Dill, M. T. and Rothweiler, S. and Djonov, V. and Hlushchuk, R. and Tornillo, L. and Terracciano, L. and Meili-Butz, S. and Radtke, F. and Heim, M. H. and Semela, D.. (2012) Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology, Vol. 142, H. 4 , S. 967-977.e2.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A6338522
Downloads: Statistics Overview
Abstract
BACKGROUND & AIMS: Notch signaling mediates embryonic vascular development and normal vascular remodeling; Notch1 knockout mice develop nodular regenerative hyperplasia (NRH). The pathogenesis of NRH is unclear, but has been associated with vascular injury in the liver sinusoids in clinical studies. We investigated the role of Notch1 signaling in liver sinusoidal endothelial cells (LSECs). METHODS: We studied MxCre Notch1(lox/lox) mice (conditional knockout mice without tissue-specific disruption of Notch1); mice with hepatocyte-specific knockout were created by crossing Notch1(lox/lox) with AlbCre(+/-) mice. Portal vein pressure was measured; morphology of the hepatic vasculature was assessed by histologic and scanning electron microscopy analyses. We performed functional and expression analyses of isolated liver cells. RESULTS: MxCre-induced knockout of Notch1 led to NRH, in the absence of fibrosis, with a persistent increase in proliferation of LSECs. Notch1 deletion led to de-differentiation, vascular remodeling of the hepatic sinusoidal microvasculature, intussusceptive angiogenesis, and dysregulation of ephrinB2/EphB4 and endothelial tyrosine kinase. Time-course experiments revealed that vascular changes preceded node transformation. MxCre Notch1(lox/lox) mice had reduced endothelial fenestrae and developed portal hypertension and hepatic angiosarcoma over time. In contrast, mice with hepatocyte-specific disruption of Notch1 had a normal phenotype. CONCLUSIONS: Notch1 signaling is required for vascular homeostasis of hepatic sinusoids; it maintains quiescence and differentiation of LSECs in adult mice. Disruption of Notch1 signaling in LSECs leads to spontaneous formation of angiosarcoma, indicating its role as a tumor suppressor in the liver endothelium.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Hepatology Laboratory (Heim) |
---|---|
UniBasel Contributors: | Heim, Markus H. |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Saunders |
ISSN: | 0016-5085 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 10 Apr 2015 09:14 |
Deposited On: | 10 Apr 2015 09:14 |
Repository Staff Only: item control page