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Abstract. This work is the third part of a series of papers. In the first two

we considered curves and varieties in a power of an elliptic curve. Here we

deal with subvarieties of an abelian variety in general.
Let V be an irreducible variety of dimension d embedded in an abelian

variety A, both defined over the algebraic numbers. We say that V is weak-

transverse if V is not contained in any proper algebraic subgroup of A, and
transverse if it is not contained in any translate of such a subgroup.

Assume a conjectural lower bound for the normalized height of V . Then,

for V transverse, we prove that the algebraic points of bounded height of V
which lie in the union of all algebraic subgroups of A of codimension at least

d + 1 translated by the points close to a subgroup Γ of finite rank, are non
Zariski-dense in V . If Γ has rank zero, it is sufficient to assume that V is

weak-transverse. The notion of closeness is defined using a height function.

1. introduction

All varieties we consider in this article are defined over Q and we consider only
algebraic points. Denote by A an abelian variety of dimension g. Consider an
irreducible algebraic subvariety V of A of dimension d. We say that

• V is transverse, if V is not contained in any translate of a proper algebraic
subgroup of A.
• V is weak-transverse, if V is not contained in any proper algebraic subgroup

of A.
Given a subset V e of V , an integer k with 1 ≤ k ≤ g and a subset F of A, we

define the set

(1) Sk(V e, F ) = V e ∩
⋃

codB≥k

(B + F ),

where B varies over all abelian subvarieties of A of codimension at least k and

B + F = {b+ f : b ∈ B, f ∈ F}.

We denote the set Sk(V e,TorA) simply by Sk(V e), where TorA is the torsion of A.
Nowadays a vast number of theorems and conjectures claim the non-density of sets

of the type (1). Among others, we recall the Manin-Mumford, Mordell, Mordell-
Lang, Bogomolov and Zilber Conjectures. For more literature one can, for instance,
refere to [7] and [19].
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Let L be a symmetric ample line bundel on A. Consider on A the semi-norm || · ||
induced by the L-Néron-Tate height. For ε ≥ 0, we define

Oε = {ξ ∈ A : ||ξ|| ≤ ε}
Note that in the literature, often, the notation Oε corresponds to the set {ξ ∈ A :
||ξ||2 ≤ ε}. Let Γ be a subgroup of finite rank in A. We denote Γε = Γ +Oε.

Following Bombieri, Masser and Zannier [3], [4], [5], one can state the following:

Conjecture 1.1. There exists ε > 0 such that:
i. If V is weak-transverse, then Sd+1(V,Oε) is non Zariski-dense in V .
ii. If V is transverse, then Sd+1(V,Γε) is non Zariski-dense in V .

For ε = 0, this conjecture part ii. is a special case of a conjecture by Zilber and
by Pink. In view of several works, at present, it is clear that such a conjecture can
be split in two parts: one for the height and the other for the non-density property.

Conjecture 1.2 (Bounded Height Conjecture). There exists ε > 0 and a non
empty Zariski-open V u ⊂ V such that:

i. If V is weak-transverse, then Sd+1(V u,Oε) has bounded height.
ii. If V is transverse, then Sd+1(V u,Γε) has bounded height.

For θ ≥ 0, we denote
V (θ) = V ∩ Oθ.

Conjecture 1.3 (Non-density Conjecture). For all reals θ, there exists an effective
ε > 0 such that:

i. If V is weak-transverse, then Sd+1(V (θ),Oε) is non Zariski-dense in V .
ii. If V is transverse, then Sd+1(V (θ),Γε) is non Zariski-dense in V .

These conjectures are optimal with respect to the codimension d+ 1 of the alge-
braic subgroups.

In the present work, we focus our attention on the Non-density Conjecture. In
section 5.3, we prove:

Theorem 1.4. Conjecture 1.3 i. and ii. are equivalent.

That i. implies ii. is quite elementary. The other implication is delicate. It is
worth to note that, on the contrary, Conjecture 1.2 i. and ii. are not equivalent. It
is true that i. implies ii., but the reverse does not hold in general.

In their work, Bombieri, Masser and Zannier present a method to tackle the non-
density question based on the use of the Siegel Lemma and of the Generalized
Lehmer Conjecture. In our previous works [17] and [18] we present a different
method for varieties in a power of an elliptic curve. Our method avoids Siegel’s
Lemma and the Generalized Lehmer Conjecture. We use instead Dirichlet’s The-
orem and an effective version of the Bogomolov Conjecture. Here we extend our
method to subvarieties of abelian varieties in general.

The essential minimum of a variety is defined as

µ(V ) = inf{ε > 0, V (ε) = V } ,

where V (ε) is the Zariski closure of V (ε). The Bogomolov conjecture, proven by
Ulmo [16] and Zhang [20], claims that if V is not a union of translates of abelian
subvarieties by torsion points, then µ(V ) > 0 .

For θ ≥ ε, Sd+1(V (θ),Oε) ⊃ Sg(V (θ),Oε) = V (ε). Then, for weak-transverse va-
rieties, Conjecture 1.3 i. implies an effective lower bound for the essential minimum
of V . Here, we are going to prove a strong reverse implication: an effective lower
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bound for the essential minimum of transverse varieties implies Conjecture 1.3. For
V transverse, we need a lower bound for µ(V ), which is the abelian analogue of [2]
theorem 1.4.

Conjecture 1.5 (Effective Bogomolov Conjecture). Let (A,L) be a polarized abelian
variety. For all transverse subvarieties V of A of dimension d and for all η > 0

µL(V ) ≥ c0(A,L, η)(degL V )−
1

dim A−d−η,

where c0(A,L, η) is a positive constant depending on A, L and η.

Our main result is:

Theorem 1.6. Conjecture 1.5 implies Conjecture 1.3.

In a preprint Galateau [9] shows that Conjecture 1.5 holds under certain hypothesis
on (A,L), verified for instance for a product of elliptic curves with the natural line
bundle. Then, in these cases we unconditionally prove Conjecture 1.3.

Even if our theorem is often conjectural, a nice aspect is that the codimension
of the algebraic subgroups is the optimal d + 1. No other known methods, even
conjectural (for example assuming the generalized Lehmer’s Conjecture) give such
an optimal result, at least for ε > 0.

To prove our main theorem, we first approximate an algebraic subgroup with a
subgroup of degree bounded by a constant. This part is an extension of the method
introduced in [17] for the ring Z, to the ring of endomorphisms of an abelian variety.

The second step is to show that each intersection is non-dense. The proof relies
on Cojecture 1.5 and on some properties of the stabilizer. This approach differs
from the one adopted in [17] and [18].

The structure of the article is as follows. We first fix the notation and definitions.
In chapter 3 we approximate the morphisms. In chapter 4 we prove the non-density
of each intersection, under the assumption of Conjectur 1.5. In chapter 5 we prove
a sequence of simplifications which lead to the proof of our main theorem.

Acknoledgments: I kindly thank the referee for his suggestions.
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2. preliminaries

2.1. The ambient variety. In the first instance we analyse the ambient variety.
Statements on the boundness of heights and on the non-density of sets are invariant
under an isogeny of the ambient variety. Namely, given an isogeny J : A → A′

between abelian varieties over Q, Conjecture 1.3 (as well as 1.1 and 1.2) holds for
V ⊂ A if and only if it holds for J(V ) ⊂ A′. We want to fix a convenient isogeny
which simplifies the setting.

Powers of simple abelian varieties behave quite similar to powers of elliptic curves,
up to some extra technicality. A general abelian variety shall then be regarded as a
product of such powers. In view of the decomposition theorem, an abelian variety
A is isogenous to a product Ag11 × · · · ×Agn

n where the Ai are non isogenous simple
abelian varieties of dimension di. Thus we can assume

A = Ag11 × · · · ×Agn
n .

Note that the dimension of A is
∑
i digi.

In order to take advantage from the results on powers of elliptic curves, we often
need to decompose our objects according to the decomposition of A in power of
simple factors.

Given a multi-index r ∈ Nn we denote by

Ar = Ar11 × · · · ×Arn
n ,

where we simply forget the i factor if ri = 0. Then A = Ag for g = (g1, dots, gn).

2.2. Morphisms and their norm. The ring of endomorphisms of Ag is far more
complicated than the one of an elliptic curve. However, it is a free Z-module of
finite rank. Let Ei be the ring of endomorphism of Ai. This is a free Z-module
of rank ti. We denote by τ i1, . . . , τ

i
ti a set of integral generators of Ei. Then, a

morphism φi : Agi

i → Ari
i is identified with a ri × gi matrix with entries in Ei.

Since the simple factors of Ag are not isogenous, for r ∈ Nn,

Hom(Ag, Ar) ∼= Matr1×g1(E1)× · · · ×Matrn×gn
(En).

More precisely, a morphism φ : Ag → Ar is identified with a block matrix

φ = [φ1, . . . , φn] =

 φ1 . . . 0
. . .

0 . . . φn


with φi : Agi

i → Ari
i .

The Rosati involution defines a norm | · | on Ei. The Z-module (Ei, | · |) is a lattice.
Note that we can identify Ei either with an order in a number field or with a

quaternion ring. In an order, the Rosati-norm is identified with the standard Eu-
clidean norm in C. On the other hand, a quaternion ring can be identified with a
ring of matrices with entries in an order. Then, the Rosati-norm of a is the trace
of aā.

For φi : Agi

i → Ari
i , we define |φi| as the maximum of the (Rosati-) norm of its

entries. Note that |φ| = maxi |φi|.
We finally remark that there are only finitely many morphism of norm smaller

than a given constant.

2.3. Algebraic Subgroups. By the decomposition theorem for abelian varieties,
we know that an abelian subvariety of Ag is isogenous to a product Ar for some
multi-index r = (r1, . . . , rn) with ri ≤ gi. Masser and Wüstholz [13] Lemma 1.2,
prove that the algebraic subgroups of Ag split as a product of algebraic subgroups
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of Agi

i . In fact non-split algebraic subgroups would define an isogeny between the
non isogenous simple factors. Then,

Lemma 2.1. An algebraic subgroup B of Ag is of the form B1×· · ·×Bn for Bi an
algebraic subgroup of Agi

i . Furthermore, the codimension of Bi is diri for integers
0 ≤ ri ≤ gi. (Recall that di is the dimension of Ai).

Definition 2.2. Let B = B1 × · · · ×Bn be an algebraic subgroup of Ag. Let ki be
the codimension of Bi in Agi

i . The rank of Bi is ri = ki/di and the rank of B is
r = (r1, . . . , rn).

Let φ : Ag → Ar be a surjective morphism. The codimension of φ is
∑
diri, in

other words it is the codimension of kerφ.

Lemma 2.1 implies that, as in the case of elliptic curves, an algebraic subgroup B
of Ag of rank r is contained in the kernel of a surjective morphism φB : Ag → Ar

and the kernel Bφ of a surjective morphism φB : Ag → Ar is an algebraic subgroup
of rank r. Furthermore, the codimension of Bφ is given by

cod Bφ =
∑
i

diri.

Also note that
∑
i ri is the rank of φ as matrix, and ri is the rank of φi, for

φ = [φ1, . . . , φn].
Clearly, in a product of elliptic curves, the rank and the codimension of an alge-

braic subgroup coincide.

2.4. Subgroups. Let R be a ring and M an R-module of rank s. By a set of free
generators of M we mean a set of s elements of M which are R-linearly independent.
If M is a free R module of rank s we call integral generators of M a set of s
generators of M .

Let E = E1 × · · · × En be the ring of endomorphisms of A1 × · · · × An. Note that
any subgroup of finite rank of Ag is contained in a E-module of finite rank. In turn
a E-module of finite rank in Ag is a subgroup of finite rank.

Let Γ be a subgroup of Ag of finite rank.

Definition 2.3. The i-th saturated module Γi of Γ is the submodule of Ai of rank
si defined by

Γi = {φ(y) : φ ∈ Hom(Ag, Ai) and Ny ∈ Γ for N ∈ N∗}.

The saturated module of Γ is Γ = Γg11 × · · · × Γgn
n .

Note that, Γ is invariant with respect to the image and preimage of isogenies of
Ag. Furthermore it contains Γ and it is of finite rank. This shows that to prove
finiteness statements for Γ, it is enough to prove them for Γ. We also remark that
Γ ⊃ TorAg , where TorAg is the torsion group of Ag.

In order to pass form a transverse variety and a non trivial Γ to a weak-transverse
variety, we need to associate to Γ a point γ. For the reverse operation, we need to
associate to a point p a subgroup Γp.

Definition 2.4. Let γi1, . . . , γ
i
si

be a set of free generators of Γi and let s =
(s1, . . . , sn). We define

γi = (γi1, . . . , γ
i
si

) ∈ Asi
i ,

γ = (γ1, . . . , γn) ∈ As.

Since the coordinates of γi generate Γi, one can easily associate to the coordinates
of γ a set of free generators of Γ1 × · · · × Γn.
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Definition 2.5. Let pi = (pi1, . . . , p
i
si

) ∈ Asi
i and p = (p1, . . . , pn) ∈ As. We define

the submodule of Ag associated to the point p by

Γp = 〈p1
1, . . . , p

1
s1〉

g1 × · · · × 〈pn1 , . . . , pnsn
〉gn .

We say that p has rank s = (s1, . . . , sn) if 〈pi1, . . . , pisi
〉 has rank si as Ei-module.

2.5. Relations between weak-transverse and transverse varieties. We dis-
cuss here, how we can associate to the couple V transverse and Γ, a weak-transverse
variety V ′, and vice versa.

Let V be transverse in Ag. Let Γ be a subgroup of finite rank of Ag. Consider a
point γ ∈ As as in Definition 2.4. We define

V ′ = V × γ.

Note that V ′ is not contained in any proper algebraic subgroup, because the coor-
dinates of γ are linearly independent and V is transverse. So V ′ is weak-transverse
in Ag+s.

Let V ′ be weak-transverse in An. Let H0 be the abelian subvariety of smallest
dimension such that V ′ ⊂ H0 + p, for p ∈ H⊥0 and H⊥0 an orthogonal complement
of H0. Then H0 is isogneous to Ag for a multi-index g and H⊥0 is isogenous to As,
for s = n− g. We fix an isogeny

J : An → H0 ×H⊥0 → Ag ×As,

which sends H0 to Ag and H⊥0 to As. Then J(p) ∈ 0 × As. Since V ′ is weak
transverse the projection of J(p) on As has rank s.

We consider the natural projection

π :Ag+s → Ag

J(V ′)→ πJ(V ′).

We define

V = πJ(V ′),

and

Γ = ΓJ(p)

Since H0 has minimal dimension, the variety V is transverse in Ag.
Note that

V ′ = (V × 0) + J(p).

Statements on the boundness of height and on the Zariski non-density of sets are
invariant under an isogeny. Then, without loss of generality, we can assume that a
weak-transverse variety in An is of the form

V × p

with

- V a transverse subvariety of Ag,
- p a point in As of rank s,
- n = g + s.
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2.6. Polarization and height. In the previous sections we fixed isogenies of the
ambient variety A such that A is a product of powers of non isogenous simple
abelian varieties and a weak-transvers variety has the shape V × p. We now fix a
polarization of A. According to this polarization degrees and heights are computed.

On each Ai, we fix a symmetric ample line bundle Li. By L we denote the
polarization on the ambient variety Ag given as the tensor product of the pull-
backs of Li via the natural projections on the factors. Let xi = (xi1, . . . , x

i
gi

) ∈ Agi

i .
On Ag, we consider the height of the maximum defined as

h(x1, . . . , xn) = max
ij

(h(xij)),

where h(·) on Ai is the canonical Néron-Tate height induced by Li. The height h is
the square of a norm || · || on Ag⊗R. For a point x ∈ Ag, we write ||x|| for ||x⊗1||.

By Kronecker’s Theorem, the only points of height zero are torsion points. Then,
for ε ≥ 0, Oε ⊃ TorAg and Γε = Γ + Oε ⊃ TorAg . Note that, for any x ∈ Ag and
any morphism φ : Ag → Ar,

||φ(x)|| ≤ (max
i
gi)|φ| · ||x||.

For any multi-index r ∈ Nn and product variety Ar, we extend the above defini-
tions. By abuse of notation we still denote L the polarization on Ar given as the
tensor product of the pull-backs of Li via the natural projections on the factors.

2.7. The fixed data of the problem. For the convenience of the reader, we give
here a summary of notation for the objects that are fixed in the problem. This
objects will be used all along the article with no further clarification.

The ambient variety
• For i = 1, . . . , n, let Ai be non isogenous simple abelian varieties of dimen-

sion di.
• Let A = Ag = Ag11 ×· · ·×Agn

n be the ambient variety of dimension
∑
i digi.

• Let Ei be the ring of endomorfisms of Ai and let ti be its rank over Z.
• Let τ i1, . . . , τ

i
ti be a set integral generators of Ei as Z-module.

• Let L be a polarization on A given as tensor product of the pull-back of
polarizations Li on the factors Ai.

The subgroup
• Let Γ be a submodule of Ag of finite rank.
• Let si be the rank of the i-th saturated module Γi of Γ and s = (s1, . . . , sn).
• Let Γ = Γg11 × · · · × Γgn

n be the saturated module of Γ.

The subvariety
• Let V be a transverse subvariety of Ag of dimension d and codimension

codV .
• Let θ > 0 be a (large) real and V (θ) = V ∩ Oθ.
• Let p be a point in As of rank s.
• Let V × p be the weak-transverse subvariety of Ag+s.

2.8. Dependence of the constants. We denote by � an inequality up to a
positive multiplicative effective constant which depends on the invariants of the
problem. Most often such a constant will depend on the choice of a set of free
generators of the rings of endomorphisms Ei of Ai, for i = 1, . . . , n. Some constants
will also depend on the polarization L, more precisely on the height and degree of
the ambient variety A. Finally, some constants will depend on deg V , ||p|| and θ,
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as well. The dependence of the constants on other parameters will be specified in
the brackets.

2.9. Weighted and Special morphisms. As in the elliptic case, there are matri-
ces which have certain advantages. We generalize the definitions given in [17] for a
power of an elliptic curve. The following definitions are less restrictive, in the sense
that we allow common factors of the entries and we work up to an absolute positive
constant depending on the endomorphisms ring of Ai. Let f and r ∈ Nn with
ri ≤ fi. Up to reordering of columns which does not mix the blocks, a weighted
matrix has the form

φ =



a . . . 0 L1
1 0 . . . . . . 0

. . .
0 . . . a L1

r1 0 . . . . . . 0
. . .

. . .
0 . . . 0 a . . . 0 Ln1

. . .
0 . . . 0 0 . . . a Lnrn


where, Lij : Afi−ri

i → Ai and |φ| � |a|. If ri = fi, we simply forget Lij . A nice
property of such a morphism is that its restriction to the first Ar factors is simply
the multiplication [a].

Definition 2.6 (Weighted Morphisms). Let f and r ∈ Nn. We say that a surjective
morphism φ = [φi, . . . , φn] : Af → Ar is weighted if:

i. There exists a ∈ N∗ such that aIr is a submatrix of φ, for r =
∑
i ri.

ii. |φ| � a.

We associate to a weighted morphism φ an embedding ir : Ar → Af such that
φ · ir = [a].

Definition 2.7 (Special Morphisms). Let r ∈ Nn. We say that φ̃ = (φ|φ′) :
Ag ×As → Ar is special if:

i. φ is weighted, and
ii. |φ̃| � |φ|.

Note that a special morphism is weighted. Moreover the embedding ir : Ar →
Ag+s maps Ar to some of the factors of Ag.

3. The approximation of the morphisms

As for curves, we want to approximate a morphism with a morphism of norm
bounded by a constant. We reduce the problem of approximating a morphism of
abelian varieties, to the approximation of a morphism with entries in Z. This is
done by considering the ring of endomorphis of Ai as a free Z-module.

Dirichlet’s Theorem on the rational approximation of reals claims:

Theorem 3.1 (Dirichlet 1842, see [15] Theorem 1 page 24). Suppose that α1, . . . , αm
are n real numbers and that Q ≥ 2 is an integer. Then there exist integers
b, β1, . . . , βm with

1 ≤ b < Qm and |αib− βi| ≤
1
Q

for 1 ≤ i ≤ m.
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The ring of endomorphisms of A1 × · · · ×An is the Z-module of rank t

E = E1 × · · · × En.
For l = (l1, . . . , ln) ∈ Nn we define

E l = E l11 × · · · × E lnn .

Lemma 3.2. Let l ∈ Nn and l = maxi li. There exists Q0 such that for all integers
Q ≥ Q0 and all a ∈ E l\0 there exists b ∈ N and b ∈ E l\0 satisfying:

i. 1 ≤ b < Qntl

ii.
∣∣b∣∣� b�

∣∣b∣∣,
iii.

∣∣∣ a|a| − b
b

∣∣∣� 1
Qb .

Proof. We first reduce the lemma to the case a ∈ E l. To see this, it is sufficient to
consider the natural immersion E l → E l which identifies E lii to the first li factors of
E li .

We now prove the lemma for a ∈ E l. Let τ1, . . . , τt be a set of integral generators
of the ring E . We define λE = mina∈E\0 |a| and

Q0 = 2 max
(

1,
∑
i |τi|
λE

)
.

The ring E and Zt are isomorphic. Fix the isomorphism that associate to a =
α1τ1 + · · ·+ αtτt with αi ∈ Zl the point α = (α1, . . . , αt) ∈ Zlt.

Applying Dirichlet’s Theorem 3.1 with m = lt and (α1, . . . , αm) = 1
|a|α, we deduce

that there exist an integer b and integer vectors β1, . . . , βl ∈ Zl such that

(2) 1 ≤ b < Qm

and

(3)
∣∣∣∣αi|a| − βi

b

∣∣∣∣ ≤ 1
Qb

.

The relation (2) proves part i.
Define b =

∑
i β

iτi and β = (β1, . . . , βt). By relation (3) and the triangle inequal-
ity,

(4)
∣∣∣∣ a|a| − b

b

∣∣∣∣ =
∣∣∣∣∑i α

iτi
|a|

−
∑
i β

iτi
b

∣∣∣∣ ≤ ∣∣∣∣αi|a| − βi

b

∣∣∣∣∑
j

|τj | ≤
∑
j |τj |
Qb

� 1
Qb

.

This proves part iii.
From relations (3) we deduce

|βi|
b
≤ 1
Qb

+
|αi|
|a|

.

The Rosati norm and the Euclidean norm induced by Zt on E are equivalent,
because the rank is finite. Then |αi| � |a|. In addition Qb ≥ 1. Therefore
1
Qb + |αi|

|a| � 1. So
|βi| � b and |β| � b.

Whence
|b| ≤ |β|

∑
i

|τi| � b.

This shows the first inequality in part ii.
Let k be an index such that |a| = |ak|. By relation (4) we have∣∣∣∣ak|a| − bk

b

∣∣∣∣ ≤ ∑i |τi|
Qb

.
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Whence

b = b
|ak|
|a|
≤
∑
i |τi|
Q

+ |bk|.

Since Q >
∑
i |τi|/λE ,

b� |bk|.

This shows the second inequality of part ii.
�

Lemma 3.3. Let f and r ∈ Nn with ri ≤ fi. Define m = ntmax(rifi − r2
i + 1).

There exists Q0 > 0 such that for all Q ≥ Q0 and for all weighted morphism
φ : Af → Ar there exists a surjective morphism ψ : Af → Ar satisfying

i. 1 ≤ b < Qm,
ii. |ψ| � b,

iii.
∣∣∣ψb − φ

|φ|

∣∣∣� 1
Qb ,

iv. ψ · ir = [b].

As a consequence of ii. and iv. ψ is weighted.

Proof. Let

φ =



a . . . 0 L1
1 0 . . . . . . 0

. . .
0 . . . a L1

r1 0 . . . . . . 0
. . .

. . .
0 . . . 0 a . . . 0 Ln1

. . .
0 . . . 0 0 . . . a Lnrn


where Lij : Afi−ri

i → Ai and

(5) |φ| � |a| � |φ|.

If |φ| ≤ Qm, no approximation is needed, as φ itself satisfies the claim of the
lemma.

Suppose now that |φ| ≥ Qm. Define l = (r1f1 − r2
1 + 1, r2f2 − r2

2, . . . , rnfn − r2
n).

We associate to φ a vector

a = (a, L1
1, . . . , L

1
r1 , . . . , L

n
1 , . . . , L

n
rn

) ∈ E l.

Note that |a| = |φ|. Apply Lemma 3.2 to the vector a. Then, there exists an integer
b and a vector b such that

1) 1 ≤ b < Qm,
2)
∣∣b∣∣� b�

∣∣b∣∣
3)
∣∣∣ a|a| − b

b

∣∣∣� 1
Qb

We reconstruct a matrix ψ from b respecting exactly the same positional rule we
used for constructing a from φ. Namely, let b = (b, L′11 , . . . , L

′1
r1 , . . . , L

′n
1 , . . . , L

′n
rn

),
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we define

ψ =



b . . . 0 L′11 0 . . . . . . 0
. . .

0 . . . b L′1r1 0 . . . . . . 0
. . .

. . .
0 . . . 0 b . . . 0 L′n1

. . .
0 . . . 0 0 . . . b L′nrn


Then,

1) is exactly part i.
2) implies part ii, because

∣∣b∣∣ = |ψ|.
3) gives part iii.
Part iv. is evident. �

Theorem 3.4. Let r ∈ Nn. Given ε > 0, there exists a positive real M , depending
on ε, such that to each special morphism φ̃ : Ag+s → Ar one can associate a special
morphism ψ̃ : Ag+s → Ar satisfying:

i. |ψ̃| �M ,
ii.
(
(V (θ)× p) ∩ (Bφ̃ +Oε/M )

)
⊂
(
(V (θ)× p) ∩ (Bψ̃ +Oε′/|ψ̃|)

)
,

with ε′ � ε.

Proof. Define

Q =
(
Q0,

1
ε

)
where Q0 is as in Lemma 3.2

m = ntmax
i

(ri(gi + si)− r2
i + 1)

M = Qm.

If |φ̃| ≤M , we simply define ψ̃ = φ̃. Then ε/M ≤ ε/|φ̃| and

(V (θ)× p) ∩
(
Bφ̃ +Oε/M

)
is contained in the right hand side.

Now, suppose that |φ̃| ≥ M . Apply Lemma 3.3 with f = g + s, φ = φ̃, and ir is
the immersion of Ar to some of the factors of Ag. Then, there exists an integer b
and a matrix ψ̃ such that

1) 1 ≤ b < Qm = M .
2) |ψ̃| � b� |ψ̃|,
3)
∣∣∣ φ̃|φ̃| − ψ̃

b

∣∣∣� 1
Qb .

4) ψ̃ · ir = [b].

Since φ̃ is special, then 2) and 4) imply that ψ̃ is special, as well.
Let (x, p) ∈ V (θ)× p. We want to show that, if

φ̃((x, p) + ξ) = 0

for ξ ∈ Oε/M , then
ψ̃((x, p) + ξ′) = 0

for some ξ′ ∈ Oε′/|ψ̃| and ε′ � ε.
Let ξ′′ be a point in Ar such that

[b]ξ′′ = −ψ̃(x, p).
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Define ξ′ = ir(ξ′′). Then

ψ̃(ξ′) = [b]ξ′′ = −ψ̃(x, p)

and

ψ̃((x, p) + ξ′) = 0.

It follows

(x, p) ∈ (V (θ)× p) ∩ (Bψ̃ +O||ξ′||),

where ψ̃ is special and |ψ̃| �M .
It remains to prove that

||ξ′|| � ε

|ψ̃|
.

Obviously

|φ̃|ψ̃(x, p) = b
(
φ̃(x, p)− φ̃(x, p)

)
+ |φ̃|ψ̃(x, p).

It holds

||ξ′|| = ||ξ′′|| = ||ψ̃(x, p)||
b

=
1
|φ̃|b

∣∣∣∣∣∣b(φ̃(x, p)− φ̃(x, p)
)

+ |φ̃|ψ̃(x, p)
∣∣∣∣∣∣

≤ 1
|φ̃|

∣∣∣∣∣∣φ̃(x, p)
∣∣∣∣∣∣+

1
|φ̃|b

∣∣∣∣∣∣|φ̃|ψ̃(x, p)− bφ̃(x, p)
∣∣∣∣∣∣.

We estimate the two norms on the right.
On one hand

||φ̃(x, p)||
|φ̃|

=
||φ̃(ξ)||
|φ̃|

� ||ξ|| ≤ ε

M
≤ ε

b
,

where in the last inequality we use that b ≤M .
On the other hand, we assumed

||(x, p)|| ≤ θ + ||p||.

Using relation 3) and that Q ≥ 1
ε , we estimate

1
|φ̃|b

∣∣∣∣∣∣|φ̃|ψ̃(x, p)− bφ̃(x, p)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣ φ̃|φ̃| − ψ̃

b

∣∣∣∣∣ ||(x, p)|| � ε

b
.

By 2), we conclude

||ξ′|| � ε

b
+
ε

b
� ε

|ψ̃|
.

�

4. The non-density of each intersection

In this section, we use and compare several polarizations. If not otherwise speci-
fied, it is well understood that the polarization is L. The main results in this section
are conditioned to the validity of Conjecture 1.5.
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4.1. Helping-variety and isogenies. Let φ : Ag → Ar be a weighted morphism.
We associate to φ some isogenies of Ag.

Definition 4.1. Let r ∈ Nn. To a weighted morphism φ = [φ1, . . . , φn] : Ag → Ar

with φi = (aIri |Li) we associate the following isogenies of Ag:

Φ = [Φ1, . . . ,Φn],

Φ̂ = [Φ̂1, . . . , Φ̂n],

L = [L1, . . . , Ln],

defined by

Φi =
(

φi
0 | Igi−ri

)
=
(
aIri

Li

0 Igi−ri

)
Φ̂i =

(
Iri 0
0 aIgi−ri

)
Li =

(
Iri

Li

0 Igi−ri

)
.

We now associate to a transverse variety V ⊂ Ag of dimension d, a Helping-variety
W ⊂ Ag of dimension d. We define

W = LΦ̂−1(V )

Then
[a]W = Φ(V ).

4.2. Functorial behavior of the essential minimum. We deduce from Conjec-
ture 1.5 a lower bound for the essential minimum of Φ(V ) which is functorial with
respect to Φ (see Theorem 4.4).

In the first instance we need some properties of the stabilizer.

Lemma 4.2. Let ψ : A → A be an isogeny. Let V be an irreducible algebraic
subvariety of A of dimension d. Then

degL ψ∗(V ) = |StabV ∩ kerψ|degL ψ(V ).

Proof. We denote by fx the fiber of ψ|V at a point x. Since an isogeny is generically
proper, there exists an open O of ψ(V ) such that, for x ∈ O, the fiber fx has
constant order. Then degψ∗(V ) = |fx|degψ(V ). We shall show that, for x ∈ O,

|StabV ∩ kerψ| = |fx|.

Let x ∈ O and yx ∈ fx. If t ∈ StabV ∩ kerψ then yx + t ∈ fx. This shows

|StabV ∩ kerψ| ≤ |fx|.

Suppose by contradiction that, for x ∈ O, |fx| > |StabV ∩ kerψ|. If yx, y′x ∈ fx
then yx − y′x ∈ kerψ. Therefore

fx ⊂ yx + kerψ.

Since kerψ is finite, there exists a dense subset D of O and t ∈ kerψ\StabV ∩kerψ

such that for all for x ∈ D
yx + t ∈ fx.

Then
ψ((V + t) ∩ V ) ⊃ D.

Since (V + t) ∩ V is closed and isogenies are closed morphisms,

ψ(V + t) ∩ V ) ⊃ D,
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where D is the Zariski closure of D. However D ⊃ O and so

ψ((V + t) ∩ V ) ⊃ O = ψ(V ).

Isogenies preserve dimensions, thus dim((V + t)∩V ) = dimV . Whence V + t = V .
Therefore

t ∈ StabV ∩ kerψ.
�

Lemma 4.3. In the above notations,

|Stab W ∩ ker[a]| = | ker Φ̂| |Stab v ker Φ| .

Proof. First remark that, by the definitions,
- L is an isomorphism,
- Stab W = Lφ̂−1Stab V ,
- φ̂−1 ker Φ = ker[a],
- kerLΦ = ker Φ.

Then,
|Stab W ∩ ker[a]| = |Stab W ∩ ker[a]|

=
∣∣∣LΦ̂Stab V ∩ ker Φ̂Φ

∣∣∣
=
∣∣∣LΦ̂Stab V ∩ Φ̂−1 ker Φ

∣∣∣
=
∣∣∣Φ̂Stab V ∩ L−1Φ̂−1 ker Φ

∣∣∣
=
∣∣∣Φ̂Stab V ∩ Φ̂−1 kerLΦ

∣∣∣
= | ker Φ̂| |Stab V ∩ kerLΦ|

= | ker Φ̂| |Stab V ∩ ker Φ| .
�

Theorem 4.4 (Isogeny-Functorial Bound). Assume Conjecture 1.5. Let V be a
transverse subvariety of A of dimension d. Then, there exists a positive constant
c(A,L, η) such that, for any weighted φ and isogeny Φ as above,

µΦ∗L(V ) ≥ c(A,L, η)|a|−2(dimA−d)η

(
degΦ∗LA

degΦ∗L V

) 1
2(dim A−d) +η

.

Proof. Note that isogenies preserve dimensions, so dimW = dimV = d. Further-
more

[a]W = Φ(V ).
Then

(6) µΦ∗L(V ) = µL(Φ(V )) = µL([a]W ) = |a|µL(W ).

We denote by codV the codimension of V in A. We now estimete µL(W ) using
Conjecture 1.5. This gives

(7) µL(W ) ≥ c0(A,L, η) (degL(W ))−
1

2cod V +η
.

By [10] Lemma 6 we obtain,

degL Φ(V ) = degL[a]W =
|a|2d

|Stab W ∩ ker[a]|
degLW

or equivalently

degLW =
|Stab W ∩ ker[a]|

|a|2d
degL Φ(V ).
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Define
c(A,L, η) = c0(A,L, η) (degLA)−

1
2cod V −η .

Substituting in (7), and using Lemmas 4.2 and 4.3, we obtain

µL(W ) ≥ c(A,L, η)
(

|a|2d degLA
|Stab W ∩ ker[a]|degL Φ(V )

) 1
2cod V +η

= c(A,L, η)

(
|a|2d degLA

| ker Φ̂||Stab V ∩ ker Φ|degL Φ(V )

) 1
2cod V +η

= c(A,L, η)

(
|a|2d degLA

| ker Φ̂|degL Φ∗(V )

) 1
2cod V +η

.

We can substitute this last estimate in (6), so

µΦ∗L(V ) = |a|µL(W ) ≥ |a|c(A,L, η)

(
|a|2d degLA

| ker Φ̂|degL Φ∗(V )

) 1
2cod V +η

= c(A,L, η)|a|−2codV η

(
|a|2g−2d|a|2d| ker Φ|degLA
| ker Φ̂|| ker Φ|degL Φ∗(V )

) 1
2cod V +η

= c(A,L, η)|a|−2codV η

(
|a|2g degΦ∗L(A)
|a|2g degL Φ∗(V )

) 1
2cod V +η

= c(A,L, η)|a|−2codV η

(
degΦ∗L(A)
degΦ∗L(V )

) 1
2cod V +η

�

4.3. A Lower bound for the essential minimum. Using a lemma by Masser
and Wüstholz, we now estimate degrees.

Lemma 4.5. Let r ∈ Nn and let φ : Ag → Ar be a weighted morphism of codimen-
sion at least d+ 1. Let Φ as in definition 4.1. Then,

i.
degL Φ(V )� |φ|2d.

ii.
degL φ(V )� |φ|2d.

Proof. Part i. is a non explicit version of [14] Lemma 2.3. Part ii. is deduced by
part i. simply observing that φ(V ) = πΦ(V ), for π a projection on some of the
coordinates. In addition, in the chosen polarization, forgetting coordinates makes
degrees decrease. �

Proposition 4.6. Assume that Conjecture 1.5 holds. Let r ∈ Nn and let φ : Ag →
Ar be a weighted morphism of codimension at least d+1. Then, for any η > 0, there
exist positive effective constants ε1(η) and ε2(η) such that, for all points y ∈ Ag,

i. For Φ as in definition 4.1,

µ(φ(V + y)) > ε1(η)
1

|φ|d+η
,

ii.
µ (Φ(V + y)) > ε2(η)|φ| 1

cod V −η.
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Proof. i. Since V is irreducible, transverse and defined over Q, φ(V + y) is as well.
Recall that the codimension of φ is ≥ d+1. Then φ(V +y) ( Ar has codimension

and dimension at least 1. Apply Theorem 4.4 to φ(V + y). Then

µL(φ(V + y)) > c(Ar,L, V, η)
(

degLAr

degL φ(V + y)

) 1
2 +η

.

Degrees are preserved by translations, hence Proposition 4.5 ii. implies

degL(φ(V + y)) = degL φ(V )� |φ|2d.

It follows

µL(φ(V + y)) > c′(Ar,L, η)
1

|φ|d+2η
.

For r ranging over all multi-indeces such that
∑
diri ≥ d+ 1 and ri ≤ gi, define

ε1(η) = min
r
c′(Ar,L, V, η

2
).

Then

µL(φ(V + y)) >
ε1(η)
|φ|d+η

.

ii. Recall that, for any variety X,

µΦ∗LX = µL (Φ(X)) ,
degΦ∗LX = degL Φ∗X.

Apply Theorem 4.4 to V + y. We obtain

µL (Φ(V + y)) > c(Ag,L, η)a−2codV η

(
degΦ∗LA

g

degΦ∗L(V + y)

) 1
2cod V +η

= c(Ag,L, η)a−2codV η

(
degΦ∗LA

g

degΦ∗L(V )

) 1
2cod V +η

.

Recall that (see, for instance, [11] (6.6) Corollary page 68)

degΦ∗LA
g = | ker Φ|degLA

g = a2(
P

i diri) degLA
g.

By assumption
∑
i diri ≥ d+ 1 and |φ| � a. So

degΦ∗LA
g ≥ a2(d+1) degLA

g � |φ|2(d+1).

By Lemma 4.5 i.,

degΦ∗L(V ) = degL(Φ∗(V ))� |φ|2d.

Thus

µL (Φ(V + y)) > c′(Ag,L, V, η)|φ|−2codV η|φ| 1
cod V +2η.

Define

ε2(η) = c′
(
Ag,L, V, η

2(codV − 1)

)
.

�
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4.4. The non-density property. We come to the main proposition of this sec-
tion; each set in the union is non Zariski-dense.

Theorem 4.7. Assume Conjecture 1.5. Let r ∈ Nn. Then, there exists an effective
ε1 > 0 such that for ε ≤ ε1, for all weighted morphisms φ : Ag → Ar of codimension
≥ d+ 1 and for all y ∈ ir(Ar) ⊂ Ag, the set

(V (θ) + y) ∩
(
Bφ +Oε/|φ|

)
is non Zariski-dense in V + y.

Proof. Let

η = 1/2

ε1 = ε1(1/2)

ε2 = ε2(1/2)

where ε1(η) and ε2(η) are as in Proposition 4.6. Define

m =
(
θ

ε2

) cod V
1−(cod V )/2

,

ε1 =
1
|g|

min
(
θ,

ε1
md+1

)
,

where |g| = maxi gi. Choose
ε ≤ ε1.

We distinguish two cases: either |φ| ≤ m or |φ| ≥ m.

Case (1) |φ| ≤ m.
Let x+ y ∈ (V (θ) + y) ∩ (Bφ +Oε/|φ|), where y ∈ ir(Ar). Then

φ(x+ y) = φ(ξ)

for ||ξ|| ≤ ε/|φ|. Since ε ≤ ε1
|g|md+1 and |φ| ≤ m,

||φ(x+ y)|| = ||φ(ξ)|| ≤ |g|ε ≤ ε1
md+1

≤ ε1
|φ|d+1

.

In Proposition 4.6 i. with η = 1/2, we have proven
ε1
|φ|d+1

< µ(φ(V + y)).

We deduce that φ(x+ y) belongs to the non Zariski-dense set

Z1 = φ(V + y) ∩ Oε1/md+1 .

Since V is transverse, the dimension of φ(V + y) is at least 1. Consider the re-
striction morphism φ|V+y : V + y → φ(V + y). Then x + y belongs to the non
Zariski-dense set φ−1

|V+y(Z1).

Case (2) |φ| ≥ m.
Let x+ y ∈ (V (θ) + y) ∩

(
Bφ +Oε/|φ|

)
, where y ∈ ir(Ar). Then

φ(x+ y) = φ(ξ)

for ||ξ|| ≤ ε/|φ| and

Φ(x+ y) = (φ1(x+ y), x1, . . . , φn(x+ y), xn),

where xi are some of the coordinates of x. So

||Φ(x+ y)|| ≤ max (||φ(ξ)||, ||x||) .



18 EVELINA VIADA

Since ||ξ|| ≤ ε
|φ| and ε ≤ θ

|g| , then

||φ(ξ)|| ≤ |g|ε ≤ θ.

Also ||x|| ≤ θ, because x ∈ V (θ). Thus

||Φ(x+ y)|| ≤ θ.

Since |φ| ≥ m =
(
θ
ε2

) cod V
1−(cod V )/2

,

θ ≤ ε2|φ|
1

cod V −
1
2 .

In Proposition 4.6 with η = 1/2, we have proven

ε2|φ|
1

cod V −
1
2 < µ(Φ(V + y)).

So
||Φ(x+ y)|| ≤ θ < µ(Φ(V + y)).

We deduce that Φ(x+ y) belongs to the non Zariski-dense set

Z2 = Φ(V + y) ∩ Oθ.
The restriction morphism Φ|V+y : V + y → Φ(V + y) is finite, because Φ is an
isogeny. Then x+ y belongs to the non Zariski-dense set Φ−1

|V+y(Z2).
�

Proposition 4.8. Let r ∈ Nn and let φ̃ = (φ|φ′) : Ag+s → Ar be a special
morphism. Then, there exists y ∈ ir(Ar) ⊂ Ag such that, for any ε > 0, the map
(x, p)→ x+ y defines an injection(

(V (θ)× p) ∩
(
Bφ̃ +Oε/|φ|

))
↪→
(

(V (θ) + y) ∩
(
Bφ +Oε′/|φ|

) )
,

where ε′ � ε.

Proof. By definition of special, for r =
∑
i ri the matrix aIr is a submatrix of φ

and |φ| � a. Recall that ir : Ar → Ag is such that φ · ir = [a].
Let y′ ∈ Ar be a point such that

[a]y′ = φ′(p).

Define
y = ir(y′).

Then

(8) φ(y) = [a]y′ = φ′(p)

Let
(x, p) ∈ (V (θ)× p) ∩

(
Bφ̃ +Oε/|φ|

)
.

Then, there exists ξ ∈ Oε/|φ| such that

φ̃((x, p) + ξ) = 0.

Equivalently
φ(x) + φ′(p) + φ̃(ξ) = 0.

By relation (8) we deduce
φ(x+ y) + φ̃(ξ) = 0.

Let ξ′′ ∈ Ar be a point such that

[a]ξ′′ = φ̃(ξ).

Define ξ′ = ir(ξ′′), then
φ(ξ′) = [a]ξ′′ = φ̃(ξ),
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and
φ(x+ y + ξ′) = 0.

Since φ̃ is special |φ̃| � |φ|. Furthermore ||ξ|| ≤ ε
|φ| . We deduce

||ξ′|| = ||ξ′′|| = ||φ̃(ξ)||
|φ|

� ε

|φ|
.

In conclusion
(x+ y) ∈ (V (θ) + y) ∩

(
Bφ +Oε′/|φ|

)
.

�

Corollary 4.9. Assume Conjecture 1.5. Let r ∈ Nn. Then, there exists an effective
ε2 > 0 such that for ε ≤ ε2 and for all special morphisms φ̃ = (φ|φ′) : Ag+s → Ar

of codimension at least d+ 1 the set

(V (θ)× p) ∩
(
Bφ̃ +Oε/|φ|

)
is non Zariski-dense in V × p.

Proof. This is an immediate consequence of Theorem 4.7 and Proposition 4.8.
�

5. The proof of Theorem 1.6: Reductions

5.1. Reducing to weighted morphisms. Using the Gauss algorithm we show:

Lemma 5.1. Let ∆i ∈ Mri×ri(Ei) be a matrix of rank ri. Then, there exists an
integer a and a matrix ∆′i ∈Mri×ri(Ei) of rank ri such that

∆′i∆i = aIri .

Proof. Note that Ei is not necessarily commutative, it can be a quaternion, however
given non zero elements x, y ∈ Ei there exist a, b ∈ Ei such that ax = by. This
shows that one can operate a Gauss reduction using only operations on the left and
without commuting elements in Ei. In other words there exists a matrix ∆ of rank
ri such that ∆∆i is a diagonal matrix. Using the norm, we can find a matrix ∆′

of maximal rank ri such that ∆′∆∆i = [a1, . . . , ari
] with ai ∈ Z∗. Let m be the

minimum common multiple of a1, . . . , ari
. We define ∆′i = [ m|a1| , . . . ,

m
|ari
| ]∆
′∆. �

This has some immediate consequences.

Lemma 5.2. Let r ∈ Nn. Let ψ : Ag → Ar be a surjective morphism. Then,
there exists an isogeny ∆ of Ar such that φ = ∆ψ is a weighted morphism. As a
consequence,

i. Bψ ⊂ Bφ + TorAg .
ii. For all ε ≥ 0, ⋃

rk(ψ)=r

(Bψ + Γε) ⊂
⋃

φ weighted
rk(φ)=r

(Bφ + Γε).

Proof. Let ψ = [ψ1, . . . , ψn]. Let ∆i be a submatrix of ψi of rank ri with maximal
pivots. By Lemma 5.1 applied to each ∆i, there exists ∆′i such that ∆′i∆i = aiIri

with ai ∈ N∗. Let m be the mimum common multiple of the ai. Define

∆ =
[
m

a1
Ir1 , . . . ,

m

an
Irn

]
[∆′1, . . . ,∆

′
n].

�
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5.2. Reducing to special morphisms. We want to fix a convenient set of genera-
tors of Γ. Recall that Γi is the i-th saturated module of rank si and s = (s1, . . . , sn),
(see Definition 2.3).

Lemma 5.3. Let θ0 ≥ 0. There exist points γi of Asi
i such that the coordinates

of γi are free generators of Γi. Moreover, for γ = (γ1, . . . , γn) ∈ As and for all
φ : As → A1 × · · · ×An,

θ0|φ| � ||φ(γ)||.

Proof. Let φ = [φ1, . . . , φn]. Then ||φ(γ)|| = maxi ||φi(γi)||. It is then sufficient to
prove the lemma for each i.

Fix the isomorphism from Ei to Zti that maps τ ij to the j-th elements of the
standard basis of Zti . Then Γi is also a Z-module. Let v1, . . . , vsi

be a set of Ei-free
generators of Γi. Apply [17] Lemma 3.4 with Γ = 〈v1, . . . , vsi〉Z, K = θ0 and bi ∈ Z.
Then, there exists a set of Z free generators γi1, . . . , γ

i
si

of Γ0 = 〈v1, . . . , vsi〉Q such
that

θ0 ≤ ||γij ||
and

1
3

∑
j

|bj |||γij || ≤ ||
∑
j

bjγ
i
j ||

where bi ∈ Z. Note that Γi = Γ0 ⊗Z Ei. The Rosati norm and the Euclidean norm
induced by Zti on Ei are equivalent, because the rank is finite. Then, the above
inequalities imply

θ0|φi| �
∑
k

|φi,k| ||γik|| � ||φi(γi)||.

�

We prove here an important inclusion.

Proposition 5.4. Let γ ∈ As be as in Lemma 5.3 for θ0 = 1. Let r ∈ Nn.
To each weighted morphism φ : Ag → Ar we can associate a special morphism
φ̃ = (φ|φ′) : Ag+s → Ar such that, for all 0 ≤ ε ≤ θ, the map x→ (x, γ) defines an
injection (

V (θ) ∩ (Bφ + Γε)
)
↪→
(

(V (θ)× γ) ∩ (Bφ̃ +Oε)
)
.

Proof. Let x ∈ V (θ) ∩ (Bφ + Γε). Then, there exist points y ∈ Γ and ξ ∈ Oε ⊂ Ag
such that

φ(x+ y + ξ) = 0.
As γ is a set of free generators, there exist a positive integer N and a morphism
G : Ag → Ar such that

Ny = Gγ.

We define
φ̃ = (Nφ|φG).

Then

(9) φ̃((x, γ) + (ξ, 0)) = 0.

We already know that φ is weighted and therefore Nφ is weighted too. Then, to
prove that φ̃ is special, it remains to prove that |φ̃| � N |φ|. Equivalently, we shall
show that |φ′| � N |φ|. Let l and j be indices such that |φ′| = |φ′lj |. Consider the
l row of the equation (9). For ϕl and ϕ′l the l-th rows of φ and φ′ respectively, we
have

||Nϕl(x+ ξ)|| = ||ϕ′l(γ)||.
So

||ϕ′l(γ)|| = ||Nϕl(x+ ξ)|| � |Nφ|(||x||+ ||ξ||).
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By assumption ||x|| ≤ θ and ||ξ|| ≤ ε ≤ θ. So

||ϕ′l(γ)|| � N |φ|.
In view of Lemma 5.3, we deduce

|ϕ′l| � N |φ|.
Thus

|ϕ′l| = |φ′| � N |φ|.
�

5.3. Reducing to Conjecture 1.3 ii. In this subsection we are going to prove
Theorem 1.4. In the first instance, we study some properties of a morphism van-
ishing on a point of large rank. For this we need a lemma of the geometry of
numbers.

Lemma 5.5. Let 1 ≤ i ≤ n. Let qi = (qi1, . . . , q
i
si

) be a point of Asi
i of rank si.

There exist positive effective constants c0(qi) and ε0(qi), depending on qi, such that

c0(qi)
∑
j

|bj |2||qij ||2 � ||
∑
j

bj(qij − ξj)||2

for all b1, . . . , bsi
∈ Ei and for all ξ1, . . . , ξsi

∈ Oε0(qi) ⊂ Asi
i .

Proof. The Rosati involution defines a norm on Ei which is compatible with the
height norm on Ai. Namely ||bjqij || = |bj |||qij ||. Thus (Ei, | · |) is a hermitian free
Z-module of rank ti and (Ai, || · ||) is a hermitian Ei-module.

The proof is then the analogue of the proof of [17] Proposition 3.3, where one shall
read Ai instead of E and consider b = 0. �

Corollary 5.6. Let q ∈ As be a point of rank s and let ψ : As → A1 × · · · ×An be
a morphism. Then, there exist positive constants c0(q) and ε0(q) such that

c0(q)|ψ| � ||ψ(q − ξ)||,
for all ξ ∈ Oε0(q) ⊂ As .

Proof. We simply apply the previous proposition to each block. Let ψ = [ψ1, . . . , ψn]
with ψi : Asi

i → Ai. Let q = (q1, . . . , qn) with qi ∈ Asi
i and ξ = (ξ1, . . . , ξn) with

ξi ∈ Asi
i . Note that

max
i
||ψi(qi − ξi)|| = ||ψ(q − ξ)||.

Apply Lemma 5.5 with (b1, . . . , bsi
) = ψi, (ξ1, . . . , ξsi

) = ξi. Choose c0(q) to be
the minimum of c0(qi) and ε0(q) to be the minimum of ε0(qi), for i = 1, . . . , n. �

Lemma 5.7. Let q ∈ As be a point of rank s. Let φ̃ = (φ|φ′) : Ag+s → Ar be a
surjective morphism. Let ε ≤ ε0(q) where ε0(q) is as in Corollary 5.6.

If there exists a point (x, q) ∈ Bφ̃ +Oε, then
i. φ has rank r,
ii. There exists ψ̃ = (ψ|ψ′) : Ag+s → Ar with ψ weighted, such that

Bφ̃ ⊂ Bψ̃ + TorAg .

Proof. i- Suppose that the rank of φ is less than r. Then, there exists λ =
[λ1, . . . , λn] with λi ∈ Eri

i such that

λφ = 0.

Let (x, q) ∈ Bφ̃ +Oε. Then, there exists (ξ, ξ′) ∈ Oε such that

φ̃ ((x, q) + (ξ, ξ′)) = 0.
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So
λφ′(q + ξ′) = −λφ(x+ ξ) = 0.

Corollary 5.6, applied with ξ = −ξ′ and any non-trivial ψ, implies that q + ξ has
rank s, whence λφ′ = 0. So λφ̃ = 0. This contradicts that φ̃ has full rank r.

ii- By part i we can assume that rank φ is r. By Lemma 5.2 applied to φ, there
exists an invertible ∆ such that ∆φ is weighted. Then ψ̃ = ∆φ̃ satisfies ii. �

We can now prove a statement slightly more precise than Theorem 1.4.

Theorem 5.8 (Reformulation of Theorem 1.4). Let ε ≥ 0 and 0 ≤ k ≤ dimA,
i. The map x→ (x, γ) defines an injection

Sk(V,Γε) ↪→ Sk(V × γ,Oε).

ii. If ε ≤ ε0(p), where ε0(p) is as in Corollary 5.6. Then, the map (x, p)→ x
defines an injection

Sk(V (θ)× p,Oε) ↪→ Sk
(
V (θ), (Γp)ε′

)
,

where ε′ � ε and Γp is the saturated module of Γp.

Proof. Part i. is an immediate consequence of Proposition 5.4, if ε ≤ θ. In general,
relation (9) gives that if x ∈ Sk(V,Γε), then (x, γ) ∈ V ∩(Bφ̃+Oε) ⊂ Sk(V ×γ,Oε).

ii. Let (x, p) ∈ Sk(V (θ)×p,Oε). Then, there exists a block matrix φ̃ = [φ̃1, . . . , φ̃n]
of rank r with k ≤

∑
i diri, and (ζ, ζ ′) ∈ Oε such that

(10) φ̃((x, p) + (ζ, ζ ′)) = 0.

In view of Lemma 5.7 ii. for q = p, we can assume that φ̃ = (φ|φ′) with φ weighted.
Let aIr be a submatrix of φ with |φ| � a and ir : Ar → Ag such that φ · ir = [a].

We want to show that |φ′| � |φ|. Let l and j be indices such that |φ′| = |φ′lj |.
Consider the l-th row of the equation (10). For ϕl and ϕ′l the l-th rows of φ and φ′

respectively, we have

||ϕ′l(p+ ξ′)|| = ||ϕl(x+ ξ)|| � |φ| (||x||+ ||ξ||) .

By assumption ||x|| ≤ θ and ||ξ|| ≤ ε ≤ ε0(p). So

||ϕ′l(p+ ξ′)|| � |φ|.

By Corollary 5.6 applied with q = p, ψ = ϕ′l and ξ = −ξ′, we deduce

(11) |φ′| = |ϕ′l| � |φ| � a.

Define
[a](y′) = φ′(p) and y = ir(y′) ∈ Γp,

[a](ζ ′) = φ̃(ξ, ξ′) and ζ = ir(ζ ′) ∈ Ag.

Then, for y ∈ Γp,
φ(x+ y + ζ) = 0.

We shall still show that ||ξ|| ≤ ε′. By relation (11), |φ̃|a � 1. In addition ||(ξ, ξ′)|| ≤
ε. We then obtain

||ζ|| = ||ζ
′||
a
� |φ̃|

a
||(ξ, ξ′)|| � ε.

We conclude that
x ∈ V (θ) ∩ (Bφ + Γp +Oε′),

with ||ζ|| ≤ ε′ � ε.
�
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5.4. Conclusion.

Proof of Theorem 1.6. Thanks to Theorem 1.4, it is sufficient to prove that
Conjecture 1.5 implies Conjecture 1.3 ii.

Note that Γ ⊂ Γ. By Lemma 5.2 ii., for all ε ≥ 0,

Sd+1(V (θ),Γε) ⊂
(
V (θ) ∩

⋃
φ weighted
codφ≥d+1

(
Bφ + Γε

) )
.

Let γ be as in Lemma 5.3 for θ0 = 1. By Proposition 5.4, for ε ≤ θ,(
V (θ) ∩

⋃
φ weighted
codφ≥d+1

(
Bφ + Γε

) )
↪→
(

(V (θ)× γ) ∩
⋃

φ̃=(φ|φ′) special

cod φ̃≥d+1

(
Bφ̃ +Oε

))
.

By Theorem 3.4, for ε > 0, there exist a positive real M depending on ε and
ε′ � ε such that⋃

φ̃=(φ|φ′) special
codφ≥d+1

(
(V (θ)× γ) ∩

(
Bφ̃ +Oε/M

))

⊂
⋃

φ̃=(φ|φ′) special

cod φ̃≥d+1

|φ̃|�M

(
(V (θ)× γ) ∩

(
Bφ̃ +Oε′/|φ̃|

))
.

Note that on the right hand side the union is taken over finitely many φ̃, because
|φ̃| �M .

Let ε2 be as in Corollary 4.9. Choose ε′ ≤ ε2 (and consequently choose ε). Note
that |φ| ≤ |φ̃|. By Corollary 4.9,

(V (θ)× γ) ∩
(
Bφ̃ +Oε′/|φ̃|

)
is non Zariski-dense in V × γ.

We conclude that Sd+1(V (θ),Γε/M ) is embedded in a finite union of non Zariski-
dense sets.

�
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