi
a

Va
l L

um
ne

zi
a

Pr
ät

tig
au

 h
al

f-w
in

do
w

ea
st

er
n 

Sc
op

i U
ni

t

G
ra

va
 n

ap
pe

,
Pe

id
en

 s
lic

es
G

ra
va

 n
ap

pe
, P

ei
de

n
sl

ic
es

, P
iz

 T
er

ri-
Lu

ns
ch

an
ia

 U
ni

t

U
rs

er
en

-G
ar

ve
ra

Zo
ne

w
es

te
rn

 S
co

pi
 U

ni
t

Pe
id

en
 s

lic
es

G
ra

va
 n

ap
pe

So
ut

he
rn

 M
is

ox
 Z

on
e

So
ut

he
rn

 M
is

ox
 Z

on
e

N
or

th
er

n 
M

is
ox

 Z
on

e
To

m
ül

 n
ap

pe
 (U

U
Z)

N
or

th
er

n 
M

is
ox

 Z
on

e
To

m
ül

 n
ap

pe
 (U

U
Z)

Ad
ul

a 
/ N

or
th

er
n 

M
is

ox
 Z

on
e 

(L
U

Z)
Ad

ul
a 

/ N
or

th
er

n 
M

is
ox

 Z
on

e 
(L

U
Z)

ga
rn

et

ca
rp

ho
lit

e 
(r

el
ic

)

ca
rp

ho
lit

e
(p

se
ud

om
or

ph
)

bi
ot

ite

pl
ag

io
cl

as
e

(>
 1

0 
m

ol
 %

 A
n)

ky
an

ite

st
au

ro
lit

e

cl
in

oz
oi

si
te

/z
oi

si
te

ch
lo

rit
oi

d

m
ar

ga
rit

e

S
ub

du
ct

io
n-

re
la

te
d

C
ol

lis
io

n-
re

la
te

d

U
bi

qu
itu

ou
s

M
et

am
o

rp
h

ic
 m

in
er

al
s 

cl
as

si
fi

ed
ac

co
rd

in
g

 t
o

 t
h

ei
r 

si
g

n
if

ic
an

ce

N N

10
 k

m
M

et
as

ed
im

en
ts

 o
f t

he
 d

is
ta

l
E

ur
op

ea
n 

m
ar

gi
n 

M
et

as
ed

im
en

ts
 o

f t
he

 V
al

ai
sa

n
do

m
ai

n

M
et

as
ed

im
en

ta
ry

 u
n

it
s

al
bi

te
-q

ua
rt

z
ph

en
gi

te
-c

hl
or

ite

Fig. 3.9: Map providing a comparison between RSCM-derived temperatures (isotemperature contours of Figure 3.6b and oc-
currences of index minerals, as well as selected P-T paths derived from mineral parageneses and thermodynamic modelling of 
equilibrium phase diagrams (Wiederkehr et al. 2008, in preparation) and literature data (Frey 1974; Frey et al. 1982; Teutsch 
1982; Heinrich 1982, 1986; Löw 1987; Santini 1992; Ring 1992; Frey & Ferreiro Mählmann 1999; Ferreiro Mählmann et al. 
2002 and references therein; Bousquet et al. 2002 and references therein). Inset: General chart explanations; LUZ = Lower Uc-
cello Zone (corresponding to Aul unit; Steinmann 1994a); UUZ = Upper Uccello Zone (corresponding to Tomül nappe; Stein-
mann 1994a).
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during the late-stage Barrow-type event. This is supported by the fact that chloritoid generally occurs as 

idiomorphic rosettes, bundles and prisms (Wiederkehr et al. 2008). Based on the mineral chemistry of 

the observed mineral assemblage, peak-metamorphic conditions of 1.2-1.4 GPa and 350-400 °C were 

estimated for the blueschist facies event that affected the metasediments of the Grava and Tomül nap-

pes, as well as some of the metasediments derived from the distal European margin (Peiden slices and 

Piz Terri-Lunschania unit; Wiederkehr et al. 2008).

As shown by Bousquet et al. (2002) and Wiederkehr et al. (2008) for the blueschist facies areas 

not affected by the subsequent Barrow-type metamorphic event, isothermal or slightly cooling decom-

pression of the Valaisan-derived Bündnerschiefer and the Europe-derived Peidener Schuppenzone did 

occur after the HP stage (see P-T-paths indicated in Fig. 3.9). This implies that a Barrow-type overprint 

possibly did not exist at all in easterly areas of Figure 3.9, or was only associated with temperatures 

lower than 425 °C, i.e. within temperature ranges previously reached during the blueschist event and/

or subsequent greenschist facies overprint established during more or less isothermal decompression. 

Since folding leading to the Lunschania antiform took place after this decompression all isotemperature 

contours at or below 425 °C are expected to appear folded by this antiform. This is actually the case 

(Figs. 3.7 & 3.8), demonstrating the high special resolution of the maximum temperature pattern that can 

be obtained with the RSCM method given a dense sampling network.

Increasing metamorphic grade from diagenesis to lower greenschist grade conditions prevailing 

in the eastern Prättigau half-window to greenschist facies conditions towards the W (i.e. Domleschg and 

Safiental) was described by previous work (e.g. Frey & Ferreiro Mählmann 1999; Ferreiro Mählmann 

et al. 2002; Petrova et al. 2002). This result is compatible with the temperature pattern derived by the 

RSCM method, particularly with that established when using the Rahl et al. (2005) method (Fig. 3.6b). 

A similar increasing grade of metamorphism is also established in a N-S direction and across Eu-

rope-derived metasediments in the NW part of the working area (Fig. 3.9), an area that never experienced 

blueschist facies overprint. The predicted peak temperatures obtained by the RSCM method for the Urs-

eren-Garvera Zone, ranging from 360 °C to 450 °C (Tab. 3.1), are in excellent agreement with chlorite-

chloritoid and calcite-dolomite thermometers that yield 390-510 °C and 360-480 °C, respectively (Livi 

et al. 2002), and with temperature estimates based on chlorite-chloritoid and chlorite thermometry pre-

dicting 400 ± 50 °C (Rahn et al. 2002). The clear progressive metamorphic zoning to lower/middle am-

phibolite facies conditions around the Lukmanier and Pizzo Molare area in the S has been established 

early on (Chadwick 1968; Frey 1969, 1974, 1978; Thakur 1971; Fox 1978). Staurolite-kyanite-garnet-

bearing micaschists indicate lower to middle amphibolite facies peak-metamorphic conditions at 0.5-0.8 

GPa and 500-550 °C (Chadwick 1968; Engi et al. 1995; Todd & Engi 1997; Frey & Ferreiro Mählmann 

1999). Recently published data along the metamorphic transect ranging from the Lukmanier area in the 

N to Pizzo Molare in the S predict 0.6-0.8 GPa at 530-575 °C for the Lukmanier area, 0.6 GPa at 550 

°C in the northern Valle di Blenio and 0.7-0.85 GPa at 580-600 °C for Pizzo Molare (Janots et al. 2008). 

Hence, the predicted peak-metamorphic temperatures determined by the RSCM method are in good 

agreement with observed mineral assemblages in this part of the working area as well.

As discussed earlier, the frontal part of the Adula nappe complex suffered an upper blueschist/ec-

logitic overprint (Löw 1987; Heinrich 1986; Zulbati 2008), in contrast to the surrounding high-pressure 

terranes that suffered blueschist facies metamorphism associated with considerably lower temperatures 

as documented by the occurrences of Fe-Mg carpholite. The RSCM-derived derived temperatures are 

again in perfect agreement with the temperatures inferred for such an upper blueschist/eclogitic event. 
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Some isolated occurrences within the Misox Zone (i.e. outcrop “Neu Wahli”, possibly part of a mélange 

located in the Aul unit; Steinmann 1994a) containing glaucophane, garnet and omphacite (30-50% ja-

deite component; Oberhänsli 1977; Ring 1992; Santini 1992) also suffered upper blueschist/eclogite 

facies overprint.

The higher-grade Valaisan-derived metasediments found in the Lower Uccello Zone (Aul unit; 

Steinmann 1994a) of the Misox Zone (Fig. 3.9) are devoid of Fe-Mg carpholite, and chloritoid is com-

monly associated with garnet (Teutsch 1982), representing a characteristic assemblage for blueschist 

facies conditions in metasediments (e.g. Agard et al. 2001; Bucher & Bousquet 2007; Bousquet 2008). 

This indicates that relatively higher temperatures were associated with the blueschist facies event in this 

area. This is again in agreement with our temperature estimates that indicate southwards increasing tem-

peratures in the Misox Zone. Staurolite first appears in the southernmost part of the Misox Zone, S of 

the 500°C isotemperature contour, indicating that the southern part of the Misox Zone was affected by 

lower/middle amphibolite facies Barrovian overprint (Fig. 3.9; Wenk 1970; Thompson 1976; Teutsch 

1982). Teutsch (1982) determined metamorphic conditions of 0.5-0.7 GPa and 500-550 °C near Mes-

occo, where we obtained 530-540 °C (samples 185 & 186, Tab. 3.1), which again demonstrates good 

agreement. Here in the S the temperatures established during late-stage collisional related Barrovian 

overprint, that led to the growth of staurolite may not differ significantly from those related to the earlier 

subduction-related high-pressure event that may well have reached eclogite grade in the southernmost 

Misox Zone. In any case, the temperatures related to the eclogite facies event continuously increase 

within the adjacent Adula nappe complex (i.e. Heinrich 1982, 1986), reflecting southward subduction of 

tectonic units during the formation of the Alpine orogenic belt. There, Nagel et al. (2002b) demonstrated 

that near-isothermal decompression lead to the growth of staurolite by paragonite breakdown. Hence, 

within the southernmost Misox Zone it may become meaningless to attribute the RSCM temperatures 

recorded to either the subduction-related HP event or the collision-related Barrowian overprint (indi-

cated by stippled P-T paths in Fig. 3.9): Barrow-type overprint represents either isothermal decompres-

sion of an eclogitic stage as proposed by Nagel et al. (2002b) or a separate heating pulse as shown by 

Engi et al. (2001).

3.5.2. Relationships between isotemperature contours and the polyphase thermal evolution 

of metasediments
Wiederkehr et al. (2008) showed that it is the first deformation event D1 (Safien phase), related to 

the formation of an accretionary wedge and subduction of the Valais Ocean including parts of the distal 

European margin, that is associated with blueschist facies metamorphism (350-400 °C, 1.2-1.4 GPa) as 

documented by Fe-Mg carpholite which is only preserved as hair-like fibres in shear fibre veins con-

sisting of quartz and calcite. Substantial decompression to greenschist facies conditions was associated 

with D2 nappe stacking that led to thrusting of HP-rocks onto LP-units (Ferrera phase). Interestingly, the 

isotemperature contours in the eastern part of the working area reflect the effect of the D3 (Domleschg 

phase) nappe-refolding phase, particularly that of the most prominent D3 structure, the Lunschania anti-

form (Figs. 3.1 & 3.2; Voll 1976; Kupferschmid 1977; Steinmann 1994a; Weh and Froitzheim 2001)

The presented RSCM temperature data, combined with structural observations, show that pro-

gressive Barrovian overprint related to the Lepontine thermal dome in the south-western part of the 

study area clearly post-dates this D3 event (Wiederkehr et al. 2008), in that the isotemperature contours 

crosscut the Lunschania structure at temperatures higher than those reached during the blueschist facies 
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event and/or subsequent greenschist facies overprint. The isotemperature contours established for the 

western part of the study area rather spectacularly run across structures, both along strike and in N-S-

profile view (Fig. 3.8), demonstrating that the RSCM method is a rather powerful tool for revealing the 

3-D geometrical characteristics of the temperature field established during the late-stage collision-re-

lated metamorphic event. Note, however, that the original shape of the isotemperature contours may 

have been modified by the last tectonic event (D4, Chièra phase), associated with back-folding and the 

formation of the Northern Steep Belt further to the W (Milnes 1974) that affected the south-western part 

of the study area. 

Our study reveals a jump in maximum temperatures between the Adula nappe complex (internal 

Mesozoic) and the surrounding Valaisan-derived metasediments for the first time (Fig. 3.6). This is in 

contrast to earlier studies (e.g. Todd & Engi 1997) that all drew isotemperature lines straight across the 

nappe boundary between Adula nappe complex and the easterly adjacent metasediments, assuming that 

such isotemperature lines formed during the Barrowian event. The thermal discontinuity, together with 

the interpretation of these isotherms in the eastern part of the study area as being related to the HP-event 

and/or subsequent greenschist facies overprint, contradicts this view in case of the northern Adula nappe 

complex. However, as pointed out above, the isotemperature contours may well cut across in the south-

ernmost Misox Zone where, due to high temperatures already reached during the upper blueschist to 

eclogite facies conditions that were followed by isothermal decompression (Nagel 2008), may make a 

distinction between the temperatures reached during the two events meaningless.

3.5.3. Inferences regarding the graphitization process along a metamorphic gradient
The results of this investigation clearly show that the transformation of CM into graphite is a con-

tinuous and mainly temperature dependent process and that therefore the RSCM method is a reliable 

geothermometer for recording peak temperatures. Nevertheless, as was discussed earlier, some samples 

are characterized by large scattering of the estimated mean temperature. Others predict a peak-metamor-

phic temperature markedly different in respect to neighbouring samples for a number of reasons, depo-

sitional mixing of sedimentary detritus originating from different metamorphic sources (e.g. Diessel et 

al. 1978; Itaya 1981) possibly being the most important factor in case of the present study. Hence, dense 

sampling leading to a large data set is definitely needed. 

3.6. Conclusions
Raman spectroscopy of carbonaceous material in metasediments at the margin of the Lepontine 

dome allows for a comparison between the Beyssac et al. (2002a) and Rahl et al. (2005) calibration by 

using a large dataset in the 150 to 600 °C temperature range. The two calibration methods essentially 

yield identical inferred temperatures above 330 °C, discrepancies being less than 30 °C; at lower tem-

peratures only the Rahl et al. (2005) calibration does reliably reveal a field temperature gradient. Both 

methods are characterized by a large relative accuracy that allows to detect inter-sample variations in 

the order of ~10-15 °C, i.e. in the same order as found by Beyssac et al. (2004). The method can be suc-

cessfully applied to specimens of low-grade metasediments that are devoid of indicative mineral assem-

blages (so-called Bündnerschiefer) that do not allow for a comparably accurate estimation of the meta-

morphic temperature based on conventional petrologic investigations.

The results of the three-dimensional mapping of isotemperature contours show, after comparison 

with independent petrological and structural data (Wiederkehr et al. 2008), that the field temperature 
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gradients inferred from Raman spectroscopy of carbonaceous material faithfully reflect the present day 

distribution of peak-metamorphic temperatures that resulted from a superposition of distinct metamor-

phic events in three dimensions. It was found that (1) the RSCM-derived maximum temperatures fa-

vourably compare with temperatures inferred from other petrological data, (2) the derived temperatures 

reflect the maximum temperatures to which specimens were exposed to in areas that underwent a poly-

phase thermal evolution, (3) the three-dimensional character of those parts of the isotemperature con-

tours that reflect the same metamorphic event reveal valuable relationships between deformation and 

metamorphism, and, (4) our data support the assumption, that the transformation of CM into graphite is 

a continuous and mainly temperature dependent process.

Within the north-eastern rim of the Lepontine dome the isotemperature contours associated with 

the collision-related late-stage Barrow-type event clearly cut across nappe contacts and post-nappe 

stacking mega-folds, both along and across strike. Further to the NE the isotemperature contours re-

flect temperatures reached during an earlier blueschist facies event and/or subsequent near-isothermal 

decompression and are folded around large-scale post-nappe stacking folds. A substantial “temperature 

jump” across the tectonic contact between the frontal Adula nappe complex and surrounding Valaisan-

derived metasediments indicates that, in contrast to the postulates raised by earlier studies, equilibration 

of temperatures during the late-stage Lepontine event is found to be incomplete in this area.
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40Ar/39Ar dating of the subduction-collision transition in the 

Central Alps

This chapter is under review as: Wiederkehr, M., Sudo, M., Bousquet, R., Berger, R. & Schmid, S.M. 40Ar/39Ar 

dating of the suduction-collision transition in the Central Alps. Submitted to Tectonics.

Abstract
The investigated HP/LT metasedimentary units of the Valaisan and adjacent European domains 

occupy a key position in the Alpine belt for understanding the transition from early subduction-related 

HP/LT event to collision-related MP/MT Barrovian metamorphism and the evolution of mountain belts 

in general. The timing of high-pressure metamorphism and subsequent retrogression was studied by 

dating several white mica generations, well characterized in terms of mineral chemistry, texture and as-

sociated mineral assemblages. Biotite was analyzed for constraining the timing of the subsequently fol-

lowing Barrow-type overprint.

Four distinct age populations of white mica (crystallization ages) record peak-pressure conditions 

and several stages of subsequent retrograde metamorphic evolution. Apparent white mica ages, exclu-

sively found in isolated phengites, vary between 42-40 Ma; they record the timing of HP/LT metamor-

phism that is contemporaneous with D1 deformation (Safien phase). White mica intimately associated 

with chlorite, replacing carpholite, yield two different age groups, both interpreted as related to mica 

formation during breakdown of carpholite: a first age group (36-33 Ma) dates substantial decompression 

during D2 (Ferrera phase) nappe stacking, a second one dates subsequent greenschist facies overprint 

(32-29 Ma). Additionally, the white mica data also reveal a coherent apparent age cluster at ~ 25 Ma 

whose significance is yet not clear; a correlation with D3 deformation (Domleschg phase) is proposed.

Biotite isotopic analyses yield consistent apparent ages that cluster around 18-16 Ma and are 

slightly younger than published data on the age of the thermal peak of the second Barrow-type meta-

morphic event that occurred under quasi-static conditions and largely pre-dates D4 (Chièra phase) back-

folding. The recorded isotopic data reveal a significant time gap in the order of some 20 Ma between 

subduction-related HP/LT metamorphism and collision-related MP/MT Barrovian overprint, supporting 

the notion of a polymetamorphic evolution associated with a bimodal P-T path.
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4.1. Introduction
Understanding the metamorphic evolution of the earth’s crust requires well-constrained time data. 

Such data are of particular importance regarding the geodynamics of subduction, followed by unroofing 

in a collisional scenario later on. Numerical models explore the effects of the thermal structure acquired 

during subduction on subsequent stages of the metamorphic history during collision and exhumation 

(e.g. Bousquet et al. 1997; Jamieson et al. 1998; Roselle et al. 2002; Goffé et al. 2003). In order to test 

such models by field studies we do not only need the constraints on the metamorphic evolution in P-T 

space that are widely available by now (e.g. Oberhänsli et al. 2004) but also more data on the evolution 

in time (e.g. Berger & Bousquet 2008). The Central Alps provide a unique example of an area, from 

which an unusually large and unique data set on the metamorphic evolution is available (e.g. Bousquet et 

al. 2008), but where the timing of the early blueschist facies stage of metamorphism is still very poorly 

constrained.

The Alps formed as a result of subduction- and subsequent collision-related processes due to plate 

convergence between Europe and Adria in Mesozoic times. The distal European continental margin 

and Tethyan oceanic lithosphere, including an intervening micro-continent (Briançonnais), were sub-

ducted and partially incorporated into an accretionary orogenic wedge sandwiched between the overly-

ing Adria-derived nappes (Austroalpine) and the southward subducting underlying European plate (e.g. 

Trümpy 1960; Frisch 1979; Tricart 1984; Le Pichon et al. 1988; Schmid et al. 1996). Early-stage sub-

duction-related processes took up most of the plate convergence and led to the formation of high-pres-

sure belts that strike parallel to the orogen (e.g. Oberhänsli et al. 2004). It is now widely accepted that 

the Alpine orogenic belt incorporated three high-pressure belts, one being of Cretaceous age and only 

affecting the continental Austroalpine domain (e.g. Thöni 2006) while two Cenozoic belts are related to 

subduction processes within two branches of the Alpine Tethys, i.e. the southern Piemont-Liguria and 

the northern Valaisan Ocean, respectively, separated by the Briançonnais micro-continent (e.g. Frisch 

1979; Stampfli 1993; Oberhänsli 1994; Stampfli et al. 1998; Froitzheim et al. 2003).

Relics of the Piemont-Liguria Ocean are characterized by a spectacular and well-known HP/LT 

metamorphic event (e.g. Bearth 1967; Chinner & Dixon 1973; Ernst & Dal Piaz 1978), for which nu-

merous isotopic data are available by now, albeit their geodynamical interpretation is still difficult (see 

review by Berger & Bousquet 2008). This abundance of isotopic data contrasts with the scarcity of data 

from the northern and more external, at least partly oceanic, Valaisan units. Within Switzerland and the 

adjacent Italian-French Alps, the Valaisan mainly exposes voluminous low-grade Fe-Mg carpholite-

bearing HP/LT metasediments (Goffé & Oberhänsli 1992; Oberhänsli 1994; Goffé & Bousquet 1997; 

Bousquet et al., 1998; 2002), associated with scarce and isolated fragments of mafic and ultramafic 

bodies. The timing of HP/LT metamorphism in this northern high-pressure belt is not only very poorly 

constrained but the few available ages grossly scatter (Berger & Bousquet 2008). The only isotopic data 

available for metasediments around the Petit St. Bernard area yield 34-27 Ma (Freeman et al. 1998; 

Cannic et al. 1999) but have to be considered with great caution due to the fact that the available studies 

were not aware of the presence of a HP/LT metamorphic event in the Valaisan domain. Ages reported for 

high-pressure metamorphism in the Antrona and Balma eclogites scatter between 46 and 39 Ma (Liati et 

al. 2005; Liati & Froitzheim 2006; Herwartz et al. 2008), but the attribution of these units to the Valaisan 

is controversial. Radiometric ages that claim to date the high-pressure event in the Eclogite Zone of the 

Tauern window, a unit that many authors (e.g. Schmid et al. 2004) associate with the subduction of the 
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Valaisan Ocean, are extremely controversial and vary between 31.5 Ma (e.g. Glodny et al. 2005) and ≤ 

45 Ma (e.g. Ratschbacher et al. 2004).

The area investigated by this study occupies a key location in the Central Alps, located at the 

north-eastern edge of the Lepontine dome (Fig. 4.1a). The area offers uninterrupted excellent exposure 

of metasedimentary units derived from the Valaisan and adjacent distal European domains within which 

subduction-related HP/LT metamorphism dominates in the north-east (Engadine window and Grisons 

area) while collision-related Barrow-type amphibolite facies metamorphism dominates in the south-

west (Fig 4.1; see also Wiederkehr et al. 2008). This allows for collecting samples from a continuous 

along-strike section and for investigating the geodynamical relationships between these two contrasting 

tectono-metamorphic events. For the first time this study provides geochronological data regarding both 

stages of a polymetamorphic evolution and from within the same working area: HP/LT metamorphism 

including subsequent retrogression, followed by a second Barrow-type thermal metamorphic event. 

We analyzed samples that are well described in terms of their metamorphism (see Wiederkehr et al. 

2008 and submitted, b; Bousquet et al. 1998) in order to date mineral growth and/or reactions by using 
40Ar/39Ar techniques. We will present results of in situ 40Ar/39Ar dating of successive white mica gen-

erations reflecting the subduction-related metamorphism on the one hand, and dating of biotite grown 

during collision-related Barrovian overprint on the other hand. Additionally 40Ar/39Ar step-wise heating 

experiments on biotite grain separates were performed for comparison with in situ dating and complete 

the data set. These new data offer the opportunity to test and further quantify the geodynamic evolution 

proposed by Wiederkehr et al. (2008). Moreover, this work represents a case study that addresses the 

transition from subduction to collision in general and thereby provides important field and geochrono-

logical data for testing numerical models for the geodynamic evolution of orogenic belts (e.g. Bousquet 

et al. 1997; Jamieson et al. 1998; Roselle et al. 2002; Goffé et al. 2003).

4.2. Tectono-metamorphic background and sampling strategy

4.2.1. Geological setting
The studied area is located at the north-eastern edge of the Lepontine dome (Fig. 4.1a) that repre-

sents a dome both in a structural and thermal sense. Structurally, this dome consists of Europe-derived 

basement nappes (Sub-Penninic after Schmid et al. 2004; Fig. 4.1b) that represent the deepest exposures 

within the Central Alps (e.g. Froitzheim et al. 1996). These pre-Mesozoic basement nappes are tectoni-

cally overlain by Mesozoic-age metasedimentary units derived from both the distal European margin 

(Sub-Penninic cover nappes and slices) and the Valaisan oceanic domain (Lower Penninic), separated 

from each other by the Penninic Basal Thrust (Fig. 4.1b). In the easterly adjacent areas the Mesozoic 

metasediments of the Valaisan domain build up an up to 15 km thick pile of metasedimentary cover 

nappes (Hitz & Pfiffner 1997; see crustal-scale transect in Schmid et al. 1996, their Plate 1). Due to the 

general axial plunge of the whole nappe stack to the E, these Valaisan-derived metasediments are seen 

to be tectonically overlain by nappes derived from the Briançonnais, Piemont-Liguria Ocean, and Aus-

troalpine domain, respectively, still further to the east (Fig. 4.1a). Within the Engadine window (Figs. 

4.1a & c) the Valaisan Bündnerschiefer are again exposed within a local antiformal dome below the 

Austroalpine lid.

Lithologically the Valaisan-derived metasediments are a rather monotonous sequence that pre-

dominantly consists of calcschists with intercalations of limestones, shales, marls and sandy limestones, 
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Fig. 4.1: Geological map of the investigated area and locations of the studied samples. (a) Tectonic map of the Central Alps af-
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deposited in Cretaceous to Eocene times (Nänny 1948; Ziegler 1956; Steinmann 1994a; Steinmann & 

Stille 1999). In the west the Valaisan Bündnerschiefer are subdivided into Grava and Tomül nappes, 

based on stratigraphic criteria (Steinmann 1994a; Fig. 4.1b). The metasediments in the Engadine win-

dow are built up by the high-pressure Mundin unit, overlain by the low-pressure Arina unit (Bousquet 

et al. 1998; Fig. 4.1c). Scarce occurrences of mafic and ultramafic rocks are associated with these meta-

sediments, mainly around Piz Aul and Piz Tomül in the W (Nabholz 1945; Fig. 4.1b) and around Piz 

Mundin of the Engadine window in the E (Fig. 4.1c). However, rather large bodies of serpentinized peri-

dotite are found below the Grava unit (Aul unit, Nabholz 1945) and in the Engadine window. The lat-

ter are associated with ophicarbonates, serpentinite breccia, meta-gabbro and meta-basalt, forming the 

so-called Ramosch zone (Fig. 4.1c), interpreted as representing the transition between the continental 

Briançonnais and the oceanic Valaisan domain (Florineth & Froitzheim 1994; Froitzheim et al. 1996). 

These occurrences of mafic and ultra-mafic bodies clearly indicate that at least parts of the Valaisan-

derived metasediments were deposited on oceanic crust (Steinmann 1994a; Steinmann & Stille 1999). 

In the Valaisan domain there is also clear evidence for subduction-related HP/LT metamorphism under 

blueschist facies conditions provided by the widespread occurrences of Fe-Mg carpholite in metasedi-

ments (Goffé & Oberhänsli 1992; Oberhänsli et al. 1995; Bousquet et al. 1998) as well as by rare find-

ings of glaucophane in mafic rocks (Oberhänsli 1978; Bousquet et al. 1998). Metamorphic conditions of 

1.2-1.4 GPa and 350-400 °C have been estimated (Bousquet et al. 2002). It has recently been shown that 

not only the Valaisan Bündnerschiefer but also parts of the metasedimentary units belonging to the Euro-

pean realm were affected by the same early HP/LT event, as documented by occurrences of Fe-Mg car-

pholite in both Peiden slices and Piz Terri-Lunschania unit (Wiederkehr et al. 2008 and submitted, b).

Only towards the SW were the metasediments of both the European and Valaisan realm affected 

by a Barrow-type thermal overprint; the temperatures progressively increase SW-wards, i.e. towards the 

centre of the Lepontine thermal dome. Such progressive Barrovian metamorphism is best documented 

within Europe-derived metasediments (Sub-Penninic cover nappes and slices) due the great chemical 

variability of these Triassic to lower/middle Jurassic sequences, consisting of meta-evaporites, meta-

pelites, calcareous shales, carbonaceous calcschists and shales (Baumer et al. 1961; Probst 1980; Et-

ter 1987; Steinmann 1994a; Berger et al. 2005). This chemical variability resulted in a corresponding 

variability of spectacular metamorphic assemblages that include hornblende, staurolite, kyanite, garnet, 

biotite, plagioclase chloritoid and zoisite/clinozoisite and which were the subject of pioneering studies 

on regional Barrow-type metamorphism (Chadwick 1968; Frey 1969; 1974; 1978; Niggli 1970; Wenk 

1970; Fox 1975; Livi et al. 2002). Lower/middle amphibolite facies metamorphic conditions of 0.5-0.8 

GPa and 500-550 °C have been estimated for such Barrow-type metamorphism in the north-eastern Lep-

ontine dome (Engi et al. 1995; Todd & Engi 1997; Frey & Ferreiro Mählmann 1999). 

4.2.2. Tectono-metamorphic evolution
Wiederkehr et al. (2008) showed that the metasedimentary units of the south-western part of the 

investigated area (i.e. in a transect between Val Luzzone and Pizzo Molare; Fig 4.1b) are characterized 

by a bimodal P-T path; the early HP/LT event was followed by substantial “cold” decompression and 

was then overprinted by late-stage Barrovian amphibolite facies metamorphism (Fig. 4.2a; Bousquet 

et al. 2008; Wiederkehr et al. 2008). Such late-stage thermal overprint is totally missing in the easterly 

adjacent areas, i.e. east of Piz Terri and Engadine window (Figs. 4.1b & c). There, the metasediments 
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generally indicate greenschist facies conditions, established at more or less the same temperatures that 

prevailed during the earlier HP/LT event (Wiederkehr et al. submitted, b; Fig. 4.2b).

Detailed structural and petrological investigations revealed the following tectono-metamorphic 

evolution (Wiederkehr et al. 2008; Fig. 4.2): Blueschist facies metamorphism at 350-400 °C and 1.2-1.4 

GPa was associated with a first deformation event D1 (Safien phase). This event is related to the for-

mation of an accretionary wedge and subduction of the Valaisan Ocean and parts of the adjacent distal 

European margin. The HP/LT stage was followed by substantial isothermal or slightly cooling decom-

pression to greenschist facies conditions, associated with D2 nappe stacking (Ferrera phase). This led to 

thrusting of HP-rocks onto LP-units. During D3 (Domleschg phase), representing a first nappe-refolding 

event, large-scale tight to isoclinal mega-folds with amplitudes up to some 10 km were formed, e.g. the 

Lunschania antiform that can be traced in map-view a long way (Fig. 4.1b). Clearly post-dating this D3 

deformation, and under static conditions at least during the initial stages, the HP/LT rocks were over-

printed by regional amphibolite facies metamorphism. Temperatures progressively increase towards the 

west, i.e. towards the north-eastern rim of the Lepontine thermal dome, from 475-500 °C in the Val Luz-

zone area to 570-590 °C at the Pizzo Molare and within a pressure interval of 0.6-0.7 GPa (Wiederkehr 

et al. in preparation; Fig. 4.2b). Finally, this Barrow-type metamorphism was severely overprinted by 

a last deformation phase D4 (Chièra phase), characterized by ductile nappe refolding and leading to the 

formation of the Chièra-synform and the Northern Steep Belt (Milnes 1974).

4.2.3. Sampling strategy
A total of 13 samples (Table 4.1), 12 deriving from Mesozoic metasediments (so-called “Bündn-

erschiefer” of the Valaisan domain) and one sample from metasediments of the distal European margin, 

were selected. These are well characterized with respect to the tectono-metamorphic evolution outlined 

above. In the north-eastern part of the study are, i.e. in the Valsertal and the Safiental as well as in the 

Engadine window (Figs. 4.1b & c) where pressure-dominated metamorphism is well preserved without 
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or with only a minor late stage thermal overprint (e.g. Bousquet et al. 2002), four samples that contain 

white mica associated with Fe-Mg carpholite were collected with the aim to unravel the early, pressure-

dominated metamorphic stage. Towards the SW, where the HP/LT metasediments were progressively 

overprinted by Lepontine amphibolite facies metamorphism, nine samples containing biotite were col-

lected (see Figs. 4.1b & c for locations). Note that biotite is exclusively found in these areas that expe-

rienced pervasive thermal overprint.

4.3. Experimental procedure of 40Ar/39Ar dating
The 40Ar/39Ar dating was performed at the 40Ar/39Ar geochronology laboratory at Potsdam Univer-

sity. The procedure was as follows.

4.3.1. Sample preparation
For the in situ 40Ar/39Ar UV laser-probe dating technique (see e.g. Maluski & Monié 1988; Kel-

ley et al. 1994) rock sections of ca. 1 mm thickness and 5 mm in diameter were drilled out from sample 

blocks that contain the analyzed polished surface whose opposite side was used for thin section prepa-

ration. Photographs of the polished surface and corresponding thin section provided an accurate refer-

ence frame for the analyzed sections. Additionally, we performed SEM investigations of the polished 

sections in order to firstly have an accurate pattern of the distribution of both K-bearing white mica and 

biotite, and secondly to have control over chemical zoning or alteration (e.g. chloritization of biotite). 

Both pieces of information were important for selecting the best suitable places for performing the Ar 

isotopic analyses. A total of eight thick sections were prepared for in situ 40Ar/39Ar UV laser ablation 

spot analysis, four sections containing white mica and four containing biotite.

For 40Ar/39Ar dating by the CO
2
 laser step-wise heating technique five hand specimens of biotite 

bearing mica-schists were crushed and sieved. Highly enriched 250-315 μm fractions of biotite were 

Swiss map coordinates P-T conditions
Sample name

X Y

Elev.

(m)
Tectonic Unit Mineral assemblage

T (°C) P (GPa)

Samples characterized by subduction-related HP/LT metamorphism

In situ laserprobe dating method

FOT 937 827’678 199’891 2550 Valaisan (Mundin) Cp (fresh), WM, Chl, Qtz, Cc/Do 350-375(1) 1.1-1.3(1)

AlpTea 638A 829’031 198’676 2040 Valaisan (Mundin) Cp (fresh), WM, Chl, Qtz, Cc/Do 350-375(1) 1.1-1.3(1)

SAF 0527 746’016 178’803 1300 Valaisan (Grava) Cp (relic), WM, Chl, Qtz, Cc/Do 350-400(1, 2) 1.2-1.4(1, 2)

VAL 0580 736’871 174’310 1370 Valaisan (Grava) Cp (relic), WM, Chl, Qtz, Cc/Do 350-400(1, 2) 1.2-1.4(1, 2)

Samples characterized by collision-related Barrow-type metamorphism

In situ laserprobe dating method

LUZ 0450 716’137 157’727 1410 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Chl, Qtz, Cc/Do 475-525(3) 0.50-0.75(3)

DOT 053A 713’556 155’867 2100 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Qtz, Cc/Do 510-560(3) 0.50-0.65(3)

GRU 057 715’621 148’504 700 Valaisan (Grava) Bt, Plag, WM, Qtz, Cc/Do 560-590(3) 0.55-0.7(3)

MOL 055 709’715 149’780 2400 Valaisan (Grava) Bt, Plag, WM, Qtz, Cc/Do 560-590(3) 0.6-0.8(3)

Step-wise-heating dating method

LUZ 0444 716’017 157’831 1390 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Chl, Qtz, Cc/Do 475-525(3) 0.50-0.75(3)

BLE 0514 715’112 155’757 1090 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Chl, Qtz, Cc/Do 510-560(3) 0.50-0.65(3)

DOT 053A 713’556 155’867 2100 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Qtz, Cc/Do 510-560(3) 0.50-0.65(3)

GRU 062 716’156 149’270 760 Valaisan (Grava) Bt, Plag, WM, Qtz, Cc/Do 560-590(3) 0.55-0.7(3)

MOL 054 710’270 149’696 2270 Europe (Molare-Dangio) St, Ky, Grt, Bt, Plag, WM, Qtz 560-590(3) 0.6-0.8(3)

Table 4.1: Summary of investigated samples used for in situ UV laser probe (white mica and bioite) and CO
2
 laser step-wise 

heating experiments (biotite). The sample locations are depicted in Figure 4.1. For each sample the precise location is given in 
Swiss map coordinates, and elevation in meter, tectonic unit and mineral assemblage present in the investigated samples are 
listed. Additionally estimated P-T conditions are indicated for each sample taken from the literature: (1) Bousquet et al. (2002), 
(2) Wiederkehr et al. (submitted, b), (3) Wiederkehr et al. (in preparation).
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finally obtained by the “tapping or shaking paper method”, i.e. by spreading a small amount of sample 

powder on a clean sheet of paper and carefully tapping or shaking it by keeping the paper at an angle. 

Flat grains such as mica remain on the paper whilst round mineral grains roll off. About 25 mg of biotite 

concentrates were further purified by handpicking under the binocular microscope. Finally, pure biotite 

grain separates were washed in de-ionized water within a glass beaker in an ultrasonic bath and subse-

quently dried in an oven at some 80 to 100 ˚C.

4.3.2. Neutron activation by fast neutron
Neutron activation of polished sections and mineral separates was performed at Geesthacht Neu-

tron Facility (GeNF), GKSS research centre, Germany. Both types of samples were wrapped in Al foil 

and subsequently loaded into a sample-container (35 mm in diameter and 43 mm in height) made of 

99.999% pure Al.  Finally, the sample container was wrapped in Cd foil with a thickness of 0.5 mm in 

order to cut off the unnecessary thermal neutron flux. Considering the smaller fast neutron flux of 1x1012 

n/cm2/s compared to other research reactors, all samples were irradiated for 96 hours in order to induce 

reactions of 39K(n,p)39Ar in the samples. The 40Ar/39Ar ages were obtained as a relative age against a 

neutron flux (J value) monitoring mineral standard, i.e. Fish Canyon tuff sanidine, which was irradiated 

together with samples of unknown ages. The used sanidine was prepared at the Geological Survey of 

Japan and its age was determined as 27.5 Ma (Uto et al. 1997; Ishizuka 1998; Ishizuka et al. 2002). This 

age is consistent with that of 27.51 Ma obtained by Lanphere & Baadsgaard (2001). Additionally, crys-

tals of K
2
SO

4
 and CaF

2
 were also irradiated in order to correct the interference of Ar isotopes produced 

by reactions of K or Ca in the samples with neutron flux. After irradiation the samples were stored for 

one month at GeNF in order to cool down their activity. Finally, argon isotope analyses were performed 

at the 40Ar/39Ar geochronology laboratory at Potsdam University.

4.3.3. Ar isotopic analysis
The 40Ar/39Ar dating system consists of (1) a Micromass 5400 high sensitivity-low background 

sector-type noble gas mass spectrometer equipped with an electron multiplier for pulse counting system 

which effectively works for analysis of very small amounts of gas, (2) a New Wave Research DualWave 

laser ablation system comprising a 50 W CO
2 
continuous laser (10.6 μm wavelength) and a 6 mJ UV 

pulsed laser (266 nm wavelength, frequency-quadrupled), and (3) an ultra-high vacuum metal purifica-

tion line which includes Zr-Al SAES alloy getters and a cold trap. Each analysis involves 10 minutes for 

gas extraction and purification and 15 minutes for data acquisition by eight cycles of peak jumping from 

mass 40 to mass 36. System blanks were measured after every three unknown analyses. The isotopic 

ratios of the investigated samples were finally obtained after corrections of blank measurements, mass 

discrimination by analysis of standard-air Ar, interference of the Ar isotopes derived from Ca and K by 

the irradiation and the decay of the radiogenic Ar isotopes (37Ar and 39Ar) produced by the irradiation. 

The final calculation of ages and errors was conducted following Uto et al. (1997). The accuracy as well 

as the precision of the dating system was checked every irradiation by the independent analysis of other 

biotite K-Ar standards, HD-B1 biotite (K-Ar age, 24.21 ± 0.32 Ma; Hess & Lippolt 1994) and Sori93 

biotite (K-Ar age, 92.6 ± 0.6 Ma; Sudo et al. 1998) that are loaded together each irradiation.

The in situ 40Ar/39Ar UV laser-probe experiments generally allow for analyses characterized by 

highly spatial resolution (e.g. Kelley et al. 1994). Hence, the high spatial resolution of the UV laser of-

fers the best opportunity for successful in situ dating of tiny flakes of white mica found as inclusions 
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in quartz-calcite segregations together with preserved relics of Fe-Mg carpholite, indicative for HP/LT 

conditions presented in this study and documented by previous investigations (Agard et al. 2002). Gen-

erally the unknown section samples presented in this study were ablated by the UV pulse laser with the 

following conditions: a beam size of 35-75 μm for white mica and 50-150 μm for biotite, 2-4 minutes 

pulsing duration and a repetition rate of 10 Hz. Incision of the sample did not exceed 30 μm. However, 

the fine-grained occurrences of the investigated white mica (in the order of a few tens of microns), to-

gether with the relatively young ages, preclude the chance of accurate direct dating by in situ laser abla-

tion. Although the size of the laser beam is adjustable to a minimum diameter to 5 μm, a spot size be-

tween 35-75 μm for white mica and 50-150 μm for biotite was selected in the presented study in order 

to generate a sufficient amount of gas which allows performing precise measurements. In the case of 

large biotite crystals reaching 2 mm in size, up to a maximum of 14 spots within one single biotite grain 

were measured. However, particularly in the case of the generally very small white mica grains (in the 

order of 10 μm in size), single grain ages in the strict sense could not be obtained. In such cases the in 

situ 40Ar/39Ar UV laser-probe data were collected from areas within a particular fabric domain enriched 

in mica. However, such areas cannot be considered as exclusively consisting of mica; particularly quartz 

and chlorite may also have been ablated during gas extraction. In order to enhance gas production of the 

tiny white mica samples during laser application the analyses were generally performed along profiles 

(“garlands”). Consequently, the obtained apparent ages from the white mica samples do not represent 

single grain ages at all, but rather ages determined by integrating over a certain domain that contains up 

to a few tens of crystals, depending on the size of the white mica grains.

4.4. Sample description and mineral chemistry
The collected samples were studied in thin-section in order to analyze the microstructure as well 

as for separating texturally different phengite populations. Additionally, SEM pictures were taken for 

selecting the best-suited fabric domains for 40Ar/39Ar investigations and also for orientation during the 

in situ UV laser-probe experiments. Moreover, mineral compositions of studied micas were determined 

by wavelength-dispersive X-ray analysis (WDS) using a CAMECA SX-100 electron microprobe at the 

GeoForschungsZentrum (GFZ) Potsdam. The analytical conditions included an acceleration voltage of 

15 kV, a beam current of 20 nA and beam diameters of 1-10 μm; PAP corrections were applied. Natural 

and synthetic minerals were used as standards. Peak counting times were 10-20 s for major and 20-40 s 

for minor elements; backgrounds were counted for 5-20 s.

4.4.1. White mica
Relics of the HP/LT metamorphic stage are restricted to quartz-hosted fabric domains, generally 

found inside quartz-calcite segregations but never in the surrounding rock matrix. Therefore, all investi-

gated white mica were picked as inclusions in quartz-calcite segregations and/or veins containing relics 

of Fe-Mg carpholite. This precludes the presence of detrital grains that are common in low-grade meta-

sediments, and hence all dated white mica can be considered to be of metamorphic origin. However, 

white mica is stable during the entire metamorphic cycle, and hence several generations of white mica 

can be expected. White mica may be found (1) associated with Fe-Mg carpholite reflecting peak-pres-

sure conditions or (2) together with chlorite as a part of the retrograde assemblage replacing carpholite, 

and (3) as a precursor for Fe-Mg carpholite (Agard et al. 2001; Wiederkehr et al. 2008). However, these 

different generations of white mica can be clearly distinguished by microstructural criteria.
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The presence of multiple generations of white mica is also supported by electron microprobe in-

vestigations that show a significant variation of chemical composition inside this mineral group (Fig. 

4.3a). In carpholite-bearing HP/LT metasediments the Si-content of phengite (Tschermak substitution) 

is highly pressure-sensitive (see Bousquet et al. 2008, and references therein). Maximum Si-contents 

for white mica associated with Fe-Mg carpholite vary between 3.30-3.40 Si p.f.u, whereas retrograde 
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phengite associated with chlorite replacing former carpholite cluster around 3.15-3.25 Si p.f.u (see Fig. 

4.3a). The investigated phengites show a significantly lower interlayer content in the order of 0.90-0.65 

p.f.u, generally attributed to the incorporation of a pyrophyllite component and resulting in vacancies in 

the interlayer (Vidal & Parra 2000; Bousquet et al. 2002; Parra et al. 2002a; Fig. 4.3a). Such incorpora-

tion of pyrophyllite leads to compositions of white mica that plot to the right of the celadonite to musco-

vite “perfect Tschermak substitution” as shown in the celadonite-pyrophyllite-muscovite triangle (Fig. 

4.3a). Hence, as is typical for low-grade HP/LT metasedimentary rocks, the composition of white mica 

depends on both the pyrophyllite content and Tschermak substitutions, as is shown by large deviations 

from the ideal Tschermak substitution in the celadonite-muscovite-pyrophyllite compositional space 

(Bousquet et al. 2002; Parra et al. 2002a; Fig. 4.3a).

Fresh Fe-Mg carpholite is only found in the Engadine window (Bousquet et al. 1998 and 2002), 

such carpholite occurrences yielded the samples AlpTea 638A and FOT 937 (see Tab. 4.1; Fig. 4.1c). 

Both samples contain large amounts of well-preserved carpholite trapped in quartz of syn-metamorphic 

quartz-calcite veins. Most of the white mica is associated with chlorite forming needle-shaped aggre-

gates that partially or completely replace Fe-Mg carpholite crystals. Hence, white mica found inside 

such pseudomorphs after carpholite are unambiguously related to the retrograde evolution. But addition-

ally, some rare white mica flakes were found to be closely associated with carpholite, precluding a retro-

grade formation because the surrounding quartz grain did not recrystallize into subgrains after trapping 

of carpholite and phengite. Hence, such isolated white mica can be related to HP/LT conditions and most 

likely represent a relic of peak-pressure white mica (see also Bousquet et al. 1998). The coexistence of 

retrograde phengite with relics of peak-pressure phengite is also documented by the significant chemical 

variations found in the Engadine window (Fig. 4.3a).

Further to the west, Fe-Mg carpholite is considerably less well preserved. In general it is partially 

or completely replaced by white mica and chlorite, and only some relics of carpholite could be found as 

quartz-hosted, hair-like fibres (Bousquet et al. 2002; Wiederkehr et al. 2008). Sample SAF 0527 (Tab. 

4.1; Fig. 4.1b) from the northern Safiental is similar to the samples from the Engadine window in that it 

shows the same textural features described above. However, a considerably stronger retrogression is ob-

served in SAF 0527, as is documented by recrystallization of the surrounding quartz into subgrains; also 

tiny relics of carpholite and associated white mica are only found locally in older grains that escaped 

recrystallization. Again, needle-shaped aggregates of white mica and chlorite, interpreted as pseudo-

morphs after carpholite, are found to completely replace Fe-Mg carpholite. The chemical composition 

of the investigated phengites is significantly more homogeneous than in the Engadine window; Si-con-

tents are between 3.20-3.35 p.f.u and an interlayer content of 0.75-0.85 p.f.u is determined (Fig. 4.3a).

Sample VAL 0580, collected in the eastern area of Valsertal (Tab. 4.1; Fig. 4.1b) is totally differ-

ent from the above described investigated samples. It is characterized by large areas consisting of white 

mica and chlorite, oriented parallel to the main foliation surrounding several relic quartz grains within 

which tiny fibres of carpholite are still preserved. The chemical composition of the white mica is rather 

uniform, showing a maximum Si-content of 3.20-3.25 p.f.u and an interlayer content between 0.75-0.85 

p.f.u (Fig. 4.3a). This rather uniform white mica composition points towards a pervasive retrogression 

and associated recrystallization of the earlier HP/LT stage.
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In summary white mica may occur within at least the following three texturally distinguishable 

associations:

(1) Completely isolated white mica flakes entrapped in quartz grains that also contain preserved relics 

of Fe-Mg carpholite, indicating that both white mica and carpholite formed under the same condi-

tions, i.e. during HP/LT metamorphism.

(2) White mica intimately associated with chlorite, forming needle-shaped aggregates entrapped in 

quartz grains, replacing Fe-Mg carpholite. Such mineral associations combined with their char-

acteristic needle-shaped habit are interpreted to represent pseudomorphs after carpholite and are 

therefore related to the retrograde metamorphic evolution, i.e. they formed during decompression 

immediately after the peak-pressure stage.

(3) White mica associated with chlorite, oriented parallel to the main foliation, forming large irregular 

shaped areas surrounding tiny quartz grains that may still contain some relics of Fe-Mg carpholite. 

This type of white mica was analyzed only in the case of sample VAL 0580.

4.4.2. Biotite
Biotite was only found in the south-west (southern Lukmanier and Pizzo Molare areas; Fig. 4.1b) 

where the Barrovian overprint reached lower/middle amphibolite facies conditions. A total of eight sam-

ples were selected for 40Ar/39Ar investigations, sample DOT 043A has been investigated using both step-

wise-heating and in situ laser-probe dating (see Tab. 4.1 and Fig. 4.1b). Except for sample MOL 055, 

all investigated biotite samples are characterized by a rather uniform chemical composition clustering 

around intermediate XMg values slightly shifted towards phlogopite (Fig. 4.3b). Sample LUZ 0445 is 

significantly shifted away from this cluster and shows a slightly higher Mg-content. Sample MOL 055 

is characterized by an Mg-content that almost represents phlogopite (Fig. 4.3b). Within a given sample 

the chemical composition of biotite was rather homogeneous, within core and rim of a given grain as 

well as between different grains. This low variation in chemical composition supports the interpretation 

that biotite formed as the result of a single metamorphic event, i.e. Barrow-type thermal overprint. This 

contrasts with the wide range of chemical composition in the investigated white micas that indicates the 

co-existence of several generations of white mica reflecting various stages established along the early 

metamorphic evolution, i.e. during the subduction-related HP/LT event and subsequent decompression, 

including greenschist facies overprint.

Biotite generally occurs as big flakes, up to a few mm in size, oriented parallel or across the main 

foliation. Particularly, the widespread occurrences of biotite that grew across the main foliation (so-

called “Querbiotit”) document late-stage (post-D3) formation. Seven investigated biotite samples were 

collected from Valaisan-derived calcschists that are generally characterized by the mineral assemblage 

biotite - plagioclase - zoisite/clinozoisite - phengite - quartz - calcite/dolomite ± chlorite ± titanite. Only 

sample MOL 054 from a staurolite - kyanite - garnet bearing micaschist, belonging to metasedimenta-

ry cover units of the distal European margin, shows a completely different mineralogical composition 

(Tab. 4.1 & Fig. 4.1b). Although all biotite samples were carefully selected and checked for freshness 

to avoid problems resulting from retrogression and alteration, chloritization of biotite is present in all 

investigated samples and includes chlorite lamellae within biotite (see also Allaz, 2008). To reduce the 

influence of chloritization as much as possible, the grain separates were purified with careful check by 

hand picking. Furthermore, the rock sections were investigated under the SEM prior to in situ 40Ar/39Ar 

laser-probe dating.
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4.5. Results of the 40Ar/39Ar measurements
We first present the results of in situ laser-probe experiments on white mica and biotite, followed 

by the results of step-wise heating investigations on biotite. All recorded in situ ages are depicted on 

SEM images in Figurs 4.4, 4.5 and 4.6, allowing for identification of the relationships between apparent 

ages and the location of the dated crystal domains in the microstructural context. All the results of the 

in situ laser-probe experiments and the step-wise heating experiments are listed in Tables 4.2, 4.3 and 

4.4, respectively.

4.5.1. In situ 40Ar/39Ar UV laser-probe ages on white mica

Samples AlpTea 638A and FOT 937 (Engadine window)

Sample AlpTea 638A (Fig. 4.4a) contains a large, irregularly shaped aggregate consisting of white 

mica and chlorite, as well as numerous tiny and isolated carpholite needles and phengite flakes in the 

Run ID 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar
36Ar/39Ar

(x10-3)

40Ar*

(%)
40Ar*/39ArK

Age (Ma)

± 1σ

Sample AlpTea 938A (J=0.001973)

U0800601 14.111 ± 0.157 0.015 ± 0.002 0.017 ± 0.033 19.256 ± 2.357 59.7 8.423 ± 0.710 29.7 ± 2.5

U0800605 32.281 ± 0.162 0.033 ± 0.001 0.016 ± 0.028 76.289 ± 1.694 30.2 9.739 ± 0.511 34.3 ± 1.8

U0800607 16.485 ± 0.163 0.017 ± 0.002 0.024 ± 0.037 24.517 ± 2.692 56.1 9.244 ± 0.810 32.6 ± 2.8

U0800608 68.080 ± 0.790 0.052 ± 0.004 0.082 ± 0.149 189.919 ± 6.376 17.6 11.970 ± 1.853 42.1 ± 6.4

U0800609 43.290 ± 1.096 0.032 ± 0.007 0.066 ± 0.054 106.550 ± 6.818 27.3 11.814 ± 1.944 41.6 ± 6.8

U0800610 20.840 ± 0.303 0.023 ± 0.003 0.033 ± 0.049 34.133 ± 2.679 51.6 10.758 ± 0.828 37.9 ± 2.9

U0800611 21.801 ± 0.208 0.027 ± 0.002 0.019 ± 0.017 39.945 ± 2.169 45.9 9.999 ± 0.662 35.2 ± 2.3

U0800612 32.100 ± 0.334 0.035 ± 0.005 0.033 ± 0.026 73.027 ± 3.892 32.8 10.525 ± 1.164 37.1 ± 4.1

U0800613 33.619 ± 0.359 0.033 ± 0.004 0.015 ± 0.058 81.810 ± 3.056 28.1 9.446 ± 0.928 33.3 ± 3.2

U0800614 12.117 ± 0.138 0.016 ± 0.002 0.013 ± 0.022 13.083 ± 1.340 68.1 8.252 ± 0.409 29.1 ± 1.4

U0800615 12.519 ± 0.114 0.017 ± 0.002 0.010 ± 0.021 11.437 ± 1.521 73.0 9.141 ± 0.460 32.2 ± 1.6

U0800616 26.911 ± 0.339 0.028 ± 0.004 0.040 ± 0.061 50.990 ± 4.273 44.0 11.848 ± 1.264 41.7 ± 4.4

U0800617 15.617 ± 0.177 0.022 ± 0.003 0.036 ± 0.052 20.616 ± 4.788 61.0 9.530 ± 1.421 33.6 ± 5.0

U0800618 18.063 ± 0.188 0.024 ± 0.004 0.040 ± 0.057 28.368 ± 5.315 53.6 9.685 ± 1.575 34.1 ± 5.5

U0800619 40.272 ± 0.737 0.038 ± 0.006 0.068 ± 0.089 94.320 ± 8.685 30.8 12.409 ± 2.547 43.6 ± 8.9

U0800620 31.637 ± 0.546 0.029 ± 0.006 0.050 ± 0.056 70.599 ± 6.025 34.1 10.782 ± 1.767 38.0 ± 6.2

U0800621 19.130 ± 0.384 0.022 ± 0.005 0.054 ± 0.078 24.008 ± 4.563 62.9 12.043 ± 1.370 42.4 ± 4.8

U0800622 15.692 ± 0.164 0.020 ± 0.002 0.025 ± 0.040 23.223 ± 2.218 56.3 8.832 ± 0.665 31.2 ± 2.3

U0800623 16.055 ± 0.244 0.020 ± 0.003 0.087 ± 0.075 19.824 ± 4.129 63.6 10.208 ± 1.234 36.0 ± 4.3

U0800624 16.647 ± 0.297 0.017 ± 0.005 0.036 ± 0.058 25.787 ± 4.780 54.3 9.031 ± 1.426 31.9 ± 5.0

U0800627 18.363 ± 0.176 0.028 ± 0.004 0.088 ± 0.076 21.714 ± 4.839 65.1 11.958 ± 1.437 42.1 ± 5.0

U0800628 15.336 ± 0.158 0.021 ± 0.003 0.097 ± 0.034 20.424 ± 2.647 60.7 9.314 ± 0.790 32.9 ± 2.8

U0800629 22.969 ± 0.343 0.033 ± 0.004 0.135 ± 0.070 43.048 ± 6.389 44.7 10.266 ± 1.908 36.2 ± 6.7

Sample FOT 937 (J=0.001975)

U0800801 16.184 ± 0.090 0.024 ± 0.001 0.029 ± 0.036 27.097 ± 1.308 50.5 8.181 ± 0.392 28.9 ± 1.4

U0800802 15.167 ± 0.114 0.021 ± 0.002 0.002 ± 0.030 21.652 ± 1.674 57.8 8.769 ± 0.500 31.0 ± 1.8

U0800804 23.329 ± 0.155 0.027 ± 0.002 0.014 ± 0.038 50.705 ± 1.796 35.8 8.348 ± 0.535 29.5 ± 1.9

U0800805 19.363 ± 0.170 0.024 ± 0.003 0.025 ± 0.034 35.608 ± 1.779 45.7 8.844 ± 0.535 31.2 ± 1.9

U0800809 21.225 ± 0.368 0.025 ± 0.004 0.048 ± 0.084 31.689 ± 4.310 55.9 11.867 ± 1.312 41.8 ± 4.6

U0800810 18.752 ± 0.195 0.023 ± 0.002 0.016 ± 0.054 34.102 ± 3.407 46.3 8.677 ± 1.018 30.7 ± 3.6

U0800811 17.367 ± 0.353 0.028 ± 0.004 0.059 ± 0.046 27.408 ± 4.410 53.4 9.276 ± 1.344 32.8 ± 4.7

U0800814 19.031 ± 0.441 0.025 ± 0.003 0.032 ± 0.082 30.478 ± 2.810 52.7 10.029 ± 0.909 35.4 ± 3.2

U0800816 20.978 ± 0.553 0.014 ± 0.004 0.061 ± 0.081 32.280 ± 3.751 54.6 11.448 ± 1.218 40.3 ± 4.2

U0800817 21.529 ± 0.700 0.025 ± 0.004 0.069 ± 0.118 31.118 ± 7.397 57.3 12.343 ± 2.282 43.5 ± 7.9

U0800818 20.241 ± 0.666 0.025 ± 0.003 0.078 ± 0.145 24.457 ± 4.547 64.3 13.025 ± 1.453 45.8 ± 5.1

Sample SAF 0527 (J=0.001970)

U0801102 60.570 ± 0.809 0.049 ± 0.003 0.041 ± 0.083 161.195 ± 3.709 21.4 12.943 ± 0.948 45.4 ± 3.3

U0801103 15.866 ± 0.113 0.019 ± 0.001 0.009 ± 0.021 21.764 ± 0.997 59.5 9.436 ± 0.304 33.2 ± 1.1

U0801104 20.927 ± 0.325 0.025 ± 0.003 0.040 ± 0.048 39.721 ± 3.601 43.9 9.195 ± 1.083 32.4 ± 3.8

U0801105 11.371 ± 0.139 0.020 ± 0.002 0.013 ± 0.020 9.046 ± 1.535 76.5 8.699 ± 0.468 30.7 ± 1.6

U0801106 29.132 ± 0.222 0.031 ± 0.002 0.004 ± 0.024 72.585 ± 1.759 26.4 7.684 ± 0.501 27.1 ± 1.8

U0801107 12.044 ± 0.076 0.018 ± 0.001 0.011 ± 0.015 11.161 ± 1.536 72.6 8.748 ± 0.459 30.8 ± 1.6

U0801108 22.386 ± 0.172 0.026 ± 0.002 0.055 ± 0.044 42.639 ± 2.801 43.7 9.794 ± 0.830 34.5 ± 2.9

U0801109 14.647 ± 0.102 0.016 ± 0.001 0.013 ± 0.012 16.143 ± 1.273 67.4 9.878 ± 0.383 34.8 ± 1.3

U0801110 11.712 ± 0.204 0.019 ± 0.001 0.004 ± 0.035 6.744 ± 1.520 83.0 9.720 ± 0.488 34.2 ± 1.7

U0801111 26.547 ± 0.326 0.026 ± 0.002 0.072 ± 0.049 49.810 ± 3.747 44.6 11.838 ± 1.136 41.6 ± 3.9

U0801112 19.664 ± 0.653 0.022 ± 0.006 0.010 ± 0.094 36.014 ± 8.196 45.9 9.023 ± 2.500 31.8 ± 8.7

Sample VAL 0580 (J=0.001959)

U0801001 9.325 ± 0.085 0.019 ± 0.001 0.012 ± 0.016 6.254 ± 1.192 80.2 7.479 ± 0.361 26.4 ± 1.3

U0801002 8.875 ± 0.081 0.018 ± 0.001 0.004 ± 0.014 6.132 ± 0.882 79.6 7.063 ± 0.271 24.9 ± 1.0

U0801003 10.305 ± 0.084 0.018 ± 0.002 0.002 ± 0.026 9.462 ± 0.970 72.9 7.509 ± 0.296 26.5 ± 1.0

U0801004 10.541 ± 0.279 0.021 ± 0.002 0.011 ± 0.022 13.402 ± 1.395 62.4 6.582 ± 0.484 23.2 ± 1.7

U0801005 9.962 ± 0.113 0.019 ± 0.001 0.002 ± 0.035 8.775 ± 1.564 74.0 7.370 ± 0.474 26.0 ± 1.7

U0801006 8.963 ± 0.208 0.018 ± 0.001 0.012 ± 0.014 6.541 ± 0.682 78.5 7.032 ± 0.282 24.8 ± 1.0

U0801007 9.345 ± 0.183 0.016 ± 0.001 0.009 ± 0.014 7.150 ± 1.199 77.4 7.233 ± 0.394 25.5 ± 1.4

U0801008 10.417 ± 0.412 0.016 ± 0.003 0.039 ± 0.076 7.919 ± 4.411 77.6 8.082 ± 1.363 28.5 ± 4.8

Table 4.2: Full results of white mica 40Ar/39Ar in situ UV laser probe analysis. Uncertainties are given in 1σ, error on single 
ages does not include the uncertainty in the J value.
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immediate vicinity (Figs. 4.4b, d & e). The microstructure of sample FOT 937 is dominated by numer-

ous needle-shaped phengite-chlorite aggregates, replacing former Fe-Mg carpholite crystals (Figs. 4.4f, 

g & h) and interpreted as pseudomorphs after carpholite. The white mica in both samples yield ages that 

scatter between 45.82 ± 5.05 and 28.92 ± 1.38 Ma (Fig. 4.4, Tab. 4.2). Phengite that is closely associated 

with chlorite yields rather precise and consistent ages in the time interval 32.25 - 29.14 Ma in the case 

of sample AlpTea 638A (Fig. 4.4c), and between 31.24 - 28.92 Ma in the case of sample FOT 937 (Fig. 

4.4g). However, it was found that tiny phengite flakes, more or less isolated and entrapped in quartz, 

yield older ages between 43.64 ± 8.85 and 37.08 ± 4.06 Ma (Figs. 4.4b, d & e). Ages around 40 Ma or 

more were also recorded within a minor portion of domains that are well inside or close to phengite-

chlorite aggregates (Figs. 4.4b & d), as well as inside chlorite-phengite associations that are interpreted 

to have replaced carpholite (Fig. 4.4h). An intermediate range of ages was found inside phengite-chlorite 

assemblages (Figs. 4.4b, d, e & h), scattering between 36.18 and 32.75 Ma, i.e. an age range bracketed 

by the pre-40 Ma ages and the well-defined age population around 30 Ma.

Sample SAF 0527 (Safiental)

The microstructure of sample SAF 0527 is characterized by an irregularly shaped aggregate of 

white mica and chlorite fully entrapped in quartz. Phengite occurs as flower-like nuclei or as numerous 

tiny flakes (Figs. 4.5a & b). In some places white mica is intimately associated with chlorite. In the im-

mediate vicinity numerous tiny quartz-hosted relics of carpholite needles also occur, being significantly 

less frequent and generally less preserved in comparison to the samples from the Engadine window. 

However, the recorded 40Ar/39Ar ages fall into exactly the same range as those from the Engadine win-

dow. They scatter between 45.42 ± 3.29 and 27.10 ± 1.76 Ma, most ages being found within the 35-31 

Ma time interval (Fig. 4.5b, Tab. 4.2). No obvious trend between the obtained ages and their location in 

the microstructure is possible.

Sample VAL 0580 (Valsertal)

A completely different microstructure compared to the samples form the Engadine window and 

Safiental characterizes sample VAL 0580 (Fig. 4.5c). White mica occurs as large aggregates oriented 

parallel to the main foliation and is intimately associated with chlorite; carpholite is only found as tiny 

quartz-hosted needles and restricted to relic quartz grains which are dispersedly distributed within the 

main foliation. The 40Ar/39Ar ages are well defined and consistently between 28.45 ± 4.76 and 23.21 ± 

1.70 Ma (Fig. 4.5d, Tab. 4.2), the weighted average age yields 25.40 ± 0.45 Ma. Hence, significantly 

lower ages are found in sample VAL 0580 compared to the other samples described before. Moreover, 

such uniform and consistent ages point towards the presence of one distinct generation of phengite (see 

later discussion).

4.5.2. In situ 40Ar/39Ar UV laser-probe ages of biotite
The results from four biotite-bearing samples investigated by the in situ 40Ar/39Ar UV laser-probe 

dating technique will be briefly presented in order of increasing temperatures related to Barrovian over-

Fig. 4.4: SEM back-scattered electron photomicrographs of carpholite-bearing synmetamorphic quartz-calcite segregations 
and location of the domains analyzed by laser ablation in white mica. Errors are 1σ and do not include the uncertainty in the J 
value. Mineral abbreviations used: Qtz = quartz, WM = white mica, Chl = chlorite, Cp = Fe-Mg carpholite. (a) Overview of the 
characteristic microstructure of sample AlpTea 638A; dashed lines denote outlines of Figs. b, c and d. (b) – (e) Indicate the loca-
tions of traces ablated during laser experiments as well as the obtained apparent ages on white mica in sample AlpTea 638A. (f) 
Overview of the microstructure of sample FOT 937; dashed lines denote outlines of Figs. (g) and (h) that indicate the locations 
of traces ablated during laser experiments as well as the obtained apparent ages on white mica in sample FOT 937.



84

Chapter 4

Qtz

WM

Chl

Qtz

WM

Chl

Czo

Fsp

Bt

Czo

Qtz WM

Bt

41.59 ± 3.95

45.42 ± 3.29

33.23 ± 1.07

32.39 ± 3.78

30.66 ± 1.64

27.10 ± 1.76

31.79 ± 8.73

34.22 ± 1.71

30.82 ± 1.61

34.48 ± 2.9034.77 ± 1.34

24.78 ± 0.99 23.21 ± 1.70 26.45 ± 1.04

25.96 ± 1.66

24.89 ± 0.95

28.45 ± 4.76

26.35 ± 1.27

25.49 ± 1.38

15.65 ± 1.82 20.87 ± 3.35

14.56 ± 1.48

17.26 ± 1.85

16.57 ± 4.25

14.91 ± 5.03

23.27 ± 3.55

15.01 ± 3.10

14.17 ± 2.43

15.46 ± 1.77
19.11 ± 1.06

18.39 ± 2.83

21.08 ± 1.27

17.57 ± 1.28

15.64 ± 0.93
19.69 ± 1.24

14.57 ± 0.86

15.62 ± 1.27

17.28 ± 0.80

20.56 ± 1.71

17.10 ± 0.93 17.29 ± 1.18

14.84 ± 1.74

18.76 ± 3.90

19.21 ± 1.51

15.05 ± 4.34

b

d

f

h

a b

c d

e f

g h

SAF 0527 SAF 0527

VAL 0580 VAL 0580

LUZ 0445 LUZ 0445

LUZ 0445 DOT 053A



85

Chapter 4

print. The four samples occur between a location coinciding with the first biotite occurrence in Val Luz-

zone (LUZ 0445) and the maximum temperature area around Pizzo Molare (MOL 055; Fig. 4.1b, Tab. 

4.1).  All investigated biotite grains were very much larger compared to the analyzed white micas, which 

allows for numerous single spot analyses per grain. Hence, the measured biotite ages typically represent 

Fig. 4.5: SEM back-scattered electron photomicrographs of investigated white mica- and biotite-bearing samples and loca-
tion of the domains analyzed by laser ablation in white mica or biotite. Errors are 1σ and do not include the uncertainty in the 
J value. Mineral abbreviations used: Qtz = quartz, WM = white mica, Chl = chlorite, Bt = biotite, Czo = clinozoisite, Fsp = 
feldspar (plagioclase). (a) Overview of the microstructure of sample SAF 0527; dashed lines denote outlines of figure (b) that 
provides microstructural details of the same sample, indicates the location of the traces ablated during laser experiments and 
provides the apparent ages obtained on white mica. (c) General overview of the microstructure of sample VAL 0580; note the 
significantly different microstructure compared to the other mica samples, phengite and chlorite being oriented parallel to the 
main foliation. Dashed lines denote outlines of (d) providing microstructural details within sample VAL 0580 and indicating the 
location of ablated points or traces and apparent ages obtained for white mica. (e) General overview of the microstructure of 
sample LUZ 0445 within which biotite grains were investigated; dashed lines denote outlines of (f) and (g) that provide details 
of the microstructure of sample LUZ 0445 and indicate the location of ablated points or traces and apparent ages obtained for 
biotite. (h) Biotite flake growing across the main foliation (“Querbiotit”) in sample DOT 053A and location of ablated points 
and apparent ages obtained for biotite.

Run ID 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar
36Ar/39Ar

(x10-3)

40Ar*

(%)
40Ar*/39ArK

Age (Ma)

± 1σ

Sample LUZ 0450 (J=0.001984)

U0800408 28.281 ± 0.357 0.028 ± 0.002 0.011 ± 0.016 81.890 ± 1.370 14.4 4.084 ± 0.417 14.6 ± 1.5

U0800409 45.208 ± 0.421 0.046 ± 0.004 0.163 ± 0.059 133.209 ± 3.265 13.0 5.866 ± 0.947 20.9 ± 3.4

U0800410 17.502 ± 0.212 0.026 ± 0.002 0.093 ± 0.041 45.023 ± 2.906 24.1 4.210 ± 0.874 15.0 ± 3.1

U0800411 19.259 ± 0.219 0.028 ± 0.001 0.004 ± 0.040 51.722 ± 2.270 20.6 3.976 ± 0.684 14.2 ± 2.4

U0800412 21.240 ± 0.307 0.025 ± 0.002 0.105 ± 0.054 56.186 ± 4.332 21.9 4.651 ± 1.274 16.6 ± 4.5

U0800414 32.043 ± 0.475 0.030 ± 0.002 0.003 ± 0.031 86.290 ± 3.335 20.4 6.544 ± 1.005 23.3 ± 3.6

U0800415 44.170 ± 0.501 0.040 ± 0.003 0.036 ± 0.074 135.338 ± 4.710 9.5 4.183 ± 1.417 14.9 ± 5.0

U0800417 37.025 ± 0.316 0.035 ± 0.001 0.009 ± 0.038 107.824 ± 2.636 13.9 5.164 ± 0.799 18.4 ± 2.8

U0800418 21.184 ± 0.153 0.025 ± 0.002 0.008 ± 0.028 57.010 ± 1.706 20.5 4.339 ± 0.498 15.5 ± 1.8

U0800419 17.210 ± 0.152 0.026 ± 0.002 0.008 ± 0.014 41.847 ± 1.737 28.2 4.845 ± 0.522 17.3 ± 1.9

U0800420 21.047 ± 0.157 0.028 ± 0.001 0.068 ± 0.017 53.091 ± 0.968 25.5 5.368 ± 0.300 19.1 ± 1.1

U0800422 105.072 ± 0.525 0.086 ± 0.002 0.004 ± 0.024 340.717 ± 2.181 4.2 4.391 ± 0.513 15.6 ± 1.8

Sample DOT 053A (J=0.001987)

U0801401 26.260 ± 0.390 0.034 ± 0.003 0.041 ± 0.036 71.086 ± 3.815 20.0 5.259 ± 1.100 18.8 ± 3.9

U0801402 32.084 ± 0.302 0.041 ± 0.004 0.083 ± 0.045 94.347 ± 4.177 13.1 4.215 ± 1.222 15.0 ± 4.3

U0801403 14.514 ± 0.104 0.025 ± 0.002 0.014 ± 0.014 30.891 ± 1.411 37.1 5.388 ± 0.425 19.2 ± 1.5

U0801404 14.141 ± 0.502 0.027 ± 0.001 0.005 ± 0.005 33.789 ± 1.178 29.4 4.157 ± 0.490 14.8 ± 1.7

U0801405 17.886 ± 0.133 0.028 ± 0.001 0.000 ± 0.006 43.858 ± 1.192 27.5 4.926 ± 0.359 17.6 ± 1.3

U0801406 19.428 ± 0.129 0.030 ± 0.001 0.021 ± 0.006 49.533 ± 0.864 24.7 4.793 ± 0.262 17.1 ± 0.9

U0801407 18.740 ± 0.138 0.029 ± 0.001 0.006 ± 0.009 47.013 ± 1.102 25.9 4.848 ± 0.333 17.3 ± 1.2

U0801408 40.382 ± 0.201 0.043 ± 0.001 0.180 ± 0.021 117.210 ± 1.672 14.3 5.769 ± 0.481 20.6 ± 1.7

U0801409 35.122 ± 0.118 0.039 ± 0.001 0.055 ± 0.012 98.867 ± 1.227 16.8 5.914 ± 0.359 21.1 ± 1.3

U0801410 26.006 ± 0.099 0.036 ± 0.001 0.007 ± 0.007 69.320 ± 1.197 21.2 5.522 ± 0.350 19.7 ± 1.2

U0801411 13.663 ± 0.160 0.024 ± 0.001 0.049 ± 0.008 29.865 ± 0.674 35.5 4.844 ± 0.225 17.3 ± 0.8

U0801412 67.729 ± 0.229 0.061 ± 0.001 0.022 ± 0.005 214.399 ± 1.222 6.5 4.377 ± 0.357 15.6 ± 1.3

U0801413 18.711 ± 0.112 0.028 ± 0.001 0.013 ± 0.015 49.518 ± 0.780 21.8 4.080 ± 0.240 14.6 ± 0.9

U0801414 40.563 ± 0.191 0.045 ± 0.001 0.005 ± 0.008 122.446 ± 0.998 10.8 4.381 ± 0.261 15.6 ± 0.9

Sample GRU 057 (J=0.001982)

U0800423 16.203 ± 0.189 0.025 ± 0.003 4.031 ± 0.112 46.681 ± 4.403 18.0 2.922 ± 1.314 10.4 ± 4.7

U0800501 19.220 ± 0.193 0.027 ± 0.004 0.807 ± 0.099 55.037 ± 5.047 15.9 3.059 ± 1.497 10.9 ± 5.3

U0800506 14.118 ± 0.104 0.027 ± 0.003 0.413 ± 0.048 31.101 ± 2.117 35.3 4.981 ± 0.629 17.7 ± 2.2

U0800509 59.368 ± 0.923 0.048 ± 0.004 0.512 ± 0.077 183.229 ± 5.137 8.9 5.290 1.308 18.8 ± 4.6

U0800512 32.720 ± 0.358 0.033 ± 0.003 0.713 ± 0.079 95.548 ± 3.578 14.0 4.577 1.051 16.3 ± 3.7

U0800514 36.416 ± 0.388 0.032 ± 0.002 0.302 ± 0.058 108.078 ± 2.784 12.4 4.518 0.807 16.1 ± 2.9

U0800516 47.245 ± 0.540 0.052 ± 0.006 5.407 ± 0.153 146.988 ± 5.069 9.5 4.507 1.449 16.0 ± 5.1

U0800518 21.730 ± 0.154 0.024 ± 0.003 1.974 ± 0.134 57.416 ± 3.090 23.1 5.019 0.918 17.9 ± 3.3

U0800519 27.970 ± 0.297 0.029 ± 0.004 2.521 ± 0.162 80.772 ± 4.350 15.8 4.427 1.297 15.8 ± 4.6

U0800520 26.896 ± 0.505 0.033 ± 0.006 5.691 ± 0.337 76.632 ± 6.459 18.4 4.987 ± 1.923 17.7 ± 6.8

U0800521 16.096 ± 0.271 0.022 ± 0.003 0.469 ± 0.076 43.933 ± 2.590 19.7 3.174 ± 0.776 11.3 ± 2.8

U0800522 27.070 ± 0.288 0.024 ± 0.002 1.497 ± 0.081 77.285 ± 4.495 16.3 4.426 ± 1.335 15.8 ± 4.7

U0800526 28.451 ± 0.543 0.041 ± 0.004 3.301 ± 0.123 79.388 ± 3.095 19.0 5.420 ± 0.854 19.3 ± 3.0

U0800527 22.738 ± 0.378 0.031 ± 0.006 3.287 ± 0.114 61.476 ± 3.441 21.9 4.997 ± 1.055 17.8 ± 3.7

U0800530 49.798 ± 0.662 0.045 ± 0.002 1.052 ± 0.054 151.435 ± 4.707 10.4 5.185 ± 1.274 18.4 ± 4.5

U0801111 67.431 ± 0.511 0.057 ± 0.004 2.689 ± 0.161 217.685 ± 6.163 5.1 3.449 ± 1.792 12.3 ± 6.4

U0801112 32.932 ± 0.330 0.038 ± 0.006 2.216 ± 0.242 98.579 ± 5.533 12.4 4.086 ± 1.654 14.6 ± 5.9

Sample MOL 055 (J=0.001980)

U0801302 11.432 ± 0.214 0.026 ± 0.002 0.030 ± 0.058 19.178 ± 3.209 50.5 5.769 ± 0.958 20.5 ± 3.4

U0801303 25.711 ± 0.352 0.027 ± 0.003 0.038 ± 0.056 70.910 ± 3.824 18.5 4.762 ± 1.126 16.9 ± 4.0

U0801304 16.672 ± 0.249 0.026 ± 0.002 0.088 ± 0.040 38.893 ± 3.999 31.1 5.190 ± 1.197 18.4 ± 4.2

U0801305 16.077 ± 0.303 0.025 ± 0.003 0.247 ± 0.082 38.409 ± 5.093 29.6 4.759 ± 1.512 16.9 ± 5.4

U0801306 16.248 ± 0.367 0.027 ± 0.003 0.266 ± 0.090 33.941 ± 7.792 38.5 6.253 ± 2.317 22.2 ± 8.2

U0801307 22.191 ± 0.588 0.031 ± 0.006 0.057 ± 0.116 55.736 ± 8.440 25.8 5.729 ± 2.513 20.3 ± 8.9

U0801308 17.161 ± 0.432 0.031 ± 0.005 0.399 ± 0.097 41.457 ± 9.153 28.9 4.962 ± 2.723 17.6 ± 9.6

U0801309 21.317 ± 0.383 0.032 ± 0.004 0.069 ± 0.171 58.324 ± 5.714 19.2 4.091 ± 1.713 14.6 ± 6.1

U0801310 14.616 ± 0.329 0.017 ± 0.004 0.058 ± 0.186 33.662 ± 5.053 32.0 4.676 ± 1.507 16.6 ± 5.3

U0801311 10.646 ± 0.144 0.022 ± 0.002 0.168 ± 0.105 18.222 ± 3.140 49.6 5.283 ± 0.934 18.8 ± 3.3

Table 4.3: Full results of biotite 40Ar/39Ar in situ UV laser step-wise heating analysis. Uncertainties are given in 1σ, error on 
single ages does not include the uncertainty in the J value.
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single grain ages. Nevertheless, larger areas were occasionally ablated along profiles in order to enhance 

the amount of gas.

In sample LUZ 0445 biotite grains or aggregates are found completely contained within large pla-

gioclase porphyroblasts (Fig. 4.5e). Plagioclase also encloses numerous zoisite/clinozoisite grains and 

occasionally white mica. Typically, biotite, plagioclase and zoisite/clinozoisite are seen to have formed 

when temperatures increased during the late-stage Barrow-type thermal overprint (Wiederkehr et al. 

2008). All recorded biotite ages scatter between 23.27 ± 3.55 and 14.17 ± 2.43 Ma (Figs. 4.5e, f & g; 
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Fig. 4.6: SEM back-scattered electron photomicrographs of investigated biotite-bearing samples and location of the domains 
analyzed by laser ablation in biotite. Errors are 1σ and do not include the uncertainty in the J value. Mineral abbreviations used: 
Qtz = quartz, Bt = biotite, Cc = calcite, Do = dolomite. (a) – (e) Location of points and traces ablated and apparent ages ob-
tained within sample GRU 057. The dashed rectangles denote the positions of the details shown in (b) and (d), respectively. (f) 
Biotite flake in sample MOL 055 and locations of ablated points and apparent ages obtained for biotite.
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Tab. 4.3). No obvious correlation between age and microstructural position could be detected (Figs. 

4.5e, f & g). A weighted average age of 17.05 ± 0.59 Ma was calculated for this sample (see Fig. 4.7).

Within sample DOT 053A we investigated a ca. 2 mm long and 1 mm wide biotite grain that grew 

across the main foliation (typical “Querbiotit”; Fig. 4.5h). Given the large grain size the laser spot was 

opened up to a diameter of 150 μm. The obtained ages are bracket between 21.08 ± 1.27 and 14.57 ± 

0.86 Ma (Tab. 4.3). Older ages are generally found in the core of the grain and cluster between 21-17 

Ma; towards the rim the ages tend to be slightly younger and vary between 17-15 Ma (Fig. 4.5h). By in-

cluding all age data a weighted average age of 17.17 ± 0.32 Ma is calculated (Fig. 4.7).

Sample GRU 057 contains fine-grained biotite flakes that are oriented parallel to the only weakly 

developed main foliation and that are dispersedly distributed within a matrix mainly formed by cal-

cite/dolomite with some minor amount of quartz (Figs. 4.6a & c). Due to the relatively small grain size 

(around 100 μm) it was possible to obtain more than one age per grain only in rare cases. Also, the ex-

tracted amount of gas was significantly lower, which results in larger uncertainties. In comparison to 

the other investigated samples the recorded ages of GRU 057, representing a population of single grain 

ages, show a larger scatter; most ages cluster in the 18-16 Ma time interval (Figs. 4.6a-e, Tab. 4.3), the 

weighted average age is 16.11 ± 0.92 Ma (Fig. 4.7c).

Within sample MOL 055 a total of 10 ages was obtained from one single flake of biotite, approxi-

mately 0.75 mm long and 0.3 mm wide, embedded in a matrix consisting of quartz and calcite/dolomite 

(Fig. 4.6f). Since we used a small laser spot size, varying between 50-75 μm, only small amounts of gas 

were extracted which results in high uncertainties. The recorded ages between 22.20 ± 8.18 and 14.55 
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Fig. 4.7: Summary of apparent ages obtained on biotite by in situ laser-probe analyses and calculated cumulative probability 
curves. The resulting weighted average age is also denoted as grey bars; errors are 1σ and do not include the uncertainty in the 
J value. (a) Sample LUZ 0445. (b) Sample DOT 053A. (c) Sample GRU 057. (d) Sample MOL 055.
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± 6.07 Ma (Tab. 4.3) yield a weighted average age of 18.36 ± 1.52 Ma (Fig. 4.7). This is only slightly 

older compared to the weighted average ages of the other three samples studied. 

4.5.3. 40Ar/39Ar CO
2
 laser step-wise heating of biotite

The 40Ar/39Ar age spectra for biotite separated from five samples show rather simple and well-

developed plateaus that yield consistent ages between 17.27 and 15.48 Ma (Fig. 4.8, Tab. 4.4). Gener-

ally a significant plateau age is defined by (1) the occurrence of a series of adjacent steps that together 

Step
Laser

output
40Ar/39Ar 38Ar/39Ar 37Ar/39Ar

36Ar/39Ar

(x10-3)

40Ar*

(%)

39ArK

fr(%)
40Ar*/39ArK

Age (Ma)

± 1σ

Sample LUZ 0444 (J=0.001968)

1 1.2 17675.104 ± 909.449 12.0537 ± 0.6429 0.983 ± 1.475 60562.730 ± 3124.476 0.0 0.1 0.105 ± 71.473 0.4 ± 253.7

2 1.4 3256.322 ± 54.969 2.1516 ± 0.0403 0.259 ± 0.139 11206.461 ± 190.564 -1.7 0.4 -55.168 ± -8.161 -207.3 ± -32.5

3 1.6 403.998 ± 2.312 0.2765 ± 0.0049 0.017 ± 0.025 1375.101 ± 10.992 -0.6 1.7 -2.342 ± -2.371 -8.3 ± -8.5

4 1.8 102.561 ± 0.321 0.0855 ± 0.0007 0.003 ± 0.004 341.074 ± 1.668 1.7 11.2 1.774 ± 0.477 6.3 ± 1.7

5 2.0 26.702 ± 0.088 0.0327 ± 0.0003 0.001 ± 0.002 75.297 ± 0.358 16.7 25.7 4.451 ± 0.106 15.7 ± 0.4

6 2.2 10.835 ± 0.025 0.0231 ± 0.0001 0.005 ± 0.001 20.072 ± 0.121 45.3 22.7 4.904 ± 0.039 17.3 ± 0.2

7 2.4 9.190 ± 0.030 0.0221 ± 0.0001 0.011 ± 0.002 14.373 ± 0.075 53.8 10.8 4.944 ± 0.030 17.5 ± 0.1

8 2.8 7.720 ± 0.022 0.0213 ± 0.0001 0.016 ± 0.009 9.212 ± 0.089 64.8 14.7 5.000 ± 0.031 17.7 ± 0.1

9 3.2 6.764 ± 0.015 0.0216 ± 0.0002 0.024 ± 0.026 6.658 ± 0.069 71.0 9.2 4.799 ± 0.024 17.0 ± 0.1

10 3.6 6.097 ± 0.041 0.0203 ± 0.0003 0.046 ± 0.007 4.614 ± 0.151 77.7 2.5 4.739 ± 0.057 16.7 ± 0.2

11 4.0-4.4 6.752 ± 0.074 0.0214 ± 0.0011 0.361 ± 0.156 8.653 ± 0.463 62.8 0.6 4.241 ± 0.150 15.0 ± 0.5

12 4.8-5.2 11.831 ± 0.345 0.0289 ± 0.0041 0.678 ± 1.138 32.440 ± 4.791 19.7 0.1 2.331 ± 1.445 8.3 ± 5.1

13 6.0 10.793 ± 0.235 0.0317 ± 0.0023 1.049 ± 0.199 23.532 ± 2.013 36.8 0.2 3.974 ± 0.612 14.1 ± 2.2

Sample BLE 0513 (J=0.001976)

1 1.2 43727.734 ± 526.768 29.2058 ± 0.4093 1.500 ± 1.104 154713.189 ± 1866.944 0.0 0.0 0.270 ± 55.363 1.0 ± 197.3

2 1.4 7165.997 ± 68.998 4.7195 ± 0.0635 0.270 ± 0.198 24835.872 ± 241.040 -2.4 0.3 -173.011 ± -9.624 -754.7 ± -52.3

3 1.6 423.712 ± 2.601 0.2830 ± 0.0038 0.050 ± 0.037 1441.461 ± 9.752 -0.5 1.4 -2.234 ± -1.263 -8.0 ± -4.5

4 1.8 97.399 ± 0.185 0.0760 ± 0.0006 0.039 ± 0.041 314.990 ± 0.949 4.4 6.5 4.325 ± 0.241 15.4 ± 0.9

5 2.0 35.691 ± 0.063 0.0388 ± 0.0002 0.009 ± 0.001 109.182 ± 0.330 9.6 14.3 3.429 ± 0.097 12.2 ± 0.3

6 2.2 20.221 ± 0.057 0.0290 ± 0.0002 0.010 ± 0.001 55.018 ± 0.200 19.6 13.3 3.964 ± 0.061 14.1 ± 0.2

7 2.4 14.856 ± 0.048 0.0250 ± 0.0002 0.012 ± 0.002 35.784 ± 0.223 28.8 10.8 4.284 ± 0.070 15.2 ± 0.3

8 2.6 11.009 ± 0.021 0.0230 ± 0.0002 0.011 ± 0.002 22.479 ± 0.097 39.7 11.8 4.367 ± 0.030 15.5 ± 0.1

9 2.8 10.898 ± 0.031 0.0225 ± 0.0001 0.011 ± 0.002 22.248 ± 0.135 39.7 11.5 4.326 ± 0.045 15.4 ± 0.2

10 3.0 12.526 ± 0.035 0.0239 ± 0.0002 0.012 ± 0.002 27.860 ± 0.163 34.3 10.8 4.295 ± 0.051 15.2 ± 0.2

11 3.2 10.527 ± 0.041 0.0221 ± 0.0001 0.016 ± 0.002 20.211 ± 0.190 43.3 8.2 4.557 ± 0.061 16.2 ± 0.2

12 3.4 8.751 ± 0.055 0.0223 ± 0.0004 0.027 ± 0.004 15.008 ± 0.265 49.4 4.9 4.320 ± 0.087 15.3 ± 0.3

13 3.8 7.444 ± 0.056 0.0192 ± 0.0003 0.027 ± 0.005 10.363 ± 0.161 58.9 4.8 4.385 ± 0.064 15.6 ± 0.2

14 4.2-5.0 7.399 ± 0.099 0.0190 ± 0.0009 0.115 ± 0.021 8.144 ± 0.543 67.7 1.1 5.008 ± 0.182 17.8 ± 0.6

15 5.4 9.975 ± 0.202 0.0226 ± 0.0017 0.467 ± 0.346 13.651 ± 2.634 60.1 0.3 6.002 ± 0.796 21.3 ± 2.8

Sample DOT 053A (J=0.001963)

1 1.2 25033.052 ± 488.166 16.7006 ± 0.3593 0.774 ± 1.523 87645.099 ± 1706.561 0.0 0.1 0.207 ± 42.711 0.7 ± 151.2

2 1.4 4280.595 ± 32.157 2.8717 ± 0.0291 0.252 ± 0.361 14889.006 ± 120.536 -2.8 0.3 -119.101 ± -14.967 -480.4 ± -69.2

3 1.6 198.456 ± 0.860 0.1501 ± 0.0012 0.094 ± 0.013 677.009 ± 2.838 -0.8 3.1 -1.588 ± -0.428 -5.6 ± -1.5

4 1.8 45.448 ± 0.122 0.0465 ± 0.0004 0.004 ± 0.007 141.421 ± 0.529 8.0 11.0 3.658 ± 0.154 12.9 ± 0.5

5 2.0 23.383 ± 0.069 0.0334 ± 0.0003 0.045 ± 0.047 64.635 ± 0.324 18.3 13.6 4.289 ± 0.097 15.1 ± 0.3

6 2.2 14.572 ± 0.041 0.0281 ± 0.0002 0.001 ± 0.004 34.111 ± 0.126 30.8 11.6 4.493 ± 0.040 15.8 ± 0.2

7 2.4 10.752 ± 0.028 0.0256 ± 0.0004 0.019 ± 0.021 20.864 ± 0.183 42.7 11.9 4.589 ± 0.055 16.2 ± 0.2

8 2.8 9.293 ± 0.025 0.0248 ± 0.0002 0.163 ± 0.023 15.476 ± 0.125 51.0 25.5 4.740 ± 0.041 16.7 ± 0.2

9 3.2 7.763 ± 0.021 0.0231 ± 0.0001 0.056 ± 0.033 10.303 ± 0.116 60.9 17.7 4.726 ± 0.038 16.7 ± 0.1

10 3.6 7.265 ± 0.028 0.0232 ± 0.0004 0.199 ± 0.054 9.138 ± 0.154 63.2 4.4 4.590 ± 0.051 16.2 ± 0.2

11 4.0 7.145 ± 0.205 0.0274 ± 0.0022 1.160 ± 0.836 12.312 ± 2.917 51.1 0.2 3.655 ± 0.889 12.9 ± 3.1

12 6.0 9.022 ± 0.217 0.0219 ± 0.0019 1.844 ± 0.788 16.061 ± 1.337 49.9 0.5 4.514 ± 0.440 15.9 ± 1.5

Sample GRU 062 (J=0.001959)

1 1.2 56609.150 ± 6045.036 37.7322 ± 4.0417 6.488 ± 7.078 193499.384 ± 20677.217 0.0 0.0 0.288 ± 233.779 1.0 ± 825.8

2 1.4 10959.587 ± 235.825 7.2126 ± 0.1899 0.928 ± 1.488 37003.926 ± 810.389 0.2 0.2 25.063 ± 45.101 86.5 ± 151.9

3 1.6 795.761 ± 2.112 0.5316 ± 0.0107 0.285 ± 0.282 2717.895 ± 10.679 -0.9 0.8 -7.343 ± -2.617 -26.1 ± -9.4

4 1.8 132.505 ± 0.384 0.1002 ± 0.0017 0.010 ± 0.018 444.773 ± 1.722 0.8 4.9 1.076 ± 0.456 3.8 ± 1.6

5 2.0 36.626 ± 0.110 0.0388 ± 0.0003 0.003 ± 0.006 107.980 ± 0.378 12.9 14.8 4.718 ± 0.108 16.6 ± 0.4

6 2.2 20.435 ± 0.039 0.0277 ± 0.0002 0.012 ± 0.003 54.407 ± 0.182 21.3 18.9 4.359 ± 0.056 15.3 ± 0.2

7 2.4 15.940 ± 0.047 0.0243 ± 0.0002 0.044 ± 0.022 39.138 ± 0.186 27.5 15.3 4.380 ± 0.058 15.4 ± 0.2

8 2.6 12.626 ± 0.033 0.0222 ± 0.0003 0.035 ± 0.036 27.573 ± 0.256 35.5 8.5 4.482 ± 0.078 15.8 ± 0.3

9 3.0 13.100 ± 0.031 0.0223 ± 0.0002 0.004 ± 0.005 29.230 ± 0.125 34.1 15.2 4.463 ± 0.038 15.7 ± 0.1

10 3.4 14.086 ± 0.038 0.0230 ± 0.0002 0.031 ± 0.014 32.810 ± 0.150 31.2 12.5 4.394 ± 0.047 15.5 ± 0.2

11 3.8 13.494 ± 0.042 0.0228 ± 0.0003 0.027 ± 0.031 30.561 ± 0.303 33.1 5.9 4.466 ± 0.089 15.7 ± 0.3

12 4.4-5.0 12.684 ± 0.038 0.0220 ± 0.0004 0.167 ± 0.134 28.488 ± 0.448 33.8 2.6 4.288 ± 0.135 15.1 ± 0.5

13 5.6-7.0 16.351 ± 0.264 0.0258 ± 0.0033 1.136 ± 0.797 31.134 ± 2.423 44.6 0.2 7.300 ± 0.728 25.6 ± 2.5

Sample MOL 054 (J=0.001954)

1 1.2 16964.056 ± 1316.759 11.1312 ± 0.8710 0.870 ± 0.699 58425.668 ± 4536.218 0.0 0.1 0.158 ± 34.703 0.6 ± 122.3

2 1.4 1612.333 ± 7.062 1.0799 ± 0.0091 0.175 ± 0.126 5454.611 ± 24.724 0.0 0.6 0.517 ± 2.184 1.8 ± 7.7

3 1.6 132.049 ± 0.254 0.1051 ± 0.0008 0.021 ± 0.009 441.656 ± 1.213 1.2 5.1 1.542 ± 0.266 5.4 ± 0.9

4 1.8 32.272 ± 0.049 0.0390 ± 0.0002 0.007 ± 0.003 96.044 ± 0.330 12.1 16.5 3.891 ± 0.090 13.7 ± 0.3

5 2.0 12.861 ± 0.019 0.0264 ± 0.0002 0.005 ± 0.009 28.535 ± 0.131 34.4 19.7 4.429 ± 0.040 15.5 ± 0.2

6 2.2 9.633 ± 0.040 0.0234 ± 0.0002 0.008 ± 0.001 16.771 ± 0.151 48.6 13.8 4.678 ± 0.052 16.4 ± 0.2

7 2.4 9.508 ± 0.046 0.0235 ± 0.0002 0.010 ± 0.001 16.520 ± 0.168 48.7 10.7 4.628 ± 0.057 16.2 ± 0.2

8 2.8 11.545 ± 0.026 0.0260 ± 0.0003 0.006 ± 0.001 23.586 ± 0.087 39.6 17.6 4.576 ± 0.029 16.1 ± 0.1

9 3.2 9.310 ± 0.046 0.0243 ± 0.0004 0.017 ± 0.016 16.146 ± 0.226 48.8 10.5 4.541 ± 0.073 15.9 ± 0.3

10 3.6 8.568 ± 0.062 0.0253 ± 0.0005 0.027 ± 0.028 12.155 ± 0.308 58.1 3.0 4.980 ± 0.104 17.5 ± 0.4

11 4.0-4.8 10.972 ± 0.088 0.0234 ± 0.0007 0.022 ± 0.028 17.978 ± 0.316 51.6 2.3 5.663 ± 0.112 19.9 ± 0.4

Table 4.4: Full results of 40Ar/39Ar CO
2
 laser step-wise heating analysis of biotite. Uncertainties are given in 1σ, error on single 

ages does not include the uncertainty in the J value.



89

Chapter 4

comprise more than 50% of the total 39Ar release, (2) the ages agree within 2σ error limits (excluding 

uncertainties in the J value) between each contiguous two fractions, and (3) one fraction consisting of 

the plateau comprise more than 3% of the total 39Ar release (see McDougall & Harrison 1999, and ref-

erences therein). The plateaus recorded in this study satisfy these conditions. The average grain size for 

all biotite separates was in the same range and varied between 250 and 315 μm. Usually, the first five 

or six low temperature steps, and in a less pronounced manner the last steps at high temperatures, are 

characterized by a disturbed pattern. Hence, the total gas ages, calculated by integrating over all steps, 

have no geological significance; they are between 3.04 and 0.6 Ma younger compared to the plateau 

ages (Fig. 4.8).
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Fig. 4.8: Biotite 40Ar/39Ar age spectra obtained by CO
2
 laser step-wise heating experiments. Total gas ages were determined by 

integrating over all steps. Steps attributed to the plateau are highlighted in black. Numbers refer to steps used for the calculation 
of the plateau ages listed in Table 4.4. Uncertainties are given in 1σ, error on plateau ages does not include the uncertainty in the 
J value. (a) Sample LUZ 0444. (b) Sample BLE 0513. (c) Sample DOT 053A. (d) Sample GRU 062. (e) Sample MOL 054.
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4.6. Interpretations and discussion

4.6.1. Interpretation of individual age data
In general the presence of excess 40Ar (extraneous or inherited argon) is due to the incorporation 

of additional 40Ar by processes other than in situ decay during mineral growth and/or subsequent recrys-

tallization, as well as by diffusion through grain boundaries. Several studies have shown that excess ar-

gon is commonly found in high-pressure and ultrahigh-pressure metamorphic rocks (e.g. Scaillet 1996; 

Sherlock & Kelley 2002; Di Vincenzo et al. 2006, and references therein). However, in our samples we 

find no indications for excess Ar. As shown later on, also the internal consistency of the data with micro-

structural data and structural field data, and additionally, the overlap with published results using inde-

pendent methods (e.g. U-Th-Pb in allanite and monazite by Janots et al. 2009) confirm the absence of 

excess Ar problems in the case of our samples.

K/Ar (and Ar/Ar) data were often interpreted in the context of the “blocking temperature” (Jäger 

et al. 1967) or “closure temperature” (Dodson 1973) concept. The pioneering study of Purdy & Jäger 

(1976) proposed a “closure temperature” of 350 °C for the K-Ar isotopic system in muscovite. More 

modern studies increased this value up to some 550 °C or even more (Di Vincenzo et al. 2001; Philippot 

et al. 2001; Bucher 2003; Balogh & Dunkl 2005; Allaz 2008). On the other hand it has been shown that 

metamorphic reactions and/or deformation, commonly enhanced by the presence of a fluid, may induce 

isotopic resetting (e.g. Foland 1979; Chopin & Maluski 1980; Chopin & Monié 1984; Wijbrans & Mc-

Dougall 1986; Villa 1998; Bucher 2003; Di Vincenzo et al. 2004; Gouzu et al. 2006; Glodny et al. 2008a, 

2008b). In case of the phengites investigated by this study peak metamorphic temperatures of around 

ca. 350 °C are estimated for the occurrences in the Engadine window (Bousquet et al. 1998) and some 

350-400 °C for those from Safiental and Valsertal (Bousquet et al. 2002; Wiederkehr et al. submitted, 

b). Hence, the peak metamorphic temperatures of all studied phengite are just at or below the range of 

suggested “closure temperatures”. Moreover, there is microstructural evidence for retrograde metamor-

phic reactions that are associated with recrystallization. In summary, we interpret the recorded apparent 

ages as formation/crystallization ages. We explain the observed scatter in age by the existence of mixed 

populations. This implies that even high-pressure relics can survive subsequent deformation and meta-

morphism, in accordance with recent observations (e.g. Agard et al. 2002; Bucher 2003; Villa 2006).

Biotite bearing samples reached significantly higher peak-metamorphic temperatures ranging 

from 475-525 °C near the “biotite-in isograde” in Val Luzzone to 560-590 °C around Pizzo Molare in-

side the Lepontine dome (Fig. 4.1b; Wiederkehr et al. in preparation). Our weighted average ages de-

termined by in situ investigations as well as the recorded plateau ages of biotite (18.36-15.48 Ma, Figs. 

4.7 & 4.8) are slightly younger compared to the thermal peak at 18-19 Ma as presumably dated by U-Pb 

investigations on monazite (Janots et al. 2009). This small difference in age is best explained by retro-

grade chloritization of biotite, as is clearly evidenced by the omnipresence of retrograde chlorite. Hence, 

the individual apparent ages obtained for biotite are interpreted as formation ages that were rejuvenated 

by partial re-equilibration generally associated with major element and isotopic resetting. In summary, 

our isotopic data on biotite may be regarded as recrystallization ages that lay somewhere between biotite 

formation and subsequent retrogression (chloritization), the scatter in the individual ages being due to a 

variable intensity of chemical re-equilibration (Villa 2006; Allaz 2008).
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4.6.2. Correlation between isotopic data and microstructural features 
Recorded apparent ages often correlate with different white mica generations as evidenced by 

microstructural observations. In our case, the interpretation of apparent ages determined by the in situ 

laser-probe dating technique is unfortunately hampered by the large uncertainties in apparent age, often 

exceeding 10 % for 1σ errors. These large uncertainties are due to the low amount of gas ablated during 

the laser experiments, caused by the small diameter of the laser spot chosen in order to avoid contami-

nations by surrounding mineral grains, particularly quartz and chlorite. Overlap between apparent ages 

with associated uncertainties precludes the accurate discrimination between different generations based 

on statistical principles (Fig. 4.9). 

Nevertheless, the resulting probability curve can be decomposed into three distinct peaks related 

to specific age populations in a qualitative way (Fig. 4.9). The main peak at 35-30 Ma is surrounded by a 

relatively broad shoulder towards older apparent ages, i.e. somewhere between 45-40 Ma, and a narrow 

and well-defined peak that produces a shoulder towards younger ages and located at around 25 Ma. A 

closer look at the main peak at 35-30 Ma reveals its weakly asymmetric shape with a shoulder towards 

younger ages. The latter feature possibly suggests that the 35-30 Ma population may consist of two sub-

populations; a younger one being located at 30 Ma and an older one at around 35-33 Ma (indicated as 

grey bars in Fig. 4.9). Sample VAL 0580 yields the youngest and best-defined apparent white mica ages, 

with a weighted average age of 25.40 ± 0.45 (depicted by grey bar in Fig. 4.9), an age that may indeed 

be responsible for the shoulder visible at around 25 Ma in the probability curve (Fig. 4.9). Such an inter-

pretation is also consistent with the chemical and microstructural data presented above. 
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Fig. 4.9: Summary of apparent ages obtained on white mica by in situ laser-probe analyses and calculated cumulative prob-
ability curve. The complex shape of the cumulative probability curve reflects the presence of more than one white mica popu-
lation as indicated by the decomposition of at least three distinct peaks related to different ages; the light-grey bar denotes the 
weighted average ages for the different populations (see text for discussion). Uncertainties are given in 1σ and do not include 
the uncertainty in the J value.
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The isolated phengite flakes entrapped in quartz invariably yield the oldest individual apparent 

ages. These are in a range between 44 and 37 Ma (e.g. sample AlpTea 638A; Figs. 4.4b, d & e). Numer-

ous fibres of Fe-Mg carpholite are found as inclusions within the same surrounding quartz grain, close 

to the isolated phengite. Since quartz did not recrystallize into subgrains, clearly the isolated phengite 

flakes and the relics of carpholite must have been entrapped within quartz under the same metamor-

phic conditions, i.e. at peak HP/LT conditions. Consequently, we interpret these oldest apparent ages 

obtained from isolated white mica as dating the peak-pressure. Similarly old ages in the range of 45-40 

Ma are also found in needle-shaped aggregates (pseudomorphs after carpholite) that consist of white 

mica, which is intimately associated with chlorite (Figs. 4.4b, d, h & 4.5b). Note also that ages in the 

range of 45-40 Ma are only found in samples AlpTea 638A, FOT 937 and SAF 0527, i.e. samples that are 

characterized by the occurrences of white mica showing a considerable celadonite-content as typical for 

high-pressure phengite (Fig. 4.3a; see also Bousquet et al. 1998). By considering all these ages as rep-

resenting a single apparent age population a weighted average age of 41.23 ± 1.22 Ma can be calculated 

as displayed by the grey bar shown in Figure 4.9. The weighted average age clearly overlaps with the 

“oldest” decomposed peak representing the relatively broad shoulder towards older apparent ages of the 

resulting cumulative probability curve, i.e. between 45-40 Ma (Fig. 4.9). 

Most of the individual apparent ages cluster in the time interval between 36 and 29 Ma as is also 

indicated by the peak of the cumulative probability curve (Fig. 4.9). However, such ages are exclusively 

found as needle-shaped aggregates that consist of phengite and chlorite, both together replace carpho-

lite, embedded in quartz, i.e. within pseudomorphs after carpholite. Hence, the associated white mica is 

unambiguously related to the decay of carpholite, which is in turn induced by substantial decompres-

sion along the retrograde path. As mentioned above when discussing the decomposition of the cumula-

tive probability curve shown in Figure 4.9, it is unclear if the range between 36 and 29 Ma represents 

a single event, or alternatively, a bimodal population. The slightly asymmetric shape of the maximum 

peak in the probability curve hints towards two distinctive age populations as indicated by the grey bars. 

Obviously white mica-chlorite aggregates replacing carpholite yield well-defined and accurate apparent 

ages between 32 and 29 Ma (Figs. 4.4c & 4.5g), clustering at the lower end of the 36-29 Ma age interval 

commonly recorded inside such pseudomorphs after carpholite.

In any case, the existence of substantially older ages, i.e. ages between 36-34 Ma points to either 

mixed ages of the older HP/LT event or yet another age population at around 36-34 Ma. Consequently, 

if the well-defined apparent ages clustering around 32-29 Ma are interpreted as a distinctive age popula-

tion and all the other ages in the time interval between 36-33 Ma are assigned to a second, older one, the 

calculation of weighted average ages yields 34.16 ± 1.22 Ma for the older and 30.32 ± 0.49 Ma for the 

younger age population, as depicted by grey bars in Figure 4.9.

4.6.3. Conclusions regarding the age interpretation
Apparent ages in the 45-37 Ma range, with a weighted average age of 41.23 ± 1.22 Ma, are in-

terpreted to represent the timing of peak-pressure conditions. This interpretation is supported by the 

fact that isolated phengites exclusively yield older ages compared to phengite-chlorite aggregates that 

replace carpholite; and by microstructural observations pointing to coeval trapping in quartz porphyro-

clasts of such isolated phengites and fibres of Fe-Mg carpholite under the same metamorphic conditions, 

i.e. under peak pressure conditions. 
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The retrograde path is basically pressure 

controlled, being characterized by isothermal or 

only slightly cooling decompression (Bousquet et 

al. 1998, 2002; Jolivet et al. 1998b; Wiederkehr et 

al. 2008). Because Fe-Mg carpholite and co-ex-

isting high-pressure phengite were destabilized to 

muscovite, chlorite and quartz (Fig. 4.10; Ober-

hänsli et al. 1995; Bousquet et al. 2002) the appar-

ent ages recorded in white mica associated with 

chlorite, which are interpreted to represent pseu-

domorphs after carpholite, provide information 

on the timing of decompression. Apparent ages of 

this group cover a wide time interval ranging from 

36-29 Ma, except for sample VAL 0580 that will 

be discussed separately below. This time interval 

can possibly be subdivided into two distinct pop-

ulations, an older one in the range of 36-34 Ma 

yielding an average age of 34.16 ± 1.22 Ma and a 

younger one between 32-29 Ma with a weighted 

average age of 30.32 ± 0.49 Ma (depicted by the 

grey bars in Fig. 4.9).

Sample VAL 0580, however, is characterized 

by significantly younger and well-defined appar-

ent ages in the range of 28-23 Ma, with a weighted 

average age of 25.40 ± 0.45 Ma. In view of its dis-

tinctly different microstructure (Figs. 4.5c & d) it 

is most probable that partial recrystallization and/or exchange reactions along the retrograde metamor-

phic evolution did induce chemical re-equilibration and isotopic resetting in this particular sample (see 

discussion by Villa 1998). Such re-equilibration associated with isotopic resetting of white mica might 

possibly have been enhanced by D3 deformation. Hence we tentatively relate the weighted average age 

of 25.40 ± 0.45 Ma to D3 deformation (Domleschg phase), being aware that such an interpretation is 

highly speculative.

All the investigated biotite samples yield significantly lower apparent ages compared to ages ob-

tained on white mica. Also, all investigated biotite domains give consistent ages that cluster in a range 

between 18-15.5 Ma. This is consistent with the fact that biotite is related to a single metamorphic event 

represented by Barrow-type overprint that only affects the south-western part of the study area and post-

dates D3 deformation (Fig. 4.1b; Wiederkehr et al. 2008). The ages are also consistent with recently 

published 40Ar/39Ar ages of 18-16 Ma obtained by isotopic investigations on white mica and biotite for 

the Lucomagno and Pizzo Molare areas (Allaz 2008). The published monazite U-Pb ages of 19-18 Ma 

(Janots et al. 2009) are interpreted to reflect equilibrations close to the “garnet-in isograd”, i.e. very near 

the thermal peak of metamorphism. As also shown by Allaz (2008) the lower apparent ages obtained on 

biotite are most probably due to late re-equilibration, i.e. chloritization of biotite associated with isotopic 

resetting along the retrograde path.
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4.6.4. Comparison with previously published isotopic and fission track data

White mica ages

The age of 41.23 ± 1.22 Ma that we interpret to date HP/LT metamorphism in the Valaisan domain 

north-east of the Lepontine dome appears reasonable when compared to the very few other available 

geochronological investigations of subduction-related metamorphism performed in units that belong to 

the Valaisan paleogeographical domain. For example, 46-39 Ma have been obtained within the west-

ern Lepontine (Antrona ophiolites; Liati et al. 2005). 45-40 Ma were postulated for the Tauern Eclogite 

Zone (Ratschbacher et al. 2004); albeit younger ages were postulated for the same high-pressure event 

in that same area based on an unconvincing interpretation of Rb-Sr white mica ages (Glodny et al. 2005). 

Our ages are somewhat older than the 40-35 Ma age range previously postulated for the Engadine win-

dow (Bertle 2004), but again considerably older than suggested by Rb-Sr and Ar-Ar white mica studies 

performed in metasediments exposed around Petit St. Bernard area that yielded ages around 34-27 Ma 

(Freeman et al. 1998; Cannic et al. 1999). 

 Geochronological investigations performed in the tectonically higher and more internal Briançon-

nais domain revealed 46 Ma for subduction-related HP/LT metamorphism in the Suretta nappe (Chal-

landes et al. 2003). This older age is in agreement with the common assumption that the timing of high-

pressure metamorphism propagates towards the foreland and hence progressively becomes younger 

towards more external units. Such a view is further supported by ages obtained within a younger 43-35 

Ma time interval interpreted to date high-pressure metamorphism in the relatively more external Adula-

nappe complex (Gebauer et al. 1992; Becker 1993; Gebauer 1996; Brouwer et al. 2005; Nagel 2008), a 

tectonic unit interpreted as representing the distal European margin.

The timing of the intrusion of the Bergell pluton at 32-30 Ma (von Blanckenburg 1992) still rep-

resents the hardest constraint for indirectly dating the tectono-metamorphic evolution of the Alps. This 

magmatic event post-dates a first nappe-refolding event (Niemet-Beverin phase; Schmid et al. 1990; 

Schreurs 1993) that followed the closure of the Valaisan Ocean and the subduction of the European con-

tinental margin (Adula nappe complex). The first part of the decompression path at around 36-33 Ma 

(with the corresponding weighted average age of 34.16 ± 1.22 Ma) as well as the high-pressure granu-

lites of the Gruf complex (southern Adula, 33 Ma; Schmitz et al. in press) pre-dates the Bergell intru-

sion. This older exhumation is associated with pervasive recrystallization of white mica, related to the 

breakdown of Fe-Mg carpholite (Fig. 4.10) and the formation of the main foliation during D2 nappe 

stacking (Wiederkehr et al. 2008). It pre-dates D3 and overprints the syn-D1 HP/LT event. Hence, this 

main foliation was formed during the retrograde evolution while high-pressure relics, and associated 

isotopic ages, are only selectively preserved within the carpholite-bearing quartz-calcite veins. We con-

clude that it is very likely that the apparent ages determined by step-wise heating techniques of white 

mica separated from whole rock samples only provide information on the retrograde evolution during 

substantial decompression in the 36-34 Ma time interval. Also the ages obtained by Bertle (2004), re-

corded on white mica of the rock matrix close to carpholite-bearing quartz-calcite veins (40-35 Ma, giv-

ing a plateau age of 35.6 Ma), may fall into this same category of ages and reflect rather the timing of 

substantial decompression than peak-pressure conditions.

The younger post peak pressure event postulated for the 32-29 Ma age interval, with a weighted 

average age of 30.32 ± 0.49 Ma, would be more or less contemporaneous with the intrusion of the Ber-

gell pluton (von Blanckenburg 1992). We interpret it to represent a separate greenschist facies overprint 

that occurred after a first stage of substantial decompression. Interestingly, in situ Th-Pb measurements 
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on allanite by SHRIMP from individual samples from the northern Lepontine (Piora and Lucomagno 

area) also yield ages between 32-29 Ma (Janots et al. 2009). Allanite generally appears at 400-450 °C 

and is therefore indicative for greenschist facies metamorphic conditions (e.g. Janots et al. 2006). All 

this indicates that the 32-29 Ma event probably reflects a significant stage of greenschist facies metamor-

phic overprint during the formation of the Alpine orogenic belt. 

Biotite

We relate the biotite ages, clustering in the range between 18-15.5 Ma, to Barrovian metamor-

phism in the NE part of the Lepontine dome. There are numerous other isotopic data available for the 

northern Lepontine with K-Ar, Ar-Ar and Rb-Sr ages obtained from white mica and biotite ranging 

from 42 all the way to 14 Ma (see review given by Hunziker et al. 1992; Steck & Hunziker 1994, and 

references therein). Classical K-Ar and Ar-Ar ages obtained by pioneering isotopic investigations in the 

northern Lepontine yielded 25-16 Ma for white mica and 17-14 Ma for biotite (Armstrong et al. 1966; 

Purdy & Jäger 1976; Hunziker et al. 1986). These early pioneering isotopic investigations mainly fo-

cussed on basement units, which are generally characterized by a polyphase metamorphic evolution and 

where the interpretation of the obtained ages is hampered by inheritance from pre-Alpine metamorphic 

stages. To avoid such problems recent isotopic investigations were performed exclusively in Mesozoic 

metasediments that only suffered Alpine metamorphic overprint (Allaz 2008; Janots et al. 2009). For 

the north-eastern Lepontine dome, i.e. area around Val Piora-Lukmanier-Pizzo Molare, these recent Ar-

Ar investigations revealed ages of 19-16 Ma for muscovite and 18-16 for biotite (Allaz, 2008). The ob-

tained Ar-Ar ages were confirmed by in situ SHRIMP U-Pb dating of monazite yielding an age between 

19-18 Ma for the same area, which is interpreted to reflect conditions near the thermal peak of metamor-

phism (Janots et al. 2009), in perfect agreement with our results. In summary, these recent investiga-

tions, combined with the results of this study, unambiguously demonstrate that Barrow-type amphibolite 

facies metamorphism in the northern Lepontine dome is surprisingly young, i.e. post 20 Ma.

Our biotite 40Ar/39Ar isotopic ages are also in agreement with fission track dating on apatite and 

zircon related to the latest stages of exhumation. In the northern Lepontine dome the zircon cooling cen-

tral ages (at ca. 290 °C; Tagami & Shimada 1996) vary between 14-12.2 Ma while the apatite central 

ages (at 110-60 °C; Hurford 1990) are in the range of 9-5 Ma (Hurford 1986; Michalski & Soom 1990; 

Vernon et al. 2008). Within our study area (i.e. southern Gotthard massif near Lukmanier pass and fron-

tal part of the Adula nappe complex around Olivone; Fig. 4.1b) recent investigations yielded zircon and 

apatite fission track central ages of 10-9 Ma and 7.5-6.5 Ma, respectively (Janots et al. 2009).

4.6.5. Implications regarding the tectono-metamorphic evolution
The new geochronological data presented in this study further constrain the timing of the subduc-

tion-collision transition in the Central Alps preserved within the Valaisan domain as summarized in Fig. 

4.11. In the following we integrate the isotopic ages into the geodynamic model recently presented by 

Wiederkehr et al. (2008) and make an attempt to construct a complete P-T-d-t path for the high-pressure 

metasedimentary units NE of the Lepontine dome. The numbering and associated names of deformation 

events are those introduced by Wiederkehr et al. (2008). 
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Eocene sediment-accretion and subduction (42-40 Ma; D1 Safien phase)

The huge pile of Valaisan Bündnerschiefer of the Grisons area, including the Engadine window, 

are generally interpreted to have formed an accretionary wedge during Cenozoic subduction of the Val-

aisan Ocean, followed by the subduction of the adjacent distal European margin beneath the Briançon-

nais micro-continent that was previously accreted to the Austroalpine upper plate. The age of the young-

est sediments within this accretionary wedge ranges from 50 Ma (Valaisan domain; Steinmann 1994a) 

to some 40 Ma (more external Sardona unit; Lihou & Allen 1996). The high-pressure relics are restricted 

to syn-metamorphic quartz-calcite segregations formed during the first deformation event D1 (Safien 

phase) coeval with the HP/LT metamorphic event. Our isotopic ages on phengite, associated with Fe-

Mg carpholite, revealed a weighted average age of 41.23 ± 1.22 Ma for this peak-pressure (350-400 °C 

and 1.2-1.4 GPa) D1 event (Fig. 4.11). The proposed time interval for high-pressure metamorphism is 

in accordance with the available stratigraphical constraints and the recognition of a Palaeocene-Eocene 

radiolaria species in carpholite-bearing metasediments in Safiental (Bousquet et al. 2002).

Nappe-stacking and decompression stage (36-33 Ma; D2 Ferrera phase)

Nappe-stacking in the Lepontine was associated with substantial decompression of the blueschist 

facies rocks (Fig. 4.11). The observation that carpholite is mainly destabilized by a mineral reaction pro-

ducing white mica, chlorite and quartz points towards decompression under nearly isothermal or slightly 

cooling conditions (Fig. 4.10). All apparent ages in this 36-33 Ma time interval were recorded on white 

mica intimately associated with chlorite and interpreted to replace carpholite during decompression that 

is contemporaneous with D2 (Ferrera phase) nappe-stacking. The proposed 36-33 Ma age range sup-

ports the interpretation of Wiederkehr et al. (2008) that the D2 Ferrera nappe-stacking phase in the Val-

aisan post-dates earlier stages of nappe-stacking related to this same Ferrera phase as defined for the 

Briançonnais domain, where 46 Ma were reported for nappe-stacking (Challandes et al. 2003).

Greenschist facies event (32-29 Ma)

This event, recorded within a second population of phengites picked in chlorite-phengite asso-

ciations replacing Fe-Mg carpholite and yielding well-defined apparent ages in the range of 32-29 Ma 

(weighted average age of 30.32 ± 0.49 Ma) coincides with an event recorded by Th-Pb dating of allanite 

that also dates greenschist facies conditions further west in the Lukmanier/Val Piora area (Janots et al. 

2009). The geodynamical significance of this greenschist facies overprint associated with isotopic reset-

ting is not clear at this stage. This event pre-dates the D3 deformation that we correlate with the so-called 

Domleschg phase, which hence post-dates the Bergell intrusion (Wiederkehr et al. 2008). Possibly, the 

accretion of the distal European margin to the orogenic wedge led to the relaxation of subduction-related 

down-folded isotherms by providing additional heat supply caused by high radiogenic heat production.

First nappe refolding event (~25 Ma; D3 Domleschg phase)

The D3 (Domleschg phase) nappe refolding event substantially modified the nappe-stack in the 

investigated area and produced tight to isoclinal mega-folds with amplitudes up to some 10 km, particu-

larly the most prominent Lunschania antiform (Figs. 4.1b & 4.11). D3 deformation post-dates the ascent 

and emplacement of the Bergell pluton south of the working area (e.g. Schmid et al. 1996; Fig. 4.11) 

and overprints the previously established greenschist facies event, as is independently evidenced by iso-

therms related to this greenschist facies event that are folded around the Lunschania antiform (Wieder-

kehr et al. submitted, b). D3 deformation is associated with ongoing accretion of continental basement 

(e.g. Lucomagno-Leventina nappe and Gotthard-“massif”; Fig. 4.11). Based on the significantly young-
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er apparent ages (weighted average age of 25.40 ± 0.45 Ma) found in the sample from Valsertal (sample 

VAL 0580), affected by pervasive D3 deformation and showing unambiguously different microtexture, 

we tentatively correlate these recorded apparent ages with the timing of D3 deformation, being aware 

that this is speculative.

Miocene Barrow-type thermal overprint (19-18 Ma)

Barrovian overprint of the south-western part of the study area represents a separate and younger 

heating event that initiated during a tectonically quiescent phase and that clearly post-dates D3 defor-

mation. This is demonstrated by the isotherms related to this Barrovian metamorphism that are seen to 

crosscut the D3 Lunschania antiform (Wiederkehr et al. submitted, b). This event is recorded by the ap-

parent ages of our biotite domains that cluster in the 18-15.5 Ma range; due to some retrograde chloriti-

zation of biotite we prefer the published monazite U-Pb ages of 19-18 Ma (Janots et al. 2009) for dating 

peak-temperatures during this event (Fig. 4.11). 

Back-folding in the Northern Steep Belt (post-18 Ma; D4 Chièra phase)

Barrow-type amphibolite facies mineral assemblages have been severely deformed by a subse-

quent late-stage nappe refolding event that is associated with the formation of the Northern Steep Belt 

within the Penninic nappe-stack, and which is only very well developed west of our study area (Milnes 

1974). There, a relatively tight synform, the Chièra synform, brings the nappe-stack into an overturned, 

steeply north-dipping position, while in our area (see profile in Fig. 4.11) such D4 backfolding is less 

severe. Since this D4 Chièra phase deformation outlasted Barrovian metamorphic overprint it must be 

very young (i.e. post-18 Ma), most probably contemporaneous with the N-directed thrusting in the Aar 

massif in the more external parts of the Alps and imbrications within the Subalpine molasse. Recently 

published isotopic data on a greenschist facies shear zone of the Aar Massif (External Crystalline Mas-

sif) report 21-17 Ma (Challandes et al. 2008) and may be correlated with this D4 deformation. The zir-

con fission track ages of 10-9 Ma, as well as apatite fission track ages of 7.5-6.5 Ma (Janots et al. 2009), 

indicate the final stages of the P-T path, i.e. the timing of cooling below some 200-330 °C for zircon, and 

70-120 °C for apatite due to erosional unroofing that followed the thrusting of the external massifs.

4.7. Conclusions 
The new age constraints obtained for the HP/LT metasedimentary units of the Valaisan and adja-

cent European domains provide valuable information regarding the timing of the transition from sub-

duction-related peak high-pressure metamorphism to decompression and finally to a collision-related 

and second Barrow-type thermal overprint.

Phengites, texturally associated with Fe-Mg carpholite yield apparent ages of 42-40 Ma inter-

preted as dating HP/LT conditions at 350-400 °C and 1.2-1.4 GPa (D1, Safien phase). Age constraints 

belonging to the evolution during or immediately after decompression were revealed by white mica in-

timately associated with chlorite occurring in pseudomorphs after carpholite and yield two populations: 

an earlier one clusters at 36-33 Ma, a later one at 32-29 Ma, respectively. We relate the older retrograde 

stage to substantial decompression during which carpholite was destabilized by the reaction producing 

white mica, chlorite and quartz during D2 nappe stacking (Ferrera phase). The younger population is 

interpreted as related to greenschist facies metamorphism established at the end of decompression. Ad-

ditionally, the white mica data also reveal a coherent apparent age cluster at ~ 25 Ma whose significance 

is yet not clear; a correlation with D3 deformation (Domleschg phase) is proposed. The still younger 



99

Chapter 4

apparent ages recorded by biotite, only occurring in the SW part of the study area and clearly related to 

collision-related amphibolite facies metamorphism of the north-eastern Lepontine dome, date a second 

and distinct pervasive Barrovian overprint and cluster around 18-16 Ma.

The presented isotopic ages support and further constrain the relative chronology of the tectono-

metamorphic evolution presented by Wiederkehr et al. (2008 and in preparation) established on the ba-

sis of relationships between metamorphism and deformation. The consistency of the presented isotopic 

results presented in this study with such other and independent data indicates that an overall contamina-

tion by excess argon, as well as diffusional loss of 40Ar*, can be ruled out, or is at least only of minor 

importance in the case of our study. Apparent ages deduced by the investigation of white mica are in-

terpreted to represent formation and/or crystallization ages under temperature conditions that never ex-

ceeded 400 °C. The apparent ages of biotite, that yield slightly younger ages than the assumed thermal 

peak (19-18 Ma; Janots et al. 2009) probably represent re-crystallization ages that are affected by partial 

isotopic resetting during retrograde mineral reactions such as the chloritization of biotite which imme-

diately followed peak temperature conditions (see also Allaz 2008).

The recorded isotopic data reveal a significant time gap in the order of some 20 Ma between the 

subduction-related HP/LT event (42-40 Ma) and the later collision-related MP/MT Barrovian overprint 

(19-18 Ma). This substantial time gap, together with the age constraints on white mica reflecting the ret-

rograde metamorphic evolution of the HP/LT stage, support the notion of a polymetamorphic evolution 

associated with a bimodal P-T path (Wiederkehr et al. 2008). Amphibolite facies Barrow-type overprint 

of the NE Lepontine dome represents a clearly separated heating pulse that post-dates isothermal de-

compression after the early high-pressure stage. This considerable time interval is in accordance with 

the interpretation that it is the accretion of vast amounts of European continental crust (forming the 

present-day Lepontine dome) that provides high radiogenic heat production responsible for amphibolite 

facies metamorphism (e.g. Bousquet et al. 2008), being an entirely conductive and therefore rather slow 

process.
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Chapter 5

Overprint of an earlier HP/LT metamorphic event by a later 

Barrow-type event:

Metamorphic evolution and geodynamic implications

This chapter is in preparation for submission as: Wiederkehr, M., Bousquet, R., Berger, A. & Schmid, S.M. Over-

print of an earlier HP/LT metamorphic event by a later Barrow-type event: Metamorphic evolution and geody-

namic implications.

Abstract
The determination of metamorphic events and their correlation to specific geodynamic stages, i.e. 

subduction- and/or collision-related, is crucial for the understanding of the geodynamic evolution of the 

Alpine orogenic belt. Thanks to continuous exposure over very large areas the investigation of metasedi-

ments allows for the observation of their structural and metamorphic evolution over a wide area along 

strike, providing a unique opportunity to decipher the geodynamic framework of the Alps. The sedimen-

tary units of the Valaisan Ocean and parts of the sediments of the adjacent European margin located at 

the north-eastern border of Lepontine dome continuously expose a remarkable metamorphic gradient 

along strike, ranging from carpholite-bearing HP/LT conditions in the NE that become progressively 

overprinted by amphibolite facies Barrovian regional metamorphism towards the SW. This special situ-

ation represents a natural laboratory for investigating progressive Barrovian overprint of HP/LT meta-

sediments and provides some hints for the understanding of the geodynamic evolution of orogenic belts 

in general, and the transition from subduction to collision in particular.

Detailed petrographic and structural investigations carried out in Valaisan- and European-derived 

Mesozoic metasedimentary units in the north-eastern border area of the Lepontine dome reveal a poly-

metamorphic evolution that is characterized by a bimodal P-T path: (1) An Eocene-age (42-40 Ma) HP/

LT metamorphic event (350-400 °C and 1.2-1.4 GPa) is documented by the widespread occurrences 

of Fe-Mg carpholite, (2) a first collision-related thermal event led to greenschist facies metamorphism 

(350-425 °C) during the Lower/Middle Oligocene (25 Ma), and (3) a second collision-related thermal 

event led to a substantially younger greenschist to amphibolite facies metamorphic event (450-590 °C 

and 0.5-0.8 GPa) of Middle Miocene-age (i.e. post 20 My), representing a Barrovian overprint of the 

north-eastern Lepontine caused by a clearly separate “isobaric” heating pulse.



102

Chapter 5

5.1. Introduction
Detailed and well documented knowledge of the metamorphic evolution is essential for the recon-

struction of the geodynamic evolution of the Alpine orogenic belt. Amphibolite facies Barrovian over-

print of HP/LT rocks, interpreted to reflect the transition from subduction to collision (e.g. Wiederkehr 

et al. 2008) is of particular interest regarding the latest stages of orogeny. It was shown by earlier studies 

(e.g. Bousquet et al. 2008, and references therein) that metasediments in particular have a great potential 

for reconstructing the metamorphic evolution, due to their widespread and often continuous exposure 

that allows for correlating structural and metamorphic results over great distances. Particularly the low-

grade metasediments (HP/LT and LP/LT rocks) are found widely distributed in the Alpine belt. Unfortu-

nately, however, metamorphic data on low-grade metasediments are scarce or afflicted with large errors 

mainly due to the lack of characteristic mineral assemblages or due to great uncertainties or unknown 

thermodynamic data. These circumstances led to misinterpretations of metamorphic conditions. Con-

sequently the geodynamic evolution of HP/LT metasedimentary belts in particular has been misunder-

stood. This can be illustrated by the identification of Fe-Mg carpholite in HP/LT metasedimentary rocks 

(Goffé et al. 1973) which modified the interpretation of the geodynamic evolution of several mountain 

belts (Goffé & Chopin 1986; Goffé et al. 1988, 1989; Goffé & Oberhänsli 1992; Goffé & Bousquet 

1997; Theye et al. 1997; Bousquet et al. 1998; Oberhänsli et al. 2001; Rimmelé et al. 2003b; Wieder-

kehr et al. 2008). The recent review paper by Bousquet et al. (2008) summarises the presently available 

metamorphic data as well as new petrogenetic grids particularly for low-grade metapelites and clearly 

demonstrates the enormous potential of metasediments for deciphering the tectono-metamorphic evo-

lution of mountain belts if the metamorphic mineralogy of metasediments is carefully considered and 

combined with structural and geochronological investigations. Surprisingly, combined metamorphic 

and structural data are still lacking in some key areas even though they are crucial for the understanding 

of the evolution of the Alps. One of these areas is located at the north-eastern border of the Lepontine 

dome, i.e. at the transition between collision-related Barrovian overprint and subduction-related HP/LT 

metamorphism.

This study presents for the first time petrologic data concerning amphibolite facies Barrow-type 

overprint of carpholite-bearing HP/LT metasediments from the Central Alps. The investigated area is 

located at the north-eastern border of the Lepontine structural and thermal dome and spans from Pizzo 

Molare in the south-west to Safiental and Hinterrhein in the north-east and east, respectively (Fig. 5.1). 

The relationships between the two contrasting types of metamorphic events in combination with the 

structural record have recently been unravelled and integrated in a model for the tectono-metamorphic 

evolution of the Valaisan and adjacent distal European margin (Wiederkehr et al. 2008). The P-T calcu-

lations presented in this study will complete the available tectono-metamorphic reconstruction. Further-

more the results of this investigation will be discussed in the frame of recently published findings based 

on the evolution of carbonaceous matter during metamorphic overprint (Wiederkehr et al. submitted, b) 

and new isotopic ages (Wiederkehr et al. submitted, a) in order to obtain valuable information regarding 

the geodynamic evolution of the Alps, i.e. the transition from subduction to collision within the Valai-

san- and Europe-derived metasedimentary units in the Central Alps in particular and on collisional oro-

genic belts in general.
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Fig. 5.1: Geological map of the investigated area and locations of the studied samples. (a) Tectonic map of the Central Alps 
after Schmid et al. (2004); the black rectangle delineates the outlines of the more detailed map view shown in b. (b) Detailed 
map of the NE rim of the Lepontine dome and easterly adjacent areas also indicating the main geographical names mentioned 
in the text; distribution of indicative minerals as well as traces of axial planes of major D3 and D4 are based on Wiederkehr 
et al. (2008) and references therein. Letters A-A’, B-B’, C-C’, D-D’, E-E’ and F-F’ mark the traces of cross-sections shown in 
Figures 5.7 and 5.10, respectively. Numbers show the locations of investigated samples listed in Table 5.1; samples character-
ized by subduction-related HP/LT are highlighted in white, samples characterized by collision-related Barrow-type overprint 
are highlighted in black.
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5.2. Geological background
The Mesozoic-age metasedimentary units at the north-eastern rim of the Lepontine dome are char-

acterized by a strong metamorphic gradient ranging from blueschist facies conditions in the NE to am-

phibolite facies Barrovian overprint in the SW. The Lepontine structural dome is formed by basement 

nappes that represent the former pre-Mesozoic substratum of the distal European margin (e.g. Schmid et 

al. 2004) and include, from bottom to top, Gotthard, Lucomagno-Leventina, Simano and Adula nappes 

(Fig. 5.1b). These basement nappes are overlain by Mesozoic-age sedimentary cover nappes and slices, 

in detail often complexly folded and wrapped around the frontal parts of the basement units (e.g. Thakur 

1973; Milnes 1974; Probst 1980). Separated by the Penninic Basal Thrust these Mesozoic metasedimen-

tary units can be subdivided into Sub-Penninic and Lower Penninic cover nappes and slices. These are 

derived from the distal European margin and the Valaisan Ocean, respectively (e.g. Probst 1980; Stein-

mann 1994a; Berger et al. 2005). The metasediments consist of shaly, sandy, calcareous, carbonaceous 

metapelites and calcschists and are generally referred to as “Bündnerschiefer” (see detailed description 

given in Baumer et al. 1961 and Berger et al. 2005). It has recently been shown that the Valaisan and ad-

jacent parts of European margin exposed near the north-eastern Lepontine dome are characterized by a 

bimodal P-T path where Barrovian overprint represents a separate, late-stage heating event that followed 

isothermal decompression after the HP/LT stage (Wiederkehr et al. 2008).

5.3. Methods of investigations for P-T estimates

5.3.1. Mineral and whole rock chemistry
Mineral compositions were determined by wavelength-dispersive X-ray analysis (WDS) using a 

CAMECA SX-100 electron microprobe at the GeoForschungsZentrum (GFZ) Potsdam. The analytical 

conditions included an acceleration voltage of 15 kV, a beam current of 20 nA and beam diameters of 

1-10 μm; PAP corrections were applied. Natural and synthetic minerals were used as standards. Peak 

counting times were 10-20 s for major and 20-40 s for minor elements; backgrounds were counted for 

5-20 s.

For obtaining bulk rock compositions of selected rock samples, wavelength-dispersive X-ray flu-

orescence analysis (WDXFRA) were performed on melted pellets by using a Bruker AXS SRS-3400. 

The pellets were manufactured from selected rock samples devoid of macroscopically detectable chemi-

cal in-homogeneities and/or weathering phenomena that were crashed and ground. WDXFRA was per-

formed at the Mineralogical and Petrographical Institute at Basel University.

5.3.2. Methods used for P-T estimation
Stable mineral assemblages as well as mode and composition of solution phases have been com-

puted for specific bulk rock compositions in the NaCaKFMASH(±C)-system by using the THERIAK-

DOMINO software (De Capitani 1994; Biino & De Capitani 1995). This software calculates thermo-

dynamic functions, equilibrium assemblages and rock-specific equilibrium assemblage diagrams (also 

referred to as pseudosections). The independent variables consist of a chosen combination of tempera-

ture, pressure and activity of a particular phase or compositional vectors. The equilibrium assemblage 

diagrams are based on the approach of a Gibbs free energy minimization and include highly non-ideal 

solution models for minerals with potential miscibility gaps (De Capitani & Brown 1987). In these 

equilibrium phase diagrams all phases are considered for each point in a given isochemical P-T space 



105

Chapter 5

assuming a complete thermodynamic equilibrium for the whole rock. Stability-fields for a particular as-

semblage are predicted. Hence, provided that attention focuses on assemblages, these equilibrium phase 

diagrams are very easy to interpret and they provide important information on mineral assemblage sta-

bility in a given isochemical P-T space.

It is problematic to use this “bulk rock equilibrium” method for natural rocks that exhibit a com-

plex, two-stage metamorphic evolution, with an early HP/LT event followed by a clearly separate Bar-

rovian heating pulse as is observed in case of the metasediments at the north-eastern Lepontine dome. 

The bulk rock chemistry may not be fully re-equilibrated, and relics of the earlier HP/LT metamorphic 

stage may still be present. This does not allow for an accurate P-T estimation. Hence, only samples de-

void of relics from the earlier metamorphic evolution have been selected, based on the assumption that 

these rocks were fully re-equilibrated during the temperature peak of their evolution. Only in this case 

the “bulk rock equilibrium” method is used for constraining pressure and temperature of the separate, 

late-stage Barrovian overprint.

The updated JUN92.BS thermodynamic database of Berman (1988) has been used for all calcula-

tions concerning the late-stage amphibolite facies Barrovian overprint, after having been completed by 

the following thermodynamic data: Mg-chloritoid data of Vidal et al. (2001), Fe-chloritoid data of Vidal 

et al. (1994), staurolite data of Nagel (2002), alumino-celadonite data of Massonne & Szpurka (1997) 

and chlorite data of Hunziker (2003). Solid-solution models for phengite are from Keller et al. (2005c), 

for chlorite from Hunziker (2003), and for feldspar from Fuhrman & Lindslay (1988).

In the case of the early blueschist facies event, due to problems arising with the DOMINO-THE-

RIAK software when calculating accurate P-T conditions for low-grade HP/LT metasediments that con-

tain Fe-Mg carpholite, we applied the well established petrogenetic grid of Bousquet et al. (2002 & 

2008) for estimating the metamorphic conditions. In contrast to equilibrium phase diagrams computed 

with DOMINO-THERIAK the petrogenetic grid method does not depend on a specific bulk rock com-

position and is merely based on “local equilibrium” which allows for estimating simultaneously P and T 

by using phases that are present in the studied thin section and checked for equilibrium using classical 

micro-textural criteria (Bousquet et al. 2002; Bousquet 2008, and references therein).

5.4. Metamorphic record of Valaisan and European margin derived meta-

sedimentary units
Recent studies documented the two-stage metamorphic evolution in the working area; an early 

pressure-dominated event was subsequently overprinted by temperature-dominated Barrovian meta-

morphism (Bousquet et al. 2008; Wiederkehr et al. 2008 & submitted, b). Hence for an unambiguous 

interpretation of the metamorphic record, established within a rock sample at a given time along a P-T 

path, it is absolutely essential to understand whether the observed mineral assemblages formed during 

subduction-related HP/LT metamorphism or during collision-related MP/MT Barrow-type metamor-

phism. The recognition of occurrences and understanding of mineral assemblages indicative for specific 

metamorphic settings are of fundamental importance in order to decipher the tectono-metamorphic evo-

lution of a given area.

In the following we summarise existing as well as new petrologic data and P-T estimates regard-

ing both subduction- and collision-related metamorphism. This helps for understanding the significance 

of the detected spatial distribution of peak metamorphic conditions and provides a hint for unravelling 
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the geodynamic evolution of the investigated area. The samples investigated are listed in Table 5.1, the 

locations within the study area are shown in Figure 5.1b.

5.4.1. Significance of the observed mineral assemblages
Some minerals such as Fe-Mg carpholite, glaucophane, margarite and staurolite clearly indicate 

a specific metamorphic facies. But others such as kyanite, garnet, chloritoid and zoisite/clinozoisite are 

rather problematic due to the fact that they may have formed under different P-T conditions; they do 

not imply a specific metamorphic facies (see review given in Bousquet et al. 2008). Even for obtaining 

specific P-T conditions on the basis of unambiguous minerals a detailed and careful investigation of the 

observed associated mineral assemblage as well as a proper analysis of relationships between crystal-

lization and discrete deformation phases needs to be performed. Given the fact that subduction-related 

HP/LT metamorphism is separated by at least two discrete deformation events from the following colli-

sion-related MP/MT Barrovian overprint (Wiederkehr et al. 2008) the two events can clearly be destin-

guished. Mineral assemblages reflecting these separate metamorphic events generally show unambigu-

ous relationships between crystallization and deformation. The relics of the early HP/LT stage, such as 

widespread Fe-Mg carpholite, typically found in characteristic quartz-calcite segregations representing 

pseudomorphs after Fe-Mg carpholite have repeatedly been folded. Remnants of the late MP/MT Bar-

rovian overprint, on the other hand, usually are part of a post-tectonic microstructure characterized by 

porphyroblasts that grow across the pre-existing main foliation (e.g. Wiederkehr et al. 2008). It is impor-

tant to note that such rather simple relationships between deformation and crystallization as described 

by Wiederkehr et al. (2008) are strictly only valid for the metasedimentary units found near the north-

eastern rim of the Lepontine dome. It has to be pointed out that Lepontine Barrow-type metamorphism 

is generally diachronous, becoming progressively younger from south to north (Köppel et al. 1981). 

Hence, different relations between deformation and crystallization are commonly observed (e.g. Berger 

et al. 2005).

In the following we briefly summarise the occurrences and distribution of remnants of both the 

subduction- and the collision-related metamorphism, as shown in Figure 5.2.

Swiss map coordinates
# Sample name

X Y

Elev.

(m)
Tectonic Unit Mineral assemblage

T (°C)

(RSCM)

Samples characterized by subduction-related HP/LT metamorphism

1 LUZ 0432 720’938 162’275 2600 Valaisan (Grava) Cp, Ctd, WM, Chl, Qtz, Cc/Do 440-460

2 LUZ 0416 719’235 160’052 2040 Valaisan (Grava) Cp, WM, Chl, Qtz, Cc/Do 450-460

3 VAL 0580 736’871 174’310 1370 Valaisan (Grava) Cp, WM, Chl, Qtz, Cc/Do 390-400

4 SAF 0527 746’016 178’803 1300 Valaisan (Grava) Cp, WM, Chl, Qtz, Cc/Do 360-380

5 HINT 079 739’193 153’874 1670 Valaisan (Tomül) Cp, Ctd, WM, Chl, Qtz, Cc/Do 430-450

6 LUZ 047 717’435 160’282 1850 Europe (Peiden slices, Forca) Cp, Ctd, WM, Chl, Qtz, Cc/Do 460-490

7 LAR 061 718’531 160’727 1960 Europe (Peiden slices, Pianca) Cp, WM, Chl, Qtz, Cc/Do 440-460

8 BLE 07.5 724’200 163’926 2050 Europe (Piz Terri-Lunschania) Cp, WM, Chl, Qtz, Cc/Do 440-460

Samples characterized by collision-related Barrow-type metamorphism

1 LUZ 055 716’865 158’363 1780 Valaisan (Grava) Plag, Zo/Czo, WM, Chl, Qtz, Ttn/Rt 450-480

2 LUZ 0444 716’017 157’831 1390 Valaisan (Grava) Bt, Plag, Zo/Czo, WM, Chl, Qtz, Cc/Do, Ttn/Rt 490-510

3 BLE 0410 715’029 156’841 1190 Europe (Peiden slices, Pianca) Grt, Bt, Plag, Marg, WM, Chl, Qtz, Cc/Do 510-530

4 BLE 0510 715’112 155’757 1090 Valaisan (Grava) Bt, Plag, WM, Zo/Czo, Qtz 530-550

5 GRU 053 714’990 149’545 630 Europe (Molare-Dangio) St, Ky, Grt, Bt, Plag, WM, Qtz 560-590

6 MOL 051 710’270 149’696 2270 Europe (Molare-Dangio) St, Ky, Grt, Bt, Plag, WM, Qtz 560-580

Table 5.1: Summary of samples used for P-T investigations. The numbers refer to sample locations depicted in Figure 5.1b. For 
each sample the precise location is given in Swiss map coordinates, elevation in meter, tectonic unit and mineral assemblage 
present in the investigated samples. Additionally peak-metamorphic temperatures T (°C) estimated by Raman spectroscopy of 
carbonaceous matter (RSCM) are indicated for each sample taken from Wiederkehr et al. (submitted, b).
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Remnants of subduction-related metamorphism

Fe-Mg carpholite represents a typical index mineral for HP/LT metamorphic conditions in meta-

sediments (Goffé et al. 1973; Chopin & Schreyer 1983; Goffé & Chopin 1986; Theye et al. 1992; Vidal 

et al. 1992; Bousquet et al. 2008). In the investigated area occurrences of Fe-Mg carpholite are common 

for the Valaisan domain of the Grisons (Grava and Tomül nappes; Goffé & Oberhänsli 1992; Oberhänsli 

et al. 1995; Bousquet et al. 2002) as well as in its western continuation in the Val Luzzone and at the 

Pizzo Molare well inside the Lepontine thermal dome (Wiederkehr et al. 2008; Fig. 5.2a). Recent in-

vestigations have shown that also parts of the tectonically underlying sediments of the distal European 

margin were affected by early blueschist facies metamorphism, as documented by occurrences of Fe-

Mg carpholite in the Peiden slices (Wiederkehr et al. 2008) and the Piz Terri-Lunschania unit (Derungs 

2008; Wiederkehr et al. submitted, b; Fig. 5.2a). In the investigated area Fe-Mg carpholite is exclusively 

found within quartz-calcite veins and/or segregations but never in the matrix of the rocks. These veins 

and/or segregations show a characteristic fibrous mesoscopic appearance along with a light green silvery 

colour resembling the typical Fe-Mg carpholite pseudomorphs described in the literature (e.g. Goffé & 

Chopin 1986; Fournier et al. 1991; Agard et al. 2001; Rimmelé et al. 2003b).

The interpretation of the significance of the occurrences of chloritoid for the metamorphic record 

is by far more delicate. Chloritoid is a common mineral phase in metamorphic assemblages found in 

the investigated area (Fig. 5.2), but this mineral may have formed during different geodynamic stages 

since it has a large stability field. In metasediments chloritoid may either have formed by the decay of 

Fe-Mg carpholite under blueschist facies conditions, or alternatively, by the breakdown of pyrophyllite 

during prograde greenschist facies metamorphism (see discussions in Rahn et al. 2002 and Oberhänsli 

et al. 2003). A distinction between high-pressure and low-pressure chloritoid can be done in low-grade 

metasediments (HP/LT, 350-400 °C) only by a careful microstructural analysis of the relationships be-
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tween crystallization and deformation, or in higher-grade metasediments (HP/MT, 450-500°C), by the 

careful analysis of the entire mineral assemblage. In the case of the low-grade Fe-Mg carpholite-bearing 

metasediments found in both Valaisan (Grava and Tomül nappes) and European domains (Peiden slices) 

chloritoid can only rarely be found inside Fe-Mg carpholite-bearing quartz-calcite segregations/veins 

(Fig. 5.3a) or as fine prisms oriented parallel to the often strongly folded main foliation (e.g. around P. 

Beverin, Vals or Hinterrhein; Fig. 5.3b). In such cases the formation of chloritoid is interpreted as being 

related to HP/LT conditions.

In slightly higher grade metasediments devoid of Fe-Mg carpholite, such as found in the Misox 

Zone, chloritoid is mostly associated with garnet (Teutsch 1982; Fig. 5.2a). Both minerals have formed 

before the main deformation as evidenced by the fact that the main foliation bends around the porphy-

roblasts (Fig. 5.3f). The co-existence of garnet and chloritoid typically indicates (upper) blueschist facies 

conditions in metasediments (e.g. Agard et al. 2001; Wiederkehr 2004; Bucher & Bousquet 2007; Bous-

quet 2008; Bousquet et al. 2008). This assemblage formed at considerably higher temperatures during 

the high-pressure stage when compared to the carpholite bearing metasediments found further north.

The metasediments from the “internal Mesozoic” of the northern frontal part of the Adula nappe 

complex contain a co-existing and unambiguous assemblage of minerals formed by chloritoid, garnet, 

kyanite and zoisite/clinozoisite (e.g. Löw 1987; Fig. 5.2a). This mineral assemblage is indicative for up-

per blueschist to eclogite facies conditions in metasediments (Löw 1987; Bousquet et al. 2008).

Scarce remnants of the early pressure dominated subduction-related metamorphism can also be 

found in thin layers of mafic rocks that are spatially associated with the Mesozoic metasediments de-

rived from the Valaisan Ocean. Glaucophane is a characteristic index mineral indicating HP/LT condi-

tions for mafic rocks (e.g. Evans 1990) and has been identified near Tomülpass east of Vals (Oberhänsli 

1977; Oberhänsli 1978), around Splügen (outcrop “Brennhoftobel”; Nabholz, 1945) as well as at the 

spectacular outcrop “Neu Wahli” north of the San Bernardinopass (Gansser 1937; Fig. 5.2a). In mafic 

rocks around Piz Aul west of Vals occurrences of some blue-greenish amphiboles have been reported, 

but these were not clearly identified as glaucophane (Kupferschmid 1977). Only one single outcrop in 

the northern Misox Zone (outcrop “Neu Wahli”) is known to preserve unambiguous Alpine-age eclogite 

facies relics within the Valaisan oceanic domain east of the Lepontine dome, as is documented by the 

co-existence of glaucophane, garnet and omphacite (30-50% jadeite component; Ring 1992; Santini 

1992; Fig. 5.2a).

The available metamorphic data indicate a general increase of metamorphic conditions, both in 

terms of temperature and pressure, towards the south within the Valaisan domain; they range from Fe-

Mg carpholite-bearing blueschist facies metasediments to glaucophane-bearing eclogite facies meta-

basites. A similar southward increase in P-T conditions has also been documented for the Adula nappe 

complex (Heinrich 1982; Heinrich 1986). This is generally interpreted to reflect southward subduction 

of tectonic units during the formation of the Alpine orogenic belt.

Remnants of collision-related metamorphism

The distribution of subduction- and collision-related index minerals is completely different 

(Wiederkehr et al. 2008) and obvious from inspection of Figure 5.2. While the subduction-related meta-

morphism forms a more or less orogen-parallel belt, collision-related Barrovian overprint represents a 

characteristic onion-shaped thermal dome whereby temperatures typically increase towards the south-

west and clearly cross-cut both the pre-existing HP/LT metamorphic belt as well as all the major nappe 

contacts.
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D3

main foliation

relictic foliation

Fig. 5.3: Photomicrographs of thin sections showing different relationships between crystallization and deformation. (a) Prism 
of chloritoid inside a Fe-Mg carpholite-bearing quartz-calcite vein overgrowing a pseudomorph after carpholite consisting of 
phengite-chlorite-quartz. Sample from Valaisan-derived HP/LT metasediments, Grava nappe (LUZ 0432, 720’938/162’275, 
2600 m). (b) Earlier foliation (S1) underlined by prims and needle-shaped chloritoid preserved in late stage (D2) fold hing-
es (microlithons) representing the main foliation. Sample from Valaisan-derived metasediments, Aul unit (VAL 0710, 
731’370/163’971, 1960 m). (c) Bundles and rosettes of chloritoid clearly overgrowing the main foliation. Sample from Eu-
rope-derived HP/LT metasediments, Peiden slices/Forca unit (CAV 0517, 717’470/160’269, 1850 m). (d) Reflected light pho-
tomicrograph of a bundle of chloritoid growing over the main foliation and slightely bended by subsequent (D3) deformation. 
Sample from Europe-derived LP/LT metasediments, Scopi unit (VRI 072, 729’104/170’789, 1260 m). (e) Straight internal 
main foliation preserved inside of garnet. The deflection of the main foliation at the rim of the garnets is the effect of minor sub-
sequent deformation (southern Misox Zone, MF 2042, 737’600/140450, 900 m). (f) Skeletal porphyroblast of garnet and prism 
of chloritoid are found together in a lense-shaped sigma-clast, the main foliation is strongly deflected around garnet and chlori-
toid. Sample from Valaisan-derived HP/LT metasediments, Northern Misox Zone/Aul unit (TP 34, 734’450/153’600, 1840 m). 
Samples MF 2042 and TP 34, shown in (e) and (f), respectively, were taken from the study of Petrova et al. (2002).
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The clear progressive metamorphic zoning of this Barrow-type event ranges from greenschist 

facies conditions in the Urseren-Garvera Zone in the north to lower/middle amphibolite facies condi-

tions around the Lukmanier and Pizzo Molare areas in the south. This metamorphic gradient has been 

observed and described in great detail in the past (Chadwick 1968; Frey 1969, 1974, 1978; Thakur 1971; 

Fox 1975) and represents a classical case for studying Barrow-type regional metamorphism. Recently 

this data set was completed by a detailed study on the progressive Barrow-type overprint of European- 

and Valaisan-derived metasediments (“Bündnerschiefer”) along a north-east south-west section ranging 

from Piz Terri in the east to Pizzo Molare in the west (Fig. 5.1b; Wiederkehr et al. 2008). All these stud-

ies clearly demonstrate that the sequential appearance of margarite, chloritoid, zoisite/clinozoisite, pla-

gioclase (> 10 mol% An), biotite, garnet, kyanite, and staurolite corresponds to increasing temperatures 

related to Lepontine Barrow-type thermal overprint (Fig. 5.2b). Whereas the mineral assemblages cor-

responding to subduction-related HP/LT metamorphism typically show pre-kinematic microstructures 

in respect to the main foliation, mineral assemblages belonging to collision-related Barrow-type thermal 

overprint grew post-kinematically as clearly documented by porphyroblasts devoid of any shape pre-

ferred orientation overgrowing the main foliation (Fig. 5.3).

It is important to mention that chloritoid that most often formed at the expense of pyrophyllite 

under LP/LT conditions generally occurs as idiomorphic rosettes, bundles and prisms growing over the 

main foliation (Fig. 5.3c & d), while rare chloritoid porphyroblasts related to the breakdown of Fe-Mg 

carpholite are typically oriented parallel to the main foliation and are found well inside quartz-calcite 

veins/segregations still containing relics of Fe-Mg carpholite (Figs. 5.3a & b). Hence, the two different 

generations of chloritoid can unambiguously be distinguished based on careful microstructural observa-

tions (Wiederkehr et al. 2008). Occurrences of chloritoid are found a far distance to the east; obviously 

chloritoid shows a different zoning pattern compared to other index minerals by not being characterized 

by the rather concentric shape confining the Lepontine thermal dome such as seen for margarite, biotite, 

kyanite or staurolite (Fig. 5.2b; Niggli & Niggli 1965).

Contrasting with the well known metamorphic zoning in the north-eastern Lepontine dome (areas 

around Lukmanier, Pizzo Molare and Val Luzzone; Fig. 5.1b) the metamorphic zoning and history are 

more problematic in the area of the Misox Zone. There it is generally accepted that the characteristic 

metamorphic conditions change from high-pressure conditions in the N to amphibolite facies Barrovian 

conditions in the S (Gansser 1937; Oberhänsli 1978; Teutsch 1982). Based on the first occurrences of 

staurolite, as well as on the anorthite content in plagioclase, amphibolite facies conditions are reached, 

going from N to S, at the level of Mesocco (Wenk 1970; Thompson 1976). The Barrovian overprint in 

the Misox Zone has been investigated by Teutsch (1982), but there the significance of the occurrences of 

particularly ambiguous minerals such as garnet and chloritoid is crucial but not easy to assess. Accord-

ing to the findings along a metamorphic profile around Lukmanier and Val Luzzone the first occurrences 

of biotite, margarite and plagioclase (> 10 mol% An) in metasediments are characteristic for incipient 

Barrovian overprint (Frey 1978; Frey et al. 1982; Wiederkehr et al. 2008). In the case of the Misox Zone 

the first occurrences of these index minerals are found south of the area around San Bernardino, and they 

indicate the onset of increasing temperatures related to collision-related Barrovian overprint (Fig. 5.2b). 

Consequently, more northerly located occurrences of co-existing garnet and chloritoid are interpreted 

as having formed during the early subduction-related HP/LT metamorphic event rather than being re-

lated to the subsequent collision-related Barrovian overprint. Such an interpretation is supported by the 

obvious differences in the microstructural setting of garnet: Whereas in the north garnet is clearly seen 
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to have grown pre-kinematically, more southerly occurrences of garnet indicate post-kinematic growth 

whereby porphyroblasts overgrow a pre-existing main foliation (Figs. 5.3e & f).

5.4.2. P-T estimates along a profile with increasing Barrow-type metamorphic grade over-

printed onto earlier HP/LT metamorphism
As shown by Wiederkehr et al. (2008) the relationships between an earlier HP/LT event and a 

subsequent MP/MT Barrovian overprint are by now well established along a metamorphic profile rang-

ing form Pizzo Molare to Safiental. Hence, the area offers a natural laboratory for investigating pro-

gressive Barrovian overprint of former HP/LT metasediments. The detailed study of subsequent pro-

gressive Barrow-type overprint provides the possibility to unravel the late stage thermal evolution at 

the north-eastern rim of the Lepontine dome and to clarify the question whether this late-stage thermal 

overprint merely represents a single heating event during which only temperature is the changing pa-

rameter, hence representing an “isobaric heating event”, or alternatively, if the evolution is more com-

plex and characterized by late-stage changes in pressure and temperature. In an attempt to answer this 

question insights for both the late-stage evolution as well as regarding speculations about the nature of 

Barrowian overprint can be achieved. Combined with the peak-metamorphic temperatures obtained by 

Raman sepectroscopy of carbonaceous matter (RSCM; Wiederkehr et al. submitted, b) and the available 

isotopic dating (Wiederkehr et al. submitted, a) the additional new P-T data presented below will be used 

to unravel the tectono-metamorphic evolution in the investigated area, focussing on the transition from 

subduction to collision of the European margin and adjacent Valaisan Ocean.

Subduction-related HP/LT metamorphism

Within the investigated area peak-pressure conditions are documented by the widespread occur-

rences of the HP/LT mineral assemblage Fe-Mg carpholite – chlorite – phengite – quartz ± chloritoid in 

metasediments derived from the Valaisan domain (Bousquet et al. 2002) and, as recently shown, also in 

metasediments derived from the distal European margin, i.e. in areas that are partly located well inside 

the amphibolite facies Lepontine thermal dome (Fig. 5.1b; Wiederkehr et al. 2008). Relics of this early 

pressure-dominated metamorphic stage can only be found in quartz-calcite segregations and never in 

the rock matrix (Wiederkehr et al. 2008). However, Fe-Mg carpholite is only preserved in the form of 

microscopic-scale, hair-like relics within such typically fibrous quartz-calcite segregations/veins that 

represent macroscopically visible pseudomorphs after large former Fe-Mg carpholite crystals. In thin 

section, fibrous quartz is full of inclusions of chlorite, phengite and paragonite. This assemblage often 

forms needle-shaped pseudomorphs after Fe-Mg-carpholite. Rarely chloritoid has also been found to 

be associated with such fibrous quartz-calcite veins. In order to estimate peak pressure and temperature 

conditions using the well established petrogenetic grid for carpholite-bearing, low-grade metapelites 

provided by Bousquet et al. (2002 & 2008) and shown in Figure 5.4, the chemical compositions of co-

existing HP/LT minerals such as Fe-Mg carpholite, phengite, chlorite, and if present, also chloritoid 

were determined by electron microprobe (EMP) analysis and listed in Table 5.2. The pressure conditions 

for carpholite-bearing rocks are defined by the location of the equilibrium (Fig. 5.4):

2 phengite + chlorite + 5 Quartz + 2 H
2
O = 3 carpholite + 2 phengite (1)

while the stability field of Fe-Mg carpholite towards higher temperature is limited by the equilibrium:

carpholite = chloritoid + quartz + 2 H
2
O (2)

A total of eight samples have been investigated belonging to both Valaisan and distal European 

margin and collected along a cross-section between Val Luzzone in the south-west, already well affected 
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Table 5.2: Representative mineral analysis of subduction-related HP/LT assemblages found as inclusions in quartz-calcite 
veins representing pseudomorphs after carpholite of Valaisan (Grava and Tomül nappes) and European (Peidener slices and Piz 
Terri-Lunschania unit) metasedimentary units given in weight-%. The structural formulae were calculated for carpholite using 
5 cations for Si and 3 cations for Al, Fe, Mn and Mg following Goffé & Oberhänsli (1992), for chlorite using 14 oxygens, for 
white mica using 11 oxygens and for chloritoid using 12 oxygens following Chopin et al. (1992). The sums of analyses have 
been corrected for fluorine content; the values given under “Total corr.” take into account that fluorine occupies an oxygen site. 
The following abbreviations have been used: Cp = Fe-Mg carpholite, Ctd = chloritoid, Chl = chlorite, Phe = phengite, Pg = 
paragonite.
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by subsequent Barrovian thermal overprint, and Safiental/Hinterrhein in the east, where no substantial 

re-heating is observed (samples are listed in Table 5.1, locations are given in Figure 5.1b). These eight 

samples where selected in order to cover all the Fe-Mg carpholite-bearing tectonic units belonging to the 

Valaisan domain (Grava and Tomül nappes) as well as the realm of the distal European margin (Peiden 

slices and Piz Terri-Lunschania unit).

The chemical composition of Fe-Mg carpholite [(Mg,Fe,Mn)Al
2
Si

2
O

6
(OH,F)

4
] is rather constant, 

X
Mg

 [Mg/(Mg+Fe+Mn)] only varying between 0.4-0.5 (Tab. 5.2). Only the relics of Fe-Mg carpholite 

belonging to the Piz Terri-Lunschania unit show 

significantly lower values of X
Mg

, ranging be-

tween 0.3-0.4. In general the composition of car-

pholite is within the same range already found in 

earlier studies for the Valaisan domain over the en-

tire Grisons area (Goffé & Oberhänsli 1992; Ober-

hänsli et al. 1995; Bousquet et al. 2002; Oberhänsli 

et al. 2003). The Si4+ content of white mica occur-

rences found within carpholite-bearing quartz-cal-

cite segregations ranges from 3.31 in the Valaisan 

Bündnerschiefer to 3.14 p.f.u in the Sub-Penninic 

Peiden slices of the distal European margin (Tab. 

5.2). Only in a few cases was also chloritoid found 

to be associated with quartz-calcite segregations 

that contain relics of Fe-Mg carpholite; in such 

cases chloritoid is typically found either inside the 

Fe-Mg carpholite-bearing quartz-calcite segrega-

tions (Fig. 5.3a) or aligned parallel to the main fo-

liation in close contact to such quartz-calcite seg-

regations. Such high-pressure related chloritoid 

forms small prisms, the X
Mg

-values vary between 

0.12 in the Valaisan Bündnerschiefer and 0.20 in 

the Europe-derived metasediments (Tab. 5.2) and 

is interpreted to have formed during prograde met-

amorphism by a mineral reaction at the expense of 

Fe-Mg carpholite, as shown by Vidal et al. (1992). 

Hence, such chloritoid formed during the high-pressure stage rather than during a subsequent green-

schist facies overprint (see discussion given by Oberhänsli et al. 2003).

From the above-described equilibria (1) and (2), determined by the mineral chemistry of the ob-

served assemblages, peak metamorphic conditions of 1.2-1.4 GPa and 350-400 °C are estimated for both 

the metasediments derived from the Valaisan Ocean (Grava and Tomül nappes) as well as those derived 

from the distal European margin (Peiden slices and Piz Terri-Lunschania unit) as shown in Figure 5.4. 

These peak-pressure metamorphic conditions are similar to those found further to the east in the Grisons 

area (e.g. Bousquet et al. 2002).
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Fig. 5.4: Estimated P-T conditions for peak-pressure con-
ditions of metasedimentary units derived from the Valaisan 
(Grava and Tomül nappes; A) and European margin (Peidener 
slices and Piz Terri-Lunschania unit; B). P-T conditions have 
been estimated for HP/LT assemblages consisting of Fe-Mg 
carpholite – phengite – chlorite – quartz ± chloritoid, only 
preserved in quartz-calcite veins, using the chemistry of the 
different minerals listed in Table 5.2 according to reactions 
R1 & R2 (see explanations in the text). The celadonite com-
ponent of phengite (reflecting the Si content p.f.u.) has been 
estimated following the decomposition of white micas given 
in Bousquet et al. (2002). The petrogenetic grid for HP/LT 
metapelites have been adopted from Bousquet et al. (2008).
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Collision-related Barrovian overprint

As recently shown by Wiederkehr et al. (2008) the HP/LT rocks were progressively overprinted 

by a Barrow-type thermal event characterized by increasing temperatures towards the south-west. This 

offers the unique opportunity to investigate progressively increasing conditions related to Barrow-type 

amphibolite facies metamorphism overprinting HP/LT rocks.

In order to study the P-T conditions along a gradient with increasing Barrow-type overprint six 

samples have been selected. They range from greenschist facies in the Val Luzzone to lower/middle am-

phibolite conditions at the Pizzo Molare (samples are listed in Table 5.1 and shown in Figure 5.1b). The 

investigated metasedimentary samples derive from both Valaisan and European domain and are general-

ly well equilibrated during this second, late-stage Barrovian overprint as is evidenced by the lack of rel-

ics related to the earlier HP/LT event. Equilibrium phase diagrams (also referred to as pseudo-sections) 

have been computed for the NaCaKFMASH(±C)-system using the THERIAK-DOMINO software (De 

Capitani 1994; Biino & De Capitani 1995) to visualise stable assemblages as well as mode and composi-

tion of solution phases for specific bulk rock compositions. The bulk rock compositions of the six inves-

tigated samples used for P-T modelling by the THERIAK-DOMINO software are given in Table 5.3. In 

the following we briefly present the studied samples between Val Luzzone and Pizzo Molare in order of 

increasing temepratures. Thereby a short description of the observed mineral assemblage as well as the 

microstructure will be given. Phase equilibrium diagrams for each sample are shown in Figure 5.5, pre-

senting P-T conditions for the observed peak-metamorphic assemblage. Additionally, the corresponding 

peak-metamorphic temperatures recently estimated by the RSCM method (see Wiederkehr et al. submit-

ted, b) are also displayed for a more accurate determination of the peak-metamorphic conditions. Cor-

responding representative EMP analyses are listed in Table 5.4.

LUZ 055: This sample belongs to the metasedimentary units of the Valaisan domain and was col-

lected close to quartz-calcite segregations/veins that contain still preserved relics of Fe-Mg carpholite 

that formed during the early HP/LT metamorphic stage. The observed assemblage consists of plagi-

oclase, zoisite/clinozoisite, white mica, chlorite and quartz as well as minor amounts of both titanite and 

rutile. Both white mica and chlorite form the main foliation, whereas plagioclase, zoisite/clinozoisite 

and titanite clearly overgrow this main foliation. Plagioclase forms large porphyroblasts up to 1.5 cm in 

size and is the dominant phase. It overgrows all other phases, as is documented by inclusions of white 

mica, chlorite, zoisite/clinozoisite and titanite/rutile. Zoisite/clinozoisite is found as fine-grained needle-

shaped or platy crystals oriented parallel or across the main foliation. Due to late-stage deformation the 

Valaisan distal European margin

Sample LUZ 055 LUZ 0444 BLE 0510 BLE 0410 GRU 053 MOL 051

SiO2 52.54 51.38 46.71 59.60 56.61 47.62

TiO2 1.33 0.98 1.75 0.88 1.15 1.5

Al2O3 27.03 22.43 27.06 15.97 23.60 28.35

Fe2O3 4.44 4.68 6.36 10.10 7.18 10.79

MnO 0.01 0.04 0.02 0.19 0.09 0.1

MgO 1.96 3.10 3.89 1.72 2.99 4.70

CaO 5.76 13.08 7.98 7.96 1.76 1.93

Na2O 4.81 2.16 1.85 0.66 1.64 1.81

K2O 1.79 2.32 4.34 1.29 5.53 3.78

Total 99.67 100.17 99.96 98.37 100.55 100.58

Table 5.3: Representative bulk rock geochemical data of analyzed Valaisan and European metasedimentary units given in 
weight-%.
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main foliation is gently crenulated and also affects zoisite/clinozoisite and plagioclase that grew at a late 

stage. This late deformation was induced by the formation of the Northern Steep Belt (Chièra phase) and 

it clearly postdates the onset of Barrovian overprint (Wiederkehr et al. 2008).

Figure 5.5a shows the equilibrium phase diagram calculated in the NaCaKFMASH system for 

the bulk rock composition of this sample as given in Table 5.3. The observed peak metamorphic assem-

blage has a very large stability field ranging from 0.3-0.95 GPa and 300-525 °C that does not allow for 

an accurate P-T estimation. However, the combination of peak-metamorphic temperatures obtained by 

the RSCM method with the pressures calculated from Si-isopleths in white mica allows for a further re-

striction of the pressure and temperature range during peak-metamorphic conditions and yields 0.6-0.8 

GPa and 450-500 °C.

LUZ 0444: This sample also belongs to the Valaisan but is slightly higher in metamorphic grade 

as documented by the appearance of biotite. The mineral assemblage consists of biotite, plagiocla-

se, zoisite/clinozoisite, white mica, chlorite, quartz, calcite/dolomite and some minor amounts of ti-

tanite/rutile. As also found in the previous sample large porphyroblasts of plagioclase and prisms of 

zoisite/clinozoisite overgrow a pre-existing main foliation, whereas white mica forms the main foliation. 

Zoisite/clinozoisite is obviously much more frequent in this sample and forms spectacular rosettes up to 

5 cm in diameter (Wiederkehr et al. 2008). Chlorite is only visible as small flakes oriented parallel to the 

main foliation or surrounds some opaque phases; it is obviously less frequent than in the previous sam-

ple. Biotite is found as flakes oriented both parallel as well as across the main foliation. The first appear-

ance of well developed biotite that unambiguously overgrew the pre-existing main foliation (referred to 

as “Querbiotit”) along this profile clearly indicates the late-stage formation of biotite.

Figure 5.5b shows the equilibrium phase diagram calculated in the NaCaKFMASHC system for 

the bulk rock composition given in Table 5.3. Due to non-negligible amounts of calcite/dolomite and 

the obvious involvement of carbonates during the formation of plagioclase the H
2
O activity has been 

reduced by adding some CO
2
 to the fluid. The equilibrium diagram predicts a relatively narrow stability 

field of 0.45-0.8 GPa and 450-525 °C, i.e. over a wider range of pressures but better defined in tempera-

ture. The temperature interval is constrained by the disappearance of biotite towards lower temperatures 

and by the disappearance of zoisite/clinozoisite towards higher temperatures. Towards higher pressures 

and higher temperatures the appearance of garnet delimits the calculated stability field. The RSCM peak 

temperatures independently predict 490-520 °C which perfectly overlaps with the computed stability 

field. This also allows for an additional restriction of the peak-metamorphic conditions to 0.5-0.8 GPa 

and 475-525 °C.

BLE 0410: In contrast to the two samples presented above, sample BLE 0410 originates from 

metasedimentary units derived from the European margin and belonging to the Peiden slices (i.e. Pianca 

slice, southern slice). The most obvious difference in respect to the samples described above is the pres-

ence of large porphyroblasts of garnet, up to 1cm in diameter. The observed mineral assemblage consists 

of garnet, biotite, margarite, plagioclase, white mica, chlorite, quartz and minor amounts of calcite/dolo-

Fig. 5.5: Equilibrium phase diagrams computed with DOMINO for specific bulk rock compositions of various metasediments 
including both Valaisan and European domains listed in Table 5.3. Corresponding representative EMP analyses of constituents 
of observed mineral assemblages representing peak conditions established during Barrovian overprint are given in Table 5.4. 
Dark grey shaded areas indicate peak P-T conditions reached during Barrovian overprint. The observed mineral assemblage is 
highlighted in light-grey, the dotted bars represent peak-metamorphic temperatures estimated by the RSCM method given by 
Wiederkehr et al. (submitted, b). Figures (a)-(f) showing calculated equilibrium phase diagrams in order of increasing tempera-
tures established during late-stage Barrow-type thermal overprint (see also text for further explanations).
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mite. Garnet and plagioclase unambiguously overgrow a pre-existing main foliation, whereas flakes of 

biotite are seen to have grown either within or across the main foliation (“Querbiotit”). Fibres of mar-

garite are oriented parallel to the main foliation. Interestingly, the large porphyroblasts of garnet shwo 
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practically no chemical zonation (Tab. 5.4), they have an almandine rich composition which is typical 

for Barrow-type regional metamorphism (Alm
0.71

Prp
0.06

Grs
0.21

Sps
0.02

).

Figure 5.5c shows the resulting equilibrium phase diagram calculated for the NaCaKFMASHC 

system, corresponding to the bulk rock composition given in Table 5.3. The activity of H
2
O was reduced 

by adding some CO
2
 to the fluid composition. This was mainly done for obtaining margarite as a stable 

phase in the computed equilibrium phase diagram, which was not possible when assuming a pure H
2
O 

fluid. The presence of minor amounts of calcite/dolomite supports the addition of some CO
2 
to the fluid. 

No stability field that includes all observed phases could be computed in the equilibrium phase diagram. 

Biotite and margarite were never predicted to co-exist within a stable assemblage at the given bulk rock 

chemical composition. Consequently, biotite is inferred not to be part of the peak-metamorphic assem-

blage. It was probably produced by incremental isothermal decompression to pressures slightly below 

those of the margarite stability field (Fig. 5.5c). Hence, the observed “peak-metamorphic assemblage” 

rather consists of two “sub-assemblages” and does not represent a single equilibrium assemblage. The 

equilibrium phase diagram predicts a relatively narrow stability field for margarite. Further restrictions 

towards higher pressure are given by the disappearance of plagioclase as well as the appearance of stau-

rolite. Hence, peak-metamorphic conditions are estimated at 0.65-0.8 GPa and 500-540 °C (Fig. 5.5c). 

Additional information, especially regarding the prograde path, can be deduced by the intersection of 

the computed isopleths of the garnet cores reflecting the P-T conditions established during the initiation 

of the garnet growth. The intersection of garnet isopleths is considerably shifted away from the “gar-

net-in” line, indicating 0.6-0.7 GPa around 500 °C for the initial stages of garnet growth (Fig. 5.5c). 

As mentioned above, biotite appears to have formed along the retrograde path after a slight decompres-

sion from the peak-metamorphic stage. Peak-metamorphic temperatures around 525 °C obtained by the 

RSCM method confirm the estimates based on the computation of the equilibrium phase diagram and 

are in agreement with a retrograde formation of biotite.

BLE 0510: This sample belongs to the Valaisan derived metasediments. The appearance is very 

similar to that of sample LUZ 0444. The mineral assemblage again consists of biotite, plagioclase, 

white mica, chlorite and quartz although the metamorphic conditions related to Barrow-type overprint 

are considerably higher. It is noteworthy to mention that zoisite/clinozoisite is mostly found in the form 

of inclusions in biotite and plagioclase and only rarely in the rock matrix where it shows considerable 

resorption. As described in the above samples porphyroblasts related to Barrovian overprint such as 

plagioclase, biotite and zoisite/clinozoisite show no shape preferred orientation and clearly overgrow a 

pre-existing main foliation. Particularly biotite, referred to as “Querbiotit”, forms spectacular flakes up 

to 0.5 cm in size and grows across the main foliation.

The equilibrium phase diagram calculated in the NaCaKFMASH system for the bulk rock compo-

sition given in Table 5.3 is shown in Figure 5.5d. The predicted stability field of the observed peak-meta-

morphic assemblage is very large and ranges between 0.3-0.9 GPa and 350-525 °C, respectively. The 

temperature interval is constrained by the disappearance of zoisite/clinozoisite towards higher tempera-

tures and by the disappearance of biotite towards lower temperatures. The appearance of garnet delimits 

the stability field towards higher pressures. Obviously, the peak-metamorphic temperatures obtained by 

the RSCM method does not overlap with the predicted stability field of the observed assemblage and 

is considerably shifted towards higher temperatures in the 530-540 °C range, i.e. beyond the “zoisite/

clinozoisite-out line” (Fig. 5.5d). However, as mentioned above, zoisite/clinozoisite is mainly found as 

inclusions in biotite and plagioclase and only to a minor extent in the rock matrix where it is resorbed. 
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This supports the slightly higher temperatures predicted by the RSCM method and the establishment of 

peak-metamorphic conditions that originally lay beyond the “zoisite/clinozoisite-out line”. The combi-

nation of calculated isopleths for the Si-content in white mica as well as peak-metamorphic temperatures 

obtained by the RSCM method allow for a further restriction of peak-metamorphic conditions of 0.5-

0.65 GPa and 510-550 °C for late-stage Barrow-type thermal overprint (Fig. 5.5d).

GRU 053 & MOL 051: These two samples are Al-rich metapelites from Europe-derived meta-

sediments that tectonically directly underlie the Valaisan Bündnerschiefer, i.e. they are from the same 

tectonic position as the so-called Peiden slices. The observed mineral assemblage consists of staurolite, 

kyanite, garnet, biotite, plagioclase, white mica and quartz, an assemblage that is characteristic for me-

tapelites from the north-eastern Lepontine thermal dome (southern Lukmanier and Pizzo Molare areas; 

Fig. 5.1b) indicating peak-metamorphic conditions of lower/middle amphibolite facies conditions. Gar-

net generally shows an almandine-rich composition with a typical prograde zoning characterized by a 

spessartine component that decreases from core to rim and a pyrope content increasing from core to rim. 

The zoning regarding the grossular and almandine component is weak, however (Tab. 5.4). Such “nor-

mal/prograde zoning” is generally interpreted to result from primary growth during increasing tempera-

tures (e.g. Spear et al. 1991; Spear & Markussen 1997; Tinkham & Ghent 2005). As above described for 

the other samples all porphyroblasts related to Barrovian overprint, such as staurolite, kyanite, garnet, 

biotite and plagioclase, show no shape preferred orientation and clearly overgrow a pre-existing main 

foliation.

The equilibrium phase diagrams calculated in the NaCaKFMASH system for the bulk rock com-

positions given in Table 5.3 are shown in Figures 5.5e and f. Although kyanite is unambiguously present 

in both samples no stability field could be computed for co-existing staurolite and kyanite. The reason 

for the absence of kyanite in the calculated stability fields is not known, but most probably related to 

problems in the thermodynamic database. Ignoring the absence of kyanite a stability field ranging from 

0.45-0.75 GPa and 550-650 °C is predicted for sample GRU 053, while 0.5-1.1 GPa and 575-650 °C are 

computed for sample MOL 051 (Figs. 5.5e & f). In both samples the appearance of chlorite delimits the 

stability field towards lower temperatures while the pressure is constrained by the disappearance of gar-

net towards lower pressures. The disappearances of staurolite in sample GRU 053 and that of biotite in 

sample MOL 051 constrains the upper bound of the pressure interval. Calculations of isopleths for X
Mg

 

in staurolite and X
Mg

 in co-existing biotite for sample GRU 053, as well as the peak-metamorphic tem-

peratures in the range of 550-590 °C determined by the RSCM method allow for a further restriction of 

the equilibrium stability field, and predicting peak-metamorphic conditions for Barrovian overprint of 

0.55-0.8 GPa and 560-600 °C (Figs. 5.5e & f). Additional information regarding the prograde path, i.e. 

the initial stages of garnet growth are deduced from the intersection of the computed isopleths from the 

garnet cores revealing P-T conditions around 0.6-0.65 GPa at 520-535 °C, as well as 0.7-0.75 GPa and 

525-540 °C for GRU 053 and MOL 051, respectively. (Figs. 5.5e & f).

5.4.3. Transition from subduction- to collision-related metamorphism
In the previous chapter we presented new P-T estimates for both the early HP/LT metamorphic 

event documented by the mineral assemblage consisting of Fe-Mg carpholite, chloritoid, white mica and 

chlorite as well as subsequent gradual Barrow-type overprint increasing from north-east to south-west. 

Figure 5.6 summarizes all these peak-metamorphic estimates and clearly shows the two contrasting 

types of metamorphic events present in the investigated area: subduction-related HP/LT metamorphism 
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at 1.2-1.4 GPa and 350-400 °C and collision-related Barrovian overprint at 0.6-0.75 GPa with gradually 

increasing temperatures towards the south-west that range from 450-480 °C in the Val Luzzone up to 

570-590 °C at Pizzo Molare. Wiederkehr et al. (2008) demonstrated that Barrow-type overprint unam-

biguously represents a late, discrete heating pulse separated by at least two deformation events including 

already substantial decompression from the early HP/LT event. The new P-T data presented in this study 

address the progressive, gradual Barrovian overprint of the HP/LT rocks and clearly show that the Bar-

row-type overprint is dominated by increasing temperatures from north-east towards south-west, while 

pressures remain rather constant and are at around 0.6-0.75 GPa (Fig. 5.6). Hence, Barrovian thermal 

overprint at the north-eastern Lepontine dome represents a late-stage, more or less “isobaric” metamor-

phic event.
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Fig. 5.6: Summary of P-T estimates for all studied samples including both metamorphic events: early subduction-related HP/
LT event documented by the occurrences of assemblages containing Fe-Mg carpholite followed by a collision-related Barro-
vian overprint (generally referred to as Lepontine metamorphism) gradually increasing towards the south-west (as indicated by 
the succession A-F). Peak-pressure conditions were taken from Figure 5.4. Fields A-F represent the overlap between the stabil-
ity fields computed with DOMINO and the peak-metamorphic temperature range estimated by the RSCM method presented in 
Figure 5.5. Additionally three intersections of isopleths (almandine, grossular and pyrope) from cores of garnet porphyroblasts 
are also shown and indicate P-T conditions established during the initial stages of garnet growth.
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5.5. Deformation history and discussion of the regional variability regarding 

orientation and intensity of studied structures
In the investigated area four ductile deformation phases (D1 – D4) are separated from each other 

and clearly documented by overprinting patterns visible on a macroscopic to microscopic scale. A de-

tailed description of the distinct deformation events and its associated structures as well as a correlation 

with adjacent tectonic units is given in Wiederkehr et al. (2008). Hence, the different deformation events 

and corresponding structures will only briefly be presented here and the following attention will focus 

on the discussion of their regional variability.

5.5.1. Variability of the overall architecture of the study area
As depicted in Figure 5.7 the overall architecture of the study area is characterized by complex and 

polyphase folding of metasediments in the frontal parts of Europe-derived basement nappes (i.e. from 

bottom to top Gotthard, Leventina-Lucomagno, Simano and Adula; Thakur 1973; Milnes 1974; Voll 

1976; Kupferschmid 1977; Probst 1980; Etter 1987; Wiederkehr et al. 2008). The present day geometry 

is largely dominated by the interaction of D3 and D4 deformation events (corresponding to Domleschg 

and Chièra phase, respectively), both representing late-stage nappe-refolding events that induced strong 

modifications of the already established nappe-stack (e.g. Schmid et al. 1996; Wiederkehr et al. 2008). 

D3 deformation is characterized by large-scale tight to isoclinal folding reaching amplitudes of some 

10 km, the most prominent one being represented by the Lunschania antiform (Voll 1976; Probst 1980). 

However, also the corresponding Valzeina and Alpettas synforms as well as the Darlun antiform are at-

tributed to the D3 event (Fig. 5.7; Derungs 2008; Wiederkehr et al. 2008). Towards the south-west all 

D3 syn- and antiforms were progressively overprinted by subsequent D4 deformation, characterized by 

rather open, staircase-like syn- and antiforms related to back-folding, best expressed by the large-scale, 

tight Chièra synform producing the Northern Steep Belt (Milnes 1976). However, this Northern Steep 

Belt is only well developed in the westernmost portions of the study area (Fig. 5.7e) and in the westerly 

adjacent areas of the northern Lepontine dome. Towards the east, i.e. Val Luzzone and the area around 

Vrin east of Piz Terri (Fig. 5.1b) the Northern Steep Belt and associated D4 deformations progressively 

fade out as is expressed by a gradual and drastic reduction of D4 strain intensity (Fig. 5.7). While the 

overall structure in the SW, i.e. around the Lukmanier and Pizzo Molare areas, is dominated by a steeply 

N-dipping main foliation and tight D4 folds, the Chièra and Dötra synforms being the most prominent 

ones (Figs. 5.7d & e; Etter 1987), the main foliation gradually rotates through the vertical and finally 

steeply dips towards the S in the Val Luzzone further east (Fig. 5.7c). Only moderately S-dipping folia-

tions are typical for the more easterly adjacent areas (Figs. 5.7a & b). Associated with the overall change 

in orientation of the main foliation is a gradual decrease in the intensity of D4 folding as such, relatively 

tight folds in the SW change to rather open folds towards the NE (Figs. 5.7b & c). Around the eastern-

most area of Vrin D4 deformation is completely absent (Fig. 5.7a).

5.5.2. Variability of structural elements corresponding to distinct deformation events
All measured structural elements related to distinct deformation events are plotted in Figure 5.8. 

Due to the strong changes in the overall architecture the study area was subdivided into six domains, i.e. 

the areas around Molare, Lukmanier, Luzzone, Vrin, Vals/Safien S, and Vals/Safien N, respectively (see 

map in the lower right of Fig. 5.8 for extensions of the different domains). In the following we briefly 
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present the overall trends of the different structural elements and in particular we highlight the variabil-

ity of the measured structural elements.

 The orientation of the main foliation changes dramatically due to the presence of polyphase de-

formation events. Whereas in the westernmost part of the study area, i.e. around Lukmanier the main 

foliation generally deeply dips towards the N (Northern Steep Belt), a general south-dip is found in the 

Dötra-
synform

Valzeina-
synform

Lunschania-
antiform

C

N

C’

S

Lunschania-
antiform

Valzeina-
synform

Alpettas-
synform Darlun-

antiform

B
N

B’
S

Lunschania-
antiform

Valzeina-
synform

Alpettas-
synform

Darlun-
antiform

3000

2000

1000

0
[m]

A

N

A’

S

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

Chièra-
synform

Dötra-
synformE

N

E’
S

Chièra-
synform

Dötra-
synform

Valzeina-
synform

D

N

D’

S

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

3000

2000

1000

0
[m]

Valaisan units

Piz Terri - 
Lunschania zone
Terri Schuppen-
zone

Grava unit

Tomül unit

Aul unit

European units

Basement nappes

Triassic,
undifferentiated

Scopi - zone

Peidener
Schuppenzone

D3 syn-/ antiform 

D4 syn-/ antiform 

Structures

a

b

c

d

e

Fig. 5.7: Across-strike cross-sections through the north-eastern rim of the Lepontine structural dome and easterly adjacent ar-
eas. Traces of cross-sections (a) - (e) are indicated in Fig. 5.1b. The cross-sections were constructed by projection towards east 
and west by using (a) local azimuth and plunge of the Lunschania antiform (060/12) for the northern part and a plunge of 20° 
to the east for the southern part of the cross section; (b) local azimuth and plunge of the Lunschania antiform (064/16); (c) local 
azimuth and plunge of Chièra phase related fold axes (090/30); (d) local azimuth and plunge of Chièra phase related folds axes 
(090/15) for the northern part and (110/12) for the southern part of the cross-section; (e) local azimuth and plunge of Chièra 
phase related folds axes (090/20).



123

Chapter 5

northern parts of Valsertal and Safiental, respectively (Fig. 5.8). In the intermediate domains the poles 

to the main foliation are distributed along great circles, indicating subsequent folding caused by D3 and 

D4. Whereas the calculated great circles and corresponding poles reflect a D4 fold axis around Molare 

and Luzzone (Molare = 113/13, Luzzone = 081/28), overprint by D3 is inferred for the easterly adjacent 

areas Vrin and Vals/Safien S, based on the already mentioned fact that D4 deformation fades out towards 
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the E and also based on the similarities between constructed and measured D3 fold axes (Vrin = 063/12, 

Vals/Safien S = 067/17; Fig. 5.8).

Structural elements corresponding to D3 deformation are generally characterized by NE – SW 

trending fold axes and rather steep to the SE dipping fold axial planes (Fig. 5.8). D3 fold axes commonly 

dip at low angles to the NE or, particularly in the areas of Luzzone and Vals/Safien N, are rather flat ly-

ing and dipping towards NE and SW, respectively. Mainly in the Luzzone area the D3 fold axes show a 

large variability in orientation, due to pervasive overprint by subsequent D4 folding; a NE – SW trend 

can be guessed at nevertheless. The effect of D4 deformation is also visible by a look at the orientation 

of D3 fold axial planes that show completely different geometries in the areas around Luzzone and Mo-

lare, respectively. Particularly in the Luzzone area a clear interference between D3 and D4 folding is 

deduced by the great circle distribution of poles corresponding to D3 fold axial planes (calculated pole 

of the constructed great circle = 078/36, similar to the orientation of D4 fold axis).

Fold axes and fold axial planes formed during D4 show rather consistent orientations in the differ-

ent domains (Fig. 5.8). Whereas the fold axial planes remain constant over the entire study area, dipping 

moderately towards N – NE, the D4 fold axes are characterized by considerable rotation from an ESE 

trend at Lukmanier/Molare to an E or ENE trend towards Luzzone and Vrin (Fig. 5.8). Additionally, a 

significant change of dip is observed going from SW to NE: While D4 fold axes around Lukmanier/Mo-

lare in the SW and near Vrin in the NE are characterized by a moderate dip they significantly steepen in 

some portions of the Val Luzzone (Fig. 5.8).

As shown by Wiederkehr et al. (2008) and mentioned above relics of the early HP/LT event are 

restricted to carpholite-bearing quartz-calcite veins/segregations. These veins are generally character-

ized by a fibrous appearance representing macroscopically visible pseudomorphs after Fe-Mg carpholite 

fibres and have been interpreted as shear fibre veins (Weh & Froitzheim 2001). These fibres are inter-

preted to represent a lineation formed by fibrous growth of Fe-Mg carpholite during the formation of 

these veins at HP/LT conditions by D1. The orientation of these fibres is characterized by a large vari-

ability but a general NE – SW to NW – SE strike can be inferred (Fig. 5.8; L Cp fibres). However, it is 

difficult to attribute a specific geodynamic significance to this syn-D1 lineation due to the fact that the 

carpholite fibres merely represent the opening of the veins/segregations than a real transport direction 

reflecting tectonic movements. Also, the orientation of this D1 lineation is no more the original one due 

to intense overprinting and reorientation by later defromations.

5.5.3. Relationships between deformation and metamorphism
The relationships between deformation and metamorphism were recently highlighted by detailed 

structural and petrological investigations (Wiederkehr et al. 2008) and by the assessment of isotempera-

ture contours obtained by Raman spectroscopy of carbonaceous matter (RSCM method) in three domen-

sions (Wiederkehr et al. submitted, b). Both these studies showed that (1) subduction-related HP/LT met-

amorphism and collision-related Barrovian overprint are clearly separated by two deformation events, 

and (2) that amphibolite facies overprint post-dates D3 deformation as expressed by mineral isograds 

and isotemperature contours cross-cutting the D3 Lunschania antiform. In the following we discuss the 

relationships between the variability of the structural elements and the inclination of the isotemperature 

contours obtained by the RSCM method.

The study of Wiederkehr et al. (2008) clearly showed that the mineralogy of the metasediments 

exposed along the Val Luzzone dramatically changes and is characterized by the progressive appearance 
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of newly grown minerals related to Barrovian overprint such as zoisite/clinozoisite, plagioclase, biotite 

and garnet. Another recent study presented peak-metamorphic temperatures determined by the RSCM 

method and demonstrated that the Val Luzzone is characterized by a strong thermal gradient, document-

ed by the narrow spacing of the constructed isotemperature contours (Wiederkehr et al. submitted, b). 

Hence, both studies showed that the NE border of the Lepontine thermal dome is located in the Val Luz-

zone. Figure 5.9 shows the relationships between constructed isotemperature contours determined by 

the calculation of peak-metamorphic temperatures following the calibration given by Rahl et al. (2005) 

and the fold axes of D4 and D3, respectively. Towards the north-east D4 deformation gradually fades 

out and further east the geometry of the nappe-stack is dominated by D3 structural elements, as well as 

by isotemperature contours that are folded around the Lunschania antiform. Considering the measured 

structural elements presented in Figure 5.8 it is noteworthy that the D4 fold axes, representing the over-

all inclination of the entire nappe stack in the SW part of the study area, are characterized by a rather 

moderate plunge around Lukmanier and Pizzo Molare as well as around Piz Terri, whereas in the inter-

mediate part (i.e. Val Luzzone) the D4 fold axes are significantly steeper. Interestingly, this steepening 

of the D4 fold axes coincides with the area where the isotemperature contours are more closely spaced 

(Fig. 5.9). As shown by Wiederkehr et al. (submitted, b) and also visualized in Figure 5.10 these closely 

spaced isotemperature contours are directly coupled with steeply inclined contours in along strike pro-

file view. Consequently, the location of the steep isotemperature contours coincides with the steepening 

of D4 fold axes (Fig. 5.10).
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From the altitude vs. distance diagram shown in Figure 5.10a an inclination of some 40° towards 

the NE is inferred for the isotemperature contours related to Barrovian overprint. This is slightly steeper 

than for the plunge of the D4 tectonic structures observed along a SW – NE cross-section. The inclina-

tion of the contours has been validated by considering the “biotite-in isograde” cross-cutting the Lun-

schania antiform in the Val Luzzone; the occurrences of biotite were projected into the trace of cross-

section presented in Figure 5.10 and an inclination for the “biotite-in isograde” in the range of 34-56° 

can be deduced, in good agreement with the estimates based on the RSCM method (Fig. 5.11). Towards 

the NE the overall geometry of the metasedimentary units is characterized by rather flat lying D3 fold 

axes gently dipping towards the NE, as well as by isotemperature contours folded by the Lunschania 

antiform as tentatively delineated in Figure 5.10b.

The following conclusions regarding the relationships between structures and constructed isotem-

perature contours reflecting peak-metamorphic temperatures can be made (see also Figs. 5.9 & 5.10):

1) The strongest thermal gradient represented by the narrowly spaced arrangement of steeply in-

clined isotemperature contours is found in the Val Luzzone and coincides with the significant 

steepening of D4 fold axes.

2) The constructed isotemperature contours cross-cutting the D3 Lunschania antiform are related to 

late-stage Barrovian overprint and are more or less oriented parallel to the traces of the fold axial 

planes of D4 (compare Figs. 5.1b & 5.9).

3) The Val Luzzone is characterized by narrowly spaced and steeply dipping isotemperature contours 

at the north-eastern border of the Lepontine thermal dome. A maximum dip of 34-56° towards the 

NE is inferred by considering peak-metamorphic temperatures (Fig. 5.10) as well as by the occur-

rences of first biotite (“biotite-in isograde”; Fig. 5.11); this dip is slightly steeper compared to the 

overall plunge towards the E of the entire nappe-stack as evidenced by the D4 fold axes.

4) The inclination of the isotemperature contours is strongly coupled with the overall trend of the 

plunge of the D4 fold axes; it is rather flat lying around Pizzo Molare and Piz Terri and consider-

ably steeper in Val Luzzone.
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5) Towards the north-east D4 deformation continuously fades out and D3 fold axes become the 

dominant structural elements further east. This structural change coincides with the transition in 

the attitude of the constructed isotemperature contours. In general the isotemperature contours cut 

through the D3 Lunschania antiform in the presence of D4 deformation, i.e. west of Piz Terri. To-

wards the E and in the absence of D4 structures, however, the contours are seen to be folded by 

the Lunschania antiform.

5.6. Interpretation and geodynamic implications

5.6.1. Timing constraints and metamorphic evolution of the study area
The new P-T data and structural observations combined with recent investigations in the same 

area (see Wiederkehr et al. 2008; submitted, a; submitted, b) allow for reconstructing a complete P-T-t-d 

path that provides essential constraints regarding the geodynamic evolution of the Valaisan and adjacent 

European paleogeographical domains. Based on the investigations of carbonaceous matter at least three 

temporally distinct thermal events have been recorded and can be related to specific geodynamic stages 

by linking the peak-metamorphic temperatures with the observed mineral assemblages indicative for 

characteristic P-T conditions (Wiederkehr et al. submitted, b).

Relics of the early subduction-related high-pressure metamorphic event have been found in the 

northern, frontal part of the Adula nappe complex as well as in some portions of the Misox Zone show-

ing peak-temperatures based on the RSCM method in the range of 500-520 °C, in perfect agreement 

with P-T estimates for the peak-pressure conditions in both northern Adula nappe complex (1.2-1.5 GPa 

at 470-540 °C, Löw 1987; and 1.1-1.3 GPa at 450-550 °C, Heinrich 1986) as well as the northern Misox 

Zone (1.0-1.1 GPa at 590-630 °C, Santini 1992; and >1.2 GPa at 460-560 °C, Ring 1992). The inter-

pretation in terms of an “old” thermal structure is supported by the fact that the observed isotherms run 

parallel to the present day nappe and other tectonic contacts (see discussion in Wiederkehr et al. submit-

ted, b). In other words, significant jumps in the RSCM temperatures are found along tectonic contacts. 

For example, between the northern Adula nappe complex and the surrounding metasediments a “jump” 

of almost 100 °C is observed. To a minor amount a jump is also observed in the northern Misox Zone 

where a gap of some 80 °C is found between the Fe-Mg carpholite-bearing Tomül nappe and the upper 

blueschist/eclogite facies Aul unit. Consequently, the thermal structure pre-dates nappe-emplacement 

and therefore a connection to the early, pre nappe-stacking high-pressure event is proposed.

The exact timing of peak-pressure metamorphism of both Valaisan as well as adjacent European 

margin is not well constrained. Some data exist for the Adula nappe complex and indicate an Eocen-age 

for high-pressure metamorphism based on garnet Sm/Nd isochrons at 42 and 38 Ma (Becker 1993), as 

well as on zircon SHRIMP data that yield ages in the range of 43 to 35 Ma (Gebauer 1996). For carpho-

lite-bearing metasediments of the Valaisan domain an age of 42-40 Ma for peak-pressure conditions and 

36-33 Ma for the following substantial decompression was recorded by 40Ar/39Ar investigations on white 

mica associated with Fe-Mg carpholite (Wiederkehr et al. submitted, a).

In the eastern part of the study area the observed thermal structure in the temperature interval be-

tween 350-425 °C is seen to be affected by D3 deformation, i.e. the constructed isotherms are seen to 

be folded by the D3 Lunschania antiform (Wiederkehr et al. submitted, b). Furthermore the constructed 

isotherms can be continuously followed across tectonic contacts, i.e. from the high-pressure units such 

as the Grava nappe and Peiden slices to the low-pressure Scopi unit. This observation clearly indicates 
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that the establishment of the observed thermal structure post-dates nappe-stacking but pre-dates defor-

mation associated with the formation of the D3 Lunschania antiform. According to Froitzheim et al. 

(1994) and Schmid et al. (1996) an age between 30 and 25 Ma was inferred for D3 deformation (Dom-

leschg phase) and recently evidenced by 40Ar/39Ar dating of white mica yielding 25 Ma (Wiederkehr et 

al. submitted, a).

The significance of the thermal event corresponding to the observed temperature distribution pat-

tern is best explained by a greenschist facies overprint. Although the observed peak-metamorphic tem-

peratures are in the same range than the earlier HP/LT event, i.e. 350-400 °C we emphasize a correlation 

with post high-pressure greenschist facies overprint mainly based by the fact, that the constructed iso-

therms can be followed continuously across tectonic contacts separating HP- from LP-units. Most prob-

ably the formation of post-tectonic chloritoid, typically seen as rosettes that are found to be widespread 

in the study area far away towards the east in both high-pressure (Peiden slices) as well as low-pressure 

units (Scopi unit), is related to this metamorphic event. This interpretation is based on the observation, 

that rosettes of chloritoid became deformed by D3 deformation (Domleschg phase; Fig. 5.3d) indicat-

ing that the formation of chloritoid pre-dates D3 Domleschg phase deformation. Probably this interpre-

tation can also explain the rather different distribution of chloritoid in respect to other index minerals 

such as staurolite, kyanite, biotite, garnet, plagioclase and zoisite/clinozoisite (Fig. 5.2b; Niggli & Nig-

gli 1965; Wiederkehr et al. 2008). Whereas the distribution of staurolite and kyanite agrees well with the 

concentric shape of the Lepontine dome in the structural and thermal sense, chloritoid can be found far 

away towards the east around the area of Chur (Niggli & Niggli 1965). The different shape of the min-

eral isograds indicates that the formation of these index minerals was most probably related to several 

thermal events that took place at different times. This interpretation is consistent with the observations 

of Rahn et al. (2002) that suggest an Early Oligocene-age for the formation of chloritoid near Curaglia 

in the Urseren-Garvera Zone, based on micro-structural observations. The existence of an earlier green-

schist facies overprint in respect to Lepontine Barrovian overprint has recently improved by isotopic 

investigations on allanite occurring in the northern Lepontine (Janots et al. 2009). The formation of al-

lanite is seen to correlate with the appearance of chloritoid and is commonly thought to retain its isotopic 

signature, and consequently record the age of prograde metamorphism at greenschist facies conditions 

(Janots et al. 2008). In situ SHRIMP Th-Pb dating of allanite yields 31.5-29.2 Ma, which is interpreted 

to represent the onset of greenschist facies metamorphism at around 430-450 °C (Janots et al. 2009). 

Furthermore, recently presented 40Ar/39Ar data of white mica sampled in the Valaisan domain (Enga-

dine window and Safiental) yield ages between 32-29 Ma (Wiederkehr et al. submitted, a), i.e. ages that 

are exactly in the same range as those found by allanite dating. In summary, we interpret the observed 

thermal structure in the range of 350-425 °C characterized by isotherms folded by the Lunschania anti-

form and observed in the north-east of the study area to be related to a post nappe-stacking, greenschist 

facies overprint that was most probably established around some 30 Ma ago, as is indicated by the iso-

topic ages. This conclusion directly implies more or less isothermal decompression of the HP/LT stage 

during the 36-33 Ma time interval, as documented by the occurrences of Fe-Mg carpholite pointing to 

peak-pressure conditions of 1.2-1.3 GPa at 350-400 °C also proposed by earlier studies (Bousquet et al. 

2002; Wiederkehr et al. 2008).

Towards the south-west all constructed isotherms clearly cut through the D3 Lunschania antiform, 

hence indicating that the recorded thermal structure in the range between 450-570/590 °C is younger in 

respect to D3 deformation (Figs. 5.9 & 5.10). The characteristic onion-shaped distribution of isotherms 
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typically indicating increasing temperatures towards the south and south-west is related to the so-called 

Lepontine thermal dome, representing a classical area of Barrow-type amphibolite facies overprint (e.g. 

Frey & Ferreiro Mählmann, 1999). Associated with Barrovian thermal overprint is the gradual occur-

rence of a sequence of porphyroblasts related to progressively increasing temperatures, as documented 

by the succession in appearance of zoisite/clinozoisite, plagioclase, biotite, garnet, kyanite and stauro-

lite in the order of increasing metamorphic conditions, i.e. peak-metamorphic temperatures (Chadwick 

1968; Frey 1969; Fox 1975; Wiederkehr et al. 2008). Recently, Wiederkehr et al. (2008) showed that 

the initial growth of porphyroblasts related to Barrovian overprint in the beginning stages was entirely 

static in the north-eastern Lepontine and clearly post-dated D3 deformation. This thermal overprint was 

sustained until the beginning stages of the last tectonic event (D4, Chièra phase) related to the forma-

tion of the Northern Steep Belt. As revealed by our P-T investigations this late stage thermal overprint 

is mainly controlled by temperature and only minor changes in pressure were found. This observation 

suggests a more or less “isobaric” thermal overprint, which is in perfect agreement with its late-stage 

timing in respect to the formation of the Alpine orogenic belt at the time when the present-day architec-

ture of the orogen was almost completed. As shown by recent isotopic studies in the northern Lepontine 

dome an age of post 20 Ma was inferred for this event (Allaz 2008; Janots et al. 2009; Wiederkehr et 

al. submitted, a). Ages based on monazite dating using in situ SHRIMP U-Pb dating yield 19-18 Ma for 

Barrovian metamorphism in the northern Lepontine dome. This age is interpreted to date the formation 

of monazite by the breakdown of allanite supposed to be around 560-580 °C, i.e. near the thermal peak 

of amphibolite facies metamorphism (Janots et al. 2009). Ages in the same range were also obtained by 
40Ar/39Ar dating on both white mica and biotite, yielding ages in the range of 19.0-18.5 Ma for white 

mica and slightly younger (> 1 Ma) ages for biotite (Allaz 2008; Wiederkehr et al. submitted, a). This 

substantially younger amphibolite facies Barrovian overprint represents a second, collision-related ther-

mal event only observed in the south-western part of the study area.

5.6.2. Implications for the exhumation of HP/LT units
The results presented in this study, combined with findings recently presented by Wiederkehr 

et al. (2008; submitted, a; submitted, b), allow for a qualitative discussion concerning the exhumation 

mechanism of carpholite-bearing blueschist facies metasedimentary units. There are numerous mod-

els for the mechanisms responsible for exhumation. These include corner flow, extension or buoyancy 

forces and many others (see discussion by Platt 1993; Froitzheim et al. 2003). For the investigated area 

there are two main basic conditions that need to be fulfilled by any model regarding the exhumation 

mechanism:

1. As revealed by Wiederkehr et al. (2008) substantial decompression took place during the early 

stages of the formation of the Alpine belt, i.e. during D2 deformation that is associated with nappe 

stacking and dated at 36-33 Ma (Wiederkehr et al. submitted, a). Hence, exhumation was active at an 

early stage of the formation of the Alpine belt, i.e during ongoing compression and subduction that 

includes nappe-stacking associated with thrusting of high-pressure units onto low-pressure units.

2. The overall spatial relationships between the former paleogeographic domains need to be conserved 

during the exhumation stage, since in general more internal units were thrust onto relatively more-

external ones.

These two conditions are satisfied by models that postulate ascent by extrusion within and parallel to 

a subduction channel by active, forced extrusion (Michard et al. 1993; Burov et al. 2001; Gerya et al. 
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2002), promoted by slab extraction (Froitzheim et al. 2003) and/or buoyant ascent (Wheeler 1991), but 

not by models that invoke extension such as those suggested by Ballèvre et al. (1990) and Rolland et al. 

(2000) for the Western Alps, and by Jolivet et al. (1998b) for the Engadine window. A syn nappe-stack-

ing exhumation process has also been favoured by Bucher et al. (2003 & 2004) for a similar scenario 

described in the Western Alps (e.g. Le Bayon et al. 2006; Bousquet 2008).

5.7. Conclusions
The metamorphic evolution of the metasedimentary units at the north-eastern rim of the Lepontine 

dome experienced a polyphase metamorphic evolution characterized by (1) an early, subduction-related 

HP/LT event at 1.2-1.4 GPa at 350-400 °C documented by the appearance of Fe-Mg carpholite in both 

Valaisan (Grava and Tomül nappes) and European (Peiden slices and Piz Terri-Lunschania unit) do-

mains. (2) Towards the south-west the blueschist facies metasediments were gradually affected by pro-

gressive, collision-related Barrow-type thermal overprint related to amphibolite facies metamorphism 

of the Lepontine thermal dome starting at 450-500 °C in the Val Luzzone and reaching 560-600 °C in 

the northern Valle di Blenio and around Pizzo Molare at more or less constant pressure interval of 0.6-

0.75 GPa. Consequently, Barrovian overprint in the north-eastern Lepontine represents a rather “isobar-

ic” thermal event as suggested by a late-stage metamorphic event. This thermal overprint represents a 

clearly separated heating pulse following isothermal decompression of the earlier HP/LT stage. The two 

contrasting types of metamorphic events, i.e. subduction-related high-pressure metamorphism and col-

lision-related amphibolite facies overprint are separated by an intermediate greenschist facies stage.

From the new petrologic data presented in this study, combined with recently presented results of 

investigations by Raman spectroscopy of carbonaceous matter as well as by 40Ar/39Ar dating we suggest 

a succession of three distinct metamorphic events:

1) Subduction-related metamorphism is evidenced by the occurrences of Fe-Mg carpholite in both 

European (Peiden slices and Piz Terri-Lunschania unit) and Valasian metasedimentary units 

(Grava and Tomül nappes) and indicates blueschist facies conditions at 350-400 °C and 1.2-1.4 

GPa established at 42-40 Ma. Considerably higher tempered peak-pressure conditions (500-525 

°C) are preserved in the internal Mesozoic of the northern, frontal part of the Adula nappe com-

plex as well as in parts of the Misox Zone (Aul unit) reaching upper blueschist to eclogite facies 

conditions. Substantial decompression of the Valaisan domain was contemporaneous with D2 

nappe stacking at 36-33 Ma and was mostly achieved by active extrusion within and parallel to a 

subduction channel.

2) Early-stage collision-related greenschist facies overprint preserved only in the eastern part of the 

investigated area affecting both high-pressure (Peiden slices, Grava and Tomül nappes) as well 

as low-pressure units (Scopi unit) and is characterized by peak-metamorphic temperatures in the 

range of 350-425 °C, almost in the same temperature interval as the earlier HP/LT event docu-

mented by the existence of Fe-Mg carpholite. Consequently, a more or less isothermal decompres-

sion is suggested for the high-pressure units. The thermal structure established during this early 

greenschist facies overprint is pervasively overprinted by D3 phase deformation, i.e. isotherms 

are folded by the Lunschania antiform. Recent isotopic investigations based on Th-Pb dating of 

allanite and 40Ar/39Ar dating of white mica infer an Oligocene-age around 32-29 Ma for this early-

stage collision-related metamorphic overprint.
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3) Late-stage collision-related amphibolite facies Barrovian overprint represents the youngest ther-

mal event only appearing in the south-western part of the study area and is characterized by pro-

gressive increasing temperatures starting from 450 °C near Piz Terri up to 570-590 °C around 

Pizzo Molare as well as south of Mesocco. The concentric, onion-shaped isotherm pattern belongs 

to the so-called amphibolite facies Lepontine thermal dome and clearly post-dates D3 deformation 

as shown by isotherms cross-cutting the Lunschania antiform. P-T estimates suggest that a more 

or less isobaric thermal overprint occurred during a late stage of the Alpine evolution, i.e. substan-

tially after nappe-stacking and -emplacement. Isotopic studies on monazite (U-Pb dating) as well 

as on white mica and biotite (40Ar/39Ar dating) indicate a substantially younger age, i.e. 19-18 Ma 

for Barrovian overprint in the north-eastern Lepontine dome, compared to both the previous pres-

sure-dominated metamorphism and the up to now unknown early greenschist facies overprint.

This study unambiguously demonstrates the importance of metasediments for the reconstruction 

of the metamorphic evolution of mountain belts. Furthermore, we showed that particularly low-grade 

(HP/LT, LP/LT) metasediments, typically devoid of indicative mineral assemblages, were often misinter-

preted and provide crucial information concerning the geodynamic evolution of the Alpine orogenic belt 

when applying a combination of detailed structural, petrologic and geochronological investigations.
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Metamorphism of metasediments at the scale of an orogen:

A key to the Tertiary geodynamic evolution of the Alps

This chapter is published as: Bousquet, R., Oberhänsli, R., Goffé, B., Wiederkehr, M., Koller, F., Schmid, S.M., 

Schuster, R., Engi, M., Berger, A. & Martinotti, G. (2008): Metamorphism of metasediments in the scale of an oro-

gen: A key to the Tertiary geodynamic evolution of the Alps. In: Siegesmund, S. et al. (Eds.): Tectonic Aspects of 

the Alpine-Dinaride-Carpathian system. Geological Society Special Publications 298, 393-411.

Abstract
Major discoveries in metamorphic petrology, as well as other geological disciplines, have been 

made in the Alps. The regional distribution of Late Cretaceous – Tertiary metamorphic conditions, doc-

umented in post-Hercynian metasediments across the entire Alpine belt from Corsica – Tuscany in the 

west to Vienna in the east, is presented in this paper. In view of the uneven distribution of information, 

we concentrate on type and grade of metamorphism; and we elected to distinguish between metamor-

phic paths where either pressure and temperature peaked simultaneously, or where the maximum tem-

perature was reached at lower pressures, after a significant temperature increase on the decompression 

path. 

The results show which types of process caused the main metamorphic imprint: a subduction 

process in the Western Alps, a collision process in the Central Alps, and complex metamorphic struc-

tures in the Eastern Alps, owing to a complex geodynamic and metamorphic history involving the suc-

cession of the two types of processes. The Western Alps clearly show a relatively simple picture, with 

an internal (high-pressure dominated) part thrust over an external greenschist to low-grade domain, al-

though both metamorphic domains are structurally very complex. Such a metamorphic pattern is gener-

ally produced by subduction followed by exhumation along a cool decompression path. In contrast, the 

Central Alps document conditions typical of subduction (and partial accretion), followed by an intensely 

evolved collision process, often resulting in a heating event during the decompression path of the early-

subducted units. Subduction-related relics and (collisional/decompressional) heating phenomena in dif-

ferent tectonic edifices characterize the Tertiary evolution of the Eastern Alps. The Tuscan and Corsica 

terrains show two different kinds of evolution, with Corsica resembling the Western Alps, whereas the 

metamorphic history in the Tuscan domain is complex owing to the late evolution of the Apennines. This 

study confirms that careful analysis of the metamorphic evolution of metasediments at the scale of an 

entire orogen may change the geodynamic interpretation of mountain belts. 
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6.1. Introduction
After more than a century of investigations, the Alps still represent an outstanding natural labo-

ratory for the study of geodynamic processes linked to the evolution of mountain belts in general. The 

integration of regional geology and metamorphic evolution provides highly needed constraints for in-

creasingly complex quantitative models (e.g. Escher & Beaumont 1996; Henry et al. 1997; Pfiffner et 

al. 2000). 

Major discoveries in metamorphic petrology, as well as other geological disciplines, have been 

and are still made in the Alps. For example, eclogites were described for the first time in the Eastern Alps 

(Koralpe, Saualpe massifs) by Haüy (1822). More recently, the discovery of coesite in the Dora Maira 

unit (Chopin 1984, 1987) proved that continental crust went into subduction, contrary to a still widely 

held opinion, and returned from great depths. Many others, occasionally less spectacular yet important, 

petrological discoveries, were also made in the Alps. For instance, studies of metapelites in the Alps 

starting at the beginning of the 1970s, revealed a specific mineralogy reflecting high-pressure condi-

tions. The most emblematic minerals found in such rocks are ferro- and magnesiocarpholites (Goffé et 

al. 1973). Besides such discoveries, many holistic attempts have been made to assess the dynamics of 

this orogen. Niggli & Niggli (1965) applied Barrow’s concept to the central Alps and presented a min-

eral distribution map with mineral isograds reflecting a Lepontine high-temperature event. Zwart (1973) 

and Zwart et al. (1978) compiled mineral distributions at the scale of the orogen, using the facies concept 

and available age data in the Alps and elsewhere. 

Based on such mineralogical work, Ernst (1971) was able to use the plate tectonic concept for 

proposing a first modern model for the evolution of the Alps. Such ideas developed further on the basis 

of work such as that of Dal Piaz et al. (1972), Dal Piaz (1974a, b) and Hunziker (1974), just to name a 

few. Frey (1969), as well as Trommsdorff (1966), started to investigate metamorphism in isochemical 

systems provided by shales and siliceous carbonates, respectively. This allowed for quantitatively con-

straining the Cenozoic temperature evolution in the central Alps. Frey et al. (1999) compiled all avail-

able information on the peak temperature distribution, and used the occurrences of eclogites to display 

the dynamics of the Alpine evolution. Previous works of this kind led to the compilation of a new map 

showing the metamorphic structure of the Alps (Oberhänsli et al. 2004). This new map was also based 

on: (1) new tectonic concepts and maps (Schmid et al. 2004); (2) a wealth of new radiogenic age data 

(for references see e.g. Handy & Oberhänsli 2004, and Berger & Bousquet 2008); and (3) an extension 

of the facies concept based on mafic to metapelitic rock compositions. 

In the Alps, many areas are devoid of index minerals classically observed in mafic and quartzofeld-

spathic rock systems, allowing a direct comparison to be made. Petrological investigation on metasedi-

ments greatly helps to constrain geodynamic evolution of such areas (see Bousquet 2008). One tool to 

understand such problems better at the orogen scale are maps (Niggli & Niggli 1965; Niggli 1970; Frey 

et al. 1999; Oberhänsli et al. 2004). This study combines these different sources of information: present-

ing metamorphism in maps and combining this with metamorphic evolution data. This provides insights 

into the geodynamics of metasediments inside the orogen. The metamorphism of metasediments can be 

subdivided into general geodynamic groups: (1) pressure-dominated metamorphism; (2) temperature-

dominated metamorphism at intermediate pressures (Barrovian metamorphism), which is often refer-

enced in the literature as HT metamorphism; and (3) contact metamorphic aureoles which are tempera-

ture-dominated metamorphism at low pressures. The latter type will be excluded from this contribution 

because it is only of minor importance in the Alps. 
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Fig. 6.1: Structural units of the Alps involved and metamorphosed during the late Cretaceous – Tertiary orogeny from Vienna 
(Austria) to Corsica and Tuscany. The distribution of metasediments, ophiolites and basement rocks is not homogeneous over 
the whole alpine edifice. In the west, in Tuscany, Corsica and Western Alps, the belt is mainly built of post Hercynian meta-
sediments from oceanic (mainly Piemont-Liguria) or continental (Briançonnais cover and European plateform) origin. Several 
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Map modified after Froitzheim et al. (1996) and Schmid et al. (2004) with additional data from Bigi et al. (1990) and Koller 
& Höck (1987).
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This paper reviews existing data and presents ongoing work in an attempt to integrate metamor-

phic studies and Late Cretaceous–Tertiary geodynamic concepts in the Alps. We will illustrate how min-

eral data obtained from metasediments may constrain the geodynamic evolution of mountain belts in 

general. 

6.2. Metamorphic mineralogy of metasediments 
In contrast to mafic complexes or meta-igneous rocks, metasediments commonly crop out con-

tinuously over very large areas in many mountain belts, such as the Alps (Fig. 6.1). Since these meta-

sediments cover large areas, this allows to simultaneously observe their structural and metamorphic 

evolution, and thus to decipher the geodynamic frame. However, since Barrow (1893, 1912) and Eskola 

(1929), the definition of metamorphic facies, as well as petrographic work on metamorphic rocks, was 

mainly focused on mafic systems (Evans 1990; Frey et al. 1991; Carswell 1990). 

Detailed studies on pelitic systems (Yardley 1989; Koons & Thompson 1985; Spear 1993; Mc-

Dade & Harley 2001) are only available for medium- to high-temperature metamorphic conditions. 

Metamorphic studies addressing low-temperature conditions extended methods taken from studies on 

diagenesis or anchimetamorphism, such as illite crystallinity, vitrinite reflectance or clay mineralogy 

(Frey & Robinson 1999) which lack good possibilities of pressure and temperature calibration. Spec-

tacular improvements on the knowledge of mountain belt evolution based on the study of metasediments 

could only be made starting with the discovery of coesite in metasediments (Chopin 1984) and other 

work on ultra high-pressure rock systems (UHP) in general (Coleman & Wang 1995; Chopin & Sobolev 

1995; Massonne & O’Brien 2003).

6.2.1. Petrogenetic grids 
Classical index minerals, such as pumpellyite, glaucophane or jadeite, observed in mafic and 

quartzofeldspathic rock systems, are unfortunately rarely observed in Alpine metasediments. Neverthe-

less, metasediments have highly variable chemical and mineralogical compositions that represent an im-

portant geothermobarometric potential. Figure 6.2 shows petrogenetic grids for the KFMASH and CF-

MASH subsystems that integrate field observations, experimental data and thermodynamic modelling 

using an internally consistent database. This new kind of compilation covers a large P–T space, extend-

ing from low- to high-pressure (0–2 GPa) as well as from low- to high-temperature (200–800°C). 

Mineral assemblage containing ferro-magnesiocarpholite with phengite, chlorite and quartz is 

one of the most emblematic mineral assemblages of metasediments in the KFMASH system (De Ro-

Fig. 6.2: Petrogenetic grids for metapelites for a temperature range from 200 to 800°C. (a) in the KFMASH (K
2
O-FeO-MgO-

Al
2
O

3
-SiO

2
-H

2
O) system, the grid is strongly temperature-controlled. The appearance of assemblages, from (Fe, Mg)-carpholite 

assemblage at HP or from chlorite-pyrophylite assemblage delimits the low-temperature domain from the middle temperature 
one at around 400°C. The exact temperature limit depends on rock and mineral chemistry. At higher temperature conditions, 
the breakdown of chloritoid into garnet or staurolite indicates the transition towards high–temperature domains between 500 
and 600°C depending on pressure conditions as well as on rock and mineral chemistry. (b) In the CFMASH (CaO-FeO-MgO-
Al

2
O

3
-SiO

2
-H

2
O) system, the temperature control is less important. While under LT conditions, lawsonite is the main stable 

mineral, sometimes coexisting with (Fe, Mg)-carpholite, at middle and HT conditions, margarite and staurolite stability fields 
are pressure-dependent. We note a large cordierite-stability field in the CFMASH system. 
Diagrams drawn from field experience and theoretical studies after Spear and Cheney (1989), Spear & Wang (1991), Vidal 
et al. (1992), Oberhänsli et al. (1995), Bousquet et al. (2002), Proyer (2003), Wei et al. (2004), Wei & Powell (2004), Wei & 
Holland (2003), Chatterjee (1976), Frey (1972), Zeh (2001), Pattison et al. (2002), McDade & Harley (2001), Kohn & Spear 
(1993), Hébert & Ballèvre (1993) as well as own calculation using the Theriak-Domino software (De Capitani & Brown 1987, 
De Capitani (1994) using Berman database (1988) completed by recent thermodynamic data: Mg-chloritoid data of B. Patrick 
(listed in Goffé & Bousquet 1997), Fe-chloritoid data of Vidal et al. (1994), chlorite data of Vidal et al. (2001), and alumino-
celadonite data from Massonne & Szpurka (1997). Mineral abbreviations are from Bucher & Frey (2002) except for (Fe, Mg)-
carpholite (Car).



137

Chapter 6

ever 1951; Goffé et al. 1973; Chopin & Schreyer 1983; Goffé & Chopin 1986; Rimmelé et al. 2003b). 

It is encountered in various rock types, such as aluminium-rich metapelites, quartzites, marbles and al-

bite-free pelitic schists in which it is abundant, often in veins. Textural and mineralogical observations 

in these rocks reveal that at low-temperatures the main equilibrium reactions of ferro- and magnesio-
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carpholite involve quartz, kaolinite, pyrophyllite, kyanite, chlorite, chloritoid and phengite (Fig. 6.2a). 

At high-temperatures, large P–T fields are dominated by an assemblage containing staurolite, biotite 

and garnet (Spear & Cheney 1989). Fe–Mg variations in mineral composition, as a function of P and T 

(Goffé 1982; Spear & Selverstone 1983; Vidal et al. 1992; Theye et al. l992), as well as Si isopleths in 

phengite (Massone & Schreyer 1987; Oberhänsli et al. 1995; Massone & Szpurka 1997; Bousquet et al. 

2002) allow for relatively precise P–T estimates (Vidal et al. 2001; Parra et al. 2002a, b; Rimmelé et al. 

2005) for some metapelitic compositions. 

In the CFMASH system, for comparison, there is less resolution at low-temperature conditions. 

In carbonaceous systems, the stability field of the index mineral lawsonite covers the whole low-grade 

space, including the stability field of carpholite and the aragonite–calcite transition. While the staurolite 

field is substantially smaller in the CFMASH system, as compared to the KFMASH system, margarite 

and zoisite are characteristic of medium P and T conditions. 

Oberhänsli et al. (2004) proposed a new type of metamorphic facies grid that better integrated 

field observations into models of the geodynamic. This facies grid also took into account the importance 

of metasediments, which is less clear in traditional grids. The proposed grid also involved more subdi-

visions, which are based on the understanding of the metasediments. Based on these compilations, a re-

vised version of this tool is presented in Figure 6.3, and it will be used in this paper.

0

1.0

0.2

0.6

1.4

2.6

1.8

2.2

3.0

200 400 800600
Temperature (°C)

P
re

ss
ur

e 
(G

P
a)

“F
or

bi
dd

en
 z

on
e”

no
t r

ea
l is

ed
 o

n 
Ea

rth
?

coesite

quartz

DIA

SGS

LGS

HPGS

UHP

UGS

AM

BS

UBS

ECL

GRA
BET

GAT

W
et M

elting

Fig. 6.3: Metamorphic facies diagram for metapelites and metabasites (modified after Oberhänsli et al. 2004). This diagram has 
been used for Figures 6.6 and 6.7. For abbreviations see Table 6.2. This diagram is in good agreement with previous published 
facies diagram (e.g. Yardley 1989; Spear 1993; Bousquet et al. 1997).
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6.2.2. Ambiguity of some mineral assemblages in the Alps
While some parageneses unambiguously grow only within a certain geodynamic context (Table 

6.1), other mineral assemblages commonly occur over a large field of P–T conditions and may evolve in 

diverse geodynamic contexts. Examples of unambiguous mineral assemblages containing lawsonite and 

carpholite only form under low-temperature/high-pressure conditions, typical for subduction processes; 

mineral assemblages containing staurolite and andalusite are typical high-temperature phases occurring 

during collision processes (i.e. Barrovian-type metamorphism). 

On the other hand, recurrent minerals such as chloritoid, zoisite, kyanite and garnet may form at 

different P–T conditions. This hampers their use for an interpretation of the geodynamic setting. Chlo-

ritoid – phengite assemblage, for example, can be produced in different geodynamic settings. Moreo-

ver, it may occur in tectonic units in close spacial juxtaposition although these units formed in different 

geodynamic scenarios (Oberhänsli et al. 2003). Figure 6.4 clearly illustrates that two P–T paths may 

lead to different mineral reactions that produce chloritoid–phengite–chlorite mineral assemblages. The 

P–T path along a cold geotherm leads to the formation of chloritoid–phengite–chlorite as a result of the 

breakdown of Fe–Mg carpholite (Chopin & Schreyer 1983) while under higher geothermal gradients 

this assemblage can also form by the breakdown of pyrophyllite (Frey & Wieland 1975). 

The high-pressure alumosilicate polymorph, kyanite, is particularly difficult to interpret as an in-

dicator of geodynamic processes. It may occur in UHP associations such as the Dora Maira unit, as well 

1: Chl + 4Kln  = Qz + 5Car + 2W 
2: 2Qz + Kln  =  Prl + W
3a: 4Prl + Chl   =  5Ctd + 14Qz + 3W (ChlXMg=0.4)
3b: 4Prl + Chl   =  5Ctd + 14Qz + 3W (ChlXMg=0.7)
4: 5Car + 9Qz  = 4Prl + Chl + 2W
5a: Car    =  Qz + Ctd + W  (CarXMg=0.4)
5b: Car    =  Qz + Ctd + W  (CarXMg=0.7)
6: Prl   = Ky + 3Qz + W
7: 2Ms + Chl + 2Qz =  3Ctd + 2ACel + W
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Fig. 6.4: Ambiguity of chloritoid-quartz as index assemblage. Depending on the P-T path, chloritoid-quartz can be formed ei-
ther by breakdown of (Fe, Mg)-carpholite at HP conditions (reaction 5) or by breakdown of pyrophyllite at LP conditions (re-
action 3). Chloritoid-quartz assemblage alone cannot be used as index for pressure conditions. Its significance depends on the 
mineral reaction and on the associated minerals.
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as in temperature-dominated areas such as the Lepon-

tine dome. It indicates a subduction-type low geother-

mal gradient in the first, but a high collision-related geo-

therm in the latter case.

6.2.3. Ambiguity of some metamorphic facies 
Assignment of a metamorphic rock to a meta-

morphic facies is based on its mineralogy. In the best 

case, a rock might undergo a simple metamorphic evo-

lution in a distinct geodynamic setting, leading to a peak 

metamorphic paragenesis (simultaneous P and T peaks) 

possibly followed by later retrogression (Fig. 6.5a). 

However, a metamorphic pressure peak related to one 

geodynamical scenario may also have been overprinted 

by a thermal peak that resulted from a second and dif-

ferent geodynamic scenario (Fig. 6.5b). Hence, in such 

a case the metamorphic facies is ambiguous in that it is 

difficult to distinguish between continuous and discon-

tinuous evolutions. It is only the exact shape of the P–T 

path, details that are often difficult to constrain, which 

is specific for a complex geodynamic evolution. For ex-

ample, the significance of the amphibolite facies min-

eralogy is ambiguous. It may either represent a single 

path that entirely formed in a collision setting; or alter-

natively, it may merely represent an exhumation stage 

that formed during ongoing subduction and before final 

collision (Fig. 6.5a). In the case of dual peak paths, de-

tails regarding amphibolite facies overprint are crucial 

for better understanding exhumation processes in gen-

eral and details of the transition from subduction to col-

lision in particular.

6.3. The metamorphic data in a geody-

namic context
The above-described importance of metasedi-

ments and the presented tool of a facies grid with its 

characteristic mineral assemblages can be well used in 

the Alps. The Alps are well suited for such a compila-

tion because they are a relatively small and well-investi-

gated orogen (e.g. Frey et al. 1974, 1980; Goffé & Cho-

pin 1986; Roure et al. 1990; Dal Piaz 2001; Oberhänsli 

et al. 2004; Schmid et al. 2004). The Alps are developed 

by subduction of two different oceans followed by col-
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lision between two main continents (Adria and Europe). The relics of the oceans (Piemont–Liguria, 

Valaisan) and the separating microcontinent (Briançonnais) are still existing and are now sandwiched 

between Adria and Europe. The palaeogeographic (tectonic) overview of the present-day situation is 

principally inspired from Schmid et al. (2004) and Bigi et al. (1990), and can so be combined with meta-

morphic information of the different units. This approach will be presented below.

6.4. Subduction-related minerals and their distribution
All the way from the Adriatic margin preserved in the lower Austroalpine nappes to Europe-de-

rived nappes, the tectonic units (i.e. Piemont–Liguria, Briançonnais, Valais) contain metasediments that 

recorded the Late Cretaceous–Cenozoic subduction history. The minerals indicating subduction-related 

processes are listed in Table 6.2 and their distribution is shown in Figure 6.6. 

We recognize the HP–LT imprint on the European continental margin (Tauern window, Adula 

nappe and surrounding covers), on all the metasediments derived from the partly oceanic Valaisan do-

main, as well as on the Piemont–Ligurian realm (Rechnitz window, Matrei zone, Avers, Zermatt–Saas 

zone, Entrelor, Cottian Alps, Voltri group, Tuscany and Corsica). The situation is more complex for the 

P

T

 Metamorphic P-peak overprinted
by a later thermal peakP

T

Single metamorphic peak
always followed by cooling or
isothermal retrograde events

a) b)

Fig. 6.5: Ambiguity of some metamorphic facies. (a) a rock undergoes a simple metamorphic evolution in a distinct geody-
namic setting, leading to only one peak metamorphic paragenesis (simultaneous P and T peaks) followed by later retrogres-
sion. (b) In some cases certain metamorphic P-T paths show distinct pressure and temperature peaks. The pressure-peak can 
be related to one geodynamical scenario and it may have been overprinted by a thermal peak that resulted from a second and 
different geodynamic scenario.

HP-LT “minerals” Low-grade/ greenschists

“minerals”

HT “minerals” “Ambiguous” minerals

Fe,Mg-Carpholite Car Margarite (Mgr) Andalusite (And) Chloritoid (Ctd)

Lawsonite Lws Pyrophyllite (Prl) Sillimanite (Sil) Kyanite (Ky)

Aragonite Arg Kaolinite (Kln)-Quartz Cordierite (Crd) Garnet (Gt)

Coesite Cs Riebeckite (Rbk) Staurolite (St) Clinozoisite / Zoisite (c/Zo)

Talc Tlc Glauconite (Glt) Wollastonite (Wo) Cookeite (Cook)

Glaucophane Gln Stilpnomelane (Stl) Diopside (Di) in marble Sudoite (Sud)

Jadeite Jd Albite-quartz-phengite-

chlorite

Tremolite (Tr) in marble

quartz-phengite-chlorite

Table 6.2: Main metamorphic minerals or mineral assemblages found in metasediments in the Alps, classified according to 
their meaning.
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units derived from the Briançonnais terrane. Going from internal to external, they indicate eclogite and 

UHP conditions in the ‘internal massifs’ (Monte Rosa, Gran Paradiso, Dora Maira), blueschist condi-

tions (Suretta cover, Mont Fort, Ruitor, Vanoise, Acceglio, Ligurian Alps, Tenda), and subduction-re-

lated greenschist and low-grade conditions (Tasna, Schams, Zone Houillère). Based on structural argu-

ments, some authors dispose of this complexity by changing the palaeogeographic attribution of the 

‘internal massifs’ (Froitzheim 2001; Pleuger et al. 2005). We are agreeing with the fact that the geody-

namic evolution is complex and that the ‘internal massifs’ are part of the Briançonnais (see e.g. Polino 

et al. 1990; Borghi et al. 1996; Froitzheim et al. 1996; Dal Piaz 1999). 

In the following, we will present four examples (Cottian Alps, Ruitor, Entrelor and Valais Ocean) 

that document and demonstrate the use of metamorphic studies on metasediments for unravelling differ-

ent P-T evolutions during the early subduction-related history of the Alps.

Continuous P increase within sediments from one single palaeogeographic unit (Cottian Alps).

The Schistes Lustrés complex in the Cottian Alps is formed by intensely folded Upper Jurassic 

(Malm; De Wever & Caby 1981) to Upper Cretaceous calcschists deposited in the oceanic Piemont–

Liguria trough (Coniacian–Santonian; Lemoine & Tricart 1986; Deville et al. 1992), with a few mantle 

slivers (mainly serpentinites) representing the floor of this Alpine realm largely devoid of mafic oceanic 

crust (Lagabrielle & Lemoine 1997). The study of metamorphic sediments shows that carpholite-bear-

ing assemblages are present in the western part (Goffé & Chopin 1986; Agard et al. 2001) while chlo-

ritoid-bearing assemblages as well as garnet-lawsonite-glaucophane assemblages in marbles (Ballèvre 

& Lagabrielle 1994) occur in the eastern part. On the basis of metapelite mineralogy, P–T estimates at 

maximum pressure increase from west to east across the study area from c. 1.2–1.3 GPa at 300–350°C 

(Agard et al. 2001) to 1.4–1.5 GPa at 450–500°C (Ballèvre & Lagabrielle 1994; Agard et al. 2000).

Bimodal evolution within a single paleogeographic unit (Ruitor area).

The metamorphic evolution of the basement units derived from the Briançonnais micro-continent 

was always a matter of debate (Desmons et al. 1999; Monié 1990). In the south-western Alps, a HP 

imprint is well documented by occurrences of Fe-Mg carpholite (Goffé 1977, 1984; Goffé et al. 1973, 

2004; Goffé & Chopin 1986), and aragonite (Gillet & Goffé 1988) in metasediments and by occurrences 

of lawsonite and jadeite in metabasites (Lefèvre & Michard 1965; Schwartz et al. 2000). In the north-

western Alps in contrast, only the uppermost unit of the Briançonnais domain (the Mont Fort nappe) 

displays blue-schist facies conditions (Schaer 1959; Bearth 1963). 

In the Zone Houillère and in its Permo-Triassic cover as well as in the Briançonnais basement, 

metamorphic mineral assemblages are mainly composed of white micas with varying chemical compo-

sition, chloritoid and garnet. This same assemblage may occur within different lithologies (meta-arkose, 

meta-pelite, meta-sandstone). The increase in metamorphic grade from greenschist facies conditions in 

the north-west (Zone Houillère) to the transition between blueschist and eclogite facies conditions in 

the south-east (Internal Briançonnais) is well documented (Bucher & Bousquet 2007). A major discon-

tinuity in metamorphic grade, as documented by a pressure gap of ca. 0.7 GPa, is located at a tectonic 

contact within the Briançonnais terrane, namely that between the Zone Houillère and Ruitor unit (Caby 

et al. 1978; Bucher 2003). 

Fig. 6.6: Mineral distribution (and some associated P-T paths) of subduction-related processes in post-Hercynian metasedi-
ments of the Alps. We note a wide distribution of HP events over the entire alpine edifice. See references in Appendix.
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Rock associations displaying different metamorphic peak conditions (Entrelor area).

Two types of metamorphic rocks (blueschist and eclogites) have been described in this area, 

which is part of the Piemont–Liguria units of the Western Alps (Dal Piaz 1999). Recently, the rock as-

semblage in the Entrelor area has been interpreted as a metamorphic mix, consisting of eclogitic rocks 

that were embedded into a blueschist facies matrix consisting of metapelites and greenstones (Bousquet 

2008). The two kinds of HP metamorphic rocks reveal different peak metamorphic conditions (1.2 GPa 

at 450°C vs. 2.3 GPa at 550°C); it is their contemporaneous exhumation within a subduction channel 

which juxtaposed them at a shallower crustal level. This evolution illustrates that subduction processes 

cannot be considered as a single-pass process; instead, return flow of a considerable portion of crustal 

and upper mantle material must be accounted for (Gerya & Stockhert 2002), and the exhumation of the 

different rock types cannot be considered independently from each other (Engi et al. 2001). The rocks 

of the Entrelor area can be viewed as an exhumed part of a frozen subduction channel consisting of a 

mix of metamorphic rocks that have different metamorphic evolutions, and which were accreted at great 

depths.

Geometry of the subduction (units derived from the Valais ocean).

In the Eastern and Central Alps, blueschist-facies rocks derived from the Valais ocean are exposed 

structurally below the Austroalpine nappes over an area of 300 x 20 km2 (from the Tauern window to 

the Grisons area) and have a thickness of around 10 km. This large volume of blueschist-facies rocks 

is in contrast with that of the eclogite-facies rocks of the Western Alps that only form a small 2 to 5 km 

thick slice. The difference in volume and metamorphic conditions from east to west is probably due to a 

change in style and geometry of subduction. 

In the Eastern and Central Alps, the blueschist metasediments formed within a wide accretionary 

wedge with a thickness of 40–50 km which underlies the orogenic lid formed by the Austroalpine nap-

pes and they were exhumed before the final collision between the European and Apulian continents (see 

discussion in Bousquet et al. 2002). Subduction occurred at a high angle to the strike of the orogen. In 

the Western Alps, where only a narrow accretionary wedge formed (Ceriani & Schmid 2004), producing 

low-grade metamorphic conditions (Ceriani et al. 2003), subduction occurred in a sinistrally transpres-

sive environment, i.e. at a small angle to strike of the orogen (Schmid & Kissling 2000, Ceriani et al. 

2001). The blueschist and eclogite facies metasediments of the Versoyen area (Petit St. Bernard and Ver-

soyen units, Goffé & Bousquet 1997) were also subducted and extruded along a N–S direction, i.e. at a 

small angle to the orogen (Fügenschuh et al. 1999). Moreover, the Western Alps were never overlain by 

an orogenic lid formed by the Cretaceous-age Austroalpine nappe stack, but at best by rather thin base-

ment silvers attributed to the Margna–Sesia fragment (Schmid et al. 2004). 

Despite the fact that metamorphism related to Latest Cretaceous to Cenozoic subduction is scat-

tered all over the Alps, information on these processes is unevenly distributed. Areas with wide occur-

rences of metasediments (Fig. 6.1) allow for the best insight into the early geodynamic evolution of the 

Alps. In the Western Alps, all stages of a subduction process in P-T frame (from UHP to greenschist con-

ditions), as well as its evolution in time (from the latest Cretaceous to the Oligocene, i.e. between 70 and 

33 Ma), are recorded. Contrarily in the Eastern Alps and in the Tauern window (we exclude the Creta-

ceous-age high-pressure metamorphism from this discussion since it was related to a different orogeny; 

Froitzheim et al. 1996) the metamorphic record of the metasediments is limited, and the HP rocks only 

exhibit Eocene ages (45–35 Ma).
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6.5. Minerals related to collision processes and their distribution
Collision-related minerals apparently do not occur over the whole Alpine edifice. Minerals pro-

duced during collision are mainly indicative for temperature-dominated metamorphic conditions (Bar-

rovian-type metamorphism). They occur in the External zones, as well as in the Central Alps (Lepontine 

dome) and in the Tauern window of the Eastern Alps (Fig. 6.7). 

In the External zones, the metamorphic evolution reaches maximum lower greenschist condi-

tions, metamorphism resulting from collisional deformation as nappe emplacement, thrusting and fold-

ing (Frey & Ferreiro Mählmann 1999; Burkhard & Goy-Eggenberger 2001; Ferreiro Mählmann 2001). 

Burial processes both control metamorphic conditions in the External zones and limit it to low grade. 

The area of the Lepontine dome and the Tauern window, however, experienced higher metamorphic 

conditions, at least amphibolite facies. 

Three examples will elucidate geodynamic processes that led to high-temperature metamorphic 

overprinting of metasediments in more internal zones. 

Continental underplating (Tauern window).

In the post-Variscan metasediments of the Tauern window, a high-temperature event is mainly in-

dicated by the occurrence of Fe/Ca-rich garnet (Droop 1981; Selverstone 1985). Only a few occurrences 

of staurolite have been reported, indicating maximum amphibolite facies conditions. The mineral dis-

tribution pattern indicates two dome-like structures with concentric temperature gradients. This pattern 

resulted from the underthrusting of Europe-derived continental basement (Kurz et al. 1999) and its ac-

cretion to the overlying Austroalpine basement complex (Apulian Plate). This geodynamic scenario led 

to simple and continuous P–T paths (Fig. 6.6) that indicate decompressional heating from HP conditions 

into amphibolite facies conditions. 

In the Schieferhülle, the earlier HP-stage (blueschist facies conditions, Selverstone & Spear 1985) 

at 36 Ma was overprinted by HT conditions (amphibolite facies conditions) at around 30–27 Ma ago 

(Christensen et al. 1994; Zimmermann et al. 1994).

Continental wedging (Lepontine dome).

High-temperature metamorphic conditions in the Central Alps (the Lepontine area) were based 

on the study of metasediments in the early works on Alpine geology (e.g. Schmidt & Preiswerk 1908; 

Preiswerk 1918). Since these pioneering descriptions, several workers have dealt with metasediments 

from the Lepontine in order to understand progressive metamorphic evolution in isochemical systems 

(siliceous carbonates system: Trommsdorff 1966; pelitic and marly compositions: Frey 1969). The Lep-

ontine area is characterized by extensive amphibolite facies conditions, reaching migmatization and/or 

granulite facies conditions. The thermal overprint (Fig. 6.6) progressively decreases from UHT-condi-

tions in the south to greenschist facies conditions outwards (Streckeisen et al. 1974; Engi et al. 1995; 

Todd & Engi 1997). The northern margin of the amphibolite grade Lepontine dome is defined by the ap-

pearance of staurolite in pelitic systems. However, to the south it is truncated by the Insubric line, along 

which granulites and migmatites are juxtaposed to rocks of the Southern Alps that did not experience 

substantial Alpine metamorphism. 

Thin Mesozoic metasedimentary bands separate large volumes of basement rocks belonging to 

various nappes stacked below the Austroalpine nappes and in front of the Southern Alps (Apulian Plate). 

The accretion of vast amounts of crustal material derived from the European margin (Adula, Simano, 
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Fig. 6.7: Mineral distribution (and some associated P-T paths) of collision-related processes in post-Hercynian metasediments 
of the Alps. Two types of metamorphism can be distinguished. The lower one up to greenschist facies conditions has a large 
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these areas, the thermal event can overprint an earlier HP event. See references in Appendix.
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Leventina) and the Briançonnais terrane (i.e. Maggia nappe) allowed for high radiogenic heat produc-

tion (Verdoya et al. 2001; Roselle & Engi 2002) producing HT assemblages. 

The P-T paths deduced from the high-grade metasediments often, but not always (see Nagel et al. 

2002; Keller et al. 2005a for more simple P-T paths), show bimodal trends (Fig. 6.6): a HP event is fol-

lowed by a phase of heating (Engi et al. 2001; Berger et al. 2005; Brouwer et al. 2005; Wiederkehr et al. 

2007). Shortly after the HP event, which probably occurred at around 45 Ma (51–47 Ma, Bucher 2003; 

42.6 Ma, Lapen et al. 2007; see discussion in Berger & Bousquet 2008), HT metamorphic conditions 

prevailed over a long period of time until 30 Ma ago in the south and 15 Ma in the north, respectively 

(Hunziker et al. 1992).

Post-orogenic heating (Tuscany).

In western Tuscany, Quaternary magmatism is witnessed by volcanic as well as intrusive rocks. 

This magmatism is associated with crustal thinning and high heat flow values (Scrocca et al. 2003). 

Consequently, metasediments not only exhibit HP mineral assemblages, but also minerals such as anda-

lusite, staurolite, chloritoid, epidote that document the high-temperature evolution. A bimodal P-T path 

has been reconstructed from Giglio, indicating both an HP and HT event. (Rossetti et al. 1999). 

The inferred palaeotemperature distribution pattern resembles an asymmetric thermal high defined 

by the appearance of kyanite, similar to the present geothermal pattern of the Tuscan crust (Franches-

celli et al. 1986), as indicated by a series of geothermal anomalies passing through the northern Apen-

nines (Della Vedoya et al. 2001). The age of the HT event (from 15 to 8 Ma, Kligfield et al. 1986; Bru-

net et al. 2000; Molli et al. 2000a, b) clearly post-dated the HP stage (31–26.7 Ma, Brunet et al. 2000) 

in Tuscany.

Summary

Remnants of the high-temperature event are unevenly distributed throughout the Alps. They are 

localized in the Tauern window, the Lepontine dome, and in Tuscany. In contrast, large areas lack such 

an HT overprint: the entire Western Alps and the Engadine window located between the Lepontine dome 

and Tauern window. Both the Lepontine and the Tauern domes are made up of continent-derived grani-

toid upper crustal metamorphic sequences (Lammerer & Weger 1998; Neubauer et al. 1999; Schmid et 

al. 1996), while the Engadine window (Bousquet et al. 2002) and the southwestern Alps (Agard et al. 

2002; Lardeaux et al. 2006) are mainly built up of oceanic-metasedimentary sequences. 

Hence we conclude that the high-temperature event in the Eastern and Central Alps is due to large 

local accumulations of crustal material during continental collision, while in Tuscany it records a post-

orogenic event, associated with thinning of the lithosphere (Rossetti et al. 1999).

6.6. Metamorphic structure of the Alps
Sediments occur throughout mountain belts such as the Alps and represent a large variety of pal-

aeo-environments and chemical compositions. Moreover, several of these compositions are very sensi-

tive to temperature and pressure variations. Thus, they have a high potential for registering the different 

stages of their geodynamic evolution. Mineral distributions in metasediments, combined with previous 

works on metabasites, allow for deciphering the complexity of the Late Cretaceous–Tertiary alpine his-

tory (Figs 6.8 & 6.9). 

Map representation (Fig. 6.8) allows the clear separation of different areas in the Alps. Corsica 

and the Western Alps as well as the far Eastern Alps (Rechnitz window) have recorded only the subduc-
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tion-related evolution, characterized by HP meta-

morphism. The Central Alps and the Eastern Alps 

(Tauern window) are displaying a more complex 

history. In these areas, the HP phase is overprinted 

by higher temperature conditions. 

Alpine eclogite facies remnants in the central 

Lepontine area appear to be restricted to a meta-

morphic mix (Berger et al. 2007). They are isolated 

occurrences in a belt that includes relics of vari-

egated high-grade metamorphism, from granulite 

facies to eclogite to amphibolite facies. This struc-

ture is interpreted as representing remnants of a 

tectonic accretion channel (Engi et al. 2001), which 

had developed along the convergent plate bound-

ary during Alpine subduction. 

From the metamorphic map (Fig. 6.8) and 

using four major geological transects (Schmid et al. 

2004), we propose metamorphic transects across 

the Alps down to 15–20 km depth (Fig. 6.9). In the 

eastern transect (Fig. 6.9a, along the TRANSALP 

profile), the main alpine metamorphic features 

show the thermal overprint. Only scarce relics of 

the HP history are preserved. In the Central Alps 

(Fig. 6.9b, NFP 20 east profile), HP and HT meta-

morphic rocks coexist. The thermal overprinting 

of different subduction patterns can be observed: 

eclogites of the Adula complex, rocks undergone 

into blueschist conditions (European margin, i.e. 

north of Adula, Simano; Valais; Briançonnais, i.e 

Tambo, Suretta) as well as rocks that have not been 

subducted (Maggia nappe for the Briançonnais) 

have been thermally overprinted by the Late Ter-

tiary event. A wedge-type structure built against 

the Insubric line can be clearly distinguished on 

the Central Alps profile. In the northwestern Alps 

(Fig. 6.9c, NFP 20 west profile), while the subduc-

tion-related metamorphism is widespread, the ther-

mal overprinting is limited to the European plat-

form (sediments, i.e. Helvetic nappes or Dauphiné; 

basement rocks, e.g. Mt. Blanc) or to the structur-

ally lower units (root of the Mte Rosa, Antrona). In 

the Western Alps (Fig. 6.9d, ECORS-CROP pro-

file), subduction-related metamorphism is the main 
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record. The thermal overprint appears west of the Penninic front and it is limited to the European plat-

form (Belledonne, Pelvoux, Dauphiné). The most internal units are completely lacking an HT event. It 

can only be assumed for the deepest units (at around 20 km depth). Two subduction zones, indicated by 

HP metamorphic conditions, can be clearly evidenced. One (in the east) is formed by the Piemont–Ligu-

ria rocks, the Gran Paradiso massif and the most internal part of the Briançonnais. The second subduc-

tion zone is formed only by the Valais rocks and is rooted at depth. Both zones are separated from each 

other by the external Briançonnais (Zone Houillère) which lacks evidence for HP metamorphism. The 

arrangement of the nappe pile in the Western Alps clearly shows a subduction-type structure in which 

most of the tectonic units dip southwestward.

6.7. Discussion
Evidence for HP metamorphism recording prolonged subduction processes during at least over 

37 Ma (from 70 Ma in Sesia to 33 Ma in Valaisan, see Bousquet et al. 2002, and Berger & Bousquet 

2008, for timing constraints). The evidence for these long-lasting processes is also widespread over the 

entire orogen, from the Rechnitz window in the east to Corsica and Tuscany in the southwest. All pal-

aeogeographic units, of continental and oceanic origin, were involved in these subduction processes. 

The nappes derived from the Penninic–Austroalpine transition zone (Margna–Sesia fragment), the Pie-

mont–Ligurian Ocean, the Briançonnais terrane, the Valais Ocean and the European margin all were 

successively subducted under the Apulian Plate (Berger & Bousquet 2008). 

In contrast, high-temperature metamorphism is a relative short-lived process, lasting for some 15 

Ma (30 to 15 Ma). The evidence for such HT metamorphism is also localized in specific regions. It is 

limited to areas where considerable amounts of continental crust were accumulated into accreted nappe 

stacks. High-temperature conditions (more than 650 °C, up to 800 °C; granulites and migmatites) were 

reached in the Lepontine dome where a huge amount of continental crust allowed for high radiogenic 

heat production. In the Tauern, a less important amount of imbricated continental crust led to amphibo-

lite facies conditions (up to 600°C). In the Engadine window (Hitz 1995, 1996), as well as in the western 

Alps, the relative scarcity of continental crust involved in the orogenic wedge does not allow for such a 

high heat production and associated high-temperature overprint. 

The transition between the western Alps, lacking such an HT overprint, and the Lepontine dome 

can be observed in the Monte Rosa area. There, only the lower parts exposed in deep valleys (Domodos-

sola) show an amphibolite facies overprint (650 °C, Keller et al. 2005b). 

Thermal overprint is primarily related to the amount of crust involved in the subduction and col-

lision processes (Bousquet et al. 1997; Goffé et al. 2003) rather than to processes of shear or viscous 

heating (Burg & Gerya 2005). The latter mechanism, which suppose high deformation rate, will not al-

low for the preservation of HP–LT assemblages within high-grade rocks, as is found for example in the 

southern Adula complex (Nagel et al. 2002). 

The relation between the volume of continental crust imbricated and intensity of high-temperature 

orogenic metamorphism can be generalized over the entire Alpine edifice, except for Tuscany where the 

late (< 8 Ma) thermal overprint is clearly related to lithospheric thinning. 

6.8. Conclusions
Based on metamorphic studies in metasediments, we evidence substantial differences in the meta-

morphic and hence the geodynamical evolution along strike of the Alpine orogen. 
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The Western Alps did not reach the mature stage of a head-on colliding belt as is indicated by 

a continuous metamorphic evolution, representing all the subduction-related processes ranging from 

lower greenschist to UHP conditions. All the metamorphic rocks behind the Pennine frontal thrust were 

already exhumed to upper crustal level during ongoing oceanic and continental subduction and before 

collision with the Dauphinois domain from around 32 Ma onwards (Fügenschuh & Schmid 2003; Lel-

oup et al. 2005). Hence, the Western Alps represent a frozen-in subduction zone. Since then, only exhu-

mation by erosional processes affected the inner parts of the orogen. 

The rest of the Alpine orogen later underwent a more important collision process due to the on-

going head-on geometry of subduction and collision. It therefore often but not always shows a bimodal 

metamorphic evolution with two distinct P and T peaks. The intensity of the thermal overprint relates to 

the amount of crustal material incorporated to the orogenic wedge. 
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Summary and conclusions

Here the various conclusions and discussions extracted from the individual chapters are summed 

up and synthesized. In a first step the structural, petrological and geochronological data will be presented 

chronologically and integrated into the tectono-metamorphic evolution, as derived from the structural 

analysis. In a second step the resulting conclusions will be extrapolated to the scale of the entire orogen, 

discussing the geodynamic evolution of the Central Alps as well as orogenic belts in general.

7.1. Tectono-metamorphic evolution (P-T-d-t path)
The combined metamorphic, structural and geochronological study of metasediments at the north-

eastern border of the Lepontine thermal dome revealed a bimodal P-T path for the Valaisan and parts of 

the adjacent European domains. The following “pressure-temperature-deformation-time path” has been 

inferred by this study:

Sediment accretion and subduction-related HP/LT metamorphism (42-40 Ma, D1 Safien phase)

The Valaisan Bündnerschiefer (mainly Grava and Tomül nappes) that presently build up a several 

kilometres thick accretionary wedge of metasediments formed during Cenozoic subduction of the Valais 

Ocean and the adjacent distal European margin beneath the Briançonnais micro-continent. Deeper parts 

of this sedimentary accretionary wedge experienced pressure-dominated metamorphism under blues-

chist facies conditions, including parts of the sedimentary cover of the adjacent distal European margin 

(Peidener slices and Piz Terri-Lunschania unit), detached from their crystalline basement and incorpo-

rated into the HP/LT part of the accretionary wedge.

Relics of the early subduction-related blueschist facies metamorphic event represented by the 

mineral assemblage Fe-Mg carpholite – phengite – chlorite ± chloritoid are widespread in the study area 

and only preserved within syn-metamorphic quartz-calcite veins/segregations but never in the rock ma-

trix. These veins represent oblique fibrous veins that opened in a transtensive manner by re-precipitation 

from hydrous solutions, which led to the growth of the fibrous carpholite, quartz and calcite during the 

formation of these veins/segregations. Since no major folding structures formed during D1 and since 

the surrounding rock matrix is occasionally found virtually undeformed (as indicated by the presence 

of undeformed crinoids close to occurrences of carpholite), a semi-ductile behaviour during D1, largely 

characterized by solution and re-precipitation processes, is inferred. From the above mentioned mineral 

assemblage peak-pressure conditions for syn-D1 blueschist facies metamorphism of 350-400 °C and 

1.2-1.4 GPa has been estimated.

Since the HP/LT mineral assemblage carpholite – chlorite – phengite ± chloritoid is found in meta-

sediments of both Valaisan (Grava and Tomül nappes) and European units (Peidener slices and Piz Terri-

Lunschania unit), the tectonic contact between the most distal European margin and the Valais Ocean, 

the Penninic Basal Thrust, must have already formed during D1. Although the more external European 

units (e.g. Scopi unit) may also have been affected by D1, these units lack carpholite-bearing veins.

The timing of the first deformation phase D1 (Safien phase), correlated with peak-pressure condi-

tions, was addressed by isotopic investigations using 40Ar/39Ar in situ dating technique. White mica tex-
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turally associated with Fe-Mg carpholite yield apparent 40Ar/39Ar ages of 42-40 Ma interpreted as dating 

peak-pressure conditions (350-400 °C and 1.2-1.4 GPa).

Substantial decompression during nappe-stacking (36-33 Ma; D2 Ferrera phase)

Nappe-stacking was associated with substantial decompression of the blueschist-facies rocks dur-

ing which internal (i.e. Valaisan) units were thrust onto external (i.e. Europe) as well as high-pressure 

units (i.e. Valaisan, Peiden slices and Piz Terri-Lunschania unit) were emplaced over low-pressure ones 

(i.e. Scopi unit). This overall nappe-stack architecture suggests that ascent and extrusion of HP units did 

occur within and parallel to a subduction channel by active/forced extrusion and/or buoyant ascent.

Nappe-stacking and associated D2 deformation clearly post-date D1, since the carpholite-bear-

ing quartz-calcite veins are isoclinally folded and overprinted by the S2 penetrative main and axial pla-

nar schistosity. This D2 schistosity completely transposes bedding, and possibly, relics of an earlier D1 

schistosity that may have existed in pelitic lithologies.

The presence of relics of Fe-Mg carpholite combined with the observation that carpholite is main-

ly destabilized by the pressure sensitive mineral reaction producing white mica, chlorite and quartz 

points towards decompression under nearly isothermal or slightly cooling conditions. By 40Ar/39Ar in 

situ dating of white mica intimately associated with chlorite, both together replacing former Fe-Mg car-

pholite, yield apparent ages in the range of 36-33 Ma. This is interpreted to date the timing of substantial 

decompression and nappe-stacking.

Early-stage collision-related greenschist facies overprint (32-29 Ma)

The results obtained by different investigations (including petrologic investigations, Raman spec-

troscopy of carbonaceous matter, and 40Ar/39Ar dating) combined with the structural record independent-

ly revealed the existence of a greenschist facies metamorphic event clearly post-dating D2 nappe-stack-

ing but pre-dating D3 first-stage nappe-refolding. The following results/observations points towards 

such a metamorphic overprint:

(1) Detailed investigations regarding the distribution of characteristic minerals revealed that occur-

rences of chloritoid forming bundles and rosettes overgrowing the pre-existing main foliation can 

be found in both HP and LP units far beyond towards the east and therefore shows an obviously 

different zoning pattern, which is not characterized by the rather concentric shape confining the 

Lepontine thermal dome, as seen for the distribution of i.e. margarite, biotite, kyanite and stauro-

lite (Niggli & Niggli 1965). Furthermore, it was found that porphyroblasts of chloritoid were de-

formed by subsequent D3 deformation. Both the eastward excursion of chloritoid occurrences as 

well as the relationships between deformation and crystallization favour an early-stage formation 

of chloritoid, clearly separated from the well-known “Lepontine” amphibolite facies Barrovian 

overprint.

(2) The thermal structure of the study area was recorded by Raman spectroscopy of carbonaceous 

matter. In the north-eastern part of the study area the constructed isotemperature contours can be 

continuously followed across tectonic contacts separating HP and LP units. Furthermore, these 

isotemperature contours are spectacularly folded around the large-scale Lunschania antiform rep-

resenting a major D3 nappe-refolding structure. Both observations favour the timing of the estab-

lishment of the thermal structure after D2 nappe-stacking but prior D3 nappe-refolding.

(3) Isotopic investigations presented by this study yield well-defined apparent 40Ar/39Ar ages of 32-29 

Ma obtained on white mica associated with chlorite. These results point towards a resetting of the 
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40Ar/39Ar isotopic system most probably induced by recrystallization and/or metamorphic reaction 

possibly enhanced by the presence of a fluid. The results presented by this investigation are sup-

ported by additional isotopic studies performed in the south-western part of the study area (Luk-

manier/Piora), were Th-Pb ages of allanite yield exactly the same ages (Janots et al. 2009) and 

therefore provide strong evidence that the recorded ages represent a specific metamorphic stage.

In summary, all results independently revealed the existence of a greenschist facies event that clearly 

post-dates D2 nappe-stacking and pre-dates D3 nappe re-folding.

The geodynamical significance of this greenschist facies overprint is not clear at this stage. Pos-

sibly, the accretion of distal European margin to the orogenic wedge led to the relaxation of subduc-

tion-related down-folded isotherms by providing additional heat supply caused by high radiogenic heat 

production.

First nappe refolding event (~25 Ma; D3 Domleschg phase)

This D3 nappe folding event substantially modified the nappe stack in the working area. It post-

dates an earlier nappe re-folding phase established only within structurally higher Valaisan and Bri-

ançonnais units east of the working area (Niemet-Beverin phase). D3 deformation produces tight mega-

folds such as the Lunschania antiform, as well as folds observable at the mesoscopic and microscopic 

scale. A second strong axial planar cleavage S3 is associated with D3 folding. However, the distinction 

between S2 and S3 can only be made in D3 fold hinges where S3 represents a spaced cleavage, while S3 

completely transposes S2 in F3 fold limbs.

D3 deformation post-dates the ascent and emplacement of the Bergell pluton south of the working 

area and overprints the previously established greenschist facies event, as is independently evidenced 

by isotemperature contours related to this greenschist facies event that are folded around the Lunschania 

antiform. Note that D3 deformation is associated with ongoing accretion of continental basement units 

(e.g. Lucomagno-Leventina nappe and Gotthard-“massif”) and is interpreted as contemporaneous with 

back-thrusting along the Insubric mylonite belt (formation of the Southern Steep Belt).

Based on the significantly younger apparent 40Ar/39Ar ages (weighted average age of 25.40 ± 0.45 

Ma) found in one sample from Valsertal, affected by pervasive D3 deformation and showing unambigu-

ously different micro-texture, we tentatively correlate these recorded apparent age with the timing of D3 

deformation, being aware that this is speculative.

Note that the following metamorphic and tectonic events only affected the western part of the 

working area, i.e. in an area east of Piz Terri.

Barrow-type thermal overprint (19-18 Ma)

Barrovian overprint of the south-western part of the study area represents a separate and younger 

heating event that initiated during a tectonically quiescent phase and that clearly post-dates D3 defor-

mation. This is demonstrated by the isotherms related to this Barrovian metamorphism that are seen to 

crosscut the D3 Lunschania antiform as well as associated porphyroblasts (such as plagioclase, biotite, 

garnet, kyanite, staurolite) showing a clear post-tectonic microstructure. Petrologic investigations yield 

450 °C at the north-eastern border of the Lepontine dome (Luzzone) up to 570-590 °C around Pizzo 

Molare at 0.5-0.8 GPa. Hence amphibolite facies Barrovian overprint represents a more or less “iso-

baric” late-stage thermal overprint that was sustained until the beginning stages of the last tectonic (D4) 

event.
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The timing of this late-stage thermal event is recorded by the apparent 40Ar/39Ar ages of inves-

tigated biotite clustering in the 18-15.5 Ma range; due to some retrograde chloritization of biotite we 

prefer the published monazite U-Pb ages of 19-18 Ma (Janots et al. 2009) for dating peak-temperatures 

during this event.

Back-folding in the Northern Steep Belt and subsequent cooling (post-18 Ma; D4 Chièra phase)

Barrow-type amphibolite facies mineral assemblages have been severely deformed by a subse-

quent late-stage nappe refolding event that is associated with the formation of the Northern Steep Belt 

within the Penninic nappe-stack and which is only very well developed west of our study area. There, a 

relatively tight synform, the Chièra synform, brings the nappe-stack into an overturned, steeply north-

dipping position, while in our area such D4 back-folding is less severe.

D4 deformation is only observed in the SW part of the investigated area, strain intensity rapidly 

decreasing towards the NE. D4 deformation sets in east of Piz Terri while intensive folding affects the 

area around Pizzo Molare and between the southern Lukmanier area and Olivone. Typically, D4 folds 

have an undulating and wavy appearance, producing a staircase-like set of syn- and antiforms on the 

macroscopic scale, striking E-W to ESE-WNW.

Since this D4 Chièra phase deformation outlasted Barrovian metamorphic overprint it must be 

very young (i.e. post-18 Ma), most probably contemporaneous with the N-directed thrusting in the Aar 

massif in the more external parts of the Alps and imbrications within the Subalpine molasse.

The zircon fission track ages of 10-9 Ma, as well as apatite fission track ages of 7.5-6.5 Ma, in-

dicate the final stages of the P-T path, i.e. the timing of the cooling below some 200-330 °C for zircon, 

and 70-120 °C for apatite (Janots et al. 2009) due to erosional unroofing that followed the thrusting of 

the external massifs.

7.2. Implications regarding the geodynamic evolution of the Alps
Based on the field data presented in this study we regard radiogenic heat production by accretion 

of continental crust during the collisional and post-collisional stages of Alpine orogeny, associated with 

rising isotherms, to be mainly responsible for Barrovian metamorphism that represents a separate late-

stage heating event at the north-eastern rim of the Lepontine dome. We propose that the Lepontine and 

Tauern thermal and structural domes both largely resulted from the local accretion of massive volumes 

of Sub-Penninic basement nappes derived from the distal European margin. This well explains the sub-

stantial Barrow-type thermal gradient observed at the north-eastern rim of the Lepontine dome, cutting 

across former nappe contacts almost perpendicular to strike. We infer that the observable crosscutting 

isotherms are most likely related to a late stage of purely conductive heat transfer. We emphasize, how-

ever, that in the southern parts of the Lepontine dome (Southern Steep Belt) other heat sources such as 

heat advection by rising eclogitic bodies and melts are probably also very important.

The metamorphic evolution of the investigated metasediments provides important information for 

the understanding of the formation of the Central Alps as well as the transition from subduction to col-

lision orogenic belts in general. The three distinct metamorphic events reflect geodynamic stages and 

associated thermal regimes. Therefore the metamorphic record preserved in the studied metasediments 

is directly related to the evolution of isotherms in the Alpine orogenic wedge. These three events are as 

follows:
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(1) The low-temperature regime is associated with an early subduction and sediment accretion 

stage (42-40 Ma, HP/LT metamorphism) and led to the formation of mineral assemblages 

that are typical for subduction processes and related down-folding of the isotherms. Dur-

ing ongoing subduction, deeper parts of the orogenic wedge were thrust onto lower pressure 

units, a process that is accompanied with nearly isothermal or cooling decompression (36-33 

Ma).

(2) The final collision between Europe and Adria led to excessive thickening of the orogenic 

wedge by the accretion of distal European margin, effectively “clogging” the subduction sys-

tem. Thereby the subduction of rather cold material to great depths ceased and the negative 

temperature anomaly typical for subduction zones started to recover. Furthermore, the accre-

tion of distal European margin to the orogenic wedge led to the relaxation of subduction-re-

lated down-folded isotherms by providing additional heat supply caused by high radiogenic 

heat production. It is most likely that the recorded early-stage greenschist facies overprint 

(32-29 Ma) is caused by the relaxation of isotherms, and therefore this metamorphic event 

marks the timing during which an early collision-related thermal regime was established.

(3) Due to massive accretion of continental crustal material after collision, the rock composition 

within the orogenic wedge changes dramatically: large amounts of upper-crustal European 

granitoid rocks were accumulated within the wedge (Sub-Penninic nappe-stack). This ac-

cumulation of vast amounts of heat-producing crustal material is responsible for increasing 

temperatures by the up-bending of isotherms inducing the late-stage amphibolite-facies Bar-

rovian overprint observed in the working area (19-18 Ma). Note that these rising isotherms, 

in the absence of mass transport, elegantly explain the Barrow-type amphibolite facies over-

print of HP/LT units that already experienced substantial decompression before, as is the 

case in our study area.

The recorded isotopic data reveal a significant time gap in the order of some 20 Ma between the 

subduction-related HP/LT event (42-40 Ma) and the later collision-related MP/MT Barrovian overprint 

(19-18 Ma). This considerable time interval is in accordance with the interpretation that it is the accre-

tion of vast amounts of European continental crust (forming the present-day Lepontine dome) that pro-

vides high radiogenic heat production responsible for amphibolite facies metamorphism, being an en-

tirely conductive and therefore rather slow process.

The new data from the north-eastern rim of the Lepontine dome provide strong evidence for the 

former existence of a contiguous HP/LT belt, representing a second northern suture zone associated with 

the closure of the Valais Ocean. Moreover, absolute timing constraints indicate that both HP/LT meta-

morphism and Barrow-type overprint were diachronous at the scale of the Alpine orogen; hence all indi-

cators of metamorphic zonation such as index mineral zone boundaries must be strongly diachronous.

This study unambiguously demonstrates the importance of metasediments for the reconstruction 

of the metamorphic evolution of mountain belts. Furthermore, we showed that especially low-grade 

(HP/LT, LP/LT) metasediments that typically are devoid of indicative mineral assemblages and that 

therefore often were misinterpreted do provide a lot of information on the geodynamic evolution of the 

Alpine orogenic belt provided that a combination of detailed structural, petrologic and geochronological 

investigations is applied.
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