edoc-vmtest

Finite element surface registration incorporating curvature, volume preservation, and statistical model information

Albrecht, Thomas and Dedner, Andreas and Lüthi, Marcel and Vetter, Thomas. (2013) Finite element surface registration incorporating curvature, volume preservation, and statistical model information. Computational and mathematical methods in medicine, Vol. 2013 , art. 674273.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

5Mb

Official URL: http://edoc.unibas.ch/dok/A6212300

Downloads: Statistics Overview

Abstract

We present a novel method for nonrigid registration of 3D surfaces and images. The method can be used to register surfaces by means of their distance images, or to register medical images directly. It is formulated as a minimization problem of a sum of several terms representing the desired properties of a registration result: smoothness, volume preservation, matching of the surface, its curvature, and possible other feature images, as well as consistency with previous registration results of similar objects, represented by a statistical deformation model. While most of these concepts are already known, we present a coherent continuous formulation of these constraints, including the statistical deformation model. This continuous formulation renders the registration method independent of its discretization. The finite element discretization we present is, while independent of the registration functional, the second main contribution of this paper. The local discontinuous Galerkin method has not previously been used in image registration, and it provides an efficient and general framework to discretize each of the terms of our functional. Computational efficiency and modest memory consumption are achieved thanks to parallelization and locally adaptive mesh refinement. This allows for the first time the use of otherwise prohibitively large 3D statistical deformation models.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Computergraphik Bilderkennung (Vetter)
UniBasel Contributors:Vetter, Thomas
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Hindawi
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
edoc DOI:
Last Modified:31 Dec 2015 10:54
Deposited On:31 Jan 2014 09:50

Repository Staff Only: item control page