Nnadi, Charles Okeke and Nwodo, Ngozi Justina and Kaiser, Marcel and Brun, Reto and Schmidt, Thomas J.. (2017) Steroid Alkaloids from Holarrhena africana with Strong Activity against Trypanosoma brucei rhodesiense. Molecules, 22 (7). E1129.
PDF
- Published Version
Available under License CC BY (Attribution). 587Kb |
Official URL: http://edoc.unibas.ch/55628/
Downloads: Statistics Overview
Abstract
In our continued search for natural compounds with activity against Trypanosoma brucei, causative agent of human African trypanosomiasis (HAT, "sleeping sickness"), we have investigated extracts from the leaves and bark of the West African Holarrhenaafricana (syn. Holarrhena floribunda; Apocynaceae). The extracts and their alkaloid-enriched fractions displayed promising in vitro activity against bloodstream forms of T. brucei rhodesiense (Tbr; East African HAT). Bioactivity-guided chromatographic fractionation of the alkaloid-rich fractions resulted in the isolation of 17 steroid alkaloids, one nitrogen-free steroid and one alkaloid-like non-steroid. Impressive activities (IC50 in µM) against Tbr were recorded for 3β-holaphyllamine (0.40 ± 0.28), 3α-holaphyllamine (0.37 ± 0.16), 3β-dihydroholaphyllamine (0.67 ± 0.03), N-methylholaphyllamine (0.08 ± 0.01), conessimine (0.17 ± 0.08), conessine (0.42 ± 0.09), isoconessimine (0.17 ± 0.11) and holarrhesine (0.12 ± 0.08) with selectivity indices ranging from 13 to 302. Based on comparison of the structures of this congeneric series of steroid alkaloids and their activities, structure-activity relationships (SARs) could be established. It was found that a basic amino group at position C-3 of the pregnane or pregn-5-ene steroid nucleus is required for a significant anti-trypanosomal activity. The mono-methylated amino group at C-3 represents an optimum for activity. ∆(5,6) unsaturation slightly increased the activity while hydrolysis of C-12β ester derivatives led to a loss of activity. An additional amino group at C-20 engaged in a pyrrolidine ring closed towards C-18 significantly increased the selectivity index of the compounds. Our findings provide useful empirical data for further development of steroid alkaloids as a novel class of anti-trypanosomal compounds which represent a promising starting point towards new drugs to combat human African trypanosomiasis.
Faculties and Departments: | 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Medical Parasitology and Infection Biology (MPI) > Parasite Chemotherapy (Mäser) |
---|---|
UniBasel Contributors: | Kaiser, Marcel and Brun, Reto |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | MDPI |
ISSN: | 1420-3049 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 07 Feb 2018 16:01 |
Deposited On: | 07 Dec 2017 07:09 |
Repository Staff Only: item control page