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Abstract 
 
 
The presence of hormonally active compounds in the biosphere has become a 
worldwide environmental concern, and measures such as policy acts and 
regulations try to address the problem, both in Europe and in the United States. 
Such compounds, referred to as endocrine disruptors, may alter the functions of 
the endocrine system and consequently cause adverse health effects in 
organism, or its progeny, or populations.1 A safe in silico identification of the toxic 
potential of drugs and chemicals is therefore highly desirable by both regulatory 
bodies, and the pharmaceutical industry.  
Nuclear receptors regulate biological functions such as cell growth and 
differentiation, metabolic processes, reproduction and development, intracellular 
signaling and can be involved in carcinogenesis through control of gene 
expression.2 Chemicals that disrupt the endocrine system interfere with the 
function of nuclear receptors, alter their functions and consequently cause 
adverse health effects.1 
In this thesis, the development and validation of in silico three-dimensional 
models for the glucocorticoid and the liver X receptors, both belonging to the 
nuclear receptor superfamily, are presented. These models aim at the screening 
of drug candidates for glucocorticoid and liver X activity and of environmental 
chemicals for potential endocrine-disrupting activity.  
Different in silico-based tools and protocols were used to model receptor-ligand 
interactions. Molecular dynamics simulations enabled to gain an insight into the 
dynamical character of the protein-ligand interactions. An appropriate 
consideration of receptor flexibility (induced fit) was a prerequisite for the 
identification of realistic binding modes, which was performed with flexible 
docking. Once a suitable alignment was obtained, QSAR models were built, 
using two different technologies, and tested by the application to external 
validation sets, scramble tests and consensus scoring.  
The models have been added to the VirtualToxLab™3, 4 – a technology for the in 
silico identification of the toxic (endocrine-disrupting) potential of drugs and 
environmental chemicals. 
Special consideration was given to the role of hydrophobic effect in ligand 
binding. An empirical scoring function (Heidi: Hydrophobic Effect in Drug 
Interactions) was developed to quantify the hydrophobic effect for scoring 
protein–ligand binding energies. The use of HEidi, together with electrostatic, van 
der Waals and hydrogen bond energies, in the ranking of docking poses provided 
encouraging results when applied to glucocorticoid and liver X receptor 
complexes, but for a generalized statement more extensive evaluations are 
needed. 
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1 Introduction 
 
1.1 Endocrine Disruption 
 
The last 50 years, since the publication of Rachel Carson’s Silent Spring,5 have 
witnessed growing scientific concerns and public debate over the potential 
adverse effects that may result from exposure to chemicals that have the 
potential to alter the normal functioning of the endocrine system in wildlife and 
humans.1 Despite of the disagreement surrounding how to best define endocrine 
disruptors6 (EDs), the most frequently applied definition of an endocrine disruptor 
is that of “an exogenous agent that interferes with the production, release, 
transport, metabolism, binding, action or elimination of natural hormones in the 
body responsible for the maintenance of homeostasis and the regulation of 
developmental processes”.7 
 
Concerns about EDs are primarily due to 

• Adverse effects observed in certain wildlife, fish, and ecosystems8, 9 
• The increased incidence of certain endocrine-related human diseases10-12 
• Endocrine disruption resulting from exposure to certain environmental 

chemicals observed in laboratory experimental animals, or humans1 
 
There are different routes how chemicals can interfere with hormones or disrupt 
the hormonal system — the most straightforward by directly binding and blocking 
a hormone receptor. They can also trigger cellular mechanisms by mimicking the 
action of a natural hormone, or by affecting the synthesis, transport, metabolism 
and excretion of hormones.1 
The theory of endocrine disruption postulates that low-dose exposure to 
chemicals that interact with hormone receptors can interfere with reproduction, 
development, and other hormonally mediated processes. The timing of exposure 
is presumed to be critical, since different hormone pathways are active during 
different stages of development. Whether or not low-level and long-term 
exposures to such chemicals have adverse effects is the most controversial 
issue.1 
Even if many aspects of endocrine disruption still have to be elucidated, 
abnormalities in laboratory animals and wildlife exposed to endocrine-disrupting 
chemicals are reported. They include feminization of males, abnormal sexual 
behaviour, birth defects, altered sex ratios, decreased sperm density, decreased 
size of testes, breast cancer, testicular cancer, reproductive failure and thyroid 
dysfunction (Table 1, part of the table from Solomon et al.).13 
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Table 1. Examples of endocrine-disrupting chemicals 

Chemical Use Mechanism Health effect 

Arsenic Used in 
herbicides, 
insecticides, 
alloys, industrial 
compounds, 
mining practice 

Glucocorticoid receptor 
transcription inhibitor 

Humans: lung, skin, liver, bladder 
cancer14 

DES Synthetic 
estrogen 

Estrogen receptor 
agonist 

Humans (prenatal exposure): 
vaginal cancer, reproductive tract 
abnormalities (females); 
cryptorchidism, hypospadias, 
semen abnormalities (males)15 

Methoxychlor Insecticide Metabolite is an 
estrogen receptor 
agonist 

Rodents: accelerated puberty, 
abnormal ovarian cycling (females); 
aggressive behavior (males)16, 17 

DDT Insecticide Metabolite (DDE) is an 
androgen receptor 
antagonist 

Rodents (males): delayed puberty, 
reduced sex accessory gland size, 
altered sex differentiation18 

Vinclozolin Fungicide Androgen receptor 
antagonist 

Rodents (males): feminization, 
nipple development, hypospadias19 

PCBs No longer 
manufactured; still 
in electrical 
transformers, 
capacitors, toxic 
waste sites, food 
chain 

Glucocorticoid receptor 
antagonist 
Accelerated T4 
metabolism, decreased 
T4 levels, elevated TSH 
levels (high doses: 
thyromimetic) 

Humans (in utero exposure): 
delayed neurological development; 
IQ deficits20-22 

Atrazine Herbicide Reduces gonadotropin-
releasing hormone from 
hypothalamus, reduces 
pituitary LH levels, 
interferes with 
metabolism of estradiol, 
blocks estrogen receptor 
binding 

Rodents (females): mammary 
tumors, abnormal ovarian cycling 
Humans: some evidence of breast 
and ovarian tumors23-27 

Dioxin By-product of 
industrial 
processes 
including waste 
incineration; food 
contaminant 

Aryl hydrocarbon 
receptor agonist; 
increases estrogen 
metabolism, decreases 
esrogen-mediated gene 
transcription, decreases 
estrogen levels, 
decreases testosterone 
levels by interfering with 
HPG axis 

Rodents (in utero exposure): 
delayed puberty, increased 
susceptibility to mammary cancer 
(females); decreased testosterone, 
hypospadias, hypospermia, 
delayed testicular descent, 
feminized sexual behavior (males) 
Humans: decreased T3 and T4 
levels, decreased testosterone 
levels*, cancer*28-32 

DES=diethylstilbestrol, DDT=dichlorodiphenyltrichloroethane, PCBs=polychlorinated biphenyls, 
T4=thyroxine, T4=triiodothyronine, TSH=thyroid stimulation hormone, IQ=intelligence quotient, 
LH=luteinizing hormone, HPG axis=hypothalamic–pituitary–gonadal axis.*Exposures in adults. 
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Within the last decade, the field of chemical disruption of the endocrine system 
became an active area of research that captivated the scientific world, and 
captured the attention of governments, policymakers, and the media.  
In 1996, endocrine disruption was identified as one of the six high-priority 
research topics within the U.S. Environmental Protection Agency (U.S EPA).7 In 
the same year, the U.S EPA designated a special task force, the Endocrine 
Disruptor Screening and Testing Advisory Committee (EDSTAC), which was 
assigned the task of making recommendations for the development of testing 
and screening programs for endocrine disruptors.33 Likewise, the Organization 
for Economic Cooperation and Development (OECD) also established a special 
activity for endocrine disruptor testing and assessment.34 Subsequently, the 
World Health Organization (WHO) tasked the International Programme on Che-
mical Safety (IPCS) with preparation of a report describing the Global Asses-
sment of the Scientific Literature on Endocrine Disrupting Chemicals.1  
In December 2006, the European Union approved the Registration, Evaluation, 
and Authorization of CHemicals35 (REACH, EC 1907/2006), a regulation that 
covers the production and use of chemical substances. REACH entered into 
force on 1st June 2007. In particular, additional authorization for substances of 
“very high concern”, such as endocrine disruptors, is required. In Switzerland, the 
necessity for a coordinated interdisciplinary approach has also been recognized 
and the National Research Programme on Endocrine Disruption (NRP50) was 
conducted 2001–2007.36 According to the REACH regulation, about 30,000 
chemicals will have to be registered over 11 years. REACH specifically states 
that the test methods used are to be revised “in particular to refine, reduce or 
replace animal testing”, and that “before new tests are carried out to determine 
the properties listed in this Annex, all available in vitro data, in vivo data, 
historical data, data from valid (Q)SARs and data from structurally related 
substances shall be accessed first”. 
A reliable in silico identification of the endocrine-disrupting (or, more general, the 
toxic) potential of drugs and chemicals is therefore regarded as highly desirable 
by both regulatory bodies and the pharmaceutical, chemical, and food industry. 
Endocrine-disrupting chemicals (EDCs) can act at multiple sites through multiple 
mechanisms of action. Using receptor-binding assays and receptor-based 
functional assays, researchers have shown that some environmental chemicals 
interact with nuclear receptors and cause adverse effects in humans and rodents 
(Table 1). 
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1.2 Nuclear Receptors 
 
Nuclear receptors (NRs) are one of the most abundant classes of transcriptional 
regulators in animals and probably the most studied class associated with 
endocrine disruption. They comprise a superfamily of structurally conserved, 
ligand-dependent transcription factors that regulate diverse aspects of 
development, metabolism, reproduction and homeostasis37. NR can be 
subdivided into three classes (Figure 1), based on their ligand-binding and DNA-
binding properties.38-41 
 

 
Figure 1. The three classes of NRs. a: Steroid receptors (e.g. glucocorticoid receptors) are syn-

thesized in inactive forms that are associated with heat-shock protein (HSP). Hormone 
binding causes dissociation of steroid receptors from HSP complexes and allows 
binding to specific response elements in target genes. b: Heterodimeric NRs (e.g. liver 
X receptors) bind constitutively to DNA with retinoid X receptors as obligate partners. 
c: A subset of NRs bind DNA as monomers. In most cases, these receptors are 
designated as ‘orphans’. They might mediate transcription through changes in their 
expression or post-translational modifications (Figure from Glass et al.).42 

 
The classical steroid- and thyroid-hormone receptors (e.g. the glucocorticoid and 
estrogen receptors) are the first and most extensively studied class of nuclear 
receptors. In the unbound state, they are generally associated in the nucleus or 
in the cytoplasm, to other proteins, such as heat-shock proteins. Following 
binding, they dissociate from heat-shock proteins and initiate transcriptional 
activity. The ligand binding domain mediates the recruitment of coactivator or co-
repressor protein in a ligand-dependent manner and the transcription of target 
genes is activated or repressed.  
Orphan receptors, a second class of nuclear receptors, show the structurally 
conserved features of the nuclear-receptor superfamily, but they have not been 
linked to naturally occurring ligands and, in some cases, function in a ligand-
independent manner.  
A third class of nuclear receptors consists of the so-called ‘adopted’ orphan 
receptors (e.g. the liver X receptors). Those receptors were initially classified as 
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orphan receptors, but subsequent studies identified naturally occurring ligands 
and determined their physiological roles.42 They exist already bound to DNA, 
together with the retinoid X receptor to form heterodimers. Following ligand 
binding, the heterodimeric receptors switch their conformation and activate or 
repress transcription through binding to various coactivator or corepressor 
proteins. 
Three structural and functional domains, variable in length, form the general 
structure of NRs.2 The variability involves also some functions, such as activators 
binding, which do not always correspond to a simple structural domain. The 
modulatory N-terminal domain is the least conserved domain across the 
superfamily, and it houses activation function 1 (AF-1), one of the two regions 
involved in transactivation functions. Adjacent to the N-terminal domain is the 
DNA binding domain (DBD). This is the most conserved region of the receptor, 
and interacts with DNA, by allowing a specific recognition of short nucleotide 
sequences. At the C terminus, the ligand binding domain (LBD) is responsible for 
hormone binding, and contains the second activation function (AF-2), tightly 
regulated by hormone binding, that accounts for coactivators and corepressors 
recruitment. The interactions with coactivator and corepressor proteins are due to 
conformational changes in the α-helical region of AF2. 
The presence of ligands that can bind to the NRs is one of the most important 
determinants in NRs activity. Several recent studies have reported microarray 
analysis of the impact of NRs ligands on inflammatory programs of gene 
expression.43-45 Steroid receptors, such the glucocorticoid receptor (GR), regulate 
inflammatory gene expression in response to circulating hormones that are 
mainly produced in tissues under the control of the hypothalamic-pituitary-
adrenal axis. By contrast, liver X receptors (LXRs) are heterodimeric NRs that 
are mainly regulated by ligands produced in a paracrine or autocrine manner. 
From these studies emerges a specific gene regulation for each NR, suggesting 
a distinct, but cooperative (systemic and local) role in inflammation processes.42 
Xenobiotics that bind to NRs can disturb the cooperation of signaling pathways, 
giving rise to adverse health effects that are addressed by numerous studies. 
Among NRs, GR and LXRs were studied in this thesis with molecular modeling 
techniques, in order to build QSAR models able to predict the binding affinity of 
compounds for the two receptors. An in silico prediction of the binding affinity 
towards GR and LXRs would be desirable both in pharmaceutical industry, in the 
design of new drugs, and in environmental toxicology, for the investigation of 
endocrine-disrupting potential of environmental compounds. 
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1.2.1 The Glucocorticoid Receptor 
 
The GR is a ligand-activated transcription factor controlling a wide variety of 
biological processes including development, metabolism, and the immune 
response of the organism.46  
Ligands of the GR, the glucocorticoids, are therapeutically widely used for their 
anti-inflammatory and immunosuppressive activities, to treat numerous 
pathological conditions such as asthma, allergic rhinitis, rheumatoid arthritis, or 
acute transplant rejection.47 However, a range of side effects including 
osteoporosis, metabolic syndrome, impaired development, and blunted growth, 
limits their clinical use.48 Therefore, the identification of new glucocorticoids is still 
an endeavor in pharmaceutical R&D, and in silico tools assisting the rational 
design of glucocorticoids, — particularly by quantifying their binding affinity — 
are, consequently, much needed. 
Two isoforms of GR, due to alternative splicing, have been identified:49 GRα and 
GRβ, which differ in the structural composition of the ligand binding domain and 
therefore in their ability to bind glucocorticoid ligands. In GRβ helix 12 is missing 
in the C terminus, resulting in a receptor apparently unable to bind ligands and to 
activate responsive promoters. Recent studies however, show some evidence of 
ligand binding and of transcriptional activation.50 Additionally, GRβ may act as a 
dominant negative to repress the transcriptional activity of GRα.51, 52 Because of 
the ability of GRβ to antagonize the action of GRα, it has been hypothesized that 
changes in the expression of GRβ may underlie the development of 
glucocorticoid resistance.53 
In contrast, GRα is the classically functional GR. It can both activate and repress 
the transcription of target genes via binding to glucocorticoid responsive 
elements or cross-talk with other transcription factors, such as activator protein-1 
or nuclear factor-κB,54, 55 to repress their gene activation activities. This GR-
mediated repression of pro-inflammation genes, has been postulated to be a 
molecular basis for the anti-inflammatory and immunosuppressive activities of 
glucocorticoids.56-59 The side effects of glucocorticoids seem to be associated 
with both repression and activation of specific genes:60 the bone-related side 
effects appear related with repression of genes involved in osteoblast function 
and bone formation,61-63 while the metabolic side effects seem due to transcrip-
tional activation of enzymes involved in gluconeogenesis, lipid metabolism, and 
enzymes involved in muscle metabolism.64, 65 
A common feature of the GR ligand binding domains is a helical sandwich fold 
that nests a ligand binding pocket within the bottom half of the domain (Figure 2). 
The ligand binding pocket of GR is extremely adaptable and is able to 
accommodate a diverse set of ligands. The volume of the binding pocket is 
ranging from 540 Å3 (when bound to dexamethasone) to 1,070Å3 (when bound to 
deacylcortivazol).66 The cavity is mostly lined with hydrophobic residues, but it is 
clear that both polar and non-polar residues play specific roles in ligand 
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recognition.67 When bound to an agonist, like dexamethasone, the AF-2 function 
at the C terminus of the ligand binding domain is positioned in the classical 
agonistic conformation, allowing for coactivator recognition. In contrast, when GR 
is bound to an antagonist, like mifepristone, AF-2 is displaced such that there is 
no direct interaction between the residues of AF-2 and the ligand, and the 
receptor loses the ability to bind to the coactivator.  

 
Figure 2. Left: side view of the crystal structure of the GR ligand binding domain, when bound to 

dexamethasone (PDB 1M2Z).68 The structure is a helical sandwich where the ligand 
occupies the lower part of the domain. In the agonist form, GR can bind a coactivator 
peptide. The receptor is represented as ribbons and colored by secondary structure. 
The coactivator peptide is colored in green, and the ligand dexamethasone repre-
sented as licorice. Right: zoom into the binding pocket. Dexamethasone and amino-
acid residues lining the binding pocket are represented as licorice. Amino-acid residues 
involved in hydrogen bonds are colored by atom type, and the ones involved in 
hydrophobic interaction are colored in gray. 

 
The name glucocorticoid derives from early observations that these hormones 
are involved in glucose metabolism. The vast majority of glucocorticoid activity in 
most mammals is from cortisol, also known as hydrocortisone. It is essential for 
life, and regulates or supports a variety of important cardiovascular, metabolic, 
immunologic, and homeostatic functions. Various synthetic glucocorticoids are 
also available, such as dexamethasone. They are used either as replacement 
therapy in glucocorticoid deficiency or to suppress the immune system. 
Unfortunately the anti-inflammatory and immunosuppressive effects of classical 
glucocorticoids are frequently accompanied by undesired side effects. Recent 
efforts in pharmaceutical industry is then devoted to discover selective gluco-
corticoid receptor agonist (SEGRA) compounds,69 able to retain the positive anti-
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inflammatory activity but deprived from the side-effects.69, 70 Currently, they are 
being investigated in cellular69 and animal models,71 but none of them has 
reached yet clinical trials. Cortisol, dexamethasone and an example of a SEGRA 
compound are shown in Figure 3. 
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Cortisol Dexamethasone A276575 (SEGRA)  

Figure 3. Chemical structure of cortisol, dexamethasone and a non steroidal selective glucocorti-
coid receptor agonist. 

 
 

1.2.2 Liver X Receptors 
 
Liver X receptors (LXRs) were initially described as orphan receptors. Later, 
oxidized cholesterol derivatives or oxysterols were identified as specific ligands 
of LXRs,72 which are therefore also named “oxysterols receptor”. Studies 
performed during the last decade suggest that LXRs have an important role in 
sensing the intracellular sterol level by regulating genes for controlling the 
absorption, storage, transport and metabolism of cholesterol.73, 74 In particular, 
LXRs protect from cholesterol overload by 

• Inhibiting intestinal cholesterol absorption 
• Stimulating cholesterol efflux from cells to high-density lipoproteins 
• Activating the conversion of cholesterol to bile acids in the liver 
• Activating biliary cholesterol and bile acid excretion 

In addition, LXR agonists activate de novo fatty acid synthesis by stimulating the 
expression of a lipogenic transcription factor leading to the elevation of plasma 
triglycerides and liver steatosis.75 Finally, recent studies demonstrate that LXRs 
are implicated in negative regulation of macrophages inflammatory gene expres-
sion,44 inhibiting inflammation and autoimmune reactions in several in vivo mo-
dels.44, 76-78 
Despite the many biological effects of LXRs agonists, little is known about 
changes in endogenous LXR in pathological conditions. Inherited disorders of 
cholesterol metabolism, like the Smith-Lemli-Opitz syndrome or the Niemann-
Pick type C disease, are associated with defective cholesterol synthesis or 
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storage,79, 80 but it remains to be established the precise relationship between 
such disorders and LXRs.81 
Given the potent effect of LXR agonists on cholesterol balance and inflammation, 
these compounds should be very helpful in the prevention and/or treatment of 
many disorders, including diabetes, inflammatory diseases, atherosclerosis, 
Alzheimer’s disease, and hypogonadism.81 However, possible side effects must 
be taken into account, including enhancement of lipogenesis, hypertriglyceri-
demia, and liver steatosis. So far no studies have addressed the effect of LXRs 
agonists in humans. 
Two isoforms of LXR have been identified in mammals (non mammals have only 
one isoform) and are referred to as LXRα and LXRβ. They possess an amino 
acid sequence similarity of 77% and both bind at DNA at response elements after 
forming permissive heterodimers with RXR. Both subtypes are expressed in the 
enterohepatic system, but each has a distinct pattern of expression in other 
tissues: whereas LXRβ is ubiquitously expressed, LXRα expression is restricted 
to tissues rich in lipid metabolism (e.g liver),82 suggesting different roles in regula-
ting physiological functions.  

The overall structure of the LXRs binding domain comprises a core layer of three 
helices (H5, H6, H9 and H10) enclosed in two additional layers of helices (H1–
H4, H7, H8, and H11, respectively) and represents a typical nuclear receptor 
LBD fold (Figure 4). This arrangement is organized in a wider upper part, which 
shows the highest degree of sequence conservation between different nuclear 
receptors, and a lower, narrower, part that is folded to form a hydrophobic cavity 
into which the ligand can bind. The remaining secondary elements, an 
antiparallel β-sheet comprising three strands and H12 (that includes the AF-2 
motif), reside on either side of the ligand-binding cavity. The volume of the LXR 
binding pocket is of average size, ranging from 560 (when bound to the 
compound T0901317) to 680 Å3 (when bound to GW3965). A substantial fraction 
of the binding pocket is hydrophobic. The remaining (upper part in Figure 4) is 
polar. 
Oxysterols, the oxygenated derivatives of cholesterol, such as 22(R)-hydroxy-
cholesterol, 24(S)-hydroxycholesterol, 27-hydroxycholesterol, and cholestenoic 
acid, are the natural ligands for LXRs. Some synthetic LXRs agonists have been 
developed, including non-steroidal T0901317 and GW3965. Structures of natural 
and synthetic LXRs ligands are shown in Figure 5. 
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Figure 4. Left: crystal structure of the LXRβ ligand binding domain (PDB 1PQ6),83 when bound to 

GW3965. The structure is a helical sandwich (helices numbered based on that of the 
thyroid hormone receptor). The receptor is represented as ribbons and colored by 
secondary structure and the ligand GW3965 is represented as licorice. Right: zoom 
into the binding pocket. GW3965and amino-acid residues lining the binding pocket are 
represented as licorice. Amino-acid residues involved in hydrogen bonds are colored 
by atom type, and the ones involved in hydrophobic interaction are colored in gray. 
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1.3 Calculation of Protein-Ligand Binding Affinities 

 
Interactions between small molecule ligands and protein receptors are the basis 
of the mechanism of the great majority of pharmaceutically active compounds. 
The ability to determine the structures and free energy of binding of protein-
ligand complexes is, therefore, a key objective of computational structure-based 
drug design.  
In principle, simulations of the protein and ligand can solve this problem. In 
practice, obstacles such as the computation time and the limitations of force field 
accuracy make a direct physical chemistry approach problematic. These 
considerations have led to the development of approximate methods that, while 
still based on physical chemistry principles, make use of empirically optimized 
models (the scoring functions) and determine structures via specially designed 
conformational search algorithms (the docking algorithms). 
Docking and scoring technology is applied at different stages of the drug 
discovery process for three main purposes: 

• Predicting the binding mode of a known active ligand; 
• Identifying new ligands using virtual screening; 
• Predicting the binding affinities of related compounds from a known active 

series. 
Currently, of these three challenges, the successful prediction of a ligand binding 
mode in a protein active site is perhaps the most straightforward and is the area 
where most success has been achieved84. There are many published examples 
of successful virtual screens to identify new hit molecules, but the correlation 
between the ability of a program to produce a correct binding mode and its 
success in a virtual screen, remains to be demonstrated.84 In predicting the 
binding mode and identifying new ligands, other techniques, such as 
pharmacophore models, prove to be fast and accurate85, 86 as well. In principle, 
the functions used in the docking to calculate the scores predict also the free 
energies of binding of every molecule being screened. In practice, however, the 
best that can be obtained is a correct ranking of the molecules, and even this is 
typically beyond current methods.84 
Accurate prediction of binding affinities for a diverse set of molecules is so 
difficult because, at the simplest level, is a problem of small differences between 
large numbers, inaccurately calculated, to arrive at a small number.84, 87 The 
large numbers are on one hand the protein–ligand interaction energy and on the 
other hand the cost of bringing the two molecules out of solvent and into a 
complex. The result of this subtraction is the small number that gives the free 
energy of binding. 
In order to predict accurately binding affinities, other techniques have to be 
applied in alternative, or in addition, to docking techniques. Methods such as 
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thermodynamic integration (TI) and free energy perturbation (FEP) allow for 
precise quantification of the binding affinities, but they are computationally 
intensive and are limited to small structural changes of the investigated 
molecules.88 Approximate methods based on the sampling of several conforma-
tions, such as Molecular Mechanics Poisson Boltzmann Surface Area (MM-
PBSA) or Linear Interaction Energy method (LIE) are faster but still require for 
each putative binding mode an ensemble of conformations from molecular 
dynamics or Monte Carlo simulations. Quantitative Structure–activity relation-
ships (QSARs) are the most frequently used approach as they allow for a fast 
and quantitative determination of the binding affinity based on linear or multiple 
regression techniques.89-91  
In this thesis, a mixed-modeling approach, by docking the ligands to the X-ray 
crystal structure and quantifying their binding affinity using a quasi-atomistic 
receptor-surface model, was employed. 
 
 

1.3.1 Docking and Scoring 
  
Methods to calculate molecular interactions can be divided in docking, that is the 
prediction of a ligand conformation and orientation (or pose) within a targeted 
binding site, and scoring, the quality assessment of docked ligands. As several 
recent reviews have made clear,92-94 the technology has been productive for both 
finding and elaborating bioactive molecules. 
There are three principal algorithmic approaches to docking small molecules into 
macromolecular binding sites.95 A first class of algorithms aims at simultaneously 
optimizing the conformation and orientation of the molecule in the binding site. 
Because of the tremendous complexity of this combined optimization problem, 
systematic solutions are out of reach, and stochastic algorithms such as genetic 
algorithms (e.g. GOLD,96, 97 AutoDock98) or Monte Carlo simulations 
(Yeti/Autodock99-101) are usually employed. Docking programs based on such 
stochastic algorithms, in particular, can give very accurate docking solutions 
even for very large and flexible ligands,102, 103 but they require more computation 
time than the other two methods. A second class of algorithms (i.e. Glide,104 
FRED,105, 106 LigandFit107) separates the conformational search of the small 
molecule from its placement in the binding site. A conformational analysis is 
carried out first, and all relevant low-energy conformations are then rigidly placed 
in the binding site, whereby only the remaining six rotational and translational 
degrees of freedom of the rigid conformer must be considered. This approach 
can be referred to as “multiconformer docking”. Finally, a third class of docking 
algorithms (e.g FlexX,108 eHiTS,109 DOCK110) exploits the fact that most 
molecules contain at least one small, rigid fragment that is able to form specific, 
directed interactions with a receptor. Such so-called base-fragments are docked 
rigidly at various favorable positions of the binding site. Docking solutions are 
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then built starting from these various initial base fragment positions in an incre-
mental construction process, thereby exploring the (torsional) conformational 
space of the newly added fragments.  
Scoring functions have two tasks. First, they serve as an objective function to 
differentiate between diverse poses of a single ligand in the receptor binding site. 
Second, after docking a series of compounds, a scoring function is needed to 
give a rough estimation of binding affinities for different receptor–ligand 
complexes and to rank order the compounds. Due to the crucial role of scoring, a 
large number of functions have been developed. They can be classified in three 
categories. The most widely used class is constituted by the empirical scoring 
functions (e.g. as in Glide104).111 They approximate the free energy of binding as 
a weighted sum of terms, each term being a function of the ligand and protein 
coordinates and describing a different type of interaction such as lipophilic 
contacts and hydrogen bonds between receptor and ligand. The second class of 
scoring functions is based on molecular mechanics force fields (e.g. 
Yeti/Autodock,99-101 MedusaScore112). The binding affinity is estimated by 
summing up the electrostatic and van der Waals interaction energies between 
receptor and ligand. Contributions as hydrogen-bond or solvation energies might 
also be included. Finally, so-called knowledge-based scoring functions113 (e.g. 
eHiTS,109 PMF114, 115) are derived from statistical analyses of experimentally 
determined protein–ligand X-ray structures. The underlying assumption is that 
interatomic contacts occurring more frequently than average are energetically 
favorable. Knowledge-based functions are sums of many atom-pair contact 
contributions for combinations of protein and ligand atom types.  
Furthermore, scoring functions can be divided into soft and hard. The scoring 
functions that contain no directional (angular) terms and that have large distance 
cutoffs can be regarded as soft functions, because their values do not change 
abruptly with slight changes of ligand orientation and emphasize lipophilic 
contacts and general steric fit. Soft scoring functions are knowledge-based ones 
like PMF114, 115 and DrugScore,113 but also the “piecewise linear potential” 
(PLP)116 and the Gaussian shape fitting procedure by OpenEye.105 The empirical 
functions ChemScore117, 118 and the closely related FlexX scoring function119 are 
“hard”, because they contain angular terms for hydrogen bond interactions and 
emphasize these directed interactions more strongly. Force fields also belong to 
the category of hard functions, because they naturally include not only attractive, 
but also repulsive interactions that lead to steeper potential surfaces. 
From this short summary on available methods, it is clear that many options for 
combinations of docking algorithms and scoring functions are available, and the 
performance of the chosen method strongly depends on characteristic of the 
target structure.120  
The treatment of protein flexibility during docking is nowadays one of the current 
challenges, being less advanced than that of ligand flexibility: most docking 
methodologies treat the ligand as flexible, whereas the protein is kept rigid.84 
Within the methodologies that flexibly model at least part of the protein, various 
approaches have been attempted. Local induced fit can be addressed by 
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allowing side-chains flexibility (e.g. Yeti99, 100). A simple implicit approach to 
account for side-chain flexibility is to use a soft interface (by scaling the sterical 
interactions), which allows partial penetration of the partners.121, 122 Other 
methods adjust side chain conformations explicitly during a refinement stage 
following the rigid-body search.123, 124 This is typically performed only for a 
selected set of protein side chains close to the putative binding site and side 
chain conformations are represented as a discrete set of rotamers.97, 124 Part of 
the protein backbone can also be treated by discrete sets of backbone structures 
compatible with the protein 3D-fold.125 While several methods have been 
developed to tackle the problem of side chain and to some degree also local 
backbone conformational changes, computational efficient treatment of global 
deformations during docking remains a challenge. One possibility is to 
approximately account for receptor flexibility by representing the receptor target 
as an ensemble of structures.110, 126 During docking the ligand interacts with a 
mean-field due to the ensemble of receptor structures.127 In case of a limited 
number of ligands, it is also possible to combine docking with molecular 
dynamics (MD) simulations. In the relaxed complex method, an ensemble of 
protein structures is generated using molecular dynamics simulations prior to 
docking.128, 129 Subsequently, docking approaches that assume a rigid receptor 
are applied to dock putative ligands to the individual conformational snapshots of 
the simulation.128, 129 This approach has shown promising results on test 
cases,129 however, it can become computationally expensive, since depending 
on the size of the conformational ensemble, docking to many target receptor 
structures (possibly several hundred) needs to be performed. 
 
 

1.3.2 Hydrophobic Effects in Protein-Ligand Binding 
 
Solvation effects, especially hydrophobic effect in aqueous solutions, play a key 
role in the protein-ligand binding process. Due to the complexity of solute-solvent 
interactions, solvation free energy is considered as one of the most difficult 
energy term to be calculated.130  
The hydrophobic effect is often accounted for by an additional solvation energy 
term that is proportional to molecular surface area, with a positive coefficient.131 
The effect is to add a positive (unfavorable) solvation energy to conformations 
with more surface area and thus to favor binding, which reduces surface area. 
Combining the Poisson-Boltzmann132, 133 (PB) or Generalized Born134 (GB) 
electrostatics models with such a surface area (SA) term yields the PBSA135 and 
GBSA136 solvation models, respectively. These are called implicit solvent models 
because they do not treat any water molecules explicitly. Once parameterized, 
the PBSA and GBSA models provide rather good agreement with experimental 
solvation energies of small model compounds,135, 137 but they may be less 
accurate for more complex molecules, such as proteins, that can bind or comple-
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tely sequester individual water molecules. Unfortunately, it is not straightforward 
to generate experimental data that directly address this issue, but computational 
studies are beginning to be applied to it.138-141  
The influence of solvent on binding can also be treated with molecular dynamics 
(MD) or Monte Carlo (MC) simulations that include explicit water molecules 
modeled with an empirical force field.142-145 Dielectric screening, the solvation of 
polar groups, and the hydrophobic effect all emerge automatically with this 
approach. In addition, it should provide a better treatment of bound and 
sequestered water molecules, at least in principle. However, an explicit treatment 
of solvent is substantially more costly computationally than an implicit model (by 
perhaps an order of magnitude, depending on the specifics of the comparison).  
Several methods address the calculation of hydrophobic effect contribution in an 
empirical way. Empirical approaches such as the atomic solvation parameters 
(ASP146) method can provide simple and quick ways to evaluate solvation energy 
in accuracy comparable to theoretical methods. Alternatively, algorithms can be 
developed to recognize regions of hydrophobic enclosure in protein active sites 
(e.g. Glide104): when groups of lipophilic ligand atoms occupy such sites, the 
predicted free energy is adjusted to reflect the additional free energy gained 
beyond the standard scoring function representation of the hydrophobic effect. A 
similar example is given by the program LUDI:111 small molecules are positioned 
into clefts of protein structures in such a way that hydrogen bonds can be formed 
with the enzyme and hydrophobic pockets are filled with hydrophobic groups. 
The program works in three steps. First it calculates interaction sites, which are 
discrete positions in space suitable to form hydrogen bonds or to fill a 
hydrophobic pocket. The second step is the fit of molecular fragments onto the 
interaction sites. The final step in the present program is the connection of some 
or all of the fitted fragments to a single molecule, by the use of bridge fragments. 
X-Score147 (formerly known as X-CScore) is an empirical scoring function used 
for molecular docking that includes, among terms that account for van der Waals, 
hydrogen bonding and deformation energies, three different algorithms for the 
quantification of the hydrophobic effect: one depending on the polar surface area 
of the ligands, a second one that consist of an hydrophobic matching algorithm 
and a third term that accounts for hydrophobic contacts between protein and 
ligand. This last term in particular was the inspiration for the development of the 
hydrophobic effect function described in the section 4.3. The term in X-Score is 
calculated by summing up the hydrophobic atom pairs formed between the ligand 
and the protein, according to a distance function: 

X-Score: Hydrophobic contacts term = 

! 

f (dij )
j

protein

"
i

ligand

"           (1) 

if dij > dij0 + 2 Å       then            f(dij) = 0 
if dij <= dij0 + 0.5 Å       then            f(dij) = 1 
if dij0+0.5Å < dij <= dij0+2Å      then        f(dij) = (1/1.5)•(dij0+2.0–dij) 
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where dij is the distance between an atom i of the ligand and an atom j of the protein and 
dij0 is the sum of their van der Waals radii 

 
This distance function reflects the intuition that the strength of ‘hydrophobic 
interaction’ will reach the maximum when two hydrophobic atoms form van der 
Waals contact and diminish gradually with the increase in the inter-atomic 
distance. 
Other approaches make uses of empirical indices or scoring functions accounting 
for the hydrophobic interaction to be used in the search of quantitative structure–
activity relationship (QSAR). The logarithm of the octanol-water partition 
coefficient (logP) is one of the first and most used chemical descriptors in 
QSAR.148-150 It describes the intrinsic lipophilicity of a molecule and therefore the 
ability or inability to cross membranes, but is limited to the ligand and doesn’t 
consider specific hydrophobic interactions with a protein. More recently, in the 
approach of Akahane,151 two indices have been proposed: the first is a 
hydrophobic field-effect (Hf) index, which indicates the hydrophobic nature of the 
binding site of a host molecule such as a protein, and the second is a hydro-
phobic correlation (Hc) index, which indicates the hydrophobic correspondence 
between the host molecule and its guest molecule such as a ligand. In QSAR 
development, hydrophobic fields have also been proposed (e.g. HINT,152 
Raptor,153 MLP154, 155). In HINT, logP is used as the only quantity and applied it 
successfully for structure-based design156 and receptor modeling.157 In Raptor153 
physico-chemical fields (hydrophobic and hydrogen bonding), along with a cost 
for a topological adaptation and for changes in entropy during ligand binding, are 
contributing to the scoring function that leads the QSAR search. The binding site 
in Raptor153 is represented by two three-dimensional surfaces, populated with 
quasi-atomistic properties. The two shells account for different induced-fit 
mechanisms, observed, for example, with agonists and antagonists or ligands 
differing substantially in size. In Raptor, the induced fit is not only determined by 
steric aspects, but also by the adaptation of both fields (hydrophobic and 
hydrogen bonding) on the receptor surrogate. The molecular lipophilicity potential 
(MLP) has been developed as a field expressing in three-dimensions and in a 
conformation–dependent manner the intermolecular forces encoded in 
lipophilicity. MLP can be introduced as an additional field in three-dimensional 
QSAR (3D-QSAR) computations, leading to successful predictions of binding 
constants and biological activities.158-162 
The physical or empirical calculation of the contribution given by the hydrophobic 
effect in ligand binding aims at providing a rapid, reasonably accurate way to 
recognize hydrophobic interactions and quantitatively evaluate how various 
ligands, characterized by different features, capture the free energy gains 
available due to their ability to fit hydrophobic cavities in the protein. 
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1.3.3 Quantitative Structure–Activity Relationships (QSARs) 
 
Quantitative structure–activity relationships (QSARs), including quantitative 
structure–property relationships (QSPRs), are based on the assumption that the 
structure of a molecule (i.e. its geometric, steric and electronic properties) 
contains the features responsible for its physical, chemical, and biological 
properties (e.g. the binding affinity towards a receptor), and rely on the possibility 
to correlate such properties with a numerical representation of the molecule. 
A reliable in silico prediction of the binding affinity of a series of compounds 
towards a protein receptor is extremely desirable by both regulatory bodies and 
pharmaceutical industry not only because economical benefits would be 
provided, being in silico calculations cheaper than experimental assays, but also 
because time saving and ecological benefits would be allowed, due to the 
possibility of a more rational use of resources. 
Since the first QSAR models developed by Hammett,163, 164 Taft,165 and 
Hansch,89, 148, 166, 167 where electronic, steric, and lipophilic parameters were 
correlated with a biological activity, QSAR techniques have been extensively 
used and evolved during the years. The Free-Wilson approach168 was one of the 
first developments, and addressed for the first time structure–activity studies in a 
congeneric series by using substituent constants which related biological activity 
to the presence of a specific functional group at a specific location on the parent 
molecule.  
In 1988 Cramer et al.169 published the QSAR method known as comparative 
molecular field analysis (CoMFA). For the first time, such structure–activity 
relationships were based on the three-dimensional structure of the ligand 
molecules (3D-QSAR). In 3D-QSAR the ligands’ interaction with chemical probes 
is mapped onto a surface or grid surrounding a series of compounds 
(superimposed in 3D space). This surface or grid represents a surrogate of the 
binding site of the true biological receptor. The quality of the QSAR model here 
depends critically on the correct superposition of the ligands, the identification of 
which is almost impossible in the absence of structural information for the target 
protein.170 A possible solution to this problem could be provided by 3D 
approaches that do not depend on a mutual alignment of the molecules, like the 
grid-independent descriptors (GRIND171). These are autocorrelation transforms 
that are independent of the relative orientation if the moleculed in 3D space. 
Another possibility is provided by 4D methods that are able to deal simulta-
neously with different conformations, orientations, and protonation states.172-175 
Some of these approaches provide also the possibility of simulating induced fit in 
an explicit manner, by means of a topological adaptation of the model of the 
binding-site surface to the individual ligand molecules.153, 176 Different induced-fit 
protocols and solvation models constitute the fifth and sixth QSAR dimension 
(5D-QSAR,176 6D-QSAR177), respectively. More details concerning such 
methodologies are given in Chapter 3.2.9 and 3.2.10. 
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Different approaches describe the molecules not through field calculation, but 
through parameters, referred to as molecular descriptors. A molecular descriptor 
can be defined as the result of a logic and mathematical procedure which 
transforms chemical information encoded within a symbolic representation of a 
molecule into a useful number (theoretical descriptor) or the result of some 
standardized experiment178 (experimental descriptor). Different statistical 
methods are used to build QSAR models that correlate a set of (theoretical or 
experimental) descriptors with the studied activity (i.e. multiple regression ana-
lysis,179, 180 genetic algorithms,181, 182 artificial neural networks183, 184). While at an 
early stage of QSAR history only few experimental descriptors (e.g. logP, ioniza-
tion constant, molar refractivity) were used as QSAR parameters, later hundreds 
of quantum chemical, steric, topological, connectivity, and other theoretical 
descriptors were generated.178  
 
 

1.3.4 Validation of QSAR Models 
 
With the increasing number of descriptors, but also with the proliferation of QSAR 
models and technologies, many authors addressed the importance of a critical 
assessment of model predictivity by means of extensive validation.90, 185-189 
There’s general agreement that a good QSAR model should be characterized by 
a good fit and a good predictivity. Whereas fit can easily be checked by r2 
(coefficient of determination) or by the F-test of the regression, corresponding 
measures and criteria for predictivity are not so well defined. By convention, 
leave-one-out cross-validation or cross-validation in groups (leave-many-out) is 
accepted as the method of choice to test predictivity. However, many statisticians 
agree in recognizing that the leave-one-out procedure is asymptotically 
inconsistent,190 and too conservative in the sense that it tends to select large 
models unnecessarily.191 Moreover, internal predictivity as assessed by the 
leave-one-out method, has been demonstrated to be not correlated with test set 
predictivity.187, 192, 193 A high value of internal predictivity is a necessary condition 
for high predictive power, but it is not a sufficient condition. In other words, 
although a low value of q2

LOO (r2 measured on the training set with the leave-one-
out method) may well indicate low test set predictivity in a model, high q2

LOO does 
not necessarily imply high predictivity.187 This effect has been called, from the 
author that first raised the problem,192 “Kubinyi paradox”.194, 195 Another risk of 
very fit models is overfitting, that occurs when the training of the model has been 
performed too long or when the size of the training set is too small. In such cases 
the model may adjust to very specific random features of the training data, that 
have no causal relation to the modeled property: the model in this case is trained 
to reproduce not only the relevant information included in the training set but also 
the noise, and fails to predict test set compounds.196 Moreover, for models 
characterized by a high number of variables, the risk of chance correlation should 
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be considered. Already in 1972, Topliss pointed out that a large number of 
variables increase the risk of chance correlation.185, 186 
To address these problems, a number of criteria have been proposed.187-189, 191, 

197-201 At a workshop held in Setubal, Portugal in 2002, a set of principles was 
proposed to define the validity and applicability domain of QSAR models. These 
then evolved into the Organization for Economic Co-operation and Development 
(OECD) principles in 2004.202 Reliable and predictive QSAR models should be 
statistically significant and robust, should be validated by predictions for external 
data sets that were not used in the model development, and should have their 
application boundaries defined.188 In particular, many authors recommend the 
use of scramble tests, leave-many-out cross validation as well as predictions for 
an external set of data.90, 187, 188, 191 Furthermore, Todeschini et al.191 asserted 
that, in order to transform statistical models into real scientific knowledge, a 
model should be built on a sufficient large information about the modeled 
response, should contain only relevant variables, should have an acceptable 
predictive ability, and should avoid some pathological characteristics, for exam-
ple models with a marked difference between fitting and prediction power should 
be avoided.191 Consensus between different methodologies is an approach often 
used to ensure robustness of predictions.203-205  
QSAR models that satisfy qualitative and predictive requirements are a useful 
tool for pharmaceutical research, in the field of drug design and virtual screening, 
but probably even more for regulatory bodies, where an increasing number of 
toxicity tests is required, and alternatives to reduce or replace animal testing are 
highly desired. 
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2 Aim of the Thesis 
 
The presence of compounds with hormonal activity in the biosphere has become 
a worldwide environmental concern, and it has been addressed by various 
regulations, both in the U.S.7 and Europe.1, 34, 35 Besides natural and synthetic 
hormones, a broad variety of chemicals, referred to as endocrine disruptors, are 
able to disrupt the hormonal system, and cause adverse health effects.7 There 
are different routes how chemicals can trigger adverse effects; the most 
straightforward is via nuclear-receptors binding. A reliable in silico identification of 
the endocrine-disrupting (or, more general, the toxic) potential of drugs and 
chemicals is therefore regarded as highly desirable by both regulatory bodies 
and the pharmaceutical, chemical, and food industry. 
This thesis focuses on two members of the nuclear receptor superfamily: the 
glucocorticoid and liver X receptors, which through their role in metabolism and 
inflammation, cooperate in maintaining homeostasis.37, 41, 43-45 Molecular 
modeling techniques, applied to study the interactions between the receptors and 
their ligands, and to build predictive models aiming at the quantification of the 
binding affinity of small molecules towards the receptors, are presented and 
discussed. 
First, the identification of the binding mode by flexible docking is described. In 
particular, the results obtained from manual and automated protocols is 
compared. The generation of multi-dimensional QSAR models (software 
Quasar), able to quantify the binding affinity of small molecules to the 
glucocorticoid and liver X receptors, are then reported. Special attention is paid 
to the model validation, by evaluating the predictive ability, when applied to 
external sets of compounds. Robustness is verified by the consensus with a 
second QSAR methodology (Raptor), sensitivity with a series of scramble tests. 
Predictive QSAR models provide a tool for an in silico estimation of the binding 
affinity for new ligands or environmental compounds. 
Finally, the implementation of empirical scoring function in a small C program 
(HEidi: Hydrophobic Effect in Drug Interactions), aiming at the quantification of 
the hydrophobic effect for scoring protein–ligand binding energies, is described. 
The use of HEidi, together with electrostatic, van der Waals, and hydrogen bond 
energies, in the ranking of docking poses is evaluated.  
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3 Material and Methods 
 
3.1 Material 
 
In Table 2 is listed the hardware that was used during this thesis, together with 
the corresponding software. 
 

 
Table 2: Overview of the computer, operating systems and software used. 

Computer 
Hardware Processors RAM Operating 

System Software 

Macintosh 
Power Mac G5 

PowerPC G5 
2×1.8GHz 1GB OSX 

Yeti 
AMBER 

VMD 

Macintosh Mac 
Pro 

Intel® XeonTM 
8×3.0GHz 8GB OSX 

BiografX 
Quasar 
Raptor 

Dell PrecisionTM 
Workstation 650 

Intel® XeonTM 
2x2.8GHz 1GB  Kubuntu MacroModel 

VirtualToxLabTM 
Dell PrecisionTM 
Workstation 530 

Intel® XeonTM 
2×2.4GHz 1GB  Kubuntu MacroModel 

VirtualToxLabTM 
Cronos Linux 
Cluster (for 

more details see 
Pic XX) 

Intel® XeonTM 
76x2.4GHz 2GB/node Red Hat AMBER 

Silicon Graphics 
Workstation 

Octane 

2×250 MHz 
MIPS R10000 1.2GB IRIX 

MacroModel 
PrGen 

AMSOL 
AMBER 

Silicon Graphics 
Workstation O2 

250 MHz MIPS 
R10000 320MB IRIX 

MacroModel 
PrGen 

AMSOL 
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3.2 Software 
 
The main software used throughout this thesis will be described in short. The 
procedures will be described in the paragraph 3.3. 
 
 

3.2.1 AMBER 
 
AMBER 7.0206 is a package of molecular simulation programs for biomolecules 
(including energy minimization, molecular dynamics, NMR refinement, free 
energy calculations, energies and trajectories analysis, etc.). In this work, 
AMBER was exclusively used to perform MD simulations in explicit solvent. The 
modules used in this thesis are the following: Antechamber for the ligand 
preparation, Leap for the ligand and target preparation, Sander for the 
minimization and the molecular dynamic simulations, and Ptraj for the analysis of 
trajectories, energies and temperatures.  
 
 

3.2.2 AMSOL 
 
AMSOL 5.4.1207 is a semiempirical quantum-chemistry program that allows to 
compute partial CM-1 atom charges and solvation energies.208  
 
 

3.2.3 BiografX 
 
BiografX 1.1209 is a mQSAR tool running on Macintosh and Linux platform 
combining the multi-dimensional QSAR tools Quasar177 and Raptor,153 together 
with the pharmacophore aligmnment module Symposar and tools for preparing 
the ligands to a QSAR study. 
The BiografX concept is illustrated in Figure 6. 
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Figure 6. The BiografX concept 
 
 

3.2.4 BioX 

 
BioX 3.1.8209 is a general molecular modeling program able to build molecules 
from scratch and optimize with a molecular-mechanics minimizer, using the Yeti 
force field99 featuring directional terms for hydrogen bonds. In this thesis BioX 
was used to inspect structures, analyze ligand alignments and to build molecules 
submitted to VirtualToxLabTM. 
 

3.2.5 Epik 
 
Epik210 is a module which is part of Schrödinger Inc. software suite for pKa 
prediction. It was used to predict the protonation state of the ligands studied in 
this thesis at physiological pH. 
 
 

Raptor 
Dual-shell 5D-QSAR 

Symposar 
6D-QSAR 

Receptor modeling 
Consensus scoring 

BioX 
Small-molecule model building 

BiografX Yeti/Autodock 
Automated flexible docking 

Symposar 
3D/4D pharmacophore builder 



                                                                                                                                                                                                                          
    

24 

3.2.6 Glide 
 
Glide104 is a ligand docking program within the Schrödinger suite for predicting 
protein-ligand binding modes and ranking ligands via high-throughput virtual 
screening. Glide enables to perform flexible ligand docking into a rigid protein 
structure. 
 
 

3.2.7 MacroModel 
 
MacroModel 8.0211 is a molecular-modeling software package from Schrödinger 
that was used for ligand generation, optimization in GB/SA solvation212 model 
and for conformational searches. For the preparation of the ligands binding to the 
GR, Macromodel 6.5 was used, as version 8.0 was not available at the time. 
 
 

3.2.8 PrGen 
 
PrGen 2.1213 (Pseudoreceptor Generator) was used to prepare the GR and LXR 
ligands for charges and solvation calculation in preparation to the docking 
studies. 
 
 

3.2.9 Quasar 
 
The software was used to generate receptor models for the GR and LXR. Quasar 
5.2176, 177, 214 is a receptor-modeling concepts that allows for multidimensional 
QSAR. In Quasar, the binding site of the protein is represented by a surrogate, 
which consists of a three-dimensional surface, surrounding the ligands 
superimposed in their bioactive conformation (as obtained, for example, from 
docking studies at the true biological receptor) at van der Waals distance. The 
topology of this surface mimics the shape of the binding site. This surface is then 
populated with quasi-atomistic properties, corresponding to those of the amino-
acid residues: positively and negatively charged salt bridges; hydrogen-bond 
donors and acceptors; neutral, positively and negatively charged hydrophobic 
properties; hydrogen-bond flip-flop, as well as solvent. Apart from accepting 4D 
compound input (conformations, poses, protonation states, tautomers),174 
Quasar allows specifically for the simulation of induced fit (corresponding to side-
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chain flexibility and moderate backbone motion at the true biological receptor) 
whereby six different protocols are evaluated simultaneously (5D-QSAR).176 The 
model family, typically consisting of 200–500 models, is evolved using a genetic 
algorithm and provides an averaged prediction for each compound along with the 
variation over the model family. Quasar employs the following scoring function 
derived from the directional Yeti99 force field: 
 
Ebinding  = Eligand–receptor – Eligand desolvation – Eligand internal strain – TΔS – Einduced fit       (2) 

where Eligand–receptor = Eelectrostatic + Evan der Waals + Ehydrogen bonding + E polarization 

 
ΔGexp = |a |• Ebinding + b              (3) 
 
Using the ligands of the training set, a linear regression of the experimental 
(ΔGexp) and calculated (Ebinding) binding affinity is then obtained (eqn. 3). The 
coefficients a and b are derived from the correlation of the training set in cross-
validation mode and, later on, applied to molecules of the test set or new 
compounds for which binding affinity should be predicted. In Quasar, the solvent 
contribution can be calculated explicitly, allowing the presence of solvent 
properties on the surrogate surface, or implicitly, where the solvation terms 
(ligand desolvation and solvent stripping) are independently scaled for each 
model within the surrogate family. Each different scaling reflects a different 
solvent accessibility of the binding site. Solvation terms are associated with 
weights that evolve throughout the simulation (6D-QSAR).177 
 
 

3.2.10 Raptor 
 
Raptor 3.2.10153 is a receptor-modeling concepts that allow for multi-dimensional 
QSAR.  It was used to generate models in consensus mode for the prediction of 
the free binding energy of ligands. In contrast to Quasar, the binding site in 
Raptor is represented by two three-dimensional surfaces, populated with quasi-
atomistic properties. The two shells allow to account for different induced-fit 
mechanisms, observed, for example, with agonists and antagonists or ligands 
differing substantially in size. Induced fit may, of course, exert different shapes 
and magnitudes for the two shells. The model development employs a multi-step 
optimization protocol153 including domain assignment, tabu search,153 and local 
search. In Raptor, the scoring function includes directional terms for hydrogen 
bonding and hydrophobicity as well as terms for the cost of the topological 
adaptation and the changes in entropy upon ligand binding: 
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Ebinding  = Eligand–receptor – TΔS – Einduced fit            (4) 
 
where Eligand–receptor = w (Ehydrogen bonding (shell-1) + Ehydrophobic (shell-1)) + (1.0–w) • (Ehydrogen bonding (shell-2) + 
Ehydrophobic (shell-2)) 
 
with w being the interpolation weight between the two shells. 

 
 

3.2.11 Swiss-PdbViewer Deep View 
 
Swiss-PdbViewer 4.0215 (aka DeepView) is an application that provides a 
graphical interface allowing to analyze several proteins at the same time. The 
proteins can be superimposed in order to deduce structural alignments and 
compare their active sites or any other relevant parts. Amino-acid mutations, H-
bonds, angles and distances between atoms can be obtained thanks to the 
graphic and menu interface.  
Swiss-PdbViewer was used to align protein and compare different crystal 
structures of the same protein or different isoforms of the same receptor. 
 
 

3.2.12 VMD 
 
VMD 1.8.6216 (Visual Molecular Dynamics) 1.8.6 is a molecular visualization 
program for displaying, animating, and analyzing large biomolecular systems.  
In this thesis it was used to display trajectories from the molecular dynamics and 
to render static pictures of ligand binding modes or to produce movies from 
molecular dynamics simulations. 
 
 

3.2.13 VirtualToxLabTM 
 
The VirtualToxLabTM3, 4 is an in silico tool for predicting the toxic (endocrine-
disrupting) potential of drugs, chemicals and natural products. Its fully automated 
protocol — accessible through the Internet — calculates the binding affinity of 
any molecule of interest towards a series of 12 proteins, known or suspected to 
trigger adverse effects and estimates the underlying toxic potential. In contrast to 
other approaches in the field, the technology does not only provide a binding 
affinity but allows to verify a prediction at the molecular level by interactively 
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inspecting the binding mode of the tested compound with all target proteins in 
3D.  
The toxic potential of existing and hypothetical compounds (drugs and 
environmental chemicals) is estimated by simulating and quantifying their 
interactions towards a series of macromolecular targets at the molecular level 
using automated flexible docking combined with multi-dimensional QSAR 
(mQSAR). Currently, those targets comprise 12 proteins: the androgen, aryl 
hydrocarbon, estrogen α/β, glucocorticoid, liver X, mineralocorticoid, thyroid α/β 
and the peroxisome proliferator-activated receptor γ as well as the enzymes cyto-
chrome P450 3A4 and P450 2A13.  
In the present work the VirtualToxLabTM was used to check the predictions by the 
automatic procedure for the compounds used in this thesis as well as to predict 
the toxic potential of new compounds to the GR and LXR, respectively. 
 
 

3.2.14 Xcode Tools 
 
Xcode is Apple’s development environment for MacOSX. In this thesis the GCC 
compiler within Xcode tools was used to compile the code for evaluation of 
hydrophobic effect in the binding site of the proteins. 
 
 

3.2.15 Yeti 
 
Yeti 7.1299-101 is a molecular-mechanics program developed by Vedani and 
Dobler to optimize proteins complexed with small molecules, by means of flexible 
docking. It features also a module for automated docking, i.e. for the sampling of 
structurally and energetically feasible arrangements within the binding pocket of 
a protein using flexible docking (co-refinement of the protein) combined with a 
Monte-Carlo search protocol and dynamic solvation of the binding pocket. Figure 
7 shows the automated docking protocol. After centering a compound in the 
binding pocket, 50 new ligand configurations are generated with local translation, 
rotation and combined local/global torsion flips. The lowest-energy ligand-protein 
complex is refined and serves as a template for the next Monte-Carlo step. The 
best previous configuration is restored if no lower-energy configuration is found 
after four Monte-Carlo trials. This permits a global search without spending too 
much time in computation for local sampling of ligand configurations in 
unfavorable regions of the binding pocket. 
In this work, the minimization protocol was used to identify, both manually and 
automatically, the various conformations of the ligand molecules at the binding 
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site and to obtain thereby the most feasible docking mode. The energetically 
most feasible pose was then usually used for receptor-modeling studies. 
 

 
Figure 7. Flexible docking protocol with Monte Carlo search 
 

Centering ligand in binding pocket 

No better 
solution after 4 
steps  return 
to best solution 

Generating configurations (n=50) 
• Torsional flips (local & global) 
• Local rotation & translation 
• Minimum rms deviation from 
previous best configuration (1.5 Å) 

Refining energetically lowest configuration 
(ligand & binding pocket, 6 Å zone) 

10x 

Energetically lowest 
configuation 

Solvation (6 Å zone around ligand) 

3-step refinement 
• Water molecules 
• Ligand & binding pocket (8 Å zone) 
• Ligand & binding pocket (12 Å zone) 

Generating conformations (10000) 
• Global translation (∆rC.o.M. > 2 Å) 
• Ligand & binding pocket (|∆α |+|∆β|+|∆γ|) > 90°) 

24x 
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3.3 Methods 
 
After data preprocessing, and after the preparation of ligands and proteins, a 
flexible docking was performed, both automatically and manually, in order to find 
minimum energy binding modes. Based on the alignment obtained from the 
docking, a QSAR model was subsequently built and validated. The models were 
finally implemented in VirtualToxLabTM and used to test new class of compounds 
for toxic potential. 
 
 

3.3.1 Experimental Binding Affinities for GR and LXR Ligands 
 
The experimental affinity data for the 110 GR-binding compounds and for the 54 
LXR ligands were obtained from multiple sources.217-222 Some of the affinity data 
were available as IC50 values, the others as Ki values. For their use in our study, 
we converted the IC50 into Ki values using the Cheng-Prusoff relation:223 
 
Ki = IC50/(1 + L/KD)               (5)  
 

where Ki is the inhibition constant, IC50 the 50% of the inhibitory concentration, L the 
concentration of the radioligand and KD its dissociation constant. 

 
The Ki values of the compounds, together with their structures, are given in the 
appendix A and B. 
 
 

3.3.2 Ligand Structure Generation and Conformational Analysis 
 
The three-dimensional structures of all the ligands studied, was generated using 
MacroModel 6.5 for the GR compounds and MacroModel 8.0 for the LXR 
compounds, and optimized in aqueous solution  (GB/SA continuum water model) 
with the AMBER*224 force field. Atomic partial charges (CM1) were generated 
using the AMSOL package.   
In order to identify the lowest-energy conformation for all compounds, a con-
formational search with MacroModel was performed (10,000 Monte-Carlo 
iterations) for all the GR ligands except for the steroids, where only the 
compound with the highest experimental affinity was investigated, assuming that 
all the steroids share a common puckering of the B and C rings. 
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The ligands of the LXR instead are large molecules (450+) characterized by the 
presence of extended branches with aromatic rings that after conformational 
search often pack together to give the molecule a folded conformation. To 
overcome this artifact, for the molecules characterized by a global minimum with 
a folded conformation, the minimum energy conformation among the open 
conformations was chosen instead of the overall global minimum. 
 
 

3.3.3 Protein Preparation 
 
The three-dimensional structure of the GRα with bound dexamethasone (PDB 
code: 1M2Z,68 2.5 Å resolution, Rfree = 0.267) was obtained from the Protein Data 
Bank.225 For our study, we chose chain A, including 255 amino-acid residues, 
dexamethasone, and 118 water molecules. First, all hydrogen atoms were added 
to the structure with the software Yeti99, 100 and the most probable protonation 
state for the histidine residues was automatically assigned: His645 and His654 
were protonated at their Nδ atom while His588, His726 and His775 were 
protonated at their Nε atom, respectively. Next, the hydrogen-bond network was 
optimized on the basis of neighboring partners (donors or acceptors), by 
orienting polar hydrogens in order to get optimal distance, linearity, and 
directionality of the resulting H-bonds. Finally, the structure was relaxed using the 
directional Yeti force field.99 
The three-dimensional structures of the human LXRα (PDB code 1UHL,226 2.90 
Å resolution, Rfree = 0.326, chain B) and β (PDB code 1PQ6,83 2.40 Å resolution, 
Rfree = 0.262, chain A) were obtained from the Protein Data Bank. The two 
structures were aligned and compared with Swiss-PdbViewer, and due to high 
similarity of protein structure and to the high correlation of the experimental 
binding affinities for the two LXR isoforms α and β, only one, the β isoform, was 
considered for the subsequent studies. The details of the comparison will be 
discussed in chapter 4. The amino-acid sequence was discontinuous at two 
points: amino-acid residues from Phe243 to Gln246 and Leu254 to Pro258 were 
not resolved in the crystal structure. The structure of such amino-acid residues 
was adopted from other crystal structures (Phe243 to Gln246 were taken from 
PDB 1PQ9,83 and Leu254 to Pro258 from 1UPV227), after being aligned with the 
template LXRβ. The complete structure was then minimized with BioX and with 
MacroModel (AMBER*, 5000 iterations, TNCG, implicit water solvent).  
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3.3.4 The Docking Protocol 
 
Before running any minimization, the force-field parameter database had to be 
augmented to include all specific parameters for the studied ligands – most 
particularly, 1–4 (torsional) interactions. Next, the ligands were manually docked 
into the binding site of GR or LXR and minimized with the software Yeti.100 The 
minimization of the complex was performed over two steps: first, only the protein 
around the ligand (within a distance of 8 Å) was minimized, then the ligand and 
the protein within the same zone were optimized.  
In addition, an automated docking procedure was performed with Yeti.100 The 
compounds were grouped by chemical classes and for each class the most 
active compound was manually docked into the GR structure. Such complex was 
used as a template for the automated docking of the remaining compounds. For 
each ligand 25 poses were saved and the 4 minimum energy conformations used 
for the QSAR. 
Automated docking for the LXR ligands was also carried out with Glide.104 
Results with both automated procedures (Yeti,99, 100 Glide104) were less 
encouraging than the manual ones and for this reason the QSAR studies here 
presented refer to the alignment obtained with the manual docking. 
In order to improve the pose selection in the automated docking procedure, a 
particular consideration of the hydrophobic effect in the active site of proteins 
was performed through the development of a new empiric scoring function. A 
literature study was carried out to get an overview of the approaches in the field 
and to find a suitable scoring function that was used as a starting point for a 
subsequent development and modification, leading to a new empirical score 
based on hydrophobic matching between protein and ligand. A small program in 
C was implemented to calculate such scoring function and applied to the docking 
of compounds to the GR and LXR. More detailed information on the development 
and results is given in chapter 4. 
 
 

3.3.5 Molecular-Dynamics Simulations 
 
The receptors prepared as indicated above were converted to the proper format 
with the specific AMBER-conventions for atom types. The co-crystalized ligands 
were processed with the Antechamber module in AMBER, where atomic partial 
charges (AM1-BCC) were calculated with MOPAC.228 The structures were then 
read into Leap, where it was checked for consistency and the libraries of 
parameters were created (using force fields AMBER ff99 for the proteins and 
GAFF for the ligands). The complexes were solvated with a water cap of 25 Å 
around the respective ligands. The solvent shell was constituted of explicit TIP3P 
water molecules. During the MD, the bonds to hydrogens were constrained with 
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the SHAKE algorithm. The MD protocol applied (Sander module of AMBER) was 
the following: 

• A first minimization (steepest-descent method) was carried out, using a 
non-bonded cutoff of 12 Å.  

• Two equilibration steps were then performed. First, only water molecules 
were equilibrated and the protein was kept fixed. After heating from 100K 
to 500K for 40 ps, and cooling from 500K to 300K for 20 ps, temperature 
was kept constant at 300K for 40 ps. 

•  The second equilibration step involves the inner zone (20 Å around the 
ligand, where the residues were identified with the module Carnal). The 
timings and temperature management were the same as the previous 
step: after heating from 100K to 500K for 40 ps, and cooling from 500K to 
300K for 20 ps, temperature was kept constant at 300K for 40 ps.  

• The production phase of different length for the two receptors was carried 
out at a constant temperature of 300 K and involves the inner zone. 

• A second minimization on the final structure was performed. 
 
In Figure 8 is shown a diagram of the molecular dynamics protocol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Diagram of the molecular dynamics protocol. The production phase is 500 ps for GR 

and 250 for LXR. 
 
In order to perform meaningful and well equilibrated molecular dynamics 
simulation, the settings were slightly different for the two receptors: for the GR 
the initial and final minimization were characterized by 300 cycles, while for LXR 
it was necessary a longer minimization of 5000 cycles. The time-step chosen 
was 2 fs for the GR and 1 fs for the LXR. The production phase was performed 
for 500 ps for the GR and, being the time step shorter, only for 250 ps for the 
LXR, due to simulation length. This difference can be explained with the fact that 
the LXR structure was subjected to a modification, by the introduction of 9 amino-
acid residues not solved in the crystal structure, that may have required a longer 
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minimization and a shorter time-step. In Table 3 are reported the parameters 
chosen for each receptor. 
 

 Minim. 
steps 

Time step  
(ps) 

Equil. 1 
(ps) 

Equil. 2 
(ps) 

Production 
(ps) 

GR 300 0.002 100 100 500 
LXR 5000 0.001 100 100 250 

 
Table 3. Parameter settings during the molecular dynamics. 
 
Analysis of temperature and energy was performed with the module Ptraj.  
The MD simulation for the GR was performed to get insight into the dynamic 
behaviour of the complex, but the structure used for the further processing was 
the one before MD, prepared as described in paragraph 3.3.3. 
For the LXR, the molecular dynamics simulation was performed not only to 
analyze the binding mode and the dynamic behavior of the crystallized complex, 
but also to further minimize the energy of the protein structure after the 
construction of the missing amino-acid residues. For this reason, a post-
processing of the protein structure was necessary. In order to have a suitable 
structure for the docking, the minimum energy conformation of the protein-ligand 
complex during the production phase was extracted from the trajectories, 
imported in MacroModel and minimized. Three other random conformations 
during the MD were also extracted and superimposed, together with the average 
structure, to compare the structural differences during the simulation. The result 
of the comparison is discussed in the chapter 4. Only the minimum energy 
structure was then further processed for the docking studies. The structure was 
imported in Yeti100, after the deletion of surface water molecules from the protein 
and minimized (full refinement). 
 
 

3.3.6 QSAR Studies: Quasar 
 
The data set was split into a training set, used to build the model, and test set, 
used to evaluate it, in such a way that a maximal diversity of the training set with 
respect to binding affinity and chemical properties was obtained. In order to 
achieve this goal, the compounds were grouped according to their chemical class 
(i.e. sharing the same scaffold) and were ranked by affinity. For each group, the 
most and the least active compound was assigned to the training set. From the 
compounds remaining in the pool, compounds with different scaffolds and 
functionalities were selected to be part of the training set in order to achieve 
maximal chemical diversity. For the QSAR simulations, we used 4:1 ratio yielding 
88 training and 22 test compounds for the GR, and 40 training and 12 test 
compounds for the LXR. 
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We used the so-called mixed-modeling approach,153, 177 i.e. docking the ligands 
to the X-ray crystal structure and quantifying their binding affinity using a quasi-
atomistic binding-site model thereof. This approach yields more reliable binding 
energies than directly scoring the ligand-protein interactions at the experimental 
structure. This is due to the fact that the estimation of the binding energy on a 
whole protein-ligand complex is associated with errors that are much larger than 
the difference in binding of two small ligands, for example. 
The ligand alignment obtained from the manual docking was used as input to 
build the QSAR model. Attempts were also made with the alignment from the 
automated docking procedure. In order to develop the model, together with the 
ligand alignment were added by the software BiografX also the binding affinity 
values, the AMSOL solvation of the neutral species, the entropy values and the 
internal strain calculated with MacroModel, necessary to have a quantitative 
prediction of the binding affinity. 
After creating the three-dimensional surface, the ligands individual envelopes 
were generated using all of the six different induced-fit scenarios (module 
Envelope). In order to develop a consistent QSAR-model, which could predict the 
binding affinity towards GR and LXR in good agreement with the experimental 
data, different parameters settings were explored and the model was built with 
Quasar: 

• Population size (100 or 200 individuals) 
• Number of crossovers (from 2000 to 100000) 
• Attenuation factors (weight between 0 and 1 of solvation energies, 

entropies, internal strain) 
• Induced-fit weight (0.25, 0.5, 1.0, 2.0) 
• Number of cross-validation groups (5, 6, 7, 8, 9, 10) 

 
 

3.3.7 Model Validation 
 
Particularly in multidimensional QSAR (mQSAR) it is of outmost importance to 
challenge a model, e.g. by means of a series of scramble tests, of consensus 
scoring as well as an external validation set. In this work, all these tests were 
employed. Scrambling the training set data229 (also called y-scrambling) is a 
widely used technique to ensure sensitivity of the model. It consists of a random 
shuffle of the binding data of the training set, with respect to the true biological 
values. If, under these circumstances, the ligands of the test set are still 
predicted correctly, the model is worthless, as it is not sensitive towards the 
biological data. To assess the robustness of the model, a second methodology 
(software Raptor153) was applied, in order to compare predictions in a 
consensus-scoring approach. To truly challenge the model, a new independent 
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set of compounds was identified from the literature, and employed only for this 
validation step.  
 
 

3.3.8 Estimation of Toxic Potential through VirtualToxLabTM 
 
The models for GR and LXR were implemented in the VirtualToxLabTM3, 4, 230, 
that presently includes 12 models (androgen, aryl hydrocarbon, estrogen α/β, 
glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated γ and 
thyroid α/β receptors as well as for the enzymes cytochrome P450 2A13 and 
3A4). The binding affinity of 1500+ compounds towards all 12 models was 
calculated. The results are accessible through the Internet.209 To assess the 
validity of the approach, a series of 24 psychotropic drugs ligands were tested in 
the automatic procedure, and the results are discussed in the chapter 4.1.6. The 
protocol implemented in VirtualToxLabTM includes a full conformational search in 
aqueous solution, the identification of the most probable protonation and 
tautomeric state at physiological pH, followed by automated, flexible docking and 
calculation of the binding affinity using 6D-QSAR. The technical flowchart of 
VirtualToxLabTM is presented in Figure 9. 
 

 
 
Figure 9. The technical flowchart of VirtualToxLabTM. 
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4 Results and Discussion 
 
This chapter is organized in three sections: the first (4.1) comprises the 
glucocorticoid receptor (GR) studies, the second (4.2) the liver X receptor (LXR) 
studies and the third one (4.3) the development and application of a novel 
scoring function to the GR and LXR systems, to quantify the hydrophobic 
interactions between a ligand and a protein in the active site. 

 
 
4.1 Glucocorticoid Receptor (GR) 
 
In this section, the work performed on the GR is discussed: the analysis of 3D 
crystal structures, the retrieval of the binding affinity data and the preparation of 
compound structures of the GR ligands, the docking to the receptor, the MD 
studies, the building and validation of a QSAR model and the screening of a 
series of psychotropic drugs for their GR mediated toxic potential. 
 
 

4.1.1 Analysis of the GR Crystal Structures 
 
Prior to any docking and molecular-dynamics studies on the GR, the 
conformation of the highest resolution crystal structure (at the time: October 
2005) of the GR in agonistic form (PDB code 1M2Z68), later used for the docking 
of the compound library, was compared with the structure of the same receptor in 
the antagonistic form (PDB code 1NHZ231). The superposition of the agonistic 
form, bound with dexamethasone, and the antagonistic form, bound to RU-486, 
is shown in Figure 10. In agreement with what is seen in other nuclear receptor 
antagonistic complexes,232 the main difference between the agonistic and the 
antagonistic form is found in helix 12, where, in the antagonistic form, the 
dimethylaniline moiety of RU-486 physically prevents helix 12 from adopting the 
characteristic agonist position over the ligand-binding pocket as in the agonistic 
structure. 
The binding modes of the co-crystallized agonist and antagonist are compared in 
Figure 11. Both ligands (the agonist dexamethasone and the antagonist RU-486) 
interact with Arg611 and Gln642. Due to a different arrangement of the protein 
side chains of the antagonistic form, the antagonist RU-486, differently from the 
agonist dexamethasone, is not involved in an hydrogen bond with Asn564. 
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Figure 10. A and B: comparison between crystal structures of GR in the agonist form (A) 

complexed with the agonist dexamethasone and in the antagonist form (B), 
complexed with RU-486. In green is represented the coactivator peptide interacting 
with the agonist form. In red is represented helix 12. Both the receptors are 
represented in ribbons and the ligands as licorice. C and D: chemical structure of 
dexamethasone and RU-486. E: superposition of the two ligands and of the amino-
acid residues Arg611, Gln570, Gln642 and Asn564. 
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                  Agonist - DEX - PDB: 1M2Z                 Antagonist - RU486 - PDB: 1NHZ 

 
Figure 11. Details of the binding pocket of GR bound to the agonist dexamethasone (left) and to 

the antagonist RU-486 (right). The ligands are represented as licorice and completed 
with hydrogens, key aminoacid residues as balls and sticks and the other amino-acid 
residues as lines.  

 
The crystal structure of the agonistic form is available at a slightly lower 
resolution than the antagonistic form (2.50 Å of 1M2Z68 versus 2.30 Å of 
1NHZ231), but was chosen for the docking studies, because for 1M2Z68 in the 
sequence comprised between amino-acid residues Ala523 and Lys777 all 
residues were resolved, while in 1NHZ231 16 residues were unresolved. 
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4.1.2 Retrieval of the Binding Affinity Data and Preparation of the 
Compound Structures 
 
The pharmacological data for the 110 GR-binding compounds were obtained 
from multiple sources.217-222 IC50 values were converted in Ki values using the 
Cheng-Prusoff equation,223 taking into account the concentration of the 
radioligand (3H-labelled Dexamethasone) in each individual experimental assay 
and its Ki. Figure 12 shows the activity distribution of the binding data. 

 
 
 

 
 
 

 
 
 

 
 
 
Figure 12. Distribution of the pKi values: 85% of the affinities cluster within two logarithmic units, 

while the whole data set spans six orders of magnitude (0.05 nM – 32 µM). 
 
The experimental binding affinities range from 3.2×10-5 to 5×10-11 M. The majority 
of affinities, however, lies within two orders of magnitude (10-7 – 10-9 M; cf. Figure 
12). For prednisolone (compound code within this study: A02), a comparison of 
experimental binding affinities obtained from three different sources shows a 
difference of more than a factor 10 in its Ki value (from 2.4 nM to 32 nM), 
indicating the presence of noise in our input data and making the search for a 
predictive model more difficult.  
The ligands comprise four different chemical classes: steroids, quinoline 
derivatives, fluorophenyl-indazole derivatives and spirocyclic dihidropyridine 
derivatives (Figure 13). The compound structures and their Ki values are given in 
the appendix A. 
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Figure 13. Compound classes A–D used in the QSAR study. All 110 structures are given in the 
appendix A. 

 
All the quinoline derivatives (except compound B02 where the substituent R1 is 
H) bear a stereo center. For four compounds of the data set — (R-) and (S-)2,5-
dihydro-10-methoxy-2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano-[3,4-f]quinoline 
(B25, B26) and (R-) and (S-)2,5-dihydro-10-methoxy-2,2,4-trimethyl-5-(3,5-
dichlorophenyl)-1H-[1]benzopyrano-[3,4-f]quinoline (B29, B30) — the Ki values 
for individual stereoisomers are available. In both cases, the S-isomer shows a 
higher affinity than the R counterpart (a factor 33 for B26/B25 and 114 for 
B30/B29, respectively).218 Docking studies with these stereoisomers to the GR 
are in agreement with this observation (data reported in section 4.1.3). For the 
quinoline derivatives that were only tested as racemates, only the S isomer was 
included in the study and the affinity values were corrected by dividing their Ki 
values by a factor of two, in order to account for the content of the almost inactive 
isomer in the sample. 
The ligand structures were generated and optimized as indicated in paragraph 
3.3.2. 

 



                                                                                                                                                                                                                          
    

41 

4.1.3 Docking to the GR 
 
The 110 ligands were manually docked to the receptor structure with the 
software Yeti.99, 101  
As a general rule, for each chemical class the most active compound was 
docked and subsequently used it as binding-mode template for the remaining 
compounds belonging to the same chemical class. For the steroids class 
dexamethasone (A01) was chosen as template (instead of the most active 
compound A11), because it was the ligand bound to GR in the crystal structure. 
For the B class, the compounds B18 and B02 were selected as templates. B18 
was chosen because it is the most active compound of the B class, and B02 
because it is unsubstituted: it features a hydrogen atom in position R1, (cf. Figure 
13), where the remaining compounds have different functional groups. Finally, 
C12 and D02, the most active compounds in their classes, were chosen as 
templates for the C and D class. The binding modes will be discussed in detail. 
The general protocol used to lead the docking was the following: 

• Minimization of the protein–ligand interaction energy, with special 
emphasis to the hydrogen bond contribution calculated by the directional 
Yeti100 force field. 

• Estabilishing the hydrogen bond pattern observed in the crystal structure 
(like in Figure 11), if possible. 

In particular, the amino-acid residues Gln642 and Asn564, involved in hydrogen 
bonding in the crystal structures (see Figure 11), were considered as anchor 
points for hydrogen bond interactions in the search for the binding modes. 
Figure 14 shows the binding modes of compounds A01, the ligand bound to GR 
in the crystal structure, and A11, the most active compound of the A class. In the 
crystal structure, dexamethasone is completely enclosed within one half of the 
GR ligand binding domain, and is oriented with the steroidal A ring towards the 
amino-acid residues Gln570 and Arg611. A similar orientation was reproduced in 
the docking of A11 and of the rest of the A class. The binding mode of both 
ligands (A01 and A11) is stabilized by hydrophobic interactions involving the 
steroid core (mainly with amino-acid residues Leu566, Trp600, Leu608, Phe623, 
Leu732 and Phe749) and by hydrophilic interactions with the amino-acid 
residues Asn564, Gln570, Arg611 and Gln642. Both A01 and A11 are hydrogen 
bonded to Asn564, and A01 is bonded also to Gln642. Table 4 lists the energetic 
contributions calculated from the docking of the mentioned compounds. A11 is 
characterized by higher (less favorable) energy, when compared with A01. A 
possible explanation of the disagreement between docking simulations and 
experimental values is solvation energy. A01 contains more hydrophilic groups in 
the substituents located at position 17 of the steroidal scaffold (in particular two 
OH), and the solvation energy is almost double, when compared to A11 (17 
kcal/mol for A01 and 9 for A11). By considering only protein–ligand interaction 
energy, penalties due to solvation energy, entropy or internal energy of the ligand 
are not included (but will be considered in the QSAR). 
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Figure 14. Details of the binding of the compounds dexamethasone (A01, left) and A11 (right). 

The ligands are represented as licorice, key amino-acid residues as balls and sticks 
and the other amino-acid residues lining the binding pocket as lines.  

 
 
Table 4. Quantitative aspects of ligand binding to the GR, as obtained from the manual docking. 

Ligand EProtein-Ligand ( EElec EvdW EHB) Ki (nM) 

A01 –58.9  –16.9 –33.3 –8.7 2.3 

A11 –52.4  –15.1 –33.6 –3.7 0.047 

B02 –33.8 –8.3 –22.5 –3.0 210 

B18 –41.1 –7.9 –30.3 –2.8 1.1 

C12a –37.9 –4.6 –29.3 –4.0 0.52 

C12b –46.1 –7.2 –34.3 –4.6 0.52 

D02 –37.9 –12.6 –24.3 –1.0 0.89 

All energies are given in kcal/mol. EProtein-Ligand: protein–ligand interaction energy; EElec/EvdW/EHB: 
electrostatic, van der Waals, and hydrogen bonding components; Ki: binding affinity. All the 
compound structures are given in Appendix A. 
 
Figure 15 shows the binding modes of two compounds of the B class: B02 and 
B18. From the docking study, both compounds form a hydrogen bond with 
Gln642, and locate their hydrophobic quinoline core in the GR pocket in a similar 
manner as A01 and A11 position their steroid core. Hydrophobic interactions are 
found between the ligands and amino-acid residues Leu608, Phe623, Mer646, 
Ile747 and Leu753. Compound B18, when compared to B02, features an 
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additional cyclopentane substituent that seems to be in contact with Trp600 and 
Met601. These additional hydrophobic contacts could be responsible for the 
more favorable van der Waals interaction energy (Table 4).  
Energetic contributions and experimental values for compounds B25, B26, B29 
and B30 are also reported (Table 5). B25 and B29 (R stereoisomers), are less 
active than B26 and B30 (the corresponding S stereoisomers). The docking 
study is in agreement with the experimental values: B25 and B29 are character-
rized by less favorable energies, when compared to B26 and B30. According to 
this observation, for the remaining compounds belonging to the B class that were 
tested as racemates, the R stereoisomers were assumed to be the inactive 
isomers, and were not included in the study. 
 

 
Figure 15. Details of the binding of the compounds B02 (left) and B18 (right). The ligands are 

represented as licorice, key amino-acid residues as balls and sticks and the other 
aminoacid residues lining the binding pocket as lines.  

 
Table 5. Quantitative aspects of ligand binding to the GR for the stereoisomers B25/B26 and 

B29/B30. 

Ligand EProtein-Ligand  (EElec EvdW EHB) Ki nM 

B25 –30.0 –8.0 –21.7 –0.1 240 

B26 –38.3 –6.2 –29.8 –2.4 2.1 

B29 –20.7 –2.2 –18.4 –0.1 95 

B30 –36.5 –3.9 –29.6 –3.0 3.3 

All energies are given in kcal/mol. EProtein-Ligand: protein–ligand interaction energy; EElec/EvdW/EHB: 
electrostatic, van der Waals, and hydrogen bonding components; Ki: binding affinity. All the 
compound structures are given in Appendix A. 
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Figure 16 shows the binding mode initially considered for the ligand C12 (C12a). 
The fluorophenyl moiety is directed towards amino-acid residues Gln570 and 
Arg611, like the A rings of the steroids. A hydrogen bond is formed between the 
ligand and Gln642. Hydrophobic contacts involve the amino-acid residues 
Met604, Leu608, Phe623 and Met646. 
Following the publication in 2008 of the crystal structure of GR bound to 
deacylcortivalzol (PDB code 3BQD,66 resolution 2.5 Å), shown in Figure 16 on 
the right, a second binding mode (C12b) was considered for the compound C12 
and consequently for the C class. This second binding mode was based on the 
observation that in the crystal structure 3BQD, the aryl-pyrazole moiety of 
deacylcortivalzol is located 4 Å higher (when considering the view of Figure 16) 
compared to the aryl-pyrazole moiety of C12a. In C12b, as it can be seen from 
Figure 17, a hydrogen bond is formed with Asn564 (instead of Gln642 as it is 
from C12a). Hydrophobic interactions still involve the amino-acid residues 
Met604, Leu608 and Met646, but also Trp600, Met601 and Leu753. A 
superposition of C12b and 3BQD is also shown in Figure 17. 

 
Figure 16. Details of the first binding mode of the compounds C12 (C12a) on the left and the 

crystal structure of GR bound to deacylcortivazol (PDB code 3BQD) on the right. The 
bonds of ligand deacylcortivazol are colored in orange.  

 

 
Even if the energetic contributions for C12b are more favorable than for C12a 
(Table 4), both binding modes were included in the QSAR study, because both 
binding modes are reasonable in the GR binding pocket and because the ligands 
from the C class (non steroidal ligands) differ significantly from deacylcortivalzol 
(steroid ligand), and it is feasible that they bind in a different way. 
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Figure 17. Details of the second binding mode of the compounds C12 (C12b) on the left and the 

superposition of C12b on the crystal structure 3BQD on the right. The bonds of ligand 
deacylcortivazol are colored in orange.  

 
 
Finally, the binding mode of compound D02 is shown in Figure 18. A hydrogen 
bond is formed with Gln642, and hydrophobic interactions involve amino-acid 
residues Met560, Trp600, Met601, Met604, Ala605, Met646, Leu732 and Ile747.  
 

 
Figure 18. Details of the binding of the compound D02. The ligand is represented as licorice, key 

amino-acid residues as balls and sticks and the other amino-acid residues lining the 
binding pocket as lines.  
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The consideration of protein flexibility by the simulation of a local induced fit was 
a key issue in identifying reasonable binding poses. Particularly, the docking of 
glucocorticoids with bulky substituents at the 17β-position (Figure 19) to a rigid 
structure of the glucocorticoid receptor may not yield the correct binding pose, 
because the binding site would not seem to be wide enough to accommodate 
large compounds such as desoxymethasone 21-cinnamate (A08). For other 
steroid receptors, such as the progesterone receptor,233 there is experimental 
evidence of a local induced fit to accommodate bulky substituents in position 17. 
For the androgen receptor, a similar behavior has been postulated.234 From 
recent studies,235 induced-fit mechanisms are observed also in the GR binding 
pocket in correspondence of the 17α position. Likewise, bulky ligands may 
indicate steric interference with the GR-binding pocket, if the protein structure is 
kept rigid during docking (cyan licorice in Figure 19). In contrast hereto, 
energetically favorable binding poses are found when the side chains of the 
protein are allowed to adjust to the ligand topology (green licorice in Figure 19). 
 

 
 
Figure 19. With a rigid protein structure, docking of desoxymethasone 21-cinnamate (A08; 

shown in space-filling mode; chemical structure shown on the right) to the crystal 
structure of the GR, obtained from dexamethasone A01–GR complex (cyan ribbons 
and sticks), leads to unfavorable interactions. The following amino-acid residues 
lining the binding pocket are shown: Tyr735, Met745, Arg611 and Gln570. Cyan stick 
representations refer to the position of amino-acid residues as they are observed in 
the crystal structure, while green sticks refer to the amino-acid position after flexible 
docking. While the position of Arg611 and Gln570 remains almost unchanged, 
flexible docking allows the side-chain of Met745 and Tyr735 to move and 
accommodate the 21-cinnamate moiety of A08 (the most evident movement of 
Tyr735 is indicated by the red arrow). On the left, A08 is rotated vertically by 180 
degrees when compared to the standard steroid depiction on the right. 
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A protocol of automated flexible docking with Yeti/Autodock100 was also perfor-
med, leading to a less consistent alignment and lower energy values (the 
energetic contributions are reported in Table 6), when compared with the manual 
docking alignment. In particular, the average protein–ligand interaction energy of 
the investigated compounds is 4 kcal/mol lower for the poses obtained with the 
automated docking. The hydrogen-bond contribution, in particular, is significantly 
low (on the average is 3.2 kcal/mol lower for the automated docking results). The 
same behavior was observed for the remaining compounds of the library (data 
not shown). 
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Table 6. Quantitative aspects of ligand binding to the GR, as obtained with the automated 
docking. 

Ligand EProtein-Ligand  (EElec EvdW EHB) 

A01a –51.0 –16.0 –31.7 –4.1 
A01b –43.3 –15.6 –23.9 –3.7 

A01c –42.8 –16.2 –25.3 –1.3 

A01d –41.8 –11.7 –25.8 –4.2 

A01 average –44.7 –14.9 –26.7 –3.3 

A11a –50.9 –16.1 –33.8 –0.9 

A11b –50.7 –20.8 –29.9 –0.0 

A11c –42.6 –12.9 –29.7 –0.0 

A11d –41.4 –18.9 –22.6 –0.0 

A11 average –46.4 –17.2 –29.0 –0.2 

B02 –36.6 –13.2 –23.4 –0.0 
B02 –36.4 –12.6 –23.7 –0.0 

B02 –36.3 –13.1 –23.2 –0.0 

B02 –30.4 –5.9 –22.3 –2.2 

B02 average –34.9 –11.2 –23.2 –0.6 

B18 –43.3 –13.2 –30.2 –0.0 
B18 –41.6 –12.9 –28.8 –0.0 

B18 –35.0 –10.8 –24.2 –0.0 

B18 –34.6 –9.2 –25.3 –0.0 

B18 average –38.6 –11.5 –27.1 –0.0 

C12a –40.5 –8.6 –32.0 –0.0 
C12b –35.8 –5.9 –29.8 –0.1 

C12c –33.4 –6.0 –26.7 –0.7 

C12d –27.7 –3.2 –24.0 –0.5 

C12 average –34.4 –5.9 –28.1 –0.3 

D02a –41.6 –13.3 –28.4 –0.0 
D02b –40.8 –14.9 –25.9 –0.0 

D02c –40.3 –9.6 –30.6 –0.1 

D02d –39.9 –12.6 –27.3 –0.0 

D02 average –40.7 –12.6 –28.1 –0.0 

All energies are given in kcal/mol. EProtein-Ligand: protein–ligand interaction energy; EElec/EvdW/EHB: 
electrostatic, van der Waals, and hydrogen bonding components. For each ligand, the energetic 
contributions of the 4 lowest energy poses from automated docking are reported (a, b, c, d), 
together with the average values. 
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4.1.4 Molecular-Dynamics Simulations on the GR 
 
To analyze the interactions between GR and its ligands from a dynamic point of 
view, and to explore possible binding modes of representative ligands, molecular 
dynamics simulations of protein–ligand complexes were performed. Details of the 
simulation protocols are reported in the section 3.3.5. A total of five ligands were 
chosen to comprise representative subset of the studied glucocorticoids: four 
ligands belong to the dataset (A01, B02, B18 C12, structures reported in the 
appendix A), and fluorocortivazol, a potent GR agonist not included in the dataset 
but belonging to the C class and being the rational for the design of the C class, 
were investigated. As starting point for the MD studies, for each ligand the 
binding mode obtained from manual docking was considered. MD simulations 
and in particular the analysis of the trajectories allowed for a more dynamic 
characterization (i.e. time dependent) of the protein–ligand interactions respon-
sible for ligand binding and to gain insight into the binding mode.  
As an example of a molecular-dynamics simulation, the binding of compound 
A01 (dexamethasone) to GR is reported. An analysis of temperature and 
energetic contributions was performed during the production phase (Figure 20). 
The temperature fluctuates during the simulation, but the average remains 
constant, being the simulation conducted at constant temperature. As there are 
no sudden jumps in the energy contributions, the simulation seems to have 
reached the equilibrium. The potential energy fluctuates more than the kinetic 
energy. This can be explained with the fact that the simulation was conducted at 
constant temperature, which determines the value of kinetic energy. 
Figure 21 shows a snapshot of the trajectory and highlights the key amino-acid 
residues. From the analysis of the trajectory during the simulation, interactions 
with the amino-acid residues Asn564, Gln570, Arg611 and Gln642 are observed. 
In particular, a hydrogen bond between the carbonyl oxygen in the ring A of 
dexamethasone and the amino-acid residue Gln570 is the most present during 
the simulation (it occurs 96% of the time). The same oxygen atom is involved 
also in a hydrogen bond with Arg611, but for a shorter time (39%). The average 
distances (between the oxygen atom of the ligand and hydrogen atoms of the 
protein) are respectively 2.8 and 3.7 Å. Asn564 is also engaged as an acceptor 
in a very persistent hydrogen bond (it occurs 95% of the simulation time, average 
distance: 2.1 Å) with the hydroxyl of the C ring of the ligand, and occasionally 
(17%) with the hydroxyacetyl moiety. As a donor, Asn564 is hydrogen-bonded for 
81% of the simulation with the hydroxyl oxygen of the hydroxyacetyl moiety. 
Gln642 in our simulation is involved in a hydrogen bond with the hydroxyl of the 
D ring only for 1% of the simulation (average distance: 3.9 Å). In our study, this 
can be explained with the fact that such hydroxyl group is surrounded by water 
molecules, able to form hydrogen bonds with the ligand. The hydrogen bond 
pattern observed in the simulation appears to be an intense network that 
stabilizes the binding mode and explains the high affinity of the ligand (Ki of 2.3 
nM). 
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Figure 20. Plot of the temperature (top) and energy contributions (bottom) during the production 

phase (500 ps). Temperature and energies fluctuate around a constant value, 
indicating that the simulation is stable and has reached equilibrium. ETOT: total 
energy; EPOT: potential energy; EKTOT: kinetic energy. 

 

 
 

Figure 21. Detail from the average structure from the MD. The ligand dexamethasone is 
represented as thick sticks, key amino-acid residues (Gln570, Asn564, Arg611 and 
Gln642) are represented as thin sticks, the remaining amino-acid residues in the 
binding pocket as lines and the water molecules are represented as spheres. 



                                                                                                                                                                                                                          
    

51 

As a second example, the simulation of fluorocortivazol is discussed. Fluorocorti-
vazol is among the most effective agents currently available for the treatment of 
inflammatory and allergic diseases.236, 237 The design of the library of the C class 
was aimed by the authors220 at discovering new glucocorticoids by retaining the 
features of fluorocortivazol believed to be important for the binding:220 the A and 
B ring, the 11-OH, and the pyrazole containing the 2’-aryl substituent. Therefore, 
the exploration of the binding mode of fluorocortivazol was of interest for this 
study. Figure 22 displays a frame of the MD. During the simulation, two hydrogen 
bonds are observed for a significant period of time: the first one between Asn564 
and the 11-OH (occurring for 100% of the simulation time, average distance: 1.7 
Å), and the second one between Gln570 and the nitrogen atom of the pyrazole 
ring (occurring 58% of the time, average distance: 2.6 Å). A parallel stacking238 is 
observed between Arg611 and the aryl moiety of the ligand (average distance 
3.0 Å). In the aryl moiety of fluorocortivazol, the acidity of the aromatic hydrogen 
atoms is increased by the presence of fluorine in the ring, and this could favor the 
interaction. An intra-molecular hydrogen bond is also observed, between the 17-
OH and the 24-O (present 100% of the time, average distance 1.9 Å).   
Recently a GR crystal structure was published (PDB code 3E7C,239 resolution 
2.15 Å), for the first time with a non-steroidal ligand bound (GSK866, structure 
shown in Figure 23c). A common feature can be observed between fluorocor-
tivazol, deacylcortivazol, the C class and GSK866: the presence of 2’-aryl-
pyrazole. Figure 23 shows, side by side, the binding mode of fluorocortivazol and 
of GSK866, as it is in the crystal structure. In both structures, the 2’-aryl-pyrazole 
is positioned towards Arg611, and hydrogen bonds are formed between the 
ligands and the amino-acid residues Asn564 and Gln570. The comparison 
confirms the correctness of the binding pose identified by our simulations. 
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Figure 22. Screenshot of the average structure from the MD. Fluorocortivazol is represented as 

licorice, key amino-acid residues (Gln570, Asn564, Arg611 and Gln642) are 
represented as balls and sticks, the remaining amino-acid residues in the binding 
pocket as lines and the water molecules are represented as spheres. The chemical 
structure of fluorocortivazol is shown on the right. The structure is rotated vertically by 
180 degrees when compared to the depiction on the left. 
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Figure 23. A: binding mode of fluorocortivazol. The structure has been completed with 
hydrogens. B: binding mode of GSK866, as it from the crystal structure. C: chemical 
structure of GSK866. The structure is rotated vertically by 180 degrees when 
compared to the depiction on the left. Ligands are represented as licorice, key 
amino-acid residues (Gln570, Asn564, Arg611 and Gln642) are represented as balls 
and sticks, and the remaining amino-acid residues in the binding pocket as lines.  
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4.1.5 Building and Validation of QSAR Models for GR 
 
The ensemble of poses of the 110 glucocorticoids (88 training and 22 test 
compounds), identified using flexible docking as described in the section 3.2.15 
and 3.3.4, was used as input for the quantitative structure-activity relationship 
technology Quasar.214 The mixed-modeling approach allows for both the correct 
identification of the binding mode and the reliable estimation of binding affinities.  
Two different alignments (from manual and automated docking) and different 
parameter settings were explored. Table 7 lists some of the performed 
simulations (sorted according to the predictive r2 value), the parameter settings 
(number of crossovers, population size, attenuation factors, induced-fit weight, 
number of cross-validation groups) and the corresponding results cross-
validation r2, predictive r2, rms on the training set, rms on the test set. All 
parameters not specified in this table were taken as default.240 
The simulations obtained from the manual docking alignment show higher r2 
values and lower rms (upper part of Table 7). The impact of the different 
parameters on the predictivity of the models is briefly discussed here: 
 
Number of crossovers 
This number indicates the length of a simulation. To avoid overfitting, each 
simulation was stopped at the point where the predictive r2 starts to drop (while 
the cross-validated r2 continues to raise). For comparative reasons, some 
simulations are reported also with higher number of crossovers (MD01–MD02, 
MD07–MD10, AD05–07 AD13–AD18). The simulations from the automated 
docking alignment reach a maximum value of predictive r2 earlier than the ones 
from manual docking, but the corresponding value of predictive r2 is never 
greater than 0.5. From Table 7 we observe that, to obtain a good predictivity, a 
number of crossovers between 30,000 and 60,000 (corresponding to 150–300 
generations) is required. 
 
Population size  
Population size of 100 and 200 individuals led to comparable results. Bigger 
populations lead in general to longer simulations, which were however 
characterized by comparable values of predictive r2 and rms. 
 
Attenuation factors 
Attenuation factors are relative weights applied to the various correction terms (in 
this thesis they were used to scale solvation, entropy and internal energy). They 
allow to reduce or enhance a particular effect or even to switch it off (w=0.0). By 
default, all values are set to 1.0. Two sets were used: the default values, and a 
different one (0.5 for solvation, 1.0 for entropy and 0.25 for internal energy). From 
the simulations we observe that the best models underweight solvation and even 
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more internal energy. This is due to the fact that the range of solvation (18 
kcal/mol for the studied ligands) and internal (27 kcal/mol) energies is higher than 
the range in binding affinity (6 kcal/mol), and without an appropriate scaling such 
energies might influence too strongly the model evolution.  
 
Induced-fit weight 
This value allows for a scaling of the induced-fit energy.240 The results suggest 
that the value is appropriate when used as it is (weight 1.0), since the 
underweighted values don’t produce models with improved performance. 
 
Cross-validation groups 
This parameter refers to the number of groups the training set is split into, in 
order to train the models for prediction during the evolution: a value of n=10 
results in defining ten subgroups of the ligand molecules comprising the training 
set. 9/10 of these groups are used to derive the classical correlation while the 
last 1/10 is predicted based on the corresponding correlation. A low number of 
cross-validation groups result in more restrictive conditions. As it can be 
expected, for models where a good predictivity is found (upper part of Table 7), 
higher number of cross validation groups leads to more predictive models. 
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Table 7. Summary of the Quasar simulations. 

Simu-
lation #CO POP AF IFW CVG q2 p2 

Training 
rms 

avg/max 

Test 
rms 

avg/max 

MD01 60,000 200 0.5, 1.0, 0.25 1.0 10 0.702 0.719 1.5/9.9 1.6/4.9 
MD02 70,000 200 0.5, 1.0, 0.25 1.0 10 0.708 0.717 1.4/9.8 1.6/5.0 
MD03 40,000 100 0.5, 1.0, 0.25 1.0 6 0.722 0.701 1.4/7.9 1.8/6.9 
MD04 50,000 200 0.5, 1.0, 0.25 1.0 6 0.700 0.693 1.5/8.3 1.8/5.1 
MD05 35,000 100 0.5, 1.0, 0.25 1.0 7 0.688 0.687 1.5/9.4 1.8/6.7 
MD06 35,000 200 0.5, 1.0, 0.25 1.0 8 0.639 0.686 1.7/9.9 1.8/11.5 
MD07 30,000 100 0.5, 1.0, 0.25 1.0 10 0.700 0.681 1.5/9.7 1.8/8.9 
MD08 40,000 200 0.5, 1.0, 0.25 1.0 7 0.655 0.678 1.6/8.6 1.8/6.9 
MD09 30,000 200 0.5, 1.0, 0.25 0.5 5 0.670 0.670 1.6/10.1 1.9/7.8 
MD10 35,000 100 0.5, 1.0, 0.25 1.0 10 0.712 0.664 1.4/8.8 1.9/8.1 
MD11 30,000 100 1.0,  1.0,  1.0 1.0 5 0.610 0.630 1.8/10.5 2.1/10.8 
MD12 30,000 100 1.0,  1.0,  1.0 0.5 10 0.602 0.622 1.9/10.5 2.1/8.1 
MD13 25,000 200 1.0,  1.0,  1.0 0.5 5 0.498 0.614 2.3/98.6 2.1/16.3 
MD14 25,000 100 1.0,  1.0,  1.0 0.5 5 0.495 0.591 2.3/96.7 2.3/18.3 
MD15 35,000 200 1.0,  1.0,  1.0 0.5 5 0.482 0.581 2.3/98.5 2.3/17.5 
MD16 25,000 200 1.0,  1.0,  1.0 1.0 10 0.492 0.575 2.3/117 2.3/20.3 
MD17 25,000 200 1.0,  1.0,  1.0 1.0 5 0.476 0.569 2.3/95.5 2.4/19.0 
MD18 60,000 100 1.0,  1.0,  1.0 1.0 10 0.655 0.555 1.7/10.1 2.5/10.1 
AD01 10,000 200 0.5, 1.0, 0.25 0.5 5 0.641 0.446 1.3/5.9 3.9/56.1 
AD02 4,000 100 1.0,  1.0,  1.0 1.0 10 0.741 0.445 1.1/3.4 4.1/22.1 
AD03 5,000 100 0.5, 1.0, 0.25 1.0 6 0.688 0.413 1.2/5.6 4.2/101 
AD04 5,000 100 1.0,  1.0,  1.0 1.0 5 0.743 0.398 1.1/3.8 4.4/21.9 
AD05 10,000 200 0.5, 1.0, 0.25 1.0 10 0.628 0.390 1.3/5.2 4.4/100 
AD06 5,000 200 1.0,  1.0,  1.0 1.0 5 0.447 0.366 1.9/44.2 4.7/72.2 
AD07 15,000 200 0.5, 1.0, 0.25 1.0 10 0.785 0.349 0.9/2.3 4.7/70.6 
AD08 5,000 200 0.5, 1.0, 0.25 1.0 6 0.436 0.324 2.0/30.9 5.0/149 
AD09 10,000 200 0.5, 1.0, 0.25 1.0 7 0.613 0.285 1.3/5.2 5.2/127 
AD10 20,000 200 1.0,  1.0,  1.0 0.5 5 0.945 0.284 0.3/0.8 5.4/51.5 
AD11 2,000 100 1.0,  1.0,  1.0 0.5 5 0.431 0.274 1.9/20.6 5.4/93.7 
AD12 4,000 100 0.5, 1.0, 0.25 1.0 7 0.550 0.258 1.6/11.4 5.5/207 
AD13 4,000 100 0.5, 1.0, 0.25 1.0 10 0.456 0.235 1.8/18.9 5.8/207 
AD14 5,000 200 1.0,  1.0,  1.0 0.5 5 0.667 0.224 1.2/4.0 5.7/120 
AD15 2,000 100 1.0,  1.0,  1.0 0.5 10 0.516 0.216 1.7/13.6 5.9/116 
AD16 5,000 200 0.5, 1.0, 0.25 1.0 8 0.462 0.214 1.9/18.5 5.9/268 
AD17 1,000 200 1.0,  1.0,  1.0 1.0 10 0.169 0.205 2.7/95.7 6.0/147 
AD18 5,000 100 0.5, 1.0, 0.25 1.0 10 0.599 0.202 1.4/9.3 6.0/200 

Simulation: MD: manual docking; AD: automated docking; #CO, number of crossovers; POP, 
population size; AF, attenuation factors (weight of solvation, entropy, internal energy); IFW, 
induced-fit weights; CVG, cross validation groups; q2: cross-validated r2, p2: predictive r2; Training 
rms avg/max, Test rms avg/max, the rms and maximal deviation from the experimental binding 
affinity respectively for training set and test set (given as a factor (off) in Ki). 
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The model MD01, characterized by the highest predictive r2 and lowest rms on 
the test set, will be discussed in detail. The family of receptor models was 
evolved for 60,000 crossover cycles, corresponding to 300 generations. For 
cross-validation we selected a leave-n-out (n = 10) protocol. Protein flexibility 
was mimicked using a total of six induced-fit scenarios. Throughout the entire 
simulation, a static mutation rate of 0.02 was applied during transcription of the 
quasi-atomistic properties. 
The model family converged at a cross-validated r2 of 0.702 for the 88 training 
compounds and a predictive r2 of 0.719 for the 22 test ligands (cf. Figure 24 and 
Table 8).  

 
 
Figure 24. Comparison of experimental and predicted binding affinities of the training and test set 

left and the external test set right towards the GR, as obtained with Quasar. Ligands 
of the training set are depicted as open circles, those of the test set as filled triangles 
and those of the prediction set as filled circles. Dashed lines are drawn at a factor 10 
from the experimental value. 

 
On the average (rms), the calculated binding affinity of the training and test 
ligands deviate by a factor 1.5 and 1.6, respectively, from the experimental Ki 
value. The maximal observed deviation of an individual compound corresponds 
to a factor of 9.9 in Ki for the training set and 4.9 for the test set, respectively. A 
representation of the receptor surrogate with bound dexamethasone (A01), along 
with key amino-acid residues is depicted in Figure 25. When compared to the 
crystal structure of the GR complexed with dexamethasone, the receptor 
surrogate generated by Quasar properly reproduces the corresponding 
properties at the position of the key amino-acid residues Asn564, Arg611 and 
Gln642 as identified by X-ray at the quasi-atomistic level: a H-bond donating 
domain (green) corresponding to the guanidinium moiety of Arg611, and H-bond 
accepting domains (yellow) mimicking the carbonyl groups of Asn564 and 
Gln642 at the true biological receptor. 
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Table 8. Summary of the Quasar and Raptor simulations including 88 training and 22 test com-
pounds 

Simulation r2 q2 rms training max. training p2 rms test max. test 

Quasar 0.710 0.702 1.5 9.9 0.719 1.6 4.9 

Raptor 0.680 n/a 2.1 5.3 0.519 6.1 20.4 

r2: correlation coefficient, q2: cross-validated r2, p2: predictive r2; the rms and maximal deviation 
from the experimental binding affinity is given as a factor (off) in Ki. 

 
 

 
 

Figure 25. Representation of the GR surrogate (Quasar) with bound dexamethasone (space-
filling), compound code in our study: A01. The mapped quasi-atomistic properties are 
colored as follows: blue (salt bridge, positively charged), red (salt bridge, negatively 
charged), green (H-bond donor), yellow (H-bond acceptor), saddle brown 
(hydrophobic, positively charged), chocolate brown (hydrophobic, negatively 
charged), grey (hydrophobic, neutral). Key amino-acid residues from the X-ray struc-
ture (Asn564, Arg611 and Gln642) are shown as sticks. The analogies between 
model and receptor are encircled and shown in bigger size: green (H-bond donor) 
corresponding to Arg611, yellow (H-bond acceptor) corresponding to the carbonyl of 
Gln642, hidden in the back, and to the carbonyl of Asn564.  
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Particularly, in order to validate a model in multidimensional QSAR (mQSAR), it 
is of utmost importance187, 188, 191 to challenge the model, e.g. by means of a 
scramble test, an external prediction set or by consensus scoring. The scramble 
test, which is frequently used to assess the sensitivity of a model,229 consists of a 
random shuffling of the binding affinities of the training-set ligands with respect to 
the true affinity values. If, under these circumstances, the ligands of the test set 
are still predicted correctly, the model is worthless, as it is not sensitive towards 
the biological data. In our study, 20 scramble tests were performed using a 
different shuffling of the biological data for each scramble test. They yielded an 
average predictive r2 of –0.241 compared to +0.719 for the simulation using 
unscrambled values. Only a single simulation shows a positive predictive r2 value 
(0.375), all others found no correlation (predictive r2 < 0.0), demonstrating that 
the model for the GR is indeed sensitive towards the biological data. Another 
sensitive issue is the possible overfitting of the model. For this purpose, we 
stopped the simulation at the maximum value of predictive r2. As our Quasar 
model family consists of 200 individual models, the scattering of the individual 
predictions around the mean value (cf. Figure 24, left) is another indicator for 
possible overfitting. Although the ligands of the test set show a broader 
distribution, those of the training set scatter, on the average, a factor 2–3 about 
their mean value. An overfitted model would result in rather small standard 
deviation for the ligands of the training set. 
To challenge the model, we applied a second methodology (software Raptor153). 
The Raptor simulation  — using the same ligand alignment and selection — 
yielded an r2 of 0.680 and a predictive r2 of 0.519. The comparison of predicted 
and experimental binding affinities is shown in Figure 26, and the performance 
coefficients are given in Table 8. When compared with Quasar, the Raptor 
simulation would seem to yield only a modest predictive power, but considering 
the limited range of experimental activity (85% of compounds cluster within two 
orders of magnitude), the compounds’ chemical diversity and the different 
literature source for the affinities, the Raptor model can be considered 
acceptable in terms of quality. Moreover, its dual-shell representation can 
simulate induced fit more realistically, particularly with compounds substantially 
different in bulkiness, or in the presence of two induced-fit mechanisms. For 
example, the cinnamate substituent at position 21 of A08 (cf. Figure 19) is snugly 
accommodated by the outer shell (Figure 27, left), indicating the necessity of 
side-chain rearrangement in the binding pocket of the protein, in order to allocate 
additional space for the large substituent. On the other hand, the inner shell, 
hosts compounds such as dexamethasone (A01), characterized by a smaller 
volume (Figure 27, right).  
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Figure 26. Comparison of experimental and predicted binding affinities of the training and test set 

(left) and the external test set (right) towards the GR as obtained with Raptor. Ligands 
of the training set are depicted as open circles, those of the test set as filled triangles 
and those of the prediction set as filled circles. Dashed lines are drawn at a factor 10 
from the experimental value. 

 

 
Figure 27. Raptor model of the GR binding-site model with compound A08 (left) and 

dexamethasone (A01) (right) bound (hydrophobic fields = beige, hydrogen-bond 
donating propensity = blue, hydrogen-bond accepting propensity = red, hydrogen-
bond flip-flop = green). The inner shell (transparent surface) and outer shell (wire 
frame) are shown in different style to highlight the two shells of the surrogate (for 
clarity, the front part of the receptor model has been clipped). 

 
The comparison of predicted binding affinities obtained by the two approaches is 
shown in Figure 28.  The average deviation is 0.32 logarithmic units (a factor 2.1 
in Ki). For only two compounds out of 110 compounds (1.8%), both of them 
belonging to the test set, the ratio is greater than a factor of 10 (in Ki). Thus, 
consensus between Quasar and Raptor predictions has been achieved. While for 
prednisolone (A02), the threshold for acceptance is only slightly exceeded: 1.02 
logarithmic units a factor 10.5 in Ki, the disagreement for 2,5’-dioxo-2’-phenyl-3’-
ethoxycarbonyl-spiro1,4’-acenapthene-1’,4’-dihydroindeno[3,2b]pyridine (D06) is 
1.73 logarithmic units (a factor 53.7 in Ki). Compound D06 features a phenyl ring 
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where the other compounds belonging to the D class feature a methyl group. 
This different feature may have been interpreted in a different way by the two 
approaches, and this could have led to a different result. 

 
Figure 28. Consensus scoring using Quasar and Raptor. The quantity is expressed as pKi, 

consensus =  –log(Ki-Quasar/Ki-Raptor). Error bars indicate the cumulative standard 
deviation, esdcumulative = √ (esd2

Quasar + esd2
Raptor). 

 
While the test set was not employed for generating and optimizing the model, its 
performance was, of course, considered as a criterion for selecting the final 
model among all those generated. To further challenge the model, a new 
independent set of compounds was identified in the literature,241 and employed 
only for this validation step (the compound structures and their Ki values are 
given in the Appendix A).  
The chemical property domain of the prediction set (E01–E08) is comprised in 
the model’s property space, because the scaffold of the new compounds is 
already represented in the training set, and because the activity range is within 
the broader range of the activities of the training set, allowing therefore a reliable 
prediction instead of an extrapolation of binding affinities. The Ki values of the 
external compounds (as predicted by Quasar) are shown in Figure 24 (right). The 
predictive r2 is 0.538, the rms deviation for this external set corresponds to a 
factor of 4.7 off in Ki, and the maximal deviation is 17.9 — an appreciable result 
considering that these ligands were not used for model construction and 
selection. The Ki values predicted by Raptor are shown in Figure 26 (right). The 
predictive r2 is 0.488, the rms deviation for this external set corresponds to a 
factor of 20.3 in Ki, and the maximal deviation is 56.4. 
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4.1.6 Binding of Psychotropic Drugs to the GR 
 
To assess the validity of the approach, we have simulated the binding of 24 
psychotropic drugs to the GR. For this task we employed the protocol as 
implemented in the VirtualToxLabTM3 the protocol of which (flowchart in Figure 9) 
includes a full conformational search in aqueous solution, the identification of the 
most probable protonation and tautomeric state at physiological pH, followed by 
automated, flexible docking and calculation of the binding affinity using 6D-
QSAR.177 The resulting binding affinities are given in Table 9. Because our GR 
model was trained using almost exclusively neutral species (87:1), we calculated 
the binding affinities of the psychotropic drugs for both the neutral and charged 
state (where applicable) and observed that the charged species — 
corresponding to the protonation state in aqueous solution at pH 7.4 —typically 
yield higher affinities. This might, however, represent an artifact caused by the 
electrostatic contribution to the protein–ligand interaction. It is well known, of 
course, that the dielectric properties in the interior of a receptor may differ 
significantly from those in aqueous solution. Six compounds — bupropion, 
fluoxetine, lorazepam, methylphenidate, trimipramine and venlafaxine  — are 
marketed as racemic mixtures. Here, we simulated both stereoisomers (cf. Table 
9). As an example, lorazepam is discussed in detail (Figure 29). Although the R-
isomer engages in hydrogen bonds with the GR, it features a nine-fold weaker 
activity (cf. Table 10). This is a consequence of the hydrophobic ligand–protein 
interactions, which are more pronounced for the S-isomer. Table 10 lists the 
scaled interaction energies as obtained from the mQSAR simulation (Quasar): 
the S-isomer is characterized by more favorable electrostatic and van der Waals 
energies.  
Figure 30 (top) reveals details of the binding of clomipramine to the GR. In the 
most contributing pose (a total of eight were considered in the mQSAR), the 
proton of the dimethylammonium group points towards its own phenyl moiety, 
thus forming a charge-π interaction. Another pose found in the conformational 
search (not shown here) sees the very H atom engaging in a weak hydrogen 
bond with the nearby Asn564 residue (highlighted in Figure 30). Likewise, the 
ammonium H atom of mirtazapine engages in a hydrogen bond with Asn564 
(Figure 30: center). For other tested compounds, however, e.g. buspirone, 
fluoxetin, trimipramin and trazodone (Figure 30: bottom), no such possibility 
exists and binding in the neutral state would make more sense. As our GR model 
was implemented in the VirtualToxLabTM, we calculated the binding affinity 
towards all 12 models (androgen, aryl hydrocarbon, estrogen α/β, glucocorticoid, 
liver X, mineralocorticoid, peroxisome proliferator-activated γ and thyroid α/β 
receptors as well as for the enzymes cytochrome P450 2A13 and 3A4). The 
results, along with those of 1500+ other compounds, are accessible through the 
Internet.3 
A wealth of information on the side effects of psychotropic drugs is published; 
summaries can be found, for example, in Wikipedia.242 Some of the compounds 
analyzed in this study trigger adverse effects via the GR. Those include 
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alprazolam (increased glucocorticoid levels),243  amitryptyline (induction of GR–
mRNA),244 clomipramine (regulates GR expression),245 desipramine (GR 
translocation, increased GR–mRNA),246 escitalopram (reversion of GR 
immunoreactivity),246 fluoxetine (enhances GR function),245, 247 imipramine 
(partial agonist-like effects),248 moclobemide (increased GR–mRNA),247 
reboxetine (in-creased cortisol levels),249 sertraline (high GR responsiveness).250 
For other compounds, no or less clear effects were observed.251, 252 All this 
suggests, that our computational protocol as implemented in the VirtualToxLabTM 
might well be suited for identifying such effects in silico. 
 
Table 9. Predicted binding affinities for 24 psychotropic drugs towards the GR 

Compound Formal charge Calculated binding affinity Relative binding 
affinity1 

Alprazolam neutral 1.8×10–8 M 0.16 

Amitriptyline neutral 
+1 

2.9×10–7 M 
6.5×10–9 M 

0.010 
0.46 

Bupropion (R/S) neutral 
+1 

8.6×10–7 M / 1.7×10–6 M 
3.6×10–8 M / 2.0×10–8 M 

0.0034 / 0.0018 
0.082 / 0.15 

Buspirone neutral 
+1 

1.3×10–6 M 
1.3×10–10 M 

0.0023 
23 

Clomipramine neutral 
+1 

5.0×10–9 M 
2.3×10–9 M 

0.59 
1.3 

Desipramine neutral 
+1 

2.7×10–8 M 
8.2×10–9 M 

0.11 
0.36 

Doxepin neutral 
+1 

1.1×10–8 M 
2.3×10–8 M 

0.27 
0.13 

Duloxetine neutral 
+1 

1.7×10–6 M 
6.1×10–9 M 

0.0017 
0.49 

Escitalopram neutral 
+1 

5.1×10–8 M 
4.8×10–9 M 

0.058 
0.62 

Flunitrazepam neutral 6.9×10–8 M 0.043 
Fluoxetine (R/S) neutral 

+1 
1.8×10–6 M / 4.7×10–7 M 
2.7×10–10 M / 1.7×10–8 M 

0.0016/ 0.0063 
11 / 0.17 

Imipramine neutral 
+1 

6.6×10–7 M 
1.5×10–9 M 

0.0045 
2.0 

Lorazepam (R/S) neutral 8.3×10–8 M / 9.1×10–9 M 0.036 / 0.33 
Methylphenidate (R/S) neutral 

+1 
3.9×10–6 M / 1.0×10–3 M 
1.1×10–7 M / 1.2×10–8 M 

0.00076/ 0.0030 
0.027 / 2.5 

Mirtazapine neutral 
+1 

5.5×10–7 M 
2.0×10–10 M 

0.0054 
15 

Moclobemide neutral 8.4×10–7 M 0.0035 
Modafinil neutral 1.2×10–8 M 0.25 
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Table 9. Continued from previous page. 

        Compound Formal charge Calculated binding affinity Relative binding 
affinity1 

Nortriptyline neutral 
+1 

3.5×10–7 M 
8.3×10–9 M 

0.0035 
0.36 

Paroxetine neutral 
+1 

1.4×10–8 M 
6.8×10–10 M 

0.21 
4.4 

Reboxetine neutral 
+1 

5.1×10–8 M 
4.8×10–9 M 

0.058 
0.62 

Sertraline neutral 
+1 

9.0×10–8 M 
1.6×10–9 M 

0.033 
1.9 

Trazodone neutral 
+1 

2.8×10–7 M 
6.4×10–10 M 

0.011 
4.6 

Trimipramine (R/S) neutral 
+1 

4.6×10–7 M / 1.1×10–8 M 
4.4×10–10 M / 1.1×10–8 M 

0.0064/ 0.27 
6.7 / 0.27 

Venlafaxine (R/S) neutral 
+1 

6.6×10–7 M / 1.1×10–6 M 
7.3×10–9 M / 1.3×10–8 M 

0.0045/ 0.0027 
0.41 / 0.23 

1 Relative binding affinity with dexamethasone (A01) serving as reference compound: Ki (exp.) = 
2.963×10–9 M → RBA = 1.0. RBA > 1.0 indicates a more active compound than dexamethasone; 
RBA < 1.0 marks entities less active than dexamethasone. 

 
 
 
Table 10. Quantitative aspects of (R/S)-lorazepam binding to the GR. 

Isomer EPL EElec EvdW EHB EPol  EDesolv T∆S Eint EIndFit EBdg Ki 

R –14.3  –6.3 –2.1 –2.5 –3.4  +3.6 +0.5 +0.4 +0.3 –9.5 83 nM 

S –15.2  –6.7 –4.4 –0.0 –4.1  +3.6 +0.5 +0.1 +0.2 –10.8 9.1 nM 

All energies are given in kcal/mol. EPL: ligand–protein interaction energy; EElec/EvdW/EHB/EPol: 
electrostatic, van der Waals, hydrogen bonding and polarization components; EDesolv: ligand 
desolvation; T∆S: entropy; Eint: internal strain; EIndFit: induced fit; EBdg: calculated binding energy; 
Ki: calculated binding affinity (cf. equation 2). 
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Figure 29. Details of the binding mode of lorazepam (top and bottom: stereo view). Lorazepam, 

Leu 563 and Asn564 are colored by atom type, the residues lining the hydrophobic 
pocket are depicted in yellow. Top: R-lorazepam engages in a strong hydrogen bond 
with Leu563 and two weak interactions with Gln570 and Met604, respectively (dashed 
lines). Center: Schematic representation of the hydrogen-bonding pattern associated 
with the binding of R-lorazepam to the GR. Bottom: S-lorazepam does not engage in 
hydrogenbonds but features stonger hydrophobic interactions. 
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Figure 30. Details of the binding mode of three psycotropic drugs to the GR (stereo view). The 

ligands and Asn564 are colored by atom type, the residues lining the hydrophobic 
pocket are depicted in yellow. Clomipramine (top): the ammonium H atom does not 
engage in a hydrogen bond with the GR. Mirtazapine (center): the hydrogen bond the 
ammonium H atom with Asn564 (white dashed line) is too long (2.37 Å) and not linear 
(127°) and, therefore, very weak. Trazodone (bottom): again, the ammonium H atom 
cannot engage in a hydrogen bond with the receptor. 
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4.1.7 Conclusions and Applicability of the GR Model 
 
A QSAR model for a series of 118 ligands of the GR (88 training set and 22 test 
set, belonging to 4 different chemical classes, and 8 prediction set compounds) 
was built with Quasar and successfully validated. The best Quasar simulation 
was obtained with an alignment from the manual docking and yielded a cross-
validated r2 of 0.702 for the training set and a predictive r2 of 0.719 for the 
internal test set, respectively.  
Robustness was proved by applying a second methodology (Raptor) and 
verifying the agreement on the predictions. The Raptor simulation yielded a 
cross-validated r2 of 0.680 for the training set and a predictive r2 of 0.519 for the 
internal test set, respectively. For 98.2% of the compounds the predictions by the 
two methodologies are in agreement (the ratio being below a factor of 10, in Ki). 
The predictivity was evaluated by 8 new compounds: the predictive r2 is 0.538 
with Quasar, and 0.488 with Raptor (the rms deviation is a factor in Ki of 4.7 and 
20 with the two methodologies, respectively). 
Model sensitivity was assessed by 20 scramble tests: they gave an average 
predictive r2 value of –0.241, demonstrating that the model for the GR is indeed 
sensitive towards the biological data. 
The model was then used for simulating and quantifying the binding of 24 
psychotropic drugs to the GR. 
The results suggest that the model, can be applied to predict the binding affinity 
of new drug candidates, in order to design new glucocorticoids, or of existing 
compounds, in order to check out possible interactions. The model is, at least in 
part, interpretable and correlated with structural properties. In contrast to other 
modeling studies on the GR217, 253 induced fit, a key mechanism for ligand 
binding, was explicitly simulated both in the docking phase and during the QSAR 
simulations. 
Limitations of the current model for the GR are the sensitivity to the formal 
charge and the molecular weight of the compounds to be tested. In the former 
instance, charged species would currently seem to be overestimated as the 
model was trained using predominantly neutral species. The size of a compound 
matters as for very small ligands the automated docking protocol might not 
sample enough poses (default = 25) while for large molecules leading to a 
significant induced-fit (rms > 5 Å), the underlying protocol is unable to simulate 
and quantify such large conformational changes at the protein. 
The GR model has been added to the VirtualToxLabTM developed by the 
Biographics Laboratory 3R.4, 254 Presently, it includes 12 validated models for the 
androgen, aryl hydrocarbon, estrogen α/β, glucocorticoid, liver X, mineralocor-
ticoid, peroxisome proliferator-activated γ and thyroid α/β, receptors as well as for 
the enzymes cytochrome P450 2A13 and 3A4. 
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4.2 Liver X Receptor (LXR) 
 
As for the glucocorticoid receptor, the following sections describe the work on the 
liver X receptor (LXR): the analysis on the crystal structures, the MD studies, the 
preparation of the binding affinity data and compound structures, the docking to 
the receptor, and the building and validation of a QSAR model. 
 
 

4.2.1 Analysis of the LXR Crystal Structures and Receptor Pre-
paration 
 
Two isoforms of LXR have been identified and are referred to as LXRα and 
LXRβ. The sequence identity in the ligand binding domains between the two 
isoforms is high (77%). The amino-acid residues lining the binding domain that 
differ in the two isoforms are either located at least 5 Å away from the bound 
ligands or conservative in nature (e.g. Val263 in LXRα  Ile277) in LXRβ and in 
any case all amino-acid residues that interact with the ligands are conserved 
(Figure 31).  

 
Figure 31. Superposition of the amino-acid residues lining the binding pocket of LXRα (PDB 

code: 1UHL) colored in red, and LXRβ (PDB code: 1PQ6) colored in blue. The co-
crystallized ligands are  also shown, colored by atom type. For clarity, some of the 
amino-acid residues are not shown. The figure demonstrates the high similarity of 
structure of the binding pocket between the α and β isoforms. 
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Due to the high similarity of the two isoforms, and to the non-selectivity of the 
studied compounds (discussed in the section 4.2.3), the crystal structure of LXRβ 
(PDB code: 1PQ6, 2.40 Å resolution, Rfree = 0.262) was selected as a 
“representative receptor structure” of the LXRs for the docking of the compound 
library. The β isoform was chosen because of the higher resolution of the crystal 
structure for the human receptor (2.40 Å for the β isoform compared to 2.90 Å for 
the highest resolution for a human structure of LXRα). Among the available 
human LXRβ crystal structures, 1PQ6 was chosen because of the similarity of 
the co-crystallized ligand with compounds of the studied library. From now on, 
the term LXR refers to the LXRβ isoform. 
As described in paragraph 3.3.3, discontinuous parts of the crystal structure were 
modeled on the basis of other crystal structures available (Phe243–Gln246 from 
1PQ9,83 and Leu254–Pro258 from 1UPV227) and the whole structure was 
minimized with Macromodel. The complete minimized structure was then used as 
input for the MD studies. 
 
 

4.2.2 Molecular-Dynamics Simulations on the LXR 
 
Due to the addition of nine amino-acid residues not resolved in the LXR crystal 
structure (Phe243–Gln246 and Leu254–Pro258), MD studies were performed for 
the LXR not only to gain insight on the binding mode and on the dynamic 
behavior of the complex, but also to obtain a receptor structure further relaxed by 
MD simulations. GW3965, the co-crystallized ligand (depicted in Figure 32), was 
studied in the MD simulations. 

 
Figure 32. Depiction of the frame from the MD (left), corresponding to the minimum energy 

structure. Ligand GW3695 is represented as thick sticks (chemical structure shown 
on the right), key amino-acid residues involved in hydrogen bonding or hydrophobic 
interactions are represented as thin sticks, the remaining amino-acid residues in the 
binding pocket as lines and the water molecules are represented as spheres. 
Hydrophobic amino-acid residues are colored in gray. 
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The plot of temperature and energetic contributions during the production phase 
is depicted in Figure 33: the fluctuations don’t show any drift and the average 
value of temperature and energies remains constant. It can be assumed that the 
simulation reached equilibrium, being this constant behavior a prerequisite for a 
well equilibrated dynamic.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Plot of the temperature (top) and energy contributions (bottom) during the production 

phase (250 ps). Temperature and energies fluctuate around a constant value, 
indicating that the simulation is stable and has reached equilibrium. ETOT: total 
energy; EPOT: potential energy; EKTOT: kinetic energy. 

 
The average structure and the whole trajectory during the production phase were 
observed. If a distance cutoff (< 3.5 Å between heavy donor–acceptor atoms and 
angle cutoff donor-hydrogen-acceptor angle > 120°) are set as requirement for 
hydrogen bond identification, then two hydrogen bonds are observed between 
the carboxylic group of the ligand molecule and the amino-acid residue Arg319 
side-chain. A third hydrogen bond is observed between the ligand and Leu330 
backbone. In particular, one of the two carboxylic oxygen atoms of GW3965 is 
interacting with Arg319 (100% of the simulation time, average oxygen–hydrogen 
distance 1.81 Å). The other carboxylic-oxygen atom is also interacting with 
Arg319 (93% of the time, average distance 2.18 Å) but also with the backbone of 
Leu330 (73% of the time, average distance 2.35 Å). The distance and angle 
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cutoff anyway don’t take into account of the position of the oxygen lone pairs. 
Furthermore, we observe that the plane identified by the guanidinium group is 
often nearly perpendicular to the carboxylate plane (the average angle between 
the planes is 65°). This angle is at the upper limit of the observed range for 
hydrogen bonds in nature.255-258 The interaction between GW3965 and Arg319, 
lacking the directional component defining a strong hydrogen bond,256 can then 
be considered most of all electrostatic in nature. 
The major part of the ligand molecule is however hydrophobic in nature and is 
engaged in hydrophobic interactions. The binding pocket features two major 
hydrophobic cavities, one occupied by the chloro-trifluoromethyl benzyl group 
and the second one around the diphenylethyl moiety of GW3965. The number of 
hydrophobic amino-acid residues (Figure 32) in the area is very high, and many 
of them are involved in hydrophobic interactions: Phe268, Phe271, Leu274, 
Ala275, Ile309, Met312, Leu313, Phe329, Phe340, Leu345, Phe349, Ile350, 
Ile353, Phe354, Leu442, Val439, Leu449 and Trp457 are within 4 Å of the ligand. 
The frame corresponding to the minimum energy structure of the simulation is 
shown in Figure 32.  
The minimum energy structure during the MD trajectory, occurring after 203 ps 
from the beginning of the production phase, was extracted from the trajectory, 
minimized, and used as input structure for the following docking studies. Figure 
34 shows a superposition of the minimum energy structure (gray), the average 
structure (blue), and three conformations randomly chosen during the dynamics 
(orange, red, gray). All the structures are quite similar and don’t change much 
during the simulation. This behavior can be deduced also from the low average 
of the RMSD of the backbone (0.51 Å). 
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Figure 34. Superposition of the minimum energy structure (gray), average structure (blue), and 

three conformations randomly chosen during the dynamics (orange, red, green). 
Proteins are represented as ribbons, the ligand as sticks and water molecules as 
lines. Only the minimum energy structure is shown entirely, while for the other 
conformations is shown only the substructure that during the MD was not constrained 
(like described in paragraph 3.3.4, the residue not constrained are the ones within 20 
Å from the ligand). 

 
 

4.2.3 Preparation of the Binding Affinity Data and Compound 
Structures 
 
The structural information and pharmacological data for 54 compounds binding to 
the LXRs were obtained from literature.259 
The compounds can be classified in two chemical classes: heterocyclic 
phenylacetic-acid compounds (compound code F01–F29) and compounds 
derived from podocarpic acid (compound code G01–G25). Their chemical 
structure is shown in Figure 35.  
Two compounds of the class G (G10 and G16) bear stereocenters, and in the 
biological assay were tested as racemates. From docking studies emerged the 
fact that for both compounds, both stereoisomers can be equally well 
accommodated in the binding pocket, with no clear preference for one steroiso-
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mer. Therefore both isomers for both compounds were modeled in the docking 
studies and in the QSAR. 
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Heterocyclic phenylacetic–acid compounds F01–F29 Podocarpic acid derivatives 
G01–G25 

Figure 35. The three different possibilities for the scaffold of compounds in the class F (left), and 
the scaffold of the compounds in the class G (right) are shown. All the compound 
structures and Ki values are given in the appendix B. 

 R1 = H, Cl; 
 X = S, O, CH2, NMe, NH, NEt, N-Formyl, NAc; 
 R2 = H, m-CH2CO2H, p-CO2H; 
 Y = C, CO, N; 
 Z = C, CH2, N; 

R3 = H, COCH3; 
R4 = adamandane derivatives, bicycloheptane derivatives, different substituents deri–
ved by 5-, 6-, or 7-membered rings, aromatic or aliphatic. 

 
All measured IC50 values were converted to Ki values by means of the Cheng-
Prusoff relation.223 Two compounds belonging to the F class (F09 and F10) are 
weak actives for LXRβ (<50% activation at 10 µM) and could therefore not be 
used in the model development with Quasar, for which a finite value of binding 
affinity is required, instead they were used as a predictive set during the model 
validation (discussed in the paragraph 4.2.5). Figure 36 compares the 
experimental binding affinities for the 52 compounds used in this study towards 
the LXRα and β. Only for two compounds (3.8%) the difference in binding affinity 
exceeds 1 logarithmic unit. The selectivity of the compounds for the two subtypes 
of LXR is therefore not sufficient to identify specific models for each subtype: the 
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error in prediction would be comparable to the difference in experimental values 
between the two subtypes. Therefore a representative model has been built and 
validated on a single LXR isoform: such a LXRβ model may be used to predict 
the binding affinity value for both subtypes. 
The ligand structures were generated and optimized as indicated in paragraph 
3.3.2. 
 

 
 

Figure 36. Comparison of binding affinities towards LXRα and β for the 52 investigated 
compounds 
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4.2.4 Docking to the LXR 
 
In order to have a suitable input structure for the docking of the 52 ligands, the 
position of the hydrogen atoms was re-calculated with Yeti,99, 101 and added to 
the structure obtained from the molecular-dynamics simulation. The correct 
protonation state for the histidine residues was then assigned: His270, His322, 
His341, His435 and His460 are all protonated at their Nδ atom. His435 is part of 
the binding pocket and the protonation state depend on the ligand bound that 
may present in the vicinity of the histidine residue hydrogen-bond donors, 
acceptors or groups that are not able to form hydrogen bonds. Different 
functional groups of the bound ligand may induce different protonation states for 
His435. For the LXR bound to the ligand GW3965, as well as to the other LXR 
ligands studied in this thesis, the most probable protonation state would be the 
Nδ atom. After the assignment of the protonation state, the hydrogen-bond 
network was optimized and the structure was relaxed using the directional force 
field implemented in Yeti.99 
Automated docking using different software was initially performed for each of 
the 52 ligands, with the automated docking module of Yeti,99 with Glide,104 and 
eHiTS109 but all of them led to a less satisfactory result than the manual docking 
because of the higher protein–ligand interaction energies (when compared to the 
results of the manual docking, see Table 11), and the non-homogeneous 
alignment in the output: similar molecules resulted in different binding poses, as it 
is shown in Figure 37. 

 

 
Figure 37. Comparison of results obtained with the automated docking procedure performed with 

Glide for two similar compounds: F24 (carbon atoms colored in blue) and F02 (carbon 
atoms colored in green). The two similar compounds result in very different binding 
poses, almost flipped 180 degrees on the horizontal axis. 
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Table 11. Quantitative aspects of ligand binding to the LXR, as obtained from the manual and 
automatic docking (Yeti software). 

Ligand Docking EProtein–Ligand  (EElec EvdW EHB) 

F01a M –57.9  –27.5 –28.6 –1.7 
F01b M –60.1  –31.5 –25.7 –3.1 
F01c M –59.5 –32.1 –25.8 –1.6 
F01d M –58.6 –29.6 –27.4 –1.6 

F01 average M –59.0 –30.2 –26.9 –2.0 
F01a A –41.9 –10.6 –31.4 –0.0 
F01b A –46.5 –13.0 –31.6 –1.9 
F01c A –40.9 –15.8 –25.1 –0.0 
F01d A –39.7 –16.8 –21.5 –1.4 

F01 average A –42.3 –14.1 –27.4 –0.8 
F13a M –53.4 –26.6 –24.7 –2.1 
F13b M –53.7 –25.2 –28.2 –0.2 

F13 average M –53.6 –25.9 –26.5 –1.2 
F13a A –50.8 –26.5 –22.3 –2.1 
F13b A –51.4 –26.2 –22.2 –2.9 
F13c A –44.6 –18.5 –26.1 –0.0 
F13d A –59.2 –28.1 –29.0 –2.0 

F13 average A –51.5 –24.8 –24.9 –1.8 
F24a M –55.2 –30.4 –23.6 –1.2 
F24b M –52.9 –29.3 –22.3 –1.2 
F24c M –63.6 –36.9 –25.5 –1.2 
F24d M –64.9 –37.7 –26.0 –1.2 

F24 average M –59.2 –33.6 –24.4 –1.2 
F24a A –53.0 –20.1 –29.2 –3.7 
F24b A –51.2 –26.2 –25.0 –0.0 
F24c A –51.4 –17.2 –34.3 –0.0 
F24d A –54.0 –22.0 –30.5 –1.5 

F24 average A –52.4 –21.4 –29.8 –1.3 
G19a M –34.2 –13.0 –20.6 –0.5 
G19b M –48.3 –17.4 –29.8 –1.2 

G19 average M –41.3 –15.2 –25.2 –0.9 
G19a A –42.8 –13.3 –26.1 –3.4 
G19b A –40.1 –10.3 –29.8 –0.0 
G19c A –42.2 –7.5 –34.7 –0.0 
G19d A –40.3 –9.5 –30.1 –0.0 

G19 average A –41.4 –10.2 –30.2 –0.9 

All energies are given in kcal/mol. Docking: M: manual; A: automated. EPritein–Ligand: protein–ligand 
interaction energy; EElec/EvdW/EHB: electrostatic, van der Waals, and hydrogen bonding 
components. a, b, c, d refer to different binding modes: 4 for the automated docking and from 1 to 
4 for the manual docking. All the compound structures are given in Appendix B. 
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In the binding poses of ligands F02 and F24, as obtained from the docking with 
Glide, the ligands’ carboxylate moiety is located in two opposite sides of the 
binding pocket (Figure 37). Each of the 52 ligands was then manually docked to 
the receptor structure with the software Yeti.99, 101 Table 11 lists energetic 
contributions calculated on the poses from manual and automated docking (with 
Yeti99, 101) for four compounds of the dataset (one for each chemical class of 
Figure 35): F01, F13, F24 and G19. The poses obtained with manual docking are 
characterized on average by a more favorable (or in the worst case comparable) 
protein–ligand interaction energy.  
The manual docking was aimed at finding binding poses that could reproduce, 
when possible, the interactions observed in the crystal structure and in the 
molecular-dynamics simulations between GW3965 and LXR: a hydrogen bond 
with Leu330, electrostatic interactions with the guanidinium group of Arg319, and 
hydrophobic interactions in the two major hydrophobic cavities (one occupied by 
the chloro-trifluoromethyl benzyl group and the second one around the 
diphenylethyl moiety of GW3965). 
For all the 52 compounds, from a minimum of one to a maximum of four binding 
poses were selected.  
More in detail, the carboxylate moiety of the ligands in class F was located in the 
vicinity of amino-acid residues Arg319 and Leu330: two different binding modes 
were considered for this class, depending on the position of the carboxylate 
group with respect to amino-acid residues Arg319 and Leu330, and on different 
orientations of the benzo-isoxazole moiety. For each of these binding modes, 
symmetrical features of the ligands allowed for two possible orientations, leading 
to a maximum of four different binding poses. As an example for class F, 
compound F24 is discussed. The four selected binding modes (F24a, F24b, F24c 
and F24d) are depicted in Figure 38 A, B, C and D, respectively. In F24a and 
F24b the carboxylate moiety is located between Arg319 and Leu330 and creates 
a hydrogen bond with both amino-acid residues, while in F24c and F24d is 
located 2 Å closer to Arg319 and form hydrogen bonds only with Arg319. The 
difference between F24a and F24b, or between F24c and F24d is the orientation 
of the chlorine atom in the aromatic ring, that is rotated by 180°. F24c and F24d 
are characterized by more favorable protein–ligand interaction energies (Table 
11) than F24a and F24b. All four binding modes were included in the final 
alignment. 
The compounds belonging to class G locate the hydroxyl group of the 
podocarpate moiety towards the amino-acid residue Glu281, while the 
hydrophobic podocarpate substuituents can occupy the two hydrophobic cavities 
mentioned above, leading to two different binding modes. Details of the binding 
of the compound G19 are shown in Figure 38 E and F: G19a and G19b are two 
binding modes. In both cases, a hydrogen bond is observed between the ligand 
and Glu281. 
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Figure 38. Details of the binding modes for representative compound of classes F and G used for 
this QSAR study. The ligands (F24: A, B, C, D; G19: E, F) are represented as licorice, 
the residues Leu330, Arg319 and Asp181 as balls and sticks and the residues lining 
the hydrophobic pocket as lines. Hydrophobic amino-acid residues lining the binding 
pocket are represented as grey sticks. 
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4.2.5 Building and Validation of a QSAR Models for the LXR 
 
The alignment of the 52 compounds, divided in 40 training and 12 test ligands, 
identified using flexible docking, was used as input for the quantitative structure-
activity relationship software Quasar.177  
Two different alignments (from manual and automated docking) and different 
parameter settings were explored. Table 12 lists some of the performed simu-
lations (sorted according to the predictive r2 value), the parameter settings and 
the corresponding results. For the parameters not specified in this table, the 
default values240 were used. 
The simulations from the manual docking alignment provide the highest 
predictive r2 values, and the lowest rms they are located in the upper part of the 
table.  
 
Number of crossovers 
The number of crossovers leading to simulations characterized by satisfactory 
r2 values (> 0.5) are significantly lower (1,000–3,000) for the LXR than for the GR 
(30,000–60,000). This can be explained with the fact that the number of 
compounds is lower (52 ligands for the LXR and 110 for the GR), the library is 
more homogeneous (two chemical classes instead of four) and the source of the 
data as well (the Ki values were measured for all the compounds in the same 
laboratory).  
 
Population size 
The simulations with highest predictivity suggest that the optimal population is 
constituted by 200 individuals, even if some simulations (MD06, MD12) with 100 
individuals can reach equally high predictivity.  
 
Attenuation factors 
The most predictive simulation (MD01) uses weights that downscale the 
contribution of solvation and internal energy (0.5,0.25). However, also some 
models with default attenuation factors (1.0,1.0,1.0) lead to comparable results.  
 
Induced-fit weight 
The two weights used (1.0 and 0.5) resulted in comparable results, indicating that 
even with different treating of the induced fit energy, is possible to obtain 
predictive models. 
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Cross-validation groups 
A high number of cross validation groups, meaning less restrictive conditions for 
the internal predictivity, is correlated with high predictive r2 values. Low number 
of cross validation groups lead occasionally to good predictivity (MD05, MD07, 
MD09). 
 
The model characterized by the highest predictive r2 (0.701) is MD01. However, 
MD01 reaches the maximum value of predictive r2 only at a late stage of the 
evolution, after 20,000 crossovers, corresponding to 100 generations. At this 
point, the value of cross-validated r2 (0.924) is much higher (+0.223) than the 
predictive r2. Being such behavior symptomatic of overfitting,188, 191 the simulation 
MD02 was chosen instead for further analysis and validation. 
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Table 12. Summary of the Quasar simulations. 

Simu-
lation #CO POP AF IFW CVG q2 p2 

Training 
rms 

avg/max 

Test 
rms 

avg/max 

MD01 20,000 200 0.5, 1.0, 0.25 1.0 10 0.924 0.701 0.6/5.3 1.5/6.1 
MD02 3,000 200 0.5, 1.0, 0.25 0.5 8 0.763 0.697 1.2/7.5 1.3/3.3 
MD03 4,000 200 1.0, 1.0, 1.0 0.5 7 0.742 0.660 1.4/7.9 1.5/5.0 
MD04 3,000 200 1.0, 1.0, 1.0 0.5 8 0.746 0.657 1.3/6.8 1.5/3.8 
MD05 5,000 200 1.0, 1.0, 1.0 1.0 5 0.747 0.627 1.4/6.7 1.6/6.3 
MD06 2,000 100 0.5, 1.0, 0.25 1.0 8 0.784 0.621 1.1/6.4 1.6/5.1 
MD07 2,000 200 0.5, 1.0, 0.25 0.5 5 0.706 0.614 1.6/8.0 1.6/5.1 
MD08 4,000 200 0.5, 1.0, 0.25 1.0 7 0.770 0.609 1.2/6.3 1.7/6.5 
MD09 3,000 200 1.0, 1.0, 1.0 0.5 5 0.705 0.592 1.5/6.9 1.8/7.5 
MD10 3,000 200 1.0, 1.0, 1.0 1.0 7 0.708 0.591 1.6/8.6 1.8/4.7 
MD11 3,000 200 1.0, 1.0, 1.0 1.0 8 0.750 0.587 1.3/6.8 1.7/7.5 
MD12 1,000 100 1.0, 1.0, 1.0 1.0 8 0.605 0.503 1.9/9.0 2.1/6.5 
MD13 2,000 100 1.0, 1.0, 1.0 1.0 5 0.753 0.496 1.4/8.4 2.2/6.8 
MD14 1,000 100 1.0, 1.0, 1.0 0.5 8 0.662 0.466 1.7/8.4 2.2/10.2 
MD15 4,000 200 0.5, 1.0, 0.25 1.0 6 0.815 0.425 1.1/4.9 2.4/9.5 
MD16 1,000 100 1.0, 1.0, 1.0 0.5 5 0.632 0.368 1.9/11.5 2.5/11.6 
AD01 5,000 200 0.5, 1.0, 0.25 0.5 5 0.744 0.252 1.2/4.7 2.7/7.4 
AD02 1,000 100 1.0, 1.0, 1.0 0.5 8 0.641 0.226 1.6/11.2 2.9/10.0 
AD03 2,000 200 0.5, 1.0, 0.25 1.0 6 0.632 0.216 1.6/9.8 2.4/5.8 
AD04 10,000 200 0.5, 1.0, 0.25 0.5 8 0.813 0.190 1.0/3.8 2.9/17.3 
MD17 1,000 100 0.5, 1.0, 0.25 1.0 6 0.704 0.186 1.6/6.9 3.2/12.3 
AD05 3,000 200 1.0, 1.0, 1.0 0.5 5 0.641 0.177 1.6/6.4 2.9/11.6 
AD06 1,000 200 0.5, 1.0, 0.25 

0,.250.5 
1.0 10 0.523 0.172 1.9/11.7 2.4/8.1 

AD07 1,000 200 0.5, 1.0, 0.25 1.0 7 0.538 0.144 1.8/8.9 2.7/15.6 
AD08 1,000 100 0.5, 1.0, 0.25 1.0 8 0.684 0.141 1.6/8.8 3.3/10.6 
AD09 1,000 100 0.5, 1.0, 0.25 1.0 6 0.618 0.138 1.7/10.8 2.9/13.2 
AD10 1,000 200 1.0, 1.0, 1.0 1.0 7 0.471 0.130 2.2/13.6 2.9/14.7 
AD11 2,000 200 1.0, 1.0, 1.0 0.5 8 0.593 0.127 1.9/16.1 3.0/15.4 
AD12 1,000 100 1.0, 1.0, 1.0 0.5 5 0.564 0.116 2.0/13.0 3.2/8.6 
AD13 1,000 200 1.0, 1.0, 1.0 1.0 8 0.458 0.088 2.1/12.8 2.8/12.7 
AD14 1,000 100 1.0, 1.0, 1.0 1.0 8 0.535 0.071 2.0/12.0 3.1/21.5 
MD15 35,000 100 0.5, 1.0, 0.25 1.0 7 0.669 0.051 1.6/9.9 3.8/15.1 
AD16 4,000 200 1.0, 1.0, 1.0 0.5 7 0.699 0.028 1.5/7.9 3.7/15.0 
AD17 1,000 200 1.0, 1.0, 1.0 1.0 5 0.470 0.007 2.1/12.4 3.2/17.1 
AD18 4,000 100 0.5, 1.0, 0.25 1.0 7 0.827 –0.024 1.1/7.4 4.4/102 
AD19 1,000 100 1.0, 1.0, 1.0 1.0 5 0.587 –0.162 1.9/14.1 4.5/26.8 

Simulation: MD: manual docking; AD: automated docking; #CO, number of crossovers; POP, 
population size; AF, attenuation factors (weight of solvation, entropy, internal energy); IFW, 
induced-fit weights; CVG, cross validation groups; q2: cross-validated r2, p2: predictive r2; Training 
rms avg/max, Test rms avg/max, the rms and maximal deviation from the experimental binding 
affinity respectively for training set and test set (given as a factor (off) in Ki)i. 
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The Quasar simulation MD02 was based on a family of 200 receptor models that 
differ in respect to the properties mapped on their surface. The family of receptor 
models was evolved for 3,000 crossover cycles, corresponding to 15 
generations. For the cross-validation, we selected a leave-n-out (n = 8) protocol. 
Protein flexibility was taken into account by six induced-fit scenarios. During the 
simulation, a mutation rate of 0.02 was applied in the evolution of the quasi-
atomistic properties. 
The model family converged at a cross-validated r2 of 0.763 for the 40 training 
compounds and yielded a predictive r2 of 0.697 for the 12 test ligands (cf. Figure 
39 and Table 13).  
 

 
 

Figure 39. Comparison of experimental and predicted binding affinities of the training and test set 
(open circles and filled triangles, respectively) and of the compounds F09 and F10 
used as external test set (filled squares) towards the LXR, as obtained with Quasar. 
Dashed lines are drawn at a factor 10 from the experimental value. The experimental 
values of compounds F09 and F10 are only indicatively set at a value of 10 µM, the 
measured Ki being higher than 10 µM. 

 

On the average (rms), the calculated binding affinity of the training and test 
ligands deviates by a factor 1.2 and 1.3, respectively, from the experimental Ki 
value. The maximal observed deviation of an individual compound corresponds 
to a factor of 7.5 in Ki for the training set and 3.3 for the test set, respectively. 
The predicted binding affinities for the compounds F09 and F10, belonging to the 
prediction set and not employed in the model building, are 7.3 and 4.9 nM, 
respectively: their activity is overestimated (more than a factor of 30 in Ki) by the 
model. A possible reason for this poor prediction could be the fact that none of 
the compounds of the training and test set has a very low activity (the least active 
compound of class F is 210 nM).  
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Table 13. Summary of the Quasar and Raptor simulations for the 40 training and 12 test com-
pounds 

Simulation r2 q2 rms training max. training p2 rms test max. test 

Quasar 0.783 0.763 1.2 7.5 0.697 1.3 3.3 

Raptor 0.876 n/a 1.2 3.1 0.484 3.6 8.7 

r2: correlation coefficient, q2: cross-validated r2, p2: predictive r2; the rms and maximal deviation 
from the experimental binding affinity is given as a factor (off) in Ki. 

 
Figure 40. Representation of the LXR surrogate (Quasar) with bound compound F24 (space-

filling). The mapped quasi-atomistic properties are colored as follows: blue (salt 
bridge, negatively charged), green (H-bond donor), yellow (H-bond acceptor), saddle 
brown (hydrophobic, positively charged), chocolate brown (hydrophobic, negatively 
charged), grey (hydrophobic, neutral). Residues Glu281 and Arg319 are shown as 
sticks. 

 
A representation of the receptor surrogate with bound the compound F24 is 
depicted in Figure 40. When compared to the crystal structure of the LXR 
complexed with GW3965, the receptor surrogate generated by Quasar properly 
reproduces properties observed for the amino-acid residues in the binding 
pocket: a salt bridge, positively charged (blue) is located in proximity of the 
guanidinium moiety of Arg319, and a hydrogen bond acceptor (yellow) is located 
close to the position occupied by the Glu281. Moreover, hydrophobic properties 
(brown) populate great part of the surface, correctly reflecting the hydrophobic 
character of the binding pocket. 



                                                                                                                                                                                                                          
    

83 

In order to assess the sensitivity of the model, 10 scramble tests were performed 
using a different shuffle of the biological data (of the training set) for each 
simulation. They yielded an average predictive r2 of 0.018 compared to +0.697 
for the simulation using un-scrambled values, demonstrating that the model for 
the LXR is indeed sensitive towards the biological data.  
To test for consensus, we applied a second methodology (software Raptor). The 
Raptor simulation  –using the same ligand alignment and selection– yielded an r2 
of 0.876 and a predictive r2 of 0.484. The comparison of predicted and 
experimental binding affinities is shown in Figure 41, and the performance 
coefficients are given in Table 13. The Raptor simulation yielded a lower 
predictive power, but the performance can be considered satisfactory. The 
activity of compounds F09 and F10, like for the Quasar’s model, is overestimated 
by the Raptor’s model. Raptor’s dual-shell model can simulate ligand-dependent 
induced-fit mechanisms. For example, the alkylic substituent of G06 (cf. Figure 
42) can be accommodated in two different hydrophobic cavities present in the 
binding pocket. The outer shell and the inner shell can represent the two 
possibilities (Figure 42, left and right). The comparison of predicted binding 
affinities obtained by the two approaches is shown in Figure 43.  The average 
deviation is 0.27 logarithmic units (a factor 1.9 in Ki). For none of the compounds 
the ratio is greater than a factor of 10 (in Ki), the maximal ratio being 0.88 
logarithmic units (a factor 7.6 in Ki). Thus, consensus between Quasar and 
Raptor predictions has been achieved.  

        

 
 
Figure 41. Comparison of experimental and predicted binding affinities of the training (open 

circles), test set (filled triangles) and the external test set (filled squares) towards the 
LXR as obtained with Raptor. 
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Figure 42. Raptor model of the LXR binding-site with compound G06 in two different binding 

modes (left and right; hydrophobic fields = beige, hydrogen-bond donating propensity 
= blue, hydrogen-bond accepting propensity = red, hydrogen-bond flip-flop = green). 
The inner shell (transparent surface) and outer shell (wire frame) are shown in 
different style to highlight the two shells of the surrogate (for clarity, the front part of 
the receptor model has been clipped). 

 
 
 

 
 
 

 
 
 

 
 
 
Figure 43. Consensus scoring using Quasar and Raptor. The quantity is expressed as pKi, 

consensus =  –log(Ki-Quasar/Ki-Raptor). Error bars indicate the cumulative standard 
deviation, esdcumulative = √ (esd2

Quasar + esd2
Raptor). 
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4.2.6 Conclusions and Applicability of the LXR Model 
 
A QSAR model for a series of 54 ligands of the LXR (40 training set, 12 test set 
and 2 prediction set compounds), belonging to 2 different chemical classes was 
built and validated. The Quasar simulation yielded a cross-validated r2 of 0.763 
for the training set and a predictive r2 of 0.697 for the internal test set, 
respectively. A second methodology Raptor was employed to test for consensus: 
the simulation yielded a cross-validated r2 of 0.876 for the training set and a 
predictive r2 of 0.484 for the internal test set, respectively. For all the compounds 
the predictions by the two methodologies are in agreement (the ratio being below 
a factor of 10, in Ki). 
Two weakly active compounds (Ki > 10 µM) were also evaluated and predicted 
more active than the experimental value assesses: probably because low-activity 
compounds are not sufficiently represented in the dataset. 
The model sensitivity was assessed by 10 scramble tests: the average predictive 
r2 is  0.018, demonstrating that the model for the LXR is sensitive towards the 
biological data. 
The results suggest that the model can be used in binding affinity prediction of 
new drug candidates, in the design of new LXR agonists, or of existing 
compounds, in the investigation of possible toxicological mechanisms. The model 
shows to be correlated with structural properties, and therefore is to some extent 
interpretable.  
Limitations of the approach include the smaller number of compounds (when 
compared to the GR) and of the chemical classes: the diversity of the 
compounds is limited to the two chemical classes of the presented study. The 
molecular weight of the compounds is also a limitation in the automated 
procedure used to test new compounds: the automated docking for bulky 
compounds that involve significant induced-fit might not sample sufficient poses. 
The LXR model, like for the GR one, has been added to the VirtualToxLabTM3, 4 
developed by the Biographics Laboratory 3R.3 
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4.3 Hydrophobic Effect Estimation and Evaluation 
 

4.3.1 Development of an Empirical Hydrophobicity Function 
 
A novel empirical scoring function has been devised and implemented in a small 
program (HEidi: Hydrophobic Effect in Drug Interactions), written in C, aiming at 
the quantification of the hydrophobic effect for scoring protein–ligand binding 
energies.  
The input of HEidi are the coordinates of a protein–ligand complex including all 
atoms (the hydrogen atoms are explicitly represented). 
The output of HEidi is a scalar value of a hydrophobicity function. This value can 
be used to score how good the ligand, in a specific conformation and orientation, 
matches hydrophobic cavities of a protein binding pocket. 
The basic idea is to give a bonus (a positive contribution to the score) for each 
“good hydrophobic match” and a penalty a negative contribution to the score for 
each “bad hydrophobic match”. In HEidi, a “good hydrophobic match” is defined 
as a pair of atoms, one belonging to the protein and one to the ligand, that are 
both hydrophobic and within a certain distance. A “bad hydrophobic match” is 
defined as a pair of atoms, one belonging to the protein and one to the ligand, 
that are one hydrophobic and the other hydrophilic, within a certain distance. The 
classification of the atoms as hydrophobic or hydrophilic is determined on the 
basis of partition coefficients determined by Ghose and Crippen.260 These 
partition coefficients are, in turn, determined by the atom type and connectivity 
for each atom in a molecule260. The amount of the bonus or penalty depends on 
the distance between the pair of atoms (the closer, the higher prize or penalty) 
and on their hydrophobicity (high partition coefficients for both atoms give high 
prize, and very different partition coefficients for the two atoms gives high 
penalty). 
Bonuses and penalties for each pair of protein–ligand atoms are then summed to 
give the final score. The algorithm is explained more in detail in a flowchart 
(Figure 44). 
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Figure 44. Flowchart of the program for the calculation of the hydrophobic effect score. The white 

boxes are performed only once during the algorithm, the yellow ones require 
operations repeated for each atom and the green for each pair of protein–ligand 
atoms of the input file. 
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Comments to the flowchart: 
 

1. Connectivity determination: for each atom, the atom type, and the 
number and type of the bonded atoms are stored. This information is used 
to assign the partition coefficients in the next step. Atom types are 
classifications of the atoms based on element and bonding environment. 

 
2. Assignment of the partition coefficient: for each atom i a partition 

coefficient (PCi) is assigned, according to Ghose and Crippen,260 on the 
basis of the atom types and bonded atoms identified. Each atom is 
classified into 110 atom types, and a specific partition coefficient is 
assigned to each of them. 

 
3. Check if i, j are both hydrophobic: for each pair of atoms i and j, i 

belonging to the protein and j to the ligand, the atoms i and j are 
considered hydrophobic if they have positive partition coefficients (PCi >0, 
PCj >0). 

 
4. Positive contributions: if both atoms are hydrophobic, then a good 

hydrophobic match between protein and ligand is found, and a positive 
contribution to the score is calculated (f(dij)). The contribution depends on 
the distance between the two atoms (dij), and on a scaling factor (Partition 
Coefficient Factor , PCFi,j-plus):  

 
if dij > dij0 + 2 Å       then            f(dij) = 0 
if dij <= dij0 + 0.5 Å       then      f(dij) = 1•PCFi,j-plus 
if dij0+0.5Å < dij <= dij0+2Å      then      f(dij) = (1/1.5)•(dij0+2.0–dij)•PCFi,j-plus 
 
where dij0 is the sum of their van der Waals radii (the list of the van der Waals radii is 
reported in Appendix C) 
PCFi,j-plus is the average of the partition coefficients, scaled by interval: 
PCFi,j-plus = (((PCi + PCj)/2) + PCmin)/(PCmax – PCmin) 

 
The thresholds for the distance, as well as the type of dependence from 
the distance, are chosen according to examples from Wang et Al..147 The 
scaling factor (PCFi,j-plus) has been chosen to give the maximal prize 
positive contribution to the atoms that are most hydrophobic, or, in other 
words, the ones having highest partition coefficients. The relationship 
between the positive contributions and the distance is shown in Figure 45. 
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Figure 45. Dependence of each positive contribution from the distance between the pair of atoms 

i, j (i belonging to the protein and j to the ligand). 

 
5. Check i, j, hydrophobic–hydrophilic pair: for each pair of atoms i and j, 

i belonging to the protein and j to the ligand, the atoms i and j are one 
hydrophobic and the other hydrophilic if they have very different partition 
coefficients (PCi >0.4, and PCj <–0.4) or vice versa. The choice of the 
threshold was subsequent to a statistical analysis of the distribution of 
contributions (discussed in the paragraph 4.3.2) and was intended to 
consider only pairs where the hydrophobicity was very different between 
the two atoms (a hydrophobic atom in contact with a hydrophilic atom, 
resulting in a bad match of properties). 

  
6. Negative contributions: if the atoms are one hydrophobic and the other 

hydrophilic, then a bad hydrophobic match between protein and ligand is 
found, and a negative contribution to the score is calculated f(dij). When 
compared to the positive contribution, a negative contribution has in 
module the same dependence on the distance between the two atoms 
(dij), and on a scaling factor (PCFi,j-minus), but opposite in the sign:  

 
if dij > dij0 + 2 Å      then            f(dij) = 0 
if dij <= dij0 + 0.5 Å       then            f(dij) = –1•PCFi,j-minus  
if dij0+0.5Å < dij <= dij0+2Å      then  f(dij) = –(1/1.5)•(dij0+2.0–dij)•PCFi,j-minus 
 
where  
dij0 is the sum of their van der Waals radii (the list of the van der Waals radii is reported in 
Appendix C) 
PCFi,j-minus is the half of the average of the partition coefficients, scaled by interval: 
PCFi,j-minus = (((PCi + PCj)/4) + PCmin)/ (PCmax –  PCmin) 
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In the case of the negative contributions, when compared to the positive 
contributions, the sum of the partition coefficients is divided by 4 instead of 
2 (in order to take into account the fact that on a random distribution of the 
pairs, there’s double probability to have a hydrophobic–hydrophilic pair 
than a hydrophobic–hydrophobic pair). 

 
7. HEidi calculation: all the positive and negative contributions are summed 

to give the final hydrophobic effect score (HEidi). 
 
8. Write output file: The value of HEidi and of the individual contributions 

are written to a file. 
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4.3.2 Preliminary Analysis on a Protein–Ligand Complex 
 
The program, after a test phase on very simple systems (for example a ligand 
and very few amino-acid residues), was then applied to a real system: 
dexamethasone bound to the GR, in order to check partition coefficients and 
contributions assignment. 
In Figure 46, dexamethasone and few amino-acid residues lining the binding 
pocket are shown. Labels indicate the partition coefficients of the atoms. A great 
part of the positive coefficients (indicating hydrophobic atoms according to the 
program) is assigned to hydrogens of alkylic or aromatic units. Negative coef-
ficients are assigned to hydrogen, oxygen, and carbon atoms of hydroxyl and 
carbonyl groups, and to carbon atoms of alkylic or aromatic units (for example in 
amino-acid residues like leucine, isoleucine, valine, or phenylalanine) but only if 
connected to at least one hydrogen atom. When an sp3 carbon atom is 
tetrasubstituted (e.g. position 10 and 13 in the steroids), or when is connecting 
two condensed aromatic rings, then the partition coefficient is positive. Nitrogen 
atoms in protein backbone or in arginine residues have a positive coefficient, but 
all the hydrogen atoms connected to such nitrogen atoms, have negative 
partition coefficient. 
 

 
 
Figure 46. Partition coefficients in a real system: GR bound to dexamethasone. In sticks dexame-

thasone (thicker) and some amino-acid residues in the binding pocket (thinner). The 
numbers indicate the partition coefficient of atoms: colored in red the positive values 
(classified in the program as hydrophobic atoms) and in blue negative values 
(classified in the program as hydrophilic atoms). 
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Figure 47 shows a statistic of the partition coefficients for all the atoms of the GR-
dexamethasone structure. The atoms of the proteins are almost the totality of the 
atoms (99%) of the complex. Hydrogens belonging to alkylic chains or to 
aromatic rings, as anticipated previously, constitute great part of the positive 
coefficients and 36% of all the atoms. They have partition coefficients between 
0.4 and 0.6. For this reason, in the calculation of the negative contributions, a 
threshold of ±0.4 was chosen. The idea was to consider for the negative 
contributions only atoms with very different partition coefficients (and therefore 
with different hydrophobicities), but being such hydrogen atoms a relevant part of 
the overall atoms, they couldn’t be excluded and the threshold was set at a value 
of 0.4. The polar hydrogens (in arginine, serine, glutamine, asparagine, lysine, 
tryptophan, histidine, cysteine, threonine), and the backbone hydrogens, receive 
a negative partition coefficient. Oxygen and carbon atoms of the backbone, 
forming the carbonyl group, have slightly negative coefficients. The highest and 
lowest coefficients are assigned respectively to the nitrogen atoms of the protein 
backbone and to the carbon alpha.  
 

 
Figure 47. Frequency of the partition coefficients. In different colors are shown the most abundant 

atom types. 

 
Partition coefficients are used in the program to determine whether an atom is 
classified hydrophobic (partition coefficient > 0) or not, and to determine the total 
amount of the (positive or negative) contribution. Figure 48 shows the distribution 
of the contributions received by the protein–ligand atom pairs. The distribution is 
not symmetrical because of the choice to weight the positive matches (the good 
hydrophobic matches) higher when compared to the negative matches (the bad 
hydrophobic matches). Many pairs of protein–ligand atoms receive a low 
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contribution (positive or negative) and few pairs receive a high contribution 
(positive or negative).  
Ideally, the maximal positive contribution of +1 is assigned to a pair of protein–
ligand atoms that both have the maximal possible value of partition coefficient 
and a distance that is lower than dij0+0.5Å. Similar behavior, but opposite in sign, 
can be described for the negative contributions. 
 

 
 
Figure 48. Frequency of the contributions. The histograms indicate the frequency of pairs 

(protein–ligand atoms) receiving the corresponding contribution indicated in the x 
axis. Most pairs of protein–ligand atoms receive a small contribution (50% are within -
0.2 and 0.2), few pairs receive a contribution > 0.2. 

 
Since the individual contributions are summed to give the final score, it is more 
important to evaluate the sum of the contributions for each interval, more than 
the individual contributions. The histograms of Figure 49 indicate that the higher 
contributions (the very good matches) are more relevant in the total score than 
the lower contributions. In other words, few good matches are more influent than 
many average matches. The same trend for the negative contributions is not so 
evident, and reflects the choice to give more relevance to the positive 
contributions due to good matches than to the negative contributions due to bad 
matches. 
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Figure 49. Sum of the contributions for each interval of individual contributions.   
 

4.3.3 Application to the GR and LXR 
 
The hydrophobic effect function was then applied to score the poses obtained 
from automated docking (performed with Yeti/Autodock100) on the GR-dexa-
methasone and LXR-GW3965 complexes.  
With Yeti/Autodock, up to 25 different possible binding poses for each ligand are 
stored in the output file, together with the corresponding values of protein–ligand 
interaction energies and the individual partitioning into van der Waals, 
electrostatic and hydrogen bond components (according to Yeti force field99). The 
hydrophobic effect function was also applied to calculate a score (HEidi) for each 
of the binding poses and the results were analyzed.  
A good scoring function in a docking algorithm should be able to identify the 
correct binding mode within the top rank of the output poses. Assuming that the 
pose from the crystal structure identifies a real binding mode, then it should have 
also maximal absolute value of the docking scoring function, or, referring to 
energy values, should have the minimum negative value. In principle, we can 
assume that low RMSD (root mean square distance) values of each pose 
(calculated from the ligand of the crystal structure) should correspond to 
favorable energies and high RMSD values correspond to unfavorable energies: 
at least in principle, the closer to the crystal structure, the better the docking 
score. 
Table 14 and 15 report the results for the GR and LXR. The crystal structure and 
the 25 output poses are reported, together with the total protein–ligand energies, 
the individual energetic contributions (van der Waals, electrostatic and hydrogen 
bond), the HEidi and the RMSD values. For the GR (Table 14) low values of 
RMSD are clearly associated also to lower (more favorable) total protein–ligand 
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interaction energies and lower values for the HEidi. The same behavior, but less 
pronounced, can be observed for the LXR (Table 15). When observing the 
RMSD values for LXR (Table 15), it can be noticed that most of the poses are 
associated with high RMSD. That reflects a difficulty in identifying the correct 
binding mode, but also the fact that the ligand GW3965 (depicted in Figure 32) is 
a bulky ligand and different docking poses can lead to very high RMSD values. 
The hydrophobic effect is only one aspect in the complex binding process where 
other important contributions play a relevant role, and therefore can’t be used 
alone in the poses evaluation. For this reason, a linear combination of the van 
der Waals, electrostatic, hydrogen bond energies, together with the HEidi would 
be desiderable as a docking scoring function (DSF): 

DSF = a • EEle + b • EvdW + c • EHbond + d • HEidi         (6) 
where EEle: electrostatic energy, EvdW: van der Waals energy, EHbond: hydrogen bond 
energy, HEidi: score calculated from the hydrophobic effect function, a, b, c, d: 
coefficients. 
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Table 14. Docking results for GR–dexamethasone complex 

Pose Protein-Ligand 
total (kcal/mol) 

Ele 
(kcal/mol) 

vdW 
(kcal/mol) 

Hbond 
(kcal/mol) –HEidi RMSD 

(Å) 

X-Ray –58.05 –15.99 –33.49 –8.57 –48.46 0.00 
Pose 20 –56.71 –17.29 –29.88 –9.53 –50.92 0.81 
Pose 14 –50.17 –14.87 –31.30 –4.00 –49.17 0.85 
Pose 12 –59.93 –17.62 –30.41 –11.90 –47.78 0.86 
Pose 09 –50.31 –13.63 –32.38 –4.30 –51.56 0.90 
Pose 10 –51.39 –16.45 –30.84 –4.10 –49.69 0.94 
Pose 13 –52.27 –15.42 –30.98 –5.87 –49.22 0.97 
Pose 22 –51.44 –15.73 –30.34 –5.37 –49.31 0.97 
Pose 24 –51.52 –15.12 –31.04 –5.36 –49.25 0.97 
Pose 08 –51.11 –16.57 –30.18 –4.36 –49.85 1.01 
Pose 11 –52.59 –15.86 –30.81 –5.92 –46.88 1.01 
Pose 23 –49.08 –12.71 –31.89 –4.48 –48.60 1.07 
Pose 19 –55.25 –13.42 –33.44 –8.39 –48.11 1.11 
Pose 06 –52.09 –16.06 –32.16 –3.88 –53.93 1.12 
Pose 25 –34.08 –8.37 –25.21 –0.50 –41.88 3.15 
Pose 17 –36.27 –15.53 –17.85 –2.89 –43.30 3.88 
Pose 05 –40.27 –12.42 –23.77 –4.08 –41.40 6.98 
Pose 21 –41.96 –9.36 –25.69 –6.91 –42.51 6.99 
Pose 18 –36.04 –6.76 –26.82 –2.47 –43.60 7.02 
Pose 16 –35.30 –9.78 –25.40 –0.13 –43.18 7.05 
Pose 01 –40.66 –8.59 –27.85 –4.22 –42.45 7.08 
Pose 15 –32.13 –8.57 –22.08 –1.47 –41.48 7.12 
Pose 02 –39.17 –11.19 –27.96 –0.03 –40.24 7.34 
Pose 07 –30.73 –3.48 –27.15 –0.10 –44.33 7.35 
Pose 04 –39.66 –10.27 –26.01 –3.39 –41.85 7.44 
Pose 03 –41.20 –7.73 –26.69 –6.77 –38.29 7.45 

Protein-Ligand total: total protein–ligand interaction energy (Protein-Ligand total = Ele + vdW + 
Hbond), Ele: electrostatic energy vdW: van der Waals energy, Hbond: hydrogen bond energy, -
HEidi: score calculated from the hydrophobic effect function (taken with negative sign in order to 
be coherent with energies, where negative numbers mean more favorable energies), RMSD: root 
mean square distance. 
The table is sorted by increasing RMSD. 
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Table 15. Docking results for LXR-GW3965 complex 

Pose Protein-Ligand 
total (kcal/mol) 

Ele 
(kcal/mol) 

vdW 
(kcal/mol) 

Hbond 
(kcal/mol) –HEidi RMSD 

(Å) 

X-Ray –86.05 –30.04 –55.25 –0.75 –173.79 0.00 
Pose 16 –70.83 –31.25 –38.22 –1.36 –104.14 3.77 
Pose 15 –70.79 –33.38 –36.73 –0.68 –101.38 3.78 
Pose 12 –69.84 –29.72 –38.76 –1.36 –116.38 3.83 
Pose 19 –30.68 –7.15 –23.53 0.00 –129.50 4.48 
Pose 14 –49.61 –21.51 –28.09 –0.02 –112.02 4.95 
Pose 13 –41.18 –18.26 –22.80 –0.12 –109.58 5.02 
Pose 17 –66.59 –25.15 –41.17 –0.27 –121.67 5.28 
Pose 25 –48.35 –20.99 –27.24 –0.12 –127.69 5.74 
Pose 05 –59.60 –21.29 –36.61 –1.70 –155.11 6.05 
Pose 04 –52.53 –19.52 –32.97 –0.04 –156.53 6.05 
Pose 18 –62.22 –29.43 –29.99 –2.80 –157.66 6.17 
Pose 07 –41.02 –9.69 –31.33 0.00 –158.85 7.11 
Pose 06 –42.60 –7.43 –35.17 0.00 –155.22 7.31 
Pose 02 –35.75 –7.67 –28.07 0.00 –167.75 7.49 
Pose 01 –47.58 –8.36 –39.22 0.00 –164.69 7.59 
Pose 08 –37.84 –16.87 –20.97 0.00 –141.73 7.59 
Pose 11 –26.83 –6.11 –20.72 0.00 –140.19 7.64 
Pose 24 –48.38 –9.96 –38.39 –0.02 –135.34 7.74 
Pose 09 –31.97 –3.44 –28.52 0.00 –130.53 7.76 
Pose 03 –39.34 –3.94 –35.40 0.00 –136.20 8.17 
Pose 22 –37.71 –6.69 –31.02 0.00 –139.39 8.26 
Pose 23 –36.75 –6.70 –30.06 0.00 –139.72 8.28 
Pose 21 –37.35 –2.53 –34.82 0.00 –140.22 8.29 
Pose 10 –36.27 –11.95 –24.32 0.00 –142.10 8.40 
Pose 20 –47.58 –9.04 –38.37 –0.17 –156.29 8.50 

Protein-Ligand total: total protein–ligand interaction energy (Protein-Ligand total = Ele + vdW + 
Hbond), Ele: electrostatic energy vdW: van der Waals energy, Hbond: hydrogen bond energy, -
HEidi: score calculated from the hydrophobic effect function (taken with negative sign in order to 
be coherent with energies, where negative numbers mean more favorable energies), RMSD: root 
mean square distance. 
The table is sorted by increasing RMSD. 
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If we further assume that docking poses that are close to the pose identified with 
the crystal structure (low RMSD) should be high in the rank given by the docking 
function, and docking poses that are away from the crystal (high RMSD) should 
get a lower rank, then to evaluate a docking function we could calculate a 
correlation between the two ranks (obtained one from the docking function and 
one from RMSD). 
Spearman’s rank correlation coefficient261 is a non-parametric measure of 
correlation – that is, it assesses how well an arbitrary monotonic function could 
describe the relationship between two variables, without making any 
assumptions about the frequency distribution of the variables. In practice, the raw 
scores are converted to ranks, and the difference ri between the ranks of each 
observation on the two variables are calculated. If there are no tied ranks, then 
the Spearman’s rank correlation coefficient is calculated as: 
 

! 
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i
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n(n
2 #1)                (7) 

where ri is the difference between the ranks, and n the number of objects (the 26 poses = 
25 from the docking plus the crystal structure). 

 
A series of possible linear combinations of the equation (6) have been calculated 
on the docking poses and compared with the original Yeti function.99 Results for 
GR are reported in Table 16. 
Different combinations of coefficients lead to scoring functions that gave often 
similar, and sometimes higher, correlation coefficients, compared to the original 
Yeti scoring function (ρ = 0.776). In the automated docking, it is possible with Yeti 
to give different weights to the different energetic contributions. In this study 
however, all the weights were set to the default value of 1.0, and a different 
weighting system was considered only in this final step. Analyzing the 
combinations that lead to higher correlation coefficients, it would seem a good 
idea, at least in the studied complex, to underweight van der Waals energy, that 
is always the highest contribution to the total energy (for the GR, on the average 
62% of the overall energy), while the electrostatic contribution should be only 
slightly underweighted (on the average it represents the 28% of the total energy), 
and it is often advantageous to overweight the hydrogen bond term, that in this 
case is responsible only for 10% of the total energy but is often an important 
contribution to identify correct binding poses. The HEidi, as it is derived by an 
empirical scoring function, has to be largely downscaled to reach the values 
comparable to the other terms (with a scaling of 0.3 it reaches values 
comparable, on the average, to the electrostatic energy). 
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Table 16. Different possible linear combinations for the function SDF reported in (5) 
GR a b c d ρ 

Yeti 1 1 1 0 0.776 
SDF01 1 0.8 2 –0.4 0.780 
SDF02 1 0.8 2 –0.2 0.792 
SDF03 1 0.8 2 –0.1 0.787 
SDF04 1 0.8 1.5 –0.4 0.772 
SDF05 1 0.8 1.5 –0.2 0.782 
SDF06 1 0.8 1.5 –0.1 0.782 
SDF07 1 0.8 1 –0.4 0.790 
SDF08 1 0.8 1 –0.2 0.783 
SDF09 1 0.8 1 –0.1 0.773 
SDF10 1 0.4 2 –0.4 0.793 
SDF11 1 0.4 2 –0.2 0.797 
SDF12 1 0.4 2 –0.1 0.797 
SDF13 1 0.4 1.5 –0.4 0.796 
SDF14 1 0.4 1.5 –0.2 0.796 
SDF15 1 0.4 1.5 –0.1 0.796 
SDF16 1 0.4 1 –0.4 0.804 
SDF17 1 0.4 1 –0.2 0.798 
SDF18 1 0.4 1 –0.1 0.800 
SDF19 1 0.3 2 –0.4 0.793 
SDF20 1 0.3 2 –0.2 0.796 
SDF21 1 0.3 2 –0.1 0.802 
SDF22 1 0.3 1.5 –0.4 0.801 
SDF23 1 0.3 1.5 –0.2 0.809 
SDF24 1 0.3 1.5 –0.1 0.802 
SDF25 1 0.3 1 –0.4 0.796 
SDF26 1 0.3 1 –0.2 0.798 
SDF27 1 0.3 1 –0.1 0.799 
SDF28 0.8 0.8 2 –0.4 0.783 
SDF29 0.8 0.8 2 –0.2 0.790 
SDF30 0.8 0.8 2 –0.1 0.787 
SDF31 0.8 0.8 1.5 –0.4 0.776 
SDF32 0.8 0.8 1.5 –0.2 0.783 
SDF33 0.8 0.8 1.5 –0.1 0.783 
SDF34 0.8 0.8 1 –0.4 0.778 
SDF35 0.8 0.8 1 –0.2 0.772 
SDF36 0.8 0.8 1 –0.1 0.776 
SDF37 0.8 0.4 2 –0.4 0.789 
SDF38 0.8 0.4 2 –0.2 0.792 
SDF39 0.8 0.4 2 –0.1 0.792 
SDF40 0.8 0.4 1.5 –0.4 0.784 
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Table 16. Continued from previous page 
GR a b c d ρ 

SDF41 0.8 0.4 1.5 –0.2 0.794 
SDF42 0.8 0.4 1.5 –0.1 0.788 
SDF43 0.8 0.4 1 –0.4 0.801 
SDF44 0.8 0.4 1 –0.2 0.796 
SDF45 0.8 0.4 1 –0.1 0.800 
SDF46 0.8 0.3 2 –0.4 0.796 
SDF47 0.8 0.3 2 –0.2 0.796 
SDF48 0.8 0.3 2 –0.1 0.792 
SDF49 0.8 0.3 1.5 –0.4 0.794 
SDF50 0.8 0.3 1.5 –0.2 0.797 
SDF51 0.8 0.3 1.5 –0.1 0.797 
SDF52 0.8 0.3 1 –0.4 0.798 
SDF53 0.8 0.3 1 –0.2 0.798 
SDF54 0.8 0.3 1 –0.1 0.802 
SDF55 0.5 0.8 2 –0.4 0.778 
SDF56 0.5 0.8 2 –0.2 0.786 
SDF57 0.5 0.8 2 –0.1 0.787 
SDF58 0.5 0.8 1.5 –0.4 0.774 
SDF59 0.5 0.8 1.5 –0.2 0.782 
SDF60 0.5 0.8 1.5 –0.1 0.785 
SDF61 0.5 0.8 1 –0.4 0.781 
SDF62 0.5 0.8 1 –0.2 0.764 
SDF63 0.5 0.8 1 –0.1 0.771 
SDF64 0.5 0.4 2 –0.4 0.784 
SDF65 0.5 0.4 2 –0.2 0.783 
SDF66 0.5 0.4 2 –0.1 0.763 
SDF67 0.5 0.4 1.5 –0.4 0.776 
SDF68 0.5 0.4 1.5 –0.2 0.785 
SDF69 0.5 0.4 1.5 –0.1 0.785 
SDF70 0.5 0.4 1 –0.4 0.786 
SDF71 0.5 0.4 1 –0.2 0.780 
SDF72 0.5 0.4 1 –0.1 0.792 
SDF73 0.5 0.3 2 –0.4 0.785 
SDF74 0.5 0.3 2 –0.2 0.772 
SDF75 0.5 0.3 2 –0.1 0.763 
SDF76 0.5 0.3 1.5 –0.4 0.785 
SDF77 0.5 0.3 1.5 –0.2 0.786 
SDF78 0.5 0.3 1.5 –0.1 0.783 
SDF79 0.5 0.3 1 –0.4 0.794 
SDF80 0.5 0.3 1 –0.2 0.780 
SDF81 0.5 0.3 1 –0.1 0.787 
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The poses obtained by the automated docking of dexamethasone to the GR and 
of GW3965 to the LXR were specifically evaluated by the following equation 
(coefficients of SDF21), chosen as a valuable function to score docking poses in 
the studied systems: 

DSF21 = 1.0 • EEle + 0.3 • EvdW + 2 • EHbond – 0.1 • HEidi        (8) 
where EEle: electrostatic energy, EvdW: van der Waals energy, EHbond: hydrogen bond 
energy, HEidi: score calculated from the hydrophobic effect function. 

The new scoring function DSF21 yelds a ranking of the poses that has a higher 
correlation with the RMSD, when compared to the original Yeti scoring function 
(the correlation coefficients are reported in Table 17). However, the combination 
of coefficients that leads to DSF21 might be not appropriate for other systems, 
with different distribution of energetic contributions (e.g. when the electrostatic 
contributions are more relevant than the van der Waals contributions). To assess 
the applicability of DSF21 further studies are required. 
 
Table 17. Correlation coefficient of the Yeti function and of the new function DSF21 with RMSD, 

for GR and LXR complexes 

 Yeti ρ  DSF21 ρ  

GR 0.776 0.802 

LXR 0.646 0.681 

 
The total energies and the contributions obtained from the new scoring function 
DSF21 are listed for the GR in Table 18 and for the LXR in Table 19, for all the 
poses from the automated docking and for the crystal structure. To low values of 
RMSD correspond in general low (favorable) values of DSF21 and of HEidi. This 
is desirable, because poses that are very close to the crystal structure are 
expected to have, at least in principle, good protein–ligand energies and good 
hydrophobic interactions. 
Figures 50 and 52 show some of the good hydrophobic matches that contribute 
to HEidi, as it is calculated for the crystal structures of GR bound to 
dexamethasone and LXR bound to GW3965. Both ligands can engage in 
numerous hydrophobic interactions, where, according to HEidi, hydrogen atoms 
play a major role. A visual representation of hydrophobic interactions is also 
possible through Maestro (from the Schrodinger Suite), and it is shown in Figures 
51 and 53. Differently from HEidi, with Maestro the main actors are carbon atoms 
(and therefore carbon–carbon interactions), and don’t involve some atom types 
(like nitrogen of the protein backbone) that are instead taken into account with 
HEidi. Moreover the calculated interactions are slightly longer ranged. With such 
exceptions, a similar pattern of hydrophobic interactions is found in both 
programs, for both receptors.  
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Table 18. The new scores and energetic contributions obtained by DSF21 on the GR–
dexamethasone complex 

Pose a•Ele b•vdW c•Hbond –d•HEidi DSF21 RMSD RRMSD RDSF21 

X–Ray –15.99 –10.05 –17.14 –4.85 –48.02 0 1 3 

Pose 20 –17.29 –8.96 –19.06 –5.09 –50.41 0.81 2 2 

Pose 14 –14.87 –9.39 –8.00 –4.92 –37.18 0.85 3 12 

Pose 12 –17.62 –9.12 –23.80 –4.78 –55.32 0.86 4 1 

Pose 09 –13.63 –9.71 –8.59 –5.16 –37.09 0.9 5 13 

Pose 10 –16.45 –9.25 –8.20 –4.97 –38.87 0.94 6 10 

Pose 13 –15.42 –9.29 –11.75 –4.92 –41.38 0.97 7 6 

Pose 22 –15.73 –9.10 –10.73 –4.93 –40.50 0.97 9 7 

Pose 24 –15.12 –9.31 –10.72 –4.93 –40.08 0.97 8 8 

Pose 08 –16.57 –9.05 –8.72 –4.99 –39.33 1.01 10 9 

Pose 11 –15.86 –9.24 –11.83 –4.69 –41.62 1.01 11 5 

Pose 23 –12.71 –9.57 –8.96 –4.86 –36.10 1.07 12 14 

Pose 19 –13.42 –10.03 –16.78 –4.81 –45.05 1.11 13 4 

Pose 06 –16.06 –9.65 –7.76 –5.39 –38.86 1.12 14 11 

Pose 25 –8.37 –7.56 –0.99 –4.19 –21.11 3.15 15 25 

Pose 17 –15.53 –5.35 –5.79 –4.33 –31.00 3.88 16 18 

Pose 05 –12.42 –7.13 –8.15 –4.14 –31.84 6.98 17 17 

Pose 21 –9.36 –7.71 –13.82 –4.25 –35.14 6.99 18 15 

Pose 18 –6.76 –8.05 –4.93 –4.36 –24.10 7.02 19 21 

Pose 16 –9.78 –7.62 –0.25 –4.32 –21.96 7.05 20 24 

Pose 01 –8.59 –8.35 –8.45 –4.25 –29.63 7.08 21 19 

Pose 15 –8.57 –6.62 –2.95 –4.15 –22.29 7.12 22 23 

Pose 02 –11.19 –8.39 –0.05 –4.02 –23.65 7.34 23 22 

Pose 07 –3.48 –8.15 –0.19 –4.43 –16.25 7.35 24 26 

Pose 04 –10.27 –7.80 –6.77 –4.19 –29.03 7.44 25 20 

Pose 03 –7.73 –8.01 –13.55 –3.83 –33.12 7.45 26 16 

DSF21: new docking scoring function (DSF21 = a•Ele +b•vdW +c•Hbond +d•HEidi where a=1; 
b=0.3; c=2; d=–0.1), Ele: electrostatic energy vdW: van der Waals energy, Hbond: hydrogen 
bond energy, HEidi: score calculated from the hydrophobic effect function, RMSD: root mean 
square distance, RRMSD: rank according RMSD, RDSF21: rank according to DSF21. 
The table is sorted by increasing RMSD. 
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Figure 50. GR bound to dexamethasone. In sticks are shown dexamethasone (thick) and some 

amino–acid residues (thin) in the binding pocket that contribute to HEidi. The black 
dotted lines connect the pair of protein–ligand atoms that give a good hydrophobic 
match. For clarity, only some of the protein–ligand matches are shown. 

 

 
Figure 51. GR bound to dexamethasone: with green dotted lines are represented the hydro-

phobic interactions as identified by Maestro (in the protein, only polar hydrogen 
atoms are displayed). 
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Table 19. The new scores and energetic contributions obtained by DSF21 on the LXR–GW3965 
complex 

Pose a•Ele b•vdW c•Hbond d•HEidi DSF21 RMSD RRMSD RDSF21 

X–Ray  –30.04 –16.58 –1.51 –17.38 –65.51 0.00 1 1 

Pose 16 –31.25 –11.47 –2.71 –10.41 –55.85 3.77 2 4 

Pose 15 –33.38 –11.02 –1.36 –10.14 –55.89 3.78 3 3 

Pose 12 –29.72 –11.63 –2.73 –11.64 –55.71 3.83 4 5 

Pose 19 –7.15 –7.06 0.00 –12.95 –27.16 4.48 5 23 

Pose 14 –21.51 –8.43 –0.05 –11.20 –41.18 4.95 6 10 

Pose 13 –18.26 –6.84 –0.24 –10.96 –36.30 5.02 7 14 

Pose 17 –25.15 –12.35 –0.53 –12.17 –50.20 5.28 8 7 

Pose 25 –20.99 –8.17 –0.24 –12.77 –42.17 5.74 9 9 

Pose 05 –21.29 –10.98 –3.39 –15.51 –51.18 6.05 10 6 

Pose 04 –19.52 –9.89 –0.08 –15.65 –45.14 6.05 11 8 

Pose 18 –29.43 –9.00 –5.59 –15.77 –59.79 6.17 12 2 

Pose 07 –9.69 –9.40 0.00 –15.89 –34.97 7.11 13 16 

Pose 06 –7.43 –10.55 0.00 –15.52 –33.51 7.31 14 17 

Pose 02 –7.67 –8.42 0.00 –16.77 –32.87 7.49 15 19 

Pose 01 –8.36 –11.76 0.00 –16.47 –36.60 7.59 16 12 

Pose 08 –16.87 –6.29 0.00 –14.17 –37.33 7.59 17 11 

Pose 11 –6.11 –6.22 0.00 –14.02 –26.34 7.64 18 25 

Pose 24 –9.96 –11.52 –0.04 –13.53 –35.06 7.74 19 15 

Pose 09 –3.44 –8.56 0.00 –13.05 –25.05 7.76 20 26 

Pose 03 –3.94 –10.62 0.00 –13.62 –28.18 8.17 21 22 

Pose 22 –6.69 –9.31 0.00 –13.94 –29.93 8.26 22 20 

Pose 23 –6.70 –9.02 0.00 –13.97 –29.69 8.28 23 21 

Pose 21 –2.53 –10.45 0.00 –14.02 –26.99 8.29 24 24 

Pose 10 –11.95 –7.30 0.00 –14.21 –33.46 8.40 25 18 

Pose 20 –9.05 –11.51 –0.34 –15.63 –36.53 8.50 26 13 

DSF21: new docking scoring function (DSF21 = a•Ele +b•vdW +c•Hbond +d•HEidi where a=1; 
b=0.3; c=2; d=–0.1), Ele: electrostatic energy vdW: van der Waals energy, Hbond: hydrogen 
bond energy, HEidi: score calculated from the hydrophobic effect function, RMSD: root mean 
square distance, RRMSD: rank according RMSD, RDSF21: rank according to DSF21. 
The table is sorted by increasing RMSD. 
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Figure 52. LXR bound to GW4965. In sticks are shown GW4965 (thick) and some amino–acid 

residues (thin) in the binding pocket that contribute to HEidi. The black dotted lines 
connect the pair of protein–ligand atoms that give a good hydrophobic match. For 
clarity, only some of the protein–ligand matches are shown. 

 
 

 
Figure 53. LXR bound to GW4965: with green dotted lines are represented the hydrophobic 

interactions as identified by Maestro (in the protein, only polar hydrogen atoms are 
displayed). 
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4.3.4 Applicability of the Hydrophobic Effect Function 
 
A new empirical function has been proposed to evaluate the hydrophobic effect 
in protein–ligand complexes and implemented in a small computer program. 
Such function is based on the assignment of a contribution for the favorable or 
unfavorable hydrophobic matches between atoms of the ligand and atoms of the 
protein, in a specific conformation. All the contributions are then summed up to 
give a hydrophobicity score (HEidi). 
HEidi has been added to the electrostatic, van der Waals and hydrogen bond 
energies (as calculated with Yeti) to give a scoring function used to evaluate the 
poses obtained with automated docking. 
The advantage of HEidi, when combined to a scoring function including 
electrostatic, van der Waals and hydrogen bond contributions, consists in the 
possibility of taking into account, during the docking of compounds, the 
hydrophobic effect that, especially for lipophilic binding pockets, may be relevant 
in the identification of feasible binding modes. With appropriate weights for the 
energetic contributions, it was possible to derive a scoring function (DSF21) that 
led to a better correlation with RMSD, when compared to the default Yeti scoring 
function. 
However, HEidi was applied in the analysis of the docking results to only two real 
systems (GR bound to dexamethasone and LXR bound to GW3965). To assess 
the applicability of the method, many different complexes should be considered 
and their poses evaluated by HEidi. A statistical analysis could be then 
performed to assess if the use of HEidi ameliorates the performance in the 
identification of the correct binding mode or if it improves the enrichment factor. 
For example, having at disposal many complexes it would be possible to check 
how often the pose from the crystal structure is associated to the best score, or 
how often it is within the first three top ranked poses. Moreover, a rank 
correlation of the docking scoring function with RMSD (as done in this thesis) is 
only an indicative value of performance, being sometimes high values of RMSD 
associated with feasible binding modes (for example for compounds 
characterized by structural symmetries). 
Possible improvements could be achieved with the incorporation of HEidi in the 
docking routine of Yeti, to drive the docking algorithm, instead of being used only 
in the final evaluation of the poses. In this case, when integrated in Yeti 
automated docking, the program should be able to deal with structures with 
implicit apolar hydrogen atoms (as it is required by Yeti), rather then, as it is now 
required in HEidi, with explicit hydrogens. This might be a problem of non–trivial 
solution, because on one hand it would be computationally quite demanding the 
hydrogen–addition at each step of the docking routine, and on the other hand, 
hydrogen atoms and short distances are relevant in HEidi. 
 



                                                                                                                                                                                                                          
    

107 

 
5 Conclusions and Outlook 

 
A mixed-modeling approach was employed to establish a mQSAR model and to 
quantify the binding affinity of a series of 110 glucocorticoids and 52 liver X 
receptor ligands, respectively.  
The binding mode of the investigated compounds was identified through flexible 
docking, using both automated and manual protocols. The simulation of local 
induced fit was achieved by allowing amino-acid side chain flexibility, and proved 
to be a prerequisite to dock large ligands. The docking to a rigid structure of the 
glucocorticoid receptor of steroidal glucocorticoids with bulky substituents at the 
17β-position did not yield the correct binding mode (i.e. desoxymethasone 21-
cinnamate), without a rearrangement of amino-acid side chains in the binding 
pocket. Molecular-dynamics simulations, performed for a representative of each 
compounds class, allowed a dynamical characterization of the binding mode. The 
interactions between the receptors (both the glucocorticoid and the liver X 
receptors) and their ligands are characterized by numerous hydrophobic 
interactions. Hydrophilic interactions and hydrogen bonds are responsible for 
specific recognition of the ligands.  
Quantitative structure-activity relationships (QSARs), aimed at the quantification 
of the binding affinity towards the glucocorticoid and the liver X receptors, were 
derived on the basis of the alignments obtained from the docking. For the 
glucocorticoid and liver X receptors, a good correlation was obtained between 
the experimental and the calculated binding affinities, for both the training set and 
the test set compounds. Special attention was paid to the model validation: the 
predictivity was further evaluated by external sets of compounds. For the 
glucocorticoid receptor, the prediction for a set of eight additional glucocorticoids 
yelded a good agreement with the experimental binding affinities. The QSAR 
model was used for simulating and quantifying the binding of 24 psychotropic 
drugs to the GR. Although their experimental binding affinity is not available in 
literature, there is evidence that some of the compounds analyzed in this study 
trigger adverse effects via the GR (Chapter 4.1.6). For the liver X receptor, the 
model was used to predict the binding affinity of two compounds that were not 
included in the model development, because of their weak activity. In this case 
there was only a moderate agreement between predicted and experimental 
value. Robustness of the models (for the glucocorticoid and liver X receptors) 
was verified by the consensus with a second QSAR methodology (Raptor), which 
features a fundamentally different scoring function, and sensitivity was tested 
with a series of scramble tests. 
The results suggest that the models can be applied to predict the binding affinity 
of new drug candidates, in order to design new ligands active towards the 
glucocorticoid or liver X receptors, or of existing compounds, in order to check 
out possible interactions. Induced fit, a key mechanism for ligand binding, was 
explicitly simulated in the docking phase and accounted for in the QSAR models. 
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Limitations of the models involve the applicability domain: the predictions for 
compounds that exceed the physico-chemical, structural or biological space, 
knowledge or information on which the training set of the model has been 
developed, are extrapolated. In the QSAR towards the glucocorticoid receptor, 
the activity of charged compounds seem to be overestimated as the model was 
trained using predominantly neutral species. The compounds’ size is another 
limitation, because for smaller ligands the automated docking protocol that is 
used in the prediction of new compounds might not sample enough poses while 
for large molecules leading to a significant induced-fit, the underlying protocol is 
unable to simulate and quantify such large conformational changes at the pro-
tein.  
Limitations concerning the applicability domain can be reduced by the selection 
of a wider training set, if activity data were available from literature, including a 
broader diversity of the compounds. The availability of high quality experimental 
data is in this case the limiting factor for the choice of a wider dataset. In my 
opinion, an evaluation of the similarity between the compounds of the training set 
and the new compounds to be tested would be useful to discriminate between 
interpolated and extrapolated data. The in silico prediction of the toxic potential 
through the VirtualToxLabTM will become more reliable with the inclusion of a 
higher number of receptor models, allowing a wider spectrum of adverse effect 
mechanisms. The application of manual docking is not adequate for the 
screening of a large number of compounds, where automated procedures are 
necessary. Improvements of the automated docking process could be obtained 
by the consideration of neglected aspects, such as the role of entropy, solvent-
stripping or the hydrophobic effect in protein-ligand binding. The development 
and implementation in a small program of an empirical function (HEidi: Hydro-
phobic Effect in Drug Interactions) aiming at the quantification of the hydrophobic 
effect for scoring protein-ligand binding energies, was an attempt in this direction. 
Encouraging results were obtained in the evaluation of the docking poses of 
ligands binding to the glucocorticoid and liver X receptors, when a linear 
combination of electrostatic, van der Waals, hydrogen bond and HEidi 
contributions was used as a docking scoring function. A more extensive 
evaluation of HEidi is still necessary. The application to many different protein-
ligand systems is mandatory to evaluate whether HEidi improves the ability to 
find the bioactive conformation. Possible improvements could be achieved by 
incorporating HEidi in the docking routine, to drive the docking algorithm, instead 
of being used only in the final evaluation of the poses. In this case, the function 
should be modified in order to deal with structures characterized by implicit 
apolar hydrogen atoms. 
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6 Appendix A: Chemical Structures, pKi Values and 
Scramble Tests of Glucocorticoid Ligands 

 
A. Chemical Structures of Glucocorticoid Ligands 
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2. Quinoline derivatives  (B01–B30) 
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3. Fluorophenyl indazole derivatives (C01–C55) 
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B. Comparison of Experimental and Calculated pKi Values 
 

Training ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 
A01 8.53 7.80 0.72 8.63 -0.10 
A03 8.57 8.43 0.14 8.36 0.21 
A04 7.69 7.94 -0.25 7.26 0.42 
A05 8.40 8.61 -0.21 8.31 0.09 
A06 8.05 8.36 -0.31 8.11 -0.06 
A07 8.36 7.94 0.42 8.28 0.08 
A08 8.23 8.86 -0.63 8.22 0.00 
A10 8.71 9.03 -0.32 8.62 0.09 
A11 10.33 9.78 0.55 10.46 -0.14 
A13 7.76 7.93 -0.17 7.90 -0.14 
A15 8.11 7.77 0.34 8.54 -0.43 
A16 9.30 9.24 0.06 9.31 -0.01 
A17 8.17 7.89 0.27 8.40 -0.24 
B01 8.70 8.85 -0.15 8.72 -0.02 
B03 8.04 8.27 -0.22 8.24 -0.20 
B04 7.90 8.00 -0.09 7.51 0.39 
B06 8.35 8.17 0.18 8.83 -0.47 
B07 7.28 7.44 -0.16 7.57 -0.29 
B09 6.59 6.81 -0.21 7.12 -0.53 
B10 7.51 7.68 -0.17 7.14 0.37 
B15 8.32 8.17 0.15 8.70 -0.38 
B16 8.73 8.27 0.46 8.29 0.44 
B17 8.40 8.18 0.21 8.84 -0.44 
B18 8.98 8.61 0.37 8.54 0.44 
B19 8.31 8.77 -0.46 8.71 -0.41 
B20 8.40 8.45 -0.05 8.60 -0.21 
B21 8.87 8.34 0.53 8.22 0.65 
B22 8.34 7.82 0.51 8.75 -0.41 
B23 6.05 6.59 -0.55 6.75 -0.71 
B24 8.04 8.37 -0.33 7.37 0.67 
B25 6.62 6.33 0.29 6.04 0.58 
B26 8.68 8.41 0.26 8.43 0.24 
B27 8.26 8.40 -0.14 8.85 -0.59 
B28 8.92 8.83 0.09 8.68 0.24 
B29 7.02 7.40 -0.38 7.46 -0.44 
B30 8.48 8.21 0.27 8.90 -0.42 
C02 8.40 8.61 -0.21 8.22 0.19 
C03 8.33 8.41 -0.08 8.55 -0.22 
C04 7.80 7.55 0.25 8.39 -0.60 
C05 8.21 8.00 0.21 8.66 -0.45 
C06 8.24 8.85 -0.61 8.52 -0.28 
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C07 8.30 8.49 -0.20 8.25 0.05 
C08 8.36 8.39 -0.03 8.31 0.05 
C09 8.91 9.02 -0.11 8.70 0.22 
C10 7.89 8.34 -0.45 8.40 -0.52 
C11 8.80 9.25 -0.46 9.40 -0.61 
C12 9.29 8.73 0.55 8.98 0.30 
C14 8.91 8.16 0.76 8.40 0.52 
C15 7.30 8.02 -0.72 7.99 -0.69 
C16 8.60 8.05 0.56 8.14 0.46 
C17 9.15 8.12 1.04 8.39 0.77 
C18 9.02 8.67 0.35 8.57 0.44 
C20 8.74 8.83 -0.09 8.88 -0.14 
C21 8.66 8.23 0.43 8.35 0.31 
C22 7.97 8.91 -0.93 8.72 -0.75 
C23 8.39 8.40 0.00 8.40 0.00 
C25 8.19 8.19 0.00 8.50 -0.31 
C26 8.45 8.54 -0.09 8.49 -0.04 
C27 8.24 8.45 -0.21 8.59 -0.35 
C28 7.85 8.02 -0.17 8.44 -0.59 
C29 9.12 8.76 0.36 8.56 0.56 
C30 8.80 8.38 0.42 8.34 0.45 
C31 8.19 8.86 -0.67 8.71 -0.52 
C32 8.27 8.67 -0.40 8.66 -0.39 
C38 7.77 7.77 0.00 7.35 0.42 
C39 8.19 8.69 -0.50 8.35 -0.16 
C40 8.27 8.44 -0.18 8.50 -0.23 
C41 7.94 7.81 0.12 8.07 -0.13 
C42 7.87 8.02 -0.15 7.65 0.22 
C43 8.34 8.44 -0.10 7.98 0.36 
C44 8.70 8.35 0.35 8.22 0.48 
C45 7.74 7.90 -0.15 8.25 -0.51 
C47 8.87 8.81 0.06 8.63 0.24 
C48 8.43 8.01 0.42 8.02 0.41 
C49 8.27 7.97 0.30 8.20 0.07 
C50 8.44 7.81 0.64 7.85 0.60 
C51 8.11 8.27 -0.16 8.26 -0.15 
C52 7.61 7.58 0.03 7.73 -0.12 
C53 7.77 8.15 -0.37 8.00 -0.23 
C54 7.50 7.67 -0.16 7.42 0.09 
C55 7.38 7.91 -0.53 7.99 -0.61 
D01 8.19 7.93 0.26 7.39 0.80 
D02 9.05 8.27 0.78 8.38 0.67 
D03 8.87 8.41 0.46 8.36 0.51 
D04 7.21 7.45 -0.25 7.95 -0.74 
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D05 6.56 6.64 -0.08 6.88 -0.32 
D07 6.04 6.57 -0.53 6.82 -0.78 
D08 5.61 6.34 -0.73 6.24 -0.63 

 
Test ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 

A02 7.50 7.03 0.46 8.76 -1.26 
A09 9.66 9.91 -0.25 9.20 0.46 
A12 7.94 7.31 0.63 7.99 -0.06 
A14 8.21 8.03 0.18 8.65 -0.44 
B02 6.68 7.42 -0.73 6.95 -0.27 
B05 8.90 8.14 0.76 8.64 0.26 
B08 5.80 6.57 -0.77 6.51 -0.71 
B11 7.60 7.73 -0.13 8.42 -0.82 
B12 8.16 8.17 -0.02 8.89 -0.74 
B13 8.35 8.27 0.09 8.86 -0.51 
B14 8.60 8.11 0.49 8.57 0.03 
C01 8.27 8.54 -0.27 8.16 0.11 
C13 8.25 8.78 -0.53 8.28 -0.03 
C19 8.57 8.82 -0.24 8.88 -0.31 
C24 8.05 8.13 -0.08 8.19 -0.14 
C33 7.33 7.74 -0.42 7.80 -0.47 
C34 7.81 8.12 -0.31 8.44 -0.63 
C35 8.37 8.36 0.01 8.79 -0.42 
C36 8.29 8.26 0.03 8.28 0.01 
C37 8.76 8.22 0.54 8.41 0.35 
C46 8.85 8.62 0.23 8.66 0.19 
D06 7.02 6.71 0.31 5.69 1.33 

 
Prediction ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 

E01 5.87 6.40 -0.53 5.83 0.04 
E02 6.97 6.65 0.33 7.32 -0.34 
E03 9.35 8.15 1.20 7.59 1.76 
E04 8.83 8.00 0.83 7.89 0.95 
E05 8.05 9.32 -1.28 8.98 -0.93 
E06 8.79 8.40 0.40 8.54 0.25 
E07 8.94 8.55 0.38 8.91 0.03 
E08 8.81 8.50 0.31 8.59 0.22 
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C. Details of the 20 Scramble Tests  
 

# Cross-validated 
r2 

(not relevant) 

Predictive r2 Mean deviation test set 
(factor in Ki) 

Maximal deviation test set 
(factor in Ki) 

1 0.390 -0.060 6.8 270 
2 0.581 -0.411 9.1 530 
3 0.664 -0.289 8.2 90 
4 0.020 -0.029 6.7 240 
5 0.554 -0.699 11 750 
6 0.044 -0.029 6.7 240 
7 0.780 -0.402 8.9 1,100 
8 0.693 -0.475 9.5 180 
9 0.676 -0.287 8.2 120 

10 0.020 -0.028 6.7 240 
11 0.621 -0.162 7.3 230 
12 0.398 -0.175 7.5 650 
13 0.660 -0.638 11 1,400 
14 0.675 -0.425 9.1 120 
15 0.266 -0.167 7.5 120 
16 0.046 -0.028 6.7 240 
17 0.071 -0.029 6.7 240 
18 0.417 -0.838 12 1,300 
19 0.622 0.375 4.3 36 
20 0.044 -0.029 6.7 240 
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7 Appendix B: Chemical Structures, pKi Values and 
Scramble Tests of Liver X Receptor Ligands 
 

A. Chemical Structures of Liver X Receptor Ligands 
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2. Heterocyclic phenylacetic–acid compounds (G01–G25) 
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B. Comparison of Experimental and Calculated pKi Values 
 

Training ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 
F01 8.21 7.77 0.44 8.26 -0.05 
F04 6.67 7.42 -0.75 7.28 -0.61 
F05 7.43 7.38 0.05 7.88 -0.45 
F07 7.71 7.73 -0.02 7.52 0.19 
F11 7.67 7.49 0.18 7.81 -0.15 
F12 7.03 6.80 0.22 7.14 -0.11 
F13 7.38 7.29 0.09 7.26 0.12 
F15 7.05 7.57 -0.53 6.91 0.14 
F16 7.72 7.97 -0.25 7.39 0.33 
F18 8.55 8.21 0.33 8.32 0.22 
F19 6.81 7.25 -0.44 6.72 0.10 
F20 8.88 8.50 0.38 8.61 0.27 
F21 7.36 7.25 0.11 7.21 0.16 
F22 7.15 7.38 -0.23 7.67 -0.52 
F23 8.24 8.03 0.21 7.78 0.47 
F24 8.66 8.24 0.42 8.16 0.51 
F26 6.86 7.79 -0.93 7.37 -0.51 
F27 7.66 7.71 -0.05 7.56 0.10 
F28 8.06 7.73 0.33 7.67 0.39 
F29 7.92 7.68 0.24 7.74 0.18 
G01 9.36 9.22 0.14 9.50 -0.14 
G02 9.66 9.65 0.01 9.83 -0.17 
G04 5.48 5.62 -0.14 5.23 0.25 
G06 5.96 5.87 0.09 5.37 0.59 
G07 6.31 6.57 -0.26 5.99 0.32 
G08 6.04 6.39 -0.34 6.31 -0.27 
G10 7.40 6.94 0.47 7.21 0.20 
G12 7.36 7.24 0.12 7.49 -0.13 
G14 7.66 7.19 0.47 7.26 0.40 
G15 6.94 7.39 -0.46 7.14 -0.21 
G16 7.38 7.31 0.07 7.66 -0.28 
G17 8.36 7.73 0.63 8.09 0.27 
G18 7.55 7.51 0.04 7.57 -0.02 
G19 7.04 7.56 -0.52 7.43 -0.40 
G20 7.40 7.39 0.02 7.28 0.13 
G21 6.96 7.24 -0.27 7.42 -0.46 
G22 7.09 6.83 0.26 7.07 0.02 
G23 7.20 7.40 -0.21 7.20 0.00 
G24 7.58 7.42 0.16 7.50 0.08 
G25 6.66 6.74 -0.09 6.62 0.04 
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Test ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 
F02 7.85 7.65 0.20 7.85 -0.01 
F03 7.66 7.94 -0.28 7.73 -0.07 
F06 8.26 7.97 0.29 7.65 0.61 
F08 7.51 7.91 -0.39 7.87 -0.36 
F14 8.46 8.17 0.28 7.72 0.74 
F17 7.12 7.65 -0.54 7.24 -0.12 
F25 8.40 7.77 0.64 8.64 -0.24 
G03 6.20 6.42 -0.22 6.06 0.14 
G05 6.07 5.82 0.26 5.09 0.99 
G09 7.38 7.44 -0.06 6.67 0.71 
G11 7.17 7.14 0.03 7.30 -0.14 
G13 7.43 6.84 0.59 6.61 0.82 

 
Prediction ligand Experiment Quasar: calc Quasar: res. Raptor: calc. Raptor: res. 

F09 < 5.00 7.51 - 8.14 - 
F10 < 5.00 7.87 - 8.31 - 
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C. Details of the 10 Scramble Tests  
 

# Cross-validated 
r2 

(not relevant) 

Predictive r2 Mean deviation test set 
(factor in Ki) 

Maximal deviation test set 
(factor in Ki) 

1 0.082 0.001 4.4 23.3 
2 0.128 0.021 4.1 26.4 
3 0.127 0.095 3.6 18.2 
4 0.092 -0.349 6.0 24.9 
5 0.150 0.328 2.9 16.2 
6 0.247 0.437 2.3 11.5 
7 0.354 -0.154 4.9 13.4 
8 0.141 -0.395 6.2 24.0 
9 0.271 0.150 3.5 14.7 

10 0.082 0.045 4.2 21.0 
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8 Appendix C: List of Van der Waals Radii 
 

Van der Waals radius [Å] Equivalent atom types 
1.375 Hydrogen bound to carbon 
1.000 Any other hydrogen atom 
1.800 Carbon sp3 
1.850 Carbon sp2  
1.875 Carbon sp 
1.850 Nitrogen sp3 
1.750 Nitrogen sp2 
1.725 Nitrogen sp 
1.650 Oxygen sp3 
1.600 Oxygen sp2 
1.550 Fluorine atom 
2.100 Phosphorus 
2.000 Sulfur 
1.950 Chlorine  
2.150 Bromine 
2.350 Iodine 
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