edoc-vmtest

PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis

Thedieck, K. and Polak, P. and Kim, M. L. and Molle, K. D. and Cohen, A. and Jeno, P. and Arrieumerlou, C. and Hall, M. N.. (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS one, Vol. 2, H. 11 , e1217.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258300

Downloads: Statistics Overview

Abstract

TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Growth & Development > Biochemistry (Hall)
05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Molecular Microbiology (Arrieumerlou)
05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Mass Spectrometry (Jenö)
UniBasel Contributors:Hall, Michael N. and Jenö, Paul and Arrieumerlou, Cécile
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:PubMed Central
ISSN:1932-6203
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:14 Sep 2012 06:50
Deposited On:22 Mar 2012 13:29

Repository Staff Only: item control page