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0. Abstract 

Multiple Unit Pellet Systems, widely known as MUPS, are tablets consisting of spherical, 

granular subunits (pellets). Thanks to their prompt disintegration into the single subunits 

immediately after administration, they transit shortly in stomach and promptly disperse across 

the huge surface area of the small intestine stabilizing the overall bioavailability and reducing 

the risk of dose dumping and local irritations. If until two decades ago pellets were exclusively 

filled into hard gelatine capsules, they represent nowadays the ideal subunits for multiparticulate 

tablets. In fact, MUPS present all the advantages of the production of tablets compared to 

capsules: lower production costs, higher production rates, reduced risk of tampering, lower 

tendency of adhering to oesophagus during swallowing and better patient compliance. Despite 

this, the compaction of pellets into tablets is a complex technology: MUPS must be robust 

enough but still disintegrate into their subunits within short time, and, not less importantly, they 

should retain the dissolution profile of the original subunits. At this scope, the pellets should 

undergo a soft compaction, without breakage of the pellet coating layer nor formation of matrix 

tablets. Such ideal MUPS may be strived optimizing the proportions between three crucial 

factors: the pellet cores, the coating materials and the embedding excipients. Not many studies 

have focused so far on the simultaneous optimization of these three variables. 

 

Cellulose, and in particular microcrystalline cellulose, is one of the major excipients in solid 

dosage formulations. It presents four polymorphic forms, out of which the form I and II have 

pharmaceutical relevance. The form I, which behaves plastically when compressed, is 

extremely widespread as a filler-binder for MUPS. Unfortunately, it does not possess prevalent 

disintegration properties, so that a disintegrant must be added if prompt disintegration is strived. 

Kumar et al. developed a new Cellulose II pharmaceutical aid named UICEL-A/102 through 

alkali treatment of Avicel PH 102 and successive hydrolysis with ethanol and oven dry. So far, 

UICEL-A/102 has been extensively studied as potential multifunctional excipients (filler and 

disintegrant) in tablet formulations, whereas its employing as a multifunctional excipient in 

MUPS has been not yet investigated. 

 

The aim of this study was on the one hand  the multifactorial investigation of crucial parameters 

involved in the compaction of pellets into MUPS, on the other hand the evaluation of the 

suitability of UICEL-A/102 as filler in two different kind of pellets formulations for MUPS 

(homogeeous pellets from direct pelletization, inhomogeneous pellets from dry powder 

layering). In the end, a robust technology for UICEL-A/102 MUPS production was suggested 

and discussed. 
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To this scope, MCC 102 (Cellulose I) and UICEL-A/102 (Cellulose II) were compared as pellet 

filler and embedding excipients in MUPS for controlled release. In the first part of the study,  

MCC 102 and UICEL-A/102 were separately mixed with Sodium Diclofenac, directly pelletized, 

coated with Kollicoat® SR 30 D to 20% w/w weigth gain and compacted into MUPS. In the 

second part of the study, a binary mixture of MCC 102 or UICEL-A/102 and Sodium Diclofenac 

was layered on neutral cores (Suglets® or Cellets®), in order to produce inhomogeneous pellets 

by means of dry powder layering technology. These pellets were then coated and compacted 

into MUPS according to the same procedure employed for the previous pellet batches. 

 

In the case of homogeneous pellets of either MCC 102 or UICEL-A/102, the MUPS formulations 

overcame compaction deformed rather than ruptured, as proved by comparison between the 

dissolution profiles and the SEM and CLSM images before and after compaction. Both MCC 

102 and UICEL-A/102 MUPS resulted to be mechanically robust (crushing strength of 70-100 

N), fast disintegrating in water (≤ 3 min) and maintained the same release profile and almost the 

same superficial and inner morphology of their uncompressed subunits. 

Compared with MCC pellets, UICEL-A/102 pellets proved to be generally less spherical and 

more porous. Nonetheless, they could be homogenously coated and also retained their 

dissolution profile after compaction into MUPS. The fact that UICEL-A/102 pellets and MUPS 

presented shorter dissolution times than their MCC counterparts is to ascribe to the prevalent 

swelling properties of UICEL-A/102. In fact, UICEL-A/102 contained in pellets sped up their 

dissolution independently of the amount and homogeneity of their coating layer.  

The multifactorial evaluation of selected parameters (drug loading amount in pellets, type and 

quantity of filler in pellets, type of disintegrant in MUPS) on response variables (disintegration 

and dissolution time) brought to an interesting conclusion: UICEL-A/102 was on the one hand 

favourable filler and disintegrant for immediate disintegration, on the other hand it proved to be 

unsuited as filler in pellets for extended release. MCC 102 MUPS, conversely, were 

appropriately delayed formulations, mainly due to retention of their subunits characteristics. 

  

In the case of inhomogeneous pellets, only UICEL-A/102 pellets proved to be favourable 

subunits; in fact, MUPS made of UICEL-A/102 pellet featured pretty good robustness (crushing 

strength of 90-120 N) and rapid disintegration (disintegration time ≤ 12 min), whereas MUPS 

made of MCC 102 were too compact (200-300 N) and did not disintegrate before 50 min. This 

dichotomy was put in relation with the fact that UICEL-A/102 coated and uncoated pellets were 

less compact and more porous than their MCC 102 counterparts. In addition, the choice of 

Cellets® rather than Suglets® as basic neutral cores in dry powder layering had a significant 

impact on the characteristics of UICEL-A/102 MUPS. In fact, UICEL-A/102 MUPS whose 
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subunits had Cellets® cores retained the release profile of their uncompressed subunits more 

then their counterparts having Suglets® as subunit cores. This suggests that subunits with a 

MCC core contributed significantly to the softness of the compaction, this difference being 

associable with a plastic behaviour of Cellets®  in contrast with the rather elastic behaviour of  

Suglets® during compaction.  

 

On the one hand, it can be claimed that dry powder layering produced UICEL-A/102 pellets with 

less prevalent disintegration properties, which were therefore more suitable for controlled 

release MUPS. On the other hand, the presence of a hard core in those pellets favored the 

partial rupture of their coating layer during compaction, resulting in a faster drug release after 

compaction, especially in the case of Suglets® as non pareils. 

Actually, the pellets produced via dry powder layering contained proportionally less UICEL-

A/102 than their homologous prepared via direct pelletization (20% vs. 60% w/w). This means 

that the use of UICEL-A/102 as unique multifunctional excipients is rather suggested in pellets 

and MUPS for immediate release, while its employing as layering excipients on neutral core is 

very promising in the development of MUPS for extended release.  
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1. Introduction 

MUPS (Multiple Unit Pellet Systems) are multiparticulate pellet formulations that, easily 

administered as tablets, disintegrate into their subunits directly after swallowing, so as to 

disperse into their subunits across the stomach and the small intestine. This behaviour accounts 

for a more constant bioavailability and contributes to the minimization of dose-dumping and 

local irritation risks.  

Until two decades ago pellets used to be filled into hard gelatine capsules. Since 1990, Beloc-

Zok®, Antramups®, Nexium® and many others Multiple-Unit-Tablets have been flooding the 

pharmaceutical market, due to their low production cost and high production rate, reduced risk 

of tampering (Celik, 1994), low tendency of adhering to oesophagus during swallowing and high 

patient compliance (Davis et al., 1984), (Gebre-Sellassie, 1994). 

 

Although they represent nowadays a first choice formulation, MUPS do not really constitute a 

straightforward option. In fact, the compaction of coated pellets into MUPS is a complex 

process, in which the subunits undergo structural deformation or even ruptures (Kuehl et al., 

2002). This may profoundly modify the drug release profile of the subunits and/or circumvent the 

tablet disintegration because of enhanced cohesion between pellets (Schmidt et al., 2001), 

(Wagner et al., 1999b), (Béchard et al., 1992). Briefly, on the one hand pellet compacts need to 

have a certain crushing strength to withstand the mechanical shocks encountered in their 

production, packaging and dispensing; on the other hand, the tabletting process must be soft 

enough to enable the compacts to disintegrate promptly in their subunits after administration 

maintaining the drug release profiles of the subunits (Kuny, 2004), (Sawicki, 2005).  

Such an ideal compromise should be strived optimizing the proportions between three crucial 

factors: the pellet cores, the coating materials and the embedding excipients. 

The pellet cores, produced either through wet granulation of an homogenous mixture of active-

filler or through dry powder layering of a mixture active-filler on MCC or sugar starter cores 

(Riedel, 2005), should feature a sufficiently high crushing strength so as not to get deformed or 

ruptured during compaction (Beckert, 1996). Also the coating agents have been extensively 

studied in recent years. Ethyl cellulose coated pellets were claimed not to be flexible enough to 

withstand compaction undamaged (Bodmeier et al., 1994); Lehman et al. achieved compaction 

of pellets coated with different types of Eudragit® (acrylic polymers) without significant damage 

(Lehmann, 1994); Dashevsky et al. asserted that pellets coated with Kollicoat® SR 30D are 

significantly softer than those coated with Kollicoat®  MAE  30 DP and Kollicoat®  EMM 30 D 

(Dashevsky, 2004), (Dashevsky, 2005), (Johansson, 1995a).  
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The embedding excipients, however, should be more deformable than the core excipients, as 

they should cushion the pellets by absorbing the mechanical stress during compaction 

(Lundqvist, 1998), (Bodmeier, 1997), (Santos, 2005). Furthermore, they should build a 

supporting structure in which the subunits may be homogeneously dispersed (Wagner et al., 

1999a) providing the final tablets with appropriate mechanical strength and rush disintegration 

properties (Aulton et al., 1994b).  

 

As the main component of cell walls in higher plants (wheat straw, wood, cotton, flax, hemp, 

jute, ramie) and one component of bacteria, fungi and algae, Cellulose is the most prevalent 

biopolymer in the world. Being renewable, biodegradable and biocompatible, cellulose 

represents the ideal excipient in solid pharmaceutical formulations. It exists in four major 

polymorphic modifications (cellulose I, II, III, IV),  which can mutually interconvert by specific 

chemical and thermal treatments (Kono et al., 2004). The transition from lattice I to lattice II is 

realized by mercerisation of Cellulose I (soaking in highly concentrated NaOH followed by 

recrystallisation upon washing). Most of the experts convey that this transition is irreversible and 

that cellulose II is the thermodynamically more stable form (Lanz, 2005). 

The polymorphs I and II are the most important forms. The crystalline structure of cellulose I 

and II vary in two main characteristics: The unit cell dimension and the polarity of the chains 

(Gardner et al., 1974), (Kolpak et al., 1976). This accounts for different wettability and 

disintegration properties of cellulose I and II excipients.  

In particular, microcrystalline cellulose (MCC), cellulose I powder, is the most widely used filler-

binder for direct compression. Unfortunately, it does not possess prevalent disintegration 

properties, so that a disintegrant must be added if an immediate release formulation is strived. 

Kumar et al. developed a new Cellulose II pharmaceutical aid named UICEL-A/102 (synonym 

UICEL PH 102) through alkali treatment of Avicel PH 102 and successive hydrolysis with 

ethanol and oven dry (Kumar, 2002). Furthermore, UICEL-XL was produced by incorporation of 

glutaraldehyde, polyaldehyde, or polycarboxylic acid as a cross-linking agent into UICEL-A/102.  

Reus- Medina et al. compared the compression properties of UICEL-A/102 and UICEL-XL in the 

perspective of their employment as multifunctional excipients (filler and disintegrant) in tablet 

formulations (Reus-Medina, 2004), (Reus-Medina, 2005).  These studies also suggest UICEL-

A/102 as a potential aid in the manufacturing of MUPS (Reus-Medina et al., 2006).  
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2. Theoretical section 

2.1 Cellulose I and Cellulose II excipients 

 “Used the longest, known the least”: this statement is extremely appropriate for cellulose 

(Kryszewski, 2002). Cellulose is the most abundant biopolymer as the main component of cell 

walls in higher plants (wheat straw, wood, cotton, flax, hemp, jute, ramie) and one component of 

bacteria, fungi and algae. Being renewable, biodegradable and biocompatible, it is the ideal 

excipient in solid pharmaceutical formulations. The structure of cellulose can be divided into 

three levels (Klemm, 1998): i) the molecular level, ii) the supramulecular level and iii) the 

morphological level. 

 

 
Figure 2.1: From wood to cellulose 

 

 

2.1.1 The molecular structure of cellulose 

 

In 1838, the French botanist Anselme Payen (Payen, 1838) isolated for the first time cellulose 

from wood, but no sooner than one century afterwards Freudenberg and Haworth managed to 

reveal independently the structure of cellulose on a molecular level (Freudenberg, 1928a), 

(Freudenberg, 1928b), (Haworth, 1928). 



Theoretical Section 

 

7 

 

Cellulose is an unbranched, linear syndiotactic (e.g. A-A’-A-A’) homopolymer composed of D-

anhydroglucopyranose (A) units, which are linked together by β(1-4)-glycosidic bonds. The 

dimer cellobiose (C) is the basic unit, thus cellulose may be considered as an isotactic polymer 

of cellobiose (C-C-C). n stands for the total number of anhydroglucose units in the molecular 

structure of cellulose (see Figure 2.2) and corresponds to the degree of polymerisation (DP). 

Native cellulose has degrees of polymerisation higher than 10’000 (Gralen, 1943). Isolated and 

processed celluloses have degrees of polymerization around 200 for microcrystalline cellulose 

and between 700 and 1000 for powdered cellulose (Doelker, 1993), (Doelker, 1987), (Schurz, 

1976).  

 

 
Figure 2.2: Molecular structure of cellulose. C: cellobiose; A, A’: anhydroglucose unit [1]. 

 

2.1.2 The supramolecular structure of cellulose 

Before the molecular structure of cellulose was elucidated, Nägeli presumed that the cell walls 

consisted of crystalline particles (micelles) embedded in an intermicellar substance (see Figure 

2.3) (Hearle, 1963). Staudinger disproved this assumption by measuring the viscosity of 

different polymer solutions: the molecular weight of cellulose was higher than expected 

according to Nägeli’s calculations (Staudinger, 1936). Staudinger’s studies suggested that 

polymers constituted continuous crystals distorted in their ends (see Figure 2.3 B) (Staudinger, 

1932). A harmonisation of these two contrasting models led to the fringed-micelles theory: The 

cellulose structure was divided into crystalline and non-crystalline regions, each single molecule 

being short enough to pass through both regions (see Figure 2.3 C). Hearle proposed a 

variation of this theory called fringed-fibrils. He considered the crystalline regions as fringed 

fibrils with various ramifications along their length (see Figure 2.3 D). The interlinked fibrillar 

network of fringed fibrils was referred to as microfibrils reaching an approximate length of few 

micrometers. This model, corroborated by photographs obtained by scanning electron 

microscopy (SEM) and X-Ray measurements, corresponds to the generally accepted theory. As 

a result, the concept of microfibrils might be considered as basic level of the structural 

organisation of cellulose. 
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Figure 2.3: Various models for the supramolecular structure. A: micelle structure according to Nägeli; B: 

continous structure of crystalline structure according to staudinger; C: fringed.micelles; D: fringed-fibrils 

according to Hearle [1]. 

 

2.1.3 Relevance of Polymorphism 

It is well known that about 50% of all drug substances show polymorphism, which is the 

tendency of a substance to exist in more than one crystalline form. As different polymorphic 

forms display diverse physicochemical properties (solubility, wettability, melting point etc.), the 

polymorphic form can play a role in the quality of a drug product (bioavailability and stability, 

shelf life). In contrast with the attention paid to the polymorphism of drug substances (e.g. 

carbamazepine, spieperone, tamoxifen citrate, etc.), hardly any studies investigated the 

polymorphism of excipients, despite the impact of this variable on the quality of the drug 

product. This can be illustrated by a few examples: i) α-lactose monohydrate is reported to be 

suitable for wet granulation, while the anhydrous α and β forms are preferably used for direct 

compression (Concheiro, 1987),(Giron, 1990),(Fell, 1970); 
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 ii) D-mannitol exists in three polymorphic forms (α, β and γ) (Botez, 2003) presenting different 

compressibility and compactibility (Burger, 2000). No plolymorphic transition could be observed 

under pressure (Debord, 1987). However, a moisture-induced polymorphic transition from δ to β 

can occur during a wet granulation process (Yoshinari, 2002), (Yoshinari, 2003). 

 

2.1.4 Polymorphism of the crystalline regions in cellulose 

Extracted mainly from wood pulp, cellulose is the most common organic polymer and it is widely 

used as a raw material to prepare a large number of excipients. It is an extensive, linear-chain 

homopolymer generated from repeating 1, 4-linked β-D-glucose molecules. 

Cellulose exists in four major crystal modifications, cellulose I, II, III, IV. The polymorphic forms 

can be interconverted according to Figure 2.4 mostly by certain chemical and thermal 

treatments (Kono, 2004).   

  

  Figure 2.4: Interconversion of cellulose polymorphs [1]. 

 

As excipients in pharmaceutical dosage formulations, Cellulose I and II are the most important 

polymorphs. Cellulose I, also called native cellulose, is the most prevalent polymorph and 

paradoxally also the thermodynamically least stable. It exists as a mixture of Iα and Iβ forms 

(Atalla, 1984), their mutual ratio depending on the origin of cellulose; in fact, the phase Iα mainly 

characterizes the cellulose from primitive organisms (bacteria, algae etc.), whereas the phase Iβ 

is more prevalent in the cellulose from higher plants (wood, cotton, ramie etc.) (VanderHart, 

1984). Cellulose II, on the other hand, is the most stable structure of technical relevance; it is 

produced by a mutant strain of glucanoacetobacter xylinum or by mercerization or regeneration 

from cellulose I (Reus-Medina, 2004),(Klemm, 2005).  
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Mercerization involves soaking of cellulose I in highly concentrated NaOH to form Na-Cellulose, 

followed by recrystallisation of cellulose II upon washing. Regeneration consists in dissolving 

cellulose in an appropriate solvent and reprecipitating it in water. The lattice transition from 

cellulose I to cellulose II starts using NaOH > 10% and is complete when employing NaOH > 

15%, which accounts for the crucial role of the base strength. Most of the experts convey that 

this transition is irreversible and that cellulose II is the thermodynamically more stable form 

(O'Sullivan, 1997), (Langan, 2001). It has been recently reported that cellulose II can be 

produced by the Acetobacter xylinum at low temperatures (Hirai, 1997), and by the alga 

Halicystis (Sisson, 1938). 

 

The crystalline structure of cellulose I and II varies in three main characteristics: The unit cell 

dimension, the hydrogen bond network and the polarity of the chains. The elucidation of the unit 

cell dimensions proposed by Meyer, Mark and Misch for cellulose I and by Andress (Andress, 

1929) for cellulose II are the most widely accepted. The two unit cells are depicted in Figure 2.5. 

 

 

 

Figure 2.5: The unit cells of cellulose I (A) and cellulose II (B) in projection along the fibre axis b according 

to Andress with their dimensions [1]. 
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As one cellulose molecule, also one cellulose chain can have either reducing or non reducing 

end. If all chains are packed homogenously, i.e. with the reducing ends on the same side, their 

arrangement is referred to as parallel, otherwise they are packed antiparallely. If the parallel 

arrangement of cellulose I is widely accepted (Sarko, 1974), (Gardner, 1974), the question 

whether the arrangement of cellulose II be parallel (Maurer, 1992), (Kroon-Batenburg, 1996), 

antiparallel (Langan, 2001), (Sarko, 1974), (Kolpak, 1976) or mixed is still open for discussion. 

Most scientists convey anyway that Cellulose lI features  antiparallel packing, which accounts 

also for its higher wettability and disintegration properties.  

 

At a macromolecular level, the main differences in the chains arrangement in Cellulose I and II 

are shown in Figure 2.6. The differences in cell unit and chain polarity produce a totally different 

hydrogen bonding network, which could be observed with the advent of X-Ray diffraction (under 

0.25 nm). Blackwell et al. suggested that cellulose II be tighter packed than cellulose I 

(Blackwell, 1977). In fact, the average length of the hydrogen bonds is shorter in cellulose II 

(0.272 nm) than in cellulose I (0.280 nm). Molecular modeling simulations have recently proved 

that cellulose II present more intermolecular hydrogen bonds than cellulose I, while cellulose I 

possess more intramolecular hydrogen bonds than cellulose II. 

 

 

Figure 2.6: Chains arrangements in Cellulose I and II [2].  
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2.2 Microcrystalline cellulose 

Cellulose derivatives are important pharmaceutical excipients and they are produced from wood 

by washing, bleaching, purifying, and drying. Microcrystalline cellulose (MCC), the most 

widespread filler for direct compaction, is manufactured by acid hydrolysis of native α-cellulose 

with subsequent neutralization and removal of amorphous regions and impurities. It shows the 

cellulose I polymorphic form, and it possesses accordingly a higher degree of crystallinity. 

MCC is primarily used as a binder/diluent in oral tablet and capsule formulations, either as 

powder or in granulated form; its additional lubricant and disintegrant properties make it a 

versatile tabletting aid. MCC constitutes also the most important excipient in extrusion 

processes (Wallace, 1991),(Newton, 2002).  

 

The fist commercial MCC came onto the market in 1964 under the brand name Avicel® PH by 

FMC Corporation (Philadelphia, PA). MCC is in the meanwhile available from different vendors 

under various trade names; however, Avicel® PH, which is available in nine grades depending 

on the moisture content and the mean particle size distribution, is still the most diffused (Table 

2.1), (Friedler, 2002). 

 

Table 2.1: Nine grades of Avicel® with respective moisture content and mean particle size [3]  

Avicel
®
 

PH 
101 

PH 
102 

PH 102 
SCG 

PH 
103 

PH 
105 

PH 
112 

PH 
200 

PH 
301 

PH 
302 

Moisture content [%] < 5 < 5 < 5 < 3 < 5 < 1.5 < 5 < 5 < 5 

Mean particle size 
[µm] 50 100 130 50 20 100 190 50 100 

 

2.3 UICEL 

Recently, the preparation and characterization of a new cellulose-based pharmaceutical aid has 

been reported and patented (Kumar et al., 2004). This new cellulose - named UICEL after the 

University of Iowa where it was developed - was obtained treating cellulose I powder (Avicel® 

PH 102) with an aqueous solution of sodium hydroxide (conc. ≥ 5N) and subsequently 

precipitating it with ethyl alcohol (Kumar, 2002). Four type of UICEL were isolated so far: 

UICEL-PH by oven dry, UICEL-XL by incorporation of glutaraldehyde as cross-linking agent, 

UICEL colloid by water-homogenization and UICEL beads by spray-dry (see Figure 2.7).  
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Figure 2.7: Mutual transformation of cellulose polymorphs [2].  

 

Compared with Avicel® 102, all UICEL types feature lower crystallinity degree, higher water 

affinity, higher true density and accordingly lower porosity and specific surface area, and not the 

least prevalent disintegration properties (http://www.freepatentsonline.com/20050287208.html). 

UICEL is therefore suitable as a binder, filler and/or disintegrant in the development of solid 

dosage forms.  

2.3.1 Characteristics of Avicel® PH 102 (MCC 102) and UICEL-A/102  

Kumar et al. compared the technological characteristics of Avicel® PH 102 and UICEL-A/102 in 

terms of powder, tabletting and disintegration properties (Kumar, 2002). According to its 

scanning electron microscopy images, UICEL-A/102 appears as mixture of aggregated and 

non-aggregated fibres, whereas Avicel® PH 102 shows an aggregated structure with coalesced 

boundaries. In addition, UICEL-A/102 particle size distribution is slightly lower than Avicel® PH 

102. These differences in morphology and particle size are to ascribe to the different 

manufacturing conditions: Avicel® PH 102 is prepared by spray drying, UICEL-A/102 by 

chemical hydrolysis. 

The two cellulose excipients also differ in the degree of crystallinity: UICEL-A/102 shows a 

crystallinity of 47-57%, while Avicel® PH 102 crystallinity amounts to about 77%. This is due 

again to a different arrangement of the cellulose chains: in UICEL-A/102 the cellulose chains 

are arranged in an anti-parallel manner, in Avicel® PH 102 in a parallel manner, which leads to 

different interchain and intrachain hydrogen bonding networks, and consequently, to a different 

degree of crystallinity. 
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Accordingly with its non-aggregated structure, UICEL-A/102 is less porous and shows higher 

bulk and tap densities compared to Avicel® PH 102. Furthermore, its lower degree of crystallinity 

causes more hydroxyl groups to be freely accessible to water molecules and enhances its 

moisture content. The same phenomenon can also be advocated to explain the far lower 

disintegration time of UICEL tablets (15 s) in comparison to Avicel® PH 102 tablets (12 hours) 

(Kumar, 2002). 

Regarding the flowability, UICEL-A/102 is slightly less flowable than Avicel® PH 102, because of 

its fibrous structure, which facilitates particle entanglements. The former is also less ductile and 

less plastic than the latter, as it has a higher tendency to elastic recover after compaction. As a 

result, UICEL-A/102 tablets are thicker than Avicel® PH 102 tablets at constant compaction 

force.  

 

2.3.2 Technological properties of Avicel® PH 102, UICEL-A/102 and -XL  

Reus-Medina et al. investigated the technological characteristics of Avicel® 102, UICEL-A/102 

and UICEL-XL tablets loaded with two model drugs (hydrochlorothiazide, HCTZ and ibuprofen, 

IBU) in comparison with analogous tablets available on the US market (Advil®, Oretic®) (Reus-

Medina, 2006). The major results of this study are listed in Figure 2.8. The crushing strengths of 

HCTZ tablets decrease in the order Avicel® PH-102 > UICEL-XL, UICEL-A/102 > Oretic® and of 

IBU tablets in the order Avicel® PH-102 ≥ UICEL-XL, UICEL-A/102 > Advil®. Oretic® tablets 

disintegrate in about 60 s, while Avicel® PH-102 tablets remain intact during 1 h test period. On 

the other hand, the IBU tablets make using UICEL-A/102 disintegrated the fastest, UICEL-XL 

and Advil® tablets the next, and Avicel® PH-102 tablets remained intact. These results, together 

with the results of friability and drug release, conclusively show that UICEL-A/102 and UICEL-

XL have the potential to be used as filler, binder and disintegrant - all-in-one - in the design of 

tablets containing either low dose or high dose drug by the direct compression method.  

 

So far, no investigations about the potential employement of these new pharmaceutical aids in 

granulation/pelletization and tabletting were carried out.  
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Figure 2.8: Technological properties of UICEL-A/102 and UICEL-XL [4]. 
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2.4 Pellets 

In pure theory, tablets can be produced through direct compaction of powder mixtures of AI and 

appropriate excipients. Nonetheless, if very high drug contents are targeted, but the active is not 

sufficiently plastically deformable, an intermediate granulation is advisable. Granules, in fact, 

show better flowability as well as better tabletting properties than powders; an intermediate 

granulation minimizes therefore segregation, enhances dosing precision and contributes to 

increase the compactibility of any powder mass. 

Pellets are a special form of granulates, characterized by a very regular, round shape, low 

porosity, smooth surface and a typical size range of 0.2-2mm. The definition can be expanded, 

however, to include all forms of multiparticulates, like drug-containing granules, drug crystals 

and minitablets (Porter et al., 2000). They can be obtained by direct size enlargement of primary 

particles, or size reduction from dry compacted material.  

Depending on the drug distribution inside the pellets, they can be divided into homogeneous 

and inhomogeneous pellets. The former have the same composition in any part of their interior 

structure, whereas the latter typically present a MCC or sugar core on which one or more drugs 

are layered (“onion structure”, Figure 2.9). 

 

 
Figure 2.9: Section of an inhomogeneous (left) and a homogenous (right) coated pellet [5]. 

 

As a medicinal form, pellets have been developed in the middle of the twentieth century, and 

their importance has been gradually increasing thanks to the manufacturing improvements and 

their wide therapeutic advantages. A couple of decades ago they used to be filled into hard 

gelatin capsules, whereas nowadays they are increasingly compacted into tablets (Bodmeier, 

1997).  
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Because of their small size, pellets behave like liquids, reducing the variations in gastric 

emptying and intestinal transit time as well as inter- and intrapersonal variability.  

Pellets are frequently developed as modified release dosage forms to appropriately steer the 

drug release and absorption in the gastrointestinal tract. Under these conditions, the risk of 

dose-dumping and side effects is enormously reduced, whereas the drug plasma profile is held 

constant over a long period of time. 

Moreover, pellets with different active ingredients, or the same AI with different release 

properties, can represent a versatile single unit dosage form for better patient compliance. 

 

2.4.1 Bonding forces in agglomerates 

In granules, the primary powder particles are bound together by physical forces. The magnitude 

of such forces depend on granule characteristics as the particle size, the morphology, the 

moisture content, plus the surface tension of the granulating liquid used.  

The bonding forces can be classified into five categories (Ausburger, 1997),(Ghebre-Sellassie, 

1989): 

- Adhesion and cohesion forces caused by the immobile liquid (binding bridges) 

- Interfacial forces and capillary pressure at freely movable liquid surfaces 

- Solid bridges 

- Attractive forces between solid particles 

- Form-closed bonds or interlocking bonds 

 

Binding bridges 

Once sufficient moisture content has been reached, a thin, immobile adsorption layer covers the 

surface of the solid particles. The liquid layer reduces the distance between the particles and 

enhances their contact area and accordingly the intermolecular attractive forces. Immobile films 

of highly viscous binder solutions can generate exceptionally strong bonds, which own a higher 

strength than the bonds produced by mobile liquid layers. 

Additionally, viscous binders tend to harden during the agglomeration process leading to 

extremely solid bridges. 

 

Interfacial forces and capillary pressure at freely movable liquid surfaces 

By addition of further granulating liquid, the surface film increases from thin layer to mobile liquid 

film. Mobile liquid films form bridges wherein capillary pressure and interfacial forces create 

strong bonds, which are a prerequisite for the formation of solid bridges. 



Theoretical Section 

 

18 

 

Four different stages can be defined, depending on the moisture content of the granulation 

mass: 

- pendular state 

- funicular state 

- capillary state 

- droplet state 

 

The pendular state occurs by low moisture content (between 0 and 13.6% v/v). Under these 

conditions water forms lens-shaped rings at the position of contact of the particles; however, the 

ratio of the liquid to the void volume is low and air is still the continuous phase (Figure 2.10). 

Particles are held together by the hydrostatic suction pressure at the liquid bridges and by the 

surface tension at the solid-liquid-air interface. At this time granules are still non-spherical, they 

have still a dry surface and a low density. 

 

 
     Figure 2.10: Pendular state 

 

 

As the moisture content ranges between 13.6 and 100% v/v, the liquid becomes the continuous 

phase, in which pockets of air are still present. This state is known as funicular state. Granules 

become more spherical, the surface is still dry but the density is higher (Figure 2.11). 

 

 
     Figure 2.11: Funicular state 
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The capillary regimen shows spherical granules with a wet surface and a high density. 

Every space between the particles is completely filled with liquid, which extends up to the edges 

of the pores at the surface forming a concave meniscus (Figure 2.12). 

 
Figure 2.12: Capillary state 

 

When the liquid completely envelopes the agglomerate, the droplet state is reached (Figure 

2.13). A convex surface replaces the concave surface of the capillary state, the strength of the 

droplet is dependent only on the surface tension of the liquid phase, and there is no longer 

interparticle capillary bonding. 

 
     Figure 2.13: Droplet state 

 

Solid bridges 

Solid bridges between powder particles can occur as a result of different mechanisms: dissolved 

substances can crystallize out after the medium evaporation, binders can harden forming solid 

bridges, substances may melt out on the input of energy (by external source, from frictioning 

during agglomeration or from energy conversion) and solidify when cooled. 

Solid bridges can also occur by sintering and chemical reaction, although these mechanisms 

are not common in the pharmaceutical industry. 

 

Attractive forces between solid particles 

Solid particles, when close enough, are attracted to each other by short range forces. These 

bonding forces do not play a crucial role in the building of the final product; despite this, they 

initially hold and orientate the particles in a contact region long enough for stronger forces to 

take over. 
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Attractive forces may be molecular (valence and Van der Waals), electrostatic or magnetic, 

where the former two are prevalent in pharmaceutical applications. Van der Waals dispersion 

forces are responsible for the adhesion occurring between particles less than 0.1 µm apart, so 

they are believed to make the most significant contribution to all intermolecular attractive effects. 

 

Form-closed bonds 

Mechanical interlocking might occur during the agitation and compression of fibrous, flat-shaped 

and bulky particles, leading to the formation of so-called form-closed bonds. Although they are a 

minor contributor to the pellet strength, they can anyway provide them with sufficient mechanical 

strength to put up with the mechanical stress caused by the elastic recovery following the 

compaction.  

 

2.4.2 Pelletization technologies 

Pelletization is the technical term describing the agglomeration of powder mixtures bulk drugs-

excipients into pellets. The production of pellets can be realized using different technologies 

known as layering, balling, compaction and globulation (Ghebre-Sellassie, 1989). 

 

Layering 

Layering consists in the continuous addiction of powder particles on already preformed nuclei, 

such as nonpareil sugar seeds, MCC pellets, inter seeds, granules or crystals.  

In solution/suspension layering, the binder liquid, in which powder particles are either dissolved 

or suspended, is atomized by a spray nozzle. After the droplets diffuse on the nuclei, the binder 

solution evaporates and the dissolved or suspended substance crystallize out forming a new 

layer (see Figure 2.14). 

 

Figure 2.14: Principle of solution/suspension layering [6]. 



Theoretical Section 

 

21 

 

In dry powder layering, instead, the binder solution and the powder are added separately to the 

nuclei, in either intermittent or continuous way (Figure 2.15). An intermittent powder layering 

process is the result of several cycles: The layering solution is initially added until the bed is wet 

and tacky, and subsequently the powder is added till the bed is dry. The process continues until 

all the powder has been added. 

In a continuous process, conversely, the layering solution and the powder particles are added 

simultaneously. 

Since a smaller amount of binder solution is employed, the dry powder layering method requires 

lower processing times than the solution/suspension and it is particularly suited in case of water-

sensitive or water-insoluble drugs or excipients. 

 

 
 

Figure 2.15: Principle of dry powder layering 
[6]. 

 

Balling 

Pelletization by balling, widely known as direct pelletization, also involves binder solution 

spraying onto the powder particles. In this case the final pellet is obtained through nucleation, 

coalescence and layering of the starting powder particles. Nucleation describes the formation of 

liquid bridges between fine powder particles, leading to the formation of bigger particles (Figure 

2.16); coalescence, on the other hand, is the formation of aggregates due to the random 

collision of already formed granules. This aggregation mechanism is facilitated by sufficient 

surface moisture and/or significant mechanical pressure. 

The main disadvantage of this technology is the coexistence of different growth mechanisms, 

which makes it difficult to control the pellets growth. For this reason, pellets for pharmaceutical 

purposes are rarely produced by balling. 
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Figure 2.16: Principle of direct pelletizing method [6]  

 

Compaction 

Compaction is the general term for any pelletization technologies in which drug particles and 

excipients are forced together by a mechanical force.  

Extrusion/spheronisation is one of the better known compaction technologies and is also 

referred to as Marumerizer® and Spheronizer® principle; it is a multiple step process, which 

leads to pellets with a typically narrow particle size distribution. The different steps are shown in 

Figure 2.17. 

Initially, the binder solution is added to the powder mass until it reaches sufficient moisture to be 

pressed through a perforated roller compacter. The cylindrical extrudates fall directly onto a 

bowl equipped with a grooved rotating bottom plate. As a result of particles-to-particles and 

particles-to-equipment interactions, the extrudates break into smaller peaces and get 

subsequently smoothed and spheronized to pellets.  

 

 

 

Figure 2.17: Principles of the extrusion/spheronisation method [6]. 
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Globulation 

The term globulation describes the process in which hot melts, solutions or suspensions are 

atomised to generate spherical pellets (Figure 2.18).  

Pelletization by globulation can be achieved by either spray drying or spray congealing. 

In the former method, the liquid evaporation from the atomised droplets is achieved by a hot gas 

stream, so that capillary forces in the droplet are gradually replaced by solid bridges; in the latter 

method, the atomised droplets are cooled below the melting point of the liquid, so that the 

congealed melts build solid bonds. As no liquid evaporation occurs, the pellets produced by 

spray congealing are generally more compact and less porous than those produced by spray 

drying. 

 

 

Figure 2.18: General principle of globulation[6]. 

 

2.4.3 Equipment for pelletization 

 

This chapter focuses on the fluidized bed, which is also one of the equipments used in the 

practical section of this work. 

 

2.4.3.1 Fluidized bed 

Initially employed only for drying of fresh granules, the fluidized bed is nowadays extensively 

used for granulation (solution/suspension and dry powder layering). 
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The phenomenon of fluidization 

When a packed bed of particles is subjected to a sufficient high upward flow of fluid (gas or 

liquid), the weight of the particles is supported by the drag force exerted by the fluid on the 

particles and the particles become freely suspended or fluidized. The behaviour of fluidized 

suspension is similar in many aspects to that of a pure liquid. Mass transfer and heat transfer 

rates between particles and submerged objects (e.g. heat exchanger tubes) is greatly enhanced 

in fluidized beds. In addition, rapid particle mixing allows uniformity in bed. As a result, fluidized 

bed are widely used for conducting gas solid reactions (coal combustion), gas solid catalytic 

reactions (catalytic cracking of petroleum), biotransformations (bioreactors) (Parikh et al., 1997), 

(Olsen, 1989). 

In a liquid system, an increase in flow rate results in a smooth and progressive expansion on the 

bed. The particles are homogenously distributed through the bed, which state is called 

particulate fluidization or homogenous fluidization. 

Gas-solid systems behave differently (Figure 2.19). Generally, an increase in flow rate beyond 

minimum fluidization (see next section) gives rise to large instabilities with bubbling and 

channeling of gas. Such agitation, which becomes more and more vigorous as the flow rate 

increases, is referred to as bubbling fluidization, since gas bubbles rise through the bed and 

increase in size due to coalescence. At further high flow rate, their terminal falling velocity can 

be exceeded, so that bubbles are no longer appreciable and the upper surface of the bed 

disappears. This state, referred to as turbulent fluidization, involves motion of solid clusters and 

voids of gas. With a further increase in the fluid flow rate, particles are carried out of the bed 

with the gas, giving the regime of lean-phase fluidization with solid transport. 

The most important design parameters for such systems are: the minimum fluidization velocity, 

bed expansion of fluidization and pressure variation in the bed. 

 
Figure 2.19: Minimum fluidization velocity [7] 
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Minimum fluidization velocity 

At the so called incipient or minimum fluidization, the upward drag force exerted by the fluid on 

the particles counterbalances exactly the apparent particles weight in the bed; mathematically, 

this means that the pressure drop across the bed must be equal to the effective weight per unit 

area of the particles at the point of incipient fluidization, as expressed in Equation 2.1 
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Where  ∆p =  pressure drop 

  H = fluidized bed height 

  A = bed cross sectional area 

  ε    = void space of the bed at minimum fluidization 

  εmf  = porosity of the bed at minimum fluidization 

  ρp  = particle density 

  ρf  = fluid density 

  g = gravitational acceleration 

   

At the same time, the estimated pressure drop in packet beds at minimum fluidization is best 

described by the Equation 2.3 (Ergun, 1952): 
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where:  µ = fluid viscosity 

  Umf = minimum fluidization velocity  

  d = the particle diameter 

  

The first summand in Equation 2.3 represents the laminar flow component, whereas the second 

one stands for the turbulent flow component. The minimum fluidization flow is reached when the 
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upward drag force exerted by the fluid on the particles is equal to the apparent weight of 

particles in the bed.   

 

Substituting the value of ∆p from Equation 2.2 in Equation 2.3 and multiplying  by 
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This equation can be used to calculate the minimum fluidization velocity Umf if the void fraction 

εmf is known. εmf depends on the form of the particles and it amounts to 0.40-0.45 in case of 

spherical particles (see Table 2.2) . To increase surface area and liquid-solid contact, many 

particle are often of irregular shape. In that case the particle is treated as a sphere by 

introducing a correcting factor called sphericity Φs to calculate the equivalent diameter. 
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where Dp is the diameter of a sphere of the same volume as the particle (Haider, 1989) 

 

Table 2.2: Void fraction at minimum fluidization [7] 

 Particle size, Dp (mm) 
Type of Particles 

 0.06 0.10 0.20 0.40 

  Void fraction, εmf 

Sharp sand (Φs = 0.67)  0.60 0.58 0.53 0.49 

Round sand (Φs = 0.86)  0.53 0.48 0.43 0.42 

Anthracite coal (Φs = 0.63)  0.68 0.60 0.56 0.52 
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Fluidized bed in agglomeration processes 

The appropriate air velocity for initiating agglomeration should be about five-six times the 

minimum fluidization velocity, but never reach the so called entrainment velocity, at which the 

bed particles are carried away by the gas. 

The bubbles of air rising through the powder bed, which are directly responsible for a good 

mixing of particles promoting their circulation, depend on bed geometry, distributor plate, type of 

particles and particles size and minimum fluidization velocity.  

The bubbles can be formed through gas-solids contact near the distributor plate, which will lead 

to a highly expanded gas-solid dispersion. This is unstable and will divide into many little 

bubbles plus an emulsion phase. 

Depending on the movement of air bubbles through the bed and their dimension/morphology, 

the fluidized bed can show up as (Figure 2.20): 

 

- Slugging bed, in which the gas bubbles divide the powder bed in cross sections;  

- boiling bed, where gas bubbles and powder particles have similar dimension; 

- channeling bed, in which most of the air passes through gas channels in the bed; 

- Spouting bed, where the gas forms a single opening through which some particles flow 

and fall on the outside. 

 

 

Figure 2.20: Various types of fluidized bed [7]  
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Description of the system 

The fluidized bed processor consists of different components. The lower part of the processor is 

referred to as air-handling unit - typically composed of air filtering, air heating, air cooling and 

humidity removal sections. Before it is conveyed as make-up air to the heating and cooling 

sections, the external air is freed from dust and contaminants through coarse dust filters. 

Depending on the climate, re-humidification or dehumidification of the outside air becomes 

imperative to maintain a specific dew point. After the dehumidification and re-humidification 

step, the make-up air is heated/cooled to the desired process air temperature and sieved 

through a particulate air filter. The treated, conditioned and filtered air is transported via the inlet 

duct and introduced evenly at the bottom of the product container, so as to achieve a proper 

fluidization and mixing of the particles. To achieve this goal, the container volume must be filled 

between 35-40% and 90% of its total volume.  

A fine sieve of 60-325 mesh, which separates the air distributor from the container, retains the 

product in the container. 

The binder suspension is transported in a flexible pipe moved by a peristaltic pump into the 

granulation bed, where it is sprayed through an appropriate nozzle. The most commonly used 

nozzle is the two-fluid nozzle, also known as binary nozzle, in which the binder solution is 

delivered at low pressure through an orifice and atomized by compressed air.  

Due to the pressure difference between the nozzle and the fluidized bed chamber, the 

suspension becomes a mass of discrete small drops, which spread onto the granules and 

initiate the agglomeration process. 

Above the product container, the disengagement area and the exhaust filters are placed. They 

are involved in the separation of fine particles from the air flow once the air leaves the product 

bed. In the disengagement area, larger particles from the exhaust air lose momentum and fall 

back into the bed, whereas the filter system removes the smaller particles. 

The filtered, exhaust air goes to the exhaust blower, a fan located on the outlet side of the 

system which keeps the system at lower pressure than the surrounding atmosphere. Just ahead 

or after the fan there is a damper or a valve which controls the airflow.  

 

With regard to the location of the spray nozzle, a fluidized bed process can bear three different 

configurations: top spray, bottom spray and rotor tangential spray. In the conventional top spray, 

the nozzle, located in the expansion chamber, sprays the liquid against the air flow. This implies 

that the liquid is sprayed onto particles moving at a higher velocity, which minimizes surface 

wetting and agglomeration. Accordingly, this process is suited for drying, coating and spray 

granulation, but it is not the first choice process for pelletizing (Figure 2.21) 
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Figure 2.21: Conventional top spray 
[7] 

 

In the wurster bottom spray processor, the product chamber contains an inner cylindrical 

partition, which is normally half the diameter of the outer container. At the base of the chamber 

there is a perforated plate, at whose middle an appropriate nozzle sprays the liquid in the same 

direction of the air flow (Figure 2.23). Due to the major perforation at the center of the plate, the 

air stream inside the partition has higher velocity than the air stream outside of it. This effect 

leads to a convective product flow with upward expansion through the chamber and falling 

outside the partition.  

 

 

 

Figure 2.22: Wurster bottom spray [7]  
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Rotor tangential spray is particularly suited for solution/suspension and dry powder layering. The 

bottom of the product container is provided with a solid spinning disc adjustable in height and 

speed, and the spray nozzle is positioned just above the disc, tangential to the bowl wall (Figure 

2.23). The product motion is produced by the three directional forces: a vertical upward 

movement, due to the fluidizing air passing through a gap between the disc and the container 

wall, and the centrifugal and centripetal forces, which pull the material, respectively, away from 

and back to the bowl center. The helicoidal movement of the product makes this process 

particularly advantageous for mixing, agglomeration and drying processes (Gu, 2004). In 

particular, the production of homogeneous pellets, which generally involves multi-step 

processing of mixing, wet granulation, spheronization and drying, can be dealt with in the rotor 

as a single processing unit, reducing processing time and material handling (Bouffard, 2007).  

Moreover, dry powder layering of neutral beads can be realized in the rotogranulator, in case the 

drug cannot be immersed in water or pellets with low density and perspectively rapid 

disintegration are required (Bouffard, 2007). 

 

 

 

Figure 2.23: Tangential spray [7] 

 

Pelletization variables 

All factors affecting the fluidized bed granulation process fall into two broad categories (Parikh 

et al., 1997): formulation and process related variables, modifiable in dependence of the desired 

product characteristics, and equipment related variables, depending primarily on the machine 

design and typology. We will deal here solely with the first parameter category. 

It can be claimed beyond any reasonable doubt that that the technological properties of the 

starting materials exert a crucial influence on the finals characteristic of pellets. 
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Among them we can mention loss on drying, particle size distribution, flowability, bulk and tap 

density, wettability and surface free energy, specific surface area, porosity, tendency to 

electrostatic charging (low cohesiveness and stickiness). In case of direct pelletization, the 

technological properties of active ingredient(s) and filler (different grades of mycrocristalline 

cellulose, lactose and corn starch) should be sufficiently comparable to allow a good mixing and 

thereupon an homogenous drug content uniformity in the final pellets. Not only: the binder 

(water suspension of poly-vinyl-pirrolidone, HPMC or MC) ought to cover the particles 

homogeneously in minimum quantity and in continuous layering, which requires again 

sufficiently diluted binder solutions and optimized spraying velocities (Tüske, 2005). In 

particular, the type of binder and its concentration can influence granules properties as friability, 

flowability, bulk density, porosity and particle size distribution. In case of dry powder layering of 

nuclei, the mean particle size ratio between neutral beads and applied powder should be at 

least 1:5, so that powder particles uniformly and continuously layer the core surface instead of 

aggregating between themselves.  

 

Beside the above mentioned spray rate of the binder solution, other process related variables 

can steer the fluidization and therefore effect the product properties to a considerable extent. 

High inlet air temperatures as well as high fluidizing air flow enhance the solvent evaporation 

rate restraining the pellet growth and leading to accordingly smaller pellets. A relatively humid 

inlet air, on the other hand, reduces the solvent evaporation rate leading to bigger particles. 

Even the type of nozzle employed can play a role in the pellet size: e.g. a binary nozzle with low 

liquid flow rate atomizes the binding solution in very fine droplets, leading to an even powder 

wetting / layering and to  accordingly smaller pellets (Figure 2.24). 

 

 

Figure 2.24: Fluidized bed GPCG 1.1 with rotor insert (Glatt, Binzen) 
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2.4.3.2 Spouted bed 

The company Glatt developed a technology, which enables also particularly fine or irregular 

powders or granules to be granulated and/or coated. The novel technology, called spouted bed 

technology, is shown in Figure 2.25a. The main change consists in making the air enter through 

a longitudinal slot instead of through the classical sieve bottom. This reduces considerably the 

process air speed due to a double expansion (in the process chamber and above the process 

chamber). As a result, not even fine particles are removed from the process. The process can 

also be stable in the case of products that are sticky or form lumps (Figure 2.25b).  

 

(a) (b) 

  

Figure 2.25: Spouted bed Pro Cell (Glatt, Binzen) [6] 

 

2.5 Coating 

Coating of solid oral dosage forms is a common technique in order to protect the active 

pharmaceutical ingredient against environmental impact and the body fluids or rather to protect 

the body against undesired effect of the API. Originally developed in order to cover foul-tasting 

tablets or capsules, coating of solid dosage forms is nowadays employed for diverse purposes. 

It can be applied to protect the active ingredient(s) against light, air and moisture (end-coating); 

it can avoid dissolution in stomach (enteric coating); it may control the drug release as 

appropriate (release control coating). Furthermore, coated tablets or capsules are better 

identifiable (drug safety requirements) and more robust, which is particularly important for their 

shipping and dispensing. 

We can also differentiate between three different coating-types: 



Theoretical Section 

 

33 

 

Sugar coats, primarily used to coat the first blanketed medicines having bitter taste, protect the 

active ingredient(s) against oxygen and water vapour as well. Due to the slow and complex 

coating process, such coats are nowadays of little importance. Hot melt coats are mainly 

employed to delay the active ingredient release. For this purpose, fats, fatty acid esters, fatty 

alcohols, magnesium or aluminium salts of fatty acids as well as various kind of waxes are 

used. Nevertheless, the most popular and versatile coating remains the Film coating. 

 

2.5.1 Film coating 

Compared to sugar or hot melt coatings, film coatings build up just a very thin layer around the 

solid dosage form, which is principally constituted of an appropriate polymer.  

According to the final characteristics of the film tablets, the coats can be divided into different 

groups. Firstly, water-soluble cellulose ethers (methyl- and ethylcellulose) or polymethacrylates 

with amino groups (Eudragit® E) are appropriate for prompt disintegration tablets. Secondly, 

polymers with free acid groups (i.e. cellulose derivatives, polymethacrylates and polyvinyl 

acetate phthalates) are used as enteric coating agents, since they are insoluble in acid media 

but dissolve promptly above pH 5-6. The last group consists of ethylcellulose and 

polymethacrylates, which provide film for sustained release. They share the common 

characteristic of swelling (not dissolving) in digestive fluids, producing a constant, continuous 

release through their permeable membrane. 

 

Being nowadays the use of organic solvents strictly forbidden due to their high toxicity and 

environmental pollution, also water-insoluble polymers must be dispersed in water. 

The dispersed phase can be solid, liquid or any intermediate state, since the transition of 

polymers from solid to liquid takes place over a wide temperature range (Bauer, 1998).  

The film coating process consists in spraying the coating suspension on the cores and drying 

them by air. These two steps can occur in an intermittent way, in which case small portions of 

coating are applied followed by a drying cycle, also known as curing step, or in a continuous 

way, in which the spraying and the drying steps occur simultaneously.  
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2.5.2 Film formation 

The formation of polymer coatings is crucial with respect to the functionality such film layers 

should have (enteric resistance, modified release). The film formation of aqueous polymer 

dispersions is driven by the evaporation (Brown, 1956). 

The coating solution or dispersion is atomized by the spray nozzle and, once in contact with the 

cores, it spreads on their surface. Initially, the dispersed particles are freely movable in the liquid 

film. During the drying step, the dispersing medium evaporates and the particles arrange 

themselves in the closest sphere packing; subsequently, they flow together squeezing out the 

remaining water and forming a water-insoluble, homogeneous film (Figure 2.26). The 

temperature at which the coating dispersion forms a clear, coherent film is known as minimum 

film-formation temperature (MFT). It depends mainly on the chemical properties of the polymer 

and its characteristic glass transition temperature Tg, but it can be utterly influenced by other 

excipients in the formulation as plasticizers or pore builders. To avoid the development of 

porous, friable films, it is important to keep the process temperature at least 10°C higher than 

the MFT. 

In case of film-builders with a high MFT (over 40°C), the curing step at the end of the process is 

essential in order to complete the film formation, whereas it can be omitted in case of film-

builders with a MFT lower than 30°C. 

Two are the main driving forces carrying out the film formation process: first of all, the capillary 

pressure resulting from the evaporation of the dispersing medium; second of all, the gain in 

surface energy. Since the capillary pressure is inversely proportional to the droplets radius, 

smaller droplets lead to accordingly more homogeneous coating layers. 

 

 
Figure 2.26: Formation of the film coating [8]. 
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2.5.3 Delayed release polymers 

For more than thousand years tablets have been coated in order to cover their bad taste. By 

developing the first synthetic drugs in the 19th century, it became imperative to protect the 

stomach against aggressive substances, and this was firstly realized through keratin, which is 

enzymatic digested in the ileum. Nowadays, the API contained in many pharmaceutical dosage 

forms irritate the stomach due to their chemical properties; others undergo chemical and 

enzymatic reactions which change their properties and make them less or even hardly effective. 

Thus, the obvious need for efficient enteric coating materials. 

The material groups for enteric resistant coatings can be distinguished into three groups. The 

oldest one consists solely of shellac, which is of natural origin and has been used almost for 

hundred years for enteric coatings, taste masking as well as prolonged release. It consists of a 

mixture of polyesters, basically composed of shelloic and alleuritic acid, which account for its 

gastric resistant properties. However, as any product of natural origin, it is affected by batch-to-

batch variation due to the purification process and the resulting content of wax, coloring material 

and other impurities (Hogan, 1995). 

The second group was developed in the first half of the last century and is essentially based on 

cellulose. The partially synthetic derivates possess different acid functional groups as phthalates 

or acetates (Davis, 1986).  Cellulose acetate phthalate (CAP) was the first semi-synthetic 

polymer catching on as a gastric resistant polymer. Other derivates based on cellulose acetate 

are cellulose acetate trimellitate (CAT) and cellulose acetate succinate (CAS). However, 

hydroxypropyl methylcellulose (HPMC) is preferred due to its low permeability in the gastric fluid 

and stability against hydrolysis. 

Poly(meth)acrylate derivates build the third group of enteric coats. The backbone is based on a 

continuous carbon chain stabilized by methyl groups resulting in poly(methyl methacrylate) 

(PMMA). They are fully synthetic copolymers exhibiting free acidic carboxyl groups (–COOH), 

which are responsible for their resistance to acid hydrolisis in stomach. EUDRAGIT® L/S and 

Kollicoat® MAE, both  methacrylic acid/ethyl acrylate copolymer (1:1), are the most widely 

diffused products on the market.  The brand name Kollicoat comprises several other film 

forming agents, all produced by BASF, which are discussed in the next chapter.  
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2.5.4 Kollicoat® SR 30D  

Kollicoat® products can be divided into four main groups, according to their chemical structure 

and their main application areas (see Table 2.3). 

 

Table 2.3: Kollicoat product groups. 

Product group Basic chemical structure Principal application areas 

Kollicoat IR Graft polymer, neutral Water-soluble, protective coatings 

Kollicoat MAE Copolymer, ionic Enteric coating for tablets, capsules and granules 

Kollicoat SR Homopolymer, neutral Taste masking, sustained release coating for tablets, pellets 

Kollicoat EMM Copolymer, neutral Sustained release coatings for pellets and tablets 

 

Kollicoat SR 30D, the film-forming agent which was selected to coat the pellets in this study, is 

an aqueous dispersion of the homo-polymer polyvinyl acetate (Figure 2.27), with a solid content 

of 30%. The dispersion additionally contains the excipient povidone K30 and sodium lauryl 

sulphate in an amount of 2.7% and 0.3% respectively. These excipients prevent sedimentation 

of the polyvinyl acetate particles during storage; in addition, povidone increases Kollicoat SR 

30D wettability in the gastric juice and intestinal fluid. 

 

 

Figure 2.27: Chemical structure of polyvinyl acetate 

Being insoluble in the gastro-intestinal fluid, Kollicoat SR 30D is used as sustained release 

polymer. It let the active ingredient be homogenously released over a certain period of time, 

depending on the film thickness and the eventual employment of pore builders. 

The high plasticity of Kollicoat SR 30D makes plasticizers virtually redundant (Dashevsky, 

2005). Nonetheless, in the case of MUPS (see § 2.7), it contributes to increase the film 

resistance of the coated pellets against the mechanical stress of the compaction. 

Kollicoat SR 30D has a MFT of 18°C, which can be reduced even of 10°C or more by the 

addition of a plasticizer. The relative low MFT enables the performance of the coating process 

at room temperature, and makes the curing step after spraying unnecessary. 
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2.5.5 Coating technologies 

Coating of solid dosage forms can be carried out in conventional coating pans, perforated pans 

as well as in fluidized-bed coaters. The former two are best suited for monolithic forms such as 

tablets and capsules, whereas the latter is rather appropriate for coating pellets, granules and 

other small particles. 

Conventional coating pans ensure mixing of the core bed through their rotation on tilted axes. 

The particles are dried with hot air, which is blown into the pan and circulated over the surface 

of the tumbling bed. Perforated pans resemble conventional coating pans, with the only 

difference that the perimeter surface of the cylindrical drum is either entirely or partially riddled, 

so that the air flow can pass through the core bed ensuring an even drying up (Figure 2.28). 

 

Figure 2.28: Perforated coating pan [9]  

 

 

Coating of spherical beads can be conducted in diverse equipments. The very first industrial 

technology for pellet coating was the top spray fluidized bed (Figure 2.29 a); in this technology, 

the cores are fluidized by an heated air flow introduced into the product container via a base 

plate and at the same time coated through a nozzle spraying positioned against the air flow 

(countercurrent). Small droplets and low viscosity of the spray medium ensure that the 

distribution is uniform. Unfortunately, spherical granules coated through this technology 

generally exhibit low rigidity, which makes them inappropriate as subunits in MUPS (Knop, 

1988).The bottom fluidized bed is the further development of the top spray fluidized bed (Figure 

2.29 b).  



Theoretical Section 

 

38 

 

The nozzle is fitted in the base plate and sprays in concurrent with the air feed. By using a 

Wurster cylinder and a base plate with perforations of different diameter, the cores ascend and 

descend in a convectional way: they move upwards while being sprayed, they dry and finally 

they fall back onto the lateral bed region to start another cycle (see spouting bed, Fig. 2.20). 

This produces an extremely even film. Using top and bottom spray fluidized beds, variations of 

the dry coating process have been performed. Obara et al. (Obara, 1999) remodelled a fluidized 

bed (top spray) by installing a separate powder feeder in addition to the liquid spray system. 

Furthermore, a fluidized bed with a Wurster insert can also be used to perform polymer powder 

coating (Pearnchob, 2003). The powder feeder is used with a conjunction to the coating 

chamber feeding the powder into the bed-up region. The major disadvantage of the equipment 

is that the powder is applied by a separate feeding system into the coating chamber, which 

leads to higher loss of the coating material. 

 

 (a)       (b)  

 

 

 

 

Figure 2.29: Top spray (a) and bottom spray (b) fluidized bed (Wurster) [6]  

 

In contrast, in the rotor fluidized bed the powder and the liquid can be dosed together into the 

pellet bed by the three way nozzle (Figure 2.30). The pellets are set into a spiral motion by 

means of a rotating plate, where the air is introduced into the powder bed through the adjustable 

slit between the rotor plate and the product container. The spray nozzle is arranged tangentially 

to the rotor disc and also sprays concurrently into the powder bed. Since a bed of higher density 

completely covers the nozzle, the dry powder cannot easily follow the air flow and stick to the 

equipment; additionally, the intense movement cling the lack closer to the particles enhancing 

the layering.  
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Accordingly, very thick film layers can be applied by means of the rotor method, in contrast to 

the top and bottom spray. 

 

 

Figure 2.30: Rotor fluidized bed [6]  

 

2.6 The compression/compaction process 

Compression is the process of applying pressure to a material, whereas the consolidation of an 

appropriate volume of powder into a single matrix is more properly referred to as compaction. 

The tabletting mixture is normally put in a die cavity and compressed between an upper and a 

lower punch. This compact is then ejected from the die cavity as an intact tablet (Parrot, 1981).  

In line with the definition of compression and compaction, a similar distinction between the 

terms compressibility and compactibility can be made. Compressibility is the ability of a material 

to undergo a reduction in volume, while compactibility is defined as the ability of the material to 

produce tablets with sufficient strength under the effect of densification (Alderborn et al., 1996b; 

Jetzer et al., 1983). The compaction of tablets is an uniaxial compression. The free particles, 

which are filled into the die, get condensed by an applied force from an upper or a lower punch 

or both. The aim of this condensation is the formation of a compacted core with a definite 

shape. As in the whole study the compaction of pellets into MUPS is dealt with, the sole term 

compaction (and not compression) will be used. 

 

According to Train, the compaction process can be described in four different stages which are 

in general the same for powders, powder mixtures and granulate (Train, 1956). These stages 

may be resumed as follow (Von Orelli, 2005): 
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Stage I: 

Before any compaction process starts, the particulate solid must be filled into the die. The 

volume of the powder bed corresponds to a volume between bulk and tapped density. During 

stage I, the punch touches the material and the particles start to overcome the friction force and 

rearrange themselves by slippage into an energetically convenient position.  

When particles are all in contact to each other, a dense packing is achieved and the bulk 

density corresponds approximately to the tapped density. The placement of the particles in the 

matrix depends on the flowability of the powder, on the physical properties of the particles (size, 

surface, shape, density, etc.), on the filling protocol (speed, movement of the hopper, centrifugal 

forces, vibrations) and on the press type (Woodhead et al., 1983; Zou et al., 1996). 

 

Stage II: 

Due to the immobility of the particles, an increase in pressure will lead to temporary columns, 

struts and vaults surrounding protected voids within the bulk. However, the inherent cohesive 

properties of most drugs and excipients are not sufficient to form tablets with adequate strength 

for subsequent handling (Leuenberger et al., 1986). 

 

Stage III: 

Increasing the stress on the material produces particle  deformation. If the deformation 

disappears completely upon release of the stress (the moulding returns to the original shape), 

the speech is about an elastic deformation (Figure 2.31). A deformation that does not 

completely recover after release of the stress is a plastic deformation (Figure 2.31). The 

deformation is dependent on the properties of the substance and is especially determined by 

the crystal characteristics of the substance. Both plastic and elastic deformation may occur 

although one type predominates for a given material. At first, it undergoes an elastic 

deformation, the forming is reversible when the pressure is released and the solid regains its 

natural formation. Then, when the compression pressure is increased, the linear-elastic range is 

exceeded, an irreversible deformation will take place. The transition between reversible and 

irreversible deformation is called yield point. At last, when the pressure is increased further on, 

at a certain point the material breaks. Characteristic for brittle material, however, is the fact that 

the plastic range is extremely small or missing: the elastic deformation is followed by a breaking 

of the substance. 
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Stage IV: 

In this stage a very strong structure is formed and the behavior of this compact under pressure 

depends on properties of the material. When the formed structure is strong, any further 

reduction in volume of the compact involves the normal compressibility of the solid material. In 

some cases, however, a further increase in stress may result in undesirable phenomena (see 

Figure 2.31) such as capping and lamination and, in specific cases, in work softening 

(Leuenberger et al., 1986). These phenomena result from an elastic re-extension of the material 

when the force is taken off the system after compaction. 

It must be pointed out that the course of the above described compaction process is strongly 

dependent on the substance characteristics. Furthermore, the phenomena are not sequential 

but overlapping. 

 

Compression Decompression

Elastic material Plastic material

Ejection

CappingLamination Stress cracking

Compression Decompression

Elastic material Plastic material

Ejection

CappingLamination Stress cracking

 

Figure 2.31: Problems appearing during compression [10]. 
- lamination: the compact cleaves in several parallel plans normal to the compression plan 
- stress cracking: the side surface is damaged by sticking of the compact to the matrix walls 
- capping: the upper part of the compact separating perpendicularly to the compression axis 

 

2.6.1 Bonding in tablets 

Bonding surface area 

Bonding surface area is often defined as the effective surface area taking part in the 

interparticulate attraction (Alderborn et al., 1996a). In the case of solid bridges (see next 

section), the term corresponds to the true interparticulate contact area.  
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For intermolecular forces the term is more difficult to define (can be estimated from surface area 

measurements of the starting material). The internal surface area is small for dense crystalline 

solids (e.g. sodium chloride) but may be considerably greater than external surface area in case 

of porous bodies (e.g. microcrystalline cellulose). Thus the bonding surface area is a function of 

several secondary factors (Duberg et al., 1985). Table 2.4 illustrates the factors influencing the 

surface area of tablet particles and the bonding surface area in tablets. 

 

Table 2.4: Factors influencing the surface area of tablet particles and the bonding surface area in 
tablets [11] 

Tablet particle surface area  Bonding surface area 

Before compaction After compaction  During compaction After compaction 

Particle size Particle size  Particle size Particle size 

Particle shape Particle shape  Particle shape Particle shape 

 Fragmentation  Fragmentation Fragmentation 

   Plastic deformation Plastic deformation 

   Elastic deformation Elastic deformation 

    Elastic recovery 

    Friction properties 

    Bond strength 

 

Bonding mechanisms 

During densification process, points and surfaces of contact between particles enable formation 

of bonding which ensure cohesion of the compact. Rumpf determined five types of possible 

attraction (Rumpf, 1962b): 

1. Solid bridges (sintering, melting, crystallization, chemical reactions, and hardened binders) 

2. Attractions between solid particles (molecular and electrostatic forces) 

3. Shape-related bonding (mechanical interlocking) 

4. Bonding due to movable liquids (capillary and surface tension forces) 

5. Non freely movable binder bridges (viscous binders and adsorption layers) 

This classification was widely accepted in literature but in case of compaction of dry, crystalline 

powders, it has been suggested that the dominating bonds between particles together be 

restricted to three types (Fürher, 1977): 

1. Solid bridges (e.g. due to melting): 

They contribute to the overall compact strength and can be defined as areas of real contact, 

i.e., contact at tomic level between adjacent surfaces in the tablet. They appear when very 

high pressure is applied to the material during compaction.  
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Indeed, the pressure applied to a particulate system is transmitted through contact points 

between particles. This creates high friction zones where temperature increases. Different 

types of solid bridges have been proposed in the literature, such as solid bridges due to 

melting, self-diffusion of atoms between surfaces, and recrystallization of soluble materials 

in the compact (Ahlneck et al., 1989; Down et al., 1985; Mitchell et al., 1984; Rumpf, 1962a). 

2. Distance attraction forces (intermolecular forces): 

Intermolecular are all bonding forces acting between surfaces separated by some distance. 

The term includes van der Waals forces, electrostatic forces, and hydrogen bonding 

(Israelachvili, 1985). The dominant interaction force between solid surfaces is the van der 

Waals force (Derjaguin, 1960; Derjaguin et al., 1956; Israelachvili et al., 1973). Hydrogen 

bonding is a prevalently electrostatic interaction and may occur either intramolecularly or 

intermolecularly (Israelachvili, 1985). Electrostatic forces arise during mixing and 

compaction due to triboelectric charging. 

3. Mechanical interlocking (between irregularly shaped particles): 

This term is used to describe the hooking and twisting together of the packed material. This 

bonding mechanism depends on the shape and surface structure of the particles. The long 

needle-formed fibers and irregular particles have a higher tendency to hook and twist 

together during compaction compared with smooth spherical ones. This mechanism is not 

based on atomic interaction forces and therefore plays a minor role (Shotton et al., 1976). 

 

2.6.2 Compaction equipments 

Tabletting always follows three major steps: 

- matrix filling with powder or granules 

- compaction by displacement of punches 

- ejection of the compact out of the matrix 

The quality of the tablet obtained after compaction depends on different factors such as: 

- the intrinsic properties of the tabletting material or mixture 

- the type of equipment used 

- the compaction speed 

- punches displacements amplitude 

- the pressure applied to the powder bed 

However, it has to be stressed that the fine adjustment of crucial compaction parameters, if not 

accompanied by formulation optimization, is not sufficient to produce robust tablets. Conversely, 

the compaction parameters can in some cases give precious information on the defaults of a 

formulation. 
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Machine for compression 

The production of tablets is performed using eccentric or rotary (simple or multi-stations) 

presses (Pietsch, 1991), (Pietsch, 2002).  

The eccentric press produces about 40 to 120 tablets per minute. The rotary press has a 

multiplicity of stations arranged on a rotating table with the dies. A few or many thousands 

tablets can be produced per minute. There are numerous models of presses - manufactured by 

a number of companies - ranging in size, speed, and capacity. As their tabletting speed is rather 

low, eccentric presses are usually used only at the formulation step. This type of tabletting 

machines is equipped with an upper and a lower punch which operate in a single die. It can be 

further differentiated between ejection and withdrawal presses. 

In the ejection presses, the two punches are mounted in a fixed press table, and the 

compression can be accomplished by the upper punch, which moves towards the stationary, 

lower one, or by both punches. The tabletting mass is charged into the die by a fill shoe and 

subsequently compressed between the upper and lower punches until a predetermined 

pressure. After the release of the pressure, the compact is ejected upward from the die, and the 

cycle begins again (Figure 2.32a). In this case, four phases are necessary to achieve the 

production of a compact with an eccentric press (see Figure 2.32a): 

 

Phase I: the filling shoe, the upper and lower punches are in starting position and the matrix is 

 filled with powder; 

Phase II: the upper punch goes down into the die and compresses the powder bed; 

Phase III: the upper punch is back at his initial position, while the lower punch pushes the tablet 

 out of the matrix; 

Phase IV: the filling shoe takes off the produced tablet and at the same time fills again the  

 matrix with powder. 

(a) (b) 

Figure 2.32: Schema of the compression process with an eccentric press (a) and a rotary tablet press 
(compression station only). [12] 
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In the withdrawal press, compaction and ejection take place with a continuous downward 

movement of the upper punch and the die, whereas the lower punch remains stationary all the 

time. At the beginning, material is filled into the die, which is positioned on top of the lower 

punch, and it is compressed while both the upper punch and the die travel downward. At the 

end of the compression stroke, the upper punch is lifted up while the die continues to move 

down until the tablet is ejected, before returning to its start position again. 

The simultaneous movement of the die and the punch minimizes the influence of wall friction on 

the structure of the tablet, leading to a highly uniform product density. As mentioned above, 

eccentric machines are suited when low output and/or high pressure are required.  

Rotary tablet presses are employed for higher outputs, since they are equipped with more than 

one press station. The dies, each of them associated with a lower and an upper punch, are 

mounted onto a circular rotary train. Several punches pairs (upper and lower), independently 

moved by stationary cams, are mounted onto a circular rotary train. When the rotary train 

rotates, the pairs of punches are moved simultaneously up and down; the vertical position of a 

pair of punches depends on its position in the rotary train. When the bottom punch is located at 

the lowest position, the tabletting mass is loaded by a filling funnel/hopper in the die; 

immediately afterwards, the bottom punch rises up on an adjustable ramp to eject the powder 

excess. The compaction is accomplished by simultaneous approaching of upper and lower 

punch; the upper punch is then lifted from the die and the lower punch ejects the finished tablet 

(Figure 2.32b).  

The phases of the compression process are in this case: 

 Phase I: filling of the matrix with powder when the upper punch is in its lower position. 

 Phase II: while the upper punch is in its lower position, the upper punch starts to go  

     down guided by the curvature of the upper train (precompression). 

 Phase III: the upper and lower punches are between rolls (main compaction). 

 Phase IV: the upper punch is in its highest position; the lower punch is guided up to eject 

      the tablet. 

The actual multi station industrial rotary presses are usually equipped with a second pair of rolls 

for precompression (see Figure 2.33) which allow increasing the rotation speed of the machine 

while reducing the capping or laminating problems (often due to entrapped air in the die during 

compression). 

 

Compaction simulators 

In the scale-up from development to production, tablets often show variability in crucial 

characteristics as disintegration time and crushing strength). 
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(a) 

 
(b) (c) 

Figure 2.33: Multi stations rotary press with precompression and compression stations. (a): schema view 
from side (b) schema view from top, (c) picture of a Fette machine. [12] 
 

This is due to the fact that different rotary tablet presses have diverse compression speeds and 

dwell times, which can heavily influence tablet properties. In order to overcome this scale up 

problem, so called linear compaction simulators have been designed (Celik, 1989).  

Compression simulators are sophisticated tools that enable the reproduction of different 

compression parameters of any industrial machine (ex. compression speed, compression force, 

etc.). Published works encourage to use compaction simulators as research tools for robust 

formulations (Marshall, 1989; Muller et al., 1994; Nokhodchi et al., 1996; Yang et al., 1996). 

The major problem, however, is the huge expense of such a simulator. At the Institute of 

Pharmaceutical Technology Basel, two kinds of simulators are in use: A Zwick® Universal 

testing Instrument, i.e. a punch and die set, and a PressterTM compaction simulator. 
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The PressterTM (see Figure 2.35) is a linear-type rotary tabletting machine replicator, which 

works with one single pair of punches and offers the possibility to simulate different rotary 

tabletting machines by mimicking the mechanics of these machines (Picker, 2003). PressterTM is 

instrumented with: 

- Linear Variable Differential Transformers (LVDT) for upper and lower punch displacement 

measurement. 

- Strain gauges for force measurement during compression and precompression. 

- Strain gauges for die wall expansion measurement with instrumented die. 

- Strain gauges for ejection force. 

- Strain gauges for tablet take-off force. 

The following set up can be installed before compression: 

- Selection of an industrial machine model in a list 

- Filling position of the lower punch before compression 

- Minimal gap between the punches during precompression and compression by variation of 

the rolls positions 

- Compression speed 

- Ejection angle 

PressterTM is a single station, linear compaction simulator, which can simulate any rotary tablet 

press by means of its specific dwell time, diameter of pre-compression and compression rolls, B 

/ D tooling (different form and dimension of punches), and ejection angle (http://www.mcc-

online.com/presster.htm), . Correspondingly, it is a very flexible investigation tool requiring just 

small amounts of material. 

As shown in Figure 2.34 and Figure 2.35, the die is mounted on a fix table equipped with upper 

and lower punches, the tabletting mixture being filled into it either manually or through a feed 

shoe. The punches and the fix table move horizontally at an adjustable speed (between 0.055 

and 2.2 m/s), whereas the vertical movement of the punches is controlled by an upper and a 

lower compression rolls, which can reach a compression force up to 50 kN. The machine is 

equipped with a precompression roll as well, which provide a first compaction of the powder 

mixture at low pressure (up to 10 kN), in order to eliminate the residual air before the main 

compression occurs. The produced tablet is then ejected from the die by an ejection cam, and 

important physical data as the compression, ejection, take-off and die wall forces can be 

investigated, as well as punch displacement and press speed. 

A choice of interchangeable precompression and compression rolls, with a diameter varying 

from 60 to 305 mm and from 178 to 305 mm respectively, permits to simulate the loading 

pattern of any rotary machine . 
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Presster™ is connected to a computer, with which parameters like the depth of fill of the die 

(maximum 17.4 mm), the lower wheel position (to set the tablet thickness, maximum 8 mm) and 

the dwell time (between 5.8 and 230 ms) can be adjusted. It is also possible to calculate the 

tablet volume, elastic recovery, work of compaction and display, Heckel or stress vs. strain 

plots. 

 

   Figure 2.34: PressterTM Compaction Simulator 

 

An important point is that for a given industrial machine model selected and for a given 

compression speed, the time during which one the flat portion of the punch head is in contact 

with the compression roll, called Dwell time (Figure 2.36) will be the same for any compression 

run. The tabletting process is scaled up on the base of the dwell time, which is the time of 

contact of the flat portion of the punch head with the compression roll (Equation 2.6): 

 

TPHPCD

NPPHF
DT

⋅⋅

×⋅⋅
=

π

5
1036

    Equation 2.6 

where:   DT:  Dwell Time [msec] 

  PHF:  Punch Head Flat of the TSM-B [mm] 

  NP:  Number of stations  

  π: 3.141 

  PCD: Pitch Circle Diameter of the turret [mm] 

  TPH: Press speed in terms of Tablets Per Hour [Tabl/h] 
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Figure 2.35: PressterTM instrumentation overview [12] 
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Figure 2.36: Schema of the lower punch position compared to 
the compression roll just before, at and just after Dwell time [12].  
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2.6.3 Description of densification cycle 

The punches pressure is recorded against time (Figure 2.37a,b) or against upper punch 

displacement (Figure 2.37c). According to Jones and Schmidt it is possible to distinguish four 

phases in a compression cycle (Schmidt et al., 1994): 

 

1. Compression phase (t1-t2 or AB): 

 The compression is the phase when the upper and the lower punches are brought 

 together until the minimal distance or the maximal pressure. 

2. Relaxation phase (t2-t4) 

 Evolution of the pressure when the punches are maintained at their minimal distance. 

 This phase expresses the viscoplastic properties of the material and increases the 

 bonding possibilities. It was demonstrated (Masteau et al., 1998) that the increase of the 

 Dwell time or the decrease of the compression speed is favorable to the formation 

 of solid bonds and increases the mechanical quality of the resulting compact. 

3. Decompression phase (t4-t5 or BC) 

 This phase corresponds to the release of the stress when the punches go outside the 

 matrix. An axial expansion of the compact occurs then in the matrix. This expansion can 

 eventually destroy part of the bonds formed during compression and relaxation phases. 

4. Ejection (t6-t7) 

 

Ejection phase is the terminal phase of the cycle. This phase is also very important for the 

mechanical properties of the compacts. The efficiency of punches and die lubrication will 

counterbalance the sticking of the tablet to the matrix induced by the frictions tablet/die wall 

(Velasco et al., 1997). An insufficient lubrication can also induce lamination and capping effect. 
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(b) [13] 
 

(c) [13] 
Figure 2.37: curve-type of pressure against time in general (a) and on a rotary tablet press (b); (c) 
curve-type pressure against upper punch displacement on a testing machine [12]. 
 

 

2.6.4 Energy and power occurring during compaction 

De Blaey and Polderman identified five steps consuming energy during compression 

(Ragnarsson, 1996). They lead to: 

1. Bring the particles close together. 

2. Overcome interparticles frictions. 

3. Overcome particle/matrix wall and particles/punches frictions. 

4. Deform and create bonds. 

5. Dissipate elasticity. 
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Energy consumption of the steps 1 and 2 is assumed to be negligible by comparison to the 

others. If the tooling is properly lubricated, the step 3 can be also neglected. If this is not the 

case, the work induced by these forces should be subtracted from the total compression work 

as this energy does not participate to the creation of bonds. In the same way, decompression 

enables stress release and thus expresses the elastic property of the material. If the elastic 

energy is also subtracted to the total compression work, the resulting true compression work 

corresponds to the deformation and to the creation of bonds (Figure 2.38). 

 

Desplacement of the upper punch  (mm)

F
or

ce
 o

f t
he

 u
pp

er
 p

un
ch

 (
kN

)

Elastic work

Friction work

True compression work 

Desplacement of the upper punch  (mm)

F
or

ce
 o

f t
he

 u
pp

er
 p

un
ch

 (
kN

)

Elastic work

Friction work

True compression work 

 

Figure 2.38: Energy occurring during compression [13] 

 
 

 

Due to the possibility of high-speed manufacturing, low production costs and excellent patient 

compliance, tablets are the most extensively used pharmaceutical forms. Not only do they 

protect the active ingredient and hold it stable over a long period of time, but they can also drive 

its disintegration and dissolution as required. 

 

2.7 MUPS (Multiple Unit Pellet Systems) 

2.7.1 General description of multiunit tablets 

Controlled release drug delivery systems for oral administration can be classified in single unit 

and multiple unit dosage forms. In multiple unit dosage forms, the active ingredient(s) are 

homogeneously distributed in their subunits, which can be granules, pellets or even micro-

tablets. This characteristic make them highly advantageous in comparison to single unit forms 

(Bodmeier, 1997): once swallowed, they spread uniformly throughout the gastrointestinal tract 

independently of the nutrition state, reducing dose dumping, local irritation and toxicity risks. 
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Moreover, because of their small size, multiparticulates have a short stomach transit allowing a 

more rapid onset action and in some cases preventing drug degradation in the gastric gut. 

Peroral controlled-release multiunit dosage forms (e.g., pellets, granules or microparticles) have 

conquered the pharmaceutical market over the last 3 decades to such an extent, that they 

nowadays represent a valid alternative to such classical single-unit dosage forms as tablets or 

capsules (Gebre-Sellassie, 1994). They present several advantages: they considerably reduce 

the risk of undesired drug release from a damaged single-unit tablet, as well as they minimize 

local irritations avoiding the attachment of monolithic dosage forms to the gastro-intestinal 

mucosa (Adriaens et al., 2002).  

 

After prompt tablet disintegration in the stomach, single units, having diameter < 2 mm and 

density < 2.5 g/cm3, behave like a liquid: they have a short transit time through the stomach and 

avoid drug accumulation (Clarke et al., 1993),(Clarke et al., 1995). Moreover, small single units 

tend to disperse more homogeneously and reproducibly throughout the gastrointestinal tract 

reducing drug release fluctuations and improving the overall bioavailability. This also accounts 

for the decrease of the drug dose and side effects (Sandberg et al., 1988), (Sivenius et al., 

1988), (Stefan et al., 1988), (May et al., 1989), (Follonier et al., 1992), (Abrahamsson et al., 

1996), (Amighi et al., 1998), (Peh et al., 1997), (Hosny et al., 1998).  

With regard to the final dosage form, multiparticulates can either be filled into hard gelatine 

capsules (Stegemann, 1999), (Chopra et al., 2002) or compressed into disintegrating tablets 

(Flament et al., 1994), (Maganti, 1994). The advantages of tabletting multiparticulates include 

less difficulty in oesophageal transport and thus a better patient compliance, lower production 

costs thanks to the higher production rate of tablet presses, no need for capsule integrity control 

after filling.  

Nonetheless, several studies have reported that sustained-release multiunit tablets tend to 

release the AI faster than their uncompacted subunits. This is mainly due to pellet damage 

during compression, caused by interactions between the feeder, punches and the tablet press 

die or even between the components of the mixture. This complex issue can be tackled 

exclusively through robust manufacturing and  appropriate formulation and fine optimization of 

coating and compaction parameters(Bodmeier, 1997), (López-Rodríguez et al., 1993), (Wagner 

et al., 2000b), (Wagner et al., 2000a).  

Pellets are mixed with excipients before being compressed into multiunit tablets. The difference 

in form, size and density of the different mixing components are critical factors, which can 

influence the stability and segregation tendency of such mixtures. 
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Some authors recommend using filler-binders which are almost equal in size to the pellets used 

(Aulton et al., 1994a), (Çelik et al., 1994), (Flament et al., 1994), (Lundqvist, 1998), (Pinto et al., 

1997), whereas others demonstrate a reduction of segregation using a fine microcrystalline 

cellulose as Avicel® PH 102 (Haubitz, 1996), (Wagner, 1999b). Homogeneous mixtures of 

pellets and filler-binders are crucial to obtain tablets of uniform weight and drug content, and 

thus to ensure a high reproducibility in production.  

 

2.7.2 Multiunit Tablets Production 

As explained in last paragraph, multiunit tablets are produced by compaction of single unit 

dosage form as granules, pellets or microtablets. The methods for preparing granules are based 

either on physical methods such as fluidized bed granulation, spray-drying, spray-congealing 

and solvent evaporation, on physicochemical methods such as coacervation, or on chemical 

methods such as interfacial polymerisation (Por Li, 1988). The production of pellets is a quite 

complex process, as it includes many steps such as moisturising, extruding, spheronising and 

drying (Flemming et al., 1995), (Kleinebudde, 1998). Moreover, pellets present the major 

disadvantage of being irregularly shaped particles (Munday, 1994). In this perspective, 

microtablets having a diameter equal to or smaller than 2 mm represent an interesting 

alternative to pellets (Flemming, 1995), (Flemming, 1996). This way, many steps of pellets 

production might be avoided, defined sizes and strengths might be easily achieved and the 

variability within a batch accordingly minimised (Butler, 1998), (Rey, 2000). Because of their 

uniform size, smooth surface, low porosity and high strength, micro-tablets can be better than 

usual pellets. (Vecchio, 2000). Moreover, it is possible to produce microtablets with higher drug 

contents than normal size tablets (Lennartz, 1998). 

One way to achieve sustained-release multiunit tablets is to compress coated single units. The 

polymers used in the film-coating of solid dosage forms usually fall into two broad groups based 

on either cellulose or acrylic polymers (Bodmeier, 1997). Ethylcellulose is used frequently as 

coating material for the preparation of pellets. However, it forms quite brittle films which are not 

suitable for further tabletting (Béchard, 1992), (Tirkkonen, 1993), (Maganti, 1994). Polyacrylates 

are more qualified for this purpose, as they are more flexible (Beckert, 1996), (Lehmann, 1994) 

(Lehmann, 1995).  

In order to control the drug release of multiunit tablets, the film coating has to withstand the 

applied compaction pressure without being ruptured. In fact, damages in the coating layer would 

result in a loss of the sustained release properties and dose dumping. Several studies have 

investigated into crucial parameters to obtain MUPS having consistent properties with their 

uncompressed coated units (Beckert, 1995), (Bodmeier, 1997), (Wagner, 1999a). 
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2.7.3 Mechanisms of compaction of pellets into tablets 

Alderborn and Wikberg suggest a series of compression mechanisms for aggregates of irregular 

shape, namely reposition, deformation, densification, fragmentation and attrition (Alderborn, 

1996). Studies on MCC pellets accomplished by Johansson et al. indicate that the relevant 

compaction mechanisms for pellets are permanent deformation (i.e. a change in shape of the 

individual pellets) and densification (i.e. a reduction of the pellets porosity), whereas 

fragmentation occurs to a minor extent. Pellet deformation seems to be related to the pellet 

porosity and size, as well as to the applied compression force, whereas the densification is 

related solely to the latter (Johansson, 1998), (Johansson, 1995b). Pellet porosity can be 

defined as the percentage volume of voids in pellets; the higher the amount of voids, the more 

porous the pellets. Johansson explains that moderately porous pellets get accordingly more 

deformed during compaction, due to the higher freedom degree of rearrangement of the powder 

particles within them. On the other hand, more compact pellets are more intensively buffered 

during compaction by powder particles, because they cannot widely rearrange. The pressure 

applied during compression also influences the degree of deformation in such a way that an 

increase in pressure leads to more elongated and flattened pellets. 

Concerning the effect of the pellet size on the degree of their deformation, Johansson et al. 

propose three different explanations (Johansson, 1998).  

The first is related to the force distribution in the pellets bed during compression. It is assumed 

that during the uniaxial compression of a particle assembly, the force applied is transmitted 

through the powder bed at the point of interparticular contact. According to this assumption, an 

increase in the particle size reduces the number of force transmission points, consequently 

increasing the contact force at each point and enhancing the pellet deformation. 

Secondly, larger pellets are subject to higher degree of deformation due to reduced powder 

buffering. Finally, as the degree of deformation is directly proportional to the pellet porosity (see 

above), it’s reasonable that larger pellets can more easily deform than small pellets. 

In their research, Johansson et al. claim that pellet densification, which occurs during 

compression, seems to be influenced solely by the compression force, independently of the 

pellet size (Johansson, 1998).  

Compared to the densification of the whole tabletting mixture, pellet densification is relatively 

low. Before compression, the amounts of air located in the intra- and intergranular pores are 

comparable, whereas during compression a densification of the tabletting mixture occurs, to the 

major detriment of the intergranular pores of pellets. In other words, the final porosity of the 

tablet directly depends on the residual pellets porosity after compaction. 
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2.7.4 MUPS compaction: key factors 

Compaction of multiparticulates into tablets could either result in disintegrating tablets providing 

a multiparticulate system during gastrointestinal transit (ideal case) or in extremely hard tablets 

due to adhesion or partial fusion of the subunits in a larger compact (worst case) (Johansson, 

1996).  

Ideally, the compacted single units should disintegrate rapidly into the individual subunits in the 

gastrointestinal gut rather than sticking together forming a non-disintegrating matrix (Chemtob, 

1986), (Sveinsson, 1993). To this scope, various embedding excipients must be added to single 

units to assist the compaction process (López-Rodríguez et al., 1993), (Maganti, 1994). The 

ideal filler material used for the tableting of single units should dilute and buffer them acting as 

cushioning agent during compaction. In other words, compaction forces have to be absorbed 

mainly by the excipients so that the single units remain virtually intact. The protective effect of 

different tableting excipients on the compression of granules may be investigated directly via 

image analysis or indirect by means of dissolution studies (Torrado, 1994).  

The amount of excipient used should be sufficient to separate and protect the units. Lehmann et 

al. report that an amount of filler and disintegrant between 30-50 % was necessary to reduce 

damage of coated pellets (Lehmann, 1990) (Lehmann, 1994). They conclude that when 

cushioning excipients (including disintegrant) account to approximately 30% of the tabletting 

mixture, the interspaces between the pellets are filled and the subunits are sufficiently 

separated. Hence, the tablets disintegrate rapidly and the pellet damage and change of release 

profiles may be reduced to an insignificant level. Moreover, the addition of excipients should 

produce hard and rapidly disintegrating tablets at relatively low compression forces. Flamment 

et al. (Flament et al., 1994) have shown that tablets containing active pellets alone lack the 

required hardness. On the contrary, inert granules may be added to facilitate the cohesion of the 

tablet.  

According to the requirements of the current European Pharmacopoeia, the multiunit tablets 

have to liberate the subunits within 15 min; on the other hand, their crushing strength should be 

high enough to permit their packaging and dispensing, which means that the subunits have to 

result in a uniform blend with the excipients, avoiding segregation and therefore weight variation 

and poor drug content uniformity of the resulting tablets (Bodmeier, 1997). 

All the advantages of MUPS are strictly linked to an important characteristic they must have: 

they have to disintegrate as rush as possible into their subunits (15 minutes at the most). 

In that case, pellets of different compositions or diverse release profiles, or even pellets carrying 

mutually incompatible drugs, can be successfully embedded in MUPS. 
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Figure 2.39: Structure and composition profile of Nexium MUPS 

 

Figure 2.39 shows the structure of Esomeprazol MUPS, which consist of the following three 

functional units: 

 

- Drug core (drug layered on a neutral core of saccarose) 

- Film coating 

- Embedding material 

The active ingredient can be either homogeneously distributed within the pellet core or layered 

on the surface of inert sugar or MCC beads. The coating film, which can either steer the drug 

release from pellets or avoid their dissolution in the stomach, has in this case the additional 

function, along with the cushioning excipients(s), of cushioning the compaction stress. The 

embedding materials, which appropriately disperse the pellets in robust compact, also 

contribute to soften their compaction and are thus denominated cushioning excipients. 

 

2.7.5 General requirements for MUPS 

MUPS properties depend on the characteristics of the subunits (i.e. type of core, shape, porosity 

and size of the particles), on the type and amount of coating agent used, on the embedding 

excipients and not least on the compaction process (compression force exerted, compression 

velocity, type of tabletting machine employed). 
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The requirements that each component should meet to get MUPS with ideal characteristics 

have been investigated in several studies; despite this, the findings are partially discordant. 

In case of inhomogeneous, coated pellets as subunits, Bodemeier et al. claim that the bead 

core should possess some degree of elasticity, in order to accommodate changes in shape and 

deformation during tabletting (Bodmeier, 1997). Conversely, Opitz asserts that cores should 

possess characteristics such as high crushing strength so as to overcome the compression 

neither deformed nor ruptured (Opitz, 2005). Similarly, Beckert et al. indicate that hard pellets 

coated with a thick film layer are better capable of withstanding the compression force than soft 

pellets, and that they tend to recover after compression without major damage of the coating 

layer (Beckert, 1996).  

In addition to their thickness, the coating films should be elastic enough to deform during 

compression without rupturing and therefore maintaining the same drug release properties of 

the single particles. This implies, that the addition of plasticizers in the coating formulation need 

to be accurately optimized. Last but not least, under no circumstances should the coated pellets 

fuse into a non-disintegrating chewing-gum.    

In literature, films from acrylic polymers were validated as more flexible than ethyl cellulose films 

and therefore more suitable for the compression of coated pellets (see § 2.5.3). 

In particular, Kollicoat SR 30D has been reported as a very appropriate aqueous polymer for the 

coating of pellets, which must be subsequently compressed into tablets (Dashevsky, 2004, 

2005). In fact, through the addition of a small amount of plasticizer, the film builder can reach 

high elasticity, preventing the drug cores from ruptures (see § 2.5.4). 

Tabletting excipients should on the one hand disperse the subunits minimizing their reciprocal 

contact surface; on the other hand, they ought to cushion the compression stress preventing the 

subunits from damage. In order to fill the voids between densely packed spheres still avoiding 

matrix formation, the excipients should theoretically amount from 20 to 50% of the tablet weight 

(Opitz, 2005). A homogeneous pellets distribution in MUPS is strictly related to the goodness of 

the mixture between pellets and embedding excipients. The best mixing is achieved when the 

particles own more or less the same size; accordingly, to avoid segregation, pellets should be 

mixed with excipients with a comparable particle size or even with placebo pellets (Opitz, 2005), 

(Bodmeier, 1997). 

Beckert et al. investigated the content and mass uniformity of MUPS (Beckert, 1998). In their 

study they provide support for the hypothesis that homogeneous MUPS can be obtained from 

tabletting mixtures containing 50-70% of pellets in case of fine excipients, 30-50% in case of 

excipients in form of granules or pellets.  

In her comprehensive review about multiparticulate tablets, Opitz reports the effect of the 

compression force on the drug release from the MUPS. Increasing the compression force from 
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the minimum required to have a compact till a certain value, which differs for each formulation, 

film ruptures are enhanced and the dissolution velocity increased (Opitz, 2005). 

Beyond this value, both disintegration and dissolution are delayed, which testifies the formation 

of undesired matrix tablets (Bodmeier, 1997).  

 

2.7.5.1 Microcrystalline cellulose as filler/binder for multiunit tablets 

Microcrystalline cellulose is certainly the most commonly used diluent for the compression of 

single units into tablets. In certain studies, microcrystalline cellulose was used directly as 

supplied by the manufacturer whereas in other studies, it was first mixed with other additives 

and then granulated or extruded into pellets. Torrado et al. have studied the protective effect of 

different excipients on the tabletting of theophylline granules coated with Eudragit RS (Torrado, 

1994). Two excipients, namely polyethylene glycol 3350 and microcrystalline cellulose, were 

found to cause the lowest damages of the granules during tabletting. These results were 

explained with the yield pressure of the two excipients, which were lower than the pellet one. 

Therefore, the energy of compaction was absorbed by the outer excipients and these excipients 

were preferentially deformed. This protective effect of microcrystalline cellulose was confirmed 

in another study by Tunón and Alderborn (Tunón et al., 2001), in which the pellets after 

disintegration of the tablets were similar in size to the original pellets. A very few pellet 

fragments were obtained during disintegration. The compaction had only affected the shape of 

the individual pellets resulting in more irregular pellets. Moreover, Wagner et al. (Wagner et al., 

2000a) observed that pellets compressed with the fine microcrystalline cellulose Avicel PH 101 

(x50 = 50 µm) remained approximately spherical. The fine Avicel® PH 101 was able to fill the 

pores of the pellets lattice much more tightly than coarse Avicel granules (x50 = 194 µm). With 

regards to the physical properties of multiunit dosage forms, several studies showed that tablets 

of coated pellets containing microcrystalline cellulose presented a higher crushing strength than 

tablets of coated pellets without microcrystalline cellulose (López-Rodríguez et al., 1993), 

(Maganti et al., 1994). External excipients, being small and irregular particles, when added to 

the pellets, introduce new bounding sites, which lead to an increase in the number of potential 

cohesive and adhesive bonds, thereby producing relatively strong compacts. 

Mixtures consisting of pellets and microcrystalline cellulose as external additive were found to 

be more compressible and produced stronger compacts than the tableting of pellets with 

pregelatinized starch or soy polysaccharide. Moreover, the size of microcrystalline cellulose had 

shown an effect on the crushing strength of tablets. Tablets compressed with Avicel PH 101 had 

demonstrated a significantly higher crushing strength than tablets produced with Avicel granules 

(Wagner et al., 1999b). Concerning the disintegration time, the use of microcrystalline cellulose 
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as external excipients has provided compacts that have disintegrated and regenerated the 

coated particles within less than 10 s as opposed to 7-10 min for other excipients such as spray 

dried lactose, spray dried sorbitol, compressible sucrose, polyethylene glycol 8000, 

pregelatinized starch (Béchard, 1992). In addition to the physical properties, multiunit tablets 

containing microcrystalline cellulose showed low friability with values below 1 %. In particular, 

compared to other excipients Avicel allowed the incorporation of a higher percentage (w/w) of 

single units without high tablet friability (Prapaitrakul et al., 1990), (Flament et al., 1994). An 

increase in the amount of single units has logically an effect on the other physical properties of 

the multi unit tablets. Increasing the single unit content decreases the tablet breaking load and 

the disintegration time. Pellets that are large and spherical in shape as compared to small, 

irregular powder particles, have a low surface to volume ratio, and this might result in a 

decreased area of contact between the particles as they consolidate (Lundqvist et al., 1997). 

Many studies determined the optimal amount of microcrystalline cellulose used to compress 

single units without serious degradation of tablet performance. López-Rodríguez et al. (1993), 

Prapaitrakul and Whitworth (1990) and Aulton et al. (1994), agree that it varies between 25 % 

and 40 % (w/w), corresponding to an amount of single units from 60 % to 75 % (w/w) (Aulton et 

al., 1994a; López-Rodríguez et al., 1993; Prapaitrakul et al., 1990). Moreover, Beckert et al. 

(1998) have observed that a pellet content in the range of 50-70 % (w/w) resulted in multiunit 

tablets that complied with the requirements for weight and content uniformity of European 

Pharmacopoeia. The explication was based on the percolation theory (Beckert et al., 1998). 

 

Stauffer (Stauffer, 1985) used the term percolation to describe continuous structures (clusters) 

formed throughout the length, width and height of a system. When a binary system is 

considered, it depends on the concentration of each component, whether only one or both 

components percolate. The minimum concentration of a component at which a percolating 

cluster may be found is defined percolation threshold. Below this concentration only isolated 

clusters of one component can exist. Infinite clusters form above the percolation threshold. A 

bicoherent structure builds up if both components percolate. Becker et al. (Beckert, 1996) found 

that up to 50 % (w/w) of pellets, a percolating cluster of pellets that prevent segregation was 

ensured. 

On the one hand, many authors agree that the particle size of external additives is a parameter 

of major importance in order to obtain a uniform mixture. Segregation is influenced by factors 

such as markedly differing particle size, density or shape. The difference in size distribution 

between powders and pellets is expected to lead to segregation, resulting in tabletting 

problems, such as weight variation and poor content uniformity. Therefore, the excipients should 

have a mean diameter close to that of the active single units to produce a stable mixture. 
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Consequently, it seems necessary to choose a large particle size of excipients or to prepare 

placebo pellets or granules (Aulton et al., 1994a), (Çelik et al., 1994), (Flament et al., 1994), 

(Beckert, 1996), (Pinto et al., 1997), (Lundqvist et al., 1997). On the other hand, Haubitz 

compressed mixtures consisting of 70 % (w/w) theophylline pellets (800-1250 µm) and the fine 

microcrystalline cellulose Avicel® PH 101 (x50 = 50 µm) and observed that in spite of the 

greater differences of particle sizes no distinct segregation occurred (Haubitz, 1996). In addition, 

Wagner investigated the pellet-distribution in single tablets via image analysis (Wagner, 1999a). 

The most homogeneous distribution of the pellets, particularly at intermediate and high machine 

speed was achieved with the fine Avicel PH 101. On the contrary to Avicel PH 101, coarser 

filler-binders led to segregation within the tablets at high machine speed. Avicel PH 101 has a 

large surface area and a fibrous surface texture, thus building a close percolating infinite cluster 

stabilising the pellets at their location in the mixture. A homogeneous distribution of the single 

units within the tablet presents also the advantage of divisible tablets. 

 

2.8 Factorial Design 

The successful management of a highly complex production process is strictly linked to the 

optimisation of the crucial parameters involved in any of its steps. Factor is meant to be any 

controllable parameter, which can be varied independently of other factors. It can be a 

quantitative (for example the amount of auxiliary substances, humidity or temperature), 

qualitative (such as different types of packing or auxiliary substances) or mixture factor. Mixture 

factors are two or more quantitative factors in relation between each other (i.e. they have to add 

up to some fixed value). Mixed factors are typical of formulation studies. 

To assess the influence of the process factors (and their interactions) on one or more response 

variables, a certain number of experiments is needed. By changing one parameter per time, an 

exaggerated number of experiments would be needed, and yet no information would be 

gathered about the mutual interactions between the factors. On the contrary, factorial design 

permits to obtain a great deal of information by a minimal number of experiments (principle of 

the minimum). 

Factorial design is applied to experiments in which two or more parameters or factors are 

involved, each of them having diverse values or "levels".  

A designed factorial experiment takes into consideration all possible combinations of these 

levels across all factors, and it allows, therefore, studying the effect of each factor on the 

response variables, as well as the influence of interactions between factors on the response 

variables. If the number of experiments for a full factorial design is too high, a fractional factorial 

design may be carried out, in which some of the possible combinations are intentionally omitted. 
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The simplest factorial experiment contains two levels for each of two factors. Suppose a 

researcher wishes to study the effect on the drug release velocity from a tablet (response 

variable) using two different amounts of a disintegrant (variable A with two levels) and two 

different compression forces (variables B with two levels). The factorial experiment would 

consist of four experimental units: amounts of disintegrant A1 and A2 [mg], compression forces 

B1 and B2 [kN]. Each combination of a single level selected from every factor is present once. 

This experiment is an example of a 22 (or 2x2) factorial experiment, so named because it 

considers two levels (the base) for each of two factors (the power or superscript), producing 

22=4 factorial points. Similarly, a factorial design containing three levels for each factor will 

produce 23=8 factorial points (Figure 2.40). 

In the end, the parameters of a factorial experiment are analyzed using regression analysis. 

 

 

Figure 2.40:  Factorial design with 23 factorial points [15] 

 

2.8.1 STAVEX 

STAVEX (STAtistische Versuchsplanung mit EXpertensystem) is a software for statistical 

design and evaluation of a series of experiments related e.g. to the process control, product 

optimisation or validation (Scheffler, 1997).  It is an user-friendly PC-based software system 

enabling experimenters in research and development to apply statistical design and evaluation 

of experiments in their routine work independently of a statistician. It studies the relationship of 
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specified factors and responses. The ultimate goal is to find the optimal settings of all factors 

actually influencing the responses. 

STAVEX helps to investigate process factors, like temperature or concentration, as well as 

mixture factors, which have to fulfill a summing-up condition typical for mixtures or formulations. 

STAVEX also supports the combination of responses in the form of a cost function assigning 

weights to the responses or a desirability function combining individual specification intervals. 

This way trade-offs been the responses can be studied. STAVEX supports sequential planning, 

it integrates statistical experimental design, statistical evaluation of results, and guidance to 

follow-up designs, i. e. the whole process of experimentation. This way, STAVEX typically runs 

through 3 stages of statistical experimental design: screening using linear models for factor 

reduction, modelling for further factor reduction using linear models with interactions, and 

optimisation for determining the optimal levels of the remaining factors. 

For example, the plastic behaviour of a mixture of three additives can be investigated.  In Figure 

2.41,  a 4-D plot has the % quantity of each additive on the three axes, whereas the colour scale 

represents the response value; this means the behaviour of the material ranges from brittle (red) 

to elastic (blue).  

 
Figure 2.41: Example of the optimization of a material through a 4-D plot [16] 

STAVEX is suited also for qualitative studies. Be a three component syrup (lemon, peach, and 

strawberry), the optimum component ratio providing an agreeable taste should be investigated. 

As the three components are mixed together, they have to add up to 100 % ("mixture factors"). 

The factors are depicted in a triangular coordinate system (Figure 2.42). 10 experiments were 

conducted (blue triangles). From the results for the response variable "taste", a quadratic model 

was fitted. The lines of constant value of the model function are ellipses (white); the best 

(highest) value for "taste" is attained at the blue encircled asterisk. 
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Figure 2.42: Example of a contour plot: taste variability of a three component  syrup [16] 

 

The program is organised in cycles, which consist of the data input, choice of the design, input 

of the results, analysis and acceptance of the analysis. After a cycle has been finished, the next 

cycle starts, with a possibly reduced set of factors, another design or other modifications from 

the previous cycle.The first step to start a statistical analysis is the specification of one or more 

response variable(s), which can be minimised, maximised or set at a target value.  A first 

screening cycle (with normally more than 8 factors) might help to distinguish between crucial 

and neglectable factors. If the parameters are already on hand and they count between 4 and 8, 

a modelling cycle is more appropriate, whereas for less than 4 parameters an optimisation cycle 

can be directly executed.In all cycle types, the crucial (or thought to be such) factors are 

specified according to their type (qualitative, quantitative or mixture factors), their units, and 

eventually setting a value range. Modelling, and even more optimizing, permits to determine the 

optimal levels of all factors in order to get the previously targeted responses. Two different 

optima are determined, the “global” and the one lying in the “experimental area”. With the 

former, all quantitative factors can be freely varied, whereas with the latter, variations are 

possible only within the user-defined limits. 

According to the response variables and the process factors chosen, STAVEX generates 

different possible factorial designs, among which the user may choose the most appropriate 

one. In this study, the factorial design “with D optimization” was chosen (where D stands for 

determinant of the results matrix), which fits particularly to investigate the perimeter and the 

central point of the experimental domain. 

After having entered the results of the experiments, STAVEX proposes its analysis of the 

results: it determines the optimal settings of all factors to get the previously targeted responses, 

and suggests further factor settings for confirmatory experiments. 
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2.9   The dissolution process 

2.9.1 In-vitro dissolution 

The most widely used in-vitro test available to determine the release rate of drug products is the 

in-vitro dissolution test (Noory et al., 2000). Before a drug is absorbed from the gastrointestinal 

tract (GIT), it has to be released and dissolved first. Accordingly, the in-vitro dissolution test is a 

first important step to assess the quality of a certain compound and to guide development of 

new formulations. Such tests are extensively employed because of their low costs and accuracy 

(they can be standardized and validated). 

 

2.9.2 The dissolution process 

Some basic principles of the dissolution process of a solid dosage form are given by the film 

theory (Nernst, 1904). Be a solid immersed in an agitated liquid, surrounded by a stagnant liquid 

layer with a thickness h. At the solid’s surface, the concentration of dissolved solid is equal to its 

saturation concentration S. Be c the concentration of the dissolved solid in the agitated 

dissolution medium. At the steady state, Fick’s first law can be employed (see Equation 2.7) 

 

x

c
DJ

∂

∂
−=       Equation 2.7 

 

where J is the diffusion current, defined as the amount of substance passing vertically through 

an unit surface area per time. D stands for the diffusion coefficient, whereas ∂c/∂x represents 

the constant concentration gradient corresponding to the slope (C-S)/h (see Figure 2.43). 

Considering the dissolved mass m and the surface area of the dissolving solid O, the Fick’s law 

can be expressed according to Noyes Whitney (Noyes et al., 1897) (see  Equation 2.8). 
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h
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−=      Equation 2.8 

 
Dividing both member of Equation 2.8 through the volume of the dissolution media V, 

 Equation 2.9 is obtained. 
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−=      Equation 2.9 
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Figure 2.43: Fick’s low graphic illustration [17] 

 

 

If the middle distance between the discussed molecules is negligible compared to the diameter 

of the molecules, Einstein relation can be applied (see Equation 2.10). 

 

     
r
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πηπη 66

==    Equation 2.10 

 

where NA indicates the Avogadro number, R the universal gas constant, k the Boltzmann 

constant, T the temperature, η stands for the viscosity of the dissolution medium and r for the 

radius of the molecule. It is redundant to say that the molecular mass of a certain compound in 

a molecular-disperse solution does not have a big influence on the diffusion coefficient D, since 

the radius of a spherical particle corresponds approximately to the third root of its molecular 

mass. Another theory, called the surface renewal or penetration theory (Danckwerts, 1951), 

proposes the existence of a dynamic (and not stagnant) laminar layer h, meaning that the 

surface would be continually replaced by fresh liquid.  

 

Mechanisms of release from coated pellets 

Although MUPS are a kind of tablet, they dissolve into their subunits immediately after 

swallowing, which means that their dissolution is comparable to that of coated pellets.  

In the case of release from coated pellets it can be distinguished between (Dressman et al., 

1994) : 
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a. solution/diffusion through the continuous plasticized polymer phase; 

b. solution/diffusion through plasticizer channels;  

c. diffusion though aqueous pores. 

 

The first mechanism assumes that the polymer forms a continuous phase in which the 

plasticizer and other additives are homogeneously dispersed. The diffusion of a solute molecule 

within an amorphous polymer phase is an activated process involving the cooperative 

movements of the penetrant (drug) and the polymer chain segments around it. It is by this 

stepwise process that hindered molecular diffusion occurs. Release by diffusion/solution 

through the plasticized polymer phase is depicted in Figure 2.44 

 

 
Figure 2.44: Drug release from coated pellets via solution/diffusion through the polymer film [18]

 

 

Based on the Fick’s law (Equation 2.7), the release rate in presence of the above mentioned 

mechanism can be described by the Equation 2.11 

 

     )( bs

m CC
P

J −=
δ

    Equation 2.11 

Where J ist the flux (release rate per unit surface area of coating) Cs and Cb are the 

concentration of drug at the coating interface and the bulk, respectively, and δ is the coating 

thickness. The permeability coefficient of the coating polymer Pm can be written as 
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ε
    Equation 2.12 
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where D ist the molecular diffusivity of the drug, K the distribution coefficient of the drug 

between the polymer membrane and fluid in the core (imbibed water), ε the volume fraction of 

the chain opening, β a chain immobilization factor and τ the tortuosity factor. The frequency with 

which a diffusion step occurs depends on the size and shape of the drug, tightness and bonds 

between adjacent polymer chains and the stiffness of the polymer chain. Generally speaking, 

the further below its glass transition temperature (Tg), the less permeable the polymer. 

Plasticizers lower the Tg, increase free volume and increase diffusivity. Accordingly, the 

solution/diffusion mechanism is dominant in continuous, flexible polymers. 

 

The second mechanism intervenes when the plasticizer is not uniformly distributed in the 

coating polymer: it conceivably assumes the form of a continuous phase in form of patched 

channels. This mechanism, shown in Figure 2.45, can be described by the Equation 2.13, which 

derives from the Equation 2.12 replacing Pm, the permeability of the coating polymer, with Ppl, 

the permeability of the plasticizer. 

 

 

     
Figure 2.45: Drug release from coated pellets via solution/diffusion through plasticizer channels [18] 

 

 

     pl

pl

plpl

pl K
D

P
τ

ε
=     Equation 2.13 

In this case, Kpl is the distribution coefficient of the drug between plasticizer and the core fluid 

(imbibed water), τpl the tortuosity of the plasticizer channels, and εpl the volume fraction of 

plasticized channels. For this mechanism to be dominant, the following condition must be 

satisfied: 
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Diffusivity in the plasticizer will generally be lower than in water since plasticizers tend to be 

relatively viscous. Assuming a Dpl ≈ 10-6 cm2/s, a plasticizer load of 40% with half forming 

channels (ε = 0.2) and a low tortuosity (τ = 2), the ability of the drug partition should be at least 

0.1. In the reality, this mechanism was demonstrated to be too slow to explain the release rates 

observed. 

 

The third model implies a continuous but inhomogeneous coating layer punctuated with pores. 

When the pellets come in contact with an aqueous medium, these pores fill with solution thus 

facilitating the diffusion of the drug, as illustrated in Figure 2.46. 

 

     
  Figure 2.46: Drug release from coated pellets via diffusion through aqueous channels [18] 

. 

 

This mechanism applies for coatings formed from aqueous dispersions of pseudolatexes rather 

than from organic solvents. During the coating and curing processes, the pseudolatex particles 

often do not fuse completely, thereby creating pores of about 1µm in the coating layer. 

For diffusion through aqueous pores, the permeability coefficient Pp is given by  

 

     
p

pp

pl

D
P

τ

ε
=      Equation 2.14 

 

Where Dp is the aqueous diffusivity of the drug, εp the volume fraction of the auqueous 

channels, and τp their tortuosity. The partition coefficient K is the unity in this case. 
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For diffusion through aqueous pores to be the mechanism driving the release rate,  P should be 

in the order of 10-8 cm2/s. Considering  τ = 10, ε would amount to 0.02 (more than 2% of the 

surface area should consist of pores), whereas for τ = 2.5, ε = 0.005 (more than 0.5% of the 

surface area should consist of pores). Therefore we can conclude that if SEM consistently 

indicates the presence of pores in the coating, it is likely that diffusion through the pores will 

contribute significantly to the overall release rate 

. 
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3. Problem setting and Objective 

UICEL PH/102 has been widely investigated as potential, bivalent excipient (filler/disintegrant) in 

direct compaction (see §2.3); surprisingly, so far has hardly any study focused on its 

perspective employment as filler/disintegrant in multiparticular formulations. Considering the 

limited number of appropriate cushioning excipients in MUPS formulations (see § 2.7.4), a novel 

“all-in-one” embedding material might represent a significant break-through in the search for 

more flexible and attractive multiparticular formulations. And this is also the scientific challenge 

this study faces. 

 

As a matter of fact, MCC 102 is the most commonly used pelletization excipient in MUPS. 

Considering that UICEL is prepared starting from MCC 102, it becomes imperative to 

characterize and evaluate UICEL against MCC 102 as excipient in MUPS. To this scope, 

tabletting mixtures containing either UICEL-A/102 or MCC 102 pellets (loaded with sodium 

diclofenac and coated with Kollocoat SR 30D), appropriate cushioning excipients and 

disintegrants in different proportions will be prepared. Each tabletting mixture will be 

compressed into MUPS using a PressterTM Compaction Simulator under analogous parametric 

conditions. The resulting multiparticular tablets will be appropriately characterized, with a 

particular focus on their disintegration time and their dissolution profile. In fact, MUPS should 

ideally disintegrate immediately after administration and maintain the dissolution profile of their 

uncompressed subunits. 

 

For the preparation of pellets, two different technologies will be employed and compared to 

each other: the direct pelletization and the dry powder layering on neutral cores. On the base of 

the properties of MUPS obtained from pellets produced with the former or the latter pelletization 

technology, a robust over-all production for MCC 102 / UICEL MUPS will be suggested. 

This study aims also to compare MCC 102 (Cellulose I) and UICEL-A/102 (Cellulose II) as pellet 

filler and embedding excipients in MUPS for controlled release. 
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4. Materials and Methods 

4.1 Materials 

4.1.1 UICEL Production 

Microcrystalline Cellulose SANAQ 102 L (Pharmatrans AG, LOT nr. MC230518, Basel,  

   Switzerland; see Figure 4.1) 

 

 

 

 

 

Figure 4.1:  Chemical formula of cellulose 

 

 

 Empirical formula: (C6H10O5)n 

 Manufacturing: Powdered cellulose, manufactured by mechanical  

   processing of α-cellulose pulp from fibrous plant  

   materials.  

 Properties:  White, odourless, tasteless powder of various  

   finesses, ranging from a free-flowing, dense powder 

   to a coarse, fluffy, non-flowing material. Insoluble in 

   water, dilute acids and most organic solvents. 

Sodium Hydroxide, Hänseler AG, Switzerland 

Ethanol 99%, Hänseler AG, Switzerland 

 

 

4.1.2 Pelletization 

Microcrystalline Cellulose SANAQ 102 L (Pharmatrans AG, LOT nr. MC230518, Basel,  

   Switzerland; see Figure 4.1) 
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Sodium Diclofenac (Mepha AG, LOT nr. 346/126522, Aesch, Switzerland; see Figure 4.2) 

 

COO
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Cl

Cl

 

-
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+

 

  Figure 4.2:  Chemical formula of sodium diclofenac 

 

Empirical formula:  C14H10Cl2NNaO2 

Molecular weight:  318.1 g/mol 

Appearance:   white to slightly yellowish or light beige powder 

Melting point:   283 - 285°C 

Solubility pH 1-4:  sparingly soluble 

     pH 7:  slightly soluble 

     pH 8-10:  soluble 

Plasdone® K-29-32 (LOT Nr. TX11108A, ISP AG Switzerland; see Figure 4.3) 

 

N O

H
H

n

 

 

  Figure 4.3:  Chemical formula of polyvinylpirrolidone  
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Empirical formula:  (C6H9NO)n 

Molecular weight:  (111.1)n g/mol 

Composition:  linear polymers of 1-ethenylpyrrolidin-2-one  

Appearance:   white or light beige, highly igroscopic powder 

Solubility pH 1-4:  freely soluble in water, ethanol and methanol, hardly soluble in   

   acetone 

Suglets® SANAQ 355 (LOT nr. 310 V, Pharmatrans-Sanaq AG, Basel, Switzerland) 

Composition: 92 % of sucrose added of maize starch, hydrolyzed maize and colorants. 

Appearance:  White spherical granules of sweet taste 

Loss on drying: 1.8 % 

Particle size:   98.7 % between 355 and 500 µm (0.4 % > 500 µm, 1.0 % < 355 µm) 

Sphericity degree: 95% 

Cellets® 350 (LOT nr. 04013505, Pharmatrans-Sanaq AG, Basel, Switzerland) 

Composition: 100 % MCC 102. 

Appearance:  White or nearly white or beige, hard and partially spherical particles 

Loss on drying: 4.6 % 

Particle size:   96.2 % between 355 and 500 µm  

Sphericity degree: 96 % 

  

4.1.3 Coating 

Kollicoat® SR 30D (LOT nr. 0001235, BASF AG, Ludwigshafen, Germany; see Figure 4.4 )  

 

 Figure 4.4:  Chemical formula of polyvinyl acetate  
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Composition: Aqueous dispersion of polyvinyl acetate (27% w/w), polyvinyl pyrrolidone 

(2.7 % w/w) and sodium lauryl sulfate (0.3% w/w). 

Structural formula: (C4H6O2)n 

Approximate Mw: 450.000 

Appearance:  Milky white-to-yellow, slight characteristic odour 

Miscibility/ Solubility: Miscible with water in any ratio, insoluble in dilute acids or bases 

Viscosity:  100 mPa.s 

MFT:   18°C 

Monograph:  Ph.Eur. 5.8 Poly (Vinyl Acetate) dispersion 30 % 

Triethylcitrate (TEC) (LOT nr. S26742-435, Sigma-Aldrich Chemie GmbH, Switzerland; see 

Figure 4.5) 

O

O

O

OOH O
O  

  Figure 4.5:  Chemical formula of triethylcitrate  

 

Structural formula: C12H20O7 

Mw: 276.29 g/mol 

Composition: > 99 % w/w of triethyl-2-hydroxypropane-1,2,3-tricarboxylat. 

Properties: Colourless, limpid, viscous, hygroscopic liquid; soluble in water, miscible 

with ethanol and ether, sparingly soluble in fat oils. 

Riboflavin (Lot. Nr. 034k1323, Riboflavin-5’-Monophosphate Sodium Salt, Sigma-Aldrich 

Chemie, Steinheim, Germany; see Figure 4.6) 

Structural formula: C17H20N4NaO9P 

Mw:  478.33 g/mol 

Definition: Riboflavin-5’-sodiummonohydrogenphosphate as main component added 

with other Riboflavin sodium phosphates; it contains 73.0 - 79.0 % of 

Riboflavin (C17H20N4O6; Mw 376,4) referred to the dry substance. 

Properties: Yellow-orange, crystalline, hygroscopic powder; soluble in water, hardly 

soluble in ethanol and practically insoluble in ether. 
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 Figure 4.6:  Chemical formula of Riboflavin-5’-Monophosphate Sodium Salt 

Talcum powder (Talcum powder, Hänseler AG, Herisau, Switzerland) 

 

Structural formula:  Mg3Si4O10(OH)2 

Mw: 379.3 g/mol 

Definition: Pulverised, natural, magnesium silicate containing water. The substance 

can also contain different amounts of minerals as chlorite (aluminium and 

magnesium silicate), magnesite (magnesium carbonate), calcite (calcium 

carbonate), and dolomite (calcium and magnesium carbonate). 

Properties: Light, white powder; practically insoluble in water, ethanol, diluted acids 

and diluted alkali. 

Sodium dihydrogen phosphate (Hänseler AG, Herisau, Switzerland; see Figure 4.7) 
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 Figure 4.7:  Chemical formula of Sodium dihydrogen phosphate  
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Structural formula: KH2PO4  

Mw: 136.1 g/mol 

Definition: Sodim dihydrogen phosphate contains between 98.0 and 100.5% of 

KH2PO4, calculated on the dried basis. 

Properties: White, crystalline powder or colourless crystals; easily soluble in water, 

insoluble in ethanol. 

 

4.1.4 Tabletting 

Partially pregelatinized maize starch Sta RX1500® (Lotnr. 811024, Dartford Kent, UK; see 

Figure 4.8). 
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 Figure 4.8:  Chemical formula of maize starch  

Definition: Maize starch physically modified by compaction in presence of water. It 

contains undamaged maize grains and gelatinized starch particles, which 

swell considerably in contact with water bringing a certain hydrosolubility.  

Properties: White, tasteless and odourless powder; strong disintegrant 
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Magnesium stearate (Lot Nr. 1025336, Novartis Pharma AG, Basel, Switzerland; see Figure 

4.9) 

 

   
 Figure 4.9:  Chemical formula of Magnesium stearate 

 

Definition:  Magnesium stearate is a mixture of magnesium salts of several fatty  

   acids, principally stearic acid ([C17H35COO]2, molecular weight 591.27  

   g/mol) and palmitic acid ([C15H31COO]2, molecular weight 535.1 g/mol). 

Properties:  White, very fine, light powder; insoluble in water and water free ethanol; 

prevalent lubricant properties. 
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4.2 Characterization of the materials 

 

4.2.1 Characterization of MCC 102 and UICEL-A/102 

The X-ray diffractogramm and and IR spectrum, plus the data for degree of cristallinity, loss on 

drying, bulk and tap density, porosity, Hausner Ratio, Carr’s Index, particle size distribution, 

specific surface area for MCC 102 and UICEL-A/102 are presented and discussed in §5.1. 

 

4.2.2 Characterization of the drug substance 

Data for true density, poured and tapped density, relative poured density (ρp), relative tapped 

density (ρt), Hausner ratio, residual moisture content, mean and median particle size, 

respectively, are shown in Table 4.1. 

 

Table 4.1.: Data for true, poured and tapped density, relative poured density (ρp), relative tapped density 
(ρt), Hausner ratio, residual moisture content, mean particle size and median particle size of Sodium 
Diclofenac 
 

Diclofenac 
Sodium 

(n=5) 

 True 
density 
[g/cm3] 

Poured 
density 
[g/ml]2 

Tapped 

density 

[g/ml]2 

ρp[rel] ρt[rel] Hausner 
ratio 

Residual 
moisture 
content 
[% w/w] 

Mean 
particle 
size [µm] 

Median 
particle 
size [µm] 

Mean 
Value 1.5296 0.274 0.582 0.261 0.397 1.48 3.21 20.5 16.5 

RSD [%] 0.11 1.2 0.34   0.54 5.04 12.3 10.4 
All determinations were made according to the equipment specifications. Details in § 4.3.2 

 
 

4.2.3 Characterization of the excipients 

SEM pictures of the main excipients are shown in Figure 4.10. 

   
Figure 4.10: SEM images of, from left to right, STA RX 1500®, sodium Diclofenac and Plasdone® K-29-32 
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Data for true density, poured and tapped density, relative poured density (ρp), relative tapped 

density (ρt), Hausner ratio, residual moisture content, mean and median particle size, 

respectively, are shown in Table 4.2.  

 

Table 4.2.: Data for true, poured and tapped density, relative poured density (ρp), relative tapped density 
(ρt), Hausner ratio, residual moisture content, mean particle size and median particle size of the used 
excipients 

Excipients (n=5) 

 True 
density 
[g/cm3] 

Poured 
density 
[g/ml]2 

Tapped 
density 
[g/ml]2 

ρp[rel] ρt[rel] Hausner 
ratio 

Residual 
moisture 
content 
[% w/w] 

Mean  
particle  
size  
[µm] 

Median 
particle 
size  
[µm] 

Plasdone® K-29-32         

Average 1.2356 0.324 0.410 0.276 0.335 1.32 6.56 106.7 95.7 

RSD [%] 0.08 0.8 1.1   1.2 0.8 0.6 0.4 

          

STA RX® 1500         

Average 1.498 0.312 0.410 0.254 0.335 1.32 9.80 49.8 29.5 
RSD [%] 0.09 1.1 1.3   1.2 2.4 2.3 0.7 
          

Mg-Stearate         
Average 1.0446 0.223 0.330 0.224 0.316 1.41 3.21 19.5 14.0 
RSD [%] 0.12 0.18 1.3   1.3 5.4 4.0 16.5 
All determinations were made according to the equipment specifications. Details in § 4.3.2 

 

4.2.4 Characterization of the neutral cores 

Data for true density, poured and tapped density, relative poured density (ρp), relative tapped 

density (ρt), Hausner ratio, residual moisture content, mean and median particle size, 

respectively, are shown in Table 4.3. 

 

Table 4.3.: Data for true, bulk and tapped density, Hausner ratio, residual moisture content, mean particle 
size and median particle size of the used excipients 

Cores (n=5) 

 True 
density 
[g/cm3] 

Bulk 
density 
[g/cm3] 

Tapped 
density 
[g/ml]2 

Hausner 
ratio 

Sphericity 
index 

Residual 
moisture 
content 
[% w/w] 

Mean  
particle  
size  
[µm] 

Median  
particle  
size  
[µm] 

Suglets® 355        

Mean Value 1.560 0.79 0.77 1.03 0.96 3.8 461.86 429.9 

RSD [%] 2.5 2.2 2.4 1.5 6.5 1.2 10.5 12.8 
         
Cellets® 355        

Mean Value 1.498 0.89 0.86 1.03 0.95 4.6 440.49 433.48 
RSD [%] 3.1 3.2 1.5 2.1 5.2 0.8 16.8 18.9 
All determinations were made according to the equipment specifications. Details in § 4.3.2 



Materials and Methods 

 

81 

 

4.3 Methods 

4.3.1 Production of UICEL-A/102 

Figure 4.11 briefly schematizes the plant employed for the production. The vessel R 340, filled 

with 20 Kg of Microcrystalline Cellulose SANAQ 102 L, 24 Kg of Sodium Hydroxide particles 

and 116 Kg of distilled water, was cooled from 61°C to 28°C in 1 hour through an external 

cooling jacket. Afterwards, 120 l of ethanol were seeped from the vessels B 347 and B 348 into 

the reactor at the velocity of 10 l/min. The thus prepared cellulose gel was recovered 24 hours 

and later on filtered in three batches through an additional movable filter unit connected to the 

valve V 340.61. The product was then washed with distilled water until a neutral pH was 

reached, subsequently filtered and dried in a vacuum oven till it had residual moisture of 7%.  

 

(a) (b) 

 
 

Figure 4.11: Multipurpose plant R340: (a) Schematic drawing; (b) Picture 

4.3.2 Characterization of drugs, excipients and neutral cores 

Residual moisture content 

The residual moisture content was determined with an infrared balance Mettler Toledo Type LP 

16M (Mettler Instruments, Nänikon-Uster, Switzerland). Samples of approximately 1 g were 

prepared. They were heated up for 20 min to 110°C giving the loss of moisture in percent by 

weight. The approximate theoretical moisture content of the granulates was determined by the 

sum of the moisture contents of the different starting materials in equilibrium with 45% relative 

humidity at room temperature (see Equation 4.1). 
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  Equation 4.1 

 
where M is the total amount of water in the sample, a denotes the part of weight of every 

component in percent by weight and w stands for the content of water of every part in the 

sample in percent by weight. All sorption isotherms present a hysteresis. Therefore the 

experimental values of the residual moisture content of the granulates coming from a wet state 

after granulation -in contrast to the residual moisture content of the starting materials coming 

from a dry state - were transformed according to  Equation 4.2 to values that refer to a dry state 

of the sample. 
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    Equation 4.2 

 

Md is the content of water referred to the dry sample, while Mw represents the content of water 

referred to the wet sample. 

 

Particle size distribution 

The average particle size was determined with a Malvern Mastersizer X (Malvern Instruments, 

Worcestershire, UK). The measurements were carried out 5 times for each sample. The 

average and the median particle size of the neutral cores and all pellet batches was measured 

using a MS 64-Dry powder feeder (Model MSX 64, Malvern Instruments, Worcestershire, UK). 

The following instrument settings had been done: The federate was set to level 5 and the air 

pressure to 1 bar. The number of sweeps was set to 30’000 in a time frame of 60 s. The active 

beam length was set to 10.0 mm with a range lens of 1000 mm. An obscuration value between 

1-10% was got in all measurements. With the software (Malvern) the particle size distribution of 

the samples including mean and median particle size could be calculated from the raw data. 

The function “polydispers” was activated. The average particle sizes of all samples mentioned 

above were > 50 µm, therefore, the “Frauenhofer” model was chosen (according to the 

recommendation of Malvern). For the excipients in powdery form, different settings were used. 

The average and median particle size of UICEL-A/102 were measured with the dry powder 

feeder and the same lens as described above. The raw data were also evaluated with the 

“Frauenhofer”-model and the activated “polydispers”-function. 

The pressure, however, had to be increased to 2 bar and the federate was set to level two. The 

excipients Plasdone® K-29-32 and Sta-RX 1500® could be characterized using the dry powder 

feeder. A lens of 300 mm was chosen, the federate was set to level 5 and the pressure was 
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increased to two bar. For the evalutation of the raw data, the mathematical model “2RAA” with 

the function “polydispers” was chosen (according to the recommendation of Malvern 

Instruments). It was not possible to determine the particle size distribution of the other powder 

samples with the dry powder feeder without generating artefacts: Huge powder clusters 

appeared (> 1000 µm), that could not been separated by increasing the air pressure or by 

changing the feedrate. Therefore, the particle size distribution had to be determined in a liquid 

with a MS-1-Small Volume presentation sample unit (Model: MS 519, Malvern Instruments, 

Worcestershire, UK). The particle size of magnesiumstearate and diclofenac sodium was 

determined in Aceton with the following settings: The number of sweeps was set to 2000 and 

the sample time to 60s. The active beam length was set to 2.4 mm using a lens of 300 mm. It 

was paid attention to get an obscuration value between 10-30% in all measurements. The 

polydispers function was activated. The mathematical model 2OFD was used (according to the 

recommendation of Malvern Instruments). 

All pellet batches underwent a sieve analysis as well. A set of 8 sieves in a mesh size serie of 

√2 was used. The following mesh sizes (in micrometers) were selected: 1000, 710, 500, 355, 

250, 180, 125, 90 and a receiving pan. The sieves were weighed and stacked on each other in 

ascending degrees of mesh size. 100g of the sample were placed on the top sieve and the 

tower was oscillated for 10 minutes (Oscillator Type Vibre, Rietsch, Germany). Afterwards, the 

substance amount on each sieve was weighed. The average particle size was arithmetically, the 

median graphically determined. 

 

Flowability 

The employed equipment consisted of a plastic hopper with an orifice of 0.9 cm diameter, a 

balance and a computer with the software “balance link”. 100g of the sample were firstly poured 

in a closed plastic hopper and then made flow into a plate. The mass on the plate got weighed 

every 0.16 s and the value automatically transferred in an excel sheet. The measurement was 

carried out in triplicate and expressed as a diagram mass vs. time. The average of the three 

diagram slopes represented the flowability in g/s. 

 

Bulk and tapped density, Hausner Ratio 

The equipment consisted of a tapped density volumeter (Jolting volumeter, Type EG80, J. 

Engelmann AG, Apparatebau, Ludwigshafen am Rhein, Germany). 100g of powder or granules 

were poured into a glass cylinder so as to read immediately their bulk volume (50-250ml), and 

then tapped 10, 500 and 1250 times, and if necessary further 1250 times, in order to check the 

respective tapped volume. 

Both bulk and tapped density were calculated using the Equation 4.3: 
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V

m
=ρ      Equation 4.3 

where:  ρ: Bulk or tapped density [g/ml] 

  m: Weight of the sample [g] 

  V: Bulk or tapped volume [ml] 

 

The Hausner ratio (HR) was determined by the ratio of the poured and the tapped density: 

 

     
densitytapped

densitytrue
HR

 

 
=     Equation 4.4 

 

True density 

The true density was measured using an AccuPyc 1330 helium pycnometer (Micrometrics, 

Norcross, USA) having a known volume 12.0978 cm3. The apparatus determined the sample 

volume on the base of the displaced gas mass, and then it calculated the true density dividing 

the sample weight by the sample volume. The pycnometer repeated automatically the 

measurement five times for each sample, and the final true density was calculated as average 

of the five results. 

 

Scanning Electron Microscopy 

The SEM can plastically display surfaces like a light microscope, with the advantage that it 

scans the sample surface with an electron beam, instead of a light beam, leading to a resolving 

power of 1 nm and to a possible magnification of about 400’000x. The equipment consists of a 

cylindrical column supplied with an electron source, an anode plate, an electromagnetic lens, a 

specimen chamber, and a cathode-ray tube (CRT) (Figure 4.12). In order to obtain SEM 

images, extremely small quantities of UICEL-A/102 and MCC 102 samples were put on a 

double-sided carbon tape, sputtered with gold and then observed by means of a scanning 

electron microscope Philips SEM XL 30 FEG (Philips Electron Optics, Netherlands) at a voltage 

of 10 kV and 100x magnification. 

 

4.3.3 Additional tests for the characterization of MCC 102 and UICEL-A/102 

Powder X-ray diffraction (XRD) measurements were conducted over a 2-40° 2θ range on a 

Scintag Model XDS 2000 diffractometer (Cupertino, CA, USA), equipped with monochromatic 

Cu Kα X-Rays. The step width was 0.5° 2θ /min with a time constant of 0.5 s.  
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Figure 4.12: SEM Microscope [19] 

 

Samples were degassed applying vacuum at room temperature during 24 h prior to the 

determination of the specific surface area. Three samples of about 1.5 g for each powder were 

analyzed; for each measure five experimental points were used for calculation (BET multipoint). 

According to the BET theory, gas molecules physically adsorb on a solid in layers infinitely, and 

there is no interaction between each adsorption layer, so that the Langmuir theory can be 

applied to each layer. The resulting BET equation is expressed by Equation 4.5 (Brunauer et al., 

1938): 
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where P and P0 are the equilibrium and the saturation pressure of adsorbates at the 

temperature of adsorption, v is the adsorbed gas quantity (for example, in volume units),  vm is 

the monolayer adsorbed gas quantity and c is the BET constant. 

 

4.3.4 Direct pelletization of MCC 102 and UICEL-A/102 

First of all, homogeneous pellets, or pellets whose composition is the same in any point of their 

core and surface, were prepared (see Figure 2.9).  A schematic representation of the machine 

and the technology employed are depicted in Figure 4.13. It consists of a metal pan in which the 

product is loaded, a fixed height rotary disc with adjustable slit, through which an appropriate 
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amount of fluidizing air flows, a tangentially oriented spray nozzle and a filter unit above all. By 

fine adjustment of such parameters as air flow, make-up air temperature, compressed air 

pressure, rotor velocity, diameter of the nozzle, spray rate, pellets with appropriate, reproducible 

characteristics may be produced.  

(a) (b) 

  

Figure 4.13: Schematic representation (a) and section (b) of a fluidized bed GPCG 1.1 [14] 

 

Unfortunately, it was neither possible to provide the machine with a movable unit for powder 

consumption measurements, nor feasible to measure the torque. Accordingly, the end point of 

pelletization was determined by optimization, for each formulation, of the amount of granulating 

liquid leading to pellets with a mean diameter of 500 ± 300 nm. The process was monitored by 

pellets sampling in process. 

The powder mixture of filler (MCC 102 or UICEL-A/102) and active ingredient (sodium 

diclofenac), each time in the appropriate ratio, was loaded into a fluidised bed GPCG 1.1 (Glatt, 

Binzen, Germany) equipped with a rotor insert and tangential spray for the binder solution. The 

optmimized process conditions were: batch size: 500 g; inlet temperature: 20°C; product 

temperature: 16°C; air flow: 1.2 bar; nozzle diameter: 0.8 mm; spray pressure: 3.0 bar; spray 

rate: 30-50 g/min; final drying: from 35 to 50°C over 20 min. The pellets were additionally dried 

in an oven at 50 °C till 5-8% residual moisture. The pelletization experiments were designed by 

means of  a STAVEX full factorial design. The investigated factors were: type of filler in the 

tabletting mixture (MCC or UICEL-A/102), drug amount in the tabletting mixture (10-40% w/w), 

amount of sprayed granulating liquid (3-5% w/w). As response variables were chosen: the yield 

of the pelletization, defined as the mass of pellets within 500 ± 300 nm, and the proximity of the 

mean particle size of each run to the value 500 nm. In Table 4.4 the different runs carried out 

are listed. 
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Table 4.4: Batches of pellets produced 

Run SD [%] PVP [%] Filler 

1 10 3 MCC 102 

2 20 3 MCC 102 

3 40 3 MCC 102 

4 10 4 MCC 102 

5 20 4 MCC 102 

6 40 4 MCC 102 

7 10 5 MCC 102 

8 20 5 MCC 102 

9 40 5 MCC 102 

10 10 3 UICEL-A/102 

11 20 3 UICEL-A/102 

12 40 3 UICEL-A/102 

13 10 4 UICEL-A/102 

14 20 4 UICEL-A/102 

15 40 4 UICEL-A/102 

16 10 5 UICEL-A/102 

17 20 5 UICEL-A/102 

18 40 5 UICEL-A/102 

 

4.3.5 Pelletization of MCC 102 and UICEL-A/102 by dry powder layering 

Secondly, inhomogeneous pellets were prepared, i.e. pellets consisting of a neutral core layered 

with a mixture of excipient(s)/active ingredient(s). To produce such pellets, a novel pelletization 

technology known as dry powder layering was emplyoyed. The same machine used in §4.3.4 

was equipped with the components for powder addition: an agitated feeder with hollow helix, a 

powder transfer funnel with frame for an air filter and a powder dosing sleeve which surrounds 

the immersed spray nozzle (see Figure 4.14). This made it possible to add the mixture 

excipients/active with a specified velocity into the main chamber, independently of the spray rate 

of the granulation liquid. 

In the praxis, the main chamber of a fluidized bed GPCG 1.1 (Glatt, Binzen, Germany) was 

charged with 500 g of the starting cores (Suglets® 355 or Cellets® 350), whereas a powder 

mixture composed of 200 mg of filler (either MCC 102 powder or UICEL powder) and 200 mg of 

active ingredient (sodium diclofenac) was loaded into an appropriate box located over the main 

chamber. According to the dry powder layering method (see section 2.4.2), the cores were 

sprayed tangentially with the binder solution (5 % w/w water solution of PVP) and at the same 

time fed with the powder mixture. 
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Figure 4.14: Components for powder addition in a fluidized bed GPCG 1.1 [14] 

 

The optimized pelletizing conditions were: Batch size: 500 g; inlet temperature: 20°C; product 

temperature: 30°C; air flow: 100 m2/h; nozzle diameter: 0.8 mm; spray pressure: 3.0 bar; spray 

rate: 14-20 g/min; powder feed rate: 10.4 g/min; rotor speed: 1120 rpm. According to this 

general procedure, the pellet batches shown in Table 4.5 were produced. In order to obtain a 

product mean size of about 0.5 mm, samples were regularly withdrawn until the targeted mean 

size had been reached. The pellets were then dried in an oven at 60 °C till 4-8% residual 

moisture and the yield (product fraction having a diameter of 0.2 - 0.8 mm for the MCC-pellets 

and 0.2 - 1mm for the UICEL- pellets) was calculated. 

 

   Table 4.5: Batches of pellets produced 

Batch Powder filler Core 

1 MCC 102  Suglets® 

2 MCC 102  Cellets® 

3 UICEL-A/102 Suglets® 

4 UICEL-A/102 Cellets® 

   

4.3.6 Pellet coating 

Due to its retardation properties and its flexibility, the polyvinyl acetate Kollicoat® SR 30 D was 

selected as film builder (Dashevsky, 2004),(Guerra, 2006). The water suspension contained 

also the following components: Triethyl citrate (TEC) as a plasticizer, talk as a lubricant and 

riboflavin as a fluorescence marker (the riboflavin would act as marker in the integrity test of the 

film layer by means of CLSM ). The complete coating formulation is listed in Table 4.6. 
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Table 4.6: Composition of the spray suspension 

Substance Mixture [% w/w] 
Mixture on dry mass 

[% w/w] 

Kollicoat® SR 30 D 80.0 75.5 

TEC 3.6 11.3 

Riboflavin 0.2 0.6 

Water 14.2 - 

Talc 2.0 12.6 

Total 100 100 

 

The suspension was prepared according to the following procedure. In a beaker put on a 

magnetic plate and furnished with a magnetic stirrer, Kollicoat® SR 30 D and TEC were mixed 

and agitated for 15 minutes. Then riboflavin was dissolved in water and added to the mixture, as 

well as talc passed through a sieve (mesh size 90 µm). Finally, the mixture was sieved (mesh 

size 125 µm) to dispose of solid particles due to premature polymerisation. 

The coating formulation selected is normally employed for manufacturing sustained release 

pellets. What’s more, it provides the pellets with a flexible film which avoids ruptures during their 

compaction into MUPS. The addition of ≈ 4% w/w plasticizer in the coating suspension plays a 

crucial role in the aimed soft compaction, as it enhances the elasticity of the final film. Talc, on 

the other hand, is added in order to prevent the adhesion of the pellets between each other and 

against the internal surface of the apparatus. 

 

All four batches of pellets were coated in a fluidised bed, type Miniglatt (Glatt, Binzen, 

Germany), under the following optmimized parametric conditions: pellets 100 g, bottom spray, 

temperature of the inlet air 20°C, air flow pressure 0.5 bar, spray pressure 1.5 bar, nozzle 

diameter 0.8 mm, spray rate 1.3-1.5 g/min. According to the low MFT of Kollicoat® (18°C), no 

curing was necessary. The coated pellets were finally characterized and then stored in an 

exsiccator. 

 

4.3.7 Pellet characterization 

Homogeneous and inhomogeneous pellets (coated as well as uncoated) underwent the 

following characterization tests: 

- Residual moisture 

- Flowability  

- Bulk and tapped density, Hausner Ratio  

- Particle size distribution by means of sieve analysis 
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- Particle size distribution by means of Mastersizer 

- True density 

- Specific surface area 

- Drug content 

- Porosity 

- Scanning electron microscopy (SEM) 

- Confocal scanning laser microscopy CLSM (only for the coated batches) 

- Drug release (only for the coated batches) 

 

All methods, except drug content, porosity, CLSM and drug release, are extensively explained 

in § 4.3.2 and §4.3.3. 

 

Drug content  

The content of sodium diclofenac in pellets was measured by dissolving 100 mg of pellets in 

100 ml phosphate buffer pH 7.4 and measuring the absorption of the solution at 276 nm in a 

Beckmann DU®530 Spectrophotometer. For every batch the measurement was carried out in 

triplicate and expressed as an average ± standard deviation. 

 

Porosity 

The porosity of the pellets was measured in a Mercury porosimeter PoreSizer 9320 System 

(Micromeritics, Norcross, GA, USA), Software V. 2.05. The experiment was carried out in 

triplicate on 200 mg of pellets.  

 

Confocal laser scanning microscopy (CLSM) 

The CLSM, which finds extensive application in natural sciences, is a light microscopy imaging 

technique capable of taking innumerable optical sections through a 3-dimensional fluorescent 

specimen along one specific plane. This is simply achieved by moving the focal plane of the 

instrument through the depth of the specimen, step by step.  

To create the optical sections, a collimated, polarized laser beam is reflected by a beam splitter 

and focused onto the specimen. At each point of the specimen a certain fluorescent light is 

emitted and an image registered and reassembled by a computer. A pinhole positioned next to 

the detector serves as remover of any emitted light which does not come directly from the focal 

point (Figure 4.15). 

Starting from different optical sections of a specimen, it is also possible to reconstruct its 3-

dimensional image (Figure 4.16). This technique is especially suited for thick and opaque 

specimens, barely observable by conventional light microscopes. 
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Figure 4.15: The principle of a confocal laser scanning microscope [20] 

 

 

 

,  

Figure 4.16: Optical section of a sphere by confocal planes [21] 

 

The uniformity of the pellet coating films was ascertained using a Leica TCS-SP5 (Leica 

Microsystems Heidelberg GmbH, Mannheim, Germany) confocal laser scanning microscope 

with an objective 10x 0.3 dry. Images were recorded in sections of 1 µm through the depth of 

the specimen, and evaluated using the software Leica Advanced Fluorescence 1.6.3 Build 

1163. 
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Drug release from the coated pellets 

The drug release test was performed in a dissolution apparatus Sotax AT 7 smart (Sotax AT 7, 

Allschwil/Basel, Switzerland) according to the general specifications of USP XXX; in particular, 

the dissolution conditions for sodium diclofenac solid dosage formulations were employed (USP 

XXX, NF XXV). 200 mg of each coated pellet batch were put into 900ml of phosphate buffer pH 

7.4, the paddle rotating speed set was 50rpm and the temperature 37±1°C. Samples (10 ml) of 

dissolution medium were removed at regular time intervals, while an equal volume of dissolution 

medium held at the same temperature was added to maintain a constant volume. Sink 

conditions (the concentration of the active ingredient in the medium should be less than 10% of 

the concentration of a saturated solution) were maintained throughout the entire experiment. 

The drug liberated was measured using a Beckmann DU®530 Spectrophotometer and the 

values were plotted vs. time as an average with standard deviation.  

To determine of the solubility of SD in phosphate buffer, and subsequently calculate the sink 

conditions, a saturated solution was prepared by adding an excess of SD to the phosphate 

buffer at pH 7.4 and 37°C. The concentration was then determined using the same 

spectrophotometer and calibration curve. 

4.3.8 Tabletting 

For the compaction of the coated pellets into MUPS, it was made a clear distinction between 

homogeneous and inhomogeneous pellets. The term “homogeneous” was here not referred to 

the homogeneity of the coating layer, but to the homogeneity in composition of the uncoated 

pellets. In other words, the homogeneous pellets were the ones obtained via direct pelletization 

(see §4.3.4), the inhomogeneous, on the other hand, those obtained by dry powder layering on 

neutral cores (see §0). 

 

Homogeneous pellets 

In order to restrict in advance potentially promising formulations, preliminary experiments were 

carried out. In the frame of such pre-experiments, the coated pellets were mixed with 5-15% 

w/w of disintegrant (UICEL-A/102 or STA-RX® 1500), 10-90% w/w of filler (MCC 102) and 0.5% 

w/w of lubricant (magnesium stearate) according to a preliminary STAVEX factorial design. 

Each tabletting mixture was compressed into MUPS using a PressterTM Compaction Simulator 

(Metropolitan Computing Corporation, East Hanover, USA) equipped with a D-tooling single-

punch (diameter of 10 mm, flat surface). The distance between the punches (2.2 mm) and the 

linear velocity of the compression (0.108 m/s) were held constant. 

The criteria for selection were the values of crushing strength and the disintegration time: only 

MUPS formulations with a crushing strength of 80-180 N and a disintegration time of < 15 
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minutes were processed further. The selected formulations were further investigated by means 

of STAVEX factorial design with quadratic external D-optimisation, with the aim of delimitating 

the experimental domain  to its centre and a series of points at appropriate distance from the 

centre depending on the investigated factors.  

The factor ranges varied according to the following scheme: the amount of coated pellets was 

set out at 40-60%, the amount of cushioning excipient at 30-50%, the disintegrant was held 

constant at 10%. In addition, the type of filler in pellets (MCC 102 or UICEL-A/102) and the type 

of disintegrant in MUPS (UICEL-A/102 or or STA-RX® 1500) were set out as quantitative factors 

with two levels each. The investigated response variables were: disintegration time and 

dissolution time of the tablets. The design is presented in  

Table 4.7. For the coated pellet runs employed please refer to Table 4.4. 

 

Table 4.7: Composition of the tabletting mixtures (homogeneous pellets) 

Mixture Type of filler in pellets 
Loading amount 

of SD (%) 
Run 

Type of disintegrant in 

MUPS 

Amount of pellets in 

MUPS (%) 

1 MCC 102 10 1b UICEL-A/102 40 

2 MCC 102 10 1b UICEL-A/102 60 

3 MCC 102 40 3b UICEL-A/102 40 

4 MCC 102 40 3b UICEL-A/102 60 

5 MCC 102 10 1b STA RX® 1500 40 

6 MCC 102 10 1b STA RX® 1500 60 

7 MCC 102 40 3b STA RX® 1500 40 

8 MCC 102 40 3b STA RX® 1500 60 

9 UICEL-A/102 10 16b UICEL-A/102 40 

10 UICEL-A/102 10 16b UICEL-A/102 60 

11 UICEL-A/102 40 15b UICEL-A/102 40 

12 UICEL-A/102 40 15b STA RX® 1500 60 

13 UICEL-A/102 40 15b UICEL-A/102 50 

14 UICEL-A/102 20 17b UICEL-A/102 60 

15 UICEL-A/102 10 16b STA RX® 1500 50 

16 UICEL-A/102 20 17b STA RX® 1500 40 

17 MCC 102 20 2b STA RX® 1500 50 

 

For all 17 formulations in  

Table 4.7,  25g mixtures were prepared. The coated pellets, the cushioning excipient and the 

disintegrant in the relevant proportions were first mixed 5-7 minutes in a turbula mixer (Willy A. 

Bachofen Maschinenfabrik, Basel, Switzerland), sieved (mesh size 800 µm) and then mixed 5 

min more. Finally, 0.125 g (0.5 % of the total mixture) of magnesiumstearate were added and 

the mass was mixed for other 2 minutes. 
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The tabletting was performed in a Presster Compaction Simulator (Metropolitan Computing 

Corporation, East Hanover, USA) equipped with a single-punch (diameter of 10 mm, flat 

surface).  400 mg of each mixture were weighed, each time filled manually in the die, and 

compacted according to the same procedure and conditions mentioned above. 

 

Inhomogeneous pellets 

In analogy with the homogeneous pellets, several tabletting formulations of inhomogeneous 

pellets were also submitted to pre-experiments with the same procedure and criteria described 

above. The selected formulations underwent an analogous STAVEX factorial design with 

quadratic external D-optimisation (see Table 4.8), with the only difference that an additional 

factor was added, i.e. the neutral core type (Cellets® or Suglets®). 

The tabletting mixtures were composed of: 20-80% of coated pellets with different cores (either 

Cellets® or Suglets®), MCC 102 powder as cushioning excipient and 10% of either UICEL or 

STA RX® 1500 as disintegrant.  

In Table 4.8 all pre-formulations are listed; the number of pellet runs refer to Table 4.5, with the 

only difference that here the respective coated batches are meant. The rest of the formulation 

consist of 0.5% of Mg-Stearate, 10% of disintegrant and cushioning excipients (MCC 102) ad 

100%. 

 

Table 4.8: Composition of the tabletting mixtures (inhomogeneous pellets) 

Mixture Neutral cores % pellets Pellet Run Type of disintegrant 

 Cellets Suglets U. pellets M. pellets   

1 x  40  4 UICEL-A/102 

2 x  50  4 UICEL-A/102 

3 x  60  4 UICEL-A/102 

4  x 40  3 UICEL-A/102 

5  x 50  3 UICEL-A/102 

6  x 60  3 UICEL-A/102 

7 x  40  4 STA RX® 1500 

8 x  50  4 STA RX® 1500 

9 x  60  4 STA RX® 1500 

10  x 40  3 STA RX® 1500 

11  x 50  3 STA RX® 1500 

12  x 60  3 STA RX® 1500 
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8 g of each formulation were prepared. First of all, the coated pellets, along with the appropriate 

amount of filler and disintegrant, were mixed for 6 minutes in a turbula mixer (Bachofen 

Maschinenfabrik, Basel, Switzerland). The mixture was then sieved (mesh size 1.4 mm), mixed 

again for 4 minutes, added with 0.5% of magnesium stearate and finally mixed for 2 minutes 

more. Compaction was performed in a PressterTM Compaction Simulator (Metropolitan 

Computing Corporation, East Hanover, USA), equipped with a single punch with a diameter of 

10 mm and a flat surface. The rotary tablet machine simulated was the Korsch 336, which is 

composed of 36 press stations, the precompression and compression rolls having a diameter of 

110 and 330 mm respectively.  

400 mg of each mixture were weighed and manually filled in the punch die. The tabletting 

parameters set for all formulations were: compression gap 2.20 mm, dosing position 17.40 mm, 

ejection position 10.9 degrees, precompression 14.30 mm. 

 

4.3.9 Characterisation of MUPS 

Both USP XXXI and European Pharmacopoeia 2002 do not make any difference between 

monolithic tablets and multiparticular tablets (MUPS) concerning their characterization. 

Accordingly, the MUPS were characterized by means of: 

- Crushing strength 

- Porosity 

- True density 

- Disintegration 

- Drug release 

- Scanning electron microscopy (§ 4.3.2) 

- Confocal laser scanning microscopy (§ 4.3.7) 

- Determination of pellet distance in MUPS 

 

Crushing strength 

The breaking load of the tablets  was accomplished with a tablet tester Dr. Schleuniger model 

8M (Dr. Schleuniger Pharmatron, Solothurn, Switzerland) with a crushing speed of 0.7 mm/s. 

The crushing strength was checked 24 hours after production of the tablets 

 

Porosity 

The porosity of the tablets was calculated according to the following equation: 
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[ ] 1001 ∗−=
true

app

ρ

ρ
ε          Equation 4.6 

where:  ε: porosity of the compact 

  ρapp: apparent density of the compact [g/cm3] 

  ρtrue: true density of the compact [g/cm3] 

  ρapp/ ρtrue: relative density of the compact 

 

The apparent density of the compact was calculated dividing the weight of the tablet by its 

volume: 

V

m
app =ρ           Equation 4.7 

where:  m: weight of the tablet [g] 

  v: volume of the tablet [cm3] 

 

The weight, as well as the diameter and the thickness, which were used to calculate the volume, 

were determined using five tablets. 

 

True density 

The true density of the tablets was calculated by adding the true density of each component of 

the tablet multiplied by its fraction: 

 

MCCMCCdisdispptrue xxx ρρρρ ++=        Equation 4.8 

 

where:  xn: fraction of the substance n in the tablet [w/w] 

  ρn: true density of the substance n [g/cm3] 

  p: pellets 

  dis: disintegrant 

 

Finally, replacing the          

 Equation 4.7 and        Equation 4.8 into  

        Equation 4.6, the final equation is 

obtained: 

 

[ ] 100
1

1 ∗
++

−=
MCCMCCdisdispp xxxV

m

ρρρ
ε                                             Equation 4.9 
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Disintegration 

The disintegration time was determined in a disintegration apparatus Sotax ST2 (Sotax, 

Allschwil/Basel, Switzerland) with a basket-rack assembly. The disintegration medium used was 

distilled water set at the temperature of 37±1°C. The tablets were considered disintegrated 

when no residue of the units remained in the basket, except for fragments of the coating layer. 

For each formulation six tablets were tested and the time taken to complete the disintegration 

was recorded; the results were expressed as average of the six measurements. 

 

Drug release 

The drug release test was performed in a dissolution apparatus Sotax AT 7 smart (Sotax AT 7, 

Allschwil/Basel, Switzerland) according to the general specifications of USP XXX, monography  

NF XXV. For each formulations, 3 tablets (400 mg) were put into 900ml of a phosphate buffer at 

pH 7.4, the paddle rotating speed was set at 50rpm and the temperature at 37±1°C. Samples 

(10 ml) of dissolution medium were removed at regular time intervals, adding each time an 

equal volume of the same dissolution medium to maintain the volume constant. Sink conditions 

(the concentration of the active ingredient in the medium should be less than 10% of the 

concentration of a saturated solution) were maintained throughout the experiment. The 

absorbance of each sample at a specific wavelength (λmax of sodium Diclofenac in the buffer = 

276 nm) was measured by a Beckmann DU®530 UV-Spectrophotometer; through a calibration 

curve,  from that absorbance value the amount of drug liberated at each time was calculated; in 

the end, the drug amount liberated was plotted as average with standard deviation [w/w %] in 

function of time. 

For the determination of the solubility of SD in the phosphate buffer, and subsequently calculate 

the sink conditions, a saturated solution was prepared by adding an excess of SD to the 

phosphate buffer at pH 7.4 and 37°C. The concentration was then determined using the same 

spectrophotometer and calibration curve. 

 

Determination of pellet distance in MUPS (Image J) 

Image J is a public domain Java image processing program inspired by NIH Image for the 

Macintosh. In this study, it was downloaded directly from the internet (http://rsb.info.nih.gov/ij/) 

and employed to calculate the mutual distance between pellets in MUPS (see Figure 4.17). The 

standard deviation of this distance was defined as the segregation index of pellets in MUPS. 

 

 



Materials and Methods 

 

98 

 

 
Figure 4.17: Determination of pellets distance by means of Image J 
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5. Results and Discussion 

 

5.1 Characterization of  MCC 102 and UICEL-A/102 

 

Table 5.1.: Characterization data of MCC 102 and UICEL-A/102 (SD are given in parenthesis). 
 

 MCC 102 UICEL-A/102 

X-ray diffractogramm 
Peaks at 15, 17, 23° 2θ 

(cellulose I lattice) 

Peaks at 12, 20, 22° 2θ 

(cellulose II lattice) 

Degree of cristallinity [%] 75.0 67.0 

FT-IR spectra 

- inter and intramolecular O-H 

stretching vibration band: 

3440cm−1 

- peaks at 1430 and 1320 cm-

1 stronger 

- inter and intramolecular O-H 

stretching vibration band: 

3340cm−1 

- peak at 900 cm−1stronger 

Loss on drying [%] 5.20 (0.03) 7.00 (0.05) 

Bulk density [g/ml] 0.377 (0.001) 0.465 (0.006) 

Tap density [g/ml] 0.425 (0.003) 0.526 (0.003) 

True density [g/cm3] 1.577 (0.003) 1.539 (0.004) 

Porosity [%] 73.1 65.8 

Hausner ratio 1.127 (0.02) 1.131(0.05) 

Carr’s Index [%] 11.29 (0.23) 11.60 (1.34) 

Particle size distribution average [µm] 122.36 (2.45) 108.68 (3.57) 

Specific surface area [m2/g] 1.73 (0.05) 2.05 (0.10) 

 

UICEL-A/102 showed a moderately higher loss on drying than MCC 102 (see 5.1); this 

difference is confirmed in literature (Kothari, 1998) and it is an indicator of the higher wettability 

of the former. The powder X-Ray diffractograms of MCC 102 and UICEL-A/102 are reported in 

Figure 5.1 and Figure 5.2. MCC 102 showed reflections that are characteristic for the cellulose I 

lattice; UICEL-A/102, in contrast, presented diffraction peaks at about 12, 20, and 22 ° 2θ 

(corresponding to 101, 101 and 002 reflections, respectively), which indicated the presence of 

the cellulose II lattice (Kothari, 1998). In addition, UICEL-A/102 exhibited a cristallinity degree of 

67% (slightly higher than the results reported in literature (Kumar, 2002), whereas the degree of 

cristallinity of MCC 102 was about 75 % (Krassig, 1996). 
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Figure 5.1: X-Ray diffractogramm of MCC 102 

 

 

Figure 5.2: X-Ray diffractogramm of UICEL-A/102 
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This difference in crystallinity degree between UICEL-A/102 and MCC 102 can be attributed to 

the different crystal lattices present in the two materials: in cellulose I the chains are arranged in 

a parallel way, in cellulose II in an anti-parallel manner.  

This leads to different interchain and intrachain hydrogen bonding networks, and, consequently, 

to a different degree of crystallinity. Studies show that cellulose II possesses additional 

hydrogen bonding between chains at the corners and the centres of the unit cells, and it is 

accordingly more stable than cellulose I (Krassig, 1996). 

Figure 5.3 compares the SEM photographs of MCC 102 and UICEL-A/102. MCC 102 showed 

an aggregated structure composed of small fibres with coalesced boundaries, whereas UICEL-

A/102 consisted of a mixture of aggregated and non-aggregated fibres.  

 

The FT–IR spectra of UICEL and MCC 102 are compared in Figure 5.4. The two spectra 

showed the following differences: firstly, the characteristic intermolecular and intramolecular 

O_H stretching vibration band in the spectrum of UICEL-A/102 appeared broader and showed 

the higher maximum intensity around 3440 cm−1, whereas for MCC 102 this band was at about 

3340 cm−1; secondly, the peaks at 1430 and 1320 cm−1, associated with the intramolecular 

hydrogen bonds at the C6 group and O_H in-plane bending vibration, respectively, were weaker 

in UICEL-A/102 than in MCC 102; thirdly, due to an enhanced antisymmetric out-of-phase 

stretching vibration, the absorption band at 900 cm−1 in the spectrum of UICEL-A/102 was 

relatively more intense than that in MCC 102. It has been reported that the intensity of this peak 

increases with a decrease in crystallinity of the cellulose sample and a change in the crystal 

lattice from cellulose I to cellulose II. The fact that UICEL-A/102 featured that peak more 

intensively compared with MCC 102 confirmed that the former was the low crystallinity material 

and contained the cellulose II lattice. 

 

  

Figure 5.3: SEM pictures of MCC 102 (left) and UICEL-A/102 (right) 
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UICEL-A/102 was proved to be more compact than MCC 102, as its lower true density and 

porosity indicated, which might pledge for less ductile and more elastic mechanical properties. 

The Hausner ratio and the Carr index have been extensively used to evaluate the flow 

properties of powders. A Hausner ratio of less than 1.20 indicates good flowability of the 

material, whereas a value of 1.5 or higher suggests a poor flow (Wells, 1988). The Carr index 

values of 5-10, 12-16, 18-21, and 23-28 indicated, respectively, excellent, good, fair and poor 

flow properties of the material (Carr, 1965). The Hausner ratio and the Carr’s index of UICEL-

A/102 and MCC 102, which are listed in Figure 5.1, suggested that both powders possess fair 

good flow properties. The moderately higher Hausner ratio and Carr’s index values of UICEL-

A/102 were attributed to its fibrous structure, which easily aggregates and leads accordingly to 

moderately poorer flow properties.  

 

 

Figure 5.4: Comparative FT-IR of MCC 102 (blue) and UICEL (red) 
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As Kumar et al. suggest (Kumar, 2002), the relatively higher bulk and tap densities of UICEL-

A/102 are advantageous in tabletting, because the volume of die-fill is correspondingly reduced. 

Both MCC 102 and UICEL-A/102 displayed a Gaussian particle size distribution, the former 

having a slightly higher particle size average than the latter (see Table 5.1). This difference may 

be attributed to the different production paths, spray-drying for the former, hydrolysis in alkali 

followed by drying at 45-50 °C for the latter. 

 

5.2 Characterization of pellets by direct pelletization 

5.2.1 Characterization of the coated vs. uncoated pellets 

The characterization data of all homogeneous pellet batches, coated as well as uncoated, are 

summarized in Table 5.2. Runs “a” correspond to the uncoated pellet batches, whereas runs “b” 

refer to the respective coated batches. 

 

Table 5.2: Pellet characterisation: a) uncoated pellets; b) coated pellets 

Mean particle 
size distribution 
[µm] 

Run AI [%] Filler Applied 
coating 
[%] 

Loss 
on 
drying 
[%] 

Porosity HR 

Sieve 
An. 

Malvern 

True 
density 
[g/cm3] 

Specific 
surface 
area 
[m2/g] 

1a 10 MCC - 6 0.11 1.05 490.4 494.96 1.5949 0.6914 

2a 20 MCC - 6 0.13 1.04 624.8 610.25 1.6010 0.7364 

3a 40 MCC - 9 0.11 1.06 475.5 462.68 1.5973 0.6247 

15a 10 UICEL - 9 0.16 1.15 493.8 508.28 1.5750 1.1500 

16a 20 UICEL - 5 0.19 1.18 390.3 375.99 1.5410 0.8560 

17a 20 UICEL - 6 0.18 1.14 451.1 460.12 1.5530 0.9600 

18a 40 UICEL - 8 0.18 1.18 280.8 270.16 1.5592 0.8722 

           

1b 8.1 MCC 22.2 5 0.10 1.08 589.7 628.02 1.5848 0.6500 

2b 16.6 MCC 20.1 6 0.12 1.09 749.0 720.02 1.5996 0.6942 

3b 33.8 MCC 18.2 8 0.10 1.10 570.0 555.02 1.5383 0.9824 

15b 8.6 UICEL 16.5 8 0.18 1.16 591.6 600.02 1.5653 0.5964 

16b 16.9 UICEL 18.6 4 0.17 1.20 558.6 564.19 1.5404 0.6247 

17b 17.2 UICEL 16.0 5 0.16 1.16 578.0 591.65 1.5506 0.6345 

18b 33.3 UICEL 19.8 7 0.15 1.22 284.0 305.31 1.5567 0.6475 

 

MCC 102 uncoated as well as coated pellet batches displayed HR values between 1.04 and 

1.10, showing therefore excellent flowability and perspective packing ability. 
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UICEL-A/102 uncoated and coated pellets, on the contrary, featured moderately higher HR 

values (1.14 - 1.22). This can be explained observing the pellet shape and surface morphology 

(Figure 5.4): UICEL-A/102 pellets appeared less spherical and smooth than MCC 102 pellets, 

which facilitated entanglement between them and sank their HR and flowability. Furthermore, 

MCC 102 pellets proved to have higher true densities and accordingly lower porosity and lower 

specific surface areas compared to their UICEL-A/102 counterparts. This was again supported 

by the SEM images of the uncoated and the CLSM images of the coated pellets (Figure 5.5).  

In line with the production technology employed, all the uncoated pellet batches showed normal 

particle size distribution with average particle size around 500 µm; UICEL-A/102 pellets were 

generally smaller than MCC 102 pellets, as their SEM images confirmed. In particular, Run 18a  

featured significantly lower (275 µm) particle size average and was therefore no further 

processed. The enhancement in average size of the coated pellet batches generally reflected 

their 20% mass enhancement after the coating. 

In analogy with the findings of previous studies, in which technological comparisons between 

UICEL-A/102 and MCC 102 as direct compaction excipients and their respective tablets were 

performed (Kumar, 2002), (Reus-Medina, 2006), the characterization results revealed a clear 

parallelism between the morpho-technological characteristics of MCC 102 and UICEL-A/102 

and their respective pellets (see §5.1). This represents an important result, since no 

investigations have focused so far on the use of UICEL-A/102  as a pelletization excipient.  

 

5.2.2 SEM and CLSM images 

Figure 5.5 presents SEM images of uncoated pellets (a) and confocal images of coated pellets 

(b). The SEM images, along with the porosity results, indicated once more that MCC 102 pellets 

were generally more spherical and compact, and accordingly less porous, than UICEL-A/102 

pellets, this discrepancy decreasing at enhancing amount of AI. The uncoated pellets generally 

retained their technological properties after coating: MCC 102 coated pellets proved to be 

slightly bigger and smoother than their UICEL-A/102 counterparts. Both MCC 102 and UICEL-

A/102 coated pellets featured homogenous layers, as the CLSM images corroborated. In 

particular, UICEL-A/102 Runs proved to have enhanced sphericity after coating. This result is in 

contrast with literature, since two important studies reported that pellet sphericity coefficient is 

maintained after coating and that smoother pellets are consistently better and more 

homogeneously coatable than those featuring rough, irregular surface (Lehmann, 1994), 

(Beckert, 1996). 
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Run 1a Run 2a Run 3a 

   

   

Run 1b Run 2b Run 3b 

   

   

Run 15a Run 16a Run 17a 

   

   

   

Run 15b Run 16b Run 17b 

Figure 5.5: SEM images of uncoated pellets (grey) against CLSM images of coated pellets (green) 
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5.2.3 Dissolution from coated MCC 102 and UICEL-A/102 pellets 

Figure 5.6 illustrates the drug release profile from diverse coated pellet formulations. If the 

coating film extended the AI dissolution from the MCC 102 pellets over about 2 hours, it failed to 

sustain the AI release from the UICEL-A/102 pellets (dissolution of around 20 min.). 
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Figure 5.6: Drug release from diverse pellet formulations  

 

Considering that the coating layers of all pellet batches were comparable in quantity and 

function, and that no pore maker was added into the coating suspension, this difference was 

attributed to the prevalent swelling properties of UICEL-A/102.  

As discussed in §2.9.2, the release mechanism from pellets can occur via solution/diffusion  

through the polymer film, solution/diffusion through plasticizer channels or solution/diffusion 

through aqueous channels. Even if all these three mechanisms occur simultaneously, normally 

one of them steers the overall release. In our case, considering that Kollicoat® SR 30 D was 

suspendable (not soluble) in water, and that SEM consistently indicated the absence of any 

pores in the coating, it is likely that diffusion through the polymer film contributed significantly to 

the overall release rate in the case of MCC 102 coated pellets. On the contrary, in the case of 

UICEL-A/102 pellets, the solution/diffusion through aqueous channels was the driving 

mechanism due to the prevalent swelling properties of UICEL. 
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5.3 Characterization of pellets by dry powder layering 

5.3.1 Characterization of uncoated MCC 102 and UICEL-A/102 pellets 

The pellets compositions, calculated on the base of the PVP amounts actually employed, are 

listed in Table 5.3. 

 

Table 5.3: Composition of each batch 

Core Filler PVP SD content Eff. SD content 
Batch 

Type [%] Type [%] [%] [%] [%] 

1 Suglets® 63.2 MCC 102  16.8 3.2 16.8 18.2±0.3 

2 Cellets® 66.4 MCC 102  15.3 3 15.3 16.5±1.1 

3 Suglets® 60.8 UICEL-A/102 17.2 4.8 17.2 15.2±0.7 

4 Cellets® 58.1 UICEL-A/102 18.6 4.7 18.6 16.1±0.6 

 

The effective AI content of the four pellet batches was proved to slightly deviate from the 

theoretical one; it was moderately higher for the MCC 102 pellets and slightly lower for the 

UICEL-A/102 pellets. This difference could be explained by a more pronounced tendency of 

MCC 102 to stick to the equipment surface. Further results of the pellet characterisation are 

listed in Table 5.4.  

 

Table 5.4: Characterization of uncoated pellets 

Mean particle size 

distribution [µm] Batch Yield [%] 

Residual 

moisture 

[%] 

Flowability 

[g/min] 

Hausner 

ratio 
Sieve an. Mastersizer 

True 

density 

[g/cm3] 

Drug content 

[%] 

1 84.2 3.5 435.54 1.07 602.5 569.75 1.455 18.2±0.3 

2 94.5 2.8 518.56 1.03 596.1 550.92 1.444 16.5±1.1 

3 85.1 5.0 463.51 1.03 656.8 671.87 1.400 15.2±0.7 

4 96.5 6.5 444.14 1.03 636.5 649.74 1.411 16.1±0.6 

 

Both batches of UICEL-A/102 pellets (3 and 4) showed higher mean particles size and residual 

moisture and lower true density than their MCC 102 counterparts. The same trend was 

observed in the homogeneous pellets produced via direct pelletization (§5.2.1). 
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The HR values being lower than 1.15 indicated that all batches owned very good flow 

properties. The however negligible discrepancy between the particle size determined with the 

sieve tower and with the Mastersizer is to explain considering that the sieve analysis provides a 

mass based particle size distribution, the laser analysis, on the other hand, a volume based 

particle size distribution. The slight difference in size between Suglets® and Cellets® batches 

was reflected in their pellets: batches 1 and 3 owned moderately bigger particle size than 

batches 2 and 4, respectively.  

 

5.3.2 Characterization of coated vs. uncoated pellets 

 

 

Table 5.5 schematically presents the characterisation results of coated and uncoated pellets.  

Compared with their MCC 102 counterparts, UICEL-A/102 uncoated pellets owned bigger 

particle size distribution (600 against 650 µm), higher residual moisture (5% against 3%), higher 

porosity (0.08 against 0.10), lower true density (1.400 against 1.450 g/cm3), higher specific 

surface area (0.600 against 0.570). This trend, observable also in the coated batches, was put 

in correlation with the differences between MCC 102 and UICEL-A/102 (see §5.1). 

Nevertheless, all the over mentioned differences were comparably lower than in the pellet 

batches obtained by direct pelletization (see Table 5.2). In analogy with studies of Beckert and 

Lehmann, this discrepancy was attributed to the big neutral core reducing  considerably the 

differences between the diverse pellet batches (Beckert et al., 1996), (Lehmann et al., 1995). 

 

 

Table 5.5: Results of the uncoated and coated pellets characterization 

Pellets AI 
[%] 

Applied 
coating 

[%] 
Porosity 

Loss 
on 

drying 
[%] 

Mean 
particle 
size(1) 
[µm] 

Mean 
particle 
size(2) 
[µm] 

HR 
True 

density 
[g/cm3] 

Specific 
surface 

area 
[m2/g] 

uncoated 18.2 - 0.081 3.5 602.5 569.75 1.07 1.455 0.551 MCC 102 

Suglets® coated - 26 0.082 - 830.1 801.67 1.10 1.362 0.554 

uncoated 16.5 - 0.073 2.8 596.1 550.92 1.03 1.444 0.584 MCC 102 

Cellets® coated - 25.5 0.075 - 844.1 794.06 1.08 1.389 0.597 

uncoated 15.2 - 0.100 5.0 656.8 671.87 1.07 1.400 0.601 UICEL-A/102 

Suglets® coated - 25.6 0.090 - 907.2 892.55 1.12 1.335 0.610 

uncoated 16.1 - 0.110 5.5 636.5 649.74 1.03 1.411 0.620 UICEL-A/102 

Cellets® coated - 25.3 0.112 - 833.0 906.13 1.07 1.342 0.630 
(1) particle distribution by means of sieve analysis; (2) particle distribution by means of laser analysis 
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5.3.3 SEM images 

Figure 5.7 shows the SEM images of one pellet of each batch produced. Opposed to the pellets 

produced by direct pelletization (§5.2), no evident morphological differences could be identified 

between MCC 102 and UICEL-A/102 pellets. In fact, all pellet batches consisted of spherical 

pellets with smooth, homogeneous surface, as shown in Figure 5.7. In other words, the use of 

MCC 102 or UICEL-A/102 as filler in dry powder layering did not account for appreciable 

morphological differences in the final product. This result represented a big step forward 

compared to the simple fluidized bed pelletization, which delivered  on the one hand almost 

spherical, homogenous and compact MCC 102 pellets, on the other hand porous, more 

irregularly shaped UICEL pellets (see Figure 5.5) (Guerra, 2006). Nonetheless, it must be 

signalized the presence of some protrusions, highly probably due to the impossibility of fine 

tuning of the powder addition into the main chamber of the fluidized bed. Considering their 

advantageous properties, we can reasonably assume that both MCC 102 and UICEL pellets 

produced with dry powder layering might represent homogeneously coatable cores (§5.3.4). 

 

  

Batch 1: MCC 102 pellet with Suglets® cores Batch 2: MCC 102 pellet with Cellets® cores 

  

Batch 3: UICEL-A/102  pellet with Suglets® cores Batch 4: UICEL-A/102  pellet with Cellets® cores 

Figure 5.7: SEM images of the four pellet batches 
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5.3.4 SEM vs. CLSM images 

SEM pictures of uncoated (grey, left) and coated (grey, middle) pellets plus CLSM pictures of 

the same coated pellets (green, right) are presented in Figure 5.8. According to the SEM 

pictures, all four pellet batches were covered with a homogeneous film layer without pores. The 

successful layering was to some extent due to coating technology employed, but more 

importantly to the favourable characteristics of pellet surface and morphology of the uncoated 

pellets. In other words, more compact and regularly shaped UICEL-A/102 pellets produced 

through dry powder layering on neutral beads eased the formation of a homogenous, coalesced 

film layer. This finding is in agreement with literature, as many publications asserted the 

advantages of dry powder layering on nuclei to get almost homogeneaously coated pellets 

(Beckert, 1995), (Bodmeier, 1997), (Wagner, 1999a), (Opitz, 2005). 
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Uncoated pellets Coated pellets Coated pellets (CLSM) 

   

A. MCC-sugar spheres 

   

B. MCC cellets 

   

C. UICEL-sugar spheres 

   

D. UICEL-cellets 

Figure 5.8: SEM and CLSM pictures of the four batches of pellets 
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5.3.5 Dissolution from coated MCC 102 and UICEL-A/102 pellets  

Figure 5.9 shows the drug release profiles of the four batches of coated pellets. As expected, 

pellets loaded with UICEL-A/102 showed a faster release rate than those loaded with MCC 102. 

This was again ascribed to the swelling and disintegrating properties of UICEL-A/102. 

Conversely, neutral cores loaded with MCC 102 showed a relatively slower drug release, due to 

the less intense disintegration properties of MCC 102 (see §2.3.1).  

The use of Cellets® or Suglets® as inert cores played a consistent role, since the pellets batches 

layered on the former were released slightly faster than their counterparts layered on the latter. 

This finding was associated with the starch content in Suglets® (4% w/w), which contributed to 

accelerate moderately the disintegration and dissolution processes. 
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Figure 5.9: Dissolution behaviour of the coated pellets by dry powder layering (see  

 

Table 5.5) 
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In Figure 5.10, the release profile of one batch of MCC 102 and UICEL-A/102 coated pellets 

produced by dry powder layering are compared against their analogous produced by direct 

pelletization.  

 

Figure 5.10: Dissolution behaviour of MCC and UICEL pellets produced with different techniques 
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In both cases, the pellets produced by drug powder layering underwent considerably slower 

dissolution than those manufactured through direct pelletization. This difference was attributed 

to the different composition of the two pellet types. In fact, homogenous pellets produced by 

direct pelletization had higher content of either MCC 102 or UICEL-A/102, if compared with their 

counterparts manufactured by dry powder layering. As a result, they disintegrated and dissolved 

proportionally faster. The fact that this trend was more remarkable in UICEL-A/102, far better 

disintegrant than MCC 102, corroborated the conclusion. 

Regarding the dissolution mechanism, we concluded in §5.2.3 that homogeneous coated pellets 

underwent solution/diffusion through the polymer film and dissusion through aqueous channels 

simultaneously, with UICEL-A/102 pellets preferring the second release mechanism (see 

§2.9.2). Analogous conclusion can be drawn in the case of inhomogeneous coated pellets. 

 

5.4 Multiple Unit Pellet Systems (MUPS) 

5.4.1 Compaction of homogeneous pellets into MUPS 

Preliminary experiments 

The results of preliminary experiments for the compaction of homogeneous pellets are listed in 

Table 5.6. A noticeable correlation between the target properties and the amount of disintegrant 

could be easily observed. In fact, with respect to the  targeted values of crushing strength (80-

120 N) and disintegration time (less than 15 min.), the MUPS formulations containing 10% of 

disintegrant were indicated as the most suitable ones. In this favourable amount, no significant 

difference in the employment of UICEL-A/102 or STA RX® 1500 was observed. 

Generally, the higher the percentage of pellets in the formulation, the lower the crushing 

strength of MUPS and the longer their disintegration into the subunits. In fact, MUPS containing 

70-90% of pellets proved not to be robust enough and/or did not disintegrate into their subunits, 

but in inseparable agglomerates of fused pellets (n.a. in Table 5.6). This trend was attributed to 

the increasingly lower dilution effect of MCC 102, which caused the pellets to stick to each other 

building undesired aggregates. On the other hand, MUPS containing 10-30% of pellets showed 

too high crushing strength (>120 N), certainly due to the increasing amount of MCC 102 as 

embedding material, which made them behave as matrix tablets (Bodemeier, 1997).  
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Table 5.6: Values of crushing strength and disintegration time of different pre-formulations 

 

Pellets in  
Tabletting  
Mixture  
[w/w %] 

Disintegrant 
[5% w/w] 

Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min]  

Pellets in  
Tabletting  
Mix.  
[w/w %] 

Disintegrant 
[5% w/w] 

Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min] 

10%  UICEL-A/102 380±10 Not dis.  10%  STA RX® 1500 350±15 Not dis. 
20%  UICEL-A/102 300±10 Not dis.  20%  STA RX® 1500 309±16 Not dis. 
30%  UICEL-A/102 250±6 150  30%  STA RX® 1500 219±5 160 
40%  UICEL-A/102 200±10 120±9  40%  STA RX® 1500 147±12 127±7 
50%  UICEL-A/102 180±6 80±0.29  50%  STA RX® 1500 135±38 100±10 
60% UICEL-A/102 150±34 42±5  60% STA RX® 1500 100±5 50±7 
70% UICEL-A/102 120±13 n.a.  70% STA RX® 1500 64±2 n.a. 
80% UICEL-A/102 130±5 n.a.  80% STA RX® 1500 28±2 n.a. 
90% UICEL-A/102 100±2 n.a.  90% STA RX® 1500 20±0 n.a. 

         

Pellets in  
Tabletting  
Mixture  
[w/w %] 

Disintegrant 
[10% w/w] 

Crushing  
Strength 
±sd [N] 

Dis. Time 
±sd [min]  

Pellets in  
Tabletting  
Mix.  
[w/w %] 

Disintegrant 
[5% w/w] 

Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min] 

10%  UICEL-A/102 280±15 180±15  10%  STA RX® 1500 350±15 200±11 
20%  UICEL-A/102 206±11 120±9  20%  STA RX® 1500 250±16 125±5 
30%  UICEL-A/102 150±6 30.5±3.5  30%  STA RX® 1500 180±5 29.7±3.5 
40%  UICEL-A/102 121±10 12.1±2.1  40%  STA RX® 1500 119±12 19.2±2.8 
50%  UICEL-A/102 110±6 5.6±1.3  50%  STA RX® 1500 110±38 8.7±1.8 
60% UICEL-A/102 91±3 3.9±0.8  60% STA RX® 1500 100±5 4.9±0.7 
70% UICEL-A/102 67±13 n.a.  70% STA RX® 1500 64±2 n.a. 
80% UICEL-A/102 55±10 n.a.  80% STA RX® 1500 28±2 n.a. 
90% UICEL-A/102 35±2 n.a.  90% STA RX® 1500 20±0 n.a. 

         

Pellets in  
Tabletting  
Mixture  
[w/w %] 

Disintegrant 
[15% w/w] 

Crushing  
Strength 
±sd [N] 

Dis. Time 
±sd [min]  

Pellets in  
Tabletting  
Mix.  
[w/w %] 

Disintegrant 
[5% w/w] 

Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min] 

10%  UICEL-A/102 180±12 120±10  10%  STA RX® 1500 190±11 120±10 
20%  UICEL-A/102 156±9 120±9  20%  STA RX® 1500 170±8 120±9 
30%  UICEL-A/102 140±7 30.5±3.5  30%  STA RX® 1500 160±9 30.5±3.5 
40%  UICEL-A/102 120±8 12.1±2.1  40%  STA RX® 1500 116±7 12.1±2.1 
50%  UICEL-A/102 108±7 5.6±1.3  50%  STA RX® 1500 100±7 5.6±1.3 
60% UICEL-A/102 90±4 3.9±0.8  60% STA RX® 1500 83±4 3.9±0.8 
70% UICEL-A/102 50±3 n.a.  70% STA RX® 1500 62±2 n.a. 
80% UICEL-A/102 45±10 n.a.  80% STA RX® 1500 51±3 n.a. 
90% UICEL-A/102 20±8 n.a.  90% STA RX® 1500 25±9 n.a. 
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Our results were in line with literature data. Lehmann et al. reported that an amount of filler and 

disintegrant between 30-50% is necessary to obtain rapidly disintegrating MUPS tablets 

(Lehmann, 1990) (Lehmann, 1994). Flamment et al. (Flament et al., 1994) showed that 30-50% 

of cushioning neutral pellets can reach the same goal also in the case of inert pellets as 

puffering means. It must be said, anyway, that our results furnished far better crushing strength 

values than using pellets as buffering excipients (70-130 N against 20-30 N with pellets as 

embedding material). Reguarding the disintegration time, our results reflected the technological 

differences between MCC 102 and UICEL-A/102, differences which have been extensively 

discussed in §2.3.1 and §2.3.2  (Kumar, 2002), (Reus-Medina, 2004), (Reus-Medina, 2005), 

(Reus-Medina et al., 2006). Accordingly, UICEL-A/102 MUPS had consistently higher 

disintegration times than their MCC 102 counterparts. 

 

Main Experiments 

In order to further investigate the chosen, favourable MUPS formulations, the compaction into 

MUPS was planned with a STAVEX external factorial design with quadratic D-optimisation (see 

§4.3.8). Table 5.7 reports the characterization results for MUPS. 

 

Table 5.7: Results of MUPS characterization 

MUPS  Pellet  
Runs(1) 

Type of  
filler in 
pellets 

Type of 
disintegrant 
in MUPS 

Pellets 
in 
MUPS 
[%] 

Crushing 
Strength 
 [N] 

Dis. 
time 
[sec] 

Porosity 
Pellet 
Distance 
[µm] 

1  1b MCC 102 UICEL-A/102 40 72.5 96.5 0.15 186±124  

2 1b MCC 102 UICEL-A/102 60 79.5 89 0.14 137±95  

3 3b MCC 102 UICEL-A/102 40 85 96 0.13 190±112 

4 3b MCC 102 UICEL-A/102 60 98 89.5 0.14 140±89  

5 1b MCC 102 STA RX® 1500 40 83.5 93 0.12 182±105 

6 1b MCC 102 STA RX® 1500 60 72.5 90 0.15 136±97 

7 3b MCC 102 STA RX® 1500 40 99.5 89.5 0.12 188±119 

8 3b MCC 102 STA RX® 1500 60 86 95 0.15 138±94  

9 15b UICEL-A/102 UICEL-A/102 40 93 60 0.22 190±122 

10 15b UICEL-A/102 UICEL-A/102 60 105 38.5 0.20 138±98  

11 16b UICEL-A/102 UICEL-A/102 40 73 50 0.21 186±112 

12 16b UICEL-A/102 STA RX® 1500 60 70.5 38 0.19 141±96  

13 15b UICEL-A/102 UICEL-A/102 50 86 52 0.21 158±107  

14 17b UICEL-A/102 UICEL-A/102 60 102.5 60 0.20 137±95  

15 16b UICEL-A/102 STA RX® 1500 50 82 47.5 0.23 151±99 

16 17b UICEL-A/102 STA RX® 1500 40 104 42.5 0.19 189±116 

17 2b MCC 102 STA RX® 1500 50 77.5 95 0.17 168±114 
(1)   For the pellets runs please refer to Table 5.2. 
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Compared with their MCC 102 counterparts, UICEL-A/102 MUPS were moderately more porous 

(0.13 versus 0.20). Being all other parameters fixed, this difference was put in relation with the 

diverse porosity of MCC 102 and UICEL-A/102 coated pellets (see Table 5.2). In fact, MUPS 

made of UICEL-A/102 pellets had half as long disintegration times as MUPS made of MCC 102. 

In contrast to this, no significant role was played by the type of disintegrant employed, meaning 

that employing of 10% w/w of either STA RX 1500® or UICEL-A/102 did not make a significant 

difference. 

The mutual distance between pellets in MUPS proved to be inversely proportional to their 

percent loading amount in MUPS. The segregation index, which was defined in §4.3.9 as the 

standard deviation of the average distance between pellets, produced evidence of an increasing 

segregation decreasing the percentage of pellet in MUPS, as already asserted in several 

studies (see literature review in §2.7.4). In conclusion, in agreement with the findings of several 

previous studies, which have been reviewed by Opitz  (Opitz, 2006) and Bodmeier (Bodmeier, 

1997) and extensively discussed in § 2.7.4, the optimum loading amount of pellets in MUPS 

proved to be of 40-60% w/w. As a consequence, MUPS formulations containing 40-60% of 

pellets, 30-50% of MCC 102 and 10% of disintegrant were selected for the compaction into 

MUPS. 

 

5.4.2 Factorial design: Analysis of the results 

In the next pages, the analysis of the above mentioned STAVEX factorial design is presented. 

The influence of different factors on disintegration time and dissolution time is numerically 

expressed in Table 5.8, Table 5.9 and Table 5.10, respectively. These factors are: type of filler 

in pellets (PeI), loading amount of sodium diclofenac in pellets (SD), type of disintegrant in 

MUPS (dis.), amount of pellets in MUPS (% Pellets). In particular, in Table 5.8 the degree of 

influence of the mentioned factors on the disintegration time of MUPS is presented. 
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Table 5.8: Degree of influence of the factors on the disintegration time 

  coded parameters   uncoded parameters  

 parameter   est   sd   p-value   est   sd  

       
     intercept   4.5812   0.2322   0.0000   13.7400   4.6307  
 main effects:         
     Pel[MCC]   0.0469   0.0635   -0.6149   0.3608  
     Pel[UICE]   -0.0528   0.0714  

 0.5011  
 0.6918   0.4059  

     SD   0.0179   0.0711   0.8139   0.1035   0.0545  
     Dis[UICE]   -0.1426   0.0643   0.6723   0.3925  
     Dis[Star]   0.1605   0.0723  

 0.0906  
 -0.7564   0.4416  

     %Pellets   0.1789   0.0724   0.0688   -0.4366   0.1910  
 quadrat./interact.:         
     SD2   -0.6253   0.2097   0.0407   -0.0028   0.0009  
     %Pellets2   0.4362   0.1906   0.0840   0.0044   0.0019  
     Pel[MCC]*SD   -0.0650   0.0682   -0.0043   0.0045  
     Pel[UICE]*SD   0.0731   0.0768  

 0.3947  
 0.0049   0.0051  

     Pel[MCC]*Dis[UICE]   -0.1031   0.0585   -0.1031   0.0585  
     Pel[MCC]*Dis[Star]   0.1160   0.0658   0.1160   0.0658  
     Pel[UICE]*Dis[UICE]   0.1160   0.0658   0.1160   0.0658  
     Pel[UICE]*Dis[Star]   -0.1305   0.0740  

 0.1526  

 -0.1305   0.0740  
     Pel[MCC]*%Pellets   0.1540   0.0697   0.0154   0.0070  
     Pel[UICE]*%Pellets   -0.1733   0.0784  

 0.0917  
 -0.0173   0.0078  

     SD*Dis[UICE]   0.0516   0.0779   0.0034   0.0052  
     SD*Dis[Star]   -0.0580   0.0876  

 0.5441  
 -0.0039   0.0058  

     SD*%Pellets   0.1099   0.0795   0.2393   0.0007   0.0005  
     Dis[UICE]*%Pellets   -0.1802   0.0757   -0.0180   0.0076  
     Dis[Star]*%Pellets   0.2027   0.0852  

 0.0760  
 0.0203   0.0085  

 

In the left hand column are listed the factors and their mutual combinations. The p-value, which 

is calculated from the confidence interval of 95 %, indicates the relevance of each factor and its 

mutual correlations. P-values under 5% (p<0.05) are potentially significant, and in particular 

values < 0.01 are surely crucial. In the case of disintegration time, almost all p-values were 

<0.05, so that no main correlation was pointed out between the selected factors and the 

disintegration time. This was in agreement with the conclusions in §5.4.1 on the base of the 

characterization data of MUPS and it was attributed to the fact that a constant amount of 

disintegrant was used in the main experiments (10% w/w). 

Only the quadratic interaction of SD proved to be <0.05. Despite this, no linear trend could be 

identified comparing the disintegration times of different MUPS formulations containing pellets 

with diverse SD loading amount (Table 5.7). Such discrepancy was neglected considering that 

the p-value was not significantly lower than 0.05 (0.0407).  
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Table 5.9: Degree of influence of the factors on the dissolution time 50%. 

  coded parameters   uncoded parameters  

 parameter   Est   sd   p-value   Est   sd  

       
     intercept   14.5557   0.8851   0.0001   44.7136   17.6483  
 main effects:         
     Pel[MCC]   8.5090   0.2420   23.5136   1.3752  
     Pel[UICE]   -9.5727   0.2722  

 0.0000  
 -26.4528   1.5471  

     SD   -9.2283   0.2712   0.0000   -1.5178   0.2076  
     Dis[UICE]   -0.4247   0.2449   -0.5666   1.4959  
     Dis[Star]   0.4778   0.2755  

 0.1579  
 0.6374   1.6829  

     %Pellets   -0.0426   0.2759   0.8847   -0.1355   0.7278  
 quadrat./interact.:         
     SD2   4.2125   0.7992   0.0062   0.0187   0.0036  
     %Pellets2   0.1480   0.7266   0.8485   0.0015   0.0073  
     Pel[MCC]*SD   -9.6308   0.2601   -0.6421   0.0173  
     Pel[UICE]*SD   10.8346   0.2926  

 0.0000  
 0.7223   0.0195  

     Pel[MCC]*Dis[UICE]   0.1494   0.2229   0.1494   0.2229  
     Pel[MCC]*Dis[Star]   -0.1680   0.2508   -0.1680   0.2508  
     Pel[UICE]*Dis[UICE]   -0.1680   0.2508   -0.1680   0.2508  
     Pel[UICE]*Dis[Star]   0.1890   0.2821  

 0.5395  

 0.1890   0.2821  
     Pel[MCC]*%Pellets   0.2093   0.2658   0.0209   0.0266  
     Pel[UICE]*%Pellets   -0.2355   0.2990  

 0.4749  
 -0.0236   0.0299  

     SD*Dis[UICE]   -0.7176   0.2969   -0.0478   0.0198  
     SD*Dis[Star]   0.8074   0.3340  

 0.0730  
 0.0538   0.0223  

     SD*%Pellets   -0.1006   0.3031   0.7567   -0.0007   0.0020  
     Dis[UICE]*%Pellets   0.2676   0.2886   0.0268   0.0289  
     Dis[Star]*%Pellets   -0.3011   0.3247  

 0.4063  
 -0.0301   0.0325  

 

Table 5.9 presents the degree of influence of the above mentioned factors on the time at which 

50% of AI was dissolved. The type of filler in pellets and the amount of SD in pellets, which are 

actually mixtures factors, had a paramount effect of the dissolution time (both main and 

quadratic interactions were considerably less than 0.05). This is in full agreement with our 

observations, as MCC 102 MUPS showed twice or three times as long half disintegration times 

as UICEL-A/102 MUPS (see Table 5.12). Furthermore, the quadratic interection between 

disintegrant in MUPS and loading amount of pellets in MUPS was proved to be less than 0.05. 

This indicated that, even if the percentage of disintegrant in MUPS was held constant (10% 

w/w), its effect on disintegration and dissolution depended strongly on the loading amount of 

pellets in MUPS, or, in other words, on the percentage of embedding material in the tabletting 

mixture. 
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Table 5.10: Degree of influence of the factors on the dissolution time 90%. 

  coded parameters   uncoded parameters  

 parameter   est   Sd   p-value   est   sd  

       
     intercept   23.6023   2.3273   0.0005   146.7504   46.4046  
 main effects:         
     Pel[MCC]   15.4457   0.6363   47.6033   3.6160  
     Pel[UICE]   -17.3764   0.7158  

 0.0000  
 -53.5537   4.0680  

     SD   -20.2162   0.7130   0.0000   -5.6303   0.5458  
     Dis[UICE]   -1.7086   0.6440   -14.6565   3.9334  
     Dis[Star]   1.9222   0.7245  

 0.0568  
 16.4885   4.4251  

     %Pellets   -1.3002   0.7255   0.1476   -1.3069   1.9137  
 quadrat./interact.:         
     SD2   18.3677   2.1014   0.0009   0.0816   0.0093  
     %Pellets2   1.0765   1.9105   0.6032   0.0108   0.0191  
     Pel[MCC]*SD   -15.2727   0.6839   -1.0182   0.0456  
     Pel[UICE]*SD   17.1818   0.7694  

 0.0000  
 1.1455   0.0513  

     Pel[MCC]*Dis[UICE]   -0.8586   0.5861   -0.8586   0.5861  
     Pel[MCC]*Dis[Star]   0.9659   0.6593   0.9659   0.6593  
     Pel[UICE]*Dis[UICE]   0.9659   0.6593   0.9659   0.6593  
     Pel[UICE]*Dis[Star]   -1.0867   0.7418  

 0.2168  

 -1.0867   0.7418  
     Pel[MCC]*%Pellets   -1.3406   0.6988   -0.1341   0.0699  
     Pel[UICE]*%Pellets   1.5082   0.7861  

 0.1275  
 0.1508   0.0786  

     SD*Dis[UICE]   0.7254   0.7807   0.0484   0.0520  
     SD*Dis[Star]   -0.8161   0.8783  

 0.4054  
 -0.0544   0.0586  

     SD*%Pellets   0.6024   0.7970   0.4918   0.0040   0.0053  
     Dis[UICE]*%Pellets   2.3478   0.7588   0.2348   0.0759  
     Dis[Star]*%Pellets   -2.6413   0.8536  

 0.0364  
 -0.2641   0.0854  

 

As for the time needed to liberate 50% of the AI, the single type of filler and the amount of drug 

in the pellets had a high significance also for the time to 90% of the AI liberation (see Table 5.9). 

Table 5.11 represents a summary report of the factorial design analysis.  

To sum up, UICEL-A/102 was on the one hand of comparable efficacy with the model 

superdisintegrant STA-RX 1500® as disintegrant in MUPS, on the other hand it proved to be 

less suited than MCC 102 as main filler in MUPS for extended release.  

The first result confirmed the findings of previous studies, according to which UICEL-A/102 

possesses peculiar swelling properties compared to MCC 102 formulations (Kumar, 2002), 

(Reus-Medina, 2004), (Reus-Medina, 2005), (Reus-Medina et al., 2006). The second result will 

be extensively discussed in §5.4.3. 
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Table 5.11: Summary of the analysis with the factorial design. 

 Disintegration time 
Dissolution time  

[50 % w/w] 

Dissolution time  

[90 % w/w] 

Type of filler in pellets UICEL MCC MCC 

Loading amount of SD in pellets  

[% w/w] 
10.00 10.00 10.00 

Type of disintegrant in MUPS UICEL / STA RX® 1500 UICEL / STA RX® 1500 UICEL / STA RX® 1500 

Amount of pellets in MUPS  

[% w/w] 
50.00 60.00 40.00 

Optimisation direction min max max 

(lower bound) 24.8 45.35 98.4 

Optimum value 41.8 47.26 103.6 

(upper bound) 70.6 49.18 108.7 

Corr. goodness of fit good very good pretty good 

 

 

5.4.3 SEM/CLSM images of MUPS 

Figure 5.11 compares CLSM and SEM images of the surface and section of six MUPS 

formulations. The composition of the six analysed batches (MUPS 1, 2, 9 and 10 as in Table 

5.7) differed in the type of filler in pellets (either MCC 102 or UICEL-A/102) and the loading 

amount of pellets in MUPS (either 40% or 60%). Some black holes in the pictures were due to 

residues of cushioning excipients, which did not reflect at 488 nm. The pellets at the surface of 

both MUPS appeared to be flattened, but not ruptured. In contrast, the pellets inside the tablet 

were not appreciably deformed thanks to the cushioning effect of MCC 102.  
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MUPS 1 (40% MCC – Surface) MUPS 1 (40% MCC – Section) MUPS 2 (60% MCC – Surface) MUPS 2 (60% MCC – Section) 

    

 
 

 

 

MUPS 9 (40% UICEL – Surface) MUPS 9 (40% UICEL – Section) MUPS 10 (60% UICEL– Surface) MUPS 10 (60% UICEL – Section) 

Figure 5.11: CLSM images of MUPS 1, 2, 9, 12 (surface and break section) 



Results and Discussion 

 

123 

 

5.4.4 Dissolution profiles from MUPS vs. uncompressed subunits 

In Figure 5.12 the dissolution profiles of some pellet runs are compared to the corresponding 

MUPS having the same amount of cushioning excipient and either UICEL-A/102 or STA-RX® 

1500 as disintegrant. Both MCC 102 MUPS (1 and 2) and UICEL-A/102 MUPS (9 and 10) 

consistently retained the dissolution profiles of the respective uncompressed pellets (see Figure 

5.12). This suggests that no major damages in their film coating occurred, and that the choice of 

the disintegrant played a negligible role in the dissolution. On the contrary, both of them 

contributed to a rush disintegration of the MUPS into their subunits, so that the dissolution 

profiles of uncompressed pellets and MUPS were practically comparable. These results, 

supported with the SEM and CLSM images, confirmed the overall integrity of the pellet coating 

film after tabletting. 

Furthermore, MUPS made of coated UICEL-A/102 pellets were released much faster than their 

MCC 102 counterparts, and this independently of the coating layer thickness (the same in all 

pellet formulation) and porosity (minimal due to the absence of a pore maker in the coating 

suspension). This implies that the drug release from UICEL-A/102 pellets was driven by the 

prevalent disintegration properties of their filler, rather than by their virtually delaying coating 

layer. 

This result, corroborated by the CLSM images, indicates that both MCC 102 and UICEL-A/102 

pellet formulations underwent soft compaction keeping the dissolution profiles of the 

uncompressed subunits. This is also in line with the findings of other studies (§ 2.7.5.1). 

Picker compared the potential suitability for soft tabletting of Carrageenans, Chitosane, MCC, 

HPMC and Polyethylene oxides establishing the following ranking: Carrageenans  < Chitosane 

< MCC < HPMC < Polyethylene oxides. Se also investigated the compaction of pellets (d=510-

700 µm) loaded with diclofenac, coated with Eudragit L 30D and mixed with either carrageenan 

or MCC 102 or cellactose. In all three cases soft compaction without damage of the coating 

layer was reached, with carrageenan slightly better cushioning excipients than MCC 102 and 

Callactose, in accordance with its moderately higher plasticity (Picker, 2004). In Picker’s 

studies, anyway, the role of the coating layer was not taken into account. Other studies provided 

evidence that sucrose pellets coated with Kollicoat® SR 30 D undergo soft compaction retaining 

the dissolution profile of the uncompacted subunits, which was in line with our findings about 

MCC 102 and UICEL-A/102 (Dashevsky, 2004), (Dashevsky, 2005), (Johansson, 1995a). 

Comparing our results with Deshevsky’s and Picker’s findings, it might be concluded that 

employing a plastic cushioning excipient as MCC 102 together with a flexible coating layer as 

Kollicoat SR 30D is the best choice to reach conservative compaction. Anyway, also UICEL-

A/102 coated pellets (sensibly more elastic than their MCC 102 counterparts) underwent soft 
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compaction, which made us conclude that the coating layer had a higher influence than the 

embedding material on the softness of the compaction. 
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Figure 5.12: Drug release from diverse pellets formulations 
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5.4.5 MUPS from homogeneous pellets: summary of results 

Homogenous pellets of either MCC 102 or UICEL-A/102 pellets loaded with 10-40% of sodium-

diclofenac and coated with Kollicoat® SR 30 D to 20% w/w weight gain proved to be appropriate 

subunits for Multiparticulate Unit Pellet Systems. Mixed with 40-60% of MCC 102 powder, 10% 

of disintegrant (either UICEL-A/102 or STA RX®1500) and 0.5% of Mg-stearate, they were 

compacted into MUPS using a PressterTM Compaction Simulator (Metropolitan Computing 

Corporation, East Hanover, USA) equipped with a D-tooling single-punch (diameter of 10 mm, 

flat surface). The distance between the punches (2.2 mm) and the linear velocity of the 

compression (0.108 m/s) were held constant. All the MUPS formulations overcame compaction 

deformed rather than ruptured, as proved by comparison between the dissolution profiles and 

the SEM and CLSM images before and after compaction. Both MCC 102 and UICEL-A/102 

MUPS resulted to be mechanically robust (crushing strength of 70-100 N), fast disintegrating in 

water (≤ 3 minutes) and maintained the same release profile and almost the same superficial 

and inner morphology of their uncompressed subunits. 

Compared with MCC 102 pellets, UICEL-A/102 pellets proved to be generally more irregular, 

porous and less spherical. Nonetheless, they could be rather homogenously coated and 

retained their dissolution profile also after compaction into MUPS.  

The fact that UICEL-A/102 pellets and MUPS presented shorter dissolution times than their 

MCC counterparts is to ascribe solely to the prevalent swelling properties of UICEL-A/102 

(Kumar, 2002). In fact, UICEL-A/102 contained in pellets eased their dissolution independently 

of the amount and homogeneity of their coating layer. 
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5.4.6  Compaction of inhomogeneous pellets into MUPS 

Preliminary experiments 

The results of the preliminary experiments are displayed in Table 5.12.. 

Table 5.12: Results of the preliminary experiments: above UICEL MUPS containing Suglets® (left) or 
Cellets® (right), below MCC 102 MUPS containing Suglets® (left) or Cellets® (right). 

Pellets in  
Tabletting  
Mixture  
[w/w %] 

Core / filler 
Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min]  

Pellets in  
Tabletting  
Mix.  
[w/w %] 

Core / filler 
Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min] 

20%  
Suglets®/ 
UICEL-A/102 257±10 >30  20%  

Cellets®/ 
UICEL-A/102 309±16 Not dis. 

30%  
Suglets®/ 
UICEL-A/102 198±6 12.9±4.4

8  30%  
Cellets®/ 
UICEL-A/102 219±5 13.9±1.2 

40%  
Suglets®/ 
UICEL-A/102 116±10 12.1±2.1  40%  

Cellets®/ 
UICEL-A/102 121±12 10.8±1.5 

50%  
Suglets®/ 
UICEL-A/102 116±6 4.2±0.3  50%  

Cellets®/ 
UICEL-A/102 100±38 7.5±1.2 

60% 
Suglets®/ 
UICEL-A/102 109±34 2.9±1.33  60% 

Cellets®/ 
UICEL-A/102 90±5 5.3±0.5 

70% 
Suglets®/ 
UICEL-A/102 67±13 n.a.  70% 

Cellets®/ 
UICEL-A/102 64±2 n.a. 

80% 
Suglets®/ 
UICEL-A/102 55±10 n.a.  80% 

Cellets®/ 
UICEL-A/102 28±2 n.a. 

         

Pellets in  
Tabletting  
Mixture  
[w/w %] 

Core / filler 
Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min]  

Pellets in  
Tabletting  
Mix.  
[w/w %] 

Core / filler 
Crushing 
strength 
±sd [N] 

Dis. Time 
±sd [min] 

20%  Suglets®/ 
MCC 102 300±10 Not dis.  20%  Cellets®/ 

MCC 102 297±10 Not dis. 

30%  Suglets®/ 
MCC 102 250±6 Not dis.  30%  Cellets®/ 

MCC 102 247±5 Not dis. 

40%  Suglets®/ 
MCC 102 150±34 130±3.1  40%  Cellets®/ 

MCC 102 147±12 127±7 

50%  Suglets®/ 
MCC 102 120±13 80±0.29  50%  Cellets®/ 

MCC 102 135±38 100±10 

60% Suglets®/ 
MCC 102 130±5 42±5  60% Cellets®/ 

MCC 102 100±5 50±7 

70% Suglets®/ 
MCC 102 76±6 n.a.  70% Cellets®/ 

MCC 102 64±2 n.a. 

80% Suglets®/ 
MCC 102 48±2 n.a.  80% Cellets®/ 

MCC 102 28±2 n.a. 



Results and Discussion 

 

127 

 

On the base of the pre-experiments for homogeneous pellets, it was decided to restrict the filler 

content range to 20-80% and to carry out pre-experiments with only one disintegrant, i.e. UICEL 

A noticeable correlation between the crushing strength and the amount of pellets could be 

observed; in fact, the higher the percentage of pellets in the formulation, the lower the crushing 

strength of MUPS. As a result, MUPS containing 70% and 80% of pellets proved to be not 

robust (crushing strength < 70N) and did not disintegrate properly into the subunits. This trend 

could be attributed to the lower dilution effect of MCC 102, which caused the pellets to stick to 

each other building undesired pellet aggregates. 

On the other hand, MUPS containing 20-30% of pellets showed too high crushing strength 

(>198 N). Thanks to UICEL-A/102 prevalent disintegrant properties, MUPS formulations 

containing 40, 50 and 60% of UICEL-A/102 coated pellets could still disintegrate within 15 

minutes, which made us select them for further studies. 

Our results were in line with literature data. Lehmann et al. reported that an amount of filler and 

disintegrant between 30-50% is necessary to obtain rapidly disintegrating MUPS tablets 

(Lehmann, 1990) (Lehmann, 1994). Flamment et al. (Flament et al., 1994) showed that 30-50% 

of cushioning neutral pellets can reach the same goal also in the case of inert pellets as 

puffering means. It must be said, anyway, that our results furnished far better crushing strength 

values than using pellets as buffering excipients.  

Reguarding the disintegration time, our results reflected the technological differences between 

MCC 102 and UICEL-A/102, differences which have been extensively discussed in §2.3.1 and 

§2.3.2  (Kumar, 2002), (Reus-Medina, 2004), (Reus-Medina, 2005), (Reus-Medina et al., 2006). 

Accordingly, UICEL-A/102 MUPS had consistently lower disintegration times than their MCC 

102 counterparts. 

 

Main Experiments 

The results of the main experiments are displayed in Table 5.13. 

As already pointed out in the previous paragraph, the crushing strength was directly related to 

the amount of pellets and thereby to the amount of embedding material in MUPS. Additionally, it 

can be claimed that the type of disintegrant used did not have a significant influence on the 

disintegration time. Concerning the porosity, as expected, the higher the crushing strength was, 

the more compact the tablet and the lower its porosity was.  

The mutual distance between pellets in MUPS proved to be inversely proportional to their 

percent loading amount in MUPS; the segregation index, which had been defined in §4.3.9 as 

the standard deviation of the average distance between pellets, produced evidence of an 

increasing segregation decreasing the percentage of pellets in MUPS. Both results were in line 
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with the ones emerged in the first type of MUPS (pellets from direct pelletization) and our 

expectations. 

Table 5.13: Results of the MUPS characterisation 

Mixture Cellets® Suglets® 
% 
pellets in 
MUPS 

Pellet 
run 

Type of 
disintegrant 

SD 
content 
[%] 

Poro
-sity 
[%] 

Disint. 
time [min] 

Pellet 
distance 
[min] 

1 x  40 4 UICEL-A/102 4.8±0.2 9.00 10.8±1.5 189±116 

2 x  50 4 UICEL-A/102 6.0±0.5 7.89 7.5±1.2 151±99 

3 x  60 4 UICEL-A/102 7.2±0.7 7.27 5.3±0.5 137±95 

4  x 40 3 UICEL-A/102 4.7±0.3 8.36 12.1±2.1 178±98 

5  x 50 3 UICEL-A/102 5.9±0.2 7.54 4.2±0.3 145±86 

6  x 60 3 UICEL-A/102 7.1±0.7 6.87 2.9±1.33 130±75 

7 x  40 4 STA RX 1500 4.8±0.4 8.89 4.74±0.45 200±108 

8 x  50 4 STA RX 1500 6.0±0.6 7.01 5.36±1.07 149±94 

9 x  60 4 STA RX 1500 7.2±0.8 5.32 7.70±1.05 128±86 

10  x 40 3 STA RX 1500 4.7±0.5 9.21 7.44±0.99 175±120 

11  x 50 3 STA RX 1500 5.9±0.6 9.01 8.39±0.55 148±105 

12  x 60 3 STA RX 1500 7.1±0.9 6.89 10.11±2.4 124±91 

 

5.4.7 Factorial design: Analysis of the results 

The STAVEX factorial design was employed to assess the influence of each variable on the 

characteristics of the MUPS as well as to determine the formulation which led to the best 

MUPS. 

 

Disintegration time 

Table 5.14 shows the results of the STAVEX analysis regarding the disintegration time. 

In the left column, the single factors and their combinations are listed, whereas their influence 

on the response variables is expressed with the p-value. A p-value < 0.05 indicates a probable 

effect of the factor on the analysed response variable, whereas p-values < 0.01 indicates a sure 

correlation. No influence of the single factors investigated on the disintegration time could be 

identified. On the contrary, interactions between type of disintegrant and amount of pellets as 

well as between type of disintegrant and amount of MCC 102 were suggested as significant. 

This result could be associated with the following two different trends: the disintegration time of 

MUPS with UICEL-A/102 as disintegrant increases in order 60%<50%<40%, whereas it 

decreases in the same order in case of MUPS with STA RX 1500® as a disintegrant (see Table 

5.13). It must be considered that any powder binary mixture, if compressed into a compact of a 

certain porosity, features different disintegration times at different compositions of that mixture. 
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Under the assumption that pellets have a minor impact on the disintegration time of MUPS than 

the binary mixture homogeneously distributed around them, the disintegration time of MUPS 

would be directly related to the disintegration time of that binary mixture (Krausbauer et al., 

2007). Considering that the minimum disintegration time for  the binary mixture MCC 102 / 

UICEL-A/102 is around 5% v/v and the one of MCC 102 / STA RX is around 15 % v/v,  and 

observing that the ratios disintegrant/filler in MUPS are, respectively, 19.5, 24.3 and 32.2% v/v, 

we would have expected a similar trend in the disintegration times for both disintegrants. This 

result was interpreted as proof by contradiction of the approximation above; in other words, the 

UICEL-A/102 pellets highly probably played a non marginal role in the disintegration of MUPS. 

 

Table 5.14: Degree of influence of all analysed factors on the disintegration time 

 Coded parameters Uncoded parameters 

Parameter est sd p-value est sd 

intercept 6.2725 0.6723 0.0007 6.2725 0.6723 
main effects:  

D[UICE] -0.0250 0.3881 -0.0250 0.3881 

D[St_1] 0.0250 0.3881 
0.9517 

0.0250 0.3881 
S[Sugl] 0.3617 0.3881 0.3617 0.3881 
S[Cell] -0.3617 0.3881 

0.4042 
-0.3617 0.3881 

C -4.0650 1.9015 0.0993 -0.0452 0.0211 
E 5.0812 2.3768 0.0993 0.0565 0.0264 

quadrat./interact.:  

C*E -59.5500 32.9342 0.1449 -0.0074 0.0041 
C2 23.8200 13.1737 0.1449 0.0029 0.0016 
E2 37.2188 20.5839 0.1449 0.0046 0.0025 

D[UICE]*S[Sugl] -0.9950 0.3881 -0.9950 0.3881 
D[UICE]*S[Cell] 0.9950 0.3881 0.9950 0.3881 
D[St_1]*S[Sugl] 0.9950 0.3881 0.9950 0.3881 
D[St_1]*S[Cell] -0.9950 0.3881 

0.0624 

-0.9950 0.3881 
D[UICE]*C -9.6950 1.9015 -0.1077 0.0211 
D[St_1]*C 9.6950 1.9015 

0.0070 
0.1077 0.0211 

D[UICE]*E 12.1187 2.3768 0.1347 0.0264 
D[St_1]*E -12.1187 2.3768 

0.0070 
-0.1347 0.0264 

S[Sugl]*C -1.4850 1.9015 -0.0165 0.0211 
S[Cell]*C 1.4850 1.9015 

0.4785 
0.0165 0.0211 

S[Sugl]*E 1.8563 2.3768 0.0206 0.0264 
S[Cell]*E -1.8563 2.3768 

0.4785 
-0.0206 0.0264 
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Dissolution time 

Table 5.15 and Table 5.16 show the results of the STAVEX analysis for the dissolution time. 

The loading amount of coated pellets and cushioning excipients were indicated as crucial 

factors. The fact that 40% of pellets could be better diluited in a tabletting mixture and therefore 

puffered during compaction than in a mixture containing 60% of pellets was advocated to 

explain these findings. 

 

Table 5.15: Degree of influence of all analysed factors on the dissolution time to 50% 

 Coded parameters Uncoded parameters 
Parameter est sd p-value est sd 

intercept 126.2500 7.8654 0.0001 126.2500 7.8654 
main effects:   

D[UICE] 11.4167 4.5411 11.4167 4.5411 
D[St_1] -11.4167 4.5411 

0.0658 
-11.4167 4.5411 

S[Sugl] 4.7500 4.5411 4.7500 4.5411 
S[Cell] -4.7500 4.5411 

0.3546 
-4.7500 4.5411 

C -118.0000 22.2467 0.0061 -1.3111 0.2472 
E 147.5000 27.8084 0.0061 1.6389 0.3090 

quadrat./interact.:   
C*E -70.0000 385.3245 0.8647 -0.0086 0.0476 
C2 28.0000 154.1298 0.8647 0.0035 0.0190 
E2 43.7500 240.8278 0.8647 0.0054 0.0297 

D[UICE]*C -30.0000 22.2467 -0.3333 0.2472 
D[St_1]*C 30.0000 22.2467 

0.2488 
0.3333 0.2472 

D[UICE]*E 37.5000 27.8084 0.4167 0.3090 
D[St_1]*E -37.5000 27.8084 

0.2488 
-0.4167 0.3090 

S[Sugl]*C -6.0000 22.2467 -0.0667 0.2472 
S[Cell]*C 6.0000 22.2467 0.8007 0.0667 0.2472 
S[Sugl]*E 7.5000 27.8084 0.0833 0.3090 
S[Cell]*E -7.5000 27.8084 

0.8007 
-0.0833 0.3090 

Table 5.16: degree of influence of all analysed factors on the dissolution time to 90% 

 coded parameters uncoded parameters 
parameter est sd p-value est sd 

intercept 7.5000 0.4082 0.0001 7.5000 0.4082 
main effects:   

D[UICE] -0.5000 0.2357 -0.5000 0.2357 
D[St_1] 0.5000 0.2357 

0.1012 
0.5000 0.2357 

S[Sugl] 0.1667 0.2357 0.1667 0.2357 
S[Cell] -0.1667 0.2357 

0.5185 
-0.1667 0.2357 

C -5.0000 1.1547 0.0123 -0.0556 0.0128 
E 6.2500 1.4434 0.0123 0.0694 0.0160 

quadrat./interact.:   
C*E 10.0000 20.0000 0.6433 0.0012 0.0025 
C2 -4.0000 8.0000 0.6433 -0.0005 0.0010 
E2 -6.2500 12.5000 0.6433 -0.0008 0.0015 

D[UICE]*C 0.0000 1.1547 0.0000 0.0128 
D[St_1]*C 0.0000 1.1547 

1.0000 
0.0000 0.0128 

D[UICE]*E 0.0000 1.4434 0.0000 0.0160 
D[St_1]*E 0.0000 1.4434 

1.0000 
0.0000 0.0160 

S[Sugl]*C 0.0000 1.1547 0.0000 0.0128 
S[Cell]*C 0.0000 1.1547 

1.0000 
0.0000 0.0128 

S[Sugl]*E 0.0000 1.4434 0.0000 0.0160 
S[Cell]*E 0.0000 1.4434 

1.0000 
0.0000 0.0160 
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Table 5.17 summarizes the formulations indicated by STAVEX as the most advantageous. With 

respect to the disintegration time, MUPS containing 60% of pellets with Cellets® as cores and 

UICEL-A/102 as disintegrant were the most favourable, as already pointed out in the MUPS 

characterization. Conversely, STAVEX suggested as ideal formulations in terms of dissolution 

time the MUPS containing 40% of pellets with Cellets®, and STA RX 1500® as disintegrant. The 

fact that 40% of pellets could be better diluited in a tabletting mixture and therefore puffered 

during compaction than in a mixture containing 60% of pellets created this trend. 

 

Table 5.17: Summary of the best formulations 

Response 
Factor/Optimum 

Disintegration time Dissolution 50% Dissolution 90% 

C:Coated Pellets 60 40 40 

D:Disintegrant UICEL St_1500 St_1500 

E:Embedding Material 30 50 50 

S:Suglets or Cellets Cellets® Cellets® Cellets® 

Optimization direction (lower bound) 0.81 7.659 6.854 

Optimization direction (upper bound) 5.77 10.674 9.987 

Optimum value 3.29 9.167 9.056 

Corr. goodness of fit good mediocre mediocre 

 

 

5.4.8 SEM/CLSM images of MUPS 

Figure 5.13 shows the SEM images of the MUPS surfaces (on the left) and sections (on the 

right) for four different formulations. Mix 5 corresponds to MUPS with pellet loading of 50%, 

Suglets® cores and UICEL-A/102 as disintegrant; Mix 6 identifies MUPS with pellet loading of 

60%, Suglets® cores and UICEL-A/102 as disintegrant; Mix 8 is related with MUPS with pellet 

loading of 50%, Cellets® cores and STA RX® 1500 as disintegrant; Mix 9 corresponds to MUPS 

with pellet loading of 60%, Cellets® cores and STA RX® 1500 as disintegrant. 

The four images of the MUPS surface revealed that the pellets underwent a deformation during 

the compaction. In particular, they were flattened because of the direct contact with the punch 

head, though they did not seem to be ruptured. On the contrary, pellets within the tablet seemed 

to retain their round shape or undergo just a small deformation. This suggests that the film 

coating was more damaged on the pellets located at the MUPS surface, whereas the pellets in 

the tablet remained almost intact, due to the cushioning effect of MCC 102. 



Results and Discussion 

 

132 

 

 

 

  
Mix 5, surface   Mix 5, section 

  
Mix 6, surface Mix 6, section 

  
Mix 8, surface Mix 8, section 

  
Mix 9, surface Mix 9, section 

Figure 5.13: SEM images of MUPS (for the Mix composition please refer to Table 5.13) 
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The use of sugar Suglets® or Cellets® as cores did not seem to play a role in the compaction 

behaviour of the pellets; in fact, no significant differences in the degree of deformation could be 

detected from the images (see discussion about Figure 5.14). 

The segregation between powder and pellets, visible in particular in the images C and G, is to 

attribute to their different particle size. This was the result of a compromise between the 

induction of a soft compaction (cushioning powder) and the unavoidable segregation between 

powder and pellets. 

 

  

Mix 1 (Table 5.13) Mix 3 (Table 5.13) 

  

Mix 4 (Table 5.13) Mix 6 (Table 5.13) 

Figure 5.14: CLSM images of MUPS 
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In Figure 5.14, the coating layer of the pellets at the surface of the MUPS with 40% and 60% 

pellet content respectively are shown. In contrast to the SEM images, the CLSM pictures above 

showed black spots in the coating of some superficial pellets, suggesting that the compaction 

was not entirely conservative, especially for the pellets in direct contact with the punch head 

during compaction. This might have led to slightly faster half dissolution times of MUPS 

compared to their uncompressed subunits, especially in the MUPS with sugar spheres as 

subunits (see §5.4.9.  

 

5.4.9 Dissolution profiles from MUPS vs. uncompressed subunits 

In Figure 5.15 the AI dissolution profiles of six MUPS batches are compared with the dissolution 

profiles of their uncompressed subunits. In particular, each batch of UICEL coated pellets is 

compared with three MUPS formulations in which it was loaded (40, 50, 60% of coated pellets). 

In the first graph, the dissolution from UICEL-A/102 MUPS whose pellets were layered on 

Cellets® are plotted, whereas in the second graph the dissolution from UICEL-A/102 MUPS 

whose pellets were layered on Suglets® are reported. 

In both cases, the drug release from MUPS was moderately faster than from the uncompressed 

subunits,  suggesting that the coating layer had been slightly damaged during the compaction. 

Therefore, the employment of Cellets® rather than Suglets® as basic neutral cores in dry powder 

layering made a visible difference. In fact, MUPS whose cores were Cellets® underwent softer 

compaction than their counterparts having Suglets® as subunits. Being all other parameters 

unchanged, it can be asserted that Cellets® behaved plastically, while Suglets® behaved more 

elastically during compaction. This is in agreement with literature: hard pellets coated with a 

thick film layer are better capable of withstanding the compression force than soft pellets, and 

that they tend to recover after compression without major damage of the coating layer; elastic 

materials, accordingly, will produce proportionally bigger damage (Beckert, 1996), (Bodmeier, 

1997), (Opitz, 2005).  
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Figure 5.15: Drug release profiles from MUPS with Cellets® cores (above) and Suglets® cores (below). 
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5.4.10 MUPS from inhomogeneous pellets: summary of results 

In this second part of this study, MUPS prepared by compaction of inhomogeneous pellets were 

investigated. These pellets, called inhomogeneous with reference to the inhomegenous 

composition of the uncoated core, were produced by layering a binary mixture 1:1 of UICEL and 

Sodium Diclofenac on neutral cores (either Suglets® or Cellets®) by means of dry powder 

layering technology. Afterwards, they were coated with Kollicoat® SR 30 D to 20% w/w weight 

gain, in full accordance with the coating methodology and parameters previously optimized. 

Both UICEL-A/102 and MCC 102 pellets showed comparable characteritiscs, with exception of 

density, specific surface area and porosity. In fact, in line with the charactieristics of the starting 

materials, UICEL-A/102 coated and uncoated pellets were less compact and more porous than 

their MCC 102 counterparts. This had also a mojor impact on the characteristics of the MUPS.  

Through preliminary experiments, the most favourable ranges of the loading amount of coated 

pellets, cushioning excipients and disintegrant in MUPS were identified. These ranges proved to 

be analogous with the ones previously selected for homogeneous pellets, i.e. 40-60 w/w % 

pellets, 30-50 w/w % cushioning excipients and 10 w/w % of disintegrant. The only difference 

regarded MCC 102 coated pellets, which on the base of pre-experiments did not result in 

favourable MUPS, highly probably due to the different characteristics of porosity of the subunits 

(see above). 

Mixed with 40-60% of MCC 102 powder, 10% of disintegrant (either UICEL-A/102 or Sta-RX-

1500) and 0.5% of Mg-Stearate, each tabletting mixture was compacted into MUPS using a 

PressterTM Compaction Simulator (Metropolitan Computing Corporation, East Hanover, USA) 

equipped with a D-tooling single-punch (diameter of 10 mm, flat surface). The distance between 

the punches (2.2 mm) and the linear velocity of the compression (0.108 m/s) were held 

constant. The so obtained MUPS resulted to be mechanically robust (crushing strength of 80-

120 N), fast disintegrating in water (< 12 minutes) and maintained the release profile of their 

uncompressed subunits almost unchanged. 

In particular, the choice of Cellets® rather than Suglets® as basic neutral cores in dry powder 

layering had a significant impact on the characteristics of MUPS. In fact, MUPS whose subunits 

had Cellets® cores retained the release profile of their uncompressed subunits more then their 

counterparts having Suglets® as cores. This suggests that subunits with a  cellulosic core 

contributed significantly to the softness of the compaction, this difference being associable with  

the rather plastic behaviour of Cellets®  against the rather elastic behaviour of  Suglets® during 

compaction. All in all, the homogeneous pellets obtained by direct pelletization proved to retain 

more effectively  the dissolution profiles of their subunits. 
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The MUPS characterisation along with the factorial design analysis (STAVEX) allowed to 

determine the effects of the chosen factors (type of cores, % amount of pellets and MCC 102, 

type of disintegrant) and their eventual mutual interactions on two key response variables 

(disintegration time and dissolution time). 

Concerning the effect of the type of disintegrant on the disintegration time, the following trend 

could be figured out. The disintegration time of MUPS with UICEL-A/102 as disintegrant 

increases in order 60%<50%<40%, whereas it decreases in the same order in case of MUPS 

with Sta RX 1500® as a disintegrant. Finally, the CLSM images revealed that segregation 

between powder and pellets occurred, primarily because of the different particle size of the 

components in MUPS. 
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6. Conclusions and Outlook 

MUPS (Multiple Unit Pellet Systems) are multiparticulate pellet formulations that, easily 

administered as tablets, disintegrate into their subunits directly after swallowing, so as to 

disperse into their subunits across the stomach and the small intestine. This behaviour accounts 

for a more constant bioavailability and contributes to the minimization of dose-dumping and 

local irritation risks. Although MUPS represent nowadays a formulation of first choice, they do 

not really represent a straightforward option. In fact, the compaction of coated pellets into MUPS 

is a complex process, in which the subunits undergo structural deformation or even rupture. 

This may profoundly modify the drug release profile of the subunits and/or circumvent the tablet 

disintegration because of enhanced cohesion between pellets. In other words, on the one hand 

pellet compacts need to have a certain crushing strength to withstand the mechanical shocks 

encountered in their production, packaging and dispensing; on the other hand, the tabletting 

process must be soft enough to enable the compacts to disintegrate promptly in their subunits 

after administration maintaining the drug release profiles of the subunits. Such an ideal 

compromise may be strived optimizing the proportions between three crucial factors: the pellet 

cores, the coating materials and the embedding excipients. Not many studies have focused so 

far on the simultaneous optimization of these three variables. 

Cellulose, and in particular microcrystalline cellulose, is one of the major excipients in solid 

dosage formulations. It presents four polymorphic forms, out of them the form I and II have 

pharmaceutical relevance. The form I, which features a favourably plastic behaviour when 

compressed, is extremely widespread as a filler-binder for MUPS. Unfortunately, it does not 

possess prevalent disintegration properties, so that a disintegrant must be added if a prompt 

disintegration is strived. Kumar et al. developed a new Cellulose II pharmaceutical aid named 

UICEL-A/102 through alkali treatment of Avicel PH 102 and successive hydrolysis with ethanol 

and oven dry. So far, UICEL-A/102 has been studied just as potential multifunctional excipients 

(filler and disintegrant) in tablet formulations, whereas its employement as a multifunctional 

excipient in MUPS has not been investigated yet. 

 

This study aimed to compare MCC 102 (Cellulose I) and UICEL-A/102 (Cellulose II) as pellet 

filler and embedding excipients in MUPS for controlled release. In the first part of the study,  

MCC 102 and UICEL-A/102 were separately mixed with Sodium Diclofenac, directly pelletized, 

coated with Kollicoat® SR 30 D to 20% w/w weigth gain and compacted into MUPS. In the 

second part of the study, a binary mixture of MCC 102 or UICEL-A/102 and Sodium Diclofenac 

was layered on neutral cores (Suglets® or Cellets®), 
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 in order to produce inhomogeneous pellets by means of dry powder layering technology. These 

pellets were then coated and compacted into MUPS according to the same procedure employed 

for the previous pellet batches. 

On the one hand, a multifactorial investigation of crucial parameters involved in the compaction 

of pellets into MUPS was strived; on the other hand, the suitability of UICEL-A/102 as filler in 

two different kind of pellets formulations for MUPS (homogeeous pellets from direct pelletization, 

inhomogeneous pellets from dry powder layering) was evaluated. 

 

In the case of homogeneous pellets of either MCC 102 or UICEL-A/102, the MUPS formulations 

overcame compaction deformed rather than ruptured, as proved by comparison between the 

dissolution profiles and the SEM and CLSM images before and after compaction. Both MCC 

102 and UICEL-A/102 MUPS resulted to be mechanically robust (crushing strength of 70-100 

N), fast disintegrating in water (≤ 3 min) and maintained the same release profile and almost the 

same superficial and inner morphology of their uncompressed subunits. In literature, UICEL-

A/102 has been validated to feature a higher elastic behaviour in comparison with MCC 102. 

Accordingly, we expected that UICEL-A/102 pellets and MUPS would undergo less soft 

compaction than their counterparts made of MCC 102. This unexpected finding suggests that 

also moderately elastic cores can be compacted without damage, provided they have been 

coated beforehand with a thick layer of a sufficiently flexible polymer. 

 

In the case of inhomogeneous pellets, only UICEL-A/102 pellets proved to be favourable 

subunits; in fact, MUPS made of UICEL-A/102 pellet featured good robustness (crushing 

strength of 90-120 N) and almost rapid disintegration (disintegration time ≤ 12 min), whereas 

MUPS made of MCC 102 were too compact (200-300 N) and did not disintegrate before 50 min. 

Considering the diverse UICEL-A/102 pellets formulations, a common trend could be 

extrapolated: the choice of Cellets® rather than Suglets® as basic neutral cores in dry powder 

layering had a significant impact on the characteristics of MUPS. In fact, MUPS whose subunits 

had Cellets® cores retain the release profile of their uncompressed subunits more then their 

counterparts having Suglets® as subunits cores. This suggests that subunits with a cellulosic 

core contributed significantly to the softness of the compaction, this difference being associable 

with a plastic behaviour of Cellets®  against the rather eleastic behaviour of  Suglets® during 

compaction. It must be pointed out that this result is in contrast with some studies, in which 

sucrose cores loaded with Diclofenac and coated with Kollicoat® SR 30 D underwent 

compaction maintaining their own release profile (Dashevsky, 2004), (Dashevsky, 2005). 
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On the one hand, it can be claimed that dry powder layering produced UICEL-A/102 pellets with 

less prevalent disintegration properties, which were therefore more suitable for controlled 

release MUPS. On the other hand, the presence of a hard core in those pellets favored the 

partial rupture of their coating layer during compaction, resulting in a faster drug release after 

compaction, especially in the case of sugar spheres as non pareils. 

Accordingly,  the use of UICEL-A/102 as unique multifunctional excipients is rather suggested in 

pellets and MUPS for immediate release, while employing of UICEL_A/102 as layering excipient 

on neutral core is very promising in the development of MUPS for extended release.  

 

In analogy with other parallel studies which are mentioned and discussed in §2.7.2, §2.7.3, 

§2.7.4 and §2.7.5, the perspective advantages of using smaller neutral cores, or embedding 

materials with a higher mean particle size distribution (Avicel® 200, Flow-lac®, Ludipress®) 

represent the further development of this study. 
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