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ABSTRACT. This work is the third part of a series of papers. In the first two
we considered curves and varieties in a power of an elliptic curve. Here we
deal with subvarieties of an abelian variety in general.

Let V be an irreducible variety of dimension d embedded in an abelian
variety A, both defined over the algebraic numbers. We say that V is weak-
transverse if V' is not contained in any proper algebraic subgroup of A, and
transverse if it is not contained in any translate of such a subgroup.

Assume a conjectural lower bound for the normalized height of V. Then,
for V transverse, we prove that the algebraic points of bounded height of V'
which lie in the union of all algebraic subgroups of A of codimension at least
d + 1 translated by the points close to a subgroup I' of finite rank, are non
Zariski-dense in V. If I" has rank zero, it is sufficient to assume that V is
weak-transverse. The notion of closeness is defined using a height function.

1. INTRODUCTION

All varieties we consider in this article are defined over Q and we consider only
algebraic points. Denote by A an abelian variety of dimension g. Consider an
irreducible algebraic subvariety V' of A of dimension d. We say that

e V is transverse, if V' is not contained in any translate of a proper algebraic
subgroup of A.

o V is weak-transverse, if V' is not contained in any proper algebraic subgroup
of A.

Given a subset V¢ of V| an integer £ with 1 < k < g and a subset F' of A, we
define the set

(1) S(Ve,F)=Vven |J (B+F),
codB>k

where B varies over all abelian subvarieties of A of codimension at least k and
B+F={b+f : beB, feF}.

We denote the set Sy (V¢ Tor 4) simply by S (V¢), where Tor 4 is the torsion of A.

Nowadays a vast number of theorems and conjectures claim the non-density of sets
of the type (1). Among others, we recall the Manin-Mumford, Mordell, Mordell-
Lang, Bogomolov and Zilber Conjectures. For more literature one can, for instance,
refere to [7] and [19].
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Let £ be a symmetric ample line bundel on A. Consider on A the semi-norm || - ||
induced by the L£-Néron-Tate height. For ¢ > 0, we define

0. ={{cA:[¢]| <e}

Note that in the literature, often, the notation O, corresponds to the set {£ € A :
[£]]? < €}. Let T’ be a subgroup of finite rank in A. We denote I'c =T + O..

Following Bombieri, Masser and Zannier [3], [4], [5], one can state the following:

Conjecture 1.1. There exists € > 0 such that:

i. If V is weak-transverse, then Sqr1(V,O;) is non Zariski-dense in V.
ii. If V is transverse, then Sqy1(V,T¢) is non Zariski-dense in V.

For £ = 0, this conjecture part ii. is a special case of a conjecture by Zilber and
by Pink. In view of several works, at present, it is clear that such a conjecture can
be split in two parts: one for the height and the other for the non-density property.

Conjecture 1.2 (Bounded Height Conjecture). There exists ¢ > 0 and a non
empty Zariski-open V¥ C V' such that:

i. If V is weak-transverse, then Sqi1(V*, O;) has bounded height.
ii. If V is transverse, then Sq11(V*,T.) has bounded height.

For 6 > 0, we denote
V(0) =V NO,y.

Conjecture 1.3 (Non-density Conjecture). For all reals 0, there exists an effective
€ > 0 such that:

i. If V is weak-transverse, then Sqy1(V(0), Oc) is non Zariski-dense in V.
il. If V is transverse, then Sq11(V(0),T:) is non Zariski-dense in V.

These conjectures are optimal with respect to the codimension d + 1 of the alge-
braic subgroups.

In the present work, we focus our attention on the Non-density Conjecture. In
section 5.3, we prove:

Theorem 1.4. Conjecture 1.3 i. and ii. are equivalent.

That i. implies ii. is quite elementary. The other implication is delicate. It is
worth to note that, on the contrary, Conjecture 1.2 i. and ii. are not equivalent. It
is true that i. implies ii., but the reverse does not hold in general.

In their work, Bombieri, Masser and Zannier present a method to tackle the non-
density question based on the use of the Siegel Lemma and of the Generalized
Lehmer Conjecture. In our previous works [17] and [18] we present a different
method for varieties in a power of an elliptic curve. Our method avoids Siegel’s
Lemma and the Generalized Lehmer Conjecture. We use instead Dirichlet’s The-
orem and an effective version of the Bogomolov Conjecture. Here we extend our
method to subvarieties of abelian varieties in general.

The essential minimum of a variety is defined as

w(V)=inf{e >0, V(e)=V},
where WE) is the Zariski closure of V(g). The Bogomolov conjecture, proven by
Ulmo [16] and Zhang [20], claims that if V' is not a union of translates of abelian
subvarieties by torsion points, then u(V) > 0.
For § > ¢, Sq1(V(0),0:) D S4(V(6),0.) = V(e). Then, for weak-transverse va-
rieties, Conjecture 1.3 i. implies an effective lower bound for the essential minimum
of V. Here, we are going to prove a strong reverse implication: an effective lower
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bound for the essential minimum of transverse varieties implies Conjecture 1.3. For
V transverse, we need a lower bound for u(V'), which is the abelian analogue of [2]
theorem 1.4.

Conjecture 1.5 (Effective Bogomolov Conjecture). Let (A, L) be a polarized abelian
variety. For all transverse subvarieties V. of A of dimension d and for allm > 0

ne(V) = colA, £,n)(deg, V)~ mma=a T,
where co(A, L,n) is a positive constant depending on A, L and 7.
Our main result is:
Theorem 1.6. Conjecture 1.5 implies Conjecture 1.3.

In a preprint Galateau [9] shows that Conjecture 1.5 holds under certain hypothesis
on (A, L), verified for instance for a product of elliptic curves with the natural line
bundle. Then, in these cases we unconditionally prove Conjecture 1.3.

Even if our theorem is often conjectural, a nice aspect is that the codimension
of the algebraic subgroups is the optimal d + 1. No other known methods, even
conjectural (for example assuming the generalized Lehmer’s Conjecture) give such
an optimal result, at least for € > 0.

To prove our main theorem, we first approximate an algebraic subgroup with a
subgroup of degree bounded by a constant. This part is an extension of the method
introduced in [17] for the ring Z, to the ring of endomorphisms of an abelian variety.

The second step is to show that each intersection is non-dense. The proof relies
on Cojecture 1.5 and on some properties of the stabilizer. This approach differs
from the one adopted in [17] and [18].

The structure of the article is as follows. We first fix the notation and definitions.
In chapter 3 we approximate the morphisms. In chapter 4 we prove the non-density
of each intersection, under the assumption of Conjectur 1.5. In chapter 5 we prove
a sequence of simplifications which lead to the proof of our main theorem.

Acknoledgments: 1 kindly thank the referee for his suggestions.
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2. PRELIMINARIES

2.1. The ambient variety. In the first instance we analyse the ambient variety.
Statements on the boundness of heights and on the non-density of sets are invariant
under an isogeny of the ambient variety. Namely, given an isogeny J : A — A’
between abelian varieties over Q, Conjecture 1.3 (as well as 1.1 and 1.2) holds for
V C A if and only if it holds for J(V) C A’. We want to fix a convenient isogeny
which simplifies the setting.

Powers of simple abelian varieties behave quite similar to powers of elliptic curves,
up to some extra technicality. A general abelian variety shall then be regarded as a
product of such powers. In view of the decomposition theorem, an abelian variety
A is isogenous to a product A{' x - x A9 where the A; are non isogenous simple
abelian varieties of dimension d;. Thus we can assume

A=A x - x A9,

Note that the dimension of A is ). d;g;.

In order to take advantage from the results on powers of elliptic curves, we often
need to decompose our objects according to the decomposition of A in power of
simple factors.

Given a multi-index r € N™ we denote by

A= AT' X - X Al
where we simply forget the i factor if r; = 0. Then A = A% for g = (g1, dots, g, ).

2.2. Morphisms and their norm. The ring of endomorphisms of AZ is far more

complicated than the one of an elliptic curve. However, it is a free Z-module of

finite rank. Let &; be the ring of endomorphism of A;. This is a free Z-module

of rank t;. We denote by 7%,... ,Ttii a set of integral generators of &. Then, a

morphism ¢; : AY" — Al" is identified with a r; X g; matrix with entries in &;.
Since the simple factors of AZ are not isogenous, for r € N,

Hom(AZ, A™) = Mat,, xg, (1) X -+ X Mat,, xg, (En).

More precisely, a morphism ¢ : A2 — AT is identified with a block matrix

¢1 ... O
b= [b1,. .. 6n] = g
0 ... ¢n
with ¢; : A — A"

The Rosati involution defines a norm |- | on &;. The Z-module (&;,]-|) is a lattice.

Note that we can identify &; either with an order in a number field or with a
quaternion ring. In an order, the Rosati-norm is identified with the standard Eu-
clidean norm in C. On the other hand, a quaternion ring can be identified with a
ring of matrices with entries in an order. Then, the Rosati-norm of a is the trace
of aa.

For ¢; : A" — Al", we define |¢;| as the maximum of the (Rosati-) norm of its
entries. Note that |¢p| = max; |¢;].

We finally remark that there are only finitely many morphism of norm smaller
than a given constant.

2.3. Algebraic Subgroups. By the decomposition theorem for abelian varieties,
we know that an abelian subvariety of AZ is isogenous to a product AT for some
multi-index r = (r1,...,r,) with r; < g;. Masser and Wiistholz [13] Lemma 1.2,
prove that the algebraic subgroups of AZ split as a product of algebraic subgroups
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of A%, In fact non-split algebraic subgroups would define an isogeny between the
non isogenous simple factors. Then,

Lemma 2.1. An algebraic subgroup B of AZ is of the form By X --- X By, for B; an
algebraic subgroup of AY. Furthermore, the codimension of B; is d;r; for integers
0 <r; <g;. (Recall that d; is the dimension of A;).

Definition 2.2. Let B = By x --- X B, be an algebraic subgroup of AL. Let k; be
the codimension of B; in Af-“. The rank of B; is r; = ki/d; and the rank of B is
r=(r1,...,Tn).

Let ¢ : AL — AT be a surjective morphism. The codimension of ¢ is Y. d;r;, in
other words it is the codimension of ker ¢.

Lemma 2.1 implies that, as in the case of elliptic curves, an algebraic subgroup B
of AZ of rank r is contained in the kernel of a surjective morphism ¢p : A2 — AT
and the kernel By of a surjective morphism ¢p : AL — AT is an algebraic subgroup
of rank r. Furthermore, the codimension of By is given by

cod By = Zdﬂ"i-

Also note that ), r; is the rank of ¢ as matrix, and r; is the rank of ¢;, for
(b: [¢11"'7¢n]~

Clearly, in a product of elliptic curves, the rank and the codimension of an alge-
braic subgroup coincide.

2.4. Subgroups. Let R be a ring and M an R-module of rank s. By a set of free
generators of M we mean a set of s elements of M which are R-linearly independent.
If M is a free R module of rank s we call integral generators of M a set of s
generators of M.

Let £ =& x -+ x &, be the ring of endomorphisms of A; x --- x A,,. Note that
any subgroup of finite rank of AZ is contained in a £-module of finite rank. In turn
a £-module of finite rank in AZ is a subgroup of finite rank.

Let T" be a subgroup of AZ of finite rank.

Definition 2.3. The i-th saturated module I'; of T is the submodule of A; of rank
s; defined by

I'i={¢(y) : ¢ € Hom(A4Z, A;) and Ny €T for N € N*}.
The saturated module of T is T =T'{" x --- x ['dn.

Note that, I' is invariant with respect to the image and preimage of isogenies of
AZ. Furthermore it contains I' and it is of finite rank. This shows that to prove
finiteness statements for T, it is enough to prove them for I'. We also remark that
T D Tor s, where Tor 49 is the torsion group of AZ.

In order to pass form a transverse variety and a non trivial I' to a weak-transverse
variety, we need to associate to I' a point . For the reverse operation, we need to
associate to a point p a subgroup I'),.

Definition 2.4. Let %,...,7@ be a set of free gemerators of T'; and let s =
($1,---,8n). We define

vi= (1.0 €AY
v=(y4,...,9") € A%

Since the coordinates of 4% generate I';, one can easily associate to the coordinates
of v a set of free generators of I'y x --- x I';,.
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Definition 2.5. Let p" = (pi,...,p. ) € A" andp = (p',...,p") € AL, We define
the submodule of A2 associated to the point p by

T, ={p,... ,p;l)g1 X - X (pY, LDl )0
We say that p has rank s = (s1,...,8,) if (pi,... ,p§i> has rank s; as E;-module.

2.5. Relations between weak-transverse and transverse varieties. We dis-
cuss here, how we can associate to the couple V transverse and I', a weak-transverse
variety V', and vice versa.

Let V Dbe transverse in AZ. Let I be a subgroup of finite rank of AZ. Consider a
point v € A% as in Definition 2.4. We define

VI=V x~.

Note that V' is not contained in any proper algebraic subgroup, because the coor-
dinates of v are linearly independent and V' is transverse. So V' is weak-transverse
in A9Ts,

Let V’ be weak-transverse in A%. Let Hy be the abelian subvariety of smallest
dimension such that V' C Hy + p, for p € Hy- and Hg" an orthogonal complement
of Hy. Then Hj is isogneous to AZ for a multi-index g and Hg" is isogenous to AS,
for s = n — g. We fix an isogeny a

J:Aﬂ—>H0><HOJ‘—>Ag><A§,

which sends Hy to AL and Hg to AS. Then J(p) € 0 x A%, Since V' is weak
transverse the projection of J(p) on A2 has rank s.
We consider the natural projection

T AITE A9
JV')y = wJ(V').
We define
V=nJ(V'),
and
I'=Tsw)
Since Hy has minimal dimension, the variety V is transverse in AZ.
Note that
V' =(Vx0)+ J(p).

Statements on the boundness of height and on the Zariski non-density of sets are
invariant under an isogeny. Then, without loss of generality, we can assume that a
weak-transverse variety in AZ is of the form

Vxp
with

- V a transverse subvariety of A%,
- p a point in A% of rank s,
-n= g + s.
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2.6. Polarization and height. In the previous sections we fixed isogenies of the
ambient variety A such that A is a product of powers of non isogenous simple
abelian varieties and a weak-transvers variety has the shape V x p. We now fix a
polarization of A. According to this polarization degrees and heights are computed.

On each A;, we fix a symmetric ample line bundle £;. By £ we denote the
polarization on the ambient variety AZ given as the tensor product of the pull-
backs of £; via the natural projections on the factors. Let % = (z¢,... ,ijh_) € A?.
On A4, we consider the height of the maximum defined as

h(xla EERE) xn) = max(h(x;)),
ij
where h(:) on A; is the canonical Néron-Tate height induced by £;. The height h is
the square of a norm ||-|| on AZ®R. For a point z € AL, we write ||z|| for ||z ® 1]|.
By Kronecker’s Theorem, the only points of height zero are torsion points. Then,
fore > 0, O, D Torge and I'. =T+ O, D Torus. Note that, for any x € AZ and
any morphism ¢ : AL — AL

(@) < (maxg)|@| - [|]]-
For any multi-index r € N and product variety AT, we extend the above defini-

tions. By abuse of notation we still denote £ the polarization on AL given as the
tensor product of the pull-backs of £; via the natural projections on the factors.

2.7. The fixed data of the problem. For the convenience of the reader, we give
here a summary of notation for the objects that are fixed in the problem. This
objects will be used all along the article with no further clarification.

The ambient variety

e Fori=1,...,n,let A; be non isogenous simple abelian varieties of dimen-
sion d;.

o Let A= A% =AY x---x A% be the ambient variety of dimension Y, d;g;.

e Let &; be the ring of endomorfisms of A; and let ¢; be its rank over Z.

o Let 7i,... ,Ttii be a set integral generators of &; as Z-module.

e Let £ be a polarization on A given as tensor product of the pull-back of

polarizations £; on the factors A;.

The subgroup

e Let I' be a submodule of AZ of finite rank.
e Let s; be the rank of the i-th saturated module T'; of T" and s = (s1,. .., $p).
o Let T =T9' x --- x 'Y be the saturated module of T'.

The subvariety

e Let V be a transverse subvariety of AZ of dimension d and codimension
codV.

e Let 6 > 0 be a (large) real and V(0) =V N Oy.

e Let p be a point in A2 of rank s.

e Let V x p be the weak-transverse subvariety of A97%,

2.8. Dependence of the constants. We denote by < an inequality up to a
positive multiplicative effective constant which depends on the invariants of the
problem. Most often such a constant will depend on the choice of a set of free
generators of the rings of endomorphisms &; of A;, for i = 1,...,n. Some constants
will also depend on the polarization £, more precisely on the height and degree of
the ambient variety A. Finally, some constants will depend on degV, ||p|| and 0,
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as well. The dependence of the constants on other parameters will be specified in
the brackets.

2.9. Weighted and Special morphisms. As in the elliptic case, there are matri-
ces which have certain advantages. We generalize the definitions given in [17] for a
power of an elliptic curve. The following definitions are less restrictive, in the sense
that we allow common factors of the entries and we work up to an absolute positive
constant depending on the endomorphisms ring of A;. Let f and r € N with
ri < fi. Up to reordering of columns which does not mix the blocks, a weighted
matrix has the form

a ... 0 L' o .. .0

0 a LL 0 .. .0
= .

0 0 a ... 0 Ly

0 0 0 a L"

Tn

where, L’ : Al7 o A; and |¢| < a|. If r; = f;, we simply forget Li. A nice
property of such a morphism is that its restriction to the first AT factors is simply
the multiplication [a].

Definition 2.6 (Weighted Morphisms). Let f andr € N*. We say that a surjective
morphism ¢ = [bs, ..., bn] : AL — AL is weighted if:
i. There exists a € N* such that al, is a submatriz of ¢, forr =73 r;.
i. |¢] < a.
We associate to a weighted morphism ¢ an embedding i, : AX — AL such that
¢ ir = [a].
Definition 2.7 (Special Morphisms). Let r € N*. We say that ¢ = (pl9') :
AL x A2 — AT is special if:
1. ¢ 1s weighted, and
i. |¢] < |l
Note that a special morphism is weighted. Moreover the embedding ¢, : A —
A9"E maps A” to some of the factors of AY.

3. THE APPROXIMATION OF THE MORPHISMS

As for curves, we want to approximate a morphism with a morphism of norm
bounded by a constant. We reduce the problem of approximating a morphism of
abelian varieties, to the approximation of a morphism with entries in Z. This is
done by considering the ring of endomorphis of A; as a free Z-module.

Dirichlet’s Theorem on the rational approximation of reals claims:

Theorem 3.1 (Dirichlet 1842, see [15] Theorem 1 page 24). Suppose that oy, ..., am

are n real numbers and that @@ > 2 is an integer. Then there exist integers
baﬂlw ‘e ,ﬁm with

1

1<b< Q™ and |ayb— ;] < a

for1 <i<m.
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The ring of endomorphisms of A X --- x A, is the Z-module of rank ¢
E=E xX---xXE,.
For I = (ly,...,1,) € N® we define
6'1:611 X oo ><€fl".

Lemma 3.2. Letl € N" and ! = max; ;. There emsts Qo such that for all integers
Q> Qo and all @ e 5\0 there exists b€ N and b € 5\0 satisfying:

L1<b<Q
i b < b< |b|
i | & - 2 < &
Proof. We first reduce the lemma to the case @ € £'. To see this, it is sufficient to
consider the natural immersion & — &' which identifies £ to the first I; factors of
el
We now prove the lemma for @ € £'. Let 71,...,7; be a set of integral generators
of the ring £. We define A\¢ = mingee, , |a] and

Qo = 2max< , Z |TZ|) .
Ae
The ring £ and Z! are isomorphic. Fix the isomorphism that associate to @ =
alty + -+ alr with o' € Z! the point a = (al,...,at) € Z.
Applying Dirichlet’s Theorem 3.1 with m = It and (a1,..., Q) = ‘%‘a, we deduce
that there exist an integer b and integer vectors 3',..., 3" € Z! such that
(2) 1<b< Q™
and
i i
1
3) AR
[al b~ Qb

The relation (2) proves part i.
Define b = 3, #'r; and 8 = (3*,...,8"). By relation (3) and the triangle inequal-
ity,

%

ZIJI 1

(4) ‘“ b‘ _| X' Eifm| e 1
al b lal b | =@ el
This proves part iii.
From relations (3) we deduce
51 la'l
b Qb @]

The Rosati norm and the Euclidean norm induced by Z! on £ are equivalent,
because the rank is finite. Then |of| < [a@]. In addition Qb > 1. Therefore

Qb + “a‘ < 1 SO -

|| < b and |8] < b.
Whence B

bl <181 Imil < b.

This shows the first inequality in part ii.
Let k be an index such that |a| = \ak| By relation (4) we have

< 2l
< op

ag
|al b
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Whence
lax] _ > ;I
b=b— <= + |bg|-
@ 0 |bk|
Since Q > Y, ||/ e,
b < |by.

This shows the second inequality of part ii.
O

Lemma 3.3. Let f and r € N" with r; < f;. Define m = nt max(r;f; — r? +1).
There exists Qo > 0 such that for all Q > Qo and for all weighted morphism
& AL — AT there exists a surjective morphism v : AL — AT satisfying

i 1<b<@Qm,
i, |1 < b,

N 1
111. ’E_W’<<@’
iv. i, = [b].

As a consequence of ii. and iv. v is weighted.

Proof. Let
a 0 L' o0 0
0 a Ly 0 0
¢ =
0 0 a 0 I?
0 o 0 0 ... a LI

where L% : A{*’_” — A; and
(5) 9] < la] <[]

If |¢| < Q™, no approximation is needed, as ¢ itself satisfies the claim of the
lemma.
Suppose now that |¢| > Q™. Define [ = (rifi — % + 1,r0fa — 75, ..., 70 fn — 72).
We associate to ¢ a vector
a=(a,L},...,L},...,LY,....L") € E-

T1?

Note that |a| = |¢|. Apply Lemma 3.2 to the vector @. Then, there exists an integer

b and a vector b such that
1) 1<b< le
2) b < b< b
3)

a b 1
L-H<

[al

We reconstruct a matrix 1 from b respecting exactly the same positional rule we

used for constructing @ from ¢. Namely, let b= (b, L{',..., LIt ... L, ... L"),
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we define
b ... 0 LY o0 ... .0
0 ... b LY 0o .. .0
P =
0 o b ... 0 L
0 o 0 ... b L
Then,

1) is exactly part i.

2) implies part ii, because ‘b| = |4

3) gives part iii.

Part iv. is evident. (]
Theorem 3.4. Let r € N*. Given ¢ > 0, there exists a positive real M, depending

on e, such that to each special morphism b ATTE 5 AT one can associate a special
morphism 1) : ASTE — AL satisfying:

i ] < M,
ii. ((V(0) xp)N(Bs+0:m)) C (V) xp) N (Bs+0O. ),
with €’ < €.

Proof. Define

1
Q= <Qo,€) where Qg is as in Lemma 3.2
m = ntmax(ri(g; + s;) — 7 +1)
M= Q™.
If |g5| < M, we simply define 1[) = qNS Then e/M < 5/|q~5| and

(V(8) x p) N (Bj+ Ocur)
is contained in the right hand side. }
Now, suppose that |¢| > M. Apply Lemma 3.3 with f = g+ s, ¢ = ¢, and i, is
the immersion of A" to some of the factors of AZ. Then, there exists an integer b
and a matrix v such that

1) 1<b<Qm =M.
2) [Y] <b< [y,
¢ _ 1
|8 <

W

19l

4) ¢ -ip = [b].
Since ¢ is special, then 2) and 4) imply that 9 is special, as well.
Let (z,p) € V(0) x p. We want to show that, if

¢((z,p) +&) =0
for £ € O, /s, then

b((z,p) +€) =0
for some &' € 0.,/ 4 and g <e.
Let £’ be a point in A” such that

bg" = 1 (z,p).
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Define ¢’ =i,(§”). Then

and
b((x,p) + &) =
It follows
(z,p) € (V(0) x p) N (Bg + Oyery)),

where 1 is special and |z/~1| < M.
It remains to prove that

el < 1=
Obviously
91 (@,p) = b (B2 p) = Bla.p)) + 9l (a.p).
It holds
el = i = el _ 336w 3t 1615600
< WHqs z.p)|| + |¢IbH|<£|z/?<x,p> —b(a.p)||

We estimate the two norms on the right.
On one hand

19Dl _ 1SN oy < £ <
9] 9] M b’
where in the last inequality we use that b < M.
On the other hand, we assumed

(2, p)I| < 0+ |lpl|-

Using relation 3) and that Q > %, we estimate

g

qublwmp—bpr_‘% % .

1
|
By 2), we conclude

13 13 13
e < = 4 = < —.
b b |yl

4. THE NON-DENSITY OF EACH INTERSECTION

In this section, we use and compare several polarizations. If not otherwise speci-
fied, it is well understood that the polarization is £. The main results in this section
are conditioned to the validity of Conjecture 1.5.
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4.1. Helping-variety and isogenies. Let ¢ : A2 — AT be a weighted morphism.
We associate to ¢ some isogenies of AZ.

Definition 4.1. Let r € N". To a weighted morphism ¢ = [¢1,...,dn] : AL — AT
with ¢; = (al,,|L*) we associate the following isogenies of AL:

O =[Dy,...,D,],
d=[dy,..., 0],
L:[Llw"aLn]a

o ¢z . a[ri Li
= ( 0 [Ipr )=\ 0 I,
5 I, 0

= < 0 alg_, )

I. L
Li B ( 0 Igz‘*ri )

We now associate to a transverse variety V' C AZ of dimension d, a Helping-variety
W C AL of dimension d. We define

W = Ld~Y(V)

defined by

Then
[a)]W = ®(V).

4.2. Functorial behavior of the essential minimum. We deduce from Conjec-
ture 1.5 a lower bound for the essential minimum of ®(V') which is functorial with
respect to @ (see Theorem 4.4).

In the first instance we need some properties of the stabilizer.

Lemma 4.2. Let ¢ : A — A be an isogeny. Let V be an irreducible algebraic
subvariety of A of dimension d. Then

deg, ¥.(V) = |Stab V Nker ¢| deg, (V).

Proof. We denote by f, the fiber of 1|y at a point x. Since an isogeny is generically
proper, there exists an open O of (V) such that, for x € O, the fiber f, has
constant order. Then deg . (V) = |fy| deg (V). We shall show that, for z € O,

|StabV Nkery| = | fo.
Let x € O and y, € f,. If t € StabV Nker then y, + ¢ € f,. This shows
|StabV Nkery| < |fyl

Suppose by contradiction that, for x € O, |fz| > |StabV Nkerv|. If y,, v, € fa
then y, — y., € ker. Therefore

fz C yz + kerp.

Since ker ) is finite, there exists a dense subset D of O and t € ker ¥)\gab vker
such that for all for x € D
Yo +1 € fa.
Then
Y(V+t)nV)DD.

Since (V +t) NV is closed and isogenies are closed morphisms,

»(V+t)NV) DD,
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where D is the Zariski closure of D. However D D O and so
PY(V+t)NV) D 0= (V).

Isogenies preserve dimensions, thus dim((V +¢)NV) = dim V. Whence V+t=V.
Therefore
t € StabV Nker.

O
Lemma 4.3. In the above notations,
|Stab W N ker[a]| = | ker ®||Stab v ker ®|.
Proof. First remark that, by the definitions,
- Lis an isomqrphism,
- Stab W = L¢~'Stab V,
- ¢l ker ® = keral,
- ker L® = ker ®.
Then,
[Stab W N ker[a]| = [Stab W N ker[a]|
= [LdStab V (ker b
= |LéStab V1 6 er @
— |®Stab VN L~1$! kerCI)‘
— |®Stab V N &~ ker L@‘
= | ker ®| |Stab V N ker LO|
= | ker ®| [Stab V N ker @|.
O

Theorem 4.4 (Isogeny-Functorial Bound). Assume Conjecture 1.5. Let V be a
transverse subvariety of A of dimension d. Then, there exists a positive constant
c(A, L,n) such that, for any weighted ¢ and isogeny ® as above,

1
. deg A 2(@im A=) 77

(V) > (A L —2(dim A—d)n P+L )
pao-c (V) = e(A, L, n)|al Er—

Proof. Note that isogenies preserve dimensions, so dim W = dim V' = d. Further-
more
[a]lW = @(V).

Then
(6) pa-(V) = pe(@(V)) = pe([a]W) = lalpc (W).

We denote by cod V' the codimension of V' in A. We now estimete p.(W) using
Conjecture 1.5. This gives

_ 1

(7) ne(W) = co(A, L,n) (deg (W)~ =orv 7.
By [10] Lemma 6 we obtain,
B |a|2d
~ |Stab W N ker|d]|

deg, ®(V) = deg,[a]W deg, W

or equivalently

Stab W N ker|a
deg, W = | |a[2d ] deg, ®(V).
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Define
1
(A, L,n) = co(A, L,n) (deg A)~ 207 ™",
Substituting in (7), and using Lemmas 4.2 and 4.3, we obtain

|a|2d deg, A Teod v 7
|[Stab W N ker[a]| deg @(V))

1
v+
|a|2ddeg£A 2codv 17
| ker ®||Stab V Nker ®| deg, ®(V)

Teodv T
=c(A,L,n) [af deg, A o
ol | ker ®| deg, ®. (V) .

pe(W) > (A, £,) (

=c(A, L,n) (

We can substitute this last estimate in (6), so

oPdege A )T
| ker ®| deg, @, (V)

pa-c (V) = lalpc (W)

Y

lalc(A, £, n) <

29—2d|,|2d Teod v+
|a|*972%al |ker<1>degEA>

= c(A, L£,n)|a| 20tV :
| ker || ker ®| deg, D.(V)

0l degg p(4) \ 777
al? deg @.(V)

—2co deg * A m+n
= (A, £,m)]a| 724V <dggv;)

C(A,ﬁ,’l])la|_260d Vn (

O

4.3. A Lower bound for the essential minimum. Using a lemma by Masser
and Wiistholz, we now estimate degrees.

Lemma 4.5. Letr € N” and let ¢ : AL — AT be a weighted morphism of codimen-
sion at least d + 1. Let ® as in definition 4.1. Then,
i.
deg, ®(V) < [o*".
ii.
deg ¢(V) < |gf*".

Proof. Part i. is a non explicit version of [14] Lemma 2.3. Part ii. is deduced by
part i. simply observing that ¢(V) = n®(V), for m a projection on some of the
coordinates. In addition, in the chosen polarization, forgetting coordinates makes
degrees decrease. O

Proposition 4.6. Assume that Conjecture 1.5 holds. Letr € N™ and let ¢ : AL —
AL be a weighted morphism of codimension at least d+1. Then, for anyn > 0, there
exist positive effective constants €1(n) and ea(n) such that, for all points y € A2,

i. For ® as in definition 4.1,
1
w(o(V +y)) > GI(H)W’
ii.
p(B(V +y)) > ean)|g|zav 1.
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Proof. i. Since V is irreducible, transverse and defined over Q, ¢(V +y) is as well.
Recall that the codimension of ¢ is > d+1. Then ¢(V +y) C AL has codimension
and dimension at least 1. Apply Theorem 4.4 to ¢(V + y). Then

deg, AT > ER
deg, o(V +y)

Degrees are preserved by translations, hence Proposition 4.5 ii. implies

deg, (¢(V +y)) = deg, (V) < |o*.

He((V +9)) > (A%, L,V,1) (

It follows
1

pe(o(V +y)) > (A% L, W)W-
For r ranging over all multi-indeces such that > d;r; > d+ 1 and r; < g;, define
1(n) = mind' (A%, £, V. 7).
Then

ii. Recall that, for any variety X,

pao-c X = pu (2(X)),
degg-, X = deg, ®.X.

Apply Theorem 4.4 to V + y. We obtain

degg. AL ) Teoa v
degg(V +y)

degg- . Ag) Seod v+
degg- (V)

Recall that (see, for instance, [11] (6.6) Corollary page 68)

e (B(V +y)) > (AL, £, p)a=2o4 V7 (

_ c(AQ,E,n)af%Od Vin <

degy. » AL = | ker ®| deg, A = ¢>(2: %7 deg . A,

By assumption ), d;7; > d + 1 and |¢| < a. So

deggsp AL > q2(d+1) deg, AL > ‘¢|2(d+1).
By Lemma 4.5 i.,
degg- (V) = deg,(®.(V)) < |p|*.
Thus

1
cod v 21

pe ((V +y)) > (AL, L,V n)|g| 21V p

Define

— (A "
ealn) = ¢ (A ’E’V’Q(codVD)'
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4.4. The non-density property. We come to the main proposition of this sec-
tion; each set in the union is non Zariski-dense.

Theorem 4.7. Assume Conjecture 1.5. Let r € N™. Then, there exists an effective
€1 > 0 such that for e < &1, for all weighted morphisms ¢ : AL — AT of codimension
>d+1 and for all y € i,(AY) C AL, the set

(V(0) +y) N (Bg + Oz 1))

is non Zariski-dense in 'V +y.

Proof. Let
n=1/2
€1 =¢€1(1/2)
€9 = €2(1/2)

where €1(n) and e3(n) are as in Proposition 4.6. Define

cod V.
0 1—(codV)/2
m=1— 5
€2

i (02
€1 =-—min (0, —— ),
‘g| ma+1

where |g| = max; g;. Choose
e <egq.
We distinguish two cases: either |¢| < m or |¢| > m.
Case (1) |¢] < m.
Let 2 +y € (V(0) +y) N (Bg + Oc)4|), where y € i,.(A”). Then
P(z +y) = o(£)
for ||€]] < e/|¢|. Since e < Wzildﬂ and |¢| < m,

oG+ )l = 191 < lgle < G < i

In Proposition 4.6 i. with n = 1/2, we have proven
€1
Tg[er < p(o(V +y)).
We deduce that ¢(x + y) belongs to the non Zariski-dense set

71 = ¢(V + y) N Oel/md+l.

Since V' is transverse, the dimension of ¢(V + y) is at least 1. Consider the re-
striction morphism ¢y, : V +y — ¢(V +y). Then x + y belongs to the non
Zariski-dense set ¢|7V1+y(Zl)'

Case (2) |¢| > m.
Let  +y € (V(0) +y) N (By 4+ O./jg|), where y € ip(AZ). Then
Pz +y) = ()
for [[¢]] < €/|¢| and
Oz +y) = (¢ (x+y),7,...,¢8"(x +y),T"),
where T* are some of the coordinates of x. So

@ (2 + )| < max ([[¢()[]; [[«]]) -
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Since [|£]| < 5 and € < - then

8] lgl”
o] < lgle < 0.
Also ||z]| < 6, because z € V(). Thus
1®(z +y)ll < 0.

fercr ey
Since |¢| > m = (%) ,
0 < eolfmiv i,
In Proposition 4.6 with 7 = 1/2, we have proven

€] p| TV TE < p(®(V + ).

So
[@(z +y)l| <0 < w(@(V +y)).
We deduce that ®(x + y) belongs to the non Zariski-dense set

Zy = ®(V +y) N Oy.

The restriction morphism @y, : V +y — ®(V +y) is finite, because ® is an

isogeny. Then = + y belongs to the non Zariski-dense set <I>|7V1+y(Zg).

O
Proposition 4.8. Let r € N" and let ¢ = (plg) : ALTE — AT be a special
morphism. Then, there exists y € i,(AT) C AL such that, for any € > 0, the map
(z,p) — = +y defines an injection

(VO <) (Bs+0-p101) ) = ((VO) +9) 01 (Bo+ O ).
where ' K €.

Proof. By definition of special, for » = ) . r; the matrix al, is a submatrix of ¢
and |¢| < a. Recall that i, : AL — AZ is such that ¢ - i, = [a].
Let 4/ € A” be a point such that

laly" = &' (p)
Define
Y= ZL(?J/)
Then
(8) o(y) = laly’ = ¢'(p)
Let

(2.) € (V(0) x p) 1 (B + O ppe)) -
Then, there exists £ € O, /4 such that

o((x,p) + &) =0.
Equivalently

b(@) +¢'(p) + $(€) = 0.
By relation (8) we deduce

oz +y) +6(6) = 0.
Let £” € A be a point such that
[al” = 6(¢).
Define &' = i,(£"), then
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and
¢z +y+¢)=0.
Since ¢ is special || < |¢|. Furthermore ||¢]| < 1o~ We deduce
1@l _ e
1€ = 11€"11 = < =
9] 9]

In conclusion
(x+y) € (V(0) +y) N (By+ Ocrjjg) -
O

Corollary 4.9. Assume Conjecture 1.5. Letr € N". Then, there exists an effective
g9 > 0 such that for ¢ < ey and for all special morphisms ¢ = (¢|¢’) : AITE — AT
of codimension at least d + 1 the set

(V(©) x p) 01 (B; + 0.1
is non Zariski-dense in 'V X p.

Proof. This is an immediate consequence of Theorem 4.7 and Proposition 4.8.
d

5. THE PROOF OF THEOREM 1.6: REDUCTIONS
5.1. Reducing to weighted morphisms. Using the Gauss algorithm we show:

Lemma 5.1. Let A; € M, «r,(E;) be a matriz of rank r;. Then, there exists an
integer a and a matriv A, € My, «r, (&) of rank r; such that

A;Az = aIri .

Proof. Note that &; is not necessarily commutative, it can be a quaternion, however
given non zero elements x,y € &; there exist a,b € &; such that ax = by. This
shows that one can operate a Gauss reduction using only operations on the left and
without commuting elements in &;. In other words there exists a matrix A of rank
r; such that AA; is a diagonal matrix. Using the norm, we can find a matrix A’
of maximal rank r; such that A’AA; = [aq,...,a,,] with a; € Z*. Let m be the
minimum common multiple of a4, ..., a,,. We define A = [%, ce ‘G—’Z‘]A’A. O

This has some immediate consequences.

Lemma 5.2. Let r € N". Let ¢p : A2 — AT be a surjective morphism. Then,
there exists an isogeny A of AT such that ¢ = A is a weighted morphism. As a
consequence,

i. By C By + Torgs.

ii. For all e >0,

U (Bw Jrfe) C U (B¢ Jrfg).
rk(y)=r ¢ weighted
tk(¢)=r
Proof. Let ¢ = [t1,...,1¢,]. Let A; be a submatrix of ¢; of rank r; with maximal
pivots. By Lemma 5.1 applied to each A;, there exists A} such that ALA; = a;1,,
with a; € N*. Let m be the mimum common multiple of the a;. Define
iy

A= {ml } [A],... AL
ap

n
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5.2. Reducing to special morphisms. We want to fix a convenient set of genera-
tors of T'. Recall that T'; is the i-th saturated module of rank s; and s = (s1,...,8,),
(see Definition 2.3).

Lemma 5.3. Let 6y > 0. There exist points v of A{* such that the coordinates
of v* are free generators of I';. Moreover, for v = (y',...,7™) € A and for all
¢:AE— Ay X - X Ay,

Oolo| < [lo()]]-

Proof. Let ¢ = [¢1,...,6,]. Then ||¢(v)|| = max; ||¢:(7?)]|. It is then sufficient to
prove the lemma for each .
Fix the isomorphism from &; to Z! that maps 7';: to the j-th elements of the

standard basis of Z!. Then T; is also a Z-module. Let vy, ...,vs, be a set of £-free
generators of I';. Apply [17] Lemma 3.4 with I = (vq, ..., vs,)z, K = 0y and b; € Z.
Then, there exists a set of Z free generators 74,...,7% of I = (v1,...,vs,)g such
that

0o < |1l
and

]. i 7
§Z|bjm%|| < szj%'”
J J

where b; € Z. Note that I'; = ') ®z &;. The Rosati norm and the Euclidean norm
induced by Z! on &; are equivalent, because the rank is finite. Then, the above
inequalities imply

Ooldil <> 1okl 17kll < [16: (7).
k

We prove here an important inclusion.

Proposition 5.4. Let v € A2 be as in Lemma 5.8 for 6 = 1. Let r € N™.
To each weighted morphism ¢ : AL — AT we can associate a special morphism
¢ = (¢p|@") : A9TE — AT such that, for all 0 < e < 0, the map x — (x,7) defines an
injection

(V(0) N (B +T2)) — ((V(8) x ) N (B +0.)).

Proof. Let x € V(0) N (By + I'.). Then, there exist points y € T and £ € O, C AL
such that

Pz +y+&) =0
As v is a set of free generators, there exist a positive integer N and a morphism
G : A% — AT such that

Ny = Gr.
We define )
¢ = (NoloG).
Then
9) é((x,7) + (£,0)) = 0.

We already know that ¢ is weighted and therefore N¢ is weighted too. Then, to
prove that ¢~> is special, it remains to prove that |<;~5| < N|¢|. Equivalently, we shall
show that [¢'| < N|@|. Let [ and j be indices such that |¢'| = [¢};|. Consider the
I row of the equation (9). For ¢; and ¢] the [-th rows of ¢ and ¢’ respectively, we
have

INei(z + &I = ller(D]l-
So

ler (I = [IN@i(@ + I < INg|([[l] + [1€]])-
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By assumption ||z|| < 6 and [|¢]| <e < 8. So
e (Il < Ngl.

In view of Lemma 5.3, we deduce
|| < Ng|.
Thus
o1l = 16| < Ngl.
O

5.3. Reducing to Conjecture 1.3 ii. In this subsection we are going to prove
Theorem 1.4. In the first instance, we study some properties of a morphism van-
ishing on a point of large rank. For this we need a lemma of the geometry of
numbers.

Lemma 5.5. Let 1 <i < n. Let ¢" = (¢i,.. .,q;) be a point of A" of rank s;.
There exist positive effective constants co(q') and eo(q"), depending on q*, such that
cola’) Y b5 P> < (1D bi(a; — €IF

J J
for all by, ... bs, € & and for all &1, ..., &, € O g1y C A7
Proof. The Rosati involution defines a norm on &; which is compatible with the
height norm on A;. Namely [[b;q}]| = [b;]||¢}||. Thus (&, |- |) is a hermitian free

Z-module of rank t; and (A;, || - ||) is a hermitian &-module.
The proof is then the analogue of the proof of [17] Proposition 3.3, where one shall
read A; instead of E and consider b = 0. O

Corollary 5.6. Let q € A2 be a point of rank s and let 1p : A2 — Ay x --- X A, be
a morphism. Then, there exist positive constants co(q) and £o(q) such that
co(a) |yl < l(q = I,
forall £ € O C A% .
Proof. We simply apply the previous proposition to each block. Let ¢ = [t1, ..., ¥p]

with ; : A" — A;. Let ¢ = (¢*,...,¢") with ¢* € A" and € = (¢',...,£") with
¢t € A", Note that

max [[¢;(¢" — €] = [lv(q - &I

Apply Lemma 5.5 with (by,...,bs,) = ¥, (&1,...,&,) = €. Choose cy(q) to be
the minimum of ¢o(q%) and £o(g) to be the minimum of g¢(¢’), fori=1,...,n. O

Lemma 5.7. Let ¢ € A% be a point of rank s. Let ¢ = (plg") : ALTE — AT be q
surjective morphism. Let e < eo(q) where £0(q) is as in Corollary 5.6.
If there exists a point (x,q) € Bj; + O, then

1. ¢ has rankr,
ii. There exists ¥ = () : ASTE — AT with ) weighted, such that

Bq; C Bf/; + Tor ps.

Proof. i- Suppose that the rank of ¢ is less than r. Then, there exists A =
[A1,...,An] with A; € E* such that

Ap = 0.
Let (z,q) € By + O.. Then, there exists (£,{’) € O, such that

b ((z,q) + (£,€)) =0.
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So
A (g +&) = —p(z +&) =0.
Corollary 5.6, applied with £ = —¢’ and any non-trivial v, implies that ¢ + £ has
rank s, whence A\¢' = 0. So )\gZN) = 0. This contradicts that q~$ has full rank r.
ii- By part i we can assume that rank ¢ is r. By Lemma 5.2 applied to ¢, there
exists an invertible A such that A¢ is weighted. Then ¢ = A¢ satisfies ii. O

We can now prove a statement slightly more precise than Theorem 1.4.

Theorem 5.8 (Reformulation of Theorem 1.4). Let e >0 and 0 < k < dim A,
i. The map x — (x,7) defines an injection
S(V,Te) — Sp(V x v,0,).
ii. If e <eo(p), where eq(p) is as in Corollary 5.6. Then, the map (x,p) — x
defines an injection
Su(V(0) x p,0:) = Si (V(0),(Tp)) ,
where & < ¢ and I‘ip is the saturated module of I'p.

Proof. Part i. is an immediate consequence of Proposition 5.4, if ¢ < 6. In general,
relation (9) gives that if z € S (V,T'.), then (z,v) € VN(B;+0:) C Sk(V x7, 0¢).

ii. Let (x,p) € Si(V(0)xp, O.). Then, there exists a block matrix ¢ = [¢1, ..., dy]
of rank r with k£ <, d;7;, and ({,¢’) € O, such that
(10) é((z.p) +(¢.¢") = 0.

In view of Lemma 5.7 ii. for ¢ = p, we can assume that ¢ = (¢|¢’) with ¢ weighted.
Let al, be a submatrix of ¢ with |¢| < a and i, : AZ — AZ such that ¢ - i, = [a].

We want to show that |¢'| < |¢|. Let I and j be indices such that |¢'| = |¢,].
Consider the [-th row of the equation (10). For ¢; and ¢ the I-th rows of ¢ and ¢’
respectively, we have

ller(p + NN = lleu(a + O < [l (Il + [1€]]) -
By assumption ||z|| < 6 and ||¢]| < e < eq(p). So

et (p+ NI < [4].
By Corollary 5.6 applied with ¢ = p, ¥ = ¢} and § = —&', we deduce

(11) ¢ = el < 1] < a.

Define
[a(y')=¢'(p) and y=i.(y) €T,
[a](¢') = 6(&,€') and ¢ =in(¢') € AL

Then, for y € 17,,
pz+y+¢) =0

We shall still show that ||£]| < &’. By relation (11),
€. We then obtain
<]

a

[=

< 1. In addition ||(£,&)]] <

a

et =L Py gy <

We conclude that
e V()N (By+T,+0O),
with ||¢]] <&’ <« e.
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5.4. Conclusion.

Proof of Theorem 1.6. Thanks to Theorem 1.4, it is sufficient to prove that
Conjecture 1.5 implies Conjecture 1.3 ii.
Note that I' C I'. By Lemma 5.2 ii., for all € > 0,

Sui1(V(8),T2) C (V(a) n U (Bs+T.) )
s iy

Let v be as in Lemma 5.3 for §; = 1. By Proposition 5.4, for € < 6,

(V(e) n U (Bs+TL) ) - ((V(a) xnn (Bd; + 05) )
¢ weighted é=(¢|¢') special
cod g>d+1 cod qudL
By Theorem 3.4, for € > 0, there exist a positive real M depending on ¢ and
¢’ < € such that

U (v xnn(B;+0.u))

$=(¢l¢) special
cod p>d+1

c U ((V(e) x ) N <B$+Os,/w;|)).
¢=(9|¢’) special
cod p>d+1
|fl<M

Note that on the right hand side the union is taken over finitely many qNS, because
6] < M.

Let g2 be as in Corollary 4.9. Choose &’ < g5 (and consequently choose £). Note
that |¢] < |¢|. By Corollary 4.9,

(V(6) x )N (B¢;+(’)€,/‘¢;‘)

is non Zariski-dense in V' x ~.
We conclude that Sg;1(V(0),I'z/ar) is embedded in a finite union of non Zariski-
dense sets.
d
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