Fisker, Jacob Lund. The reaction flow during explosive nuclear burning on an accreting neutron star. 2005, Doctoral Thesis, University of Basel, Faculty of Science.
|
PDF
844Kb |
Official URL: http://edoc.unibas.ch/diss/DissB_7350
Downloads: Statistics Overview
Abstract
This dissertation contains the first extensive investigation of the detailed reaction flow of an X-ray burst under realistic conditions. It was made possible by building a new computational model. This model distinguishes itself by introducing for the first time: full general relativistic (GR) hydrodynamical equations, GR corrected atmosphere, GR corrected convection, modern approximations of the opacities and conductivities, neutrino losses, and a GR inner boundary of the core luminosity. We use conservative equations allowing a precise tracking off all released energy which reveals unprecedented details in the luminosity. The simulations show that – • An interplay between the helium flash and the rp-process produces an identifiable double-peaked structure, which has been observed. • The burst temperature is lower than previously assumed, so the Tecycle is not reached. The average mass of the ashes is ∼ 64. Carbon is destroyed by helium captures before reaching the ocean. • Convection does not hit the surface for mixed hydrogen/helium bursts. Therefore we predict that burst spectral lines are not from material from deeper layers. • Convection extends to the surface in helium ignited bursts. We predict a sudden rise in helium and sulfur as the turbulent overturn breaches the surface. We also give a complete description of the X-rat burst reaction flow including branchings and waiting points as a guide to future experiments and observations.
Advisors: | Thielemann, Friedrich-Karl |
---|---|
Committee Members: | Schatz, H. |
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Former Organization Units Physics > Theoretische Physik Astrophysik (Thielemann) |
UniBasel Contributors: | Thielemann, Friedrich-Karl |
Item Type: | Thesis |
Thesis Subtype: | Doctoral Thesis |
Thesis no: | 7350 |
Thesis status: | Complete |
Number of Pages: | 88 |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 02 Aug 2021 15:04 |
Deposited On: | 13 Feb 2009 15:21 |
Repository Staff Only: item control page