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1 Introduction

In this thesis experiments are presented which belong to the field of meso-
scopic physics which is situated at the border between the macroscopic
world with the laws of classical physics and the microscopic world where
quantum mechanics rules. In quantum mechanics the properties of a phys-
ical system are described by a complex wave function. The length scale on
which its phase is defined is called the coherence length Lφ which is a good
measure in order to define the border mentioned above. Even though this
description would also fit to optical measurement configurations with very
large Lφ’s, the notion mesoscopic physics is in general used for a sub-field of
solid state physics dealing with small devices in the micron and nanometer
range.

Mesoscopic physics is strongly related to the technological development
of processing techniques which allows the controlled design of structures
smaller than or in the range of the coherence length. This gives an addi-
tional possibility to study quantum mechanics by having a wider control
over the parameters of the system. For instance the separation of the energy
levels of a quantum dot can be controlled by varying its size. The base mate-
rial used in this thesis are two-dimensional electron gases (2DEG) which are
conducting planes that establish on the sharp interface between two semi-
conductors with different band gap. Applying a perpendicular magnetic
field, the electron transport is governed by one-dimensional channels along
the edge of the border. This 1D-channels can be considered as electron
beams in a solid state environment. A description of sample preparation
techniques is given in chapter 3.

Electronic transport measurements are an often used tool for the charac-
terization of mesoscopic devices. Applying a voltage V and measuring the
mean current 〈I〉 gives the mean transmission through the device and a
first information about its electronic structure. The fluctuations of the cur-
rent around its mean value ∆I(t) = I(t)− 〈I〉 provide further information



2 1 Introduction

as the quantization of the charge. They are characterized by the variance
〈∆I2〉 = 〈I2〉 − 〈I〉2, which is called noise. In addition, in multi-terminal
devices, the sign of the cross correlation of fluctuations between different
terminals, 〈∆I1∆I2〉, can provide additional information as for instance the
particle statistics. The basics of electron transport in mesoscopic systems
are described in chapter 2.

In phase coherent systems, interference pattern develop. Single particle or
amplitude interference arises from a superposition of single-particle pro-
cesses and can be seen in the mean current 〈I〉 which is a function of the
phase difference between the individual processes. It is also possible to
probe the interference capability by two-particle or intensity interference.
This is a consequence of a superposition of indistinguishable two-particle
processes and appears in the cross correlation 〈∆I1∆I2〉 of the currents be-
tween two detectors and is as well a function of the phase difference between
the two-particle processes. Textbook experiments concerning interference
are mostly provided by the field of optics. An example for amplitude inter-
ference is a double slit experiment where the light passing the two slits is
superposed and gives rise to an interference pattern on the screen behind.
The first intensity interference experiments have been carried out by Han-
bury Brown and Twiss in 1956 [1, 2] where they examined thermal light
sources. In addition to an interference pattern they measured positive cor-
relations, which is often labeled as photon bunching and was the starting
point of the field of quantum optics [3–5]. It is interesting to compare such
experiments with similar ones carried out with electrons. Because electrons
interact much more with their surrounding environment, they loose their
phase coherence much faster and therefore the length scales of such ex-
periments are much smaller. However, the technical progress allows the
production of such small structures, leading to realizations of electronic
equivalents [6–9] with negative sign of the cross correlation (electron anti-
bunching). A detailed discussion is given in chapter 4.

In chapter 5 the experiments of Henny et al. [6] and Oberholzer et al.
[8],which used edge states as electron beams, are extended. Inspired by a
proposal of Texier and Büttiker [10], which itself follows from a discussion
of Refs. [6, 8], the impact of equilibration of current and current fluctuations
between such edge states due to inelastic scattering is investigated. A beam
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splitter experiment is presented where for the first time positive correlations
have been measured in a normal-conducting Fermionic environment [11].

In the mentioned electron anti-bunching experiments [6–9] negative cross
correlation have been shown but no interference pattern because the phase
difference could not be changed in these experiments. In 2004, Samuelsson
et al. [12] proposed a realization of a two-electron interferometer using again
edge states as electron beams. This proposal was inspired by the electronic
Mach-Zehnder interferometer reported by Ji et al. a year before [13]. While
for an electronic Mach-Zehnder interferometer interference effects are seen
in the conductance, for the two-electron interferometer they only show up in
intensity correlations. Compared to conductance measurements, correlation
measurements are much more complex. The signal is much smaller which
leads to time consuming averaging processes. In order to produce such a
two-source electron interferometer the same technical challenges have to be
overcome as for a single-particle Mach-Zehnder interferometer. These are
e. g. the small working Ohmic contacts in the middle of the sample or the
free-standing bridges. Hence, in chapter 6 of this thesis a Mach-Zehnder
interferometer has been produced and characterized in a first step in order
to realize a two-source electron interferometer in a second step. Compared
to other implementations of electronic Mach-Zehnder interferometers [13–
16] the visibility has been investigated for a broad range of transmission
values revealing an unexpected DC bias dependence.

Electronic Mach-Zehnder interferometer are very sensitive to a change of
the phase difference between the two interferometer arms. Hence, as soon as
they are understood good enough, they could be nice phase sensor devices
to probe decoherence effects.





2 Electronic Transport in Mesoscopic Systems

2.1 Two-dimensional Electron Gas in a
GaAs/AlGaAs-heterostructure

The starting wafer material for all samples in this thesis is a conventional
GaAs / AlxGa1−xAs-heterostructure with an aluminum portion of x = 0.3.
Due to the similar lattice constants of GaAs and Al0.3Ga0.7As (5.6533 Å
/ 5.6555 Å ) they can be grown on top of each other by molecular beam
epitaxy (MBE) [17] without strain (Sec. 3.1.1). Unlike the lattice constant,
the band gap is different. For GaAs it is 1.42 eV and for Al0.3Ga0.7As it is
1.8 eV. Connecting the two semiconductors leads to a bending of the bands
in order to align the vacuum levels and the Fermi energy. The discontinuity
of the conductance band ∆EC is given by the difference in the electron
affinity χ of the two materials ∆EC = χII − χI (Fig. 2.1).

The layer sequence of a standard two-dimensional electron gas (2DEG)
produced by MBE is shown in the upper part of Fig. 2.2. The substrate
consist in undoped GaAs (small band gap material). Than a layer of un-
doped AlGaAs with a larger band gap is applied. The 2DEG forms at the
interface of this two materials. Then a Si-doped layer of AlGaAs is added
providing the electrons for the 2DEG. This separation of the donors (elastic
impurities) and the electrons by an undoped spacer layer increases the mo-
bility and is called modulation doping [18]. The electrons are are trapped in
z-direction (perpendicular to the grow direction) and form quantized states
with defined energy (Eq. 2.2), while they can move freely with high mobil-
ity in the xy-plane parallel to the interface. At low temperature only the
lowest energy state, one subband, is occupied. A bit more quantitatively,
we use an ansatz for the wave-function where the z- and xy-direction are
separated:

ψ(r) = ψj(z)eikxx+ikyy = ψk(z)eik‖·r, (2.1)
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Figure 2.1: (a) Combining two semiconductors with different band gap. (b)
The discontinuity of the conduction band ∆EC is given by the difference in
the electron affinity χ of the two materials ∆EC = χII − χI . (c) Finally, the
bulk Fermi levels have to be aligned resulting in a bending of the bands. The
conductance band at the interface of the small band gap semiconductor falls
below the Fermi level and is filled with electrons from donors located in the
large band gap semiconductor.

where k‖ stands for the wave-vector of the free movement in the xy-
plane. Solving the Schrödinger equation we end up with “quasi”-continuous
energy-eigenvalues in the xy-plane and discrete values εj for the quantum
well in z-direction:

Ej(k‖) = εj +
~2k2

‖

2m∗
‖
. (2.2)

These discrete energy-parabolas along x and y are so called 2D-subbands.
If the quantum well is narrow enough, only one subband is occupied. For
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Figure 2.2: Band structure of a GaAs/Al0.3Ga0.7As heterostructure cal-
culated by a Poisson-Schrödinger solver [19, 20]. The growth direction of
the MBE process is from right to the left. On the substrate undoped GaAs
is applied with a thickness of around 1000 nm. Then 50 nm of undoped
Al0.3Ga0.7As are added. The 2DEG establishes at the interface between this
two layers. 40 nm of n-doped Al0.3Ga0.7As follow, providing the electrons for
the 2DEG. Finally, a cap layer of 10 nm GaAs is applied.

the density of states D2D(E) = ∂N/(∂V ∂E) of a 2D-subband we have first
to know the number of occupied states N for a subband that is filled up
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to the Fermi level (kBT = 0). We get, spin degeneracy included,

N(k) = 2 · πk2

(2π/L)2
=
k2

2π
· V with V = L2. (2.3)

Hence the density of states for two dimensions D2D(E) is

D2D(E) =
∂N

∂V ∂E
=

∂

∂E
(
k2

2π
) =

m∗

π~2
, (2.4)

with the dispersion relation E(k) = (~2k2)/(2m∗). Hence the density of
states in two dimensions is energy independent. This is in contrast to one
dimension where the density of states is proportional to 1/

√
E while for

three dimensions it is proportional to
√
E. The relation between the elec-

tron density ne, the density of states D2D and the Fermi energy EF is as
follows:

ne =
∫ EF

0
dED2D(E) = D2DEF =

k2
F

2π
. (2.5)

2.2 Length Scales in Mesoscopic Systems

A mesoscopic system itself is defined by length scales. It must be small
enough to be influenced by quantum effects but it is still extended over
several microscopic objects as atoms. The following length scales are often
used to describe the physics in such systems: The de Broglie wavelength at
the Fermi energy λF , and the mean free path Lm.

2.2.1 The Fermi Wavelength λF

Electron transport only takes place in an energy window of 2kBθ around
the Fermi energy. With Eq. (2.5) the Fermi wavelength λF is related to the
electron density ne,

λF =
2π
kF

=
2π√
2πne

=
√

2π
ne
. (2.6)

For an electron density of ne = 2 · 1015 m−2 we get a Fermi wavelength
of λF = 56nm. This is much higher than the corresponding values of
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metals. Gold for example has a Fermi wavelength of 0.5 nm. It might be an
advantage that for constricting the dimensions of a system quantum effects
develop faster for larger Fermi wavelengths (see also Sec. 2.3).

2.2.2 The Mean Free Path Lm

The mean free path is the distance that an electron travels before its initial
momentum is altered by elastic scattering on impurities. This scattering
process is described by scattering rate 1/τm, where τm denotes the mo-
mentum relaxation time. Thus, if the Fermi velocity vF of the electrons is
known, the mean free path is given by

Lm = vF τm. (2.7)

The mobility µ is related to the momentum scattering time τm in the
following way: τm = m∗µ/e. With the Fermi velocity vF = ~kF /m

∗ =
~/m∗ ·

√
2πne we get the following relation between mean free path and

mobility: Lm =
√

2πne~µ/e.

2.3 Transverse Modes and Quantum Point Contacts

2.3.1 Transverse Modes

As already mentioned in Sec. 2.1, a 2DEG is a system strongly confined in
one dimension (often labeled with z). This confinement leads to a quanti-
zation of the energy eigenvalues in the z-direction.

Constricting the 2DEG further along a second direction (y) leads to an ad-
ditional quantization of the energy. Without knowing the details of the con-
fining potential the number of transmission channels or transverse modes
in a constriction with width W can be estimated. The ky-vectors of elec-
trons at the Fermi energy EF = ~2k2

F /(2m
∗) can take values in the range

of 2 · kF . The quantized ky-values are spaced by 2π/W . This gives for the
number M of transmission channels

M = Int
[

2kF

2π/W

]
= Int

[
kFW

π

]
= Int

[
2W
λF

]
. (2.8)
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Hence in order to see quantization effects, a large Fermi wavelength is an
advantage.

2.3.2 Quantum Point Contacts

A controllable constriction in a 2DEG can be realized by narrow gates, a
so called split gate or quantum point contact. A negative voltage VG applied
to this gates lifts the conductance band underneath over the Fermi level
and depletes the 2DEG. The depletion length ld around the gates follows
ld = 2εε0VG/(πnee). This gives for VG = −1V, ne = 1.6 ·1015 m−2, εGaAs =
13.1 and the electric constant ε0 a typical depletion length of 290 nm. For
constrictions comparable to the Fermi wavelength the transport goes over
discrete transport channels and the conductance as a function of the gate
voltage shows a step like behavior every time a new channel open or closed.
This conductance quantization relies on the fact that there is no mixing
between the different transport channel which depends on the shape of the
quantum point contacts. A smooth change of the width of the constriction
provides an adiabatical coupling to the many-modes contacts [21].

2.4 Landauer-Büttiker Formalism and Scattering Approach

What is the resistance of a conductor if its length is smaller than the mean
free path Lm? In this regime the transport is ballistic without any elastic
scattering. One might expect that the measured resistance of this sample
would go to zero. However this is not the case. Due to the small dimen-
sions of the conductor a finite number of transport channels (or transverse
modes) establish which can carry only a limited amount of current. The
concept of transverse modes has been introduced in Sec. 2.3. The measured
resistance results from a redistribution of the current transport from the
huge amount of modes in the contact reservoirs to the few ones in the small
conductor and is often called contact resistance [22].
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2.4.1 Two-terminal conductor

The current transport through a conductor with a few M modes contacted
to two terminals (with many modes) is is given by [22]:

I = GV where G =
e2

h

∑
n=1..M

Tn. (2.9)

G = 1/R is the conductance and V = ∆µ/e the applied bias. ∆µ = µ1−µ2

is the difference in the electrochemical potentials of contacts 1 and 2. For
the case of equal transmission T in every mode we can also write G =
e2/h ·MT . It is interesting to rewrite the corresponding resistance in the
following way:

R = G−1 =
h

e2M

1
T

=
h

e2M︸ ︷︷ ︸
G−1

C

+
h

e2M

1− T

T︸ ︷︷ ︸
resistance of the modes

. (2.10)

The two-terminal resistance is a combination of the contact resistance G−1
C

due to the redistribution of the current on a small number of modes and a
resistance due to backscattering (T < 1).

2.4.2 Multi-terminal conductor

We can expand this description to a multi-terminal configuration and non-
zero temperature and bias. The current in contact α is given by (T̄ =∑

n=1..M Tn)

Iα =
∫
dE

e

h

∑
β

T̄αβ(E)[fα(E)− fβ(E)]. (2.11)

In the linear response regime, i. e. in a energy window where the transmis-
sion is constant, we can linearize the formula above and get

Iα =
∑
β

Gαβ [Vα − Vβ ] with Gαβ =
e2

h

∫
T̄αβ(E)

(
−∂f0

∂E

)
dE.

(2.12)
f0 is the equilibrium Fermi function. For low temperatures we get −∂f0

∂E ≈
δ(EF − E) and for the conductance Gαβ = e2

h T̄αβ(EF ).
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Figure 2.3: Schematics
of the in- and outgo-
ing scattering states in
a two-terminal conduc-
tor with one channel.

Scattererα βaα
aβ

bβ
bαµα

θα θβ
µβ

2.4.3 Scattering Matrix

The elastic scattering process and its relation to the transmission prob-
abilities can be described systematically with the help of the scattering
matrix s and the incoming â†αn, âαn and outgoing b̂†αn, b̂αn scattering states
of channel n and contact α. The scattering matrix elements and the trans-
mission are connected as follows: |sαβ;mn(E)|2 = Tαβ;mn(E). Each contact
α that is connected to the sample has Nα(E) transverse channels and is
described by a Fermi function fα(E). The scattering matrix is unitary due
to current conservation. The incoming and outgoing scattering states are
related over the scattering matrix:

b̂αm(E) =
∑
βn

sαβ;mn(E) âβn(E). (2.13)

By subtracting the incoming and outgoing states in lead α the current
operator can be written in the following form:

Îα(t) =
e

h

∑
βγ

∑
mn

∫
dEdE′ei(E−E′)t/~â†βγ(E)Amn

βγ (α;E,E′)âβγ(E′)

(2.14)
with the function

Amn
βγ (α;E,E′) = δmnδαβδαγ −

∑
k

s†αβ;mk(E)sαγ;kn(E′), (2.15)

For the average current the quantum statistical average of the product of
an electron creation and an annihilation operator of Fermions has to be
calculated, i. e. 〈â†αm(E)âβn(E′)〉 = δαβδmnδ(E − E′)fα(E).

With G∗
αβ = d〈Iα〉/dVβ|Vβ=0 the average current is (which is equivalent to



2.5 2DEG in Perpendicular Magnetic Fields, IQHE 13

Eq. 2.12):

〈Iα〉 =
∫
dE

1
e

∑
β

G∗
αβ(E)fβ(E) =

∑
β

G∗
αβVβ (2.16)

with G∗
αβ = e2

h

∫
dE

(
− ∂f

∂E

)
[Nαδαβ − Tr(s†αβsαβ)].

The equation for the current in the Landauer-Büttiker formalism is also
used to calculated the current fluctuations around its mean value and their
power spectral density (see Sec. 2.8.2).

2.5 2DEG in Perpendicular Magnetic Fields, IQHE

2.5.1 Low Magnetic Fields and Drude model

While a 2DEG is strongly confined in one direction (often labeled by z)
(Sec. 2.1), in the other two dimensions there is no confinement in the order
of magnitude of the Fermi wavelength. The 2DEG has an energy indepen-
dent density of states and is characterized by the electron density ne and
the mobility µ ≡ |e|τm/m which is related to the elastic scattering time tm,
i. e. the average time it takes until the momentum is changed by an elastic
collision (Sec. 2.2.2). Diffusive transport is described as a balance between
elastic scattering processes that decrease the momentum and external elec-
tric and magnetic fields that drive it [22]:

mvD

τm
= e[E + vD ×B]. (2.17)

Rewriting this relation for a perpendicular magnetic field Bz = B and an
in-plane electric field Ex, Ey results in(

Ex

Ey

)
=

(
ρxx ρxy

ρxy ρyy

) (
Jx

Jy

)
, (2.18)

with the 2D-current density J = evDne. The components of the resistivity
matrix are ρxx = ρyy = σ−1 = 1/(|e|neµ) with the conductivity σ ≡
|e|neµ and ρxy = −ρyx = B/(|e|ne). The longitudinal resistivity ρxx is
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constant while the perpendicular, so called Hall resistivity ρxy increases
with magnetic field. Assuming only a current flow in x-direction gives Ex =
ρxxJx and Ey = ρxyJx. With the voltage drops along and across the sample,
Vxx = ExL and Vxy = VH = EyW and the total current I = WJx we get

Rxx =
Vxx

I
= ρxx

L

W
and Rxy = ρxy =

VH

I
, (2.19)

i. e. the transverse resistance is independent of the width W while the
longitudinal resistance depends on the aspect ratio L/W . This is the so
called Drude model.

The Hall effect in bulk conductors discovered by Edwin Hall in 1879 [23]
can be explained by the Drude model. For bulk conductors we just need to
replace the 2D-current density by the bulk current density.

2.5.2 High magnetic fields

For higher magnetic fields the previously constant density of states changes
to an energy level structure with a magnetic field dependent spacing. For a
more detailed discussion see e. g. [22]. The transport of the quasi-particles
in the xy-plane is described by the effective mass equation[

Es +
(i~∇+ eA)2

2m∗ + U(y)
]

Ψ(x, y) = EΨ(x, y). (2.20)

For a perpendicular magnetic field in z-direction the vector potential A is
not unique. An often chosen gauge is such that solution has the form of
plane waves in the x-direction, i. e. Ψ(x, y) = 1/

√
Leikxχ(y): Ax = −By

and Ay = 0. Eq. (2.20) reduces to[
Es + p2

y

2m∗ + 1
2m

∗ω2
c (y + yk)2

]
χ(y) = Eχ(y)

with yk = ~k
eB and ωc = |e|B

m∗ , (2.21)

where ωc is the cyclotron frequency. The eigenfunctions of this equation
are Hermite polynomials and the eigenenergies

E(n, k) = Es + (n+
1
2
)~ωc, n = 0, 1, 2, . . . (2.22)
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Hence the density of states has split up in so called Landau levels, spaced
by the energy ~ωc. Since the electron density has not changed, the same
amount of electrons as before has now to be distributed to the ~ωc-spaced
levels. The number of electrons per Landau level or its degeneracy are
therefore N0 = ~ωc ×m∗/π~2 = 2eB/h.

In order to measure effects that rely on the changed density of states as the
integer quantum Hall effect (Sec. 2.5.4), the spacing of the levels should be
bigger than their broadening through temperature and elastic scattering,
i. e.

~ωc � ~/τm ⇒ B � µ−1 and (2.23)

~ωc � kBθ ⇒ B � m∗

~
kBθ

e
. (2.24)

2.5.3 Edge States

Transport takes only place for electrons at the Fermi edge. Changing the
perpendicular magnetic field changes the spacing ~ωc = ~|e|B/m∗ of the
Landau levels. Hence the density of states at the Fermi energy is changing
in an oscillating way between two completely different regimes. If we have
occupied states on the Fermi edge transport is allowed while for a Fermi
energy between two Landau levels, the DOS is zero and there is no transport
at all.

However, every real 2DEG is also finite in the xy-plane either due to a
removal of the heterostructure i. e. by etching or due to a confinement of
the electrons in the xy-direction by depleting the 2DEG with a negatively
biased gate. This situation can be described with a confining potential U .
Assuming a confinement in y-direction: U(y) = 1

2m
∗ω2

0y
2. Again starting

with the effective mass equation (Eq. 2.20), it can be shown [22] that the
dispersion relation has an additional parabolic term:

E(n, k) = (n+
1
2
)~ωc0 +

~2k2

2m∗
ω2

0

ω2
c0

where ω2
c0 ≡ ω2

c + ω2
0. (2.25)

This so called magnetic subbands lead to a different situation for a bulk
Fermi level between the Landau levels: Unlike in a infinite 2DEG there are
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now still occupied states at the Fermi energy near the edges of the sample.
Additionally the k+- and k−-states are spatially separated to opposite sides
of the sample, leading to a massive reduction of backscattering. This states
are called edge states and behave as 1D ballistic channels. The number of
channels is given by the number of Landau levels below Fermi energy and
therefore decreases for higher magnetic fields. It is often called the filling
factor ν.

2.5.4 Integer Quantum Hall Effect

In Sec. 2.5.1 we mentioned the classical Hall effect. In a 2DEG in a per-
pendicular magnetic field, magnetic subbands develop (Sec. 2.5.3). Their
consequence is the spatial separation of the right and left moving carriers
to opposite sides of the plane for magnetic fields for which the 2DEG-bulk
Fermi niveau is between two Landau levels. The number of channels is
given by the filling factor ν. In Fig. 2.4, upper part, a so called Hall bar is
shown with a defined width W and length L. The current is injected at
contact 1 and leaves the sample at contact 5. A constriction in the mid-
dle of the sample, e. g. a quantum point contact (Sec. 2.3.2), transmits M
and reflects ν −M channels. Applying the Landauer-Büttiker formalism
(Sec. 2.4) gives the following results for the voltage drops along V2−V3 and
perpendicular V4 − V3 to the current direction:

• longitudinal resistance RL = Rxx = R23 = V2−V3
I = h

e2 ( 1
M − 1

ν )

• Hall resistance RH = Rxy = R34 = V4−V3
I = h

e2
1
ν .

I. e. for all channels transmitted (M = ν) by the constriction, there is no
voltage drop along the ballistic edge states. The voltage drop between to
opposite contacts only depends on the number of edge states and funda-
mental physical constants.

In Fig. 2.4, lower part, a typical measurement is shown. For integer filling
factors the longitudinal resistance Rxx goes to zero while the Hall resistance
shows up a plateau. In such an integer quantum Hall effect regime, where
current flows along ballistic edge states, all experiments in this thesis have
been carried out.
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Figure 2.4: Upper part : A typical Hall bar configuration that allows to
measure the voltage drop along and perpendicular to the current direction.
Lower part : Corresponding measurement versus the magnetic field.
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2.6 The Aharonov-Bohm-Effect

A certain magnetic field B = curlA belongs to different gauges of the
vector potential A, because adding a gradient of a scalar field ∇Λ to A
does not affect B: curl (∇Λ) = 0. For a B-field free region we can set:

A = ∇Λ ⇒ Λ(x) =
∫ x

x0

ds ·A(s) (2.26)

The phase of the wave function is however affected by a change of the
gauge: A = 0 ⇒ A = ∇Λ:

ψ(x) = ψ(x)0 exp
{
i
e

~
Λ

}
= ψ(x)0 exp

{
i
e

~

∫ x

x0

dsA(s)
}
. (2.27)

In a double slit experiment, a wave is split up into two partial waves ψ1

and ψ2. The resulting wave after passing the slit is just their superposition
ψtot = ψ1 + ψ2. For a defined relative phase an interference pattern is
measured for |ψtot|2. The additional phase due to the change of gauge
gives

ψtot(x) = ψ1,0(x) exp
{
i
e

~

∫
1
dsA(s)

}
+ ψ2,0(x) exp

{
i
e

~

∫
2
dsA(s)

}
=

(
ψ1,0(x) exp

{
i
e

~
ΦB

}
+ ψ2,0(x)

)
exp {φ2} . (2.28)

with the total magnetic ΦB flux through the area enclosed by the two paths
and the phase φ2 of path 2:

ΦB =
∫
1
dsA(s)−

∫
2
dsA(s) =

∮
dsA(s) =

∫
df curlA =

∫
df B

φ2 = i
e

~

∫
2
dsA(s). (2.29)

Thus the interference pattern is periodic in a change of the magnetic flux
by h/e. This can be reached by changing the area or the magnetic field
and is known as the Aharonov-Bohm-Effect [24].
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2.7 Fundamentals of Noise Measurements

A typical transport measurement of quasi-particles through mesoscopic
devices with resistance R consists in the determination of its conductance
G = 1/R. The conductance of a conductor with M channels is given by the
Landauer-Büttiker formula G = e2/h·

∑
n Tn. In the linear response regime,

i. e. for such small biases that the transmission is energy independent, the
mean current corresponds to the conductance as follows: 〈I〉 = G∆µ/e
where ∆µ/e is the applied bias. However, the mean current does only con-
tain information about an average over the transmission eigenvalues Tn.

The transmission of the charge through a conductor is not a continuous
process. It is carried by discrete particles. Their stochastic movement gives
rise to fluctuations in the current around its mean value ∆I = I(t)− 〈I〉.
Since this fluctuations also depend on the transmission process they provide
further information and an increased insight.

We will first give a short introduction in the basic definitions and expres-
sions of noise measurements and than concentrate on shot noise in meso-
scopic conductors.

Under the notion noise we will understand the variance of the fluctuations
around its mean value 〈I〉:

〈∆I2〉 = 〈(I − 〈I〉)2〉 = 〈I2〉 − 〈I〉2 (2.30)

Its square root is also known as the standard deviation. Experimentally,
the average is taken over time1. How can we describe and measure this fluc-
tuations? In order to do this we will introduce the correlation function CI

and the power spectral density SI of the fluctuations and their relation.

1Fluctuations which are described by its mean value and variance have a Gaussian
distribution. This is often a good approximation and higher moments of noise will
not be considered here.
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2.7.1 Correlation function CI

The correlation function is defined as follows [25]:

CI(t1, t2) ≡ 〈∆I(t1)∆I(t2)〉 = 〈I(t1)I(t2)〉 − 〈I(t1)〉〈I(t2)〉 =

= lim
N→∞

1
N

N∑
i=1

∆I(t1)∆I(t2), (2.31)

where average has been taken over an ensemble of identical samples. In a
real experiment averaging is mostly done over a sufficient long time record
tm of the random process I(t). For a stationary system with a time in-
dependent mean value the correlation function only depends on the time
difference:

CI(t1 − t2) ≡ lim
tm→∞

1
tm

∫ tm/2

−tm/2
dt∆I(t1 + t)∆(t2 + t). (2.32)

If the time difference is zero then the correlation function coincides with
the variance, the average fluctuations squared: CI(t, t) = 〈(∆I)2〉. On the
other side, if |t1−t2| → ∞ ⇒ CI(t1−t2) → 0 which means that the system
“forgets” its initial fluctuation. This characteristic time of forgetting is the
relaxation time.

The Fourier transform of the correlation function is given by

CI(ω) =
∫ +∞

−∞
d(t1 − t2)eiω(t1−t2)CI(t1 − t2) (2.33)

2.7.2 Power Spectral Density SI

The current fluctuations in the frequency domain are given by the Fourier
transform

∆I(t) =
∫ +∞

−∞

dω

2π
∆I(ω)e−iωt. (2.34)

Regarding only the current fluctuations in a certain frequency window ∆f
around a central frequency f , ∆I(t|f,∆f), one has to set the integration
limits in Eq. 2.34 according to this frequency interval. This signal squared
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is the noise power. Its mean value can be expressed by the power spec-
tral density SI(f) at the central frequency times the considered frequency
interval ∆f :

[∆I(t)|f,∆f ]2 ≈ SI(f)∆f. (2.35)

2.7.3 Wiener-Khintchine Theorem

Basically by using the Fourier transform of the current fluctuations as well
as the one of the correlation function (Eqs. 2.33 / 2.34), a very impor-
tant relation between the power spectral density can shown, the Wiener-
Khintchine theorem:

SI(f) = 2
∫ ∞

−∞
d(t1 − t2) eiω(t1−t2)CI(t1 − t2) ≡ 2CI(ω). (2.36)

Implying a frequency independent, “white”, spectrum, which is indeed the
case for equilibrium and shot noise (Sec. 2.8.2.1 and 2.8.2.2), opens the
possibility to measure current auto- and cross-correlations via a spectrum
analyzer in a finite frequency interval.

2.8 Noise in Mesoscopic Devices

We now concentrate on devices which are small enough that dephasing
and inelastic effects can be neglected and the equilibrium and shot noise is
described in terms of its elastic properties.

2.8.1 Poissonian Noise

First we calculate the noise of independently emitted particles as it has
been done by Walter Schottky in 1918 for a vacuum tube [26]. With τ
we denote the mean time between two tunneling event, t stands for the
measurement time. The probability for N transmitted particles in the time
t is given by

PN (t) =
tN

τNN !
e−t/τ =

〈N〉N

N !
e〈N〉, (2.37)
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with 〈N〉 = t/τ . This Poisson distribution has the following property:
〈N2〉 − 〈N〉2 = 〈N〉. So we can write for the mean current 〈I〉 = e〈N〉/t =
e/τ and the final result for the power spectral density is

SI = e2(〈N2〉 − 〈N〉2)/t = e〈I〉. (2.38)

With this formula we can describe a tunneling situation with small trans-
mission T . It depends on the charge e of the quasi-particle and is used to
compare the strength of the noise as we see later.

2.8.2 Scattering Approach to Noise

A systematic procedure is the so called scattering approach to noise which
has been generalized to multichannel, multi-terminal conductors by Büt-
tiker [27, 28]. In Fig. 2.3 a schematics of a two-terminal scatterer is shown.

The power spectral density is defined as two times the Fourier transfor-
mation of the correlation function of the current fluctuations (Eq. 2.36),

2πδ(ω + ω′)SI,αβ(ω) ≡ 〈∆Îα(ω)∆Îβ(ω′) + Îβ(ω′)∆Îα(ω)〉. (2.39)

In this calculation the quantum statistical expectation value of the product
of four creation and annihilation operator goes in. The result for zero-
frequency noise is

SI,αβ ≡ SI,αβ(ω = 0) =
e2

h

∑
γδ

∑
mn

∫
dEAmn

γδ (α;E,E)Anm
δγ (β;E,E)×

× {fγ(E)[1− fδ(E)] + [1− fγ(E)]fδ(E)}, (2.40)

where the Amn
γδ are given by Eq. 2.15. Rewriting this basis invariant for-

mula in the right basis of eigen-channels gives (where the Tn denote the
corresponding transmission eigen-values)

SI(ω = 0) =
e2

h

∫
dE[

∑
n

Tn(E) [f1(1− f1) + f2(1− f2)] +

+
∑

n

Tn(E)[1− Tn(E)](f1 − f2)2]. (2.41)

In the next two subsections we discuss Eq. (2.41) for different temperature
and bias limits.
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2.8.2.1 Equilibrium Noise

For a bias much smaller than the temperature |µ1 − µ2| � kBθ, the first
two terms on the right-hand side of Eq. (2.41) dominate. With fi(1− fi) =
−kBθ∂fi/∂E = kBθδ(Ei − E) and assuming spin degeneracy we get the
Johnson-Nyquist formula [29–32] for the thermal equilibrium power spec-
tral density of the current fluctuations:

SI(ω = 0) = 2 · 2e
2

h

∑
n

TnkBθ = 4GkBθ. (2.42)

Experimentally, mostly the induced voltage fluctuations over a resistor R
are measured, ∆V = R∆I. This gives for the thermal equilibrium power
spectral density of the voltage fluctuations:

SV = R2SI = 4R2/RkBθ = 4RkBθ. (2.43)

2.8.2.2 Shot Noise

In the opposite limit, |µ1 − µ2| � kBθ, the first two terms of Eq. (2.41)
vanish and the third term reduces to (assuming T (E) constant in the range
of integration)

SI(ω = 0) =
∑

n

Tn(1− Tn)
e2

h

∫ µ2

µ1

dE(f1 − f2)2 =

=
e2

h
∆µ

∑
n

Tn(1− Tn). (2.44)

In order to quantify the shot noise, its power spectral density is often
compared to the one of Poissonian noise (Sec. 2.8.1), this ratio is called the
Fano factor F :

F ≡ SI(ω = 0)
e〈I〉

=
e2

h ∆µ
∑

n Tn(1− Tn)

e∆µ
e

e2

h

∑
n Tn

=
∑

n Tn(1− Tn)∑
n Tn

. (2.45)

Hence for a single channel with transmission T the Fano factor is given by
F = 1 − T . The full Poissonian noise is recovered for small transmissions
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T � 1. On the other side, a channel with transmission T = 1 shows no
current fluctuations, e. g. a ballistic edge state.

What is gained by a noise measurement respect to the measurement of the
average current? The average current gives information about an average
over the transmission eigenvalues

∑
n Tn. However, the low-frequency shot

noise at low temperatures is an average over the expression
∑

n Tn(1−Tn).
Hence, one gets more information about the distribution of the transmission
eigenvalues. Going to even higher orders of the fluctuations the picture of
the transmission would become even more complete. However in this thesis
a noise measurement is always restricted to the determination of the second
moment of the current fluctuations.

As seen from Eqs. (2.38) and (2.45) the power spectral density is propor-
tional to the charge of the electron. In a more general treatment it is
proportional to the charge q of the quasi-particles involved in transport.
This could be shown for the charge 2e of Cooper pairs in superconducting
transport through an SNS-junction [33] and for the fractional charge e/3
in the fractional quantum Hall regime [34, 35].

Dealing with mesoscopic conductors with a large number of transmission
eigenvalues Tn, the expression

∑
n Tn(1−Tn) in the power spectral density

can be replaced by
∫ 1
0 ρ(T )T (1 − T ) where ρ(T ) is the distribution of the

transmission eigenvalues, which has been calculated for a chaotic cavity [36]
and diffusive wires [37]. The result is, which has also experimentally shown,
that for chaotic cavities the Fano factor of 1/4 [38] while for diffusive wires
it is 1/3 [39–41].

The power spectral density is also sensitive to the Fermi distribution func-
tion f of the reservoirs (Eq. 2.41), which can deviate from the degenerated
step-function in the case of relaxation processes due to interactions. This
changes e. g. the Fano factor for diffusive wires in the case of hot electrons
from 1/3 to

√
3/4.



3 Sample Preparation and Low-Temperature
Measurements

⇒ For detailed process parameters see appendix B. ⇐

3.1 Sample Preparation Techniques

3.1.1 Molecular Beam Epitaxy

The GaAs / AlxGa1−xAs-heterostructures used in this thesis were grown by
molecular beam epitaxy (MBE) [17]. In the MBE process, the materials are
heated up in effusion cells and fly by thermal activation through the ultra-
high vacuum (UHV) of 10−10 mbar onto the substrate. This vacuum corre-
sponds to mean free paths of meters. The different material sources are con-
trolled by shutters. This gives the possibility to build up new semiconduc-
tors where the composition can be controlled on a monolayer scale. By evap-
orating materials on top of each other with a similar lattice constant but dif-
ferent band gap, one has a mean to design the bandstructure of the new ma-
terial. A model system is the combination of GaAs and AlAs which have ap-
proximately the same lattice constant, 5.6533 Å for GaAs and 5.6605 Å for
AlAs. The lattice constant a of the ternary compound AlxGa1−xAs is gen-
erally calculated by a(AlxGa1−xAs) = a(GaAs) + x · (a(AlAs)− a(GaAs))
resulting in a lattice constant of 5.6555 Å for x = 0.3. Due to the different
band gap of GaAs and Al0.3Ga0.7As (1.42 / 1.8 eV) the bands are bend
at the interface in order to align the vacuum levels and the Fermi energy
resulting in a conducting layer at the interface as described in Sec. 2.1.
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single layer PMMA PMMA-MA / PMMA

Figure 3.1: Processing a positive resist as PMMA by electron beam lithogra-
phy. The electron beam breaks bonds in the long polymer chains of the resist
and hence reduces their molecular weight. Therefore they are washed out
more easily by the developer. For more complex structures as free standing
metal bridges, double layer techniques are used.

3.1.2 Electron Beam Lithography

In mesoscopic physics devices on a sub micron scale are fabricated and
studied. An appropriate means of fabrication is electron beam lithography
(EBL). Lithography stems from old-Greek and means actually a simple
printing technique with stones as a stamp. Nowadays, the notion of litho-
graphy is extended to techniques which use some kind of mask to treat and
form the subject of interest.



3.1 Sample Preparation Techniques 27

In EBL, a resist which is sensitive to electrons with energies in the range
of keV, is structured by a beam of accelerated electrons. In our case the
electron source is an electron microscope with appropriate control software.
The limiting factor for small structures in the range of tens of nanometers
is in general not the beam size of the electron microscope (∼=nm) but
the backscattered electrons from the resist and substrate that broaden
the exposed area (proximity effect). This makes it challenging but not
impossible to write structures below 50 nm.

A frequently used resist for EBL is the polymer polymethyl methacrylat
(PMMA). It is applied onto the substrate as a thin film by fast spinning.
The height of the film is typically several hundreds of nanometer and can
be controlled by tuning spin time and velocity and by diluting the PMMA
with chlorobenzene. In order to remove the solvents, the samples are baked
out in an oven after spinning.

PMMA consists of long polymer chains. The accelerated electrons from the
electron microscope break bonds and reduce therefore the molecular weight
M of the molecules. This results in a better solubility in an appropriate
developer. A resist where the exposed areas are washed out by the devel-
oper is called positive. As a developer a mixture of 4-Methyl-2-pentanone
(MiBK) and 2-propanol / isopropanol (IPA) is used. More complicated
structures as free standing bridges can be produced by using more than
one layer and a combination of resists with different sensitivity. For more
details see section 3.4.2.

Such a mask produced by EBL is finally used to structure the sample
by different methods as, reactive ion etching, metalization or wet-etching
which are described in more detail in sections 3.1.3 - 3.1.5 and Figs. 3.1 -
3.3.

3.1.3 Reactive Ion Etching

After developing and washing out the exposed resist there might still be
some residual PMMA left. Especially for the production of good Ohmic
contacts to a 2DEG this can be a limiting factor, because it would prevent
or disturb the delicate annealing process (Sec. 3.3).
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Therefore, the samples have always been cleaned in a weak oxygen plasma
after EBL and before metalization. The method is also called reactive ion
etching. After pumping out the sample chamber and filling it with oxygen,
the plasma is produced by a strong radio frequency (RF) electromagnetic
field which is applied between two capacitor plates in order to ionize the
gas molecules. The surface of the sample is structured both by chemical
reaction and accelerated ions that kinetically take away material.

The etching rate depends on many process parameters which also shift with
time. Hence, before every delicate sample preparation, a test of the etching
rate has been performed.

3.1.4 Metalization

In order to deposit metals with an accuracy in the micron to nanometer
scale on a substrate, a thin film of PMMA is applied onto the latter and
then structured by electron beam lithography (see Fig. 3.2). In a next step
substrate and resist are covered with a thin metal film. Then a strong
organic solvent as acetone is used to remove the mask (lift-off ) and to
wash away the metal covering the resist. Only the metal in direct contact
with the substrate remains and hence the pattern of the structured resist
is transferred onto the sample.

The application of a thin film of metals is done in an electron gun evapo-
ration system. It works by heating up a metal source in a vacuum chamber
and letting the metal evaporate onto the sample covered with the mask.
For a ballistic flight of the evaporated material, for purity and in order to
prevent oxidation a good vacuum is needed. It depends on material and
is generally below 10−6 mbar. The material source is heated up by bom-
barding it with accelerated electrons of an energy of 10 keV. With shutters
between source and sample the evaporation process can be started when
a constant deposition rate is established. The rate is controlled by a cal-
ibrated piezo-electric quartz crystal. Its resonant frequency is shifted the
more material is evaporated onto it.

For our samples that are based on a two dimensional electron gas at the
interface of a GaAs/AlGaAs-heterostructure, we apply either materials for
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Metal-Bridge
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Substrate

Gates / Ohmic Contacts

Figure 3.2: Transferring the pattern of the structured resist onto the sample
either by metalization or wet-etching. In order to produce more complicated
structures, as e. g. free-standing bridges, a double layer process was used.

Schottky contacts, i. e. the gates in order to control the electron density of
the 2DEG (Sec. 3.2), for Ohmic contacts, i. e. the contacts for an electrical
transport measurement (see Sec. 3.3) or for free standing metallic bridges
(see Sec. 3.4.2).

3.1.5 Wet-Etching

The 2DEG can be structured by etching away the interface or at least the
donor layer between surface and interface (shallow etching). The part where
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Figure 3.3: Two times the same test structure etched in a dummy GaAs
wafer. Left : Standard cleaning treatment of the wafer with eventually ul-
trasonic, rinsing with acetone and IPA/ethanol before spinning resist. The
PMMA mask got under-etched in a range of 1µm. Right : Improved fine etch-
ing process by cleaning the wafer for several hours in a remover for optical
resist (see appendix B.2). The scaling bar indicates 5µm.

the 2DEG is finally defined is called mesa1. Again a PMMA based resist,
structured by EBL, acts as a protection layer. For the etching process a
diluted mixture of sulfuric acid and hydrogen peroxide is used.

A difficulty that occurred while wet-etching fine structures (< 1µm) into
the 2DEG was the adhesion of the hydrophobic PMMA in the water-diluted
acid. By using a standard cleaning process with eventually ultrasonic, ace-
tone, IPA/ethanol the etching of fine structures was not satisfying. The
result is shown in Fig. 3.3, left side. It seems as if the PMMA is slightly
lifted and the mask got under-etched. For defining a mesa i. e. for a Hall
bar this is not a limiting problem while for defining small structures in the
range of µm we need a better process. This has been reached by cleaning
the sample for several hours in a remover for optical resist (see appendix
B.2). In addition, the resist thickness has been reduced from 600 to 200 nm
in order to minimize the undercut. A test etched with this improved pro-
cedure is shown in Fig. 3.3 on the right side.

1mesa is the Spanish and Portuguese word for table and is used for elevated areas of
land with a flat top and sides that are usually steep cliffs, similar to etched structures
on a semiconductor substrate
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Figure 3.4: For an electrical trans-
port measurement the sample is
glued into and contacted to the chip
carrier using an ultrasonic bonding-
machine. The chip carrier has stan-
dard dimensions and fits into the
measurement setup. e. g. a cryostat.
The scaling bar indicates 500µm.

3.1.6 Bonding

Ohmic contacts and gates on a wafer mounted in a chip carrier are con-
tacted to the measurement setup by bonding. In this procedure a 20µm
thick aluminum-wire is attached to chip carrier and wafer by an ultrasonic
pulse. This method is limited to bonding pads in the size of 150µm. Smaller
contacts have to be contacted lithografically by defining a metal stripe that
connects the contacts and ends up in a bonding pad, as it has been done
for the small inner contacts of the MZ-interferometer (Ch. 6).

3.2 Schottky Contacts / Gates

The interface between a metal and a semiconductor is called a Schottky
contact resp. barrier [42]. The bending of the bands due to the alignment of
the electrochemical potential results in a barrier and a diode-like behavior
of this interface. Applying negative voltages to the metal in respect to the
grounded semiconductor increases the barrier whereas for a positive voltage
a leakage current is flowing. Due to this property the electron density and
hence the conductance in the underlying 2DEG can be controlled respect
to a negative bias. Therefore, these contacts are often called gates.

Gates are produced by metalization. Usually gold is used due to its chemical
inertia. In order to enhance the adhesion of gold, titanium is evaporated
in a first, thin layer. For detailed process parameters see appendix B.4.
Evaporating a metal over a wet-etched step of the mesa can be problematic.
If the height of the evaporated gates is smaller than the height of the step,
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there might be no continuous film and contact problems to the gates. This
has to be overcome either by angle evaporation or by a second evaporation
step at the critical point.

3.3 Ohmic Contacts

In order to perform transport experiments with 2DEGs in a GaAs/AlGaAs-
heterostructure they have to be electronically contacted. Combining a semi-
conductor and a metal results in the already mentioned Schottky barrier.
However, for transport measurements at low temperatures, low, Ohmic-
like contact resistances are preferable. The barrier can be reduced by n-
doping the semiconductor. This way the depletion width is decreased and
the electron tunneling enhanced. For more information, see i. e. [43]. Very
often Ni, Au and Ge are used to establish Ohmic contacts, Ge as a dopant
and Ni to improve the diffusion process. These materials are evaporated
onto the heterostructure and then annealed in order to diffuse in. The exact
mechanisms of the diffusion process are still not understood in detail. We
used different recipes, see appendix B.5.

For the positive cross-correlation experiment (Ch. 5) we used the standard
cleaning process, recipe M1 for metalization and A1 for annealing. The
contacts had side lengths around 300µm and contact resistances of the
order 0.5 - 3 kΩ.

For the second project, the electronic MZ-interferometer in the edge state
regime (see Ch. 6 and Fig. 3.6), a small, reliably working, Ohmic contact
(in the range of 1µm side length) is needed. On the way of making them
we started again with metalization recipe M1. After severe difficulties with
contacts freezing out at low temperatures, we used recipe M2 (from [44]),
where the germanium amount was increased compared to gold and the
layer sequence had been changed. Using recipe M2 the contact resistances
could be decreased by an order of magnitude. For contacts down to side
lengths of 200µm we used annealing recipe A2. However, by reducing the
size of the contacts to the range of µm the contacts got very high resistive
at low temperatures and mostly froze out.
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A big improvement in reducing the contact resistances for small contacts at
low temperatures was using metalization recipe M3 and additional cleaning
after the oxygen plasma with a strong alkaline solvent2. In recipe M3 the
ratio of Au and Ge layer was chosen such that it corresponds to that of the
eutectic mixture Au:Ge = 88%:12% (weight percent). For the amount of Ni
the ratio (Au+Ge)/Ni = 4 gave good results. Recipe M3 is for contacting
a 2DEG 120 nm below the surface. For 2DEG closer or further away from
surface, the corresponding standard layer thickness for Au/Ge/Ni has to
be adjusted. With this recipe, contacts down to 1×1µm have been realized
with contact resistances of several hundreds of Ohms at 4.2 K.

3.4 Bridges

Usually Ohmic contacts are designed in a size which is suitable to bond
on, i. e. between 150 and 300µm. The central part of the electrical MZ-
interferometer (Ch. 6) has dimensions of about 5x5µm2 with a small Ohmic
contact inside. This contact has a side length in the order of 1-2µm. The
connection of the small contact to the chip carrier and the measurement
setup is established by a lithographically defined metal strip which links
the small contact to a bonding pad. In the specific geometry of the elec-
tronic MZ-Interferometer, this metal strip has always to lead over a part
of the 2DEG without influencing its density. A bridge-like structure over
the 2DEG has to be produced. Two possible solutions have been tested.
First we tried to hold the bridge by overexposed PMMA, finally we made
completely freestanding bridges.

3.4.1 Bridges held by over-exposed PMMA

A realization of a metal bridge that has no direct contact with the wafer
is shown in Fig. 3.5. The bridge is supported by a layer of over-exposed
PMMA. The dose was increased gradually up to 10 times the dose used for
“conventional” lithography in order to get rather a smooth than an abrupt
slope. Although the metal-bridge was now several hundreds of nanometers

2Many thanks to Oktay Göktas and Jürgen Weis from the Max Planck Institut in
Stuttgart for the fruitful discussions.
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Figure 3.5: A small Ohmic contact to a 2DEG is connected by a metallic
strip to a bonding pad. In order to prevent a direct contact of the metallic
strip and the underlying 2DEG close to the semiconductor surface, a support
layer of over-exposed PMMA has been fabricated. The over-exposition has
been increased gradually in order to have a smooth slope. The scaling bar
indicates 1µm.

away from the 2DEG, the density of the 2DEG under the bridge was smaller
than the 2D-“bulk”-density. The high dose used for the over-exposure might
have modified the heterostructure. Another disadvantage could be the di-
rect contact with the GaAs cap layer which influences the surface states
and therefore the density. However, we cannot exclude that such PMMA-
supported bridge technique would work with a 2DEG with higher mobil-
ity, since wet-etched structures with a lateral dimension of microns never
showed ballistic transport in the edge state regime.

So we changed the 2DEG and decided to make completely free-standing
bridges.

3.4.2 Free-standing Bridges

Simply dissolving the over-exposed PMMA in hot acetone was not possible.
Methods as RIE cannot be used because of the delicate GaAs/GaAlAs-
heterostructure.
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Another idea was to use a a combination of negative and positive resists.
The negative resist in order to produce a support layer for the bridge which
will be removed afterwards. Tests either with UV-resist or with deep UV-
resist exposed with the electron microscope, resulted in the similar problem
as with the overexposed PMMA: It was impossible to dissolve it without
damaging the heterostructure or the metal-bridge.

Finally, a technique was used to produce completely free-standing metal-
bridges3. The basic idea is shown in Fig. 3.2 in the middle column. Instead
of a single layer a double layer technique is used with two layers of differ-
ent sensitivity. The first layer was PMMA with molecular weight of 950 K
and the second the more sensitive PMMA-MA. The support layer as well
as the pillars for the bridge can be written in a single exposure step. For
the pillar the double layer structure is exposed such that all the resist is
removed in the development process. Using half of the dose only the more
sensitive PMMA-MA is washed out, while the underlying PMMA remains,
the support layer for the bridge. In a subsequent metalization step an ad-
hesion layer of titanium and a thick layer of gold were evaporated. PMMA
and PMMA-MA are easily soluble in acetone and hence the following lift-
off process is very unproblematic resulting in a free-standing gold bridge.
This bridges have been used for contacting the small Ohmic contacts over
the surrounding 2DEG as well as for the split-gates which can only be
contacted from one side (see also Fig. 3.6).

3.5 Low Temperature Measurement Techniques

3.5.1 Why measuring at low temperatures?

Physical properties are usually related to a characteristic energy scale Ec.
Hence in order to resolve the effect of interest, it should not be washed out
by higher energies corresponding to temperature kBθ or voltage bias eV .
The characteristic energy one has to consider depends on the effect that is
studied. In order to measure the quantum Hall effect in a two-dimensional
electron gas, the temperature has to be smaller that the spacing of the

3Many thanks again to Oktay Göktas and Jürgen Weis from the Max Planck Institut
in Stuttgart for the fruitful discussions.
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Figure 3.6: Realization of free standing gold bridges with the help of a
double layer technique. Upper left : It is clearly visible that this bridges are
free-standing. Lower left : In order to apply the same voltage on both sides
of the split gates, they are connected by a free-standing bridge. Right : An
electronic version of a Mach-Zehnder interferometer. Bridges are used for the
connection of the small inner Ohmic contact as well as for the split gates.

Landau levels ~ωc (sec. 2.5.2). In order to resolve the spin-splitting of the
edge states, the temperature has to be consequently smaller than the Zee-
man energy, super-conductivity takes only place for temperatures smaller
than the binding energy of the Cooper pairs, etc.

A decrease of temperature also reduces the vibration in the lattice, i. e. the
mobility of the electrons is increased by the reduction of phonon scatter-
ing.

The following description of cooling techniques follows the book of Pobell
[45] where the reader is referred to for more details.

3.5.2 Evaporation Refrigerators

Evaporation cooling bases on the fact that energy is needed to overcome
the intermolecular interactions in a liquid in order to transfer a molecule
from the liquid to the gas phase. It is called the latent heat of evapora-
tion L or the enthalpy of evaporation. Decreasing the pressure of the gas
phase by a pump, leads to an enhanced evaporation of molecules out of the
liquid in order to reach the saturation vapor pressure of equilibrium. The
relation of vapor pressure pvap, latent heat L and temperature θ is given
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by pvap ∝ exp(−L/Rθ), where R is the universal gas constant [45]. I. e. the
vapor pressure decreases rapidly with lower temperatures and higher latent
heat. Additionally, the cooling power Pc is proportional to the amount of
particles n leaving the liquid in a certain time which is proportional to
the vapor pressure: Pc ∝ exp(−1/θ). I. e. a reduction of the vapor pressure
decreases the temperature but the cooling power as well. This gives prac-
tical lower limits for temperatures reached by lowering the vapor pressure.
For materials with higher latent heat the vapor pressure goes to zero much
faster. For temperatures below 10 K only the isotopes 3He and 4He are
suitable.

3.5.2.1 N2

With liquid nitrogen at 1 bar temperatures can be reached down to its
boiling point of 77.35 K. It is also used to cool the outer radiation shield
in He-cryostats (see below). This considerably reduces the consumption of
the more expensive helium.

3.5.2.2 4He

The boiling point of 4He at a pressure of 1 bar is 4.21 K. Reducing the
pressure by pumping results in boiling points up to a practical lower limit
of 1.3 K due to the decreasing cooling power with lower temperature. A
system using the boiling point of 4He at a decreased pressure is called a
4He-cryostat. The evaporated helium is collected by a recovery system and
liquefied again.

3.5.2.3 3He

The other isotope of helium, 3He, is much more rare and expensive and
only used in completely closed systems. Its boiling point at a pressure of
1 bar is 3.19 K. The practical lower limit for a reduced pressure by pumping
is 250 mK. This is used in a combination of a 3He and 4He-system, a
so called 3He-cryostat. It consist in a combination of a 4He-system as
described above which provides its lowest temperature at the 1K-pot. A
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closed 3He-system which is thermally decoupled from the helium reservoir
at 4.2 K is thermally in contact with the 1K-pot at less than 2 K where the
3He-gas condenses and fills the 3He-pot. When all the 3He of the closed
system is condensed, it is pumped by a adsorption pump. It consists in a
large cold area in the 3He-system that adsorbs the 3He-atoms in order to
keep the pressure at a low value. Often charcoal is used. When the 3He-pot
is empty the system warms up to the temperature of the 1K-pot. Hence,
this process is called a single shot. By heating up the adsorption pump to
40 K the 3He-atoms are released and can be condensed again.

3.5.3 Dilution Refrigerator, 3He/4He-mixture

As mentioned in the previous section, reaching lower temperatures than
250 mK by evaporation is limited by the rapidly decreasing cooling power
for lower temperature which follows from the small vapor pressure at low
temperatures due to the finite heat of evaporation.

Another technique, the so called dilution cooling, is used to enter the tem-
perature range below 250 mK. It bases on the behavior of a mixture of
3He/4He at low temperatures. As shown in the phase diagram of a mix-
ture of liquid 3He and 4He for a saturated vapor pressure (Fig. 3.7), below
867 mK the mixture starts to split in a 3He-rich (concentrated) and 3He-
poor (diluted) phase. For temperatures below 100 mK the concentrated
phase consist in almost 100% 3He while the diluted phase has a concentra-
tion of 6.6 %3He4. The value of 6.6 % comes from an interplay of different
effects. An increase of the binding energy of 3He in 4He is induced by
magnetic interactions due to the nuclear magnetic moments of 3He and
density effects due to the larger zero-point motion of 3He. A decrease of
the binding energy comes from the Pauli principle the 3He atoms have to
obey. This finally results in an equal chemical potential of the concentrated
and the diluted phase with 6.6 % 3He.

The specific heat per 3He atom is higher in the diluted phase, resulting
in a heat of mixing or an enthalpy of mixing ∆H = Hd(θ) − Hc(θ). I. e.
transferring 3He atoms from the 3He-rich to the 3He-poor side leads to

4The concentration x3 of 3He is defined as x3 = n3
n3+n4

, where na stands for the
corresponding number of aHe atoms.
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Figure 3.7: Phase diagram of a mixture of liquid 3He and 4He for saturated
vapor pressure [45]. For temperatures below 867mK the mixture starts to split
in a 3He-rich (concentrated) and 3He-poor (diluted) phase. For temperatures
below 100mK the concentrated phase consist in almost 100 % 3He while the
diluted phase has a concentration of 6.6%3He. Because the specific heat per
3He atom is higher in the diluted phase, transfering 3He atoms from the
concentrated to the diluted phase reduces the temperature of the system.

a cooling of the system which supplies the heat of mixing. This is similar
to cooling by evaporation where the corresponding quantity is the latent
heat of evaporation. The cooling power of dilution cooling is proportional
to the product of the 3He concentration in the diluted phase and the heat
of mixing. Due to the finite concentration of 3He in the diluted phase even
at zero temperature the rate is not limited by the temperature as for the
evaporation cooling. Secondly, the enthalpy of mixing is proportional to
the temperature squared, i. e. Pc ∝ x3θ

2. The cooling power of evaporation
cooling is proportional to exp(−1/θ). Comparing these two dependencies
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it is clear that the dilution cooling is much more efficient for lower temper-
atures.

3.6 Setups

Two different types of setups in two different cryostats have been used for
the two experiments. They will be described separately.

3.6.1 Cross Correlation measurement

The experiment described in Ch. 5 is a cross-correlation measurement car-
ried out in a 3He-cryostat at 290 mK. A schematics of the measurement
setup is shown in Fig. 3.8. The sample is biased with a small current I
injected at contact 1, provided by a DC-voltage source5 and a high Ohmic
resistor R (≈ 1MΩ) in series at 1.7 K close to the 1K-pot. The DC-voltage
is stabilized by a RC-low-pass filter with a cut-off frequency of 1.85 Hz.
All connections to the measurement rack are additionally filtered by LC-
low-pass filters (π-filters). The current is divided by a beam-splitter geom-
etry into two parts leaving the sample at the contacts 2 and 3. The time
dependent current fluctuations ∆Iα̃(t) (α = 2, 3) are converted into volt-
age fluctuations ∆Vα̃(t) over a resistor Rα̃α, ∆Vα̃(t) = Rα̃α∆Iα̃(t). Since
the sample is a 2DEG in the edge state regime (Sec. 2.5.4), the current
transport is chiral along the borders of the sample and the resistor Rα̃α is
realized in our experiment on chip by introducing additional Ohmic con-
tacts 2, 2̃ and 3, 3̃: Contacts 2 and 3 are set to ground while the voltage
fluctuations at contact α̃, ∆Vα̃(t), are recorded with respect to ground over
the resistor Rα̃α, which is a combination of the quantum resistance at fill-
ing factor ν = 4 and the contact resistance R0,α in the range of 0.5 - 3
kΩ: Rα̃α = h/4e2 + R0,α. In this measurement configuration no external
resistors are used. This has the advantage that both of the potentials µ2

and µ3 are identically zero and that no current is re-injected from these
contacts. The measured voltage fluctuations are detected by two low-noise

5Hewlett-Packard 3245A
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Figure 3.8: Schematics of the cross correlation measurement setup. A DC-
current is injected in contact 1 and and split up to the leads 2 and 3. All
connections to the RF-shielded regions are filtered with LC-low pass filters
(π-filters). The current fluctuations are converted into voltage fluctuations
over a resistor which is basically given by the quantum resistance of two spin-
degenerate edge states. The voltage signal is amplified twice with a factor of
100 each, before read in a spectrum analyzer in oder to calculate the spectrum
of the cross correlations of the voltage fluctuations.

amplifiers6 in series, both fed by batteries. In each step the signal was am-
plified by a factor of 100 and finally read into a spectrum analyzer7 that
calculates the spectrum of the cross correlations of the voltage fluctuations
at low frequencies.

The measurement lines are shielded and have a non-zero capacitance (≈
490 pF). This leads to a damping of the voltage fluctuations. In addition,
we have an offset noise S0 related to the current noise of the amplifiers.
Both, the damping and the offset noise are determined by a temperature
calibration: The power spectral density of the autocorrelation of the voltage
fluctuations over a resistor R at temperature θ in equilibrium is SV =
4kBθR (see also Eq. 2.43). Hence, SV of a known resistor R is measured
for different frequencies ν and temperatures θ. Plotting SV for a fixed
frequency against the temperature gives the offset S0 (Fig. 3.9, upper part).

6NF Corporation LI-75A and Stanford Research Systems 560
7Vector Signal Analyzer Hewlett-Packard 89410A
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Plotting SV /4kBθR against frequency and fitting into the data the formula
for the RC-damping of the amplitude Uout/Uin = a/(1 + (2πνRC)2) with
fitting parameter k and C gives the attenuation factor and the capacitance
C (Fig. 3.9, lower part).

The correlation measurements have been performed at frequencies in the
range from 20 to 70 kHz with typical bandwidths of 5 kHz. For lower
frequencies 1/f -noise is a limiting factor while for higher frequencies one
is limited by the RC-cut-off (see Fig. 3.9).

The total offset of the current noise we measured was Soffset
I = 3.13 ·

10−27 A2s. The current noise of the amplifiers was Soffset
I,θ=0 = 3.91 ·10−27 A2s

which we obtained from several temperature calibrations. From these two
values the thermal cross correlation between the contacts 2 and 3 in equi-
librium can be calculated SI,23(I = 0) = Soffset

I −Soffset
I,θ=0 = −7.9 ·10−28 A2s.

This value is negative as one always would expect for thermal correlations
(Eq. 3.6 in [28]) which are not related to the statistics of the charge car-
riers but follow from charge conservation. I. e. a charged particle emitted
from reservoir α to reservoir β due to thermal activation, gives rise to
an anti-correlated change of the corresponding potentials. The measured
result is in quite good agreement with the theoretical value in Ref. [10]8:
−kBθG0(3 − T 2) = −8.8 · 10−28 A2s with T ii

B = 0, T ii
A = T = 0.5 and

θ = 290mK.

3.6.2 Electronic Mach-Zehnder interferometer

The measurement configuration of the experiment presented in Ch. 6 is
shown in Fig. 3.10. The perpendicular magnetic field is set such that the
electron transport is governed by one or two spin-polarized edge states.
A current is injected by applying an AC bias of 1 to 5 µV at source S1
and setting the detectors D3 and D4 to ground. In order to measure the
current at D3 we used a similar technique as in the correlation experiment
(Ch. 5), i. e. we measured the voltage drop over the edge state between
the contacts D̃3 and D3. The resistance between these two contacts con-
sists in the contact resistances in the range of 100Ω and the quantum

8Eq. 13 therein with R1 = 1 − T1 = 1 − T
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Figure 3.10: Schematics of the measurement setup. The current is induced
by applying a bias eV at source S1 and setting the detectors D3 and D4 to
ground. A negative DC bias is applied to the two beam splitters A and B
and the side and modulation gates (SG/MG). The current flowing into D3
is detected by measuring the voltage drop over the edge state from D̃3 to
ground.

resistance of one (25.8 kΩ) respectively two (12.9 kΩ) spin polarized edge
channels. Experimentally this has been realized by setting contact D3 to
ground and measuring the potential at D̃3 with respect to ground. The
square root of the equilibrium noise power spectral density of the voltage
fluctuations (Eq. 2.43) of a resistor R = 13 kΩ at temperature θ = 50 mK
is smaller (0.189 nV/

√
Hz) than the input noise of the voltage-amplifiers

(0.8 nV/
√

Hz). Additionally, for low contacts resistances, this technique has
the advantage that there is only a small back-reflection of current from D3
to S1. By measuring the voltage drop over an external resistor attached to
D3 this has to be taken into account. The signal is amplified by a factor of
1000 by an in-house build low-noise voltage amplifier (Fig. 3.11) at room
temperature and read out with a lock-in detector9.

9Stanford Research Systems 830



3.6 Setups 45

Figure 3.11: In-
house build ultra
low noise ac voltage
amplifier with an in-
put voltage noise of
0.85 nV/

√
Hz and a

gain of 1000.





4 Amplitude and Intensity Interferometry

This chapter is intended to introduce some concepts used in both of the
next two chapters. We will focus on amplitude and intensity interferom-
etry and their relations. The notion of interferometry is for many people
connected with amplitude interferometry. As we will see in this chapter,
there are possibilities of higher order interference.

However, any interferometry has the same basic concept: The superposition
principle which follows from the Schrödinger equation for quantum me-
chanical wave functions as well as from the Maxwell equations for electro-
magnetic waves. It simply states that if we have two solutions of these
equations then the sum of them is a solution as well. On the other hand
this principle is not that visible in our daily life. Throwing stones onto a
wall with two holes ends up with two hills of stones behind every hole. The
only possible “transmission” processes for stones are either through hole 1
or through hole 2 but never through hole 1 and hole 2 at the same time.
The question where the border is which allows to use the superposition
principle or not led to famous cats as the one from Schrödinger[46–48].
The important point is the indistinguishablility of the two (or more) pro-
cesses which is strongly related to the question of detection resp. interaction
processes [49].

So let us consider a process1 ψ12 which consist in two indistinguishable
sub-processes ψ1 and ψ2 with a defined phase. The classical intensity or
the quantum mechanical detection probability are obtained by |ψ12|2. As
we will see, this quantity depends on the phase difference of the two sub-
processes.

In the following two sections the argumentation will be along [50].

1The complex quantity ψ describes in the following either an electro-magnetic wave or
a quantum mechanical wave function.
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4.1 Amplitude Interferometry

In amplitude interferometry, a beam of incoming electro-magnetic waves
or particles is split up into two possible paths described by their wave
functions ψ1 and ψ2. If we do not make an experiment in order to determine
which path has been taken, the wave function describing the process is the
sum of both indistinguishable paths, ψ12 = ψ1 + ψ2. The intensity resp.
probability I12 related to this process shows an interference pattern Iint:

I12 = |ψ12|2 = |ψ1|2 + |ψ2|2 + ψ∗1ψ2 + ψ1ψ
∗
2︸ ︷︷ ︸

Iint

. (4.1)

For well defined phases of ψ1 = α1e
iφ1 and ψ2 = α2e

iφ2 , the last two terms
can be written as Iint = 2α1α2 cos(φ2 − φ1), i. e. an interference pattern
results as a function of the phase difference. The amplitudes are given by
α1,2. If there is no defined phase relation, these two terms are averaged
over the phase and we end up with the classical result, I12 = |ψ12|2 =
|ψ1|2 + |ψ2|2, i. e. the sum of the probabilities of the processes 1 and 2.

An example of such an amplitude interferometer is the Michelson stellar
interferometer. We will not focus on the not at all trivial experimental
implementation, but concentrate on a simplified version (Fig. 4.1). Such
interferometers are widely used in astronomy as e. g. the Very Large Array
(VLA) in New Mexico, USA . In this simplified version the interferometer
is just a double slit geometry with two slits 1 and 2 which let interfere the
light of two point sources (e. g. stars) a and b. We are interested in their
angular separation ρ. The amplitude of the electromagnetic waves of the
two point sources in slit 1 is the sum of the contributions of both stars: ψ1 ∝
αeikr1a+iφa + βeikr1b+iφb . The wave in the other slit 2 is correspondingly:
ψ2 ∝ αeikr2a+iφa + βeikr2b+iφb . The distance between star a and detector
1 is r1a and due to the fact that both sources a and b are incoherent, i. e.
there is no defined relation between their phases, we have to add a random
phase φa. The wave number is given by k = 2π/λ. For the interference
term Iint = ψ∗1ψ2 + ψ1ψ

∗
2 we get after averaging over the random phases:

〈Iint〉 = 2|α|2 cos(ik∆ra) + 2|β|2 cos(ik∆rb), (4.2)
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Figure 4.1: Left : Measurement configuration with two incoherent point
sources (stars) spaced by R. The distance between the point sources and
the detectors is L� R. Right : Simplified version of a Michelson stellar inter-
ferometer.

i. e. we have a sum of two independent interference pattern of two inco-
herent sources. Without loss of generality let us assume that source a is
exactly in the axis of the interferometer, i. e. ∆ra = r2a − r1a = 0 and the
angle separation between the sources is ρ. The distance between the two
stars is R and the distance between stars and detector is L� R. Then the
difference in the distances of source b to both slits is ∆rb = r2b − r1b =
tan(ρ)d = R/L · d = ρ · d. By altering the distance between the two detec-
tors d, ∆rb is changed. This leads to a mutual shift of the two interference
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pattern and a periodical decrease of contrast. For k∆rb = π = 2π/λ∆rb
they wash out maximally the first time. This corresponds to a separation
of the two detectors of d = ∆rb/ρ = λ/2ρ. Increasing d further the two
interference pattern are again “in phase” before washing out again.

With this technique the angular separation ρ can be determined between
two point sources just by increasing the separation between the two inter-
ferometer slits d and observing the corresponding relative shift of the two
interference pattern. This technique is also expanded to a detection of the
angular diameter of one single source which can be treated as a sum of
several point sources. In this case there is an overlap of much more inter-
ference pattern and the first time they all wash out and the contrast goes
zero is for d = 1.22λ/ρ.

4.2 Intensity Interferometry

4.2.1 Electro-magnetic Waves

In the following the slit geometry is replaced by two detectors 1 and 2
at the former position of the slits. We still have two sources a and b far
away from the detectors as in the previous section. For each detector the
intensity is measured, for detector 1 we get

I1 = |ψ1|2 = |α|2 + |β|2︸ ︷︷ ︸
〈I1〉

+X · ei(φb−φa) +X∗ · e−i(φb−φa), (4.3)

with X = αβ∗ · eik(r1a−r1b). Averaging over the random phases of the two
incoherent sources a and b, we end up with the mean current 〈I1〉 = 〈I2〉 =
〈|α|2〉 + 〈|β|2〉 which is independent of any geometrical phases, i.e. inde-
pendent of the distance of the detectors.

However, correlating the intensities of both detectors first and then aver-
aging over the random phases gives the following interesting result:

〈I1I2〉 ∝ |α|4 + |β|4 + 2|α|2|β|2(1 + cos(k(∆ra −∆rb))) (4.4)

The same argumentation as in the discussion of the amplitude interfe-
rometer (Eq. 4.2) can be used again. The correlator of the intensities is
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Figure 4.2: Four different
different processes that con-
tribute to a simultaneous de-
tection of two photons at de-
tectors 1 and 2. Processes
(i) and (ii) can be distin-
guished, no interference pat-
tern establishes and their con-
tribution to a correlation mea-
surement corresponds to the
two first terms in Eq. 4.4. The
processes (iii) and (iv) are
quantum mechanically indis-
tinguishable and contribute
both with an amplitude pro-
portional to ∝ eik(r1a+r2b)

resp. ∝ eik(r1b+r2a).
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varying if the two detectors are separated on the same length scale of
d = ∆rb/ρ = λ/2ρ. Or in other words: The same information obtained
by the amplitude interferometer is now obtained by a correlation measure-
ment. This is not astonishing since the square root of interfering part Iint in
Eq. 4.1 (averaged over the random phases) is proportional to the correlator
〈I1I2〉:

〈I2
int〉 ∝ 2〈|ψ1|2|ψ2|2〉︸ ︷︷ ︸

2〈I1I2〉

+ 〈ψ∗21 ψ
2
2〉+ 〈ψ2

1ψ
∗2
2 〉︸ ︷︷ ︸

⇒0

. (4.5)

4.2.2 Quantum Mechanical Particles

Up to now the interference in the intensity-intensity correlator has been
treated for electro-magnetic waves. Quantum mechanical properties as the
behavior of a many-particle wave function under exchange of two indistin-
guishable particles have not been used.

Let us have a look at Fig. 4.2. The simultaneous detection of two photons
at detectors 1 and 2 can be divided in four different processes (i)-(iv) at the
sources a and b: (i) and (ii): Two photons are emitted at source a or b and



52 4 Amplitude and Intensity Interferometry

detected at each detector. (iii) source a emits a photon detected in detector
2 and source b emits a photon detected in detector 1. (iv) source a emits
a photon detected in detector 1 and source b emits a photon detected in
detector 2. The first two processes can be distinguished, no interference pat-
tern establishes and their contribution to a correlation measurement corre-
sponds to the two first terms in Eq. 4.4. For the processes (iii) and (iv) it is
different, they are quantum mechanically indistinguishable and contribute
both with an amplitude proportional to ∝ eik(r1a+r2b) resp. ∝ eik(r1b+r2a).
The superposition of this two possible processes gives rise to an interfer-
ence term which corresponds to the cosine term in Eq. 4.4. The behavior of
the many-particle wave function has also an influence on the distribution
function of the occupied states f(E). For particles that have a Fermionic
distribution function as electrons an interference term is expected as well,
however the signal in the two detectors will be anti-correlated. We will
come back to this point in Sec. 4.4.
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4.3 The Experiments by Hanbury Brown and Twiss

The Michelson stellar interferometer introduced in Sec. 4.1 has the draw-
back that it is very sensitive on processes as fluctuations of the atmosphere
that strongly affect the phase relation of the waves at the two mirrors.
Hanbury Brown and Twiss replaced the mirrors by photon detectors, mea-
sured the intensities at each detector and correlated them as described in
the previous section. This way they determined in 1950 the angular size of
radio wave sources as Cassiopeia A and Cygnus A. Intensity interferometry
with radio waves which were understood as classical electro-magnetic fields
was accepted at this time with an argumentation along Sec. 4.2.1. However,
if this technique was also working for light sources which send out photons
and where the particle picture has to be taken into account was not clear
at this moment.

Hence before measuring the angular size of the star Sirius, Hanbury Brown
and Twiss carried out a tabletop experiment where they used the light
of a thermal light source, a mercury vapor lamp, and separated it into
two beams by a half-silvered mirror [1]. With this technique they simply
placed the two detectors at different places in the beam and by varying the
distance between the detectors and the mirror the time separation τ was
changed. They found for times smaller than the coherence time τ � τc an
enhanced correlation while for τ � τc the events where completely uncorre-
lated. They measured a “bunching of photons”, i.e. the fact that for photons
emitted from an uncorrelated thermal source and measured at two close-by
detectors, the probability to measure a photon in the second detector is
enhanced when another one has been detected in the first one (within the
coherence time resp. length). Both the photon bunching and the interfer-
ence pattern stem from the same underlying fact, i.e. the symmetry of the
many-particle bosonic wave-function which is symmetric under exchange
of two particles, see also Sec. 4.4.

This fact was not very much accepted in the physical community and sev-
eral experiments were carried out to disprove them, e. g. [51]. Aware that
their tabletop experiment was working, Hanbury Brown and Twiss used
their correlation technique to determine the angular size of a natural light
source, the star Sirius, with a result of 0.0068′′ ± 0.0005′′ [2].
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4.4 Hanbury Brown and Twiss Experiments with Electrons

As we have seen above, the Hanbury Brown and Twiss effect for particles
emitted from a thermal light source can be derived in a classical electro-
magnetic wave picture or quantum mechanically as an interference of indis-
tinguishable two-particle processes. In the quantum mechanical treatment
the symmetry of the many-particle wave function goes in. As already men-
tioned by Feynman [52] one would expect a negative sign of the intensity-
intensity correlations for fermionic particles.

Indeed, the correlation of the incoming events in two detectors is governed
by the quantum statistical behavior of undistinguishable particles[28, 53],
when not considering interactions. For particles with occupation numbers
following Bose-Einstein-statistics as photons, the detection events are “in
time” and the correlation is positive (Photon Bunching). For electrons, on
the other side, the occupation is governed by Fermi-Dirac statistics and no
two electrons are detected at the same time. Hence, the correlation of the
signals is negative (Electron Anti-Bunching).

Let us have a closer look at the table top version of the Hanbury-Brown and
Twiss experiment [1] and the outcome of similar experiments with electrons
[6–9]. The basic configuration of such a device is shown in Fig. 4.3. The
particles are provided by a thermal light source or a degenerate electron
reservoir. The cross-correlation of the events in the two detectors, taking
into account the Fermionic resp. Bosonic aspects, is (Eq. (1.6) of Ref. [28]):

〈∆nT ∆nR〉 = ∓2T (E)(1− T (E))f2(E) (4.6)

The upper resp. lower sign stands for particles following Fermionic resp.
Bosonic statistics, T (E) is the transmission of the beam splitter at energy
E and f(E) is the corresponding distribution function of the mean occu-
pation numbers in the incident beam. The energy dependent probability
distribution of the occupation numbers is given by:

f(E) = 〈n〉 =
1

exp(E−µ
kBθ ) + a

, (4.7)

where µ is the electro-chemical potential and the parameter a depends on
the type of particles. a = 0 stands for classical particles while a = ±1 de-
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Figure 4.3: Basic setup for a correlation measurement with two detectors in
a beam with small transverse coherence length. (a) Incoming beam is split up
in a transmitted and reflected part. The fluctuations in both partial beams
are recorded and correlated. (b, c): The sign of correlation depends on the
statistics of the incoming particles.

scribes indistinguishable particles with Fermionic (upper sign) and Bosonic
statistics (lower sign). The anti-symmetric Fermionic wave function leads
to the Fermi-Dirac-distribution and the Pauli exclusion principle, i. e. zero
probability to find two Fermions with the same quantum numbers. For
Bosons, on the other hand, we get the Bose-Einstein distribution with an
enhanced probability to find more than one particle in the same state.
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The different statistics also show up in the fluctuations of the incoming
beam. For the variance we get:

〈∆n2〉 ≡ 〈n2〉 − 〈n〉2 = 〈n〉(1− a〈n〉) = f(1− af). (4.8)

Hence, for a Fermi distribution the variance is smaller than the mean value:
〈∆n2〉 = 〈n〉 − 〈n〉2 and goes to zero for a fully occupied stream at low
temperatures with 〈n〉 = 1. For Bosons, on the other hand, the variance is
higher than the mean value: 〈∆n2〉 = 〈n〉+ 〈n〉2. This is summarized in

〈n〉2 = f2 = ∓(〈∆n2〉 − 〈n〉). (4.9)

Combining equations (4.6) and (4.9) we get following dependence of the
cross correlations of the transmitted and reflected beam on the fluctuations
of the incoming beam:

〈∆nR∆nT 〉 = T (E)R(E) · (〈∆n2〉 − 〈n〉). (4.10)

For an incoming stream of Fermions at low temperatures with no fluctu-
ations, 〈∆n2〉 = 0, we expect negative correlations, for a beam of Bosons
positive ones. Finally, for an incoming beam of particles that are emit-
ted completely independently, the occupation numbers follow Poissonian
statistics, i. e. the variance is equal to the mean value and the correlation
of transmitted and reflected part is zero.

In other words: For particles with Fermionic statistics in the incoming beam
the simultaneous detection of a particle in any transmitted and reflected
beam is reduced in respect of an accidental coincidence while for Bosonic
statistics it is enhanced. Fermions anti bunch while Bosons bunch.

The dependence of the sign of the cross-correlation has also been measured
experimentally. In the already mentioned table top experiment of HBT [1]
positive correlations have been shown for photons. Corresponding experi-
ments for electrons have been realized decades later in 1999 [6, 7] showing
negative cross-correlations for electrons in a solid state environment. For
free electrons this has been shown in 2002 [9]. The experiment of Henny et
al. [6] uses a 2DEG in the edge state regime to implement electronic beams
in a solid state environment. The occupation probability for an occupied
state is 1 and 0 for an empty state. In an additional experiment, Ober-
holzer et al. [8] diluted the incoming stream ending up with a Poissonian
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distribution of the electrons for small transmission. As expected by Eq.
(4.10) the cross correlation went to zero.

4.5 Electron “Bunching” and Two-electron Interferometry

A general result of Ref. [28] is that for only taking into account the quantum
statistical behavior, the cross-correlations of the current fluctuations in a
multi-terminal Fermionic conductor are always negative. In this consider-
ation no interactions between the particles have been taken into account.
It is therefore interesting to ask which mechanisms could change the sign
of the cross-correlations. In chapter 5 the first measurement of positive
cross-correlation in a Fermionic environment is presented [11].

There are two effects in the intensity-intensity correlation experiments
based on the same fundamental background which is the symmetry of
a multi-particle wave function under exchange of indistinguishable iden-
tical particles [12]: (i) The sign of the correlation depends on the statistics
the particles obey. This has been experimentally shown [1, 6–9, 54]. (ii)
There is a two-particle interference effect in the intensity-intensity correla-
tions which is not seen in the intensity itself. This has been experimentally
shown for photons e. g. by measuring the angular size of Sirius by Han-
bury Brown and Twiss [2] and meanwhile for electrons as well by Neder et
al. [55].

The production of such a two-electron-interferometer along the lines of
Ref. [12] was the original goal of this thesis. A building block of such a
two-particle interferometer is a single-particle electronic Mach-Zehnder in-
terferometer. Measurement on such a device [56] are presented in chapter
6.





5 Positive Cross Correlations in a
Normal-Conducting Fermionic Beam Splitter

5.1 Introduction

5.1.1 Photon Bunching and Electron Antibunching

In the previous chapter it has been discussed that the cross correlations of
the particle fluctuations in the out-going leads of a beam splitter configu-
ration depend on the fluctuations in the incoming lead. These fluctuations
are related to the distribution function f of the occupied states. The dis-
tribution function depends directly on the behavior of indistinguishable
quantum particles under exchange. Furthermore it can be changed “man-
ually” as shown in Ref. [8], i. e. by diluting the occupation of an incoming
edge state by an additional gate. For photons the bunching effect is only
measured for thermal sources, while for lasers the distribution function is
Poissonian which corresponds to uncorrelated events at the beams splitter.
For single photon sources the cross correlations are even negative.

5.1.2 Electron “Bunching”

The discussion in the previous chapter led to Eq. (4.6) which is a conse-
quence of the exchange of indistinguishable quantum particles. Very of-
ten, transport can indeed be described by interaction free quasi-particles.
Through interactions between the electrons, however, transport in different
channels can become correlated in a positive way as well.

A beam splitter configuration to study such positive correlations in a nor-
mal-conducting environment has been proposed by Texier and Büttiker
[10]. Two spin degenerate edge states serve as transport channels. Fluctua-
tions in one channel are distributed on both channels by a controlled mixing
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of the channels by inelastic scattering. This mixing can be switched on and
off. In the following we will discuss the implementation of this proposal
[11, 57].

Meanwhile, there are other experiments in normal-conducting devices show-
ing positive cross correlations due to super-poissonian noise sources [58] or
capacitive interaction between the electrons [59].

Furthermore, in beam splitter configurations with spin-selective detection,
positive cross-correlations are expected as well. Electrons with opposite
spins are not affected by exchange effects. Spin-selective correlation mea-
surements should therefore be much more sensitive to interactions. Sauret
et al. [60] discuss spin bunching for a normal-superconducting-junction and
Cottet et al. [61] a three-terminal quantum dot with ferro-magnetic leads
where a spin dependent bunching of electrons leads to positive cross corre-
lations (dynamical spin blockade).

5.2 Sample

A simple sketch of the experimental setup is shown in Fig. 3.8. The samples
act as a beam splitter that splits up the incoming beam from contact 1
into two beams exiting to contacts 2 and 3. A detailed overview over the
realization of the beam splitter configuration as well as a scanning electron
microscope picture is given in Fig. 5.1.

The samples are based on a 2DEG in a GaAs/Al0.3Ga0.7As heterostructure
100 nm below the surface1. The 2DEG is contacted by four Ohmic contacts
(1-4) and the electron transport is controlled by three gates. Gates A and
B are quantum-point contacts (QPC) formed by metallic split gates (Fig.
5.1(c)). With gate C the contact to reservoir 4 can be tuned. For the
experiment two conduction channels are required. With an electron density
ne of 1.5 · 1011 cm2, two spin-degenerate edge states (filling factor ν = 4)
correspond to a magnetic field of 1.6 T. The mobility at zero magnetic field
was 380’000 Vs/cm2. The outer edge state is denoted with subscript (i), the

1The heterostructures have been grown by M. Giovannini from the group of J. Faist,
University of Neuchâtel, Switzerland
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Figure 5.1: (a): The entire sample can be seen as a beam splitter: The in-
jected current is split up in two parts with 50 % each. (b): Detailed schematics
of the sample and measurement setup. (c) Scanning electron mircoscope pic-
ture of sample.

inner one with with (ii). Edge state (ii) will be pinched off first by applying
a negative voltage to the gates A,B or C.

In former experiments with only one single spin-degenerate edge state and
no additional reservoir 4, it has been shown that the partitioning of such a
beam of Fermionic particles leads always to negative correlations between
the transmitted and reflected beam [6, 8]. As we show below, inelastic
scattering between the two transport channels in reservoir 4, can lead to
positive correlations between the current fluctuations in contacts 2 and
3.

Working with two edge states, the QPC’s are used for two different pur-
poses. The transport in an edge state with transmission T = 1 is ballistic
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and the current shows no fluctuations. Such a fully occupied transport
channel is “noise free”. By tuning the QPC’s to transmission T < 1 we
introduce current fluctuations by partitioning the current of the fully occu-
pied incident beam from contact 1 in a transmitted beam with probability
T and in a reflected beam with probability 1−T . The power spectral den-
sity of the resulting current fluctuations ∆I is given by (see also Eq. 2.44)
〈(∆I)2〉ω = 2G0T (1 − T )µ1. G0 = 2e2/h is the conductance quantum of
a spin-degenerate transmission mode and µ1 is the potential of contact 1
while contacts 2 and 3 are set to ground (µ2 = µ3 = 0). Secondly, the
QPC’s can be adjusted such that exactly one of the two edge states is com-
pletely transmitted while the the other one is completely reflected which
adds no noise to each beam. The main settings of the gates used in the
experiment and their impact on the behavior of the edge states are shown
in the left part of Fig. 5.2. They will be discussed below in more detail.

Adjusting gate B has been done in the following way (see Fig. 5.2(e)): Gate
A is open and a current I is injected at contact 1 while the contacts 2 and
3 are set to ground. Hence for the total current one gets I = I2 + I3 =
(T i

B + T ii
B)/2 + I3. The current in contact 3, I3/I = 1 − (T i

B + T ii
B)/2, is

measured as a function of gate B and plotted in the inset. A plateau at
I3/I = 1/2 is clearly visible indicating that the second edge state (ii) is
fully reflected (T ii

B = 0) while the first edge state (i) is still fully transmitted
(T i

B = 1). The transmission of gate A is determined similarly.

Two samples with different spacings between the gates A and B, 200 and
14µm, have been measured. They are denoted in the following with sample
1 and sample 2.

5.3 Measurement

5.3.1 Positive Cross Correlations

The settings for the gates in order to measure positive cross correlations are
sketched in Fig. 5.2(a)): Gate A is tuned such that the first (i) edge state
is transmitted completely (T i

A = 1) while the second (ii) edge state has
an arbitrary transmission 0 ≤ T ii

A ≤ 1. This leads to current fluctuations
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Figure 5.2: Sample 1 (Spacing between gates A and B: ∼= 200µm). (a)-(d):
Different settings for the gates A and B with the corresponding correlation
measurements (f). Occupation of the two edge channels is not dependent on
transmission of gate A, indicating the equilibration in reservoir 4.

∆I ii in this edge state which are characterized by their power spectral
density 〈(∆I ii)2〉ω = 2G0T

ii
A(1−T ii

A)µ1. Gate C is open and both edge states
enter the floating reservoir 4 with many modes. Due to inelastic scattering,
current as well as current fluctuations are equilibrated between the two
transport channels, i. e. the current fluctuations of the incoming, second
edge state ∆I ii

in are equally redistributed to both of the outgoing edge states
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resulting in ∆I ii
in/2 = ∆I ii

out = ∆I i
out. In this configuration (Fig.5.2(a))

Gate B is adjusted such that it separates the two edge states (i) and (ii) and
leads them to the contacts 2 and 3, respectively. The current fluctuations
in the edge states (i) and (ii) stem from the same scattering process at gate
A. Hence, the cross correlation between them is expected to be positive.
Its power spectral density 〈∆I2∆I3〉ω = 〈∆I i

out∆I
ii
out〉ω = 1/4〈(∆I ii

in)
2〉ω

divided by the Poissonian value 2e|I| (Fano factor) gives [10]:

〈∆I2∆I3〉ω
2e|I|

=
1
4
〈(∆I ii

in)
2〉ω

2e|I|
= +

1
4
T ii

A(1− T ii
A)

1 + T ii
A

. (5.1)

I = G0(1 + T ii
A)µ1/e is the total current through the device (injected at

contact 1 and led away at contacts 2 and 3).

Let us have a look on the measured data on sample 1 for gate C open.
The results are shown in Fig. 5.2(f). Gate A is set in the way that the
second edge state is transmitted with transmission T ii

A
∼= 1/2. According

to Eq. (5.1) the positive correlations have their maximal possible value for
T ii

A =
√

2− 1 = 0.414, see also the discussion part (Sec. 5.4). We see indeed
positive cross correlations (solid red circles in Fig. 5.2(f)). The solid line
indicates the the maximal possible value given by Eq. 5.1 for T ii

A = 0.41.
The dotted line in the same figure indicates the values for Poissonian noise
SP = 2e|I|.

5.3.2 Negative and Zero Cross Correlations

With the other three settings for the gates A and B, indicated in Fig. 5.2(b-
d), the cross correlation between the reservoirs 2 and 3 can be changed to
zero or negative values. Finite transmission of the second edge state at
gate B (0 < T ii

B < 1) leads to negative correlations due to the fermionic
particle nature [6, 8] of the electron (Fig. 5.2(b)). The maximal negative
value −1

8 · 2e|I| results for T ii
B = 0.5 and T ii

A = 0 or 1 (see also Eq. (5.2)
in the discussion part). This is indicated in Fig. 5.2(f) with the solid black
line, while the measured data are the solid black squares.

For transparencies T ii
A, T

ii
B ∈ {0, 1} (Fig. 5.2(c,d)) we always get zero cross

correlations. The corresponding measurements are the blue triangles in
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Fig. 5.2(f). The fully occupied edge states are either completely transmit-
ted or completely reflected and hence, no fluctuations are induced. This
indicates that inelastic scattering between two edge states alone does not
introduce any noise in the system.

5.3.3 Switching the equilibration On and Off

It is interesting to ask what happens when gate C is closed and contact 4 is
pinched off from the sample. This would prevent the two edge states from
equilibrating therein. In Fig. 5.2(e) the current reflected from gateB to
contact 3 is shown for gate C closed for sample 1 (with a spacing between
gates A and B of 200µm). It does not matter if gate A transmits one or
two (T ii

A = 0 or 1) edge states, in any case we see a plateau at 50 % of
the total current where gate B pinches off the second edge state. This is
a strong indication for current redistribution between the two edge states
along this path and it is in agreement with detailed studies on equilibration
lengths in the quantum Hall regime [62, 63]. I. e. independently of pinching
off reservoir 4 or not, there is always an equilibration between the two edge
states for sample 1.

Therefore, a second device (sample 2) has been made where the distance
between the two QPC’s is much shorter (14µm). For gate C closed no
equilibration between the edge states takes place anymore. This has been
measured the following way: In Fig. 5.3(a) gate C is open and the two edge
states can equilibrate in contact 4 and carry the same current, indepen-
dently of T ii

A. In Fig. 5.3(b) gate C is closed and the edge states cannot
equilibrate and the current in the second edge state (between gates A and
B) depends on the transmission of gate A. This is seen again by measuring
the reflected current in contact 3 for closing gate B. The position of the
plateau correlates with the distribution of the total current I to the two
edge states (after gate A).

This equilibration that shows up in the transport should also be visible
in the noise. Fig. 5.3(d) presents measurements with T ii

B = 0 (edge states
are separated at gate B and T ii

A = 0.41 (fluctuations are introduced at the
second edge state). With equilibration in contact 4 (gate C = 0.0V), the
correlations are positive (solid red circles) and in good agreement with the
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Figure 5.3: Sample 2 (Spacing between gates A and B: ∼= 14µm): With
the additional gate C the reservoir 4 can be pinched off (b) or not (a). Thus
equilibration between the two edge states can be controlled and is seen in the
occupation of the two channels (a, b) as well as in the current fluctuations
(d).

maximal positive correlation. If gate C is closed, the first edge state remains
noiseless (∆I i = ∆I2 = 0) and the correlator 〈∆I i∆I ii〉ω = 〈∆I2∆I3〉ω
vanishes (solid green squares). We thus have a “knob” which allows us to
turn on and off the positive correlations.

5.4 Discussion

For zero temperature, kθ = 0, the cross correlations between contacts 2
and 3 are described by (for a derivation, see Appendix A):

SI,23

2e|I|
= −

∑
T n

B(1− T n
B)

2
+

(
∑
T n

B)(2−
∑
T n

B)
4

·
∑
T n

A(1− T n
A)∑

T n
A

. (5.2)

The first term describes the negative contributions due to partitioning the
beam at gate B. They are maximally negative with−1/8·2e|I| for T i

A/B = 1
and T ii

A = 0 or 1 and T ii
B = 1/2. On the other hand we get the maximally

positive value of +(3/4 − 1/
√

2) · 2e|I| ∼= +0.043 · 2e|I| for T i
A = T i

B = 1
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(first edge state fully transmitted) and T ii
B = 0 (first and second edge state

separated at gate B) and T ii
A =

√
2− 1 = 0.414.

5.4.1 Positive Correlations

In Fig. 5.4(a) an overview over the results for positive correlations are shown
for the two samples 1 (solid boxes) and 2 (open boxes). The solid (red) line
indicates the expected cross correlations for T ii

B = 0, which means that
the edge states are completely separated at gate B. This can actually be
set quite accurate by measuring the reflected current and setting the gate
to the plateau. But already a small transmission of the second edge state
at gate B can reduce the positive correlation drastically. As shown in the
figure, a transmission of 2% (T ii

B = 0.02) leads to a reduction of 23% of the
maximally positive value while for T ii

B = 0.04 we get a reduction of 45 %
and for T ii

B > 0.09 the positive correlations vanish completely. This very
sensitive dependence on the transmission of the second edge state at gate
B might explain the deviations from theory.

If we assume that the first edge state is not fully transmitted at gate A e. g.
with T i

A = 0.96 while the second edge state is nevertheless transmitted with
T ii

A = 0.41 one can even get more positive correlations of 0.051 · 2e|I|.

5.4.2 Negative Correlations

Figs. 5.4(b) and (c) give an overview over the measurements of negative
correlations. In Fig. 5.4(b) both edge states are transmitted at gate A,
while for Fig. 5.4(c) it is only the first one, i. e. for T i

A = 1 or 0. The
solid line indicates the result expected by the theory (Eq. 5.2 with T i

A =
1). As for the positive correlations the measured data does not exactly
agree with theory. The dashed curves denote the changes that would occur
due to additional scattering at the first QPC A, yielding a small positive
contribution to the negative correlations [8]. However, the transmission
at A equals 0 or 1 (open gate) with quite high precision (∆T ii

A ≤ 0.03),
and we think that the deviations observed here are related to nonequal
transmissions of the two spin-polarized parts in the second edge state. The
dotted lines in Figs. 5.4(b) and (c) are the negative correlations for 20%,
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Figure 5.4: Discussion of the results for the two samples with spacing be-
tween the gates A and B of ∼= 200µm (solid symbols) and ∼= 14µm (open
symbols). (a): Positive correlations can be reduced for not completely sep-
arating the two edge channels at gate B and even enhanced for a not fully
transmitted first edge state at gate A (while the second one is transmitted
with T ii

A = 0.41). (b) and (c): Reduction of negative correlations due to an ad-
ditional scattering at gate A or non-equal transmissions of the spin-polarized
parts in the second edge state.

40%, and 100% unequal transmission (from bottom to top). For one spin-
polarized edge state totally transmitted and the other totally reflected, the
correlations would be zero for 〈T ii

B〉 = 0.5. From the data, we estimate that
the differences between the two transmissions are on the order of 20% -
40% of 〈T ii

B〉.



6 Electronic Mach-Zehnder Interferometer

6.1 Two-electron interferometer

In the previous two chapters we mentioned the experiments from Han-
bury Brown and Twiss [1, 2] which introduced an intensity-interferometer
that allows to determine the angular diameter of stellar objects. Let us
remember the basic principle of a HBT-interferometer: The intensity of
particles emitted by two independent sources are recorded in two detectors
and then correlated. There are two effects based on the same fundamen-
tal background, i. e. the symmetry of a multi-particle wave function under
exchange of indistinguishable identical particles [12]: (i) there is a two-
particle interference effect in the intensity-intensity correlations which is
not seen in the intensity itself. (ii) The sign of the correlation depends on
the statistics the particles obey. Bosonic statistics gives positive intensity
correlations which is often labeled as “bunching” while Fermionic statistics
leads to “anti-bunching”.

Around 40 years after the optical HBT-experiments which where published
in 1956, electronic equivalents have been realized in a solid state environ-
ment (2DEG) [6–8] and a few years later in a free electron beam from a
field emission source [9].

In these experiments an “anti-bunching” was measured due to the Fermionic
statistics but no two-electron interference pattern. Using the building blocks
of the successful realization of an electronic (single-particle) Mach-Zehnder
interferometer with edge states by Ji et al. [13]1, Samuelsson et al. [12] pro-
posed a two-electron interferometer (see Fig. 6.1). As in the Mach-Zehnder-
interferometer, edge states in a 2DEG (Sec. 2.5.3) serve as electron beams

1For more details see Sec. 6.2.2 and Fig. 6.2
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Figure 6.1: Two-electron
interferometer after a pro-
posal of Samuelsson et al.
[12]. It principally consists
in a combination of two
Mach-Zehnder interferome-
ters (Sec. 6.2.2 and Fig. 6.2),
as indicated by the grey
dashed line.

S2

S3
φ1

φ2

Φ

C

A

S8

S5

S1
S6

S4S7

D

B

φ3

φ4

and the half-silvered mirrors2 which serve as beam splitters in optical ex-
periments are replaced by quantum point contacts (Sec. 2.3.2).

In Fig. 6.1 the proposal of Samuelsson et al. [12] is shown for the measure-
ment of two-electron interference. It can be implemented in a 2DEG in
the integer quantum Hall regime and consists in a combination of two elec-
tronic Mach-Zehnder interferometers which will be discussed in more detail
in the next Sec. 6.2. In the proposed structure (Fig. 6.1), particles injected
at contact α and leaving the device at contact β can take only one single
path, in contrast to single-particle interferometers. In such a configuration
no single-particle interference can be measured. The conductance G52 from
contact 2 to contact 5 is simply given by the transmission probabilities of
the beam splitters A and C, G52 ∝ TATC . On the other hand, the zero
frequency cross-correlation Sαβ of the current fluctuations ∆Iα and ∆Iβ
shows a two-particle interference pattern: For currents injected at the two
sources S2 and S3, while all other reservoirs are set to ground and the
QPC’s have a transmission of 1/2, it is given by ([12])

S58 = −(e2/4h)|eV |[1 + cos(φ1 + φ2 − φ3 − φ4)]. (6.1)

2A glass-plate coated with a very thin metal layer such that 50% of the intensity is
transmitted and reflected.
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φa denotes the phase accumulated along path a = 1, 2, 3, 4. For a simul-
taneous detection of one electron at contact 5 and another one at contact
8, two quantum-mechanically indistinguishable two-electron processes con-
tribute: (i) One electron from 2 to 8 and one from 3 to 5 or (ii) one electron
from 2 to 5 and one from 3 to 8. The amplitudes of these two processes are
proportional to exp[i(φ3 + φ4)] and exp[i(φ1 + φ2)] which gives rise to the
cosine-term in Eq. (6.1). Their phase difference can also be changed by a
variation of the enclosed magnetic flux leading to a two-particle Aharonov-
Bohm effect.

In a Mach-Zehnder interferometer, interference effects are already seen in
the conductance while for the two-electron interferometer they only show
up in intensity correlations. Compared to conductance measurements, cor-
relation measurements are much more complex. The signal is much smaller
which leads to time consuming averaging processes. In order to produce
such a two-source electron interferometer the same technical challenges
have to be overcome as for a single-particle Mach-Zehnder interferometer.
These are e. g. the small working Ohmic contacts in the middle of the sam-
ple or the free-standing bridges (Sec. 3.3 and 3.4.2). Hence, in this thesis
a Mach-Zehnder interferometer has been produced in a first step before
realizing a two-source electron interferometer, which has meanwhile been
implemented successfully by Neder et al. [55].

6.2 Optical and Electronic Mach-Zehnder Interferometers

6.2.1 Optical Mach-Zehnder Interferometer

Following the historical development we start with optical Mach-Zehnder
interferometers, which owe their name to their inventors. The first Mach-
Zehnder interferometers were build independently in the years 1891 and
1892 by Zehnder [64] and Mach [65]. A schematics is shown in Fig. 6.2.
A monochromatic light beam emitted in source S1 is split up by a beam
splitter3 (A) in a transmitted and reflected part. These two beams are
guided by additional mirrors (M1, M2) to a second beam splitter (B)

3E. g. a half-silvered mirror.
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Figure 6.2: Left : Schematic view of an optical Mach-Zehnder interferometer.
The monochromatic light beam emitted from source S1 is divided by the
beam splitter A into a transmitted and reflected part. Guided by mirrors
(M1, M2) the two parts are recombined at the second beam splitter B and
again partitioned into the detectors D3 and D4. The intensity in D3 and
D4 depends on the difference of the phases φ1,2 accumulated along the two
paths. Right : Corresponding electronic Mach-Zehnder interferometer setup
implemented in a two-dimensional electron gas defined within the dashed
lines. Chiral edge states serve as electronic beams, quantum point contacts
as beam splitters. Additionally, the sample is penetrated by a magnetic flux
Φ leading to an additional Aharonov-Bohm phase [24] difference between the
two paths. The situation is shown for filling factor ν = 2 where interferometer
is based on the outer edge state while the inner one is fully occupied in the
upper arm and completely empty in the lower one.

where they are recombined. Finally, the intensity I = |ψ|2 is measured in
either detector D3 or D4. The complex amplitude ψ of the wave passing
the interferometer is, in the coherent case, the sum over the amplitudes
of the two paths 1 and 2. The scattering process at the beam splitters A
and B can be described by the following unitarian scattering matrix (for
the scattering approach also see Sec. 2.4.3) which links the two in- and
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outgoing beams of the splitter4:

sk =
( √

Tk i
√
Rk

i
√
Rk

√
Tk

)
, (6.2)

where Tk and Rk = 1−Tk are the transmission and reflection probabilities
at beam splitters k = A,B. The amplitudes for the scattering processes
from source S1 to detector D3 resp. D4 are given by the superposition of
the two scattering processes through the paths 1 and 2:

s31 =
√
TATBe

iφ1 −
√
RARBe

iφ2

s41 = i
√
TARBe

iφ1 + i
√
TBRAe

iφ2 . (6.3)

The intensity respectively the particle current in the detectors is propor-
tional to the total transmission. I. e. we get

ID3 ∝ T31 = s∗31s31 = TATB +RARB−2·
√
TATBRARB cos(φ1−φ2) (6.4)

and

ID4 ∝ T41 = s∗41s41 = TARB+TBRA+2·
√
TATBRARB cos(φ1−φ2). (6.5)

Hence, the intensity in D3 and D4 is dependent on the difference of the
phases accumulated along the two paths while the total intensity Itot =
ID3 + ID4 is constant due to current conservation. In other words, by mo-
dulating the phase difference, an interference pattern in the intensity is
measured.

6.2.1.1 Visibility of the Interference Pattern

The describing quantity of the interference pattern is its visibility v̂, which
is typically defined as the difference between the maximal and the minimal

4The formalism of the scattering matrices can be used for the half-silvered mirrors of
the optical interferometer as well as for the quantum point contacts of the electronic
version presented in Sec. 6.2.2.
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signal divided by their sum. For a signal with a functional dependence as
I(∆φ) = Imean +A · cos(∆φ) we get:

v̂ =
Imax − Imin

Imax + Imin
=

2 ·A
2 · Imean

. (6.6)

Using Eqs. (6.4),(6.5) and (6.6), we get for a fully coherent interferometer
the following visibilities in the detectors D3 and D4:

v̂D3 =
4
√
TATBRARB

2 · (TATB +RARB)
; v̂D4 =

4
√
TATBRARB

2 · (TARB + TBRA)
. (6.7)

Using the definition of the visibility given above, i. e. dividing two times

Figure 6.3: The visibility of
a coherent interferometer as
a function of the transmis-
sions of the point contacts:
v = 4

√
TATBRARB . Around

its maximal value for TA =
TB = 1/2 the visibility is rela-
tively stable compared to the
fast decay for nearly open or
closed point contacts.
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the amplitude A of the fluctuation part of the current by two times its
mean value Imean, gives the unsatisfactory result that we get different visi-
bilities for the same interferometer when measuring the current in different
detectors D3 or D4 due to their in general different mean current5 but not
due to any decoherence process.

That is why we divide in the following two times the amplitude A of
the fluctuating part of the signal by the total injected current Itot =
Imean,3 + Imean,4 in order to get a detector independent visibility of the
interferometer:

v(TA, TB) = vD3 = vD4 =
4 ·
√
TATBRARB

TATB +RARB + TARB + TBRA
=

= 4 ·
√
TATBRARB. (6.8)

5Only if one of the two beam splitters has transmission T = 1/2, the mean currents
are equal.



6.2 Optical and Electronic Mach-Zehnder Interferometers 75

The dependence of the visibility of a coherent interferometer v(TA, TB) on
TA and TB is shown in Fig. 6.3. Even the visibility of a coherent interfero-
meter is reduced for transmissions of the beam splitters 6= 1/2.

However we are interested in degree of coherence of the MZ-interferometer.
Hence, in order to study an interferometer which is not fully coherent
we define a measured visibility v∗, which is the product of the visibility
v(TA, TB) of a coherent interferometer and a factor η describing any kind
of loss of coherence due to e. g. an applied DC bias VDC , temperature θ,
etc.

v∗ = v(TA, TB) · η(VDC , θ, ...). (6.9)

We call this factor η the intrinsic visibility.

6.2.1.2 Historical Comment

The aim of Zehnder and Mach was to build an interferometer where they
could study the change of the refraction index for different states of matter.
They needed a spatial separation of the two paths such that e. g. their
temperature can be set independently. This was not possible at that time
with the interferometer of Jamin [66] which consists basically in two thick,
parallel glass plates where the light is reflected on both sides of the plates
(Fig. 6.4). The distance of the two paths depends on the thickness of the
glass plates. Increasing its size makes the experimental realization more
and more difficult. This problem has been overcome in the design of the
Mach-Zehnder interferometer.

Figure 6.4: The Jamin
Interferometer [66] consists
basically in two thick, par-
allel glass plates where the
light is reflected on both
sides of the plates. The dis-
tance d of the two paths de-
pends on the thickness of the
glass plates.
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6.2.2 Electronic Mach-Zehnder Interferometer

An electronic version of a Mach-Zehnder interferometer [13] serving the
condition that the electrons traverse the interferometer only once is shown
schematically in Fig. 6.2 and in a scanning electron microscope picture in
Fig. 6.5. The edge states in a 2DEG at the interface of a GaAs/GaAlAs-
heterostructure in a strong perpendicular magnetic field (Sec. 2.5.3) are the
electronic equivalent to the light beams in the optical implementation. For
the beam splitters, the half-silvered mirrors are replaced by quantum point
contacts defined with split gates (Sec 3.2). Ohmic contacts to the 2DEG
serve as electron sources and detectors (S1, S2, D3, D4) (Sec 3.3). They
can be viewed as electron reservoirs with many modes coupled to this few
mode conductor in the edge state regime.

Unlike the optical version, the electronic one with an area A perpendic-
ular to a magnetic field B, is penetrated by the magnetic flux Φ = BA.
Increasing or decreasing the flux by one flux quantum h/e changes the
phase difference between the two paths enclosing the area A exactly by
2π (Sec. 2.6 and Ref. [24]). This gives the possibility to study the interfer-
ence pattern by smoothly changing the magnetic flux. The dimension of an
electronic Mach-Zehnder interferometer is in the range of several microns.
That is why changing the flux by h/e would require a control over the
magnetic field in the range of the resolution of the current power supply
of the magnet6. Hence two other methods were used to vary the flux: (i)
a small change of the area induced by a modulation gate or (ii) using the
decay of the magnetic field in the persistent mode which changes the flux
in the range of h/e per hours. Method (i) is used to study the visibility of
the oscillations while method (ii) is much too slow and serves mainly to
connect the oscillations to the magnetic flux.

6For an area A = 36µm2 a change of the magnetic field of 100µT varies the flux by
one flux quantum h/e. Taking 100 points per oscillation would require a control of
the magnetic field around 1 µT.
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6.2.2.1 An Electronic Mach-Zehnder interferometer at Filling Factor
ν = 2.

All measurements in this chapter are carried out at filling factor ν = 2,
i. e. in a configuration with two spin-polarized edge channels. As in the
previous chapter 5, the inner channel is labelled by (ii) and the outer one by
(i). Oscillations have only been observed for partitioning the outer channel
while this was not the case for partitioning the inner one. In this range
both QPC’s show up many resonances (Fig. 6.6).

The current, injected at contact 1 (I1) and measured at contact 3 (I3), has
been detected by a bias modulation technique (see als 3.6.2) and can be
written as follows where µ1 = eV is the potential at contact 1 respect to
ground (µ3 = µ4 = 0):

dI1 =
2e2

h

dµ1

e
=

2e2

h
dV (6.10)

dI3 = T31dI1 =
2e2

h
(
T31,i + T31,ii

2
)︸ ︷︷ ︸

T31

dV (6.11)

with (x = i, ii)

T31,x = TA,xTB,x +RA,xRB,x − 2 ·
√
TA,xTB,xRA,xRB,x cos(∆φ). (6.12)

In other words, the transmission T31 is calculated from the differential
conductance dI3

dV as following:

T31 =
T31,i + T31,ii

2
=

h

2e2
· dI3
dV

(6.13)

One QPC completely closed

In the specific case for completely closing one QPC, e. g. QPC B (TB,i =
TB,ii = 0) we get T31,i = 1− TA,i, T31,ii = 1− TA,ii, i. e.

T31 =
1
2
(T31,i + T31,ii) = 1−

(TA,i + TA,ii)
2

= 1− TA. (6.14)

The situation when QPC A is completely closed is described by exchanging
A and B.
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Partitioning the outer edge channel i, pinching off the inner edge
channel ii

In the specific case for partitioning the outer channel i while pinching off
the inner one (TA,ii = TB,ii = 0, T31,ii = 1) we get

〈T31,i〉 = TA,iTB,i + (1− TA,i)(1− TB,i) (6.15)
T31,i = 2 · T31 − 1. (6.16)

This is the configuration for all measurements in this chapter.

6.2.2.2 Loss of Phase Coherence

A decrease or a loss of phase coherence due to interactions with the en-
vironment is equal to an averaging over the phase and has an influence
on the interference term of the intensity. The averaging depends on the
frequency of the perturbation. We deal with phase averaging if the single
transmission events are still coherent, but the relative phase is randomized
between them. In such a regime, the measurement in Ref. [16] are carried
out. A random change of the phase difference δφ results in random fluctu-
ations of the signal with the same magnitude as without phase averaging,
hence a “visibility” can still be defined.

On the other side, we have complete dephasing or decoherence if the phase
difference is not defined for a single transmission event.

The paths of our interferometer have a length L of approximately 15µm.
The drift velocity vD in edge states is around 50’000 m/s [67]. The dwell
time τd of an electron in the interferometer is τd = L/vD ≈ 0.3 ns. This
corresponds to a frequency of τ−1

d = 3.3GHz. The measurement is how-
ever much slower. The averaging of the lock-in amplifier is given by the
chosen time constant of 100 ms, we average over 300 · 106 electrons for one
measurement point.
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6.2.3 Visibility of a Asymmetric Coherent Interferometer

The assumption of a completely monochromatic beam of electrons is not
realistic. Finite temperature and bias always result in electrons with ener-
gies E away from the Fermi level EF (see Ref. [68]). Such electrons acquire
an additional energy dependent phase ∆φ ≈ (Li/~vD)E along each path
Li, where vD stands for the drift velocity of the electrons. For an interfe-
rometer with a path length difference ∆L this results in a dependence of
the phase difference on applied bias eV and temperature θ. That is why,
even for a fully coherent interferometer, a reduction in the visibility is ex-
pected with finite bias and temperature. The characteristic energy scale
on which a decay of the visibility is seen is related to the path length
difference, Ec = ~vD/∆L. The decay of the visibility for a fully coherent
MZ-interferometer with path length difference ∆L is given by [68]:

v̂ =
4 ·
√
TATBRARB

TARB + TBRA
× kBθπ sinh−1

(
kBθπ

Ec

)
︸ ︷︷ ︸

→Ec (for θ→0)

1
eV

∣∣∣∣sin(
eV

2Ec

)∣∣∣∣︸ ︷︷ ︸
→ 1

2Ec
(for V →0)

. (6.17)

For a completely symmetric interferometer, where Ec � kBθ, eV , no re-
duction of the visibility is expected and Eq. (6.17) equals Eq. (6.7). Ad-
ditionally, the differential visibility is expected to be independent on the
applied bias.

In the calculations in Ref. [68] the loss of phase coherence is introduced
theoretically by a dephasing voltage probe [37, 69–71]. It results in a mul-
tiplication of Eq. (6.17) with a bias independent factor that is 1 for no
dephasing and 0 for complete dephasing.

6.3 Sample

In Fig. 6.5 an experimental realization of the theoretical proposal in Fig. 6.2
is shown. We use a two-dimensional electron gas at the interface of a Ga-
As/Al0.3Ga0.7As-heterostructure. It is situated 120 nm below the surface7.

7The 2DEG has been provided by J. Weis from MPI Stuttgart, Germany
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Figure 6.5: Scanning electron microscope picture of an electronic Mach-
Zehnder interferometer realized in a two-dimensional electron gas. For a
schematic figure see Fig. 6.2. Left : Side view with free-standing bridges. Right :
Top view before evaporating the bridges (indicated by the dashed line). The
two quantum point contacts A and B consisting in split gates connected by
a free-standing bridge serve as beam splitters. Detector D4 is a small Ohmic
contact in the center of the interferometer which is set to ground via an-
other bridge. The area of the interferometer is slightly modulated by gate
MG resulting in an magnetic flux dependent phase difference between the
two paths.

The electron density is 1.6 · 1011 cm−2 and the mobility 1.7 · 106 cm2/Vs at
4.2K without illumination.

6.3.1 Ohmic Contacts and Mesa Definition

The 2DEG is connected to the measurement setup by Ohmic contacts
(Sec. 3.3). Source S1 and detector D3 have a “conventional” size of 150 ×
200µm where it is feasible to bond on (Sec. 3.1.6). Source S2 and detector
D4 are situated in the center of the interferometer. They are realized by a
single contact with a size of one micron. The production of reliable working
contacts of this size is much more dependent on process parameters than
bigger Ohmic contacts in the size of hundreds of µm (see also Sec. 3.3).
Another challenge is to connect this small contact to the measurement
setup. In order not to touch and influence the surrounding two-dimensional
electron gas, this connection is established with a free-standing gold bridge
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(see Sec. 3.4.2 and Fig. 6.5). The mesa has been defined by usual wet-etching
technique (Sec. 3.1.5).

6.3.2 Gates

Beam splitters A and B have been realized by split gates or so called
quantum point contacts, i. e. two metal electrodes that electrostatically
form a barrier with a tunable transmission (Sec. 2.3.2). In order to apply the
same potential on both sides of the split gates, they have been connected by
a free-standing bridge (Sec. 3.4.2) made by the same technique and in the
same step as the one connecting the small inner Ohmic contact (Sec 3.3).

The size of the area that is penetrated by the magnetic field is controlled
by the modulation gate MG that slightly shifts the edge states. Changing
the gate voltage by several millivolts alters the magnetic flux by h/e which
corresponds to a full oscillation in the transmission of the interferometer.

6.4 Measurement

6.4.1 Quantum Point Contacts

A Mach-Zehnder interferometer consist basically in two beam splitters A
and B. While the first one splits up the incoming beam into two parts,
they are recombined again in the second one.

6.4.1.1 Characterization of the Quantum Point Contacts

In order to correctly adjust the quantum point contacts, their transmissions
TA and TB has been measured independently (Fig. 6.6). The current is
always injected in contact S1 while D3 and D4 are set to ground. For both
QPC’s open or closed, the total injected current directly flows from S1 to
D3. On the other hand, for one QPC closed while keeping open the other
one, the total injected current is directed from S1 to D4.
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Figure 6.6: Transmission of
the individual QPC’s at filling
factor ν = 2. The transmis-
sion T31 from source to drain
is recorded for either QPC A
or B closed an connected to
the individual transmissions by
Eq. (6.14): TA/B = 1

2 (TA/B,i +
TA/B,ii) = 1 − T31. On the
plateau the inner (ii) spin po-
larized edge state is pinched off
while the outer (i) one is trans-
mitted. QPC B does not com-
pletely open for zero gate volt-
age.
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Thus measuring the transmission T31 for either QPC A or B closed, gives
the possibility to identify the individual transmissions of the QPC’s. The
determination of TA for completely closed QPCB (TB,i = TB,ii = 0) follows
from (Eq. 6.14): TA = 1− T31. For QPC B the procedure is analogue. See
Fig. 6.6.

In Fig. 6.7 the transmission of the QPC’s is plotted only in the range were
the inner channel is already reflected (TA/B,ii = 0). Thus, the transmission
of the gate corresponds with the transmission of the interferometer by
TA/B,i = 1− T31,i.

6.4.1.2 Dependence of Transmission of the Quantum Point Contacts
on DC bias

The transmission of the two QPC’s A and B is affected differently by an
additional DC bias. (for the experimental setup see Sec. 3.6.2). QPC A is
completely independent of the DC bias as shown in Fig. 6.7(a). On the
other hand, the transmission of QPC B is dependent on the DC bias, as
shown in Fig. 6.7(b). However, this dependence is constant over time as
discussed in the next section.
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Figure 6.7: (a): TA,i for different values of the DC bias between -40 (blue)
and +40(red)µV in steps of 10µV, indicating no DC dependence of QPC A.
The curves are offset for clarity. (b) Same color scheme of TB,i for different
DC bias voltages, again the curves are offset. Note that different to QPC A
the transmission for a fixed gate voltage is DC bias dependent.
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Figure 6.8: (a): Energy dependence of TA,i at VQPCA = −0.65 V and TB,i at
VQPCB = −0.33 V. This values are determined from the data in Fig. 6.7. (b):
Scattered symbols: Mean transmission 〈T31,i〉 through the MZI as a function
of bias voltage with the gate voltage of QPC B fixed to VQPCB = −0.33 V
and for different settings of QPC A corresponding to the transmissions TA

= 0.13, 0.5, 0.76 and 0.96. Solid lines: Calculated values using the data in
Fig. 6.7(a) and (b) and Eq. 6.15.
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6.4.1.3 Single QPC-Transmissions versus Mean Transmission of the
Interferometer

In order to measure an interference pattern, both QPC’s have been set
to transmissions of the outer edge state TA,i and TB,i between 0 and 1.
Doing so, we have no direct access anymore to the individual transmissions
TA,i and TB,i, but only to the mean transmission 〈T31,i〉 = TA,iTB,i + (1−
TA,i)(1− TB,i) as given in Eq. (6.15).

Hence we have to check the validity of Eq. (6.15) for various transmissions
of the QPC’s as well as for different DC biases. The procedure was the
following:

1. The QPC’s have been characterized by recording the individual trans-
missions TA,i as a function of gate voltage and applied DC bias while
QPC B was closed followed by the analogue procedure for TB,i (as
described in Sec. 6.4.1.1). The relation between transmission and ap-
plied gate voltage was DC bias independent for QPC A (Fig. 6.7(a))
while it was not the case for QPC B (Fig. 6.7(b)). This DC bias
dependence of TB for a fixed gate voltage of VQPCB = −0.33V is
exemplified in Fig. 6.8a. Please be aware that in Fig. 6.7 the trans-
mission is plotted versus gate voltage while in Fig. 6.8 it is plotted
versus DC bias!

2. In Fig. 6.8b the mean transmission 〈T31,i〉 is plotted as a function
of DC bias for four different transmissions of QPC A while the gate
voltage of QPC B was held constant (-0.33 V). The scattered symbols
are the measured 〈T31,i〉 while for the solid lines the transmissions TA

and TB have been separately determined (Fig. 6.7) and then combined
by 〈T31,i〉 = TA,iTB,i + (1− TA,i)(1− TB,i), showing clearly that the
relation between gate voltage and transmission is defined even for
gate settings (0 < TA/B,i < 1) where we have no direct access to the
individual transmissions.

After doing so we have a simple way to access the transmission of
QPC B for non-zero DC biases: TB,i = (〈T31,i〉−1+TA,i)/(2·TA,i−1).
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6.4.2 Interference Pattern

Please note that in the following the inner edge channel (ii) is always
pinched off and the gates are always set such that the transmissions for the
outer edge channel (i) are 0 ≤ TA/B,i ≤ 1.

6.4.2.1 Oscillations in the Transmission of the Interferometer

The current in the outer edge state (i) of a completely coherent electronic
MZ-interferometer is proportional to ID3,i ∝ T31,i = TA,iTB,i +RA,iRB,i −
2 ·

√
TA,iTB,iRA,iRB,i cos(∆φ), hence the transmission from S1 to D3 is

a function of the phase difference ∆φ between the lower and the upper
arm. This phase difference depends on the geometry and on the magnetic
flux enclosed by the two arms. A small variation of the modulation gate
MG (see also Fig. 6.5) slightly shifts the edge state in the lower arm. This
reduces the area A that is enclosed by the two interferometer arms and
therefore the magnetic flux Φ = BA penetrating this area. For filling fac-
tor ν = 2 the corresponding field is 3.55 T. The area A is approximately
37.5µm2 which gives a total flux of BA = 1.33 ·10−10 Tm2. The number of
flux quanta h/e that contribute to the flux is BA/(h/e) ≈ 32000. The area
of one flux quantum at 3.55 T is h/(eB) ≈ 1200 nm2. The transmission of
the interferometer from S1 to D3 versus sweeping the modulation gate is
shown in Fig. 6.9, top left. The period of one oscillation is about 35 mV.

The oscillations in the transmission are measured as a function of the mod-
ulation gate MG. In principle, the oscillations could also be due to an effect
that only depends on a change of the electro-statical environment around
the gate and not on a change of the magnetic flux itself. Not a proof but
a strong hint that indeed the magnetic flux is changed, is the time evolu-
tion of the phase of the oscillations. This is shown Fig. 6.9, bottom, where
the oscillations as a function of the modulation gate have been repeatedly
measured for hours. The only quantity that alters slowly during this time is
the magnetic field of the superconducting magnet in the persistent mode,
which slowly decays in time. This leads to a slow change of magnetic flux
and finally to a change of the phase of the interference pattern. A shift
of the phase of 2π which corresponds to a reduction of the magnetic flux
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Figure 6.9: Top, left : Oscillations in the transmission in the outer edge
state (i) from source S1 to detector D3 as a function of the modulation
gate MG that decreases the enclosed magnetic flux between upper and lower
arm of the interferometer and therefore changes the phase difference. One
period is around 35 mV. Top, right : Determination of the amplitude of the
oscillations. The histogram of the oscillating part of the current I(x) = A ·
sin(x) is proportional to h(y) = 1/(2π

√
1− (y/A)2) (red solid line). Bottom:

Oscillations as a function of modulation gate and time. The slight shift in time
corresponds to the decay of the magnetic field of the magnet in the persistent
mode and is one flux quantum h/e (resp. a shift in the phase difference of
2π) per 6 hours. The phase of the interferometer is stable for hours.

by h/e takes approx. 6 hours. The magnetic field has to be changed by
h/(eA) ≈ 110.2µT in order to add or subtract a flux quantum. Hence, the
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decay of the magnetic field is 18.4µT/h which is a relative decay per day
of ∆B/B = 1.24 · 10−4. In Ref. [13] the decay rate was 120µT/h at a field
of 5.5 T while in Ref. [15] 20µT/h at a field of 3.27 T has been reported.

6.4.2.2 Determination of the Visibility v∗ of the Oscillations

Several methods have been tested in order to determine the amplitude of
the oscillations in an automatic and systematic way. A first method was a
least mean square fit of a sine function into the data. However, a least mean
square fit is very sensitive to the starting values of the fitting parameters.
Bad starting conditions make the fitting process very time consuming. In
addition, a slight increase of the period of the oscillations due to a slight
change of “effectiveness” of the modulation gate, i. e. the relation between
gate voltage and change of the area of the interferometer, makes a fit even
more difficult.

The second method used was fast Fourier transform (FFT). Its advantage
is that it is very fast, however it requires a stable phase. Phase jumps or
a slight change of period broadens the peak in the Fourier space which
disturbs the determination of the amplitude. In addition, the number of
recorded oscillations was often to small in order to get a sharp FFT-
signal.

The most stable method in order to get the amplitude of the oscillations was
to make a histogram of the oscillating part of the current I(x) = A · sin(x).
This gives the following form of the histogram:

h(y) ∝ C · d(arcsin(y/A))/dy = C/(2π
√

1− (y/A)2). (6.18)

Fitting this formula into the histogram of the measurement data with
fitting parameters C and A returns the amplitude A of the oscillations.
Two times the amplitude A divided by the total AC current injected in
one edge state, IAC,tot = h/e2 · VAC results in the measured visibility
v∗ = 2A/IAC,tot. See also Sec. 6.2.1.1.
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Figure 6.10: Fit of
Eq. (6.17) onto the data of
the dependence of the visi-
bility on temperature. The
fit results in a characteristic
energy of Ec = 4.1 · 10−25 J
= 2.6µV = 30mK.
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6.4.2.3 Visibility versus Temperature

In Fig. 6.10 the temperature dependence of the amplitude of the oscillations
is shown including a fit of Eq. 6.17 into the data. The applied AC bias has
been fixed to 1µV. However, increasing the AC bias up to 10µV, the result
for the characteristic energy was the same: Ec = 4.1 · 10−25 J = 2.6µV =
30 mK. This would correspond to a path length difference [68] between
∆L = ~vD/Ec = 2.6µm (vD = 10’000 m/s) and 13µm (vD = 50’000 m/s)
[67].

6.4.2.4 Visibility versus DC Bias

Decay of Visibility v∗ with Time at Positive DC Bias

In order to characterize the stability of the visibility v∗ it has been measured
as a function of time for constant DC biases. For positive DC bias voltages
over +40µV the visibility decayed for staying at the DC voltage for a
certain time (Fig. 6.11, left). This decay is enhanced for higher DC voltages.
So all measurements versus DC bias have been done in the following way:
Starting with VDC = 0µV the DC bias has been changed symmetrically
around 0µV: 0, -1, +1, -2, +2, ..., -60, +60µV. After every measurement
of visibility the DC voltage has been driven to 0µV. The reason might be
a heating effect or a change of TA or TB with time.
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Figure 6.11: Left: For DC bias values higher than +40µV the visibility
started to decrease with time. Right: DC bias dependence has been mea-
sured as follows: Starting with VDC = 0µV the DC bias has been changed
symmetrically around 0µV: 0, -1, +1, -2, +2, ..., -60, +60µV. After every
measurement of visibility the DC voltage has been driven to 0.

Decay of Visibility v∗ with DC Bias

In Fig. 6.11, right side, a typical dependence of the measured visibility v∗

on a symmetrically changed DC bias is shown. v∗ decays with increasing
negative and positive DC bias similar to the measurements reported in
Refs. [13, 14, 72]. In Ref. [13], the decay of v∗ with DC bias has no additional
features. In Ref. [14], additionally to the decay, v∗ shows a lobe structure,
i. e. goes several times to zero and reappears again. In Ref. [72], v∗ only
one lobe has been seen. In our measurement there is an “attempt” of a
lobe structure between 20 and 30µV. In addition, v∗ is not maximal for
VDC = 0. In order to study this behavior in more detail, we measured the
dependence of v∗ not only at transmissions T ≈ 1/2 but in a wider range
(Sec. 6.4.3).

Shift of Phase of the Oscillations with DC bias

In Fig. 6.12, a color plot of the oscillations as a function of DC bias is shown.
The transmission of the point contacts was TA ≈ 0.50 and TB ≈ 0.56. For
an increasing DC bias the phase of the oscillations shifts to lower values
of the modulation gate. Different from Neder et al. [14], no phase jumps of
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π are seen. This dependence of the phase shift on the DC bias does not
change for different transmission of TA. The phase is shifted by 2π for an
change of DC bias of approx. 20µV.

Figure 6.12: Color plot of
the oscillations as a function
of DC bias. Different from
Neder et al. [14], no phase
jumps of π are seen. The
phase is shifted by 2π for an
change of DC bias of approx.
20µV. This dependence of
the phase shift on the DC
bias does not change for dif-
ferent transmission of TA.
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We can understand this as an electrostatic gating from the inner edge
state to the outer one. The inner edge-state ii in the outer arm of the
MZI is also biased to VDC and electrostatically influences the chemical
potential in the outer edge-state i, which is the one taking directly part
in the interference. The electrostatic phase is the given by α2eVgateL/~vD,
where Vgate equals VDC , vD = 104 − 5 · 104 m/s is the drift velocity[67],
L = 15µm the arm length of the interferometer, and α the gate coupling
efficiency. With the measured values, our experiment is consistent with α =
0.14...0.75 depending on the exact (but unknown) drift velocity. Because
of the close-proximity of the edge states, a large coupling is plausible. The
strong electric coupling between the edge-states may provide a channel
for dephasing as proposed by Levkivskyi and Sukhorukov [73]. In their
theory the excitations are dipolar and charged edge magnetoplasmons. This
theory results in a dephasing rate which is inversely proportional to the
temperature θ, which was confirmed recently [74]. A similar dependence
was also derived for a single channel when screening was taken into account
in a self-consistent manner [75]. In the latter model, dephasing is caused by
intrinsic phase fluctuations, driven by the thermal bath. A related concept
of intrinsic dephasing in a single channel has been put forward in two other
papers recently [76, 77].
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Figure 6.13: Left : The visibility v∗ as a function of transmission of the first
QPC TA,i and DC bias. QPC B was hold fixed at a transmission of TB,i

= 0.56. The red line (half circle) corresponds to a visibility v(TA,i, TB,i) ∝√
TA,i(1− TA,i) and a constant intrinsic visibility η. The data is in qualitative

agreement for 0 and ±5µV. For higher biases the maximum is shifted to the
more open side of QPC A. A second feature is that also the absolute maximum
of the visibility is higher for biases around ±10µV than at 0µV. Right : The
intrinsic visibility η = v∗/v(TA,i, TB,i) as a function of transmission TA,i and
DC bias. The red line corresponds to the one in the left figure. η is increased
in respect to the zero bias value for transmissions TA,i close to 1 (open QPC)
and decreased for TA,i close to zero (closed QPC).

6.4.3 Dependence of the Oscillations on DC bias and Transmission of
the QPC’s

6.4.3.1 “Half circle”

The visibility v∗ of the oscillations has been measured for different trans-
missions and DC biases. One QPC was held fixed while sweeping the trans-
mission T of the other one from 0 to 1. This has been done for different DC
voltages. One would expect a behavior of the visibility v ∝

√
T (1− T ) as

shown in Fig. 6.3. In other words, one would expect a constant η(TA,i, TB,i)
as a function of the QPC transmissions. However, QPC A and B behave
differently. QPC B shows nearly the half-circle structure in v∗ respectively
an almost constant η(TA,i, TB,i) (Fig. 6.14). QPC A however shows such a
dependence only for small biases. Increasing the bias shifts the maximum
of the visibility from TA,i ≈ 1/2 to higher transmissions.
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What do the two point contacts differ in? Taking into account the chirality
of the edge states, QPC A is the first QPC which determines the occupation
of the two interferometer arms. QPC B, on the other hand, determines how
the current is partitioned into the detectors D3, resp. D4 (together with
QPC A). Is this asymmetry a feature of a single QPC or it is a feature of
a different dephasing in the two interferometer arms? A simple check is to
reverse the magnetic field which changes the direction of transport in the
edge states, which is done in the following subsection.

Another source of dephasing can be excluded: There might be an equili-
bration (heating) process for higher biases at the small inner contact D4
destroying the phase coherence. However, such a process would depend in
the amount of current flowing into D4. But the dependence of the visibil-
ity on DC bias and QPC A qualitatively does not depend on the trans-
mission of the second QPC B, as shown in Figs. 6.13 (TB,i = 0.56), 6.15
(TB,i = 0.35− 0.40) and 6.16 (TB,i = 0.75). I. e. it does not depend on the
current flowing into the small inner detector D4.
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Figure 6.14: Left : The visibility as a function of the transmission the second
QPC TB,i and DC bias. Right : The corresponding intrinsic visibility η.

Reversing the Magnetic Field

By driving the magnetic field from +3.55 T to −3.55T, transport is still
governed by two spin-polarized edge states (filling factor ν = 2). However,
due to the chirality of the electron transport in magnetic fields, the k+- and
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Figure 6.15: Corresponding measurements to the ones shown in Fig. 6.13,
but with TB,i = 0.35 − 0.4. The asymmetry of QPC A does not depend on
the settings of QPC B.
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Figure 6.16: Corresponding measurements to the ones shown in Fig. 6.13,
but with TB,i = 0.75. The asymmetry of QPC A does not depend on the
settings of QPC B.
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k−-states have switched the side of the sample. In Fig. 6.2 the detector D3
and source S1 contact are now inverted. The DC bias is applied toD3 = S3
and the current leaving the interferometer is detected at S1 = D1. In both
configurations the small inner contact D4 is held on ground potential.
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Figure 6.17: The same measurement as shown in Fig. 6.13 in reversed mag-
netic field. Formerly been the “first” beam splitter at +3.55T with an asym-
metric dependence of the visibility versus transmission, QPC A is now the
“second” one at -3.55 T with an almost symmetric half-circle.
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Figure 6.18: The same measurement as shown in Fig. 6.14 with reversed
magnetic field. Formerly been the “second” beam splitter at +3.55T with an
symmetric dependence of the visibility versus transmission, QPC B is now
the “first” one at -3.55 T with a deviation of the half-circle dependence.

In order to prevent confusion, the labeling of the two beam splitters QPC A
and QPC B is not changed for the reverse magnetic field. In the previous
measurements for B = +3.55T, QPC A is the “first” one which determines
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the occupation of the two paths, TA,i, resp. 1 − TA,i. The “second” QPC
B controls8 the current that flows into the detectors D3 and D4, as given
by Eqs. (6.4) and (6.5). In a reversed magnetic field, B = −3.55T, the
function of the QPC’s is consequently changed. Now, QPC B determines
the occupations of the two paths while QPC A has only an influence on
the partition of the current to the two detectors.

In the previous measurements for B = +3.55T the two beam splitter
behave differently. While variation of the “first” QPC A shows a deviation
of the expected half-circle behavior (Fig. 6.3) for finite DC bias (Fig. 6.13),
this is not the case for the “second” QPC B (Fig. 6.14). In a reversed
magnetic field, the roles of the QPC’s change and QPC B is now the “first”
one while QPC A is the “second” one.

Figs. 6.17 and 6.18 represent the data of the same type of measurements
of the visibility and intrinsic visibility as shown in Figs. 6.13 and 6.14 but
in reversed magnetic field. As observed previously, a variation of the “first”
QPC, now QPC B, results in a deviation from the expected half-circle
structure while this is not the case for the second one, now A. We can
thus conclude that this deviation is not a feature of a single QPC but
an intrinsic property of the interferometer. Independent from the direction
of the magnetic field, in both cases it is the “first” QPC (regarding the
direction of transport in the edge states) that gives rise to an unexpected
asymmetry in the dependence of the visibility on the QPC transmission at
finite DC bias.

As it is the first QPC which determines the occupation of the two arms
of the interferometer, one should consider the question if there could be
an asymmetry in the two arms. At filling factor ν = 2 where two spin-
polarized edge states run in parallel, only the outer edge state is partitioned
by the first QPC and recombined by the second one. The inner edge state,
however, is pinched-off by both QPC’s. Thus, in the upper arm the inner
edge state is always fully occupied and on potential eV which is applied to
source S1 while in the lower arm the inner edge state is empty and on the
potential of the inner contact S2/D4 (see Fig. 6.2 and 6.5).

8Together with QPC A.
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For non-zero DC bias the intrinsic visibility η increases when the QPC
is changed from 1/2 to values close to 1. With a transmission close to
1 the outer edge state of the lower arm is fully populated. In case that
the transmission is very low, a decrease of η is observed for non-zero DC
bias. In this situation it is the outer edge state of the upper arm which is
fully occupied. In other words: for almost both edge states in the upper
arm completely occupied and both edge states in the lower arm completely
empty, the visibility of the interferometer is lowest, while the visibility is
maximal in the case that the outer and inner egde-states are unequally
occupied.

6.4.3.2 Dependence of the Visibility on DC-Bias

By plotting the visibility v∗ as function of DC bias for different QPC trans-
missions, we can point out in a more pronounced way the fact that the
measured visibility v∗ as well as the intrinsic visibility η increase for non-
zero DC bias for values of an almost open first QPC (Fig. 6.19). In several
publications the visibility v∗ is measured against VDC or VAC for a trans-
mission of the QPC’s of 1/2 [13–16]. In this regime the measured visibility
v∗ is a measure of the intrinsic visibility η of the interferometer because
v = 4

√
TATBRARB = 1 (see Eqs. 6.8 and 6.9), which is not the case for

transmissions 6= 1/2. It is interesting to compare v∗ and η as done in
Fig. 6.19 where the second QPC B was held constant around TB,i ≈ 0.5
while the transmission of the first QPC A an the DC bias were varied.
While the main features as the dip at zero DC bias or the side peaks
around 30µV remain, the curves are rescaled for η. As it can be seen in
the lower left part of Fig. 6.19, the intrinsic visibility η at zero DC bias is
independent of the QPC transmissions. When the DC bias is increased the
intrinsic visibility rises for an open first QPC while it decreases for small
transmissions.

6.5 Discussion

In this chapter an electronic Mach-Zehnder interferometer implemented
with edge states in a 2DEG has been presented. The measurements have
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Figure 6.19: Upper and lower left: Measured visibility v∗ and intrinsic visi-
bility η as a function of DC bias for different transmissions of the first QPC A
while the second QPC B was fixed to transmission TB,i ≈ 0.5. η at zero DC
bias is independent of the QPC transmissions. Right: The measured differen-
tial transmission through the MZI as a function of VDC for the corresponding
transmissions of QPC A. The phase evolution of the oscillations is clearly
visible.

been carried out at filling factor ν = 2 and the measured visibility v∗ has
been studied for the full range of transmissions T of the QPC’s A and B
and different DC bias.

The visibility dependence on the QPC-transmission is different for the first
A and second QPC B. For the second one, which has no influence on the
occupation of the interferometer arms, the measured visibility v∗ is propor-
tional to

√
T (1− T ) which corresponds to a constant, transmission inde-

pendent intrinsic visibility η (Eq. (6.9)). In contrast, the measured visibility
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v∗ as a function of the transmission of the first QPC shows a deviation from
this half-circle dependence for DC biases higher than VDC = ±5µV. This
deviation is independent of the sign of the DC bias. The intrinsic visibility
η is not constant as for QPC B, but decreased for small transmissions and
increased for transmissions close to 1. Note that the first QPC controls the
occupation of the outer edge state in both arms: For transmission 0 the
upper arm is completely filled and its electro-chemical potential equals the
one of source S1. The lower one is empty and on ground potential. For
transmission 1 it is the other way round. In summary, the intrinsic visibil-
ity η is higher for different potentials between inner and outer edge-state
compared to the case that the two edge states are on equal potentials.

The reason for such a behavior is not understood at the moment. In a
model proposed in [78] for filling factor ν = 2, time dependent fluctuations
(noise) in the inner edge state decrease the visibility of the interferometer
based on the outer edge states. These fluctuations are maximal for a half-
filled inner edge state but zero for an empty or fully occupied inner edge
state. In our case the inner edge states are always completely filled (upper
arm) or empty (lower arm) and therefore noise-free. Hence, in this model
they should not destroy the phase coherence at all.

The discussed behavior of the intrinsic visibility η can also be plotted dif-
ferently, i. e. versus DC bias for different transmissions of the first QPC
while the transmission of the second one is kept constant (Fig. 6.19). The
intrinsic visibility as a function of DC bias reveals for small transmissions
of the first QPC a lobe-type structure qualitatively similar to the ones re-
ported in [14, 16], where the QPC’s were always adjusted to transmission
1/2. By increasing the transmission of the first QPC above 1/2, like we did
here, the intrinsic visibility at finite DC bias (±10−15µV) rises above the
value at zero DC bias.

The visibility of an electronic Mach-Zehnder interferometers is very sen-
sitive to the surrounding environment. Provided they are understood in
more detail and there is no “unexpected behavior” anymore, they will be
nice sensor devices to probe the physics of edge states. In addition, they
might be coupled in a controlled way to other phase coherent systems in
order to study their decoherence.



Appendix A

Scattering Matrix for the Positive Cross
Correlation Experiment presented in Chapter 5
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For S24 and S34 we get zero while for S44 we get in an similar calculation where the only non zero scattering
matrix elements are γ, δ ∈ {1, 2}:

S44 =
2e2

h
(
∑

n

(Tn
A(1− Tn

A)))(|µ1 − µ2|) =
2e2

h
(
∑

n

(Tn
A(1− Tn

A)))(eV ). (A.10)

For the conductances we get

G24 =
e2

h
(N2δ24 − Tr{s†24s24}) =

e2

h
((1− T i

B) + (1− T ii
B )). (A.11)

A similar calculation gives G34 = (e2/h)(T i
B + T ii

B ) and G44 = 2e2/h. Combining these results in Eq. A.5,
we get:
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With T i
A = T i

B = 1 we finally get Eq. 12 in [10]:
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Appendix B

Recipes for Sample Preparation

This chapter is a collection of short recipes used for sample preparation.

B.1 Electron Beam Lithography

B.1.1 Hard- and Software

• Hardware: LEO Supra 35 from LEO Elektronenmikroskopie GmbH, Germany
• Software: Elphy Plus from Raith GmbH, Germany

B.1.2 Resists

• PMMA 950 K, AR-P671.09 from Allresist GmbH, Germany
• PMMA-MA, AR-P619.08 from Allresist GmbH, Germany

B.1.3 Resist Preparation

• PMMA 950 K: Diluting with chlorbenzene in order to decrease the resist thick-
ness. Starting with a ratio of 1:1. Increasing the amount of chlorbenzene until
wanted resist thickness reached

• PMMA-MA: No dilution

B.1.4 Spinning and Bake-out Single Layer

• Fixing sample on spinner
• Applying small amount of PMMA 950 K
• Starting spinning process. Parameter: Ramp: 4 s; Speed: 4000 rpm/s; Time: 40 s
• Bake-out in oven: 30min at 175 ◦C
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B.1.5 Spinning and Bake-out Double Layer

• Fixing sample on spinner
• Applying small amount of PMMA 950 K
• Starting spinning process. Parameter: Ramp: 4 s; Speed: 4000 rpm/s; Time: 40 s
• Bake-out in oven: 60min at 175 ◦C
• Fixing sample on spinner
• Applying small amount of PMMA-MA
• Starting spinning process. Parameter: Ramp: 8 s; Speed: 8000 rpm/s; Time: 40 s
• Bake-out in oven: 60min at 175 ◦C

B.1.6 Exposure

• Exposure doses for PMMA thickness 600 nm
– Magnification M30; Writefield WF 2000µm; Area Step Size: 160 nm; Dose:

350µC/cm2

– M240; WF 250µm; ASS: 20 nm; Dose: 250µC/cm2

– M600; WF 100µm; ASS: 20 nm; Dose: 250µC/cm2

• Exposure doses for PMMA thickness 200 nm
– M30; WF 2000µm; ASS: 160 nm; Dose: 250µC/cm2

– M240; WF 250µm; ASS: 20 nm; Dose: 160µC/cm2

– M600; WF 100µm; ASS: 20 nm; Dose: 160µC/cm2

B.1.7 Development

• Developer: Mixture of 4-Methyl-2-pentanone (MiBK) and 2-propanol / isopropanol
(IPA) in a ratio of 1 : 3 (plus 1.4% of 2-butanone/ethyl-methylketone (MEK))

• Development time: 45 - 120 s
• Stopping Development: Isopropanol 30 s

B.1.8 Lift-Off

• Lift-Off in hot acetone (50 ◦C)
• If necessary: Smoothly flushing with a syringe.
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B.2 Wet Etching

• Sample Cleaning: 3 h at 70 ◦C in Microposit Remover 1165 from Shipley, USA
• Rinsing in Ethanol 30 s
• Rinsing with DI-water 30 s
• Application of resist PMMA 200 nm/ Electron beam lithography / Developing

Resist
• Etching with teflon tweezers in H2SO4 : H2O2 : H2O = 3 : 1 : 100

• Etching rate is very dependent on temperature; From around 100 nm/min at
32 ◦C to around 115 nm/min at 33.5 ◦C.

• Etching rates are not that precise. A residual layer of PMMA or different etching
rate from the cap layer (GaAs) and the donor layer (GaAlAs) might influence
the result.

B.3 Reactive Ion Etching

This values are “machine-dependent”. Make your own test. We used a Plasmalab 80 Plus
from Oxford Instruments, UK.

• Base pressure before starting process: 3.0 · 10−5 mbar
• Process pressure for plasma: 300mTorr
• RF power 50W
• Valve position for O2: 16%
• Etching rate for PMMA: 1 nm/s

B.4 Gates

• Application of PMMA 600 nm/ Electron beam lithography / Developing Resist
• Reactive Ion Etching (oxygen-plasma) to remove residual PMMA: 15 nm
• Metalization in Balzers evaporator

– Sample holder cooled down to 0 ◦C by liquid nitrogen
– Evaporation of titanium 40Å/ gold 600Å

• Lift-Off
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B.5 Ohmic Contacts

• Wafer-Cleaning
– approx. 5min ultrasonic in acetone
– rinsing with acetone
– approx. 5min ultrasonic in isopropanol
– rinsing with isopropanol

• Application of PMMA 600 nm/ Electron beam lithography / Developing Resist
• Reactive Ion Etching (oxygen-plasma) to remove residual PMMA: 30 nm
• Cleaning with strong alkaline solvent (SemicoClean) 2min / DI-Water 5 s / HCl-

Dip 5 s / DI-Water 5 s
• Metalization in Balzers evaporator

– Sample holder cooled down to 0 ◦C by liquid nitrogen
– Evaporation Au/Ge/Ni

∗ Cross Correlation Experiment (Ch. 5): Recipe M1
∗ MZ-interferometer Experiment (Ch. 6): Recipe M3

• Lift-Off
• Annealing

– Cross Correlation Experiment (Ch. 5): Recipe A1
– MZ-interferometer Experiment (Ch. 6): Recipe A3

B.5.1 Metalization Recipes

Recipe M1 Recipe M2 Recipe M3
Ni 60Å Ni 60Å Au 1460Å
Au 500Å Ge 400Å Ge 720 Å
Ge 200Å Au 600Å Ni 545Å
Au 600Å Ni 200Å
Ni 300Å Au 500Å

Table B.1: Different metalization recipes mentioned in Sec. 3. The materials
are evaporated from top to bottom.
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B.5.2 Annealing Recipes

Recipe A1 Recipe A2 Recipe A3
300 s 120 ◦C 60 s 120 ◦C 120 s 370 ◦C
120 s 410 ◦C 60 s 400-480 ◦C 50 s 440 ◦C
30 s 490 ◦C 2 s 100 ◦C

Table B.2: Different annealing recipes mentioned in Sec. 3.

B.6 Free-Standing Bridges

• Application of double layer PMMA 200 nm – PMMA-MA (see B.1.5)
• Electron Beam Lithography: Exposing: M600; ASS 20 nm; Dose: 120µC/cm2 (Pil-

lar) and 40µC/cm2 (Bridge)
• Metalization in Balzers evaporator

– Sample holder cooled down to 0 ◦C by liquid nitrogen
– Evaporation Titanium 25Å; Gold 3500Å

• Lift-Off





Publications

• S. Lindemann, T. Ihn, E. Bieri, T. Heinzel, K. Ensslin, G. Hacken-
broich, K. Maranowski and A. C. Gossard, Bouncing states in quan-
tum dots. In: Phys. Rev. B, 66, 161312 (2002)

• A. Dorn, E. Bieri, T. Ihn, K. Ensslin, D. Driscoll and A.C. Gossard,
AFM-defned antidot lattices with top- and back-gate tunability. In:
Physica E, 22, 749 (2004)

• A. Dorn, E. Bieri, T. Ihn, K. Ensslin, D. Driscoll and A.C. Gossard,
Interplay between the periodic potential modulation and random back-
ground scatterers in an antidot lattice. In: Phys. Rev. B, 71, 035343
(2005)

• S. Oberholzer, E. Bieri, C. Schönenberger, M. Giovannini and J. Faist,
Positive Cross Correlations in a Normal-Conducting Fermionic Beam
Splitter. In: Phys. Rev. Lett., 96, 046804 (2006)

• E. Bieri, M. Weiss, O. Göktas, M. Hauser S. Oberholzer and C.
Schönenberger, Unexpected finite-bias visibility dependence in an elec-
tronic Mach Zehnder interferometer, submitted (2008),
cond-mat/0812.2612v1





Talks and Poster Contributions

• S. Oberholzer, E. Bieri, M. Giovannini, J. Faist, and Ch. Schönen-
berger, Positive Cross Correlations in a Normal-Conducting Fermionic
Beam Splitter, Poster at the International Conference of Nanoscience
and Technology (ICN+T) 2006, Basel, Switzerland, July 31 - August
4, 2006

• E. Bieri, S. Oberholzer and C. Schönenberger, Noise and Interference
Experiments with Edge States, Talk at the Annual Meeting of the
Swiss Physical Society, Zürich, February 20-21, 2007,

• E. Bieri, M. Weiss, O. Göktas, M. Hauser, S. Csonka, S. Oberholzer
and C. Schönenberger, Interference Experiments with Edge States: An
Electronic Mach-Zehnder Interferometer, Invited Talk at the Max-
Planck Institut für Festkörperforschung, Stuttgart, November 19, 2007

• E. Bieri, M. Weiss, O. Göktas, M. Hauser, S. Csonka, S. Oberholzer
and C. Schönenberger, Interference Experiments with Edge States: An
Electronic Mach-Zehnder Interferometer, Invited Talk in the Seminar
of the Departement de Physique Theorique at University of Geneva,
Geneva, November 27, 2007





Folgenden Dozentinnen und Dozenten verdanke ich meine wissenschaftliche
Ausbildung:

R. Allenspach, J. Bernasconi, K. Ensslin, G. M. Graf, P. Günter, W. Hun-
ziker, H. Knörrer, J. Marti, H.-R. Ott, F. Pauss, T. M. Rice, K. Simon, E.
Trubowitz, G. Wüstholz, E. Zehnder
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