Christen, Matthias-Michael. Generating and auto-tuning parallel stencil codes. 2011, Doctoral Thesis, University of Basel, Faculty of Science.
|
PDF
12Mb |
Official URL: http://edoc.unibas.ch/diss/DissB_9723
Downloads: Statistics Overview
Abstract
In this thesis, we present a software framework, Patus, which generates high performance stencil codes for different types of hardware platforms, including current multicore CPU and graphics processing unit architectures. The ultimate goals of the framework are productivity, portability (of both the code and performance), and achieving a high performance on the target platform.
A stencil computation updates every grid point in a structured grid based on the values of its neighboring points. This class of computations occurs frequently in scientific and general purpose computing (e.g., in partial differential equation solvers or in image processing), justifying the focus on this kind of computation.
The proposed key ingredients to achieve the goals of productivity, portability, and performance are domain specific languages (DSLs) and the auto-tuning methodology.
The Patus stencil specification DSL allows the programmer to express a stencil computation in a concise way independently of hardware architecture-specific details. Thus, it increases the programmer productivity by disburdening her or him of low level programming model issues and of manually applying hardware platform-specific
code optimization techniques. The use of domain specific languages also implies code reusability: once implemented, the same stencil specification can be reused on different
hardware platforms, i.e., the specification code is portable across hardware architectures. Constructing the language to be geared towards a special purpose makes it amenable to more aggressive optimizations and therefore to potentially higher performance.
Auto-tuning provides performance and performance portability by automated adaptation of implementation-specific parameters to the characteristics of the hardware on which the code will run. By automating the process of parameter tuning — which essentially amounts to solving an integer programming problem in which the objective function is the number representing the code's performance as a function of the parameter configuration, — the system can also be used more productively than if the programmer had to fine-tune the code manually.
We show performance results for a variety of stencils, for which Patus was used to generate the corresponding implementations. The selection includes stencils taken from two real-world applications: a simulation of the temperature within the human body during hyperthermia cancer treatment and a seismic application. These examples demonstrate the framework's flexibility and ability to produce high performance code.
A stencil computation updates every grid point in a structured grid based on the values of its neighboring points. This class of computations occurs frequently in scientific and general purpose computing (e.g., in partial differential equation solvers or in image processing), justifying the focus on this kind of computation.
The proposed key ingredients to achieve the goals of productivity, portability, and performance are domain specific languages (DSLs) and the auto-tuning methodology.
The Patus stencil specification DSL allows the programmer to express a stencil computation in a concise way independently of hardware architecture-specific details. Thus, it increases the programmer productivity by disburdening her or him of low level programming model issues and of manually applying hardware platform-specific
code optimization techniques. The use of domain specific languages also implies code reusability: once implemented, the same stencil specification can be reused on different
hardware platforms, i.e., the specification code is portable across hardware architectures. Constructing the language to be geared towards a special purpose makes it amenable to more aggressive optimizations and therefore to potentially higher performance.
Auto-tuning provides performance and performance portability by automated adaptation of implementation-specific parameters to the characteristics of the hardware on which the code will run. By automating the process of parameter tuning — which essentially amounts to solving an integer programming problem in which the objective function is the number representing the code's performance as a function of the parameter configuration, — the system can also be used more productively than if the programmer had to fine-tune the code manually.
We show performance results for a variety of stencils, for which Patus was used to generate the corresponding implementations. The selection includes stencils taken from two real-world applications: a simulation of the temperature within the human body during hyperthermia cancer treatment and a seismic application. These examples demonstrate the framework's flexibility and ability to produce high performance code.
Advisors: | Burkhart, Helmar |
---|---|
Committee Members: | Eigenmann, Rudolf |
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > High Performance and Web Computing (Burkhart) |
UniBasel Contributors: | Burkhart, Helmar |
Item Type: | Thesis |
Thesis Subtype: | Doctoral Thesis |
Thesis no: | 9723 |
Thesis status: | Complete |
Number of Pages: | 284 S. |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 02 Aug 2021 15:08 |
Deposited On: | 09 Jan 2012 13:58 |
Repository Staff Only: item control page